
Decomposition Algorithms and Parallel Computing for
Chance-Constrained and Stochastic Integer Programs with

Applications

by

Yan Deng

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in the University of Michigan
2016

Doctoral Committee:

Assistant Professor Siqian M. Shen, Chair
Associate Professor Brian Denton
Assistant Professor Ruiwei Jiang
Professor Jon Lee
Associate Professor Clayton D. Scott

©Yan Deng

2016

A C K N O W L E D G M E N T S

First and foremost, I express the deepest thanks to my advisor Prof. Siqian Shen. She
went above and beyond in guiding and supporting me through my four-year doctorate
study. I appreciate the flexibility she allows me in exploring interesting ideas and the
great help she offers in my job search.
I want to thank Prof. Brian Denton, Prof. Jon Lee, and Prof. Shabbir Ahmed at Georgia
Tech for their enlightening ideas and continuous encouragement. Working with them has
been a privilege. I also would like to thank Prof. Clayton Scott and Prof. Ruiwei Jiang.
I greatly enjoy their courses, and appreciate the valuable perspectives they brought up in
committee meetings.
In the Department of IOE, I’d like to thank Chris and Tina for always patiently attending
to my questions and requests. Also thanks to my fellow students who accompany and
help me through the thorns.
I’m also thankful to my advisors in Tsinghua University, University of Cambridge, and
University of Hong Kong for guiding me toward such a fulfilling experience at Michigan.
I would like to acknowledge with much love and gratitude my family.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vi

List of Tables . vii

List of Appendices . viii

List of Abbreviations . ix

List of Notations . x

Abstract . xi

Chapter

1 Introduction . 1

1.1 Background . 1
1.1.1 Stochastic Programming Models . 1
1.1.2 Uncertainty Description and Model Reformulation 3
1.1.3 Decomposition Algorithms . 6

1.2 Thesis Overview . 11

2 Chance-Constrained Surgery Planning under Uncertain or Ambiguous Surgery Du-
rations . 14

2.1 Introductory Remarks . 14
2.1.1 Literature Review . 14
2.1.2 Motivation and Contributions . 15

2.2 Problem Formulation . 17
2.2.1 Chance-Constrained Model . 17
2.2.2 Mixed-Integer Programming Reformulation 19

2.3 Decomposition-based Branch-and-Cut Method 20
2.3.1 Master Problem . 20
2.3.2 Pre-filtering and Packing Cuts . 21
2.3.3 Basic Separation and Scheduling Cuts 24
2.3.4 Recursion-based Separation and Strengthened Scheduling Cuts 25
2.3.5 Branch-and-Cut Algorithm and Computational Enhancements 27

2.4 Distributionally Robust Variant . 28

iii

2.4.1 Discrete Support and Empirical Distribution of ξ 29
2.4.2 Reformulating with φ-Divergence Confidence Set 30
2.4.3 Confidence Set Configuration . 32

2.5 Computational Studies . 33
2.5.1 Experimental Design and Setup . 33
2.5.2 Computational Efficacy . 36
2.5.3 Chance-Constrained Model versus Cost-Based Model 37
2.5.4 Integrating Versus Separating Allocation and Scheduling 39
2.5.5 Incorporating Data Ambiguity via Distributionally Robust Model 41

2.6 Concluding Remarks . 46

3 Solving Chance-Constrained 0-1 Programs with Decomposition and Parallelization . 49

3.1 Introductory Remarks . 49
3.2 Dual Decomposition . 52

3.2.1 Lagrangian Relaxation . 52
3.2.2 Bound-and-Cut Algorithm . 54
3.2.3 Cut Aggregation . 56

3.3 Parallel Implementation Schemes . 57
3.4 Computational Results . 60

3.4.1 Instances and Experimental Setup . 60
3.4.2 Results of Serial Implementation . 60
3.4.3 Results of Parallel Implementation . 63

3.5 Concluding Remarks . 64

4 Solving Risk-Averse 0-1 Stochastic Programs with Decomposition and Parallelization 67

4.1 Introductory Remarks . 67
4.2 Decomposition Methods . 68

4.2.1 Problem Formulation . 68
4.2.2 Dual Decomposition Framework . 69
4.2.3 DD1 by Using g(0) . 70
4.2.4 DD2 by Optimizing g(λ) Using a Cutting-Plane Method 72
4.2.5 DD3 by Using a Subgradient Method 74

4.3 Distributionally Robust Variants . 75
4.4 Parallel Implementation Schemes . 76

4.4.1 Overview . 76
4.4.2 Basic Parallel . 77
4.4.3 Master-worker Parallel with Barriers . 77
4.4.4 Master-worker Parallel without Barriers 79

4.5 Computational Results . 82
4.5.1 Instances and Experimental Setup . 82
4.5.2 Results of Serial Implementation . 84
4.5.3 Results of Parallel Algorithms . 86
4.5.4 Results of Stochastic Mean-Risk Programs 90
4.5.5 Results of Distributionally Robust Variants 91

4.6 Concluding Remarks . 92

iv

Appendices . 94

Bibliography . 98

v

LIST OF FIGURES

2.1 Comparison of the CCSP model (left) and the cost-based model (right) in (T ω
wait,T

ω
over) 40

2.2 Distance tolerances d for KL- and χ2-divergences according to the number of observed
samples (Nobs) . 46

3.1 A schematic view of using four processes to solve a 12-scenario problem 59
3.2 Speedup versus number of processes under the parallel implementation of DD1 64

4.1 An overview of implementation schemes for dual decomposition algorithms 77
4.2 A schematic view of MWN . 82
4.3 Speedup versus number of processes for implementing DD1 86
4.4 Communication time vs Number of processes (N) . 88

vi

LIST OF TABLES

2.1 Summary statistics of surgeries of all types based on the extracted data 34
2.2 Normalized opening costs and operating hours of the ORs 34
2.3 Comparison of the proposed branch-and-cut approach versus directly calling the solver

in solving the MIP reformulation of CCSP . 37
2.4 Comparison of the chance-constrained model and the cost-based model in cost and

zero-overtime reliability . 38
2.5 Comparison of the integrated model CCSP versus the allocation-only model CCBP . . 41
2.6 Performance of CCSP solutions under different distribution assumptions 42
2.7 Probability of waiting > εi among all 25 surgeries given by CCSP 43
2.8 Comparison of CCSP and DR-CCSP for β = 0.90 and Ω = ΩLog(NMC) 45
2.9 Probability of waiting > εi among all 25 surgeries given by CCSP and DR-CCSP models 46
2.10 The effect of Nobs on the performance of DR-CCSP solutions 47
2.11 Probability of waiting > εi given by DR-CCSP models under different Nobs 47

3.1 Comparison of the four schemes in serial computational time (or optimality gap) . . . 61
3.2 Other computational details of the three dual decomposition schemes 62
3.3 Comparison of DDA and existing methods in runtime 63
3.4 Parallel efficiency under the two parallel schemes . 65

4.1 Scales of different instances and performance of their LP relaxations 84
4.2 Time (in seconds) and iteration counts in the serial implementation 85
4.3 Number of evaluated x-solutions . 87
4.4 The percentage of communication time contributed by the master 89
4.5 Computational time of all tested schemes . 90
4.6 Results of mean-risk model variants and its expectation counterpart under MWB . . . 91
4.7 Computational results of distributionally robust risk-averse problem under MWB . . . 91

vii

LIST OF APPENDICES

A Appendix for Chapter 2 . 94

B Appendix for Chapter 3 . 95

C Appendix for Chapter 4 . 96

viii

LIST OF ABBREVIATIONS

SAA sample average approximation . 3

CVaR conditional value-at-risk . 3

MIP mixed-integer program . 4

DR distributionally robust . 5

NAC nonanticipativity constraint . 10

OR operating room . 11

CCSP chance-constrained surgery planning. .16

CCBP chance-constrained bin packing . 21

DR-CCSP distributionally robust chance-constrained surgery planning 28

PMF probability mass function . 28

KL Kullback-Leibler . 33

CCSS chance-constrained surgery scheduling . 39

BP Basic Parallel . 76

MWB Master-worker Parallel with Barriers .76

MWN Master-worker Parallel without Barriers . 76

ix

LIST OF NOTATIONS

A> transpose of matrix A

|S | cardinality of set S

S \T set minus {x ∈ S : x /∈ T }

S ⊆ T subset

bxc largest integer y such that y ≤ x

1(·) indicator function that returns 1 if · is true and 0 otherwise

x

ABSTRACT

The primary focus of this dissertation is to develop solution methods for stochastic programs,
especially those with binary decisions and risk-averse features such as chance constraint or risk-
minimizing objective. We approach these problems through a scenario-based reformulation, e.g.,
sample average approximation, which is more amenable to solution by decomposition methods.
The reformulation is often of intractable scale due to the use of a large number of scenarios to
represent the uncertainty. Our goal is to develop specialized decomposition algorithms that take
advantage of the problem structure and solve the problem in reasonable time.

We first study a surgery planning problem with uncertainty in surgery durations. A common
practice is to first assign operating rooms to surgeries and then to develop schedules. We propose
a chance-constrained model that integrates these two steps, yielding a better tradeoff between cost
and the quality of service. A branch-and-cut algorithm is developed, which exploits valid inequal-
ities derived from a bin packing problem and a series of single-machine scheduling problems.
We also discuss models and solutions given ambiguous distributional information. Computational
results demonstrate the efficacy of the proposed algorithm and provide insights into enhancing per-
formance by the integrated model, managing quality of service via chance constraint, and using
data to guide planning under distributional information ambiguity.

Next, we study general chance-constrained 0-1 programs, where decisions made before the
realization of uncertainty are binary. As most of the existing methods fail when the number of
scenarios is large, we develop dual decomposition algorithms that find solutions through bounds
and cuts efficiently. Then we derive a proposition about computing the Lagrangian dual whose
application substantially reduces the number of subproblems to solve, and develop a cut aggrega-
tion method that accelerates the solution of individual subproblems. We also explore non-trivial
parallel schemes to implement our algorithms in a distributed system. All of them are shown to
improve the speed of the algorithms effectively.

We then continue to study dual decomposition, but for risk-averse stochastic 0-1 programs,
which do not have chance constraints but minimize the risk of some random outcome measured by
a coherent risk function. Using generic dual representations for coherent risk measures, we derive

xi

an equivalent risk-neutral minimax reformulation for the considered problem, to which dual de-
composition methods apply. Motivated by some observation of inefficiency in the foregoing work,
we investigate in more depth how to exploit the Lagrangian relaxation by comparing three different
approaches for computing lower bounds. We also study parallelism more comprehensively, testing
schemes that represent different combinations of basic/master-worker, synchronous/asynchronous
and push/pull systems, and identify that the best is a master-worker, asynchronous and pull scheme,
which achieves near-linear or even super-linear speedup.

xii

CHAPTER 1

Introduction

1.1 Background

In this dissertation, we study structure-exploiting algorithms for solving stochastic programs.
Stochastic programming is an optimization branch that considers models containing uncertain data
parameters. A few examples include military (Langer et al., 2012), energy (Carøe and Schultz,
1998; Wang et al., 2012), finance (Kouwenberg, 2001; Yu et al., 2003), healthcare (Denton et al.,
2007; Salmerón and Apte, 2010) and supply chain (Goh et al., 2007; Santoso et al., 2005). We
refer the reader to Ruszczynski and Shapiro (2003), Birge and Louveaux (2011) and Shapiro et al.
(2014) for more extensive discussions on stochastic programming. In what follows, we review
some basic models and algorithms that we use extensively throughout the dissertation.

1.1.1 Stochastic Programming Models

In stochastic programming, the values of uncertain data become known only after experiments.
Decisions are classified into two groups: those made before the realization of uncertainty as first-

stage decisions, and those made after as second-stage decisions (or recourse). In this chapter,
we represent the random parameters as a vector ξ, the first-stage decision variables as x, and the
second-stage decision variables as y(ξ). Depending on the attitude toward risk, stochastic programs
have the following two categories.

Risk-neutral stochastic programs. When the uncertainty recurs far more frequently than deci-
sion making, a decision maker tends to account equally for every possible realization and evaluate
a decision based on its average performance. For instance, consider a problem about locating
distribution centers to satisfy customer demand. Once the locations are picked, they remain un-
changed in the long run and serve demands, which vary on a daily basis. Therefore to evaluate a
choice of the locations, one can calculate the expected payoff as the time-discounted expectation

1

of sales minus the one-time construction cost. Traditional stochastic programming often refers to
two-stage risk-neutral stochastic programs of the form:

min c>x +E
[
f (x, ξ)

]
(1.1a)

s.t. x ∈ X, (1.1b)

where X is a non-empty set in Rd, and c is a vector of magical cost values for first-stage decisions.
The expectation in (1.1a) is taken with respect to the probability distribution of ξ. The real-valued
function f (x, ξ) represents the cost from a recourse problem where the second-stage decisions are
made after the uncertainty ξ is disclosed:

f (x, ξ) = min σ(ξ)>y(ξ) (1.2a)

s.t. y(ξ) ∈ Y(x, ξ). (1.2b)

Here, σ(ξ) is a linear cost vector for the second-stage decisions. Without loss of generality, one
can assume that uncertain parameters only appear in the constraints and thus replace σ(ξ) with
σ (Birge and Louveaux, 2011). Y(x, ξ) is a non-empty set in Rd′ parameterized by x and ξ. An
example of Y(x, ξ) with ξ = (T̃ ,W̃, h̃) is

Y(x, ξ) =
{
y ∈ Rd′

+ : T̃ x + W̃y ≥ h̃
}

(1.3)

where T̃ , W̃ and h̃ are properly-sized matrices (vectors) that contain random components. Sets of
this form are typically seen in two-stage stochastic linear programs.

Risk-averse stochastic programs. When decisions are made more frequently such that each
goes through only a small number of uncertainty recurrences, the decision maker tends to be more
concerned with the risk of a decision. One way to model such a risk-averse attitude is chance-

constrained programming (cf. Birge and Louveaux, 2011; Shapiro et al., 2014), where some con-
straints are expressed in terms of probabilistic statements about the first-stage decisions. This is
particularly useful when the cost or benefit of the second-stage decisions is difficult to assess. A
generic chance-constrained program has the form:

min c>x (1.4a)

s.t. P {x ∈ X (ξ)} ≥ 1− ε (1.4b)

x ∈ X (1.4c)

2

Here X (ξ) is a non-empty set parameterized by ξ, and ε ∈ [0,1) is a risk tolerance, typically close
to 0, that limits the probability of some undesirable outcome described by x /∈ X (ξ). An example
of X (ξ) with ξ = (T̃ ,W̃, h̃) is

X (ξ) =
{
x ∈ Rd

+ : ∃y ∈ Rd′
+ s.t. T̃ x + W̃y ≥ h̃

}
(1.5)

which typically appears in chance-constrained linear programs.
Another way to model risk aversion is to include some risk measure explicitly to the objective

of a two-stage stochastic program, and construct a mean-risk stochastic program (Ahmed, 2006)
as:

min w1
(
c>x +E

[
f (x, ξ)

])
+ w2D

[
f (x, ξ)

]
s.t. x ∈ X.

Here D is a risk measure, and w1 and w2 are the non-negative weights to trade off the expected cost
and risk. Classical examples include the mean-variance portfolio optimization model (Markowitz,
1968) where variance is used as D, and the mean-CVaR model (Ahmed, 2006) where conditional
value-at-risk (CVaR) (Rockafellar and Uryasev, 2000) is used as D.

1.1.2 Uncertainty Description and Model Reformulation

In this dissertation, we assume that the uncertainty ξ is independent from the decisions made. This
may not be true in some applications (Cooper et al., 2006; Peeta et al., 2010; Solak et al., 2010). See
Goel and Grossmann (2006) for an extensive study of stochastic programs with decision-dependent
uncertainty.

Sample average approximation. When the probability distribution of ξ is known, the compu-
tation of E

[
f (x, ξ)

]
can be difficult because it may involve high-dimensional integration. Most

theories and techniques in stochastic programming are therefore based on using a discrete prob-
ability distribution with finite support to approximate the original distribution of ξ. Specifically,
consider only a finite number of realizations: {ξ1, . . . , ξK}. Each is referred to as a scenario, with
an occurring probability pk > 0. These probabilities satisfy

∑K
k=1 pk = 1. We can then approximate

the expectation in (1.1a) as
K∑

k=1

pk f (x, ξk),

and turn (1.1a)–(1.1b) into a deterministic optimization problem. When the scenarios are from a
Monte Carlo sample of ξ, this approach is known as sample average approximation (SAA) (Kley-

3

wegt et al., 2002; Shapiro and Homem-de Mello, 2000), and the obtained deterministic problem is
called the SAA reformulation. For example, the SAA problem for the two-stage stochastic linear
program (1.1a)–(1.3) is

min c>x +

K∑
k=1

pkσ
>yk (1.6a)

s.t. T kx + Wkyk ≥ hk, ∀k = 1, . . . ,K (1.6b)

x ∈ X, yk ≥ 0, ∀k = 1, . . . ,K (1.6c)

where yk = y(ξk), and (T k,Wk,hk) is the realization of (T̃ ,W̃, h̃) in each scenario k. The expectation
(taken with respect to the choice of the sample) of the optimal objective value of this SAA problem
converges to the optimal objective value of the original program at a rate of O(|K|−1/2) (Shapiro,
1993).

On the other hand, Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009) study the SAA
approach for chance-constrained programs that take the form of (1.4a)–(1.4c). Specifically, they
approximate the chance constraint (1.4b) by

K∑
k=1

pk1
(
x ∈ X (ξk)

)
≥ 1− ε (1.7)

where 1(·) is an indicator function returning 1 if · is true and 0 otherwise. If X is finite, the
resulting SAA problem yields an optimal solution of the original chance-constrained program,
with probability approaching 1 exponentially fast as K increases. Using chance-constrained linear
programs of the form (1.4a)–(1.5) for example, the SAA problem can be written as

min c>x (1.8a)

s.t.
K∑

k=1

pkzk ≤ ε (1.8b)

T kx + Wkyk + zkmk ≥ hk, ∀k = 1, . . . ,K (1.8c)

x ∈ X, yk ≥ 0, zk ∈ {0,1}, ∀k = 1, . . . ,K. (1.8d)

Here z1, . . . ,zK are artificial binary decision variables. For each k ∈ {1, . . . ,K}, mk is a vector of
sufficiently large scalars such that T kx + Wkyk + zkmk ≥ hk is relaxed when zk = 1.

Overall, SAA provides an avenue to approximately solve both risk-neutral and risk-averse
stochastic programs, by transforming them to deterministic linear programs or mixed-integer pro-
gram (MIP). Using a larger number of scenarios makes it a better approximation, though more

4

difficult to solve. Therefore, to get a good solution reasonably fast, it is important to have efficient
algorithms for the SAA formulations.

Distributionally robust stochastic programming. Since the beginning of this chapter, we have
been assuming that the probability distribution of ξ is perfectly known. However, this assumption
may not be realistic, because (i) it may be challenging to specify a precise probability distribution
for real world components, and (ii) the solution may be sensitive to the ambiguous probability
distribution, and thus be suboptimal in practice. To address this issue, distributionally robust (DR)
approaches are developed (see, e.g., Calafiore and El Ghaoui, 2006; Delage and Ye, 2010; Erdoğan
and Iyengar, 2006; Ghaoui et al., 2003; Scarf et al., 1958). Let Pξ denote the probability distribu-
tion of ξ. In DR stochastic programming, Pξ is assumed belonging to a pre-defined uncertainty

set P consisting of all possible distributions. This set is data-driven, for example, a ball around a
density function estimated from data samples. The optimization is then performed over the worst-

case expectation or risk as Pξ being from set P . For classical stochastic programs presented in
(1.1a)–(1.1b), the DR model is:

min
x∈X

max
Pξ∈P

c>x +E
[
f (x, ξ)

]
. (1.9)

For chance-constrained programs presented in (1.4a)–(1.4c), the DR model is

min
x∈X

{
c>x : inf

Pξ∈P
P {x ∈ X (ξ)} ≥ 1− ε

}
(1.10)

where the chance constraint is required to be satisfied for each Pξ ∈ P .
The construction of P can use any accessible distributional information from historical data

and/or the decision maker’s knowledge. For example, P can consist of all the distributions that
have the first and second moments matching the empirical (Calafiore and El Ghaoui, 2006; Van-
denberghe et al., 2007; Zymler et al., 2013a,b). Pre-known structural properties like unimodality,
symmetry and convexity can also be incorporated to define P (Popescu, 2005; Van Parys et al.,
2015). Other than moments, similarity of probability distributions can also be drawn based on
density functions. Jiang and Guan (2015) construct P as the set of distributions whose density
functions are sufficiently close, measured by φ-divergence, to an empirical distribution. By exploit-
ing the structures of P and the original stochastic program, the DR models often have equivalent
reformulations or approximations that are tractable. Interested readers can refer to Calafiore and
El Ghaoui (2006); Delage and Ye (2010); Ghaoui et al. (2003); Zymler et al. (2013a,b) for more
extensive discussions.

5

1.1.3 Decomposition Algorithms

This dissertation mainly focuses on studying efficient algorithms for solving the SAA reformula-
tions of risk-neutral and risk-averse stochastic programs. As the SAA problems are often com-
putationally demanding due to size, decomposition algorithms based on conquering a series of
smaller subproblems are central to finding optimal solutions. They have long been used for solv-
ing stochastic programs (see, e.g., Ahmed, 2013; Carøe and Schultz, 1999; Higle and Sen, 1991;
Luedtke et al., 2010; Van Slyke and Wets, 1969). Below, we describe the Benders decomposition,
a very common approach. Many algorithms studied in this dissertation are extensions of Benders
decomposition, and/or compared against it.

Benders decomposition. In general, it allows the solution of large linear programs that have
a special block structure. Its key idea is to construct a convex approximation (of the original
problem) defined by a set of valid inequalities that are generated over iterations. The approximation
problem and the generated inequalities are often called the master problem and cuts (or cutting
planes), respectively. The cuts are identified based on feasibility criteria or optimality conditions
in a separation problem, which is solvable through smaller subproblems. The block structure is
often seen in stochastic programs. A typical example is the SAA problem of two-stage stochastic
linear programs presented in (1.6a)–(1.6c). In that model, scenarios 1, . . . ,K are connected by the
first-stage decision x. When x is fixed, the remaining problem becomes solvable independently for
each scenario k:

gk(x) := min
yk≥0

{
σ>yk : Wkyk ≥ hk −T kx

}
(1.11)

= max
qk≥0

{(
hk −T kx

)>
qk : (qk)>Wk ≤ σ>

}
, (1.12)

where the second equality follows from strong duality. The original problem (1.6a)–(1.6c) can
easily be rewritten as:

min
x∈X,u1,...,uK

c>x +

K∑
k=1

pkuk : uk ≥ gk(x), ∀k = 1, . . . ,K

 (1.13)

To exploit the decomposable structure, the algorithm approximates (1.13) by the following master
problem:

min
x∈X,u1,...,uK

c>x +

K∑
k=1

pkuk (1.14a)

6

s.t. αuk +β>x ≥ γ, ∀(α,β,γ) ∈ Lk, k = 1, . . . ,K. (1.14b)

Here, Lk ⊆R×Rd×R represents a set of inequalities that have been generated for scenario k so far
through the algorithm. The master problem contains only a subset of constraints that are necessary
to describe (1.13), and thus is a relaxation.

Given a master-problem solution (x̂, û1, . . . , ûK), we solve (1.12) with x̂ plugged in for x for
every scenario k. Any feasible x of (1.6a)–(1.6c) must allow (1.12) to have an optimal solution.
Therefore, if (1.12) is unbounded, we identify a positive-cost extreme ray d̂k and add the following
inequality to the master problem: (

d̂k
)> (

hk −T kx
)
≤ 0, (1.15)

i.e., Lk = Lk ∪
{(

0, (T k)>d̂k, (hk)>d̂k
)}

. If (1.12) has an optimal solution q̂k, we need to check
whether

uk ≥
(
hk −T kx

)>
q̂k, (1.16)

which is a valid inequality for (1.13). If not, we add (1.16) to the master problem, i.e., Lk = Lk ∪{(
1, (T k)>q̂k, (hk)>q̂k

)}
. Note that (1.15) and (1.16) are for ensuring the master-problem solution

x to be feasible and optimal to the original problem, and thus they are called feasibility cut and
optimality cut, respectively. The above procedure is repeated iteratively until the gap between the
upper bound, the smallest objective value c> x̂ +

∑K
k=1 pkgk(x̂) among all the feasible x̂, and the

lower bound, the optimal objective value of the master problem, are sufficiently small.
Many applications involve discrete decisions, especially binary decisions to model logical con-

ditions. As integer programming is generally NP-hard, the discrete nature of decisions further
amplifies the computational intractability of stochastic programs which are already difficult due to
the large scale caused by data uncertainty. Most of the problems studied in this dissertation are
stochastic integer programs, where some decision variables are restricted to be integer. Next, we
review an extended Benders decomposition algorithm (Laporte and Louveaux, 1993) which is ex-
tensively used for solving stochastic programs with a binary first stage. More importantly, it falls
into the branch-and-cut framework which is a successful technique for solving mixed-integer pro-
grams. (See Wolsey and Nemhauser (2014) for more extensive discussions on the branch-and-cut
method.) Chapters 2 and 3 discuss many specialized branch-and-cut algorithms to solve stochastic
programs of certain structures.

The integer L-shaped method. Consider the two-stage risk-neutral stochastic program
(1.6a)–(1.6c), but this time x is a vector of binary variables, i.e., X ⊆ {0,1}d. If we construct a

7

branch-and-bound tree to solve the problem, each node corresponds to fixing some components of
x to 0 or 1. For any node n, the node problem can be written as:

min
x∈X,v

c>x + v : v ≥
K∑

k=1

pkgk(x), x j = 0, ∀ j ∈ F0(n), x j = 1, ∀ j ∈ F1(n)

 (1.17)

in which gk(x) is defined in (1.11). F0(n) and F1(n) are disjoint subsets of {1, . . . ,d}. Applying the
idea of Benders decomposition, we approach (1.17) through an approximation problem as

min
x∈X,v

c>x + v (1.18a)

s.t. αv +β>x ≥ γ, ∀(α,β,γ) ∈ L (1.18b)

x j = 0, ∀ j ∈ F0(n), x j = 1, ∀ j ∈ F1(n). (1.18c)

Set L collects cuts that are similar to (1.15) and (1.16). However, due to the discrete nature of x,
they are formulated differently. To exclude some solution x̂ that leads to some gk(x̂) infeasible, we
can still use (1.15), but also the following cut:∑

j∈{1,...,d}:x̂ j=1

(1− x j) +
∑

j∈{1,...,d}:x̂ j=0

x j ≥ 1 (1.19)

which forbids x̂ through its 0-1 pattern. To ensure v ≥
∑K

k=1 pkgk(x), we can use the following cut:

v ≥ `+

 K∑
k=1

pkgk(x̂)− `

1− ∑

j∈{1,...,d}:x̂ j=1

(1− x j)−
∑

j∈{1,...,d}:x̂ j=0

x j

 (1.20)

where ` is some pre-known lower bound for the expected second-stage cost. Note that all of these
cuts are valid inequalities with respect to the current node problem, but also to the original program.
They are added to L which is not node-dependent, so that all of the nodes become affected. Just
like branch-and-bound, this approach also maintains an upper bound µ. The steps are outlined in
Algorithm 1.1.

Other decomposition algorithms. Most existing solution methods for stochastic programs work
with some scenario-based reformulations/approximations, e.g., the SAA problem, which are more
amenable to decomposition algorithms. They specialize in exploiting the particular structure of the
underlying programs, and use different master problems and cuts.

To give a brief survey of decomposition algorithms in two-stage (risk-neutral) stochastic pro-
gramming, we categorize the programs according to their variable types, and label each class by

8

Algorithm 1.1 The integer L-shaped method to solve binary-first-stage stochastic programs
1: µ← +∞, L← ∅.
2: repeat
3: pick some unexplored node n
4: repeat
5: solve the linear programming relaxation of (1.18a)–(1.18c)
6: if feasible and the optimal objective value < µ then
7: let (x̂, v̂) be an optimal solution
8: if x̂ /∈ {0,1}d then
9: create two new nodes by branching on a fractional component of x̂.

10: else
11: solve g1(x̂), . . . ,gK(x̂)
12: if some gk(x) = +∞ ((1.11) infeasible or (1.12) unbounded) then
13: add cut (1.19) to L.
14: else
15: µ←min

{
µ,

∑K
k=1 pkgk(x̂)

}
16: if

∑K
k=1 pkgk(x̂) > v̂ then

17: add cut (1.20) to L.
18: end if
19: end if
20: end if
21: end if
22: until no new cut added to L
23: until all nodes explored

9

∗/∗. The first ∗ characterizes the first-stage variables: C if all continuous, B, if all binary, G if all
general integers, MB (or MG) if it is a mixed of binary (or general integer) and continuous vari-
ables, and U if not restricted to any type. In the same way, the second ∗ characterizes the second
stage. Carøe and Tind (1998) propose applying lift-and-project cuts generated from one scenario
but valid for all to solve MB/G. Sen and Higle (2005) develop disjunctive cuts for B/MB, and Sen and
Sherali (1985) then extend the method for B/MG by incorporating a branch-and-cut approach. For
MG/G, Carøe and Tind (1998) propose a conceptual method that generates Gomory cuts and con-
struct non-convex optimality cuts, and Ahmed et al. (2004) propose a branch-and-bound method.
Kong et al. (2006) also study a branch-and-bound method, which is then applied to a superadditive
dual formulation for solving G/G. Gade et al. (2014) and Zhang and Küçükyavuz (2014) resort to
Gomory cuts to solve B/G and G/G, respectively. Ahmed (2013) proposes a method for B/U that iter-
atively explores and cuts off candidate solutions from solving scenario subproblems. Other studies
apply decomposition to dual formulations rather than the primal. For MG/MG, Carøe and Schultz
(1999) recover a decomposable structure by dualizing nonanticipativity constraint (NAC) (cf. Es-
cudero et al., 1993; Fernandez, 1995) and apply decomposition in a branch-and-bound framework
to solve the resulting dual formulation. Extending from this method, Lubin et al. (2013) develop a
formulation that permits a parallel solution of the master program.

