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ABSTRACT 

The lungs are a complex organ consisting of two main anatomical features, the 

airways and alveoli. The airways form an arborized network of epithelial tubes 

surrounded by supporting tissue that conduct air in and out of the body. The airways 

connect to clusters of alveoli where gas exchange occurs between a thin epithelium and 

the surrounding vasculature.  Any disruption to these tissues leads to the vast number 

of lung diseases that are known today. The number and severity of diseases affecting 

human lung development and adult respiratory function has stimulated great interest in 

deriving new in vitro models to study the human lung. Currently, a variety of animal 

models and cell culturing systems are used to model human lung development and 

adult homeostasis and disease. As described herein, I have taken two different 

approaches to understand how the lung develops normally. First, by utilizing mouse 

models, we have determined that a transcription factor, Sox9, which is expressed during 

lung development, is necessary to establish the proper arborized network of airways in 

the adult. Second, I used human pluripotent stem cells, which are grown in a tissue 

culture dish and are capable to differentiate into any cell type of the human body, in 

order to investigate human lung development and to derive a model for human lung 

disease. Using human pluripotent stem cells, we have developed a three-dimensional 

human lung model system that consists of structures that are similar to the human lung, 

including complex, multicellular lung epithelium and supporting tissue. This dissertation 

will describe my efforts to exploit both animal models and human cells grown in vitro in  
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order to better understand how the lung develops into the complex airway and alveolar 

structures of the adult lung. 
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CHAPTER 1 

INTRODUCTION 

 

Lung Overview 

The lungs are the main organ of the respiratory system and function to exchange 

gas, taking in oxygen and expelling carbon dioxide. The lungs are organized in a 

branched, tree-like structure that has two major anatomical features, the conducting 

airways and alveoli. The conducting airways are arranged in a series of tubes that 

become progressively smaller as they move gas into the alveoli. The conducting 

airways start as a singular tube, the trachea, which splits into two main bronchi. The 

main bronchi then further split and branch into smaller airway tubes called the 

conducting bronchioles. The walls of the conducting airways consist of epithelial cell 

types surrounded by supporting mesenchyme including fibroblasts, smooth muscle, 

cartilage, vasculature, and neurons extending the length of the airways (Fig. 1.1). Just 

before the bronchioles terminate they form a small tube called the alveolar duct, which 

leads into the thin sac of cells that make up the alveoli. The alveolar epithelium is tightly 

associated with a capillary network in order for efficient gas exchange to take place.  

In order to accommodate diverse functions, the human lung possesses several 

specialized cell types. The conducting airways are predominated by three epithelial cell 

types: ciliated, goblet, and basal cells, with ciliated cells being the most dominant cell 

type in human airways (1). Ciliated cells have multiple cilia that beat in a synchronous 
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rhythm in order to maintain the flow of mucus across the airway epithelium (2, 3). Goblet 

cells are secretory cells that secrete mucus on the surface of the airway (4). The basal 

cells are the adult stem cells of the airways (5-9). In humans, basal cells line the main 

bronchi and large bronchioles, but begin to decrease in number in the smaller 

bronchioles toward the alveoli (1, 8, 10, 11). Other, sparse populations of cells in the 

airway include club cells, which are secretory cells that secrete lubricating 

glycosaminoglycans and antimicrobial peptides into airways (12), and pulmonary 

neuroendocrine cells which are innervated on the basal surface and store proteins that 

are released under a physiological stimulus such as hypoxia (13-16). The alveolar 

epithelium is comprised of two epithelial cell types, alveolar epithelial type I cells (AECI) 

and alveolar epithelial type II cells (AECII) (Fig. 1.1). AECIs form a thin, squamous 

epithelium that covers the majority of the alveolar surface and exchanges gas with 

neighboring capillaries through diffusion (17-20). AECIIs have a cuboidal shape and 

secrete surfactant proteins to reduce the surface tension of the alveolar sacs, allowing 

them to expand and contract without collapsing as breathing takes place (18, 20-22). 

The complex architecture of the adult lung is established during early embryonic 

development.  The epithelium of the lung is derived from the embryonic endoderm while 

much of the structural support of the lung, including fibroblasts, smooth muscle and 

cartilage, is derived from the embryonic mesoderm. Lung development begins as two 

buds forming off of a tube of endoderm surrounded by mesoderm called the gut tube. 

The gut tube gives rise to the entire gastrointestinal tract and associated organs, 

including lungs, thyroid, liver and pancreas (23-26). The primary lung buds emerge from 

the gut tube, invade the surrounding mesoderm and continue to elongate in tight 
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association with the mesoderm throughout development. The lung buds then undergo 

branching morphogenesis, in which epithelial bud tips continuously bifurcate, forming 

new branches, until a stereotyped tree-like pattern is formed (27). During branching, a 

proximal-distal lung axis is established, with proximal lung epithelium giving rise to 

conducting airways, and the distal tips eventually terminally differentiating into the 

alveolar sacs (for more detailed reviews see: (28, 29)). 

Since lung development is so critical for neonatal life, it has been the focus of intense 

study.  In addition, adult lung diseases are prevalent and can be caused by 

environmental exposure to pathogens or damaging toxins; however, in many cases, 

chronic lung diseases are often a result of both genetics and environment. Much of our 

understanding of aberrant lung development and adult disease has resulted from using 

animal models and cell culture systems. These approaches have yielded a tremendous 

amount of insight into the mechanisms that cause disease; however, there are many 

aspects of human biology and disease that are not reflected in animal models or cell 

culture systems. In order to address the need for a physiologically relevant human 

model systems, the past decade has seen several fields turn to human pluripotent 

stems cells (hPSCs), which include both embryonic stem cells and induced pluripotent 

stem cells, in an attempt to generate specific cell types and even complex organ-like 

tissue in vitro (30-34). Indeed, the lung field has seen rapid growth in the number of 

exciting reports generating lung tissue in vitro (35-45). In this chapter, I will introduce the 

developmental biology framework that forms the basis to differentiate lung tissue from 

hPSCs. 
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Endoderm and Anterior Foregut Specification 

hPSC-derived tissues are often generated using directed differentiation, a process that 

aims to recapitulate the signals that drive cell or organ specific differentiation in the 

embryo in an in vitro environment (36-46). In the case of the lung, this entails a series of 

sequential steps to derive endoderm, then anterior foregut endoderm and induction of 

lung progenitor cells, followed by lung-specific cell type differentiation and maturation. It 

has long been appreciated that Nodal signaling is necessary to form definitive 

endoderm during gastrulation in animal models, and is also sufficient to convert non-

endodermal lineages (ectoderm) into endoderm in early embryonic tissue (26, 47-51). In 

perfamily member, stimulates the same 

signaling pathways as Nodal and has been widely used to successfully induce definitive 

endoderm differentiation from hPSCs (30, 34, 39, 52). 

Following gastrulation, the embryo undergoes a series of morphological 

movements that give rise to the gut tube, which is an endodermal tube surrounded by 

mesoderm. Embryo and gut tube patterning are guided by a multitude of secreted 

proteins that both stimulate and inhibit different signaling pathways in order to establish 

the domains of the gut tube, referred to as the foregut, midgut, and hindgut which form 

along the anterior-posterior axis of the embryo (for more detailed reviews, see: (26, 

53)). 

Several secreted inhibitors help to establish the anterior identity of the foregut 

endoderm, which will give rise to the lungs and thyroid. As the endoderm migrates to 

form the gut tube during gastrulation, cells at the anterior side of the embryo encounter 

secreted Nodal inhibitors Lefty1 and Cerberus-like (Cerl) and BMP inhibitors Chordin 
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and Noggin, which inhibit posterior patterning (54-56). In Xenopus laevis, the Wnt 

antagonist Sfrp5 is secreted from the endoderm to maintain foregut identity (57). In line 

with embryonic regulation of anterior endoderm patterning, an activator/inhibitor screen 

conducted in hPSC-derived endoderm that included inhibitors and activators of Nodal, 

of the BMP and TGFβ signaling pathways robustly induced anterior foregut genes 

(58).The observation that inhibition of BMP and TGFβ (“dual smad inhibition”) potently 

stimulates a foregut endoderm fate has been widely adopted by the lung differentiation 

field (38-41, 45, 58). Interestingly, although secreted Wnt inhibitors help maintain 

foregut identity in vivo, inhibition of Wnt signaling is not necessary to induce foregut 

endoderm in vitro (36, 37, 39-41, 45, 58). 

 

Morphogenesis in a dish 

In hPSC-derived endoderm cultures, it has been shown that stimulating WNT 

and FGF signaling pathways (via WNT3A and FGF4) causes self-aggregation of three-

dimensional cell clusters, called spheroids, that delaminate from the tissue culture 

monolayer (34, 39, 52, 59). While the mechanisms driving three-dimensional spheroid 

formation in endoderm cultures is not known, it is interesting to speculate that FGF4 and 

WNT are acting, as they do in vivo, to drive cellular reorganization and migration (60-

64). 

In addition to driving three-dimensional morphogenesis in a dish, WNT3A and FGF4 are 

potent stimulators of the CDX2+ intestinal lineage in vitro (34). However, simultaneous 

stimulation of WNT/FGF signaling in combination of the in vitro anterior foregut 
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promoting conditions (dual smad inhibition), caused spheroids to take on an anterior 

foregut fate, including the expression of, NKX2.1, PAX8, and SOX2 (39). Taken 

together, these studies demonstrated that hPSC-derived definitive endoderm can be 

directed to become anterior foregut endoderm by mimicking in vivo patterning signals. 

 

Lung Induction 

During early development, the lung primordium forms along the ventral anterior 

foregut and expresses transcription factor Nkx2.1, which is required for lung fate (65, 

66). Extensive study of lung specification has identified several signaling pathways that 

are critical for this process, including Fgf, Bmp, Wnt, Hedgehog (Hh) and RA signaling 

pathways (reviewed in (28, 67)). Bmp signaling to the anterior-ventral foregut endoderm 

is important to prime the lung domain by inhibiting Sox2, allowing lung specification to 

take place (67, 68). Additionally, Fgf2 secreted from the cardiac mesoderm, which sits 

adjacent to the ventral foregut, and Fgf10 secreted from the surrounding lung 

mesoderm are necessary for Nkx2.1 expression and lung formation (69-72). Similarly, 

Wnt ligands signaling from the lung mesoderm to the ventral foregut endoderm are also 

necessary for Nkx2.1 expression and lung induction (28, 73-76).  RA promotes Nkx2.1 

expression and lung bud formation in part by inhibiting TGFβ and the Wnt antagonist 

Dkk1, allowing Fgf and Wnt signaling to occur (77, 78). Hh signaling is also critical for 

lung development, as concurrent deletion of the Hh signaling transcription effectors Gli2 

and Gli3 leads to lung agenesis(79).  

Since the events required for lung induction are complex and involve multiple signaling 

pathways that are controlled in very tight temporal and spatial manner in vivo, 
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translating these developmental paradigms in a dish has proven to be challenging. 

However, many groups have generated hPSC-derived NKX2.1+ lung progenitor 

populations with varying levels of efficiency (Fig. 1.2A-C) (36-41, 43-46). The majority of 

methods to derive lung tissue in vitro have treated endoderm, or anterior foregut 

endoderm, in monolayer cultures with FGFs, BMPs, WNTs, and RA to induce NKX2.1+ 

endoderm. Approaches to induce three-dimensional lung organoids have used a 

combination of factors to promote spheroid formation by activating FGF4 and WNT 

signaling, while simultaneously specifying foregut with dual smad inhibition and inducing 

lung. 

To date, the field has primarily focused on differentiating lung epithelial cells from 

hPSCs, however, the lung mesenchyme also plays a critical role in sending and 

receiving signals and physically interacting with the lung epithelium during early 

development (28). Given the important contribution of the mesenchyme to lung 

development and lung function, modeling this aspect of lung development in vitro 

represents a significant opportunity for furthering the field.  

 

Branching morphogenesis and distal patterning 

Lung progenitors 

Following the induction of an Nkx2.1+ field of lung progenitor cells, the primordial 

lung buds undergo branching morphogenesis, giving rise to a patterned epithelium that 

consists of Sox2+ proximal airways and Sox9+/Id2+/Nmyc+ actively branching 

epithelium that will eventually differentiate, giving rise to the alveoli (80-83). As bud tips 

bifuracate forming two new branches, the epithelial and mesenchymal cells are 
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proliferating and migrating (80, 81, 84-86). In the distal epithelium, epithelial marker 

Nmyc has been shown to be necessary to maintain the proper level of proliferation and 

maintain the progenitor identity in the branching tips (81). Although a function has not 

been defined for Id2 in the distal epithelium, the Id2+ cells have been lineage traced to 

show that during early development (Embryonic day (E) 10.5-E13.5), the Id2+ cells give 

rise to all epithelial cell types, but during late development (E15.5-E17.5) the Id2+ cells 

only give rise to the distal epithelial cells AECI and AECII (83). Previously Sox9 was 

shown to have no role during lung development when deleted by using SftpCre driver, 

SftpC is expressed in the distal epithelium then after branching exclusively in AECII 

cells (82). However, when Sox9 is deleted using a ShhCre driver, which allowed Sox9 

epithelial deletion early during lung induction (E9.5), the loss of Sox9 caused severe 

branching defects (80).  

 

Sox9  

Sox9 is part of the sex-determining region Y (SRY)-related high mobility group 

(HMG)-box (SOX) transcription factors family (87). In humans, mutations in SOX9 can 

lead to several genetic disorders including campomelic dysplasia (CD), acampomelic 

campomelic dysplasia (ACD), Cooks syndrome, and Pierre Robin sequence (or 

syndrome) (88-90). Patients suffering from these diseases have many birth defects 

including respiratory defects, which can ultimately lead to death (89-94). Sox9 plays 

many roles during development in a variety of tissues including organs that undergo 

branching morphogenesis such as the pancreas and kidney. During pancreas 

development, Sox9 regulates proliferation and differentiation of the pancreatic 
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progenitors through Wnt , Notch, FGF signaling pathways (95, 96). In the kidney Sox9 is 

involved in the GDNF/RET pathway and is necessary for branching (97). In the lung 

Sox9 is necessary for proper branching morphogenesis by primarily regulating ECM 

deposition, cell cytoskeleton, and epithelial cell migration (80) 

 

Distal patterning 

Diffusible growth factors including Bmp4, Fgfs and Wnts are essential for 

establishing proximal-distal axis and maintaining the distal Sox9+/Id2+/Nmyc+ 

epithelium. Bmp4 and Wnt2/2b expression in the distal mesenchyme and Wnt7a 

originating in the distal epithelium signal to the distal epithelium and are essential for 

maintaining the distal epithelium and promoting branching (98-102). In mice, blocking 

Wnt signaling by conditional loss of β-Catenin from the epithelium results in disrupted 

branching and expansion of the proximal epithelium (99, 103). Similarly, Fgf7 and Fgf10 

signaling from the distal mesenchyme to the epithelium promotes epithelial growth and 

branching, and Fgf10 plays a role in maintaining distal progenitor cells during branching 

morphogenesis (104-108). RA promotes branching by increasing Fgf10 expression in 

the lung mesenchyme (109).  Once the branching program is complete, the distal 

epithelium differentiates into alveolar cells AECI and AECII. In the mouse lung, both 

alveolar cell types arise from a distal bipotent progenitor (110), however, the factors that 

regulate cell fate choice and differentiation of alveolar cell types in the embryo are not 

well understood.  

Efforts to derive distal and alveolar cell types in vitro have attempted to 

recapitulate the signaling factors active around distal buds during branching in the 
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developing embryo. To date, Huang et al. have provided the most efficient protocol to 

generate AECI and AECII cells from hPSCs (Fig.1. 2A) (38). hPSC-derived foregut 

-catenin), 

BMP4, FGF10, FGF7 and RA for 15 days at which time the cells were cultured with 

Chir99021, FGF10 and FGF7 for an additional 25 days, followed by treatment with 

dexamethasone, cAMP and isobutylmethylxanthine (DCI), which stimulates alveolar 

cell-specific gene expression in vitro (35, 111). Additionally, dexamethasone is 

administrated to premature infants to accelerate fetal lung maturation, which results in 

enhanced surfactant secretion from AECIIs (112, 113). These sequential steps resulted 

in cells expressing AECII protein SFTPB in over 50% of all cells in the culture, with 

some SFTPB+ cells displaying lamellar bodies and functional release and uptake of 

surfactant protein. These factors also induced cells to express AECI cell specific 

markers. While these cells displayed the flat, elongated nuclei typical of AECI cells, they 

did not exhibit elongated cell bodies or form multi-cellular sac-like alveolar structures 

(38). Others have found that seeding NKX2.1+ lung progenitors onto human lung extra 

cellular matrix (ECM) proteins significantly enhanced AECI and AECII cell 

differentiation, indicating that both the physical and chemical environments are 

important for alveolar differentiation in vitro (42). 

More recently, attempts have been made to differentiate three-dimensional lung-

like tissues in vitro by recreating the embryonic distal lung environment in a dish (Fig.1. 

2B) (39). Three-dimensional foregut spheroid cultures grown in an extracellular matrix 

(Matrigel) with high concentrations of FGF10 led to the formation of lung organoids. 

Lung organoids possess a distal alveolar cell population that express bipotent 
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progenitor markers including SFTPC, HOPX, and SOX9 (110) with a few cells 

expressing mature AECI and AECII mature markers, PDPN and SFTPB, respectively. 

Alveolar cell types were found in distinct regions of the lung organoid, but true alveolar 

sac-like structures were not observed (39). 

Thus, one of the hurdles that remain in hPSC-derived lung differentiation is to 

successfully recapitulate alveolar structure in vitro. Alveolar-like structures have been 

derived from primary human AECII cells co-cultured with fetal human lung fibroblast cell 

lines forming alveolar spheres (alveolospheres). The cultures consist of phenotypic 

AECI and AECII cells demonstrating proof of concept that achieving such three-

dimensional alveolar structure is possible (114). Similar approaches have been 

attempted with hPSC-derived tissues, where the cell surface marker carboxypeptidase 

M (CPM) was used to enrich NKX2.1+ progenitors using fluorescent activated cell 

sorting (FACS). CPM purified lung progenitors were cultured in a three-dimensional 

extracellular matrix along with FGF7, DCI and a fetal human lung fibroblast cell line. 

