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ABSTRACT

Aromatic Hydrocarbons from Pure Fatty Acids and Renewable Triglyceride
Feedstocks via Hydrothermal Zeolite Catalysis

by

Na Mo

Chair: Professor Phillip E. Savage

Triglycerides and fatty acids are attractive renewable feedstocks, because they are the

major components of many types of biomass. There are several proposed chemical

processes that generate aqueous streams rich in fatty acids.[1–4] Thus, fatty acids

in aqueous streams represent a renewable feedstock available for the production of

chemicals. Zeolite catalysis is applied because these catalysts promote aromatization

reaction, and aromatics are the targeted chemical products. The objective of this re-

search is to use hydrothermal catalytic cracking with zeolite to generate key industrial

chemicals, such as toluene and xylenes, from fatty acids.

I investigated the reactions of saturated (palmitic and stearic acids) and unsat-

urated fatty acids (oleic and linoleic acids) in water near the critical point at 400

℃, at 12.5, 20, and 24 MPa, and over zeolites Y, beta, and ZSM-5. Zeolite ZSM-5

was found to be the most promising catalyst to produce aromatics from fatty acids in

water among different types of zeolite that we have tested. The major liquid products

were aromatics (e.g., xylenes, toluene), and alkanes (e.g., 2-methyl-pentane, heptane).

Reaction condition of 400℃, 20 MPa, and 180 minutes gave the highest total product

xvi



yield. Additional hydrogen and water density have effect on product distribution.

The lowest silica/alumina ratio (23) we have tested generated the most aromatics.

The catalyst can be regenerated and reused. ZSM-5 with a silica/alumina ratio of 23

gave a total product yield of 76 ± 3 wt% at its third use, after undergoing regener-

ation twice previously. Finally, this methodology has been applied to fatty acid-rich

lipids extracted directly from biomass, including algal oil, coconut oil, peanut oil,

and lard, to assess the technical feasibility of the approach with a real plant-derived

feedstock. Peanut oil (53 ± 15 wt%) and lard (48 ± 4 wt%) showed comparable total

major aromatic yields to pure fatty acids (42 ± 4 wt%).

This research confirms the technical feasibility of producing appreciable yields

of aromatic products from fatty acids in water over consecutive uses. Examining

the influence of different process variables has revealed methods to tune the product

distribution in order to favor desired products. Taken together, this work lays the

foundation for an aromatics production process using renewable feedstocks.
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CHAPTER I

Introduction

1.1 Background and Motivation

There has been a long interest in the production of chemicals from renewable feed-

stock in order to make the current chemical industry more environmentally friendly.

Renewable chemicals are becoming increasingly essential due to large worldwide de-

mand with fast developing countries, the growth of global population, and environ-

mental concerns such as greenhouse gas release and the global warming phenomenon,

which are associated with the conventional process of producing bulk chemicals from

petroleum in the current chemical industry. For all of these reasons, interest in conver-

sion of biomass to chemicals has increased sharply. The number of journal articles on

this topic doubled from 2008 to 2010.[5] Chemical manufacturers are also interested

in producing bulk and specialty chemicals from renewable feedstock because of the

increasing global demand for certain chemicals and the potential sustainability ad-

vantage offered by renewables. In the U.S, the net import of benzene/toluene/xylene

(BTX) has increased by 300 million liters from 2003 to 2013[6], indicating that de-

mand is exceeding supply domestically.

This topic draws more attention especially with the recent shale gas revolution,

which has the potential to affect not only the natural gas market, but also the entire

energy mix of the world.[7] The US chemical and oil industry is very sensitive to
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feedstock prices, and therefore has created a significant intentional shift from heavy

feedstock to light feedstock with the shale gas discoveries in the US. The aromatics

production routes are connected to naphtha from petroleum and its conversion by

either steam cracking or by catalytic reforming. Therefore, this shift in cracker feed-

stock can have significant negative impact on the heavier refinery co-products such

as aromatics. Some estimates suggest that aromatic cracker output is already down

by 20% in the US. At the same time, the demand for aromatics is expected to rise

by 5-10% annually.[8] The shale gas revolution might enable the large-scale imple-

mentation and production of the first wave of bio-based bulk chemicals. All of these

factors point to the need to discover new methods to produce chemicals, especially

aromatics, from renewable resources.

1.2 Relevance to Sustainability

Sustainability is generally measured by the Triple Bottom Line (TBL), which

includes the traditional measure of economic profits as well as environmental and

social dimensions. [9] Chemical production from renewable feedstocks can potentially

be a more sustainable process than the traditional chemical production from fossil

fuel by influencing some of these TBL dimensions.

According to Petrou and Pappis’s survey[10], the most common positive impact

of using renewable feedstocks is the reduction in the emission of greenhouse gases,

particularity CO2. This is because organisms (which the biomass comes from), during

their lives absorb CO2 equal to the amount emitted when biomass is burned. However,

this is ignoring the GHG emission from the use of fossil transportation fuels in the

complicated logistics needed for biomass collection. Another positive impact of using

renewable feedstocks is the decrease in SO2 emissions, which is due to the low content

of biomass in sulfur. Among the negative impacts, the most serious problem arising

from renewable feedstock-based chemical or fuel production is the increase in food
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market prices.

Both benefits and risks exist with the process of chemical production from renew-

able feedstocks, and both sides should be considered in measuring the sustainability

performance. Life Cycle Analysis (LCA) is a good approach for evaluating these pros

and cons individually across the TBL dimensions and for different types of feedstocks.

There are many factors that must be taken into consideration for each dimension.

Cost factors for economic analysis include cost of feedstock, power and water supply,

labor, taxes, and distribution, etc. Some indicators for the environmental dimension

include greenhouse effect, ozone layer depletion, acidification, europhication, and en-

ergy. The results should be comprehensive and should come with trade-offs. For

example, in a recent study, Singh and Olsen[11] suggested algal biofuels to be envi-

ronmentally better than fossil fuels but economically it is not yet attractive based on

LCA.

1.3 Properties of Water near the Critical Point

Interest in obviating a biomass drying step and the resulting energy savings has

led many researchers to study and develop hydrothermal processes for conversion of

biomass. A life-cycle assessment of algae biofuel production from Chlorella Vulgaris

indicated that drying and extraction in the biofuel production process accounted for

up to 90% of the total process energy.[12] Since there is a lot of water present in

biomass, it is important to understand the role of water in the chemical process of

biomass.

Water is widely considered a safe and inexpensive reaction medium. Water near

its critical point (374 ℃, 22.1 MPa) is particularly an attractive reaction medium;

compared to organic solvents in chemical processes, it offers potential environmental

and economic advantages. The density and dielectric constant of the water medium

play a major role in solubilizing organic compounds in subcritical and supercritical
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Figure 1.1: Effect of temperature on physical properties of water at a pressure of 25
MPa

[13]

water. As shown in Figure 1.1, the density, dielectric constant, and ion product of

water decrease considerably near the critical point compared to room-temperature

liquid water. The decrease of dielectric constant indicates that both the persistence

and the number of hydrogen bonds decrease; therefore, enhancing the solubility of

chemical compounds in the water. Water acts more like a polar organic solvent

near the critical temperature of water, which would improve its solubility to polar

chemicals, such as aromatics.

Conducting chemical reactions in subcritical or supercritical conditions affords

some additional advantages. First, reducing the system temperature of post reaction

would easily lead to the separation of organic and aqueous phases, so that product

separation is convenient when using water as an alternative to organic solvents.[14]

Second, it provides an opportunity to manipulate the reaction environment (solvent

properties) by manipulating pressure.[15] Third, some reactions that follow conven-
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tional acid- or base-catalyzed mechanisms at room temperature have been proposed

to be catalyzed by water molecules in subcritical or supercritical reaction conditions,

which suggests that the subcritical or supercritical condition may promote acid- or

base- catalyzed reactions.

Since water is already present in harvested biomass, and considering the advan-

tages of using water near the critical point as a solvent as we have discussed above,

it is believed that this water could serve as a promising solvent alternative for our

proposed methodology for producing industrial bulk chemicals from renewable feed-

stock.

1.4 Selection of Reactants and Targeted Products

Fatty acids are attractive renewable feedstocks for producing hydrocarbon chem-

icals, because they can be major components of both terrestrial and aquatic biomass

(e.g., jatropha, palm, microalgae). Lipids in both terrestrial and aquatic biomass

contain free fatty acids and acylglycerides, which include triglycerides, diglycerides,

and monoglycerides (with triglycerides as the majority). Acylglycerides, however, can

be easily broken down to fatty acids via thermal reaction or hydrolysis.

There are several proposed chemical processes that generate aqueous streams rich

in fatty acids. For example, Immer et al.[16] and Wang et al.[17] describe a fuel

production process that includes hydrolysis of triglycerides and thereby produces fatty

acids in water at elevated temperatures. Kusdiana and Saka [2] have proposed making

biodiesel from vegetable oils by first hydrolyzing triglycerides to produce fatty acids

in water. Hydrothermal liquefaction of lipid-rich algal biomass is another process that

generates aqueous streams rich in fatty acids.[1] These accumulated examples show

that fatty acids can be readily produced in aqueous streams. Hence, fatty acids are

chosen as our starting reactant for developing the method of producing high-value

chemicals.
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Palmitic acid is one of the most common fatty acids that can be found in plants

and animals. For example, palmitic acid makes up to 20 wt% of the total fatty acids

produced from liquefaction of microalgae. [1] Palmitic acid is a saturated fatty acid

with 16 carbon atoms (C16:0). We use it as a model saturated fatty acid in this

study. Some unsaturated fatty acids such as oleic acid and linoleic acid were also

investigated. If valuable chemical products, such as aromatics, can be generated from

the fatty acid in a water environment, then there is reason to be optimistic that they

can be generated from wet biomass feedstock. Therefore, real triglyceride feedstocks

are also introduced after the methodology is tested and determined to be technically

feasible. The real triglyceride feedstocks include algal oil, coconut oil, peanut oil, and

lard. They are chosen mainly due to their popularity and high content of fatty acids.

The findings are presented in Chapter 7.

Our targeted products are high-value industrial bulk chemicals, mainly aromatics

in this case. This is not only because of the high selling price of aromatics compared

to gasoline, but also their increasing demand worldwide, as well as potential reduction

of their supply due to the recent shale gas discovery as discussed earlier.

Some representative aromatic compounds include benzene, toluene, different iso-

mers of xylene: o-xylene (1,2-dimethyl-benzene), m-xylene (1,3-dimethyl-benzene),

p-xylene (1,4-dimethyl-benzene), and ethylbenzene. Those aromatic hydrocarbons

are chemicals produced in very large volumes worldwide; for example, the global

market is about 30 Mt/year for benzene, 14.5 Mt/year for toluene, 24 Mt/year for

mixed xylenes, and 17 Mt/year for p-xylene, according to the International Energy

Agency’s analysis in 2012. [18] In traditional gasoline production, a considerable

amount of aromatics are often generated by the catalytic reforming of naphtha in a

petroleum refinery.[19]

Chemicals such as benzene, toluene, and xylene are considered valuable as chem-

ical building blocks and are thus removed to some extent in the traditional gasoline
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production process. Aromatic hydrocarbons have various uses in the chemical in-

dustry. Many are used as starting materials for a wide range of consumer products.

For example, p-xylene is a precursor of terephthalic acid, which is a monomer used

to make polyethylene terephthalate, a plastic widely used in the production of fibers

and beverage bottles.

1.5 Proposed Methodology and Catalyst Application

Since the reactants and the targeted products are clear, the proposed approach

would be hydrothermal cracking and aromatization reactions. Cracking is necessary

to break down the long carbon chain in fatty acids. Aromatization is needed to form

aromatic rings from the hydrocarbon molecules that are produced from cracking. It

is a hydrothermal process because subcritical or supercritical water is chosen to be

the reaction medium for many reasons, for example, to avoid drying and the use of

organic solvent.

Zeolite catalysts are hydrated aluminosilicate minerals made from interlinked

tetrahedra of alumina and silica. They are widely used in both petroleum and bio-oil

refining. [20–22] They are active for catalytic cracking and aromatization.[23] Zeolite

catalyst was selected for this work because prior research,[24–26] though not done in

an aqueous phase, indicates that zeolite (HZSM-5) can convert fatty acids to paraffins,

olefins, and aromatic compounds that fall within the gasoline and kerosene boiling

point fractions. Additionally, zeolite (HZSM-5) has been shown to be useful in other

biomass processing contexts.[20, 27–29] Detailed discussion of these prior works is in

Chapter 2, the literature review section.

A traditional zeolite cracking process in petroleum refining normally occurs at a

very high temperature (around 700 ℃). In the presence of steam, framework alu-

minum atoms can be removed from the zeolite lattice. [30–32] A severe hydrothermal

reaction condition may reduce the catalyst stability. Therefore, a temperature near
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the critical point of water (400 ℃) was chosen for this catalytic hydrothermal reaction

to study.

To summarize, palmitic acid (PA), which is one of the most common fatty acids

in nature, serves as a key reactant. We identify and quantify all of the major reaction

products (in Chapter 4, Products and Kinetics), and we elucidate the effects of reac-

tion time, temperature, hydrogen pressure, water density, and degree of saturation of

the reactant, on the yield of each (in Chapter 5, Effect of Reaction Process). We also

examine catalyst regeneration and catalyst characterization (in Chapter 6, Catalyst

Composition, Regeneration, and Characterization). Finally, we applied this method

to renewable triglyceride feedstocks and report the results in Chapter 7. Chapter 8

concludes with the significant findings of this study and suggests some future direc-

tions.
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CHAPTER II

Literature Review

The previous chapter summarized the reasoning behind the selection of feedstock,

catalyst, targeted products, and the proposed method. This chapter features a com-

prehensive literature review of relevant work. The first section presents an overview

of hydrothermal processing of biomass and particularly of fatty acids, which includes

some literature highlights at the time this work was first undertaken. The second

section provides a understanding of application of zeolite catalyst with its reaction

activity and hydrothermal stability. The third section focuses on possible reaction

pathways and potential products for our proposed process based on literature sur-

veys. Lastly, this chapter concludes with gaps in prior literature, which motivated

our research.

2.1 Hydrothermal Processing

Researchers have a long history of studying biomass conversion, and this approach

includes many different technological pathways, such as pyrolysis, fermentation of

sugars, gasification, and aqueous phase reforming. Most recently, more attention has

been attracted to hydrothermal processing of biomass, mainly because it can apply

to biomass with high water content. Hydrothermal processing of plant oils has been

studied for decades. It is believed that lipids in biomass are a good source for bio-fuel.
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Figure 2.1: Reaction network for acylglyceride hydrolysis in hydrothermal condition
[33]

As mentioned briefly in the introduction section (Chapter1), lipids contain acylglyc-

erides and free fatty acids. Acylglycerides include triglycerides (TG), diglycerides

(DG), and monoglycerides (MG), where triglyverides are the majority in terrestrial

plant. Fatty acids can be obtained from them by either thermal reaction or hydrolysis.

Figure 2.1 shows the reaction network for acylglyceride hydrolysis in hydrothermal

condition to produce fatty acids.

2.1.1 Hydrothermal Processing of Triglyceride Feedstocks

Holliday et al.[3] studied soybean, linseed, and coconut oils in subcritical water

(water density of 0.7 g/mL and temperatures at 260-280℃). The oils were success-

fully and reproducibly hydrolyzed to free fatty acids with conversion of greater than

97% after 15-20 minutes. Higher temperature reactions were also performed, where

soybean oil was subjected to subcritical temperature at 300 ℃ for 11 and 25 minutes

and 320 ℃ for 13 minutes. The reported results indicated severe decomposition, py-

rolysis, or polymerization of the fatty acids, but there was no further information to

confirm any of these reactions.

Alenezi et al. [4] studied sunflower oil with subcritical water in a tubular reactor

over a range of temperature from 270 to 350 ℃ for 30 minutes, at 20 MPa. The

sunflower oil consisted of about 77 wt% triglycerides, 20 wt% diglycerides, 2.5 wt%

monoglycrides, and only 0.3-0.5 wt% free fatty acids. In all the experiments the water

to oil feed ratio is kept at 50/50 (volume/volume). At 350 ℃ and 20 MPa, the yield

10



of fatty acids was 76 wt% at only 5 minutes of reaction time. This yield increased to

93 wt% at reaction time of 15 minutes. It is believed that the reaction is autocatlyzed

by the acidity of fatty acids.

This work does not just test the feasibility of fatty acids production from sunflower

oil in subcritical water, but also investigated the reaction kinetics. The oil hydrolysis

reaction is a first-order reversible reaction. As shown in Figure 2.1, in the first step,

TG is hydrolyzed to DG, in the second step, DG is hydrolyzed to MG, and in the

third step, MG is hydrolyzed to glyceride. Fatty acid is generated with each step. The

authors have implemented a kinetics model for the reversible oil hydrolysis reaction

that gives good fitting with experimental data and has a maximum variance of less

than 5.4 %.

Kusdiana and Saka [2] took a further step after hydrolysis of vegetable oil. The

study proposed a two-step catalyst-free method for biodiesel fuel production, which

includes step 1, hydrolysis of triglycerides of rapeseed oil in subcritical water to ob-

tain fatty acids, and step 2, methyl esterification of the hydrolyzed products with

supercritical methanol to achieve fatty acid methyl esters. We are more interested in

the first step where the process provided fatty acids in a water stream. This first step

was carried out at various temperatures ranging from 255 to 350 ℃, and a pressure

ranging from 5 to 20 MPa. A flow reactor was used and the results were recorded

from reaction time 0 to 30 minutes. The hydrolysis reaction is a reversible reaction, so

it would be completed only if a large excess of water is used or if one of the products

is removed from the reaction mixture. Therefore, the work extended the experiments

to study the effect of the amount of water in the system. Consequently, the various

volumetric ratios of water to rapeseed oil did affect the yield of fatty acids. A higher

water to rapeseed oil ratio gave a higher fatty acids yield.

These studies mentioned above[2–4] confirmed that vegetable oils can be a good

source for fatty acids, and provided a good range of reaction temperatures and pres-
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sures for hydrolysis of vegetable oils to produce fatty acids.

Besides vegetable oils, aquatic biomass has been a primary target for hydrother-

mal processing as well. The work published by Brown et al.[1] in 2010 was a highlight

in this field, which was cited for 296 times up to date. The study is on hydrothermal

liquefaction and gasification of Nannochloropsis sp, which is a type of microalgae.

Microalgae offer several advantages relative to terrestrial lignocellulosic biomass. Mi-

croalgae have a higher photosynthetic efficiency, and large lipid content, which means,

they can be rich in oil (triglycerides). They grow rapidly and can be cultivated in

marginal and non-arable land, and grow in contaminated water environments. Fur-

thermore, unlike the land plants, such as soy or sunflower, microalgae have no compe-

tition with food supply. Hydrothermal treatment of microalgae at low temperatures

(around 200 ℃) to make carbonized solids is referred to as carbonization (HTC).

Hydrothermal treatment of microalgae at intermediate temperatures (around 300 ℃)

to make crude bio-oil, is referred to as liquefaction (HTL). Hydrothermal treatment

of microalgae at high/supercritical temperatures (about 400 ℃) to make fuel gas, is

referred to as gasification.[33]

The conventional approach for biofuel production from microalgae involves ex-

traction of triglycerides from the algae and then transesterification into biodiesel fuel,

while Brown et al[1] used a one-step method for making biocrude from microalgae.

The work was performed under temperatures from 200 to 500 ℃, to cover both lique-

faction and gasification of Nannochloropsis sp. microalgae. A moderate temperature

of 350 ℃ with a batch holding time of 60 minutes led to the highest bio-oil yield

of 43 wt%. Major products include fatty acids, alkanes, alkenes, and N-containing

compounds. The products include five free fatty acids, myristic, palmitoleic, palmitic,

oleic, and stearic acids. They likely arise from hydrolysis of triaclyglcerol present in

the Nannochloropsis sp., which has about 28 wt% lipids. The most abundant gas

product is always carbon dioxide. The paper was the first to report in detail yields
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and molecular compositions of both the oil and gas products from a systematic study

of hydrothermal treatment over a broad temperature range (from subcritical to su-

percritical water state). This work lays a great foundation, but more work is needed

to improve the bio-oil quality, for example to increase the carbon recovery and to re-

move the nitrogen in the bio-oil. However, the significance of this work to the thesis

is that this hydrothermal liquefaction method of microalgae can serve as one path

to provide a good renewable feedstock of fatty acids in a stream that also contains

primarily water.