Regarding chance-constrained programs, SAA can be used to find good solutions and statis-
tical bounds to the original programs (Luedtke and Ahmed, 2008; Pagnoncelli et al., 2009). The
SAA problem, e.g., (1.8a)–(1.8d), however, faces a challenge in addition to the large-scale nature
and the existence of discrete variables. Its linear programming relaxation is weak due to the use
of very large coefficients to deactivate the chance constraint in some scenarios, like mk in (1.8c)
which are often called big-Ms. This makes the SAA problem even harder to solve. Existing work
takes advantage of the structure of problems in particular applications to tighten the values of big-
M coefficients or to develop alternative valid inequalities (Qiu et al., 2014; Song and Luedtke,
2013; Song et al., 2014). For more general problems, Luedtke et al. (2010) and Küçükyavuz
(2012) develop strengthened formulations which can be solved faster for chance-constrained pro-
grams with only right-hand-side random (i.e., X (ξ) = {x : T x ≥ h(ξ)}). Zhang et al. (2014) propose
strong valid inequalities for multi-stage chance-constrained programs and observe that decompo-
sition algorithms are needed to solve large instances. For problems where decisions are binary,
Ahmed et al. (2015b) develop decomposition algorithms based on dual formulations which are
obtained from dualizing nonanticipativity constraints. Luedtke (2014) develop a branch-and-cut
algorithm for general chance-constrained programs where the inequalities with big-M coefficients
are not enforced explicitly but through tight cuts generated during the algorithm. In another line of
work, decomposition algorithms are developed for two-stage chance-constrained programs which
additionally include the expected second-stage cost in the objective to minimize along with the de-

10

terministic cost from the first stage. This class of programs models the tradeoff between cost and
risk very well. The new objective is the same as the objective in risk-neutral stochastic programs
(e.g., (1.1a)). Wang and Shen (2012) and Wang et al. (2012) extend Benders decomposition to
solve such problems, which, however, do not tackle the computational difficulty brought by big-M
coefficients. In addressing this challenge, Zeng et al. (2014) propose another decomposition al-
gorithm which is based on big-M-free bilinear feasibility and optimality cuts. Liu et al. (2015),
in a concurrent work, develop specialized strong valid inequalities that enhance the computational
efficiency substantially.

1.2 Thesis Overview

In Chapter 2, we study a practical problem of surgery planning, motivated by the large uncertainty
in surgery durations, the high cost of operating room (OR) resources and the importance of surgical
service quality. We consider the uncertainty in surgery durations, and build a model which min-
imizes the cost of opening ORs subject to a chance constraint limiting OR overtime and surgery
waiting time. We use a chance-constrained model rather than the traditional cost-based model, be-
cause there is rarely a fair measure to map overtime or waiting time into monetary cost. In contrast
to a common practice that first assigns OR to surgeries and then develops schedules for individual
ORs, we integrate these two steps into a single model to seek better-performing solutions which
are made available by the extra flexibility. The model turns out to be a complex chance-constrained
program that involves two stages of mixed-binary decisions. To solve it, we design a specialized
branch-and-cut algorithm. The algorithm uses valid inequalities, which are built upon an analo-
gous bin packing problem and a series of single-machine scheduling problems. Furthermore, we
allow surgery durations to follow ambiguous distributions and develop a DR variant that controls
the worst-case probability for the chance constraint to be satisfied. By employing the results from
Jiang and Guan (2015), we transform the DR model into a standard chance-constrained program
with a perturbed risk level that the proposed algorithm can cope with. Testing the models and
the algorithms on real data from an outpatient surgery center, we show (i) the efficacy of the pro-
posed algorithm compared with state-of-the-art MIP solvers; (ii) the feasibility and necessity of
solving the integrated surgery-planning problems in practice; (iii) the reliability of solutions to the
chance-constrained model compared with solutions to a cost-based model that penalizes waiting
and overtime; (iv) the better tradeoff between cost and service quality achieved by solutions to our
integrated model compared with the tradeoff from models that separate OR allocation and surgery
scheduling; and finally (v) the robustness of solutions to the DR variant compared with solutions
to the original model, especially in scenarios with surgery cancellations. Moreover, although the
models and the algorithms are motivated by a surgery planning application, they can be applied to

11

more general stochastic scheduling problems.
In Chapter 3, we investigate a general class of chance-constrained discrete problems: chance-

constrained 0-1 programs, where decisions made before the realization of uncertainty are binary.
We study a decomposition method which follows a procedure of iteratively exploring and cutting
off candidate solutions, which are discovered from scenario subproblems, until the lower and upper
bounds for the optimal objective value are sufficiently close. In this case, we apply decomposition
to a dual formulation obtained from relaxing a NAC (cf. Escudero et al., 1993; Fernandez, 1995)
and a packing inequality (e.g., (1.8b)) in the MIP reformulation of the considered program. We
derive a proposition that simplifies the computation of the Lagrangian dual. It enables us to re-
place some subgradient iterations with simple arithmetic, and effectively reduces the number of
subproblems to solve. Our experiments show that the change has substantially accelerated the al-
gorithm. We also develop a subroutine of cut aggregation that accelerate the solution of individual
subproblems, which makes the algorithm even faster. To further enhance the efficacy, we explore
two parallel schemes for implementing the algorithm in a distributed system: one which simply
distributes the computation of subproblems evenly across parallel processes, and one which adopts
a Master-Worker structure which reduces duplicate efforts and potentially alleviates waiting caused
by synchronization. We observe speedup under both schemes, and the second scheme outperforms
when the number of processes is large. Despite the speed advantage of the proposed algorithms and
schemes, the results also indicate the time-expense of the subgradient method and the inefficiency
of parallel execution as the number of processes increases due to due to synchronization barriers.
Therefore we are motivated to further investigate these two aspects in the following chapter.

In Chapter 4, we consider another class of risk-averse stochastic 0-1 programs, which do not
use chance constraint but build objective functions upon a coherent risk measure. Using a generic
dual representation for coherent risk measures, we derive an equivalent risk-neutral minimax re-
formulation for the considered problem. We show that the reformulation is well suited to solution
by the dual decomposition approach that we apply to solve chance-constrained 0-1 programs in
Chapter 3. We develop three algorithms, DD1, DD2, and DD3, which differ in recovering a lower
bound from the Lagrangian dual. DD1 simply uses the functional value of the Lagrangian relax-
ation at zero (i.e., when the multiplier is set to zero). Although this corresponds to relaxing the
NAC and essentially allowing decisions to be made for each specific scenario, it may still yield a
good lower bound if most of the scenarios are similar and agree on the same best decision. DD2
and DD3 contain an inner loop for optimizing the Lagrangian relaxation to produce a tighter lower
bound. Strategically, they are similar to the decomposition method discussed in Chapter 3. How-
ever, motivated by the observed inefficiency of the subgradient subroutine in that approach, here
we (i) still use a subgradient method but based on a different NAC in DD3, and (ii) use a cutting-
plane method instead in DD2. On the other hand, we show that the proposed algorithms work

12

well for solving the DR variant of the considered problem. Furthermore, we design three par-
allelization schemes representing different combinations of basic-parallel/master-worker-parallel,
synchronous/asynchronous, and push/pull systems, enabling a comprehensive examination of the
parallel execution. To test the models, algorithms and implementation schemes, we use CVaR as
the risk measure and stochastic programming instances in popular contexts like server location
and knapsack problem from SIPLIB (Ahmed et al., 2015a). We demonstrate the speed advan-
tage of the algorithms for cases with large numbers of scenarios, and the good scalability of the
master-worker, asynchronous, and pulling parallel schemes which achieve near-linear and even
super-linear speedups.

13

CHAPTER 2

Chance-Constrained Surgery Planning under
Uncertain or Ambiguous Surgery Durations

2.1 Introductory Remarks

Surgery planning must balance the competing goals of high utilization and low overtime of ORs
under uncertain surgery durations. These goals are motivated in part by the high cost of surgery
resources and the cost of nurse overtime, which can significantly affect nurse turnover in hospitals
(see a report by Nursing Solutions, Inc., 2013). In addition to utilization of ORs and overtime,
hospital administrators must also pay attention to limiting delays of individual surgeries and patient
waiting. All these efforts are closely related to the improvement of service quality, effectiveness,
and efficiency when planning surgical care delivery.

In this chapter, we build optimization models integrating OR allocation and surgery planning
decisions and we use a chance constraint to limit the probability of having inadmissible surgery
waiting and OR overtime. To solve the model which is a complex chance-constrained mixed-
integer program, we develop strong valid inequalities and propose a specialized branch-and-cut
algorithm. We also investigate a problem variant with distributional ambiguity, and study a DR
variant for producing more reliable surgery plans under limited data and misspecified problem pa-
rameters. In computational experiments, we demonstrate the efficacy of the proposed algorithms,
and compare different models through post-optimization simulation to analyze how they balance
service quality and resource utilization.

2.1.1 Literature Review

Surgery Planning under Uncertainty Most hospitals make decisions about which patients to
schedule for a particular day sequentially, typically in the 12 weeks prior to the day of surgery.
This defines a surgical listing. Approximately 24–48 days prior to surgery, a detailed schedule
is generated providing the OR assignment and the planned start time of each surgery. In this

14

chapter, we focus on this latter problem of OR allocation and surgery scheduling. The majority
of the stochastic optimization literature for surgery planning has separately covered scheduling
surgeries in a single OR (e.g., Denton and Gupta, 2003; Vanden Bosch and Dietz, 2000; Weiss,
1990), and surgery-to-OR allocation (e.g., Denton et al., 2010; Min and Yih, 2010). The former
focuses on assigning time intervals between surgeries given a predefined sequence, to minimize
surgery waiting, OR under-utilization, and OR overtime. The latter decides the number of ORs
to open and surgery-to-OR assignment to minimize the total cost of operating ORs. We refer the
readers to Cardoen et al. (2010); Gupta (2007) and Erdogan and Denton (2011) for comprehensive
surveys of different models and solution approaches in surgery planning and scheduling.

Chance-Constrained Programming Shylo et al. (2012) formulate a chance-constrained pro-
gram for allocating surgery blocks to ORs, with the goal of minimizing under-utilization of ORs
subject to restricted risk of OR overtime. They reformulate the problem as an equivalent convex
program by assuming that surgery durations follow independent normal distributions. To the best
of our knowledge, it is the only paper in the literature that builds a chance-constrained model for
stochastic OR allocation under surgery duration uncertainty. In this chapter, we allow generally-
distributed surgery durations. We formulate surgery planning as a chance-constrained program that
involves two stages of mixed-binary decisions. The model is large and structurally complex due
to the integration of assignment and scheduling decisions. It is difficult to solve using the current
methods, for which we develop a branch-and-cut algorithm that we show is very effective in our
computational tests.

Distributionally Robust Optimization Kong et al. (2013) formulate a DR appointment schedul-
ing model for minimizing the worst-case expected penalty cost of patient waiting and doctor over-
time in an outpatient clinic. They build a cross-moment uncertainty set to include all probabil-
ity distributions of the random service time with common support, mean vectors, and covariance
matrices. They reformulate the problem as a copositive conic program and approximate it by a
semidefinite program. Mak et al. (2015) consider a similar DR model to minimize the worst-case
expected waiting and overtime, but build the uncertainty set using only marginal moments of the
service time of individual appointments. They reformulate the problem as an equivalent semidefi-
nite program and demonstrate the benefit of taking into account distribution ambiguity in appoint-
ment scheduling. The results of both papers can be applied to single-OR surgery scheduling, but
not to the problem of surgery-to-OR allocation.

2.1.2 Motivation and Contributions

The motivations for our research are:

15

• OR overtime and surgery waiting: Hospitals in the United States lose approximately
$300,000 per year on average for each 1% increase of their nurse turnover rate (Hayes et al.,
2006). The national nurse turnover rate reached 14.7% in 2013, for which the primary cause
was the increase of nurses’ overtime working hours in ORs (Nursing Solutions, Inc., 2013).
Moreover, decreasing OR overtime simultaneously reduces the idle time in ORs and can lead
to high utilization of surgery resources. Meanwhile, long surgery waiting is an important and
non-negligible issue in surgery planning, which may become more severe given under the
objective of compressing the OR idle time and overtime.

• Constraining the risk of OR overtime: It is difficult or impossible to accurately estimate
the penalty associated with surgery waiting and OR overtime, since they affect multiple
stake-holders, including patients, nurses, and surgeons. It is easy to estimate the per hour
cost of overtime for members of the OR team; however, this does not account for the loss
of “goodwill” due to the impact on family from a delayed shift. In our experience with
several hospitals, reliable shift completion is important to staff morale and retention, and it is
especially important in the case of specialized nurses due to a nationwide shortage of highly
qualified nursing workforce. Moreover, patient safety is frequently tied to the frequency
and length of overtime in ORs. Since these factors are difficult to model with a monetary
cost, we consider a chance-constrained model to guarantee sufficiently low probability of
overtime according to decision-makers’ preference and priority.

• Integrating allocation and scheduling decisions: Few research studies of surgery planning
have combined surgery-to-OR allocation with the problem of sequencing and scheduling
surgeries. This is mainly due to the complexity of the integrated models and the difficulty of
deriving efficient solution algorithms. In this chapter, we develop integrated models to show
the benefits of simultaneously optimizing OR allocation and surgery scheduling.

• Ambiguous distributions of surgery durations: Previous studies of stochastic surgery
planning assume that the distributional information of random surgery durations is known.
When the distribution is ambiguous, traditional stochastic optimization methods could fail
to provide surgery plans with high reliability. Thus, we employ DR optimization to plan
surgeries against the worst-case distribution of surgery durations that can be derived from
observed data or previous knowledge. We test a variety of instances with different sample
sizes to demonstrate the performance of DR optimal solutions and the power of data-driven
optimization in surgery planning.

To our best knowledge, we are the first to study chance-constrained surgery planning (CCSP)
under generally distributed surgery durations. We build on the previous literature in stochastic

16

surgery planning by combining allocation and scheduling decisions within a single optimization
model. We are also the first to consider CCSP in a DR context, which expands the research dimen-
sion of stochastic surgery planning, given that distributions of random surgery durations are often
unknown in practice. Our results provide insights into (i) managing risk and the quality of ser-
vice via the use of chance constraints, (ii) the importance of combining allocation and scheduling
decisions, and (iii) using data for guiding surgery planning under distributional information ambi-
guity. From a methodological perspective, given the large-scale SAA reformulation, we develop
a branch-and-cut algorithm that exploits the scheduling problem structure. While this algorithm
is motivated by a surgery planning application, it can be applied to more general parallel machine
scheduling problems.

The remainder of Chapter 2 is organized as follows. Section 2.2 presents the CCSP model
and its SAA reformulation with enhanced big-M coefficients. Section 2.3 proposes strong valid
inequalities and a specialized branch-and-cut algorithm. Section 2.4 presents the DR model and
an equivalent reformulation that allows us to reapply the proposed algorithm. Section 2.5 presents
numerical experiments to illustrate the computational efficiency of the proposed algorithms, and
the benefits of the features in our models. Section 2.6 concludes the chapter.

2.2 Problem Formulation

Consider a set S = {1, . . . ,S } of surgeries to be scheduled in a set R = {1, . . . ,R} of ORs that are
each available for a period of time, Tmax. Each OR j ∈ R has a fixed opening cost, c j, and a
standard operating time limit T j ∈ (0,Tmax]. A random vector ξ = (ξ1, . . . , ξS)> ∈RS

+ denotes surgery
durations, where ξi is the duration time of surgery i for all i ∈ S. Before realizing the value of ξ,
we assign every surgery a start time and an open OR. Given uncertain durations, surgeries may
not start punctually at the assigned time if the OR is still occupied. The goal is to minimize the
total cost of opening ORs while requiring that waiting time for each surgery i must not exceed a
maximum tolerable waiting time, εi, and with sufficiently high probability that there is no overtime
operation in any OR. Note that the waiting time restriction differentiates our CCSP model from a
general chance-constrained bin packing problem (see Song et al., 2014) where items (i.e., surgeries
in this chapter) can be packed “seamlessly”.

2.2.1 Chance-Constrained Model

Let Ω = {ξω = (ξω1 , . . . , ξ
ω
S)> : ω = 1, . . . , |Ω|} be the set of scenarios, with equal probability, i.e.,

pω = 1/|Ω|, that have been extracted from a Monte Carlo sample. We can now define the decision
variables and present the related constraints. First, allocation and scheduling decisions are made

17

before realizing surgery durations. We define two sets of binary first-stage decision variables
x ∈ {0,1}R and z ∈ {0,1}R×S×S for which

• x j = 1 if we open OR j, and x j = 0 otherwise, for all j ∈R;

• z j
ik = 1 if surgery i is assigned the kth position in the sequence of surgeries in OR j, and z j

ik = 0
otherwise, for all j ∈R, i ∈ S, k = 1, . . . ,S . (For notational clarity, we use i to index surgery,
and k to index the order of surgeries in each OR. Note that there are S positions in each OR
at maximum, and thus k = 1, . . . ,S .)

The decisions x and z must satisfy

∑
j∈R

S∑
k=1

z j
ik = 1 ∀i ∈ S (2.1)∑

i∈S
z j

ik ≤ x j ∀k = 1, . . . ,S , j ∈R (2.2)∑
i∈S

z j
ik+1 ≤

∑
i∈S

z j
ik, ∀k = 1, . . . ,S , (2.3)

where constraint (2.1) ensures that every surgery is assigned a position in an OR; constraint (2.2)
assigns no more than one surgery to one position in each open OR, and do not assign surgeries
to any position in a closed OR; and constraint (2.3) prohibits assigning surgeries to position k + 1
when position k is still vacant, for every OR.

Next, we define a continuous first-stage decision variable s j
k ≥ 0 to represent the planned start

time of the kth surgery in every OR j, and a continuous second-stage decision variable δ j
k(ξ) ≥ 0

dependent on surgery durations ξ to represent the actual time of finishing the kth surgery in OR j.
We abbreviate δ j

k(ξω) as δ jω
k . The constraints defining the feasible sequences of surgeries are:

s j
k − s j

k−1 ≥ 0 ∀k = 2, . . . ,S , j ∈R (2.4)

δ
jω
k ≥ δ

jω
k−1 +

∑
i∈S

ξωi z j
ik ∀k = 2, . . . ,S , j ∈R, ω ∈Ω (2.5)

δ
jω
k ≥ s j

k +
∑
i∈S

ξωi z j
ik ∀k = 1, . . . ,S , j ∈R, ω ∈Ω (2.6)

δ
jω
k−1 ≤ s j

k +
∑
i∈S

εiz
j
ik ∀k = 2, . . . ,S , j ∈R, ω ∈Ω. (2.7)

Constraint (2.4) forms a valid sequence to schedule surgeries assigned to OR j, for all j ∈ R;
constraint (2.5) prohibits starting the kth surgery before finishing the (k−1)th surgery in each OR j;
constraint (2.6) ensures that each surgery i does not start earlier than their planned start time, and
will last for ξωi time in scenario ω; and constraint (2.7) applies to the waiting times of individual

18

surgeries reformulated from the individual chance constraints. It ensures that each surgery does
not wait longer than the given waiting tolerance to start, based on the actual finishing time of their
previous surgeries.

Consider a chance constraint that ensures at least β probability that every OR j completes all
the assigned surgeries by time T j, or equivalently, no overtime occurs in any ORs. Although the
number of surgeries assigned to each OR j is, likely, smaller than S , we use δ j

S (ξ) as the time
that all the assigned surgeries are completed in OR j for all j ∈ R. Assuming that the number
of surgeries assigned to each OR j is S (j), we verify that we can maintain the feasibility of a
given solution without violating constraints (2.4)–(2.7), by letting s j

k = s j
S (j) and δ j

k(ξ) = δ
j
S (j)(ξ) for

k = S (j) + 1, . . . ,S and j ∈R. Thus, the chance constraint is given by

P
{
δ

j
S (ξ) ≤ T j, ∀ j ∈R

}
≥ β. (2.8)

The whole CCSP model is given by

min
{
cTx : (2.1)–(2.8), x,z binary, s, δ ≥ 0

}
. (2.9)

2.2.2 Mixed-Integer Programming Reformulation

We define variable κω ∈ {0,1} for each scenario ω such that κω = 0 implies that δ jω
S ≤ T j, ∀ j ∈R

in scenario ω. To attain the probability threshold, κ = (κ1, . . . , κ|Ω|)T must belong to the following
β-parameterized set:

Γ(β) :=

κ ∈ {0,1}|Ω| : (1/|Ω|)
∑
ω∈Ω

(1− κω) ≥ β

 =

κ ∈ {0,1}|Ω| : ∑
ω∈Ω

κω ≤ bβ|Ω|c

 .
With κ ∈ Γ(β), the SAA reformulation of model (2.9) is

min cTx (2.10a)

s.t. (2.1)–(2.7) (2.10b)

δ
jω
S ≤ T j + κω(M jω−T j), ∀ j ∈R, ω ∈Ω (2.10c)

x,z binary, s, δ ≥ 0, κ ∈ Γ(β) (2.10d)

where M jω is sufficiently large that it deactivates inequality (2.10c) if κω = 1. We describe its
value in the following. First, note that the first surgery at any OR always starts on time, and thus
δ

jω
1 = s j

1 +
∑

i∈S ξ
ω
i z j

i1 (with s j
1 = 0) for every ω ∈ Ω and j ∈ R. Any subsequent surgery starts

either at its planned start time or at the time when the preceding surgery finishes. As a result, the

19

following recursion holds for any k ≥ 2:

δ
jω
k = max

{
s j

k, δ
jω
k−1

}
+

∑
i∈S

ξωi z j
ik, ∀ j ∈R, ω ∈Ω, (2.11)

from which we derive the closed-form expressions:

δ
jω
k = max

k′=1,...,k

s j
k′ +

k∑
`=k′

∑
i∈S

ξωi z j
i`

 ∀k = 1, . . . ,S , j ∈R, ω ∈Ω. (2.12)

To guarantee (2.10c), M jω must be at least

max
{
δ

jω
S : (x,z, s, δ, κ) is feasible to model (2.10)

}
= max

k′=1,...,S

s j
k′ +

S∑
`=k′

∑
i∈S

ξωi z j
i` : (2.1)–(2.7), (2.8), x,z binary, s ≥ 0

 .
Meanwhile, given any threshold β > 0, we have s j

k′ ≤ T j, ∀k′ = 1, . . . ,S , in any OR j ∈R, i.e., all
surgeries start before the time limit T j in every OR j. If not, overtime exists with probability one,
and the corresponding solution will not satisfy the chance constraint (2.8). Thus, for each j ∈R
and ω ∈Ω, we set M jω to T j +

∑
i∈S ξ

ω
i , which is a valid upper bound of δ jω

k for any k = 1, . . . ,S .

2.3 Decomposition-based Branch-and-Cut Method

Even though an off-the-shelf MIP solver can be used to solve the MIP problem (2.10), in Sec-
tion 2.5 we show that directly solving it is very slow due to the presence of many binary variables
and scenarios. Below, we develop a branch-and-cut algorithm that recovers single-OR-based and
single-scenario-based subproblems that can be solved very efficiently. We also propose valid in-
equalities based on an analogous bin packing problem to pre-filter solutions before using preciser
but more complex separation procedures.

2.3.1 Master Problem

In problem (2.10), if variables x, z, and κ are fixed, the remaining problem is OR-separable. Ac-
cording to this feature, we split this problem into two stages. At the first stage, consider a master
problem with cross-OR decisions (x,z, κ):

min
x,z,κ

{
cTx : (2.1)–(2.3), (z, κ) ∈ Q, x,z binary, κ ∈ Γ(β)

}
, (2.13)

20

where Q =
{
(z, κ) : ∃ s, δ ≥ 0 that satisfy (2.4)–(2.7), (2.10c)

}
. The constraints to form (z, κ) ∈ Q are

not explicitly presented; rather, we enforce (z, κ) ∈Q through a cut generation procedure (analogous
to the integer L-shaped method reviewed in Section 1.1.3). Now that z and κ are binary, a natural
approach to cut off an infeasible solution is to add the no-good cut (1.19). We also derive valid
inequalities based on the scheduling structure of our problem. Section 2.3.2 demonstrates deriving
valid inequalities upon a chance-constrained bin packing (CCBP) problem, which we show is a
relaxation of the original CCSP problem. Section 2.3.4 discusses another set of valid inequalities
built through a series of single-OR scheduling problems, which we further strengthen and develop
a heuristic approach to identify in Section 2.3.4. We combine everything into a branch-and-cut
framework and present other computational enhancements in Section 2.3.5.

2.3.2 Pre-filtering and Packing Cuts

We introduce binary variables y ji for every surgery i and every OR j, to explicitly capture surgery-
to-OR assignment, such that y ji = 1 if surgery i is assigned to OR j, and y ji = 0 otherwise. Consider
a CCBP problem:

min
x,y binary

cTx (2.14a)

s.t. P
∑

i∈S
ξiy ji ≤ T j, ∀ j ∈R

 ≥ β (2.14b)∑
j∈R

y ji = 1 ∀i ∈ S (2.14c)

y ji ≤ x j ∀i ∈ S , j ∈R (2.14d)

Constraints (2.14c) and (2.14d) ensure allocating every surgery to an open OR, and it is clear that
any feasible solution y = (y ji : j ∈ R, i ∈ S)> subject to these two constraints, and any feasible
solution z to the original problem (2.10) subject to constraints (2.2) and (2.3) must satisfy y ji =∑S

k=1 z j
ik, ∀i ∈ S, j ∈R. See Appendix A.1 for a formal proof that the CCBP problem is a relaxation

of the CCSP problem. The intuitive explanation is as follows. The operating time length of any OR
j is equal to the total time duration of assigned surgeries plus possible idle time between adjacent
surgeries. In (2.14b), however, we pack surgeries into ORs without the possibility of idle time.
Therefore, for any feasible z to CCSP, letting y ji =

∑S
k=1 z j

ik, ∀i ∈ S, j ∈R results in a feasible y to
the CCBP problem. With κ ∈ Γ(β), we can rewrite (2.14b) as∑

i∈S
ξωi y ji ≤ T j + (Ṁ jω−T j)κω (2.15)

21

where each Ṁ jω is a big-M coefficient, and further with y ji replaced by
∑S

k=1 z j
ik, as

∑
i∈S

ξωi

 S∑
k=1

z j
ik

 ≤ T j + (Ṁ jω−T j)κω. (2.16)

It follows that (2.16) is a valid inequality with respect to the original problem (2.10). We use it as a
cutting plane in the branch-and-cut algorithm described in Section 2.3.5 and refer to it as a packing

cut.
The strength of such a cut is dependent on the value of Ṁ jω. Next, we discuss the choice of

Ṁ jω to balance between cut strength and computational tractability. First, note that Ṁ jω must be
at least

max
y,κ

∑
i∈S

ξωi y ji : (2.14c), (2.15), y binary, κ ∈ Γ(β)

 , (2.17)

which is the maximum left-hand-side value of constraint (2.15) for any feasible CCBP solutions.
A straightforward choice is to let Ṁ jω =

∑
i∈S ξ

ω
i . We describe two approaches for strengthening

Ṁ jω from the literature, and integrate the second one into our algorithm for generating the packing
cuts.

• Following the approach by Qiu et al. (2014), we can initialize Ṁ jω =
∑

i∈S ξ
ω
i and iteratively

solve the linear programming (LP) relaxation of problem (2.17) with the most updated Ṁ jω-
value used in constraint (2.15), to obtain a new value of Ṁ jω. Repeat the process until
the attained Ṁ jω-values converge. Note that solving the linear programming relaxation of
(2.17) can be time consuming, especially when R is large. Therefore, the second approach is
preferable.

• We solve a relaxation of (2.17) by approximating the chance constraint (2.14b) (i.e., (2.15)
and κ ∈ Γ(β) in (2.17)) with P

{∑
i∈S ξiy ji ≤ T j

}
≥ β, for all j ∈R. We then relax constraints

(2.14c), and attain a set of individual-OR-based chance-constrained programs, for all j ∈R:

max
y j

∑
i∈S

ξωi y ji : P
∑

i∈S
ξiy ji ≤ T j

 ≥ β, y j binary

 , (2.18)

where y j = (y j1, . . . ,y jS)T. Update the value of Ṁ jω as the optimal objective value of
model (2.18) for each corresponding j ∈R and ω ∈Ω.

As a chance-constrained program, (2.18) may still be difficult to solve exactly, especially
when |Ω| is large. We attain the value of Ṁ jω as an upper bound of the optimal objective
value of (2.18) by following a scenario sorting method (see Luedtke, 2014; Song et al., 2014).

22

Specifically, for each j ∈R and ω ∈Ω, consider a series of deterministic problems:

ṁ jω(ω′) = max
y j

∑
i∈S

ξωi y ji :
∑
i∈S

ξw′
i y ji ≤ T j, y j binary

 ∀w′ ∈Ω. (2.19)

Sort ṁ jω(ω′), ∀w′ ∈Ω such that ṁ jω(ω′1) ≤ · · · ≤ ṁ jω(ω′
|Ω|

), and let Ṁ jω = ṁ jω(ω′θ+1) where
θ = bβ|Ω|c. Moreover, rather than solving the 0-1 single knapsack problems in (2.19), we
compute their LP relaxations via the greedy algorithm, which still yields valid Ṁ jω, ∀ j ∈R
and ω ∈Ω.

Given a master-problem solution (x̂, ẑ, κ̂) that is not necessarily integral, if

∑
i∈S

ξωi

 S∑
k=1

ẑ j
ik

 > T j

for any j ∈R and w ∈ Ω0(κ̂) = {ω ∈ Ω : κ̂ω = 0}, we generate a packing cut (2.16). We refer to this
procedure as pre-filtering, and present the detailed steps in Algorithm 2.1. In particular, Steps 4–12
describe the greedy algorithm for optimizing the LP relaxations of (2.19) that are continuous 0-1
knapsack problems. Theoretically, this pre-filtering procedure can be extended to every scenario
ω that currently has κ̂ω < 1. In our experiments, however, we find this extension result in an
overwhelmingly large number of cuts that lengthen total computation time.