This resulted in three-dimensional spheres comprised of cells expressing AECI and 

AECII markers, yet proper AECI morphology was not demonstrated (41). Although 

effective, one of the drawbacks to this approach is that it is unclear if the human fetal 

feeder cells are providing a physical niche through cell-cell contact, and/or if they 

secrete important factors (41, 114). While several groups have shown success 

obtaining distal epithelial cell types in vitro, additional work is needed to better 

understand the mechanisms that control AECI and AECII differentiation to improve upon 

the efficiency of the differentiation and deriving alveolar structure.  
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Proximal airway differentiation 

In the developing embryo, a variety of factors are important for promoting 

proximal airway fate in mouse lungs(115). As development progresses the 

Sox9/Id2/Nmyc bud tips differentiate into proximal tissue and express the marker Sox2. 

The multipotent Sox2+ airway population will give rise to neuroendocrine, club, ciliated, 

goblet and basal cells (28). Activation of Notch signaling promotes Sox2+ cells to 

differentiate into secretory cells, whereas inhibition of Notch signaling promotes ciliated 

cells and neuroendocrine cell fates (116-118). During late lung development and adult 

homeostasis, the Fgf signaling ligand Fgf18 is necessary for maintaining basal stem 

cells in the proximal airways, and Notch signaling acts to control the balance of 

secretory and ciliated cell types (5, 9, 115, 119, 120).  

In order to differentiate proximal airway cell types from hPSC-derived endoderm, 

approaches to both promote proximal airway differentiation and approaches to reduce 

distal airway differentiation have been taken (Fig. 1.2C). In order to steer cells away 

from a distal fate, BMP4 concentrations were reduced and FGF18 was added to 

promote proximal cell fates, an approach that resulted in over 50% of the cells 

expressing the basal stem cell marker P63. To further mature proximal cell types, 

cultures were moved to an air-liquid interface (ALI) resulting in an increase in mature 

airway cells and polarization of the airway epithelium. The cells on the ALI expressed 

markers for goblet, club, and ciliated cells along with basal cells (36). Together, these 

results suggest that foregut endoderm can be directed to a proximal lung fate by a 

combination of reducing factors that promoted distal fate and adding factors that 

promoted proximal fate. However, the role of the polarizing ALI environment and the 
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undefined growth factors present in commercially purchased ALI media in this approach 

leaves room for further exploration.  

In addition to the ALI platform, thee-dimensional airway cultures have been 

generated from hPSCs, applying similar concepts used to derive “bronchospheres” from 

human and mouse primary basal cells, an approach first establishing that human basal 

cells can self-renew and generate ciliated and club cells in vitro (5).  Successful growth 

of bronchoshperes from hPSCs has been achieved by using the CPM, similar to the 

approach used for alveolarspheres (40, 41). Using commercially available ALI media 

and Notch inhibition, the sorted CPM+ population formed spheres in a three-

dimensional matrix from single cells. Spheres consisted of mostly ciliated cells 

interspersed with neuroendocrine cells with even fewer basal cells and secretory cells. 

These hPSC-derived bronchospheres represent the first report of beating ciliated cells 

that are not derived from a primary cell line; however the cells do not organize into a 

pseudostratified epithelium, as is the case with the lung in vivo (40). Foregut spheroids 

grown in a three-dimensional ECM, Matrigel, overlaid with media containing high 

concentrations of FGF10 also gave rise to proximal airway-like structures that formed a 

polarized epithelium organized in a cyst containing a lumen, and surrounded by 

mesenchyme (Fig. 1.2B). The epithelium consisted of basal cells close to the 

mesenchymal tissue, with the adjacent epithelial cell types facing toward the lumen and 

expressing an early marker of ciliated cells, FOXJ1 (39). High FGF10 was required for 

airway-like epithelium to differentiate in lung organoids, and may act to maintain the 

basal cell population in lung organoids, however, this has not yet been formally tested. 

However, recent evidence in mice suggests that high levels of ectopic FGF10 
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expressed during embryonic development can increase the number of P63+ basal stem 

cells present in the lung (105). Interestingly, as has been demonstrated in both lung 

organoids and other hPSC-derived tissues, including hepatocyte- -cell-like, 

intestinal, stomach and cerebral organoids, even in long term cultures, the organoids 

retain a transcriptional profile more similar to the fetal tissue than to adult tissue (33, 39, 

52, 121-123). Thus, an important unresolved question in the field is to understand how 

to overcome this developmental barrier in vitro in order to obtain more mature adult-like 

tissue. Achieving this goal could require modulation of the physical or chemical 

environment to induce further maturation of the tissue. 
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Figure 1.1 A diagram summarizing the lung cell types in and surrounding the 
airways and alveoli. Upper airways are surrounded by cartilage (brown) and smooth 
muscle (pink). The upper airway epithelium is lined with basal cells (orange) with ciliated 
(pink), goblet (yellow), club (green), and neuroendocrine (light purple) cells adjacent to 
the basal cells facing toward the lumen of the airway. The lower airways possess less 
basal cells and consist of mostly ciliated and club cells with surrounding tissues 
consisting of smooth muscle, myofibroblasts (purple), and patches of cartilage. Vessels 
(red line) and neurons (blue line) line both the upper and lower airways. The alveolar 
sacs consist of elongated AECI (light blue) and cuboidal AECII cells (dark blue) that are 
lined with thin vessels in order for gas exchange to occur with few fibroblasts scattered 
outside the alveolar sac. Note that only the most abundant lung cell types are depicted.   
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Figure. 1.2 Overview of methods to direct differentiation of hPSCs to lung tissue. 
The majority of protocols to derive lung cell types from hPSCs have taken a directed 
differentiation approach. hPSCs are first treated with growth factors, including ActivinA, 
to derive endoderm, which is further treated to become anterior foregut endoderm. 
Anterior foregut endoderm cells are marked by Nkx2.1, FoxA2, and Sox2 transcription 
factors. Different groups have used various methods to derive lung cell types after this 
stage. (A) Huang et al. grew foregut cultures for 15 days, after which cells were broken 
up and remaining large clumps were re-plated. On day 25, cells were treated with a DCI 
cocktail, which has been shown to induce alveolar specific cell-type gene expression in 
vitro [34, 95]. After 48 days in monolayer culture, the majority of cells expressed the 
AECII marker, SFTPB. A low number of cells also expressed the proximal ciliated cell 
marker FOXJ1, and some cells expressed markers for mature AECI (HOPX, AQP5) 
cells and exhibited elongated nuclei. (B) Dye et al. treated foregut cultures with FGF4 
and Wnt to induce three-dimensional foregut spheroids, which were cultured in a 
matrigel droplet. These lung organoids persisted in culture for over 100 days and 
contained an organized epithelium containing cells positive for proximal airway markers 
FOXJ1/ACTUB (ciliated cells), p63 (basal stem cells), SCBGA1A1 (club cells), and 
surrounding mesenchymal tissue positive for smooth muscle (SMA) and vimentin (VIM). 
Additionally, organoids contained some cells that stained positive for AECI and AECII 
cell makers, but organized alveolar structures were not observed. (C) Wong et al. used 
multiple growth factor cocktails over the course of 35 days to induce lung progenitor 
cells in a monolayer culture. After roughly 5 weeks in culture, cells were moved to an 
air-liquid interface environment, which resulted in maturation of lung cells. The majority 
of cells expressed mature proximal cell markers for ciliated cells (FOXJ1) or goblet cells 
(MUC5AC), and cells exhibited distinct polarization, with the basal side of cells facing 
the media and the apical side of cells facing the air, similar to the in vivo polarization of 
lung cells with apical surfaces facing the airway lumen.  
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CHAPTER 2 

SOX9 PLAYS MULTIPLE ROLES IN THE LUNG EPITHELIUM DURING BRANCHING 

MORPHOGENESIS. 

 

Summary 

Lung branching morphogenesis is a highly orchestrated process that gives rise to 

the complex network of gas-exchanging units in the adult lung. Intricate regulation of 

signaling pathways, transcription factors, and epithelial-mesenchymal cross-talk are 

critical to ensure that branching morphogenesis occurs properly. Here, we describe a 

novel role for the transcription factor Sox9 during lung branching morphogenesis. Sox9 

is expressed at the distal tips of the branching epithelium in a highly dynamic manner as 

branching occurs, and is down regulated starting at E16.5, concurrent with the onset of 

terminal differentiation of Type I and Type II alveolar cells.  Using epithelial specific 

genetic loss- and gain-of-function approaches, our results demonstrate that Sox9 

controls multiple aspects of lung branching. Fine regulation of Sox9 levels is required to 

balance proliferation and differentiation of epithelial tip progenitor cells, and loss of Sox9 

leads to direct and indirect cellular defects including extracellular matrix defects, 

cytoskeletal disorganization and aberrant epithelial movement. Our evidence shows that 

unlike other endoderm-derived epithelial tissues, such as the intestine, Wnt/β-catenin 

signaling does not regulate Sox9 expression in the lung. We conclude that Sox9 
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collectively promotes proper branching morphogenesis by controlling the balance 

between proliferation and differentiation, and regulating the ECM.   

 

Introduction 

Lung epithelial morphogenesis is a highly complex and stereotyped process that 

gives rise to a tree-like network consisting of proximal conducting airways and distal 

alveoli where gas exchange occurs in the adult (1-3). In mice, branching morphogenesis 

begins after the primary lung buds are firmly established and begin to invade into the 

surrounding mesenchyme at embryonic day (E) 10.5 (E10.5). As the primary lung buds 

proliferate and continue to invade the surrounding mesenchyme, domain branching 

initiates (3). The distal tips of the domain branches begin to repetitively bifurcate until 

terminal saccules form at the canalicular stage (E16.5-E17.5). These saccules will 

eventually give rise to the mature alveoli in the adult mouse (2-5). Several signaling 

pathways and transcription factors are known to play roles in branching morphogenesis; 

however, mechanisms controlling morphogenetic movements in the lungs have only 

recently started to gain attention (1, 6-11).  

During branching morphogenesis, the distal tips of the branching epithelium 

contain a distinct population of progenitor cells that gives rise to all epithelial cell types 

early in lung development, but become developmentally restricted after E16.5 (12, 13).  

Since this distal epithelium is a highly proliferative population of cells, a fine balance 

between proliferation and differentiation must be maintained during lung development 

(14). Several transcription factors are expressed specifically in the distal branching 
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epithelium including Nmyc, Id2, and Sox9 (13-17). Nmyc plays an important role in 

maintaining the progenitor population in an undifferentiated state and in driving 

proliferation (14). Lineage tracing experiments have shown that distal tip cells 

expressing Id2 give rise to both proximal (ciliated, Clara, neuroendocrine cells) and 

distal cell types (Alveolar type I and II) (13), but a functional role for Id2 in the regulation 

of lung progenitor cells has not been established. Similarly, Sox9 is expressed in the 

distal tip epithelium; however, conditional epithelial-specific deletion of Sox9 using SftpC 

driven ablation (SftpC-rtTa;tetO-cre;Sox9-flox) resulted in normal lung development 

(15). Using an alternative approach (Shh-cre;Sox9-flox), we now report that early and 

efficient deletion of Sox9 from the lung epithelium results in dramatic defects in 

branching morphogenesis. 

Sox9 is a member of the SRY-related HMG-box transcription factors family that 

regulates many developmental processes (18). In humans, mutations in SOX9 can lead 

to several inherited genetic birth defects, including Campomelic Dysplasia (CD), 

Acampomelic Campomelic Dysplasia (ACD), Cooks Syndrome and Pierre Robin 

Sequence (or Syndrome) (19-21). Congenital birth defects associated with these 

disorders can affect many different organ systems, including the respiratory system. 

Infants that are born with CD/ACD often die in the neonatal period due to respiratory 

distress, which can be a result of abnormal upper airway development or hypoplastic 

lungs (20-25). In other tissues, Sox9 has a diverse array of functions. For example, 

pancreatic Sox9 is required for proliferation and branching, intestinal Sox9 acts to limit 

Wnt-stimulated proliferation and Sox9 regulates proliferation and extracellular matrix 

(ECM) production in chondrocytes (26-32). Using genetic gain- and loss-of-function 
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models of Sox9, our findings demonstrate that the appropriate level of Sox9 is 

necessary for controlling the number of proliferating cells and differentiating cells as 

either loss or gain of Sox9 disrupts this balance. Further, we find dramatic cellular 

defects when Sox9 is conditionally deleted, which appear to be mediated through both 

direct and indirect mechanisms. Similar to its role in chondrogenesis, Sox9 

transcriptionally regulates ECM genes in the lung epithelium and directly binds to DNA 

in Col2a1 regulatory regions. Removing Sox9 leads to a down regulation of Col2a1 

mRNA and reduced protein expression. We also show that Sox9 leads to defects in 

Laminin deposition, cytoskeletal organization and cellular movement, although these 

defects may be indirect. Finally, we show that unlike the intestine (29, 33, 34) Wnt/β-

Catenin signaling is not required for Sox9 expression during development. Taken 

together, our results demonstrate that Sox9 plays multiple roles regulating proliferation, 

differentiation, and the ECM during lung branching morphogenesis.  

 

Results 

Epithelial specific loss and gain of Sox9 causes severe branching defects in the lung.  

 Sox9 is expressed in the distal epithelium during branching morphogenesis 

(E11.5-E16.5) (Fig. 2.1 B-E and(15)). After E16.5, Sox9 is down regulated, terminal 

differentiation begins, and only a few cells retain Sox9 expression in late embryonic and 

postnatal stages. Sox9 is expressed in a manner similar to other distal tip progenitor 

markers including Nmyc and Id2 (13-15). Previous reports have suggested that 

epithelial Sox9 is not required for normal lung development (15). We generated lung 



 30 

epithelial conditional loss-of-function (LOF; Sox9-floxed) (35) and gain-of-function 

(GOF; Rosa26-tetO-Sox9-mCherry, see methods section) embryos using a well-

characterized Sonic hedgehog (Shh) Cre driver (36). Shh-cre shows robust activity in 

the lung epithelium by E10.5 (Fig. 2.1A and (1-3, 37)). Shh-cre;Sox9-flox/flox lungs 

(herein referred to as Sox9LOF) and Shh-cre;Rosa-LSL-rtTa;Rosa-tetO-Sox9-mCherry 

lungs (herein referred to as Sox9GOF) both develop large cyst-like structures at the distal 

epithelial branch tips at all developmental time points examined (Fig. 2.2A,C; Fig. 2.3A). 

Quantitative analysis of branching of in vitro cultured lungs showed a significant 

reduction in branching in Sox9LOF lungs compared to controls at the start of culture 

E12.5 (0 hours) and after 72 hours in culture (0 hours: 19.9 +/- 1.7 vs. 11.3 +/- 1.5 

p<0.05, n=3; 72 hours: 57.6 +/- 5.9 vs. 38.0 +/- 1.7, p<0.05, n=5) (Fig. 2.2B, Fig 2.3B). 

We confirmed that Sox9 was deleted or overexpressed in the lung epithelium of the 

respective models with immunochemistry and qRT-PCR (Fig. 2.2D, Fig. 2.3C-D). Cross 

sections revealed that these cyst-like structures were the result of larger and rounder 

branch tips compared to control (Fig. 1E), which led to large open spaces in Sox9LOF 

lungs (Fig. 2.2F). We observed a reduction in airway spaces in Sox9GOF at E18.5 (Fig. 

2.2F), likely due to reduced proliferation in cells expressing ectopic Sox9 (see Figure 

2.4 and discussion). By E14.5 Sox9LOF and Sox9GOF lungs were noticeably smaller than 

control lungs (Fig. 2.2C, Fig. 2.3F). This reduction in size was more apparent by E16.5 

(Fig. 2.3E), however, all lungs formed the appropriate number of lobes compared to 

control (Fig. 2.3F).  

Ultimately, loss or gain of Sox9 had severe consequences on health and survival 

of mice. Of two litters born (to generate Sox9LOF), there were 5 wildtype, 5 heterozygous 
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and 3 Sox9LOF pups. Of the 3 Sox9LOF pups, one died at birth and two others were 

euthanized at postnatal (P)7 due to poor health and an apparent difficulty breathing. 

One litter was born to generate Sox9GOF pups (Sftpc-rtTa;tetO-Sox9-mCherry, Dox 

started at E15.5). Of 6 mice, 3 were controls (Sftpc-rtTa or tetO-Sox9-mCherry) were 

healthy and thrived at P0, whereas the 3 pups that were Sox9GOF all died at birth. 

Analysis of the Sox9GOF lungs are discussed below and presented in Fig. 2.9. Taken 

together, our data suggests that Sox9 has a previously undiscovered role in regulating 

branching morphogenesis.  

 

Precise regulation of Sox9 is required for appropriate proliferation in lung epithelium.   

 Recent quantitative and live imaging studies have shown that the process of lung 

bud bifurcation is dynamic and can be separated into three main stages: bud, flattened, 

and cleft stages (3, 38). Immunofluorescent staining of Sox9 revealed a dynamic 

expression pattern during these different stages. Sox9 is expressed highest at the 

distal-most cells of the budding tip and dissipates toward the parent branch (Fig. 2.4A). 

During the flat and cleft stage Sox9 is expressed highest where the two new buds will 

form and lowest where the cleft forms (Fig. 2.4A). Due to the dynamic expression of 

Sox9 in actively branching buds and previous reports demonstrating increased 

proliferation in distal lung epithelium (2-5, 14), we wanted to determine if proliferation 

was affected in Sox9LOF and Sox9GOF lungs compared to controls. To quantitate 

proximal and distal proliferation, control or Sox9LOF lungs were co-stained with Sox2 

(proximal epithelium), E-cadherin (total epithelium), BrdU (proliferation) and Dapi (total 
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nuclei) (Fig. 2.5). After a 30 minute pulse of BrdU, we determined the percent of 

proximal (Ecad+, Sox2+) and distal (Ecad+, Sox2-) proliferation in the epithelium of 

control and Sox9LOF lungs at E14.5. As previously demonstrated (1, 6-11, 14), we 

confirmed that distal epithelial proliferation was significantly higher than proximal 

epithelial proliferation in control tissue (40.2% +/- 1.7% vs. 29.6% +/- 1.7%, p<0.0005, 

n=12) (Fig. 2.4B and Fig 2.5). Comparing BrdU incorporation in control and Sox9LOF 

lungs we found a significant decrease in total epithelial proliferation (37.8% +/- 1.5 vs. 