Another hydrothermal study of microalgae was explored by Lu et al. [34]. They

used hydrothermal carbonization (HTC) of wet microalgae to facilitate extraction of

algal lipids (fatty acids). Approximately 3 g of the homogenized 15 wt% microalgae

slurry was loaded into each batch reactor. The carbonization temperatures were

examined between 180 to 220 ℃, and reaction times from 15 minutes to 30 minutes.

The retained fatty acids were extracted using ethanol, which was claimed to be a

renewable and less toxic non-petroleum-derived solvent. An overall recovery of fatty

acids from microalgae of 74 wt% was achieved by the combination of hydrothermal

carbonization and ethanol extraction. The highest total fatty acids recovery occurs

at 180 ℃ at 30 minutes, 200 ℃ at 30 minutes, and 220 ℃ at 15 minutes. This study

provides good treatment conditions of a potential feedstock, microalgae, to produce

fatty acids.

Lu et al. [34] proposed a possible process of using HTC to obtain nutraceuticals

and biofuels from microalgae based on the results from their work. The process starts

with dewatering the harvested algae to a slurry that is then treated by hydrothermal

carbonization to produce hydrochar and an aqueous stream containing nutrients. Us-

ing catalytic hydrothermal gasification on this latter stream can produce fuel gases to

supply heat and power in the bio-refinery. The nutrients and water can be potentially

be recycled back to the cultivation of microalgae. The hydrochar is extracted with
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ethanol to recover the lipids, which then could be fractionated to nutraceuticals and

bio-oil.

All the studies discussed above are catalyst free hydrothermal processing of biomass.

There are also many work that focus on catalytic hydrothermal processing of biomass.

For example, Satyarthi et al. [35] conducted experiments on hydrolysis of vegetable

oils (i.e. coconut oil, plmolein oil, used soybean oil, castor oil, jatropha oil, karnja oil,

palm oil, rubber seed oil) and chicken fat to fatty acids over solid acid catalysts. The

hydrolysis of triglycerides is a three-step, consecutive and reversible reaction, which

is shown in Figure 2.1. The third step of the reaction which is the conversion of MG

into fatty acids, is relatively more endothermic than the first two steps. Similar ther-

modynamics is expected for the vegetable oil and fats, where the activation energy

was reported to be in the range of 45 to 75 kJ/mol. The catalysts applied in this

work include acidic, macroporous polymeric resin (Amberlst 70), zeolite (SAPO-11,

HY and H-beta), supported oxide (Manganese oxide/alumina), sulfated zironia, Fe-

Zn double metal cyanide (DMC), and basic ZnO. The catalysts (except for HY and

SAPO-11) increased the TG conversion significantly. Complete conversion of veg-

etable oil triglcerides to fatty acids with selectivity greater than 73% was obtained at

about 190 ℃.

Catalysis has also been used in hydrothermal liquefaction of microalgae. Duan

and Savage [20] tested six different heterogenous catalysts (shown in Table 2.1) on bio-

oil that was obtained from HTL of Nannochloroposis sp. microalgae. The catalytic

reactions were carried out under inert (helium) and high-pressure reducing (hydrogen)

conditions. The elemental compositions and heating values of the crude oil (about 38

MJ/kg) were largely insensitive to the catalyst used. The crude bio-oil yield ranged

from a low of 35 % (from uncatalyzed liquefaction without hydrogen) to a high of

57 % (from Pd/C catalyzed liquefaction without hydrogen). The authors reported

that the crude bio-oil yields exceed the crude lipid content (28 wt%) of the feedstock
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Table 2.1: Catalyst types and compositions

[20]

because not only the triglycerides but also other cellular components such as protein,

fiber, and carbohydrate, must be converted into crude bio-oil via catalyzed HTL.

Steam reforming reaction (2.1) and water-gas shift reaction (2.2) were believed

involved in the gas production pathways. Since so much more of the carbon dioxide

than hydrogen was formed from the reaction, the pathways for carbon dioxide and

hydrogen formation must be separate. This was also supported by the disparity in

their activation energies for the formation from microalgae (38 kJ/mol vs 99 kJ/mol).

CxHyOz + (2x− z)H2O → xCO2 + (y/2 + 2x− z)H2 (2.1)

CO +H2O → CO2 +H2 (2.2)

This was the first application of common hydrocarbon processing catalyst to mi-

croalgae liquefaction in water. Because Pd/C catalyst is active for the conversion of

triglycerides to fatty acids and also for the conversion of fatty acid into alkanes, the

idea that catalytic hydrothermal liquefaction (with Pd/C) may be a way to produce

a crude hydrocarbon bio-oil directly from wet microalgae in a single processing step

is very similar to our objective, except that our target products are aromatic hydro-

carbons. After reporting the success of hydrothermal liquefaction of microalgae with

heterogeneous catalysts, Duan and Savage further determined the influence of high

pressure hydrogen as a reaction variable on the upgrading of a crude algal bio-oil in
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supercritical water. [36]

2.1.2 Hydrothermal Processing of Fatty Acids

After the overview of the prior relevant studies on hydrothermal processing of

triglyceride feedstocks, we now discuss literature on hydrothermal processing of fatty

acids in particular.

Fujii et al. [37] studied the decomposition kinetics of fatty acids in subcritical wa-

ter under temperature-programmed heating conditions. The fatty acids they chose

were caprylic acid (C8:0), capric acid (C10:0), and lauric acid (C12:0), which were

studied as the corresponding fatty acids of monocaprylin, monocaprin, and mono-

laurin. The decomposition of fatty acids obeys first-order kinetics. The activation

energy and frequency factors were smaller when the carbon number of the acyl chain

of the fatty acids were longer.

Watanabe et al. [38] treated stearic acid (C17:0) using a batch reactor with su-

percritical water at 400 ℃ and a water density of 0.17 g/mL for 30 minutes. In the

absence of catalyst, stearic acid was stable (2% conversion), and the main products

were CO2 and C16 alkene. An addition of alkali hydroxide (NaOH and KOH) in

the supercritical water reaction enhanced the decarboxylation of stearic acid. Metal

oxides also enhanced the decarboxylation of stearic acid with CO2 and C16 alkene

as the main products. Without supercritical water, the formation of CO and many

carbonyl compounds were found, which suggested that stearic acid mainly under-

went decarbonylation instead of decarboxylation. Monomolecular decarboxylation of

stearic acid proceeded by added KOH to promote the dissociation of RCOOH into

RCOO- and H+.

Catalytic deoxygenation of fatty acids can proceed via two pathways: decarboxy-

lation wich yields CO2 and n-alkane with one less carbon atom than the fatty acid

reactant (2.3), and decarbonylation which yields CO, water and the corresponding
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alkene (2.4).

R− CH2 − CH2 − COOH → R− CH2 − CH3 + CO2 (2.3)

R− CH2 − CH2 − COOH → R− CH2 = CH2 + CO +H2O (2.4)

Fu et al. [39] texted several different metal salts, bases, and high-surface-area

supported metal catalysts for activity toward deoxygenation of palmitic acid in a

hydrothermal reaction medium. Two heterogeneous catalysts, 5% platinum on acti-

vated carbon (Pt/C) and 5% palladium on activated carbon (Pd/C), proved to be

very effective for hydrothermal deoxygenation of palmitic acid. They have examined

the effect of the catalyst loading, reactant loading, batch holding time, and reaction

temperature on the Pt/C-catalyzed deoxygenation rate.

Fu et al.[40] have also reported on hydrothermal decarboxylation and hydrogena-

tion of different types of fatty acids over Pt/C. The conversion of saturated (stearic,

palmitic, and lauric acid) and unsaturated (oleic and linoleic) fatty acids to alkanes

happened over 5% Pt/C in high temperature water. The reactions were conducted

in batch reactors under 330 ℃ for 30 to 150 minutes. No added hydrogen is required

for these reactions. The saturated fatty acids gave the corresponding decarboxyla-

tion products (n-alkanes) with greater than 90% selectivity, and the formation rates

were independent of the fatty acid carbon chain length. The unsaturated fatty acids

showed low selectivities to the decarboxylation products. The main pathways were to

form corresponding saturated fatty acids via hydrogenation, which then underwent

decarboxylation to produce alkanes. Fu further studied the hydrothermal decarboxy-

lation of fatty acids with activated carbons instead of Pt/C. [41] They successfully

converted palmitic and oleic acids to fuel range hydrocarbons using two activated

carbons in near- and supercritical water with no hydrogen added.
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These previous studies on fatty acids not only provide insights of possible kinetics

of fatty acids in high temperature water, but also showed that addition of hydrogen,

carbon number, and the degree of saturation of fatty acids are some key topics when

studying fatty acids.

2.2 Application of Zeolite

Zeolite is a well-known heterogeneous catalyst used in the petroleum industry and

in the catalyzed pyrolysis process of biomass. Zeolites are attractive catalysts because

they have well-defined pore structure, high activity per acid site, and can be produced

at a reasonable price.[18] Zeolites are crystalline, hydrated aluminosilicates, and the

conventional chemical formula for zeolites is shown below. Figure 2.4 shows one unit

structure of the zeolite HZSM-5.

Mx/n[(AlO2)x(SiO2)y].wH2O (2.5)

Where M is the positive counter ion of valence +n that balances the charge due

to the x(AlO2
−) groups. For example, M is hydrogen in Figure 2.2. The ratio y/x

represents the Si/Al ratio, which can be rearranged as SiO2/Al2O3. It is an important

characteristic of zeolites that we will discuss further in Chapter 6.

Catalysts play a significant role in producing aromatics from biomass. The cat-

alytic processing of pyrolysis oil has a yield of aromatic hydrocarbons that is as much

as three times higher than that produced without catalyst.[43] In the fast pyrolysis

process of lignocellulose biomass conversion, the zeolite catalyst converts products

into light olefins and aromatic hydrocarbons. Among the various kinds of zeolite cat-

alysts, HZSM-5 (ZSM-5 ion exchange sites are occupied by hydrogen ions) is favored

in conversions of biomass into hydrocarbons, based on its conversion rate. Lestari et

al. [23] reviewed a conversion of palm oil using three types of zeolites, zeolite HZSM-
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Figure 2.2: Structure illustration of a unit of zeolite HZSM-5
[42]

5, beta, and Y. HZSM-5 was reported as the most active catalyst, giving the highest

conversion of 99%.

In 2013, Wang and Brown[44] presented a new study on catalytic pyrolysis of mi-

croalgae for production of aromatics and ammonia. They also studied a traditional

lignocellulose biomass, red oak, for comparison with microalgae. They used Chlorella

vulgaris algae, which were prepared by centrifugation, dewatering, and then freeze-

drying. They chose zeolite catalyst ZSM-5 (silica/alumina ratio of 23) for the study.

A micro-furnace pyrolyzer, with a quartz pyrolysis tube was used. The reaction tem-

perature ranged from 40 to 800 ℃. Their results demonstrated that catalytic pyrolysis

of microalgae produces better aromatic yields and better aromatic distributions than

catalytic pyrolysis of red oak. At 700 ℃, with HZSM-5 to biomass ratio of 20, the

product composition and yields are shown in Table 2.2.

Table 2.2 shows that benzene, toluene, and xylene (BTX) were their most abun-

dant products. Napthalene and alkylnaphthalenes were the second major group of

produced hydrocarbons. They have also reported the effect of catalyst loading and re-

action temperature on product yields. Aromatic hydrocarbon production was favored
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Table 2.2: Products from catalytic pyrolysis of Chlorella vulgaris algae

[44]
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Figure 2.3: A schematic diagram showing the diffusion limitations of xylene isomers
inside zeolite pores

[45]

under reaction conditions of high catalyst to biomass ratio and high temperature.

High catalyst loading is required to ensure that pyrolyzed vapor enters the pores of

the zeolite catalyst instead of adsorbing on the external surface, where thermal de-

composition produces coke and small oxygenates. In summary, this work shows a

promising upgrading method of converting microalgae into fuels and chemicals using

zeolite HZSM-5, however, it is limited to dried algae.

Chapter 1 discussed the advantages of having aromatics, such as xylenes, as tar-

geted products. Cheng et al. [45] developed a catalytic fast pyrolysis method using

ZSM-5 catalyst with reduced pore openings to produce p-xylene. They suggested

that one possible option to improve the yield of p-xylene is to design a zeolite cata-

lyst that allows only p-xylene but not m-xylene or o-xylene to diffuse out of the pores,

shown in scheme(Figure2.3). In the study, furan and 2-methylfuran were converted

by ZSM-5 and Ga/ZSM-5 in a continuous flow reactor. The modification of zeolite

surface increased p-xylene selectivity from 32% to 96%.

These studies discussed above show that HZSM-5 is a potentially effective catalyst

for biomass pyrolysis to produce aromatics. The next section then examines the

application of zeolite in a hydrothermal system.

Duan and Savage [20] produced crude bio-oil from microalgae (Nannochloropsis

sp.) via hydrothermal liquefaction with heterogeneous catalysts, include Pd/C, Pt/C,
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Ru/C, Ni/SiO2 − Al2O3, CoMo/r − Al2O3, and zeolite. The reactions were under

inert (helium) and high pressure reducing (hydrogen) conditions at 350 ℃ in liquid

water. Zeolite was tested because aluminosilicates in zeolite can facilitate cracking

reactions that convert the heavier components of the biocrude into smaller fuel-range

molecules. However, they found that the crude bio-oils produced from liquefaction

with Pd/C, Pt/C, Ru/C, and CoMo/Al2O3 flowed easily and were much less viscous

than the biocrude from the reactions with zeolite. They did not discuss the long-term

hydrothermal stability of zeolite.

Rather than a catalyst screening study, a work that is more focused on HZSM-

5 was performed by Li and Savage[28]. Crude bio-oil produced from hydrothermal

liquefaction of Nannochloropsis sp. algae reacted over HZSM-5 at 400 to 500 ℃, with

a reaction time of 30 to 240 minutes. This treatment greatly reduced the hetroatom

(N,O,and S) content in the oil. In the work, they determined the influence of reaction

temperature, reaction time, and catalyst loading on the yield and composition of

treated bio-oil together with gaseous products. The gas yields were very sensitive

to the reaction temperature, as higher temperatures generated more gas products.

The gas products were primary light alkanes. At 500 ℃, the process produced a

bio-oil that contains almost exclusively aromatic hydrocarbons, which indicated that

HZSM-5 catalytic processing can be used to covert algae biocrude to a mixture that

contains many industrial chemicals. They proposed that zeolite HZSM-5 maybe more

economical than the supported Pt and Pd catalyst used in previous work, and can

be an effective catalyst for treating algal biocrude. However, they did not further

study the reuse of the catalyst to understand the activity or stability of zeolite under

hydrothermal condition.

Dealumination and hydrolysis of the siloxane bonds (Si-O-Si) are possible causes

of the degradation of zeolite in hot liquid water. However, little is known about

the stability of zeolite in aqueous media at high temperatures. To the best of our
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knowledge, Revenelle[46] was the only one who investigated in stability of zeolites in

hot liquid water above 100 ℃.

Ravenelle[46] treated zeolite Y and ZSM-5 with varying Si/Al ratios in liquid water

at 150 and 200 ℃ under autogenic pressure to assess their hydrothermal stability. The

changes in the structure were characterized by X-ray diffraction, scanning electron

microsopy, argon physisorption, MAS NMR spectrosopy, temperature-programmed

desorption of ammonia, and pyridine adsorption followed by IR spectroscopy. The

mechanisms of structural changes induced by water may go through two variants of

hydrolysis, with one at the Si-O-Si sites and the other at Si-O-Al sites. The Si-O-Si

hydrolysis is proton catalyzed, and the Si-O-Al hydrolysis is commonly refereed to as

dealumination. In general, high-silica zeolites are strongly affected by basic solutions,

while high-alumina zeolites transform more readily in acidic media.

They concluded that zeolite Y with a Si/Al ratio of 14 or higher is transformed

into an amorphous material; the rate of this degradation increases with increasing

Si/Al ratio. ZSM-5, in contrast, is not modified under the same conditions. The

properties (e.g. crystallinity, acidity, micropore volume) of the ZSM-5 samples were

found identical before and after treatment at 150 or 200 ℃ for 360 minutes, and this

was also independent of the Si/Al ratio of the zeolite (Si/Al of 15, 25, 40). Therefore,

ZSM-5 was illustrated to be a potentially effective zeolite in hot water environments.

2.3 Gaps in Prior Literature

After the literature review on hydrothermal processing of fatty acids, and ap-

plication of zeolite in hydrothermal condition, we searched for studies that applied

zeolite to fatty acids in water with a focus on producing aromatics. To the best of my

knowledge, there is no prior work on this specific topic. The studies that are most

close to our proposed hydrothermal catalytic reaction of fatty acids with zeolite to

produce aromatics are Benson’s[24] and Bielansky’s[25] work, but neither study used
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Figure 2.4: Proposed cracking chemistry for the transformation of oleic acid to green
gasoline

[24]

hydrothermal conditions.

Oleic acid was used by Benson et al. [24] as a representative fatty acid. It was

reacted at 400 ℃ with HZSM-5 catalyst, which has an elemental SiO2/Al2O3 ratio

of 23. Quatra C, a creative reaction/analysis device that combines catalyst bed and

GC, was used for quick, online analysis of reaction products. The reaction produced a

wide range of products, including paraffins, olefins, and aromatic compounds. In the

proposed reaction pathway, aromatic compounds are believed to be the final products

of cracking oleic acid (as shown in Figure 2.4), which also gives us some perspectives

on the potential products and reaction pathway by cracking other kind of fatty acid.
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Bielansky et al.[25] investigated palmitic acid as a model of fatty acid. The exper-

iment was performed in the range of 485 to 550 ℃ in a fully continuous small-scale

fluid catalytic (FCC) pilot plant with HZSM-5 applied. They reported that palmitic

acid yielded the most gas from cracking at 550 ℃ with 44 wt%, and that prod-

uct aromaticity clearly increased with temperature. The research demonstrated the

ability of HZSM-5 at cracking gas phase palmitic acid, in turn generating aromatic

hydrocarbons, in the temperature range of 485 to 550 ℃.

A gap has been observed after a review of the literature. According to the liter-

ature review on hydrothermal processing on biomass, there are many existing tech-

nologies that can produce fatty acids in water. However, most of the previous related

analysis is either hydrothermal liquefaction of biomass to produce bio-oil, or catalytic

conversion of fatty acids without water present. The only study on fatty acids to spe-

cific chemicals in water condition is by Fu et al.[40], which is still focused on catalytic

hydrothermal deoxygenation to yield the corresponding alkane as potential diesel fuel.

We are unable to find any prior work on catalytic cracking of fatty acids to chem-

icals with zeolite in a hydrothermal environment. At the same time, the literature

review suggested that the key ideas of this proposed process are promising, and if it

succeeded, it would be an alternate environmental process for chemical production.

Therefore, we are motivated to conduct the experiments to fill in the gap between

literature and our objective.
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CHAPTER III

Experimental Methods

3.1 Materials

This section starts with providing information on all the reactants, which include

pure fatty acids for the initial study, and also the biomass feedstock reactants for

the subsequent study. It is followed by information on the catalyst applied in the

catalytic hydrothermal process, as well as preparation and regeneration of catalyst

before usage in reactions.

3.1.1 Fatty acids and Biomass Feedstocks

Palmitic acid (PA, C16:0), stearic acid (SA, C18:0), oleic acid(OA, C18:1), and

linoleic acid (LA, C18:2) were acquired from ACROS Organics in high purity (98%).

Palmitic acid and stearic acid were white powders at room temperature. Oleic acid

and linoleic acid were obtained and maintained in liquid form.