Algorithm 2.1 GenCut P(x̂, ẑ, κ̂): a packing-cut generation subroutine
1: for j ∈R(x̂), ω ∈Ω0(κ̂) do
2: if

∑
i∈S ξ

ω
i (

∑S
k=1 ẑ j

ik) > T j then
3: for ω′ ∈Ω do
4: sort r(i) = ξωi /ξ

ω′

i ,∀i ∈ S such that r(i1) ≥ · · · ≥ r(iS)
5: `← 1.
6: v← 0, b← T j.
7: while b > 0 do
8: q←min{1,b/ξω

′

i`
}.

9: v← v + qξωi` , b← b−qξω
′

i`
.

10: `← `+ 1.
11: end while
12: ṁ jω(ω′)← bvc.
13: end for
14: Ṁ jω← the (θ+ 1)th smallest number among ṁ jω(ω′),∀w′ ∈Ω.
15: exit and return a packing cut (2.16).
16: end if
17: end for
18: exit and return null (no cuts).

23

2.3.3 Basic Separation and Scheduling Cuts

Since packing cut (2.16) does not suffice for verifying a solution (z, κ) ∈ Q, we need a precise
separation step as follows. For any integer (binary) solution (x̂, ẑ, κ̂) that passes the pre-filtering
(i.e., Algorithm 2.1 returns null), we explicitly know

• The set R(x̂) = { j ∈R : x̂ j = 1} of the ORs that are open.

• The number of surgeries assigned to each open OR j: A j(ẑ j) =
∑S

k=1
∑

i∈S ẑ j
ik.

• The kth surgery in each open OR j: ik(ẑ j) = i∗ such that ẑ j
i∗k = 1, for k = 1, . . . ,A j(ẑ j).

• The set Ω0(κ̂) = {ω ∈Ω : κ̂ω = 0} with no overtime.

First, note that it suffices to consider ORs in R(x̂). Plugging in the closed-form expression of
δ-solutions in (2.12), we have a linear separation problem for each OR j ∈R(x̂), with a feasibility
region defined as:

SP j(ẑ j, κ̂) :=
{
sk+1− sk ≥ 0, ∀k = 1, . . . ,A j−1

sk′ +

k−1∑
`=k′

ξωi` − sk ≤ εik , ∀k′ = 1, . . . ,k−1, k = 2, . . . ,A j, ω ∈Ω (2.20)

sk′ +

A j∑
`=k′

ξωi` ≤ T j, ∀k′ = 1, . . . ,A j, ω ∈Ω0(κ̂) (2.21)

sk ≥ 0, ∀k = 1, . . . ,A j
}
.

In the above, we simplify the notation A j(ẑ j), ik(ẑ j) as A j, ik, respectively. Constraint (2.20) im-
poses the maximum waiting-time tolerance in all the scenarios in Ω, while constraint (2.21) ensures
zero overtime only for scenarios in Ω0(κ̂). If SP j(ẑ j, κ̂) is infeasible, we generate a no-good cut

A j∑
k=1

(
1− z j

ikk

)
+

∑
ω∈Ω0(κ̂)

κω ≥ 1, (2.22)

which prohibits allocating the current sequence of surgeries to OR j in the future, if we continue to
have κω = 0 for allω ∈Ω0(κ̂). Noting that such a cut excludes one specific surgery sequence coupled
with one specific combination of scenarios at a time, it could be rather inefficient considering the
enormous number of possibilities. Thus, we propose another separation approach which generates
stronger cuts, each of which excludes a much shorter surgery sequence coupled with one single
scenario. This separation approach also avoids solving an optimization problem by using recursive
arithmetic.

24

2.3.4 Recursion-based Separation and Strengthened Scheduling Cuts

We use a to represent a sequence (or a prefix of a sequence) of surgeries. We let ak ∈ S denote the
kth element (surgery) in sequence a, and let a1:k be the k-sized prefix of sequence a (which is also
a sequence of surgeries). Let πω(a) represent the time in each scenario ω that the last surgery in
sequence a finishes. Note that this time value is not dependent on the OR, to which the sequence
is assigned. A recursive procedure for computing πω(a) is as follows.

Given an integer solution (x̂, ẑ, κ̂) of the master problem (2.13) that passes pre-filtering in Al-
gorithm 2.1, we can recover the sequence a j of surgeries at each open OR j with its kth element
denoted by a j

k. In particular, for any k ∈ {1, . . . ,A j},

a j
1:k =

(
i1(ẑ j), . . . , ik(ẑ j)

)
.

By definition, πω(a j
1:k) = δ

jω
k . It is reasonable to assume that at least one of the waiting-time

constraints in (2.7) attains equality. Incorporating the recursive expressions of δ-variables in (2.11),
we compute πω(a j

1:1), . . . ,πω(a j
1:A j

) recursively based on the incumbent solution πω(a j
1:1) = ξω

a j
1

, and

πω(a j
1:k) = max

{
s j

k, πω(a j
1:k−1)

}
+ ξω

a j
k

, for k = 2, . . . ,A j,where s j
k = max

ω∈Ω

{
πω(a j

1:k−1)
}
− εa j

k
. (2.23)

Our separation procedure iteratively computes πω(a j
1:k), ∀ω ∈ Ω and compares their values to T j,

with a goal to identify a minimal prefix of a j that cannot be finished within time T j in some scenario
w ∈Ω. The output of the method is a set E of three-tuples (a,ω, j) which suggests that if a scenario
ω has κω = 0, we should avoid assigning surgery sequence a (or any sequence that contains a as a
prefix) to OR j.

For some open OR j, suppose we compute πω(a j
1:k), ∀ω ∈ Ω for some k ∈ {1, . . . ,A j}. Let τ

be a mapping that maps the set {πω(a j
1:k) : ∀ω ∈ Ω} to a sequence of θ+ 1 scenarios, such that the

corresponding πω(a j
1:k)’s are the θ+ 1 largest values among {πω(a j

1:k) : ω ∈ Ω} and follow a non-
increasing order. We abbreviate the sequence τ({πω(a j

1:k) : ω ∈Ω}) as τ, and denote the nth element
in a sequence τ as τn. By definition,

πτ1(a j
1:k) ≥ · · · ≥ πτθ+1(a j

1:k) ≥ πω(a j
1:k), ∀ω not contained in sequence τ.

If πτ1(a j
1:k) ≤ T j, it implies that the current surgery sequence a j

1:k can be completed within the
time limit T j for all scenarios in Ω. Thus, we can compute πω(a j

1:k+1), ∀ω ∈ Ω to check a longer
sequence a j

1:k+1. Otherwise, we compare πτθ+1(a j
1:k) and T j. If πτθ+1(a j

1:k)> T j, since it is impossible
to find |Ω| − θ scenarios in which we can finish the sequence a j

1:k of surgeries within T j, we avoid
this sequence in the future iterations. This essentially adds |Ω| three-tuples (a j

1:k,ω, j), ∀ω ∈ Ω to

25

E . If πτθ+1(a j
1:k) ≤ T j, we iterate through (τ2, . . . , τθ) to search for some scenario τn ∈Ω0(κ̂) that has

πτn(a j
1:k) > T j. If found, add tuple (a j

1:k, τn, j) to E .
After the kth iteration, if E 6= ∅ we do not proceed to the (k + 1)th iteration, but generate cuts to

exclude the tuples in E and return to the first stage to re-compute the master problem (2.13). After
finishing the A j iterations for some OR j, we reset k = 1 and perform the same iterative steps for
the next open OR. After verifying all the open ORs, an empty set E indicates that (ẑ, κ̂) ∈ Q, or
equivalently, (x̂, ẑ, κ̂) is feasible to the CCSP model.

For each tuple (a,ω, j) ∈ E , let |a| be the number of surgeries in sequence a. We generate a
feasibility cut

|a|∑
k=1

(
1− z j

akk

)
+ κω ≥ 1, (2.24)

which is a strengthened variant of the no-good cut (2.22) in Section 2.3.3. Furthermore, note that
the values of πω(a1:`), ∀ω ∈ Ω have been readily computed for any prefix a1:` of a. Therefore, we
derive an auxiliary cut that exploits those values; specifically, consider the following conditional
inequalities:

z j
akk = 1, ∀k = 1, . . . , ` ⇒ πω(a1:`) ≤ T j + (M̈ jω−T j)κω ∀` = 1, . . . , |a|, (2.25)

where M̈ jω is a sufficiently large scalar that will deactivate the above inequality when κω = 1.
Constraint (2.25) infers adopting surgery sequence a1:` (or a surgery sequence that contains a1:` as
a prefix) in OR j only if πω(a1:`) ≤ T j for every ω ∈Ω0(κ). Clearly, any feasible solution (x,z, κ) to
the CCSP model must satisfy these conditions. Therefore, we mix the |a| inequalities in (2.25) and
attain a mixing cut (see Günlük and Pochet, 2001):

|a|∑
`=1

(πω(a1:`)−πω(a1:`−1))z j
a``
≤ T j + (M̈ jω−T j)κω, (2.26)

where we set πω(a1:0) = 0. Similar to Section 2.3.2, to compute valid M̈ jω for each j ∈ R and
ω ∈Ω, we optimize the LP relaxations of a set of 0-1 single knapsack problems:

m̈ jω(ω′) = max

 |a|∑
`=1

(πω(a1:`)−πω(a1:`−1))z j
a``

:
|a|∑
`=1

(πω′(a1:`)−πω′(a1:`−1))z j
a``
≤ T j, 0 ≤ z ≤ 1

 , w′ ∈Ω

via the greedy algorithm. We set M̈ jω to the (θ+ 1)th smallest number of m̈ jω(ω′), ∀w′ ∈Ω.
We refer to cuts (2.24) and (2.26) as scheduling cuts, to distinguish from the packing cuts (2.16)

in Section 2.3.2. We summarize the recursion-based separation approach in Algorithm 2.2, which

26

takes a solution (x̂, ẑ, κ̂) of the master problem (2.13) as an input, and returns a set C of scheduling
cuts. An empty set C implies that the solution (x̂, ẑ, κ̂) is feasible to the CCSP model.

Algorithm 2.2 GenCut S(x̂, ẑ, κ̂): a scheduling-cut generation subroutine
1: E ← ∅.
2: for every open OR j ∈R(x̂) do
3: for k = 1, . . . ,A j do
4: compute δ jω

k (or equivalently, πω(a j
1:k)) for every ω ∈Ω, according to (2.23).

5: τ← τ({δ jω
k : ω ∈Ω}).

6: if T j ∈ (−∞, δ jτθ+1
k) then

7: E ← {(a j
1:k,ω, j) : ω ∈Ω}, and go to Step 20.

8: end if
9: if T j ∈ [δ jτθ+1

k , δ
jτ1
k) then

10: n← 2.
11: while δ jτn

k > T j do
12: if τn ∈Ω0(κ̂) then
13: E ← {(a j

1:k, τn, j) : ω ∈Ω}, and go to Step 20.
14: end if
15: n← n + 1.
16: end while
17: end if
18: end for
19: end for
20: C← ∅.
21: for (a,ω, j) ∈ E do
22: add cuts (2.24) and (2.26) to C.
23: end for
24: return C.

2.3.5 Branch-and-Cut Algorithm and Computational Enhancements

We consolidate the foregoing pre-filtering and recursion-based separation procedures in a branch-
and-cut framework. At each branching node ν, we solve a linear program as:

NR(ν) : min cTx

s.t. (2.1)–(2.3), 0 ≤ x ≤ 1, 0 ≤ z ≤ 1∑
ω∈Ω

κω ≤ θ, 0 ≤ κ ≤ 1 (2.27a)

α>z +σ>κ ≥ γ, ∀(α,σ,γ) ∈ L (2.27b)

x j = 0,∀ j ∈ F0
x(ν), x j = 1,∀ j ∈ F1

x(ν) (2.27c)

27

z j
ik = 0,∀(j, i,k) ∈ F0

z (ν), z j
ik = 1,∀(j, i,k) ∈ F1

z (ν) (2.27d)

κω = 0,∀ω ∈ F0
κ (ν), κω = 1,∀ω ∈ F1

κ (ν). (2.27e)

Constraint (2.27a) represents the linear relaxation of Γ(β); set L collects the generated packing and
scheduling cuts that aim at enforcing (z, κ) ∈ Q; and constraints (2.27c)–(2.27e) specify the values
of x, z and κ at node ν. Specifically, F0

x(ν) and F1
x(ν) are disjoint subsets of R, F0

z (ν) and F1
z (ν) are

disjoint subsets of R×S ×S , and F0
κ (ν) and F1

κ (ν) are disjoint subsets of Ω.
If NR(ν) is infeasible or it attains an optimal objective value that is no better than an incumbent

upper bound obj, we fathom node ν. Otherwise, let (x̂, ẑ, κ̂) denote the current solution, and pass
it to Algorithm 2.1, and then pass it to Algorithm 2.2 if it is not pre-filtered. Recompute model
NR(ν) whenever a packing cut or a scheduling cut is generated into the set Q′ of cuts in (2.27b).
This is computationally more efficient than recomputing after collecting all possible cuts. If no
cuts are derived from subroutines in Algorithms 2.1 and 2.2, then (x̂, ẑ, κ̂) is feasible. We use its
associated objective value to update the upper bound obj, and proceed to other branching nodes
that have not been fathomed. Algorithm 2.3 explains the steps of the branch-and-cut approach.

We implement some computational enhancements to Algorithm 2.3 as follows. First, we order
ORs j = 1, . . . ,R such that T1 ≥ · · · ≥ TR. Therefore, both the packing cut (2.16) and the scheduling
cuts (2.24) and (2.26), derived based on a particular OR j, are also valid for any j′ = j+1, . . . ,R. We
therefore propagate each cut to every applicable OR, which tends to strengthen the model NR(ν)
at each branching node ν. Moreover, we store the values of πω(a), ∀ω ∈ Ω for all distinct surgery
sequences a, so that if we encounter the same sequence again, we do not have to re-compute the
result. This avoids repeatedly computing πω(a), ∀ω ∈Ω for some common prefix a choices.

2.4 Distributionally Robust Variant

We consider a DR variant of the CCSP model, for the case when the distribution of ξ is unknown,
but only Nobs data samples, {ξ̂n}

Nobs
n=1 , are known. We formulate distributionally robust chance-

constrained surgery planning (DR-CCSP) to ensure the worst-case (i.e., maximum) probability of
having OR overtime being no more than 1− β for any distribution of ξ that can be deduced from
data. This section explains (i) how to derive a discrete support and an empirical probability mass
function (PMF) of ξ; (ii) how to construct an uncertainty set for the ambiguous distribution of ξ
using the support and the empirical PMF derived in Step (i); and (iii) how to solve the DR model
based on the uncertainty set constructed in Step (ii). We use the φ-divergence measures in statistics
(recently used in the stochastic optimization literature such as Ben-Tal et al., 2013; Jiang and Guan,
2015) to build the uncertainty set.

28

Algorithm 2.3 A branch-and-cut procedure for algorithm for solving model (2.10)

1: obj←∞.
2: Initialize NodeList← {ν0}, where Fn

x(ν0) = ∅, Fn
z (ν0) = ∅, Fn

κ (ν0) = ∅ for n = 0 and 1.
3: choose a branching node ν ∈ NodeList.
4: solve NR(ν).
5: if attain (x̂, ẑ, κ̂) with cT x̂ < obj then
6: cut← GenCut P(x̂, ẑ, κ̂).
7: if cut 6= null then
8: add cut to L, and go to Step 4.
9: end if

10: if (x̂, ẑ, κ̂) is integral then
11: C← GenCut S(x̂, ẑ, κ̂).
12: if C 6= ∅ then
13: add cut to L for every cut in C, then go to Step 4.
14: else
15: obj← cT x̂.
16: end if
17: else
18: branch on a binary variable having a fractional solution value and add two new branching

nodes to NodeList.
19: end if
20: end if
21: NodeList← NodeList\{ν}.
22: if NodeList is empty then
23: report obj as the optimal objective value.
24: else
25: go to Step 3.
26: end if

2.4.1 Discrete Support and Empirical Distribution of ξ

Although the random vector ξ resides in a continuous subspace of RS
+, we consider a finite and

discrete support Ξ by partitioning the outcome space of ξ into K subregions, denoted by Ξ =

{B1, . . . ,BK}. The true PMF f : Ξ→ R+ that provides the chance of ξ landing in each subregion is
ambiguous. We use an empirical PMF f0 : Ξ→ R+ associated with the observations {ξ̂n}

Nobs
n=1 as an

estimation, calculated by

f0(Bk) =

∑Nobs
n=1 1

(
ξ̂n ∈ Bk

)
N

, (2.28)

where 1(·) is an indicator function that returns value 1 if · is true and 0 otherwise. When the
durations of surgeries in S are mutually independent, construct Ξ and f0 from their marginal coun-
terparts as follows. For every surgery i, we let [ξ

i
, ξi] be the range of the random duration ξi. We

29

partition [ξ
i
, ξi] into intervals Bi

1, . . . ,B
i
Ki

, resulting in a finite and discrete support Ξi = {Bi
k}

Ki
k=1 for

ξi. For each i ∈S, let f i and f i
0 : Ξi→R+ be the true and the empirical marginal PMFs, respectively.

We calculate f i
0 of each random ξi, i ∈ S as

f i
0(Bi

ki
) =

∑Nobs
n=1 1

(
ξ̂n

i ∈ B
i
ki

)
N

, ki = 1, . . . ,Ki (2.29)

Then, the support of ξ is the Cartesian product of the supports of ξi, i ∈ S. That is, Ξ =

{B1, . . . ,BK}= "
i∈S

Ξi, where K =
∏

i∈S Ki and each subregion Bk is given by an S -tuple (B1
k1
, . . . ,BS

kS
)

that chooses one Bi
ki

from the support Ξi for each i ∈ S. The empirical PMF f0 is the tensor product
of the marginal PMFs, and thus for any Bk ∈ Ξ, we obtain

f0(Bk) =
∏
i∈S

∑Nobs

n=1 1
(
ξ̂n

i ∈ B
i
ki

)
N

 . (2.30)

The above procedures discretize the support of a continuous random vector to derive an approx-
imate PMF. Using this discrete support, we employ φ-divergence measures to bound the distance
between the true and empirical distribution functions of ξ, based on the results discussed in Ben-
Tal et al. (2013). The authors show the bounds on the divergence distance based on the choice
of φ-functions, allowed maximum distance, size of data, dimension of decisions, and a specified
confidence level.

2.4.2 Reformulating with φ-Divergence Confidence Set

We formulate the DR-CCSP model by replacing the chance constraint (2.8) in the CCSP model
with

inf
f∈F

P
{
δ

j
S (ξ) ≤ T j, ∀ j ∈R

}
≥ β,

where F represents an uncertainty set for the unknown PMF f of ξ. Following Jiang and Guan
(2015), we reformulate such a DR chance constraint into a regular chance constraint if using a class
of uncertainty sets that are constructed based on statistical φ-divergence measures. The results for
DR-CCSP are specified as follows.

Given a function φ : R→ R that is convex over R+, and satisfies

(P1) φ(1) = 0;

(P2) 0φ(a/0) = a limt→∞φ(t)/t for any a > 0, and = 0 if a = 0;

30

(P3) φ(a) = +∞ for a < 0,

measure the distance between the true and empirical PMFs, f and f0, respectively, by φ-divergence:

Dφ(f ‖ f0) =
∑

k=1,...,K

φ

(
f (Bk)
f0(Bk)

)
f0(Bk).

Examples of φ-divergence are: Kullback-Leibler divergence with φKL(t) = t log t− t + 1; Hellinger
divergence with φH(t) = (

√
t−1)2; modified χ2-distance divergence with φχ2(t) = (t−1)2; and vari-

ation distance divergence with φv(t) = |t−1|. See Pardo (2005) for the mathematical forms of more
φ-divergence measures.

The reformulation of DR chance constraint is based on a class of uncertainty sets Fφ(d), ∀d ≥ 0.
Each Fφ(d) consists of distribution functions having a φ-divergence distance to f0 no more than
the given parameter d, i.e.,

Fφ(d) =

 f : Dφ(f ‖ f0) ≤ d,
∑

k=1,...,K

f (Bk) = 1, f (Bk) ≥ 0, ∀k = 1, . . . ,K

 .
The reformulation requires a mild assumption that limt→+∞φ(t)/t = +∞, which is satisfied by many
φ-functions that obey (P1)–(P3).

Theorem 2.1. (Jiang and Guan, 2015) For any constant d ≥ 0, the following DR chance constraint

inf
f∈Fφ(d)

P
{
δ

j
S (ξ) ≤ T j, ∀ j ∈R

}
≥ β (2.31)

is equivalent to

P0
{
δ

j
S (ξ) ≤ T j, ∀ j ∈R

}
≥min{1,Vφ(β,d)} (2.32)

where Vφ(β,d) = min
ρ>0,λ∈R

 β+ρd−λ+ρφ∗
(
λ
ρ

)
ρ
(
φ∗

(
λ
ρ

)
−φ∗

(
λ−1
ρ

))
 ,

where P0 is the probability measure defined by the empirical PMF f0, and function φ∗ : R →
R∪{+∞} is the conjugate of φ defined as φ∗(t) = supl∈R{tl−φ(l)}.

Replacing (2.8) with (2.32), obtain the DR-CCSP model

min
{
cTx : (2.1)–(2.7), x,z binary, s, δ ≥ 0, (2.32)

}
, (2.33)

which remains a regular chance-constrained program, to which the algorithms discussed in Sec-
tion 2.3 can be applied.

31

2.4.3 Confidence Set Configuration

When constructing an uncertainty set Fφ(d), decision makers can choose the value of d according
to their risk-aversion preference. In general, it is desirable to keep d smaller to yield a tighter
uncertainty set Fφ(d). However, when there are few observations (i.e., small Nobs) or the distri-
bution function is complex (e.g., large K), d must be increased to maintain the confidence level.
Specifically, Ben-Tal et al. (2013) propose to use

dJ =
φ
′′

(1)
2Nobs

χ2
m−1,1−α, (2.34)

based on the statistical inference results given by Pardo (2005), to asymptotically guarantee that
set Fφ(dJ) contains the true PMF at (1−α) confidence when Nobs goes to infinity. Here, φ

′′

(1) is
the second derivative of function φ evaluated at 1; m is the cardinality of the support of the random
vector; and χ2

m−1,1−α is the 1−α percentile of the χ2
m−1-distribution, i.e., P(X ≥ χ2

m−1,1−α) = α, of
which X follows a χ2

m−1-distribution. In our problem, note that m = K =
∏

i∈S Ki in our problem,
which could be extremely large dependent on the number of surgeries and the size Ki of the discrete
support for every ξi. This could lead to a very large dJ and subsequently a very conservative
uncertainty set Fφ(dJ), even for small- or medium-sized observation samples.

Recalling that we consider independent distributions of surgery durations ξi, i ∈ S, we use a
marginal counterpart of dJ denoted as

dM =
∑
i∈S

di,

where each di is derived according to (2.34) for bounding the φ-divergence distance of the marginal
PMFs f i and f i

0, such that di =
φ′′(1)
2Nobs

χ2
Ki−1,1−α. Comparing

∑
i∈S χ

2
Ki−1,1−α with χ2

K−1,1−α, the value
of dM is usually much smaller than dJ, yielding a less conservative DR-CCSP model. To justify
the calculation of dM, we consider the set, for each i ∈ S:

F̃ i
φ =

 f i : Dφ(f i‖ f i
0) ≤ di,

∑
ki=1,...,Ki

f i(Bi
ki

) = 1, f i(Bi
ki

) ≥ 0, ∀ki = 1, . . . ,Ki

 ,
which is an asymptotically 1−α-confidence uncertainty set of the unknown f i. Given the indepen-
dence of ξi, i ∈ S and letting ⊗ denote the tensor product, we join the sets F̃ i

φ of all i ∈ S and attain
an uncertainty set of the unknown PMF f as

F̃φ =
{
f = f 1⊗ · · ·⊗ f S : f i ∈ F̃ i

φ

}
, (2.35)

which is tighter than Fφ(dJ) where dJ is given by (2.34). Note that Fφ(dM) trades off between

32

Fφ(dJ) and F̃φ. In particular, for Hellinger and Kullback-Leibler (KL) divergence (respectively
denoted by φH and φKL below), we have Fφ(dM) ⊇ F̃φ, because a joint Hellinger (or KL) distance
is bounded above by (or equal to) its marginal counterpart (see Pollard, 1997), i.e.,

DφH

(
f 1⊗ · · ·⊗ f S ‖ f 1

0 ⊗ · · ·⊗ f S
0

)
≤

∑
i∈S

DφH

(
f i‖ f i

0

)
,

DφKL

(
f 1⊗ · · ·⊗ f S ‖ f 1

0 ⊗ · · ·⊗ f S
0

)
=

∑
i∈S

DφKL

(
f i‖ f i

0

)
.

2.5 Computational Studies

In this section, we conduct computational studies for demonstrating our models and solution ap-
proaches. We derive insights about stochastic surgery planning under distributional ambiguity of
random parameters, via testing instances sampled from probability density functions fit to real data
from an Ambulatory Surgery Center (ASC). We describe the data and our experimental design in
Section 2.5.1. We demonstrate the computational efficacy of our approaches for the CCSP model
in Section 2.5.2. We compare the performance of solutions from CCSP versus from cost-based
models (Section 2.5.3), integrated versus separated allocation and scheduling (Section 2.5.4), and
CCSP versus DR-CCSP (Section 2.5.5).

2.5.1 Experimental Design and Setup

We generate all the instances based on the data collected in an ASC at the Mayo Clinic in
Rochester, Minnesota (see Gul et al., 2011, for a detailed description of this surgery practice).
The original data contains three key steps of surgical services: (i) intake, which starts when a pa-
tient arrives at the surgical suite to initiate check-in, and ends when the patient reaches an OR bed;
(ii) intra-operative care, which starts when a patient is admitted to the OR area and ends when the
patient is taken to a recovery bed; and (iii) recovery, which starts when a patient is admitted to a
recovery area and ends when the patient is discharged. We use probability density functions fit to
the data for surgical procedures in step (ii).

Data description: Table 2.1 above summarizes the mean, standard deviation, and number of
cases of each surgery type (defined by type of surgery and its surgical group). We consider 25
surgeries and specify the type of each surgery according to the percentages of different types of
surgeries at the ASC as shown in Column Percentage. Using these percentages, we compute the
number of surgeries of each type among the 25 surgeries, which could be fractional. We round the
numbers to integers (see Column Tested #) that add up to 25.

33

Table 2.1: Summary statistics of surgeries of all types based on the extracted data

Type Group No. Mean St. dev. # of cases Percentage Tested #
Oral Maxillofacial 1 33.00 19.11 1472 14.04% 4

2 36.00 33.88 1919 18.30% 4
Pain Medicine 1 19.78 12.12 58 0.55% 0

2 20.49 10.86 244 2.33% 1
3 20.93 15.08 1551 14.79% 4
4 40.50 26.12 24 0.23% 0
5 34.01 17.42 970 9.25% 2

Ophthalmology 1 41.63 16.43 1696 16.17% 4
2 77.66 44.03 589 5.62% 1

Urology 1 53.30 27.70 329 3.14% 1
2 31.30 16.37 640 6.10% 2
3 138.16 56.77 153 1.46% 0
4 55.78 22.89 345 3.29% 1
5 80.33 43.76 496 4.73% 1

Table 2.2: Normalized opening costs and operating hours of the ORs

OR j
1 2 3 4 5 6 7 8

c j 0.9 0.9 0.9 1.0 1.0 1.1 1.1 1.1
T j (hours) 8 8 8 9 9 9 10 10

Each OR in the ACS can be used by any surgery group for any surgery type. (For situations
when this is not the case, one can simply enforce the corresponding z or y variables being zero, if
surgery i cannot be performed in OR j.) Table 2.2 presents the normalized cost c j of opening OR j

for T j hours. The ASCs often stagger the closing time of ORs, i.e., three operate 7am–3pm, three
operate 8am–5pm, and two operate 8am–6pm. The cost of opening an OR varies among different
hospitals, depending on the fixed cost of equipment maintenance and the cost of nurses and other
personnel required to support surgery operations. Thus, we normalize the values of c j, j ∈ R,
and use 1 : 1 ratio of a fixed daily cost of operating an OR to an hourly variable cost. We set
c j = 1 = 0.1 + 0.1×9 (hours) for an OR j that operates from 8am to 5pm. Consequently, the costs
of operating the other two types of ORs, open for 8 and 10 hours, are 0.9 and 1.1, respectively.

Instance generation: Gul et al. (2011) conduct hypothesis tests and show that the durations
of each surgery type are well approximated by Log-Normal distributions. In practice, it may
not be feasible to collect enough data for deriving full distributional information. We consider
Nobs observed data samples, for which we vary the size Nobs in our tests. We sample ξ̂n

i , n =

34

1, . . . ,Nobs from S independent Log-Normal distributions, with the mean µi and standard deviation
σi of each surgery i ∈ S from Table 2.1. We classify the models into two types: (i) two-stage
stochastic optimization models (including CCSP and other model variants that assume fully known
distributions), for which we fit the distribution of ξ to match {ξ̂n}

Nobs
n=1 ; and (ii) DR-CCSP which we

optimize by solving its CCSP counterpart and using an empirical distribution of ξ that could be
the same as the distribution we derive for the corresponding type (i) models. For both type (i) and
type (ii) models, we apply the Monte Carlo sampling to generate independent samples of ξ from
the hypothesized distribution. The MIP equivalent formulations are constructed based on these
samples, corresponding to the set Ω in our previous models. The details are as follows.