30.2% +/- 2.2%, p<0.01, n=12) which was due to reduced proliferation in the distal tip 

epithelium (40.2%  +/- 1.7% vs. 31.3% +/- 2.1%, p<0.005, n=12) since there was no 

change in proliferation of the proximal (Sox2+) epithelium when comparing control and 

Sox9LOF lungs  (29.5% +/- 1.7% vs. 29.4% +/- 3.7%, n=12) (Fig. 2.4B and Fig. 2.5). 

There was no change in mesenchymal proliferation between groups (Fig. 2.5). Sox9GOF 

lungs had a more dramatic change in proliferation. In the proximal airways of Sox9GOF 

lungs, cells ectopically expressing Sox9 had almost no Ki67 staining, whereas Ki67 was 

present in most cells of the control proximal epithelium (Fig. 2.4C). Similarly, cells highly 

overexpressing Sox9 in the distal epithelium resulted in weak Ki67 staining (Fig. 2.4C). 

This data suggests that a fine balance of Sox9 expression is necessary to regulate 

proper proliferation during branching morphogenesis.  

 To determine if the perturbations in branching and proliferation in Sox9LOF or 

Sox9GOF lungs were due to disruption of well characterized signaling pathways that 

regulate lung development, we examined Wnt, Hh, Fgf, and Bmp signaling (2, 12, 13). 

Using in situ hybridization and/or qRT-PCR in Sox9LOF and Sox9GOF lungs at E12.5 

and/or E14.5 we examined key signaling components and target genes and found no 
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significant changes compared to control lungs (Fig. 2.6A-B). Additionally, our data 

demonstrates that proximal-distal patterning is not disrupted in Sox9LOF lungs. In situ 

hybridization demonstrates that Bmp4 expression is localized to distal epithelial tips in 

control and Sox9LOF lungs (Fig. 2.6B) (14, 39, 40), and proximal Sox2 immunostaining is 

not changed in Sox9LOF lungs compared to controls (Fig 2.5). Together, our results 

suggest that loss of Sox9 regulates proliferation without significantly affecting proximal-

distal patterning or the major signaling pathways (Wnt, Fgf, Bmp, Hh) known to play a 

role in lung branching morphogenesis.  

 

Sox9 inhibits differentiation in early lung epithelium 

Sox9 is expressed in the distal progenitor population, which gives rise to all cell 

types of the lung, and Sox9 expression is down regulated concomitant with onset of 

cytodifferentiation in the distal epithelium (13-17). Additionally, we observed a significant 

decrease in Id2 mRNA expression in Sox9LOF lungs at E14.5 by qRT-PCR (Fig. 2.6C). 

These results, combined with the observed decrease in proliferation in Sox9LOF lungs, 

led us to hypothesize that Sox9 prevents differentiation of distal progenitors. 

Differentiation occurs in a proximal-to-distal direction starting at E14.5 with the 

differentiation of proximal airway cell types and ending with alveolar type I and II cell 

differentiation at E17.5 in the distal airways (2, 15). We examined markers for both 

proximal and distal epithelial cell types with qRT-PCR and immunostaining. Appropriate 

temporal differentiation of proximal cell types (Clara and Ciliated cells) and distal type I 

cells occurred in Sox9LOF lungs (Fig. 2.7 and Fig. 2.8). Surfactant protein C (Sftpc) is 
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typically associated with type II alveolar cells. However, Sftpc in the early lung marks all 

distal tip progenitor cells, and recent studies have demonstrated that Sftpc positive cells 

in the adult are alveolar stem cells (41). Given that Sftpc can mark progenitor cells, 

alveolar stem cells and type II differentiated cells, we used Surfactant protein B (Sftpb) 

as type II alveolar cell marker, since it is normally expressed starting at E17.5 (18, 42, 

43). In controls we observed that Sftpb protein was close to background at E14.5 by 

immunostaining whereas Sftpb staining in Sox9LOF lungs was readily detectable at this 

time (Fig. 2.4D). These results were supported by qRT-PCR, which showed a significant 

increase in Sftpb mRNA levels in E14.5 Sox9LOF lungs (Fig. 2.4E), providing evidence 

that the loss of Sox9 causes precocious differentiation of Type II cells. In contrast, 

Sox9GOF lungs demonstrated evidence that terminal differentiation was inhibited. When 

Sox9 is overexpressed throughout the lung epithelium (Shh-cre, Doxycycline 

administered starting at E9.5, Fig. 2.4 H-I and Figs. 2.7,2.8) or ectopically expressed in 

the distal lung epithelium (Sftpc-rtTa, Doxycycline administered starting at E15.5, Fig. 

2.9) and lungs were analyzed at E18.5 or P0, respectively, there was decreased 

expression of proximal and distal differentiation markers (Fig. 2.4H-I, Figs. 2.7-2.9). It is 

important to point out that differentiated cells observed in Sox9GOF lungs were always 

Sox9-negative, indicating that they escaped transgene expression, whereas Sox9 

positive cells did not express differentiation markers. During terminal differentiation 

starting around E17.5, the distal epithelium undergoes a columnar to squamous 

epithelial transition giving rise to alveolar sacs comprised of Type I and Type II alveolar 

cells. Accordingly, air spaces in control lungs at E18.5 were lined by a squamous 

epithelium; however, the distal epithelium of Sox9GOF lungs remains columnar (Fig. 
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2.4J). Collectively, our results suggest that Sox9 activity maintains the undifferentiated 

status of distal lung progenitors. Removing Sox9 leads to early differentiation and 

increasing Sox9 prevents differentiation and inhibits the epithelial transition from 

columnar to squamous epithelium that allows the adult alveoli to form.  

 

Loss of Sox9 leads to multiple cellular defects in the distal progenitor cells  

 Since perturbations of epithelial Sox9 led to branching defects and cystic terminal 

branches, we wanted to detail the cellular events associated with the cystic structures 

observed in mutant mice. To examine possible cellular defects, we performed 

transmission electron microscopy in control and Sox9LOF lungs, and observed striking 

disruptions in the Sox9LOF lungs. Whereas the distal epithelial tips of control lungs 

showed a relatively uniform apical surface with microvilli, apical tight junctions and a flat, 

uniform basal surface (Fig. 2.10A), Sox9LOF lungs had a range of defects with varying 

levels of severity (Fig. 2.10B). Sox9LOF lungs showed defects on the apical surface of 

the cell. While tight junctions were observed, apical membranous blebs protruded into 

the lumen. In some cases, microvilli were absent, and the apical surface appeared 

rounded and smooth (Fig. 2.10B, lower panel). Cell-cell adhesion also appeared to be 

disrupted in Sox9LOF lungs. While control epithelial cells were in close apposition with 

occasional gaps, cell-cell adhesion appeared uniformly disrupted in Sox9LOF lungs, with 

large gaps filled with pseudopodia between the lateral membranes of neighboring cells 

(Fig. 2.10B). These pseudopodia are similarly observed in lungs with disrupted Cdc42, 

which have defective epithelial organization (7).  Lastly, the control epithelium has a 
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relatively flat and uniform basal surface that contacts the lung mesenchyme (Fig. 

2.10A). In contrast, the basal epithelial surface in Sox9LOF lungs was not uniform, with 

many cells having a rounded appearance and with membranous blebs projecting into 

the subcellular space (Fig. 2.10B).  Surprisingly, the apparent cell adhesion defects we 

observed by TEM were not obvious when examining E-cadherin immunofluorescence, 

although we did note that the epithelium in Sox9LOF lungs was taller than in controls 

(17.2 μm +/- .24 μm vs. 15.2 μm +/- .21 μm, p<0.0001, n=192)  (Fig. 2.11). Given that 

Sox9 controls multiple cellular processes in different contexts (see introduction, 

discussion), we examined apical-basal polarity and ECM proteins in Sox9LOF and control 

lungs and found that polarity was unaffected (Fig. 2.12). However, upon examining 

several proteins that make up and interact with the ECM of the distal lung epithelium 

(Fig. 2.12), we found that two proteins (Col2a1 and Laminin) were disrupted (Figs. 2.13 

and 2.14).  

Type II collagen (Col2a1), which is directly regulated by Sox9 in other contexts, 

and is highly expressed in the distal lung epithelium at E12.5 (44), was significantly 

reduced in Sox9LOF lungs compared to control (Fig. 2.13). Immunofluorescence of 

Col2a1 protein at E12.5 (Fig. 2.13A) and e14.5 (Fig. 2.15) showed a reduction of 

staining specifically in distal epithelial buds. This was supported by qRT-PCR on whole 

lungs at E12.5 and E14.5, which demonstrated significant Col2a1 down regulation at 

both times in whole Sox9LOF lungs (Fig. 2.13B).  To determine if Sox9 is directly binding 

Col2a1 regulatory elements in the distal lung epithelium, we performed Sox9 chromatin 

immunoprecipitation using FACS purified distal lung epithelium from transgenic Sox9-

eGFP mice  (Fig. 2.15B, C) (45).  Using qRT-PCR, we observed that Sox9 was able to 
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bind to a previously characterized consensus binding site located in intron 1 of the 

Col2a1 gene with a ~5-fold higher affinity than an IgG control antibody (Fig 2.10C). In 

contrast the same Sox9 antibody did not have increased binding to a non-specific 

region of DNA located near the Col2a1 intron 1 (negative control in Fig. 2.13C), 

whereas an antibody to Histone H3 was used as a positive control and bound to both 

regions of DNA. Collectively, these results are consistent with Sox9 direct regulating of 

Col2a1 transcription resulting in proper protein expression 

  We also observed defects in Laminin deposition in both Sox9LOF and Sox9GOF 

lungs (Fig. 2.14, Fig. 2.16), however, these effects may be indirect, since we did not 

detect a transcriptional change in several Laminin mRNAs by qRT-PCR (Fig. 2.16). By 

examining Stage 1 bud tips (Fig. 2.4A) we observed that Laminin is deposited by the 

epithelium as a fine border along the basal side of the epithelial buds in controls (Fig. 

2.4A and Fig. 2.14A,B). In contrast, Sox9LOF lungs have a fragmented border around the 

distal epithelium with Laminin staining being found within the epithelial cell rather than in 

the basement membrane (Fig. 2.14, Fig. 2.16, Fig. 2.17). This staining includes large, 

Laminin positive intercellular punctae observed on the apical and basal surfaces of the 

cell (Fig. 2.14, Fig. 2.16, Fig. 2.17). In Sox9LOF lungs we found that intercellular Laminin 

punctae associate with the Golgi marker gm130 and with the Endoplasmic Reticulum 

(ER) marker KDELR (Fig. 2.16 C,D).  

Given the severe cellular disruptions observed by TEM (Fig. 2.10), we also 

examined the lung epithelial cytoskeleton, which is important during branching 

morphogenesis (29, 33, 34, 46, 47). We analyzed the cytoskeleton by staining 

acetylated tubulin (AcTub) and F-actin (Phalloidin) staining (Fig. 2.18, Fig. 2.19). 
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Phalloidin staining is strongest on the apical surface of the cells, but is also observed 

along the basal-lateral surfaces and was not different between control and Sox9LOF 

lungs (Fig. 2.19A). In contrast, we observed a stark reduction in AcTub staining along 

the basal surface of the epithelial cells in Sox9LOF lungs (Fig. 2.18A). This indicates that 

stabilized tubulin is disrupted at the basal surfaces of the epithelial cells in Sox9LOF. In 

Sox9GOF lungs the cytoskeletal organization was not perturbed compared to control 

lungs (Fig. 2.19A-B).  

 

Loss of Sox9 disrupts epithelial movement 

 Since the ECM and microtubule dynamics are strongly associated with cell 

movement/migration (13-15, 48, 49), and we observed disrupted ECM and stabilized 

(acetylated) microtubules in Sox9LOF epithelium along the basal surface of the cells, we 

wanted to determine if this had an effect on cell movements/migration. As the lung 

branches, the lung bud grows by coordinating epithelial movement and proliferation (15, 

40). Epithelial movement was quantified using an in vitro cell migration scratch assay 

that has previously been used to assay movement in kidney epithelial buds during 

branching morphogenesis (35, 50); isolated E12.5 Sox9LOF  and control epithelial buds 

were plated in vitro, and exhibited delayed scratch closure compared to controls (Fig. 

2.18B-C, Fig. 2.19). The control epithelial cells migrated 50.1% (+/- 5.3%, n=8 epithelial 

buds) of the scratch in 3 hours and 79.2% (+/- 5.8%, n=8) in 6 hours compared to 

Sox9LOF cells, which only travelled 33.9%  (+/- 2.3%, n=16 epithelial buds) in 3 hours 

and 65.5% (+/-3.7%, n=16) in 6 hours (p<0.005, p<0.01 respectively) (Fig. 2.18C, Fig. 
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2.19C). Epithelial buds were stained for ActTub, and similar to lung buds in vivo, we 

observed that stabilized microtubules were disrupted in isolated Sox9LOF buds in vitro, 

whereas control cells showed uniform organization of the microtubules along the wound 

edge (Fig. 2.18D).  

 

Sox9 expression is not regulated by Wnt/-Catenin in the lung epithelium.   

Since Sox9 is a well-established direct target of β-catenin-dependent Wnt 

signaling in the intestine (29, 33, 34, 36), and our data shows that the Wnt target gene 

Axin2 is higher in distal epithelium than proximal epithelium in control lungs by in situ 

hybridization (Fig. 2.6B), we investigated whether Sox9 is also regulated by Wnt/β-

catenin in the developing lung. We generated two Wnt loss-of-fucnction models (β-

CateninLOF: Sox9CreERT2;-Catenin-flox/flox lungs and Lrp5/6LOF: Sox9CreERT2;Lrp5/6-

flox/flox) (Fig. 2.20) (51, 52). In both β-CateninLOF and Lrp5/6LOF lungs, Sox9 expression 

is not lost, but expands into the proximal airway, creating a Sox9+/Sox2+ intermediate 

population of cells that is not seen in control lungs throughout development (Fig S14). 

From these results, we conclude that canonical Wnt signaling is not necessary for Sox9 

expression in the lung epithelium.  

 

Discussion 

 In a previous report, deletion of Sox9 in lung epithelium (Sftpc-rtTa;tetO-

cre;Sox9-flox/flox) at E12.5 produced no deleterious developmental consequences in 
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the lung (15). Here, using an earlier and more complete Sox9 deletion (Shh-cre;Sox9-

flox/flox) (E9.5), we document an important role for Sox9 in branching morphogenesis. 

We observe an obvious branching defect as early as E12.5 along with the complete loss 

of protein by this time, indicating that Sox9 function is important at the beginning of 

branching. Importantly, Perl et al. also reported that Sox4 and Sox11 are present and 

unchanged in Sox9 mutant lung epithelium at E12.5 and E13.5, suggesting that loss of 

Sox9 on or after E12.5 may be compensated for by other Sox genes.  The strategy that 

we take here and the phenotypes that develop may be highly relevant to the congenital 

birth defects in CD/ACD, making this an applicable mouse model for the further 

investigation of those devastating human conditions. 

Many signaling pathways and transcription factors are essential for branching 

morphogenesis. In many cases, when these factors and pathways are perturbed, the 

consequence is a cystic phenotype, similar to the phenotype seen in both Sox9LOFand 

Sox9GOF lung (7, 10, 14, 53-59). The fact that both gain and loss of Sox9 resulted in a 

similar phenotype is likely reflected in the small number of possible outcomes when 

branching morphogenesis is perturbed; that is, if an epithelial bud cannot properly 

bifurcate, it give rise to a larger, cystic sac. We also observed that the E14.5 Sox9GOF 

cystic phenotype was not present at E18.5 in Sox9GOF lungs (Fig. 2.2E-F). This change 

in phenotype at E18.5 could be explained by the smaller numbers of cells expressing 

ectopic Sox9 at this time, likely due to the fact that cells expressing high levels of 

ectopic Sox9 had reduced proliferation and a selective disadvantage over 

developmental time (Fig. 2.4 H-J, Fig. 2.7, Fig. 2.8). It is highly possible that cells 
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expressing ectopic Sox9 were outcompeted by normal cells leading to a partial 

resolution of the phenotype.  

 

Sox9 influences ECM and cell movement 

 In addition to proliferation and differentiation, we investigated if the cystic 

phenotype resulting from Sox9 perturbations may be due to abnormal cellular 

consequences. Many studies have shown that Sox9 plays critical roles in both ECM 

deposition and cell migration in various tissues and diseases (18). In the heart, Sox9 is 

required for proper organization the valvular ECM proteins (60), while in the gonads, 

Sox9 regulates many ECM proteins as well as modifiers of the ECM such as matrix 

metaloproteinases (61, 62). Sox9 also plays a role in many fibrotic and sclerotic 

disorders in various tissues, in which Sox9 causes excessive and inappropriate ECM 

deposition by activating various ECM proteins (63-68). Furthermore, Sox9 plays a 

critical role during chondrogenesis (30), and ChiP analysis in chondrocytes has shown 

that Sox9 directly binds to loci of 18 different ECM genes, including Col2a1 (69). Our 

results support Sox9 as a regulator of ECM in the lung as well, demonstrating that it can 

transcriptionally regulate Col2a1 and lead abnormal protein deposition in the basal 

lamina. We also observed defects in Laminin deposition with loss or gain of Sox9 in the 

branching lung, however this seems to be an indirect effect of Sox9 perturbations since 

we did not observe transcriptional changes in Laminin genes. These results also 

highlight that some of the cellular defects observed in the Sox9LOF or Sox9GOF 

phenotype may be indirect. Elucidating additional detail as to how perturbations in Sox9 
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directly and indirectly affect lung epithelial cell morphology and behavior will be an 

active area of future investigation.  

In many contexts the ECM has a dynamic role associating with and influencing 

reorganizing the cytoskeleton (70, 71). For example, Laminin-integrin based cell 

adhesion functions to anchor stabilized microtubule “plus-ends” and maintain the proper 

microtubule density on the basal surface of epithelial cells (72).  Therefore, our results 

demonstrating disruption of the stabilized microtubule network on the basal side of the 

lung epithelium in Sox9LOF lungs, and the disorganized microtubule network observed in 

Sox9LOF distal epithelial cells in the in vitro migration assay may be explained by 

perturbations in the ECM. Although the link between Sox9 and cell 

migration/microtubule organization may be indirect, in other systems Sox9 is critical for 

cell migration including neural crest cells during development (73) and tumor metastasis 

in breast, colon, prostate, and melanoma cancers (74-77). In future studies, it will be 

pertinent to determine how Sox9 is mechanistically regulating acetylated tubulin and 

epithelial cell movement during lung branching morphogenesis.  