Nannochloropsis algae samples were supplied by Valicor Renewables. The algae

slurry contains 21 wt% solid and 78 wt% water. Coconut oil (cold pressed), peanut

oil, and lard were purchased from a retail grocery store.
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3.1.2 Preparation and Regeneration of Catalyst

The zeolites ZSM-5 (with silica/alumina = 23, 30, 50, and 80), beta (silica/alumina

= 38, 300), and Y (silica/alumina = 60) were obtained from Zeolyst International as

white powders. All of the ZSM-5 materials and the zeolite beta with silica/alumina

of 38 came in ammonium nominal cation form. The other materials were obtained

in hydrogen form. We converted all of the catalysts that were in ammonium form

to the hydrogen form by a calcination process. For example, we calcined the fresh

zeolite ZSM-5 in air at 550 ℃ for 240 minutes to convert it to the hydrogen form

HZSM-5, which increases the acidity of the zeolite and thus facilitates the cracking

reactions.[47]

Many times, we regenerate and reuse catalysts from the reaction. We regenerated

catalysts that had been used in an experiment by first drying them in an oven at 70

℃ overnight. Next, controlled combustion (heating at 2 ℃/min up to 550 ℃) was

carried out in air to burn off any coke. The 550 ℃ temperature was then maintained

for 240 min to calcine the catalyst, after which the material naturally cooled to room

temperature.[43, 48]

3.2 Reaction Experiments

This section explains the detail of all the reaction experimental procedures in-

volved in this work. First, we introduce the experimental procedures to make crude

algal oil via hydrothermal carbonization with ethanol extraction. Second, we explain

the proposed hydrothermal catalytic reaction method that is applied on both pure

fatty acids and real feedstock.
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3.2.1 Algal Oil Production Method

The method we used to make crude algal oil from algae slurry was hydrothermal

carbonization, also commonly known as HTC. We loaded 14 g of algae slurry and 6

g DI water into a 30 mL stainless steel Swagelok batch reactor. We then placed the

reactor in a preheated sandbath at 180℃ for 30 minutes. This condition was chosen

to achieve a high conversion of algae to fatty acid-containing solids. [34] When the

reaction was complete, we quenched the reactor in cold water, cooling it down to

room temperature. Next, we shook the reactor before opening it, rinsed the products

inside the reactor with DI water, and transferred everything into two centrifuge tubes.

These centrifuge tubes were then placed on a vortex mixter for 3 minutes at 2500 rpm,

and finally centrifuged for 5 minutes at 4000 rpm. After the centrifuge, we removed

the upper water phase and saved the bottom solid phase, hydrochar, which was then

dried in an oven overnight at 70℃.

The next day, the char was ground and transferred into a flat bottom round bottle

containing 30 mL of anhydrous ethanol and a magnetic stir bar. We then capped the

bottle and placed it on a preheated stirring plate at 60℃, 220 rpm for 90 minutes. The

contents of the bottle were transferred to a centrifuge tube and centrifuged at 4000

rpm for 5 minutes. Afterwards, the upper phase (oil with ethanol) was transferred to

a round rotavapor bottle, and the bottom solid phase (hydrochar) to a flat bottom

round bottle. Again, 30 mL of anhydrous ethanol and a magnetic stir bar was added.

The bottle was capped and placed a preheated stirring plate at 60℃, 220 rpm for

another 90 minutes. Once more, we transferred everything to a centrifuge tube for

centrifugation at 4000 rpm for 5 minutes. And again, the upper phase from the

centrifugation was added to the previous round rotavapor bottle (oil with ethanol

inside). This bottle was set up in a rotavapor for 63 rpm, 200 bar, for 30 minutes.

The final product is the crude algal oil we used for catalytic hydrothermal reaction

with zeolite.
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Figure 3.1: Schematic of apparatus and mini-batch stainless steel reactor for crude
bio-oil upgrading

[36]

3.2.2 Hydrothermal Catalytic Reaction Method

Reactions were conducted in 4 mL 316-stainless steel Swagelok batch reactors with

high-pressure valves that were connected by a length of 1/8 in. o.d. stainless steel

tubing. Figure 3.1 shows the schematic of the reactor (not drawn to scale). Before

their use in experiments, the reactors were loaded with water and seasoned at 400

℃ for 240 minutes to remove any residual organic material from the reactors and

to expose the fresh metal walls to high temperature water. After this conditioning

process, potential catalytic reactor wall effects are likely reduced. Moreover, any

small catalytic effect of the reactor walls should be the same in all runs and therefore

not obscure the differences caused by added catalyst. [36]

In a typical reaction, a total of 150 mg of reactant (fatty acids, algal oil, coconut

oil, peanut oil, and lard), 150 mg of precalcined catalyst zeolite (HZSM-5, beta, and

HY) and the desired amount of water were loaded into each reactor. A different
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amount of water loaded into a fixed volume reactor at a fixed temperature resulted

in a different water density at the reaction condition, as well as a different reaction

pressure.

For example, loading 0.6 mL of water leads to a water density of 0.15 g/mL and

a pressure of 240 bar at 400 ℃. Loading 0.4 mL of water leads to a water density

of 0.1 g/mL and a pressure of 200 bar at 400 ℃. The former condition exceeds the

critical temperature and pressure of water, and the latter condition was in subcritical

water state. Control reactions without water were also performed in some cases.

Helium was added to each reactor at a pressure of 4 bar and was used as an internal

standard for gas products analysis. In some cases, hydrogen was also added to the

reactor. The sealed reactors were then attached to a wrist-action shaker and placed

into an isothermal fluidized sand bath. The wrist-action shaker was used during the

whole time of the reactions to improve the external mass transfer. The sand bath

had been preheated to the desired reaction temperature, and reactions remained in

the sandbath for the desired reaction time (from 20 minutes to 180 minutes). Upon

removal from the sandbath, the reactors were submerged in a water bath at ambient

temperature to quench the reaction.

3.3 Analysis of Algal Oil and Other Biomass Feedstocks

The fatty acid consituents of the different feedstocks were catalytically transes-

terified to fatty acid methyl esters (FAMEs) for quantitative analysis. About 50

mg sample was weighed into glass tubes and reacted with 2 mL of freshly prepared

methanol (99%) containing 5% acetyl chloride as the acid catalyst. The reaction took

place at 100 ℃ for 90 minutes with vigorous stirring. 1 mL of water was added into

the glass tube after the reaction, and the FAMES were then extracted by 3 mL of

n-heptane, which contains 250 mg/L tricosanoic methyl ester as an internal standard.

The glass tubes were vortexed for 2 minutes, followed by centrifugation at 2000 rcf for
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10 minutes. The upper phase from centrifugation was analyzed by an Agilent Model

7890A gas chromatograph with a flame ionization detector. FAMEs were identified

by comparing with the C14-C24 standard FAME mix.

Calibration curves were created for quantification of FAMEs. The percentage of

individual fatty acid methyl esters and their corresponding fatty acids were reported.

The total fatty acids percentage in the oil or fat was also calculated and reported.

We conducted replicates of runs, so standard deviation was used for the uncertainty

of the data.

3.4 Sample Recovery and Analytically Procedure

This section provides information about procedures employed for getting maxi-

mum recovery of the material from the reactors and post-recovery analysis using dif-

ferent analytical techniques such as, gas chromatography with a mass spectrometric,

thermal conductivity, or a flame ionization detector (GC-MS, GC-TCD, GC-FID).

3.4.1 Gas-phase Products Analysis

The gas products were collected and analyzed with a gas chromatograph (GC)

with a thermal conductivity detector (GC/TCD) and argon as the carrier gas. A

Carboxen column separated the light gases such as He, H2, CO, and C1 and C2

hydrocarbons, and a Porapak column separated the heavier gases including C3 to

C5 hydrocarbons. Calibration curves were established by analyzing gas standards of

known composition.

The temperature profile for the Carboxen column started at 35 ℃, increased to

225 ℃ at a rate of 20 ℃/min, and the oven then maintained 225 ℃ for 15 min, with

a constant flow of argon at 15 mL/min. The temperature profile for the Porapak

column started at 40 ℃ and increased to 225 ℃ at a rate of 10 ℃/min, with a

constant flow of argon of 44 mL/min.
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3.4.2 Liquid-phase Products Analysis

Upon completing the gas analysis, acetone was added to the reactor to recover

the liquid- and solid-phase material from the reactor. The reactors were rinsed with

repeated acetone washes until the total volume collected was 20 mL. The samples

were transferred into a conical tube and then centrifuged at 4000 rpm for 10 minutes

to facilitate recovery of the acetone-insoluble material (e.g., spent catalyst, coke).

Liquid products referred to all the acetone-soluble products that were collected from

the reactor after the reaction. The centrifugation separated the liquid and solid

material from the reaction.

The liquid-phase products were identified and quantified using Agilent 6890 GCs

with a mass spectrometric (GC/MS) and a flame ionization (GC/FID) detector. He-

lium served as the carrier gas. We used a nonpolar HP-5 (5% phenyl-methylpolysiloxane)

capillary column. The quantification of acetic acid (one of the identified products)

and palmitic acid was performed with an Agilent 7890 GC/FID with a high polarity

DBFFAP column. Calibration curves of all the major identified liquid-phase prod-

ucts were made by analyzing various standards containing reaction products in known

concentrations.

We injected 1 µL of the acetone-soluble sample into an inlet with a 50:1 split ratio.

The oven temperatures were programmed to rise from 50 ℃ to 200 ℃ at a rate of 4

℃/min and then rise further to 300 ℃ at a temperature ramp of 10 ℃/min.

Many experiments were replicated, and we report standard deviations as the ex-

perimental uncertainties in these cases. The reactions produced many products in

yields too low to quantify reliably on an individual basis. Because the FID is a car-

bon counter, however, and because the products are primarily hydrocarbons, we used

the total peak area of all of the products appearing in the GC/FID chromatogram to

estimate the total mass of liquid-phase products as shown below (3.1). Molar yield

and mass yield were both used in this work depending on the focus of the discussion.
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Molar yields of reaction products were calculated as the number of moles of product

formed divided by the number of moles of reactant loaded into the reactor. The

mass yields were calculated as the mass of the individual or total product formed di-

vided by the total mass of reactant loaded into the reactor. All cases, the conversion

was calculated using the converted reactant mass divided by the total reactant mass

loaded into the reactor.

(3.1)

3.4.3 Solid-phase Material Analysis

The solid material (acetone-insoluble material from the centrifugation), was spent

catalyst and coke generated from the hydrothermal reaction. The color of the solid

material was observed and compared to the color of the fresh catalyst. The solid

material was dried at 70 ℃ in an oven over night, and it was then oxidized in a tube

furnace to remove the coke (carbon) to regenerate the catalyst. The procedures were

given in section 3.1.2. We weighed the solid material before and after the regeneration

process to calculate the weight difference, which was taken to be the mass of the coke

generated from the reaction.

Spent catalyst was characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-

Teller (BET), and Barrett-Joyner-Halenda (BJH) surface analysis, and Scanning Elec-

tron Microscopy (SEM). The XRD experiments were carried out with Rigaku Rotat-

ing Anode X-Ray Diffractometer. The instrument is ageneral powder diffractometer

with Pole figure attachment and scintillation counter detector. Nitrogen physisorp-

tion was carried out at liquid nitrogen temperature on a Micromeritics ASAP 2020

instrument for the characterization of BET specific surface area and pore volume. the
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degassing pretreatment of the sample was 24 hours. Before the sample is analyzed, it

was outgassed at 350 ℃ at about 3 mm Hg. Nitrogen physisorption was carried out

at 77 K to obtain the isotherm. The relative pressures (P/P0) were smaller than 0.30.

SEM experiments were carried out using Philips XL30 FEG SEM, the accelerating

voltage was 10 kV. The probe current or SPOT size was 6 A (amps), which is the

total amount of current to be irradiated on the specimen. The control is done by

varying the excitation of the SEM’s condenser lens.
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CHAPTER IV

Reaction Products and Kinetics

This chapter first presents results from control experiments that were performed

to validate the experimental methods and determine the extent of chemical trans-

formation from thermal energy alone. We next report the identities of the products

(both gas and liquid-phase products) generated from the catalytic hydrothermal reac-

tions of pure fatty acid, followed by showing the individual yields of the major liquid

products, and the total yield of gas and liquid products combined. This chapter

concludes with discussion of reaction kinetics.

4.1 Control Experiments

We completed two types of control experiments. The first involved loading PA,

water, and HZSM-5 into reactors but not heating them. These experiments showed

no detectable products, and an average PA recovery of 97 ± 4%. We expect SA,

OA, and LA to give similar results as the amount of acetone (solvent) needed to

dissolve the 150 mg of SA, OA, and LA loaded into the reactors is about two orders

of magnitude lower than the 20 mL used experimentally. These calculations are based

on the reported solubilities of SA, OA, and LA in acetone. [49, 50]

The second type of control experiments involved loading fatty acids and water

into reactors (no HZSM-5) and placing them in the sandbath for 180 minutes at 400
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℃. The average PA recovery was 66 ± 5%. The conversion was 34 ± 5%. The total

liquid product yield was 12 ± 5 wt %. The most abundant products were xylenes,

toluene, 2-methylpentane, and 2-methylhexane. The total gas product yield was 4

wt %, and the mass balance was 82%. The missing mass was presumably in the form

of acetone-insolubles that were not quantified. Overall, the results indicated that

no detectable amounts of products were generated without the elevated temperature,

and that thermal cracking of PA could be responsible for no more than 12 wt % liquid

product yield at 400 ℃ and 180 minutes, the most severe conditions examined in this

investigation.

Besides palmitic acid (PA, C16:0), control runs were also performed with stearic

acid (SA, C18:0), oleic acid(OA, C18:1), and linoleic acid (LA, C18:2). Gas yields

were less than 4 wt%. The total yield of liquid products(acetone solubles) from SA,

OA, and LA were 7 ± 2 wt%, 19 ± 12 wt%, and 41 ± 5 wt% respectively. Xylenes,

toluene, and 2-methyl-pentane were the major products. The conversions were 54 ±

8%, 22 ± 11%, and 80 ± 18%, respectively.

These results above showed that non-zeolitic cracking could be responsible for up

to only 12 wt% liquid product yield from the saturated fatty acids (PA and SA) at 400

℃, 24 MPa, and 180 minutes. However, non-zeolitic cracking could be responsible for

about 19 wt% and 41 wt% liquid products for the two unsaturated fatty acids (OA

and LA). The higher conversion and product yields from the unsaturated fatty acids

are reasonable since the presence of unsaturation would be expected to increase the

thermal reactivity in general. It was also observed by Shin et al.[51], that unsaturated

fatty acids have lower thermal stability in water near critical point.

4.2 Reaction Products

Figure 4.1 shows a representative total ion chromatogram for the reaction prod-

ucts appearing from HZSM-5-catalyzed palmitic acid cracking in supercritical wa-
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Figure 4.1: Identification of major liquid products, reaction condition: PA with
HZSM-5 (PA/cat.=1), at 400 ℃, 24 MPa, 180 minutes.

ter. The major products were the aromatic compounds toluene, 1,4-dimethylbenzene

(p-xylene), 1-ethyl-2-methyl-benzene, and 1,2,4-trimethylbenzene. The other xylene

isomers and propylbenzene were also present. Toluene, p-xylene, 1-ethyl-2-methyl-

benzene, and 1,2,4-trimethylbenzene were major products from cracking oleic acid at

400 ℃ with HZSM-5, but without water.[24] Thus, it appears that the presence of

water in the present hydrothermal conversion experiments did not affect the types of

major products generated from cracking fatty acids.

Some of the aromatic hydrocarbons in the product mixture are chemicals pro-

duced in very large volumes worldwide, often by the catalytic reforming of naphtha

in a petroleum refinery. They have various uses in the chemical industry. For exam-

ple, p-xylene is a precursor of terephthalic acid, which is a monomer used to make

polyethylene terephthalate, a plastic widely used in the production of fibers and bev-

erage bottles.

In addition to the aromatic products, 2-methyl-pentane, butanal, acetic acid, 2-

methyl-hexane, 2-pentanone, heptane, and 4-methyl-heptane are also reaction prod-
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ucts. The alkanes can be used as a fuel, and heptane is a raw material for manufac-

ture of paints and coatings. Acetic acid is a key reactant in producing vinyl acetate

monomer.

The gaseous products from cracking PA at 400 ℃ with HZSM-5 were C1 to C5

alkanes, CO, CO2, and H2. This product slate is largely consistent with previous

reports on fatty acid cracking with zeolites (though not in water).[24, 25] The hy-

drocarbon gases are useful as a fuel in a biorefinery, and they also have uses as

chemical feedstocks. Methane is a feedstock for producing hydrogen via steam re-

forming. Ethane is used in producing hydrogen and ethylene. n- and i-Butane can be

blended as components of gasoline to give it a more desirable vapor pressure.[52] It is

clear that hydrothermal catalytic conversion of palmitic acid over HZSM-5 produces

molecules that are useful as chemicals and as components in liquid transportation

fuels.

4.3 Quantification of Reaction Products

For a reaction of 150 mg palmitic acid with 150 mg HZSM-5 with water at

400 ℃ for 180 minutes, the quantifiable liquid products were 2-methyl-pentane, bu-

tanal, 2-methyl-hexane, 2-pentanone, heptane, 4-methyl-heptane, toluene, p-xylene,

m-xylene, o-xylene, propyl-benzene, 2-ethyl-toluene, 1,2,4-trimethyl-benzene, and acetic

acid. There were many products in yields too low to quantify reliably on an indi-

vidual basis, which were considered as minor liquid products and were not reported

individually. Figure 4.2 is a pie chart that shows the distribution of quantified liquid

products in weight percentage for this reaction.

Mixed xylenes (includes p, m, o- xylene) were the most abundant liquid product

at 50 wt% of all the quantified liquid products, followed by toluene (19.4 wt%), acetic

acid (6.2 wt%), 2-methyl-pentane (5.2 wt%), and some significant amount of other

aromatics, such as propyl-benzene (3.9 wt%), 2-ethyl-toluene (4.2 wt%), and 1,2,4-
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Figure 4.2: Distribution of quantified liquid products in wt%, reaction condition: PA
with HZSM-5 (PA/cat.=1), at 400 ℃, 24 MPa, 180 minutes.
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Figure 4.3: First order correlation, reaction condition: 150 mg of PA with 150 mg of
HZSM-5 with water, at 400 ℃, 24 MPa

trimethyl-benzene (3.3 wt%).

4.4 Reaction Kinetics for Palmitic Acid

Figure 4.3 shows the natural log of the ratio of initial concentration of palmitic

acid to the concentration of palmitic acid at different reaction time v.s. reaction time

for experiments of 400 ℃. For a first-order reaction, the plot is linear.

The data at 400 ℃ are consistent with first-order kinetics, and the rate constant

was 2.6 ∗ 10−4s−1 ± 3.8 ∗ 10−6s−1. Using conversions measured at 180 minutes, we

calculated that the rate constants at 200 and 300 ℃ are 2.6∗10−5s−1 and 6.9∗10−5s−1,

respectively. The activation energy for PA disappearance was then determined to be

31 ± 1 kJ/mol. The Arrhenius pre-exponential factor was 5.6 ∗ 10−2 ± 2.2 ∗ 10−3s−1

or 1.5 ∗ 10−3 ± 5.9 ∗ 10−5L ∗ gcat−1s−1.

40



4.5 Possible Reaction Pathways Based on Product Analysis

Palmitic acid is a C16 fatty acid. It must undergo cracking to form fuel gases

and short chain alkanes, such as 2-methyl-pentane, 2-methyl-hexane, heptane, and

4-methyl-heptane. Since not all of these products were formed in the thermal crack-

ing of palmitic acid (control runs), we believe zeolite catalytic cracking of palmitic

acid was the process that generated those products. Catalytic cracking is used to

convert higher molecular weight hydrocarbons to lighter but more valuable products

through contact with a powdered catalyst (traditionally zeolite) at high tempera-

tures (510 to 550 ℃ for FCC (Fluid Catalytic Cracking) and 760 to 870 ℃ for SC

(Steam Cracking)). Equations below show examples of catalytic cracking of ethane

to ethene and hydrogen, and dodecane to hexane, ethene, and butene. We observed

C2H6, C2H4, and H2 generated from the reaction, so it is possible that eqn 4.1 oc-

curred in the process, while some process similar to eqn 4.2 must have happened too,

but we don’t have enough evidence to confirm the exact reactions.

