
Manhattan Cutset Sampling and Sensor Networks

by

Matthew A. Prelee

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in the University of Michigan
2016

Doctoral Committee:

Professor David L. Neuhoff, Chair
Associate Professor Robert Dick
Professor Jeffrey A. Fessler
Professor Anna C. Gilbert
Professor Thrasyvoulos N. Pappas, Northwestern University

“The story so far:
In the beginning, the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad move.”
- Douglas Adams,

The Restaurant at the End of the Universe

©Matthew A. Prelee

2016

For my brother, John.

ii

ACKNOWLEDGMENTS

I am very grateful for the friends, family, and colleagues that shaped me into the person I am

today. This thesis would not have been possible without their love and support. Although

this list is not exhaustive, I would like to highlight a few people in particular who have

profoundly impacted my life while in graduate school.

First and foremost, I would like to thank my thesis advisor, David Neuhoff. Dave was

the biggest reason I decided to pursue my graduate studies at Michigan. During my under-

graduate senior year, he had suggested an interesting research project to me, the results of

which are contained in this document. I also had an opportunity to meet with his current

students at the time, and they had nothing but positive things to say about Dave’s abilities

as a researcher, as a teacher, and as a friend. Having now known and worked with Dave

for over five years now, I can confidently say that he is indeed a stellar researcher, a patient

teacher, and a good friend. Thank you David, for everything.

Next, I would like to thank my thesis committee: Thrasos Pappas, Jeff Fessler, Robert

Dick, and Anna Gilbert. Without their influence, this thesis would not have been possible.

Thrasos and his group at Northwestern were very helpful in developing and critiquing the

early image processing algorithms presented in this thesis. Additionally, I had the pleasure

of taking Jeff’s image processing and image reconstruction courses while at Michigan. The

image processing course inspired the sampling theorems presented in this thesis, and the

convex optimization methods I learned in his special topics course are central to the most

successful image reconstruction methods presented in this thesis. I also had the opportunity

to take a special topics course taught by Anna in my second year, which helped inspire the

cost functions and optimization methods in this work. Lastly, Robert was paramount in

providing real-world insight into the sensor network problems presented in the final chapter.

Once again, I’d like to thank all four of you for your suggestions and guidance.

While living in Ann Arbor, I was fortunate enough to befriend many wonderful people.

To Nick, Madison and Mitch: I will forever remember my visits to the “House of Mitch,”

especially the yearly pig roasts, monthly beer tastings, and weekly Chipotle runs. To Rob

and Mike: Thank you for being such great roommates. I have always enjoyed our many

“deep” discussions, and the splitting of a Cottage Inn pizza (or two). For my EECS friends:

Mai, Gopal, Brian, Parinaz, Ian, Aaron, JJ, and Steve: Thanks for always being around to

share an idea, a walk, or a cup of coffee. I want to thank Steve, Sarah, Cassie, Monica,

Giovani, Tim, Ashley and Annie for their friendship and guidance; your wisdom guided me

through many a stressful hour. Also, I’d like to thank my friends Darby, Will, Claire, Colin,

Nicholas, and Brian, with whom I have always enjoyed a late night board game (or two, or

three!).

iii

Finally, there are three family members that I would like to thank: My mother Betsy,

my father Dan, and my brother John. I am so incredibly lucky to have such a supportive,

loving family. My parents have always encouraged me to follow my passions over the course

of my life, and that encouragement has always been a personal source of motivation. So to

my parents: Again, thank you for your hard work and sacrifices. I am so glad that I can

always turn to you two for life advice, and sometimes even a home-cooked meal. To John:

Thank you for your love and support; I always look forward to our visits, when you and I

can share in playing the latest video or board game. Once again, I love all three of you with

all my heart.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . viii

List of Tables . xi

List of Appendices . xii

Abstract . xiii

Chapter

1 Introduction . 1

1.1 Motivations for Cutset/Manhattan Sampling 2
1.2 Overview and Summary of Contributions 3

2 Multidimensional Manhattan Sampling . 8

2.1 Introduction . 9
2.2 Preliminaries . 16
2.3 Two-Dimensional Manhattan Sampling . 18
2.4 Higher-Dimensional Manhattan Sampling 26

2.4.1 Introduction . 26
2.4.2 Examples and properties of bi-step lattices 27
2.4.3 Examples of Manhattan sets . 29
2.4.4 Alternate representations of Manhattan sets 30
2.4.5 Manhattan sampling density . 31
2.4.6 Manhattan partition of frequency space 32
2.4.7 Spectral replication induced by bi-step lattice sampling 35
2.4.8 The multidimensional Manhattan sampling theorem 37
2.4.9 Achievement of Landau lower bound on sampling density 41
2.4.10 Discrete-space images . 42

2.5 Concluding Remarks . 42

3 Manhattan Image Reconstruction . 44

3.1 Background: Cutset-MRF Reconstruction Method 45
3.1.1 Definitions and Notation . 45

v

3.1.2 Problem Background and Algorithm Overview 47
3.2 Piecewise-Planar Reconstruction Method 50

3.2.1 The Piecewise Planar Assumption 50
3.2.2 The Piecewise-Planar Method . 51
3.2.3 Step 1: The K-planes algorithm . 51
3.2.4 Step 2: The interior labeling algorithm 53
3.2.5 Step 3: Block Reconstruction . 55
3.2.6 Results . 56

3.3 Orthogonal Gradient (OG) Algorithm . 58
3.3.1 Constrained Optimization Problem Formulation and Solution . . . 58
3.3.2 The Orthogonal Gradient (OG) Algorithm 62

3.4 Local Orthogonal Orientation Penalization (LOOP) Algorithm 64
3.4.1 The Dominant Gradient Strength and Direction 65
3.4.2 LOOP Algorithm . 67
3.4.3 Cost Function for the LOOP Algorithm 69
3.4.4 Efficient Computation of the Dominant Gradient Direction 71

3.5 Reconstruction Method Comparisons . 73
3.5.1 Traditional Lattice Sampling Experiments 75
3.5.2 Manhattan vs. Lattice Comparison 77
3.5.3 Conclusions . 79

4 Cutset Sensor Networks, Relay-efficient Functions, and Efficient Commu-
nication . 98

4.1 Cutset Networks . 101
4.2 The Source Localization Problem . 105

4.2.1 Cramér–Rao Bounds . 106
4.2.2 Maximum Likelihood Estimation 107

4.3 Centralized Source Localization on Cutset Networks 108
4.3.1 Procedure . 109
4.3.2 Discussion . 110

4.4 Decentralized Source Localization on a Manhattan Network 111
4.4.1 Problem Statement . 112
4.4.2 Midpoint Algorithm . 113
4.4.3 Choosing the threshold . 115
4.4.4 Communication protocol and costs 116
4.4.5 Experiments and Results . 117

4.5 Relay Regions and Relay-efficient Functions 119
4.5.1 Relay regions and their properties 121
4.5.2 Relay-efficient functions and their properties 125
4.5.3 The size and shape of R̃(x) . 135
4.5.4 Energy-efficient hop lengths . 141
4.5.5 Truncated transmission energy functions 144
4.5.6 Energy Function Examples . 145
4.5.7 Conclusions . 148

4.6 Efficient Communication on a Lattice Sensor Network 149

vi

4.6.1 Minimum Energy Paths . 151
4.6.2 Sensor separation guaranteeing relay region contains lattice point . 153
4.6.3 Calculating V ∗ . 159
4.6.4 Conjecture: A closed-form expression for g(θ) and g̃(u) 159
4.6.5 Lattice Communication Experiments 161

4.7 Conclusions . 166

5 Conclusions . 167

5.1 Future Work . 168

Appendices . 169

Bibliography . 176

vii

LIST OF FIGURES

2.1 (a) 2D Manhattan-grid sampling sites with parameters k1 = k2 = 5 and λ1 = λ2.
(b) Square lattice sampling at the same density. (c) Cross-shaped frequency
support (centered at the origin) of images recoverable with Manhattan sampling. 9

2.2 For Manhattan sampling with λ1 = λ2 and k1 = k2 = 3: (a) Support of the
sampled spectrum for an image bandlimited to the Manhattan region, when
sampled with the fine lattice Lλ1,λ2 . The original spectrum is black with a white
× in its center, whereas replicas are white with a black × in their centers. (b)
Support of the sampled spectrum when sampled with the vertical lattice Lk1λ1,λ2 .
Gray indicates regions where replicas overlap either the original spectrum or each
other. (c) Same as (b), except that the sampling is with the horizontal lattice
Lλ1,k2λ2 . 19

2.3 (a) Original 256 × 256 image. (b) Image bandlimited to Manhattan region

M̃(λ,k), with k1 = k2 = 4 and λ1 = λ2 = 1. (c) Same as (b) except k1 = k2 = 8.
(d) Same as (c) except λ1 = λ2 = 2. (Note: after spectra were zeroed outside

M̃(λ,k), inverse transforms were applied, negligible imaginary parts were dis-
carded, and images were quantized to {0, 1, . . . , 255}.) (e) Image sampled with
parameters of (c) and reconstructed without first bandlimiting to Manhattan re-
gion. Log magnitude spectra: (f) original image; (g) original image bandlimited
with parameters of (c). 25

2.4 Examples of 3D Manhattan sampling M(B) and their corresponding Manhattan
regions M(B). (a) Manhattan lines B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and (b) its
corresponding Manhattan region. (c) Manhattan facetsB = {(1, 1, 0), (1, 0, 1), (0, 1, 1)},
and (d) its corresponding Manhattan region. 29

2.5 Partitioning of 2D Manhattan grid M({e1, e2}) with sampling factors k1 = k2 =
4, which is the union of the yellow ×’s in V(0,0), the red 4’s in V(1,0), and the blue
�’s in V(0,2). The white ◦’s are in V(1,1), which is disjoint from this Manhattan
grid. 32

2.6 M-partition of ND for d = 2, k1 = 5, k2 = 3. Frequency u = 0 lies at the
center. Each M-atom Ab is identified by its b. Note that the cross-shaped
Manhattan region M({e1, e2}) is also partitioned by M-atoms; in particular,
M({e1, e2}) = A(0,0) ∪ A(1,0) ∪ A(0,1). 32

3.1 Cutsets . 46
3.2 Index sets for the graph of a 3× 4 block. 46
3.3 Original three-step honest algorithm found in [1] 48

viii

3.4 Comparison of the method in [1] and the proposed method for a soft edge passing
through a 7 × 7 Manhattan grid sampling of the image “Al”, shown in Figure
3.3(a). The block was taken from a soft edge between the books in the upper-
right region of the image. 53

3.5 Estimation of ṽ in Step 2 for a block taken from a 3× 3 Manhattan grid. Nodes
and polygons associated with plane 1 are colored red, plane 2 are colored green,
and plane 3 are colored blue. 54

3.6 Comparison of the proposed Piecewise-Planar method to the previous “MRF
model with cutset segmentation” method described in [1]. 56

3.7 Neighborhood definitions and a Manhattan interpolation obtained by solving
problem (3.7) with isotropic objective Ψiso(x). 59

3.8 Plot of ‖xk+1 − xk‖2/np for reconstructing “Al” sampled on a 7× 7 Manhattan
grid using the OG Algorithm. Note the image enters a limit cycle, which is
eliminated by decreasing the λk sequence at k ≥ 7. 63

3.9 Orthogonal Gradient (OG) Algorithm . 65
3.10 Local Orthogonal Orientation Penalization (LOOP) Algorithm 80
3.11 Method comparison for reconstructing “Al” from 7× 8 Manh. sampling. 81
3.12 Method comparison for reconstructing “baboon” from 7× 8 Manh. sampling. . 82
3.13 Method comparison for reconstructing “Barbara” from 7× 8 Manh. sampling. . 83
3.14 Method comparison for reconstructing “boat” from 7× 8 Manh. sampling. . . . 84
3.15 Method comparison for reconstructing “peppers” from 7× 8 Manh. sampling. . 85
3.16 Method comparison for reconstructing “tools” from 7× 8 Manh. sampling. . . . 86
3.17 Part 1: Comparison of final α parameter to reconstructions. αi ≈ 0 in black

regions and αi ≈ 1 in white regions. 87
3.18 Part 2: Comparison of final α parameter to reconstructions. αi ≈ 0 in black

regions and αi ≈ 1 in white regions. 88
3.19 Method comparison for reconstructing “Al” from 2× 2 lattice samples. 89
3.20 Method comparison for reconstructing “baboon” from 2× 2 lattice samples. . . 90
3.21 Method comparison for reconstructing “Barbara” from 2× 2 lattice samples. . . 91
3.22 Method comparison for reconstructing “boat” from 2× 2 lattice samples. 92
3.23 Method comparison for reconstructing “peppers” from 2× 2 lattice samples. . . 93
3.24 Method comparison for reconstructing “tools” from 2× 2 lattice samples. . . . 94
3.25 Edge comparison of collar in “Al” . 95
3.26 Edge comparison of books in “Al” . 96
3.27 Edge comparison for poles in “Boat” . 97

4.1 Wireless networks with n ≈ 250 sensors placed in a circular region of radius
R = 50m. The shaded region depicts possible locations of a randomly placed
source in localization experiments. (a,b,c,d) show traditional network layouts;
(e,f,g) show proposed cutset networks. 101

4.2 Energy estimates for n ≈ 250 and k = {1, 2, 3, 4, 5}. All sum approximation esti-
mate (4.1) had no more than 3% error, and all integral approximation estimates
(4.2) had no more than 12% error. 104

4.3 Energy estimates for n ≈ 1000 and k = {1, · · · , 20}. 105

ix

4.4 Experimental results for MLE and CRB experiments for both noise models. Solid
lines indicate MLE, and dashed lines indicate CRB. The log-normal plot includes
a zoomed-in plot for closer comparison. The numbers along each data point
indicate the k value of the network. 108

4.5 Cramèr-Rao bound as a function of source position θ; each × marks a sensor
position. Top row: AWGN model. Bottom row: LN model. Left-to-right:
Square lattice, k = 1, Manhattan, k = 5, Triangular, k = 5, Honeycomb, k = 5. 108

4.6 MLE error distribution for Manhattan grid with n ≈ 250 sensors and k = 5,
search window of circle of radius 30, coarse search resolution 0.15m, fine search
resolution 0.01m, 20000 trials. 109

4.7 n = 500 sensors placed along a Manhattan Grid (k = 10) in a 100m × 100m square; each ×
denotes one sensor. A source is located at θ = [50, 50]. Contours of constant power under no

noise are shown in dB. 111
4.8 Accuracy vs. energy cost tradeoff for our proposed Midpoint Algorithm and the POCS algo-

rithm [2] for α = 2 and α = 4. Values of k are labeled for some points. POCS was also run

on a uniform lattice (labeled k = 1) and a randomly distributed network. RMSE vs. energy is

shown in (a) and RMedSE vs. energy cost is shown in (b). 120
4.9 Example of a relay region, and the boundary Lune(x). 122
4.10 D(x; δ1(x), δ2(x)) . 135
4.11 Sensor layout for lattice communication experiments. e∗(0, u), g̃(u) and ĝ(u)

were calculated for paths connecting the green triangle sensor (center) to the
blue circles. 162

4.12 Comparison of shortest path energies to predicted energies using elements of V ∗

for f(x) = x3 (no constant overhead). Normalized coefficients to output of g(u)
(i.e. g(θ)) are also shown. 163

4.13 Comparison of shortest path energies to predicted energies using elements of V ∗

for f(x) = x3 + 5 (small constant overhead). Normalized coefficients to output
of g(u) (i.e. g(θ)) are also shown. 164

4.14 Comparison of shortest path energies to predicted energies using elements of V ∗

for f(x) = x3 + 20 (large constant overhead). Normalized coefficients to output
of g(u) (i.e. g(θ)) are also shown. 165

x

LIST OF TABLES

2.1 Density of several 3-dimensional Manhattan sets with ki = k and λi = 1 for all i. 32

3.1 Comparison of PSNRs in dB between the “MRF model with cutset segmentation”
method in [1] and new Piecewise-Planar method for c = 0.25 and d = 1. Values
in a 20 pixel-wide border around the image were not used in these calculations. 58

3.2 Comparison of PSNR values (dB) for various methods. Highest PSNR for each
row is in bold. 76

3.3 Comparison of PSNR values (dB) for lattice interpolation methods. Highest
PSNR for each row is in bold. 77

4.1 Network quantities. Note that c(r, φ) is π
3

periodic for Triangle and Honeycomb
networks. 104

xi

LIST OF APPENDICES

AInterior labeling algorithm for k = 3 . 169

B Expected value of C . 171

C Minimum path cost calculations . 174

xii

ABSTRACT

Manhattan Cutset Sampling and Sensor Networks

by

Matthew A. Prelee

Chair: David L. Neuhoff

Cutset sampling is a new approach to acquiring two-dimensional data, i.e.,

images, where values are recorded densely along straight lines. This type of sam-

pling is motivated by physical scenarios where data must be taken along straight

paths, such as a boat taking water samples. Additionally, it may be possible

to better reconstruct image edges using the dense amount of data collected on

lines. Finally, an advantage of cutset sampling is in the design of wireless sen-

sor networks. If battery-powered sensors are placed densely along straight lines,

then the transmission energy required for communication between sensors can be

reduced, thereby extending the network lifetime.

A special case of cutset sampling is Manhattan sampling, where data is

recorded along evenly-spaced rows and columns. This thesis examines Manhattan

sampling in three contexts. First, we prove a sampling theorem demonstrating

an image can be perfectly reconstructed from Manhattan samples when its spec-

trum is bandlimited to the union of two Nyquist regions corresponding to the

two lattices forming the Manhattan grid. An efficient “onion peeling” reconstruc-

tion method is provided, and we show that the Landau bound is achieved. This

theorem is generalized to dimensions higher than two, where again signals are re-

constructable from a Manhattan set if they are bandlimited to a union of Nyquist

regions. Second, for non-bandlimited images, we present several algorithms for

reconstructing natural images from Manhattan samples. The Locally Orthog-

onal Orientation Penalization (LOOP) algorithm is the best of the proposed

xiii

algorithms in both subjective quality and mean-squared error. The LOOP algo-

rithm reconstructs images well in general, and outperforms competing algorithms

for reconstruction from non-lattice samples. Finally, we study cutset networks,

which are new placement topologies for wireless sensor networks. Assuming a

power-law model for communication energy, we show that cutset networks offer

reduced communication energy costs over lattice and random topologies. Addi-

tionally, when solving centralized and decentralized source localization problems,

cutset networks offer reduced energy costs over other topologies for fixed sensor

densities and localization accuracies. Finally, with the eventual goal of analyz-

ing different cutset topologies, we analyze the energy per distance required for

efficient long-distance communication in lattice networks.

xiv

CHAPTER 1

Introduction

The solution to any given problem in science, mathematics, and engineering often relies

heavily on the quality and quantity of available data. If, indeed, the data is lacking in

some manner, then it may be impossible find a unique solution, or satisfactorily evaluate a

hypothesis. Thus, an important issue in any technical endeavor is that of data acquisition.

In many applications where the data acquisition process can be controlled, a greedy data

collection philosophy often dominates. This attitude is apparent when the law of large

numbers is invoked, or a wide variety of test cases are used. Such strategies inspire confidence

that a solution method is consistent and robust. However, resources are often limited, and a

tradeoff appears between the data acquisition process and the quality of a solution. In other

applications, the data acquisition process is fixed. In these cases, it is worthwhile to find a

method that achieves the best possible solution given the data. All of these ideas are at the

heart of this thesis.

The goal of this thesis is to investigate the strengths and weaknesses of a new geometric

approach to acquiring data called cutset sampling, where data is recorded densely along

straight lines or line segments. The term “cutset” is taken from graph theory, where a cutset

is defined to be a set of nodes whose removal separates a graph into two or more disjoint sets.

In a similar manner, if a two-dimensional function (i.e. an image) is sampled on one or more

straight lines, then the planar domain of the function is separated into two or more disjoint

sets. A specific example of cutset sampling is Manhattan sampling, where a two-dimensional

function is sampled along evenly spaced rows and columns, thereby mimicking the grid-like

geometry of city streets (see Figure 2.1). This idea is contrasted to conventional rectangular

lattice sampling, where data is taken at evenly spaced points on a Cartesian grid, or random

sampling, where sample points are chosen randomly in the plane. The former sampling

approach is common in image upsampling and interpolation. The latter sampling approach

often appears in sensor network problems, where data measurements are taken at randomly

scattered wireless sensors. Both such applications are considered in this thesis.

1

1.1 Motivations for Cutset/Manhattan Sampling

At first glance, it seems rather counter-intuitive to investigate cutset or Manhattan sampling.

After all, it seems like it would be easier to estimate two-dimensional phenomenon by having

an even distribution of sampling points across an area of interest. Although this is true for

many applications, there are some other factors to consider in favor of cutset sampling.

First, cutset sampling appears in applications that are restricted to collecting data along

straight lines. Some examples include applications where data is collected by vehicles, which

must necessarily travel along a continuous path. For example, many researchers in environ-

mental science are interested in aquatic hypoxia, which is the depletion of oxygen in bodies

of water. Severe hypoxia can lead to the death of fish and other animals in an ecosystem;

therefore, it is of interest to measure oxygen levels in bodies of water. Such measurements

can be taken by a boat moving through the water [3]. An investigation into cutset sampling

can provide useful insight into how to sample and interpolate such data in future research

endeavors.

Second, an advantage of cutset sampling is that there exists high correlation between

neighboring samples, and this correlation can be exploited. For example, cutset sampling

has already been shown to be useful in lossy and lossless image compression, particularly

for bilevel images [4–7]. As a first step, these image compression techniques use arithmetic

coding to compress neighboring pixels on a Manhattan grid. This technique is efficient

because it exploits the high correlation between neighboring pixels. For lossless encoding

applications, the remaining pixels are then also compressed conditioned on the pixel values

on the Manhattan grid. For lossy compression, the remaining pixels are not encoded, but

rather are estimated by the decoder given the pixels on the Manhattan grid. These methods

are heavily based on graphical Markov random field models, where a Manhattan grid acts as

a cutset, separating the image into blocks of pixels that are conditionally independent given

the cutset. This property leads us to the coined term “cutset sampling.”

Another motivation for cutset sampling is that it may allow better reconstruction edges

and level sets of an image or function. This is especially important in the area of image

processing, since human beings are often very sensitive to slight changes in edge information,

such as the blurring or oversharpening of edges. As we will see in Chapter 3, by using an

appropriate algorithm, images reconstructed from their Manhattan samples can retain much

of their edge information

It is possible that Manhattan sampling or cutset sampling is optimal for representing or

reconstructing certain classes of functions or images. If this class of images can be identi-

fied, then Manhattan or cutset sampling can be applied in these instances to great success.

2

Chapter 2 discusses in detail just such a class of images that can be perfectly reconstructed

from their Manhattan grid samples.

Finally, the battery life of sensor networks can be extended greatly if the sensors are

placed along straight lines, such as a Manhattan grid. To see why, first consider the fact

that wireless transmission circuitry typically dominates the battery usage of sensor nodes

in wireless sensor networks, while the actual sensing circuitry requires little to no energy

(“sensing is cheap”). When nodes attempt to share their data, a multi-hop strategy is

employed to relay messages through the network. Such a strategy is desirable because the

decay of wireless transmission power over distance follows an inverse power law. If the energy

overhead for turning on the transmission circuitry is negligible, then it will be cheaper to relay

a message through the network than to communicate directly with a destination node. Under

a power-law assumption for communication (see equation (4.1)), the transmission power per

hop is directly proportional to the distance between neighboring sensors. If this inter-sensor

spacing can be reduced, then the energy-per-hop can in turn be reduced, potentially reducing

the overall energy usage of the network. It can be shown that when sensor nodes are placed

along a Manhattan grid, the inter-sensor spacing between neighboring sensors is much smaller

than that of a rectangular lattice network or random network for some fixed node density.

Such arguments are described in more detail in Chapter 4. Chapter 4 also discusses energy

transmission models in general, and gives conditions under which relaying is an optimal

strategy, and when it is not.

1.2 Overview and Summary of Contributions

Cutset sampling is a relatively new area; as such, the majority of this thesis work is concerned

specifically with the special case of Manhattan sampling. In some cases, we will also consider

other common sampling patterns and sensor deployments, such as random sampling or lattice

sampling. Overall, this thesis

1. Determines a frequency region such that images bandlimited to it can be reconstructed

perfectly from their Manhattan samples, both in two and higher dimensions. This the-

sis also presents an efficient “onion-peeling” algorithm, and demonstrates that Man-

hattan sampling is optimal in the Landau sense.

2. Provides efficient methods for estimating non-bandlimited images as accurately as pos-

sible from samples on a Manhattan grid, and demonstrates that the best of these meth-

ods outperform existing methods for reconstructing images from non-lattice sampling

patterns.

3

3. Demonstrates that Manhattan/cutset sensor networks require less communication en-

ergy to solve centralized and decentralized source localization problems at certain fixed

sensor densities and desired estimation accuracies; additionally, the Midpoint Algorithm

is proposed for decentralized source localization on a Manhattan grid, which attains

lower energy costs than a competing decentralized localization algorithm.

4. Presents a general method for predicting the required energy-per-distance cost of long

distance communication in a lattice sensor network when the model for transmission

energy is relay efficient. In particular, we predict that efficient communication path

only consist of one or two “hop types”, and we also demonstrate that these predictions

match the output of a shortest path algorithm.

We will now discuss these problems in more detail.

The first contribution, concerning (perfect) image reconstruction, is addressed in Chapter

2. In particular, we determine a class of two-dimensional continuous functions that are

reconstructable from their Manhattan-grid samples. To solve this problem, it is useful to

view a Manhattan grid as the union of two lattices, one densely sampled in the horizontal

direction, and the other densely sampled in the vertical direction. It is then shown that the

set of images whose spectra are bandlimited to the union of Nyquist regions corresponding to

these two lattices can be perfectly reconstructed from their Manhattan samples, as shown in

Figure 2.1(c). As far as we are aware, this is the first time it has been demonstrated that an

image bandlimited to a union of Nyquist regions can be reconstructed from a union of lattices.

Furthermore, it is shown that this set of images is maximal in the Landau sense [8]. This

result is extended to the discrete infinite- and finite-support cases. Reconstruction algorithms

are provided for all instances. In Section 2.4, this result is extended to the multi-dimensional

case. This high-dimensional problem is interesting because Manhattan sampling sets take

numerous forms in more than two dimensions, such as those shown in Figure 2.4. Again, the

reconstructable set of images includes those multidimensional images bandlimited to a union

of Nyquist regions corresponding to the lattices that make up the Manhattan sampling set.

To aid us in the high-dimensional setting, bi-step lattices are introduced, which are lattices

whose points are either spaced coarsely or densely along each dimension. The binary nature

of bi-step lattices allows them to be characterized by binary bi-step vectors, where the ith

element of a bi-step vector indicates whether the spacing of a bi-step lattice is coarse or

dense along dimension i. Finally, a recursive “onion-peeling” algorithm is proposed for

reconstruction. This onion-peeling algorithm is very elegant, and it can be performed using

basic Fourier Transforms, filtering operations, and sampling operations.

4

The second contribution, concerning the development of algorithms for reconstructing

arbitrary images from their Manhattan grid samples, is addressed in Chapter 3. To begin, two

exploratory algorithms are reviewed (Sections 3.1 and 3.2) that are based on Markov Random

field (MRF) models. Each algorithm first attempts to segment the entire image (both known

and unknown pixels) into regions of similar pixels. The first algorithm is prior work that

segments pixels into regions of similar intensity; the second algorithm models the image as

piecewise planar plus noise, and tries to identify the planar regions and corresponding planes

using the so-called k-planes algorithm. After these regions are identified, the textures within

each region are modeled using a Gaussian MRF, and a linear MMSE estimator is used to

identify the missing pixels. Segmentation approaches result in reconstructions that look

very artificial, with a “color by numbers” look. However, both algorithms reconstruct sharp

(hard) edges well, and the latter algorithm also reconstructs gradual (soft) edge-transitions

well.

In Sections 3.3 and 3.4, we greatly improve upon the early methods by introducing

the Orthogonal Gradient (OG) and Locally Orthogonal Orientation Penalization (LOOP)

algorithms. Both algorithms are alternating algorithms that switch between solving a convex

optimization problem and updating the parameters of the optimization problem. These two

steps continue until the estimated image converges. The performance of both algorithms

is examined in Section 3.5. Since our work is the first to consider reconstructing images

from Manhattan sets, we compare our algorithms to methods that have been designed to

reconstruct images from arbitrary sampling patterns [9,10]. We show that the OG and LOOP

algorithms outperform their competition; in particular, the LOOP algorithm performs best,

both subjectively and in terms of mean-squared error. We also note that both the OG

and LOOP algorithms are flexible enough to reconstruct images from arbitrary sampling

patterns. To demonstrate this, we apply the LOOP algorithm to the classic problem of

lattice interpolation, and we find that the LOOP algorithm is competitive with a recent

lattice interpolation method [11]. Overall, we believe that the LOOP algorithm is a very

promising approach that can potentially be applied to a wide variety of image reconstruction

applications. Furthermore, we demonstrate that the quality of edges reconstructed by the

LOOP algorithm is similar to edges reconstructed from square lattice samples using edge-

adaptive algorithms, such as [11].

Chapter 4 covers the third and fourth contributions regarding sensor networks. Specifi-

cally, the third contribution is covered in Sections 4.1 through 4.4, where under certain power

law models for communicating a packet of data over a certain distance, e.g., a square-law,

we demonstrate that Manhattan/cutset sensor networks require less communication energy

to solve centralized and decentralized source localization problems at certain fixed sensor

5

densities and desired estimation accuracies. First, in Section 4.1, we provide formulas that

estimate the smallest energy required to transmit a packet of data at a certain distance and

angle through a cutset network. These formulas are in turn used to predict the smallest

total energy required for all nodes in the network to communicate with a central hub. These

formulas are compared to the output of a cheapest path algorithm (Dijkstra’s Algorithm)

and it is found that they approximate the true path costs to within a few percentage points

of error. It is also found that the cutset networks require less energy than lattice networks,

and the energy decreases as the integer cutset parameter k increases (for example, in a Man-

hattan network, k is the number of sensors per “square”). This gain in energy efficiency

is desirable, but we would also like to see how the layout of a cutset network affects the

performance of the sensor network in performing a signal processing task.

Beginning in Section 4.2, we consider the task of received signal strength (RSS)-based

source localization on a sensor network, where the goal is to estimate the position of a source

that is emitting electromagnetic or acoustic waves. We assume that each sensor in our

sensor network obtains a noisy power measurement (Section 4.2), and these measurements

can be used to produce a position estimate of the source. Our goal, therefore, will be to

minimize the root mean-squared error between our source position estimate and the true

source position. In the centralized estimation scenario, all measurements are communicated

to a central hub for processing, where a method such as Maximum Likelihood Estimation

(MLE) can be performed (Section 4.3). In the decentralized estimation scenario, sensors

make local decisions about (a) whether a source is present, and (b) how to share their data

with neighbors. A decentralized algorithm, such as the POCS algorithm [2], can be used; in

the case of a Manhattan sensor network, we will propose the Midpoint algorithm (Section

4.4). However, as we demonstrate in both Section 4.3 and 4.4, that there is a tradeoff in

estimation error and the communication energy required to compute the estimate. In the

centralized case, we find that the hexagonal tessellation networks (“honeycomb” networks)

allow for the greatest reduction in energy, at the expense of very little estimation error. In

the decentralized case, It is shown that while using the POCS algorithm for localization,

Manhattan sensor networks use less energy than the random network or lattice network,

but at the cost of increased estimation error. The proposed Midpoint Algorithm further

reduces the energy required to estimate the source, but again at reduced accuracy. Thus, a

fundamental energy-vs-accuracy tradeoff is observed.

Finally, our fourth contribution is covered in Sections 4.5 and 4.6. With the goal of

understanding the ability of a periodic network topology to provide a communication infras-

tructure (agnostic to the sensor network task), we present a general method for predicting

the required energy-per-distance cost of long distance communication in a lattice sensor

6

network when the model for transmission model is relay-efficient. An example of a relay-

efficient model is the aforementioned power-law model. We define the relay region to be the

region between two sensors where a third sensor can be placed to reduce the overall energy

cost required for transmission, and we say that a model is relay-efficient if the relay region

always exists for sufficiently large distances. Note that this is a critical property to check

when arguing that a cutset network is energy-efficient, since the energy-efficiency claim of a

cutset network relies on the assumption that relaying a packet through neighboring sensors

is more efficient than direct transmission. To determine relay-efficiency, we prove sufficient

conditions that can be checked, and also give geometric bounds on the size and shape of

the relay region. We also calculate the “best” separation distance for two communicating

sensors, which is the distance that minimizes the energy-per-distance function.

Finally, in Section 4.6, under the assumption that our model is relay-efficient, we char-

acterize the cost of paths of minimal energy through a lattice sensor network. Good ap-

proximations to these paths can be obtained by solving a linear program, and we prove that

the solution to this linear program converges to the cost of the actual best path at long

distances. However, our simulations show that this approximation can work well even for

short paths. We also conjecture that for long-distance communication, the repetition of at

most two “hop types” are needed to describe an energy-efficient path. We then propose a

method for predicting these paths and the cost of these paths in closed form. We conclude

the chapter with numerical simulation which support this conjecture.

We note that most of the notation in this thesis is relatively self-contained to each chapter,

and in some cases, each section.

7

CHAPTER 2

Multidimensional Manhattan Sampling

This chapter introduces Manhattan sampling in two and higher dimensions, and proves sam-

pling theorems. In two dimensions, Manhattan sampling, which takes samples densely along

a Manhattan grid of lines, can be viewed as sampling on the union of two rectangular lattices,

one dense horizontally, the other vertically, with the coarse spacing of each being a multi-

ple of the fine spacing of the other. The sampling theorem shows that images bandlimited

to the union of the Nyquist regions of the two rectangular lattices can be recovered from

their Manhattan samples, and an efficient procedure for doing so is given. Such recovery

is possible even though there is overlap among the spectral replicas induced by Manhattan

sampling.

In three and higher dimensions, there are many possible configurations for Manhattan

sampling, each consisting of the union of special rectangular lattices called bi-step lattices.

This chapter identifies them, proves a sampling theorem showing that images bandlimited

to the union of the Nyquist regions of the bi-step rectangular lattices are recoverable from

Manhattan samples, and presents an efficient onion-peeling procedure for doing so. Further-

more, it develops a special representation for the bi-step lattices and an algebra with nice

properties. It is also shown that the set of reconstructable images is maximal in the Landau

sense.

While most of the chapter deals with continuous-space images, Manhattan sampling of

discrete-space images is also considered, for infinite, as well as finite, support images.

Finally, we note that the 2D work of Section 2.3 was originally presented at ICASSP

2012 [12], and the extensions to higher dimensions have been submitted for review to IEEE

Transactions in Information Theory.

8

1

2

2

1k

2k

1
1

1



2

1


22

1

k

11

1

k

Figure 2.1: (a) 2D Manhattan-grid sampling sites with parameters k1 = k2 = 5 and λ1 =
λ2. (b) Square lattice sampling at the same density. (c) Cross-shaped frequency support
(centered at the origin) of images recoverable with Manhattan sampling.

2.1 Introduction

In the two-dimensional (2D) setting, Manhattan sampling (or M-sampling for short) is a

recently proposed form of image sampling in which data is taken along evenly spaced rows

and columns; the set of sample locations will be called a Manhattan grid. In particular, as

illustrated in Fig. 2.1(a), given sampling intervals λ1, λ2 > 0 and integers k1, k2 > 1, samples

are taken at intervals of λ1 along horizontal rows spaced k2λ2 apart, and also at intervals of

λ2 along vertical columns spaced k1λ1 apart.

Manhattan sampling has been used to good effect in both lossy and lossless bilevel image

compression [4–6]. These methods losslessly compress the samples in a Manhattan grid,

for example with arithmetic coding (AC), which can be done with very few bits per M-

sample because the samples are closely spaced and, hence, highly correlated. For lossless

compression, the other pixels are then AC encoded, conditioned on those in the Manhattan

grid, while for lossy compression there is no further encoding, and the decoder estimates the

remaining pixels from those in the Manhattan grid. Markov random field models have been

used to guide both the arithmetic coding and the estimation.

M-sampling has also been proposed [1, 13–15] as a new approach to sampling grayscale

images and other two-dimensional fields, with the motivations that (a) dense sampling along

lines might capture edge transitions more completely than conventional lattice sampling

with the same density, (b) sensor networks with a Manhattan deployment geometry need

less power or less wire to transmit data than conventional lattice or random deployments at

the same density [14, 15], and (c) there are physical scenarios for which M-sampling is far

9

more natural than traditional lattice sampling, such as when sampling from a moving vehicle,

e.g., a ship sampling oxygen levels in a body of water. Similarly motivated by sampling from

vehicles, the recent related work of Unnikrishnan and Vetterli [16, 17] considers sampling

continuously along a grid of lines, i.e., with asymptotically large sampling rate.

Methods for approximately reconstructing typical (non-bandlimited) images from M-

samples have been developed in [1, 13, 18]. The present chapter focuses on identifying a

bandlimited set of images that can be perfectly reconstructed, as well as efficient methods

for doing so.

Manhattan sampling with parameters λ1, λ2, k1, k2 can be viewed as sampling on the

union of the horizontally dense rectangular lattice consisting of all locations of the form

(n1λ1, n2k2λ2), where n1, n2 are arbitrary integers, and the similarly defined vertically dense

rectangular lattice consisting of all locations of the form (n1k1λ1, n2λ2). For brevity, we call

these the horizontal and vertical lattices, respectively.

By the conventional 2D sampling theorem [19] (see also [20, p. 72], [21, Chap. 3], [22,

p. 43]), the samples on the horizontal lattice are sufficient to distinguish and reconstruct

any image bandlimited to the Nyquist region
{

(u, v) : |u| < 1
2λ1
, |v| < 1

2k2λ2

}
. Likewise

the samples on the vertical lattice are sufficient to distinguish and reconstruct any image

bandlimited to the Nyquist region
{

(u, v) : |u| < 1
2k1λ1

, |v| < 1
2λ2
}. Each of these samplings

is maximally efficient in the Landau sense [8] that their sampling densities are as small as

the area of the Nyquist region. Equivalently, the set of images bandlimited to the Nyquist

region is maximal for the given sampling scheme.

The first result of the present chapter is a sampling theorem in Section 2.3 showing that

images bandlimited to the union of these two Nyquist regions can be reconstructed from

their samples on the union of the two rectangular lattices, i.e., on the Manhattan grid, and

an efficient procedure for doing so is given. It is also shown that the images bandlimited in

this way form a maximal reconstructable set for the Manhattan grid samples. As illustrated

in Fig. 2.1(c), the union of the two Nyquist regions is the cross-shaped Manhattan region.

We say that images whose spectra are confined to such a region are Manhattan-bandlimited.

Given the relevance of Manhattan-bandlimiting, a figure in Section 2.3 will display the effect

of several instances of such on a typical image.

The principal goals of the remainder of the chapter are to formulate M-sampling in three

and higher dimensions, and to derive a sampling theorem and a reconstruction procedure.

M-sampling in three dimensions can be motivated by the need to spatially sample a three-

dimensional volume with a vehicle, or to spatio-temporally sample a two-dimensional region,

as in video, or a spatio-temporal sensor network. Four-dimensional sampling can be moti-

vated by the need for spatio-temporal sampling of a three-dimensional spatial region.

10

In three and higher dimensions, M-sampling can take a variety of forms. In order to

describe two of these in three dimensions, consider the partition of 3D space into k1λ1 ×
k2λ2×k3λ3 orthotopes (3D rectangles). As illustrated in Fig. 2.4(a), one form of M-sampling

takes samples uniformly along each edge of each of these orthotopes — with spacing λi along

edges parallel to axis i. Another form (Fig. 2.4(c)) takes samples uniformly on each face of

each orthotope — with the samples on the face orthogonal to axis i taken according to a

λj × λk rectangular lattice, where j and k denote the other dimensions. In other words, the

first form samples densely along lines and the second samples densely along hyperplanes.

Neither of these takes samples in the interior of any of the aforementioned orthotopes.

More generally, as described in Section 2.4, M-sampling in an arbitrary dimension d is

defined as taking samples on the union of some collection of d-dimensional bi-step lattices,

which are rectangular lattices defined by step sizes that in dimension i are restricted to λi or

kiλi. Thus, there are many possible M-samplings in d dimensions, even when λi’s and ki’s

are fixed. We call such unions of d-dimensional bi-step lattices Manhattan sets.

The main results of Sec. 2.4 are (a) a sampling theorem showing that images bandlim-

ited to the union of the Nyquist regions of the d-dimensional bi-step lattices comprising the

Manhattan set can be distinguished by their M-samples, (b) efficient, onion-peeling proce-

dures for perfectly reconstructing d-dimensional images, bandlimited as in (a), from their

M-samples (one in frequency domain and one in spatial domain), and (c) a proof that the

set of such bandlimited images is maximal in the Landau sense.

The development of the sampling theorem and reconstruction procedures are enabled by

an efficient parameterization of a bi-step lattice (with a given set of λi’s and ki’s) by a binary

vector b = (b1, . . . , bd) indicating the dimensions i along which the spacing between lattice

points is the smaller value, λi, rather than the larger value, kiλi. This enables any Manhattan

set to be compactly described by a finite set of bi’s (in addition to the λi’s and ki’s). A

number of properties and relationships are enabled by this parameterization. For example,

the computation of the density of a d-dimensional Manhattan set is enabled by a spatial

partition whose 2d atoms are indexed by b’s. Similarly, the onion-peeling reconstruction

procedures mentioned previously are keyed to a partition of frequency space whose 2d atoms

are indexed by b’s. The frequency-domain version reconstructs the image spectrum one

atom at a time, beginning with “highest frequency” atoms (whose b’s contain the most 1’s),

and working towards the lower frequency atoms (whose b’s contain fewer ones).

In particular, as will be shown, the spectrum Xb(u) in the atom indexed by b is computed

via

Xb(u) = Xb(u) −
∑

b′: ‖b′‖>‖b‖

Xb′

b (u) , (2.1)

11

where Xb(u) is the spectrum of the image samples in the bi-step lattice parameterized by b

(a subset of the Manhattan set), the sum is over all b′ with more ones than b, and Xb′

b (u)

is the spectrum of the samples (taken with the same bi-step lattice) of the image component

xb
′
(t) corresponding to atom b′, which has previously been reconstructed.

A discrete-space version of this requires only DFTs of the subsampling of the Manhattan

samples and the previously reconstructed image components specified in the above, as well

as summing and subtracting. Then an inverse DFT computes the newly reconstructed

component. Summing all such components yields the reconstructed image.

The method characterized by (2.1), and the discrete-space version thereof, can also be

carried out in the spatial domain by applying the right-hand side of (2.1) to the corresponding

sampled images, rather than their spectra, and then applying an ideal bandpass filter that

extracts just the frequency component corresponding to atom b. The impulse responses of

these filters will be given later. As will be seen, these impulse responses depend on the ki’s

and λi’s, but not the choice of bi-step lattices that comprise the Manhattan set. Moreover,

the λi’s have only a simple spatial scaling effect on the filters.

Finally, we note that the development for three dimensions benefits greatly from the effi-

cient parameterization of bi-step lattices mentioned earlier, and that with such, it is possible

to derive the M-sampling theorem and reconstruction procedure in arbitrary dimensions with

essentially no additional effort or notation.

We conclude this introduction by relating the present work to previous work. Multidi-

mensional sampling theorems, showing that images with certain spectral support regions can

be reconstructed from certain samplings sets, appeared first for lattice sampling sets in Pe-

terson and Middleton [19], then later for unions of shifted lattices, i.e., lattice cosets, [23–34],

although they were not always described as such.

The earliest work [19, 23] required the spectral support region and sampling set to be

chosen so that the spectral replicas induced by sampling did not overlap, and consequently,

reconstruction could proceed simply by lowpass filtering the sampled image. For example,

the approach of [23] could be used to reconstruct images from M-samples. However, it would

require the images to be bandlimited to the Nyquist region of the coarse (rectangular) lattice,

which is the intersection (rather than union) of the bi-step lattices comprising the Manhattan

set.

Non-overlapping spectral replicas were not required in later work [24–34], and more com-

plex reconstruction procedures were proposed. Though not specifically intended for images,

a seminal contribution stimulating a number of advances in image sampling was the multi-

channel, generalized sampling introduced by Papoulis [35]. For example, Papoulis’ frame-

work is broad enough to include all image sampling schemes based on lattices and unions of

12

shifted lattices.