• For stochastic optimization models, to emulate an instance with insufficient observations, we
compute the empirical mean and standard deviation of each surgery’s duration time, but have
to assume specific distribution types. We pick three distributions that are frequently used for
modeling service durations. We use the Monte Carlo sampling approach to generate NMC

scenarios of ξ by following independent Normal, Log-Normal and Gamma distributions of
ξi with mean µ̂i and standard deviation σ̂i computed based on {ξ̂n

i }
Nobs
n=1 , for all i ∈ S. We

denote the three sets of samples as {ξω : ω ∈ ΩNor(NMC)}, {ξω : ω ∈ ΩLog(NMC)} and {ξω :
ω ∈ ΩGam(NMC)}. In particular, if a sampled ξωi < 0 for some scenario ω ∈ ΩNor(NMC), and
surgery i ∈ S, we replace the value with zero.

• In DR-CCSP, for each surgery i we let [ξ
i
, ξi] be the observed data range, with ξ

i
and ξi being

the minimum and the maximum values in {ξ̂n
i }

Nobs
n=1 , respectively. We then discretize the range

into ∆i-minute intervals, for some positive integer ∆i. Specifically, we have Ki = b(ξi−ξi
)/∆ic

intervals, such that for each i ∈ S, we let intervals Bi
k = [ξi −∆i(Ki − k + 1), ξi −∆i(Ki − k)],

for all k = 2, . . . ,Ki, and set the interval Bi
1 = [ξ

i
, ξi −∆i(Ki − 1)]. (Note that if the range

is not divisible by ∆i, we choose to extend the first interval, given that we are restrict-
ing the probability of OR overtime that is affected more by excessively long surgery du-
rations than short ones. The purpose is to keep the precision for the right tail of the em-
pirical distribution.) To solve the CCSP with the new chance constraint (2.32), we follow
the empirical PMFs f i

0 of ξi for all i ∈ S according to (2.29), and sample a set of inter-
vals {(B1

ω1
, . . . ,BS

ωS
) : ω = (ω1, . . . ,ωS) ∈ ΩDR} with |ΩDR| = NMC. We obtain realizations

of surgery durations as {ξω = (ξω1
1 , . . . , ξωS

S) : ω = (ω1, . . . ,ωS) ∈ ΩDR} where each ξωi
i is the

midpoint of interval Bi
ωi

.

To evaluate the performance of each solution, we use a post-optimization simulation sample
denoted by {ξω : ω ∈ Θ} containing Nsim = 10,000 independent scenarios, in which ξωi , ω ∈ Θ are
sampled from the Log-Normal distributions with mean µi and standard deviation σi of each i ∈ S.

35

Moreover, we numerically test the robustness of optimal surgery plans produced by the CCSP
and DR-CCSP models on instances with random surgery cancellations. We perform “stress tests”
by assuming probability qi of canceling surgery i, ∀i ∈ S. Then for each surgery i, we multiply
every realization ξωi , ∀ω ∈ Θ by a 0-1 Bernoulli random variable that has probability qi for being
0. We use qi = 0.005 and qi = 0.01,∀i ∈ S to attain two more simulation samples having Nsim

scenarios denoted as {ξω : ω ∈ Θ0.005} and {ξω : ω ∈ Θ0.01}, respectively.

Other parameters and configurations: We set the waiting tolerance of surgery i to εi = w1µi +

w2σi according to the mean µi and standard deviation σi in Table 2.1, where (w1,w2) = (0.2,0.1).
The intuition is that the waiting tolerance is larger if a surgery takes longer time and has larger
variance. Also, the ratio w1/w2 = 2 indicates that εi has higher dependence on the mean µi than
the standard deviation σi, for each surgery i. Testing several choices of (w1,w2) showed that the
results were not very sensitive to changes in the neighborhood of (0.2,0.1). For larger changes,
due to too large or too small εi, the waiting-time constraints are either relaxed, or we were unable
to obtain a feasible solution to one or both of CCSP and DR-CCSP models.

All computations are performed on a Linux workstation with four 3.4 GHz processors and 16
GB memory. All involved MIP and linear programming models are solved by CPLEX 12.6 via
ILOG Concert Technology. We set the computational time limit to 7200 seconds. For each test
with the same set of parameters, we test ten independently generated replications.

Post-optimization simulation: To evaluate the performance of a solution (x,z, s) in any simula-
tion sample (i.e., Θ, Θ0.005, or Θ0.01), we first derive the actual schedules δ jω for every open OR
j ∈R(x) in every scenario ω according to the closed-form expressions for δ jω in (2.12). For each
scenario w, we calculate:

• total overtime: T ω
over =

∑
j∈Rmax{0, δ jω

S −T j};

• total waiting time: T ω
wait =

∑
j∈R

∑S
k=2 max{0, δ jω

k−1− s j
k};

• total idle time: T ω
idle =

∑
j∈R(δ jω

S −
∑S

k=1
∑

i∈S ξ
ω
i z j

ik).

The next section summarizes a variety of statistics of the above outcome values for analyzing
solution effectiveness and robustness.

2.5.2 Computational Efficacy

First, we compare the branch-and-cut algorithm explained in Section 2.3 with directly calling
the solver to solve the MIP reformulation of the CCSP problem, i.e., (2.10), on samples {ξω : ω ∈

36

ΩLog(NMC)}, for NMC = 100∼500, under β= 0.90 and β= 0.95. We use Nobs = 50 data observations
to obtain the empirical means and standard deviation for service durations that follow independent
Log-Normal distributions. For each NMC and parameter setting, we present the results of the
ten replications in Table 2.3. Since no MIP formulations can be directly solved within the time
limit, we report the average, maximum, and minimum optimality gaps reported by CPLEX; for the
branch-and-cut algorithm, we report the average, maximum, and minimum solution time together
with the average number of packing cuts and scheduling cuts generated.

Table 2.3: Comparison of the proposed branch-and-cut approach versus directly calling the solver
in solving the MIP reformulation of CCSP

Computing MIP Reformulation directly Branch-and-Cut Algorithm 2.3
optimality gap time (seconds) # of cuts

β NMC avg max min avg max min packing scheduling
0.90 100 9% 43% 4% 57 125 19 72 20

200 33% 84% 17% 170 595 47 297 117
300 46% 84% 29% 788 1351 453 289 325
400 72% 84% 10% 3444 4270 1833 433 544
500 - - 72% 3524 6890 2434 374 2370

0.95 100 55% 87% 22% 23 75 3 77 20
200 62% 82% 5% 99 201 27 314 666
300 63% 82% 5% 812 2998 313 462 651
400 - - 72% 3900 4832 2111 690 960
500 - - 72% 4175 7101 3772 840 3170
“-”: the solver fails to attain a finite gap for some instances within 7200 seconds.

As compared to directly solving the MIP formulation, Table 2.3 shows that the branch-and-cut
approach in Algorithm 2.3 efficiently solves all the instances to optimum. As NMC increases, the
number of scheduling cuts increases faster than the number of packing cuts; the average computa-
tional time for β= 0.95, which is initially shorter, increases faster than the average time for β= 0.90
when NMC increases, and becomes longer than for the case of β = 0.90 when NMC ≥ 300.

2.5.3 Chance-Constrained Model versus Cost-Based Model

The existing literature on stochastic surgery planning applies cost-based approaches, which pe-
nalize undesirable outcomes (e.g., overtime, waiting time, idle time, etc.) and minimize the total
expected penalty cost. We compare CCSP with a cost-based model, which penalizes the expected
overtime

min

∑j∈R c jx j +
1
|Ω|

∑
ω∈Ω

cover

∑
j∈R

max{0, δ jω
S −T j} : (2.1)–(2.7), x,z binary, s, δ ≥ 0

 , (2.36)

37

where cover denotes unit overtime cost. We set the smallest cover = 0.50, as in Denton et al. (2010),
which represents the case where two hours of OR overtime costs the same as opening a new OR that
operates from 8am to 5pm. We continue using Nobs = 50 data observations. For Ω = ΩLog(NMC)
with NMC = 500, we compare CCSP and the cost-based model (2.36) for various β- and cover-
values. We evaluate each solution in the simulation sample {ξω :ω ∈Θ}, and present the simulation
results in Table 2.4. In particular, we report the mean (mean), standard deviation (stdev), quan-
tiles (50% and 95%), and the skewness (skew) of the outcomes T ω

over, ω ∈ Θ. We also report the
simulated probability of existing overtime in any OR (Prob = (1/|Θ|)

∑
ω∈Θ 1

(
T ω

over > 0
)
) and the

total cost of opening ORs followed by the number of open ORs (Copen (# of ORs)) for each solu-
tion. In all the tables of this chapter, the results are similar for all ten replications; the variation is
no more than 5%, suggesting a tight confidence interval.

Table 2.4: Comparison of the chance-constrained model and the cost-based model in cost and
zero-overtime reliability

CCSP

β Copen (# of ORs)
overtime T ω

over, ω ∈ Θ

Prob mean stdev 50% 95% skew
1.00 2.9 (3) 0.10 6 26 0 31 7.6
0.95 2.2 (2) 0.12 13 38 0 56 5.2
0.90 2.1 (2) 0.21 18 46 0 66 4.5
0.85 2.1 (2) 0.32 21 48 0 82 4.0

The Cost-based Model

cover Copen (# of ORs)
overtime T ω

over, ω ∈ Θ

Prob mean stdev 50% 95% skew
1.25 2.1 (2) 0.93 47 87 53 152 1.6
1.00 2.0 (2) 0.99 196 101 184 325 0.8
0.75 2.0 (2) 1 266 110 252 408 0.9
0.50 1.1 (1) 1 345 120 333 492 0.7

In Table 2.4, increasing β and cover reduces the mean of overtime monotonically in the two
models. The CCSP model, however, allows better control of the overtime probability. As β in-
creases from 0.85 to 1.00 (or equivalently, the admissible probability of OR overtime decreases
from 0.15 to 0), the chance of observing overtime in the simulation decreases from 0.32 to 0.10.
Although these values do not meet the corresponding β targets, they are significantly better than
the values yielded by the cost-based solution (which are all higher than 0.90 for any cover between
0.50 and 1.25). The CCSP solutions also make the simulated overtime, desirably, less variable
and more right-skewed. They also perform better, based on the mean, standard deviation, and the
50% and 95% quantiles. In particular, all of the CCSP solutions yield zero overtime at the 50%
quantile, meaning that at least half of the scenarios in the simulation sample do not have OR over-

38

time if implementing the CCSP solutions. On the other hand, CCSP solutions yield higher cost of
opening ORs. In particular, the CCSP model opens three ORs, whereas the cost-based model only
opens two when β = 1.00, and the CCSP model opens two ORs, whereas the cost-based model
only opens one when β = 0.85.

To better demonstrate the tradeoff between overtime and waiting time given by the two models,
Figure 2.1 plots the summed (T ω

wait,T
ω

over) over the ten replications of instances for each scenario
ω ∈ Θ. From Figure 2.1, we observe that the optimal CCSP solutions result in shorter waiting in
most of the scenarios, and thus have much better average waiting time than the solutions given by
the cost-based model. In the worst case, the cost-based model almost doubles the total waiting
time than the CCSP model for any (β,cover)-values we test. Although the cost-based solutions have
lower cost of opening ORs, they tend to over-pack ORs and produce schedules that perform poorly
in terms of overtime probability.

2.5.4 Integrating Versus Separating Allocation and Scheduling

We want to determine if using the integrated model brings any significant gains. Thus, we compare
CCSP with a model where we separately consider a CCBP problem and then a chance-constrained
surgery scheduling (CCSS) problem. The procedure is as follows. First, we pack surgeries with
random durations into ORs seamlessly, such that the probability of exceeding the standard oper-
ating time length of any OR is no more than 1− β. The formulation is presented in (2.14). After
solving that CCBP problem, we pass its optimal solution (x′,y′) to the following CCSS which
enforces the waiting time restriction, while maximizing the probability of no overtime in any OR,
i.e.,

β̄(x′,y′) = max
1
|Ω|

∑
ω∈Ω

1
(
δ

jω
S (ξ) ≤ T j, ∀ j ∈R

)
s.t.

S∑
k=1

z j
ik = y′i j ∀i ∈ S, j ∈R (2.37)∑

i∈S
z j

ik ≤ x′j ∀k = 1, . . . ,S , j ∈R (2.38)

(2.3)–(2.7), z binary, s, δ ≥ 0

where (2.37) and (2.38) build the relations between z and the given y′ and x′, respectively. Letting
Ω = ΩLog(NMC) with NMC = 500, we optimize CCSS to obtain a solution (z′, s′, δ′). If β̃(x′,y′) < β,
it implies that the allocation and scheduling solution given by solving CCBP followed by CCSS,
is not feasible to the original model CCSP.

We compare a CCSP solution (x̂, ŷ) and a CCBP solution (x′,y′), for the cost of opening ORs

39

0 5k 10k 15k 20k
0

400

800

1200

waiting

ov
er
tim

e

β=1

0 5k 10k 15k 20k
0

400

800

1200

waiting

ov
er
tim

e

β=0.95

0 5k 10k 15k 20k
0

400

800

1200

waiting

ov
er
tim

e

β=0.9

0 5k 10k 15k 20k
0

400

800

1200

waiting

ov
er
tim

e

β=0.85

0 5k 10k 15k 20k
0

400

800

1200

waiting

ov
er
tim

e

cover=1.25

0 5k 10k 15k 20k
0

400

800

1200

waiting

ov
er
tim

e

cover=1

0 5k 10k 15k 20k
0

400

800

1200

waiting

ov
er
tim

e

cover=0.75

0 5k 10k 15k 20k
0

400

800

1200

waiting

ov
er
tim

e

cover=0.5

Figure 2.1: Comparison of the CCSP model (left) and the cost-based model (right) in (T ω
wait,T

ω
over)

40

Table 2.5: Comparison of the integrated model CCSP versus the allocation-only model CCBP

Copen (# of ORs) β̄(·) as in CCSS
β = 0.85 0.90 0.95 0.85 0.90 0.95

CCBP 2.0 (2) 2.0 (2) 2.2 (2) 0.75 0.79 0.82
CCSP 2.1 (2) 2.1 (2) 2.9 (3) 0.89 0.93 0.95

Overtime Prob mean 50% 95%
β = 0.85 0.90 0.95 0.85 0.90 0.95 0.85 0.90 0.95 0.85 0.90 0.95

CCBP 0.46 0.31 0.25 24.2 20.1 14.8 3.1 2.6 2.1 104.9 93.6 74.1
CCSP 0.32 0.21 0.12 21.2 17.6 13.1 0.4 0.3 0.0 82.1 65.8 55.7

(Copen), and the maximum probability of no overtime when fixing them in CCSS, i.e., the values of
β̄(x̂, ŷ) and β̄(x′,y′). We also implement the solutions in the post-optimization simulation sample
Θ, and present the simulated probability of overtime existence (Prob) and the mean of overtime
(mean; in minute). We test β = 0.85, 0.90 and 0.95, and present the results in Table 2.5.

As expected, the allocation-only CCBP model yields lower cost of opening ORs, since it is a
relaxation of CCSP which assumes no idle time between adjacently allocated surgeries. However,
given an allocation decision passed from CCBP, there might not exist feasible schedules to guaran-
tee the desired β probability of no overtime. In Table 2.5, all of the CCSP solutions yield β̄(x̂, ŷ)> β
in CCSS, which must be true because the target probability β is imposed on sufficiently many sce-
narios in ΩLog(NMC) to satisfy the chance constraint in CCSP. In contrast, CCBP solutions perform
poorly and have β̄(x′,y′) < β for the three β-values tested. Moreover, CCBP yields solutions with
significantly higher overtime probability in the simulation sample, longer means of overtime, and
longer overtime at both the 50% and 95% quantiles. To avoid such a performance gap, a decision
maker may have to intentionally increase the target probability β when using CCBP for planning
ORs, but doing so may lead to multiple computational iterations and overly conservative solutions
with unnecessarily high OR opening cost.

2.5.5 Incorporating Data Ambiguity via Distributionally Robust Model

We conduct numerical experiments to illustrate the value of considering distribution ambiguity
and solving DR-CCSP. Section 2.5.5.1 investigates the sensitivity of CCSP solutions to distribu-
tional assumptions. Section 2.5.5.2 designs the parameters for DR-CCSP and compares the results
with CCSP. Section 2.5.5.3 shows how the data size Nobs affects the performance of DR-CCSP
solutions.

41

2.5.5.1 CCSP solution sensitivity to the distribution type

In addition to Log-Normal, we consider two other distributions, Normal and Gamma, that are
commonly used for modeling random service durations. We solve CCSP on the three randomly
generated samples {ξω : ω ∈ ΩNor(NMC)}, {ξω : ω ∈ ΩLog(NMC)}, and {ξω : ω ∈ ΩGam(NMC)}, all
with NMC = 100. We set β to 0.95, 0.90 and 0.85. Table 2.6 presents the simulation results of
CCSP solutions in the simulation sample Θ.

Table 2.6: Performance of CCSP solutions under different distribution assumptions

Distribution β
Copen overtime

(# of open ORs) Prob mean stdev 50% 95% skew
Log-Normal 0.95 2.2 (2) 0.12 13 39 0 56 5.2

0.90 2.1 (2) 0.21 18 46 0 66 4.5
0.85 2.1 (2) 0.32 21 48 0 82 4.0

Gamma 0.95 2.8 (3) 0.18 8 32 0 49 7.1
0.90 2.8 (3) 0.19 12 37 0 53 5.3
0.85 2.7 (3) 0.28 19 42 0 64 4.5

Normal 0.95 2.8 (3) 0.19 9 32 0 50 7.1
0.90 2.7 (3) 0.20 10 34 0 51 6.8
0.85 2.2 (2) 0.31 20 45 0 71 5.3

Distribution β
waiting time idle time

mean stdev skew mean stdev skew
Log-Normal 0.95 205.1 60.1 2.3 94 55 0.2

0.90 208.2 71.8 1.5 43 34 0.8
0.85 231.1 89.0 0.7 71 66 0.3

Gamma 0.95 141.5 37.9 1.5 273 63 0.0
0.90 181.4 65.9 1.7 478 48 -0.3
0.85 195.6 71 1.1 456 78 0.0

Normal 0.95 145.7 49.2 2.1 259 57 -0.5
0.90 62.8 23.8 3.4 799 76 -0.3
0.85 94.5 45.1 1.9 540 112 0.0

In Table 2.6, both Gamma and Normal distributions yield more conservative CCSP solutions
than the Log-Normal distribution. In terms of overtime probability and statistical measures (i.e.,
mean, standard deviation, 50%, 95% quantiles) reported by using the simulation sample Θ, solu-
tions based on Gamma and Normal distributions perform very close to those based on the Log-
Normal distribution, but have 10% ∼ 30% higher OR-opening cost. Moreover, the waiting time is
shorter but the idling is longer. The results suggest that decision makers need to assume a precise
distribution in situations where waiting restrictions are not binding.

We also observe in some cases that under the same Monte Carlo samples but different values
of β, the solutions have the same cost of opening ORs. However, the performance of an optimal

42

Table 2.7: Probability of waiting > εi among all 25 surgeries given by CCSP

Distribution β Avg Max Min
Log-Normal 0.95 0.05 0.11 0

0.9 0.06 0.12 0
0.85 0.07 0.14 0.02

Gamma 0.95 0.03 0.06 0
0.9 0.04 0.07 0

0.85 0.04 0.09 0
Normal 0.95 0.03 0.06 0

0.9 0.02 0.04 0
0.85 0.02 0.05 0

CCSP solution associated with higher β is better. For example, using ΩLog(NMC), both β = 0.90
and β = 0.85 suggest to open OR 4 and OR 7 at optimum, but the solution provided by β = 0.85 has
longer OR overtime, waiting, and idleness. We observe similar results when using ΩGamma(NMC)
for β = 0.95 and β = 0.90. These observations suggest that raising β (without changing optimal
ORs to open) may generate operating schedules with better performance.

We also compare the waiting time of each surgery i in every scenario of the simulation sample Θ

with the maximum tolerable waiting εi, and calculate the probability of having significant waiting
(i.e., surgery i’s waiting time being longer than εi). Table 2.7 shows that the average and maximum
waiting probabilities of the 25 surgeries for different β-values are well below 0.05 for both Gamma
and Normal distributed training samples, but higher when surgery durations of a training sample
follow Log-Normal distributions. The results also show zero risk of having significant waiting
for most of the surgeries. Therefore, if we require at most 0.10 probability of having significant
waiting time, the deterministic upper bound constraints on waiting time in CCSP can produce
feasible solutions to the individual chance constraints.

2.5.5.2 Results of DR-CCSP

We test two specific φ-divergences: (i) the modified χ2-distance divergence φχ2(t) = (t− 1)2 for a
scalar t ≥ 0, and (ii) the Kullback-Leibler (KL) divergence, where φKL(t) = t ln t− t + 1 for t ≥ 0.
Note that their φ-divergence distances Dφ(f ‖ f0) = Dφ(t) considered as functions of t > 0 satisfy
Dφ

χ2 (t) ≥ DφKL (t). We solve DR-CCSP under these two divergence measures in order to compare
the results with the results of CCSP above.

According to Theorem 2.1, we can reformulate a DR chance constraint (2.31) as a regular
chance constraint (2.32) where the probability is measured based on the empirical distribution
function f0, and bounded by Vφ(β,d) which is dependent on the choice of φ-divergence measure,
the original probability threshold β and the distance tolerance d. Specifically, we set d = dM =

43

∑
i∈S di as described in Section 2.4.3, where di yields an asymptotically 1−α = 90%-confidence

uncertainty set for each marginal PMF fi. For φ = φKL and φ = φχ2 , we compute

Vφ
χ2 (β,d) = β+

√
d2 + 4d(β−β2)− (2β−1)d

2d + 2

VφKL (β,d) = inf
t∈(0,1)

{
e−dtβ−1

t−1

}
,

both of which are obtained based on the general form provided in Theorem 2.1. (In particular, the
latter is attained through a bisection search procedure.) We obtain the discrete support Ξi of each ξi

by partitioning its range based on intervals of ∆i = 5 minutes. Following Section 2.5.1, we recover
the empirical marginal distributions f i

0 for every i ∈ S and subsequently generate NMC scenarios
with respect to the empirical joint distribution f0.

We then solve the CCSP representation of the DR-CCSP model by using the branch-and-cut
algorithm. Table 2.8 compares DR-CCSP and CCSP for β= 0.90 and Ω = ΩLog(NMC). We simulate
the results in the previous simulation sample {ξω : ω ∈ Θ}, and also two other simulation samples
that involve random surgery cancellations, i.e., {ξω : ω ∈ Θ0.005} and {ξω : ω ∈ Θ0.01}.

The solutions of DR-CCSP show better performance in OR overtime and surgery waiting; in
most instances, overtime probability, overtime mean, and waiting time mean all decrease by 50%.
The DR-CCSP solutions are also more reliable and robust when we introduce random surgery
cancellations into the simulation samples. The deteriorations in the overtime probability, and in
the means of overtime, waiting time, and idle time are smaller when we implement the solutions
of DR-CCSP than those when implementing the solutions of CCSP.

Comparing the two DR-CCSP models, the φKL-divergence produces more conservative so-
lutions. The simulated overtime probabilities by applying those solutions all meet (i.e., being
no less than) the probability target β = 0.90, without too much extra cost for opening ORs (i.e.,
2.9−2.7

2.7 × 100% = 7.41% cost increase). As a result, the mean values of OR overtime and surgery
waiting time are shorter, but the idle time means are much longer given by DR-CCSP. In Ta-
ble 2.6 note that the CCSP solutions with inaccurate distribution assumptions (i.e., the Normal and
Gamma distributions) yield OR-opening cost (i.e., Copen) as high as the cost of DR-CCSP solu-
tions. The CCSP solutions, however, perform worse in terms of overtime probability and length of
OR overtime.

Table 2.9 shows the waiting probability in post-optimization simulation given by solutions of
CCSP and DR-CCSP. In general, both DR-CCSP(φχ2) and DR-CCSP(φKL) produce more reliable
solutions than CCSP, yielding smaller risk of significant waiting of any surgery, on average and
at maximum. The DR-CCSP(φχ2) is slightly more conservative and yields smaller risk of waiting
than DR-CCSP(φKL).

44

Table 2.8: Comparison of CCSP and DR-CCSP for β = 0.90 and Ω = ΩLog(NMC)

Model Ref.
overtime

Prob mean stdev 50% 95% skew
CCSP Θ 0.210 17.6 46 0 66.3 4.5
Copen = 2.1 Θ0.005 0.206 17.2 46 0 64.2 4.6
(2 open ORs) Θ0.01 0.202 16.6 45 0 60.9 4.7
DR-CCSP(φχ2) Θ 0.131 7.2 30 0 27.1 8.4
Copen= 2.7 Θ0.005 0.129 7.1 30 0 26.8 8.5
(3 open ORs) Θ0.01 0.126 6.8 29 0 25.9 8.7
DR-CCSP(φKL) Θ 0.100 5.7 26 0 21.2 7.6
Copen= 2.9 Θ0.005 0.098 5.5 26 0 20.8 7.6
(3 open ORs) Θ0.01 0.094 5.3 25 0 20.5 7.8

Model Ref.
waiting time idle time

mean stdev skew mean stdev skew
CCSP Θ 208.2 71.8 1.5 42.6 34 0.8
Copen = 2.1 Θ0.005 206.6 71.6 1.5 43.9 34 0.8
(2 open ORs) Θ0.01 204.8 71.2 1.5 45.3 35 0.8
DR-CCSP(φχ2) Θ 102.6 36.3 2.5 198.9 62 0.0
Copen= 2.7 Θ0.005 101.9 36.3 2.5 201.3 63 0.0
(3 open ORs) Θ0.01 101.2 36 2.5 203.4 64 0.0
DR-CCSP(φKL) Θ 130 43.3 1.8 225.2 66 -0.2
Copen= 2.9 Θ0.005 129.2 43.3 1.8 227.4 66 -0.2
(3 open ORs) Θ0.01 128.2 43.1 1.8 229.4 67 -0.2

2.5.5.3 Value of data in DR-CCSP

The results of DR-CCSP in the previous section are based on Nobs = 50 observed samples. In-
tuitively, as the number Nobs of observations increases, we can depict the ambiguous probability
distribution of ξ more accurately with a smaller d for restricting the φ-divergence distance. We
test data sizes Nobs from 50 to 200, and keep NMC = 500 for optimizing the equivalent CCSP
reformulations of the corresponding DR-CCSP models.

We set d = dM according to the procedures in Section 2.4.3, of which the values for
DR-CCSP(φKL) and for DR-CCSP(φχ2) only differ by 2, because φ′′KL(1) = 1 and φ′′

χ2(1) = 2.
Figure 2.2 maps the values of d against the choice of Nobs. Table 2.10 presents the post-
optimization simulation results of the attained solutions of DR-CCSP(φKL) and DR-CCSP(φχ2)
for Nobs = 50,100, and 200 in the simulation sample Θ.

The proposed value for d absorbs the differences in the divergence measures we use and in
the size of data observations, so that when we vary Nobs, or switch from using φχ2 to φKL, we
have relatively small changes if implementing DR-CCSP solutions. The results suggest that we
can maintain good performance of DR-CCSP solutions by using bigger d for fewer observations.

45

Table 2.9: Probability of waiting > εi among all 25 surgeries given by CCSP and DR-CCSP models

Model Ref. Avg Max Min
CCSP Θ 0.06 0.12 0

Θ0.005 0.06 0.12 0
Θ0.01 0.07 0.14 0.02

DR-CCSP(φχ2) Θ 0.03 0.06 0
Θ0.005 0.03 0.06 0
Θ0.01 0.04 0.07 0.01

DR-CCSP(φKL) Θ 0.04 0.08 0
Θ0.005 0.04 0.09 0
Θ0.01 0.05 0.11 0.01

50 100 150 200
0

1

2

3

4

number of observed samples

di
ve

rg
en

ce
 to

le
ra

nc
e

d

KL−divergence
χ2−divergence

Figure 2.2: Distance tolerances d for KL- and χ2-divergences according to the number of observed
samples (Nobs)

In turn, we can avoid over-conservative solutions by decreasing the value of d as the size of the
observed data increases.

Table 2.11 confirms the low waiting probability of any solution given by the two DR-CCSP
models, verified via the simulation samples with 10,000 independent scenarios. By solving
DR-CCSP models, there is no more than a 0.05 probability of significant waiting on average among
the 25 surgeries in post-optimization simulation. We observe no obvious trending for different
Nobs.

2.6 Concluding Remarks

In this chapter, we developed new models for stochastic surgery planning where distributions of
surgery durations may or may not be known. The models used chance constraints to control OR

46

Table 2.10: The effect of Nobs on the performance of DR-CCSP solutions

Model Nobs Copen overtime
Prob mean stdev 50% 95% skew

DR-CCSP(φχ2) 50 2.7 0.131 7.2 30 0 27.1 8.4
100 2.8 0.140 7.7 30 0 27.8 7.3
200 2.8 0.140 7.8 29 0 27.8 7.8

DR-CCSP(φKL) 50 2.9 0.100 5.7 26 0 21.2 7.6
100 2.9 0.108 6.8 29 0 23.7 8.2
200 2.9 0.106 6.1 26 0 22.2 8.0

Model
waiting time idle time

mean stdev skew mean stdev skew
DR-CCSP(φχ2) 102.6 36.3 2.5 198.9 62 0.0

111.2 34.9 2.1 267.0 56 -0.3
93.1 32.7 2.2 239.1 63 -0.2

DR-CCSP(φKL) 130 43.3 1.8 225.2 66 -0.2
122.4 42.7 2.3 256.8 69 0.0
135.3 52.2 2.0 257.0 68 0.0

Table 2.11: Probability of waiting > εi given by DR-CCSP models under different Nobs

Model Nobs Avg Max Min
DR-CCSP(φχ2) 50 0.03 0.06 0

100 0.04 0.09 0
200 0.03 0.07 0

DR-CCSP(φKL) 50 0.04 0.08 0
100 0.05 0.10 0
200 0.05 0.09 0

overtime and surgery waiting time and integrated surgery-to-OR allocation decisions and surgery
scheduling decisions to attain better-performing solutions. The problem was formulated as a com-
plex chance-constrained program whose SAA reformulation was difficult to solve using existing
methods. We proposed a branch-and-cut algorithm that took advantage of the scheduling problem
structure. In particular, we derived a set of “packing cuts” from a bin packing problem, and another
set of “scheduling cuts” based on single-OR scheduling problems. To handle the issue of distribu-
tion ambiguity, we formulated a DR variant of the CCSP problem, which, by applying the results
of Jiang and Guan (2015), was transformed into a transitional chance-constrained program with a
perturbed risk level that the proposed algorithm could handle. We generated test instances based
on the operational data from an outpatient surgery center over a six-month time period, and tested
the models and the algorithms on planning 25 surgeries across 8 ORs with operating time varying
between 8∼10 hours. The results verified that the proposed branch-and-cut algorithm returned the

47

optimal solutions for all of the tested instances with 100∼500 scenarios in two-hour runtime limit,
whereas directly calling the state-of-the-art solver failed to solve any instance to optimum.