C2H6 → C2H4 +H2 (4.1)

C12H26 → C6H14 + C2H4 + C4H8 (4.2)

Toluene, 1,2,3-trimethyl-benzene, and p,m,o-xylenes were all present in our liquid

phase products, the transalkylation reaction, which is often performed over zeolite

[53], should also took place under the reaction condition we tested. The illustration

of this reaction is in Figure 4.4.

Decarboxylation and decarbonylation may also occurred under the reaction con-

ditions based on the observation of carbon dioxide and carbon monoxide as prod-

ucts, especially with the most abundant gas product as carbon dioxide at all various

reaction conditions. Palmitic acid must undergo a decarboxylation reaction which
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Figure 4.4: Transalkylation from toluene and 1,2,4-trimethyl-benzene to mixed
xylenes

[54]

Figure 4.5: Decarboxylation reaction of a carboxylic acid

removed its carboxylic group and released carbon dioxide, as shown in Figure 4.5,

with R as C15H31− group.

C15H32 alkane, however, was not detected as a product in our reaction of palmitic

acid at 400 ℃ and 180 minutes. It is very possible that C15H32 alkane underwent a

catalytic cracking similar to the reaction in eqn 4.2.
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CHAPTER V

Effect of Process Variables

This chapter first discusses the results from experiments with palmitic acid in

water with zeolite HZSM-5 conducted at different reaction time and temperature.

Some other process variables that were studied include water density and addition of

hydrogen in the system. The effect of different types of catalyst, effect of reactant-

to-catalyst loading, and effect of degree of saturation of fatty acids on the products

were also elucidated in this chapter.

5.1 Effect of Time and Temperature

We conducted experiments at 400 ℃ and several different reaction times to explore

the influence of this process variable on the product yields. We also did experiments

for 180 minutes at 200, 300, and 400 ℃ to explore the effect of temperature on this

hydrothermal catalytic conversion. Table 5.1 (Runs 1 - 6) lists the molar yields of

the identified products from the reaction at 400 ℃ and at the different batch holding

times explored. In Table 5.1, NA indicates “not applied”, which means these were

not measured. ND indicates “not detected”, which means they were not able to be

detected reliably by the equipment we used. There is uncertainty in time in the data

because it takes some time (about one minute) for the batch reactor to heat up and

cool down.
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The most abundant products at short times were 2-methyl-pentane, butanal, 2-

ethyltoluene, toluene, and mixed xylenes. The molar yields of 2-methyl-pentane and

butanal reached maxima at 60 and 90 minutes, respectively, and then decreased. The

change in yield of 2-ethyltoluene with time is less than the experimental uncertainty,

so we consider this yield to be essentially time invariant. In contrast, the yields of

toluene and xylenes, as shown in Figure 5.1, increased steadily with reaction time,

and they are the major products from the reactions. Acetic acid is below detection

limits through 45 minutes, but its molar yield increases to be greater than 10% at 180

minutes. The conversion of palmitic acid increased with reaction time and reached

95% at 180 minutes as shown in Figure 5.2 and meanwhile the total liquid product

yield reached 59 wt% at 180 minutes.

Figure 5.1 and Figure 5.2 show a shared trend of a possible induction period at

short reaction times. This kind of induction period was found by other researchers as

well. For example, Riekett and Zhou noticed an induction period when cracking n-

decane and n-hexane using zeolite HZSM-5. They suggested that the induction period

can be suppressed by addition of olefin, and they confirmed this by adding propene,

n-butene, and n-hexene to n-decane. One possible explanation for this observation is

that olefin can serve as autocatalytic agent in this type of reaction. As indicated in

Figure 5.2, we stopped the reaction at 180 minutes and did not carry out reactions

at longer times, because the PA conversion was very close to 100% (i.e. 95%) at 180

minutes already.

The final row in Table 5.1 shows the overall mass balance for the two reaction times

(60 and 180 minutes) at 400 ℃ where gas products were quantified. The mass balance

is 81 ± 11% for the 180 min reaction and 78 ± 8% for the 60 minutes reaction. One

possible contributor to the incomplete mass balance is the generation of coke during

the reaction, which is common during hydrocarbon processing with zeolites.[55] Coke

formation during these experiments seems likely given the color change observed for
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Table 5.1: Molar yields of major products from palmitic acid cracking over HZSM-5
at different reaction times, temperature, and water density
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Figure 5.1: Temporal variation of toluene and xylenes molar yields, reaction condi-
tion: PA with HZSM-5 (PA/cat.=1), at 400 ℃, 24 MPa.
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Figure 5.2: Temporal variation of PA conversion, reaction condition: PA with HZSM-
5 (PA/cat.=1), at 400 ℃, 24 MPa.
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Figure 5.3: Temperature variation of toluene and xylenes molar yields, reaction con-
dition: PA with HZSM-5 (PA/cat.=1), 180 minutes, with 0.6 mL water
in 4 mL reactor.

the catalyst after each experiment. The catalyst recovered from the runs at short

times, such as 25 and 35 minutes, retained its original white color. The catalysts

recovered from runs at 45, 60, and 90 minutes were different shades of gray. The

color turned into a darker gray for the 180 minutes reactions. It is likely that the

amount of coke increased with increasing reaction time and that these higher coke

contents corresponded to the increasingly dark color of the remaining solids.

Next, we fixed the batch holding time at 180 minutes, and changed the reaction

temperature from 200 to 400 ℃. Reactions at 200 and 300 ℃ were in subcritical water

state, while the reactions at 400 ℃ were in supercritical water state. Figure 5.3 shows

the major liquid product yields (i.e. toluene and mixed xylenes) at different reaction

temperatures. Runs 6, 10, and 11 in Table 5.1 show the detailed results of the effect

of temperature on the product yields for a 180 minute batch holding time. With the

same water loading of 0.6 mL in a 4 mL reactor, reaction conditions with 400 ℃ and

48



0.0#
0.1#
0.2#
0.3#
0.4#
0.5#
0.6#
0.7#
0.8#
0.9#
1.0#

150# 200# 250# 300# 350# 400# 450#

PA
#c
on

ve
rs
io
n#
(%

)#
To

ta
l#l
iq
ui
d#
pr
od

uc
t#y

ie
ld
#(m

g/
m
g#
PA

)#

Reac<on#temperature#(°C)#

PA#conversion#

Total#liquid#
product##yield#

Figure 5.4: Temperature variation of PA conversion and total liquid product yield,
reaction condition: PA with HZSM-5 (PA/cat.=1), 180 minutes, with 0.6
mL water in 4 mL reactor.
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180 minutes gave the best results regarding with total liquid product yields and total

product yield, which were 59 wt% and 76 wt%, respectively.

Figure 5.4 indicated that the PA conversion increased with increasing reaction

temperature. The total liquid product yields were about the same at reaction tem-

perature 200 and 300 ℃, while it significantly increased from 300 ℃ to 400 ℃. The

PA conversion at 200 ℃ was only 25%, and mixed xylenes were the only products

present in sufficiently high yield to quantify. At 300 ℃, the conversion was 52%, and

some oxygenates appeared along with xylenes. At 400 ℃, the PA conversion was

97% and the complete product slate was illustrated in Figure 4.1 in Chapter 4. These

results indicate that a reaction temperature around 400 ℃ is required to generate

appreciable product yields from the hydrothermal catalytic cracking of palmitic acid

over HZSM-5.

5.2 Effect of Water Density

The literature indicates that the water density can influence reaction rates and

product selectivities for reactions at supercritical temperatures.[56, 57] Therefore, we

desired to discover the effect of the water density on this reaction system.

A different amount of water loaded into the reactor at room temperature at a

fixed reaction temperature, generated a different reaction pressure, and thus gave a

different density of water during the reaction. Table 5.2 indicates the relationship

between the amount of water loaded into the reactor with its reaction pressure, and

the water density. The reaction condition with water density of 0.15 g/mL was in

supercritical water region, and the reaction conditions with water density of 0.1 g/mL

and 0.05 g/mL were in the subcritical pressure region.

Runs 6 to 8 in Table 5.1 show the product yields obtained from experiments at

400 ℃ and 180 minutes with water densities of 0.15, 0.10, and 0.05 g/mL. In the

absence of water (run 9), aromatics dominate the product spectrum, with toluene
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Table 5.2: Relationship between amount of water loaded into the reactor and water
density

amount of  water loaded into the reactor temperature auto generated pressure water density  

0.2 g 400 °C 125 bar 0.05 g/mL 

0.4 g 400 °C 200 bar 0.1 g/mL 

0.6 g 400 °C 240 bar 0.15 g/mL 

and xylenes being the major products. Only one non-aromatic liquid-phase product,

2-pentanone, is present in a molar yield exceeding 1%. Hydrocarbons dominate the

gaseous products, as the yield of each C1 to C3 hydrocarbon exceeds that of CO or

CO2. The palmitic acid conversion is essentially complete and about one-third of

the initial mass appears as gaseous products, while the balance forms liquid-phase

products.

Figure 5.5 shows the effect of water density on total liquid product yield, and the

major product yields (i.e. mixed xylenes and toluene), where the red line separates

the subcritical pressure region (to the left of the line) and the supercritical water

region (to the right of the line). The total liquid product achieved a maximum yield

at a water density of 0.1 g/mL.

The yields of the various products respond differently to the presence of water and

to its density. The yield of acetic acid, for example, increases nearly 50-fold as the

water density increased from zero to 0.15 g/mL. Other products showing consistently

increasing yields (though less dramatic than acetic acid) with increasing water density

include 2-methyl-pentane, butanal, 2-methyl hexane, 2-ethyl toluene, and pentane. In

contrast to the behavior of the products just listed, the yields of other products either

consistently decrease with increasing water density or exhibit a maximum yield at

some intermediate density. Toluene, trimethyl-benzene, 2-pentanone, CO, methane,

ethane, and propane are examples of the former, and heptane, 4-methyl-heptane,

xylenes, and propyl benzene, butanes, and CO2 are examples of the latter.

As shown in Table 5.1, methane, ethylene, ethane, and propane form in much

51



Figure 5.5: Effect of water density on total product yield and yields of xylenes and
toluene, reaction condition: 150 mg PA with 150 mg HZSM-5, 400℃, 180
minutes (the red line separates the subcritical pressure region and the
supercritical water region)

higher yields when there is no water in the reactor (run 9). In contrast, the yields of

i- and n-butane and n-pentane are about the same (given the experimental uncertain-

ties) with or without water. The presence of water reduces the yield of carbon monox-

ide and increases the yield of carbon dioxide. This outcome is consistent with the

water gas shift reaction converting some of the CO produced into CO2 demonstrated

in eqn 5.1. The water gas shift reaction was believed involved in the gas produc-

tion pathways in catalytic upgrading of microalgae in water by Duan and Savage.[36]

HZSM-5 is not necessarily a good water gas shift catalyst, but this reaction can occur

readily in supercritical water even in the absence of a catalyst.[58]

CO +H2O → CO2 +H2 (5.1)

The reason(s) for these changes in product selectivity with changing water density

is not clear at present, but it is clear that the water density can be used as a process
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variable to direct the system to favor one product over another.

5.3 Effect of Hydrogen

Hydrogen is often used with zeolite Y or zeolite Beta (with or without metal) for

hydrocracking reactions.[59] There is also precedent for using hydrogen to facilitate

cracking reactions with HZSM-5.[60] More recently, high-pressure hydrogen was used

with a zeolite catalyst for upgrading algal bio-oil, which contains a significant amount

of fatty acids.[28, 36] Therefore, we deemed it relevant to determine the effect of added

hydrogen on hydrothermal treatment of fatty acids with HZSM-5. We conducted

experiments both with and without hydrogen but at otherwise identical reaction

conditions. We added 4, 25, and 50 bar (at room temperature) of hydrogen pressure

to the reactor, which results in mole ratios of hydrogen to palmitic acid of roughly

0.5:1, 3:1, and 6:1, respectively.

Table 5.3 shows all of the product yields, PA conversions, and mass balances, and

Figure 5.6 displays selected results. The PA conversion, yields of the major products,

and total yields of liquid and gas products were largely insensitive to the H2 loading

for H2 pressures up to 25 bar. When the hydrogen loading increased from 25 to 50

bar, however, the total liquid product yield dropped from 73 to 50 wt %, while the

total gas product yield climbed from 12 to 23 wt %. The yields of ethane, propane,

butanes, and pentane more than doubled. On the other hand, the yields of toluene

and xylenes decreased noticeably. The absence of ethylene at the highest H2 pressure

is consistent with it being more readily hydrogenated as more hydrogen is added to the

system. Likewise, the reduced yields of aromatics are consistent with the additional

hydrogen making the dehydrocyclization reactions more difficult. These results show

that moderate hydrogen pressures do not adversely impact the total product yields

but they do shift the product distribution to more gaseous products.

After the study of various levels of hydrogen pressure, we decided not to apply
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Table 5.3: Effect of hydrogen on product molar yields, reaction condition: 150 mg
PA with 150 mg HZSM-5, 0.15 g/mL water density, 400 ℃, 180 minutes

Product(molar(yield((mol/mol(PA) No(hydrogen 4(bar(hydrogen 25(bar(hydrogen 50(bar(hydrogen
(2<methyl<pentane 0.062(±(0.053 0.16(±(0.02 0.16(±(0.03 0.17(±(0.02

Butanal 0.051(±(0.022 0.051(±(0.004 0.042(±(0.006 0.039(±(0.002
2<methyl<hexane 0.026(±(0.008 0.045(±(0.009 0.037(±(0.011 0.039(±(0.005
2<pentanone 0.0052(±(0.0021 0.0119(±(0.0008 0.0069(±(0.0006 0.0063(±(0.0003
Heptane 0.0089(±(0.0023 0.03384(±(0.00004 0.011(±(0.001 0.01118(±(0.00004

4<methyl<heptane 0.0025(±(0.0028 0.0055(±(0.0001 0.0055(±(0.0006 0.0029(±(0.0025
Toluene 0.22(±(0.03 0.23(±(0.02 0.22(±(0.04 0.18(±(0.03
Xylene 0.49(±(0.08 0.47(±(0.03 0.52(±(0.07 0.34(±(0.07

Propyl<benzene 0.034(±(0.030 0.0191(±(0.0004 0.019(±(0.002 0.013(±(0.002
2<ethyl<toluene 0.036(±(0.012 0.046(±(0.002 0.044(±(0.004 0.027(±(0.005

1,2,4<trimethylbenzene 0.029(±(0.008 0.040(±(0.001 0.034(±(0.006 0.028(±(0.002
Acetic(Acid 0.11(±(0.04 0.11(±(0.01 0.14(±(0.04 0.074(±(0.004

CO 0.126(±(0.005 NA 0.012(±(0.016 0.087(±(0.027
CH4 0.020(±(0.010 NA 0.060(±(0.079 0.063(±(0.021
CO2 0.30(±(0.07 NA 0.16(±(0.09 0.100±(0.006
C2H4 0.090(±(0.015 NA 0.0022(±(0.0032 ND
C2H6 0.0155(±(0.0006 NA 0.012(±(0.005 0.041(±(0.015
C3H8 0.13(±(0.03 NA 0.17(±(0.04 0.31(±(0.03

n<C4H10 0.10(±(0.04 NA 0.13(±(0.02 0.33(±(0.01
i<C4H10 0.051(±(0.025 NA 0.059(±(0.008 0.13(±(0.01
C5H12 0.037(±(0.020 NA 0.0398(±(0.0001 0.11(±(0.02

Total(liquid((products((mg/mg(PA) 0.59(±(0.12 0.68(±(0.03 0.73(±(0.08 0.50(±(0.10
Total((gas(products((mg/mg(PA) 0.16(±(0.04 NA 0.12(±(0.03 0.23(±(0.01

Total(yield((wt%) 76(±(13 NA 85(±(8 72(±(9
PA(conversion((%) 95(±(4 98(±(2 94(±(3 95.5(±(0.2
Mass(Balance((wt%) 81(±(11 NA 90(±(6 77(±(9
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Figure 5.6: Effect of hydrogen pressure on total mass yields of liquid and gas products,
reaction condition: 150 mg PA with 150 mg HZSM-5, 0.15 g/mL water
density, 400℃, 180 minutes
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Table 5.4: Typical properties of zeolite Y, beta, and ZSM-5

Y beta HZSM-5
Pore size (Å) 12 5 ~ 7 5

Surface Area (m2/g) ~ 700 600  ~ 700 400
Hydrothermal stability less stable less stable more stable

hydrogen in our system. This is because first, by comparing reactions with no hy-

drogen and the reactions with additional hydrogen at 25 bar, which generated the

highest total liquid product yield, the difference of the total liquid product yield was

not large (only 0.1 mg/mg PA). Second, additional hydrogen increases the input of

cost and energy, so it is beneficial only when it can create a significant increase of

product value.

5.4 Effect of Different Catalysts

Zeolites ZSM-5, Beta, and Y are traditional cracking zeolites.[61] Therefore, we

selected these three materials for the present study. The three types of zeolite are

all composed of silica and alumina, but in different structures. ZSM-5 has a tube

type micropore system with free diameters in the tubes of about 5 angstrom and a

surface area of about 400 m2/g. Zeolite beta has pore diameters of 5 - 7 angstrom

and a surface area of 600 - 700 m2/g. Zeolite Y has a three-dimensional pore network

consisting of large spherical cavities with free diameters of about 12 angstrom and a

surface area of about 700 m2/g.[62] Thus, zeolites Y and beta generally have large

pores and higher surface areas than zeolite ZSM-5. Those data are summarized in

Table 5.4, and the structure of different types of zeolite are shown in Figure 5.7.

Zeolites Y and beta, however, were less stable than zeolite ZSM-5 in hot liquid water

at 150 and 200 ℃.[46] We desired to examine these different types of zeolites to

determine their effectiveness for hydrothermal catalytic conversion of fatty acids to

aromatics.
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Figure 5.7: Structures of different zeolites (Y, beta, and zsm-5)
[63]
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Table 5.5: Molar yields of major products from palmitic acid over different zeolites
(Y, beta, and zsm-5), reaction condition: 150 mg PA with 150 mg catalyst,
water density of 0.15 g/mL, 400 ℃, 180 minutes.

Zeolite'catalyst'type Y'60 beta'38 beta'300 HZSM65'(30)
Product'yield'(mol/mol'PA)

Pentane,'26methyl6 0.10'±'0.02 0.13'±'0.01 0.10'±'0.005 0.062'±'0.053
Butanal 0.0027'±'0.0046 0.022'±'0.006 0.0040'±'0.0039 0.051'±'0.021

26methyl6hexane 0.0085'±'0.0009 0.017'±'0.007 0.011'±'0.004 0.026'±'0.008
26pentanone ND 0.0061'±'0.0027 0.0056'±'0.0053 0.0052'±'0.0021
Heptane 0.0052'±'0.0008 0.0028'±'0.0020 0.0034'±'0.0032 0.0089'±'0.0023

46methyl6heptane ND 0.0017'±'0.0020 0.0017'±'0.0030 0.0025'±'0.0028
Toluene 0.020'±'0.007 0.040'±'0.009 0.026'±'0.027 0.22'±'0.03
Xylene 0.039'±'0.007 0.077'±'0.018 0.046'±'0.044 0.49'±'0.08

Propyl6benzene 0.0041'±'0.0035 0.0067'±'0.0011 0.0024'±'0.0042 0.034'±'0.030
26ethyl6toluene 0.0045'±'0.0002 0.0047'±'0.0020 0.0047'±'0.0015 0.036'±'0.012

1,2,46trimethylbenzene ND 0.0027'±'0.0054 0.0088'±'0.0090 0.029'±'0.008
Acetic'Acid 0.014'±'0.012 0.013'±'0.008 0.047'±'0.028 0.11'±'0.04

Total'liquid''products'(mg/mg'PA) 0.17'±'0.01 0.14'±'0.03 0.18'±'0.06 0.59'±'0.12
Total''gas'products'(mg/mg'PA) 0.075'±'0.026 0.0065'±'0.0024 0.024'±'0.004 0.16'±'0.04

Total'yield'(%) 24'±'2 15'±'3 21'±'2 76'±'13
PA'conversion'(%) 50'±'2 29'±'9 38'±'1 95'±'4
Mass'Balance'(%) 51'±'1 66'±'17 55'±'4 81'±'11

We performed reactions of palmitic acid with zeolites beta(silica/alumina = 38,

300), ZSM-5 (silica/alumina = 30), and Y (silica/alumina = 60) in supercritical

water at 400 ℃, 240 bar, for 180 minutes. The mass balances in Table 5.5 being

less than 100% can be attributed to the formation of products not detectable by our

analytical methods. From Table 5.5, ZSM-5 gave the highest conversion of 95 ± 4%.