One difference between the present work and much past work is that we focus on a

particular sampling set, namely a Manhattan set, and seek a largest possible frequency region

such that any image bandlimited to such can be reconstructed from the samples. In contrast,

much of the past work [24–26, 30, 31, 36] focused on a particular frequency support region

and sought a smallest possible sampling set, constructed from lattices and shifts thereof,

such that images bandlimited to this region could be reconstructed from such sampling sets.

Nevertheless, some of the latter approaches could be used to reverse engineer reconstruction

procedures and/or spectral support regions for Manhattan sets, as we now discuss.

One substantial line of past work applies to sampling sets that consist of a sublattice of

some specified base lattice, together with some of its cosets, each of which is a shift of the

sublattice by some base lattice point. In this case, the subsampling corresponding to each

coset (including the sublattice itself) can be viewed as a channel in a Papoulis multichannel,

generalized sampling scheme. Consequently, the method of [35] can be applied. This is the

approach taken by Marks and Cheung [24–26]. Since a Manhattan set can be viewed as

the union of what we earlier called the coarse (rectangular) lattice and some number of its

cosets with respect to the dense (rectangular) lattice, which contains all points t such that

for each i, its ith coordinate is an integer multiple of λi, the Papoulis-Marks-Cheung (PMC)

approach can be applied to Manhattan sets.

In particular, Marks and Cheung focused on images with a given spectral support region

and an initial base sampling lattice such that the induced spectral replicas of this support

region do not overlap. They then showed that cosets of some sublattice could be removed

from the base lattice until the sampling density was minimal (in the Landau sense) or

approached minimal. Their method involved (a) partitioning the Nyquist region of the

initial base lattice into atoms the size and shape of the Nyquist region of the sublattice,

(b) counting the number of atoms of this partition that are not overlapped by any spectral

replica of the designated support region induced by the initial base sampling lattice, and (c)

showing that this number of sublattice cosets can be removed from the initial base lattice

due to their samples being linearly dependent on other samples. If the atoms of the partition

are too coarse to closely match the set of frequencies not contained in any spectral support

replica, then choosing a sparser sublattice will enable a finer partitioning, resulting in a

higher fraction of the base samples being removed, which allows the sampling rate to be

reduced until it equals or approaches the Landau minimum.

With hindsight, one can apply their approach to a Manhattan sampling set. For sim-

plicity, consider a 2D case and assume k1 = k2 = k. Suppose images are bandlimited to

the cross-shaped Manhattan region, and let the initial base sampling lattice and the sub-

13

lattice be the dense and coarse rectangular lattices mentioned earlier. In this case, there

are k2 cosets of the sublattice (including itself). One can then see that in the partition of

the Nyquist region of the base/dense lattice into atoms having the size and shape of the

Nyquist region of the coarse lattice, the number of atoms that are not contained in any

sampled spectra is k2 − (2k − 1). Thus, it is possible to remove all but 2k − 1 cosets, which

is precisely the number of Manhattan samples in one k × k fundamental cell of the coarse

lattice. Unfortunately, the PMC approach does not determine which cosets can be removed,

so it does not directly tell us if the Manhattan samples are sufficient to recover an image.

While it does provide a matrix invertibility test that one can apply in any particular case

to see if the Manhattan samples are sufficient, it is not clear how to analytically establish

that one can remove all but the Manhattan samples in all cases. It is also not clear how

the PMC approach would have led to the discovery that the union of the Nyquist regions

of the bi-step lattices is a reconstructable spectra support region for Manhattan sampling,

especially in dimensions three and above. However, once it is known that the Manhattan

samples are sufficient for the spectral support region found in the present chapter, then the

Papoulis approach will directly lead to a reconstruction algorithm.

As both the PMC and onion-peeling approaches involve partitioning frequency space, it

is interesting to note that in dimension d the PMC approach requires a partition into
∏d

i=1 ki

atoms, whereas the onion-peeling algorithm partitions into only 2d atoms. The smaller size of

the latter partition is due to its being closely tailored to the specific structure of Manhattan

samples.

Similarly, in another line of work, Faridani [27] derived a sampling theorem and recon-

struction formula for unions of shifts of one lattice. Given a spectral support region, the

reconstruction involves partitioning this region in a certain way and setting up and solving a

sizable number of systems of linear equations, assuming that the equations have a solution.

Since a Manhattan set can be viewed as the union of shifts of a lattice (the coarse lattice)

and since we know from the results of the present chapter that it is possible to reconstruct

M-sampled images bandlimited to the Manhattan region, one could presumably solve the

resulting equations to obtain a reconstruction formula. While this is interesting, finding the

partition and setting up the equations can be difficult, especially in high dimensions. Thus,

as before, the onion-peeling approach proposed in this chapter is more natural, intuitive and

straightforward to implement.

While the PMC and Faridani approaches could be used to derive a reconstruction method

for any Manhattan set, in their basic form, they do not provide direct closed form recon-

struction methods, as given for example in this chapter. That is, given sets of ki’s and bi-step

lattices, they outline a procedure that could be followed in order to derive a reconstruction

14

method. Then, when the ki’s or bi-step lattices are changed, the procedure must be followed

again, essentially from scratch1. In contrast, the reconstruction methods given in the chapter

are closed form, requiring just step-by-step following of the reconstruction formulas, which

depend explicitly on the λi’s, ki’s and bi-step lattices. While it is conceivable that with

enough work this alternative approach could be made closed form, it would appear to take

much additional work, especially to make it apply to arbitrary dimensions.

Behmard [33, 37] derived a sampling theorem and reconstruction formula for unions of

shifts of more than one lattice, which includes M-sampling, as it is a more general setting

than [27]. However, the compatibility conditions required to apply this approach are not

satisfied by M-sampling and the Manhattan spectral support region.

Other work on sampling with unions of shifted lattices includes that of (a) Venkatara-

mani and Bresler [30, 31], which considered unions of shifted lattices in one dimension, and

(b) Unnikrishnan and Vetterli [34], which considered unions of shifted lattices in higher di-

mensions. The latter include M-sampling and a reconstruction procedure was proposed with

similarities to our onion-peeling approach, but which requires the spectral support region

to be convex, which rules out the Manhattan region. Indeed, one of their examples is a 2D

Manhattan grid, from which images can be recovered provided their spectra are bandlimited

to a circular subset of the Manhattan region. Consequently, a significantly smaller set of

images is reconstructable with their procedure.

Finally, we mention that Manhattan-bandlimited spectra have been found to arise natu-

rally in dynamic medical imaging applications, including both time-varying tomography [36]

and dynamic MRI [38]. For example, Rilling et. al. [38, Fig. 1] give carotid blood velocity

mapping as an example of a dynamic MRI application where a cross-shaped spectrum ap-

pears. Moreover, such spectra arise when temporal variation is localized to a small spatial

area relative to the rest of the body, such as beating heart. With this motivation, Willis and

Bresler [36] derived a single sampling lattice such that the cross-shaped spectral replicas did

not overlap and the sampling rate was close to the Landau lower bound. In contrast, our

sampling theorem also shows perfect reconstruction is possible. However, we sample with

more than one lattice, the spectral replicas overlap, and the Landau bound is met exactly.

In summary, given that the present chapter shows that images bandlimited to the union

of the Nyquist regions of the bi-step lattices of a Manhattan sampling set can be perfectly

reconstructed from the Manhattan samples, there are probably a number of alternative ways

to derive reconstruction algorithms. In the view of the authors, the onion-peeling method,

whose development was guided by the specific structure of Manhattan samples, is a natural

and efficient reconstruction method with a straightforward interpretation in frequency space.

1The method can be derived assuming unit λi’s and then spatially scaled for the actual λi’s.

15

It is also closed form in terms of the parameters of the Manhattan set. In addition, the

union-of-bi-step-lattice viewpoint taken in this chapter leads naturally to the hypothesis

that the union of Nyquist regions is a support region of images that are reconstructable from

Manhattan samples. It is not known if other approaches would have lead investigators to

this region.

The chapter is written so that the reader who is primarily interested in 2D images can

focus on Sections 2.2, 2.3, and 2.5.

2.2 Preliminaries

This section provides background and notation for sampling and lattices that will be used

throughout the chapter.

Let R denote the real numbers, let Rd denote d-dimensional Euclidean space, let Z
denote the set of all integers, and let Zd denote the set of all integer-valued d-dimensional

vectors. In dimension d, an image is a mapping x(t) : Rd → R, where the spatial variable

is t = (t1, . . . , td). We restrict attention to images x(t) that contain no delta functions or

other generalized functions, and have well defined Fourier transforms containing no delta

functions or other generalized functions, where by Fourier transform we mean

X(u) = F
{
x
(
t)
}
,
∫
x(t) e−j2πt·u dt .

We will often refer to X(u) as the spectrum of x(t).

Sampling a d-dimensional image x(t) means collecting its values on some countable sam-

pling set S. That is, it produces the set of values {x(t) : t ∈ S}. As commonly done, one

can model such sampling as multiplication of x(t) by the comb function of the set S, which

produces the sampled image

xS(t) , x(t)KS
∑
t′∈S

δ(t− t′) , (2.2)

where KS is a normalizing constant and δ(t) denotes the Dirac delta function in d-space.

The Fourier transform of xS(t) is then called the sampled spectrum.

Rectangular sampling refers to sampling with a rectangular lattice. Given d and α =

(α1, . . . , αd) with positive components, the d-dimensional rectangular lattice with step vector

α is a countably infinite set of points that are spaced by integer multiples of the step size

16

αi in the ith dimension. Specifically,

L(α) ,
{
t : ti is a multiple of αi, i = 1, . . . , d}

=
{
t = n�α : n ∈ Zd} ,

where � denotes element-wise product (also known as the Hadamard or Schur product). Al-

ternatively, L(α) is the additive group generated by the basis α1e1, . . . , αded, where e1, . . . , ed

is the standard basis, i.e., ei has a 1 in the ith place and 0’s elsewhere. That is,

L(α) ,
{

t =
d∑
i=1

niαiei : n ∈ Zd
}
.

The reciprocal lattice corresponding to L(α) is

L∗(α) , L(α−11 , . . . , α−1d) .

When sampling with set S = L(α), it is convenient to set the normalizing constant in

(2.2) to be

KS =
∏d

i=1αi . (2.3)

With this, the sampled image, denoted xα(t), has spectrum

Xα(u) =
∑

v∈L∗ (α)

X(u− v) . (2.4)

From this, one sees that the sampled spectrum Xα(u) consists of replicas of the original

image spectrum X(u), translated to the sites in frequency domain of the reciprocal lattice.

The usual d-dimensional sampling theorem follows from the fact that if the support of X(u)

lies entirely within the Nyquist region2

Nα ,
{

u : |ui| <
1

2αi
, i = 1, . . . , d

}
,

then said replicas do not overlap, and consequently, the original spectrum can be recovered

by extracting the portion of the sampled image spectrum in the Nyquist region.

2In this chapter, script variables such as N ,B or A will usually denote subsets of frequency space.

17

2.3 Two-Dimensional Manhattan Sampling

As introduced earlier and depicted in Fig. 2.1(a), Manhattan sampling (M-sampling) uses

locations spaced closely along a grid of horizontal and vertical lines. In particular, we assume

there is a sample at the origin, as well as samples spaced λ1 apart on horizontal lines spaced

k2λ2 apart, and samples spaced λ2 apart on vertical lines spaced k1λ1 apart, where λi > 0

and k1, k2 are integers greater than one3. The issue, now, is to find an as large as possible

set of images that can be perfectly reconstructed from these samples, as well as an efficient

procedure for doing so.

A first thought is to model M-sampling as multiplying the given image x(t) by a comb

function having delta functions at the Manhattan sampling locations, and then to analyze the

spectra of the resulting sampled image. Since this comb function has the same periodicity

as a comb function for the coarse lattice LC , L(k1λ1, k2λ2), the replicas of the image

spectrum lie at frequency sites in the reciprocal lattice L∗C , or a subset thereof. Thus,

perfect reconstruction is possible for images bandlimited to the Nyquist region NC of the

coarse lattice LC . However, since such reconstructions need only use samples in the coarse

lattice, it may be that a larger set of images is reconstructable from the full Manhattan grid.

On the other hand, if images are bandlimited to a region larger than NC , e.g., a scaling

of the Nyquist region such as (1 + ε)NC , ε > 0, then the spectral replicas induced by an

M-sampling comb may overlap. Even if this does not eliminate the possibility of perfect

reconstruction, it will at least complicate the analysis.

Accordingly, we pursue an approach that does not rely on nonoverlapping replicas, but

derives from the key observation that the Manhattan sampling set can be viewed as the

union of two rectangular lattices. Let us initially focus on what can be recovered from the

samples of each lattice by itself. The horizontal lattice, LH , L(λ1, k2λ2), densely samples

in the horizontal direction and coarsely samples in the vertical direction; the vertical lattice,

LV , L(k1λ1, λ2), coarsely samples in the horizontal direction and densely samples in the

vertical direction; and the sampling set for M-sampling is

M(λ; k) = LH ∪ LV .

Note also that the intersection of the two lattices is the coarse lattice LC , whose comb

function has the same periodicity as a comb function for the Manhattan grid.

Clearly, all images bandlimited to the Nyquist region NH of the horizontal lattice LH

can be recovered from just the samples in this lattice. Likewise, all images bandlimited to

the Nyquist region NV of the vertical lattice LV can be recovered from just the samples in

3We require k1, k2 > 1 since if k1 = 1 or k2 = 1, the sampling set reduces to a normal rectangular lattice.

18

Figure 2.2: For Manhattan sampling with λ1 = λ2 and k1 = k2 = 3: (a) Support of the
sampled spectrum for an image bandlimited to the Manhattan region, when sampled with
the fine lattice Lλ1,λ2 . The original spectrum is black with a white × in its center, whereas
replicas are white with a black × in their centers. (b) Support of the sampled spectrum when
sampled with the vertical lattice Lk1λ1,λ2 . Gray indicates regions where replicas overlap either
the original spectrum or each other. (c) Same as (b), except that the sampling is with the
horizontal lattice Lλ1,k2λ2 .

this lattice. Each of these by itself leads to a larger recoverable set of images than the set

recoverable from sampling with the coarse lattice LC . However, neither type of sampling

and reconstruction uses all of the M-samples.

We now show how images bandlimited to the union of the Nyquist regions of the horizon-

tal and vertical lattices can be recovered from the full set of M-samples. Specifically, suppose

image x(t) is bandlimited to M(λ; k) = NH ∪ NV , which is the cross-shaped region shown

in Fig. 2.1(c). First, consider only the samples of x(t) taken on the vertical lattice. Since the

cross-shaped regionM(λ; k) is not contained in the Nyquist region NV , the replicas of X(u)

may overlap in the spectrum of the vertically sampled image, as illustrated in Fig. 2.2(b),

However, certain portions of each cross-shaped replica cannot be overlapped, and thus these

portions of the spectra of x(t) can be immediately recovered.

Specifically, it is easy to see that with vertical sampling, the vertical highpass region

BV , NV −NC is not overlapped. Thus, with ID(u) denoting the indicator function of some

set D and XV (u) , X(u)IBV (u) denoting the portion of X(u) in BV , one sees that from

the vertical samples and their spectrum XV (u), one can immediately recover XV (u) via

XV (u) = XV (u)IBV (u). Likewise from the horizontal samples and their spectrum XH(u),

the horizontal highpass region BH , NH−NC is not overlapped. Thus, one can immediately

recover XH(u) , X(u)IBH (u) = XH(u)IBH (u).4

4Throughout the chapter, a superscript on an image x or spectrum X will usually pertain to a frequency
region, and a subscript will usually pertain to a sampling.

19

Since XV (u) and XH(u) are now known, and X(u) is bandlimited to M(λ,k) = BH ∪
BV ∪ NC , it remains only to find XC(u) , X(u)INC (u). It will then follow that X(u) =

XV (u) +XH(u) +XC(u). Inverse transforms will give x(t) = xV (t) + xH(t) + xC(t).

To determine XC(u), consider the vertical sampling of x(t), and observe in Fig. 2.2(b)

that the overlap of the image spectrum X(u) in NC by the various spectral replicas is due

only to replications of the horizontal highpass frequency components in BH . Since these have

already been determined, it ought to be possible subtract their effects.

To see that this can be done, let us focus on XV (u) INC (u). From (2.4) and the fact that

X(u) = 0 for u 6∈ M(λ,k), we have

XV (u) INC (u) =
n∑

i=−n

X
(
u1 −

i

k1λ1
, u2

)
INC (u) ,

where n =
⌊
k1
2

⌋
. Now using X(u) = XV (u) + XH(u) + XC(u) in the above along with the

facts that

(a) XV
(
u1 − i

k1λ1
, u2
)
INC (u) = 0 for all i,

(b) XH
(
u1 − i

k1λ1
, u2
)
INC (u) = 0 for i = 0,

(c) XC
(
u1 − i

k1λ1
, u2
)
INC (u) = 0 unless i = 0,

we find

XV (u) INC (u) = XC(u) + Y (u) INC (u) , (2.5)

where

Y (u) ,
n∑

i=−n
i 6=0

XH
(
u1 −

i

k1λ1
, u2

)

=
n∑

i=−n
i 6=0

XH

(
u1 −

i

k1λ1
, u2

)
IBH

(
u1 −

i

k1λ1
, u2

)
. (2.6)

where the last equality uses the fact, mentioned earlier, that XH(u) = XH(u)IBH (u). Notice

that Y (u) is the component of XV (u) due to aliasing by replicas of XH(u), and is directly

computable from the horizontal samples. It follows from (2.5) that XC(u) = (XV (u) −
Y (u)) INC (u).

In summary, a procedure for recovering a cross bandlimited x from its M-samples is

1. Compute the spectra, XH(u) and XV (u), of the horizontally and vertically dense

20

samples, respectively.

2. From XH(u), compute Y (u) for u ∈ NC .

3. Let

X̂(u) =


XV (u), u ∈ BV
XH(u), u ∈ BH
XV (u)− Y (u), u ∈ NC

. (2.7)

4. Let x̂(t) be the inverse Fourier transform of X̂(u).

This result is summarized in the following.

Theorem 1. 2D Manhattan sampling theorem. Given λ1, λ2 > 0 and integers k1, k2 greater

than 1, any image x(t) whose Fourier transform is bandlimited to the cross-shaped region

M(λ; k) can be recovered from its M-samples in M(λ; k) with the procedure given above.

The following alternative expression for XV (u) INC (u) will lead to an easier to implement

procedure for discrete-space images with finite support (presented later). Using (2.4) and

X(u) = XV (u) +XH(u) +XC(u), we find

XV (u) INC (u) =
∑
v∈L∗V

(
XV (u− v) +XH(u− v) +XC(u− v)

)
INC (u)

= XC(u) +
∑
v∈L∗V

XH(u− v) INC (u)

= XC(u) + Y ′(u)INC (u) ,

where

Y ′(u) ,
∑
v∈L∗V

XH(u− v) . (2.8)

It follows that Y (u) in the procedure given previously can be replaced by Y ′(u). The

advantage is that, as shown below, Y ′(u) can be computed with Fourier transforms instead

of a summation. To show this, let SV denote the vertical sampling operator, which when

applied to an image z(t) produces zLV (t) as defined by (2.2). We recognize the summation

in (2.8) as the sampled spectrum when the image xH(t) is vertically sampled. Since xH(t),

21

and consequently XH(u), can be computed from the horizontal samples,

Y ′(u) = F
{
SV
{
xH(t)

}}
= F

{
SV
{
F−1

{
XH(u)

}}}
= F

{
SV
{
F−1

{
IBH (u)F

{
xH(t)

}}}}
.

While the above may initially appear complex5, in the discrete-space, finite-support case

discussed shortly, it will lead to a simple procedure that avoids the summations in (2.6) and

(2.8).

Maximality, in the Landau sense, of the set of reconstructable im-

ages

The sampling density of an M(λ; k) M-sampling set is

ρ =
k1 + k2 − 1

k1k2λ1λ2
,

since any k1λ1×k2λ2 rectangle in R2 contains k1 +k2−1 samples. In the frequency domain,

the area of the Manhattan-bandlimited region, denoted |M(λ; k)|, is the sum of the areas of

BH , BV and NC . Alternatively, it is sum of the areas of the Nyquist regions corresponding

to the horizontal and vertical sampling lattices, minus the area of their intersection. Either

way, this may be written as

|BH |+ |BV |+ |NC | =
1

k1λ1λ2
+

1

k2λ1λ2
− 1

k1k2λ1λ2
,

which simplifies to the previous expression for sampling density ρ. Thus, the set of images

bandlimited to the Manhattan region M(λ; k) is a maximal set of reconstructable images

in the Landau sense for the M-sampling grid M(λ; k).

Discrete-space images

In this section, we briefly consider M-sampling of discrete-space images. Such images might

be created by rectangularly sampling a continuous-space image, or they might exist only as

discrete-space objects. In any case, we consider an image to be a mapping x[t] : T→ R where

T is either the (infinite) integer lattice Z2, or a finite subset of the form T = {t : 0 ≤ t1 ≤
T1 − 1, 0 ≤ t2 ≤ T2 − 1} for some positive integers T1, T2. Sampling x[t] refers to collecting

5Note also that the expression (2.8) for Y ′(u) contains more terms in the sum than the corresponding
expression (2.6) for Y (u).

22

a subset of its values. In the infinite support case, T = Z2, a Manhattan grid M(λ,k) is

once again defined to be the union of a horizontal lattice LH , L(λ1, k2λ2) and a vertical

lattice LV , L(k1λ1, λ2), except that now each lattice must be a sublattice of the integer

lattice Zd, i.e., λ1, λ2 must be positive integers. In this case, we assume the discrete-space

Fourier transform of x[t] is well defined and contains no delta functions or other generalized

functions. In the finite support case, a Manhattan grid is formed in a similar way, namely,

M(λ,k) = LH ∪ LV , where now LH and LV are truncated to the finite T.

(a) Infinite-support discrete-space images: In this case, Theorem 1 holds with only trivial

changes, as does the reconstruction procedure. Specifically, the only required changes are:

(i) replace the continuous-space Fourier transform as the formula for a spectrum with the

discrete-space Fourier transform, and (ii) scale all specified frequencies by 2π, such as those

defining Nyquist regions and M(λ; k).

(b) Finite-support discrete-space images: In this case, as is customary, we use the Discrete

Fourier Transform (DFT) as the formula for the spectrum of an image:

X[u] =
∑
t∈T

x[t] e
−j2π(u1

T1
t1+

u2
T2
t2), u ∈ T .

The conventional sampling theorem (c.f. [33]) for discrete-space images with spatial sup-

port T (defined by T1, T2) sampled with a rectangular lattice L(α1, α2) limited to T says

that an image x[t] with support T can be recovered from its samples in this lattice if T1 and

T2 are integer multiples of α1 and α2, respectively, and its DFT X[u] is zero outside the

(discrete) Nyquist region

Ñα1,α2 ,
{

u ∈ T : for i = 1 & 2, 0 ≤ ui <
Ti
2αi

or Ti −
Ti
2αi

< ui ≤ Ti − 1
}
.

Now suppose a finite-support discrete-space image x[t] is sampled on the Manhattan grid

M(λ,k) and is bandlimited to the cross-shaped Manhattan region

M̃(λ,k) , ÑH ∪ ÑV ,

where ÑH and ÑV are the Nyquist regions of the horizontal and vertical lattices, respectively.

Assuming T1 and T2 are integer multiples of k1λ1 and k2λ2, respectively, a straightforward

adaptation of the analysis for continuous-space images shows that from the samples in the

vertical lattice LV , one can recover the spectrum X[u] in the highpass region B̃V , ÑV −ÑC ,

where ÑV and ÑC are the Nyquist regions of the vertical and coarse lattices, respectively.

Specifically, from the spectrum XV [u] of the vertically sampled image xV [t] (with scaling

23

as in (2.2)-(2.3)), one recovers XV [u] , X[u]IB̃V [u] = XV [u]IB̃V [u]. Likewise, from the

samples in the horizontal lattice LH , one can recover the spectrum in the highpass region

B̃H , ÑH − ÑC from the spectrum XH [u] of the horizontally sampled image xH [t] via

XH [u] , X[u]IB̃H (u) = XH [u]IB̃H [u]. Finally, the spectrum in the Nyquist region ÑC of the

coarse lattice can be determined via XC [u] = (XV [u]− Y [u]) IÑC [u], where

Y [u] = k1λ1λ2

k1λ1−1∑
r=1

XH
[(
u1 − r

T1
k1λ1

)
mod T1, u2

]
.

This leads to the following.

Theorem 2. 2D discrete-space, finite-support Manhattan sampling theorem. If T1 and T2

are integer multiples of k1λ1 and k2λ2, respectively, then an image x[t] with finite support T
can be recovered from its M-samples in M(λ,k) if its DFT X[u] is zero outside the Manhattan

region M̃(λ,k).

Reconstruction procedure:

Given the samples in Manhattan grid M(λ,k) of an image x[t] bandlimited to M̃(λ,k),

the following adaptation of the continuous-space procedure recovers the entire x[t].

1. Let xV [t] equal k1λ1λ2 x[t] on the vertical lattice LV and zero otherwise, and let xH [t]

equal k2λ1λ2 x[t] on the horizontal lattice LH and zero otherwise. Compute XV [u] =

DFT
{
xV [t]

}
and XH [u] = DFT

{
xH [t]

}
.

2. Compute the “alias subtraction” term

Y ′[u] = DFT
{
S̃V
{

IDFT
{
IB̃H [u] DFT{xH [t]}

}}}
,

where S̃V denotes the vertical sampling operator that, when applied to an image z[t],

produces an image that is k1λ1λ2 z[t] on LV , and zero elsewhere.

3. Compute the spectrum:

X̂[u] =


XV [u], u ∈ B̃V
XH [u], u ∈ B̃H
XV [u]− Y ′[u], u ∈ ÑC

.

4. Invert the spectrum:

x[t] = IDFT
{
X[u]

}
.

24

This reconstruction procedure uses 5 DFT/IDFT operations, each requiring O(N logN)

arithmetic operations when implemented with an FFT, where N = T1T2, plus three pairwise

additions of T1×T2 matrices, each requiring T1T2 additions, plus instances of setting matrix

elements to zero. In summary, the complexity of reconstruction, which is dominated by the

FFT’s, is O(N logN) operations per image.

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.3: (a) Original 256 × 256 image. (b) Image bandlimited to Manhattan region

M̃(λ,k), with k1 = k2 = 4 and λ1 = λ2 = 1. (c) Same as (b) except k1 = k2 = 8.

(d) Same as (c) except λ1 = λ2 = 2. (Note: after spectra were zeroed outside M̃(λ,k),
inverse transforms were applied, negligible imaginary parts were discarded, and images were
quantized to {0, 1, . . . , 255}.) (e) Image sampled with parameters of (c) and reconstructed
without first bandlimiting to Manhattan region. Log magnitude spectra: (f) original image;
(g) original image bandlimited with parameters of (c).

Note that few real world, finite-support images will satisfy the conditions of Theorem 2.

As a result, to apply M-sampling to a real world image, the image can be pre-processed by

zero-padding so that its dimensions are multiples of k1λ1 and k2λ2, respectively, and “Man-

hattan filtering” by taking the DFT and setting to zero all coefficients outside of M̃(λ,k).

Such padded and filtered images can be recovered perfectly from their M-samples. To illus-

trate the effects of such filtering, which heavily suppresses diagonal frequencies, Fig. 2.3(a-d)

shows a finite-support image and its filtering with several choices of parameters. Figures

2.3(f,g) show the spectra of the image before and after bandlimiting, and Figure 2.3(e)

25

shows the the effect of sampling and reconstruction without first pre-filtering. Note that the

image was chosen to have sharp edges surrounded by a smooth background in order that

one can easily see the ringing due to bandlimiting.

2.4 Higher-Dimensional Manhattan Sampling

2.4.1 Introduction

As mentioned earlier, in any dimension d ≥ 3 there are a number of possible d-dimensional

Manhattan sets. Each is a finite union of rectangular lattices, each defined by step sizes

that in dimension i are constrained to be λi or kiλi, where each λi is a positive constant

called the dense spacing in dimension i, and each ki is an integer greater than 1 called the

sampling factor in dimension i. Such a rectangular lattice will be called a (λ,k)-lattice,

where λ = (λ1, . . . , λd) is its dense spacing vector and k = (k1, . . . , kd) is its sampling factor

vector. It will also be called a (d,λ,k)-lattice when we wish to emphasize d, and a bi-step

lattice when we do not wish to specify parameters. (The term “bi-step” emphasizes that

each step size αi can only take one of two values: λi or kiλi). Accordingly, to specify a d-

dimensional Manhattan set, one specifies a dense spacing vector λ, a sampling factor vector

k, and a collection of (λ,k)-lattices.

To efficiently characterize a (λ,k)-lattice, we let b = (b1, . . . , bd) denote a d-dimensional

vector, called its bi-step indicator vector, or more concisely bi-step vector, that indicates the

dimensions along which the bi-step lattice is dense, according to the convention bi = 1 if the

step size is λi in dimension i and 0 if the step size is kiλi. Thus, the (λ,k)-lattice specified

by b is Lλ,k,b , L(αb), with αb = (αb,1, . . . , αb,d) defined by

αb,i =

λi, bi = 1

kiλi, bi = 0
. (2.9)

or equivalently,

Lλ,k,b ,
{
t : ti is a multiple of kiλi for i s.t. bi = 0, and a multiple of λi for other i

}
.

(2.10)

Note that we generally consider d, λ and k to be fixed, and so as an abbreviation and slight

abuse of notation, we usually write Lb instead of Lλ,k,b. It will also be useful to let xb(t) and

Xb(u) denote, respectively, the sampled image and the sampled spectrum due to sampling

x(t) with Lb.

26

The following summarizes.

Definition 3. Given dimension d, dense spacing vector λ, sampling factor vector k (all of its

components are integers greater than 1), and a finite collection of (d,λ,k)-lattices specified by

the bi-step vectors in B = {b1, . . .bm}, the corresponding (d,λ,k, B)-Manhattan (sampling)

set is

M
(
d,λ,k, B

)
,

m⋃
j=1

Lbj . (2.11)

As d,λ and k will be considered fixed, we usually write M
(
B
)

instead of M
(
d,λ,k, B

)
.

B will be called a Manhattan collection or M-collection for short.

2.4.2 Examples and properties of bi-step lattices

It is useful to call attention to certain bi-step lattices. One is the dense lattice L1 corre-

sponding to the bi-step vector b = 1 , (1, . . . , 1). It is a rectangular lattice with step vector

λ that contains every other (λ,k)-lattice. Another is the coarse lattice L0 corresponding to

b = 0 , (0, . . . , 0), which is the rectangular lattice with step vector α = k�λ and which is

contained in every other (λ,k)-lattice. As mentioned in the introduction for 3D Manhattan

sets, it will be useful to consider the partition of Rd induced by the coarse lattice, whose

cells are k1λ1× . . .×kdλd orthotopes (hyper-rectangles) with corners at lattice points. These

orthotopes will be called fundamental cells. The coarse lattice contains just the corners of

these fundamental cells; other (λ,k)-lattices may contain points on their edges and faces,

but only the dense lattice L1 contains points in their interiors.

A third lattice to consider is Lei corresponding to bi-step vector b = ei, which can be

viewed as a collection of points spaced densely on lines parallel to ei, with one line passing

through each point of (d−1)-dimensional cubic lattice L(k1λ1, . . . , ki−1λi−1, ki+1λi+1, . . . , kdλd).

Finally, we mention the lattice corresponding to b = 1 − ei, which can be viewed as sam-

pling densely on shifts of the d − 1 dimensional lattice L(λ1, . . . , λi−1, λi+1, . . . , λd) spaced

kiλi apart.

Given two (binary) bi-step vectors b1 and b2, define their union b1∨b2 and intersection

b1 ∧ b2 to be their element-wise ‘OR’ and ‘AND’, respectively, and define b1 ⊂ b2 to mean

b1 ∧ b2 = b1. Define the complement to be bc , 1− b, and the Hamming weight or simply

weight ‖b‖ to be the number of ones contained in b.

The following are useful properties of b representations of bi-step lattices.

Fact 4. Considering (d,λ,k)-lattices,

27

(a) Lb1 ⊂ Lb2 if and only if b1 ⊂ b2 ,

(b) Lb1 = Lb2 if and only if b1 = b2 ,

(c) Lb1 ∩ Lb2 = Lb1∧b2 ,

(d) If Lb̃ ⊂
⋃m
j=1 Lbj , then for some j, Lb̃ ⊂ Lbj , and consequently from (a), b̃ ⊂ bj.

Proof:

(a) and (b) are elementary.

(c) Lb1 ∩ Lb2

=
{
t : ti is multiple of kiλi ∀i s.t. b1,i = 0 or b2,i = 0, and ti is multiple of λi for other i

}
=
{
t : ti is multiple of kiλi for all i s.t. (b1 ∧ b2)i= 0 and ti is multiple of λi for other i

}
= Lb1∧b2 .

(d) As is well known, for m = 2 this property derives from just the group nature of lattices,

but not for larger values of m. Accordingly, to prove it for arbitrary m, we need to use

properties of (λ,k) lattices. Specifically, we demonstrate the contrapositive. Suppose Lb̃ 6⊂
Lbj , j = 1, . . . ,m. Then from (a), for each 1 ≤ j ≤ m, b̃ 6⊂ bj, and so there exists ij such

that b̃ij = 1 and bj,ij = 0. Let I denote the set of all such ij’s, and let t = (t1, . . . , td) be

defined by

ti =

(ki + 1)λi, if i ∈ I

kiλi, otherwise
.

Referring to (2.10), we see that t ∈ Lb̃, because the only dimensions i for which ti is not a

multiple of kiλi are those in I, in which case b̃i = 1, i.e., the lattice Lb̃ is dense in dimension

i. Moreover, again referring to (2.10), we see that for each j ∈ {1, . . . ,m}, t 6∈ Lbj , because

tij = (kij + 1)λi is not a multiple of kijλi, yet bj,ij = 0, i.e., the lattice Lbj is coarse in

dimension ij. It follows that t /∈ ∪mj=1Lbj . Hence, Lb̃ 6⊂ ∪mj=1Lbj . �

Among other things, (b) shows there is a one-to-one correspondence between bi-step

vectors b and (d,λ,k) lattices. which verifies that the b’s are valid representations of the

(λ,k)-lattices. Also, since there are 2d possible bi-step vectors b, it follows that there are 2d

distinct (d,λ,k)-lattices.

Note that while (c) shows that the intersection of two (d,λ,k)-lattices is another (d,λ,k)-

lattice, such is not true for the union, which is why a Manhattan set is not ordinarily a lattice.

28

1

2

3

33k

22k

11k

1

1



11

1

k

2

1



33

1

k

3

1



22

1

k

1

2

3

33k

22k

11k
1

1


11

1

k

22

1

k

2

1



33

1

k 3

1



Figure 2.4: Examples of 3D Manhattan sampling M(B) and their corresponding Manhattan
regionsM(B). (a) Manhattan lines B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and (b) its correspond-
ing Manhattan region. (c) Manhattan facets B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, and (d) its
corresponding Manhattan region.

For example, when d = 2, Le1 ∪Le2 is the Manhattan set M
({

e1, e2

})
shown in Fig. 2.1(a),

which is not a lattice and does not equal Le1∨e2 , which is the dense lattice L(1,1).

2.4.3 Examples of Manhattan sets

Several types of Manhattan sets deserve special attention.

1. Manhattan lines is a Manhattan set M(B) specified by B = {e1, . . . , ed}. In this case

the samples are taken on the 1D edges of the fundamental cells, i.e., on d orthogonal

sets of parallel lines in Rd. See Figures 2.1(a) and 2.4(a) for illustrations of Manhattan

lines in two and three dimensions, respectively.

2. Manhattan facets is a Manhattan set M(B) specified by B = {ec1, . . . , ecd}. Sampling

on a set of Manhattan facets is analogous to sampling densely along d orthogonal

sets of parallel hyperplanes in Rd. See Figures 2.1(a) and 2.4(c) for illustrations of

Manhattan facets in two and three dimensions, respectively. For d = 2, Manhattan

facets and lines are identical.

3. Though technically any (λ,k)-lattice, including the coarse and dense lattices, is a

Manhattan set, we focus on Manhattan sets that are not lattices, which we call proper.

4. Video sampling: Let d = 3, let i = 1, 2 be spatial dimensions and let i = 3 be a

temporal dimension. Whereas video is most commonly sampled with a rectangular

lattice, say L(λ1, λ2, λ3), other samplings are possible, for example, the Manhattan set

M(3,λ,k, B) specified by B = {ec3, e3} uses fine spatial sampling every k3λ3 seconds

and spatial subsampling with factors k1 and k2 at times that are other multiples of λ3

seconds.

29

2.4.4 Alternate representations of Manhattan sets

By the definition of a Manhattan set (2.11) and Fact 4(a), augmenting an M-collection B

by a subset b′ of some b in B does not change the resulting Manhattan set. Thus many

M-collections can generate the same Manhattan set. There are, however, unique largest and

smallest M-collections that generate any given Manhattan set. To find these, we make use

of the following.

Fact 5. Let B and B′ be M-collections. Then,

(a) M(B) ⊂M(B′) if B ⊂ B′.

(b) M(B) ⊂M(B′) if and only if for each b ∈ B there is b′ ∈ B′ such that Lb ⊂ Lb′, or

equivalently by Fact 4(a), b ⊂ b′.

(c) It is not true that M(B) = M(B′) implies B = B′, or that M(B) ⊂ M(B′) implies

B ⊂ B′.

Proof:

(a) is obvious.

(b) If for each b ∈ B there is b′ ∈ B′ s.t. Lb ⊂ Lb′ , then M(B) = ∪b∈BLb ⊂ ∪b′∈B′Lb′ =

M(B′). Conversely, if M(B) ⊂ M(B′), then for each b ∈ B, Lb ⊂ M(B′) = ∪b′∈B′Lb′ , and

Fact 4(d) implies Lb ⊂ Lb′ for some b′ ∈ B′.

(c) Part (a) shows that adding to B some subset of some b ∈ B that is not already in B

yields B′ 6= B such that M(B) = M(B′). In this same case, M(B′) ⊂ M(B), but B′ 6⊂ B.

�

The unique largest M-collection that generates M(B) is

B ,
{
b′ : b′ ⊂ b for some b ∈ B

}
,

which we call the closure of B. Fact 5(a) implies M(B) ⊂ M(B) = M(B), and Fact 5(b)

implies M(B) ⊂M(B). Hence M(B) = M(B). M(B) is the largest M-collection generating

M(B) because if M(B′) = M(B), and b′ ∈ B′, then Fact 5(b) implies there is a b ∈ B such

that Lb′ ⊂ Lb, and this implies b′ ∈ B. Hence, B′ ⊂ B.

Removing all elements of an M-collection B that are subsets of another element results

in the unique smallest M-collection generating M(B), which we denote B.

30

2.4.5 Manhattan sampling density

The density of a Manhattan set M(B), i.e., the number of samples per unit area, is obviously

less than the sum of the densities of the lattices of which it is the union, because each lattice

contains all points in the coarse lattice L0. Accordingly, we partition the dense lattice L1 in

such a way that for any B, M(B) is the union of atoms of this partition, and its density can

be computed by summing their densities.

To obtain a suitable partition, let us group into one atom all sites t of L1 having the

same answers to the following d questions – “Is ti not a multiple of λiki?” – for i = 1, . . . , d.

Specifically, with a binary vector b = (b1, . . . , bd) indicating the set of i’s for which the

answers are “yes”, consider the partition
{
Vb : b ⊂ {0, 1}d

}
, where the atom corresponding

to b is

Vb ,
{
t : ti is a multiple of kiλi for i s.t. bi = 0,

and ti is a multiple of λi, but not kiλi, for i s.t. bi = 1
}
.

Fig. 2.5 illustrates the partitioning of a 2D Manhattan grid. Essentially, it is a partition of

the dense lattice into collections of cosets of the coarse lattice.

It is clear from the definition that no t can lie in both Vb and Vb′ for b 6= b′. Hence,

the Vb’s are disjoint. By comparing the above to the definition (2.10) of Lb, one sees that

Vb′ ⊂ Lb if and only if b′ ⊂ b. It follows that for any b, ∪b′⊂bVb′ ⊂ Lb. Conversely, if

t ∈ Lb, then it is easily seen that t ∈ Lb′ for b′ defined by b′i = 0 for i such that ti is a

multiple of λiki and b′i = 1 otherwise. It follows that ∪b′⊂bVb′ = Lb, i.e., {Vb} partitions

any bi-step lattice, including L1. Moreover, since M(B) = ∪b∈BLb, one can also write

M(B) = ∪b∈BVb, i.e., {Vb} partitions any Manhattan grid.

With this partition in mind, the density of the Manhattan set M(B) is now obtained by

summing the densities of each Vb, b ∈ B. Consider the points of Vb in the fundamental cell

Fk,λ ,
d

X
i=1

[0, kiλi) ,

which has a corner at the origin, lies entirely in the positive hyper-quadrant, and has volume

is
∏d

i=1 kiλi. We see that Vb ∩ Fk,λ is the Cartesian product of d sets A1, . . . , Ad, where

Ai = {λi, 2λi, . . . , (ki − 1)λi
}

if bi = 1 and Ai = {0} if bi = 0. Since Vb ∩ Fk,λ contains∏
i:bi=1(ki − 1) points, and since the density of Vb is this number divided by the volume of

31

22k

11k1

2

Figure 2.5: Partitioning of 2D Manhat-
tan grid M({e1, e2}) with sampling factors
k1 = k2 = 4, which is the union of the yel-
low ×’s in V(0,0), the red 4’s in V(1,0), and
the blue �’s in V(0,2). The white ◦’s are in
V(1,1), which is disjoint from this Manhat-
tan grid.

(1,1)

(1,0)

(0,1)

(0,0)

(1,1)

(1,1) (1,1)

(1,0)

(0,1)

Figure 2.6: M-partition of ND for d = 2,
k1 = 5, k2 = 3. Frequency u = 0 lies at the
center. Each M-atom Ab is identified by
its b. Note that the cross-shaped Manhat-
tan region M({e1, e2}) is also partitioned
by M-atoms; in particular, M({e1, e2}) =
A(0,0) ∪ A(1,0) ∪ A(0,1).

Fk,λ, the density of M(B) is

ρ(B) =

∑
b∈B

∏
i:bi=1(ki − 1)∏d
i=1 ki

× 1∏d
i=1 λi

. (2.12)

For example, the densities of several Manhattan sets in three dimensions are given in Table

2.1.

Manhattan set Γ ρ(Γ)

Manhattan lines {e1, e2, e3} (3k − 2)/k3

Video sampling example {ec3, e3} (k2 + k − 1)/k3

Manhattan facets {ec1, ec2, ec3} (3k2 − 3k + 1)/k3

Table 2.1: Density of several 3-dimensional Manhattan sets with ki = k and λi = 1 for all i.

2.4.6 Manhattan partition of frequency space

As mentioned earlier, our approach to reconstructing an appropriately bandlimited image

x(t) from M-samplesM(B) involves sequentially reconstructing regions of its spectrumX(u).

Specifically, each region will be recovered from the samples in some collection of bi-step

lattices contained in the Manhattan set. This section describes a partition of frequency

32

space, some of whose atoms will be the reconstructable regions.

Let Nb denote the Nyquist region for bi-step lattice Lb, i.e.,

Nb ,
{

u : |ui| <
1

2αb,i

, i = 1, . . . , d
}
,

with step sizes αb,i given by (2.9). For future reference we note that

Nb′ ⊂ Nb if and only if b′ ⊂ b . (2.13)

Since any (d,λ,k) Manhattan set is a subset of the dense lattice L1, it follows that the

appropriate bandlimitation for images reconstructable from any such Manhattan set or any

(d,λ,k) lattice is a subset of the Nyquist region of the dense lattice, namely,

N1 =
{

u : |ui| <
1

2λi
, i = 1, . . . , d

}
.

Thus, we need only partition N1.

Definition 6. The Manhattan partition (M-partition) of N1 is
{
Ab : b ∈ {0, 1}d

}
where

Ab is the Manhattan atom6 (M-atom)

Ab , ab1 × · · · × abd ,

and abi is the interval, or union of two intervals,

abi ,


{
ui : 1

2kiλi
≤ |ui| < 1

2λi

)}
, bi = 1{

ui : |ui| < 1
2kiλi

}
, bi = 0

.