To evaluate a solution, we implemented it in a post-optimization simulation consisting of 10000
i.i.d. randomly generated scenarios and collected the resulting statistics of overtime and waiting
time. The major observations are as follows.

• Compared to the cost-based model, solutions from the chance-constrained model lead to less
variable and more right-skewed overtime and waiting, but also lower in mean, and 50% and
95% quantiles.

• Compared with separating allocation and scheduling decisions, our integrated model pro-
duces solutions that attain a better tradeoff between cost and the quality of service.

• Compared with the standard chance-constrained model, the DR variant produces solutions
that are more reliable: they are not any more sensitive to the underlying distributions. There-
fore, the performance is no longer subject to assuming a correct distribution.

• The chance-constrained models and solution algorithms are applicable to a broader class
of resource planning and scheduling problems involving other service systems, for which
cost-based models are difficult to use.

48

CHAPTER 3

Solving Chance-Constrained 0-1 Programs with
Decomposition and Parallelization

3.1 Introductory Remarks

Chance-constrained programs are in general non-convex and often solved or approximated by a
scenario-based MIP reformulation, e.g., the SAA problem discussed in Section 1.1.2. In this
chapter, we consider chance-constrained programs where decisions made before the realization
of uncertainty are binary:

min f (x) (3.1a)

s.t. P{x ∈ X (ξ)} ≥ 1− ε (3.1b)

x ∈ X ⊆ {0,1}d, (3.1c)

where ξ is a random vector that follows a known distribution and has a finite set of realizations{
ξ1, . . . , ξK

}
from a Monte Carlo sample. We assume these scenarios are equal likely within this

chapter. Set X (ξ) ⊆ Rd is parameterized by ξ thus also random, and we define Xk := X (ξk) for
each scenario k. Scalar ε is a risk tolerance, typically small, that limits the likelihood of some
undesirable outcome x /∈ X (ξ). Function f maps the decision x into a real value that the model
aims to minimize. We introduce binary variables zk ∈ {0,1} to indicate whether x ∈ Xk in each
scenario k. The SAA reformulation of (3.1) is then written as:

min f (x) (3.2a)

s.t. zk = 0⇒ x ∈ Xk, ∀k = 1, . . . ,K (3.2b)
K∑

k=1

zk ≤ K′ (3.2c)

x ∈ X, zk ∈ {0,1}, ∀k = 1, . . . ,K. (3.2d)

49

where α⇒ β in (3.2b) means event α occurs only if event β occurs. Scalar K′ := bεKc, and the
packing inequality (3.2c) is strengthened from

∑K
k=1(1/K · zk) ≤ ε.

When X (ξ) represents the feasibility region of a two-stage stochastic program, e.g., (1.5), its
realization Xk in each scenario k can be described as:

Xk =
{
x ∈ Rd : ∃yk ∈ Rd′

+ with T kx + Wkyk ≥ hk
}
. (3.3)

where T k ∈ Rn×d, Wk ∈ Rn×d′ , and hk ∈ Rn. Constraint (3.2b) can then be expressed as explicit
inequalities, e.g., (1.8c), as

T kx + Wkyk + zkmk ≥ hk, ∀k = 1, . . . ,K, (3.4)

where each mk is a constant vector with big components that may weaken the linear programming
relaxation of model (3.2) and make the model difficult to solve. On the other hand, because of
the packing inequality (3.2c) which structurally is a “row” made of variables across scenarios,
the model does not have a block-angular structure. Thus decomposition algorithms for traditional
stochastic programs cannot apply directly.

Many existing solution methods take advantage of the problem structure in the particular appli-
cation to tighten the values of big-M coefficients (Qiu et al., 2014; Song and Luedtke, 2013; Song
et al., 2014). However, when the number of scenarios is large, the model with strengthened coef-
ficients may still be difficult to solve directly. Furthermore, the preparatory step of strengthening
coefficients can be computationally burdensome. For more general problems, Luedtke et al. (2010)
and Küçükyavuz (2012) develop strengthened formulations which can be solved faster for chance-
constrained programs with only random right-hand-sides (i.e., X (ξ) = {x : T x ≥ h(ξ)}). Beraldi and
Bruni (2010) develop a specialized branch-and-bound method to handle chance-constrained pro-
grams without recourse decisions. Luedtke (2014) develops a branch-and-cut algorithm for general
chance-constrained programs where the inequalities with big-M coefficients are not enforced ex-
plicitly, but rather through tight cuts generated during the algorithm. See Section 1.1.3 for a more
comprehensive review of solution methods for chance-constrained programs.

In this chapter, we study dual decomposition methods which are combinations of Lagrangian
relaxation and scenario decomposition. The main idea is to “clone” first-stage decisions and use
NACs to ensure that their scenario-based copies are identical. Dualizing the NACs then leads to
a Lagrangian relaxation of the problem which is decomposable into scenario-based subproblems.
The subproblems are tractable and can be computed in a distributed system. This approach was
first introduced by Rockafellar and Wets (1976). We refer to Shapiro et al. (2014) for other general
results of applying dual decomposition to solving stochastic programs. Carøe and Schultz (1999)
apply dual decomposition to obtain strong relaxations of two-stage stochastic integer programs,

50

and generate bounds used in a branch-and-bound framework. Dentcheva and Römisch (2004) ana-
lyze the Lagrangian relaxation of multistage stochastic programs with nonconvex constraints from
logic and integrality requirements, and demonstrate the efficacy of scenario decomposition com-
pared with other decomposition algorithms. Moreover, heuristic approaches, including variants
of the “progressive hedging” algorithm (see Watson and Woodruff, 2011), are designed based on
creating subproblems that can be decomposed by scenario and penalizing violations of NAC via
updating the Lagrangian dual to achieve consensus among all the subproblems to seek feasible
primal solutions.

Ahmed (2013) proposes a scenario decomposition variant for solving 0-1 stochastic programs
with expectation-based objective functions. The key of the algorithm is to identify an optimal
solution by iteratively bounding the optimal objective value and cutting off candidate solutions
obtained from scenario subproblems. Ahmed (2013) describes serial and synchronous distributed
implementations of the algorithm, and demonstrates the efficacy of the approach by solving in-
stances from the SIPLIB test library (see Ahmed et al., 2015a). Ryan et al. (2015) extend the work
of Ahmed (2013) by developing an asynchronous parallel implementation of the algorithm, which
has better performance on the same set of test instances.

Two of the most relevant works related to this chapter are Watson et al. (2010) and Ahmed
et al. (2015b), although they use different methods to decouple the scenarios. Watson et al. (2010)
dualize both the NAC and the packing inequality (3.2c), and then use progressive hedging to com-
pute the Lagrangian dual. These heuristics do not have convergence guarantees, but have good
performance for solving stochastic programs in a variety of applications (see, e.g., Crainic et al.,
2011, 2014). Ahmed et al. (2015b) dualize the NAC only, and compute the Lagrangian relaxation
by solving a set of scenario subproblems and then a single-knapsack problem. In particular, they
demonstrate the strength of the dual bounds and efficient ways of obtaining them in a distributed
algorithm, although details of parallel implementation of the proposed algorithms are not discussed
or further explored. In our attempt, we relax both constraints, and show that maximizing the La-
grangian relaxation function has a closed-form solution (see Section 3.2). This proposition enables
us to replace some subgradient iterations with simple arithmetics, which substantially accelerates
the algorithm as demonstrated by the computational results. In addition, we develop a subrou-
tine of cut aggregation that exploits cropping inequalities to address the very large number of cuts
generated during the algorithm.

Finally, we develop parallel schemes for implementing the proposed algorithm. Decomposition
algorithms are generally amenable to parallelism. However, it is nontrivial to implement them in a
distributed framework (Ahmed, 2013; Lubin et al., 2013; Ryan et al., 2015), especially if aiming
for good parallel efficiency. Typically, decomposition algorithms are iterative procedures where
each iteration involves solving a set of independent subproblems. Although solving subproblems

51

can easily be parallelized, the next iteration usually requires some combined result from all the
subproblems. In parallel execution, this is a barrier where some processes have to wait for some
others. Moreover, the communication traffic incurred from consolidating distributed results and
the efficiency of a parallel implementation may deteriorate substantially as the number of pro-
cesses increases. In this chapter, we explore two parallel schemes: one that simply distributes the
computation of subproblems evenly across parallel processes, and one that adopts a Master-Worker
structure where a master process acts as a centralized information keeper to avoid duplicate efforts.
We observe speedup under both schemes, and the second scheme outperforms when the number
of processes is large.

In Section 3.2, we present the dual decomposition algorithm and the enhancement techniques.
In Section 3.4.3, we present the parallel schemes. In Section 3.4, we summarize the computational
results on a set of resource allocation problem instances. In Section 3.5, we conclude the chapter.

3.2 Dual Decomposition

We generalize the algorithm from a scenario decomposition method proposed by Ahmed (2013)
for 0-1 stochastic programs. It mainly follows a procedure of iteratively evaluating and cutting off
candidate solutions discovered from scenario subproblems until the upper and lower bounds for the
optimal objective value are sufficiently close. The subproblems are obtained from decomposing a
Lagrangian relaxation problem. The value of the relaxation function is a valid lower bound, while
the objective values of subproblem solutions that are verified feasible are valid upper bounds.

3.2.1 Lagrangian Relaxation

In model (3.2), to decouple scenarios we first make copies of variable x so that each scenario k as
a copy xk. We can then rewrite the model as:

min
K∑

k=1

f (xk)/K (3.5a)

s.t. zk = 0⇒ xk ∈ Xk, ∀k = 1, . . . ,K (3.5b)
K∑

k=1

αkxk = x1 (3.5c)

(3.2c), xk ∈ X, zk ∈ {0,1}, ∀k = 1, . . . ,K (3.5d)

where α1, . . . ,αK are positive scalars summing to 1. Constraint (3.5c) is an NAC to ensure x1, . . . , xK

taking the same values. There are various forms of NAC used in the literature. For example, (3.5c)

52

can be replaced by xk = x1, ∀k = 2, . . . ,K as the common way to enforce all variable copies being the
same (see, e.g., Ryan et al., 2015), which, however, involves (K − 1)× d constraints as compared
to the d constraints in (3.5c). To tighten the corresponding dual bound, as demonstrated in our
preliminary experiments, takes a long time. Given binary valued x1, . . . , xK , we formulate (3.5c)
that can only be satisfied when all of the copies = 0, or all of them = 1. Next, we relax the two
cross-scenario constraints (3.5c) and (3.2c), and introduce multiplier λ ∈Rd and variable ρ ∈R+ to
form a Lagrangian relaxation of (3.5) as:

g(ρ,λ,S) := min
K∑

k=1

f (xk)/K + (αk −δk)λ>xk +ρ

 K∑
k=1

zk −K′

s.t. (3.5b)

xk ∈ X \S , zk ∈ {0,1}, ∀k = 1, . . . ,K

where S ⊆ {0,1}d represents a set of x solutions that have been excluded by cuts, and for notational
convenience, we let δ1 = 1, and δk = 0 for k = 2, . . . ,K.

Proposition 3.1. Let P∗ be the complete set of optimal solutions of (3.5) in the space of x. For any

set S ⊆ {0,1}d, if P∗ * S then g(ρ,λ,S) is a lower bound for the optimal objective value of (3.5),
for any ρ ≥ 0 and λ.

The proof, which is similar to the proof for weak duality, is shown in Appendix B.1. We can
rearrange g(ρ,λ,S) into a decomposable form as

g(ρ,λ,S) = −K′ρ+

K∑
k=1

min ρzk + (αk −δk)λ>xk + f (xk)/K
s.t. the kth constraint in (3.5b)

xk ∈ X \S , zk ∈ {0,1}

= −K′ρ+

K∑
k=1

min
{
ρ+ hk

1(λ,S),hk
0(λ,S)

}
,

where hk
1(λ,S) and hk

0(λ,S) correspond to the objective values of deactivating (zk = 1) and activating
(zk = 0) the constraint xk ∈ Xk, respectively, in each scenario k. Explicitly,

hk
1(λ,S) := min

{
(αk −δk)λ>xk + f (xk)/K : xk ∈ X \S

}
, (3.6)

hk
0(λ,S) := min

{
(αk −δk)λ>xk + f (xk)/K : xk ∈ Xk∩X \S

}
. (3.7)

53

Proposition 3.2. For any fixed vector λ and solution set S ,

g(λ,S) = max
ρ≥0
{g(ρ,λ,S)} =

K−K′∑
n=1

hσn
0 (λ,S) +

K∑
n=K−K′+1

hσn
1 (λ,S), (3.8)

where {σn}
K
n=1 is a permutation of scenarios 1, . . . ,K such that the values of

hσ1
0 (λ,S)−hσ1

1 (λ,S), . . . ,hσK
0 (λ,S)−hσK

1 (λ,S),

are nondecreasing.

Proof. Consider the monotonicity of g(ρ,λ,S) over ρ:

• For ρ ∈
[
0,hσ1

0 (λ,S)−hσ1
1 (λ,S)

)
, g(ρ,λ,S) = (K−K′)ρ+

∑K
k=1 hk

1(λ,S), which increases in ρ;

• For ρ ∈
[
hσK

0 (λ,S)−hσK
1 (λ,S),+∞

)
, g(ρ,λ,S) = −K′ρ+

∑K
k=1 hk

0(λ,S), which decreases in ρ;

• For ρ ∈
[
hσn

0 (λ,S)−hσn
1 (λ,S),hσn+1

0 (λ,S)−hσn+1
1 (λ,S)

)
with some n,

g(ρ,λ,S) = (K −n−K′)ρ+

n∑
k=1

hσk
0 (λ,S) +

K∑
k=n+1

hσk
1 (λ,S).

Therefore, for n ∈ {1, . . . ,K−K′−1}, it increases in ρ; for n = K−K′, it is a constant, and for
n ∈ {K −K′+ 1, . . . ,K −1}, it decreases in ρ.

Thus, a maximizer is ρ∗ = hσK−K′

0 (λ,S)−hσK−K′

1 (λ,S), which yields the proposed maximum value
of g(ρ,λ,S) over ρ ≥ 0.

Intuitively, we interpret hk
0(λ,S)−hk

1(λ,S) as the cost of activating the constraint x ∈Xk in each
scenario k. Since that constraint must be activated in at least K−K′ scenarios, we choose the K−K′

scenarios with the lowest cost. Proposition 3.2 is based on the assumption that all the scenarios
have the same probability 1/K, and can be extended for the general case when the probabilities are
not necessarily the same (see, e.g., Ahmed et al., 2015b). It follows from Propositions 3.1 and 3.2
that g(λ,S) is a valid lower bound for the optimal objective value of the original model (3.5).

3.2.2 Bound-and-Cut Algorithm

We summarize the dual decomposition algorithm in Algorithm 3.1. During the algorithm, we track
the best-found lower bound ` and upper bound u, as well as a solution x̄ where u is obtained, i.e.,
f (x̄) = u. A good initialization for u and x̄ can be obtained from solving the robust counterpart of

54

the original problem:

min

 f (x) : x ∈ X
K⋂

k=1

Xk

 , (3.9)

where we enforce the chance constraint for all scenarios. Any solution x̂ obtained from computing
hk

0(λ,S) or hk
1(λ,S), if satisfying

K∑
k=1

1(x̂ ∈ Xk) ≥ K −K′, (3.10)

is feasible to the original chance-constrained problem. If f (x̂) < u, we update u and the best-found
solution x̄ accordingly. On the other hand, the lower bound ` is updated by the value of g(λ,S).
The algorithm iteratively cuts off explored solutions and improves the bounds (e.g., increasing `
or decreasing u) until the gap between ` and u is sufficiently small, e.g., < εBND where εBND is a
small positive scalar.

Now that a relatively tight lower bound in each iteration is the value of the Lagrangian dual
given by:

max
ρ≥0,λ

g(ρ,λ,S) (3.11)

=max
λ

g(λ,S), (3.12)

the algorithm in each iteration runs a subroutine of the subgradient method to approach (3.12).
The subroutine presents as an inner loop that iteratively updates λ. For clarification, we refer to
the inner loop as the subgradient iterations and the outer loop as the bound-and-cut iterations.
In preliminary experiments, we identify the Polyak rule (Polyak, 1977) that produces the most
efficient step size for updating λ on our test instances. We let λn denote the λ in the nth subgradient
iteration. The rule specifies the step size for moving from λn to λn+1 as:

sn+1 = (u−g(λn,S))
/
‖r(λn)‖22, (3.13)

where r(λn) is the subgradient of λn with respect to the function g(λn,S). Then,

λn+1 = λn− sn+1α(λn). (3.14)

We stop the subgradient method if the improvement in the value of g(λ,S) has been sufficiently

55

small in a certain number of consecutive iterations, e.g.,

0 ≤ g(λi,S)−g(λi−1,S) ≤ εSBG, ∀i = n−∆, . . . ,n (3.15)

where εSBG ∈ R++ and ∆ ∈ Z++.
Another feature of the algorithm is that every explored solution is discarded from future con-

sideration. Considering their binary nature, this is accomplished by adding no-good cuts (1.19) to
the scenario-based subproblems (3.6) and (3.7) which we use to compute hk

1(λ,S) and hk
0(λ,S) for

k = 1, . . . ,K. The original feasible region is within a 0-1 hypercube and thus finite, whereas the new
feasible region becomes strictly smaller in each bound-and-cut iteration. We also set a limit on the
maximum number of iterations performed in each subgradient subroutine. Therefore the algorithm
terminates finitely.

Algorithm 3.1 A dual decomposition algorithm for solving model (3.5)
1: `←−∞, u← the optimal objective value of (3.9), x̄← an optimal solution of (3.9)
2: S ← ∅
3: repeat
4: λ← 0
5: repeat
6: for k = 1, . . . ,K do
7: h1

k ← h1
k(λ,S), and keep the optimal solution of (3.6) as x̂k(1)

8: h0
k ← h0

k(λ,S), and keep the optimal solution of (3.7) as x̂k(0)
9: end for

10: sort scenarios 1, . . . ,K into permutation σ such that h0
σ1
−h1

σ1
≤ · · · ≤ h0

σK
−h1

σK
.

11: calculate g(λ,S) based on (3.8)
12: update λ based on (3.13) and (3.14)
13: until the stop condition (3.15) is satisfied
14: `←max{`,g(λ,S)}
15: S ← S

⋃K
k=1{x̂

k(1), x̂k(0)}.
16: for x̂ ∈ S and satisfying (3.10) do
17: if f (x̂) < u then
18: u← f (x̂), x̄← x̂.
19: end if
20: end for
21: until u− ` ≤ εBND

3.2.3 Cut Aggregation

Having learned that the subgradient method sometimes goes through excessively many iterations,
which results in a large number of cuts (i.e., a huge set S) that overwhelm the solution of scenario

56

subproblems (3.6) and (3.7), we need to explore cropping inequalities (Angulo et al., 2014b; Lee,
2003) for 0-1 hypercubes to form stronger cuts and reduce the number of inequalities that are
effectively appended to the subproblems.

In general, cropping inequalities take the general form of

CPI(U,V):
∑
j∈U

(1− x j) +
∑
j∈V

x j ≥ 1 (3.16)

where U and V are disjoint subsets of {1, . . . ,d}. To cut off a single solution x̂, we use the no-good
cut (1.19), which is a special case of (3.16) with U = { j ∈ {1, . . . ,d} : x̂ j = 1} and V = { j ∈ {1, . . . ,d} :
x̂ j = 0}. Given any two cropping inequalities CPI(U1,V1) and CPI(U2,V2), if there exists some
j ∈ {1, . . . ,d} such that U1 = U2 ∪ { j} and V2 = V1 ∪ { j}, we can easily aggregate them to obtain
CPI(U2,V1). In this case, we call either of the cuts being aggregated a match of the other.

In applying Algorithm 3.1, Step 15 involves appending cuts to every scenario subproblem (3.6)
and (3.7) to cut off solutions that are newly added into the set S . The addition of any single cut can
induce a series of aggregation recursively. To accelerate this procedure, we design a specialized
type of container for cuts: G(u,v), with u,v ∈ {0, . . . ,d} and u + v ≤ d. Each set G(u,v) keeps cuts in
the form of CPI(U,V) with |U | = u and |V | = v. Given any arbitrary cut CPI(U,V), its match must
be from G(|U |+ 1, |V | −1) or G(|U | −1, |V |+ 1). Therefore, we do not scan through all the existing
cuts but only search within these two sets for a match.

We present the detailed steps of cutting off some solution x̂, i.e., S ← S ∪{x̂}, with cut aggrega-
tion in Algorithm 3.2. There could be multiple cuts available at a time that can be aggregated with
a certain cut, but they may lead to different maximum aggregation depth (the number of times we
aggregate cuts until no more aggregation is available). Desiring to increase the maximum aggre-
gation depth, we design a heuristic that alternates the search for a match between G(|U |+1, |V |−1)
and G(|U | − 1, |V |+ 1). If neither has a match for the current CPI(U,V), we stop the search and
proceed to add CPI(U,V) to all the subproblems.

3.3 Parallel Implementation Schemes

Decomposition methods contain parallel jobs such as solving subs or individual scenarios, and
evaluating the objective value for individual solutions. While parallel processing saves time, the
procedure also reaches a point when exchange or consolidation of the results occurs in order to
create jobs for the next iteration. In practice, these points are quite a challenge for parallel imple-
mentation, considering the inefficiency of synchronization and the intensity of communication. In
addition to the dual decomposition method considered in this chapter, other decomposition meth-
ods also feature this scheme. Thus, it is important to develop an efficient parallel scheme.

57

Algorithm 3.2 The procedure of cutting off x̂ (i.e., S ← S ∪{x̂}) with cut aggregation
1: U ← { j ∈ {1, . . . ,d} : x̂ j = 1}, V ← { j ∈ {1, . . . ,d} : x̂ j = 0}
2: NOT FOUND← False
3: for any cut CPI(U′,V′) in G(|U |+ 1, |V | −1) do
4: if ∃ j ∈ {1, . . . ,d} such that U′ = U ∪{ j} and V = V′∪{ j} then
5: remove CPI(U′,V′) from G(|U |+ 1, |V | −1)
6: V ← V′, NOT FOUND← False
7: go to Step 15
8: end if
9: end for

10: if (NOT FOUND) then
11: go to Step 27
12: else
13: NOT FOUND← True
14: end if
15: for any cut CPI(U′,V′) in G(|U | −1, |V |+ 1) do
16: if ∃ j ∈ {1, . . . ,d} such that U = U′∪{ j} and V′ = V ∪{ j} then
17: remove CPI(U′,V′) from G(|U |+ 1, |V | −1)
18: U ← U′, NOT FOUND← False
19: go to Step 3
20: end if
21: end for
22: if (NOT FOUND) then
23: go to Step 27
24: else
25: NOT FOUND← True
26: end if
27: add CPI(U,V) to (3.6) and (3.7) for scenario k = 1, . . . ,K.

Most studies use a straightforward synchronous approach, which places a synchronization bar-
rier after solving the jobs and before reiteration (e.g., Ahmed, 2013; Lubin et al., 2013; Nielsen
and Zenios, 1997). However, when the time variation in the jobs is big, processors will sit idle for
long periods, which is termed load imbalance. To alleviate load imbalance, other studies suggest
assigning a single processor, termed the master, to collect and compile distributed information, and
decide the next step (see, e.g., Birge et al., 1996; Ruszczyński, 1993; Ryan et al., 2013). In assign-
ing jobs, instead of following a static rule, e.g., all subproblems of scenario 1 go to Processor 1,
all subproblems of scenario 2 go to Processor 2, etc., the master queues the jobs and assigns them
to processors as they become available. To improve load balance, another approach is force reiter-
ation. Once a certain percentage of parallel jobs are are completed, the next iteration immediately
begins, i.e., no waiting (Linderoth and Wright, 2003).

In this section, we develop two parallel schemes for implementing Algorithm 3.1 in a dis-

58

tributed framework. We refer to the first as Basic Parallel, where we simply divide the computa-
tion of subproblems evenly across all available parallel processes. It is a common choice in the
literature for parallelizing decomposition methods (Ahmed, 2013; Lubin et al., 2013; Nielsen and
Zenios, 1997). Figure 3.3a is a schematic view of using four processes to solve a problem with

4 5 6
1 2 3

1211
710

5
1

9
6
2

11
7
3

12
8
4

P1 P2 P3 P4

8 9

P1 P2 P3 P4

10

Basic Parallel Master-Worker

a. b.

Share subproblem results; Update !
Compute bounds; Check feasibility of candidate solutions
Generate and aggregate cuts

Barriers

Figure 3.1: A schematic view of using four processes to solve a 12-scenario problem

scenarios 1, . . . ,12. The charts in the schematic show one bound-and-cut iteration (Steps 3-21 of
Algorithm 3.1) nesting three subgradient iterations (Steps 5-13 of Algorithm 3.1). In each subgra-
dient iteration, we assign subproblems to the processes in a round-robin manner (such that (3.6)
and (3.7) of each scenario k are assigned to the ((k− 1) mod N + 1)th process. At the end of each
subgradient iteration there is a synchronization barrier. The processes all share the subproblem
computational results with one another, individually update the dual multiplier λ, and start the
next subgradient iteration. At the end of each bound-and-cut iteration, every process individually
checks the feasibility of every solution, which can be as much as 2K times the number of subgra-
dient iterations. Generating and aggregating the cuts follows. In fact, the result of a subproblem
is ready as soon as it is solved. In this scheme, information is not processed until the end of a
bound-and-cut iteration. Below, we explain an alternative method.

We refer to the second scheme as Master-Worker Parallel. In this scheme, the master updates
bounds, generates and aggregates the cuts, and passes them to all of the workers at the end of every
bound-and-cut iteration. Load balance and parallel efficiency are achieved because synchronicity
by the master is not required.

59

3.4 Computational Results

We implement parallelization by OpenMPI 1.6 (Gabriel et al., 2004), and perform the computation
on Flux HPC cluster, University of Michigan. We use as many as 9 compute nodes; each compute
node has twelve 2.67 GHz Intel Xeon X5650 processes and 48GB RAM. All involved optimization
models (including subproblems as a result of decomposition) are solved by CPLEX 12.6 via ILOG
Concert Technology.

In Section 3.4.1, we discuss test instances and experiment setup. In Section 3.4.2, we present
the computational results of implementing our algorithm in serial, show how much the proposed
techniques help accelerating the computation, and how efficient our algorithm is compared with
existing methods. In Section 3.4.3, we present the results of parallel implementation.

3.4.1 Instances and Experimental Setup

We set up two sets of test instances. based on a resource allocation problem instance from SIPLIB
(Ahmed et al., 2015a). We formulate the problem as

min c>x

s.t. T x ≥ h

P
{
(an(ξ))>x ≥ bn(ξ), ∀n = 1, . . . ,N

}
≥ 1− ε

x ∈ {0,1}d,

where T and h are the properly-sized deterministic matrix and vector, respectively. Inside the
chance constraint is a N-row linear inequality system that varies across scenarios. In particular,
an(ξk) ∈ Rd

+ and bn(ξk) ∈ R+ for each row n ∈ {1, . . . ,N} and in each scenario k ∈ {1, . . . ,K}. In
both sets of instances, d = 20, K = 200 and ε = 0.1. The first set has one inequality in the chance
constraint (i.e., N = 1) and the second set has three (i.e., N = 3). We refer to these two instance sets
as RAS1 and RAS3. Each set consists of three instances m 1, m 2, and m 3, where m = RAS1 or
RAS3.

To implementing the algorithm, we use α1, . . . ,αK = 1/K in forming the NAC (3.5c). We
attempt to solve all of the instances to optimum, i.e., we set the tolerance for the gap between
bounds εBND = 0. In the subgradient method, preliminary experiments suggest using εSBG = 0.5.

3.4.2 Results of Serial Implementation

The default serial scheme directly calls an off-the-shelf solver to solve the SAA reformulation of
the chance-constrained program. The three schemes for implementing the proposed dual decom-

60

Table 3.1: Comparison of the four schemes in serial computational time (or optimality gap)

RAS1 RAS3
1 2 3 1 2 3

default tot time (10.6%) (11.3%) (11.2%) (17.0%) (12.5%) (10.2%)

DDG
tot time (8.6%) 5657 2976 6447 6262 5508

iter - 4 4 3 4 4

DDM
tot time 980 1044 977 4234 4251 4513

iter 4 4 4 3 3 3

DDA
tot time 824 886 927 3832 3546 3338

iter 4 4 4 3 3 3

position algorithm in serial are:

• DDG: we use a fundamental approach which does not apply Proposition 3.2 and thus has to
update both ρ and λ in the subgradient method for computing the Lagrangian dual (3.11). In
this case, we also use the Polyak rule to update the step size for ρ, which initially is set to
zero.

• DDM: we use Algorithm 3.1. It is built upon Proposition 3.2 which presents a closed-form
result of the maximum of g(ρ,λ,S) over ρ ≥ 0. As a result, the subgradient method only
needs to update λ.

• DDA: we implement Algorithm 3.1 with the subroutine of cut aggregation presented in Al-
gorithm 3.2.