The conversion with zeolite Y was about 50%, and zeolite beta gave the lowest PA

conversion (30%). Zeolites beta and Y gave 2-methyl-pentane as the most abundant

liquid product, while ZSM-5 gave toluene and xylenes as the major products. Some

liquid products, such as 2-pentanone, 4-methyl-heptane, and 1,2,4-trimethylbenzene

were not detected for reactions with zeolite Y. The molar yield of toluene was 22 ± 3%

and that of xylenes was 49 ± 8% with ZSM-5. The highest yields of aromatics being

obtained from ZSM-5 is consistent with previous work with these three materials in

the gas phase cracking of n-octane at 500 ℃.[62]

We have also carried out experiments with an amorphous silica-alumina catalyst

we synthesized in house. The generated amorphous silica-alumina catalyst has a
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silica/alumina ratio of 35.6, which is very close to the silica/alumina ratio of 30 for

the HZSM-5 used in reactions. For a 180 minutes reaction with amorphous silica-

alumina, the major liquid products generated were the same as those from the HZSM-

5 reactions, and the average conversion of palmitic acid was 88% with a standard

deviation of 10%, was similar to that when HZSM-5 was used as the catalyst under

the same circumstances. The procedure of making amorphous silica-alumina catalyst

is in Appendix A.

The control experiment with palmitic acid with no catalyst, but at otherwise iden-

tical reaction conditions, produced 3.3% molar yield (1.2 wt%) of toluene, and 9.0%

molar yield (3.7 wt%) of xylenes.The presence of zeolite ZSM-5 in the system signif-

icantly increased the yields of those major aromatic products. Among the zeolites

ZSM-5, beta, Y, and amorphous silica-alumina, ZSM-5 shows the greatest potential

for producing aromatic hydrocarbons from fatty acids in supercritical water under

the conditions investigated here.

5.5 Effect of Catalyst Loading

Having shown that ZSM-5 is more effective than Y or beta for producing aromatics

at the conditions of interest herein, we next examine the influence of the reactant-to-

catalyst mass ratio for ZSM-5 with palmitic acid. Benson et al.[24] used oleic acid to

ZSM-5 ratios of 0.2, 0.1, and 0.05 in their vapor-phase studies. Bielansky et al.[25]

applied a REUSY catalyst partially coated with ZSM-5 to convert (not hydrother-

mally) palmitic acid into hydrocarbons in a continuous fluid catalytic cracking pilot

plant. Converting their catalyst mass, flow rate, and residence time to batch reactor

conditions leads to a reactant-to-catalyst ratio of unity for their study.[25] Of course,

one prefers to operate with as high a reactant-to-catalyst ratio as possible that will

provide the product yield and conversion required. Therefore, we assessed reactant-

to-catalyst mass ratios of 1, 1.5, and 3.0 for the reaction of palmitic acid over ZSM-5.
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Table 5.6: The effect of reactant-to-catalyst ratio on molar yields of major products,
reaction condition: 150 mg of PA with different mass loading of HZSM-5,
water density of 0.1 g/mL, 400 ℃, 180 minutes.

PA/catalyst*mass*ratio 3 1.5 1
Product*yield*(mol/mol*PA) 50*mg*cat. 100*mg*cat. 150*mg*cat.

Pentane,*2=methyl= 0.042*±*0.025 0.020*±*0.036 0.062*±*0.053
Butanal 0.023*±*0.007 0.018*±*0.002 0.051*±*0.021

2=methyl=hexane 0.0086*±*0.0101 0.022*±*0.004 0.026*±*0.008
2=pentanone 0.0056*±*0.0008 0.0079±*0.0024 0.0052*±*0.0021
Heptane 0.0067*±*0.0010 0.0066*±*0.0004 0.0089*±*0.0023

4=methyl=heptane ND 0.0051*±*0.0054 0.0025*±*0.0028
Toluene 0.057*±*0.026 0.13*±*0.01 0.22*±*0.03
Xylene 0.15*±*0.08 0.34*±*0.03 0.49*±*0.08

Propyl=benzene 0.019*±*0.007 0.012*±*0.0008 0.034*±*0.030
2=ethyl=toluene 0.0058*±*0.0069 0.032*±*0.002 0.036*±*0.012

1,2,4=trimethylbenzene 0.0021*±*0.0042 0.021*±*0.001 0.029*±*0.008
Acetic*Acid 0.027*±*0.021 0.037*±*0.034 0.11*±*0.04

Total*liquid**products*(mg/mg*PA) 0.17*±0.07 0.35*±*0.04 0.59*±*0.12
Total**gas*products*(mg/mg*PA) 0.10*±*0.02 0.17*±*0.01 0.16*±*0.04

Total*yield*(%) 27*±*6 52*±*3 76*±*13
PA*conversion*(%) 40*±*24 75*±*25 95*±*4
Mass*Balance*(%) 78*±24 73*±*22 81*±*11

The palmitic acid loading remained at 150 mg in all of these experiments.

Table 5.6 shows the yields of the major liquid products and the palmitic acid

conversions. The PA conversions and the total product yields both decrease as the

reactant-to-catalyst ratio increases, as expected. Though one prefers a high reactant-

to-catalyst ratio, the highest total product yield (76 wt%) and the highest PA con-

version (95%) were achieved at the lowest reactant-to-catalyst ratio (1) examined.

Figure 5.8 shows that the mass yield of total aromatics, and molar yields of toluene

and xylenes decreased as the catalyst loading decreased.

Analysis of the data also reveals that the average rates of producing toluene with

PA/catalyst ratios of 1, 1.5, and 3 were 8.5, 7.2, and 6.4 mmol/min/g catalyst, respec-

tively, and the average rates of producing xylenes were 18,19, and 17 mmol/min/g

catalyst, respectively. These rates were calculated as the product molar yield times

the moles of PA loaded into the reactor, divided by the reaction time of 180 minutes

and the catalyst loading in grams (0.15, 0.1, and 0.05 g). The production rates for

each compound are almost the same at the various PA/catalyst ratios, which suggests
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Figure 5.8: Effect of reactant-to-catalyst ratio on molar yields of toluene and xylene,
and mass yield of total aromatics at water density of 0.1 g/mL, 400℃,
180 minutes (*denotes quantity given on a mass basis).

that the reaction that forms single-ring aromatics is first-order in catalyst. Thus, op-

erating at even lower palmitic acid-to-ZSM-5 ratios should offer even higher yields of

aromatics.

Figure 5.9 presents results for the gas yields. The yields of all gases shown in-

creased first and then decreased as more catalyst was present in the reactors. This

result is consistent with the additional catalyst promoting cracking reactions. As

more catalyst is present with a fixed amount of palmitic acid, the additional cracking

activity first produces more C3 - C5 gases as it reduces the sizes of the molecules that

are present. As even more catalyst is added, and it effects an even greater amount of

cracking, the molecules are sufficiently small that the C3 - C5 gases can no longer be

formed as quickly as they are cracked to smaller products.
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Figure 5.9: Effect of reactant-to-catalyst ratio on yields of major gas products at
water density of 0.1 g/mL, 400℃, 180 minutes.

5.6 Effect of Degree of Saturation of Fatty acids

Most of the fatty acids in renewable plant oils contain one or more double bonds,

which can influence the product distribution and pathways for acid-catalyzed hydro-

carbon cracking.[64] The presence of unsaturation may play a role since protonation

of a double bond is an easier route to the formation of a carbenium than is the di-

rect formation of carbenium ions from saturated hydrocarbons. This section presents

results for the hydrothermal zeolite-catalyzed cracking of unsaturated fatty acids.

To assess the influence of unsaturation on fatty acid cracking over zeolites, we

conducted experiments with stearic acid (C18:0), oleic acid (C18:1), and linoleic acid

(C18:2) with pre-calcined ZSM-5 (silica/alumina = 30) in supercritical water at 400℃,

240 bar, for 180 min. The results in Table 5.7 indicate that as the number of double

bonds decreases, the total liquid product yield increases. Further, Figure 5.10 shows

that the yields of the aromatic products decrease as the degree of unsaturation in-

creases. These results suggest that hydrogenating unsaturated fatty acids before they
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Table 5.7: Effect of number of double bonds on molar yields of products from C18
fatty acids over ZSM-5, reaction condition: 150 mg different types of FA,
150 mg HZSM-5, water density of 0.15 g/mL, 400 ℃, 180 minutes.

number'of'double'bonds 2 1 0
Product'yield'(mol/mol'FA) linoelic'acid oleic'acid stearic'acid

Pentane,'2<methyl< 0.015'±'0.018 0.047'±'0.035 0.12'±'0.03
Butanal 0.0027'±'0.0055 0.019'±'0.012 0.027'±'0.014

2<methyl<hexane ND 0.021'±'0.020 0.056'±'0.008
2<pentanone 0.0012'±'0.0025 0.0075'±'0.0017 0.015'±'0.003
Heptane 0.0024'±'0.0048 ND 0.015'±'0.007

4<methyl<heptane 0.0013'±'0.0026 0.0029'±'0.0051 0.0069'±'0.0024
Toluene 0.060'±'0.035 0.15'±'0.02 0.22'±'0.09
Xylene 0.23'±'0.07 0.39'±'0.01 0.50'±'0.18

Propyl<benzene 0.0028'±'0.0055 0.017'±'0.004 0.030'±'0.011
2<ethyl<toluene 0.028'±'0.008 0.044'±'0.006 0.028'±'0.030

1,2,4<trimethylbenzene 0.027'±'0.005 0.031'±'0.007 0.021'±'0.017
Acetic'Acid 0.065'±'0.050 0.052'±'0.027 0.14'±'0.02

Total'liquid''products'(mg/mg'FA) 0.18'±'0.06 0.41'±'0.12 0.56'±'0.13
Total''gas'products'(mg/mg'FA) 0.25'±'0.05 0.36'±'0.12 0.15'±'0.01

Total'yield'(wt%) 43'±'0.6 77'±'21 71'±'12
FA'conversion'(%) 95'±'3 85'±'22 91'±'1
Mass'Balance'(%) 45'±'1 87'±'12 78'±8

react over the zeolite would increase the yields of aromatic liquid products. Previous

work on fatty acid decarboxylation has also pointed to the potential advantage of

hydrogenating unsaturated fatty acids prior to catalytic conversion.[16, 40]

The presence of catalyst increased the yield of liquid products for stearic and oleic

acids, but not for linoleic acid. The total liquid product yield (18 ± 6 wt%) from

hydrothermal catalytic cracking of linoleic acid is lower than the total liquid product

yield (41 ± 5 wt%)from thermal cracking at otherwise identical conditions. The total

product yields (gas plus liquid) were about 40 - 45 wt% in both cases, however.

The average mass balance for experiments with linoleic acid is much lower than

those for oleic and stearic acids. One possible reason for the lower mass balance with

LA is that the additional double bonds facilitate dimerization, oligomerization, and

perhaps coke-forming reactions. None of these high-molecular weight products would

be detected with the experimental methods we employed.

To determine how much coke is generated for reactions with the different fatty

acids, we performed a controlled oxidation of the used catalyst and measured the
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mass loss. The coke content on the catalysts accounted for 2.1, 0.4, and 0.3 wt% of

the initial reactant mass for linoleic, oleic, and stearic acids, respectively. Therefore,

coke formation was not a major contributor to the mass loss in the linoleic acid

experiments, but linoleic acid generated more coke than did the more saturated fatty

acids. We suspect that the missing material exists as high-molecular-weight com-

pounds that were not amenable to GC analysis.

Figure 5.11 shows that the yields of major gaseous products increase first and then

decrease as the degree of unsaturation increases. The total gas product yield was the

highest at 36 ± 12 wt% for oleic acid, compared to 25 ± 4 wt% for linoleic acid, and

15 ± 1 wt% for stearic acid. This trend for the gases, along with that noted above

for the liquid products, combine to show that the ratio of the total liquid product

yield to the total gas product yield decreased with increasing unsaturation. This shift

in the product distribution with the extent of unsaturation shows that changing the

number of double bonds in the fatty acids can be a potential tool for controlling the

product distribution.

5.7 Summary of the effect of reaction conditions

This chapter discussed how the reaction variables influence the product yield. The

studied reaction variables include reaction time, temperature, water density, added

hydrogen, different catalyst types, the reactant-to-catalyst loading, and the degree of

saturation of fatty acids.

Reaction time and temperature are always important factors for a chemical reac-

tion. Both the FA conversion and the production of the aromatics have an induction

period at the short reaction times. Among tested reaction time and temperatures,

the highest FA conversion (95%) was achieved at 400℃ and 180 minutes. With a

fixed water density of 0.15 g/mL, the reaction condition of 400℃ and 180 minutes

also generated the highest molar yields of toluene and xylenes, as well as the highest
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Figure 5.10: Effect of degree of unsaturation in C18 FA on molar yields of toluene
and xylene, and mass yield of total aromatics at water density of 0.15
g/mL, 400℃, 180 minutes (*denotes quantity given on a mass basis).
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Figure 5.11: Effect of degree of unsaturation in C18 FA on yields of major gas prod-
ucts at water density of 0.15 g/mL, 400℃, 180 minutes.
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total liquid product yield of 59 wt% (mainly aromatics), and the highest total product

yield of 76 wt% (includes liquid and gas phase products).

The total liquid product achieved a maximum at a water density of 0.1 g/mL.

The yields of the various products respond differently to the presence of water and

to its density. Some of the products (2-methyl-pentane and 2-methyl-hexane) showed

increased yields with increased water density, others (toluene and trimethyl-benzene)

showed decreased yields with increased water density. In addition, the water gas shift

reaction was believed involved in the gas production pathways of the reactions.

At mild hydrogen pressure (0 to 25 bar), there was no significant change of the

product yields, however, the total liquid product yield dropped from 73 to 50 wt%

while the gas product yield climbed from 12 to 23 wt% as hydrogen pressure increased

from 25 to 50 bar. We decided not to add hydrogen in our subsequent reactions, due

to the extra cost and small yield change cause by additional hydrogen.

Among zeolite ZSM-5, Beta, and Y, the highest molar yields of toluene (22%) and

xylenes (49%) were obtained from reactions with ZSM-5. Zeolite ZSM-5 also gave the

highest PA conversion of 95% compared to the other types of zeolite that we have

examined.

The study of reactant-to-catalyst ratio showed the PA conversion, total liquid

product yields, and the total product yields all decrease as the reactant-to-catalyst

ratio increases. The product types, however, were the same at different reactant-

to-catalyst ratios, except for 4-methyl-heptane not being detected for reactant-to-

catalyst ratio of 3. The average rates of producing toluene and xylenes with reactant-

to-catalyst ratios of 1, 1.5, and 3 were almost the same, which suggested that the

reaction that forms single-ring aromatics is first-order in catalyst.

The number of double bonds in fatty acids was another variable. Among stearic

acid (C18:0), oleic acid (C18:1), and linoleic acid (C18:2), stearic acid gave the highest

total liquid product yields, while oleic acid gave the highest total gas product yield.
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Overall, of the different zeolite catalysts examined to date, ZSM-5 was the most

active for catalytic cracking of fatty acids in supercritical water to produce aromatic

hydrocarbons. The reaction temperature, batch holding time, water density, and de-

gree of saturation of the fatty acids all influence the product yields. On the other

hand, added hydrogen has no significant effect on the product yields until the amount

added is large enough (50 bar at room temperature) to inhibit the dehydrocyclization

reactions that produce the aromatic products. Examination of the influence of dif-

ferent process variables reveals methods to tune the product distribution in order to

favor desired products. For example, decreasing the reactant-to-catalyst ratio from

1.5 to 1 shifts the product distribution from fuel gases to aromatic products. The

highest yield of liquid phase products (73 ± 9 wt %) occurred at 400 ℃, 180 minutes,

with a water density of 0.1 g/mL, and in the absence of added hydrogen.
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CHAPTER VI

Catalyst Composition, Regeneration, and

Characterization

Chapter 5 discussed the reactions with different zeolite catalysts, including zeolite

ZSM-5, Beta, and Y. The results showed that zeolite ZSM-5 was the most promising

catalyst for hydrothermal reaction to produce aromatic hydrocarbon chemicals among

the tested catalysts. This chapter provides further information about the zeolite

catalyst used in the reactions. The study of catalyst includes investigation at the effect

of silica-to-alumina ratio of zeolite ZSM-5, catalyst regeneration and reuse, catalyst

characterization (surface area, bulk structure, pore size, etc.), and the calculation to

determine if the reaction is diffusion limited.

6.1 Silica-to-alumina Ratio of Zeolite

Section 5.4 in Chapter 5 shows that ZSM-5 gave higher yields of aromatics than

did zeolites beta or Y. Therefore, we used ZSM-5 for additional experiments that

examined how the silica/alumina ratio affects the reaction outcome. This catalyst

feature is important because the acidity of the zeolite increases as its silica/alumina

ratio decreases. In acid-based zeolite catalysts, Bronsted acid site contains an H+ ion

localized near a bridging Si-O-Al cluster, which is illustrated in Figure 6.1. The ratio
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Figure 6.1: Demonstration of Bronsted acid sites, containing an H+ ion localized near
a bridging Si-O-Al cluster

[68]

of Bronsted to Lewis acid sites also tends to increase with a decreasing silica/alumina

ratio.[65] Bronsted acid sites are the ones typically implicated in cracking reactions.

Although low silica/alumina ratio enhances acidity, increasing the silica/alumina ratio

improves catalyst stability in hot liquid water and in steam, because it increases the

hydrophobic character of the zeolite[66, 67]. To the best of our knowledge, no prior

study has been done on the influence of the silica/alumina ratio on reactions in

supercritical water.

We conducted experiments in supercritical water (400 ℃,240 bar) with palmitic

acid and ZSM-5 with silica/alumina=23, 30, 50, and 80. Table 6.1 gives the product

yields and conversions achieved with the different silica/alumina ratios. ZSM-5 with

silica/alumina=23 gave the highest total product yield of 97 ± 2 wt% and the highest

conversion of 98 ± 1%. As the silica/alumina ratio decreased the yields of the major

products, toluene and xylenes, increased. The catalyst with silica/alumina=23 gave

a 66% yield of xylenes, a 25% yield of toluene, and a 102% total molar yield of

single-ring aromatics. Figure 6.2 gives a clear comparison of the xylene yield and

toluene yield from reactions with different silica/alumina ratios. From the figure, we

can tell that the silica/alumina ratio of 23 produces the most xylenes and toluene.