Thus, Ab is highpass for all dimensions such that bi = 1 and lowpass for all other dimensions.

The weight of atom Ab is ‖b‖, the weight of b.

The M-partition is illustrated in Fig. 2.6 in the case of d = 2, k1 = 5, k2 = 3. We now

make several easy to deduce, but important, observations.

1. M-atom Ab is the Cartesian product of lowpass intervals (− 1
2kiλi

, 1
2kiλi

) along each

dimension such that bi = 0, and of the union of two highpass intervals (− 1
2λi
,− 1

2kiλi
]∪

6Consistent with previous conventions, b is a superscript because it determines a frequency region (an
M-atom Ab), whereas it is a subscript when specifying the Nyquist region Nb of a bi-step lattice Lb, precisely
because it prescribes a sampling. Except for b = 0, the M-atoms are highpass regions, whereas Nyquist
regions are lowpass.

33

[1
2kiλi

, 1
2λi

) along each dimension such that bi = 1. Thus, Ab is the union of 2‖b‖ disjoint

orthotopes in Rd.

2. The M-atoms are disjoint, and their union is N1. Hence, they comprise a partition of

N1.

3. The M-atom Ab is a subset of the Nyquist region Nb. Equality holds only for b = 0.

4. The weight ‖b‖ of an atom Ab is a rough indicator of how highpass or lowpass is the

atom.

5. The lowest weight M-atom, A0, is lowpass in all dimensions and equals the Nyquist

region N0 of the coarse lattice L0, which is the bi-step lattice with smallest and lowest

frequency Nyquist region.

6. The highest weight M-atom, A1, is highpass in all dimensions and contains the high-

pass “corners” of N1. Its volume is at least large as that of any other atom, and

usually larger. We will see later that no proper (d,λ,k) Manhattan set permits the

reconstruction of these corners since they can only be recovered by sampling densely

along every dimension, i.e., they are only recoverable if we sample on the dense lattice

L1.

7. If an image x(t) is bandlimited to N1, then both x(t) and its spectrum X(u) can be

decomposed into sums of M-atom components:

x(t) =
∑

b∈{0,1}d
xb(t),

X(u) =
∑

b∈{0,1}d
Xb(u) , (2.14)

where Xb(u) = X(u) for u ∈ Ab, Xb(u) = 0 otherwise, and xb(t) is the inverse

transform of Xb(u). We shall refer to xb(t) and Xb(u) as Manhattan atoms, or simply

atoms, of x(t) and X(u), respectively.

It will also be important that the M-atoms can partition the Nyquist region Nb corre-

sponding to any bi-step lattice Lb, as shown below.

Fact 7.

(a) For any b ∈ {0, 1}d, the 2‖b‖ M-atoms in {Ab′ : b′ ⊂ b} partition Nb in the sense that

Nb = ∪b′⊂bAb′.

34

(b) b′ ⊂ b if and only if Ab′ ⊂ Nb.

Proof: (a) Since the elements of {Ab′ : b′ ⊂ b} are disjoint and contained in Nb, it suffices

to show

Nb ⊂
⋃
b′⊂b

Ab′ . (2.15)

Accordingly, suppose u ∈ Nb. It is then easy to see that u ∈ Ab′ , where

b′i =

1, 1
2kiλi

≤ |ui| < 1
2λi

0, |ui| ≤ 1
2kiλi

,

which demonstrates (2.15).

(b) First, if b′ ⊂ b, then by (2.13) and the third observation after the definition of M-

atom, Ab′ ⊂ Nb′ ⊂ Nb. Conversely, if Ab′ ⊂ Nb, then by part (a) Ab′ must be one of the

atoms whose union is Nb. Hence, b′ ⊂ b. �

2.4.7 Spectral replication induced by bi-step lattice sampling

For a Manhattan set M(B), the reconstruction algorithm to follow will reconstruct an image

x(t) by reconstructing its spectrum X(u) one Manhattan atom at a time, in an order to

be specified later. In particular, for each b ∈ B, it will reconstruct atom Xb(u) from the

subset of samples corresponding to the bi-step lattice Lb, taking into account the aliasing

due to previously reconstructed atoms. Using the more suggestive s = (s1, . . . , sd), rather

than b, to denote a bi-step vector that characterizes a sampling, then as reviewed in Section

2.2, sampling with Ls replicates the spectrum X(u) at all sites in the reciprocal lattice L∗s.

Moreover, if X(u) is bandlimited to N1, substituting (2.14) into (2.4) gives the following

decomposition of the sampled spectrum:

Xs(u) =
∑
v∈L∗s

∑
b∈{0,1}d

Xb(u− v) . (2.16)

We will refer to the term Xb(u−v), and its spectral support Ab +v , {u+v : u ∈ Ab}, as

the replica of atom Xb(u), respectively, Ab, at site v. Using this terminology, one sees that

reconstructing atom Xs(u) from the sampled spectrum Xs(u) requires accounting for the

potential aliasing, i.e., overlap, of the replicas of the various atoms of X(u) on Xs(u). This

requires knowing which replicas of each atom will alias, i.e. overlap, As. More specifically,

since the algorithm will only apply to images whose spectral support is limited to some

subset of the Manhattan atoms, for any pair of bi-step vectors b and b′, we will need to

35

know whether sampling with bi-step lattice Ls causes a replica of atom Ab′ (at some site

v ∈ L∗s) to overlap atom Ab of the original spectrum.

Such overlap questions are answered by the following lemma and its corollary. Let Rb′
s

denote the union of the replicas of all b′ atoms induced by sampling with Ls. That is,

Rb′

s ,
⋃

v∈L∗s−o

[
Ab′ + v

]
.

Lemma 8. Consider sampling with Ls.

(a) For all b,b′ ⊂ s, no replica of Ab′ overlaps Ab, i.e., Rb′
s ∩ Ab = ∅.

(b) The replicas of Ab′ induced by sampling with Ls do not overlap Ab if there exists at least

one dimension i such that si = 1 and bi 6= b′i. That is, Rb′
s ∩Ab = ∅ if (b⊕b′)∧ s 6= 0,

where b⊕ b′ denotes element-wise exclusive or (XOR).

Proof:

(a) If b,b′ ⊂ s, then Fact 7(b) shows Ab,Ab′ ⊂ Ns. Since the sampling theorem for

conventional rectangular lattice sampling shows that replicas of Ns do not overlap Ns, it

follows that the replicas of Ab′ cannot overlap Ab.

(b) Let us compare the M-atom

Ab = ab1 × · · · × abd

to an arbitrary replica in Rb′
s :

Ab′ + v = (ab
′

1 + v1)× · · · × (ab
′

d + vd) ,

for v ∈ L∗s − {0}. Note that Ab and Ab′ + v are disjoint if and only if abi ∩ (ab
′
i + vi) = ∅,

for some i.

If, as hypothesized in the lemma, (b ⊕ b′) ∧ s 6= 0. Then there must exist i such that

si = 1 and either bi = 1, b′i = 0 or bi = 0, b′i = 1. First, consider the case that bi = 1, b′i = 0.

Then

abi =
{
ui :

1

2kiλi
≤ |ui| <

1

2λi

}

36

and

ab
′

i + vi =
{
ui : |ui| <

1

2kiλi

}
+ vi .

Since si = 1, we have vi = ni
λi

for some ni, and one sees from the above that no matter the

value of ni, (ab
′
i + vi) ∩ abi = ∅. Hence, (Ab′ + v)∩Ab = ∅, and so Rb′

s ∩Ab = ∅. A similar

argument applies for the case that bi = 0, b′i = 1. �

The following will provide a key step in showing how to reconstruct appropriately ban-

dlimited images.

Corollary 9. If ‖b′‖ ≤ ‖s‖, then replicas in Rb′
s do not overlap As.

Proof: We will apply Lemma 8 with b = s. If b′ = s, then Part (a) of Lemma 8 shows

Rb′
s ∩As = ∅. If b′ 6= s and ‖b′‖ ≤ ‖s‖, then there must exist i such that si = 1 and b′i = 0.

Therefore, (s⊕ b′) ∧ s 6= 0, and Part (b) of Lemma 8 shows Rb′
s ∩ As = ∅. �

2.4.8 The multidimensional Manhattan sampling theorem

Given a Manhattan set M(B), consider its Manhattan region, which is defined to be the

union of the Nyquist regions of the bi-step lattices of which it is the union:

M(B) ,
⋃
b∈B

Nb =
⋃
b∈B

⋃
b′⊂b

Ab′ =
⋃
b′∈B

Ab′ ,

where the second equality uses Fact 7(a). In this section we show that images bandlimited

toM(B) can be recovered from their M-samples in M(B); we give an explicit procedure for

reconstructing such images from their samples in M(B); and we show that the set of such

bandlimited images is maximal in the Landau sense.

The key steps are the next two lemmas. The first shows that for any image x(t) whose

spectrum X(u) is bandlimited toM(B), the portion of X(u) in any highest weight M-atom

Ab can be easily recovered from the samples in Lb, which are a subset of the M-samples.

Specifically, Xb(u) can be recovered simply by extracting the Ab portion of the sampled

spectrum Xb(u) due to sampling with Lb. Equivalently, the corresponding component xb(t)

of x(t) can be recovered by filtering the sampled image xb(t) with an ideal bandpass filter

with frequency support Ab.

37

Lemma 10. Suppose M(B) is a Manhattan set and x(t) is an image whose spectrum X(u)

is bandlimited to M(B). Then if b has maximal weight in B,

Xb(u) = Hb(u)Xb(u) , (2.17)

where Hb(u) = 1 for u ∈ Ab, and 0 otherwise.

Proof: Consider any b of maximal weight. Since, according to (2.4), Xb(u) consists of

replicas of X(u) at the frequencies in L∗b, since X(u) can be decomposed into its components

on Nyquist atoms {Ab′ : b′ ∈ {0, 1}d}, and since X(u) is bandlimited toM(B) =
⋃

b′∈B Ab′ ,

it suffices to argue that for all b′ ∈ B, no replica of Ab′ intersects Ab. First, Lemma 8(a)

applied with s = b′ = b shows that no replica of Ab with v 6= 0 intersects Ab. Second,

Corollary 9 and the fact that b has maximal weight in B imply that for any other b′ ∈ B,

no replica of Ab′ can overlap Ab. �

Once X(u) has been recovered in all such highest weight (highest frequency) M-atoms,

the next lemma shows that X(u) can then be recovered in the next highest weight M-atoms

by canceling the contributions due to atoms with larger weight. In effect, the aliasing of one

atom comes only from atoms with larger weight, i.e., higher frequency. Specifically, for any

such b, it shows that Xb(u) can be recovered from the spectrum Xb(u) due to sampling

with Lb simply by first subtracting each replica Xb′(u − v), v ∈ L∗b, of every M-atom b′

with ‖b′‖ > ‖b‖, and then extracting the Ab portion of the resulting “de-aliased” spectrum.

Lemma 11. Suppose M(B) is a Manhattan set and x(t) is an image whose spectrum X(u)

is bandlimited to M(B). If Xb′(u) is known for all b′ larger than b, then

Xb(u) = Hb(u)
[
Xb(u) −

∑
b′: ‖b′‖>‖b‖

Xb′

b (u)
]
, (2.18)

where Hb(u) is defined in the previous lemma,

Proof:

RHS of (2.18) = Hb(u)
[∑
v∈L∗b

X(u− v)−
∑

b′: ‖b′‖>‖b‖

∑
v∈L∗b

Xb′(u− v)
]

(2.19)

= Hb(u)
[∑
b′: ‖b′‖≤‖b‖

∑
v∈L∗b

Xb′(u− v)
]

= Xb(u) ,

38

where the first equality uses (2.4), the second uses (2.14), and the last derives from Lemma

8 and its corollary. In particular, for the b′ = b term in the above sum, Part (a) of Lemma

8 applied with s = b′ = b shows that all replicas of Ab (with v 6= 0) do not overlap Ab

and, consequently, are eliminated by the filter Hb(u). Corollary 9 implies every replica of

Ab′ (with v 6= 0) does not overlap Ab and, consequently, is again eliminated by the filter.

Since also Ab′ does not overlap Ab, the only term in the sum not eliminated by the filter is

Xb(u), which establishes (2.18). �

Note that the sum in (2.18) can be limited to b′ ∈ B. Note also that Lemma 11 implies

Lemma 10, because when b is a largest weight bi-step vector in B, the summation term in

(2.18) is zero, and so (2.18) reduces to (2.17).

An alternative way to write (2.18) is

Xb(u) = Hb(u)
[
Xb(u) −

∑
b′: ‖b′‖>‖b‖

∑
n∈Cb

Xb′(u− n� βb)
]

(2.20)

where βb = (βb,1, . . . , βb,d), with

βb,i ,

 1
λi
, if bi = 1

1
kiλi

, if bi = 0

and

Cb ,
{
n ∈ Zd : ni = 0 for i s.t. bi = 1, and|ni| ≤ ki − 1 for i s.t. bi = 0

}
.

To demonstrate (2.20), we note that since all atoms of the Manhattan partition are contained

in N1, one can eliminate from the last sum in (2.19) any v such that (N1+v)∩N1 = ∅. This

leads to limiting the sum to v such that |vi| < 1
λi

for each i. Taking into account what v’s

are in L∗b leads to (2.20). For the usual 2D case, in which B = {(1, 0), (0, 1)}, (2.20) gives a

different reconstruction formula than in Section 2.3 for the spectrum in the coarse Nyquist

region, XC(u) = X(0,0)(u) (see (2.5)-(2.7)). Specifically, it subtracts terms involving both

XV (u) = X(0,1)(u) and XH(u) = X(1,0)(u) from XC(u), whereas the formula in Section 2.3

subtracts terms involving XH(u) from XV (u). Moreover, the summation over n in (2.20)

sums over approximately twice as many values of v. This is because it conservatively includes

all v ∈ L∗b such that N1 + v ∩ N1 6= ∅, whereas the formula in Section 2.3 includes only v’s

such that NV + v∩NC 6= ∅. If desired Cb, in (2.20) could be replaced by a smaller set Cb,b′

that depends on b′ as well as b.

The basic idea behind following theorem, which is the main result of this section, is that

39

the process of finding Xb(u) for smaller and smaller weight b’s can continue until X0, the

spectrum in A0(u) = N0, is found, and all of X(u) is known. As a result, x(t) will also be

known.

Theorem 12. Multidimensional Manhattan Sampling Theorem. Suppose we sample an

image x(t) with Manhattan set M(B). If the image spectrum X(u) is bandlimited toM(B),

then for each b ∈ B, Xb(u) can be exactly recovered from the samples with the following

“onion-peeling” approach — apply Lemma 10 for the largest b’s in B, and then repeatedly

apply Lemma 11 for the next largest b’s. Then, x(t) can be exactly recovered from

x(t) = F−1
{∑

b∈B

Xb(u)

}
.

Proof: From (2.14) and the bandlimitation of X(u), it is clear that X(u) can be recovered

if Xb(u) is recovered for each b ∈ B. First, Xb(u) can be recovered via Lemma 10 for the

largest b’s in B, which correspond to the highest frequency M-atoms. Next, repeatedly

applying Lemma 11 enables one to recover Xb(u) for the Nyquist atoms corresponding to

the largest of the remaining b’s, untilX0(u), corresponding to the lowpass atom, is recovered.

�

While this theorem indicates a frequency domain reconstruction, followed by an inverse

transform, a direct spatial domain reconstruction is also possible. As we now delineate, this

involves reconstructing each xb(t), b ∈ B, and then using

x(t) =
∑
b∈B

xb(t) .

Taking the inverse transform of (2.20) yields

xb(t) = hb(t) ?
[
xb(t) −

∑
‖b′‖>‖b‖

xb
′

b (t)
]

= hb(t) ?
[
K(b)

∑
t′∈Lb

δ(t− t′)
(
x(t)−

∑
‖b′‖>‖b‖

xb
′
(t)
)]

= Kb

∑
t′∈Lb

(
x(t′) −

∑
‖b′‖>‖b‖

xb
′
(t′)
)
hb(t− t′) ,

where hb(t) = F−1
{
Hb(u)

}
, ? denotes convolution, and Kb =

∏
i:bi=1 λi×

∏
i:bi=0 kiλi. This

shows how xb(t) can be found — first for the largest b’s from samples of x(t) taken on Lb,

40

then for the next largest b’s from samples of x(t) taken on Lb, as well as samples of xb
′
(t)

taken on Lb for all larger b′, and so on. It remains to find a formula for hb(t).

To find a formula for hb(t), which is the inverse transform of Hb(u), which in turn has

support Ab, we begin by recalling that Ab is the union of 2‖b‖ orthotopes in frequency space.

Along each dimension i, these orthotopes are centered at zero if bi = 0, and at ±ci if bi = 1,

where

ci ,
1

2

(1

2λi
+

1

2kiλi

)
.

Additionally, along the ith dimension, these orthotopes have length

wi(b) ,


1

2λi
− 1

2kiλi
, bi = 1

1
kiλi

, bi = 0.
.

Using these quantities, we can write the filter Hb(u) as

Hb(u) =

[d∏
i=1

rect
(ui
wi(b)

)]
?

[∏
i:bi=0

δ(ui)
∏
i:bi=1

[
δ(ui − ci) + δ(ui + ci)

]]
,

where rect(x) , 1 for |x| < 1
2
, and 0 otherwise. Note that the first term is an orthotope cen-

tered at 0, and the convolution with delta functions shifts the orthotopes along all dimensions

i such that bi = 1. Taking the inverse transform yields

hb(t) =
d∏
i=1

wi(b) sinc(wi(b)ti) ·
∏
i:bi=1

2 cos(2πciti) ,

where sinc(t) , sinπt
πt

. Observe that, as mentioned in the introduction, these impulse re-

sponses depend on the ki’s and λi’s, but not the choice of bi-step lattices that comprise the

Manhattan set. Moreover, the λi’s have only a simple spatial scaling effect on the filters.

2.4.9 Achievement of Landau lower bound on sampling density

We now show that the volume of M(B), denoted |M(B)|, equals the sampling density of

M(B). As a result, the set of images bandlimited toM(B) is a maximal set of images that

are reconstructable from sample set M(B). Equivalently, M(B) has the smallest density of

any sampling set such that all images bandlimited to M(B) are reconstructable.

Since the M-atoms partition M(B), we can calculate |M(B)| simply by summing over

41

the volumes of the M-atoms Ab for b ∈ B:

|M(B)| =
∑
b∈B

|Ab| =
∑
b∈B

(∏
i:bi=1

2
(1

2λi
− 1

2kiλi

)∏
i:bi=0

1

kiλi

)
=

∑
b∈B

∏
i:bi=1(ki − 1)∏d
i=1 kiλi

.

Comparing the above to (2.12), we see that |M(B)| equals the sampling density ρ(B).

2.4.10 Discrete-space images

The d-dimensional Manhattan sampling theorem and reconstruction procedures can be

straightforwardly extended to discrete-space images in d dimensions in the same fashion

as for two dimensions. For example, for infinite-support images, frequencies need to be

scaled by 2π, and for finite-support images, each spatial resolution Ti must be a multiple

of kiλi and the Manhattan atoms Ãb need to be redefined to be consistent with the DFT,

as was done for the discrete Nyquist region Ñα1,α2 . Here, we simply give the main step

of the frequency-space onion-peeling reconstruction algorithm for reconstructing a Manhat-

tan bandlimited discrete-space image x[t] with finite support sampled with Manhattan set

M(B):

Xb[t] = H̃b[u] DFT

{
xb[t] −

∑
b′:‖b′‖>‖b‖

xb
′

b [t]

}
,

where xb[t] and xb
′

b [t] denote, respectively, the Lb subsamplings of the Manhattan samples

(scaled by Kb), and the previously reconstructed atom xb
′
[t], and H̃b[u] denotes an ideal

bandpass filter for atom Ãb.

2.5 Concluding Remarks

In two dimensions, this chapter has shown that from samples of a Manhattan set one can

perfectly reconstruct any image that is bandlimited to the union of the Nyquist regions of the

horizontal and vertical rectangular lattices comprising the Manhattan set. It also prescribed

a straightforward linear reconstruction procedure, for continuous- and discrete-space images.

For three and higher dimensions, this chapter has identified Manhattan sets as the union

of a finite number of bi-step rectangular lattices, with the result that many Manhattan

geometries are possible. It introduced an efficient binary-vector representation of bi-step

42

lattices, and consequently Manhattan sets, which enabled the specification of a partition of

the dense rectangular lattice into collections of cosets of the coarse lattice. This, in turn,

enabled the density of a Manhattan to be computed. The representation of bi-step lattices

also enabled a partition of the Nyquist region of the dense rectangular lattice, which in

turn enabled a precise analysis of the aliasing, i.e., spectral overlaps, by the atoms of any

particular type in the spectral replicas induced by any particular bi-step lattice subsampling.

With this, it was shown that images bandlimited to the union of the Nyquist regions of the

bi-step lattices comprising the Manhattan set can be perfectly reconstructed using an an

efficient closed-form onion-peeling type reconstruction algorithm that reconstructs the image

spectrum working from higher to lower frequency atoms of the partition. At each step, the

algorithm works with samples of one particular bi-step lattice (of the Manhattan set), and

obtains the spectrum of the image in the corresponding atom of the frequency partition by

subtracting contributions due to aliasing of previously determined atoms of the partition.

Both frequency- and time-domain versions of the algorithm were given. It was also shown

that the set of Manhattan bandlimited images is maximal in the Landau sense. To the best

of our knowledge, this is the first demonstration that images bandlimited to the union of

Nyquist regions can be recovered from the union of the corresponding lattices.

There are several avenues for future research. One could seek to extend the results

to continuous-space images whose spectra contain delta functions, e.g. periodic images.

Second, instead of a recursive onion-peeling reconstruction, one could seek direct closed-

form linear reconstructions, as in [27], which might be useful for implementations, though

they might have less intuitive appeal. This is not difficult in 2D, but is more challenging

in higher dimensions. Finally, whereas M-sampling can be viewed as sampling (in various

ways) on the boundaries of a rectangular (hyper-rectangular) lattice tessellation, one could

seek sampling theorems and reconstruction procedures for images sampled on the boundaries

of other lattice tessellations, such as a hexagonal tessellation.

43

CHAPTER 3

Manhattan Image Reconstruction

In Chapter 2, we provided a method for perfectly reconstructing an image from its Manhattan

samples, provided that the image satisfied certain bandlimitation conditions. However, most

natural images are not bandlimited, and perfect reconstruction cannot be guaranteed. This

motivates the need for general algorithms that reconstruct non-bandlimited images from

their Manhattan-grid samples with as little error as possible.

In Section 3.1, we discuss previous work on such algorithms, which includes a method

called the Cutset-MRF method [1]. The remaining three sections propose three new algo-

rithms which improvement on this method.

Section 3.2 describes the “Piecewise Planar” method that contains two main contribu-

tions: the K-planes algorithm and the interior labeling algorithm. The K-planes algorithm

is a generalization of the K-means algorithm, and is used to segment Manhattan-grid sam-

ples into piecewise-planar regions. The interior labeling algorithm is used to extend these

segmentations into the interior of the Manhattan blocks. The final estimation step of the

Piecewise Planar method is similar to the final estimation step of the Cutset MRF method,

but it uses the piecewise-planar approximations of each image segment as the segment mean,

instead of using a constant value across each segment.

In Section 3.3, the Orthogonal Gradient (OG) Algorithm is presented, which is an al-

gorithm that alternates between minimizing a convex optimization problem, and updating

the parameters of that optimization problem based on the gradient of the previous image.

Specifically, parameters are chosen in order to penalize adjacent pixel differences most heav-

ily in directions orthogonal to the spatial gradient of the previous image. One downside of

the OG method is that it only considers the direction of the gradient when calculating these

parameters, which leads to some unwanted artifacts in smooth regions of the image. These

artifacts are reduced by the Locally Orthogonal Orientation Penalization (LOOP) Algorithm

which is presented in Section 3.4. This is also an alternating algorithm that calculates pa-

rameters based on the previous image gradients, but it considers both gradient magnitudes

44

and directions when calculating parameters. In particular, it calculates a local singular value

decomposition (SVD) of neighboring gradient vectors at each pixel. The resulting singular

values and singular vectors are then used to carefully choose tradeoff parameters in both

the isotropic and anisotropic terms of the cost function of the convex optimization problem.

Finally, Section 3.5 compares the OG and LOOP algorithm to two competing interpola-

tion/inpainting algorithms for non-lattice sampled data. Overall, we find that the LOOP

algorithm outperforms all other methods both qualitatively, as well as in mean-squared er-

ror measurements. Furthermore, we also apply the LOOP algorithm to the task of lattice

interpolation; we find that the LOOP algorithm outperforms bicubic interpolation, and is

competitive with a recent interpolation algorithm [11].

We note to the reader that the first two presented methods (Cutset MRF and Piecewise

Planar) are much more similar to each other than the last two presented methods (the OG

and LOOP algorithms). The Cutset MRF and Piecewise-Planar Methods should be viewed

as exploratory methods, whereas the OG and LOOP algorithms should be viewed as the

core contributions to this chapter.

We mention that the Cutset-MRF method was originally presented at ICIP 2011 [1],

the piecewise-planar method was presented at ICIP 2012 [13], and the OG algorithm was

presented at ICIP 2014 [18].

3.1 Background: Cutset-MRF Reconstruction Method

We begin by describing the notation to be used in this section and the next. We will then

formally define our problem of image reconstruction from Manhattan samples.

3.1.1 Definitions and Notation

The following notation is used in this section as well as in Section 3.2. Let f = {fi : i ∈ Iglobal}
be the matrix of pixel intensities in a finite discrete image, where the index set Iglobal indexes

the image pixels. We define a graph on the entire image Gglobal = (Iglobal, Eglobal), where

the arc1 set Eglobal is formed using a 4-point neighborhood (Figures 3.1(a)). Let C ⊂ Iglobal

be an M × N Manhattan-grid cutset (red nodes in Figure 3.1(b)). It should be clear that

the removal of all nodes in C from the graph separates the graph into non-connected blocks.

Thus, suppose we sample f on an M ×N Manhattan grid cutset C by recording every Mth

row and Nth column of pixel intensities of f . Since we have sampled the image on a cutset

1An arc is more commonly known as an edge. However, in this document, we will use edge to refer to an
image edge and arc to refer to a graphical edge.

45

(a) 4-point graph (b) 3× 3 Manh. Cutset (c) Segmented block (d) Modified graph

Figure 3.1: Cutsets

(a) Set of nodes indexed by I =
I ∪ Ĩ

(b) Set of border nodes indexed
by I

(c) Set of interior nodes indexed
by Ĩ

Figure 3.2: Index sets for the graph of a 3× 4 block.

with respect to graph Gglobal, we have separated the image into (M − 1) × (N − 1) chunks

of unknown pixels. The union of an unknown pixel chunk with its known boundary pixels

will be called a block, and each block is of size (M + 1)× (N + 1) pixels.

It will be useful to define some block-wise notation. Let x = {xi : i ∈ I} be the matrix

of pixel intensities in a block, where I indexes the (M + 1)(N + 1) block pixels. We define a

graph on an image block G = (I, E), where again the arc set E is a 4-point neighborhood.

Two pixels i and j are said to be neighbors if the arc (i, j) is contained in E. We let ∂i and

∂xi denote the set of pixels and pixel intensities neighboring i, respectively. We denote the

border and interior pixel intensities by x = {xi : i ∈ I} and x̃ = {xi : i ∈ Ĩ}, respectively,

where I and Ĩ are the corresponding index sets, as shown in Figure 3.2. For use in Section

3.2, let ui = [ui1, ui2]
T denote the 2D coordinates of the ith pixel in R2.

A key step in both the Cutset MRF method and Piecewise-Planar method involves further

separating the underlying graph G of each image block into non-connected regions, with goal

of obtaining a final graph G′ so that no significant image edges pass through any connected

46

component of the graph. This is done in two steps. First, in the segmentation step, each pixel

i ∈ I is labeled with an integer. Second, in the edge removal step, edges in the graph G are

removed wherever neighboring pixels have different labels. Specifically, let v = {vi : i ∈ I}
denote a block segmentation, where each vi can take on an integer value2. Let ∂vi denote

the labels of the pixels adjacent to vi. When pixels i and j are adjacent pixels with different

labels, i.e., vi 6= vj, we say that the arc (i, j) is an odd bond. The arc set E is then modified by

removing all odd bonds to obtain a new graph G′. After arc removal, a group of connected

pixels in G′ with the same label are together called a segment. Note that there can be

multiple segments with the same label, and that pixels with the same label will not always

be part of the same connected segment.

3.1.2 Problem Background and Algorithm Overview

Cutset sampling was first investigated as a method for lossy and lossless bilevel image com-

pression [4–7]. Since then, [1] contains a first investigation into reconstructing grayscale

images from their Manhattan grid samples. In this section, we will give a brief discussion

of the Markov Random Field (MRF) based method from [1]. Section 3.2 will described the

improved “Piecewise Planar” method.

Recall that a Markov random field (MRF) is a set of random variables X = {Xi : i ∈
Iglobal} defined on a graph Gglobal = (Iglobal, Eglobal) such that given the boundary ∂B of

a set of nodes B, the random variables defined on B are conditionally independent of all

other nodes. If X is modeled as an MRF on Gglobal, each block of image intensities x will

be conditionally independent of one another given the intensities on the cutset. Thus, if

we make an MRF assumption about f , then any estimate of the block interior values can

be obtained based only on the border of each block, thereby allowing each block to be

processed separately. Furthermore, we would like to use another field to model image edges.

Specifically, we would like to segment the image (or blocks of the image) such that no image

edges pass through any resulting segment, and then remove graph arcs wherever there is an

odd bond.

The preceding discussions suggest the following three-step algorithm:

1. Segment the entire cutset C so that no significant edges pass through any segment.

From this segmentation of the entire Manhattan grid, one can obtain a border segmen-

tation v for each block.

2The Cutset MRF method of Section 3.1 uses a binary segmentation, whereas the Piecewise-Planar
method of Section 3.2 will allow each vi to take one of K different values.

47

2. For each block, segment the interior, producing ṽ, based only on the border segmen-

tation v.

3. For each block, estimate the interior pixel intensities x̃ using only the border pixel

intensities x and the entire block segmentation v = v ∪ ṽ.

In general, the combined goal of steps 1 and 2 is to segment the image into smooth regions.

In step 3, before estimation, the graph arcs Eglobal are modified by removing arcs between

indices wherever there is an odd bond in the segmentation. As will be seen, these steps

prevent separate regions from influencing each other during the interior estimation step,

thereby ensuring the preservation of sharp edges. See Figure 3.3 for a visual representation

of this three-step process. We will briefly describe each of the three steps in slightly more

detail; the curious reader is directed to [1] for additional information.

(a) Original image (b) Segmented cutset (c) Complete segm. (d) Reconstruction

Figure 3.3: Original three-step honest algorithm found in [1]

3.1.2.1 Step 1: Cutset segmentation

The goal of this step is to segment the Manhattan grid cutset so that no significant image

edges pass through any resulting segments. In order to do so, we use the the adaptive

clustering algorithm (ACA) [39], which is a generalization of K-means clustering. It is a

general-purpose iterative algorithm that segments an image into K regions by adapting to

local pixel intensities. In Step 1 of the algorithm, ACA with K = 2, i.e., binary segmentation,

is applied only to the sampled values of the image on the Manhattan cutset; the result is

a segmentation defined only on the Manhattan cutset. Thus, each element of of the block

border label set v is assigned either a 0 or a 1.

3.1.2.2 Step 2: Block interior segmentation

This is a block-wise step where the interior segmentation of a block ṽ is performed using the

border segmentation v obtained in Step 1. In particular, this is viewed as a MAP estimation

48

problem where v is a binary MRF, known as the Ising model [7,40]. It can be easily seen that

a block MAP solution for this problem is the solution with minimum odd bonds, regardless

of the choice of temperature parameter for the Ising model. The procedure for determining

these solutions for the most common boundaries is found in [4, 7]. Thus, this step produces

a full labeling v = v ∪ ṽ.

3.1.2.3 Step 3: Block reconstruction

Recall that each block of pixel intensities x is defined on a graph G = (I, E), where I

indexes the pixels and E is an edge set defined by the 4-point neighborhood show in Figure

3.1(a). Given the full block segmentation produced by the previous step v, we obtain the

modified edge set E ′ by removing all edges in E corresponding to odd bonds in v. This

process is depicted in Figures 3.1(c) and 3.1(d). Removing these arcs will produce sharp

edge transitions in the reconstruction by only allowing interior pixels to be estimated from

border pixels with the same label.

We now model the block x as a Gauss Markov random field on the modified graph

G′ = (I, E ′) having probability density

p(x; v) =
1

Z

∏
i∈I

φi(xi)
∏

{i,j}∈E′
ψi,j(xi, xj) (3.1)

where Z is a normalizing constant, φi and ψi,j are the node and edge potential functions

φi(xi) = exp

{
−1

2
d(xi − µi)2

}
and

ψi,j(xi, xj) = exp {−cd(xi − µi)(xj − µj)} .

Note that the inverse covariance matrix R−1 corresponding to this Gaussian model has

diagonal entries R−1ii = d, and off-diagonal entries R−1ij = −cd or 0, when {i, j} ∈ E ′ or not,

respectively.

We assume that pixels sharing the same label vi have the same mean. Thus, the mean

of each pixel is estimated as the mean of the border pixels that share the same label. For

example, if vj = 0, then µj is determined by averaging all {xi : i ∈ I, vi = 0}.
We chose to estimate the interior pixels x̃ using the minimum mean-squared error (MMSE)

estimate of x̃ given x, which is exactly the MAP estimate under the Gaussian assumption.

Furthermore, the MAP estimation rule for the interior pixels x̃ given the the border pixels

x reduces to the usual linear MMSE method based on R−1 and µ.

49

When estimating x̃, we have a modeling choice of parameters d and c. However, the

choice of d has no effect on the MAP estimation step, so we arbitrarily chose d = 1. We

chose c = 0.26, which was empirically found to be the largest value of c such that the inverse

covariance matrix R−1 of the resulting Gaussian MRF was positive definite.

Finally, we mention that the Gaussian model was one of several models tested in [1] for do-

ing MMSE estimation, and there was another approach that was not based on MMSE/MAP

estimation. We presented the Gaussian model here due to its similarity to the Piecewise-

Planar method, which will be introduced in Section 3.2.

3.1.2.4 Results

The method presented here is compared to the new Piecewise Planar method at the end of

Section 3.2. The anxious reader is encouraged to consider Figure 3.6 and Table 3.1 to see

experimental results.

3.2 Piecewise-Planar Reconstruction Method

In the previous section, for each image block, we assumed that pixels sharing the same label

vi had the same constant mean value µj. In this section, we modify that assumption by

attempting to model the segment means with a linear function instead of a constant value,

and develop a new algorithm called the Piecewise-Planar Reconstruction Method.

3.2.1 The Piecewise Planar Assumption

For the Piecewise-Planar algorithm, we assume that an image can be well approximated

as piecewise planar, plus some noise. Furthermore, we assume that most planar regions

are reasonably large, so that typically only a small number overlap any one block of the

Manhattan grid. We also assume that most planar regions have smooth boundaries.

Specifically, we fix a small integer K, e.g., K = 3, and for each block, the first step

segments the border into K regions, and K planes that well-approximate the border pixel

intensities of each region. We introduce the K-planes algorithm for simultaneously perform-

ing the segmentation and choosing the planes. Then, as before, the second step extends the

segmentation into the interior. This step exploits the assumption that most region bound-

aries are smooth. These two steps form a piecewise planar approximation for the entire

block. Finally, the third step uses the piecewise planar approximation and the border pixels

to estimate the block interior pixels using MMSE estimation based on a Gaussian random

field model for the block interior whose mean is the piecewise planar approximation.

50

The main idea behind this piecewise-planer assumption is that although our previous

method preserved sharp edges, it also oversharpened “soft” gradual edges. The resulting

reconstructions thus had a “painted” effect. Our goal here is to continue preserving sharp

edges while avoiding oversharpening gradual edges. By modeling an image as piecewise

planar, we can model sharp edges as discontinuities between planes while modeling gradual

edges as planes with nonzero slopes.

3.2.2 The Piecewise-Planar Method

Unlike our previous method, this algorithm operates in a true blockwise fashion, since the

first step is no longer global. Specifically, for each block x, it operates in three main steps.

1. Using only the border pixels, estimate the planes that will be used to approximate the

block border, and label each border pixel with the plane to which it is associated.

2. Segment (label) the interior of the block by associating a plane to each interior pixel,

creating a piecewise planar approximation to the block.

3. Estimate the interior pixel intensities using the planes and labelings obtained in Steps

1 and 2.

3.2.3 Step 1: The K-planes algorithm

For some positive integer K, a parameter of the algorithm, and each block x of the image f ,

we seek a set of K planes {y1, · · · , yK} and a segmentation v that can be used to approximate

the block border x. This is challenging because the planes and segmentation for x must be

determined from only its border x. However, the fact that the boundary turns corners helps,

especially for small blocks, e.g., N,M ≤ 8.

For k = 1, . . . , K, the equation of the kth plane is

yk(u) = wT
k u + ak, k = 1, . . . , K, (3.2)

where u ∈ R2 is a coordinate vector, wk ∈ R2 is a vector of slope coefficients, and ak ∈ R is

an offset parameter. We let yk = (wk, ak) denote the kth plane and Y = {y1, · · · , yK} denote

the set of K planes. Given such a set for block x, each pixel i on its border x is associated

with the plane whose value yk(ui) is nearest to xi. Thus, a label vector v is assigned to the

border according to vi = argmink |xi − yk(ui)|. Overall, we seek the set of planes Y that

51

minimizes the objective function

Λ(Y) = Λ(y1, . . . , yK) =
∑
i∈I

min
k

(xi − yk(ui))2 , (3.3)

which is simply the sum of squared differences between each observed border pixel value and

the value of the closest plane.

To minimize Λ for a given K and block border x, we introduce the following K-planes

algorithm, which is an alternating minimization, reminiscent of K-means. It begins with

some initial choice of K planes Y = {(w1, a1), . . . , (wK , aK)}, and then iterates the following

two steps until a stopping criteria is met.

1. Label each border pixel according to vi = argmink |xi − yk(ui)| and the current set of

K planes.

2. For k = 1 . . . K, choose a new plane (wk, ak) that minimizes the sum of squared errors

between that plane and all border pixels that are currently labeled k. If no border

pixels are currently labeled k, then (wk, ak) remains unchanged.

Finally, after iterations have ceased, the labeling is filtered according to

3. v̂i = mode{vi, ∂vi}, (3.4)

where ∂vi denotes the neighbors of vi that are contained in the border and mode{vi, ∂vi}
equals the most frequently occurring element of the set {vi, ∂vi}, if there is one, and equals vi

if no element occurs more frequently than the others. This label filtering helps avoid having

“noisy” border regions. It is possible to incorporate the label filtering into our iterative steps,

but we found that we do not lose anything by doing a single filtering at the end.

Step 2 is a 2-D planar regression problem that is solved using the usual matrix pseudoin-

verse method. It works best when pixels currently labeled k are not all contained in one side

of the block.

Note that there is no attempt to make the planes approximating one block match those

approximating a neighboring block, but this is clearly something to attempt in future work.

One can stop the algorithm when all parameters of all planes change by less than some

small percentage, or one can simply iterate a pre-specified number of times.

For typical images sampled with Manhattan grids of size 8× 8 or less, we found K = 3

works well. For larger line separations and resulting larger blocks, a larger value of K might

be needed. We used 50 iterations as our stopping criteria. For the initial set of planes, we

chose wk = (0, 0) for each k, making the planes flat, along with offsets a1 = 1
2

min {xi},

52

(a) Original block to be
reconstructed.

(b) Segmentation using
[1]

(c) Reconstruction us-
ing [1]

(d) Labeling with pro-
posed method

(e) Proposed Recon-
struction.

(f) Min. odd-bond soln.
for 3.4(d)

Figure 3.4: Comparison of the method in [1] and the proposed method for a soft edge passing
through a 7 × 7 Manhattan grid sampling of the image “Al”, shown in Figure 3.3(a). The
block was taken from a soft edge between the books in the upper-right region of the image.

a3 = 3
2

max {xi}, and a2 = 1
2
(a1 + a3). This initialization has several advantages, including

that it enables the algorithm to find one plane that fits the entire border, when this is in

fact feasible, rather than subdividing the border into three different regions.

3.2.4 Step 2: The interior labeling algorithm

In this step, given the border labeling v, we label each interior pixel i with the index vi = k

of one of the K planes, so that this pixel is then planar approximated as x̂i = yk(ui).

Equivalently, we partition the pixel set I into K regions {I1, . . . , IK} and assign a distinct

plane to use on each region. We focus the labeling algorithm on choosing such a partition.

We experimented with a number of possible approaches and here describe one that worked

well.

As background, recall that we model an image as piecewise planar over regions with

smooth boundaries. For this reason we place restrictions on the admissible segmentations,

and then design an algorithm that gives preferences to segmentations with desirable proper-

53

(a) Observed
border.

(b) Initial poly-
gon faces.

(c) Optimum
polygons.

(d) Final parti-
tioning.

(e) Subopti-
mum.

Figure 3.5: Estimation of ṽ in Step 2 for a block taken from a 3× 3 Manhattan grid. Nodes
and polygons associated with plane 1 are colored red, plane 2 are colored green, and plane
3 are colored blue.

ties.

We view the segmentation task as a partition problem, where our goal is to partition a

rectangular-shaped subset of R2. Recall that the pixels of block x are considered to have a

graph structure characterized by (I, E). To describe the admissible partitions we also take

into account the Euclidean structure of the pixels. In particular, let B ⊂ R2 denote the

smallest rectangle in R2 that contains all block pixel locations, i.e., B ⊃ {ui : i ∈ I}. We

restrict attention to partitions of I generated by a partition ofB intoK regions {B1, . . . , BK},
via Ik = {i : ui ∈ Bk}, k = 1, . . . , K. Furthermore, we add the following requirements:

• Each partition region Bk must be bounded by straight line segments, i.e., it is either a

polygon or the union of polygons.

• If there is an odd bond between adjacent border pixels i and j, then regions Bvi and

Bvj must each have a vertex on the line segment connecting ui and uj. Additionally,

no other region can have a vertex on this line segment.

Now, among admissible partitions B we choose the one that satisfies the following con-

ditions.

1. The number of polygon faces that cross the block from one side to another is as large

as possible, where if two polygons have coincident faces, then both are counted.

2. Among partitions satisfying 1, the sum of the lengths of the cross-the-block faces is as

large as possible.

3. Among partitions satisfying 1 and 2, the total number of all faces is as small as possible.

4. Among partitions satisfying 1-3, the sum of the lengths of all faces is as small as

possible.

54

The algorithm for interior labeling described in Step 2 of Section 3.1 required that an

admissible partition must minimize the total number of odd bonds. However, we found that

such partitions often lead to poor interior labelings that did not satisfy our requirement

of smooth boundaries between planar regions. For example the block in Figure 3.4(f) is a

minimum odd-bond segmentation that fails to connect two segments with the same label

on opposite sides of the block. Conditions 1-4, however, emphasize odd bond configurations

that form long, smooth boundaries between regions, as shown in Figure 3.4(d)

As an example of how an algorithm might find an interior that satisfies these conditions,

consider Figure 3.5(a) for a 3 × 3 block whose border has been labeled. Note that there

are three odd bonds. As a first step, it is necessary to to ensure that each observed odd

bond on the boundary contains vertices of the two adjacent regions. To illustrate this, in

Figure 3.5(b), polygon faces have been drawn through each odd bond on the boundary,

with each face (denoted with color) corresponding to a particular region type. Figure 3.5(c)

shows the optimum configuration of polygons satisfying conditions 1-4. Figure 3.5(d) shows

the removal of edges corresponding to odd bonds in the labeling, as specified in the next

subsection. Figure 3.5(e) shows a suboptimum configuration; the total length of its faces can

be reduced by making the “2-3” pair of faces orthogonal to the “1”-face as in Figure 3.5(d).

Step 2 of our algorithm is implemented by finding configurations that satisfy Conditions 1-

4 when there are four or fewer observed odd bonds on the border. The case-by-case algorithm

is listed in Appendix A. When there are more than four odd bonds on the boundary, bonds

are removed until they total four or fewer. This removal processed involves finding two

odd bonds of the same type in close proximity and reclassifying the pixels in between. For

example, if a “2-3” bond and another “2-3” bond are separated by two pixels labeled “3”,

then those pixels enclosed by the bonds are relabeled as “2.” If no such pairs are found, then

mode filtering (as in K planes algorithm) with an increasing window is applied repeatedly

to the border until such a bond is found, or the total bonds were sufficiently reduced. This

suboptimum procedure is not needed frequently, but is necessary to reduce the complexity

of Step 2.