Table 3.1 reports the serial runtime, in seconds, of the four schemes in tot time. If an instance
is not solved to optimum within the runtime limit of two hours, we present the optimality gap with
parentheses in total time and omit the other computational details. For the three decomposition
schemes, we also present the number of bound-and-cut iterations needed for the upper and lower
bounds to converge in # iter.

We fail to solve any instance to optimum under the default scheme, whereas the dual decom-
position algorithms solve all, except that DDG fails on RAS1 1. We observe the following runtime
trend:

DDG > DDM > DDA.

Note that the three decomposition schemes require no more than 5 iterations. The enhancement
techniques applied in DDM and DDA do not have a general effect on the iteration count, but do
improve the runtime effectively on all of the instances. In particular, the impact of avoiding updat-
ing ρ in the subgradient method is significant, since, as we switch from DDG to DDM, the drops in
tot time are substantial.

61

Table 3.2: Other computational details of the three dual decomposition schemes

RAS1 RAS3
1 2 3 1 2 3

DDG # SBG iter - 44 33 41 28 30
DDM # SBG iter 13 14 13 18 18 18

DDA
aggregation 83 65 71 49 30 32

no-good cuts 1563 2598 2483 5525 6120 5707

Table 3.2 presents some other details that enable us to get a closer look. For example, in
SBG iter, it shows the accumulated number of subgradient iterations (i.e., the inner loop) that
DDG and DDA have gone through. To approach maxρ:ρ≥0 g(ρ,λ,S), DDG uses the subgradient
method which involves iterations of solving a series of subproblems, whereas DDM employs the
closed-form result presented in Proposition 3.2 which is simple arithmetic. Therefore, DDM saves
time. In # aggregation, Table 3.2 shows the number of aggregation DDA has performed as com-
pared to the total number no-good cuts originally generated in # no-good cuts. Only a small por-
tion of cuts are aggregated, which still leads to notable improvement of runtime in all instances.

Given that DDA is the fastest, we use it to compare the existing methods and to test the parallel
schemes. To compare, we select the following four methods that are commonly used in solving
chance-constrained programs. The first two focus on tightening the big-M coefficients, and then
call the solver to compute the strengthened MIP reformulation. Their runtimes consist of the time
computing the MIP reformulation and the time computing the strengthened coefficients. The other
two approaches are based on the branch-and-cut algorithm proposed by Luedtke (2014) for solving
general chance-constrained programs. The four approaches are:

• MIPiter: The big-M coefficients are strengthened through an iterative method proposed by
Qiu et al. (2014), the first coefficient-strengthening approach detailed in Section 2.3.2.

• MIPscen: The big-M coefficients are strengthened through a scenario decomposition method
introduced in Luedtke (2014) and Song et al. (2014), the second coefficient-strengthening
approach detailed in Section 2.3.2.

• BNCs: This algorithm is based on a master problem in the space of x and z, in which the
chance constraint is initially relaxed. Given any specific (x̂, ẑ), if for some scenario k with
ẑk < 1, x /∈ Xk, then a valid inequality with respect to Xk is lifted over x to become globally
valid, and subsequently used as a cut to exclude the current solution. In this scheme, once
such a cut is found, it is added to the master problem, and immediately the algorithm fathoms
the underlying node and picks another in the branch-and-bound tree. This is usually referred
to as a single-cut strategy.

62

Table 3.3: Comparison of DDA and existing methods in runtime

RAS1 RAS3
1 2 3 1 2 3

DDA 824 886 927 3832 2546 3338
BNCs 773 1169 1019 5527 2720 4128
BNCm - 6757 5164 - - -
MIPscen 3832 - 3213 - - -
MIPiter 4234 6144 2775 - - 5002

• BNCm: This scheme scans the scenarios to identify all possible cuts before adding them to
the master problem and switching to process other nodes. This is usually referred to as a
multi-cut strategy.

Table 3.3 presents the runtime in seconds. An entry of “-” indicates that the particular instance
is not solved to optimum under the particular scheme within the two-hour time limit. Based on the
tested instances, DDA and BNCs are the fastest two, and DDA is faster in five out of six instances.

3.4.3 Results of Parallel Implementation

We capture the parallel time as the walltime that elapses from the start of the parallel program
to the end. For each run we compute speedup as the ratio of the serial runtime to the parallel
time. We parallelize scheme DDA and test it on all the instances. Figure 3.2 shows how the results
of speedup change as we vary the number of processes. Each subfigure presents the results for
one particular instance. The vertical and horizontal axes represent “speedup” and “number of
processes”, respectively. We scale them equally, so the main diagonal (in grey) gives the trending
for a perfect parallelism where speedup is equal to the number of processes. We test using 2, 3, 5,
and 9 processes. The red and the blue curves are the results of Basic Parallel and Master-Worker
Parallel, respectively.

As the number of processes increase, most of the cases scale well in the beginning, but the
speedup soon starts to flatten out, or even drops down. Recall that both schemes contain barri-
ers in each iteration as well as collective communication steps in which every processes talks to
every other. As the number of processes increase, the communication workload grows as does
the waiting caused by the barriers. These drawbacks start to cancel out the advantage brought by
increasing processes, i.e., performance “plateaus.” This is a common phenomenon in parallel com-
puting. However, a special observation here is that we see in all cases a crossover of the red curve
and the blue curve: the red always starts climbing faster, but plateaus earlier. This is probably
because Basic Parallel has one more process sharing the computation of subproblems, which is an
important advantage when the number of processes is still small. However, without a centralized

63

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_2

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_2

Perfect speedup
Basic Parallel
Master-Worker Parallel

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_2

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_2

Perfect speedup
Basic Parallel
Master-Worker Parallel

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_2

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_2

Perfect speedup
Basic Parallel
Master-Worker Parallel

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_2

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_2

Perfect speedup
Basic Parallel
Master-Worker Parallel

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_2

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_2

Perfect speedup
Basic Parallel
Master-Worker Parallel

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_3
of processors # of processors # of processors

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_2

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_2

Perfect speedup
Basic Parallel
Master-Worker Parallel

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_2

0

2

4

6

8

10

0 2 4 6 8 10

RAS1_3

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_1

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_2

Perfect speedup
Basic Parallel
Master-Worker Parallel

0

2

4

6

8

10

0 2 4 6 8 10

RAS3_3

of processors # of processors # of processors

sp
ee

du
p

ra
tio

sp
ee

du
p

ra
tio

sp
ee

du
p

ra
tio

sp
ee

du
p

ra
tio

sp
ee

du
p

ra
tio

sp
ee

du
p

ra
tio

Figure 3.2: Speedup versus number of processes under the parallel implementation of DD1

“keeper” of candidate solutions, duplicate solutions cannot be identified, which requires some of
the processes to spend time reevaluating them. Furthermore, every process has to perform the cut
aggregation step on its own, which is again a duplicate effort. Table 3.4 shows that the proportion
of unproductive time among the total time grows larger as the number of processes increase, par-
allel efficiency also deteriorates. The maximum parallel efficiency is attained with two processes
under Basic Parallel, and with three processes under Master-Worker Parallel.

3.5 Concluding Remarks

In this chapter, we studied general chance-constrained 0-1 programs. We developed a decom-
position algorithm which followed a procedure of iteratively evaluating and cutting off candidate
solutions discovered from scenario subproblems until the upper and lower bounds were sufficiently
close. The algorithm was based on a Lagrangian relaxation obtained from dualizing the NAC and

64

Table 3.4: Parallel efficiency under the two parallel schemes

RAS1 RAS3
num of processes 1 2 3 1 2 3

Basic Parallel

2 142% 57% 85% 127% 131% 126%
3 103% 44% 96% 95% 89% 71%
5 76% 30% 28% 70% 67% 58%
9 45% 19% 15% 35% 36% 27%

Master-Worker Parallel

2 95% 154% 53% 101% 99% 73%
3 133% 137% 41% 133% 119% 92%
5 85% 103% 36% 77% 80% 63%
9 49% 62% 22% 44% 42% 32%

the packing inequality emerging in the MIP reformulation of the original program. Specifically,

• We proposed a closed-form result about the maximization of the Lagrangian relaxation in
Proposition 3.2 which simplified some subgradient iterations to simple arithmetics. Practi-
cally, it effectively reduced the number of subproblems to solve;

• We developed a subroutine of cut aggregation that exploits cropping inequalities, to address
the issue of a overwhelmingly large number of generated cuts. Practically, it accelerated the
solution of individual subproblems.

To study the impact of these techniques, we tested three algorithms that incorporate neither, the
first, and both of them, respectively. We also developed parallel schemes to further enhance the
efficacy of the proposed algorithm:

• Basic Parallel, where the computation of subproblems are shared evenly by all the processes;

• Master-Worker Parallel, where a master process acts as a centralized information keeper to
avoid duplicate efforts.

We conducted numerical experiments on resource allocation problem instances with 20-
dimensional decision variable and 200 scenarios. The findings are summarized as follows:

1. In solving the MIP reformulation of the original program, our algorithm is much faster than
directly calling the solver. It is also faster than the four existing methods that are widely used
in solving large-scale chance-constrained programs.

2. Both Proposition 3.2 and cut aggregation improve the efficacy of the dual decomposition
method. In particular, the former reduces the number of subgradient iterations and saves
substantial time.

65

3. When the number of processes is small, Basic Parallel has better speedup. As the number
of processes increases, Master-Worker Parallel surpasses it, because the master eliminates
duplicate efforts between processes.

4. As the number of processes varies, the maximum parallel efficiency is achieved with two
processes under Basic Parallel, and three processes under Master-Worker Parallel.

66

CHAPTER 4

Solving Risk-Averse 0-1 Stochastic Programs with
Decomposition and Parallelization

4.1 Introductory Remarks

In addition to chance-constrained programs, there is another big family of risk-averse stochastic
programs that emerge naturally from real-world practice. Different from controlling the risk to
a certain extent as in a chance constraint, these problems aim to suppress the risk as much as
possible, and formulate an objective such as minimizing the risk of some random outcome. Two
studies are particularly relevant. Miller and Ruszczyński (2011) consider a risk-averse two-stage
stochastic linear program, in which the objective function is given as a composition of conditional
risk measures. They develop two decomposition algorithms, one of which uses a generic cutting
plane approach and the other exploits the composite structure of the objective function. Collado
et al. (2012) propose a scenario decomposition algorithm for a risk-averse multistage stochastic
problem. Their algorithm is based on constructing risk-neutral approximations of the program by
exploiting specific structure of dynamic risk measures. Both studies, however, do not consider
stochastic integer programs in a risk-averse setting, or explore detailed procedures for implement-
ing the decomposition algorithms in parallel. In this chapter, we consider a class of risk-averse
stochastic 0-1 programs (see Ruszczyński, 2013) in which the risk is measured by a coherent risk
function. See Pflug and Römisch (2007); Rockafellar and Uryasev (2002); Rockafellar et al. (2006)
for a more extensive discussion of coherent risk functions.

Following Shapiro (2012), we represent the coherent risk function in a dual form and arrive
at an equivalent risk-neutral minimax reformulation of the problem. We then develop three dual
decomposition algorithms for solving the reformulation. Two of them have the bound-and-cut
iteration nesting an iterative subroutine (e.g., a cutting-plane method or a subgradient method), for
optimizing the Lagrangian relaxation to produce a tighter lower bound, and the third one uses the
functional value of Lagrangian relaxation at zero as the lower bound.

67

Thees algorithms are also applicable to solving the DR variant of the considered risk-averse
0-1 program, and can be implemented in a distributed system. Indeed, decomposition algorithms
are amenable to parallelism, which can effectively save computational time (Ahmed, 2013; Ryan
et al., 2015). However, it is nontrivial to implement decomposition algorithms as parallel pro-
cedures in a distributed framework. Recently, Ahmed (2013) proposes a decomposition method
for solving risk-neutral stochastic 0-1 programs. The algorithm also searches for solutions by
bounds and cuts, which can be developed through scenario subproblems. The author describes se-
rial and synchronous distributed implementations of the algorithm, and demonstrates the efficacy
of the approach on instances from the SIPLIB test library (see Ahmed et al., 2015a). Ryan et al.
(2015) then extend the work and develop an asynchronous parallel implementation of the algo-
rithm, which has better performance on the same set of test instances. On the other hand, Ahmed
et al. (2015b) develop decomposition approaches for chance-constrained 0-1 programs. In partic-
ular, they demonstrate the strength of the dual bounds and efficient ways of obtaining them in a
distributed algorithm, although details of parallel implementation are not discussed. In this chap-
ter, we develop three parallel schemes for the proposed decomposition algorithms. They represent
different combinations of basic-parallel/master-worker-parallel, synchronous/asynchronous, and
push/pull, and enable a comprehensive examination of the parallel execution of the decomposition
algorithms.

The remainder of the chapter is organized as follows. Section 4.2 presents a generic model for
the considered risk-averse 0-1 stochastic programs, an equivalent risk-neutral minimax reformu-
lation, and the three dual decomposition algorithms. Section 4.4 introduces the parallel schemes.
Section ?? presents a DR variant and explains how the algorithms adapt. Section 4.5 summarizes
the computational results. Section 4.6 concludes.

4.2 Decomposition Methods

4.2.1 Problem Formulation

We consider risk-averse stochastic 0-1 programs of the form

min
x

{
ρ(f (x, ξ)) : x ∈ X ⊆ {0,1}d

}
, (4.1)

where x is a d-dimensional binary decision vector, ξ is a multivariate random vector, and the cost
function f (x, ξ) is convex in x for any realized value of ξ. We consider a finite set of realizations
{ξ1, . . . , ξK} of ξ having the corresponding probabilities p1, . . . , pK . The vector p = (p1, . . . , pK)>

68

belongs to the polyhedron set

M :=

p = (p1, . . . , pK)> :
K∑

k=1

pk = 1, pk ≥ 0, ∀k = 1, . . . ,K

 . (4.2)

Here ρ(·) is a generic measure that returns a scalar metric of the random cost f (x, ξ). For example,
ρ(·) can be the expectation as in a risk-neutral model, or a specific risk measures as in a risk-
averse model. We consider ρ(·) as a coherent risk measure, which leads to an equivalent dual
representation (see, e.g., Artzner et al., 1999; Shapiro and Ahmed, 2004) as,

ρ(f (x, ξ)) = max
q∈Qρ(p)

{
Eq

[
f (x, ξ)

]}
, (4.3)

where we compute the expectation of the random f (x, ξ) based on an unknown probability vector
q = (q1, . . . ,qK)>, which belongs to an uncertainty set Qρ(p) ⊆M determined by the coherent risk
measure ρ and nominal probabilities p1, . . . , pK . In (4.3), the value of ρ(f (x, ξ)) is equivalent to
the worst-case expectation of the random f (x, ξ) measured based on any probability q ∈ Qρ(p).
Therefore, we present an equivalent minimax reformulation of the original problem (4.1):

min
x∈X

max
q∈Qρ(p)

 K∑
k=1

qk fk(x)

 (4.4)

where we use fk(x) := f (x, ξk) for notational convenience. In this chapter, we assume that
minx∈X { fk(x)} is bounded for all k = 1, . . . ,K. Our goal is to optimize model (4.4) via scenario
decomposition approaches and efficient implementation schemes.

4.2.2 Dual Decomposition Framework

Following the standard dual decomposition method, we first replace variable x with scenario-based
copies x1, . . . , xK to build a decomposable structure. Model (4.4) then reads as:

min
x1,...,xK∈X

max
q∈Qρ(p)

K∑
k=1

qk fk(xk)

s.t.
K∑

k=1

αkxk = x1 (4.5)

where α1, . . . ,αK are positive scalars that sum to 1, and (4.5) is the NAC to ensure x1, . . . , xK taking
the same values. Next, we relax (4.5) and introduce a dual multiplier λ ∈ Rd. The resulting

69

Lagrangian relaxation reads as:

min
x1,...,xK∈X

max
q∈Qρ(p)

 K∑
k=1

(
(αk −δk)λ>xk + qk fk(xk)

) (4.6)

where for notational convenience, we let δ1 = 1 and δk = 0 for k = 2, . . . ,K. To recover scenario
subproblems, we consider a lower approximation of (4.6) given by:

g(λ) := max
q∈Qρ(p)

min
x1,...,xK∈X

 K∑
k=1

(
(αk −δk)λ>xk + qk fk(xk)

)
= max

q∈Qρ(p)

 K∑
k=1

min
xk∈X

(
(αk −δk)λ>xk + qk fk(xk)

) (4.7)

For any λ ∈ Rd, g(λ) represents a valid lower bound for the optimal objective value of the original
problem. Below, we discuss three decomposition approaches that differ in how to recover a lower
bound from g(λ) or its variations. We refer to them as DD1, DD2 and DD3, respectively.

4.2.3 DD1 by Using g(0)

Here, we simply set λ = 0 and use g(0) to update the lower bound. By doing this, we essentially
relax the NAC (4.5), and allow decision x to be made specifically for each scenario. Although
this will likely produce an over-optimistic outcome, i.e., a relatively weak lower bound, it can still
yield a good outcome if the scenarios are similar and agree on the same best decision.

Plugging λ = 0 into (4.7) yields:

g(0) = max
q∈Qρ(p)

 K∑
k=1

min
xk∈X

{
qk fk(xk)

}
= max

q∈Qρ(p)

 K∑
k=1

qk min
xk∈X

{
fk(xk)

} , (4.8)

where we are able to pull q1, . . . ,qK out of the minimization subproblems. Based on (4.8), we
compute g(0) in two steps as follows.

• Step (i): for each k = 1, . . . ,K, optimize scenario subproblem

Scen(k): βk = min
x
{ fk(x) : x ∈ X} ; (4.9)

70

• Step (ii): letting β = (β1, . . . ,βK), optimize a maximization problem over variable q as

Cont(β): max
q

 K∑
k=1

βkqk : q ∈Qρ(p)

 . (4.10)

Note that (4.8) is the dual representation of a coherent risk ρ (minx∈X f (x, ξ)) according to (4.3).
Here the random value minx∈X f (x, ξ) has finite realizations β1, . . . ,βK computed through Step (i),
with the corresponding probabilities p1, . . . , pK . Therefore, Step (ii) can be done by optimizing the
risk function ρ (minx∈X f (x, ξ)) directly if possible, rather than using the dual form in (4.10).

Algorithm 4.1 below gives the two steps for the DD1 algorithm, which iterates until ` and u

are sufficiently close, e.g., ≤ ε. In each iteration, we solve scenario subproblems Scen(k), ∀k =

1, . . . ,K, and compute g(0) to update the lower bound ` (see steps 4–8). Each subproblem has
the same feasible region as the original problem. Thus, we collect all the subproblem solutions
x̂k, k = 1, . . . ,K into the set S and then evaluate their objective values as:

Eval(x̂) := ρ(f (x̂, ξ)) (4.11)

for every x̂ ∈ S , to update the upper bound u (see steps 9–11). We then cut off every evaluated
solution by adding the no-good cut (1.19) to subproblem Scen(1), . . . ,Scen(K) (see step 12).

Algorithm 4.1 The DD1 dual decomposition algorithm for solving model (4.4)
1: u← +∞, `←−∞
2: repeat
3: S ← ∅

4: for k = 1, . . . ,K do
5: (βk, x̂k)← Scen(k)
6: S ← S ∪{x̂k}

7: end for
8: `←max{`,Cont(β)}
9: for x̂ ∈ S do

10: u←min{u,Eval(x̂)}
11: end for
12: X← X \S .
13: until u− ` < ε

Remark 1. Without going through Lagrangian relaxation steps, we can still verify (4.8) serving

71

as a valid lower bound:

min
x∈X

ρ(f (x, ξ)) = min
x∈X

max
q∈Qρ(p)

Eq[f (x, ξ)]

≥ max
q∈Qρ(p)

min
x∈X

Eq[f (x, ξ)]

≥ max
q∈Qρ(p)

Eq

[
min
x∈X
{ f (x, ξ)}

]
= ρ

(
min
x∈X

f (x, ξ)
)

= (4.8).

Remark 2. If subproblem Scen(k) becomes infeasible for some k ∈ {1, . . . ,K}, we stop and check

the current upper bound value u before computing the rest of the subproblems. We claim an optimal

solution found as the one attaining the best upper bound if u < +∞, or the problem is infeasible if

u = +∞ (i.e., no feasible solution has been found from any Scen(k). This also applies to DD2 and

DD3 in the following sections.

4.2.4 DD2 by Optimizing g(λ) Using a Cutting-Plane Method

Both DD2 and DD3 use the Lagrangian dual maxλ{g(λ)} to update the lower bound, but differ
in their computation. We discuss in this section a cutting-plane method used by DD2, and in
Section 4.2.5 a subgradient method used by DD3.

According to (4.7), we formulate a master problem equivalent to maxλ {g(λ)} over variables
φ ∈ R, λ ∈ Rd and q ∈ [0,1]K as:

max
φ,λ,q

φ (4.12a)

s.t. φ ≤
∑K

k=1
min
xk∈X

{
(αk −δk)λ>xk + qk fk(xk)

}
(4.12b)

q ∈Qρ(p), (4.12c)

where constraints (4.12b) are linear in φ, q, and λ. We relax (4.12b) and enforce them by generating
cuts iteratively. Specifically, given a solution (φ̂, λ̂, q̂) to a relaxed master problem, for each k =

1, . . . ,K, we compute a scenario subproblem given by

βDD2
k = min

x

{
(αk −δk)λ̂>x + q̂k fk(x) : x ∈ X

}
. (4.13)

If φ̂ >
∑K

k=1 β
DD2
k , we add an optimality cut

φ ≤
∑K

k=1

(
(αk −δk)λ> x̂k + qk fk(x̂k)

)
(4.14)

72

where x̂k represents an optimal solution to the subproblem (4.13), and re-iterate to solve the master
problem (4.12). We terminate this cutting-plane subroutine when φ̂ ≤

∑K
k=1 β

DD2
k which implies

that constraints (4.12b) are satisfied and φ̂ equals to maxλ{g(λ)}. We then update the lower bound
` with φ̂.

Throughout the cutting-plane iterations, the following relation holds:

K∑
k=1

βDD2
k ≤max

λ
{g(λ)} ≤ φ̂.

Therefore, even before attaining maxλ{g(λ)}, we can update the lower bound ` with
∑K

k=1 β
DD2
k in

every cutting-plane iteration, which may close the gap between ` and u earlier.

Remark 3. For any λ̂ and nonnegative q̂, the subproblem (4.13) must be bounded, because Scen(k)
is bounded by assumption and xk ∈ X ⊆ {0,1}d.

Algorithm 4.2 gives the steps of this cutting-plane subroutine. The new decomposition algo-
rithm runs this subroutine in every bound-and-cut iteration, which generates valid lower bounds for
updating ` but also feasible solutions (note that every scenario subproblem (4.13) shares the same
feasible region with the original problem) to update u. The corresponding procedure is deduced
from replacing steps 4–8 in Algorithm 4.1 by Algorithm 4.2. To avoid the cutting-plane subroutine
taking excessively long time to converge, we set an upper limit to the number of cutting-plane
iterations when implementing Algorithm 4.2.

Algorithm 4.2 The cutting-plane subroutine in DD2 for updating the lower bound
1: λ̂← 0, q̂← p, φ̂← +∞

2: repeat
3: for k = 1, . . . ,K do
4: solve (4.13) to attain the optimal objective value βDD2

k and the optimal solution x̂k

5: S ← S ∪{x̂k}

6: end for
7: `←max{`,

∑K
k=1 β

DD2
k }

8: add cut (4.14) to the master problem (4.12)
9: solve the master problem and attain an optimal solution (φ̂, λ̂, q̂)

10: until φ̂ ≤
∑K

k=1 β
DD2
k

73

4.2.5 DD3 by Using a Subgradient Method

In this method, we approach the Lagrangian dual maxλ{g(λ)} by a subgradient method for updating
the lower bound. It forms a decomposition algorithm similar to Algorithm 3.1 that we propose for
chance-constrained 0-1 programs in Chapter 3. As mentioned, since the subgradient subroutine
tends to take long time and tightens the lower bound very little, we explore a higher-dimensional
NAC:

K∑
k=1

αkxk = xi ∀i = 1, . . . ,K, (4.15)

which are K copies of (4.5) with the right-hand sides varying from x1 to xK . We associate each
of these constraints with multiplier qiλ

i, where qi is the probability mass value of the unknown
distribution from the uncertainty set Qρ(p) and λi is a d-dimensional variable, for all i = 1, . . . ,K.
Following similar steps for obtaining the function g(λ) in (4.7), we formulate a relaxation of the
model with the new NAC (4.15) as:

g(λ1, . . . ,λK) := max
q∈Qρ(p)

min
x1,...,xK∈X

 K∑
i=1

qi

(λi)>
 K∑

k=1

qkxk − xi

+ fi(xi)

= max
q∈Qρ(p)

min
x1,...,xK∈X

K∑

k=1

qk

(
fk(xk)−

(
λk

)>
xk

)
+

 K∑
k=1

qkλ
k

> K∑

k=1

qkxk

 . (4.16)

We consider a polyhedron set A(λ1, . . . ,λK) =
{
q :

∑K
k=1λ

kqk = 0
}
. A lower approximation of

g(λ1, . . . ,λK) that has a decomposable inner minimization problem is given by

g(λ1, . . . ,λK) := max
q∈Qρ(p)∩A(λ1,...,λK)

min
x1,...,xK∈X

 K∑
k=1

qk

(
fk(xk)−

(
λk

)>
xk

) (4.17)

= max
q∈Qρ(p)∩A(λ1,...,λK)

 K∑
k=1

(
qk min

xk∈X

{
fk(xk)−

(
λk

)>
xk

}) . (4.18)

which we compute in two steps as follows.

• Step (i): for each k = 1, . . . ,K, solve a scenario subproblem:

βDD3
k = min

x∈X

{
fk(x)− (λk)>x

}
(4.19)

which is bounded following the same explanation in Remark 3.

74

• Step (ii): solve a maximization problem over the continuous variable q:

max
q

 K∑
k=1

βDD3
k qk : q ∈Qρ(p)∩A(λ1, . . . ,λK)

 . (4.20)

The value of g(λ1, . . . ,λK) for any given multiples λ1, . . . ,λK , will provide a valid lower bound.
We strive to obtain the best lower bound by maximizing g(λ1, . . . ,λK) via a subgradient method.
We repeat the steps of computing g(λ1, . . . ,λK), and then updating λk for k = 1, . . . ,K by using the
subgradient −q̂k x̂k (where x̂k is an optimal solution to the kth subproblem (4.19)) and the Polyak
rule for computing step size. We present the steps of this subgradient subroutine in Algorithm 4.3.
We deduce the new algorithm by replacing steps 4–8 in Algorithm 4.1 with Algorithm 4.3.

Algorithm 4.3 The subgradient subroutine in DD3 for updating the lower bound
1: λk← 0, ∀k = 1, . . . ,K
2: repeat
3: for k = 1, . . . ,K do
4: solve scenario subproblem (4.19) to attain the optimal objective value βDD3

k and the opti-
mal solution x̂k.

5: S ← S ∪{x̂k}

6: end for
7: solve (4.20) to attain an optimal solution q̂ and the optimal objective value

∑K
k=1 β

DD3
k q̂k.

8: `←max{`,
∑K

k=1 β
DD3
k q̂k}

9: for k = 1, . . . ,K do
10: update λk by using the subgradient −q̂k x̂k.
11: end for
12: until achieving the general stop criteria for the subgradient method

4.3 Distributionally Robust Variants

We consider that the probability distribution p of the uncertainty ξ is not exhaustively known.
Instead, an uncertainty set P ⊆M of p, consisting of all possible distributions, is available. We let
ρ (f (x, ξ)) be the worst-case risk outcome for any p ∈ P . We define set

Dρ(P) :=
{
q : q ∈Qρ(p),∀p ∈ P

}
. (4.21)

75

We consider a distributionally robust risk-averse program as

min
x∈X

ρ (f (x, ξ)) = min
x∈X

max
q∈Dρ(P)

 K∑
k=1

qk fk(x)

 (4.22)

Comparing (4.22) with (4.4), we have Qρ(p) in the latter replaced by Dρ(P) in the former, under
the ambiguity of p. Therefore, we can easily adapt the aforementioned algorithms to solving
(4.22).

4.4 Parallel Implementation Schemes

In this section, we explore parallel computing schemes for implementing DD1, DD2, and DD3 in
a distributed framework. DD1 has a simpler iterative structure than DD2 and DD3. (The latter
two run two loops and take potentially multiple iterations for updating the lower bound in each
round.) As a result, DD1 is easier to be parallelized, and the parallel programs can scale better.
In Section 4.5.2, we show that DD1 outperforms the other two algorithms even when the steps in
each algorithm are implemented in a series. Thus, we focus on develop parallel schemes for DD1
and present a general scheme for DD2 and DD3 in Appendix C.1.

4.4.1 Overview

In a serial implementation of DD1/DD2/DD3, subproblems like Scen(·) and Eval(·) are solved
one by one. If there are multiple processes, we can spread the subproblems and place a barrier
to synchronize all the processes which then exchange results for updating bounds and cuts before
reiteration. We refer to this scheme as Basic Parallel (BP) and present the details in Section 4.4.2.
However, waiting caused by barriers and high intensity of communication may compromise paral-
lel efficiency. In Section 4.4.3, we introduce a master-worker scheme that dedicates one process to
consolidate information. In Section 4.4.4, we introduce another master-worker scheme that avoids
barriers. We refer to these two schemes as Master-worker Parallel with Barriers (MWB) and
Master-worker Parallel without Barriers (MWN), respectively.

Figure 4.4.1 shows a schematic view of each mentioned computing scheme. Squares of each
color represent parallel tasks, e.g., Scen(·) or Eval(·). Red bars denote the barriers. Note that BP
and MWB are “push” systems where we pre-assign computing jobs to processes. Specifically,
given tasks 1, . . . , J (with no prior knowledge about their time complexity), we assign them to N

processes in a round-robin manner, such that the nth process receives a subset

Ω
J,N
n := { j ∈ {1, . . . , J} : (j−1) mod N = (n−1)} (4.23)

76

Serial Basic Parallel Master-worker w/o SyncMaster-worker w/ Sync

Figure 4.1: An overview of implementation schemes for dual decomposition algorithms

of tasks. In contrast, MWN is a “pull” system, where jobs are kept in a queue, and each is waiting
to be solved whenever a process becomes available.