These high yields demonstrate the efficacy of hydrothermal cracking for producing

aromatics from fatty acids.
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Figure 6.2: Effect of silica/alumina ratio of ZSM-5 on molar yields of xylenes and
toluene, reaction condition: 150 mg PA with 150 mg HZSM-5, 0.15 g/mL
water density. 400℃, 180 minutes.
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Table 6.1: Effect of silica/alumina ratio of ZSM-5 on product yields, reaction condi-
tion: 150 mg PA with 150 mg HZSM-5, 0.15 g/mL water density. 400℃,
180 minutes.

silica&alumina*ratio 23 30 50 80
Product*yield*(mol/mol*PA)

Pentane,*2&methyl& 0.10*±*0.09 0.062*±*0.053 0.026*±*0.02 0.0089*±*0.0077
Butanal 0.040*±*0.034 0.051*±*0.021 0.015*±*0.014 0.013*±*0.006

2&methyl&hexane 0.042*±*0.005 0.026*±*0.008 0.015*±*0.004 0.014*±*0.005
2&pentanone 0.017*±*0.0006 0.0052*±*0.0021 ND 0.007*±*0.003
Heptane 0.012*±*0.006 0.0089*±*0.0023 0.00068*±*0.0012 0.0040*±*0.0050

4&methyl&heptane 0.0058*±*0.0024 0.0025*±*0.0028 0.0016*±*0.0028 0.0034*±*0.0033
Toluene 0.25*±*0.02 0.22*±*0.03 0.089*±*0.021 0.14*±*0.02
Xylene 0.66*±*0.03 0.49*±*0.08 0.21*±*0.05 0.32*±*0.05

Propyl&benzene 0.023*±*0.002 0.034*±*0.030 0.0080*±*0.0012 0.012*±*0.001
2&ethyl&toluene 0.064*±*0.006 0.036*±*0.012 0.021*±*0.006 0.031*±*0.003

1,2,4&trimethylbenzene 0.027*±*0.016 0.029*±*0.008 0.025*±*0.004 0.032*±*0.003
Acetic*Acid 0.010*±*0.058 0.11*±*0.04 0.023*±*0.03 0.088*±*0.083

Total*liquid**products*(mg/mg*PA) 0.86*±*0.01 0.59*±*0.12 0.37*±*0.09 0.54*±*0.08
Total**gas*products*(mg/mg*PA) 0.11*±*0.03 0.16*±*0.04 0.23*±*0.09 0.10*±*0.03

Total*yield*(%) 97*±*2 76*±*13 60*±*0.08 64*±*5
PA*conversion*(%) 98*±*1 95*±*4 71*±*0.6 80*±*16
Mass*Balance*(%) 98*±*2 81*±*11 78*±*4 86*±*14

Figure 6.3: Effect of silica/alumina ratio of ZSM-5 on distribution of the total yields
of all products, liquid, and gases, reaction condition: 150 mg PA with 150
mg HZSM-5, 0.15 g/mL water density. 400℃, 180 minutes.
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Figure 6.3 illustrates the influence of the silica/alumina ratio on the distribution

between liquid and gaseous products. ZSM-5 with a ratio of 23 gave the largest

difference between the liquid and gas yields, with the liquid products dominating.

Increasing the ratio to 50 led to this difference being nearly zero, but an additional

increase to 80 again led to the mean liquid product yield being much higher than

the mean gas yield. The uncertainties associated with the data obtained from the

zeolite with a ratio of 50 are large enough that it is not clear whether that experiment

represents a true extremum for the liquid and gas yields or whether the results from

ratios of 30, 50, and 80 are all about the same. Regardless, the liquid yield is clearly

highest for the material with a ratio of 23, which corresponds to the most acidic

material.

6.2 Catalyst Regeneration and Reuse

Zeolites undergo coking reactions during hydrocarbon processing that can reduce

the catalyst activity.[65] Additionally, some zeolites are unstable under certain hy-

drothermal conditions.[46] Given this background, we desired to determine whether

HZSM-5 could be reused for fatty acid cracking in a hydrothermal environment. We

first conducted an experiment wherein the catalyst zeolite HZSM-5 (silica/alumina

ratio of 30) used in one reaction (400 ℃, 0.15 g/mL water density, 180 min) was

collected, dried in an oven at 70 ℃ overnight, and then reused in a second run at

the same conditions. The total product yield (liquid plus gas) was 76% with the

fresh catalyst, but it dropped to only 2% with the once-used catalyst. It is clear that

catalyst deactivation occurred either during the hydrothermal reaction or during the

hydrothermal heating/cooling experienced by the catalyst. Regardless of where or

how the deactivation occurs, the issue of practical significance becomes that of cat-

alyst regeneration. We investigated catalyst regeneration by performing a controlled

oxidation of the used catalyst to burn off any coke and then subjecting that material
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Figure 6.4: Effect of catalyst regeneration and reuse on palmitic acid conversion, mo-
lar yield of mixed xylenes and CO2, and total *mass yield (not molar
yield) of the liquid and gas products, reaction condition: 150 mg PA with
150 mg HZSM-5 (silica/alumina=30), 0.15 g/mL water density. 400℃,
180 minutes.

to a calcination step as described in the experimental section.

Figures 6.4 and 6.5 show the yields of selected products from experiments with

fresh catalyst (cycle 1), with catalyst that had been used and regenerated once (cycle

2) and with catalyst that had been used twice and regenerated twice (cycle 3). Table

6.2 provides the details for all of the reaction products. As indicated in Figure 6.4, the

total product yield decreased from 76 ± 13 wt% with the fresh catalyst to 53 ± 2 wt%

upon its second use. This irreversible deactivation in the first reaction-regeneration

cycle is typical of HZSM-5 zeolites, and one reason is the loss of a certain fraction

of the Bronsted strong acid sites in hot compressed water, which are required for

the cracking reactions.[65] Figure 6.4 also shows that the total product yields are

about the same for the second and third uses of the catalyst, which suggests that

this hydrothermal reaction-regeneration process might be effective for hydrothermal

conversion of fatty acids to hydrocarbons with value as fuels or chemicals.

Figures 6.4 and 6.5 show that the molar yields of the major products (toluene and

xylenes) decrease with each reuse and regeneration of the catalyst, but appreciable
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Figure 6.5: Effect of catalyst regeneration and reuse on molar yields of toluene, acetic
acid, methane, ethane, and pentane, reaction condition: 150 mg PA with
150 mg HZSM-5 (silica/alumina=30), 0.15 g/mL water density. 400℃,
180 minutes.

yields of these desirable aromatic products are still obtained. Interestingly, the yield

of acetic acid is unaffected by the reuse and regeneration of the catalyst (Figure

6.5). It seems that the aromatic compounds and acetic acid might be formed in two

different paths, with one being insensitive to reuse of the catalyst. CO2 and n-pentane

also have similar yields with fresh and regenerated catalyst. The yields of methane

and ethane slightly increased when using regenerated catalyst, as indicated in Figure

6.5.

Having determined in the present investigation that HZSM-5 with silica/alumina=23

is a better catalyst for making aromatics from fatty acids than HZSM-5 with sil-

ica/alumina=30, the material we used previously, we desired to discover whether this

more acidic form of ZSM-5 could also be regenerated and reused for hydro-thermal

cracking of palmitic acids. The reaction conditions were the same as for the reactions

with HZSM-5 of silica/alumina ratio of 30.

Figure 6.6 shows the yields of selected products from these experiments. The

conversion decreased from 98 ± 1% for the fresh catalyst to slightly lower values with

the regenerated catalyst. Likewise,the yields of toluene and xylenes were lower with
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Table 6.2: Effect of catalyst regeneration and reuse on product yields, reaction con-
dition: 150 mg PA with 150 mg HZSM-5 (silica/alumina=30), 0.15 g/mL
water density, 400℃, 180 minutes.

Product(molar(yield((mol/mol(PA) cycle(1 cycle(2 cycle(3
(26methyl6pentane 0.062(±(0.053 0.0165(±(0.0002 0.030(±(0.017

Butanal 0.051(±(0.021 0.043(±(0.030 0.020(±(0.002
26methyl6hexane 0.026(±(0.008 0.01759(±(0.00003 0.018(±(0.002
26pentanone 0.0052(±(0.0021 0.0061(±(0.0038 0.0078(±(0.0044
Heptane 0.0089(±(0.0023 0.0049(±(0.0070 0.0068(±(0.0005

46methyl6heptane 0.0025(±(0.0028 0.014(±(0.020 ND
Toluene 0.22(±(0.03 0.11(±(0.01 0.079(±(0.012
Xylene 0.49(±(0.08 0.29(±(0.05 0.21(±(0.05

Propyl6benzene 0.034(±(0.030 0.039(±(0.007 0.0081(±(0.0015
26ethyl6toluene 0.036(±(0.012 0.019(±(0.015 0.020(±(0.005

1,2,46trimethylbenzene 0.029(±(0.008 0.024(±(0.005 0.017(±(0.004
Acetic(Acid 0.11(±(0.04 0.103(±(0.012 0.095(±(0.015

H2 0.10(±(0.03 0.14(±(0.03 0.096(±(0.057
CO 0.126(±(0.005 0.111(±(0.006 0.079(±(0.023
CH4 0.020(±(0.010 0.035(±(0.004 0.064(±(0.014
CO2 0.30(±(0.07 0.33(±(0.03 0.32(±(0.21
C2H4 0.090(±(0.015 0.047(±(0.002 0.18(±(0.03
C2H6 0.0155(±(0.0006 0.042(±(0.003 0.050(±(0.008
C3H8 0.13(±(0.03 0.20±(0.01 0.143(±(0.003

n6C4H10 0.10(±(0.04 0.15±(0.02 0.10(±(0.02
i6C4H10 0.051(±(0.025 0.071(±(0.013 0.068(±(0.007
C5H12 0.037(±(0.020 0.046(±(0.014 0.047(±(0.005

Total(liquid((products((mg/mg(PA) 0.59(±(0.12 0.35(±(0.01 0.40(±(0.05
Total((gas(products((mg/mg(PA) 0.16(±(0.04 0.18(±(0.01 0.17(±(0.04

Total(yield((wt%) 76(±(13 53(±(2 57(±(9
PA(conversion((%) 95(±(4 71(±(1 69(±(2
Mass(Balance((wt%) 81(±(11 82.4(±(0.7 88(±(7
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Figure 6.6: Effect of catalyst regeneration and reuse on palmitic acid conversion, mo-
lar yields of xylene and toluene, and total mass yield of liquid and gas
products, * denotes quantity given on a mass basis, reaction condition:
150 mg PA with 150 mg HZSM-5 (silica/alumina=23), 0.15 g/mL water
density. 400℃, 180 minutes.

the used and regenerated catalyst, but appreciable yields of the desirable aromatic

products were still obtained. As was the case with the fresh catalyst, the regenerated

materials with silica/alumina=23 gave higher product yields than did the regenerated

zeolite with silica/alumina=30. Interestingly, the total yield of gas products was

unaffected by the reuse and regeneration of the catalyst. Table 6.3 gives more details

of the results.

These present results confirm the technical feasibility of producing appreciable

yields of aromatic products from fatty acids in supercritical water in consecutive uses

by applying regenerated catalyst.
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Table 6.3: Effect of catalyst regeneration and reuse on product yields, reaction con-
dition: 150 mg PA with 150 mg HZSM-5 (silica/alumina=23), 0.15 g/mL
water density, 400℃, 180 minutes.

cycle%number 1 2 3
Product%yield%(mol/mol%PA)

Pentane,%29methyl9 0.10%±%0.09 ND 0.24%±%0.02
Butanal 0.040%±%0.034 ND 0.064%±%0.045

29methyl9hexane 0.042%±%0.005 0.026%±%0.004 0.034%±%0.004
29pentanone 0.017%±%0.0006 0.010%±%0.002 0.018%±%0.003
Heptane 0.012%±%0.006 0.012%±%0.002 0.013%±%0.001

49methyl9heptane 0.0058%±%0.0024 0.0063%±%0.0006 0.0069%±%0.0002
Toluene 0.25%±%0.02 0.19%±%0.03 0.16%±%0.01
Xylene 0.66%±%0.03 0.44%±%0.05 0.40%±%0.05

Propyl9benzene 0.023%±%0.002 0.042%±%0.006 0.042%±%0.004
29ethyl9toluene 0.064%±%0.006 0.016%±%0.006 0.015%±%0.0008

1,2,49trimethylbenzene 0.027%±%0.016 ND 0.015%±%0.003
Acetic%Acid 0.010%±%0.058 0.061%±%0.011 0.14%±%0.001

Total%liquid%%products%(mg/mg%PA) 0.86%±%0.01 0.53%±%0.04 0.64%±0.04
Total%%gas%products%(mg/mg%PA) 0.11%±%0.03 0.094%±%0.029 0.11%±%0.03

Total%yield%(%) 97%±%2 63%±%4 76%±%3
PA%conversion%(%) 98%±%1 73%±%11 90%±%8
Mass%Balance%(%) 98%±%2 86%±%8 85%±%8

6.3 Catalyst Characterization

Bronsted acidic zeolites are used widely in the petrochemical industry as cata-

lysts for gas phase reactions of hydrocarbons at elevated temperatures (greater than

250 ℃), where issues of hydrothermal stability predominantly reflect steam-catalyzed

cleavage of framework Al - O bonds that leads to dealumination.[69]

Ravenelle et al.[46] have reported that treatment in hot liquid water (150 and 200

℃) transforms zeolite Y into an amorphous material. In contrast, HZSM-5 was not

modified under the same conditions. In general, the main degradation mechanism

is probably desilication and dealumination, as shown in Figure 6.7. Desilication is

hydrolysis of the siloxane bonds (Si - O - Si), which dominates under neutral or

basic liquid water conditions; while dealumination dominates under steaming, and

acidic liquid water conditions. No work has been done on the stability of HZSM-5 in

supercritical water at 400 ℃, to the best of our knowledge.

To better understand the hydrothermal stability of HZSM-5 under the present
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Figure 6.7: Hydrolysis reactions that lead to framework dealumination (left) prevail
in the gas phase with steam and in liquid water under acidic conditions.
Hydrolysis reactions that lead to framework desilication (right) prevail in
liquid water under neutral and basic conditions.

[69]
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reaction conditions, we used X-ray Powder Diffraction (XRD) to examine the fresh

catalyst and samples of HZSM-5 recovered from reactors after use for 180 minutes.

The XRD analysis gives information about the bulk structure of the material and the

type of chemical bonds in the catalyst crystal. Figure 6.8 shows the XRD spectra. The

fresh catalyst exhibits the XRD spectrum one expects for HZSM-5.[46] Two new peaks

appear in the XRD spectrum of the HZSM-5 that was used for a 180 minute reaction,

however. We were unable to identify the first new peak at 7.3°, but the second

new peak at 21.48° corresponds to cristobalite high-SiO2. Though the hydrothermal

reaction conditions induced some changes in the HZSM-5, the persistence of the other

characteristic peaks verifies that the HZSM-5 retained its major structural elements

during the reaction.

Since the hydrothermal reaction changed a portion of the catalyst structure, we

analyzed the regenerated catalyst to learn whether the regeneration process restores

the catalyst to its original structure. Figure 6.8 shows that all of the characteristic

peaks in the XRD spectrum for fresh HZSM-5 also appear for the once- and twice-

regenerated material. This outcome indicates that the bulk structure of HZSM-5

after regeneration is the same as the bulk structure of the fresh HZSM-5 that has

been calcined. Also, after the regeneration process, the two new peaks that appeared

for the used catalyst vanish.

Figure 6.9 shows the pore size distributions for the fresh calcined catalyst and

for materials that had been used once and regenerated and also used twice and re-

generated. The majority of the pore volume for all of the materials resides in pores

with diameters of 2 - 5 nm. This result for the fresh calcined ZSM-5 is consistent

with the micropore sizes in fresh calcined ZSM-5 reported previously.[70] The curve

for the catalyst regenerated once falls below that of the fresh catalyst. Likewise, the

curve for the twice-regenerated material falls below that of the material regenerated

just once. Thus, use and regeneration reduces the total pore volume in the material.
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Figure 6.8: X-ray powder diffraction spectra for fresh calcined HZSM-5, HZSM-5 used
after a 180 minutes reaction ( reaction condition: at 400℃ with water den-
sity of 0.1 g/mL and PA-to-catalyst ratio of 1), and regenerated HZSM-5
after one and two uses. All the silica/alumina ratios are 23
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Figure 6.9: BJH pore size distribution for ZSM-5 fresh, used and regenerated once,
and used and regenerated twice (silica/alumina =30), 400℃, 180 minutes.

A second effect of multiple uses and regeneration cycles evident in Figure 6.9 is the

near elimination of pore volume in pores with diameters of 4 - 20 nm.

Table 6.4 shows the Brunauer-Emmett-Teller (BET) surface areas and the Barrett-

Joyner-Halenda (BJH) adsorption pore volumes for the fresh ZSM-5 and for the cat-

alysts that had been used and regenerated once and used and regenerated twice. The

use and regeneration of the catalysts decreased both the surface area and the pore

volume, but not the average pore diameter. These characterization results suggest

that the modest reduction in activity with regeneration and reuse noted previously

could be due to loss of surface area and pore volume.

Scanning Electron Microscope (SEM) analysis was carried out for three different

types of catalyst(HZSM-5) samples, fresh calcined HZSM-5, HZSM-5 that has been
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Table 6.4: Surface area, pore volume, and pore diameter for fresh calcined ZSM-5
and for ZSM-5 used and regenerated once and twice (silica/alumina=30,
water density of 0.1 g/mL, PA-to-catalyst ratio of 1, 400℃, 180 minutes).

Figure 6.10: SEM image of fresh calcined HZSM-5, before reactions.
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Figure 6.11: SEM image of HZSM-5 that has been used in reactions and without
regeneration, reaction condition: 400℃, 180 minutes, water density of
0.1 g/mL, PA-to-catalyst ratio of 1.

Figure 6.12: SEM image of HZSM-5 after one time usage and regeneration, reaction
condition: 400℃, 180 minutes, water density of 0.1 g/mL, PA-to-catalyst
ratio of 1.
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used in hydrothermal reaction at 400 ℃ for 180 minutes, and HZSM-5 that has been

used and regenerated once. The regeneration procedures were described in Chapter

3, section 3.1.2. The SEM images of these three types of catalyst samples appear as

Figure 6.10, Figure 6.11, and Figure 6.12 respectively. More of the SEM images of

catalyst samples at different magnifications were included in Appendix C.

The fresh catalyst sample has more uniform particle sizes. Close inspection shows

that those particles are composed of smaller particles as well. The particle size (ra-

dius) of the catalyst can be estimated to be 3.57*10−4 cm from Figure 6.10 for the

fresh sample.

For catalyst that experienced hydrothermal reaction, but was not regenerated, it

seems that some catalyst particles combined and some also crumbled. The change in

particle sizes suggested that the catalyst may lost some stability under the experi-

mental conditions. There was a broad range of particle sizes for both used and used

and regenerated sample. By comparing the SEM results of catalyst after reaction and

catalyst after regeneration, it seems that the regeneration procedure did reduce the

prevalence of larger particles.

6.4 Diffusion Limitation Calculation

In a heterogeneous reaction sequence, mass transfer of reactants first takes place

from the bulk fluid to the external surface of the catalyst pellet. The reactants then

diffuse from the external surface into and through the pores within the pellet. The

reaction then takes place on the catalytic surface of the pores.[71]

The role of mass transfer may limit the overall reaction rate. Diffusion limitation

includes both external and internal diffusion limitation. To minimize the external

diffusion limitation, we used a wrist-action shaker during the reactions. The Weisz-

Prater criterion was used to assess the significance of internal diffusion. The Weisz-

Prater criterion uses measured values of the rate of reaction, −r′A(obs), to determine
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whether internal diffusion is limiting the reaction. The Weisz-Prater parameter (Cwp)

is shown in equation 6.1.

Cwp = η ∗ φ2 =
−r′A,obs ∗R2 ∗ ρc

De ∗ CAS

(6.1)

Where η is the effectiveness factor, φ is the Thiele modules, r′A(obs) is the observed

(actual) reaction rate, R is the radius of catalyst particle, ρc is the density of the solid

catalyst, De is the effective diffusivity, and CAS is the concentration of reactant at

the catalyst surface.

All the terms in Equation 6.1 can be measured. Therefore, we can calculate Cwp. If

Cwp <1, there are no internal diffusion limitations and consequently no concentration

gradient exists within the pellet, and if Cwp >1, then internal diffusion limits the

reaction severely. [71] We consider a reaction at 400 ℃, the highest temperature used

in this study.

To calculate r′A(obs), we took the ratio of the moles of converted reactant (palmitic

acid) over the mass of catalyst (HZSM-5) in gram, and reaction time in seconds. The

calculation is shown in equation (6.2):

−r′A,obs =
0.97 ∗ 0.15gPA÷ 256g/mol

0.15g catalyst ∗ 180 ∗ 60sec

= 3.51 ∗ 10−7mol/g − s
(6.2)

To calculate ρc, the density of the solid catalyst, we measured the weight and the

volume of a fixed amount of the catalyst, and the following equation (6.3) presents

the calculation:
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ρc =
2.469g

5mL

= 0.49g/mL

(6.3)

R, the radius of catalyst particle, can be estimated from the SEM images of the

fresh calcined HZSM-5 (e.g. Figure 6.10) to be 3.57*10−4 cm. Therefore R2 can be

calculated simply as in equation 6.4:

R2 = (3.57 ∗ 10−4)2cm2

= 1.27 ∗ 10−7cm2

(6.4)

CAS, the concentration of reactant at the catalyst surface, was calculated by taking

the ratio of the moles of the reactant(PA) and the total volume of the reactor, which

is 4 mL. Equation 6.5 shows the calculation for CAS:

CAS =
0.15gPA÷ 256g/mol

4mL reactor

= 1.46 ∗ 10−4mol/mL

(6.5)

Next, De, the effective diffusivity was estimated from the literature. Haag et

al.[72] provided the effective diffusivity of 2,2-dimethylpentane in zeolite ZSM-5 as 3

* 10−8 cm2/s.