3.2.5 Step 3: Block Reconstruction

This step is identical to that of Section 3.1.2.3 with a few subtle adjustments. The conditional

Gaussian MRF is now conditional on our set of K planes Y :

p(x|v,Y) =
1

Z

∏
i∈I

φi(xi)
∏

{i,j}∈E′
ψi,j(xi, xj). (3.5)

55

(a) Original image
“Al”

(b) Original image
“Tools”

(c) 4× 3, Cutset-MRF
[1]

(d) 4 × 3, Piecewise-
Planar

(e) 7× 7, Cutset-MRF
[1]

(f) 7 × 7, Piecewise-
Planar

(g) 8× 8, Cutset-MRF
[1]

(h) 8 × 8, Piecewise-
Planar

Figure 3.6: Comparison of the proposed Piecewise-Planar method to the previous “MRF
model with cutset segmentation” method described in [1].

In particular, the mean at interior pixel xi is µi = yvi(ui) and comes from the piecewise

planar approximations i.e. it is simply value of the plane associated with pixel i. Additionally,

c = 0.25 is chosen instead of c = 0.26 to ensure that R−1 is invertible3. Once again, the

usual linear MMSE method is used to estimate the interior pixels x̃ from the border pixels

x.

3.2.6 Results

Figure 3.6 shows the results of the proposed algorithm for three Manhattan grid sizes. It also

contains images reconstructed using the Cutset-MRF method described in [1] for comparison.

When reading this thesis in electronic form, the reader is urged to expand the images to see

the differences. There is significant visual improvement in the proposed method; the most

noticeable improvement is seen in the edges between regions. Consider the books in the

3As with the Cutset-MRF method, we empirically chose c to be large enough such that R−1 is invertible.
The careful reader may realize that this choice of c = 0.25 would lead to a singular inverse covariance matrix
R−1 under the assumption of circulant boundary conditions on the graph. However, we did not use circulant
boundary conditions; pixels on boundaries instead had fewer than 4 neighbors.

56

top part of the image “Al.” As the example in Figure 3.4 shows, these books contain many

gradual “soft” edges. Although the method in [1] reconstructs sharp edges very well, it tends

to oversharpen these soft edges. The proposed method does a much better job at preserving

these soft edges, while still maintaining sharp edges like the collar of the shirt in “Al.”

Additionally, the method in [1] produces regions with a “painted” look to them, especially

at coarser sampling densities, whereas the same regions produced by the new method do not

look artificial. This difference is easily seen in the region directly above the shoulder in the

right side of the image “Al.” The reason for this difference lies in the way that each method

models the mean of each region. The method in [1] models the mean as a constant value

(i.e. a flat plane), which leads to oversharpening of edges; thus, it can only model edges in

the image as discontinuities. The proposed method overcomes this issue by modeling the

means of each pixel as the labeled plane value at that coordinate. This enables “soft” edges

to be modeled by planes instead of discontinuities. Finally, it is important to note that the

proposed model tends to create crevasse-like artifacts. These can be seen in the eyes and

along the collar of Figure 3.6(f). These can occur when two border segments of a block have

similar intensities, but the pixels inbetween are very different. For example, the eyebrow

and eyes of “Al” are both dark, but light skin region inbetween the eyes and eyebrows is

incorrectly modeled as a dark region.

In addition to these visual improvements, there is an overall improvement in the Peak

Signal-to-Noise Ratio (PSNR) for reconstructions obtained using the proposed method over

the method in [1], where PSNR (in dB) is defined to be

PSNR = 20 log10

(
xmax√
MSE

)
, (3.6)

where MSE is the mean-squared error between the original image and its reconstruction. For

all experiments in this chapter, the images intensities are restricted to the range of [0, 255],

so we have that xmax = 255 in (3.6). The resulting PSNR values for our experiments are

shown in Table 3.1. The images were truncated on the bottom and right edges to ensure the

outside border was fully sampled using the given Manhattan sampling scheme (for example,

for 4× 3 Manhattan sampling, the number of pixel rows must equal 4m+ 1 for some integer

m in order to fully sample the last row of blocks). Furthermore, the calculated PSNR values

ignore a 20 pixel-wide border around the image to avoid edge effects caused by noisy pixels

in the upper part of “Al” and the unnatural black lines on the right side of “Al” and the

top/bottom of “Tools.” In all cases, the Proposed Piecewise-Planar method outperforms the

MRF Cutset method in PSNR.

57

Grid
Al Tools

MRF Cutset Piecewise-Planar MRF Cutset Piecewise-Planar
4× 3 32.2 34.3 32.7 36.1
7× 7 27.2 29.1 26.4 28.0
8× 8 25.9 28.0 25.4 26.6

Table 3.1: Comparison of PSNRs in dB between the “MRF model with cutset segmentation”
method in [1] and new Piecewise-Planar method for c = 0.25 and d = 1. Values in a 20
pixel-wide border around the image were not used in these calculations.

3.3 Orthogonal Gradient (OG) Algorithm

This section presents another new method for interpolating pixels from their Manhattan

samples called the orthogonal gradient (OG) algorithm, which exploits the fact that pixels

tend to be highly correlated along the direction orthogonal to the image gradient. Such an

approach is enhanced by Manhattan sampling, where dense sampling along straight lines

allows for better reconstruction of both sharp and soft image edges. In particular, the OG

algorithm alternates between solving a constrained optimization problem, and changing the

weights of the optimization problem according to the direction of the gradient of each new

image estimate. The proposed method improves upon previously Manhattan interpolation

algorithms, both qualitatively as well as in mean-squared error.

3.3.1 Constrained Optimization Problem Formulation and Solu-

tion

Suppose we lexicographically order an M ×N image into a vector x ∈ Rnp , where np = MN

is the number of pixels. Let xi = [x]i be the intensity of pixel i. Let xNi , xSi , xEi , xWi , xNEi ,

xNWi , xSEi , and xSWi denote intensities of the north, south, east, west, northeast, northwest,

southeast, and southwest neighbors of pixel i, respectively, as shown in Fig. 3.7(a). Let

S ∈ Rns×np be the sampling matrix formed by deleting the ith row from the identity matrix

Inp×np wherever pixel i is not sampled, where ns < np is the number of samples. Let y = Sx

be the vector of samples. Our goal is to estimate x from y, particularly in the case where

S corresponds to k1 × k2 Manhattan sampling, which denotes sampling every k1th row and

k2th column of pixels, as shown in Fig. 3.7(c), We formulate our interpolation problem as

the constrained optimization problem

minimize
x

Ψ(x) subject to Sx = y, 0 ≤ xi ≤ 255, (3.7)

58

xNWi xNi xNEi

xWi xi xEi

xSWi xSi xSEi

(a) 8-point neighbors of pixel i.

(b) Original image ’Al’

(c) Sampled on 7× 7 M-Grid (d) Minimizes Ψiso, 7× 7 M-Grid

Figure 3.7: Neighborhood definitions and a Manhattan interpolation obtained by solving
problem (3.7) with isotropic objective Ψiso(x).

where Ψ(x) is an objective function that captures some prior information about x. One

possible choice of an objective function is

Ψiso(x) =
1

2

np∑
i=1

[(2
√

2(1 +
√

2)xi − (xNi + xSi + xWi + xEi)

− 1√
2
(xNWi + xNEi + xSWi + xSEi)]2.

59

This function encourages smoothness by summing differences between pixel i and its eight

neighbors, and then squaring this quantity. The 1/
√

2 factor encourages isotropy, since

diagonal pixels are
√

2 further away than their north/south/east/west counterparts. Equiv-

alently, Ψiso(x) is the summed energy of the output of the following Laplacian filter applied

to x:

H =

 −1/
√

2 −1 −1/
√

2

−1 2
√

2(1 +
√

2) −1

−1/
√

2 −1 −1/
√

2

 .
Thus, the objective function Ψiso penalizes images the least that have a small 2nd derivative,

i.e., images that are piecewise linear. This is similar to the piecewise-planar plus noise model

used previously for Manhattan interpolation in Section 3.2. An example of an image that

minimizes Ψiso(x) while satisfying the equality constraint Sx = y for a 7 × 7 Manhattan

grid is shown in Figure 3.7(d). This image is clearly unsatisfactory, as the blurry edges are

very distracting.

Instead of Ψiso, we propose the anisotropic objective function

Ψ(x) =
1

2

np∑
i=1

[
wN,Si (2xi − xNi − xSi)

+wW,Ei (2xi − xWi − xEi)

+wNE,SWi
1√
2
(2xi − xNEi − xSWi)

+wNW,SEi
1√
2
(2xi − xNWi − xSEi)

]2
,

(3.8)

where the wN,Si , wW,Ei , wNE,SWi , wNW,SEi ’s are positive weights that take values in the unit

interval [0, 1] and sum to one. The key idea here is that we would like an intelligent choice

of weights that prevents blurring across edges. One way to do this is to use the spatial

gradient of the image4. Images tend to have similar pixel intensities in directions orthogonal

to the spatial gradient direction. For example, if there is a sharp image transition (i.e. an

edge) going north-to-south near pixel i, we would like wN,Si , wNE,SWi , and wNW,SEi to be

small to discourage blurring across the edge. Furthermore, we would like wW,Ei to be large

to encourage similarities in the direction orthogonal to the edge.

Let us write this function more compactly in matrix-vector notation. First, each quantity

in (3.8) before squaring is the output of a linear combination of the following four filters

4Since the image x is unknown, we instead use the spatial gradient of a previous image reconstruction x̂.
Thus, our weights W will depend not on the original image x, but on some “previous” reconstruction x̂.

60

applied to x:

HN,S =

 0 −1 0

0 2 0

0 −1 0

 , HNW,SE =
1√
2

 −1 0 0

0 2 0

0 0 −1

 ,

HW,E =

 0 0 0

−1 2 −1

0 0 0

 , HNE,SW =
1√
2

 0 0 −1

0 2 0

−1 0 0

 .
Note that these filters decompose H into four directions offset by π/4, since H = HN,S +

HW,E+HNW,SE+HNE,SW . Thus, choosing wi = 1 for all weights reduces Ψ(x) to the isotropic

objective function Ψiso(x). Denote the lexicographically-ordered vectorized output of filter

HN,S applied to x as the matrix-vector operation CN,Sx = [(2x1−xN1 −xS1), · · · , (2xnp−xNnp−
xSnp)]

T , where CN,S is an np×np matrix. Similarly, define CW,E, CNE,SW , and CNW,SE as linear

filtering operations according to the kernels HW,E, HNE,SW and HNW,SE, respectively. Stack

these matrices to define the 4np × np matrix C =
[
CT
N,S, C

T
W,E, C

T
NE,SW , C

T
NW,SE

]T
. Fur-

thermore, define the north/south diagonal weighting matrix to be WN,S = diag({wN,Si }
np
i=1);

similarly define the diagonal matrices WW,E, WNE,SW , and WNW,SE. Again, stack these

weighting matrices to form the 4np × np matrix W =
[
W T
N,S, W

T
W,E, W

T
NE,SW , W

T
NW,SE

]T
.

We can now compactly rewrite the objective function as

Ψ(x) =
1

2
‖W TCx‖22.

Note that our objective function Ψ(x) is convex5, since CTWW TC is positive semidefinite.

Since one of our constraints in (3.7) is a linear equality, it can be eliminated by following

the process in [41, p. 523]. Our linear equality constraint requires that our solution lie in

the set {x : Sx = y}. Let F be an np × (np − ns) matrix whose range is the nullspace of

S. In particular, for this sampling and interpolation problem, we choose F to be the matrix

obtained by taking the identity matrix Inp×np and deleting column i if pixel i is sampled. Let

x̃ be any vector whose Manhattan samples match our observations Sx̃ = y. Clearly then,

{x : Sx = y} = {Fz + x̃ : z ∈ Rnp−ns}. We rewrite our optimization problem as

minimize
z

Ψ̃(z) , Ψ(Fz + x̃)

subject to a ≤ [Fz + x̃]i ≤ b, i = 1, . . . , np,
(3.9)

5Again, due to the fact that W is fixed and chosen using some previous image reconstruction x̂; W does
not depend on the variable x.

61

where our modified objective function is a function of z ∈ Rnp−ns . If z∗ solves this problem,

then our final image estimate is

x∗ = Fz∗ + x̃. (3.10)

Although not true for general F , our choice of F with the inequality constraints in (3.7)

form box constraints that can be solved with the gradient projection method [42]. This is a

special case of the proximal gradient method [43] where the prox function is hard thresholding

to [0, 255].

For reference, the objective function has gradient

∇zΨ̃(z) = F TCTWW TCFz + F TCTWW TCx̃.

The spectral radius of the Hessian of Ψ̃(z) is upper bounded by 32(3 + 2
√

2). Choosing a

step size of (32(3 + 2
√

2))−1 guarantees convergence of our objective function. In practice,

gradient projection is very slow. In our implementation, we first ignored the box constraints

and minimized the objective function in (3.9) using conjugate gradient descent. The solution

to this unconstrained problem is used as an initial estimate to “warm-start” the gradient

projection method. Note that all gradient descent steps can implemented efficiently because

W , W T , C, and CT are linear filtering operations, and the F and F T are sampling/zero

insertion operations. Thus, we avoid storing or inverting any large matrices. We note that

filtering operations were not performed on the border to avoid edge effects. Our stopping

criterion for the gradient projection method was |Ψ̃(zn+1)− Ψ̃(zn)/Ψ̃(zn+1)| < ε1 = 10−4.

3.3.2 The Orthogonal Gradient (OG) Algorithm

Thus far, we have not described how to choose the weighting matrix W . In this section, we

describe the Orthogonal Gradient (OG) algorithm, which alternates solving an optimization

problem of the form (3.9) and choosing a new weighting matrix W . Earlier, we posited that

smooth images tend to have pixel similarities in directions orthogonal to the image gradient.

Suppose we have an image reconstruction x̂, and let θi = ∠([∇x̂]i) denote the angle of

the reconstruction spatial gradient at pixel i. Using the convention that “south” has angle

62

0 2 4 6 8 10 12
Outer Iteration k

10-3

10-2

10-1

100

101

102

||x
k

+
1
−
x
k
||2
/n

p

Figure 3.8: Plot of ‖xk+1 − xk‖2/np for reconstructing “Al” sampled on a 7× 7 Manhattan
grid using the OG Algorithm. Note the image enters a limit cycle, which is eliminated by
decreasing the λk sequence at k ≥ 7.

0 and “east” has angle π/2, one choice of weights is

αN,Si (θi) =
(
1− 4

π

∣∣θi − π
2

∣∣)1
(
θi ∈

[
π
4
, 3π

4

])
+
(
1− 4

π

∣∣θi + π
2

∣∣)1
(
θi ∈

[
−3π

4
,−π

4

])
,

αW,Ei (θi) =
(
1− 4

π
|θi − π|

)
1
(
θi ∈

[
3π
4
, π
])

+
(
1− 4

π
|θi|
)

1
(
θi ∈

[
−π

4
, π
4

])
+
(
1− 4

π
|θi + π|

)
1
(
θi ∈

[
−π,−3π

4

])
,

αNE,SWi (θi) =
(
1− 4

π

∣∣θi − π
4

∣∣)1
(
θi ∈

[
0, π

2

])
+
(
1− 4

π

∣∣θi + 3π
4

∣∣)1
(
θi ∈

[
−π,−π

2

])
,

αNW,SEi (θi) =
(
1− 4

π

∣∣θi − 3π
4

∣∣)1
(
θi ∈

[
π
2
, π
])

+
(
1− 4

π

∣∣θi + π
4

∣∣)1
(
θi ∈

[
−π

2
, 0
])
,

where 1(E) is the indicator function for event E. That is, we choose wN,Si = αN,Si (θi), and

similarly for wW,Ei , wNE,SWi , and wNW,SEi . For succinctness, we summarize this choice of

weights with the notation

W = A(∇x̂).

63

where

A(∇x) =
[
diag{αN,Si (θi)} diag{αW,Ei (θi)}, diag{αNE,SWi (θi)}, diag{αNW,SEi (θi)}

]T
.

Note that the αi functions are equal to unity when θi lies orthogonal to the given direction

and decrease linearly to zero with slope 4/π. Thus, these are “triangle functions” of width

π/2 centered at the orthogonal directions. For example, αN,Si (θi) equals 1 when the gradient

points in the “west” or “east” direction. Note that we have chosen these functions so that

αN,Si + αW,Ei + αNW,SEi + αNE,SWi = 1.

To calculate the spatial gradient, we filtered the image with the well known Sobel opera-

tors [44, p. 131] to obtain the x− and y−gradient values. The initial weights W 0 are chosen

isotropically by setting all wi’s to one, which is equivalent to choosing Ψ(x) = Ψiso(x) for

the first pass. If we continually update the weights according to W k+1 = A(∇xk+1), the

sequence W k may enter a limit cycle. To avoid this, we instead update the weights accord-

ing to W k+1 = W k + λk(A(∇xk+1)−W k), where λk is a sequence of relaxation parameters

satisfying 0 < λk ≤ 1, λk+1 ≤ λk, and λk → 0. Using an induction argument it can be

shown that the change in successive weights is bounded by |[W k+1]ij − [W k]ij| ≤ λk, and

thus the sequence of weighting matrices W k will converge. In our experiments, we chose

λk = 1 for 0 ≤ k ≤ 6, and then decreased them according to λk = (k − 6)−1 for k ≥ 7.

The algorithm stops when average square differences between image estimates is less than

a threshold. Specifically, we used the stopping criterion ‖xk+1 − xk‖2/np < ε2 = 10−2. The

final OG algorithm is summarized above.

Finally, it would be desirable to claim that the sequence of image estimates ‖xk+1 − xk‖
converges. Although we are unable to present an analytic proof of such, we observed this

empirically, as shown in Figure 3.8.

The reader who is interested in experimental results for the OG algorithm is encouraged

to skip ahead to Section 3.5.

3.4 Local Orthogonal Orientation Penalization (LOOP)

Algorithm

One drawback to the OG algorithm is that is uses an anisotropic penalization at every pixel,

namely, it only penalizes differences in the directions orthogonal to the image gradient. How-

ever, in smooth (flat) regions of the image, it will be desirable to penalize isotropically in

all directions to avoid “false contour” artifacts. The Local Orthogonal Orientation Penaliza-

tion (LOOP) algorithm attempts to avoid this by calculating a local “dominant” gradient

64

1: Set k = 0, choose initial x0, W 0, and relaxation parameter sequence λk satisfying condi-
tions in Section 3.3.2.

2: repeat
3: Set zk+1 to solution of optimization problem (3.9) using
4: current estimate x̃ = xk and current weights W = W k.
5: xk+1 ← Fzk+1 + xk

6: W k+1 ← W k + λk
(
A(∇xk+1)−W k

)
7: k ← k + 1
8: until stopping criterion is satisfied.

Figure 3.9: Orthogonal Gradient (OG) Algorithm

strength and direction at each pixel using a Singular Value Decomposition (SVD) of the

local gradient vectors from the previous image estimate. The difference of the two singular

values at each pixel can be used as a measure of gradient strength in the region surrounding

each pixel, and is used to locally adapt the cost function to be more isotropic, or to be more

anisotropic. Note that this allows us to take into account gradient magnitudes in addition

to gradient directions, whereas the OG algorithm only uses gradient directions to calculate

its parameters.

3.4.1 The Dominant Gradient Strength and Direction

Recall that the OG algorithm uses the gradient directions of the previous image estimate

to determine the parameters of an optimization problem. These gradient directions are

highly susceptible to noise, especially in flat areas of the image. In particular, since the OG

algorithm only penalizes pixel differences in two directions (the directions orthogonal to the

previous image gradient), it tends to create “false contour” artifacts in flat regions of the

image (see discussion and images in Section 3.5). If we were to take into account the gradient

magnitude as well as direction, we could instead use an isotropic cost function in flat regions

of the image; this isotropic cost function penalizes differences in all directions, and thereby

eliminates or reduces these artifacts.

Additionally, instead of using a single gradient vector at each pixel to calculate our

parameters, it is possible to use several gradient vectors located in a neighborhood around

each pixel. One may be tempted to use the average gradient vector in a window surrounding

each pixel as a statistic of interest. However, in regions with sharp edges, typically the

gradient field is sparse, since the gradient is strong along the edge, and zero otherwise. If we

were to use the average gradient vector to calculate our parameters near a sharp edge, the

average gradient would be very small relative to the strong gradient vectors along the edge.

65

This would cause our algorithm to use an isotropic cost function near edge regions, which

would in turn cause edges to become blurred in the final image estimate.

Instead of calculating the average gradient in a window around each pixel, we propose

finding the unit vector that maximizes the average inner product between itself and each

vector in a pixel neighborhood; this is called the dominant gradient. It is well known that

the solution to this problem is the first left singular vector of the data matrix formed from

the neighborhood of gradient vectors, and this singular vector corresponds to the largest

singular value of the data matrix [45].

However, in addition to using the first left singular vector of this “local SVD” compu-

tation, one can also use the singular values as a measure of the “strength” of the dominant

gradient direction. In particular, if both singular values are similar, then the region likely

contains no sharp edges or strong gradients. However, if the first singular value is much

larger than the second singular value, then it is likely that the region contains an edge or a

large gradient, i.e. the dominant gradient direction is “strong.” Thus, when designing our

algorithm, we would like to use an isotropic penalty in regions where the singular values are

the same, and an anisotropic penalty in region where the singular values are different.

We begin by describing how to calculate the dominant gradient direction at each pixel.

Suppose we are given the gradient gi at each pixel i of an image. Let Ni be a neighborhood

of pixel i, for example, a
√
n ×
√
n window centered at i. For each pixel i, we generate a

matrix of n gradient vectors by arranging all neighboring gradient vectors column-wise in

a matrix Ai = [gj]j∈Ni ∈ R2×n. We define the dominant gradient direction to be the unit

vector vi that maximizes the average inner product of vi with the columns of Ai, i.e.

vi = argmax
v:‖v‖=1

vTAiA
T
i v. (3.11)

As noted earlier, the solution to this problem is the first left singular value of Ai, or the

eigenvector of AiA
T
i corresponding to its largest eigenvalue.

For some brief insight into why this is useful, suppose that the true gradient of the image

is piecewise constant, but due to noise and/or discretization, the observed vectors [gj]j∈Ni
are i.i.d. Gaussian gj ∼ N (γu, σ2I2×2). where γ > 0, u ∈ R2, and ‖u‖ = 1. As mentioned

in [45] and shown in [46], the maximum likelihood estimate of u given [gj]j∈Ni is exactly

vi. For some additional intuition as to why this is the case, let C = 1
n
AiA

T
i ∈ R2×n. It

can be shown (see Appendix B) that the expected value of the matrix C has the eigenvalue

decomposition

E

[
1

n
AiA

T
i

]
=
[
u, u⊥

]
diag{γ2 + σ2, σ2}

[
u, u⊥

]T
,

66

and we see that the eigenvector corresponding to the largest eigenvalue is exactly u.

We can modify the OG algorithm to make use of the dominant gradient direction. Instead

of using the angle of the gradient at each pixel i, we can instead use the direction of the first

left singular vector

θi = ∠vi (3.12)

and then design our cost function to penalize differences in the two directions orthogonal

to θi. However, as noted earlier, we do not always want to only penalize differences in two

directions at each pixel, as this will lead to “false contour” artifacts. Fortunately, the SVD

of Ai provides us with a nice measure of the “strength” of the dominant gradient in the form

of singular values (equivalently, eigenvalues of AiA
T
i).

In order to determine whether to use the isotropic or anisotropic penalty function, we

propose using the dominant gradient strength, which is the normalized quantity

αi =


λi,1−λi,2
λi,1

, λi,1 > 0,

0, λi,1 = 0,
(3.13)

where λi,1 and λi,2 are the largest and smallest eigenvalues of AiA
T
i , respectively, and αi is

guaranteed to be between 0 and 1. This is similar to the parameter R chosen in [45]. To

motivate this choice of parameter, let us return to the case where [gj]j∈Ni are i.i.d. Gaussian

assumption. If γ � σ, we expect the eigenvalues of AiA
T
i to be very different, and αi ≈ 1.

However, when γ � σ, we expect the eigenvalues of AiA
T
i to be very close to one another,

and αi ≈ 0. We can thus use αi as a way to trade-off between using an isotropic and

anisotropic cost function; when αi ≈ 0, we will use an isotropic cost function that penalizes

pixel differences in all directions, and when αi ≈ 1, we will use an anisotropic cost function

that only penalizes pixel differences in the two directions orthogonal to vi. We also note that

αi is exactly one minus the inverse condition number of the matrix AiA
T
i .

Finally, in Section 3.4.4 we describe how vi and αi can be calculated very efficiently using

filtering operations and basic array arithmetic. This avoids the naive method of iterating

through every pixel i, building a local gradient matrix Ai, and using a built-in SVD solver

(i.e. Matlab’s solver or a Python library) to calculate vi and αi.

3.4.2 LOOP Algorithm

In this section, we give a high-level overview of the LOOP algorithm and its individual

steps. For a final, exact summary of the LOOP algorithm, the reader can consult Figure

3.10. Similar to the OG algorithm, the Local Orthogonal Orientation Penalization (LOOP)

67

algorithm is an alternating algorithm that can be summarized with the following steps:

1. Initialize

α
(0)
i ← 0, ∀i = 1, · · · , n,

θ
(0)
i ← 0, ∀i = 1, · · · , n,

to ensure a pure isotropic cost function at step 0.

2. Set x equal to minimizer of a convex objective function minimize Ψ(x;α, θ) subject to

equality and inequality constraints. This cost function is formally defined in Section

3.4.3, equation (3.14), and it consists of a convex combination of an isotropic term

and an anisotropic term at each pixel i. The process of minimizing this cost function

follows the same process as the OG Algorithm, as described in Section 3.3.1.

3. For each pixel i, calculate the “dominant gradient direction” using a singular value

decomposition of the local gradient vector matrix Ai = [gj]j∈Ni . This produces singular

values σi,1, σi,2 and left singular vectors [vi,1,vi,2]. Alternatively, this can also be viewed

as taking an eigendecomposition of the matrix AiA
T
i of local gradient vectors, yielding

eigenvalues λi,1 = σ2
i,1 and λi,2 = σ2

i,2. The eigenvectors are exactly the same left

singular vectors obtained using the SVD.

4. Set the dominant gradient strengths to be

αi ←


σ2
i,1−σ2

i,2

σ2
i,1

, σi,1 > 0

0, σi,1 = 0

and the dominant gradient directions to be

θi ← ∠vi,1.

The initialization in Step 1 forces the cost function to be purely isotropic during the first

iteration of the algorithm. Once this initial estimate is obtained, a dominant gradient di-

rection θi and measure of neighboring gradient strength αi can be calculated at every pixel

i using operations on the spatial image gradient, producing singular values and singular

vectors at each pixel (alternatively, eigenvalues and eigenvectors). We empirically observed

that using gradients from all previous image gradient estimates when calculating the local

gradient SVD (Step 3) caused the image estimates to converge, i.e., our convergence criterion

‖x(k+1) − xk‖/np < 10−2 was satisfied in all of our experiments. We describe how this is

68

done efficiently in Section 3.4.4. We were not able to prove this convergence analytically,

and we cannot provide any theoretical guarantees of convergence. We briefly note that we

could have forced convergence of α and θ if we followed the same process described in Sec-

tion 3.3.2 for the OG Algorithm. Specifically, a “relaxation sequence” could have been used

when updating α and θ, which would have forced convergence of these parameters, and this

would likely have further helped convergence of the image estimates, as we observed for the

OG algorithm. Again, we found that we did not need to do this, since convergence was

observed empirically without it.

As described in Section 3.4.1, the update for α measures the strength of the dominant

gradient direction at each pixel i. Dividing by σ2
1 ensures that the weights αi and 1−αi will

sum to one. Thus, αi gives a measure of how “anisotropic” the image gradient is near pixel

i. If αi is close to one, then there is a dominant gradient direction around pixel i. If αi is

close to zero, then the region around i is mostly smooth, or extremely noisy. The update on

θi is simply the angle of the dominant gradient direction.

3.4.3 Cost Function for the LOOP Algorithm

For some fixed choice of α and θ, satisfying

0 ≤ αi ≤ 1, ∀i = 1, · · · , n,

−π < θi ≤ π, ∀i = 1, · · · , n,

the second step of the LOOP algorithm solves the optimization problem

minimize
x

Ψ(x;α,θ) subject to Sx = y, xi,min ≤ xi ≤ xi,max, (3.14)

where S is a sampling matrix, xi,min and xi,max define box constraints on the max/min values

attainable by the reconstruction, and Ψ is a linear combination of two convex cost functions

Ψ(x;α,θ) = ΨISO(x;α) + ΨANISO(x;α,θ), (3.15)

where ΨISO(x;α) and ΨANISO(x;α,θ) are isotropic and anisotropic cost functions, respec-

tively. The anisotropic weighting vector α forces Ψ to be a convex combination of ΨISO and

ΨANISO at every pixel, and θ determines the penalization directions of the anisotropic cost

function ΨISO. The box constraints xi,min and xi,max encourage the solution to have similar

values to observed (nearby) samples. Specifically, for Manhattan sampling, we chose xi,min

and xi,max to be the minimum and maximum observed image values on the “block border”

69

surrounding the unsampled data (referring to Figure 3.2b, these would be the sampled pixels

with indices in I).

We use the isotropic cost function

ΨISO(x;α) =
1

2

n∑
i=1

1− αi
|Ni|

∑
j∈Ni

(xi − xj)2

d2ij
, (3.16)

where Ni is the 8-point pixel neighborhood at pixel i, and dij is the distance in pixels between

pixels i and j (either 1 or
√

2). This is a straightforward convex cost function that penalizes

the average squared difference between neighboring pixels in the image.

For the anisotropic term, recall that the cost function in the OG algorithm was purely

anisotropic because it only penalized pixel differences in the directions orthogonal to the

image gradient. In a similar manner, we propose an anisotropic cost function that selectively

penalizes orthogonal pixel differences using bicubic interpolation. Specifically, at every pixel

i, we interpolate x on the unit circle centered at pixel i at angles θi +
π
2

and θi− π
2

to obtain

interpolated values fi
(
x, θi − π

2

)
and fi

(
x, θi + π

2

)
. We then penalize the average squared

pixel differences between xi and these values. The motivation for this is that the intensity

of each pixel j neighboring i will be weighted according to how close it is to the orthogonal

dominant gradient directions θi ± π
2
. This cost function can be written as

ΨANISO(x;α,θ) =
1

2

n∑
i=1

αi
2

[(
xi − fi

(
x, θi −

π

2

))2
+
(
xi − fi

(
x, θi +

π

2

))2]
, (3.17)

where fi(x, θi) is the value obtained by interpolating x using bicubic interpolation on the

unit circle centered at pixel i at angle θi, and the extra factor of 1
2

averages the two values.

Note that fi(x, θi) can be calculated using a linear filter operation.

The cost function can be rewritten in matrix-vector form as

Ψ(x;α, θ) =
1

2
‖Dx‖2WISO(α) +

1

2
‖Cθx‖2WANISO(α) ,

where for some matrix W , we define the weighted squared 2-norm to be

‖x‖2W = xTWx,

70

the isotropic weighting matrix is defined to be

WISO(α) = I8np×8np −


diag{αi}) 0

. . .

0 diag{αi})


︸ ︷︷ ︸

Block diagonal, 8 copies of diag{αi}

,

the anisotropic weighting matrix is defined to be

WANISO(α) =

[
diag{αi} 0

0 diag{αi}

]
,

D is an isotropic differencing matrix, and Cθ is an anisotropic differencing matrix that

implements differences between each xi and its bicubic interpolated values fi(x, θi − π
2
) and

fi(x, θi + π
2
). Similar to the OG algorithm, it can be shown that this objective function

is convex and can be minimized with gradient descent methods. This objective function is

solved by following the process in Section 3.3.1 for the OG algorithm.

3.4.4 Efficient Computation of the Dominant Gradient Direction

In this section, we expand on Step 3 of the LOOP algorithm. Suppose we have an image x

that is very high dimensional e.g. x ∈ R5122 . Let gx and gy denote the spatial image gradient

in the x- and y- directions, respectively (we abuse notation here by talking about the x- and

y- directions). These spatial gradients gx and gy can be efficiently computed using classical

filtering operations with a set of gradient filter kernels (e.g. the Sobel operators), either by

spatial convolution or using FFTs. For each pixel i let Ai ∈ R2×m1m2 denote the matrix

where each column is a gradient vector in a rectangular m1 ×m2 window centered at pixel

i. Recall that we defined the dominant gradient direction at pixel i [45] to be the unit vector

u that maximizes ‖ATi u‖2. As is well known, the solution to this problem is the eigenvector

u corresponding to the largest eigenvalue of the (scaled) matrix AiA
T
i . If we rebuild the

gradient matrix for each pixel and use a built-in SVD solver, then it will take n2
p individual

SVD computations. If this step is done naively using, say, Python’s or Matlab’s built-in

SVD solver, the program could be very slow, especially for large images. In this section, we

discuss using linear filtering operations and element-by-element array operations to reduce

the amount of computation to a single, closed-form operation.

71

We begin by noting that AiA
T
i is a symmetric 2× 2 matrix with entries

AiA
T
i =

[
ai,xx ai,xy

ai,xy ai,yy

]

=

[∑
j∈Ni g

2
x,j

∑
j∈Ni

∑
k∈Ni gx,jgy,k∑

j∈Ni

∑
k∈Ni gx,jgy,k

∑
j∈Ni g

2
y,j

]
,

where Ni is an m1 ×m2 rectangular window centered at pixel i. Observe that entries of the

matrix are simply the result of convolving gx and gy with an m1 ×m2 box kernel (e.g. “all

ones”). Thus, we can calculate the entries of these matrices for all i using basic element-wise

array operations and linear filtering operations. Let 1m1×m2 be an m1 × m2 matrix of all

ones. Define the signals

axx = 1m1×m2 ∗ (gx � gx),

axy = 1m1×m2 ∗ (gx � gy),

ayy = 1m1×m2 ∗ (gy � gy),

where � denotes element-wise multiplication and ∗ denotes convolution.

We now show how Step 3 uses all previous image gradient estimates in its calculation

of the dominant gradient direction. If we have completed k iterations of our algorithm, we

can form AiA
T
i using a k×m1×m1 neighborhood of all past image estimates by initializing

a
(0)
xx = a

(0)
xy = a

(0)
yy = 0 and updating these variables according to

a(k)
xx = a(k−1)

xx + 1m1×m2 ∗ (g(k)
x � g(k)

x),

a(k)
xy = a(k−1)

xy + 1m1×m2 ∗ (g(k)
x � g(k)

y),

a(k)
yy = a(k−1)

yy + 1m1×m2 ∗ (g(k)
y � g(k)

y).

For convenience, we will drop the dependence on k for the remainder of this section.

Recall that a 2 × 2 eigenvalue problem can be solved in closed form using the quadratic

formula. Following the usual procedure, but substituting element-wise operations for scalar

operations, it can be shown that the largest and smallest eigenvalues of AiA
T
i can be calcu-

72

lated at every i according to

λ1 =
axx + ayy +

√
(axx + ayy)2 − 4(axx � ayy − a2

xy)

2
,

λ2 =
axx + ayy −

√
(axx + ayy)2 − 4(axx � ayy − a2

xy)

2
,

where λ1 is the image of largest eigenvalues and λ2 is the image of smallest eigenvalues.

Furthermore, the x- and y- components of the largest eigenvector vi at each pixel i can then

be calculated according to

vx =
axy√

a2
xy + (λ1 − axx)2

,

vy =
λ1 − axx√

a2
xy + (λ1 − axx)2

.

We also note that if the eigenvectors corresponding to the smallest eigenvalues at every pixel

i are needed, then they can be calculated from vx and vy using a simple rotation operation.

We thus can estimate the direction of the dominant gradient direction by taking

θ = arctan 2(vy,vx),

where arctan2(y, x) is the usual two-argument arctan function applied element-wise to vy

and vx (unlike the single-argument arctan function, the double-argument arctan2 function

retains sign information about an angle in four quadrants by returning an angle in [−π, π)).

The entire LOOP algorithm is summarized step-by-step in Figure 3.10. Note that for an

image with np pixels, this algorithm only requires storage of 6np parameters: The current

image estimate, the matrix entry variables axx, axy and ayy, and the cost function parameters

θ and α.

3.5 Reconstruction Method Comparisons

In this section, we compare the performance of four algorithms in the task of estimating

natural images from their Manhattan-grid samples. Specifically, we compare the performance

of the OG Algorithm, the LOOP Algorithm, a kernel regression algorithm for inpainting [10],

and a constrained Total Variation (TV) minimization algorithm [9].

The OG and LOOP algorithms were implemented in Python using standard scientific

73

computing libraries, i.e., numpy and scipy. The OG algorithm took 104 seconds to interpo-

late the image “Al” at 7×7 sampling on an Intel Core i5 CPU at 3.40 GHz. Both algorithms

take longer for larger grid sizes, as fewer samples are available, and it takes time for informa-

tion to propagate into the interior of each unsampled block of pixels. Similar performance

was observed for the LOOP algorithm.

The TV inpainting “Missing Pixels: Image Inpainting” approach in [9, Sec. III.C.3] was

used as another baseline algorithm using Matlab code provided on the authors’ website [47].

Specifically, we modified the file demos/Constrained/demo inpainting.m by changing the

random sampling pattern to the appropriate Manhattan grid size. This TV method took

about 8 seconds to reconstruct “Al” at 7× 7 sampling.

The kernel regression inpainting algorithm used was the “Iterative Steering Kernel Re-

gression” approach in [10, Sec. III.C.] was implemented using code on the authors’ web-

site [48]. Specifically, we modified the file Examples/Lena irregular.m by changing the

random sampling pattern to the appropriate Manhattan grid size. We also added a single

thresholding step where the intensity of the output image was truncated the interval [0, 255].

This kernel regression method took about 30 seconds to reconstruct “Al” at 7× 7 sampling.

We ran our interpolation experiments on six images for two different sampling patterns.

The images included “Al,” “baboon,” “Barbara,” “boat,” “peppers,” and “tools,” and the

images were sampled on 4×3 and 7×8 Manhattan grids. These sampling patterns correspond

to keeping 50% and 25% of the original data.

Once again, we used mean-squared error (specifically, PSNR) as our object performance

metric. Our PSNR results are shown in Table 3.2. Note that the LOOP algorithm outper-

forms all other algorithms in each experiment, and the OG algorithm outperforms the TV

and Kernel Regression methods for most experiments.

For subjective quality comparisons, Figures 3.11, 3.12, 3.13, 3.14, 3.15, and 3.16 show

the results of interpolation for 7×8 Manhattan sampling on the six test images. Specifically,

they show the original image, the sampled image, and the resulting reconstruction for each

of the four algorithms. We do not show the results for 4× 3 sampling since all four methods

performed reasonably well, and visual differences are difficult to notice.

The outputs of the OG algorithm had very smooth and crisp edges. For example, in

“Al”, note the nice reconstructions of his collar and the books in the upper right corner.

By contrast, periodic blocking artifacts are generated by all the competing algorithms in

these two regions. Although the OG algorithm performs very well at reconstructing edges,

it can also generate false contouring artifacts in regions of uniform intensity. Examples of

such false contours are the “swirls” in the forehead and cheeks of “Al.” These artifacts are

reduced greatly by the LOOP algorithm, which attempts to use an isotropic cost function

74

in smoother regions.

The kernel regression algorithm struggled greatly with the Manhattan sampling pattern.

Typically, traditional inpainting methods rely on sampling patterns that are “locally dense,”

or even regions of the image that are completely sampled in order to perform well. “Gaps”

can be seen in the kernel regression reconstructions where the kernels failed to estimate the

image intensity, most likely due to having “small” kernels at samples in the area. An example

of these gaps can be seen in the reconstruction of “Al” in Figure 3.11(d) on the left and right

sides of the image, where the edge of the image meets the white empty space. These are also

seen along the long pepper in peppers (Figure 3.15(d)).

The “boat” results (Figure 3.14) are very striking; the LOOP algorithm manages to

reconstruct the boat “poles,” whereas all other methods do not come close.

Nearly all the methods struggle with high-frequency texture, like the fur in “baboon”

(Figure 3.12 and the cloth in “Barbara” (Figure 3.13).

Finally, in Figures 3.17 and 3.18, we can see the final values of α for the 7 × 8 LOOP

reconstructions. These are a good visual tool to see when the LOOP algorithm used an

isotropic objective function, and when it used an anisotropic objective function. Specifically,

in the regions where α is black (zero), Ψiso was weighted more heavily in the cost function.

In the regions where α is white (one), Ψaniso was weighted more heavily in the cost function.

Note that α ≈ 1 near regions with texture or strong image edges, which shows that our

algorithm is working as intended.

Finally, it is easy to visually check that the subjective quality of the LOOP algorithm

is much better than the OG, Piecewise Planar, or Cutset MRF methods for reconstruction

of images from their Manhattan-grid samples. The “crevasse” artifacts from the Piecewise-

Planar method have been eliminated, as well as the “oversharpening” caused by the seg-

mentation step of the Cutset MRF method. It is easy to see this by comparing “Al” in

Figure 3.11 with “Al” in Figure 3.6. In fact, even at a slightly lower density, the LOOP

algorithm results at 7× 8 sampling outperform the 7× 7 Piecewise-Planar and Cutset MRF

reconstructions.

3.5.1 Traditional Lattice Sampling Experiments

A natural question is to ask how the LOOP algorithm performs when used when interpolating

from lattice samples. Thus, we ran a standard 2-factor downsample/upsample scenario where

25% of the pixels are saved on an equispaced lattice (every other pixel is sampled in each

direction).

We compared the LOOP algorithm to traditional bicubic kernel interpolation, as well as a

75

4x3 Manhattan Grid TV [9] Kern. Reg. [10] OG LOOP
Al 34.5 31.4 35.2 35.9

Baboon 24.4 22.0 24.5 26.3
Barbara 25.0 24.0 24.7 26.1

Boat 30.6 28.1 31.3 32.9
Peppers 34.9 31.6 35.5 36.1

Tools 37.1 34.2 38.9 39.3

7x8 Manhattan Grid TV [9] Kern. Reg. [10] OG LOOP
Al 27.1 24.4 29.7 30.6

Baboon 21.0 20.4 20.6 22.1
Barbara 23.7 22.7 23.0 24.8

Boat 25.0 25.9 26.8 27.7
Peppers 28.7 28.4 30.7 31.3

Tools 27.6 28.5 31.2 31.7

Table 3.2: Comparison of PSNR values (dB) for various methods. Highest PSNR for each
row is in bold.

recent interpolation algorithm [11] that was state-of-the-art in 2008. Bicubic results were ob-

tained using Matlab’s imresize command, and the results were thresholded to [0, 255]. The

SAI algorithm [11] (Soft-decision estimation technique for Adaptive image Interpolation)

also attempts to interpolate orthogonal to image edges. The experiment was performed

using code available on the authors’ website [49]. SAI ran in less than one second for our

images.

Implementation details for the LOOP algorithm include the following: First xmin and

xmax were defined at each pixel i using the minimum and maximum of nearest-neighbor

sampled values. Specifically, a “middle” pixel used the minimum and maximum of the four

surrounding sampled values, located northeast, northwest, southeast, and southwest of the

pixel. Similarly, a “side” unsampled pixel used the minimum and maximum of two flanking

sampled values (i.e. either the samples to the east and west, or the samples to the north

and south). A window of m1 ×m2 = 7× 7 was used for the local SVD computations. The

initial estimate x(0) was initialized to mean of x(0) = 1
2

(xmin + xmax).

PSNR results are shown in Table 3.3. Note that the LOOP algorithm performs much

better than bicubic, and is competitive with SAI. Subjectively, the images look very similar.

However, one difference is that the LOOP algorithm denoises slightly better than SAI. For

example, in “Al” (Figure 3.19(d)), the forehead of Al and the books in the upper-left corner

have some noisy “ripples” in the SAI reconstruction. These are also present in the LOOP

reconstruction (Figure 3.19(f)), but are much less noticeable. This is likely due to using an

isotropic objective function in these regions, as supported by the dark values of α in Figure

76

2× 2 Lattice Sampling bicubic SAI [11] LOOP
Al 27.2 30.3 29.1

Baboon 21.3 22.7 23.0
Barbara 23.3 23.6 24.3

Boat 26.9 29.7 29.4
Peppers 28.1 31.1 31.1

Tools 30.2 33.5 30.7

Table 3.3: Comparison of PSNR values (dB) for lattice interpolation methods. Highest
PSNR for each row is in bold.