 

β-catenin dependent Wnt signaling and Sox9 

Sox9 contributes to diverse range of functions in several endodermally derived 

organs, including the pancreas, lung and intestine (26, 27, 78, 79). Wnt signaling is 

critical for the development of these organ systems, and it has been shown in the 

developing intestine that Sox9 is a direct target of Wnt signaling (29, 33, 34). Here, we 

find that in contrast to the lung, Sox9 transcription is not regulated by Wnt/-catenin 
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signaling. It will be interesting to determine how these context dependent differences for 

Sox9 within endodermal lineages are established. 

Taken together, our results have established a novel role for Sox9 during lung 

branching morphogenesis. We have demonstrated that Sox9 is a multi-faceted 

transcription factor that directly and indirectly regulates proliferation, differentiation, the 

ECM, cytoskeletal organization, cell shape and cellular movement. 

 

Materials and Methods 

Mouse strains  

All mice used in these studies were housed at the University of Michigan mouse 

facility, and were maintained according to institutional protocols. Shh-Cre, Sox9CreER, 

Sox9Flox, -CateninFlox, Rosa-rtTa, SftpC-rtTa, Lrp5/6Flox, Sox9-eGFP mice have all been 

previously described (35, 36, 45, 80-82).  Description of the Rosa26-tetO-Sox9 mice is 

currently under review elsewhere (Philip A. Seymour, Hung Ping Shih, Richard 

Behringer, Mark Magnuson, and Maike Sander). Briefly, the pTight tetracycline 

responsive (tetO) promoter driving bi-directional expression of Sox9 and mCherry was 

targeted to the Rosa26 locus. An active tetracycline transactivator protein (tTa or rtTa) 

causes transcription of both alleles to be driven independently from the same promoter.  

 

Doxycycline and Tamoxifen administration.  
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Doxycycline was administered in the drinking water at (2mg/mL) supplemented 

with 2.5 mg/mL of sucrose started at E9.5 until the time of harvest. Tamoxifen (50 ug/g) 

was dissolved in corn oil and given via oral gavage once a day for two consecutive 

days, E11.5 and E12.5.  

 

Lung Explant Cultures  

Lung explant cultures were performed in vitro as previously described (83). E12.5 

lungs were cultured on Nucleopore polycarbonate track-etch membranes for up to 72 

hours at 37°C in a 5% CO2 incubator. Images of explants were taken on a Leica M125 

stereomicroscope. Branches were counted manually. 

 

Migration Scratch Assay 

 Isolation of epithelial buds from the surrounding mesenchyme of E12.5 lungs 

was previously described (50). Briefly, lung epithelial buds were placed on BD Matrigel 

hESC-qualified matrix (BD Biosciences) coated plates with DMEM/F-12 supplemented 

with 50 units/mL of penicillin-streptomycin and 0.1% Fetal bovine serum (Gibco). 

Epithelial buds grew into colonies by 48 hours at 37°C in a 5% CO2 incubator. Lung bud 

cultures were scratched with a micropipette tip and images were taken on an Olympus 

SZX16 microscope at 0, 3, and 6 hours post scratch. Scratch width was measured with 

ImageJ software. 

 



 45 

Immunohistochemistry and in situ hybridization 

Immunostaining was carried out as previously described (84, 85). Antibody 

information and dilutions can be found in Table 2.1. All immunofluorescence images 

were taken on a Nikon A1 confocal microscope. All DAB images were taken on an 

Olympus IX71 microscope. For section in situ hybridization, embryos were collected in 

PBS and fixed overnight in 4% paraformaldehyde in PBS (PFA) at 4°C. Embryos were 

then rinsed in PBS and immersed in 30% sucrose at 4°C overnight prior to embedding 

into OCT media. 12 to 16 µm frozen sections were cut and slides were stored at 

−80°C.  In situ hybridization (ISH) was performed as previously described(86, 

87). Axin2, Bmp4and Shh in situ probes were previously described (88-90).  

 

qRT-PCR 

 RNA was extracted from E12.5 or E14.5 lungs using Purelink RNA Mini Kit (Life 

Technologies). RNA quantity and quality were determined spectrophotometrically using 

a Nano Drop 2000 (Thermoscientific). Reverse transcription was conducted using the 

SuperScript VILO kit (Invitrogen) according to manufacturer‟s protocol. Finally, qRT-

PCR was carried out using Quantitect Sybr Green MasterMix (Qiagen) on a Step One 

Plus Real-Time PCR system (Life Technologies). For a list of primer sequences see 

Table 2.2.  

 

Proliferation Quantification 
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Quantification of BrdU positive cells that co-localized with E-Cadherin, Sox2, 

Dapi was counted with Metamorph cell counting software.  

 

Transmission electron microscopy 

 E14.5 lungs were processed as previously described (91). 70 nm sections were 

imaged using a Philips CM-100 electron microscope.  

 

Fluorescence-activated cell sorting (FACS) 

E14.5 Sox9-eGFP and control lungs were minced and resuspended in 2mg/mL 

Collagenase D (Roche) and 40 units TURBO DNase (Life Technologies) for 2 mins. 

This was then repeated with 2x TrypLE SELECT (Life Technologies) and DNase for 5 

mins at 37°C. The cells were gravity filtered through a 70 micron filter. Both Sox9-eGFP 

and control cells were sorted (Fig. 2.13) 

 

Chromatin immunoprecipitation assay 

Sox9-eGFP positive FACS sorted distal lung progenitor cells were fixed with 1% 

formaldehyde for 10 mins. The reaction was quenched with glycine and washed in 1x 

PBS. The Cell Signaling SimpleChIP® Enzymatic ChIP Kit was used as described by 

the manufacturer, with the following modification: MNase was not used, rather, nuclei 
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were sonicated (Branson Sonifier 250) 10x for 30 sec bursts at 25% duty, output 3.5 

with 1 min on ice in between bursts.  

 

Cell Length Quantification 

 Height of cells was measured from the apical to basal surface of the cell 

indicated by E-Cad stain. Cell height was measured using ImageJ software.  

 

Statistical Analysis 

 All data are shown as the mean of at least 3 independent biological replicates 

and error bars represent SEM. Statistical differences between experimental and control 

groups were assessed with Prism software using multiple t-tests. Results were 

considered statistically significant at p<0.05. 
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Figure 2.1. Sox9 expression through lung development. (A) Shh-cre expression at 

E10.5 using a LacZ reporter. White arrowheads indicate the lung buds. White line 

through the lung bud represents the cross section of the lung bud in (B). (B-D) At all 

time points Nkx2.1 (green) marks total lung epithelium, Sox9 (red) is expressed in the 

distal epithelium (white arrowheads in C) and proximal mesenchyme (red arrowheads in 

C). Dapi (blue) marks total nuclei. Scale bars in B-D represent 100 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58 

 



 59 

Figure 2.2. Sox9 is critical for proper branching morphogenesis. (A) Whole mount 

images of control and Sox9LOF lungs demonstrate that loss of Sox9 results in fewer 

domain branches with terminal cystic structures. (B) The number of branches were 

quantified on E12.5 explant lung cultures immediately after dissection (0 hours (hr)) and 

after 72hr in culture. Sox9LOF lungs had significantly fewer branches at both time points. 

(C) Whole mount lungs from E14.5 Sox9LOF and Sox9GOF embryos had cystic structures 

at the distal epithelial tips rather than smaller bifurcations seen in the control lungs. (D) 

Sox9 expression (red) in control, Sox9LOF and Sox9GOF lungs at E14.5. Control lungs 

had Sox9 expression in the distal epithelial tips. Epithelial Sox9 protein was 

undetectable in Sox9LOF lungs. Sox9GOF lungs demonstrated robust Sox9 expression in 

the distal epithelium and ectopic Sox9 expression in the proximal airways.  (E) H&E 

staining on sections of E14.5 control, Sox9LOF and Sox9GOF lungs. Staining showed 

fewer large cystic buds rather than numerous small buds seen in control lungs. (F) H&E 

staining at E18.5 demonstrate that epithelial cysts led to larger airspaces in Sox9LOF 

lungs compared to controls. Cystic buds in Sox9GOF lungs appear to have collapsed by 

E18.5. Scale bars in A and C represent 200 µm, D-F represent 100 µm.* indicates 

p<0.05  and error bars represent SEM. 
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Figure 2.3. Sox9 is critical for branching morphogenesis. (A) Whole mount images 

of control and Sox9LOF lungs demonstrate that loss of Sox9 results in fewer domain 

branches with terminal cystic structures at E12.5. (B) E12.5 lung explant cultures were 

grown in vitro for up to 72 hr. Sox9LOF lungs at 0hr and 72hr had fewer branches with 

terminal cystic structures compared to control explants.(C) Sox9 transcript levels, 

measured by qRT-PCR in whole E14.5 lungs. Sox9 was significantly down regulated in 

Sox9LOF lungs and significantly up regulated in Sox9GOF lungs compared to control lung 

Sox9 transcript. (D) In E14.5 control lungs, Sox9 (white) protein expression is only 

observed in the distal lung epithelium. E14.5 Sox9GOF lungs (Shh-cre;Rosa26-rtTa;tetO-
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Sox9-mCherry +Doxycycline (Sox9 ON) at E9.5) had transgenic Sox9 expression, 

marked by mCherry (red) throughout the proximal and distal epithelium. mCherry 

expression correlated with Sox9 (white) protein expression. Control lungs had no 

mCherry expression. (E) Whole mount image of control and Sox9LOF lung demonstrated 

a size difference at E16.5.(F) Whole mount lungs from E14.5 Sox9LOF and Sox9GOF 

embryos had terminal cystic structures, but had same number of lobes compared to 

control lungs. Scale bars in A-B,F represent 200 µm and in D represent 100 µm.* 

indicates p<0.05  and error bars represent SEM. 
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Figure 2.4. Sox9 is required for proper proliferation and differentiation of the lung 

epithelium during branching morphogenesis. (A) Sox9 is dynamically expressed 

during branch bifurcation. Sox9 (red) is expressed highest at the budding tip in Stage 1 

and the newly formed budding tips in Stage 2 and 3. Sox9 expression dissipates toward 
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the parent branch in all three stages and the cleft in Stage 3. Laminin staining (green) is 

less robust at the budding tip and most stable at the parent branch and cleft. (B) 

Proliferation in control and Sox9LOF lung epithelium at E14.5 was assessed by BrdU 

incorporation. In control epithelium, proliferation is significantly higher in distal compared 

to proximal epithelium (“Control Epithelium”). There is significantly less proliferation in 

total Sox9LOF epithelium compared to controls (“Total Epithelium”). Comparing 

proliferation in proximal or distal epithelium of controls versus Sox9LOF lung epithelium 

demonstrated that proximal proliferation did not change (“Proximal Epithelium”) whereas 

a significant reduction in distal epithelial proliferation was seen in Sox9LOF lungs (“Distal 

Epithelium”). (C) Proliferation in control and Sox9GOF lung epithelium at E14.5 was 

assessed by Ki67 staining. Compared to controls, a dramatic decrease in Ki67 staining 

(green) was seen in both proximal and distal epithelium (E-cad, white) of Sox9GOF lungs, 

specifically in cells overexpressing Sox9. (D-E) Sox9 inhibits differentiation. Sftpb 

protein is below detection using immunostaining in control epithelium at E14.5, but was 

readily detected in Sox9LOF lungs E14.5. qRT-PCR confirmed a greater than  4-fold 

increase in Sftpb mRNA in Sox9LOF lungs compared to controls at E14.5. (F-G) In E18.5 

Sox9GOF lungs, ectopic Sox9 (red) leads to a reduction in Sftpc staining (H, green) and 

Aqp5 (I, green) staining. (H) E-Cad staining (white) revealed that distal Sox9GOF 

epithelium (red) fails to undergo the columnar-to-squamous epithelial transition seen in 

lower airways of control lungs.  Scale bars in A represent 20 µm, C and F represent 10 

µm, D represent 100 µm, H-J represent 50 µm. * indicates p<0.01 and error bars 

represent SEM. Scale bars in A-B represent 200 µm, D,F represent 100 µm. 
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Figure 2.5. Effect of loss and gain of Sox9 on proliferation. BrdU (green) was 

injected into timed pregnant females 30 minutes prior to embryo harvest. BrdU staining 

(green) marks proliferating cells, Sox2 (white) labels the proximal epithelium and E-Cad 

(red) labels the total epithelium. For quantitation, Ecad+/Sox2+ cells were considered 

proximal epithelium and Ecad+/Sox2- cells were considered distal epithelium. At E14.5 

Sox9LOF lungs had less distal epithelial proliferation than control lungs (See quantitation 

in Fig 2B). Control and Sox9LOF lungs had the same levels of proliferation in the 

proximal epithelium and mesenchyme.Scale bar represents 100 µm.  

 

 

 

 

 

 

 

 



 65 

Figure 2.6. The effect of Sox9 loss and gain on the major signaling pathways of 

lung development. (A) Transcripts for key members or targets of the FGF, Wnt, BMP, 

and Hh signaling pathways were quantified by qRT-PCR at E12.5 and E14.5 for control 

and Sox9LOF, and at E14.5 for control and Sox9GOF. There were no significant 

differences among E12.5 and E14.5 control, Sox9 heterozygous (Sox9F/+), Sox9LOF, and 

E14.5 Sox9GOF lungs. (B) In situ hybridizations were done on Axin2 (Wnt target), BMP4 

and Shh. There were no differences in localization or expression levels between E14.5 
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control and Sox9LOF lungs. (C) Transcript levels of distal lung progenitor markers Id2 

and Nmyc were examined by qRT-PCR in E12.5 and E14.5 control, Sox9 heterozygous 

(Shh-cre;Sox9F/+), Sox9LOF, and E14.5 Sox9GOF lungs. While some trends of down 

regulation were apparent, only Id2 expression at E14.5 in Sox9LOF lungs showed a 

statistically significant down regulation. * indicates p<0.05  and error bars represent 

SEMScale bars in B represent 100 µm.Note: For all qRT-PCR experiments, 3 

independent biological samples were analyzed (n=3 independent lungs). 
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Figure 2.7. The effect of Sox9 loss and gain on differentiation of proximal cell 

types. (A-C) Immunostaining for Scgb1a1 (Clara cells) and AcTub (Ciliated cells) and 

qRT-PCR of Scgb3a2 (Clara cells). At E14.5 and/or E18.5 there was no difference in 

Scgb1a1 or ActTub staining (A-B) or significant difference in Scgb3a2 mRNA levels (C) 

between E12.5 and E14.5 Sox9LOF lungs and control lungs. In Sox9GOF lungs (Shh-

cre;Rosa26-rtTa;tetO-Sox9-mCherry +Doxycycline (Sox9 ON) at E9.5), cells ectopically 

expressing  Sox9 did not co-stain for Ciliated cell markers (AcTub) at E18.5 (B). Since 

Sox9 has scattered ectopic expression in E18.5 Sox9GOF lungs, the epithelial cells 

expressing proximal markers do not express the Sox9 transgene. Scale bars in A-B 

represent 100 µm. Error bars in C represent SEM. 
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Figure 2.8. The effect of Sox9 loss and gain on differentiation of distal cell types. 

(A-B) Immunostaining for Sftpc and Sftpb (Alveolar type II cells) and Aqp5 (Alveolar 

type I cells) at E18.5.  (A) At E18.5 there was no apparent difference in Sftpc and Sftpb 

expression between control and Sox9LOF or Sox9GOF lungs (Shh-cre;Rosa26-rtTa;tetO-

Sox9-mCherry +Doxycycline (Sox9 ON) at E9.5). However, upon closer inspection, cells 

in the Sox9GOF model that express the Sox9 transgene do not co-express differentiation 

markers (inset in A, B).(B) Aqp5 staining did not appear to be different between control 

and Sox9LOF lungs, whereas the Sox9GOF lungs had reduced Apq5 staining at 

E18.5.Scale bars in A-B represent 100 µm. 



 69 

Figure 2.9. Ectopic Sox9 inhibits differentiation. For Figure 2.9, mice used were 

Sftpc-rtTa;tetO-Sox9-mCherry. Doxycycline was administered at E15.5 and lungs were 
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harvested at P0, which resulted in ectopic Sox9 expression when the epithelium is 

transitioning from the branching columnar epithelium to a terminally differentiated 

squamous epithelium. (A-C) In P0 Sox9GOF lungs, ectopic Sox9 (red) leads to a 

reduction in Type II alveolar cell markers SftpB and SftpC staining (A-B, white) and 

Type I cell marker Aqp5 (C, green) staining. (D) E-Cad staining (white) revealed that 

distal Sox9GOF epithelium (red) fails to undergo the columnar-to-squamous epithelial 

transition seen in lower airways (alveoli) of control lungs. (E) Proximal cell types, Clara 

(Scgb1a1) and Ciliated cells (ActTub) were reduced in Sox9GOF lungs where Sox9 was 

ectopically expressed compared to control lungs.All scale bars represent 50 µm.  
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Figure 2.10. Cellular defects in Sox9LOF lung epithelium. (A-B) TEM images of E14.5 

control and Sox9LOF lungs revealed intact tight junctions (black arrows). (B) Sox9LOF 

lungs exhibited moderate (B, middle row) and severe (B, bottom row) degrees of cellular 

disruption. This included rounded apical surfaces, loss of microvilli, apical blebbing and 

irregular basal surfaces (red arrows).  In addition Sox9LOF lungs had large spaces 

between adjacent cell membranes that contained pseudopidia (yellow arrows). 
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Figure 2.11. Sox9LOF have perturbed cell shape.(A) Epithelial cell shape is perturbed 

at E14.5 in Sox9LOF lungs. Cells were labeled with E-cadherin (white) and cell height 

was quantified by measuring from the apical to basal surfaces of the cell indicated by 

the red line. Sox9LOF had significantly taller epithelial cells at the bud tips than the 

control epithelium. (B) At E14.5 lower magnification images of E-Cad (white) staining 

shows differences in the epithelium between control, Sox9LOF and Sox9GOF lungs. Scale 

bars in A represent 50 µm and B represent 100 µm 
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Figure 2.12. Loss or gain of Sox9 does not affect some ECM proteins or apical-

basal polarity in the lung. (A-B,E) ColIV (A), Fibronectin (Fn1) (B), and DLG1 (E) mark 

the basal lamina. There was no difference in ColIV or Fn1 expression or localization 

between control and Sox9LOF or Sox9GOF lungs at E14.5. There were also no changes in 

DLG1 between control and Sox9LOF at E14.5.(C-D, F) ZO-1 (C), Crumbs3 (D) marks the 

apical surface and Gm130 marks the golgi on the nucleus and apical surface of the cell. 