4.4.2 Basic Parallel

We present BP in Algorithm 4.4, which assigns the K scenarios across the N processes such that
Process n (named “Procn”) receives a subset Ω

K,N
n of scenarios, for n = 1, . . . ,N. Each process

solves Scen(k) for every assigned scenario k, and evaluates its optimal solution. We use the eval-
uation result to update the local upper bound un in Procn. We then let all the processes share
their results through some collective operation (e.g., AllToAll in MPI (Message Passing Interface)
in Pacheco, 1997), which, in general, communicates faster than point-to-point sending/receiving
messages, but implies a barrier such that all the processes must reach the point before they can
begin communication. In practice, barriers cause waiting.

The BP scheme has another drawback as evaluating repeated solutions from different scenario
subproblems. In each process, we can do a local check between steps 5 and 6 to avoid evaluating
some x̂k that we have encountered earlier in the loop. However, we cannot avoid re-evaluation if
the same solution occurs in different processes, which is very likely in our computation.

4.4.3 Master-worker Parallel with Barriers

We let ProcN be the master (process) consolidating solutions and updating the bounds. The rest
N −1 processes are workers sharing the computation of Scen(·) and Eval(·). Every Procn (n 6= N)
solves Scen(k) for all k ∈ Ω

K,N−1
n , and sends the results to the master. The master stores βk and

collects non-repeated x̂k in a solution list S. (Note that S is different from the solution set S , which

77

Algorithm 4.4 The BP Scheme at Procn (n ∈ {1, . . . ,N})
1: u← +∞, `←−∞
2: repeat
3: Initialize the local upper bound un← +∞.
4: for k ∈Ω

K,N
n do

5: (βk, x̂k)← Scen(k)
6: un←min{un,Eval(x̂k)}
7: S ← S ∪{x̂k}

8: end for
9: pass {(βk, x̂k) : k ∈Ω

K,N
n } and un to all the other processes

10: `←max{`,Cont(β)}
11: u←min{u,u1, . . . ,uN}

12: X← X \S .
13: until u− ` < ε

collects solutions that are not necessarily ordered, whereas S arranges the candidate solutions in a
certain order.) Once it has attained the results from all K scenarios, it broadcasts the list S. Every
worker receives the whole list (for adding no-good cuts), and shares the evaluation of all solutions
in the list S. Specifically, we define Si as the ith solution in S . Every Procn (n 6= N) evaluates Si for
all i ∈ Ω

|S |,N−1
n , and sends the results to the master. The master, after broadcasting S, updates the

bounds and forces all processes to terminate once it detects a sufficiently small gap. We present the
algorithmic steps of a worker process in Algorithm 4.5 and of the master in Algorithm 4.6, where
u′ denotes a temporary, valid lower bound obtained at each worker and S + x̂k means appending
solution x̂k to the tail of the list S.

Algorithm 4.5 The MWB Scheme at Procn (n ∈ {1, . . . ,N −1}) (worker)
1: loop
2: for k ∈Ω

K,N−1
n do

3: (βk, x̂k)← Scen(k)
4: send (βk, x̂k) to ProcN

5: end for
6: gather S from ProcN

7: for i ∈Ω
|S |,N−1
n do

8: u′← Eval(Si)
9: send u′ to ProcN

10: end for
11: X← X \S
12: end loop

The master collecting and broadcasting solutions avoids evaluating duplicated solutions. In
terms of communication, we use asynchronous “send/receive”, so that the process that sends the
message does not wait for the reception of the message, but proceeds with the succeeding steps,

78

Algorithm 4.6 The MWB Scheme at ProcN (master)
1: repeat
2: u← +∞, `←−∞
3: S ← ∅
4: for K times do
5: receive (βk, x̂k) from Procn

6: if x̂k /∈ S then
7: S ← S + x̂k

8: end if
9: end for

10: broadcast S to Proc1, . . . ,ProcN−1

11: `←max{`,Cont(β)}
12: for |S | times do
13: receive u′ from Procn

14: u←min{u,u′}
15: end for
16: until u− ` < ε
17: terminate all processes

which allows for more parallelism. However, this requires buffers to store the data in transit. In
each iteration of MWB, transiting data contains at most K d-dimensional binary vectors and K real
numbers, which is a fairly modest amount. In step 10 of Algorithm 4.6 (or step 6 of Algorithm 4.5),
to send the solution list S from the master to the worker, we use broadcast, which, again, is a
collective operation implying a barrier across all the processes.

4.4.4 Master-worker Parallel without Barriers

In BP and MWB, all of the processes go through iterations synchronously due to the barriers
implied by collective communication steps. Therefore, we want to design a new scheme that
avoids these barriers. At the same time, we make it a pull system for better load balance.

Formally, the master keeps a queue of idle workers as Qproc, and a queue of subproblems to
solve as Qjob. As long as both queues are non-empty, it repeatedly pops out from each a worker
and a job, then assigns the job to the worker. It then waits to receive any result from the workers.
Once the master hears from some worker, it adds the worker to Qproc, processes the received
results, and creates new jobs if needed. Algorithm 4.7 explains the steps. In particular, steps 1, 5
and 9 are detailed in Algorithms 4.10, 4.9 and 4.8, respectively.

The master is still keeping the bounds and the list S of vertices. Upon receiving a result of
Eval(·), i.e., u′, the master uses it to update the upper bound. Upon receiving a result of Scen(k),
i.e., (βk, x̂k), the master resolves Cont(β) which takes in the new value of βk, to update the lower

79

Algorithm 4.7 The MWN Scheme at ProcN (worker)
1: initialization
2: repeat
3: while Qproc 6= ∅ and Qjob 6= ∅ do
4: n← pop(Qproc), j← pop(Qjob)
5: assign j to Procn

6: end while
7: receive r from Procn

8: Qproc← Qproc+ n
9: process r (and create jobs to Qjob)

10: until u− ` < ε
11: terminate all processes

bound. If x̂k is new, the master appends it to S and creates a job for evaluating its objective value.
In addition, every reception of Scen(k)’s result triggers creating a new job for solving Scen(k) for
reiteration.

Algorithm 4.8 Master result processing subroutine (step 9 of Algorithm 4.7)
1: switch r:
2: case u′ :
3: u←min{u,u′}
4: case (βk, x̂k) :
5: `←max{`,Cont(β)}
6: if x̂k /∈ S then
7: S ← S + x̂k

8: Qjob← Qjob+ Eval(x̂k)
9: end if

10: Qjob← Qjob+ Scen(k)
11: end switch

To avoid barriers, the system has no centralized step for informing the workers about all of
the explored vertices, but rather use point-to-point communication between the master and any
individual worker to communicate about jobs and results. So that the workers know what cuts
to add to the subproblems, we let the master keep, for each worker n, an index τ(n) ∈ {0, . . . , |S |}
pointing to the end of a sublist of S which the worker has been given in order to generate cuts.
For example, if τ(1) = 3 and τ(2) = 5, it means Proc1 and Proc2 have generated cuts to exclude
vertices S1, . . . ,S3, and S1, . . . ,S5, respectively. Once it is time for Procn to update cuts, the master
sends Sτ(n)+1, . . . ,S|S |, and then increases τ(n) to |S |. Note that additional cuts affect Scen(·) but not
Eval(·). The master therefore sends these vertices along with the jobs of Scen(·). Algorithm 4.9
gives the job assignment subroutine with these details. Algorithm 4.10 gives the initialization
steps.

80

Algorithm 4.9 Master job assignment subroutine (step 5 of Algorithm 4.7)
1: switch j:
2: case Eval(x̂) :
3: send (Eval(x̂)) to Procn

4: case Scen(k) :
5: S ← {Si : i = τ(n) + 1, . . . , |S |}
6: τ(n)← |S |
7: send (S ,Scen(k)) to Procn

8: end switch

Algorithm 4.10 Master initialization subroutine (step 1 of Algorithm 4.7)
1: u← +∞, `←−∞
2: S ← ∅
3: τ(1), . . . , τ(N −1)← 0
4: Qproc← 〈1, . . . ,N −1〉
5: Qjob← 〈Scen(1), . . . ,Scen(K)〉

On the other hand, the workers receive tasks from the master, work on them and send the results
back to the master. Algorithm 4.11 gives the steps.

Algorithm 4.11 The MWN Scheme at Procn (n ∈ {1, . . . ,N −1})
1: loop
2: receive j from ProcN

3: switch j:
4: case (Eval(x̂)) :
5: u′← Eval(x̂)
6: send u′ to ProcN

7: case (S ,Scen(k)) :
8: X← X \S
9: (βk, x̂k)← Scen(k)

10: end switch
11: end loop

Figure 4.2 summarizes MWN with a schematic view for both the master and the workers.
A major difference between MWN and schemes BP and MWB is that the workers are asyn-

chronous in adding cuts. Given the cuts that Procn has generated, we denote the feasible region as
Xn. Then each Scen(k) that Procn solves, precisely, is:

β′k(nk) = min{ fk(x) : x ∈ Xnk},

where nk ∈ {1, . . . ,N−1} specifies the worker to which the scenario subproblem Scen(k) is assigned.

81

!1, "1

Worker 1 !

add cuts for S,
solve Scen(1)

u
S, Scen(1)

u
compute

Eval((0,0,1))
Eval((0,0,1))S, Scen(k)

Eval("k)

!k

"k

Master!

!1 !2 !3 !4 !5 !6 !7

upper bound

#(1)

lower bound

#(2) #(3)

solutions
S

Figure 4.2: A schematic view of MWN

A lower bound obtained in this case is

˜̀ = Cont((β′1(n1), . . . ,β′K(nK))).

To justify that the algorithm still works with this lower bound, we want to show that ˜̀ will not
cross with the upper bound u, when u is not yet optimal. We define X = Xn1 ∩ · · · ∩ XnK , and for
k = 1, . . . ,K, consider

βk = min{ fk(x) : x ∈ X}.

By definition, βk ≥ β
′
k(nk) for k = 1, . . . ,K. When u is suboptimal, any optimal solution x∗ must have

not been explored yet (i.e., x∗ /∈ S), and thus x∗ ∈ Xnk for k = 1, . . . ,K which implies that x∗ ∈ X.
Therefore, we also have βk ≤ fk(x∗) for k = 1, . . . ,K. Therefore,

u > Cont((f1(x∗), . . . , fK(x∗))) ≥ Cont((β1, . . . ,βK)) ≥ Cont((β′1(n1), . . . ,β′K(nK))) = ˜̀.

4.5 Computational Results

We implement parallelization by OpenMPI 1.6 (Gabriel et al., 2004), and perform the computation
on Flux HPC cluster, University of Michigan. We use as many as 21 compute nodes; each compute
node has twelve 2.67 GHz Intel Xeon X5650 processes and 48GB RAM. All involved optimization
models (including subproblems as a result of decomposition) are solved by CPLEX 12.6 via ILOG
Concert Technology. We set a runtime limit of six hours for computing each instance.

4.5.1 Instances and Experimental Setup

We extract two sets of instances from SIPLIB (Ahmed et al., 2015a):

82

• Stochastic server location problem (SSLP) from a telecommunication application studied by
Ntaimo and Sen (2005): The first stage decides where to place servers out of n locations, and
the second stage satisfies uncertain demand from m clients. The cost function is given by

f (x, ξ) = γ>x + min
y
{θ>1 y + θ>2 z : W1y + W2z ≥ r(ξ)−T x, y ∈ {0,1}n×m, z ∈ Rn

+}

and the feasible region is x ∈ X = {0,1}n. We use four instances with n = 10 and m = 50. They
contain 50, 100, 500 and 1000 scenarios, respectively.

• Stochastic multiple 0-1 knapsack problem (SMKP) studied by Angulo et al. (2014a): The
first and the second stages are multiple 0-1 knapsack problems with n and m entities, respec-
tively. The cost function is:

f (x, ξ) = γ>x + min
y
{θ(ξ)>y : Wy ≥ r−T x, y ∈ {0,1}m}

and the feasible region is X = {x ∈ {0,1}n : Ax ≥ w} with linear constraints Ax ≥ w. The orig-
inal dataset contains 30 instances each containing 20 scenarios. To examine how problem
scale affects the algorithm performance, we select the first instance and propagate it to attain
instances with 40, 80, and 160 scenarios. To propagate a K-scenario dataset to K′-scenario,
we first include the original K scenarios. Next, we repeat for K′−K times, generate random
numbers σ1, . . . ,σK , and then create a scenario k such that θ(ξk) is a weighted average of the
original θ(ξ1), . . . , θ(ξK) with weighing coefficients given by normalized σ1, . . . ,σK , i.e.,

θ(ξk) =

∑K
k′=1σk′θ(ξk′)∑K

k′=1σk′
.

Table 4.1 presents the scales and the performance of LP relaxations for these instances. Specifi-
cally, # var and # constr give the numbers of binary variables and constraints, respectively, in the
corresponding problems. SMKP has pure binary problems in both stages. SSLP has a binary first-
stage, and a mixed-binary second-stage problem, which involves 10 continuous variables in each
scenario. Both sets contain four instances with varying numbers of scenarios. In every instance,
all the scenarios are equal likely, i.e., p1 = · · · = pK = 1/K. Regarding the number of variables and
constraints, SSLP has a larger second stage than the first stage, whereas SMKP has the opposite.
The last section of Table 4.1 lists the computational time (in seconds) of the LP relaxation (see
total time) and the gaps between the optimal objective values of the LP relaxation and the original
binary program (see tightness). As the number of scenarios increases, we observe a trend of longer
computations and weaker LP relaxations.

83

Table 4.1: Scales of different instances and performance of their LP relaxations

SSLP SMKP
50 100 500 1000 20 40 80 160

1st-stage
var 10 10 10 10 240 240 240 240

constr 1 1 1 1 50 50 50 50

2nd-stage
scen (K) 50 100 500 1000 20 40 80 160

var (per scen) 500 500 500 500 120 120 120 120
constr (per scen) 60 60 60 60 5 5 5 5

LP relaxation
total time 0.48 2.35 59.29 45.19 0.043 0.071 0.069 0.229
tightness 24.8% 25.8% 24.3% 27.9% 0.36% 2.99% 3.15% 5.53%

For the coherent risk measures, we choose conditional value-at-risk (CVaR), i.e., ρ(·) =

CVaRα(·), and set the reliability parameter α to 0.9. The uncertainty set in the dual representa-
tion of CVaR contains only linear constraints (see Shapiro and Ahmed, 2004), given by

Qρ(p) =

(q1, . . . ,qK) :
K∑

k=1

qk = 1, 0 ≤ qk ≤ pk/(1−α), ∀k = 1, . . . ,K

 .
In this case, model (4.4) becomes a minimax linear integer program, and the maximization prob-
lems Cont(β), (4.12a)—(4.12c), and (4.20), which emerge from the decomposition algorithms, are
all linear programs.

For the benchmark of the dual decomposition algorithms, we use the model of CVaR first
proposed by Rockafellar et al. (2002):

CVaRα(f (x, ξ)) = min
η

η+
1

1−α

K∑
k=1

pk
[
fk(x)−η

]+ : η ∈ R
 ,

and solve the considered risk-averse problem with an MIP:

min
x,η,v1,...,vK

η+
1

1−α

K∑
k=1

pkvk : vk ≥ fk(x)−η, vk ≥ 0, ∀k = 1, . . . ,K, x ∈ X

 , (4.24)

.

4.5.2 Results of Serial Implementation

The default serial scheme directly calls an off-the-shelf solver to optimize model (4.24). Table 4.2
compares the runtime of different approaches solved in one process, reported in total time. We
break down total time to show the total time for solving scenario subproblems (i.e., Scen(·) in DD1,
(4.13) in DD2 and (4.19) in DD3), reported in scen time, and the time for evaluating solutions (i.e.,

84

Table 4.2: Time (in seconds) and iteration counts in the serial implementation

SSLP SMKP
50 100 500 1000 20 40 80 160

default total time 195 201 (100%) (100%) 299 (0.09%) (0.11%) (0.16%)

DD1

total time 248 502 4663 12750 2692 9866 11249 18774
scen time 68 98 110 4857 2688 9853 11218 18704
eval time 180 404 4552 7893 3 13 31 70

iter 4 3 2 2 2 1 1 2

DD2

total time 1276 2570 (10%) (16%) (0.02%) (0.01%) (0.02%) (0.02%)
scen time 651 1734 - - - - - -
eval time 625 836 - - - - - -

iter 4 3 - - - - - -

DD3

total time 415 602 7231 (9%) 3496 9080 (0.01%) (0.01%)
scen time 164 184 1066 - 3491 9056 - -
eval time 251 418 6165 - 5 24 - -

iter 4 3 2 - 2 1 - -

Eval(·)), reported in eval time. The number of iterations needed for the upper and lower bounds to
converge, are also given in # iter. For DD2 and DD3 which contain two nested loops, this refers
to the count of the outer iterations. If an instance is not solved to optimum within the runtime
limit of six hours, we present the optimality gap in parentheses in total time and omit the other
computational details.

Compared with default, the dual decomposition methods are slower when the number of sce-
narios in the instances is relatively small (e.g., SSLP 50, SSLP 100, and SMKP 20). However, as
the number of scenarios increases, they demonstrate better time efficiency: (i) the optimality gaps
on SSLP 500 and SSLP 1000 are, respectively, 10% and 16% under DD2, which are much better
than the two 100%s under the default scheme; (ii) DD3 yields an even better optimality gap of 9%
on SSLP 1000, and can solve SSLP 500 in two hours; and (iii) DD1 is even more efficient, solving
the two instances in 4663 seconds and 12750 seconds, respectively. We observe a similar trend of
computational efficacy in solving modest and large instances of SMKP (40, 60, and 80) as

default < DD2 < DD3 < DD1.

As mentioned, both DD2 and DD3 contain an extra inner loop for improving the lower bound
without shrinking the feasible region. However, by comparing # iter of DD2/DD3 with DD1, we
observe that this inner loop does not dramatically reduce the number of iterations in the outer
loop. In contrast, the extra layer of loop results in more scenario subproblems to solve and more
solutions to evaluate. Therefore, DD2 and DD3 are slower than DD1.

In every run of the dual decomposition algorithms, we observe that scen time and eval time

85

add up to total time, which suggests that the other steps are time-wise negligible. We conclude
that parallelism for solving the scenario subproblems and evaluating vertices significantly affect
computational time.

4.5.3 Results of Parallel Algorithms

We capture the parallel time as the walltime that elapses from the start of the parallel program to
the end. For each run we compute speedup as the ratio of the serial time to the parallel time. We
test the three schemes introduced in Section 4.4 on both sets of SSLP and SMKP instances, and
show how the results of speedup change as we vary the number of processes in Figure 4.3.

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160

of processors

sp
ee

du
p

ra
tio

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160# of processors

sp
ee

du
p

ra
tio

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160# of processors

sp
ee

du
p

ra
tio

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160# of processors

sp
ee

du
p

ra
tio

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160

of processors

sp
ee

du
p

ra
tio

of processors

sp
ee

du
p

ra
tio

of processors

sp
ee

du
p

ra
tio

of processors

sp
ee

du
p

ra
tio

Figure 4.3: Speedup versus number of processes for implementing DD1

In Figure 4.3, each subfigure presents the results on one particular instance. We scale them up
equally, so the main diagonal (in grey) gives the trending for a perfect parallelism where speedup
is equal to the number of processes. Each background grid cell has a height of 5 (unit-less) and a
width of 5 processes. We use 2, 3, 6, 11, and 21 processes. The red, blue, and green curves are
results of BP, MWB, and MWN, respectively.

We observe many super-linear speedups, i.e., points located above the diagonal line, since our
choice of parallelization can cause the total workload to abate from the serial implementation.
For example, the serial program has spent 2 hours going through some iterations, and then comes

86

Table 4.3: Number of evaluated x-solutions

SSLP SMKP
scheme num of processes (N) 50 100 500 1000 20 40 80 160

BP

2 139 183 259 172 9 14 22 34
3 155 214 489 221 11 16 24 42
6 170 247 701 324 15 21 30 52

11 184 266 892 882 17 27 37 62
21 189 283 1095 1151 20 34 48 74

MWB

2 117 136 240 187 8 12 15 23
3 117 136 240 187 8 12 15 23
6 117 136 240 188 8 12 15 23

11 117 134 240 188 8 12 15 23
21 117 136 240 189 8 12 15 23

to an iteration with three outstanding jobs (e.g., Scen(k) or Eval(x̂)), that respectively take 1,
8, and 1 hours. The result of the third job leads to convergence. The serial total time is thus
2 + (1 + 8 + 1) = 12 hours. However, if we have three processes each taking care of one job, the
process responsible for the third job will detect convergence immediately after hour 1 and promptly
terminate all processes. With two extra processes, the iterations that previously took 2 hours also
become shorter. Therefore, the parallel total time is shorter than 2 + 1 = 3 hours. In this case, we
obtain a speedup ≥ 4 with only three processes.

Figure 4.3 shows other interesting results. On every SMKP instance, we observe a crossover
of the red (BP) and blue (MWB) curves: the red always starts climbing sharper, but flatten out
earlier and crossed with the blue. As we know, BP has one more process sharing the computation
than MWB. This is an important advantage when N is still small, which explains why the red line
climbing faster in the beginning. This advantage, however, fades as we increase N. In contrast,
the advantage of MWB that it avoids reevaluating duplicate solutions stands out. This can be
verified by comparing the number of solutions BP and MWB evaluate, reported in Table 4.3. For
MWB, less time on evaluation and thus faster, which is then reflected as the blue curve climbing
higher when N is large. For SSLP, BP scales worse than MWB, and the discrepancy widens as
N increases, because BP needs more time to evaluate duplicated solutions which increases along
with the increase of N.

Figure 4.3 also shows that when the number of scenarios is small (e.g., SSLP 50, SSLP 100,
SMKP 20, and SMKP 40), MWB suffers from load imbalance, whereas MWN achieves good
speedup due to the deployed pull mechanism. As the number of scenarios increases, there are
more subproblems to solve and more solutions to evaluate. MWN has to communicate more to
dispatch jobs, which in turn compromises speed. In contrast, when there are more scenarios, i.e.,
more jobs, MWB can shuffle around between barriers, thus alleviating load imbalance. This is why

87

MWB is faster than MWN on SSLP 500, SSLP 100, SMKP 80, and SMKP 160.
In addition to speedup, we also analyze communication time, which is the total time elapse

from the completion of the predecessor of a communication step (e.g., send, receive, broadcast,
etc.) to the start of its successor. Therefore, it consists of the time on transiting data (the net
communication time) and the time on waiting to receive or broadcast data (the idle time). In
practice, compared to the latter, the former is almost negligible due to the modest quantity of
transiting data. We therefore can view the communication time as the idle time. We capture the
communication time of each process as comm(n). Figure 4.4 plots the total communication time,
i.e.,

N∑
n=1

comm(n)

(in second) against the number of processes.

0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160
0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160
0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160

0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160

0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160

0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160# of processors # of processors # of processors # of processors

co
m

m
 ti

m
e

(s
ec

)

0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160

co
m

m
 ti

m
e

(s
ec

)

co
m

m
 ti

m
e

(s
ec

)

co
m

m
 ti

m
e

(s
ec

)

0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160

0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160

of processors # of processors # of processors # of processors

co
m

m
 ti

m
e

(s
ec

)

co
m

m
 ti

m
e

(s
ec

)

co
m

m
 ti

m
e

(s
ec

)

co
m

m
 ti

m
e

(s
ec

)

Figure 4.4: Communication time vs Number of processes (N)

Table 4.4 presents the percentage of communication time contributed by the master, i.e.,

comm(N)∑N
n=1 comm(n)

.

We derive the following observations.

• As seen in Figure 4.4, the curves for BP, MWB and MWN follow notable trends of increas-
ing, increasing and decreasing, respectively, although some MWB curves have one or two

88

Table 4.4: The percentage of communication time contributed by the master

SSLP SMKP
scheme N 50 100 500 1000 20 40 80 160

MWB

2 100% 100% 100% 100% 100% 100% 100% 100%
3 82% 91% 91% 89% 83% 50% 50% 85%
6 47% 43% 47% 63% 26% 20% 20% 29%

11 15% 18% 23% 31% 11% 10% 10% 11%
21 6% 7% 10% 10% 5% 5% 5% 5%

MWN

2 100% 100% 100% 100% 100% 100% 100% 100%
3 100% 100% 100% 100% 100% 100% 100% 100%
6 100% 100% 100% 100% 100% 100% 100% 100%

11 99% 99% 100% 100% 100% 100% 100% 100%
21 98% 97% 100% 100% 95% 99% 99% 100%

saddle points.

• In BP, there are only collective communication steps which imply barriers. Except for the
small amount of time on transiting data, the communication time is composed of waiting
time at barriers, which increases along with the increase of N.

• In MWN, the master is devoted to consolidating results from the workers. The more workers,
the less time the master waits for results. We also see from Table 4.4 that nearly all the
communication time is contributed by the master (which implies that the workers are well
utilized for computation thanks to the pull mechanism), which explains the increasing of
MWN curves in Figure 4.4.

• In MWB, although it has a similar master-worker structure, it contains a broadcasting step
involving all the processes and barrier wait come along. As the number of processes in-
creases, the communication time of the master shortens; however, the communication time
of the workers increase in a larger magnitude. This addresses the drop in the master
communication-time percentage along with the increase of N in Table 4.4, but also the trend
of the MWB curves in Figure 4.4.

Finally, we summarize the runtime of all tested schemes in Table 4.5. For each instance, we
give the shortest serial time and the shortest parallel time in boldface. We observe in all instances
that the fastest parallel scheme outperforms the fastest serial scheme. Among the parallel schemes,
MWN performs better for small instances, whereas MWB performs better for large instances.

89

Table 4.5: Computational time of all tested schemes

SSLP SMKP
Scheme N 50 100 500 1000 20 40 80 160

Serial

default 1 195 201 (100%) (100%) 300 (0.09%) (0.11%) (0.16%)
DD1 1 248 502 4663 12750 2692 9866 11249 18774
DD2 1 1276 2570 (10%) (16%) (0.02%) (0.01%) (0.02%) (0.02%)
DD3 1 415 602 7231 (9%) 3496 9080 (0.11%) (0.11%)

Parallel

BP

2 170 377 7633 11412 1808 4560 4630 9779
3 113 271 8514 10781 1162 3897 3462 6877
6 66 132 4694 9844 782 2711 1879 3659

11 41 89 2074 7870 696 2539 1233 2521
21 31 52 1122 3991 685 2648 1202 1464

MWB

2 162 315 3758 6462 2641 7046 8162 14830
3 78 138 1514 2938 2400 5834 5251 10297
6 33 67 584 987 825 3418 2375 3840

11 26 41 327 510 684 2773 1169 1903
21 24 34 227 484 509 2269 826 1117

MWN

2 166 418 7200 7304 1625 7481 7322 7312
3 79 203 5783 7224 755 7582 7449 7615
6 32 86 1260 5540 232 3411 4860 7263

11 16 37 674 3058 162 2444 2943 7258
21 18 16 303 1489 120 777 844 2572

4.5.4 Results of Stochastic Mean-Risk Programs

To investigate how much the risk measure contributes to computational difficulty, we consider
a mean-risk variant of the considered risk-averse problem which aims to minimize a weighted
average of the original risk and an expectation as:

min {w ·ρ(f (x, ξ)) + (1−w) ·E[f (x, ξ)] : x ∈ X}

where w is a constant between 0 and 1. The extended formulation (formerly model (4.4), given the
generic coherent risk measure ρ) now becomes:

min
x∈X

max
q∈Qρ(p)

 K∑
k=1

(wqk + (1−w)pk) fk(x)

to which all the proposed algorithms can easily adapt.

Table 4.6 compares the runtime of the risk-averse problem (i.e., w = 1) with its expectation-
based counterpart (i.e., w = 0) under MWB. Noting that they are very close on most of the in-
stances, we conclude that the proposed algorithm can solve the risk-averse problem with any co-
herent risk measure, as a transitional expectation-based stochastic program.

90

Table 4.6: Results of mean-risk model variants and its expectation counterpart under MWB

SSLP 50 SSLP 100 SSLP 500 SSLP 1000
N w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0

time

2 6 6 13 13 162 162 315 344
3 3 3 6 6 78 76 138 138
6 1 1 3 3 33 33 67 65

11 1 1 2 2 26 25 41 48
21 1 1 2 2 24 29 34 34

optimal obj - -253 -365 -248 -355 -246 -350 -250 -352

SMKP 20 SMKP 40 SMKP 80 SMKP 160
N w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0

time

2 3758 3814 6462 11930 2641 3651 7046 8706
3 1514 1525 2938 5995 2400 3448 5834 7257
6 584 583 987 2110 825 983 3418 4082

11 327 332 510 964 684 846 2773 3656
21 227 186 484 864 509 602 2269 3071

optimal obj - 9357 9043 9550 9187 9475 9194 9572 9251

Table 4.7: Computational results of distributionally robust risk-averse problem under MWB

SSLP 100 SSLP 1000 SMKP 80
N υ = 0 υ = 0.3 υ = 0.6 υ = 0 υ = 0.3 υ = 0.6 υ = 0 υ = 0.3 υ = 0.6

time

2 315 311 311 6462 8016 7210 8162 8326 8565
3 138 137 137 2938 2950 2866 5251 5444 5122
6 67 70 70 987 992 977 2375 2475 2474

11 41 42 42 510 641 640 1169 1245 1243
21 34 34 34 484 660 681 826 796 799

optimal obj - -248 -245 -243 -250 -244 -239 9475 9484 9493

4.5.5 Results of Distributionally Robust Variants

As demonstrated in Section 4.3, the distributionally robust risk-averse problem can be viewed as
a special case of the considered problem as long as we replace Qρ(p) with Dρ(P). Here, we test
solving a specific class of distributionally robust risk-averse problem with

P =

p :
K∑

k=1

pk = 1, (1−υ)/K ≤ pk ≤ (1 +υ)/K, ∀k

where υ is a constant between 0 and 1. We vary υ = 0.3 and 0.6 on three instances (i.e., SSLP 100,
SSLP 1000, and SMKP 80), and use MWB to solve each case. Table 4.7 shows the results. We
also show the results of the corresponding run, given singleton-P (i.e., υ = 0.0) as the reference.