3.19(e).

3.5.2 Manhattan vs. Lattice Comparison

Observe that 7 × 8 Manhattan sampling and 2 × 2 lattice both have a sampling density

of 25%. In this section, we compare the results of reconstructing an image from its 7 × 8

Manhattan samples to those obtained from 2×2 lattice samples. In particular, we determine

if there is a difference in PSNR, as well as in subjective quality. We pay particular attention

to how well edges are reconstructed by each method, including both hard and soft image

edges. Recall that we hypothesized in Chapter 1 that edges may be better reconstructed

from Manhattan cutset samples.

3.5.2.1 PSNR Comparison

Let us compare the PSNR results for 7× 8 Manhattan sampling in Table 3.2 to the PSNR

results for 2× 2 lattice sampling in Table 3.3. Surprisingly, the 7× 8 Manhattan reconstruc-

tions for “Al,” “Barbara,” and “Peppers” using the LOOP algorithm have higher PSNR

than any reconstructions obtained using 2 × 2 lattice samples. We do note, however, that

the differences between these PSNRs and the best results for their 2× 2 lattice counterparts

were only less than 1 dB. For the other images, the 7× 8 Manhattan LOOP reconstructions

had PSNRs within 2 dB of the best 2× 2 lattice reconstructions.

3.5.2.2 Subjective Comparison

We now subjectively compare bicubic and SAI reconstructions from samples on a 2×2 lattice

to OG and LOOP reconstructions from samples on a 7 × 8 Manhattan grid. In particular,

we will consider regions of the image that contain edges to see if cutset sampling provides

an advantage to reconstructing edges over lattice sampling.

77

Figure 3.25 shows a zoomed-in region of Al’s collar in “Al” for the original image and the

four reconstructions. All four methods do very well in the smooth regions of the collar, but

the LOOP algorithm reconstructs the least amount of texture, i.e., it denoises slightly better

in these regions. Along the edge of the collar, the bicubic reconstruction fails, leaving a jaggy

edge. However, the three other reconstruction methods reproduce the edge of the collar very

well, except for near the boundary of the image, where the OG and LOOP algorithms blur

due to boundary effects. Between these three algorithms, the reconstructed collars look very

similar.

Figure 3.26 shows a zoomed-in region of the books in the upper-right corner of “Al.” All

four algorithms reconstruct the books well. The OG and LOOP algorithms produce smoother

reconstructions, whereas the bicubic and SAI reconstructions introduce some textured noise

between the books.

Figure 3.27 shows a zoomed-in region of some poles on the top of the boat in “Boat.” All

four algorithms reconstructed the poles differently: Bicubic interpolation created “jaggy”

artifacts, SAI did fairly well overall, but introduced some “streaky” artifacts, the OG algo-

rithm looks “painted”, and the LOOP algorithm introduced some periodic blurring along

the diagonal poles. Note that the SAI algorithm reconstructed the two large diagonal poles

the best, whereas the LOOP algorithm reconstructed the vertical pole in the middle the

best. This behavior is not surprising, since we found in Chapter 2 that Manhattan sampling

is well-suited for recovering vertical and horizontal edge (high frequency) information from

the original image, but not for recovering diagonal edge information.

3.5.2.3 Manhattan vs. Lattice Conclusions

When comparing reconstruction methods from 2×2 lattice sampling to reconstruction meth-

ods from 7 × 8 Manhattan sampling, we found that the two sampling methods were com-

petitive in PSNR values. In particular, we found that the best reconstructions from each

sampling pattern were within 2 dB of one another. In terms of subjective quality, all four

methods reconstruct smooth images well, but the LOOP algorithm tends to remove texture

from smooth regions more than the other methods. When reconstructing edges, bicubic

interpolation fails as expected, but the SAI, OG, and LOOP algorithms perform similarly.

Thus, our conjecture that we can better reconstruct edges from Manhattan samples is false

in this case. However, the similar performance of the two sampling/reconstruction methods

is encouraging, and warrants more research into cutset sampling.

78

3.5.3 Conclusions

In this chapter, we presented a previous method and three new methods for reconstructing

images from their Manhattan-grid samples. However, the LOOP algorithm outperforms

them all, both in PSNR and visual quality. The LOOP algorithm also outperforms a TV

minimization algorithm, and a kernel regression inpainting algorithm. It also had competitive

results with the SAI algorithm for lattice-sampled images, which is an algorithm specifically

designed for lattice interpolation. Overall, we believe that the LOOP algorithm is a promising

new method for reconstructing image data from arbitrary sampling patterns. Its strength

lies in its ability to adapt to the edges in the image using the output of the local gradient

SVD computation.

79

1: Input: Sampling matrix S, samples y, min/max constraints xmin and xmax,
2: initial condition x(0), gradient filter kernels hx and hy, local window size m1×m2.

3: Initialize: k = 1, α(0) = 0, θ(0) = 0, and a
(0)
xx = a

(0)
xy = a

(0)
yy = 0.

4: repeat
5: Set x(k) to solution of optimization problem (3.14) using
6: previous weights α(k−1) and previous dominant gradient directions θ(k−1),
7: under constraints determined by S, y, xmin, and xmax.
8: g

(k)
x = x(k) ∗ hx

9: g
(k)
y = x(k) ∗ hy

10: a
(k)
xx ← a

(k−1)
xx + 1m1×m2 ∗

(
g
(k)
x � g

(k)
x

)
11: a

(k)
xy ← a

(k−1)
xy + 1m1×m2 ∗

(
g
(k)
x � g

(k)
y

)
12: a

(k)
yy ← a

(k−1)
yy + 1m1×m2 ∗

(
g
(k)
y � g

(k)
y

)
13: λ

(k)
1 ← 1

2

[
a
(k)
xx + a

(k)
yy +

√(
a
(k)
xx + a

(k)
yy

)2
− 4

(
a
(k)
xx � a

(k)
yy − a

(k)
xy

2
)]

14: λ
(k)
2 ← 1

2

[
a
(k)
xx + a

(k)
yy −

√(
a
(k)
xx + a

(k)
yy

)2
− 4

(
a
(k)
xx � a

(k)
yy − a

(k)
xy

2
)]

15: v
(k)
x ← a

(k)
xy√(

a
(k)
xy

)2
+
(
λ
(k)
1 −a

(k)
xx

)2
16: v

(k)
y ← λ

(k)
1 −a

(k)
xx√(

a
(k)
xy

)2
+
(
λ
(k)
1 −a

(k)
xx

)2
17: θ(k) ← arctan 2

(
v
(k)
y ,v

(k)
x

)
18: [α(k)]i ←


λ
(k)
1,i−λ

(k)
2,i

λ
(k)
1,i

, λ1,i > 0

0, λ1,i = 0
19: k ← k + 1
20: until stopping criterion is satisfied.

Figure 3.10: Local Orthogonal Orientation Penalization (LOOP) Algorithm

80

(a) “Al” (b) 7× 8 Manhattan sampling

(c) SALSA Const. TV [9] (d) Kernel Regression [10]

(e) Orthogonal Gradient Algorithm (f) LOOP Algorithm

Figure 3.11: Method comparison for reconstructing “Al” from 7× 8 Manh. sampling.
81

(a) “baboon” (b) 7× 8 Manhattan sampling

(c) SALSA Const. TV [9] (d) Kernel Regression [10]

(e) Orthogonal Gradient Algorithm (f) LOOP Algorithm

Figure 3.12: Method comparison for reconstructing “baboon” from 7× 8 Manh. sampling.
82

(a) “Barbara” (b) 7× 8 Manhattan sampling

(c) SALSA Const. TV [9] (d) Kernel Regression [10]

(e) Orthogonal Gradient Algorithm (f) LOOP Algorithm

Figure 3.13: Method comparison for reconstructing “Barbara” from 7× 8 Manh. sampling.
83

(a) “boat” (b) 7× 8 Manhattan sampling

(c) SALSA Const. TV [9] (d) Kernel Regression [10]

(e) Orthogonal Gradient Algorithm (f) LOOP Algorithm

Figure 3.14: Method comparison for reconstructing “boat” from 7× 8 Manh. sampling.
84

(a) “peppers” (b) 7× 8 Manhattan sampling

(c) SALSA Const. TV [9] (d) Kernel Regression [10]

(e) Orthogonal Gradient Algorithm (f) LOOP Algorithm

Figure 3.15: Method comparison for reconstructing “peppers” from 7× 8 Manh. sampling.
85

(a) “tools” (b) 7× 8 Manhattan sampling

(c) SALSA Const. TV [9] (d) Kernel Regression [10]

(e) Orthogonal Gradient Algorithm (f) LOOP Algorithm

Figure 3.16: Method comparison for reconstructing “tools” from 7× 8 Manh. sampling.
86

(a) “Al” (b) 7× 8 reconstruction (c) Final α

(d) “baboon” (e) 7× 8 reconstruction (f) Final α

(g) “Barbara” (h) 7× 8 reconstruction (i) Final α

Figure 3.17: Part 1: Comparison of final α parameter to reconstructions. αi ≈ 0 in black
regions and αi ≈ 1 in white regions.

87

(a) “boat” (b) 7× 8 reconstruction (c) Final α

(d) “tools” (e) 7× 8 reconstruction (f) Final α

(g) “peppers” (h) 7× 8 reconstruction (i) Final α

Figure 3.18: Part 2: Comparison of final α parameter to reconstructions. αi ≈ 0 in black
regions and αi ≈ 1 in white regions.

88

(a) “Al” (b) 2× 2 lattice downsampling

(c) Bicubic interpolation (d) SAI [11]

(e) Final α for LOOP Algorithm (f) LOOP Algorithm

Figure 3.19: Method comparison for reconstructing “Al” from 2× 2 lattice samples.
89

(a) “baboon” (b) 2× 2 lattice downsampling

(c) Bicubic interpolation (d) SAI [11]

(e) Final α for LOOP Algorithm (f) LOOP Algorithm

Figure 3.20: Method comparison for reconstructing “baboon” from 2× 2 lattice samples.
90

(a) “Barbara” (b) 2× 2 lattice downsampling

(c) Bicubic interpolation (d) SAI [11]

(e) Final α for LOOP Algorithm (f) LOOP Algorithm

Figure 3.21: Method comparison for reconstructing “Barbara” from 2× 2 lattice samples.
91

(a) “boat” (b) 2× 2 lattice downsampling

(c) Bicubic interpolation (d) SAI [11]

(e) Final α for LOOP Algorithm (f) LOOP Algorithm

Figure 3.22: Method comparison for reconstructing “boat” from 2× 2 lattice samples.
92

(a) “tools” (b) 2× 2 lattice downsampling

(c) Bicubic interpolation (d) SAI [11]

(e) Final α for LOOP Algorithm (f) LOOP Algorithm

Figure 3.23: Method comparison for reconstructing “peppers” from 2× 2 lattice samples.
93

(a) “tools” (b) 2× 2 lattice downsampling

(c) Bicubic interpolation (d) SAI [11]

(e) Final α for LOOP Algorithm (f) LOOP Algorithm

Figure 3.24: Method comparison for reconstructing “tools” from 2× 2 lattice samples.
94

(a) Collar in “Al”

(b) Bicubic recon. from 2× 2 lattice (c) SAI [11] recon. from 2× 2 lattice

(d) OG recon. from 7× 8 M-Grid. (e) LOOP recon. from 7× 8 M-Grid.

Figure 3.25: Edge comparison of collar in “Al”

95

(a) Books in “Al”

(b) Bicubic recon. from 2× 2 lattice (c) SAI [11] recon. from 2× 2 lattice

(d) OG recon. from 7× 8 M-Grid. (e) LOOP recon. from 7× 8 M-Grid.

Figure 3.26: Edge comparison of books in “Al”
96

(a) Poles in “Boat”

(b) Bicubic recon. from 2× 2 lattice (c) SAI [11] recon. from 2× 2 lattice

(d) OG recon. from 7× 8 M-Grid. (e) LOOP recon. from 7× 8 M-Grid.

Figure 3.27: Edge comparison for poles in “Boat”

97

CHAPTER 4

Cutset Sensor Networks, Relay-efficient

Functions, and Efficient Communication

A common topic of research in the area of wireless sensor networks is that of finding ways to

reduce energy consumption of battery-powered sensors nodes, thereby increasing the overall

lifetime of the network. In these wireless networks, there is often a need to transmit sensing

data over long distances, for example, to a common sink. Furthermore, these transmissions

typically dominate the energy usage of the wireless sensors, since the actual data sensing is

usually passive and requires little to no energy. Thus, it is of utmost importance that data

can be efficiently relayed through the network, typically by using short “hops” of communi-

cation between neighboring sensors. Using many short hops is often desirable because the

energy required for communication scales super-linearly with distance. For fixed hardware

constraints, the network energy consumption can be reduced by using efficient communica-

tion protocols [50–52], distributed algorithms [2,53], and sensor-placement strategies [54,55].

This chapter considers elements of all three of the above strategies, but attention is primarily

given to finding deployment strategies that reduce the energy costs required for communica-

tion. In particular, these so-called cutset networks have sensors placed along the boundaries

of square, triangular and hexagonal tessellations of the plane, as shown in Figures 4.1(e,f,g).

For a fixed sensor density, as the number of sensors per side k of the tessellating polygon

increases in a cutset network, the spacing between neighboring sensors decreases. Suppose

that the energy required for data transmission between two sensors follows a simple power

law with exponent greater than one, such as (4.1). Under this simple power-law assumption,

as the sensors-per-side k increases for the cutset network, the energy cost for neighboring

sensors to communicate decreases very quickly. Further suppose that communication in

a sensor network always follows a multi-hop path consisting of neighboring sensors, i.e.,

two sensors separated at a long distance do not communicate directly, but instead use a

sequence of short hops, each from a sensor to a nearby or nearest neighbor. Under this

multi-hop assumption, a cutset network will use more hops than a lattice network, but since

98

each communication hop will be between neighboring sensors, the length of each hop will be

smaller for the cutset network. The energy savings obtained using smaller hops will typically

outweigh the extra energy required to use more hops in the cutset network; in other words,

for multi-hop communication under a simple power law model, “many short hops are more

efficient than a few long hops.”

Initial discussions and simulations demonstrating the energy-saving possibilities of cut-

set networks are presented first in Section 4.1. Specifically, under a simple power-law for

communication model with exponent greater than one (equation (4.1)), we demonstrate that

cutset networks offer reduced communication costs over traditional network geometries such

as random deployment (Figure 4.1(a)) or lattices (Figures 4.1(b,c,d)). We predict that effi-

cient communication paths in cutset networks follow multi-hop paths between neighboring

sensors, and then show that these predictions agree with cheapest paths obtained using a

shortest-path algorithm, such as Dijkstra’s Algorithm.

This chapter also explores the energy-accuracy tradeoffs of cutset wireless sensor net-

works in the context of solving a source localization problem, where the goal is to estimate

the location of a source that is emitting isotropic acoustic or electromagnetic waves using

received power readings at each sensor. Section 4.2 introduces the received-signal-strength

(RSS)-based source localization problem and provides two common noise models for RSS

measurements. For the centralized source localization problem where all sensor readings are

made available to a common sink, Section 4.2 also provides the Cramèr–Rao bounds for any

estimator of a source under these models, as well as a “brute force” method for calculating

the Maximum Likelihood Estimator of the source location from noisy samples. Combining

the analysis of Sections 4.1 and 4.2, we compare the accuracy-energy tradeoffs provided by

cutset networks in Section 4.3 for centralized source localization applications, and conclude

that cutset networks offer significant energy savings at the price of reduced accuracy. Later,

in Section 4.4.1, we will then focus specifically on Manhattan wireless sensor networks in a

decentralized application setting, where nodes must locally determine (a) whether a source

is present nearby, and if so, (b) an estimate of the source’s location. We design both a

decentralized localization algorithm, called the Midpoint Algorithm, and a communication

protocol, and compare their performance to the decentralized POCS algorithm [2].

Finally, in Sections 4.5 and 4.6, with the goal of understanding the ability of a periodic

network topology to provide a communication infrastructure (agnostic to the sensor network

task), we present a general method for predicting the required energy-per-distance cost of

long distance communication in a lattice sensor network when the model for transmission

model is relay-efficient. Specifically, given a particular lattice and a particular model for how

transmission energy changes with distance (that is what we will define as relay-efficient), we

99

wish to predict the minimal energy-per-distance cost of communicating as a function of

the direction from source to destination. With such, for any given energy model, we can

compare and contrast different deployment lattices on the basis of their ability to provide an

energy-efficient communication infrastructure. An example of a relay-efficient model is the

aforementioned power-law model with exponent greater than one.

We begin in Section 4.5, by focusing on the energy transmission model and only one pair

of sensors. Specifically, we define the relay region between two sensors to be the set of loca-

tions where a third relay sensor can be placed in order to reduce the total communication

communication energy exerted by the pair of sensors. In particular, a function f(x) models

the energy required for a pair of sensors to communicate at distance x, and we find condi-

tions under which f(x) generates a nonempty relay region for sufficiently large distances x;

such functions are said to be relay-efficient, meaning that for such energy models, efficient

communication use multihop relaying. A main focus of Section 4.5 is thus to find inner and

outer bounds to the relay region, and study how these bounds grow as the distance between

sensors increases. This key result is given by Fact 52. Finally, we summarize these results

with some examples, including a power-law model.

In Section 4.6, under the assumption that our model is relay-efficient, we characterize

the cost of paths of minimal energy through a lattice sensor network as a function of the

energy model, the lattice, and the direction and length of the communication path. A lattice

sensor network is of interest since any periodic sensor network (such as a cutset network) is

defined using an underlying lattice, and therefore is a natural place to begin an investigation.

We anticipate that in the future, the methods presented in this section can be extended to

include general periodic deployments of sensors, including cutset topologies. We begin the

section by defining relevant terms. In Section 4.6.1, it is shown that for asymptotically large

long distances at some angle, the minimum energy required for communication is equal to

the total distance between sensors times the output of some linear program. An avenue

for solving this linear program is explored in Section 4.6.2, where we determine that energy-

efficient hops in a lattice network must have a length that is upper bounded by a quantity d∗.

This result is also used in Section 4.6.3 to find a finite set of hops V ∗ that are used to form

efficient long-distance paths through the lattice network. We conjecture that the solution to

the linear program of Section 4.6.1 can be solved in closed form in Section 4.6.4. Finally,

we test our results in Section 4.6.5, where for a square lattice, several choices of energy

model and a fairly uniform sampling of possible communication directions, we compute the

energy of shortest paths through the lattice network using Dijkstra’s algorithm, and then

compare the agnostic output of Dijkstra’s algorithm to the solution to the linear program of

Section 4.6.1 and the conjectured closed-form solution in Section 4.6.4. We find that all three

100

quantities are either the same, or very close. Thus, we conclude that efficient long-distance

communication in a lattice network can be approximated with little to no error by solving

the linear program of Section 4.6.1, or the closed-form expressions of Section 4.6.4.

The centralized work was presented at ICASSP 2014 [15], and the decentralized work,

including the Midpoint algorithm, was presented at ICASSP 2013 [14].

4.1 Cutset Networks

40 20 0 20 40

40

20

0

20

40

(a) Random

40 20 0 20 40

40

20

0

20

40

(b) Square Lattice

40 20 0 20 40

40

20

0

20

40

(c) Hexagonal Lattice

40 20 0 20 40

40

20

0

20

40

(d) Hexagonal-Vertex

40 20 0 20 40

40

20

0

20

40

(e) Manhattan, k = 5

40 20 0 20 40

40

20

0

20

40

(f) Triangular, k = 5

40 20 0 20 40

40

20

0

20

40

(g) Honeycomb, k = 5

Figure 4.1: Wireless networks with n ≈ 250 sensors placed in a circular region of radius
R = 50m. The shaded region depicts possible locations of a randomly placed source in
localization experiments. (a,b,c,d) show traditional network layouts; (e,f,g) show proposed
cutset networks.

In this section, we consider wireless sensor networks consisting of n wireless sensors

placed at locations x1, · · · , xn in a circular region B centered at the origin. Each sensor has

a wireless transceiver, and we will model the energy required for two sensors to communicate

with one another as a power law. We begin by considering a centralized scenario where each

sensor must transmit one packet of data from each sensor to a data sink located at the origin.

The goal of this section is to compare the minimum energy cost required to complete this

task for various sensor deployment topologies at the same density.

101

It is common to assume that sensors are randomly distributed, as in Fig. 4.1(a). How-

ever, in some applications, the network designers are free to choose where sensors are placed,

perhaps using one of the lattice layouts in Fig. 4.1(b,c,d). We now show that these are not

as efficient at transmitting data as the cutset networks shown in Figure 4.1(e,f,g), which are

formed by first placing sensors at the vertices of square, triangular, and hexagonal tessel-

lations, respectively, and then evenly placing k − 1 sensors between each vertex. Figures

4.1(e,f,g) show cutset networks for k = 5.

We are interested in comparing networks with the same sensor density ρ. For fixed ρ,

a cutset network with parameter k will have an intersensor spacing λ given by Table 4.1,

and the tessellating polygon will have side length kλ. Thus, as k increases for fixed ρ, the

intersensor spacing λ decreases as O(k−1/2), but the tessellating cell area increases as O(k).

For experimental tractability, we restrict our networks to a circular region BR = {t :

‖t‖ ≤ R} of radius R centered at 0. To generate a network with approximately 250 sensors,

we first choose our density to be ρ = 250/πR2. The first sensor is placed at the origin, and

then an infinite network is generated using the intersensor spacing λ found in Table 4.1.

Finally, we truncate our network to BR. As a result of this process, the final number of

sensors n may differ slightly from 250 for each network, since λ is chosen to match a fixed

density. Let X = {xi ∈ BR, i = 0, · · · , n− 1} denote the set of sensor locations, where our

first sensor x0 = 0 is placed at the origin. For random networks, instead of following the

above procedure, we placed 250 sensors randomly within BR.

Our analysis assumes the following far-field energy model: Let α be some communication

path-loss exponent between 2 and 4. If two sensors separated by distance d communicate at

received power P0, we model the required transmission energy per packet as

w(d) = P0d
α.

Now suppose all sensors wish to transmit one packet of data to the sensor at x0 in order to

run a centralized algorithm or make a centralized decision; we assume there is a time-division

schedule so there is no interference between sensors. Each sensor x ∈ X chooses a path, i.e., a

sequence of sensor locations xi0 = x, xi1 , xi2 , . . . , xim in X , to relay its data to x0, engendering

a path cost equal to P0

∑m
j=1 ‖xij − xij−1

‖α, and a total energy that is the sum of such over

all x ∈ X . It is possible to compute the minimum possible total communication energy

consumed by the network. First, form the complete weighted graph G = (X ,X × X ,W),

where W is the weighting matrix containing costs of direct communication between sensor

nodes i and j, i.e. [W]ij = w(‖xi − xj‖). Dijkstra’s algorithm [56] is then used to compute

a set of minimum cost paths from the central node to all other nodes requiring O(n2)

102

operations; the total minimum cost Etrue is then the total sum of weights along each of these

paths. Note that because our assumed α is greater than one, all hops in any optimal path

in a cutset network will connect nearest neighbors.

This cost can be estimated using fewer computations. Specifically, we seek to derive a

function c(r, φ) that estimates the cost of transmitting a packet from a sensor at radius r

and angle φ to the central node x0 = 0.1 The total minimum energy is approximately

Etrue ≈ Esum ,
n∑
i=1

c(‖xi‖,∠xi) . (4.1)

This sum requires O(n) operations. Expressions for c(r, φ) for three different cutset networks

are given in Table 4.1. These expressions are derived under the assertion that all minimum

cost paths follow the cell boundaries of the tessellation that generated the cutset network,

and hops are always between neighboring sensors (see Appendix C). If n is large (specifically,

the density n/πR2 is large), then we may be able to model its local sensor density with some

function ρ(r, φ). The total minimum energy is approximately

Etrue ≈ Eint ,
∫ R

0

∫ 2π

0

ρ(r, φ) c(r, φ) r drdφ . (4.2)

For large networks based on tessellations, we approximate ρ(r, φ) as a constant ρ. For ρ

constant, it is straightforward to calculate closed-form expressions for Eint using integration;

the resulting quantities are given in Table 4.1. When the number of sensors per tessellation

boundary k is large, and k, R, ρ and α are fixed, honeycomb networks require the least

energy. Specifically, Manhattan networks and triangular networks require 3(α−1)/4 and 1
2
3α/2

times more energy than honeycomb networks, respectively.

Fig. 4.2 compares the output of Dijkstra’s algorithm to the sum (4.1) and integral (4.2)

approximations for ρ = 250/πR2 and R = 50m. These approximations performed reasonably

well. As expected, the honeycomb networks outperformed the other networks for fixed k.

A misleading part of Fig. 4.2 is that the honeycomb network consumed less energy than

predicted and required more energy for k = 5 than 4. This occurred because the k = 4

network contained only 235 sensors, whereas the k = 5 network contained 259. Actually,

because λ decreases, the energy-per-sensor decreased from the k = 4 to 5. Fig. 4.3 shows

the results for the same experiment except on a dense network with n ≈ 1000 sensors and

k = 1, · · · , 20. Note that the downward energy trends continue with increased k.

Referring to Table 4.1, for fixed k and ρ, the sensor spacing λ will be smallest for honey-

1It’s worth noting that the c(r, φ) functions mentioned here for cutset networks are separable in r and φ,
i.e. c(r, φ) = rc̃(φ) for some c̃(φ).

103

Network ρ: Density λ : Sensor Spacing c(r, φ): Min path cost Eint: Energy estimate

Manhattan 2k−1
k2λ2

1√
ρ

√
2k−1
k

λα−1 r (| cosφ|+ | sinφ|) 8
3

(√
2k−1
k

)α−1
R3ρ

3−α
2

Triangular 2√
3

3k−2
k2λ2

1√
ρ

√
2√
3

√
3k−2
k

λα−1 r
(
cosφ+

| sinφ|√
3

)
, |φ| ≤ π

6
4
√
3

3

(√
2√
3

√
3k−2
k

)α−1
R3ρ

3−α
2

Honeycomb 2
3
√
3

3k−1
k2λ2

1√
ρ

√
2

3
√
3

√
3k−1
k

4
3
λα−1 r cosφ, |φ| ≤ π

6
8
3

(√
2

3
√
3

√
3k−1
k

)α−1
R3ρ

3−α
2

Table 4.1: Network quantities. Note that c(r, φ) is π
3

periodic for Triangle and Honeycomb
networks.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

En
er

gy

Energy Estimate vs. True, α = 2

manh,true
manh,sum
manh,int
tri,true
tri,sum
tri,int
honey,true
honey,sum
honey,int

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k

4

2

0

2

4

6

8

10

12

%
%

 E
rr

or

Energy Percent Error, α = 2

Figure 4.2: Energy estimates for n ≈ 250 and k = {1, 2, 3, 4, 5}. All sum approximation
estimate (4.1) had no more than 3% error, and all integral approximation estimates (4.2)
had no more than 12% error.

comb networks, which is consistent with the honeycomb networks outperforming the other

networks in our simulations. We suspect that this is related to the classic (and recently

proven [57]) “honeycomb conjecture,” which states that “any partition of the plane into

regions of equal area has perimeter at least that of the regular hexagonal honeycomb tiling”

(quote from [57]). Under the constraint that the “covering radius” of an infinite sensor net-

work is bounded (i.e. every point in the plane is within some distance rmax of a sensor),

for the power law model, we hypothesize that there may be a way to connect the smallest

perimeter problem in [57] with the problem of finding cheapest paths in a wireless sensor

network. We also hypothesize that the good performance of the Honeycomb networks is

derived from the fact that when transmitting a message between two sensors in a Honey-

comb network, the shortest path typically deviates less from an ideal straight-line path than

for the other networks considered here. These hypotheses warrant further investigation in

future work.

104

0 5 10 15 20
k

20000

40000

60000

80000

100000

120000

En
er

gy

Energy Estimate vs. True, α = 2

manh,dijk
manh,sum
manh,int
tri,dijk
tri,sum
tri,int
honey,dijk
honey,sum
honey,int

Figure 4.3: Energy estimates for n ≈ 1000 and k = {1, · · · , 20}.

4.2 The Source Localization Problem

In this section, we review the problem of source localization for sensor networks. Suppose

a source at location θ ∈ BR is emitting electromagnetic or acoustic waves. Each sensor

in our sensor network makes a noisy measurement of the received signal strength of the

source. The goal of a source localization problem is to estimate the source location θ using

the noisy sensor measurements. Specifically, in this section we will consider the centralized

source localization problem, where all sensor measurements are made available at a central

data sink, so that the estimate θ̂ is based on all of the data, and not a subset. This is in

contrast to a decentralized source localization problem, where individual sensors must (a)

decide whether a source is present, and (b) if a source is present, they must collaborate

with neighboring sensors to make an estimate. Our performance metric is the root-mean

squared error between our estimate θ̂ and the true location θ. We present two noise models

for signal strength measurements, derive Cramér-Rao lower bounds to the MSE of the best

unbiased estimation rules for each of these models, and outline a “brute force” Maximum

Likelihood Estimator (MLE) for each model, which estimates the source location by plugging

in candidate values of θ on a search grid into the likelihood function; θ is then estimated to

be the grid value that produces the largest likelihood.

After the problem is introduced in this section, in Section 4.3, we will compare both

the energy performance and accuracy performance of various sensor deployments, and see if

there is a tradeoff between the energy required to make a source location estimate θ̂, and

the quality of the estimate in terms of root mean-squared error.

105

We begin by letting y(θ) ∈ Rn
+ denote a vector of received signal strength (RSS) mea-

surements at the sensor nodes under no noise (one component for each sensor). If the sensors

are sufficiently far from the source (no closer than some ε > 0), we can assume the following

far-field sensing model, where the ith element of y(θ) is modeled according to

yi(θ) =
A

‖xi − θ‖β
,

where A is the known2 reference power of the signal at one meter and β is some sensing

path-loss exponent, typically between 2 and 4 [58].

We consider two measurement (or signal strength) noise models: the Additive White

Gaussian Noise (AWGN) model and the log-normal (LN) model. Excellent descriptions of

both models are given in [58,59]. Under the AWGN model, the observed RSS at node i is

yi = yi(θ) + ui , (4.3)

where each ui is zero-mean i.i.d. Gaussian noise with variance σ2. Thus, our observations

y = [yi]
n
i=1 are distributed as N (y(θ), σ2I). In our experiments, we thresholded any negative

yi value to zero in order to avoid negative RSS readings.

The log-normal model is slightly more realistic than the AWGN model, as it as been ob-

served in practice [60–63] and derived analytically [64]. Under the LN model our observations

are Gaussian in the log domain, i.e. the RSS in dB at the ith sensor node is

yi,db = 10 log10 yi(θ) + vi ,

where each vi is zero-mean i.i.d. Gaussian noise with known standard deviation σdb. Our

vector of observations ydb = [yi,db]
n
i=1 is normally distributed as N (10 log10 y(θ), σ2

db), where

the log10 is an abuse of notation denoting an element-wise logarithm. The standard deviation

σdb is typically observed to be between 4 and 12 [61].

4.2.1 Cramér–Rao Bounds

We briefly derive the Cramér–Rao bounds (CRB’s) for these models, which are lower bounds

on the variance of any unbiased estimator of θ based on a set of observations. The reader

may refer to [58,59] for more thorough derivations.

2Knowing A is a reasonable assumption in applications where we have access to additional information
about the source that we are sensing. For example, in some applications we will have access to a vehicle/cell-
phone/animal that emits EM/acoustic waves, thereby allowing us to measure the signal power at a distance
of 1 meter.

106

Recall that our goal is to estimate θ = [θ1, θ2]
T from RSS observations. If z is a random

vector distributed as N (µ(θ), σ2I), then the jk-th element of the Fisher information matrix

F is

[F]jk =
1

σ2

∂µT

∂θj

∂µ

∂θk
.

The variance of any unbiased estimator of the jth unknown coordinate θ̂j given some obser-

vations z is lower bounded according to Var(θj) ≥ [F−1]jj; this is known as the Cramèr–Rao

Bound. Under the AWGN model, E[z] = y and

∂yi
∂θj

= βA
(xij − θj)
‖xi − θ‖β+2

, j = 1, 2.

Similarly, under the LN model, E[z] = 10 log10 y(θ), and

∂(10 log10 yi)

∂θj
=

10β

ln 10

(xij − θj)
‖xi − θ‖2

, j = 1, 2.

These derivatives are easily computable, and the CRB can be calculated via an inversion of

the 2× 2 Fisher information matrix F .

4.2.2 Maximum Likelihood Estimation

Given some or all sensor observations yi, under both noise models, the maximum likelihood

(ML) solution can be found by minimizing the negative-log likelihood function. Under the

AWGN model, the ML solution for estimating θ from y is given by solving the nonlinear

least-squares problem

θ̂ML = argmin
θ

n∑
i=1

[yi − yi(θ)]
2 .

Similarly, under the LN model, the ML solution of estimating θ from ydb is given by

θ̂ML = argmin
θ

n∑
i=1

[yi,db − 10 log10 yi(θ)]
2 .

In centralized applications, which we consider in Section 4.3, all sensor observations are

transmitted to a central sensor node or data fusion center. In this case, any methods provided

in [59] can be used to solve the ML problem. We implemented their multiresolution search

method, where θ̂ML is calculated by substituting a large number of candidate values of θ on

a grid, first at a coarse search resolution, and then at a fine resolution centered at the coarse

estimate.

107

4.3 Centralized Source Localization on Cutset Networks

25000 30000 35000 40000 45000 50000 55000 60000
Total Energy

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ro
ot

-m
ea

n-
sq

ua
re

d
er

ro
r (

m
)

111
11

1

2 22

2 2

2

3 3
3

3 3

3

4 4

4

4

4

4

5
5

5

5

5

5

Additive White Gaussian Noise Model

rand
manh
tri
honey
rand
manh
tri
honey

25000 30000 35000 40000 45000 50000 55000 60000
Total Energy

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ro
ot

-m
ea

n-
sq

ua
re

d
er

ro
r (

m
)

111 1112 22 2 223 33 3 33 4 44 4 44 5 55 5 55

Log-Normal Model

25000 30000 35000 40000 45000 50000 55000 600001.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

111

1
1

1

2 22

2 22

3 3
3

3
3

3

4 4

4

4

4

4

5
5

5

5
5

5

Figure 4.4: Experimental results for MLE and CRB experiments for both noise models.
Solid lines indicate MLE, and dashed lines indicate CRB. The log-normal plot includes a
zoomed-in plot for closer comparison. The numbers along each data point indicate the k
value of the network.

5 0 5

5

0

5

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

15 10 5 0 5 10 15

15

10

5

0

5

10

15

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

30 20 10 0 10 20 30
20

10

0

10

20

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

30 20 10 0 10 20 30

20

10

0

10

20

0.00

0.36

0.72

1.08

1.44

1.80

2.16

2.52

2.88

5 0 5

5

0

5

1.28

1.32

1.36

1.40

1.44

1.48

1.52

1.56

1.60

15 10 5 0 5 10 15

15

10

5

0

5

10

15

0.98

1.08

1.18

1.28

1.38

1.48

1.58

1.68

1.78

1.88

30 20 10 0 10 20 30
20

10

0

10

20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

30 20 10 0 10 20 30

20

10

0

10

20

0.825

0.975

1.125

1.275

1.425

1.575

1.725

1.875

2.025

Figure 4.5: Cramèr-Rao bound as a function of source position θ; each × marks a sensor
position. Top row: AWGN model. Bottom row: LN model. Left-to-right: Square lattice,
k = 1, Manhattan, k = 5, Triangular, k = 5, Honeycomb, k = 5.

In this section, we merge the results of Sections 4.1 with the review of the source localiza-

tion problem in Section 4.2. Specifically, we run a series of simulations of a centralized source

localization problem, where we generate noisy RSS measurements at each sensor, and then

compute (a) the energy required to transmit all RSS measurements to a central hub, (b) the

Maximum Likelihood Estimate of θ based on all sensor readings, and (c) the Cramér-Rao

108

10 5 0 5 10
10

5

0

5

10
AWGN MLE RMSE [m]

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

(a) AWGN Model

10 5 0 5 10
10

5

0

5

10
LN MLE RMSE [m]

0.84

0.90

0.96

1.02

1.08

1.14

1.20

1.26

1.32

(b) LN Model

Figure 4.6: MLE error distribution for Manhattan grid with n ≈ 250 sensors and k = 5,
search window of circle of radius 30, coarse search resolution 0.15m, fine search resolution
0.01m, 20000 trials.

bound on the variance of any unbiased estimator of θ. Our goal is to compare the energy

required to make an estimate of θ with the quality of the estimate (in MSE) for various

sensor network topologies. In particular, we would like to demonstrate that cutset networks

offer a tradeoff between energy and accuracy when solving a centralized source localization

problem.

4.3.1 Procedure

To test the performance of cutset networks, we followed the following procedure. For a

circular region BR with radius R = 50, we generated various networks of network density

ρ = 250/πR2 according to the procedure in Section 4.1. To test the performance of a ran-

dom network (Fig. 4.1(a)), the sensor positions were randomized for each trial. To test the

performance of deterministic networks, we generated Manhattan, triangular and honeycomb

networks with k = {1, 2, 3, 4, 5}. Note that k = 1 corresponds to the lattices shown in

Fig. 4.1(b,c,d), and a triangular network with k = 1 is exactly equivalent to a triangular net-

work with k = 2 at the same density. Cutset networks with k = 5 are shown in Fig. 4.1(e,f,g).

Energy use was measured by calculating Etrue using Dijkstra’s Algorithm, as described in

Section 4.1. For each network type, 10, 000 trials were performed for both the AWGN and

LN noise models using reference powers A = 100, sensing path-loss α = 2, communication

path-loss β = 2, communication received-power P0 = 1, AWGN noise variance σ2 = 1, and

109

log-normal noise standard deviation σdb = 4. In each trial, the source location θ was chosen

randomly within the red shaded regions in Fig. 4.1. The CRB was calculated for the current

θ value, a new realization of noisy data was generated, and the multiresolution “brute force”

MLE algorithm (Section 4.2.2 was performed to obtain an estimate θ̂ML using a coarse grid

search of 1m over the entire network, followed by a fine grid search of 0.01m centered at the

coarse estimate. Upon completion of all trials, the average CRB along each coordinate θ1

and θ2 was calculated, and then the root-sum of these two average CRB’s was computed,

obtaining a lower bound on Root Mean Squared Error (RMSE) under a uniform prior for θ.

Additionally, the RMSE of the maximum likelihood estimates were calculated. The results

for both noise models are plotted in Figure 4.4. Figure 4.6 shows the results of an additional

experiment designed to show the distribution of MLE errors for a k = 5 Manhattan grid.

4.3.2 Discussion

Figure 4.4 shows how cutset networks offer significant increases in energy efficiency over ran-

dom networks and lattice networks without surrendering much accuracy. This is shown in

both the results of the MLE experiments and the average CRB calculations. The honeycomb

networks with k = 4 had the greatest gains in energy efficiency, offering a factor of 2 im-

provement over random networks and lattices. These energy gains are even more significant

for larger values of the communication path-loss exponent α. We note that an explanation

was given in Section 4.1 for why energy increased from k = 4 to 5 for honeycomb networks.

Finally, as expected, Figure 4.6 show how MLE performed much better near the intersection

of Manhattan grid lines, and much worse near the center of squares where the distance to

the nearest sensor was maximized.

Additionally, Figure 4.5 shows how the CRB varies over position in various cutset net-

works; it was generated by calculating the CRB over a deterministic meshgrid. One expected

result is that the CRB has a local maximum towards the center of the cutset tessellation

shapes, where the smallest distance to any network sensor is maximized. One surprising

result is that the CRB tends to also increase drastically along the cutset lines. We did not

observe a significant increase in errors along these lines while running our MLE experiments;

thus, we would like to determine if these increases lie along a set of zero measure (i.e. along

the cutset lines) or if they increase sharply but smoothly along the direction orthogonal to

the cutset lines. Additionally, we believe that this behavior may be attributed to the fact

that it is difficult to detect the “sign” of the source location when it is close to a cutset line,

i.e. a source on either side of the cutset line at the same distance will produce the same RSS

under no noise.

110

0 20 40 60 80 100
0

20

40

60

80

100

x(1), (m)

x(
2)

, (
m

)

−10

0

10

20

30

Figure 4.7: n = 500 sensors placed along a Manhattan Grid (k = 10) in a 100m × 100m square; each
× denotes one sensor. A source is located at θ = [50, 50]. Contours of constant power under no noise are
shown in dB.

4.4 Decentralized Source Localization on a Manhattan

Network

Thus far, we have focused our attention on using cutset to solve the problem of RSS-based

source localization. In this section, we consider the task of estimating the position of a source

emitting electromagnetic or acoustic waves in a decentralized manner; specifically, this means

that sensors in a sensor network must locally determine (a) if a sensor is present, and if so,

then (b) they must communicate locally with one-another to make an estimate of the source

position θ. We are also interested in solving this decentralized task in an energy-efficient

manner. As a first investigation, we focus only on Manhattan wireless sensor networks.

We begin by reiterating geometric properties of a Manhattan grid. An infinite Manhattan

grid is described by two parameters: its intersensor spacing λ and the Manhattan grid

parameter k. This grid partitions space into kλ × kλ blocks. Associating 2k − 1 sensors

with each block, we see that the sensor density is 2k−1
(kλ)2

. Now suppose we would like to

construct a finite Manhattan grid with n sensors and parameter k over a w × w square

region. Since for some values of k it is impossible to choose λ so that a Manhattan grid with

n sensors and parameters (k, λ) exactly covers the w × w square, we choose sensor spacing

λ = w
√

(2k − 1)/(nk2), and generate a finite Manhattan grid with B =
(
b w
kλ
c
)2

grid blocks

and (2k − 1)B + 2k
√
B − 1 ≈ n sensors.

We now describe the energy cost advantages of communicating data within a Manhattan

grid sensor network, and later we propose the Midpoint Algorithm for further reductions in

energy. Mimicking the analysis in [53,65], the total energy needed for any source localization

111

algorithm is

E = b× h× e, (4.4)

where b is the number of total sensor transmissions made by all sensors in the network, h is

the number of hops through the network per transmission, and e is the energy required to

transmit a single hop. As we will now discuss, e is greatly affected by the choice of sensor

placement, in particular the intersensor spacings, and since for typical algorithms h and b are

not nearly as affected, a first-order approach for comparing the energy performance of various

sensor layouts is to estimate e. To do so, note that the average power emitted by a sensor

at distance d will be modeled as decaying as O(d−α), where α is between 2 and 4. Thus, the

energy required for one communication hop between neighboring sensors is e = O(dα). If

we place n sensors randomly over a w×w square, the average distance between neighboring

sensors is w/
√
n and e = O(n−α/2). However, when the sensors are placed with spacing λ

along a Manhattan grid of parameter k and density n/w2, the distance between neighboring

sensors is λ = w
√

(2k − 1)/nk2, and e = O(k−α/2n−α/2), thus reducing energy by a factor

O(kα/2) over a random placement.

We formulate problem of estimating a source localization θ from noisy observations in a

decentralized manner in Section 4.4.1. In Section 4.4.2, the decentralized Midpoint Algorithm

is proposed to solve the source localization problem on a Manhattan grid. The accuracy

vs. energy performance of the Midpoint Algorithm is discussed in Section 4.4.5 and compared

to the recent decentralized POCS algorithm [2].

4.4.1 Problem Statement

Suppose n sensors are distributed over a w × w square along a Manhattan grid. Along

each row/column of the Manhattan grid, m = w/λ sensors are spaced λ = w
√

(2k − 1)/nk2

apart. For some positive integer k, each row/column of the grid is spaced kλ apart. These

four quantities n,m, k, λ are dependent, so we fix the number of sensors n and vary the

Manhattan grid parameter k.

Let xi = [xi(1), xi(2)] denote the location of the ith sensor. A source with known intensity

A is positioned at unknown location θ = [θ(1), θ(2)] within the w × w square. The source

emits a signal whose strength decays with distance to the power β, where β is typically in

the range of 2 to 4. For this application, we consider only the AWGN noise model (4.3).