Finally, since we have all the values we need for the Weisz-Prater criterion, we

now calculate the Cwp by applying the values to equation 6.1, and the calculation is

illustrated in the following:
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Cwp = η ∗ φ2

=
−r′A,obs ∗R2 ∗ ρc

De ∗ CAS

=
3.51 ∗ 10−7 mol/g-s ∗ 1.27 ∗ 10−7cm2 ∗ 0.49 g/mL

3 ∗ 10−8cm2/s ∗ 1.46 ∗ 10−4 mol/mL

= 4.99 ∗ 10−3

Since the Weisz-Prater criterion (Cwp) is 4.99*10−3, which is much less than 1,

it is believed that there are no diffusion limitations in the reactions with fresh cata-

lyst. (The SEM images used for measuring the range of particle sizes for regenerated

catalyst samples can be found in Appendix B).
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CHAPTER VII

Application on Triglyceride Feedstocks

From Chapter 4, we know that high yields of aromatics can be produced from fatty

acids in water near the critical point using zeolite catalyst, and the major liquid-phase

products were mixed xylenes and toluene. Chapter 5 on effect of reaction variables

provided important insights of the process, for example, that more double bonds in

the fatty acids led to lower yield of aromatics. To move the potential technology

forward, one needs to confront it with real triglyceride feedstock. Therefore, we

are motivated to apply this catalytic hydrothermal method to bio-based triglyceride

feedstocks. Fatty acids are a major component of many types of plant oils, including

algae and coconut, as well as animal fat. This chapter presents results of application

of the best reaction conditions found from work with palmitic acid to various types

of bio-based triglyceride feedstocks.

7.1 Results and Discussion

This section first reports results from control experiments that validate the meth-

ods used in the experiments and determine the extent of chemical transformation

from thermal energy alone. Next, we discuss the yields with different types of feed-

stock by using the catalytic hydrothermal reaction that we had successfully used on

fatty acids. The feedstocks we studied are crude algal oil, cold-pressed coconut oil,
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peanut oil, and lard.

7.1.1 Control Experiments

The control experiments involved loading algal oil, coconut oil, peanut oil, or lard

and water into reactors without any catalyst present. The reactions were conducted at

the same reaction conditions (400℃, 200 bar, 180 minutes). All experiments have at

least 3 replicates, and we report standard deviations as the experimental uncertainties

in these cases.

The gas products for algal oil reactions are light gases, such as hydrogen, methane,

carbon dioxide, ethylene, and ethane. The total gas product yield was 8.8 wt% with

a standard deviation of 3.4 wt%. There were no significant liquid products detected

for reactions with algal oil without catalyst.

For control experiments with coconut oil, the gas products were also light gases,

including hydrogen, carbon monoxide, methane, carbon dioxide, ethylene, and ethane.

It is similar to the gas products of algal oil but with additional carbon monoxide.

The total gas product yield was 4.4 wt% with a standard deviation of 1.3 wt%.

However, unlike algal oil, reaction with coconut oil without catalyst generated a total

liquid product yield of 26 wt% with a standard deviation of 1.6 wt%. The liquid

products were mainly 2-methyl-pentane, xylene, and 2-ethyl-toluene (none of which

were originally in the feedstock).

For control experiments with peanut oil, the gas products were light gasses (hydro-

gen, carbon monoxide, methane, carbon dioxide, ethylene, and ethane) and propane.

The total gas product yield was 3.4 wt% with standard deviation of 1.2 wt%. The

liquid products with reactions of peanut oil were mainly 2-methyl-pentane, xylene,

and 2-ethyl-toluene, which together gave a total liquid product yield of 8.5 wt% with

standard deviation of 1.4 wt%.

Finally, we conducted control reactions of lard in water without catalyst, which
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gave no significant liquid products that we were able to detect by GC-FID. The

gas products included light gases and propane, which were the same types of gas

products from control reactions with peanut oil. The total gas product yield for

control reactions with lard was 5.4 wt% with a standard deviation of 1.7 wt%.

7.1.2 Algal Oil

The algae crude oil we extracted from Nanochloropsis microalgae hydrochar con-

tains about 51% fatty acids, which are expressed as FAMEs (fatty acid methyl esters).

The fatty acid profile for this algal oil is shown in Table 7.1. The fatty acids range

from C14 to C22, and are both saturated and unsaturated. We use the omega no-

tation system for fatty acids, where the first number is the total number of carbon

atoms in the chain. The number following the colon is the number of double bonds in

the chain, and the number following the n- is the location (carbon atom number) of

the first double bond. [34] The algal oil production method was in Chapter 3 section

3.2.1.

Table 7.1: Fatty Acid Profile of Crude Algal Oil
FA Type wt% in total FAs

C14:0 2.7%
C14:1n5 6.5%
C16:0 19.0%

C16:1n7 22.4%
C17:0 1.0%
C18:0 0.7%

C18:1n7 0.5%
C18:1n9 0.2%
C18:2n6 3.8%
C18:3n3 5.6%
C20:0 0.7%

C20:4n6 4.9%
C22:1n9 32.0%

The results from from the catalytic hydrothermal reactions of algal oil are sum-

marized in Table 7.2 (“std” refers to “standard deviation”). Besides the major liquid
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products listed in Table 7.2, which were the only significant peaks detected by GC-

FID, the reactions also led to many products in yields too low to quantify reliably on

an individual basis. Because the FID is a carbon counter, and also because the prod-

ucts are primarily hydrocarbons, we used the total peak area of all of the products

appearing in the GC/FID chromatogram to estimate the total liquid product yield

shown in Table 7.2. We also converted the yield per total mass of algal oil to the yield

per total FAMEs by the factor of 51% (the total composition of all FAMEs in algal

oil). As we can see from the table, the most abundant liquid products were 2-methyl-

pentane, mixed xylenes, and toluene. The reactions also generated an appreciable

amount of gas products, including hydrogen, carbon monoxide, carbon dioxide, and

C1 to C5 hydrocarbons. Most of these can be used as fuel gases. The most abundant

gas-phase products were ethylene and carbon dioxide (6 wt% per total algal oil or 12

wt% per total FAMEs) as shown in Figure 7.1.

Table 7.2: Product Yields (wt%) for Reactions of 150 mg Algal Oil with 150 mg
HZSM-5 (silica/alumina ratio of 23), reaction condition: 400 ℃ 180 min-
utes, water density of 0.1 g/mL

per total algal oil per total FAMEs

wt% average std average std

Pentane, 2-methyl- 3.56 0.66 6.98 1.29
2-methyl-hexane 0.42 0.29 0.83 0.57
2-pentanone 0.07 0.09 0.14 0.17
Heptane 0.06 0.07 0.12 0.13
Toluene 0.89 0.27 1.75 0.52

Mixed xylenes 2.02 0.49 3.97 0.95
Propyl-benzene 0.62 0.77 1.21 1.51
2-ethyl-toluene 0.21 0.07 0.42 0.14

Total major liquid products 11.79 1.19 23.12 2.33
Estimated total liquid products 18.52 2.47 36.31 4.84

Total gas products 27.49 5.39 53.90 10.57
Total yield 46.01 5.18 90.21 10.15

The total liquid-phase product yield from algal oil was lower than from pure fatty

acid, such as palmitic acid. The total liquid product yield was 36 wt% per FAMEs

with standard deviation of 4.8 wt% for reactions with algal oil, while the total liquid
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Figure 7.1: Gas product yields from catalytic hydrothermal reactions with 150 mg al-
gal oil with 150 mg HZSM-5 (silica/alumina ratio of 23), at water density
of 0.1 g/mL, 400℃, 180 minutes
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product yield for reactions with palmitic acid was 86 wt% with standard deviation of

1 wt%.[73] However, the reactions with algal oil generated more gas-phase products

(54 wt% with std of 11 wt%) than the reactions with palmitic acid (11 wt% with std

of 3 wt%). We know that the algal oil has the highest gas-phase product yield (8.8

wt%) for non-catalyzed thermal cracking among all tested feedstocks and palmitic

acid (4.0 wt% gas product yield). This means that algal oil is easier to be cracked

into small gas phase molecules compared to fatty acid and the other feedstocks under

thermal heating alone.

A possible explanation for a significantly higher gas-to-liquid product ratio is that

the reaction condition at 400 ℃ is too severe for the algal oil cracking reaction, and

some liquid products were cracked further into gases. To test this hypothesis, we

carried out catalytic hydrothermal reactions of algal oil at a lower temperature (380

℃) and at the same water density of 0.1 g/mL, this led to a reaction pressure of 184

bar. Therefore the reactions occurred in sub-critical pressure region. We kept all the

other reaction conditions the same as for reactions at 400 ℃.

Table 7.3 shows the product yields of the algal oil reactions with zeolite HZSM-5

(silica/alumina ratio of 23) at 380 ℃. The total liquid product yield was 32 wt% per

total FAMEs, which is lower than 36 wt% of the reactions at 400 ℃. The major liq-

uid products were the same as the reactions at 400 ℃, which were 2-methyl-pentane,

mixed xylenes, and toluene. The total gas product yield of reactions at 380 ℃ (27

wt%) was lower than the total gas product yield of reactions at 400 ℃ (54 wt%).

Together, this contributed to a lower total yield for reactions at a lower temperature,

indicating that hydrothermal reactions further occurred past 380 ℃. The most abun-

dant gas product is carbon dioxide as shown in Figure 7.2. There was significantly

less ethylene product for reactions at 380 ℃ compared to that at 400 ℃.

We also noticed that from 380 ℃ to 400 ℃, the total liquid product yield per

FAMEs dropped 5 wt%, and the total gas product yield per FAMEs climbed 27 wt%,
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though there is a large experimental uncertainty for the gas product yield at 400 ℃.

The ratio of gas product yield to liquid product yield increased from 0.84 to 1.48 when

the temperature increased from 380 ℃ to 400 ℃. This suggests that temperature has

an effect on the product distribution between liquid and gas phases, and it is possible

that liquid products were further cracked into gas products under the 400 ℃ catalytic

hydrothermal condition.

Table 7.3: Product Yields (wt%) for Reactions of 150 mg Algal Oil with 150 mg
HZSM-5 (silica/alumina ratio of 23), reaction condition: 380 ℃ 180 min-
utes, water with density of 0.1 g/mL

per total algal oil per total FAMEs

wt% average std average std
Pentane, 2-methyl- 3.47 0.17 6.81 0.34
2-methyl-hexane 0.51 0.14 1.00 0.27
2-pentanone 0.23 0.01 0.45 0.03
Heptane 0.16 0.01 0.31 0.02

4-methyl-heptane 0.26 0.01 0.50 0.01
Toluene 1.29 0.10 2.53 0.20

Mixed Xylenes 2.91 0.35 5.71 0.69
Propyl-benzene 0.42 0.04 0.83 0.07
2-ethyl-toluene 0.21 0.01 0.41 0.02

Total major liquid products 9.46 0.71 18.54 1.39
Estimated total liquid products 16.13 2.01 31.63 3.94

Total gas products 13.63 1.01 26.72 1.99
Total yield 29.76 1.52 58.35 2.97

After applying the catalytic hydrothermal method to crude algal oil, we found

there was a difference in product distribution between the crude algal oil, and pure

palmitic acid. The reactions with crude algal oil gave a higher ratio of gas-to-liquid

product yield and a higher alkane percentage in the total liquid product yield than

those of palmitic acid. Also, the liquid product yields were lower with crude algal

oil compared to the reactions with a pure fatty acid. As we have discussed earlier in

the FAME analysis of algal oil, the total composition of fatty acids in the crude algal

oil was only 51 wt%, which could be a reason for a lower yield. It is also possible

the components in the crude algal oil interfered with the conversion of triglycerides.

Therefore, we examined additional real, but better refined, renewable triglycerides

94



0	  

2	  

4	  

6	  

8	  

10	  

12	  

H2	   CO	   CH4	   CO2	   C2H4	   C2H6	   C3H8	  

G
as
	  p
ro
du

ct
	  y
ie
ld
	  p
er
	  a
lg
al
	  o
il	  
(%

)	  

Figure 7.2: Gas product yields of catalytic hydrothermal reactions with 150 mg algal
oil, 150 mg HZSM-5 (silica/alumina ratio of 23), at water density of 0.1
g/mL, 380℃, 180 minutes
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feedstocks to test this zeolite catalytic hydrothermal cracking method.

7.1.3 Other Triglyceride Feedstocks

The use of vegetable oils as renewable fuel rather than petroleum has a long his-

tory. However, there are many disadvantages for using vegetable oils to produce

diesel fuel, including high cost, competition with food, high viscosity, lower volatil-

ity, and the reactivity of unsaturated hydrocarbon chains of the product.[74] If the

products from vegetable oil were at higher value than bio-fuel, the process would be

more attractive. There are some studies of conversion of vegetable oil to chemicals

using zeolite HZSM-5, but none were in water near its critical point.[75–78] Since we

have successfully applied the catalytic hydrothermal process to pure fatty acids for

production of industrial bulk chemicals, we would like to use the same process for

vegetable oil, which normally contains a large percentage of fatty acids.

We chose coconut oil and peanut oil. Coconut oil is known for its high degree of

saturation. The label of the coconut oil sample indicates a 87 wt% saturated fatty

acids composition. earlier work showed that the more saturated the fatty acids were,

the higher aromatic yield we would obtain.[73]. We also included animal fat, lard, as

one of our feedstocks for testing this method. The cost of lard, for example, is about

60% lower than the cost of coconut oil.

Before we started the reaction experiments with different oils and fat, we carried

out FAME analysis on these feedstock to understand the exact composition of fatty

acids in them. Table 7.4, 7.5,and 7.6 show the fatty acid profile in coconut oil, peanut

oil and lard respectively. Coconut oil contains a total fatty acids content of 84% with

a standard deviation of 1.6%, peanut oil contains a total fatty acids content of 89%

with a standard deviation of 1.3%, and lard contains a total fatty acids content of

88% with a standard deviation of 0.3%. We found that the most abundant fatty

acid in coconut oil was C12:0 (50%), followed by C14:0 (19%). The saturated fatty
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acids composition of total fatty acids was 91.2%. The most abundant fatty acid in

peanut oil was C18:1n11 (58%), followed by C18:2n6 (24%). The saturated fatty

acids composition of total fatty acids was only 19.4%. For lard, the most abundant

fatty acid was C18:1n11 (36%), followed by C18:1n9 (16%). The saturated fatty acids

composition of total fatty acids was 27.9%.

Table 7.4: Fatty Acid Profile of Coconut Oil
FA Type wt% in total FAs

C8:0 8.0%
C10:0 6.3%
C12:0 49.6%
C14:0 18.9%
C16:0 8.3%

C18:1n9 2.9%
C18:1n11 5.1%
C18:2n6 0.8%

Table 7.5: Fatty Acid Profile of Peanut Oil
FA Type wt% in total FAs

C16:0 9.4%
C18:1n9 2.6%
C18:1n11 57.8%
C18:2n6 23.9%
C20:0 0.3%
C20:1 1.2%
C20:2 1.7%
C22:1 3.1%

Table 7.7, 7.8, and 7.9 showed the product yields for reactions with coconut oil,

peanut oil, and lard respectively. Mixed xylenes are the most abundant products in

the liquid phase, with yields of 21 wt% for coconut oil, 34 wt% for peanut oil, and 33

wt% for lard. Toluene has the second highest liquid product yield, 7 wt% for coconut

oil, 14 wt% for peanut oil, and 11 wt% for lard. Peanut oil and lard have the same

types of major liquid products as listed in Table 7.8 and Table 7.9, while coconut oil

generated very similar types of liquid products, except there was no 4-methyl-heptane

detected. Summing the mass yields of the major aromatic hydrocarbons in Table 7.7,
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Table 7.6: Fatty Acid Profile of Lard
FA Type wt% in total FAs

C14:0 1.4%
C16:0 25.5%
C16:1 1.9%
C17:0 0.4%

C18:1n9 16.1%
C18:1n11 36.3%
C18:2n6 16.3%
C20:0 0.6%
C20:1 0.3%
C20:2 0.7%

C20:3n3 0.6%

7.8, and 7.9, shows that the major aromatics yield of coconut oil was 31 wt% with

a standard deviation of 7 wt%, the major aromatics yield of peanut oil was 52 wt%

with a standard deviation of 15 wt%, and the major aromatics yield of lard was 48

wt% with a standard deviation of 4 wt%. All these aromatic yields were based on the

mass of oils/fat instead of mass of FAMEs. In the feedstock, this result shows that

the most saturated fatty acid feedstock (coconut oil) gave the lowest major aromatic

yield. This indicates that the real feedstock does not follow the trend with higher

degree of saturation of the fatty acids, as observed in the pure fatty acid reactions.

The reason for this difference is not clear at present. The complexity of the fatty acid

profile in the feedstock may make it more difficult to observe the effect of degree of

saturation since some other factors may affect the product yield as well, such as the

alkyl chain length of fatty acids.

The total product yields of reactions with peanut oil and lard per FAMEs did

exceed 100%. Probably because non-triglycerides components in the feedstocks can

also form products.

By comparing Tables 7.2,7.3 (algal oil) and Tables 7.7,7.8,7.9 (vegetable oils and

lard) for the product profiles of reactions with different feedstocks, it is interesting

that unlike pure fatty acids or all the other types of triglyceride feedstocks, crude algal
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oil gave a high percentage yields of alkanes, including the most abundant product,

2-methyl-pentane. The other feedstocks gave a high percentage yields of aromatics

with the abundant product as mixed xylenes. Pie charts of the distribution of liquid

products from these various types of renewable feedstocks are included in Appendix

C.

Table 7.7: Product Yields (wt%) for Reactions of 150 mg coconut Oil with 150 mg
HZSM-5 (silica/alumina ratio of 23), reaction condition: 400 ℃ 180 min-
utes, water with density of 0.1 g/mL

per total coconut oil per total FAMEs

wt% average std average std

Pentane, 2-methyl- 3.86 0.06 4.59 0.07
2-methyl-hexane 1.35 0.73 1.61 0.87
2-pentanone 0.26 0.12 0.31 0.15
Heptane 0.23 0.07 0.28 0.09
Toluene 7.00 2.04 8.34 2.42

Mixed xylenes 21.41 4.64 25.49 5.52
Propyl-benzene 2.43 0.30 2.89 0.36
2-ethyl-toluene 0.47 0.16 0.56 0.20

1,2,4-trimethylbenzene 0.09 0.16 0.11 0.19
Total major liquid products 37.11 7.26 44.18 8.65

Estimated total liquid products 56.07 5.33 66.75 6.34
Total gas products 10.18 2.67 12.12 3.18

Total yield 66.25 5.46 78.87 6.51

While Tables 7.7, 7.8, and 7.9 listed the total gas product yields of the hydrother-

mal catalytic reactions of coconut oil, peanut oil, and lard with zeolite HZSM-5, Table

7.10 shows the profile of the gas phase products with the different feedstocks. Car-

bon dioxide was the most abundant gas product for coconut oil, followed by ethylene.