There was no difference in ZO-1 or Crumbs3 expression or localization between control 

and Sox9LOF or Sox9GOF lungs at E14.5. There were also no changes in Gm130 

between control and Sox9LOF at E14.5.All scale bars represent 50 µm. 
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Figure 2.13. Sox9 regulates ECM protein Col2a1.(A) Col2a1 staining (white, top; 

green, bottom) was reduced in E12.5 distal buds (yellow arrows) compared to control 

lungs. Proximal airways are outlined with a yellow dotted line. (B) Col2a1 mRNA levels 

are reduced by an 8 fold decrease in E12.5 and a 12 fold decrease E14.5 lungs 

compared to control lungs. (C) ChIP assay was performed on FACS purified Sox9-

eGFP distal lung epithelial cells. Compared to a non-specific rabbit anti-IgG, anti-Sox9 

preferentially (5 fold enrichment) pulled down a previously characterized Sox9 binding 

site in Col2a1 intron1 (Col2a1 Intr1, black bars), whereas anti-Sox9 did not 

preferentially pull down non-specific DNA near the Col2a1 gene compared with anti-IgG 

negative control (Neg Control, grey bars). Both Col2a1 Intr1 and Neg Control sites were 

pulled down with the positive control, anti-Histone H3. All fold changes were normalized 

to 2% input.  Scale bars in A represent 100 µm. * indicates p<0.005 in A and P<.05 in C. 

All error bars represent SEM 

 

 

 

 

 

 



 75 

 



 76 

Figure 2.14. Gain or loss of Sox9 disrupts basement membrane laminin 

deposition. (A) Laminin staining (green) in control lungs at E14.5 shows robust staining 

in the basement membrane of Sox9+ (red) branching epithelial tips. In contrast, Sox9LOF 

lungs showed mislocalized staining, and Sox9GOF had a reduction in Laminin staining.  

(B) In Sox9LOF lungs, intracellular Laminin staining (green) is observed as punctae on 

both the apical and basal surfaces of the epithelial (E-cad, red) cells compared to 

controls, where Laminin is part of the ECM of the basement membrane. Scale bars in A 

represent 50 µm and in B represent 10 µm.  
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Figure 2.15. Col2a1 expression is reduced in Sox9LOF lungs.(A) Col2a1 immuno 

staining was reduced in the distal epithelial buds of E14.5 Sox9LOF lungs compared to 

controls. In controls, a thin ring of staining was seen around distal buds, whereas 

Sox9LOF distal epithelial buds had weak and diffuse staining around distal buds. 

Mesenchymal Col2a1 expression did not appear to be different. (B) Sox9-eGFP 

transgeneic mouse had GFP staining in the distal lung epithelium, which correlated with 

the Sox9 (red) immunostaining. (C) Sox9-eGFP positive cells were sorted by FACS for 

the ChIP assay. Panel C shows the different gates used to isolate these cells. Live/dead 

dells were determined by Propidium Iodide exclusion from live cells.  An eGFPHigh 

population of cells were collected and used for ChIP analysis.Scale bars in A represent 

50 µm and B represent  100 µm.  
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Figure 2.16. Loss of Sox9 causes Laminin deposition defects in the lung 

epithelium.(A) Laminin (green) stains the basal lamina throughout the proximal and 

distal lung epithelium in control lungs at E14.5. In contrast, Sox9LOF lungs showed 

mislocalized Laminin staining in the distal epithelium, and Sox9GOF had a reduction in 
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Laminin staining both in the proximal and distal epithelium, (B) Various Laminin isoform 

transcripts were quantified by qRT-PCR. There were no significant differences in 

expression levels among control, Sox9 heterozygous (Sox9F/+), Sox9LOF lungs at E12.5 

and E14.5. (n=3 independent lungs) (C-D) Some of the punctate Laminin staining 

(green) associates (co-localizes) with the golgi marker Gm130 (C, red – co-localization 

is yellow) and ER marker KDELR (D, red – co-localization is yellow). In control 

epithelium, co-localization was not apparent. Scale bars in A represent 100 µm and C-D 

represent 10 µm.Error bars in B represent SEM. 
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Figure 2.17. Loss of Sox9 causes mislocalization of Laminin within the distal 

epithelial cells. (A-B) High magnification confocal microscopy Z-stacks to examine 

Laminin expression in control and Sox9LOF lungs. In control lungs, Laminin (green) 

stains the basal lamina and a view through the cell from basal-to-apical demonstrates 

that Laminin is on the basal side of the E-cad staining (bottom panel in A, pink arrow at 

bottom). In Sox9LOF lungs, strong, punctate Laminin staining is observed inside the 

epithelial cells marked by E-cad.. Pink arrows indicate the orientation of the Z-stack. 

Scale bars in A-B represent 10 µm. 
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Figure 2.18. Sox9 is required for proper cytoskeleton organization and in vitro 

cellular migration. (A) Sox9LOF lungs have a disrupted microtubule cytoskeleton. 

Stabilized acetylated tubulin (AcTub, white) is observed on the apical, lateral and basal 

surfaces of control epithelium at E14.5. In contrast Sox9LOF epithelium has reduced 

AcTub staining on the lateral surfaces and no staining along the basal surface of the 

epithelium. (B-C) A scratch assay was performed on isolated control and Sox9LOF 

epithelial buds cultured in vitro to examine epithelial movement characteristics. The red-

dotted line indicates the scratch. Compared to controls, migration of Sox9LOF epithelial 

cells were significantly delayed at both 3 hour (hr) and 6hr time points, indicating that 

Sox9LOFepithelial cells have impaired cellular migration/movement. Closure of the 

scratch was quantitated over time (D). ActTub staining revealed that in control lungs the 

cells lining the scratch had accumulated stabilized tubulin on the side furthest from the 

scratch (arrows) compared to the Sox9LOF cells, which had no aggregation of ActTub. 

Scale bars in A represent 50 µm, B represent 200 µm, and C represent 100 µm.* 

indicates p<0.01 and error bars represent SEM 
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Figure 2.19. The effects of Sox9 loss and gain on cytoskeleton organization and 

cell shape.  (A) Phalloidin (white) labels the F-actin filaments of the cytoskeleton. There 

was no difference in F-actin localization or expression between control and Sox9LOF 

lungs. (B) Acetylated tubulin (AcTub) (white) stains the stabilized microtubules. There 

was no difference in acetylated tubulin localization or expression between control and 

Sox9GOF lungs.(C-D) A scratch assay was performed on isolated control and Sox9LOF 

epithelial buds cultured in vitro to examine epithelial movement characteristics. The red-

dotted line indicates the scratch. Compared to controls, migration of Sox9LOF epithelial 

cells were significantly delayed at both 3 hour (hr) and 6hr time points, indicating that 

Sox9LOFepithelial cells have impaired cellular migration/movement (C). In E12.5 and 

E14.5 control lungs there was no difference in wound closure, indicating the rate of 

migration is the same at both time points (D). Scale bars in A-B represent 50 µm and C 

represent 200 µm. Error bars in D represent SEM.  
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Figure 2.20. ß-Catenin/Wnt Signaling is sufficient, but not necessary for Sox9 

expression during branching morphogenesis. (A-B) Control and ß-CateninLOF lungs 

(Sox9-creER;-cateninFlox/Flox) at E16.5 (Tamoxifen injections given at E11.5 and E12.5). 

In controls Sox9 (red) marks the distal lung epithelium (A: highlighted by white bar) 

while β -Catenin (green) marks both mesenchyme and epithelium. Mosaic loss of β -

Catenin protein specifically in the epithelium is seen in β -CateninLOF lungs. In regions 

where β -Catenin has been deleted both in the proximal airways (A) and distal buds (B), 

Sox9 expression expands into the proximal airways (A: highlighted by white bar) and 
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normal Sox9 expression in the distal buds (B).(C-D) Sox9 (red) and Sox2 (green) 

staining in control and β -CateninLOF lungs at E16.5. In controls, these markers stain the 

distal and proximal airways, respectively and do not overlap. A Sox2/Sox9 negative 

zone is observed between the two domains (highlighted by white bar in control (C)).  

Conditional deletion of β -Catenin causes a proximal expansion of Sox9 causing a 

Sox2+/Sox9+ intermediate population (highlighted by white bar in β -CateninLOF (C)). E-

Cad (white) staining in β-CateninLOF resembled control lungs (D).(E-F) Wnt loss of 

function (Lrp5/6LOF) (Sox9-creER;Lrp5Flox/Flox;Lrp6Flox/Flox, Tamoxifen injections given at 

E11.5 and E12.5) model was generated in order determine if the phenotype in A-D was 

due to adhesive functions of β –Catenin. Similar to β -CateninLOF lungs, a Sox2+/Sox9+ 

intermediate population was observed in Lrp5/6LOF lungs (highlighted by the white bar 

(E)) compared to the Sox2/Sox9 negative zone in the control lungs. E-Cad (white) 

staining in Lrp5/6LOF resembled control lungs. Scale bars in A,C,E represent 50 µm and 

B,D,F represent 10 µm. 
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Table 2.1 List of primary and secondary antibodies 

Primary Antibody Source Catalog # Dilution 

Alexa Fluor 546 – Phalloiden** Invitrogen A22283 1:50Frozen 

Goat anti-E-Cadherin (E-cad) R & D Systems AF748 1:100 

Goat anti-Sox9 (for IF) R & D Systems AF3075 1:500 

Rabbit anti-Sox9 (for IF, ChIP) Millipore  AB5535 1:500 

Mouse anti-Acetylated Tubulin 
(AcTub) 

Sigma-Aldrich T7451 1:1000 

Mouse anti-DLG1* Santa Cruz Biotechnology sc-9961 1:100Frozen 

Mouse anti-E-Cadherin (E-cad) BD Transduction Laboratories  610181 1:500 

Mouse anti-Fibronectin (Fn1)* DSHB B3/D6 1:100 

Mouse anti-Gm130 BD Transduction Laboratories  610822 1:200 

Mouse anti-KDEL Receptor 
(KDELR) 

Stressgen Bioreagents VAA-PT048 1:100 

Rabbit anti-Aquaporin 5 (Aqp5) Abcam ab78486 1:1000 

Rabbit anti-CCSP Seven Hills Bioreagents WRAB-3950 1:1000 

Rabbit anti-Collagen, Type IV 
(Col IV) 

Millipore AB756P 1:500 

Rabbit anti-Collagen2 (Col2a1) Novus NB100-91715 1:100 

Rabbit anti-Crumbs3 Makarova et al. 2003 
 

1:1000 

Rabbit anti-Histone H3  (ChIP) Cell Signaling Technology 4620 1:50 

Rabbit anti IgG (ChIP) Cell Signaling Technology 2729 1:500 

Rabbit anti-Ki67 Thermo Scientific RM-9106-S1 1:500 

Rabbit anti-Laminin  Abcam ab14055 1:200 

Rabbit anti-N-Terminal Pro SP-
C (Sftpc) 

Seven Hills Bioreagents WRAB-9337 1:100 

Rabbit anti-Sox2  Seven Hills Bioreagents WRAB-SOX2 1:500 

Rabbit anti-Sufactant Protein B 
(Sftpb) 

Santa Cruz Biotechnology sc-13978 1:500 

Rabbit anti-TTF1 (Nkx2.1) Epitomics 2044-1 1:500 

Rabbit anti-ZO-1 Invitrogen  33-9100 1:500 

Rabbit anti-β-catenin  Santa Cruz Biotechnology sc-1496 1:500 

Rat anti-BrdU Abcam ab6326 1:1000 

Secondary Antibody Source Catalog # Dilution 

Biotin anti-mouse Jackson Immuno 715-065-150 1:500 

Biotin anti-rabbit Jackson Immuno 711-065-152 1:500 

Biotin anti-rat  Jackson Immuno 712-065-150 1:500 

Donkey anti-goat 488 Jackson Immuno 705-545-147 1:500 

Donkey anti-goat 647 Jackson Immuno 705-605-147 1:500 

Donkey anti-goat Cy3 Jackson Immuno 705-165-147 1:500 

Donkey anti-mouse 488 Jackson Immuno 715-545-150 1:500 

Donkey anti-mouse 647 Jackson Immuno 415-605-350 1:500 

Donkey anti-mouse Cy3 Jackson Immuno 715-165-150 1:500 
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*Amplfication kit required 
**Primary conjugated to secondary antibody 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donkey anti-rabbit 488 Jackson Immuno 711-545-152 1:500 

Donkey anti-rabbit 647 Jackson Immuno 711-605-152 1:500 

Donkey anti-rabbit Cy3 Jackson Immuno 711-165-102 1:500 

Streptavidin 488 Jackson Immuno 160-540-084 1:500 
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Table 2.2 List of primers for qRT-PCR and genotyping 

 

 

 

 

 

 

 

 

 

 

 

Note: All above primer sequences were obtained from 

http://mouseprimerdepot.nci.nih.gov/ 

 

Note: All annealing temperatures 60°C. 

* Primer Sequences obtained from: Oh C-D et al. (2010) Identification of SOX9 

Interaction Sites in the Genome of Chondrocytes. PLoS ONE 5:e10113. 

 

 

Primer Name Forward Sequence Reverse Sequence 

Axin2 TGCATCTCTCTCTGGAGCTG ACTGACCGACGATTCCATGT 

BMP4 TGGACTGTTATTATGCCTTGTTT CTCCTAGCAGGACTTGGCAT  

Col2a1 CTACGGTGTCAGGGCCAG GCAAGATGAGGGCTTCCATA 

C-Myc AGAGCTCCTCGAGCTGTTTG TGAAGTTCACGTTGAGGGG  

Fgf10 GCAACAACTCCGATTTCCAC  GATTGAGAAGAACGGCAAGG  

Gli1 GGATGAAGAAGCAGTTGGGA ATTGGATTGAACATGGCGTC  

Id2 GTCCTTGCAGGCATCTGAAT  AGAAAAGAAAAAGTCCCCAAATG  

Lama1 CTGTCACCCTGGACTTACGG GCTCCAAAATCCAGTTTCCA 

Lama2 CTCGAAGGCTCCCAGACTC TGCATTCGAAGCAAGATTCA 

Lama3 ACACCTGGGACGTGGATTG CTTGCAGGGTGAATGCTTCAT 

Lama4 GAGACTAGCGACTCAGGCGT AGGGTGCACATTCTCCTGAC 

Lama5 CTGGCGGAGATCCCAATCAG GTGTGACGTTGACCTCATTGT 

Lamb1 GCATTCCTTTGGGCCATC CAGGGTCTCCCCAGAAGAG 

Msx1 GAAACTAGATCGGACCCCGT GTTGGTCTTGTGCTTGCGTA  

Nmyc AGCACCTCCGGAGAGGATA TCTCTACGGTGACCACATCG 

Ptch1 CTCCTCATATTTGGGGCCTT  AATTCTCGACTCACTCGTCCA  

Scgb3a2 TCACAGGCACCAGCTATGAA GTCAACAACAGGGAGACGGT 

Sftpb TTCTCTGAGCAACAGCTCCC ACAGCCAGCACACCCTTG  

Sftpc AGCAAAGAGGTCCTGATGGA ATGAGAAGGCGTTTGAGGTG 

Sox9  AGGAAGCTGGCAGACCAGTA TCCACGAAGGGTCTCTTCTC 

Spry2 AGAGGATTCAAGGGAGAGGG CATCAGGTCTTGGCAGTGTG 

Primer Name Forward Sequence Reverse Sequence 

Col2a1 Intron 1* TGAAACCCTGCCCGTATTTATT GCTTTTCTCAAGCGCATACAGA 

Col2a1 Neg Control GGGGCGCTTTGTATGAAAGG GTGAGCCAGTCTGGGTTTGA 

http://mouseprimerdepot.nci.nih.gov/
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CHAPTER 3 

IN VITRO GENERATION OF HUMAN PLURIPOTENT STEM CELLS DERIVED LUNG 
ORGANOIDS 

 

Summary 

Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ 

systems have led to new physiologically complex in vitro models to study human 

development and disease.  Here, we report the step-wise differentiation of human 

pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By 

manipulating developmental signaling pathways hPSCs generate ventral-anterior 

foregut spheroids, which are then expanded into human lung organoids (HLOs).  HLOs 

consist of epithelial and mesenchymal compartments of the lung, organized with 

structural features similar to the native lung. HLOs possess upper airway-like epithelium 

with basal cells and immature ciliated cells surrounded by smooth muscle and 

myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using 

RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based 

on global transcriptional profiles, suggesting that HLOs are an excellent model to study 

human lung development, maturation and disease. 

 

Introduction 

 Several reports have demonstrated that directed differentiation of human 

pluripotent stem cells (hPSCs), which include embryonic (hESCs) and induced (iPSCs), 
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is one of the most efficient approaches to achieving differentiation of a cell or tissue of 

interest (1-5). Using this approach, differentiation of hPSCs into lung lineages has been 

achieved using diverse methodology with varying degrees of success(5-11).  

 Thus far, the majority of efforts to differentiate lung lineages from hPSCs have 

focused on using 2-dimensional (2D) monolayer cultures. Several recent advances in 

generating 3-dimensional (3D) organ-like tissues, called “organoids”, have been 

reported (1,2,12-16) Such 3D models offer several advantages; they often possess 

structural organization similar to the native organ, cell types from multiple germ layers 

(for example, mesoderm and endoderm (1,16,17), and multiple cellular lineages making 

them a physiologically complex model to study developmental processes, tissue 

homeostasis and pathological conditions in vitro. 