For convenience, we reprint it here; recall that for each i, the ith sensor makes a noisy

measurement yi of the received signal strength (RSS), modeled as

yi =
A

‖xi − θ‖β
+ ui. (4.5)

112

where ‖ · ‖ is the Euclidean norm, A and β are fixed and known, and the ui’s are i.i.d.

zero-mean Gaussian noise with known variance σ2. [2] contains more information about the

theory behind this model, and an application using real-world data can be found in [66].

Extensions to noise models involving fading [58] are possible.

Depending upon the sensor deployment geometry and localization algorithm, groups of

neighboring sensors must communicate with each other and decide if the source is within

their vicinity. If so, they must also estimate its location. Hence, our proposed algorithm must

operate in a decentralized manner. A decentralized algorithm’s performance is determined by

(a) the probability that sensors locally close to the source will actually detect the source, (b)

the false alarm probability, i.e., the probability that a sensor located far from the source will

mistakenly declare a detection, and (c) the average squared error between the true location

θ and its estimate θ̂ in cases of a correct detection. We also consider the communication cost

(4.4).

In [53], Rabbat and Nowak proposed a decentralized source localization algorithm based

on incremental subgradient optimization, but they did not specify how to detect the presence

of a source before making an estimate. In [2], Blatt and Hero proposed a decentralized

source localization method based on projections onto convex sets (POCS). This algorithm

required choosing a threshold γ such that all sensors with received RSS greater than γ were

considered active; thus, the detection probability was determined by this threshold. The

active sensors collaborated to produce an estimate of θ based on their RSS measurements.

One improvement of POCS over Rabbat and Nowak’s method was a smaller energy cost

(4.4); in particular, POCS reduced the number of sensor transmissions b required for their

algorithm to converge. Both iterative algorithms can be applied to a Manhattan grid sensor

network to solve the problem of source localization. However, we will propose a non-iterative

algorithm, called the Midpoint Algorithm, that exploits the Manhattan grid geometry to

reduce communication costs at the price of higher estimation error.

Finally, in [67], Rabbat and Nowak consider various estimators to solve the problem of

source localization, including

θ̂ =

∑n
i=1 xi1{yi>γ}∑n
i=1 1{yi>γ}

, (4.6)

where γ is a threshold and 1{yi>γ} is the indicator function. This estimator is simply an

average of active sensor locations, and we modify it for a Manhattan grid in the next section.

4.4.2 Midpoint Algorithm

We can take advantage of the Manhattan grid structure to reduce the communication cost

of forming an estimate of θ. The straight rows of sensors in a Manhattan grid suggest that

113

when a source is close to a row, e.g. a horizontal row, one can estimate the horizontal

position of the source along the row by exploiting the fact that the intensity distribution is

expected to be symmetric. Thus, we can expect the horizontal position to lie at the average

position of the endpoints of the symmetric distribution, i.e., the midpoint of the endpoints of

the distribution. Calculating this midpoint will require very little communication. Likewise,

one can repeat in the vertical direction using Mahattan columns to estimate the vertical

position of the source. One hopes that a very simple, very low energy localization algorithm

will result.

Thus, we propose the Midpoint Algorithm, which differs from the (4.6) in two principal

ways. First, instead of jointly estimating θ(1) and θ(2) from all active sensors, the Midpoint

Algorithm estimates θ(1) from active sensors in Manhattan grid rows, and θ(2) from active

sensors in grid columns. Second, it replaces the average location in (4.6) with the midpoint

between the active sensors in each grid row (grid column) that are farthest apart.

For concreteness, denote the set of sensors in the jth row by

Hj = {i : xi(1) = `λ, xi(2) = jkλ, ` = 0, · · · ,m− 1}.

We say that sensor i in Hj is active if yi > γ for some predetermined threshold γ, and we

say that the jth row Hj is active if it contains an active sensor. Whereas one could estimate

θ(1) from an active row as in (4.6):

θ̂j(1) =

∑
i∈Hj xi(1) · 1{yi>γ}∑

i∈Hj 1{yi>γ}
,

the Midpoint Algorithm estimates θ(1) as

θ̂j(1) =
xa(1) + xb(1)

2
, (4.7)

which is simply the midpoint of the first coordinates of the left- and rightmost active sensors

xa and xb in grid row j. These will be called endpoints of the active row. Similarly, from

sensors in grid columns, an estimate θ̂(2) of θ(2) is made for every active column. If there

is at least one active row and one active column, then an estimate θ̂ = (θ̂(1), θ̂(2)) can be

made for each pairing of an active row and active column. For each such pair, the corner

point shared by the row and column is called a decision corner.

In Section 4.4.3 it will be shown how to choose γ to ensure that with high probability at

least one of the four corners of the kλ× kλ block containing the source is a decision corner

and there are no decision corners outside the block. Section 3.2 describes a distributed

114

communication protocol that distributes endpoint locations so as to (1) enable those corners

lying on the aforementioned block to determine whether or not they are decision corners,

and (2) to enable such decision corners to make their estimates of θ.

Note that in the absence of noise, sensors in a grid row (column) will lie in a single

consecutive interval. Although this does not necessarily happen in the presence of noise,

results in Section 3.2.6 show that the Midpoint Algorithm works well nevertheless.

4.4.3 Choosing the threshold

Our choice of γ heavily impacts the performance of the Midpoint Algorithm. If γ is too

large, then the probability of having at least one decision corner will not be large, i.e., the

probability of missed detection will be too large. If γ is too small, there will be spurious

decision corners, leading to high probability of false alarms and poor estimates of θ. Thus

the goal of this section is to find an upper bound γ1 and lower bound γ2 such that the these

undesirable events occur with low probability for any threshold satisfying γ2 ≤ γ ≤ γ1.

We begin with the upper bound γ1. Let E1 be the event that at least one of the corners of

the kλ× kλ block containing the source is a decision corner, thereby indicating a successful

detection. We want to choose γ1 small enough that the Pr(E1) ≥ 1 − ε1, where ε1 is some

small tolerance. A useful fact is that the closest row sensor and the closest column sensor

to the source are within distance λ
2

√
k2 + 1. If these sensors are active, then E1 occurs.

Therefore, using this fact and the union bound, for any γ,

Pr(E1) ≥ Pr

(
closest row sensor and closest column sensor are both active

)
= 1− Pr

(
closest row sensor inactive or closest column sensor inactive

)
≥ 1− Pr

(
closest row sensor inactive

)
− Pr

(
closest column sensor inactive

)
= 1− 2 Pr

(
closest row sensor inactive

)
= 1− 2 Pr

(
A

(λ
2

√
k2 + 1)β

+ u ≤ γ

)
.

Since u is Gaussian with known variance σ, equating the RHS of the above to 1− ε1 yields

the fact that if

γ ≤ γ1 ,
2βA

(λ
√
k2 + 1)β

− σQ−1
(ε1

2

)
, (4.8)

then Pr(E1) ≥ 1 − ε1. In the above, Q(x) = Pr(X > x) for a zero mean, unit variance

115

Gaussian random variable X, and Q−1 is its inverse function.

In a similar manner, we calculate a threshold lower bound γ2. Consider the event E2

that there are no decision corners outside the kλ× kλ block containing the source, so there

are at most four decisions corners. We want to choose γ so that Pr(E2) ≥ 1− ε2. This also

ensures that the false alarm rate will be at most ε2. Using the fact that E2 occurs when all

sensors farther than kλ from the source are inactive, similar to our derivation for E1, it can

be shown using the union bound that

Pr(E2) ≥ 1− nPr

(
A

(kλ)β
+ u > γ

)
.

Again, equating the RHS of the above event to 1− ε2 yields the fact that if

γ ≥ γ2 ,
A

(λk)β
+ σQ−1

(ε2
n

)
, (4.9)

then Pr(E2) ≥ 1− ε2.
For large k values, the Manhattan grid “block size” kλ becomes very large, and it becomes

physically impossible to detect certain source locations without incurring a large false alarm

rate. Thus, in our experiments, we only choose values of k small enough that γ1 > γ2. We

found that the Midpoint Algorithm performs better for large γ, so we set our threshold to

be the upper bound γ = γ1.

4.4.4 Communication protocol and costs

By our choice of γ in the previous section, with high probability there will be at least one

decision corner on the kλ × kλ block containing the source, and there will be no decision

corners outside this block. We now describe a distributed communication protocol by which

sensors efficiently report endpoint data to corner points, enabling those that are decision

corners to recognize that they are such and to make their estimates.

Assume sensor clocks are synchronized. Time is slotted and the system operates with

cycles of 8m slots, where m is the number of sensors in a row or column. The following

protocol operates during the first 4m slots along rows, and repeats during the next 4m slots

along columns.

During the first m time slots, messages are sent left-to-right across each row of the grid.

Specifically, during slot t, only sensor t of each row may transmit, and neighboring sensor

t+1 listens3. If sensor t of row j did not hear a message (from t−1) during the previous time

3Sensors in adjacent Manhattan grid rows are presumed to be far enough away (at least kλ) that trans-
missions from adjacent grid rows do not interfere.

116

slot, it knows the first active sensor in its grid row has not been found (the first endpoint).

It then compares its measured RSS to the threshold. If yt < γ, sensor t is not active and

does not transmit. However, if yt > γ, sensor t is active and transmits 0 to its neighbor t+1,

thereby marking t as the first endpoint.

If, on the other hand, sensor t did hear a message from t− 1, it increments the message

by 1 and transmits the new message to sensor t + 1. Thus, each message is an integer

representing the distance to the first active sensor in the row. Message-passing ends after

the message is received by two corner sensors (we assume sensors know whether they are

placed on a corner a priori). This requires an extra “corner counting” bit to be sent along

with each transmission.

During the next m time slots, the sensor order is reversed and messages are passed right-

to-left in a similar manner in order to determine the second endpoint in the row. In some

cases, after these 2m time slots, at least one corner knows the locations of both endpoints and

can estimate θ(1). However, if both endpoints are less than k−2 sensors apart, it is possible

that the endpoints lie entirely between two adjacent corners, and these corners will only

know one endpoint apiece. In this case, the two endpoints (and the sensors inbetween) will

know both endpoint locations. Thus, the next 2m time slots are reserved for the endpoints

to transmit the missing endpoint locations to their closest corner sensor.

As mentioned earlier, this protocol is repeated for columns in the next 4m time slots.

After all 8m time slots, any corner that has received both horizontal and vertical pairs of

endpoints, recognizes itself as a decision corner and makes an estimate θ̂. It can be seen that

this protocol finds at least one decision corner on the block containing the source, if there is

one, which happens with high probability.

We now find an upper bound to the communication costs of the protocol. Due to our

choice of threshold, it is easy to see that each decision corner will be within 2k sensors of

an endpoint with probability 1− ε2. It can be shown that this protocol requires at most 4k

transmissions per active row. Each distance transmission requires dlog2(2k)e bits to transmit

endpoint data with an overhead of 1 bit for corner counting, totaling 2 + dlog2 ke bits per

transmission.

4.4.5 Experiments and Results

For our experiments, we chose w = 1000, n = 10, 000, and for various values of k we designed

finite Manhattan grids as described in the introduction. We set A = 10, 000, σ = 1, β = 2,

and the threshold γ was set to the upper bound γ = γ1 with ε1 = ε2 = 10−5. To avoid edge

effects, θ was distributed randomly in a kλ× kλ block near the center of the 1000 m ×1000

117

m square. We tested k = 2, . . . , 14, all of which satisfied the condition γ1 > γ2. For each

value of k, the squared error was calculated for estimates produced by both the Midpoint

Algorithm and the POCS algorithm [2]. 20,000 trials of this experiment were performed,

during which we did not observe any missed detections or false alarms for either algorithm.

In some trials, multiple estimates of θ were generated by the Midpoint Algorithm using

different decision corners. The choice of these multiple estimates did not impact the overall

performance of our algorithm, so we chose an estimate randomly.

The POCS algorithm was chosen for comparison because of its high accuracy and low

communication costs, needing many fewer cycles to converge than other algorithms such

as [53]. POCS also required a choice of threshold γPOCS; we observed that POCS performed

better when a slightly smaller threshold was used than the Midpoint Algorithm. To still

ensure a detection probability of at least 1− ε1 and a false alarm rate less than ε2, we chose

γPOCS = γ2. The POCS algorithm also required a convergence threshold; we used the value

of 10−3 as used in [2]. In addition to running POCS on a Manhattan grid, we ran POCS for

sensors placed on a uniform lattice (labeled k = 1) as well as for randomly placed sensors.

For these experiments, we found that thresholds of γlattice = 360 and γrandom = 15 worked

well (for comparison, γ2 = 106 with k = 1, ε1 = ε2 = 10−5). Note that we need a much

smaller threshold for the random network because, unlike the uniform lattice, we are not

guaranteed to have a sensor close to the source.

In addition, bounds on the energy cost of each algorithm were calculated. Suppose there

are r active sensors above threshold. The POCS algorithm needs some number of cycles c

to converge and one extra cycle to calculate an average estimate of θ. Note that c typically

depends on some convergence criteria; we used the default criteria suggested in [2], which was

that the previous estimate of θ during the last cycle is within 10−3 of the new estimate for the

first sensor in the cycle. For our experiments, c ranged between 4 and 7. Although we used

double precision for θ̂ in our simulation, we assumed that each coordinate of θ was quantized

to 3 significant decimal places when being transmitted, which corresponds to dlog2(103)e = 10

bits per coordinate. Thus, bPOCS = 20 · (c + 1) · r. Finally, we conservatively assumed that

h = 1 for POCS since most transmissions are between neighbors. This is conservative

because some transmissions require inactive sensors to relay data between active sensors, in

which case h > 1. Thus, for each trial we calculated

EPOCS = 20r(c+ 1)λα.

Note that this is a conservative lower bound on the true energy.

Now we consider the energy cost of the Midpoint Algorithm. Define Nrow and Ncol to

118

be the number of active rows and columns, respectively. Following the discussion in Section

4.4.4, at most 4k transmission are needed per active row/column, and we transmit 2+dlog2 ke
bits per transmission. Each transmission is always between neighboring sensors, so unlike

the POCS algorithm, we always have that h = 1. Thus, the total energy required is at most

Emidpoint = 4k(2 + dlog2 ke)(Nrow +Ncol)λ
α.

Observe that the 4k transmissions per active row/column is an upper bound on the number

of transmissions. We emphasize that Emidpoint is a conservative upper bound for the Midpoint

Algorithm, whereas EPOCS is a conservative lower bound for POCS. These energy cost bounds

were calculated for both α = 2 and α = 4. We plotted both the root mean squared error

(RMSE) and root median squared error (RMedSE) vs. energy cost in Figure 4.8. Plotting

the root median squared error is useful because of its insensitivity to outliers.

First, we consider the performance of POCS for either value of α. When POCS was run on

a uniform lattice and Manhattan grid, less energy was used than on a randomly distributed

lattice. However, error also gradually increased as k increased. This shows the fundamental

tradeoff between a random network, a uniform lattice network, and a Manhattan grid. That

is, if we are willing to tolerate an increase in error, the Manhattan grid requires much less

energy.

Now let us compare the performance of the Midpoint Algorithm to POCS. If we are

willing to sacrifice more accuracy, the Midpoint Algorithm uses even less energy than POCS

for all values of k and fixed α. For a fixed accuracy level, it is possible to make POCS

more competitive by choosing a convergence threshold larger than 10−3, thereby reducing

the required number of transmissions while decreasing the accuracy. However, even when we

increased this threshold, we found that the Midpoint Algorithm outperformed POCS for a

fixed achievable accuracy. It is interesting to point out that for k increasing and n fixed, the

energy cost of the Midpoint Algorithm increases for α = 2 and decreases for α = 4. Note

that Emidpoint = O(k1−α/2 log k). Thus, the energy cost increases as O(log k) for α = 2, but

decreases as O(log(k)/k) when α = 4.

4.5 Relay Regions and Relay-efficient Functions

The end-goal of this section and Section 4.6 is to describe energy efficient communication

paths through lattice networks, and determine their energy-per-distance cost. However,

before we investigate communication in a network of many sensors, it is important to consider

the task of communication between a pair of sensors. For some energy models, the best long

119

10
3

10
4

10
5

10
6

10
7

10
8

0

0.5

1

1.5

2

2.5

3

11

22

22

44

44

88

88

1414

1414

Energy Cost

R
oo

t M
ea

n
S

qu
ar

ed
 E

rr
or

 (
m

)

POCS, MGrid, α=2
POCS, MGrid, α=4
Midpoint, α=2
Midpoint, α=4
POCS, Random, α=2
POCS, Random, α=4

10
3

10
4

10
5

10
6

10
7

10
8

0

0.5

1

1.5

2

2.5

11

22

22

44

44

88

88

1414

1414

Energy Cost

R
oo

t M
ed

ia
n

S
qu

ar
ed

 E
rr

or
 (

m
)

POCS, MGrid, α=2
POCS, MGrid, α=4
Midpoint, α=2
Midpoint, α=4
POCS, Random, α=2
POCS, Random, α=4

Figure 4.8: Accuracy vs. energy cost tradeoff for our proposed Midpoint Algorithm and the POCS
algorithm [2] for α = 2 and α = 4. Values of k are labeled for some points. POCS was also run on a uniform
lattice (labeled k = 1) and a randomly distributed network. RMSE vs. energy is shown in (a) and RMedSE
vs. energy cost is shown in (b).

distance communication may simply be to use direct transmission and avoid any relaying

whatsoever, in which case the most efficient path is simply a single, direct hop. A rather

simple example of this is when the cost of communication between two sensors at distance

x is simply a constant, i.e., f(x) = C, for C > 0. However, in some cases, like a power law

f(x) = xβ for β ≥ 2, or a power law plus a constant f(x) = xβ + C with β ≥ 2, it may be

cheaper to avoid direct communication, and instead relay messages through the network.

Therefore, in this section, we take a mathematical look at functions that are used to model

the energy costs of wireless transmission. We are particularly interested in knowing when

it is strictly better to relay through an intermediate sensor when transmitting a message.

Specifically, we are concerned with functions f : R+ → R+ that model the energy required

to transmit a packet of data between two sensor at distance x. We restrict our attention to f

that are continuous, convex, and nondecreasing. These functions may be zero-valued at the

origin (f(0) = 0) or they may have a positive-valued “overhead cost” f(0) > 0. The set of all

points where a relay sensor can be placed in order to reduce the total communication energy

between two sensors property will be called a relay region, and functions f that generate

a nonempty relay region for sufficiently large x will be called relay-efficient functions. An

example of a relay-efficient function is a power-law with exponent greater than or equal to

2; the anxious reader is encouraged to look ahead to Section 4.5.6 for more examples of

relay-efficient and non-relay-efficient functions.

Later, when we consider the problem of finding efficient paths in lattice networks in

120

Section 4.6, it will be important to assume that f(x) is relay efficient. Otherwise, the best

(trivial) path will always be direct transmission.

4.5.1 Relay regions and their properties

Definition 13 (Relay region). Suppose f : R+ → R+ is a continuous, convex, nondecreasing

function. For any two points x,y ∈ R2, define the relay region R(x,y) to be

R(x,y) =
{
z ∈ R2 : f(‖x− z‖) + f(‖z− y‖) < f(‖x− y‖)

}
, (4.10)

where ‖ · ‖ denotes the usual Euclidean 2-norm.

Note that when transmitting a message from a sensor at location x to a sensor at location

y, if R(x,y) is not empty, the total energy cost will be strictly cheaper to relay the message

through a sensor located at any point in R(x,y).

Definition 14 (Standard relay region). Suppose f : R+ → R+ is a continuous, convex,

nondecreasing function. Define the standard relay region to be

R̃(x) =
{

z ∈ R2 : f
(∥∥∥(−x

2
, 0
)
− z
∥∥∥)+ f

(∥∥∥z− (x
2
, 0
)∥∥∥) < f(x)

}
. (4.11)

An example of R̃(x) for f(x) = Px2 for some P > 0 is shown in Figure 4.9(a).

Fact 15. There is a one-to-one correspondence between R(x,y) and R̃(x) defined according

to the rigid motion

R(x,y) = T∠(y−x)R̃(‖x− y‖) +
x + y

2
,

where Tθ denotes a counter-clockwise rotation by θ about the origin.

Proof. Let z̃ ∈ R̃(‖x− y)‖) and define θ = ∠(y − x). Define e1 = (1, 0) and let

z = Tθz̃ +
x + y

2
.

121

(
x
2
, 0
)(

−x
2
, 0
) R̃(x)

(a) R̃(x) forf(x) = Px2

(
x
2
, 0
)(

−x
2
, 0
) Lune(x)

(b) Lune(x)

Figure 4.9: Example of a relay region, and the boundary Lune(x).

Then it is clear that z ∈ R(x,y) since it satisfies

f(‖x− z‖) + f(‖z− y‖) = f

(∥∥∥∥x− Tθz̃− x + y

2

∥∥∥∥)+ f

(∥∥∥∥Tθz̃ +
x + y

2
− y

∥∥∥∥)
= f

(∥∥∥∥x− y

2
− Tθz̃

∥∥∥∥)+ f

(∥∥∥∥Tθz̃ +
x− y

2

∥∥∥∥)
= f

(∥∥∥∥−y − x

2
− Tθz̃

∥∥∥∥)+ f

(∥∥∥∥Tθz̃− y − x

2

∥∥∥∥)
= f

(∥∥∥∥−‖y − x‖Tθe1

2
− Tθz̃

∥∥∥∥)+ f

(∥∥∥∥Tθz̃− ‖y − x‖Tθe1

2

∥∥∥∥)
= f

(∥∥∥∥−‖y − x‖e1

2
− z̃

∥∥∥∥)+ f

(∥∥∥∥z̃− ‖y − x‖e1

2

∥∥∥∥)
= f

(∥∥∥∥−(‖y − x‖
2

, 0

)
− z̃

∥∥∥∥)+ f

(∥∥∥∥z̃− (‖y − x‖
2

, 0

)∥∥∥∥)
< f(‖y − x‖).

A similar argument holds for the converse.

Fact 16 (Convexity of R(x,y) and R̃(x)). If f : R+ → R+ is a continuous, convex, nonde-

creasing function, then R(x,y) is convex for all x,y ∈ R2. Furthermore, R̃(x) must also be

convex.

122

Proof. Suppose r, s ∈ R(x,y), 0 < θ < 1, and t = θr + (1 − θ)s. It suffices to show

t ∈ R(x,y), i.e., f(‖x− t‖) + f(‖t− y‖) < f(‖x− y‖). We have

f(‖x− t‖) + f(‖t− y‖) = f(‖x− θr− (1− θ)s‖) + f(‖θr + (1− θ)s− y‖)

= f(‖θ(x− r) + (1− θ)(x− s)‖) + f(‖θ(r− y) + (1− θ)(s− y)‖)

≤ f(‖θ(x− r)‖+ ‖(1− θ)(x− s)‖) + f(‖θ(r− y)‖+ ‖(1− θ)(s− y)‖)

. . . by triangle inequality with monotonic nondecreasing f(x)

= f(θ‖x− r‖+ (1− θ)‖x− s‖) + f(θ‖r− y‖+ (1− θ)‖s− y‖)

≤ θf(‖x− r‖) + (1− θ)f(‖x− s‖) + θf(‖r− y‖) + (1− θ)f(‖s− y‖)

. . . using convexity of f(x)

= θ [f(‖x− r‖) + f(‖r− y‖)] + (1− θ) [f(‖x− s‖) + f(‖s− y‖)]

< θf(‖x− y‖) + (1− θ)f(‖x− y‖)

. . . by definition of R(x,y)

= f(‖x− y‖).

Finally, the convexity of R̃(x) follows the fact that relay regions and standard relay regions

are related via a rigid motion, as noted in Fact 15.

Fact 17 (Rectangular bound on standard relay region). Suppose f : R+ → R+ is a contin-

uous, convex, nondecreasing function. Then the standard relay region R̃(x) is contained in

the rectangular region

R̃(x) ⊂
[
−1

2
x,

1

2
x

]
×

[
−
√

3

2
x,

√
3

2
x

]
.

Proof. If R̃(x) = ∅, then the result holds trivially. Thus, suppose R̃(x) is not empty. We

first demonstrate that if a point lies outside the horizontal interval [−x
2
, x
2
], then the point

cannot lie in the relay region. Without loss of generality, take z = (z1, z2) where z1 >
x
2
, i.e.,

z1 6∈ [−x
2
, x
2
]. Then we have

f
(∥∥∥(−x

2
, 0
)
− z
∥∥∥)+ f

(∥∥∥z− (x
2
, 0
)∥∥∥)

≥ f
(∥∥∥(−x

2
, 0
)
− (z1, 0)

∥∥∥)+ f
(∥∥∥(z1, 0)−

(x
2
, 0
)∥∥∥)

> f
(∥∥∥(−x

2
, 0
)
−
(x

2
, 0
)∥∥∥)+ f

(∥∥∥(x
2
, 0
)
−
(x

2
, 0
)∥∥∥)

= f(x) + f(0)

≥ f(x),

123

and thus z cannot be contained in R̃(x) by definition. A similar argument holds for z1 < −x
2
.

We now demonstrate that if a point lies outside the vertical interval [−
√
3
2
,
√
3
2

], then the

point cannot lie in the relay region. Without loss of generality, assume that z = (z1, z2),

where z1 ≥ 0 and z2 >
√
3
2

. Then we have

f
(∥∥∥(−x

2
, 0
)
− z
∥∥∥)+ f

(∥∥∥z− (x
2
, 0
)∥∥∥)

> f

(∥∥∥∥∥
(
−1

2
x, 0

)
−

(
0,

√
3

2
x

)∥∥∥∥∥
)

+ f
(∥∥∥z− (x

2
, 0
)∥∥∥)

= f(x) + f
(∥∥∥z− (x

2
, 0
)∥∥∥)

≥ f(x),

and thus z cannot be contained in R̃(x) by definition. Similar arguments hold for the

symmetric cases where z1 ≤ 0 and/or z2 < −
√
3
2

.

Fact 18 (Lune-shaped bound on standard relay region). Define the lens-shaped region

Lune(x) =
{

z ∈ R2 : max
{∥∥∥(−x

2
, 0
)
− z
∥∥∥ ,∥∥∥z− (x

2
, 0
)∥∥∥} ≤ x

}
to be the set of all points that are as least as close to both (−x

2
, 0) and (x

2
, 0) as (−x

2
, 0) is to

(x
2
, 0), as illustrated in Figure 4.9(b). Then

R̃(x) ⊂ Lune(x).

Proof. If R̃(x) = ∅, then the result holds trivially. Thus, suppose R̃(x) is not empty. Let

z ∈ R̃(x) and define dmax = max
{∥∥(−x

2
, 0
)
− z
∥∥ ,∥∥z− (x

2
, 0
)∥∥}. We must have dmax ≤ x

since otherwise dmax > x would imply

f
(∥∥∥(−x

2
, 0
)
− z
∥∥∥)+ f

(∥∥∥z− (x
2
, 0
)∥∥∥) ≥ f(dmax)

≥ f(x), since f nondecreasing,

which contradicts the fact that z ∈ R̃(x) by the definition of R̃(x). Thus, we conclude that

dmax ≤ x and z satisfies the definition of Lune(x).

Fact 19. R̃(x) is an open set.

Proof. If R̃(x) = ∅, then R̃(x) is open (and closed). Suppose then that R̃(x) 6= ∅. Since

R̃(x) is bounded by Fact 17, there exists elements of R2 that are not contained in R̃(x). In

particular, we can choose any sequence of points zi, satisfying zi 6∈ R̃(x) and whose limit

124

is limi→∞ zi = z. Let rx(zi) denote the cost of relaying from
(
−x

2
, 0
)

to
(
x
2
, 0
)

through

zi, i.e., rx(z) is the left-hand side of the inequality defined in (4.11). Thus, since each

zi is not in the standard relay region, we must have that rx(zi) ≥ f(x) for all i. It is

easy to check that rx(zi) is a continuous function of zi. By continuity, we must have that

limi→∞ rx(zi) = rx(limi→∞ zi) = rx(z) ≥ f(x), and thus z is also not contained in R̃(x).

This demonstrates that the complement of R̃(x) is closed, so we must have that R̃(x) is

open.

4.5.2 Relay-efficient functions and their properties

We would like to investigate conditions on x and f such that R̃(x) is nonempty. Such

functions that generate nonempty relay regions for certain values of x will be called relay-

efficient.

Definition 20 (Relay-efficient function). Let f : R+ → R+ be a continuous, convex, non-

decreasing function. We say that f(x) is a relay-efficient function if there exists some finite

efficiency threshold x∗ ≥ 0 generating a nonempty relay region R̃(x) 6= ∅ for all larger x.

We would like to determine sufficient conditions for a a function to be relay-efficient, and

also determine some conditions for when a function is not relay efficient. We begin by noting

a specific family of functions that are not relay-efficient.

Fact 21 (Affine functions are not relay-efficient). For any m ≥ 0 and b ≥ 0, the affine

function f(x) = mx+ b is not relay efficient.

Proof. For all z ∈ R2, we have that

f(‖x− z‖) + f(‖z− y‖) = ‖x− z‖+ b+ ‖z− y‖+ b

≥ ‖x− y‖+ 2b, by tri. ineq.

≥ ‖x− y‖+ b

= f(‖x− y‖).

Therefore, the definition of a relay region is never satisfied, so R̃(x) = ∅, and f(x) is not

relay efficient.

To see what other functions are or are not relay-efficient, we begin by noting that under

reasonable assumptions on f , the cost of relaying is always lower bounded by the cost of

relaying through the midpoint between two sensors. In the case of R̃(x), this is the origin.

125

Fact 22. Suppose f : R+ → R+ is a continuous, convex, nondecreasing function. For any

z ∈ R2, the cost of relaying from (−x
2
, 0) to (x

2
, 0) through z is lower bounded by the cost of

relaying through the origin. Mathematically, we have

f
(∥∥∥(−x

2
, 0
)
− z
∥∥∥)+ f

(∥∥∥z− (x
2
, 0
)∥∥∥) ≥ 2f

(x
2

)
. (4.12)

Proof. We consider two cases. In the first case, let z ∈ {(z1, z2) ∈ R2 : |z1| ≤ x
2
}. Then

f
(∥∥∥(−x

2
, 0
)
− z
∥∥∥)+f

(∥∥∥z− (x
2
, 0
)∥∥∥)

≥ f
(∥∥∥(−x

2
, 0
)
− (z1, 0)

∥∥∥)+ f
(∥∥∥(z1, 0)−

(x
2
, 0
)∥∥∥)

= f(|1
2
x+ z1|) + f(|z1 − 1

2
x|)

= f(|1
2
x+ z1|) + f(|1

2
x− z1|)

= f(1
2
x+ z1) + f(1

2
x− z1) since x/2 ≥ z1

= 2
[
1
2
f(1

2
x+ z1) + 1

2
f(1

2
x− z1)

]
≥ 2f(1

2
[(1

2
x+ z1) + (1

2
x− z1)]), by convexity

= 2f(x
2
).

In the second case z ∈ {(z1, z2) ∈ R2 : |z1| > x
2
}. The result follows by noting it is simply

cheaper to skip the first hop and only use the second hop. Mathematically, this is represented

as

f
(∥∥∥(−x

2
, 0
)
− z
∥∥∥)+f

(∥∥∥z− (x
2
, 0
)∥∥∥)

≥ f
(∥∥∥(−x

2
, 0
)
−
(
−x

2
, 0
)∥∥∥)+ f

(∥∥∥(−x
2
, 0
)
−
(x

2
, 0
)∥∥∥)

= f(0) + f(x)

≥ 2f(x
2
), by above result with z = (±x

2
, 0).

As a result of this lower bound, it is important to note that (0, 0) ∈ R̃(x) is a necessary

and sufficient condition for R̃(x) being nonempty.

Corollary 23. Suppose f : R+ → R+ is a continuous, convex, nondecreasing function.

R̃(x) 6= ∅ if and only if (0, 0) ∈ R̃(x).

126

Proof. If (0, 0) ∈ R̃(x), then we trivially have that R̃(x) 6= ∅. To show the converse,, assume

that R̃(x) is nonempty, and let z ∈ R̃(x). By Fact 22, the cost of relaying through z is lower

bounded by the cost of relaying through the origin. Combining these facts, we get

f(x) > f
(∥∥∥(−x

2
, 0
)
− z
∥∥∥)+ f

(∥∥∥z− (x
2
, 0
)∥∥∥) ≥ 2f

(x
2

)
which demonstrates that the origin satisfies the definition of the standard relay region (4.11).

Due to the result of Corollary 23, it will be useful to define a function that models the

cost of relaying through the midpoint of two sensors, and then compare it to f(x).

Definition 24 (Midpoint relay function). Suppose f : R+ → R+ is a continuous, convex,

nondecreasing function. Define the midpoint relay function r corresponding to f to be

r(x) , 2f
(x

2

)
. (4.13)

We note that r(x) must also be continuous, convex, and nondecreasing. Later on in this

section, we will also find it useful to model the cost of relaying through other points on the

line segment connecting two sensors.

Definition 25 (ε-relay function). Suppose f : R+ → R+ is a continuous, convex, non-

decreasing function with corresponding midpoint relay function r. For any ε ∈ [0, 1), the

ε-relay function rε(x) is defined as

rε(x) , f

(
(1− ε)x

2

)
+ f

(
(1 + ε)x

2

)
, (4.14)

or equivalently,

rε(x) =
1

2
r ((1− ε)x) +

1

2
r ((1 + ε)x) . (4.15)

We note that rε must also be continuous, convex, and nondecreasing. Also note that

r0(x) = r(x) in the special case of ε = 0.

We would now like to compare how the cost of direct transmission f(x) compares to

the cost of relaying through the midpoint r(x). Note that at zero, these functions satisfy

r(0) = 2f(0) ≥ f(0). Since f(x) is nonnegative, either these functions have the same cost

of transmission at x = 0, or it is more expensive to relay. Thus, it will be useful to show

that the difference between f(x) and the midpoint relay function r(x) is nondecreasing. This

monotonicity will eventually help us determine if and when the functions are guaranteed to

127

intersect. However, before we do so, the following equivalent definition of a convex function

will be useful for remaining analysis.

Fact 26 (Nondecreasing slope of secant lines for convex functions). Let f be defined on an

interval containing x1, x2. f is convex if and only if the function

M(x1, x2) =
f(x1)− f(x2)

x1 − x2
(4.16)

is nondecreasing in x1 for fixed x2, and vice-versa. We note that M(x1, x2) is the slope of

the secant line connecting (x1, f(x1)) with (x2, f(x2)).

Proof. This is an equivalent definition for a convex function.

Corollary 27. Let f : R+ → R+ be a convex function that is not identically zero for all x.

Then limx→∞
f(x)
x

exists and satisfies limx→∞
f(x)
x
> 0.

Proof. By Fact 26, for x > 0, the function M(x, 0) = f(x)−f(0)
x−0 is nondecreasing in x. Since

f is not identically zero, then M(x, 0) must be positive for some x′ ≥ 0. Thus, M(x, 0) has

a limit, and it must be either some positive number C or ∞.

Now, since f(x)
x

can be rewritten as

f(x)

x
=
f(x)− f(0)

x− 0
+
f(0)

x

= M(x, 0) +
f(0)

x
,

and the limit of the RHS is either some positive C or∞, we must have that the limit of f(x)
x

exists and is either some positive C or ∞.

Fact 28. Let f : R+ → R+ be a continuous, convex, nondecreasing function with correspond-

ing relay function r. For any y > x ≥ 0, the difference function

g(x) = f(x)− r(x).

satisfies
g(y)− g(x)

y − x
≥ 0, ∀y > x ≥ 0. (4.17)

Additionally, (4.17) implies that g is nondecreasing since y > x and (4.17) together imply

g(y)− g(x) ≥ 0, ∀y > x ≥ 0. (4.18)

128

Proof. We have that

g(y)− g(x)

y − x
=
f(y)− 2f(y

2
)− f(x) + 2f(x

2
)

y − x

=
f(y)− f(x)

y − x
−

2f(y
2
)− 2f(x

2
)

y − x

=
f(y)− f(x)

y − x
−
f(y

2
)− f(x

2
)

y
2
− x

2

≥ f(y)− f(x)

y − x
−
f(y)− f(x

2
)

y − x
2

by Fact 26

≥ f(y)− f(x)

y − x
− f(y)− f(x)

y − x
by Fact 26

= 0.

The nondecreasing property 4.18 follows from multiplying both sides of the above by (y−x) >

0.

From Fact 28, if r(x) < f(x), then any larger x′ > x must also satisfy r(x′) < f(x′).

Fact 29. Let f : R+ → R+ be a continuous, convex, nondecreasing function. If R̃(x) 6= ∅
for some x, then for any x′ > x, we must also have that R̃(x′) 6= ∅.

Proof. Since g(x) = f(x)− r(x) is nondecreasing by Fact 28, g(x) = f(x)− r(x) > 0, then

we must also have that g(x′) = f(x′)− r(x′) > 0 for all x′ > x, which implies f(x′) > r(x′),

which implies that the origin must be contained in R̃(x′).

From the previous fact, if R̃(x) is nonempty for some x, then there must exist a unique

smallest x∗ such that it will be strictly better to relay if x is bigger than x∗, and it will be

as good or worse to relay if x ≤ x∗. If there exists no such x∗, then we will define x∗ =∞.

Definition 30 (Efficiency threshold for relay-efficient function). Let f : R+ → R+ be a

continuous, convex, nondecreasing function. Define the efficiency threshold x∗ to be the

largest x such that the relay region is empty:

x∗ = sup {x ≥ 0 : r(x) ≥ f(x)} . (4.19)

Note that x∗ is well defined since x = 0 is always in the set. Note that x∗ is finite if and

only if f is relay-efficient.

Proof. By Fact 29. If x∗, is finite, then all larger values of x will generate a nonempty relay

region, and thus f is relay-efficient by definition. If x∗ is infinite, the relay-region will always

be empty, and thus f is not relay-efficient.

129

Fact 31 (Properties of the efficiency threshold). Let f : R+ → R+ be a continuous, convex,

nondecreasing function with efficiency threshold x∗. The efficiency threshold x∗ satisfies the

following properties:

1. If x∗ is finite, then x∗ satisfies the equality

2f

(
x∗

2

)
= r(x∗) = f(x∗), x∗ finite. (4.20)

2. All larger values of x satisfy

2f
(x

2

)
= r(x) < f(x), x > x∗. (4.21)

3. All smaller values of x satisfy

2f
(x

2

)
= r(x) ≥ f(x), 0 ≤ x < x∗. (4.22)

4. All smaller values of x satisfy

f(x
2
)− f(0)
x
2

≤ f(x)− f(0)

x
≤
f(x

2
)− f(0)
x
2

+
f(0)

x
, 0 < x < x∗. (4.23)

5. f(x) is increasing for x > x∗.4

6. If f(0) = 0 and f(x) is not linear on [0, x′] for every x′ > 0, then x∗ = 0.

7. If f(0) = 0 and f(x) is strictly convex on x > 0, then x∗ = 0.

Proof. Item 1: From Fact 28, we know that g(x) = f(x) − r(x) is nondecreasing, and it

must also be continuous since both f and r are continuous. For Item 1, assume that x∗ is

finite. By continuity, we must have that g(x∗) = 0, which implies r(x∗) = f(x∗). To see

why, note that g(x∗) = c > 0 will violate the continuity of g(x). Specifically, by definition of

supremum, for any 0 < ε ≤ x∗, we have that x∗− ε must be in the set {x ≥ 0 : r(x) ≥ f(x),

which is equivalent to g(x∗ − ε) ≤ 0. However, this implies that there is a discontinuity of

at least c at x∗, which violates our continuity assumption.

Items 2 and 3: From Item 1, we have that x∗ finite implies that x∗ ∈ {x ≥ 0 :

r(x) ≥ f(x)}, so this set is either a closed interval of the form [0, x∗] if x∗ is finite, or

4Although this may seem obvious, we have to account for the fact that f(x) may be constant on the
interval [0, c] for some c > 0 while still satisfying convexity and nondecreasing properties.

130

the interval [0,∞) if x∗ is infinite, which implies (4.22) in Item 3. Similarly, since the set

{x ≥ 0 : r(x) < f(x)} is the complement of the above set, it must either be an interval of

the form (x∗,∞) if x∗ is finite, or ∅ if x∗ is infinite, which implies (4.21).

Item 4: The lower bound follows directly from convexity, as noted in Fact 26. For the

upper bound, since x < x∗, we can rearrange (4.22) to obtain

f(x) ≤ r(x) = 2f
(x

2

)
⇒ f(x)

2
≤ f

(x
2

)
⇒ f(x)− 2f(0)

2
≤ f

(x
2

)
− f(0)

⇒ f(x)− 2f(0)

2x
≤
f(x

2
)− f(0)

x

⇒ f(x)− 2f(0)

x
≤
f(x

2
)− f(0)
x
2

⇒ f(x)− f(0)

x
− f(0)

x
≤
f(x

2
)− f(0)
x
2

⇒ f(x)− f(0)

x
≤
f(x

2
)− f(0)
x
2

+
f(0)

x
.

Item 5: For contradiction, suppose f is not strictly increasing for x > x∗. Since f is

convex and nondecreasing, we must have that f is constant for some interval after x∗, i.e.,

there exists some ε > 0 such that f(x∗) = f(x∗ + ε). By (4.20), we have that f(x∗ + ε) =

r(x∗). Furthermore, g(x∗ + ε) = f(x∗ + ε) − r(x∗ + ε) > 0 by (4.21). Substituting yields

r(x∗)− r(x∗ + ε > 0), which implies that r(x) is decreasing, which is a contradiction. Thus,

we must have that f is monotonically increasing for x > x∗.

Item 6: Since f(0) = 0 = r(0), then x = 0 satisfies f(x) ≤ r(x). For any larger x > 0,

since f(x) is not linear on [0, x], it must be strictly convex on this interval. Strict convexity

implies

1

2
f(x) +

1

2
f(0) > f

(x
2

)
⇒ 1

2
f(x) > f

(x
2

)
, since f(x) = 0

⇒ f(x) > 2f
(x

2

)
⇒ f(x) > r(x),

and we must have that x∗ < x. Thus, we must have that x∗ = 0.

Item 7: Follows immediately from Item 6, since strictly convex functions are not linear.

131

Fact 32 (Distance-scaling property of relay-efficient functions). Let f : R+ → R+ be a

continuous, convex, nondecreasing, relay-efficient function with efficiency threshold x∗. For

any a > 0, the distance-scaled function f̃ : R+ → R+ defined by f̃(x) = f(ax) is also

continuous, convex, nondecreasing, and relay-efficient with efficiency threshold x̃∗ = x∗

a
.

Proof. By properties of continuous, convex, nondecreasing functions, it is easy to see that f̃

is also continuous, convex, and nondecreasing. Define r̃(x) = 2f̃
(
x
2

)
. It is easy to see that

x̃∗ satisfies

r̃(x̃∗) = 2f̃

(
x̃∗

2

)
= 2f

(
a
x∗

2a

)
= 2f

(
x∗

2

)
= f (x∗)

= f

(
a
x∗

a

)
= f (ax̃∗)

= f̃(x̃∗),

and from a similar argument, it can be shown that r̃(x) < f̃(x) for all larger x > x̃∗ and

r̃(x) ≥ f̃(x) for all smaller 0 ≤ x ≤ x∗. Thus, f̃(x) is relay efficient with efficiency threshold

x̃∗.

Fact 33 (Linear combinations of distance-scaled relay-efficient functions are relay-efficient).

Let fi, i = 1, · · · , n be finite set of continuous, convex, nondecreasing, relay-efficient functions

with efficiency threshold x∗i , and let ai, i = 1, . . . , n, and bi, i = 1, . . . , n be sequences of

positive numbers. The function

f(x) =
n∑
i=1

bifi(aix)

is relay efficient whose efficiency threshold satisfies

0 ≤ x∗ ≤ max
i=1,...,n

{
x∗i
ai

}
.

132

Proof. By properties of continuous, convex, and nondecreasing functions, f must also be

continuous, convex and nondecreasing. By Fact 32, for each i we have that each fi(aixi)

must be relay efficient. To see that f is relay efficient, take any x > maxi=1,...,n

{
x∗i
ai

}
, and

check its midpoint relay function to obtain

r(x) , 2f
(x

2

)
=

n∑
i=1

2bifi

(
ai
x

2

)
=

n∑
i=1

ri (aix)

<

n∑
i=1

fi (aix) , since x > max
i=1,...,n

{
x∗i
ai

}
= f(x),

which implies that R̃(x) is not empty, and that there exists a finite efficiency threshold x∗

that must be equal to or smaller than maxi=1,...,n

{
x∗i
ai

}
.