Similarly, carbon dioxide was also the most abundant gas product for peanut oil, but

followed by n-butane, while for lard, the major gas products were carbon dioxide, n-

butane, and ethylene. Carbon dioxide could be generated through different pathways

in the reactions, such as steam reforming reaction, water gas shift reaction, and de-

carboxylation. Ethylene is a common gas product from catalytic cracking reactions,

for example cracking of ethane to ethylene and hydrogen. However, to confirm the

actual pathways that led to those gas products, more studies would be required.
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Table 7.8: Product Yields (wt%) for Reactions of 150 mg peanut Oil with 150 mg
HZSM-5 (silica/alumina ratio of 23), reaction condition: 400 ℃ 180 min-
utes, water with density of 0.1 g/mL

per total peanut oil per total FAMEs

wt% average std average std

Pentane, 2-methyl- 4.59 0.48 5.16 0.54
2-methyl-hexane 1.40 0.71 1.57 0.79
2-pentanone 0.77 0.54 0.86 0.60
Heptane 0.44 0.19 0.50 0.21

4-methyl-heptane 0.28 0.06 0.32 0.07
Toluene 14.01 6.88 15.74 7.73

Mixed xylenes 34.36 8.73 38.60 9.81
Propyl-benzene 3.55 1.17 3.99 1.32
2-ethyl-toluene 0.69 0.12 0.77 0.13

1,2,4-trimethylbenzene 0.25 0.26 0.29 0.29
Total major liquid products 60.34 16.43 67.79 18.46

Estimated total liquid products 88.33 11.66 99.25 13.11
Total gas products 12.23 3.95 13.74 4.43

Total yield 100.56 8.60 112.99 9.67

Table 7.9: Product Yields (wt%) for Reactions of 150 mg lard with 150 mg HZSM-5
(silica/alumina ratio of 23), reaction condition: 400 ℃ 180 minutes, water
with density of 0.1 g/mL

per total lard per total FAMEs

wt% average std average std

Pentane, 2-methyl- 3.55 0.39 4.04 0.44
2-methyl-hexane 2.01 0.40 2.29 0.46
2-pentanone 0.32 0.03 0.37 0.04
Heptane 0.27 0.04 0.31 0.05

4-methyl-heptane 0.22 0.01 0.25 0.01
Toluene 11.24 1.03 12.77 1.17

Mixed xylenes 32.69 2.64 37.14 3.00
Propyl-benzene 3.23 0.34 3.67 0.39
2-ethyl-toluene 0.66 0.04 0.75 0.04

1,2,4-trimethylbenzene 0.28 0.13 0.32 0.15
Total major liquid products 54.47 3.98 61.90 4.52

Estimated total liquid products 86.72 5.47 98.55 6.21
Total gas products 16.58 7.33 18.84 8.33

Total yield 103.30 3.36 117.39 3.82
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Table 7.10: Gas Product Yields for Reactions of different feedstocks with 150 mg
HZSM-5 (silica/alumina ratio of 23), reaction condition: 400 ℃ 180 min-
utes, water with density of 0.1 g/mL

wt% coconut oil peanut oil lard
average std average std average std

H2 0.11 0.02 0.08 0.03 0.07 0.01
CO 0.34 0.11 0.06 0.07 0.28 0.09
CH4 0.14 0.05 0.11 0.01 0.15 0.03
CO2 4.60 0.58 3.90 0.81 4.12 1.26
C2H4 2.12 0.37 1.01 0.98 3.33 2.66
C2H6 0.20 0.04 0.13 0.01 0.19 0.07
C3H8 0.67 1.16 2.11 0.53 2.55 1.67

n-C4H10 0.98 0.88 2.88 0.96 3.44 2.40
i-C4H10 0.68 0.62 1.05 0.33 1.38 0.91
C5H12 0.45 0.41 0.97 0.34 1.14 0.75

Figure 7.3 demonstrated the total major aromatic, total liquid, and total gas

product yield for different types of feedstocks, including crude algal oil, coconut oil,

peanut oil, lard and palmitic acid. Figure 7.4 indicates that peanut oil (88 wt%)

and lard (87 wt%) gave the highest total liquid product yield, followed by coconut

oil (56 wt%) and algal oil (19 wt%). Peanut oil and lard behaved as good as the

pure palmitic acid for aromatics production under the same catalytic hydrothermal

reaction condition, where the total liquid product yield with pure palmitic acid was

86 wt%. Therefore, we conclude that among the feedstocks we tested, lard is the

most promising feedstock for aromatic chemical production because of the high yield

and also because it costs less than peanut and coconut oil. We suspect that if the

crude algal oil were purified to a much more refined oil like the peanut oil we used, it

would lead to a much higher aromatic product yield.
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Figure 7.3: Total major aromatic, liquid, and gas product yield of different types
of feedstocks, reaction condition: reactant-to-catalyst ratio of 1, sil-
ica/alumina ratio of 23, 400 ℃, 180 minutes, water density of 0.1 g/mL

7.2 Summary of Method Application on Triglycerides Feed-

stocks

This work is the first that applied catalytic hydrothermal reaction method with

zeolite to triglyceride feedstocks for hydrocarbon chemical production (e.g.aromatics).

The results presented herein demonstrate a total product yield of 46 wt% from reac-

tions of algal oil under catalytic hydrothermal method. More specifically, for reactions

with algal oil, water, and zeolite HZSM-5 (silica/alumina ratio of 23), at 400℃, the

total yield was 90 wt% per FAMEs in algal oil. This includes 36 wt% of liquid prod-

ucts and 54 wt% of gas products. The major liquid products were 2-methyl-pentane,

mixed xylenes, and toluene, and the most abundant gas product was carbon dioxide.

At a lower temperature, 380℃, the total yield was 45 wt% per FAMEs in algal

oil, which includes 19 wt% of liquid products and 27 wt% of gas products. Again, 2-

methyl-pentane, mixed xylenes, and toluene were the most abundant liquid products
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in this case. The temperature has an effect on the total yield as well as the liquid-to-

gas product ratio.

Besides algal oil, this work also broadens to other common renewable feedstocks,

such as coconut oil, peanut oil, and lard. We have successfully applied this catalytic

hydrothermal method on these various types of feedstock, and have achieved consid-

erable yields of aromatics. FAME analysis has been done on those samples to get

the fatty acid profiles. Coconut oil has the most saturated fatty acids, followed by

lard then peanut oil. This suggested that the real feedstock does not follow the trend

we observed from pure fatty acids: the higher product yields with higher degree of

saturation of the fatty acids.

More work on upgrading the crude algal oil would be a great direction for improv-

ing the product yield of reactions with algal oil. Study of different reaction factors

on the reactions with the real feedstocks could be another future work to pursue in

order to find potential tools for tuning the product distribution as desired.
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CHAPTER VIII

Conclusions and Future Work

This thesis concludes by identifying the key findings from the work, and the sig-

nificance of those findings, while also providing some suggestions for future work on

the foundations laid herein.

The key findings of this work may be concluded as follows:

(1) Aromatics can be produced via zeolite-catalyzed hydrothermal reactions of

palmitic acid. At 400 ℃, and 180 minutes, the major aromatic products include

toluene, 1,4-dimethyl-benzene (p-xylene), 1-ethyl-2-methyl-benzene, and 1,2,4-trimethyl-

benzene. The other xylene isomers and propylbenzene are also present. The major

alkanes include 2-methyl-pentane, 2-methyl-hexane, heptane, and 4-methyl-heptane.

Among the gas phase products, there were C1 to C5 alkanes, CO, CO2, and H2.

There were more liquid products than gas products at our tested reaction conditions,

and among different liquid products, mixed xylenes (p,m,o-xylene) took up 50 wt%

of the total of all identified and quantified liquid products.

(2) The palmitic acid conversion at 400 ℃ was consistent with first-order kinetics.

The activation energy for PA disappearance was determined to be 31 +/- 1 kJ/mol,

and the Arrhenius pre-exponential factor was 5.6∗10−2±2.2∗10−3s−1 or 1.5∗10−3±

5.9 ∗ 10−5L ∗ gcat−1s−1. Some possible reaction pathways were deduced from the

product analysis, such as catalytic cracking, decarboxylation, decarbonylation, and
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transalkylation between toluene, 1,2,4-trimethyl-benzene, and p,m,o-xylene. This

finding provides a foundation for completing the reaction pathways and kinetics in

the future.

(3) Among all the water densities we have examined, a water density of 0.1 g/mL

provided the highest yields of xylenes and toluene, and the highest yield of total

liquid products. The yields of the various products responded differently to the pres-

ence of water and to its density. The yield of acetic acid, for example, increased

nearly 50-fold as the water density increased from zero to 0.15 g/mL. Other products

showing consistently increasing yields with increasing water density (though less dra-

matic than acetic acid) include 2-methyl-pentane, butanal, 2-methyl hexane, 2-ethyl

toluene, and pentane. In contrast to the behavior of the products just listed, the

yields of other products either consistently decrease with increasing water density or

exhibit a maximum yield at some intermediate density. Toluene, trimethyl-benzene,

2-pentanone, CO, methane, ethane, and propane are examples of the former, and

heptane, 4-methyl-heptane, xylenes, propyl benzene, butanes, and CO2 are examples

of the latter. The water density could be a potential tool for improving the desired

product yield based on the different responses that products have to the variation of

water density.

(4) Zeolite ZSM-5 is active in water near its critical point. Among the catalysts we

have studied, zeolite ZSM-5 is the most promising catalyst for hydrothermal reaction

with fatty acids for aromatic hydrocarbon production. The reaction results showed

that under reaction condition of 400℃, 180 mins, reactant-to-catalyst ratio of 1,

and water density of 0.15 g/mL, ZSM-5 gave the highest conversion of 95 ± 4%.

The conversion with zeolite Y was about 50%, and zeolite beta gave the lowest PA

conversion (30%). Zeolites beta and Y gave 2-methyl-pentane as the most abundant

liquid product, while ZSM-5 gave toluene and xylenes as the major products.

(5) The reaction that forms single-ring aromatics is first-order in catalyst, which
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means operating at even lower palmitic acid-to-ZSM-5 ratios should offer even higher

yields of aromatics. The PA conversions and the total product yields both decreased

as the reactant-to-catalyst ratio increased, as expected. Though one prefers a high

reactant-to-catalyst ratio, the highest total product yield (76 wt%) and the highest PA

conversion (95%) were achieved at the lowest reactant-to-catalyst ratio (1) examined.

(6) The yields of the aromatic products decreased as the degree of unsaturation

of fatty acids increased. The ratio of the total liquid product yield to the total

gas product yield decreased with increasing unsaturation. This shift in the product

distribution with the extent of unsaturation shows that changing the number of double

bonds in the fatty acids can be a potential tool for controlling the product distribution

for catalytic hydrothermal reactions with fatty acids.

(7) The silica/alumina ratio of the zeolite catalyst can be used for tuning the

product distribution. Among zeolites with different silica/alumina ratios (23, 30, 50,

and 80), ZSM-5 with silica/alumina = 23 gave the highest total product yield of

97 ± 2 wt% and the highest conversion of 98 ± 1%. As the silica/alumina ratio

increased, the yields of the major products, toluene and xylenes, decreased. In addi-

tion, silica/alumina ratio has influence on the distribution between liquid and gaseous

products. ZSM-5 with a silica/alumina ratio of 23 gave the largest difference between

the liquid and gas yields, with the liquid products dominating.

(8) Zeolite ZSM-5 can be regenerated and reused in this hydrothermal process.

Even though the molar yields of the major products (toluene and xylenes) decreased

slightly with each reuse and regeneration of the catalyst, appreciable yields of these

desirable aromatic products were still obtained. The total product yield decreased

from 76 ± 13 wt% with the fresh catalyst to 53 ± 1.9 wt% upon its second use. This

irreversible deactivation in the first reaction regeneration cycle is typical of HZSM-

5 zeolites, and one reason is the loss of a certain fraction of the Bronsted strong

acid sites in hot compressed water, which are required for the cracking reactions.
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The total product yields were about the same for the second and third uses of the

catalyst, which suggests that this hydrothermal reaction regeneration process might

be effective for hydrothermal conversion of fatty acids to hydrocarbons with value as

fuels or chemicals.

X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET), and Scanning

Electron Microscope (SEM) techniques were applied on the zeolite catalyst used in

the reactions for assessing the catalyst characterization. XRD results verified that the

HZSM-5 retained its major structural elements during the reaction, while BET results

suggested the use and regeneration of the catalysts decreased both the surface area

and the pore volume, but not the average pore diameter, which implies that a modest

reduction in activity with regeneration and reuse noted previously could be due to

loss of surface area and pore volume. SEM results indicated that the fresh sample has

more uniform particle sizes, and some particles combined and some crumbled after

hydrothermal reactions. The regeneration procedure reduced the prevalence of larger

particles.

The study in catalyst reuse is important for applying the process in industry, and

this finding showed the potential to use this proposed process in real world.

(9) This zeolite catalytic hydrothermal cracking method can be applied to other

bio-based triglyceride feedstocks (crude algal oil, coconut oil, peanut oil, or lard).

The product yield from reactions with crude algal oil was lower than that from

pure fatty acids. When applying the catalytic hydrothermal method to crude algal

oil at 400 ℃, the total liquid-phase product yield was lower than when applied to

pure fatty acid, such as palmitic acid. The total liquid product yield was 36 wt%

per FAMEs with standard deviation of 4.5 wt% for reactions with algal oil, while the

total liquid product yield for reactions with palmitic acid was 86 wt% with a standard

deviation of 1 wt%. However, the reactions with algal oil generated more gas-phase

products (47 wt% with std of 15 wt%) than the reactions with palmitic acid (11 wt%
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with std of 3 wt%).

Mixed xylenes were the most abundant products in the liquid phase with yields

of 21 wt% for coconut oil, 34 wt% for peanut oil, and 33 wt% for lard. Toluene has

the second highest liquid product yield, 7 wt% for coconut oil, 14 wt% for peanut oil,

and 11 wt% for lard. The major aromatics yield of coconut oil, peanut oil, and lard

was 31 ± 7 wt%, 52 ± 15 wt%, and 48 ± 4 wt% respectively. (All these aromatic

yields were based on per oils/fat instead of per FAMEs) These results showed that

the catalytic hydrothermal method with those renewable feekstocks is facilitated to

produce considerable yields of aromatic hydrocarbons and are very close to the yields

from reactions with pure fatty acids.

The suggestions for future work can be summarized as follows:

(1) Further study of the reaction pathways and kinetics would be one direction

for future work. It could provide a clearer picture of how each aromatic hydrocarbon

was generated, and therefore provide potential information on product selectivity.

Analyze products from reactions at different times in a continuous flow reactor would

be a good way to identify the primary products and the secondary products.

(2) Apply other types of solvent instead of acetone to collect products from reac-

tions for potential improvement of mass balance.

(3) We only carried out three cycles of experiments due to time constraints, but

one can further study the product yield and catalyst behavior in the long run, such

as in ten cycles in batch reactors or carry it in a flow reactor, which would be helpful

for understanding the hydrothermal stability of the catalyst.

(4) Experiments of algal oil with zeolite ZSM-5 without water would be an in-

teresting approach to try, since crude algal oil doesn’t behave well in hydrothermal

condition.

(5) Refine the crude algal oil to have a higher concentration of fatty acid content

and less of other inorganic minerals. This would be helpful for improving the desired
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product yields from algal oil.

(6) Carry out economic analysis of this process to provide information for potential

application in industry.

(7) Access the environmental impact of the process to compare with the conven-

tional chemical production process from fossil fuel. An Life Cycle Analysis (LCA)

study would be helpful to understand the potential sustainability benefits and risks

of the renewable feedstocks. GHG emissions and energy consumption are possible

emphasis for minimizing environmental impacts by using renewable feedstocks.

Overall, this research provided several unique and interesting findings, which have

direct applications in high-value chemical production using the catalytic hydrothermal

process. We believe that the results presented herein serve as a foundation that can

be built upon by some of the further studies that we mentioned above, to attain

better understanding of this process and to push forward the real implementation of

this “green” methodology in the real-world chemical industry.
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APPENDIX A

Experimental procedures of making amorphous

silica-alumina catalyst

Amorphous silica-alumina was introduced as an unstructured catalyst in order to

compare with the activity of HZSM-5 in hydrothermal environment. The amorphous

silica-alumina catalyst was prepared by the following steps. First, 16 g of tetraethyl

orthosilicate (TEOS) was hydrolyzed with 10 g of 0.2 M aqueous hydrochloric acid

at room temperature for 45 minutes, which formed solution A. Once the initially two

phase system in solution A became monophasic, solution B, which contained 0.523 g

of aluminum isopropoxide in 7 g of isopropyl alcohol, was added to solution A, and

the mixture was stirred for 10 minutes to complete the hydrolysis of the Si and Al

alkoxides. Drop-wise addition of ammonia hydroxide was used to bring the mixture

to the gel point. The co-gel obtained was left for aging at room temperature overnight

without stirring, followed by vacuum filtering and a wash with DI water. It was ready

to use after drying at 110 ℃ overnight and crushed into powder. The last step was

to activate the catalyst by calcination at 550 ℃ for 14 hours.
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APPENDIX B

SEM images of catalyst HZSM-5

Figure B.1 to B.6 are SEM images of fresh calcined HZSM-5 at different magnifi-

cation or angles. The figures were arranged in the order of a decreasing magnification,

and the magnification ranged from 2333 times to 593 times.

Figure B.7 to B.12 are SEM images of HZSM-5 that have been used once for

reaction and not get regenerated, at different magnification or angles. The figures

were arranged in the order of a decreasing magnification, and the magnification ranged

from 4667 times to 146 times.

Figure B.13 to B.17 are SEM images of the HZSM-5 that has been used and

regenerated once, at different magnification or angles. The figures were arranged in

the order of a decreasing magnification, and the magnification ranged from 3492 times

to 55 times.
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Figure B.1: SEM image of fresh calcined HZSM-5, before reactions.

Figure B.2: SEM image of fresh calcined HZSM-5, before reactions.
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Figure B.3: SEM image of fresh calcined HZSM-5, before reactions.

Figure B.4: SEM image of fresh calcined HZSM-5, before reactions.
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Figure B.5: SEM image of fresh calcined HZSM-5, before reactions.

Figure B.6: SEM image of fresh calcined HZSM-5, before reactions.
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Figure B.7: SEM image of HZSM-5 that has been used in reactions and without
regeneration, reaction condition: 400℃, 180 minutes.

Figure B.8: SEM image of HZSM-5 that has been used in reactions and without
regeneration, reaction condition: 400℃, 180 minutes.
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Figure B.9: SEM image of HZSM-5 that has been used in reactions and without
regeneration, reaction condition: 400℃, 180 minutes.

Figure B.10: SEM image of HZSM-5 that has been used in reactions and without
regeneration, reaction condition: 400℃, 180 minutes.
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Figure B.11: SEM image of HZSM-5 that has been used in reactions and without
regeneration, reaction condition: 400℃, 180 minutes.

Figure B.12: SEM image of HZSM-5 that has been used in reactions and without
regeneration, reaction condition: 400℃, 180 minutes.
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Figure B.13: SEM image of HZSM-5 after one time usage and regeneration.

Figure B.14: SEM image of HZSM-5 after one time usage and regeneration.
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Figure B.15: SEM image of HZSM-5 after one time usage and regeneration.

Figure B.16: SEM image of HZSM-5 after one time usage and regeneration.
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Figure B.17: SEM image of HZSM-5 after one time usage and regeneration.
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APPENDIX C

Distribution of liquid products from reactions of

different feedstocks

Figure C1 to Figure C4 are pie-charts of distribution of liquid products from cat-

alytic hydrothermal cracking reactions of different real feedstocks with zeolite HZSM-

5. Those pie-charts gave very direct visual comparison of different product profiles

among various types of renewable feedstocks, including crude algal oil, cold pressed

coconut oil, refined peanut oil, and lard (solid animal fat).
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Figure C.1: Distribution of liquid products of crude algal oil, reaction condition: 150
mg algal oil with 150 mg HZSM-5 (silica/alumina ratio of 23), 400℃, 180
minutes, water density of 0.1 g/mL
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Figure C.2: Distribution of liquid products of coconut oil, reaction condition: 150
mg algal oil with 150 mg HZSM-5 (silica/alumina ratio of 23), 400℃,
180 minutes, water density of 0.1 g/mL
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Figure C.3: Distribution of liquid products of peanut oil, reaction condition: 150 mg
algal oil with 150 mg HZSM-5 (silica/alumina ratio of 23), 400℃, 180
minutes, water density of 0.1 g/mL
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Figure C.4: Distribution of liquid products of lard, reaction condition: 150 mg algal
oil with 150 mg HZSM-5 (silica/alumina ratio of 23), 400℃, 180 minutes,
water density of 0.1 g/mL
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