 Previous work has demonstrated that activation of FGF and WNT signaling 

synergistically drives CDX2+ intestinal lineage commitment in hPSC-derived endoderm 

and also drives “morphogenesis in a dish”, where the 2D tissue self-organizes into 3D 

spheroids comprised of mesenchymal and polarized epithelial layers that detach from 

the adherent cell layer (1). It has also been demonstrated that inhibition of BMP and 

TGF signaling is able to drive tissue into a SOX2+ foregut lineage (16,18). Building on 

these previous studies, we show that simultaneous stimulation of WNT and FGF 

signaling while inhibiting BMP/TGF signaling pathways in hPSC-derived endoderm 

cultures prevents intestinal lineage commitment, and instead, favors a SOX2+ anterior 

foregut fate while also robustly generating SOX2+ anterior foregut 3D spheroid 

structures.  
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 In order to further restrict foregut spheroids to the lung lineage, the current study 

focused on manipulating FGF and HH signaling. In the mouse, high levels of Fgf 

signaling have been shown to induce Shh expression in the lung endoderm (19-21) 

which is accompanied by induction of the Nkx2.1+ lung progenitor field (20,22). Shh 

then signals from the endoderm to the mesoderm, and mutations in Shh, Gli2 or Gli3 

lead to perturbed lung development, with Gli2/Gli3 double knockout mice showing lung 

agenesis(23-25). Our results demonstrate that FGF2 induces NKX2.1, PAX8, and SHH 

in human foregut endoderm cultures. By using pharmacological inhibitors of FGF and 

HH signaling we demonstrate that SHH is required for NKX2.1 expression downstream 

of FGF2, and that FGF2 also induces PAX8 independently of HH signaling. These 

observations suggest a paradigm where FGFLo/HHHi conditions preferentially induce 

PAX8Lo/NKX2.1Hi lung progenitors and FGFHi/HHLo conditions favor a PAX8Hi/NKX2.1Lo 

fate. Given that Pax8 is required for thyroid development, we focused on defining the 

most robust conditions to induce NKX2.1 while minimizing PAX8 expression (24,26-32).  

By applying HHHi conditions during generation of foregut spheroids we were able to 

enhance NKX2.1 expression in foregut spheroids and subsequently expand spheroids 

in media containing FGF10, allowing them to grow into organoids. Organoids persisted 

in culture for over 100 days and developed well-organized proximal-like airway epithelial 

structures that had many cell types found in the proximal lung epithelium, including 

basal and ciliated cells along with rare club cells. Moreover, proximal airway structures 

were often surrounded by smooth muscle actin (SMA) positive mesenchymal tissue. 

Organoids also possessed distal-like epithelial cells that co-expressed progenitor 

markers, SFTPC/SOX9 and HOPX/SOX9, consistent with early bipotent alveolar 
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progenitor cells seen in mice (33,34). To support the idea that organoids may be more 

similar to a developing lung with abundant progenitor cells, we used RNA-sequencing to 

compare the global transcriptional profile of organoids to the human fetal and adult lung, 

undifferentiated hESCs and definitive endoderm. Principal component analysis, 

hierarchical clustering and Spearman‟s correlation all show that organoids have striking 

similarity to the human fetal lung.  

 Taken together, our data demonstrates an efficient and robust in vitro system to 

generate complex, 3D human lung organoids that are immature /fetal in nature. We 

anticipate that this model will serve as an unparalleled novel model for the study of 

human lung development, maturation and disease. 

 

Results 

Differentiation of hPSCs into anterior foregut spheroids 

We and others have reported efficient induction of human endoderm using 

ActivinA (1,2,35), and a further lineage restriction into SOX2+ anterior foregut endoderm 

using inhibition of BMP and TGF signaling (18,36). We have recently demonstrated 

that inhibition of BMP signaling during intestinal lineage induction with WNT and FGF 

ligands is sufficient to inhibit intestinal CDX2 and induce SOX2+ posterior foregut 

spheroids capable of giving rise to human gastric (antral) organoids(16). Given that the 

lung is derived from the anterior foregut, we sought to define conditions to generate 

ventral anterior foregut spheroids. To do this, we tested if dual inhibition of BMP and 

TGF was able to anteriorize cultures, as previously described (18). We treated hESCs 

with ActivinA (100ng/mL) for four days to induce endoderm, followed by four days of 
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Noggin (NOG, 200ng/mL) and the small molecule TGF inhibitor, SB431542 (SB, 

10µM). We confirmed that these conditions were able to induce robust mRNA and 

protein expression of SOX2, which co-expressed with endodermal marker FOXA2, 

while repressing the intestinal lineage marker CDX2 (Fig. 3.1A-C,Fig. 3.2A).  QRT-PCR 

analysis also showed that compared to controls (in which endoderm was induced but 

was not exposed to NOG/SB), exposure to NOG/SB robustly induced ventral anterior 

foregut genes NKX2.1 and PAX8, while the posterior foregut transcript, PDX1 was 

reduced. HHEX, which is expressed in the developing liver, biliary system and thyroid, 

but is absent from the lung primordium, remained unchanged (Fig.3.1B). Given that 

NKX2.1 is expressed in the lung and thyroid primordium, and PAX8 is expressed in the 

thyroid primordium, these results suggest that 4 day ActivinA treatment followed by a 4 

day NOG/SB treatment biases the cultures towards ventral-anterior foregut lineages. 

 Addition of FGF4 plus WNT3A (or Chir99021, a GSK3 inhibitor that enhances -

catenin dependent WNT signaling) promotes CDX2 intestinal lineage commitment and 

3D spheroid formation in endoderm cultures (1,18,37,38). Based on our results in Fig. 

3.1B-C, we hypothesized that combining FGF, Chir99021, NOG and SB would result in 

the generation of SOX2+ ventral-anterior foregut spheroids. To test this, we generated 

endoderm (4 days ACTA) and added no growth factors (Endoderm controls) or NOG, 

SB, FGF4, and Chir99021 (NOG/SB/F/Ch) (Fig. 3.1D). Addition of all four factors 

resulted in the generation of 3-dimensional SOX2+, CDX2- spheroids (Fig. 3.1E, F). 

SOX2+ spheroids also expressed the endodermal protein FOXA2, and were epithelial, 

co-expressing E-Cadherin (ECAD) (Fig. 3.1F, Fig. 3.3).  In addition to SOX2, spheroids 

exhibited higher mRNA expression of anterior foregut lineage markers NKX2.1 and 
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PAX8 compared to endoderm controls, suggesting that they are ventral-anterior foregut 

spheroids (Fig. 3.1E), however, immunofluorescence revealed that levels of NKX2.1 

protein were just above the detection threshold (Fig. 3.3). Spheroids also possess a 

minor population of cells that are mesodermal in origin staining positive for Vimentin 

protein (VIM) (Fig. 3.4). Given that neural tissues also express NKX2.1, PAX8, SOX2, 

and FOXA2, and that neural induction protocols use dual BMP and TGFβ inhibition, we 

wanted to exclude the possibility that spheroids were neural in nature. To do this, we 

generated endoderm control cultures, foregut spheroids (ActivinA followed by 

NOG/SB/F/Ch), and induced neural tissue by adding NOG/SB to hESC cultures that 

were not treated with ActivinA (39). By examining induction of the neural markers 

NESTIN, SOX1, and PAX6, we confirmed that these transcripts were highly induced in 

dual NOG/SB neural cultures, but were low in ventral foregut spheroid cultures. In 

contrast, FOXA2, which is expressed in the foregut (40,41) and in some neural tissues 

(1,3,4,42-45), had high expression in ventral foregut spheroids, but was significantly 

reduced in dual NOG/SB neural conditions (Fig. 3.5). Taken together, these results 

strongly suggest spheroids are indeed foregut, and not of neural origin. 

 

Induction of anterior foregut endoderm into a lung lineage through modulation of FGF 

and HH signaling 

Many signaling pathways are important for lung induction and development 

(reviewed in (5-9,11,19,21,46,47)). High levels of Fgf signaling have been shown to 

induce Shh and Nkx2.1 expression in the foregut endoderm in mice (1,2,12-15,20,22); 

furthermore, Gli2/3 null mouse embryos fail to form lungs (1,17,23) and Hh signaling is 
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important for lung mesenchyme proliferation in vivo(25). These data confirm that Fgf 

and Hh signaling are critical for lung specification and ligands from both signaling 

pathways have been applied to hPSC derived lung lineages in 2D cultures (1,5,6). In 

our cultures we have reported that approximately 85-95% of cells are endoderm, but a 

portion of the remaining cells are mesodermal and this small mesodermal population is 

maintained in the spheroids and organoids (1,16,18) (Fig. 3.4). Therefore, based on 

mouse and hPSC studies, we hypothesized that FGF and/or HH signaling would induce 

an NKX2.1+ lung lineage in anterior foregut endoderm. To test our hypothesis we 

initially focused on adherent endoderm monolayer cultures to optimize induction 

conditions. Cultures were treated for 4 days with ActivinA followed by an additional 4 

days with NOG/SB (Referred to as Foregut). Controls consisted of ActivinA treatment 

only followed by no additional growth factors (Endoderm controls), or ActivinA followed 

by NOG/SB, followed by no additional factors (Foregut controls). All experimental 

groups were compared to both endoderm and foregut controls (Fig. 3.6).  We first tested 

the ability of FGF2 to induce SHH, NKX2.1 and PAX8 by exposing foregut cultures to 

low and high concentrations of FGF2 (50, 500ng/mL) (Fig. 3.6A). We observed a robust 

concentration dependent increase in SHH and PAX8 mRNA expression compared to 

foregut or endoderm controls, and a modest increase of NKX2.1 expression at the 

highest dose of FGF2 (500ng/mL) (Fig. 3.6A). We also observed that dual NOG/SB 

inhibition in endoderm cultures induced robust NKX2.1 and PAX8 expression without 

adding FGF2 (Fig. 3.1B, Fig. 3.6A). Thus, we wanted to determine if NKX2.1 expression 

in foregut cultures was due to endogenous FGF and/or HH signaling. To test this, we 

inhibited the FGF or HH pathway with small molecules SU5402 (SU, 10µm) and Sant-2 
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(10µm) respectively (Fig. 3.6B-C). Treating foregut cultures with the FGF inhibitor SU 

caused a significant, robust reduction in PAX8 and a modest reduction in SHH, while 

NKX2.1 expression was unchanged compared to foregut control (Fig. 3.6B).  

Conversely, inhibition of HH signaling caused a significant reduction in NKX2.1 

expression, but not PAX8 compared to untreated foregut. When FGF2 was added to the 

cultures, we observed a modest increase in NKX2.1 expression, and when FGF was 

added along with Sant-2, NKX2.1 expression was significantly reduced (Fig. 3.6C). 

Together our results suggest a hierarchy where FGF is upstream of SHH and PAX8, 

and where SHH is upstream of NKX2.1. To test if HH signaling was able to induce 

NKX2.1 in foregut cultures, we added the Smoothened agonist, SAG (1µM) to foregut 

cultures. The addition of SAG induced a 6.5 fold increase of NKX2.1 expression above 

foregut controls (Fig. 3.6D). However, SAG alone did not reduce PAX8 expression. 

Based on these results, we further hypothesized that enhancing HH signaling 

would result in increased NKX2.1 expression downstream of FGF, and that 

simultaneous inhibition of FGF signaling would reduce PAX8 expression; therefore, we 

inhibited endogenous FGF signaling with SU while activating HH with SAG (Fig. 3.6D). 

This combination caused an additional increase in NKX2.1 expression (21 fold vs. 6.5 

fold with SAG only, when compared to foregut) and a concomitant decrease in PAX8 

mRNA (Fig. 3.6D). Importantly, immunofluorescence correlated with QRT-PCR data 

showing an increased number of NKX2.1+ cells with the addition of SAG only. SAG+SU 

treated cultures showed a further increase in the number of NKX2.1 expressing cells, 

with ~77% of all cells expressing NKX2.1 compared to ~20% in foregut controls, and 

nearly undetectable levels of PAX8 expressing cells (Fig. 3.7). SAG and SAG+SU 
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treated cells also co-expressed FOXA2 and SOX2 confirming their endodermal origin 

(Fig. 3.2). 

 

HH-induced foregut spheroids give rise to human lung organoids (HLOs) 

Based on the observations that stimulating HH and inhibiting FGF signaling 

strongly enhances NKX2.1 expression while reducing PAX8 expression (Fig. 3.6), we 

tested multiple conditions of HH activation and FGF inhibition to induce 

NKX2.1HI/PAX8LO foregut spheroids (NOG/SB/F/Ch) (Summarized in Fig. 3.8). 

Consistent with the important roles of FGF signaling in lung growth and branching 

morphogenesis (19-21,46-48), we found that conditions where FGF inhibition was used 

led to a reduction of epithelial tissue relative to mesenchymal tissue, which could be due 

to a loss of epithelium or an overgrowth of mesenchyme; this suggests that endogenous 

FGF signaling is necessary to maintain the epithelial tissue in 3D cultures (Fig. 3.9). 

Therefore, we also tested several conditions that stimulated HH signaling using SAG 

only, without FGF inhibition. We found that the most efficient method to enhance 

NKX2.1 expression was by adding SAG during the foregut spheroid phase (Fig. 3.10A). 

Comparing foregut spheroids (NOG/SB/F/Ch) with those treated with SAG 

(NOG/SB/F/Ch/SAG), we observed a substantial decrease in SOX2 expression 

compared to NOG/SB/F/Ch spheroids and a significant increase in NKX2.1 mRNA. 

Additionally, nuclear NKX2.1 protein expression was found in ECAD+ epithelium which 

co-expressed endoderm epithelial markers FOXA2 and SOX2 (Fig. 3.10B-C, Fig.3.11). 

Interestingly, during lung specification in mice, the gut tube initially expresses Sox2 

throughout the endoderm, but Sox2 is down-regulated in the lung field during lung 



 98 

specification and Nkx2.1 induction (20,22,49). Thus, concomitant down-regulation of 

SOX2 and increased NKX2.1 observed in SAG treated foregut spheroids is consistent 

with early transcriptional changes that occur during lung specification in mice.  

 We also observed a slight, but non-significant increase in PAX8 transcript level in 

NOG/SB/F/Ch/SAG treated foregut spheroids (Fig. 3.10). Importantly, PAX8 protein 

expression was undetectable in NOG/SB/F/Ch/SAG treated foregut spheroids and 

expression remained low/undetectable throughout time in culture (Fig. 3.12). Similar to 

NOG/SB/F/Ch treated spheroids, the NOG/SB/F/Ch/SAG treated spheroids had a minor 

population of cells within the spheroids of mesodermal in origin, expressing Vimentin 

(VIM) (Fig. 3.13) 

 NOG/SB/F/Ch/SAG treated foregut spheroids were embedded in Matrigel to 

provide a 3D growth environment. Spheroids maintained in basal media (see methods) 

supplemented with 1% FBS lost ECAD+ epithelial structures and were mainly 

comprised of mesenchyme within 20 days of 3D culture (Fig. 3.9D,E). FGF10 is 

essential for branching morphogenesis and maintenance of lung progenitor cells during 

development as well as tissue homeostasis in the adult lung (23-25,46,47,50,51). We 

observed that the addition of FGF10 (500ng/mL) allowed spheroids to expand and be 

passaged for over 100 days. FGF10 promoted the maintenance of ECAD+ epithelial 

structures with less mesenchymal contributions compared to both basal and FGF 

inhibitor conditions (Fig. 3.10D). NOG/SB/F/Ch/SAG cultured for 15 days in FGF10 

possessed abundant ECAD+ epithelium that expressed the proximal lung marker SOX2 

and distal lung marker SOX9. SOX2+ domains and SOX9+ domains were distributed 

throughout the entire HLO as determined by whole mount immunofluorescence and 
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confocal Z-sections. (Fig. 3.14). FGF10 treated foregut spheroids maintained NKX2.1 

expression over time; however, consistent with mouse development, distal progenitor 

markers, NMYC and ID2 mRNA expression decreased over time while distal Alveolar 

Type I and II cell markers, HOPX and SFTPC increased over time (24,26-32,52,53) 

(Fig. 3.10). These data suggest that HLOs pass through a stage resembling early fetal 

lung development in mice. 

 

HLOs possess proximal airway-like structures 

 HLOs cultured longer than 2 months had striking epithelial structures resembling 

proximal airways, expressing proximal cell type-specific markers, including basal cells 

(P63), ciliated cells (FOXJ1, ACTTUB) and club cells (SCGB1A1) (Fig.3.15). Proximal-

like airway tissues were often surrounded by a smooth muscle actin positive (SMA+) 

mesenchyme compartment.  Although P63 mRNA expression is maintained throughout 

culture (Fig. 3.15A), it is only in prolonged cultures (> 2 months) where the P63+ cells 

are spatially arranged along the basal side of the epithelial tube-like structures, adjacent 

to SMA+ mesenchyme, similar to human bronchi and bronchioles (Fig. 

3.15B)(1,2,35,54-57). By 65 days in vitro (D65) proximal-like epithelial structures form a 

cyst-like structure that expresses P63, as determined by whole mount 

immunofluorescence staining and confocal z-stacks. Moreover, SMA expression is 

strongest at the periphery of the HLO (Fig. 3.16).  P63+ proximal airway-like cells also 

co-express SOX2 and NKX2.1 as determined on serial sections (Fig. 3.17). Located on 

the luminal surface of HLO proximal airway-like structures are cells expressing the 

multi-ciliated cell transcription factor FOXJ1 (Fig. 3.15B). Very few cells expressed the 
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club cell marker SCGB1A1, and this protein was observed in a pixilated expression 

pattern (Fig. 3.15D). Multi-ciliated and club cell specific mRNAs, FOXJ1 and SCGB1A1 

respectively, were significantly increased in prolonged HLO culture (Fig. 3.15A). 

Although the goblet cell marker MUC5AC mRNA expression was detected, protein 

expression was not detected by immunofluorescence (Fig. 3.15A and data not shown). 

 Although the multi-ciliated cell transcription factor FOXJ1 was abundant in 

proximal airway-like structures, we observed that ACTTUB was localized to the apical 

side of these cells, but did not appear to be localized to cilia on the apical cell surface 

(Fig. 3.15C), suggesting that this may represent a cell that has not fully differentiated. 

Others have demonstrated that robust differentiation of multi-ciliated cells from hPSCs 

require modified culture conditions to promote differentiation of functional cell types 

(7,18,36). Thus, it is possible that the HLO environment, such as Matrigel or media rich 

in FGF10, does not promote terminal differentiation of all cell types. In order to alter the 

HLO environment, we seeded NOG/SB/F/Ch/SAG foregut spheroids onto an acellular 

human lung matrix (18,58). Spheroids seeded on slices of acellular lung matrix 

predominantly gave rise to proximal airway-like structures in which stereotypical tufts of 

ACTTUB positive ciliated structures on the apical surface of cells were observed facing 

into a lumen. In serial sections, these airways had abundant FOXJ1+ cells (Fig. 3.15E). 

Thus, HLOs have the capacity to generate more mature ciliated cells given the correct 

stimulus or environment.  