91

We observe that the change in runtime as υ varies is very small. This is reasonable because the
structure of P only affects the computation of Cont(β) in step 11 of Algorithm 4.6, which in this
case is a simple LP with negligible computational time.

4.6 Concluding Remarks

In this chapter, we transformed a class of risk-averse 0-1 stochastic programs into risk-neutral min-
imax programs by exploiting the dual representation of coherent risk measures. We then developed
three dual decomposition algorithms to solve the reformulations, following the common procedure
of iteratively evaluating and cutting off candidate solutions discovered from scenario subproblems,
until the gap between the upper and lower bounds closed. The three algorithms were different in
how they recover lower bounds. DD1 used the functional values of the Lagrangian relaxation at
zero, which was a weaker lower bound, although much easier to compute. DD2 and DD3 used
the value of the Lagrangian dual, which was computed through a cutting-plane subroutine and a
subgradient subroutine, respectively. Both subroutines were by themselves an iterative procedure,
so DD2 and DD3 were double-loop algorithms. Our computation results suggested the following:

1. Unlike directly solving the risk-averse 0-1 program (e.g., the default scheme in Sec-
tion 4.5.2), the dual decomposition algorithms, although slower in some small instances,
exhibit larger speed advantages along with the increased number of scenarios.

2. The speeds of the three dual decomposition algorithms for the test instances considered are
as follows:

DD2 < DD3 < DD1,

which suggests that adjusting the dual multiplier through the cutting-plane method (DD2)
or the cutting-plane method (DD3) is not effective in producing tighter lower bounds. In
contrast, the extra loop in these two subroutines considerably increases the number of sub-
problems to solve, and significantly lengths the runtimes. Therefore, DDI is preferable due
to its speed, simplicity, and amenability to parallelism.

To further speedup, we introduced three parallel schemes for DD1. In BP, all of the pro-
cesses synchronously shared the computation of subproblems. In MWB, with the objective to
avoid reevaluating duplicate solutions and abate computational workload, we dedicated one pro-
cess, termed as the master, to collecting solutions and remove duplicates, which, however, resulted
in one less process sharing the computation. This scheme was partially synchronous as we still
used collective communication to pass solutions/cuts. In MWN, to avoid barriers we used an asyn-
chronous cut-adding strategy that only required point-to-point communication between the master

92

and individual workers. Moreover, we deployed a “pull” mechanism in assigning subproblems
to processes, which was a better load balancer than the “push” mechanism in the previous two
schemes. Our computation results suggested the following:

1. Parallelism for DD1 has near-linear speedup, and in some cases even super-linear speedup
due to the early detection of convergence achieved from spreading out the computation of
subproblems.

2. When the number of processes is small, BP performs well. However, as it becomes relatively
large, the performance is significantly compromised by the waiting caused by barriers.

3. MWB and MWN are quite complementary. When the number of scenarios is still small,
MWB suffers from load imbalance, but MWN achieves good speedup due to the deployed
pull mechanism. As the number of scenarios increases, the communication for job dispatch-
ing in MWN starts to compromise the performance, whereas MWB, which alleviates load
imbalance, starts to perform well.

We also tested the algorithms on a mean-risk variant and a DR variant of the considered prob-
lem. The results suggested that:

1. Compared to the traditional risk-neutral stochastic programs, the risk-averse 0-1 stochastic
program is not computationally more difficult.

2. All of the proposed algorithms solve the DR variant of the considered problem. Moreover,
the shape and the size of the uncertainty set in a DR model have insignificant effects on the
runtimes.

93

APPENDIX A

Appendix for Chapter 2

A.1 Model (2.14) is a relaxation of model (2.9)

Proof. Consider any feasible solution (x,y,z, s, δ) to (2.9). In each open OR j, we can recover the
sequence of assigned surgeries based on ẑ j as i1, . . . , iA j , where A j denotes the number of assigned
surgeries. Then, for any scenario ω ∈Ω,

∑
i∈S

ξωi y ji =

A j∑
k=1

ξωik = ξωi1 +

A j∑
k=2

ξωik ≤ ξ
ω
i1 +

A j∑
k=2

(δ jω
k −δ

jω
k−1) = ξωi1 +δ

jω
A j
−δ

jω
1 ≤ δ

jω
A j

This implies that
∑

i∈S ξ
ω
i y ji ≤ T j is dominated by δ jω

A j
≤ T j for any j ∈R.

94

APPENDIX B

Appendix for Chapter 3

B.1 Proof of Proposition 3.1

Proof. Consider some x∗ ∈ P∗ \E. There must exist some z∗ ∈ {0,1}K satisfying (3.2c) such that
(x∗,z∗) is feasible to (3.5). Construct (x̂k, ẑk, ∀k = 1, . . . ,K), where x̂k = x∗, ẑk = z∗k, ∀k ∈ Ω. It is
clear that it is feasible to the minimization problem in the definition of g(ρ,λ,S). Therefore,

g(ρ,λ,S) ≤
K∑

k=1

f (x̂k)/K + (αk −δk)λ> x̂k +ρ

 K∑
k=1

ẑk −K′

= f (x∗) +ρ

 K∑
k=1

z∗k −K′

≤ f (x∗),

which completes the proof that g(ρ,λ,S) is a valid lower bound.

95

APPENDIX C

Appendix for Chapter 4

C.1 Parallel Algorithm for DD2 and DD3

Unlike DD1, both DD2 and DD3 contain an inner loop that improves ` by adjusting objective-
function parameters as opposed to shrinking the feasible region. Let Λk represent the concatenation
of parameters that affect the scenario-k subproblem and vary in the inner loop. Let h(·) represent
the function that maps (βDDi

k , x̂k,Λk)K
k=1 to a tentative lower bound, and r

(
(βDDi

k , x̂k,Λk)K
k=1

)
≥ 0

represent the stop condition of the inner loop. We redescribe the double-loop structure as a single
loop, and present a general parallel scheme for DD2 and DD3 in Algorithm C.1.

Algorithm C.1 The parallel scheme for DD2 and DD3 at Procn (n ∈ {1, . . . ,N})
1: u← +∞, `←−∞
2: initialize Λ1, . . . ,ΛK
3: repeat
4: un← +∞

5: for k ∈Ω
K,N
n do

6: (βDDi
k , x̂k)← a scenario-k-based subproblem parameterized by Λk

7: un←min{un,Eval(x̂k)}
8: end for
9: pass {(βDDi

k , x̂k) : k ∈Ω
K,N
n } and un to all the other processes

10: `←max{`,h
(
(βDDi

k , x̂k,Λk)K
k=1

)
}

11: u←min{u,u1, . . . ,uN}

12: if r
(
(βDDi

k , x̂k,Λk)K
k=1

)
< 0 then

13: update Λ1, . . . ,ΛK
14: else
15: X← X \S
16: reset Λ1, . . . ,ΛK
17: end if
18: until u− ` < ε

This algorithm is similar to BP, but the difference is that it gives two options at the end of
each iteration. If r

(
(βDDi

k , x̂k,Λk)K
k=1

)
< 0, we update Λ1, . . . ,ΛK (i.e., step 13) which corresponds

96

to proceeding to the next iteration of the inner loop in the double-loop algorithm. Otherwise, we
shrink the feasible region and reset Λ1, . . . ,ΛK (i.e., steps 15,16) which corresponds to closing the
inner loop and proceeding to the next iteration of the outer loop.

97

BIBLIOGRAPHY

Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathematical
Programming, 106(3):433–446.

Ahmed, S. (2013). A scenario decomposition algorithm for 0-1 stochastic programs. Operations
Research Letters, 41(6):565–569.

Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., and Sen., S. (2015a).
SIPLIB: a stochastic integer programming test library. http://www2.isye.gatech.
edu/˜sahmed/siplib/.

Ahmed, S., Luedtke, J., Song, Y., and Xie, W. (2015b). Nonanticipative duality, relaxations,
and formulations for chance-constrained stochastic programs. Available at Optimization-Online
http://www.optimization-online.org/DB_HTML/2014/07/4447.html.

Ahmed, S., Tawarmalani, M., and Sahinidis, N. V. (2004). A finite branch-and-bound algorithm
for two-stage stochastic integer programs. Mathematical Programming, 100(2):355–377.

Angulo, G., Ahmed, S., and Dey, S. S. (2014a). Improving the integer L-shaped method.

Angulo, G., Ahmed, S., Dey, S. S., and Kaibel, V. (2014b). Forbidden vertices. Mathematics of
Operations Research, 40(2):350–360.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk. Mathemat-
ical finance, 9(3):203–228.

Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., and Rennen, G. (2013). Robust
solutions of optimization problems affected by uncertain probabilities. Management Science,
59(2):341–357.

Beraldi, P. and Bruni, M. E. (2010). An exact approach for solving integer problems under proba-
bilistic constraints with random technology matrix. Annals of operations research, 177(1):127–
137.

Birge, J. R., Donohue, C. J., Holmes, D. F., and Svintsitski, O. G. (1996). A parallel implemen-
tation of the nested decomposition algorithm for multistage stochastic linear programs. Mathe-
matical Programming, 75(2):327–352.

Birge, J. R. and Louveaux, F. (2011). Introduction to stochastic programming. Springer Science
& Business Media.

98

http://www2.isye.gatech.edu/~sahmed/siplib/
http://www2.isye.gatech.edu/~sahmed/siplib/
http://www.optimization-online.org/DB_HTML/2014/07/4447.html

Calafiore, G. and El Ghaoui, L. (2006). On distributionally robust chance-constrained linear pro-
grams. Journal of Optimization Theory and Applications, 130(1):1–22.

Cardoen, B., Demeulemeester, E., and Beliën, J. (2010). Operating room planning and scheduling:
A literature review. European Journal of Operational Research, 201(3):921–932.

Carøe, C. C. and Schultz, R. (1998). A two-stage stochastic program for unit commitment under
uncertainty in a hydro-thermal power system. ZIB.

Carøe, C. C. and Schultz, R. (1999). Dual decomposition in stochastic integer programming.
Operations Research Letters, 24(1):37–45.

Carøe, C. C. and Tind, J. (1998). L-shaped decomposition of two-stage stochastic programs with
integer recourse. Mathematical Programming, 83(1-3):451–464.

Collado, R. A., Papp, D., and Ruszczyński, A. (2012). Scenario decomposition of risk-averse
multistage stochastic programming problems. Annals of Operations Research, 200(1):147–170.

Cooper, W. L., Homem-de Mello, T., and Kleywegt, A. J. (2006). Models of the spiral-down effect
in revenue management. Operations Research, 54(5):968–987.

Crainic, T. G., Fu, X., Gendreau, M., Rei, W., and Wallace, S. W. (2011). Progressive hedging-
based metaheuristics for stochastic network design. Networks, 58(2):114–124.

Crainic, T. G., Hewitt, M., and Rei, W. (2014). Scenario grouping in a progressive hedging-based
meta-heuristic for stochastic network design. Computers & Operations Research, 43:90–99.

Delage, E. and Ye, Y. (2010). Distributionally robust optimization under moment uncertainty with
application to data-driven problems. Operations Research, 58(3):595–612.

Dentcheva, D. and Römisch, W. (2004). Duality gaps in nonconvex stochastic optimization. Math-
ematical Programming, 101(3):515–535.

Denton, B., Viapiano, J., and Vogl, A. (2007). Optimization of surgery sequencing and scheduling
decisions under uncertainty. Health care management science, 10(1):13–24.

Denton, B. T. and Gupta, D. (2003). A sequential bounding approach for optimal appointment
scheduling. IIE Transactions, 35(11):1003–1016.

Denton, B. T., Miller, A. J., Balasubramanian, H. J., and Huschka, T. R. (2010). Optimal allocation
of surgery blocks to operating rooms under uncertainty. Operations Research, 58(4):802–816.

Erdoğan, E. and Iyengar, G. (2006). Ambiguous chance constrained problems and robust opti-
mization. Mathematical Programming, 107(1-2):37–61.

Erdogan, S. A. and Denton, B. T. (2011). Surgery planning and scheduling. In Cochran, J., Cox,
L., Keskinocak, P., Kharoufeh, J., and Smith, J., editors, Wiley Encyclopedia of Operations
Research and Management Science. Wiley Online Library.

99

Escudero, L. F., Kamesam, P. V., King, A. J., and Wets, R. J. (1993). Production planning via
scenario modelling. Annals of Operations Research, 43(6):309–335.

Fernandez, A. (1995). The optimal solution to the resource-constrained project scheduling problem
with stochastic task durations. Unpublished doctoral dissertation, University of Central Florida.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V.,
Kambadur, P., Barrett, B., Lumsdaine, A., et al. (2004). Open mpi: Goals, concept, and design
of a next generation mpi implementation. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 97–104. Springer.

Gade, D., Küçükyavuz, S., and Sen, S. (2014). Decomposition algorithms with parametric gomory
cuts for two-stage stochastic integer programs. Mathematical Programming, 144(1-2):39–64.

Ghaoui, L. E., Oks, M., and Oustry, F. (2003). Worst-case value-at-risk and robust portfolio opti-
mization: A conic programming approach. Operations Research, 51(4):543–556.

Goel, V. and Grossmann, I. E. (2006). A class of stochastic programs with decision dependent
uncertainty. Mathematical programming, 108(2-3):355–394.

Goh, M., Lim, J. Y., and Meng, F. (2007). A stochastic model for risk management in global
supply chain networks. European Journal of Operational Research, 182(1):164–173.

Gul, S., Denton, B. T., Fowler, J. W., and Huschka, T. R. (2011). Bi-criteria scheduling of sur-
gical services for an outpatient procedure center. Production and Operations Management,
20(3):406–417.

Günlük, O. and Pochet, Y. (2001). Mixing mixed-integer inequalities. Mathematical Programming,
90(3):429–457.

Gupta, D. (2007). Surgical suites’ operations management. Production and Operations Manage-
ment, 16(6):689–700.

Hayes, L. J., O’Brien-Pallas, L., Duffield, C., Shamian, J., Buchan, J., Hughes, F., Laschinger, H.
K. S., North, N., and Stone, P. W. (2006). Nurse turnover: A literature review. International
Journal of Nursing Studies, 43(2):237–263.

Higle, J. L. and Sen, S. (1991). Stochastic decomposition: An algorithm for two-stage linear
programs with recourse. Mathematics of operations research, 16(3):650–669.

Jiang, R. and Guan, Y. (2015). Data-driven chance constrained stochastic program. To
appear in Mathematical Programming. Available at Optimization-Online: http://www.
optimization-online.org/DB_FILE/2013/09/4044.pdf.

Kleywegt, A., Shapiro, A., and Homem-de Mello, T. (2002). The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502.

Kong, N., Schaefer, A. J., and Hunsaker, B. (2006). Two-stage integer programs with stochastic
right-hand sides: A superadditive dual approach. Mathematical Programming, 108(2-3):275–
296.

100

http://www.optimization-online.org/DB_FILE/2013/09/4044.pdf
http://www.optimization-online.org/DB_FILE/2013/09/4044.pdf

Kong, Q., Lee, C.-Y., Teo, C.-P., and Zheng, Z. (2013). Scheduling arrivals to a stochastic service
delivery system using copositive cones. Operations Research, 61(3):711–726.

Kouwenberg, R. (2001). Scenario generation and stochastic programming models for asset liability
management. European Journal of Operational Research, 134(2):279–292.

Küçükyavuz, S. (2012). On mixing sets arising in chance-constrained programming. Mathematical
Programming, 132(1-2):31–56.

Langer, A., Venkataraman, R., Palekar, U., Kale, L. V., and Baker, S. (2012). Performance op-
timization of a parallel, two stage stochastic linear program: The military aircraft allocation
problem. In Proceedings of the 18th International Conference on Parallel and Distributed Sys-
tems (ICPADS 2012). To Appear, Singapore.

Laporte, G. and Louveaux, F. V. (1993). The integer L-shaped method for stochastic integer pro-
grams with complete recourse. Operations Research Letters, 13(3):133–142.

Lee, J. (2003). Cropped cubes. Journal of combinatorial optimization, 7(2):169–178.

Linderoth, J. and Wright, S. (2003). Decomposition algorithms for stochastic programming on a
computational grid. Computational Optimization and Applications, 24(2-3):207–250.

Liu, X., Küçükyavuz, S., and Luedtke, J. (2015). Decomposition algorithms for two-stage chance-
constrained programs. To appear in Mathematical Programming.

Lubin, M., Martin, K., Petra, C. G., and Sandıkçı, B. (2013). On parallelizing dual decomposition
in stochastic integer programming. Operations Research Letters, 41(3):252–258.

Luedtke, J. (2014). A branch-and-cut decomposition algorithm for solving chance-constrained
mathematical programs with finite support. Mathematical Programming, 146(1-2):219–244.

Luedtke, J. and Ahmed, S. (2008). A sample approximation approach for optimization with prob-
abilistic constraints. SIAM Journal on Optimization, 19(2):674–699.

Luedtke, J., Ahmed, S., and Nemhauser, G. (2010). An integer programming approach for linear
programs with probabilistic constraints. Mathematical Programming, 122(2):247–272.

Mak, H.-Y., Rong, Y., and Zhang, J. (2015). Appointment scheduling with limited distributional
information. Management Science, 61(2):316–334.

Markowitz, H. M. (1968). Portfolio selection: Efficient diversification of investments, volume 16.
Yale university press.

Miller, N. and Ruszczyński, A. (2011). Risk-averse two-stage stochastic linear programming:
modeling and decomposition. Operations Research, 59(1):125–132.

Min, D. and Yih, Y. (2010). Scheduling elective surgery under uncertainty and downstream capac-
ity constraints. European Journal of Operational Research, 206(3):642–652.

101

Nielsen, S. S. and Zenios, S. A. (1997). Scalable parallel benders decomposition for stochastic
linear programming. Parallel Computing, 23(8):1069–1088.

Ntaimo, L. and Sen, S. (2005). The million-variable “march” for stochastic combinatorial opti-
mization. Journal of Global Optimization, 32:385–400.

Nursing Solutions, Inc. (2013). 2013 National Healthcare and RN Retention Re-
port. http://www.nsinursingsolutions.com/Files/assets/library/
retention-institute/NationalHealthcareRNRetentionReport2013.pdf.

Pacheco, P. S. (1997). Parallel programming with MPI. Morgan Kaufmann.

Pagnoncelli, B., Ahmed, S., and Shapiro, A. (2009). Sample average approximation method for
chance constrained programming: theory and applications. Journal of Optimization Theory and
Applications, 142(2):399–416.

Pardo, L. (2005). Statistical Inference Based On Divergence Measures. CRC Press.

Peeta, S., Salman, F. S., Gunnec, D., and Viswanath, K. (2010). Pre-disaster investment decisions
for strengthening a highway network. Computers & Operations Research, 37(10):1708–1719.

Pflug, G. C. and Römisch, W. (2007). Modeling, measuring and managing risk, volume 20. World
Scientific.

Pollard, D. (1997). Distances and affinities between measures. Available at: http://www.
stat.yale.edu/˜pollard/Books/Asymptopia/Metrics.pdf.

Polyak, B. (1977). Subgradient methods: A survey of soviet research. In Nonsmooth optimization:
Proceedings of the IIASA workshop March, pages 5–30.

Popescu, I. (2005). A semidefinite programming approach to optimal-moment bounds for convex
classes of distributions. Mathematics of Operations Research, 30(3):632–657.

Qiu, F., Ahmed, S., Dey, S. S., and Wolsey, L. A. (2014). Covering linear programming with
violations. INFORMS Journal on Computing.

Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional Value-at-Risk. Journal of
Risk, 2(3):21–42.

Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions.
Journal of banking & finance, 26(7):1443–1471.

Rockafellar, R. T., Uryasev, S., and Zabarankin, M. (2006). Generalized deviations in risk analysis.
Finance and Stochastics, 10(1):51–74.

Rockafellar, R. T., Uryasev, S. P., and Zabarankin, M. (2002). Deviation measures in risk analy-
sis and optimization. University of Florida, Department of Industrial & Systems Engineering
Working Paper, (2002-7).

102

http://www.nsinursingsolutions.com/Files/assets/library/retention-institute/NationalHealthcareRNRetentionReport2013.pdf
http://www.nsinursingsolutions.com/Files/assets/library/retention-institute/NationalHealthcareRNRetentionReport2013.pdf
http://www.stat.yale.edu/~pollard/Books/Asymptopia/Metrics.pdf
http://www.stat.yale.edu/~pollard/Books/Asymptopia/Metrics.pdf

Rockafellar, R. T. and Wets, R.-B. (1976). Nonanticipativity and l1-martingales in stochastic opti-
mization problems. In Stochastic Systems: Modeling, Identification and Optimization II, pages
170–187. Springer.

Ruszczyński, A. (1993). Parallel decomposition of multistage stochastic programming problems.
Mathematical programming, 58(1-3):201–228.

Ruszczyński, A. (2013). Advances in risk-averse optimization. In INFORMS Tutorials in Opera-
tions Research. INFORMS.

Ruszczynski, A. P. and Shapiro, A. (2003). Stochastic programming, volume 10. Elsevier Amster-
dam.

Ryan, K., Rajan, D., and Ahmed, S. (2015). Scenario decomposition for 0-1 stochastic programs:
Improvements and asynchronous implementation. Available at Optimization-Online http:
//www.optimization-online.org/DB_FILE/2015/11/5201.pdf.

Ryan, S. M., Wets, R. J., Woodruff, D. L., Silva-Monroy, C., and Watson, J.-P. (2013). Toward
scalable, parallel progressive hedging for stochastic unit commitment. In Power and Energy
Society General Meeting (PES), 2013 IEEE, pages 1–5. IEEE.

Salmerón, J. and Apte, A. (2010). Stochastic optimization for natural disaster asset prepositioning.
Production and Operations Management, 19(5):561–574.

Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A. (2005). A stochastic programming
approach for supply chain network design under uncertainty. European Journal of Operational
Research, 167(1):96–115.

Scarf, H., Arrow, K., and Karlin, S. (1958). A min-max solution of an inventory problem. In
Studies in the Mathematical Theory of Inventory and Production, volume 10, pages 201–209.
Stanford University Press, Stanford, CA.

Sen, S. and Higle, J. L. (2005). The c 3 theorem and a d 2 algorithm for large scale stochastic
mixed-integer programming: set convexification. Mathematical Programming, 104(1):1–20.

Sen, S. and Sherali, H. D. (1985). On the convergence of cutting plane algorithms for a class of
nonconvex mathematical programs. Mathematical Programming, 31(1):42–56.

Shapiro, A. (1993). Asymptotic behavior of optimal solutions in stochastic programming. Mathe-
matics of Operations Research, 18(4):829–845.

Shapiro, A. (2012). Minimax and risk averse multistage stochastic programming. European Jour-
nal of Operational Research, 219(3):719–726.

Shapiro, A. and Ahmed, S. (2004). On a class of minimax stochastic programs. SIAM Journal on
Optimization, 14(4):1237–1249.

Shapiro, A., Dentcheva, D., et al. (2014). Lectures on stochastic programming: modeling and
theory, volume 16. SIAM.

103

http://www.optimization-online.org/DB_FILE/2015/11/5201.pdf
http://www.optimization-online.org/DB_FILE/2015/11/5201.pdf

Shapiro, A. and Homem-de Mello, T. (2000). On the rate of convergence of optimal solutions of
monte carlo approximations of stochastic programs. SIAM journal on optimization, 11(1):70–
86.

Shylo, O. V., Prokopyev, O. A., and Schaefer, A. J. (2012). Stochastic operating room scheduling
for high-volume specialties under block booking. INFORMS Journal on Computing, 25(4):682–
692.

Solak, S., Clarke, J.-P. B., Johnson, E. L., and Barnes, E. R. (2010). Optimization of r&d
project portfolios under endogenous uncertainty. European Journal of Operational Research,
207(1):420–433.

Song, Y. and Luedtke, J. R. (2013). Branch-and-cut approaches for chance-constrained formula-
tions of reliable network design problems. Mathematical Programming Computation, 5(4):397–
432.

Song, Y., Luedtke, J. R., and Küçükyavuz, S. (2014). Chance-constrained binary packing prob-
lems. INFORMS Journal on Computing, 26(4):735–747.

Van Parys, B. P., Goulart, P. J., and Kuhn, D. (2015). Generalized gauss inequalities via semidefi-
nite programming. Mathematical Programming, pages 1–32.

Van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applications to optimal
control and stochastic programming. SIAM Journal on Applied Mathematics, 17(4):638–663.

Vanden Bosch, P. M. and Dietz, D. C. (2000). Minimizing expected waiting in a medical appoint-
ment system. IIE Transactions, 32(9):841–848.

Vandenberghe, L., Boyd, S., and Comanor, K. (2007). Generalized Chebyshev bounds via semidef-
inite programming. SIAM Review, 49(1):52.

Wang, J. and Shen, S. (2012). Risk and energy consumption tradeoffs in cloud computing service
via stochastic optimization models. In Utility and Cloud Computing (UCC), 2012 IEEE Fifth
International Conference on, pages 239–246. IEEE.

Wang, Q., Guan, Y., and Wang, J. (2012). A chance-constrained two-stage stochastic program
for unit commitment with uncertain wind power output. Power Systems, IEEE Transactions on,
27(1):206–215.

Watson, J.-P., Wets, R. J., and Woodruff, D. L. (2010). Scalable heuristics for a class of chance-
constrained stochastic programs. INFORMS Journal on Computing, 22(4):543–554.

Watson, J.-P. and Woodruff, D. L. (2011). Progressive hedging innovations for a class of stochastic
mixed-integer resource allocation problems. Computational Management Science, 8(4):355–
370.

Weiss, E. N. (1990). Models for determining estimated start times and case orderings in hospital
operating rooms. IIE Transactions, 22(2):143–150.

104

Wolsey, L. A. and Nemhauser, G. L. (2014). Integer and combinatorial optimization. John Wiley
& Sons.

Yu, L.-Y., Ji, X.-D., and Wang, S.-Y. (2003). Stochastic programming models in financial opti-
mization: A survey.

Zeng, B., An, Y., and Kuznia, L. (2014). Chance constrained mixed integer program: Bilinear and
linear formulations, and benders decomposition. arXiv preprint arXiv:1403.7875.

Zhang, M. and Küçükyavuz, S. (2014). Finitely convergent decomposition algorithms for two-
stage stochastic pure integer programs. SIAM Journal on Optimization, 24(4):1933–1951.

Zhang, M., Küçükyavuz, S., and Goel, S. (2014). A branch-and-cut method for dynamic decision
making under joint chance constraints. Management Science, 60(5):1317–1333.

Zymler, S., Kuhn, D., and Rustem, B. (2013a). Distributionally robust joint chance constraints
with second-order moment information. Mathematical Programming, 137(1-2):167–198.

Zymler, S., Kuhn, D., and Rustem, B. (2013b). Worst-case value at risk of nonlinear portfolios.
Management Science, 59(1):172–188.

105

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations
	List of Notations
	Abstract
	Introduction
	Background
	Stochastic Programming Models
	Uncertainty Description and Model Reformulation
	Decomposition Algorithms

	Thesis Overview

	Chance-Constrained Surgery Planning under Uncertain or Ambiguous Surgery Durations
	Introductory Remarks
	Literature Review
	Motivation and Contributions

	Problem Formulation
	Chance-Constrained Model
	Mixed-Integer Programming Reformulation

	Decomposition-based Branch-and-Cut Method
	Master Problem
	Pre-filtering and Packing Cuts
	Basic Separation and Scheduling Cuts
	Recursion-based Separation and Strengthened Scheduling Cuts
	Branch-and-Cut Algorithm and Computational Enhancements

	Distributionally Robust Variant
	Discrete Support and Empirical Distribution of
	Reformulating with -Divergence Confidence Set
	Confidence Set Configuration

	Computational Studies
	Experimental Design and Setup
	Computational Efficacy
	Chance-Constrained Model versus Cost-Based Model
	Integrating Versus Separating Allocation and Scheduling
	Incorporating Data Ambiguity via Distributionally Robust Model
	CCSP solution sensitivity to the distribution type
	Results of DR-CCSP
	Value of data in DR-CCSP

	Concluding Remarks

	Solving Chance-Constrained 0-1 Programs with Decomposition and Parallelization
	Introductory Remarks
	Dual Decomposition
	Lagrangian Relaxation
	Bound-and-Cut Algorithm
	Cut Aggregation

	Parallel Implementation Schemes
	Computational Results
	Instances and Experimental Setup
	Results of Serial Implementation
	Results of Parallel Implementation

	Concluding Remarks

	Solving Risk-Averse 0-1 Stochastic Programs with Decomposition and Parallelization
	Introductory Remarks
	Decomposition Methods
	Problem Formulation
	Dual Decomposition Framework
	DD1 by Using g(0)
	DD2 by Optimizing g() Using a Cutting-Plane Method
	DD3 by Using a Subgradient Method

	Distributionally Robust Variants
	Parallel Implementation Schemes
	Overview
	Basic Parallel
	Master-worker Parallel with Barriers
	Master-worker Parallel without Barriers

	Computational Results
	Instances and Experimental Setup
	Results of Serial Implementation
	Results of Parallel Algorithms
	Results of Stochastic Mean-Risk Programs
	Results of Distributionally Robust Variants

	Concluding Remarks

	Appendices
	Appendix for Chapter 2
	Model (2.14) is a relaxation of model (2.9)

	Appendix for Chapter 3
	Proof of Proposition 3.1

	Appendix for Chapter 4
	Parallel Algorithm for DD2 and DD3

	Bibliography