Corollary 34. Let f : R+ → R+ be a continuous, convex, nondecreasing function, and

suppose that f is relay efficient with efficiency threshold x∗. Then for every ε ∈ [0, 1), there

exists a finite value x∗ε, such that x > x∗ε implies that it is cheaper to relay through a sensor

located at
(
± ε

2
x, 0
)
, i.e., the ε-relay function rε satisfies

f

(
(1− ε)x

2

)
+ f

(
(1 + ε)x

2

)
= rε(x) < f(x), x > x∗ε.

and thus the points
(
± ε

2
x, 0
)

must be contained in R̃(x). Furthermore, the threshold x∗ε is

upper bounded by

x∗ε ≤
2x∗

1− ε
. (4.24)

Finally, for all 0 ≤ ε′ < ε, if x > x∗ε, then
(
± ε′

2
x, 0
)
∈ R̃(x).

Proof. Since rε is a linear combination of scaled relay-efficient functions, the result follows

directly from Fact 33, since the efficiency threshold must exist and satisfies

x∗ε ≤ max

{
2x∗

1 + ε
,

2x∗

1− ε

}
=

2x∗

1− ε
.

Furthermore, by the definition of the standard relay region, since rε(x) < f(x), and rε(x)

is the cost of relaying through
(
± ε

2
x, 0
)
, then these two points must be contained in R̃(x).

133

Finally, by the convexity of R̃(x), for all 0 ≤ ε′ < ε, if x > x∗ε, then
(
± ε′

2
x, 0
)
∈ R̃(x).

Fact 35 (Sufficient conditions for relay efficiency). Let f : R+ → R+ be a continuous,

convex, nondecreasing function. f is relay efficient if any of the following are true:

(a) limx→∞
f(x)
x

=∞, or

(b) f(0) = 0 and f is not a linear function.5

Proof. For (a), if f satisfies limx→∞
f(x)
x

= ∞, then we must have that x∗ is finite. To see

why, using a proof by contradiction, suppose x∗ is not finite. Then all x > 0 must satisfy

the inequality (4.23). However, rearranging inequality (4.23) yields

f(x
2
)

x
2

− f(0)

x
≤ f(x)

x
≤
f(x

2
)

x
2

.

If we recursively apply the upper bound of this inequality, we get

f(x
2
)

x
2

≥ f(x)

x
≥ f(2x)

2x
≥ f(4x)

4x
≥ · · ·

and we see that it is impossible to have limx→∞
f(x)
x

= ∞. Thus, we must have that x∗ is

finite, and thereby f is relay efficient.

For (b) we have that f(0) = 0 and f(x) is not a linear function Once again, for contra-

diction, suppose x∗ is infinite so that the inequality (4.23) holds for all x > 0. If we apply

f(0) = 0 to the inequality (4.23) we get

f(x
2
)

x
2

≤ f(x)

x
≤
f(x

2
)

x
2

.

which implies the equality
f(x

2
)

x
2

=
f(x)

x

which reduces to 2f(x/2) = f(x) for all x > 0. By the definition of a convex function,

since this holds for all x > 0, we must have that f is linear, which contradicts our original

assumption that f is not linear. We thus conclude that x∗ must be finite.

5We tried to show that these were also necessary conditions, but there were some counterexamples. See
the later section on examples/counterexamples.

134

(
x
2
, 0
)(

−x
2
, 0
)

δ1(x)

δ2(x)

Figure 4.10: D(x; δ1(x), δ2(x))

4.5.3 The size and shape of R̃(x)

In this section, for relay-efficient f , we want to see how the size and shape of R̃(x) behaves

as x grows. This will be useful in demonstrating that for large distances x, the relay region

must contain a sensor, e.g., the relay region must contain a sensor in a lattice sensor network.

Definition 36 (Strongly relay-efficient function). Let f : R+ → R+ be a continuous, convex,

nondecreasing function. f is strongly relay-efficient if it is relay efficient and its correspond-

ing relay region satisfies

lim inf
x→∞

|R̃(x)|
x2

> 0.

Alternatively, f is strongly relay efficient if the relay region R̃(x) grows as Θ(x2).

It will be easy to analyze the limiting behavior of R̃(x) if we can identify a diamond-

shaped subset of R̃(x) of the form

D(x; δ1(x), δ2(x)) = Conv {(−δ1(x), 0) , (δ1(x), 0) , (0,−δ2(x)) , (0, δ2(x))} , (4.25)

where δ1(x) and δ2(x) and positive-valued functions, and Conv(S) denotes the convex hull of

S. By Fact 16, if the four points {(−δ1(x), 0) , (δ1(x), 0) , (0,−δ2(x)) , (0, δ2(x))} are contained

in R̃(x), then the convex hull is also contained in R̃(x). Consequently, the area of R̃(x) is

lower bounded by the area of D(x; δ1(x), δ2(x), which is

|D(x; δ1(x), δ2(x))| = 2δ1(x)δ2(x)

Thus, to demonstrate strong relay-efficiency, it will be sufficient to show that both δ1(x) and

δ2(x) are of order x. Note that the rectangular bounds of Fact 17 imply that δ1 must satisfy

δ1(x) < x
2
, and δ2(x) must satisfy δ2(x) <

√
3
2

. An depiction of D(x; δ1(x), δ2(x)) is shown in

Figure 4.10.

135

4.5.3.1 Horizontal width δ1(x)

We begin by trying to find a horizontal width δ1(x) such that the points ±(δ1(x), 0) are

contained in the standard relay region.

Fact 37. Let f : R+ → R+ be a continuous, convex, nondecreasing function that is relay-

efficient with efficiency threshold x∗. For x ≥ 4x∗, define

δ1(x) =
x

2
− 2x∗, x ≥ 4x∗. (4.26)

Then the points (±δ1(x), 0) are contained in R̃(x).

Proof. First, the points (±δ1(x), 0) can be rewritten as
(
± ε(x)

2
x, 0
)

, where

ε(x) =
2δ1(x)

x
, x ≥ 4x∗.

It is easy to see that ε(x) ∈ [0, 1) for all x ≥ 4x∗, since it can be rewritten as

ε(x) = 1− 4x∗

x
, x ≥ 4x∗.

Therefore, by Corollary 34, for every ε(x) ∈ [0, 1), there must exist an x∗ε(x) such that

x′ > x∗ε(x) implies
(
± ε(x)

2
x′, 0

)
are contained in R̃(x′). We now show that x always satisfies

x > x∗ε(x), so that the points (±δ1(x), 0) are always contained in R̃(x). Beginning with the

upper bound (4.24), we have

x∗ε(x) ≤
2x∗

1− ε(x)
=

2x∗

1− 1 + 4x
∗

x

=
2x∗

4x∗
x =

x

2
< x.

Since x > x∗ε(x) for all x ≥ x∗, we must have that (±δ1(x), 0) is contained in R̃(x).

It will also be interesting to see how δ1(x) behaves in the limit.

Corollary 38. Let f : R+ → R+ be a continuous, convex, nondecreasing function that is

relay-efficient with efficiency threshold x∗, and let δ1(x) be defined as in (4.26). Then as x

becomes large, we have that

lim
x→∞

δ1(x)

x
=

1

2
. (4.27)

Thus, in the limit as x becomes large, the relay region R̃(x) contains the interval
(
−x

2
, x
2

)
on

the horizontal axis.

136

Proof. Follows directly from applying the limit to (4.26) and the fact that all points between

δ1(x) and the origin must be contained in R̃(x) by the convexity of R̃(x).

4.5.3.2 Vertical height δ2(x)

We would now like to find a vertical height function δ2(x). It will first be useful to state a

few facts.

Fact 39. Let f : R+ → R+ be a continuous, convex, nondecreasing function, and suppose

f(x) is relay-efficient with efficiency threshold x∗. The following are true:

(a) f is increasing for x > x∗ (same as Fact 31.5).

(b) For y ≥ f(x∗), the inverse function f−1(y) exists and is continuous, increasing, and

concave.

(c) For x ≥ f−1(2f(x∗)), define the hypotenuse function6.

h(x) = f−1
(
f(x)

2

)
, x ≥ f−1(2f(x∗)) (4.28)

is well-defined, continuous, and increasing.

(d) For x ≥ f−1(2f(x∗)), the compound function h(x) is upper-bounded by

h(x) < x, x ≥ f−1(2f(x∗)). (4.29)

(e) For x > x∗, the hypotenuse function h(x) is lower-bounded by

h(x) >
x

2
, x > x∗. (4.30)

(f) The function h(x)
x

is bounded by
1

2
<
h(x)

x
< 1. (4.31)

(g) Let f(x) be a relay-efficient function that is also twice-differentiable, f ′′(x) is nondecreas-

ing, and f ′′(x) > 0 for sufficiently large x. Additionally, suppose f(x) and its derivatives

satisfy [f ′(x)]2 − f(x)f ′′(x) ≥ 0. Then

h(x) ≥ x− f ′(x)

f ′′(x)
+

√(
f ′(x)

f ′′(x)

)2

− f(x)

f ′′(x)
(4.32)

6The term “hypotenuse” refers to the fact that h(x) is exactly the length of the hypotenuse of the right
triangle formed by (0, δ2(x)) and (x

2 , 0)

137

We note that f−1(y) may exist for smaller values of y than those noted here. However, since

we will be looking at large values of y, and so course lower bounds on the existence of f−1(y)

will suffice.

Proof. (a) This property is repeated here for convenience. See Fact 31.5 for a proof.

(b) Follows from the fact that f is increasing, continuous and convex for x > x∗.

(c) Follows from combining the fact that f(x)
2

is continuous and increasing with the fact

that f−1 is continuous and increasing. We can check that h is increasing since for any

y > x > f−1(2f(x∗)),

h(y)− h(x) = f−1
(
f(y)

2

)
− f−1

(
f(x)

2

)
> f−1

(
f(y)

2

)
− f−1

(
f(y)

2

)
, both f and f−1 increasing

= 0.

(d) Upper bound follows from fact that f−1(y) increasing implies f−1(f(x)/2) < f−1(f(x)) =

x.

(e) Lower bound follows from fact that x > x∗ implies r(x) < f(x) which implies f(x/2) <

f(x)/2. Since f−1 is monotonic, this further implies x/2 < f−1(f(x)/2).

(f) Follows from (d) and (e).

(g) First, assume x is large so that h is defined. Assume that f is twice-differentiable and

f ′′ is nondecreasing, and that f ′′(x) > 0 for large x. We begin by taking a 2nd order

Taylor expansion of f at x

f̃(z) = f(x) + f ′(x)(z − x) +
f ′′(x)

2
(z − x)2

and note that for z < x, by convexity and the fact that f ′′ is nondecreasing, this must

be an upper bound f(x) ≤ f̃(x). Since f̃(z) this is an upper bound for f(x) when z < x,

then f̃−1(y′) must be a lower bound for f−1(y). Thus, we would like to solve f̃(x) = y

for x and take the larger root to get a tighter bound. If we expand f̃(x)− y = 0 we get(
f ′′(x)

2

)
z2 + (f ′(x)− xf ′′(x)) z +

(
f(x)− xf ′(x) +

f ′′(x)

2
x2 − y

)
= 0.

138

Before applying the quadratic formula, let us calculate the discriminant D:

D = (f ′(x)− xf ′′(x))2 − 4
f ′′(x)

2

(
f(x)− xf ′(x) +

f ′′(x)

2
x2 − y

)
= [f ′(x)]2 − 2xf ′(x)f ′′(x) + x2[f ′′(x)]2 − 2f ′′(x)

(
f(x)− xf ′(x) +

f ′′(x)

2
x2 − y

)
= [f ′(x)]2 − 2xf ′(x)f ′′(x) + x2[f ′′(x)]2

− 2f(x)f ′′(x) + 2xf ′(x)f ′′(x)− x2[f ′′(x)]2 + 2yf ′′(x)

= [f ′(x)]2 − 2f(x)f ′′(x) + 2yf ′′(x).

Now we apply the quadratic formula to obtain

f̃−1(y) =
− (f ′(x)− xf ′′(x)) +

√
[f ′(x)]2 − 2f(x)f ′′(x) + 2yf ′′(x)

2f
′′(x)
2

= x− f ′(x)

f ′′(x)
+

√(
f ′(x)

f ′′(x)

)2

− 2
(f(x)− y)

f ′′(x)
.

Since h(x) = f−1
(
f(x)
2

)
and f−1(y) ≥ f̃−1(y), we can lower bound h(x) using our Taylor

expansion

h(x) = f−1
(
f(x)

2

)
≥ f̃−1

(
f(x)

2

)

= x− f ′(x)

f ′′(x)
+

√(
f ′(x)

f ′′(x)

)2

− 2
(f(x)− f(x)

2
)

f ′′(x)

= x− f ′(x)

f ′′(x)
+

√(
f ′(x)

f ′′(x)

)2

− f(x)

f ′′(x)
.

If f(x) and its derivatives satisfy [f ′(x)]2 − f(x)f ′′(x) ≥ 0, then this bound will always

be well-defined.

We now would like to apply these results and determine how R̃(x) behaves along the

vertical axis.

Fact 40. Let f : R+ → R+ be a continuous, convex, nondecreasing function that is relay-

139

efficient with efficiency threshold x∗. For x ≥ f−1(2f(x∗)) > x∗, define

δ2(x) =

√
h2(x)− x2

4
, x ≥ f−1(2f(x∗)). (4.33)

Then all points on the vertical open interval (0, 0) × (−δ2(x), δ2(x)) are contained in R̃(x).

Note that since the points (0,±δ2(x) are not contained in R̃(x), we must have that δ2(x) is

the tightest upper bound to our relay region along the vertical axis in R2.

Proof. For all ε ∈ [0, 1), define

δ̃2(x, ε) = εδ2(x), ε ∈ [0, 1), x ≥ f−1(2f(x∗)). (4.34)

We demonstrate that the cost of relaying through any of the points (0,±δ̃2(x, ε)) ∈ R̃(x) is

cheaper than direct transmission. Take any x > f−1(2f(x∗)) (which is also greater than x∗).

Since these points, the origin, and the transmission sensor forms a right triangle, we have

the cost of transmission is

2f

(√
δ̃22(x, ε) +

x2

4

)
= 2f

(√
ε2δ22(x) +

x2

4

)

< 2f

(√
δ22(x) +

x2

4

)
, f strictly increasing by Fact 31.5

= 2f

(√
h2(x)− x2

4
+
x2

4

)
= 2f(h(x))

= 2f

(
f−1

(
f(x)

2

))
= f(x).

Thus, these points are contained in R̃(x) by definition.

Once again, it will be useful to see how δ2(x) behaves in the limit. Dividing by x and

taking a limit yields

lim
x→∞

δ2(x)

x
=

√(
lim
x→∞

h(x)

x

)2

− 1

4
, (4.35)

Note that this limit may not always exist since it requires that limx→∞
h(x)
x

exist. However

we can consider a few cases where the limit of δ2(x)
x

does exist.

140

Fact 41. Let f : R+ → R+ be a continuous, convex, nondecreasing function, and suppose f

is relay-efficient with efficiency threshold x∗. If limx→∞
f(x)
x

= C for some C > 0, then

lim
x→∞

h(x)

x
=

1

2
,

which in turn implies that

lim
x→∞

δ2(x)

x
= 0.

and thus f(x)
x

cannot be strongly relay-efficient.

Proof. If limx→∞
f(x)
x

= C for some C > 0, we must have that limx→∞
x

f(x)
= 1

C
. Using

several variable transforms and the fact that both f(x) and f−1(y) diverge to infinity for

large values, we have that

lim
x→∞

h(x)

x
= lim

x→∞

f−1
(
f(x)
2

)
x

= lim
y→∞

f−1
(
y
2

)
f−1(y)

, let x = f−1(y)

=
1

2
lim
y→∞

f−1
(
y
2

)
y
2

· y

f−1(y)

=
1

2
lim
y→∞

f−1
(
y
2

)
y
2

· lim
y′→∞

y′

f−1(y′)

=
1

2
lim
x→∞

x

f(x)
· lim
x′→∞

f(x′)

x′
, le y = 2f(x) and y′ = f(x′)

=
1

2
· 1

C
· C

=
1

2
,

and thus we must have that H = 1
2
. The result for δ2(x)

x
then follows from (4.35). Since this

bounds R̃(x) along the vertical axis by Fact 40, we must have that limx→∞
|R̃(x)|
x2

= 0, and

f(x) is not strongly relay efficient.

4.5.4 Energy-efficient hop lengths

So far, we have characterized several thresholds (x∗ and d∗) that describe when it is possible

to relay efficiently, and when a relay sensor must exist in a lattice sensor network. In this

section we ask a different question: At what distance x = λ∗ is the energy-per-distance

quantity f(x)
x

minimized? Ideally, if we know that sensors are going to relay through a

141

sequence of sensors, we would like each pair of sensors to be separated by this distance. This

is of particular interest for cutset networks, where sensors are deployed along straight lines.

First, let us define a set of such “efficient” hop distances.

Definition 42 (Efficient hop lengths). Let f : R+ → R+ be a continuous, convex, nonde-

creasing, and differentiable function. Define the set of efficient hop lengths Λ∗ to be

Λ∗ =

{
x > 0 :

f(x)

x
≤ f(y)

y
∀y > 0

}
. (4.36)

A geometric interpretation of Λ∗ is that any λ ∈ Λ∗ minimizes the slope of the line

connecting the origin with (x, f(x)). As the next fact demonstrates, all efficient hops must

be smaller than x∗, since otherwise we can increase our efficiency by relaying.

Fact 43 (Efficient hop lengths are smaller than efficiency threshold). Let f : R+ → R+ be a

continuous, convex, and nondecreasing function. Let x∗ be the (possibly infinite) efficiency

threshold for f . If λ∗ ∈ Λ∗, then λ∗ ≤ x∗.

Proof. By definition of Λ∗, we must have that

f(λ∗)

λ∗
≤
f
(
λ∗

2

)
λ∗

2

,

which reduces to

f(λ∗) ≤ 2f

(
λ∗

2

)
= r(λ∗).

Therefore, by Fact 31, equation (4.22), we must have that λ∗ ≤ x∗.

If our energy function f starts at the origin (there is no “energy overhead” to transmis-

sion), then there is no “best” distance, since smaller distances are always more efficient. This

is reflected in the following fact:

Fact 44. Let f : R+ → R+ be a continuous, strictly convex, and nondecreasing function. If

f(0) = 0, then Λ∗ = ∅, and for any 0 < x < y,

f(x)

x
<
f(y)

y
, (4.37)

i.e., smaller distances are always more energy efficient.

Proof. By Fact 31, f(0) = 0 and f(x) strictly convex implies x∗ = 0. By Fact 43, any

λ∗ ∈ Λ∗ must satisfy λ∗ ≤ x∗, so λ∗ ≤ 0. However, Λ∗ is only defined for positive values

of x, i.e., any λ∗ ∈ Λ∗ satisfies λ∗ > 0, which contradicts λ∗ ≤ x∗. Thus, we must have

142

that Λ∗ = ∅. Finally, if we apply a version of Fact 26 for strictly convex functions, we have

that the slope of the secant line M(x1, x2) is increasing in x1 for fixed x2. Thus, for any

0 < x < y, we must have that M(x, 0) < M(y, 0), which implies (4.37).

We now consider the case where f(0) > 0. In the next fact, we give an equation that can

be solved to find a single threshold λ∗. If this equation has a solution, it will be unique for

strictly convex functions.

Fact 45. Let f : R+ → R+ be a continuous nondecreasing, and twice-differentiable function

that is strictly convex for x > 0 and satisfies f(0) > 0. If the equation

f ′(λ∗) =
f(λ∗)

λ∗
(4.38)

holds for some λ∗ > 0, then then Λ∗ is equal to a single point {λ∗}.

Proof. To find the minimum value(s) of f(x)
x

, we take the derivative of f(x)
x

to obtain

d

dx

{
f(x)

x

}
=
xf ′(x)− f(x)

x2
.

Setting this equal to zero and rearranging yields

f ′(x) =
f(x)

x
.

We will now demonstrate that this equation has a unique solution. If λ∗ satisfies this equa-

tion, then the line tangent to f at x = λ∗ must intersect the origin. One can see this by first

defining the tangent line of f at x to be

`(y, x) = f(x) + f ′(x)(y − x).

and then noting that for any solution λ∗ to (4.38) satisfies `(0, λ∗) = 0. Thus, we would like

to see how the intercept of the tangent line behaves as x increases. Let us define a(x) to

be the x-intercept of the tangent line `(y, x). We can find a(x) by setting `(y, x) = 0 and

solving for y as a function of x:

f(x) + f ′(x)(y − x) = 0

⇒ f ′(x)y = xf ′(x)− f(x)

⇒ y = x− f(x)

f ′(x)
,

143

yielding

a(x) = x− f(x)

f ′(x)
.

We now demonstrate that a(x) is a strictly increasing function of x. Doing so implies that

a(λ∗) = 0 for a unique value of λ∗. Taking the derivative of a(x) yields

da(x)

dx
= 1− [f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2

= 1− 1 +
f(x)f ′′(x)

[f ′(x)]2

=
f(x)f ′′(x)

[f ′(x)]2

> 0, since f(x) > 0, f ′(x) > 0, and f ′′(x) > 0 for all x > 0,

and we see that da(x)
dx

> 0 for all x > 0, which implies that a(x) is strictly increasing. Thus,

if equation (4.38) has a solution, it must be unique.

We will solve equation (4.38) for several example functions in Section 4.5.6.

4.5.5 Truncated transmission energy functions

Sensors in a real sensor network often specify a maximum transmission distance. In this

section, we analyze how having a maximum transmission distance xmax affects our analysis.

Suppose we let f : R+ → R+ be a continuous, convex, and nondecreasing, and nonde-

creasing function with (possibly infinite) efficiency threshold x∗. For some xmax > 0, define

the truncated function to be

f̃(x) =

f(x), x ≤ xmax

∞, x > xmax.
(4.39)

We define the set of relay efficient hops to be

Λ̃∗ =

{
x ∈ (0, xmax] :

f(x)

x
≤ f(y)

y
, ∀y ∈ [0, xmax]

}
. (4.40)

Note if f satisfies the conditions of Fact 45 and λ∗ exists, if xmax ≤ λ∗, then Λ̃∗ = {xmax}
since f(x)

x
is strictly decreasing by the proof of Fact 45. In summary, if a sensor is modeled

by f(x) over an interval and specifies a maximum transmission distance, one can compare

x∗ and λ∗ to xmax to make decisions about how the sensor network should be arranged. For

144

example:

• xmax ≤ x∗ implies that relaying does not improve energy efficiency, so least-energy

paths through the network will likely try to approximate the shortest linear path with

large hops.

• xmax ≥ x∗ implies that relaying does improve energy efficiency, so least-energy paths

through the network will not use hops that contain a potential relay sensor in the

transmission pairs’ relay region.

• xmax ≤ λ∗ implies that larger hops are always more efficient than shorter hops, and

transmitting at distance xmax is most efficient.

• xmax ≥ λ∗ implies that neighboring sensors spaced λ∗ apart are most efficient, which

can be exploited when planning sensor deployment.

4.5.6 Energy Function Examples

In this section, we consider several possible energy functions and calculate relevant quantities.

4.5.6.1 Power-law (plus a constant) functions are strongly relay-efficient

Here, we demonstrate an example where our transmission function follows a power law plus

a constant, which is a common assumption for sensor networks (see [62, Model I] for a brief

discussion of the (inverse) power law and additional citations). For any c ≥ 0 and β ≥ 2,

the power law function

f(x) = Pxβ + C (4.41)

satisfies Fact 35 since it is continuous, convex, nondecreasing and limx→∞
f(x)
x

= ∞. Thus,

any power-law function is relay-efficient by Fact 35.

The midpoint relay function is

r(x) =
P

2β−1
xβ + 2C.

To obtain the efficiency threshold x∗, we set f(x) = r(x) and solve for x to obtain

x∗ =

(
C

P
· 2β−1

2β−1 − 1

) 1
β

.

145

To obtain the energy-efficient efficient hop length λ∗, we first calculate the derivative

f ′(x) = βPxβ−1.

We then set f ′(x) = f(x)
x

and solve for x to obtain

λ∗ =

(
C

P
· 1

β − 1

) 1
β

.

Note that λ∗ < x∗ for any β > 1 since 2β−1

2β−1−1 = 1
1−21−β > 1 > 1

β−1 .

We also have the inverse function

f−1(y) =

(
y − C
P

) 1
β

and hypotenuse function

h(x) =
1

2
1
β

·
(
xβ − C

P

) 1
β

,

which implies δ2(x) is

δ2(x) =

√
1

2
2
β

·
(
xβ − C

P

) 2
β

− x2

4
,

and

lim
x→∞

δ2(x)

x
=

1

2

√
4
β−1
β − 1

so that

lim
x→∞

D(x; δ1(x), δ2(x))

x2
=

1

2

√
4
β−1
β − 1,

and thus f(x) is strongly relay-efficient.

“Pure” Power-law function (C = 0): We briefly note that in the case of a pure power-

law function with no constant overhead, x∗ = λ∗ = 0, and therefore the relay region always

exists. Furthermore λ∗ = 0 implies that smaller hops are always more energy-efficient.

4.5.6.2 Exponential function

Here, as a purely mathematical exercise to demonstrate an extreme example of a strongly

relay-efficient f , we briefly go over the case where f is exponential. This is not necessarily

a realistic model.

146

Suppose for a > 0 and C > 0,

f(x) = Ceax.

The midpoint relay function is

r(x) = 2Ce
a
2
x.

The efficiency threshold is

x∗ =
2 ln 2

a
.

The derivative is

f ′(x) = Caeax

and the energy-efficiency hop length is

λ∗ =
1

a
.

The inverse function is

f−1(y) =
ln
(
y
C

)
a

.

The hypotenuse function is

h(x) = x− ln 2.

δ2(x) is

δ2(x) =

√
(x− ln 2)2 − x2

4

with the following limit

lim
x→∞

√
3

2

so that

lim
x→∞

D(x; δ1(x), δ2(x)

x2
=

√
3

2
,

and thus f(x) is strongly relay-efficient.

4.5.6.3 Pseudo-Huber functions

As a mathematical exercise to see (a) a case where f is relay-efficient but not strongly relay

efficient and (b) another case where f is not relay-efficient, we briefly describe two functions

whose slope is linear in the limit as x gets large.

The first pseudo-Huber function

f1(x) =
√

1 + x2 − 1

147

is continuous, convex, nondecreasing, and satisfies both limx→∞
f1(x)
x

= 1 and f(0) = 0.

Thus, it is relay efficient by Fact 35, but it is not strongly relay efficient by Fact 41.

On the other hand, the (positive-valued) pseudo-Huber function

f2(x) =
√

1 + x2

does not satisfy f(0) = 0 and is not relay-efficient by Fact 35.

4.5.6.4 Initially-linear energy function

For another mathematical exercise, we briefly demonstrate a function that is relay-efficient,

but no unique value satisfies f(x) = r(x) due to the fact that it is initially a linear function.

Consider the continuous, convex, nondecreasing function

f(x) =


x, 0 ≤ x ≤ 1

1
2
x2 + 1

2
, x > 1

0, otherwise.

Note that this function satisfies f(x) = r(x) for all x ∈ [0, 1], and r(x) < f(x) for all x > 1.

Thus, it is relay-efficient with efficiency threshold x∗ = 1 since this is the largest value of x

such that f(x) = r(x). It is easy to check that this function is strongly relay-efficient since

it follows a power law for large x.

4.5.7 Conclusions

We analyze continuous, convex, nondecreasing functions that are used to model energy

transmission in a sensor network. For distances smaller than x∗, relaying will never be

better than direct transmission. Sensors separated by distances larger than x∗ can reduce

the total energy consumption of the network if a relay sensor exists in the pair’s relay region.

Outer and inner bounds were derived for the relay region for large distances x. Furthermore,

a savvy network designer than reduce the overall energy consumption by ensuring that

neighboring sensors are spaced λ∗. Finally, we considered sensor models with a maximum

transmission distance, and also provided several examples of energy functions f(x) while

calculating and relevant quantities.

148

4.6 Efficient Communication on a Lattice Sensor Net-

work

In the previous section, we studied properties of transmission energy functions, and explored

what it meant for such a function to be relay-efficient, including bounds on the relay region.

In this section, we will explore efficient communication between sensors on a lattice sensor

network. Given an transmission energy function f and a lattice, the goal in this section is to

find (a) efficient paths through the lattice sensor network and different angles θ, and (b) find

closed-form expressions for minimal energy costs of such paths as a function of their direction

θ. It is anticipated that future work will extend this analysis to Manhattan networks, cutset

networks, and other periodic sensor networks.

To begin, we denote our set of sensor locations/sites/nodes as V = {vi} ⊂ R2, where V

is a lattice formed by a span of linearly-independent basis vectors [u1, u2] . We define the

following terms for describing communication along paths in a lattice network:

• Hop: A pair of nodes, h̃ = (s1, s2), s1, s2 ∈ V .

• Hop Type: The vector difference h = s2 − s1 between two nodes in a hop, where

h = (s1, s2) and s1, s2 ∈ V . Note that hop types must also be elements of the lattice

h ∈ V due to group properties of the lattice.

• Path (Definition 1): A sequence of nodes p = (s0, · · · , sn), where each si ∈ V

• Path (Definition 2): An initial site and a sequence of hops p = (s0, h̃1, · · · , h̃n) where

a hop h̃i = (si, si−1) and each hi ∈ V by definition of lattice.

• Path (Definition 3): An initial site and a sequence of hop types p = (s0, h1, · · · , hn).

• Net Progress of path p is

sn − s0 =
n∑
i=1

hi =
∑
v∈V

nvv (4.42)

where nv is the integer number of times hop type v is used.

• Angle of path p is

∠(sn − s0) = ∠

{
n∑
i=1

hi =
∑
v∈V

nvv

}
, (4.43)

where nv is the integer number of times hop type v is used.

149

• Net length of p is

‖sn − s0‖ =

∥∥∥∥∥
n∑
i=1

hi

∥∥∥∥∥ =

∥∥∥∥∥∑
v∈V

nvv

∥∥∥∥∥ . (4.44)

where nv is the integer number of times hop type v is used.

• Energy of path p is

e(p) =
n∑
i=1

f(‖hi‖) =
∑
v∈V

nvf(‖v‖) (4.45)

where nv is the number of times hop type v is used.

• Energy from x to y via path p is

e(x, y, p) = f(‖x− s0‖) +
∑
v∈V

nvf(‖v‖) + f

(∥∥∥∥∥y − s0 −∑
v∈V

nvv

∥∥∥∥∥
)
, (4.46)

where nv is the integer number of times hop type v is used.

• The minimal energy from x to y is

e∗(x, y) = min
p∈Px,y

e(x, y, p) = min
s0∈V,{nv}

e(x, y, p) (4.47)

where Px,y is the set of all possible paths from x to y in V .

• The path type is {nv}v∈V , i.e., the set of hop type counts.

• Let (s0, {nv}) be a path defined by a starting node and a path type. The optimal path

type is any {nv} satisfying

e∗(x, y) = e(x, y; (s0, {nv})) = min
s0∈V,{nv}

e(x, y, (s0, {nv})). (4.48)

The high level goal of this section is to find an approximation E(x, y) for e∗(x, y) that is

a function of the distance ‖y − x‖ and the angle ∠(y − x). In particular, we believe that it

will decompose as

E(x, y) = ‖x− y‖g(∠(y − x))

such that the energy-per-distance will only depend on the angle through some function g(θ).

Note that the net progress, angle, net length, and energy are invariant to permutations of

the hop types.

150

4.6.1 Minimum Energy Paths

Given an energy transmission function f(x) and a lattice V , for any angle θ we would like to

try to estimate the minimum energy-per-distance required to transmit a message a long dis-

tance through our network at angle θ. Since any path through the network can be described

by its initial site s0 and its set of hop types {nv}, we would like to see how the distribution

of hop types behave for optimal, i.e., minimal energy, paths for long distances. Therefore,

consider the following constrained optimization problem:

Problem 1: The Normalized Hop Type Efficiency Problem

g(θ) = min
{αv}

J(α; θ) = min
{αv}

∑
v∈V αvf(‖v‖)∥∥∑
v′∈V αv′v

′
∥∥ ,

such that

αv ≥ 0 ∀v ∈ V,∑
v∈V

αv = 1,

∠

{∑
v∈V

αvv

}
= θ.

In this problem, the we would like to find a set of αv’s that describe the fraction of times

that each hop types v is used in an optimal path to travel at angle θ through the network.

Note that the objective function J(α; θ) is in energy-per-distance. This is a useful way to

view the problem of finding efficient paths for long-distance communication, but it will be

easier to work with an unnormalized version, and show that the unnormalized version is

equivalent to the normalized version. Thus, instead of solving Problem 1 for a fixed angle

θ, consider another problem where we fix a vector u and minimize the energy-per-distance

needed to traverse a net distance of ‖u‖ at angle ∠u:

Problem 2: The Unnormalized Hop Type Efficiency Problem

g̃(u) = min
{av}

J̃(a;u) = min
{av}

∑
v∈V

avf(‖v‖),

such that

av ≥ 0 ∀v ∈ V,∑
v∈V

avv = u.

151

In fact, it is easy to check that if θ = ∠u, then Problems 1 and 2 are equivalent, i.e., a

solution to one yields a solution to the other. If θ = ∠u, then a solution to Problem 1 can

be used to obtain a solution to Problem 2 using the change-of-variables

av =
αv∥∥∑

v′∈V αv′v
′
∥∥‖u‖. (4.49)

Moreover,

g̃(u) = ‖u‖g(∠u).

Likewise, if θ = ∠u, then a solution to Problem 2 can be used to obtain a solution to Problem

1 using the change-of-variables

αv =
av∑

v′∈V av′
. (4.50)

In general, it is typically easier to prove results for Problem 2.

Now, solving Problems 1 and 2 can be difficult, since the summations in the objective

functions are over infinite sets. We now show that it is only necessary to search over a smaller

set of lattice points V ∗ instead of the infinite set V . In a later fact, we will demonstrate that

V ∗ is finite for energy-efficient functions.

Definition 46 (Energy efficient hop types). Let the set of energy efficient hop types be

V ∗ , {v ∈ V : α = ev solves Problem 1 for θ = ∠v} . (4.51)

where e is an indicator vector where the v’th element is 1 and the rest are zero. Furthermore,

the equivalency of Problems 1 and 2 implies V ∗ is can also be written as

V ∗ = {v ∈ V : a = ev solves Problem 2 for u = v} . (4.52)

We now demonstrate that we need only search over elements of V ∗ to solve Problems 1

and 2.

Fact 47 (Solutions to Problems 1 and 2 use only elements of V ∗). If a solves Problem 2 for

some u, then v ∈ V ∗ for each nonzero coefficient av > 0. Equivalently, if α solves Problem

1, then v ∈ V ∗ for every nonzero coefficient αv > 0.

Proof. Proof by contradiction. Suppose a solves Problem 2 for some fixed u and there exists

some v ∈ V such that av > 0, but v 6∈ V ∗. By definition of V ∗, the fact that v 6∈ V ∗

implies that the indicator vector ev does not minimize the cost function in Problem 2 for

v. Therefore, there must exist some other vector b 6= ev solving Problem 2 for u = v, i.e.,

152

∑
v′∈V bv′v

′ = v, bv′ ≥ 0. Additionally, since b minimizes the cost function J̃(·; v), we must

have the inequality J̃(b; v) < J̃(ev; v). This last statement implies∑
v′∈V

bv′f(‖v′‖) < f(‖v‖).

We now show that this generates a contradiction by violating the optimality of a. Substi-

tuting this inequality into the definition of J(a; v) generates the contradiction

J̃(a; v) =
∑
v′∈V

av′f(‖v′‖)

= avf(‖v‖) +
∑
v′ 6=v

av′f(‖v′‖)

> av
∑
v′∈V

bv′f(‖v′‖) +
∑
v′ 6=v

av′f(‖v′‖)

=
∑
v′∈V

cv′f(‖v′‖)

= J̃(c; v),

where c = a − avev + avb. We see that the optimality of a is violated by c 6= a since it c

generates a lower cost J̃(c; v).

Finally, since Problems 1 and 2 are equivalent, this result must also hold for any α solving

Problem 1 for some fixed θ.

It is obvious that V ∗ is a smaller set than V . However, it would be useful to show that

V ∗ is actually a finite set. V ∗ finite combined with Fact 47 implies that Problems 1 and 2

reduce to straightforward linear programs, and thus can be solved by normal means. In the

next section, we determine a distance d̃∗ such that ‖v‖ > d̃∗ implies that v cannot be in V ∗.

Thus, the set Ṽ = {v ∈ V : ‖v‖ ≤ d̃∗} forms a finite superset of V ∗. Later, we will show

that each element of Ṽ can be checked individually to determine if it is an element of V ∗.

4.6.2 Sensor separation guaranteeing relay region contains lattice

point

In this section, we find bound an upper bound on x such that a lattice V intersects the relay

region R̃(x), thereby giving an upper bound on the distance over which direct transmission

can be efficient for a given lattice. As described at the end of the previous section, this will

also eventually imply that the set V ∗ is finite when sensor communication is modeled with

relay-efficient functions.

153

Let V + c be a shifted lattice defined by the basis vectors [u1, u2] and shift vector c,

where u1, u2, c ∈ R2, and u1 and u2 are linearly independent. We want to find a distance d∗

such that two sensors separated by x > d∗ are guaranteed to have an element of v ∈ V + c

contained in the relay region R̃(x) for any shift c of the lattice V . This will mean that for

distances greater than d∗, direct transmission will never be optimal since there exists a relay

sensor within the relay region R̃(x). We begin by defining d∗.

Definition 48. Let f : R+ → R+ be a continuous, convex, nondecreasing function, and

suppose f is relay-efficient with efficiency threshold x∗. Let V be a lattice defined by the

linearly independent basis vectors [u1, u2]. Define d∗ to be the smallest distance such that the

relay region is guaranteed to intersect any shift c of the lattice V . That is,

d∗ , inf
{
x ≥ 0 : R̃(x) ∩ (V + c) 6= ∅, ∀c ∈ R2

}
. (4.53)

We briefly note the following two facts about d∗:

1. d∗ ≥ x∗, since x must be large enough for the relay region R̃(x) to be nonempty.

2. If x∗ =∞, then d∗ =∞.

In general, finding an exact value for d∗ is difficult. However, we can use our diamond-

shaped region D(x; δ1(x), δ2(x)) to find an upper bound. Our strategy will be to inscribe a

circle within D(x; δ1(x), δ2(x)) and compare it to the basis vectors that generate V . Then

we will show that this circle must intersect V for a sufficiently large radius that grows with

x. If V intersects this circle, then it must also intersect R̃(x).

Fact 49. Let u1, u2 ∈ R2 be two linearly independent vectors that form the basis of a lattice. A

closed circle centered at any c0 ∈ R2 whose radius r satisfies r > 1
2

max{‖u1−u2‖, ‖u1 +u2‖}
must contain an element of V in its interior.

Proof. Let {0, u1, u2, u1 + u2} define the vertices of a parallelogram. The length of the

longest diagonal of the parallelogram has length 1
2

max{‖u1 − u2‖, ‖u1 + u2‖}. By drawing

a circumcircle around this parallelogram with radius 1
2

max{‖u1− u2‖, ‖u1 + u2‖}, it is easy

to see that any closed circle in R2 with radius satisfying r > 1
2

max{‖u1 − u2‖, ‖u1 + u2‖}
must contain at least one lattice point.

We now inscribe a circle within D(x; δ1(x), δ2(x)); its radius is

η(x) =
δ1(x)δ2(x)√
δ21(x) + δ22(x)

,

154

which is equivalent to

η(x) =
√
δ21(x)||δ22(x),

where a||b is defined to be

a||b =
ab

a+ b
.

If η(x) satisfies η(x) > 1
2

max{‖u1 − u2‖, ‖u1 + u2‖}, then the relay region will not be

empty. From the previous sections, we have closed-form expressions for δ1(x) and δ2(x) and

they are both increasing in x. Thus, η(x) is also increasing in x. It is easy to see this since

η(x) can also be rewritten as

η(x) =
1√

1
δ21(x)

+ 1
δ22(x)

and any increase in δ1(x) or δ2(x) will cause η(x) to increase. Thus, a computer can be used

to find a d̃∗ solving

η(d̃∗) =
1

2
max{‖u1 − u2‖, ‖u1 + u2‖}.

Note that d̃∗ has the property that any x > d̃∗ implies η(x) > max{‖u1 − u2‖, ‖u1 + u2‖}.
Thus, d̃∗ is an upper bound

d∗ ≤ d̃∗.

We also note that a||b ≥ min{a, b}, and we can find another upper bound d̂∗ by finding

the unique d̂∗ such that

min{δ1(d̂∗), δ2(d̂∗)} =
1

2
max{‖u1 − u2‖, ‖u1 + u2‖}.

The motivation is that if an analytic expression is desired, it may be possible to solve this by

hand instead of solving η(d̃∗) = 1
2

max{‖u1 − u2‖, ‖u1 + u2‖}. Again, note that d∗ is upper

bounded

d∗ ≤ d̂∗.

We now use these results to show that V ∗ is finite for relay-efficient functions.

Fact 50. If the energy cost function f is relay-efficient, then the set of hop types V ∗ is finite.

Proof. The following proof can use either upper bound d̃∗ or d̂∗. Without loss of generality,

we use d̃∗. Following the process above, if f(x) is relay efficient, then a computer can calculate

a distance d̃∗ such that

η(d̃∗) =
1

2
max{‖u1 − u2‖, ‖u1 + u2‖}.

155

Thus, D(d̃∗; δ1(d̃
∗), δ2(d̃

∗)) is nonempty since it contains an inscribed circle of radius η(d̃∗). By

Fact 49 and the fact that η(x) is an increasing function of x for x > d̃∗, the relay region for any

two sensors separated by distance x is nonempty and must intersect the lattice V . Thus, take

any lattice point v ∈ V satisfying ‖v‖ > d̃∗. ‖v‖ > d̃∗ implies that the relay region R(0, v)

intersects V , i.e., there exists some v′ ∈ V such that v′ ∈ R(0, v). This means that it is

cheaper to relay through v′ than to transmit directly to v, i.e., f(‖v′‖)+f(‖v−v′‖) < f(‖v‖).
This means that ev cannot solve Problem 2 for u = v, and therefore v 6∈ V ∗ by definition of

V ∗.

A direct result of Fact 50 is that we can find a finite superset Ṽ of V ∗.

Corollary 51. The set of lattice points whose distance is less than d̃∗ from the origin

Ṽ =
{
v ∈ V : ‖v‖ ≤ d̃∗

}
(4.54)

is a finite superset of V ∗, i.e.,

V ∗ ⊂ Ṽ . (4.55)

Proof. Follows directly from proof of Fact 50, since a necessary condition for v ∈ V ∗ is that

‖v‖ ≤ d̃∗.

Using the fact that V ∗ is finite, we can find bounds that relate the solutions to Problems

1 and 2 to finding the shortest paths between lattice points in our network; that is, this Fact

shows that g(θ) is indeed the function we seek to describe the minimum cost of long-distance

communication in a lattice network.

The following is a main result of Chapter 4. It shows that the output of our linear program

is a lower bound to any path of minimal communication energy in a sensor network, and

the output of our linear program plus a constant is an upper bound to any path of minimal

communication energy in a sensor network. Note that the constant error term is negligible

for sufficiently large distances ‖u‖; therefore, our linear program provides (nearly optimal)

energy-efficient paths for long-distance communication.

Fact 52. Let f be a relay-efficient function so that V ∗ is finite by Fact 50. Let u ∈ V . Let

a solve Problem 2, and let {nv} minimize e∗(0, u). Then

g̃(u) ≤ e∗(0, u) ≤ g̃(u) + f

(
|V ∗|max

v∈V ∗
‖v‖
)
.

156

Proof. We begin by showing the lower bound to e∗(0, u). Since 0, u ∈ V , clearly any solution

to e∗(0, u) must have the “error hop” terms in the definition of e(0, u, p) equal to zero. Thus,

solving for the cheapest path e∗(0, u) is identical to Problem 2, except that the solution set

is over integers instead of reals. Since the solution of Problem 2 is over a larger set, we must

have that

min
a

∑
v∈V

avf(‖v‖) ≤ min
n

∑
v∈V

nvf(‖v‖)

which implies

g̃(u) ≤ e∗(0, u).