 As noted, proximal airways are often closely associated with the SMA+ 

mesenchyme (Fig. 3.15B) whereas in the adult murine lung, proximal airways are also 

associated with Pdgfrα+ and Vim+ mesenchymal cells (59-61). Thus, we investigated 
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the mesenchymal population within the HLOs in more detail. Immunofluorescence 

revealed that D65 HLOs have both PDGFRα+/VIM+ double positive and PDGFRα-

/VIM+ cell populations, which indicative of myofibroblasts and fibroblasts respectively 

(Fig. 3.17A). Adult murine myofibroblasts also co-express Sma and Pdgfrα whereas 

differentiated smooth muscle is Sma+/Pdgfra- (59-63),and we observe 

PDGFRα+/SMA+ and PDGFRα-/SMA+ populations of cells indicating that HLOs 

possess myofibroblasts and smooth muscle cells (Fig. 3.17B). The HLOs did not stain 

positive for SafraninO indicating there is no cartilage tissue, whereas iPSC derived 

teratomas had abundant cartilage (Fig. 3.17C). Taken together, the HLO mesenchymal 

population is diverse with myofibroblasts, fibroblasts, and smooth muscle cells. 

 

HLOs possess immature alveolar airway-like structures 

 The distal lung epithelium in mouse and human make up the gas-exchanging 

alveoli, consisting of type I and type II alveolar epithelial cells (AECI, AECII). During 

development, the distal lung epithelium expresses progenitor markers including SOX9, 

ID2, and NMYC (1,18,37,38,52,53,64,65). All distal markers are present in the HLOs; 

however, ID2 and NMYC are expressed at high levels in early cultures, but are down 

regulated in prolonged culture (Fig. 3.10F) while SOX9 expression remains consistent 

across time in culture (Fig. 3.19A).  

 Recently, there have been major advances in mice toward defining a bipotent 

alveolar progenitor population during the late fetal/early neonatal period (33,34,39), and 

this work has highlighted the fact that many markers previously considered terminal 

differentiation markers are co-expressed in the bipotent progenitors.  Specifically, the 
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AECII marker SftpC and AECI marker Hopx can be co-expressed in a bipotent 

progenitor before becoming committed to one lineage or the other. Moreover, we have 

shown that Sox9 marks an early progenitor population in the developing mouse lung 

and Sox9 also marks the bipotent progenitor in late fetal life (34,40,41,64).  In HLOs 

grown in prolonged culture (> 2 months), we observed that AECII (SFTPC, SFTPB) and 

AECI (PDPN, HOPX) cell-type markers were present (Fig. 3.19A-B). However, we also 

observed that SFTPC levels were very low (Fig. 3.10F), and that SFTPB+ cells were 

rare (Fig. 3.19B). This suggested that the distal airway cells present in HLOs might be a 

progenitor-like population. To test this possibility, we co-stained SFTPC (AECII) or 

HOPX (AECI) with SOX9 and found abundant SFTPC/SOX9 and HOPX/SOX9 double 

positive cells (Fig. 3.19B). Co-staining in serial sections suggests that SFTPC/SOX9 

double positive cells are also NKX2.1+ (Fig. 3.20). In contrast these co-expressing cells 

were not found in the adult human lung (Fig. 3.19C).  Although rare, the few SFTPB+ 

observed in HLOs resemble AECII cells seen in the adult human lung, and PDPN+ cells 

resembled the elongated AECI cells in the human lung (Fig. 3.19B-C). In order to 

improve confidence that cells expressing AECII markers are AECII cells, we used 

transmission electron microscopy (TEM) to determine if HLOs possessed cells 

containing lamellar bodies, which are necessary for surfactant protein trafficking and 

secretion (66-68). Using TEM, we observed lamellar bodies both in cells within HLOs, 

and in open spaces between cells, indicating that lamellar bodies are being secreted 

(Fig. 3.19D). Taken together, our data suggests that HLOs predominantly possess an 

undifferentiated alveolar progenitor cells with rare differentiated AECI and AECII cells 

interspersed throughout the distal-like tissue.  
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Quantitative assessment of HLO composition 

 We have shown that HLOs have both proximal-like and distal-like epithelium in 

addition to surrounding mesenchymal tissue. In order to better gauge the composition of 

HLOs, we performed a detailed quantitative analysis of cell types and structures. We 

sectioned 48 individual HLOs, and examined them for P63+ proximal airway-like 

structures (as shown in Fig. 3.15B-D), and distal-airway like structures (as shown in Fig. 

3.20). We found that 39/48 (81%) of the HLOs have proximal airway epithelial structures 

while 48/48 (100%) of HLOs have distal airway-like structures (Fig. 3.21). We then 

calculated the average cross-sectional area of comprised of P63+ proximal airway-like 

and P63- distal airway-like tissue and found that proximal structures comprised 14.5% 

(+/- 0.6%) of the entire area of the HLO, whereas 85.5% (+/- 0.6%) were distal in nature 

(including epithelium and mesenchyme) (Fig. 3.21B). To determine the percentage of 

certain cell types within an HLO, we sectioned and stained 15 individual HLOs (n=15) 

and counted cells positive for specific markers, and the total number of Dapi+ nuclei 

within a section (Fig. 3.21C-G). On average, 57% of all cells in the HLOs were NKX2.1+ 

(Fig. 3.21C), 39% of all cells were P63+, 3% were FOXJ1+, 5% were SFTPC+ 4% of all 

cells were HOPX+ (Fig. 3.21D-G). 

 

HLOs are globally similar to human fetal lung 

 Accumulating evidence suggests that HLOs are immature. For example, distal 

progenitor markers are initially robustly expressed whereas SFTPC expression is very 

low across time in HLOs (Fig. 3.10E), FOXJ1+ cells do not appear to form mature multi-
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ciliated structures until placed onto a decelluarized lung matrix (Fig. 3.15B, E) and rare 

SCGB1A1+ cells do not resemble mature club cells (Fig. 3.15D). Moreover, the majority 

of the distal-like epithelium expresses bipotent progenitor markers (Fig. 3.18). In order 

to directly address the maturity of HLOs, we conducted RNA-sequencing (RNAseq) on 

HLOs (n=6; 3 D65 HLOs, 3 D110 HLOs), on undifferentiated hESCs and on definitive 

endoderm. We also took advantage of publicly available RNAseq datasets for human 

fetal lung representing a range of gestational stages, and for adult human lung (Table 

3.1). In order to determine global similarity among these tissues relative to HLOs, we 

conducted principal component (PC) analysis (Fig. 3.22 A,B)(69), hierarchical clustering 

(Fig. 3.22C)(70) and Spearmans rank-order correlation matrix analysis (Fig. 3.22D) of 

the complete tabulated FPKM matrix generated from RNA sequences datasets and 

representing the total gene expression complement in each sample (71). Consistent 

across all three types of informatics analysis, transcriptional activity in the HLOs shares 

the greatest degree of similarity to human fetal lung. These data strongly suggest that 

global transcription of HLOs is highly similar to human fetal lung, and support the idea 

that HLOs are in a less differentiated, fetal state when grown in the conditions described 

here. 

 

Discussion 

 To date, a number of groups have defined methods to generate lung specific cell 

types utilizing 2D culture systems (5,6,8-11,18). Although lung lineage cells have been 

generated with varying efficiency (~30-80% NKX2.1+ cells (5-7)) and can generate both 

both proximal (~5-36% of cells (5-7))and distal cell types (up to ~50% of cells (6)) with 
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varying efficiency, proper spatial organization of the cell types and specific tissue 

morphology have not been reported in 2D systems. Here, we show that HLOs possess 

both mesenchymal and lung epithelial (~60% NKX2.1+) cells with proximal airway-like 

structures that possess P63+ (~40%) and FOXJ1+ cells (~3%) along with distal airway-

like structures that possess SFTPC+ (~5%) and HOPX+ (~4%) cells.   

 It is currently unclear if 2D culture systems described have the capability to give 

rise to mesodermal lineages.  Thus, HLOs allow one to address questions regarding 

spatial tissue organization and epithelial-mesenchymal interactions. Since HLOs form 

organized structures that resemble bronchi and bronchioles with adjacent mesenchyme, 

these complex, organized tissues may allow exploration, for example, of airway 

remodeling after injury. Moreover, the spatial arrangement of specific cell types will be 

critical to study proximal airway dynamics during homeostasis and injury. For example, 

the location of P63+ cells adjacent to FOXJ1+ cells in the HLOs will be necessary to 

study basal cell differentiation into different proximal airway cell types during 

homeostasis or after injury.  In addition to tissue morphology and structure during 

prolonged culture, the HLOs consist of both epithelium and mesenchyme in early 

cultures that are maintained over time. Since lung development requires extensive 

cross talk between the epithelium and mesenchyme in order to regulate developmental 

processes, proliferation and differentiation, HLOs may be an ideal in vitro system to 

study these complex tissue-tissue interactions.  

 Recently, there has been a push to define progenitor populations during lung 

development and adult homeostasis in order to better understand differentiation and the 

transition between branching and alveolarization. Two groups have defined a bipotent 
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progenitor population in the embryonic/neonatal lung that gives rise to both AECI and 

AECII cells (33,34). These bipotent cells express the distal progenitor marker Sox9 

along with differentiation markers of AECI and AECII cells, including SftpC, HopX, and 

Pdpn. We demonstrate that HLOs expressed both AECI and II markers; however, the 

majority of these cells also expressed SOX9 suggesting that the majority of the distal 

epithelium is comprised of bipotent progenitors. Thus, HLOs will allow us to gain insight 

into this bipotent population, explore how bipotent progenitors are regulated, and define 

the mechanisms of how fate-decisions are made as terminal differentiation occurs.  For 

example, it will allow us to examine signaling pathways or transcription factors that 

instruct the bipotent progenitor to differentiate into a mature AECII cell, instead of an 

AECI cell.   

The evidence supporting that HLOs are fetal in nature could reflect the fact that a 

block to full maturation exists in vitro, as is the case with other endoderm lineage 

organoids (intestinal and gastric), which appear to be immature. That is, while they 

possess committed lineage-specific cell types, the cells may not exhibit fully matured 

adult-like function (16,72). This is also the case for pancreatic -like cells and 

hepatocyte-like cells generated in vitro (4,73). Alternatively, the progenitor state may 

reflect the high levels of FGF10 in the culture media, since FGF10 is known to maintain 

progenitor cells in the lung (74,75).  Given that HLOs are similar to human fetal lung, 

this tissue is an ideal model to study lung maturation of both the proximal and distal 

epithelium along with epithelial-mesenchymal interactions in a developmental context. 

  While the multi-lineage, multi-cellular composition of HLOs is a major advantage, 

one of the caveats to this system is that HLOs do not appear to undergo bona fide 
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branching morphogenesis or possess transitional zones found in the adult lung, such as 

the bronchioalveolar ductal junction (BADJ). The HLOs possess proximal SOX2+ 

domain and distal SOX9+ domains observed during branching morphogenesis, but this 

regionalization occurs without setting up the stereotyped branching pattern. This may be 

due to the fact that the organoids are surrounded by media supplemented with FGF10 

compared to the in vivo situation where FGF10 is expressed in a dynamic, spatially 

restricted manner in the distal mesenchyme(48,74,76). However, it has recently been 

demonstrated that localized expression FGF10 is not required for branching (51), so this 

may not be the reason HLOs don‟t branch. Alternatively, similar to other endoderm-

derived organoid models, HLOs lack several components of the native organ, including 

immune cells, vasculature, and innervation. Thus, it is possible that cellular inputs 

important for branching morphogenesis are missing from HLOs. Indeed, recent reports 

have shown that innervation is required for proper branching(77), and while vasculature 

may not be important for lung branching(78), others have shown the vascular 

endothelium is required to induce a branching-like program of isolated airway epithelium 

in 3D cultures (79). Lastly, the microenvironment is essential for branching 

morphogenesis to occur including dynamic changes in the extracellular matrix around 

branching lung bud tips where the ECM is constantly changing and interacting with the 

cytoskeleton of the branching epithelium in order to facilitate cell movement and 

branching bifurcations (80-82). It is possible that in the future, co-culture with additional 

cellular inputs may prove to enhance HLO branching. 

 Taken together, we describe here a novel system to generate human lung 

organoids from human pluripotent stem cells. HLOs possess both mesenchymal and 
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epithelial lineages, as well as organized proximal airway structures with multiple cell 

types and surrounded by mesenchyme. HLOs also possess distal epithelial cells that 

are reminiscent of a bipotent alveolar progenitor cell recently described in mice which is 

likely a reflection of the similarities of HLOs to the human fetal lung. We believe that 

HLOs will be an excellent new human system to model lung differentiation, homeostasis 

and disease in vitro.  

 

Materials and Methods 

Maintenance of hESCs 

Human ES cell lines H1 (NIH registry #0043) and H9 (NIH registry #0062) were 

obtained from WiCell Research Institute. Human ES line UM77-2 (NIH registry #0278) 

was obtained from the University of Michigan. iPSC lines 3-5 and 20-1 were generated 

at Cincinnati Children‟s Hospital and have been previously described (1). Stem cells 

were maintained on Matrigel (BD Biosciences) in mTesR1 medium (STEM CELL 

Technologies). HESCs were passaged as previously described (1). 

 

Differentiation of PSCs into definitive endoderm 

Differentiation into definitive endoderm was carried out as previously described 

(1,42). Briefly, a 4-day Activin A (R&D systems) differentiation protocol was used. Cells 

were treated with Activin A (100 ng ml−1) for three consecutive days in RPMI 1640 

media (Life Technologies) with increasing concentrations of 0%, 0.2% and 2% HyClone 

defined fetal bovine serum (dFBS, Thermo Scientific). 
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Differentiation of definitive endoderm into anterior foregut 

After differentiation into definitive endoderm, foregut endoderm was 

differentiated, essentially as described (18). Briefly, cells were incubated in foregut 

media: Advanced DMEM/F12 plus N-2 and B27 supplement, 10mM Hepes, 1x L-

Glutamine (200mM), 1x Penicillin-streptomycin (5,000 U/mL, all from Life Technologies) 

with 200ng/mL Noggin (NOG, R&D Systems) and 10µM SB431542 (SB, Stemgent) for 

4 days. For long term maintenance, cultures were maintain in “basal” foregut media 

without NOG and SB, or in the presence of growth factors including 50, 500 ng/mL 

FGF2 (R&D systems), 10µM Sant-2 (Stemgent), 10µM SU5402 (SU, Stemgent), 100 

ng/mL SHH (R&D systems), and SAG (Enzo Life Sciences) for 8 days. 

 

Directed differentiation into anterior foregut spheroids and lung organoids 

 After differentiation into definitive endoderm, cells were incubated in foregut 

media with NOG, SB, 500ng/mL FGF4 (R&D Systems), and 2 µM CHIR99021 (Chiron, 

Stemgent) for 4-6 days. After 4 days with treatment of growth factors, three-dimensional 

floating spheroids were present in the culture. Three-dimensional spheroids were 

transferred into Matrigel to support 3D growth as previously described (83). Briefly, 

spheroids were embedded in a droplet of Matrigel (BD Bioscience  #356237) in one well 

of a 24 well plate, and incubated at room temperature for 10 minutes. After the Matrigel 

solidified, foregut media with 1% Fetal bovine serum (FBS, CAT#: 16000-044, Life 

Technologies) or other growth factors and small molecules were overlaid and replaced 

every 4 days. Organoids were transferred into new Matrigel droplets every 10 to 15 

days.  
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Immunohistochemistry 

Immunostaining was carried out as previously described (64,84). Antibody information 

and dilutions can be found in Table 3.2. All images were taken on a Nikon A1 confocal 

microscope or an Olympus IX71 epifluorescent microscope.  

 

RNA extraction and qRT-PCR 

 RNA was extracted from monolayers, spheroids, and organoids using a 

MagMAX-96 Total RNA Isolation Kit (Life Technologies) and MAG Max Express 

(Applied Biosystems). RNA quantity and quality were determined 

spectrophotometrically, using a Nano Drop 2000 (Thermoscientific). Reverse 

transcription was conducted using the SuperScript VILO kit (Invitrogen), according to 

manufacturer‟s protocol. Finally, qRT-PCR was carried out using Quantitect Sybr Green 

MasterMix (Qiagen) on a Step One Plus Real-Time PCR system (Life Technologies). 

For a list of primer sequences see Table 3.3. 

 

Seeding lung spheroids on decellularized human lung matrices 

 Human lungs deemed to be unsuitable for lung transplantation were obtained 

from beating-heart (or warm autopsy) donors through Gift of Life Michigan and lungs 

were decellularized as previously described (58). Slices were prepared using a sterile 

tissue punch (Fisher) and sterilized with 0.18% peracetic acid and 4.8% EtOH. Matrix 

slices were placed in a 96 well plate and approximately 50 NOG+SB+F+Ch+SAG 

spheres were pipetted directly onto the matrices. Samples were centrifuged for 2min at 
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2000rpm and then incubated at 37C for 30min without media. Foregut media 

supplemented with 1%FBS and 500ng/mL FGF10 was then added to the matrices. 

Media was changed daily. 

 

Transmission Electron Microscopy 

 D50 HLOs were processed as previously described (64,85). 70nm sections were 

sections were imaged using a Philips CM-100 electron microscope. 

 

Area and Cell Quantification 

 HLOs with P63+ cells were counted as having proximal airway-like epithelium 

and HLOs with SFTPC+ cells were counted as having distal airway-like epithelium. The 

area of proximal epithelium was determined by P63+ECAD+ staining. Area was 

measured using ImageJ software. Cell quantification of NKX2.1, P63, and DAPI was 

counted by Metamorph cell counting software. FOXJ1, SFTPC, and HOPX were 

counted in ImageJ using the cell counter plugin.  

 

Statistical Analysis and Experimental Replicates 

 All immunofluorescence and qRT-PCR experiments were carried out at least two 

times with three (n=3) independent biological samples per experiment. The only 

exceptions to this were experiments that included human adult lung samples in the 

analysis. For these experiments, n=1 biological human lung sample was used in 

statistical replicates (triplicates) whereas all other samples used biological replicates 

(n=3). For quantification in Fig. 3.21, a total of 48 different HLOs (n=48) were counted 
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for HLO composition. For the proximal epithelial area, 29 different HLOs were counted 

(n=29). For cell quantification, 15 different HLOs were counted (n=15). Statistical 

differences between groups were assessed with Prism software, using multiple t tests. 

All error bars represent SEM. Results were considered statistically significant at P < 

0.05. 