For the upper bound, we can use a solution to Problem 2 to generate an approximate

solution to e∗(0, u) by selecting

n′v = bavc

for every v ∈ V . Since the {n′v} are integers, they generate a path through the lattice from

the origin to some u′ where

u′ =
∑
v∈V

bavcv,

and this path has cost bounded by

e(0, u′, {n′v}) =
∑
v∈V

bavcf(‖v‖)

≤
∑
v∈V

avf(‖v‖)

= g̃(u).

Define the residual vector between u and u′ to be r = u − u′. Note that r ∈ V since both

u ∈ V and u′ ∈ V . Since
∑

v∈V avv = u, we must have that the length of r is bounded by

‖r‖ = ‖u− u′‖

=

∥∥∥∥∥∑
v∈V

(av − bavc)v

∥∥∥∥∥
≤
∑
v∈V

|bavc − av|‖v‖

≤
∑
v∈V ∗
‖v‖

≤ |V ∗|max
v∈V ∗
‖v‖.

157

Thus a loose bound to the cost of relaying from u′ to u is given by bounding the cost of

direct transmission f(‖r‖) using the above result to obtain

e∗(u′, u) = e∗(0, r) ≤ f(‖r‖) ≤ f

(
|V ∗|max

v∈V
‖v‖
)
.

Finally, since e∗(0, u) ≤ e∗(0, u′) + e∗(u′, u), we must have that

e∗(0, u) ≤ e∗(0, u′) + e∗(u′, u)

= e∗(0, u′) + e∗(0, r)

≤ e(0, u′; {n′v}) + f

(
|V ∗|max

v∈V
‖v‖
)

= g̃(u) + f

(
|V ∗|max

v∈V
‖v‖
)
.

The following corollary follows from the fact that g̃(u) can be rewritten as ‖u‖g(∠u).

This also shows that the quantity e∗(0,u)
‖u‖ converges to g(θ) as ‖u‖ → ∞.

Corollary 53. Let f be a relay-efficient function so that V ∗ is finite by Fact 50. Let u ∈ V .

Then for θ = ∠u,

g(θ) ≤ e∗(0, u)

‖u‖
≤ g(θ) +

f (|V ∗|maxv∈V ‖v‖)
‖u‖

.

Proof. Let a solve Problem 2 for θ = ∠u, and let {nv} minimize e∗(0, u). Following our

results of Fact 52 and letting A =
∑

v∈V av, and α = av
A

, we must have that

g̃(u)

‖u‖
= min

a

∑
v∈V avf(‖v‖)
‖u‖

= min
a

∑
v∈V avf(‖v‖)∥∥∑
v′∈V av′v

′
∥∥

= min
a

∑
v∈V

av
A
f(‖v‖)∥∥∑

v′∈V
av′
A
v′
∥∥

= min
α

∑
v∈V αvf(‖v‖)∥∥∑
v′∈V αv′v

′
∥∥

= g(θ),

and the result follows by normalizing the inequality in Fact 52 by ‖u‖.

158

4.6.3 Calculating V ∗

For a given energy function f and lattice sensor location V , we would like to find a system-

atic way to generate the finite set V ∗. The following algorithm does this:

Method for finding V ∗:

1. Given: f , V .

2. Following the method in Section 4.6.2, calculate a distance d̃∗ such that for all v ∈ V
satisfying ‖v‖ > d̃∗, V ∩R(0, v) 6= ∅.

3. Generate the finite set Ṽ = {v ∈ V : ‖v‖ ≤ d̃∗}.

4. Initialize V ∗ = ∅.

5. For each v ∈ Ṽ \{(0, 0)}:

(a) Solve Problem 2 for u = v by optimizing over Ṽ using standard linear program-

ming tools to obtain coefficient vector α.

(b) Calculate minimum cost E∗ = J̃(α; v).

(c) Calculate cost of using only v, Ev = J̃(ev; v).

(d) If Ev = E∗, then set V ∗ = V ∗ ∪ v.

6. Return resulting V ∗.

Step 5(a) is justified by combining Fact 47 and Corollary 51.

4.6.4 Conjecture: A closed-form expression for g(θ) and g̃(u)

In this section, we conjecture that g̃(u) can be constructed in closed form. Specifically, we

conjecture that the minimum of Problem 2 can be be attained using an a containing at most

two nonzero elements. In the case that θ = v for some v ∈ V ∗, then a will contain only one

nonzero element, namely, its vth element will be nonzero. For any other θ, there will be two

nonzero elements corresponding to the elements of V ∗ that are “closest” in angle on each

side, i.e., the closest bounding elements of V ∗ in angle.

To begin, for any u 6= (0, 0), define

Ru =

[
cos∠u sin∠u

− sin∠u cos∠u

]

159

to be a rotation matrix that rotates a vector ∠u clockwise about the origin. We can define

the set of vectors that lie in the half-plane “above” u to be

V
∗
(u) = {v ∈ V ∗ : e2Ruv > 0} ,

and the set of vectors that lie in the half-plan “below” u to be

V ∗(u) = {v ∈ V ∗ : e2Ruv < 0} .

Assume without loss of generality that all v ∈ V ∗ have unique angles. Given some arbitrary

u, two vectors in V ∗ that most closely “bound” u are defined to be

v∗(u) = argmax
v∈V ∗(u)

vTu

and

v∗(u) = argmax
v∈V ∗(u)

vTu.

Our conjecture is as follows: For any u, if ∠u = ∠v for some v ∈ V ∗, then the only nonzero

coefficient will be av and it will be equal to av = ‖u‖
‖v‖ . Otherwise, we choose the two “closest

bounding” vectors v∗(u) and v∗(u), and set av∗(u) and av∗(u) to be the unique coefficients

solving the linear equation

[
v∗(u) v∗(u)

] [av∗(u)

av∗(u)

]
= u.

Thus, our prediction ĝ(u) of g̃(u) can be expressed as

ĝ(u) =


‖u‖
‖v‖f(‖v‖), if ∠u = ∠v for some v ∈ V ∗, f(‖v∗(u)‖)

f(‖v∗(u)‖)

T [v∗(u) v∗(u)

]−1
u otherwise.

In the case that all v ∈ V ∗ do not have unique angles, then we can arbitrarily choose vectors

that satisfy the above definitions and the resulting value of ĝ(u) will be the same. For

example, if ∠vi = ∠vj, choose the vector with smallest length.

In a similar manner, we can calculate a normalized function ĝ(θ) by either (a) choosing

u = [cos θ, sin θ] in the above expressions, or (b) choosing ĝ(θ) = ĝ(u)
‖u‖ for any u satisfying

∠u = θ.

160

In the next section, we run simulations in which we compare these closed form predictions

to e∗(0, u) and g̃(u).

4.6.5 Lattice Communication Experiments

For large u and for communication on a lattice network using a power law model (4.41), the

goal of this section is determine how close e∗(0, u) is to g̃(u), and also to test our conjecture

that ĝ(u) is a good predictor of e∗(0, u). Our experimental setup, which is shown in Figure

4.11, consists of arranging 2500 sensors spaced 1 meter apart in a square region, with 50

sensors arranged along each side. The sensors denoted by blue circles lie in an annulus of

inner radius 23 meters and outer radius 24 meters, and our goal will be to calculate the energy

required for each of these sensors to communicate with the center sensor (green triangle).

Specifically, for each sensor u in this annulus, Dijkstra’s algorithm will be used to calculate

e∗(0, u), which is the total path cost from the center to each of the blue circles. This value will

then be compared to g̃(u), which can be calculated by first finding V ∗ using the method in

Section 4.6.3, and then solving Problem 2 for u using standard linear programming methods

(we used the Python method scipy.optimize.linprog). Finally, we will calculate ĝ(u)

using the method in Section 4.6.4. Given these three quantities, we will also compare the

distance-normalized quantities e∗(0,u)
‖u‖ , g(∠u) and ĝ(∠u). We did not find it necessary to plot

the upper bound of Fact 52 because (a) it was one or two orders of magnitude larger than the

other plotted quantities in these experiments, and (b) our experimental results were already

either exact or tight. The tightness of our results suggests that this upper bound may be

very loose; tightening this bound could be the subject of future work.

4.6.5.1 Power law with no constant overhead (c = 0)

In our first experiment, whose results are shown in Figure 4.12, we consider the case where

f(x) = x3

which is an “ideal” case where there is no constant over head for transmission, since f(0) = 0.

This model has an efficiency threshold of x∗ = 0 m, λ∗ does not exist, d̃∗ = 1.8218 m, and V ∗

consists of four vectors V ∗ = {(±1, 0), (0,±1)}. In Figure 4.12(a), we see the total energy

calculated by all three methods, and we see that they all generate the same values for each

experiment. Thus, we see that solving Problem 2 yields “good” paths. Figure 4.12(a) also

supports our conjecture that g̃(u) = ĝ(u), i.e. that the “closest bounding” vectors v∗(u) and

v∗(u) are the only two vectors used in the solution to Problem 2. Figure 4.12(b) shows the

161

30 20 10 0 10 20 30
v[0] (meters)

30

20

10

0

10

20

30

v
[1

]
(m

e
te

rs
)

Figure 4.11: Sensor layout for lattice communication experiments. e∗(0, u), g̃(u) and ĝ(u)
were calculated for paths connecting the green triangle sensor (center) to the blue circles.

output of the coefficients when solving the linear program for Problem 2, and again we see

that there are at most two nonzero coefficients, which correspond to the “closest bounding”

vectors. Figures 4.12(c) and 4.12(d) show the distance-normalized quantities of (a) and (b).

Finally, we note that one of the reasons for the perfect alignment of these three quantities

is that V ∗ happens to equal the basis vectors V ∗ = {±u1,±u2}. As we will see, when this

is not the case, there exist elements of V that cannot be reached using the span of V ∗, and

thus other hops that are not in V ∗ will be necessary. Also, for any given u, there are only

two shortest v’s that have positive inner product with u. These shortest v’s suffice because

the x∗ = 0.

4.6.5.2 Power law with “small” constant overhead (c = 5)

In our second experiment, whose results shown in Figure 4.13, we consider the case where

f(x) = x3 + 5

which is a case where there is is a small constant over head for transmission, since c =

5 = f(0). We say that this is a “small” overhead because V ∗ consists of the 8 vectors

162

3 2 1 0 1 2 3
u, radians

0

5

10

15

20

25

30

35

E
n
e
rg

y
Total Energy comparison

e ∗ (0,u)

g(u)

closed form

(a)

4 3 2 1 0 1 2 3 4
u, radians

0

5

10

15

20

25

a
v
 c

o
e
ff

ic
ie

n
t

Coefficients in solution to g̃(u)

[-1. 0.]
[0. -1.]
[0. 1.]
[1. 0.]

(b)

3 2 1 0 1 2 3
u, radians

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
n
e
rg

y
/m

e
te

r

Energy-per-distance comparison

e ∗ (0,u)/|u|
g(θ)

closed form

(c)

4 3 2 1 0 1 2 3 4
u, radians

0.0

0.2

0.4

0.6

0.8

1.0

α
v
 c

o
e
ff

ic
ie

n
t

Coefficients in solution to g(θ)

[-1. 0.]
[0. -1.]
[0. 1.]
[1. 0.]

(d)

Figure 4.12: Comparison of shortest path energies to predicted energies using elements of V ∗

for f(x) = x3 (no constant overhead). Normalized coefficients to output of g(u) (i.e. g(θ))
are also shown.

V ∗ = {(±1, 0), (0,±1), (±1,±1)}, which consist of the “8 neighbors” of the origin. This is

contrasted to a “large” over head that causes sensors to be “skipped” over, as we will see in

our final experiment. This model has an efficiency threshold of x∗ = 1.8821 m, λ∗ = 1.3572

m, and d̃∗ = 8.9690 m. Note that the lengths of each v ∈ V ∗ are close in value to λ∗; indeed,

it is easy to see that all other lattice points are not as close in value to λ∗ as those in V ∗.

In Figure 4.13(a), we once again see that all three methods generate the same values

for each experiment. Again, we hypothesize that this is the case because the span of V ∗ is

equal to the span of the lattice basis vectors {u1, u2}. Figure 4.13(b) shows the output of the

163

coefficients when solving the linear program for Problem 2, and again we see that there are

at most two nonzero coefficients, corresponding to the “closest bounding” vectors. Figures

4.13(c) and 4.13(d) show the distance-normalized quantities of (a) and (b).

3 2 1 0 1 2 3
u, radians

0

20

40

60

80

100

120

140

160

E
n
e
rg

y

Total Energy comparison

e ∗ (0,u)

g(u)

closed form

(a)

4 3 2 1 0 1 2 3 4
u, radians

0

5

10

15

20

25

a
v
 c

o
e
ff

ic
ie

n
t

Coefficients in solution to g̃(u)

[-1. -1.]
[-1. 0.]
[-1. 1.]
[0. -1.]
[0. 1.]
[1. -1.]
[1. 0.]
[1. 1.]

(b)

3 2 1 0 1 2 3
u, radians

0

1

2

3

4

5

6

7

E
n
e
rg

y
/m

e
te

r

Energy-per-distance comparison

e ∗ (0,u)/|u|
g(θ)

closed form

(c)

4 3 2 1 0 1 2 3 4
u, radians

0.0

0.2

0.4

0.6

0.8

1.0

α
v
 c

o
e
ff

ic
ie

n
t

Coefficients in solution to g(θ)

[-1. -1.]
[-1. 0.]
[-1. 1.]
[0. -1.]
[0. 1.]
[1. -1.]
[1. 0.]
[1. 1.]

(d)

Figure 4.13: Comparison of shortest path energies to predicted energies using elements of
V ∗ for f(x) = x3 + 5 (small constant overhead). Normalized coefficients to output of g(u)
(i.e. g(θ)) are also shown.

164

3 2 1 0 1 2 3
u, radians

0

50

100

150

200

250

300

350

400
E
n
e
rg

y
Total Energy comparison

e ∗ (0,u)

g(u)

closed form

(a)

4 3 2 1 0 1 2 3 4
u, radians

0

2

4

6

8

10

12

a
v
 c

o
e
ff

ic
ie

n
t

Coefficients in solution to g̃(u)

[-2. -1.]
[-2. 0.]
[-2. 1.]
[-1. -2.]
[-1. 2.]
[0. -2.]
[0. 2.]
[1. -2.]
[1. 2.]
[2. -1.]
[2. 0.]
[2. 1.]

(b)

3 2 1 0 1 2 3
u, radians

0

2

4

6

8

10

12

14

16

E
n
e
rg

y
/m

e
te

r

Energy-per-distance comparison

e ∗ (0,u)/|u|
g(θ)

closed form

(c)

4 3 2 1 0 1 2 3 4
u, radians

0.0

0.2

0.4

0.6

0.8

1.0

α
v
 c

o
e
ff

ic
ie

n
t

Coefficients in solution to g(θ)

[-2. -1.]
[-2. 0.]
[-2. 1.]
[-1. -2.]
[-1. 2.]
[0. -2.]
[0. 2.]
[1. -2.]
[1. 2.]
[2. -1.]
[2. 0.]
[2. 1.]

(d)

Figure 4.14: Comparison of shortest path energies to predicted energies using elements of
V ∗ for f(x) = x3 + 20 (large constant overhead). Normalized coefficients to output of g(u)
(i.e. g(θ)) are also shown.

4.6.5.3 Power law with “large” constant overhead (c = 20)

In our third and final experiment, with results shown in Figure 4.14, we consider the case

where

f(x) = x3 + 20

165

which is a case where there is is a large constant overhead (c = 20) for transmission. We say

that this is a “large” overhead because V ∗ consists of the 12 vectors

V ∗ = {(±2, 0), (0,±2), (±1,±2), (±2,±1)}.

Unlike the first two experiments, these are not lattice points that “neighbor” the origin. This

model has an efficiency threshold of x∗ = 2.9876 m, λ∗ = 2.1544 m, and d̃∗ = 13.3733 m.

Once again, the lengths of each v ∈ V ∗ are close in value to λ∗.

In Figure 4.14(a), we now see that all three methods do not generate the same values for

each experiment. In particular, e∗(0, u) is lower bounded by both g̃(u) and ĝ(u). However,

g̃(u) and ĝ(u) still match, which again supports our conjecture that the closed form approach

of Section 4.6.4 is equivalent to solving the linear program in Problem 2. Also observe that

the span of V ∗ is not equal to the span of the lattice basis vectors {u1, u2}, which results in

the shortest paths using “error” hops that are not elements of V ∗.

Figure 4.14(b) shows the output of the coefficients when solving the linear program for

Problem 2, and again we see that there are at most two nonzero coefficients, corresponding

to the “closest bounding” vectors. Figures 4.14(c) and 4.13(d) show the distance-normalized

quantities of (a) and (b).

4.7 Conclusions

In this chapter, we examined energy-performance tradeoffs in wireless sensor networks;

specifically, we considered “cutset networks” where sensors were deployed along straight

line segments. We considered the problem of source localization on these networks in both

centralized and decentralized scenarios. In the centralized scenario, we considered Man-

hattan, Triangular, and Honeycomb cutset networks, and found that they offered reduced

energy costs at the expense of lower estimation accuracy. In the decentralized scenario,

we provided the “Midpoint Algorithm” for efficient communication on a Manhattan sensor

network, which offered cheaper communication over competing localization methods at the

same accuracy. We also took a broader look at functions that model sensor communication,

and characterized how these functions determine whether or not relaying through a sensor

network can be used to reduce the overall energy cost. These observations were tested in

the context of a lattice sensor network, where it was found that for relay-efficient functions,

there only exist one or two hop types that are required for efficient communication through

the network.

166

CHAPTER 5

Conclusions

We now summarize our results by listing the main contributions of each chapter.

Chapter 2 introduced Manhattan sampling in two and higher dimensions, and proved

sampling theorems. In particular, Section 2.3 presented two-dimensional Manhattan sam-

pling, which consists of sampling an image on equally spaced rows and columns, formed by

the union of two lattices. It was shown that images bandlimited to the union of Nyquist

regions corresponding to these lattices can be perfectly reconstructed from their Manhattan

samples. The higher dimensional analogues of these result were given in Section 2.4.

Chapter 3 presents three new methods for reconstructing images from their Manhattan

samples: The Piecewise-Planar method, the Orthogonal Gradient algorithm, and the Locally

Orthogonal Orientation Penalization algorithm. Additionally, despite being designed with

cutset sampling in mind, the OG and LOOP algorithms can also be applied to reconstructing

images from arbitrary sampling patterns, such as traditional lattice sampling. Of the three

methods, the LOOP algorithm performs the best, both in terms of mean-squared error and

subjective image quality. It was also shown that for lattice interpolation, the LOOP algo-

rithm outperforms bicubic interpolation, and also performs competitively against a recent

interpolation method [11].

Finally, Chapter 4 investigates energy-performance tradeoffs in cutset wireless sensor net-

works. These were introduced in Section 4.1, where it was shown that under a power-law

energy model with no constant overhead, cutset networks require less energy for communi-

cation than lattice networks. In Section 4.3, we found that for the problem of centralized

source localization, cutset networks offered significant increases in energy efficiency over ran-

dom networks and lattice networks without surrendering much accuracy. Furthermore, in

Section 4.4, we explored the decentralized source localization problem and presented the Mid-

point Algorithm for source localization on a Manhattan grid. We found that the Midpoint

Algorithm used less energy than a competing POCS algorithm at certain fixed accuracies.

Finally, in Sections 4.5, we investigated functions that are used to model the energy required

167

for data transmission in a sensor network. In particular, we defined a relay efficient function

to be a function who generates a nonempty relay region for sufficiently large distances, i.e., a

region where a relay sensor can be placed to reduce the overall transmission energy between

two sensors. After finding sufficient conditions for relay-efficiency, we applied our findings

to communication on a lattice network in Section 4.6. We then found that if a function is

relay-efficient, there are typically only one or two “hop types” needed to construct a path

of minimal energy consumption when transmitting messages over long distances in a lattice

sensor network. We also found that these hop types can be found by solving a linear pro-

gramming problem, and we conjectured that this linear program can also be solved in closed

form once the most efficient “hop types” were known.

5.1 Future Work

It would be nice to reformulate the OG and LOOP algorithms in such a way so that conver-

gence is theoretically guaranteed, hopefully without sacrificing much performance. Further-

more, it is possible that there exists a complete probability model whose MAP solution can

be found with a (modified version) of these two algorithms.

With regard to Chapter 4, the idea of a relay region discussed in Section 4.5 can be used

in the context of geometric graph theory. For example, a Gabriel graph [68] is a geometric

graph where the nodes are locations in the plane, and there is an edge between two nodes

if and only if the circle with diameter linking the two nodes does not contain another node.

This “circle” is exactly the relay region generated by the quadratic power law f(x) = Px2.

We believe it can be shown that the Gabriel Graph generated by a set of sensor locations is

exactly the graph containing all shortest communication paths in the case of f(x) = Px2. A

similar connection lies with Nearest Neighbors graphs, which can be formed by drawing an

edge between two nodes if there exists no other sensor in the “lune” connecting the pair of

nodes (Figure 4.9).

Additionally, Section 4.6 provides a framework that can be extended to periodic sensor

networks, such as cutset networks. In particular, any periodic sensor network can be defined

using a set of basis vectors and a finite set of shift vectors. By considering each periods of

the sensor network to be a “cell,” it may be possible to formulate the problem of efficient

long-distance communication in the network by only considering efficient paths between cells

These paths will then be analogous to the set of efficient lattice hop types V ∗ explored in

Section 4.6.

168

APPENDIX A

Interior labeling algorithm for k = 3

Some definitions: A run is a connected border segment of the same class (label)i, i.e. it

contains no odd bonds. The length of the run is the number of (consecutive) nodes in a run.

The majority class is the class with the most presence on the border.

1. If 0 odd bonds, fill interior with present class (same as Reyes segmentation)

2. If 2 odd bonds, connect locations of odd bonds with line and fill accordingly (same as

Reyes segmentation)

3. If 3 odd bonds, there must be three classes present, i.e., three different runs:

(a) If each run contains a corner, one class must connect the two odd bonds containing

the longest run, fill the region with the color of the longest run, and drop a

perpendicular line from the remaining odd bond to this line to complete the

partition.

(b) If any class has all four corners, fill block with that class and ignore the other two

classes.

(c) Otherwise, one class contains no corner; We arbitrarily merge this “no corner”

class with one of the other two runs and treat as a 2 odd bond case. We chose to

merge with closest run in counter-clockwise direction around the block.

4. If 4 odd bonds:

(a) If all three classes are present:

i. If any class contains zero corners :

A. If “no corner” class has two runs, fill the interior with that class.

B. Otherwise, ignore “no corner” class, connect endpoints of the runs of the

other two classes, and fill remaining interior with majority class.

169

ii. Otherwise one class has two corners, and two classes have one corner:

A. If two corner class has two runs, connect endpoints of one-corner classes

and fill accordingly.

B. Otherwise, some other class has two runs; then connect endpoints of one-

run classes.

(b) If only two classes are present, calculate the STRENGTH of each odd bond by

comparing the difference in pixel intensities to a predetermined THRESHOLD.

A STRONG bond has a difference above the threshold, and is WEAK otherwise.

i. If a pair of adjacent odd bonds are either both strong or both weak connect

STRONG to STRONG and WEAK to WEAK.

ii. If both classes have two corners, connect endpoints of runs of the class with

the most color on the border (the majority class)

iii. Otherwise, connect endpoints of class with most corners

5. If greater than 4 odd bonds, we find the smallest runs and merge them if bounded

by same class on either side. This process continues until the number of odd bonds

reduces to 4 or below. If this does not work, we continually “mode filter” the border

with a growing window size until there are 4 odd bonds or fewer.

170

APPENDIX B

Expected value of C

We follow the notation of Section 3.4.1, letting u = [ux, uy]
T , and let Ai = [gj]j∈Ni be our

data matrix of noisy gradient samples. Since each gj is distributed as N (γu, σ2I2×2), we

can consider the univariate random variables gx,j = γux + ηj,x and gy,j = γuy + ηj,y where

ηj,x, ηj,y ∼ N (0, σ2). We have that

1

n
E
[
AiA

T
i

]
=

[
1
n

∑n
j=1 E

[
g2x,j
]

1
n

∑n
j=1 E [gx,jgy,j]

1
n

∑n
j=1 E [gx,jgy,j]

1
n

∑n
j=1 E

[
g2y,j
]]

The top-right element can be evaluated as

1

n

n∑
j=1

E
[
g2x,j
]

=
1

n

n∑
j=1

E
[
(γux + ηj,x)

2)
]

=
1

n

n∑
j=1

[
γ2u2x + 2uxE[ηj,x] = E[η2j,x]

]
=

1

n

n∑
j=1

[
γ2u2x + σ2

]
= γ2u2x + σ2

Similarly, it can be shown that

1

n

n∑
j=1

E
[
g2y,j
]

= γ2u2y + σ2.

171

For the cross-terms, we have

1

n

n∑
j=1

E [gx,jgy,j] =
1

n

n∑
j=1

E [(γux + ηj,x)(γuy + ηj,y)]

=
1

n

n∑
j=1

[
γ2uxuy − γuxE[ηj,y]− γuyE[ηj,x] + E[ηj,xηj,y]

]
=

1

n

n∑
j=1

γ2uxuy

= γ2uxuy.

Combining these results yields

1

n
E
[
AiA

T
i

]
=

[
γ2u2x + σ2 γ2uxuy

γ2uxuy γ2u2x + σ2

]
.

We would like to find an eigenvalue decomposition of this matrix. Recall that ‖u‖ = 1, so

that u2x + u2y = 1. Using this fact, we can calculate the characteristic polynomial and setting

it equal to zero to obtain∣∣∣∣∣ γ2u2x + σ2 − λ γ2uxuy

γ2uxuy γ2u2x + σ2 − λ

∣∣∣∣∣ = (γ2u2x + σ2 − λ)(γ2u2x + σ2 − λ)− γ4u2xu2y

= γ4u2x + γ2σ2u2x − γ2u2xλ+ γ2σ2u2y + σ4 − σ2λ

− γ2u2yλ− σ2λ+ λ2 − γ4u2xu2y
= λ2 − (γ2u2x + γ2u2y + 2σ2)λ+ (γ2σ2u2x + γ2σ2u2y + σ4

= λ2 − (γ2 + 2σ2)λ+ σ2(γ2 + σ2)

= (λ− σ2 − γ2)(λ− σ2) = 0.

Thus, our matrix has eigenvalues

λ1 = γ2 + σ2

λ2 = σ2.

172

One can check that u is an eigenvector corresponding to the largest eigenvalue λ1 = γ2 + σ2

since [
γ2u2x + σ2 γ2uxuy

γ2uxuy γ2u2x + σ2

]
.

[
ux

uy

]
=

[
ux(γ

2u2x + σ2 + γ2u2y)

uy(γ
2u2x + σ2 + γ2u2y)

]

= (γ2 + σ2)

[
ux

uy

]
.

The second eigenvector u⊥ can be chosen by taking either of the two possible π
2

rotations of

v.

173

APPENDIX C

Minimum path cost calculations

We assume that energy-efficient paths in a cutset network travel along the cutset boundaries,

i.e., edges of the tessellation generating the cutset pattern. We also assume that communica-

tion along these paths only occurs between neighboring sensors. Since each hop is the same

length λ, the minimum path cost c(r, φ) can be decomposed into the number of hops n(r, φ)

required to travel distance r at angle φ times the hop cost λα, where α is the communication

energy path-loss exponent. Specifically,

c(r, φ) = λαn(r, φ).

Let d(r, φ) be the distance traveled along the cutset boundaries to arrive at a point at

distance r and angle φ. Then the number of hops is simply the total distance along the path

divided by the hop length n(r, φ) = d(r,φ)
λ

, and we have that

c(r, φ) = λα−1d(r, φ).

All that remains is to find d(r, φ) for Manhattan, Triangular, and Honeycomb networks.

C.1 Manhattan network case

For a Manhattan network, to travel a net distance of r requires a total distance of

d(r, φ) = r| sinφ|+ r| cosφ|,

and thus we have that

c(r, φ) = λα−1r (| cosφ|+ | sinφ|) .

174

C.2 Triangular network case

For a triangular network, by symmetry, it suffices to calculate d(r, φ) for |φ| ≤ π
6
. To travel

a net distance of r requires a total distance of

d(r, φ) = r cosφ+ r
| sinφ|√

3
, |φ| ≤ π

6
.

and thus we have that

c(r, φ) = λα−1r

(
cosφ+

| sinφ|√
3

)
, |φ| ≤ π

6
.

C.3 Honeycomb network case

For a Honeycomb network, by symmetry, it suffices to calculate d(r, φ) for |φ| ≤ π
6
. To travel

a net distance of r requires a total distance of

d(r, φ) =
4

3
r cosφ, |φ| ≤ π

6
,

and thus we have that

c(r, φ) =
4

3
λα−1r cosφ, |φ| ≤ π

6
.

175

BIBLIOGRAPHY

[1] A. Farmer, A. Josan, M. Prelee, D. Neuhoff, and T. Pappas, “Cutset sampling and
reconstruction of images,” in Proc. IEEE ICIP, Brussels, Sept. 2011, pp. 1909–1912.

[2] D. Blatt and A. Hero, “Energy-based sensor network source localization via projection
onto convex sets,” IEEE Trans. Sig. Proc., vol. 54, no. 9, pp. 3614–3619, 2006.

[3] D. Obenour, A. Michalak, Y. Zhou, and D. Scavia, “Quantifying the impacts of stratifi-
cation and nutrient loading on hypoxia in the northern Gulf of Mexico,” Environmental
science & technology, vol. 46, no. 10, pp. 5489–5496, 2012.

[4] M. Reyes, X. Zhao, D. Neuhoff, and T. Pappas, “Lossy compression of bilevel images
based on Markov random fields,” in Proc. IEEE ICIP, vol. 2, San Antonio, Sept. 2007,
pp. II–373.

[5] M. Reyes and D. Neuhoff, “Arithmetic encoding of Markov random fields,” in Proc.
IEEE Int. Symp. Inform. Thy., Seoul, June 2009, pp. 532–536.

[6] ——, “Lossless reduced cutset coding of Markov random fields,” in Proc. Data Com-
pression Conf. Snowbird, Mar. 2010, pp. 386–395.

[7] M. Reyes, “Cutset based processing and compression of Markov random fields,” Ph.D.
dissertation, Univ. of Mich., 2011.

[8] H. Landau, “Necessary density conditions for sampling and interpolation of certain
entire functions,” Acta Math., vol. 117, no. 1, pp. 37–52, 1967.

[9] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “Fast image recovery using variable
splitting and constrained optimization,” IEEE Trans. Image Proc., vol. 19, no. 9, pp.
2345–2356, 2010.

[10] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and
reconstruction,” Image Processing, IEEE Transactions on, vol. 16, no. 2, pp. 349–366,
2007.

[11] X. Zhang and X. Wu, “Image interpolation by adaptive 2-D autoregressive modeling
and soft-decision estimation,” Image Processing, IEEE Transactions on, vol. 17, no. 6,
pp. 887–896, 2008.

176

[12] M. Prelee and D. Neuhoff, “A sampling theorem for Manhattan grids,” in Proc. IEEE
ICASSP, Kyoto, Mar. 2012, pp. 3797–3800.

[13] M. Prelee, D. Neuhoff, and T. Pappas, “Image reconstruction from a Manhattan grid
via piecewise plane fitting and gaussian markov random fields,” in Proc. IEEE ICIP,
Orlando, FL, Sept. 2012, pp. 2061–2064.

[14] M. Prelee and D. Neuhoff, “Energy efficient source localization on a Manhattan grid
wireless sensor network,” in Proc. IEEE ICASSP, Vancouver, May 2013, pp. 4266–4270.

[15] ——, “Performance-energy tradeoffs in cutset wireless sensor networks,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, May
2014, pp. 7585–7589.

[16] J. Unnikrishnan and M. Vetterli, “Sampling high-dimensional bandlimited fields on low-
dimensional manifolds,” IEEE Trans. Info. Thy., vol. 59, no. 4, pp. 2103–2127, 2013.

[17] ——, “Sampling and reconstruction of spatial fields using mobile sensors,” IEEE Trans.
Sig. Proc, vol. 61, no. 9, pp. 2328–2340, 2013.

[18] M. Prelee, D. L. Neuhoff et al., “Image interpolation from Manhattan cutset samples
via orthogonal gradient method,” in Image Processing (ICIP), 2014 IEEE International
Conference on. IEEE, 2014, pp. 1842–1846.

[19] D. Petersen and D. Middleton, “Sampling and reconstruction of wave-number-limited
functions in n-dimensional euclidean spaces,” Inf. Control, vol. 5, no. 4, pp. 279–323,
1962.

[20] A. Rosenfeld and A. Kak, Digital picture processing. New York, NY: Academic Press,
1976.

[21] A. Tekalp and A. Tekalp, Digital video processing. Prentice Hall PTR Upper Saddle
river, NJ, 1995, vol. 1.

[22] D. Dudgeon and R. Mersereau, “Multidimensional digital signal processing,” Prentice-
Hall Signal Processing Series, Englewood Cliffs: Prentice-Hall, vol. 1, 1984.

[23] N. T. Gaarder, “A note on the multidimensional sampling theorem,” Proc. IEEE,
vol. 60, no. 2, pp. 247–248, 1972.

[24] I. Marks and J. Robert, “Multidimensional-signal sample dependency at nyquist densi-
ties,” J. Opt. Soc. Amer., vol. 3, no. 2, pp. 268–273, 1986.

[25] K. F. Cheung, R. J. Marks II et al., “Imaging sampling below the nyquist density
without aliasing,” J. Opt. Soc. Amer., vol. 7, no. 1, pp. 92–105, Jan. 1990.

[26] K. F. Cheung, “A multidimensional extension of papoulis generalized sampling expan-
sion with the application in minimum density sampling,” in Advanced Topics in Shannon
Sampling and Interpolation Theory. Springer, 1993, pp. 85–119.

177

[27] A. Faridani, “An application of a multidimensional sampling theorem to computed
tomography,” Contemp. Math., vol. 113, pp. 65–79, 1990.

[28] ——, “A generalized sampling theorem for locally compact abelian groups,” Math.
Comp., vol. 63, no. 207, pp. 307–327, 1994.

[29] D. Walnut, “Nonperiodic sampling of bandlimited functions on unions of rectangular
lattices,” J. Fourier Anal. and Appl., vol. 2, no. 5, pp. 435–452, 1996.

[30] R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas and bounds on
aliasing error in sub-Nyquist nonuniform sampling of multiband signals,” IEEE Trans.
Inform. Thy., vol. 46, no. 6, pp. 2173–2183, Sept. 2000.

[31] ——, “Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband
signals,” IEEE Trans. Inform. Thy., vol. 49, no. 10, pp. 2301–2313, Oct. 2001.

[32] H. Behmard and A. Faridani, “Sampling of bandlimited functions on unions of shifted
lattices,” J. of Fourier Anal. Appl., vol. 8, no. 1, pp. 43–58, 2002.

[33] H. Behmard, “Efficient reconstruction algorithms using shifted lattices,” IEEE Trans.
Sig. Proc., vol. 57, no. 7, pp. 2548–2557, July 2009.

[34] J. Unnikrishnan and M. Vetterli, “On sampling a high-dimensional bandlimited field on
a union of shifted lattices,” in Proc. IEEE ISIT, 2012, pp. 1468–1472.

[35] A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits and Systems,
vol. 24, no. 11, pp. 652–654, 1977.

[36] P. Willis and Y. Bresler, “Optimal scan for time-varying tomography. I. theoretical
analysis and fundamental limitations,” IEEE Trans. Image Proc., vol. 4, no. 5, pp.
642–653, May 1995.

[37] H. Behmard, “Reconstruction of 2D signals from unions of shifted lattices,” in Proc.
IEEE ICASSP, vol. 4, 2005, pp. iv–197.

[38] G. Rilling, Y. Tao, I. Marshall, and M. E. Davies, “Multilattice sampling strategies for
region of interest dynamic mri,” Magnetic Resonance in Medicine, vol. 70, no. 2, pp.
392–403, 2013.

[39] T. N. Pappas, “An adaptive clustering algorithm for image segmentation,” IEEE Trans.
Sig. Proc., vol. 40, no. 4, pp. 901–914, 1992.

[40] S. Z. Li, Markov random field modeling in computer vision. Springer Science & Business
Media, 2012.

[41] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge
University Press, 2004.

178

[42] J. B. Rosen, “The gradient projection method for nonlinear programming. part I. linear
constraints,” Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 1, pp. pp. 181–217, 1960.

[43] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in Optimiza-
tion, pp. 1–96, 2013.

[44] A. Bovik, Handbook of Image and Video Processing. Elsevier Science, 2010.

[45] X. Feng and P. Milanfar, “Multiscale principal components analysis for image local
orientation estimation,” in Signals, Systems and Computers, 2002. Conference Record
of the Thirty-Sixth Asilomar Conference on, vol. 1. IEEE, 2002, pp. 478–482.

[46] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate analysis. Academic press,
1979.

[47] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “(C)SALSA: A solver for convex opti-
mization problems in image recovery,” http://cascais.lx.it.pt/∼mafonso/salsa.html, ac-
cessed: Jan. 16, 2014.

[48] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression-based image processing
toolbox for MATLAB,” http://alumni.soe.ucsc.edu/∼htakeda/KernelToolBox.htm, ac-
cessed: Nov. 2015.

[49] X. Zhang and X. Wu, “Image interpolation by adaptive 2D autogregressive mod-
eling and soft-decision estimation.” http://www.ece.mcmaster.ca/∼xwu/executables/
ARInterpolation.rar, accessed: Nov. 2015.

[50] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communi-
cation protocol for wireless microsensor networks,” in Proc. IEEE Annu. Hawaii Int.
Conf. Sys. Sci., Jan. 2000, pp. 1–10.

[51] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wireless
sensor networks,” in IEEE INFOCOM, June 2002, pp. 1567–1576.

[52] T. Van Dam and K. Langendoen, “An adaptive energy-efficient mac protocol for wireless
sensor networks,” in Proc. ACM Int. Conf. Embedded Networked Sensor Systems, Nov.
2003, pp. 171–180.

[53] M. Rabbat and R. Nowak, “Decentralized source localization and tracking,” in IEEE
ICASSP, Montreal, May 2004, pp. iii–921.

[54] A. Salhieh, J. Weinmann, M. Kochhal, and L. Schwiebert, “Power efficient topologies for
wireless sensor networks,” in IEEE Int. Conf. Parallel Proc., Sept. 2001, pp. 156–163.

[55] P. Cheng, C. Chuah, and X. Liu, “Energy-aware node placement in wireless sensor
networks,” in IEEE GLOBECOM, Nov. 2004, pp. 3210–3214.

[56] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische mathe-
matik, vol. 1, no. 1, pp. 269–271, 1959.

179

http://cascais.lx.it.pt/~mafonso/salsa.html
http://alumni.soe.ucsc.edu/~htakeda/KernelToolBox.htm
http://www.ece.mcmaster.ca/~xwu/executables/ARInterpolation.rar
http://www.ece.mcmaster.ca/~xwu/executables/ARInterpolation.rar

[57] T. Hales, “The honeycomb conjecture,” Discrete & Computational Geometry, vol. 25,
no. 1, pp. 1–22, 2001.

[58] N. Patwari, J. Ash, S. Kyperountas, A. Hero III, R. Moses, and N. Correal, “Locating the
nodes: cooperative localization in wireless sensor networks,” IEEE Sig. Proc. Magazine,
vol. 22, no. 4, pp. 54–69, 2005.

[59] X. Sheng and Y. Hu, “Maximum likelihood multiple-source localization using acoustic
energy measurements with wireless sensor networks,” IEEE Trans. Sig. Proc., vol. 53,
no. 1, pp. 44–53, 2005.

[60] N. Patwari, R. O’Dea, and Y. Wang, “Relative location in wireless networks,” in Proc.
IEEE VTC, vol. 2, May 2001, pp. 1149–1153.

[61] T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[62] H. Hashemi, “The indoor radio propagation channel,” Proc. IEEE, vol. 81, no. 7, pp.
943–968, 1993.

[63] N. Patwari, A. Hero, M. Perkins, N. Correal, and R. O’Dea, “Relative location estima-
tion in wireless sensor networks,” IEEE Trans. Sig. Proc., vol. 51, no. 8, pp. 2137–2148,
2003.

[64] A. Coulson, A. Williamson, and R. Vaughan, “A statistical basis for lognormal shad-
owing effects in multipath fading channels,” IEEE Trans. Comm., vol. 46, no. 4, pp.
494–502, 1998.

[65] M. Rabbat and R. Nowak, “Quantized incremental algorithms for distributed optimiza-
tion,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 798–808,
2005.

[66] D. Li and Y. Hu, “Energy-based collaborative source localization using acoustic mi-
crosensor array,” EURASIP Journal on Advances in Signal Processing, vol. 2003, no. 4,
pp. 321–337, 2003.

[67] M. Rabbat, R. Nowak, and J. Bucklew, “Robust decentralized source localization via
averaging,” in IEEE ICASSP, vol. 5, 2005, pp. v–1057.

[68] D. W. Matula and R. R. Sokal, “Properties of Gabriel graphs relevant to geographic
variation research and the clustering of points in the plane,” Geographical analysis,
vol. 12, no. 3, pp. 205–222, 1980.

180

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Motivations for Cutset/Manhattan Sampling
	Overview and Summary of Contributions

	Multidimensional Manhattan Sampling
	Introduction
	Preliminaries
	Two-Dimensional Manhattan Sampling
	Higher-Dimensional Manhattan Sampling
	Introduction
	Examples and properties of bi-step lattices
	Examples of Manhattan sets
	Alternate representations of Manhattan sets
	Manhattan sampling density
	Manhattan partition of frequency space
	Spectral replication induced by bi-step lattice sampling
	The multidimensional Manhattan sampling theorem
	Achievement of Landau lower bound on sampling density
	Discrete-space images

	Concluding Remarks

	Manhattan Image Reconstruction
	Background: Cutset-MRF Reconstruction Method
	Definitions and Notation
	Problem Background and Algorithm Overview
	Step 1: Cutset segmentation
	Step 2: Block interior segmentation
	Step 3: Block reconstruction
	Results

	Piecewise-Planar Reconstruction Method
	The Piecewise Planar Assumption
	The Piecewise-Planar Method
	Step 1: The K-planes algorithm
	Step 2: The interior labeling algorithm
	Step 3: Block Reconstruction
	Results

	Orthogonal Gradient (OG) Algorithm
	Constrained Optimization Problem Formulation and Solution
	The Orthogonal Gradient (OG) Algorithm

	Local Orthogonal Orientation Penalization (LOOP) Algorithm
	The Dominant Gradient Strength and Direction
	LOOP Algorithm
	Cost Function for the LOOP Algorithm
	Efficient Computation of the Dominant Gradient Direction

	Reconstruction Method Comparisons
	Traditional Lattice Sampling Experiments
	Manhattan vs. Lattice Comparison
	PSNR Comparison
	Subjective Comparison
	Manhattan vs. Lattice Conclusions

	Conclusions

	Cutset Sensor Networks, Relay-efficient Functions, and Efficient Communication
	Cutset Networks
	The Source Localization Problem
	Cramér–Rao Bounds
	Maximum Likelihood Estimation

	Centralized Source Localization on Cutset Networks
	Procedure
	Discussion

	Decentralized Source Localization on a Manhattan Network
	Problem Statement
	Midpoint Algorithm
	Choosing the threshold
	Communication protocol and costs
	Experiments and Results

	Relay Regions and Relay-efficient Functions
	Relay regions and their properties
	Relay-efficient functions and their properties
	The size and shape of R"0365R(x)
	Horizontal width 1(x)
	Vertical height 2(x)

	Energy-efficient hop lengths
	Truncated transmission energy functions
	Energy Function Examples
	Power-law (plus a constant) functions are strongly relay-efficient
	Exponential function
	Pseudo-Huber functions
	Initially-linear energy function

	Conclusions

	Efficient Communication on a Lattice Sensor Network
	Minimum Energy Paths
	Sensor separation guaranteeing relay region contains lattice point
	Calculating V*
	Conjecture: A closed-form expression for g() and g"0365g(u)
	Lattice Communication Experiments
	Power law with no constant overhead (c=0)
	Power law with ``small'' constant overhead (c=5)
	Power law with ``large'' constant overhead (c=20)

	Conclusions

	Conclusions
	Future Work

	Appendices
	Interior labeling algorithm for k=3
	Expected value of C
	Minimum path cost calculations
	Manhattan network case
	Triangular network case
	Honeycomb network case

	Bibliography