 

RNA Sequencing and Analysis 

 Sequencing of HLOs (n=3 D65, n=3 D110) was performed by the University of 

Michigan DNA Sequencing Core, using the Illumina Hi-Seq platform. Sequencing of H9 

Stem Cells (SC) and Definitive Endoderm (DE) was performed by the University of 

California, San Francisco DNA Sequencing Core using the Illumina Hi-Seq platform. All 

sequences were deposited in the EMBL-EBI ArrayExpress database using Annotare 2.0 

and are catalogued under the accession number E-MTAB-3339 for the HLOs and E-

MTAB-3158 for SC and DE. The University of Michigan Bioinformatics Core obtained 

the reads files and concatenated those into a single .fastq file for each sample. The 

Bioinformatics Core also downloaded reads files from EBI-AE database (Adult lung 

Samples) and NCBI-GEO (SRA) database (Fetal lung samples) (Supplemental Table 

3.1). The quality of the raw reads data for each sample was evaluated using FastQC 

(version 0.10.1) to identify features of the data that may indicate quality problems (e.g. 

low quality scores, over-represented sequences, inappropriate GC content, etc.). Initial 

QC report indicated over-representation of Illumina adapter sequences in samples from 

EBI-AE data set and NCBI-GEO data set. Adapter sequences were trimmed from the 

reads using Cutadapt (version 0.9.5)(86).  Briefly, we aligned reads to the reference 
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transcriptome (UCSC hg19) using TopHat (version 2.0.9) and Bowtie (version 

2.1.0.0)(87).  We used Cufflinks/CuffNorm (version 2.2.1) for expression quantitation 

and differential expression analysis(88), using UCSC hg19.fa as the reference genome 

sequence and UCSC hg19.gtf as the reference transcriptome annotation. For this 

analysis, we used parameter settings: “–multi-read-correct” to adjust expression 

calculations for reads that map in more than one locus, as well as “–compatible-hits-

norm” and “–upper-quartile –norm” for normalization of expression values. Normalized 

FPKM tables were generated using the CuffNorm function found in Cufflinks. 

Transcriptional quantitation analysis in Cufflinks was conducted using the 64-bit Debian 

Linux stable version 7.8 ("Wheezy") platform.  The complete FPKM matrix, containing 

frequency counts for all 24,010 genes contained in the reference genome for all 23 

RNAseq samples, was evaluated using unscaled principle component analysis (PCA) to 

visualize and quantify multi-dimensional variation between samples(69). Of the 24,010 

genes annotated in the reference genome, 2,815 (11.7%) were not detected in the 

RNAseq analysis of any of the 23 samples. Principle components were calculated using 

the function ‟prcomp‟ found in the R (version 3.1.2) statistical programming language 

(http://www.R-project.org/) and plotted using the R package ‟ggplot2‟ (89). Hierarchical 

cluster analysis based on the Canberra distance(70) between FPKM vectors was used 

to classify discrete RNAseq samples according to the degree of total transcriptional 

dissimilarity indicated by the normalized FPKM values. Bootstrap analysis was used to 

assess the uncertainty in the assigned hierarchical clustering relationships. 10,000 

bootstraping iterations were generated by repeatedly randomly sampling the FPKM 

dataset. The bootstrap probability (BP) of a cluster is defined as the frequency of a 
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given relationship among the bootstrap replicates. Multiscale bootstrap resampling was 

used to calculate an approximately unbiased (AU) p-value for a given relationship, with 

AU > 95 indicating a high degree of statistical significance. Analyses were conducted 

using R package ‟pvclust‟(90). Spearman correlation was applied as an additional 

assessment of the cumulative degree of correlation among RNAseq datasets. In 

addition, we computed Spearman rank correlation coefficients (ρ) in a pairwise manner 

among all 23 RNAseq samples using the complete normalized FPKM data. The 

Spearman coefficients were plotted as a heatmap using the function ‟heatmap.2‟ in the 

R package ‟gplots‟ (http://CRAN.R-project.org/package=gplots). Complete data analysis 

scripts are available at https://github.com/hilldr/HLO_eLife2015. 
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Figure 3.1. Generation of three-dimensional ventral anterior foregut spheroids 

from endoderm monolayers. (A) hESCs were differentiated into foregut endoderm by 
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treating cells with 4 days of Activin A (ACTA) followed by 4 days of NOG+SB. (B) 

Foregut endoderm (NOG+SB) had high expression of the foregut marker SOX2 while 

the hindgut marker CDX2 was significantly reduced compared to untreated endoderm 

controls (End). NOG+SB monolayer had high expression of ventral anterior foregut 

genes NKX2.1 and PAX8 while the posterior foregut marker PDX1 was reduced. The 

foregut marker HHEX is expressed in the developing liver, biliary system, and thyroid 

and remained unchanged. (C) The majority of cells in NOG+SB treated cultures were 

SOX2 positive (green) compared to the control, in which only scattered clusters of cells 

were SOX2 positive. Scale bar represents 200 µm. (D) hESCs were differentiated into 

foregut spheroids by treating cells with 4 days of ACTA and then additional 4 to 6 days 

of NOG+SB+FGF4+Ch. Representative images of a spheroid in a matrigel droplet 

shown as whole mount image. Scale bar represents 100 µm. (E) Foregut spheroids 

(NOG+SB+FGF4+Ch) had high expression of the foregut marker SOX2 while the 

hindgut marker CDX2 was significantly reduced compared to untreated endoderm 

control (End) (top panel). Spheroids had high expression of anterior foregut genes 

NKX2.1 and PAX8 while the posterior foregut marker PDX1 was reduced and HHEX 

was unchanged (bottom panel). *p<0.05, error bars represent SEM. (F) The majority of 

cells in foregut spheroids are FOXA2+ (green, left panel) and SOX2+ (white, right 

panel) and ECAD+ (red, right panel). Scale bar represent 50µm. 
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Figure 3.2. Monolayer cultures express lung specific markers. 

Immunohistochemistry for markers expressed in endoderm, ventral foregut or lung 

epithelium were assessed (SOX2, FOXA2, NKX2.1, SOX9) in endoderm controls, 

foregut controls or foregut cultures treated with SAG or SAG+SU. (A) All conditions 

express endoderm marker FOXA2 (red), but the foregut (NOG+SB) control, SAG and 

SAG+SU treated cultures have co-expression of FOXA2 (red) and SOX2 (green) in the 

majority of cells. (B) All conditions expressed endoderm marker FOXA2 (red), but only 

foregut endoderm treated with SAG and SAG+SU have robust NKX2.1+ cells (green) 

that also express FOXA2 (red). (A-B) Scale bars represent 200 µm and apply to all 

images. (C) Only foregut endoderm treated with SAG and SAG+SU have robust 

NKX2.1+ cells (green) with the majority of cell co-expressing with lung epithelial marker 

SOX9 (red). Scale bar represents 100µm.  
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Figure 3.3. Foregut spheroids co-express endoderm and lung specific markers. 

(A) NOG/SB/FGF4/Ch spheroids have weak NKX2.1 (green) expression which co-

expresses with endoderm marker FOXA2 (red). (B) The majority of cells in the spheroid 

express SOX2 (green) and co-stain with FOXA2 (red). Scale bars represent 50µM. 
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Figure 3.4. Foregut spheroids consist of both epithelial and mesenchymal cells. 

NOG/SB/FGF4/Ch spheroids have a minor population of Vimentin (VIM, white) positive 

mesenchymal cells, while the majority of cells are epithelial and express ECAD (red). 

Scale bar represents 50µM.  
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Figure 3.5. NOG+SB+FGF4+Ch spheroids do not express neural markers. hESCs 

were differentiated into endoderm by treating with 4 days of ActivinA (ACTA) and 

spheroids were generated with an additional 4 days of NOG+SB+FGF4+Ch. Neural 

cultures were not treated with ACTA, but were treated with NOG+SB  for 8 days. 

Compared to foregut spheroids (NOG+SB+FGF4+Ch), NOG+SB neural cultures had a 

significant increase in neural markers NESTIN, SOX1, and PAX6 and significant 

decrease in FOXA2, which is highly expressed in endoderm. *p<0.05, error bars 

represent SEM. 
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Figure 3.6. Induction of NKX2.1 in anterior foregut endoderm by modulating FGF 

and HH signaling. (A) hESCs were differentiated into endoderm (End) or anterior 

foregut with NOG+SB (For). Anterior foregut was treated with low (50ng/mL) and high 

(500ng/mL) concentrations of FGF2.  FGF2 caused a dose dependent increase in SHH 

and PAX8 expression with a modest increase in NKX2.1 expression compared to 

untreated endoderm controls. Note that NKX2.1 expression is increased by NOG+SB 

exposure alone (no FGF2). (B) Addition of the FGF inhibitor SU5402 (SU) to NOG+SB 

foregut cultures (For) caused a significant reduction of SHH and PAX8 expression, but 

NKX2.1, GLI1, and PTCH1 were not significantly different compared to the foregut 

controls, in which no growth factors were added after SB+NOG. (C) Addition of the HH 

inhibitor Sant-2 caused a significant reduction in NKX2.1 compared to foregut control. 

Similarly when FGF2 (500 ng/mL) and Sant-2 were added simultaneously, the modest 

NKX2.1 induction caused by FGF2 was significantly reduced whereas PAX8 expression 

remained unchanged. (D) Foregut endoderm treated with SAG or SAG+SU for 8 days 

had a 6.5 fold and 21 fold increase of NKX2.1 expression, respectively, compared to 

untreated foregut controls. PAX8 expression was unchanged in the SAG treated 

cultures whereas SAG+SU treated cultures demonstrated a 41 fold decrease in PAX8 

expression. End=endoderm; For=foregut in all panels. *p<0.05, error bars represent 

SEM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 132 

 

Figure 3.7. Robust induction of NKX2.1 in foregut endoderm with HH stimulation 

and FGF inhibition. (A) Immunohistochemistry of NKX2.1 and PAX8 in endoderm 

controls, foregut controls or foregut cultures treated with SAG or SAG+SU.  Treatment 

of foregut cultures with SAG or SAG+SU resulted in more NKX2.1+ cells compared to 

endoderm and foregut controls. Scale bars represent 200 µm and apply to all images. 

(B) Quantification showed that 20% +/-4% of cells in foregut controls were NKX2.1+, 

whereas 72% +/- 3% cells were positive in SAG+SU treated cultures (*p<0.05). All error 

bars represent SEM.  
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Figure 3.8. Overview of conditions tested to generate human lung organoids. 
hPSCs are OCT4 and NANOG positive. After 4 days of 100 ng/mL Activin A, definitive 
endoderm (FOXA2 and SOX17 positive) was generated and then treated with two 
different conditions. In the top branch, NOG+SB+FGF4+Ch spheroids were generated, 
and different conditions were tested to promote lung organoid differentiation. In the 
bottom branch, NOG+SB+FGF4+Ch+SAG spheroids were generated, and different 
conditions were tested to promote lung organoid differentiation. Ultimately, we 
determined that spheroids generated with NOG+SB+FGF4+Ch+SAG and that were 
subsequently embedded in Matrigel and expanded in FGF10 gave rise to “Human Lung 
Organoids” (HLOs). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 134 

 

Figure 3.9. FGF-low culture conditions cause a loss of organoid epithelium over 

time. (A) NOG+SB+F+Ch foregut spheroids were generated and then cultured in 

SAG+SU for 10 days followed by 1%FBS +/- FGF10. Timeline images show organoids 

cultured in 1%FBS. By day 20, 3D structures appeared “fuzzy”, which indicates an 

outgrowth of mesenchymal tissue. Scale bar represents 200µm. (B) NOG+SB+F+Ch 

foregut spheroids treated with SAG+SU and maintained in 1%FBS showed an increase 
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in Vimentin (VIM, green) immunofluorescence over time. Scale bar represents 50µM. 

(C) NOG+SB+F+Ch foregut spheroids treated with SAG+SU and maintained in 1%FBS 

(upper panel) or 1%FBS+FGF10 (lower panel) had a significant increase of VIM 

expression starting at day 20 (D20) compared to hPSCs and showed very weak E-

CADHERIN (CDH1) expression compared to D20 HLOS (optimized conditions, as 

described in Figure 3). Lastly, both conditions appeared to lose NKX2.1 expression over 

time. (D) NOG+SB+F+Ch+SAG spheroids maintained in 1%FBS (basal media) also 

appear to lose epithelial structures over time. Scale bar represents 200µm. (E) By day 

20 (D20) the tissue had very few epithelial structures expressing ECAD (white, left 

panel) and there was robust VIM expression (green, right panel) at both time points. 

Scale bar represents 50µm. HLO. *p<0.05. All error bars represent SEM.  
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Figure 3.10. HH-induced ventral foregut spheroids give rise to lung organoids. (A) 

hESCs were differentiated into foregut spheroids by treating cells with 4 days of ACTA 

and then additional 4 to 6 days of NOG+SB+FGF4+Ch with the addition of the HH 

agonist SAG. Representative whole mount images of spheroids in a matrigel droplet are 

shown at low (left, scale bar 200 µm) and high magnification (right, scale bar 100 µm). 



 137 

(B) The addition of SAG to the NOG+SB+FGF4+Ch spheres caused a reduction in 

SOX2 and CDX2 transcripts (top panel) and a significant increase of NKX2.1 transcript 

(bottom panel) compared to NOG+SB+FGF4+Ch spheres (without SAG). Other foregut 

lineages (PAX8, PDX1, HHEX) were not significantly different when SAG was added.  

(C) The majority of the cells in NOG+SB+FGF4+Ch+SAG spheres expressed FOXA2, 

SOX2 and NKX2.1 protein. Scale bars represent 50µm. (D) Timeline showing 

NOG+SB+FGF4+Ch+SAG induced foregut spheroids grown and maintained in FGF10. 

Note that Day 1 is the day spheroids were plated in Matrigel.  Scale bar represents 

100µm. (E) Organoids express lung markers in a manner consistent with mouse lung 

development. All expression is shown relative to undifferentiated pluripotent stem cells 

(hPSC), and adult human lung is shown as a reference. Lung progenitor markers NMYC 

and ID2 were very low in adult lung, and were expressed at high levels in early organoid 

cultures, but were reduced over time (D=Days in culture), whereas NKX2.1 expression 

remained relatively constant.  In contrast, SFTPC is known to be expressed at low 

levels in distal lung progenitors, but increases and is highly expressed in AECII cells. 

Consistently, SFTPC is highly expressed in adult human lungs and increases over time 

in organoid cultures and the AECI marker HOPX is also highly expressed in adult 

human lung and increases over time in organoids. *p<0.05. All error bars represent 

SEM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 138 

 

Figure 3.11. Foregut spheroids express lung and foregut specific markers. (A) 

NOG/SB/FGF4/Ch/SAG spheroids coexpress NKX2.1 (green) and the endoderm 

marker FOXA2 (red). (B) The majority of the cells in the spheroid co-expresses SOX2 

(green) and FOXA2 (red). Scale bars represent 50µM. 

 

 

 

 

 

 

 

 

 



 139 

 

Figure 3.12. Ventral foregut spheroids do not express appreciable levels of PAX8 

protein.  Although NOG+SB+FGF4+Ch+SAG ventral foregut spheroids expressed 

PAX8 mRNA (Figure 3B), we did not detect PAX8 protein in spheroids using 

immunofluorescence, whereas PAX8 protein in FGF2 8 day treated foregut monolayers 

(ACTA followed by NOG/SB) was readily detectable. Left panel: scale bar represents 

50µm. Right panel: scale bar represents 200µm, inset scale bar represents 100µm. 
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Figure 3.13. Foregut spheroids consist of both epithelial and mesenchymal cells. 

NOG/SB/FGF4/Ch/SAG spheroids have a minor population of Vimentin (VIM, white) 

positive mesenchymal cells, while the majority of cells are epithelial and express ECAD 

(red). Scale bar represents 50µM.  
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Figure 3.14. Lung organoids contain both proximal and distal domains. 

NOG/SB/FGF4/Ch/SAG spheroids cultured for 15 days with FGF10 express the distal 

lung epithelium marker SOX9 (green) and proximal marker SOX2 (white) as separate 

domains in the epithelium labeled by ECAD (red). Z-stack images are shown every 

40µm sections through the HLO. Scale bar represents 200µm. 
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Figure 3.15. Lung organoids form proximal airway-like structures. (A) Genes 

expressed in the proximal airway were examined in organoids across time. The 

proximal airway cell marker SOX2 decreased over time in HLOs cultures compared to 

D10 HLOs. Compared to undifferentiated hPSCs, organoids expressed high levels of 

the basal cell marker P63 at all time points, while the club cell marker SCGB1A1 and 

ciliated cell marker FOXJ1 had a significant increase of expression in prolonged 

cultures (compared to D10 HLOs). There was an increasing but non-significant trend in 

goblet cell MUC5AC expression over time in culture. (B) D65 HLOs had structures 

resembling the proximal airway, in which the epithelium (-catenin, red) possesses 

P63+ basal cells (green), and is surrounded by SMA+ (white, upper and lower left 

panel) mesenchymal tissue. Adjacent to the P63 positive basal cell layer (green, lower, 

right panel) were FOXJ1 positive cells (white). Scale bars represent 50µM (top) and 

10µM (bottom). (C) Proximal airway-like epithelium (-catenin, green) co-stained for 

ACTTUB on the apical side of the cell (red). Scale bars represent 50µM (top) and 10µM 

(bottom). (D). Proximal airway-like epithelium (E-cadherin, red) also co-stained with 

Club cell marker CC10 (white, right panel). Scale bars represent 50µM (top) and 10µM 

(bottom). (E) Acellular human lung matrix was seeded with spheroids and cultured for 

40 days (D40). Matrices had abundant proximal airway-like structures that had multi-

ciliated cells on the apical surfaced labeled by ACTTUB (red, top panel) in low (scale 

bar 50µM) and high magnification (scale bar 10µM). Serial sections showed that cells 

were also FOXJ1 positive (white, lower panel) with the epithelium outlined in ECAD 

(green) in low (scale bar 50µM) and high magnification (scale bar 10µM). (B-D) „L‟ in 

high magnification images indicates the lumen. *p<0.05. All error bars represent SEM.  
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Figure 3.16. Lung organoids have P63+ epithelium throughout the organoid. (A) 

Confocal Z-slices taken at every 40µm show P63+ (green) and ECAD+ (white) 

structures through the D65 HLO. (B) Z-slices taken at every 40µm show SMA (white) 

surrounding the periphery the HLO with P63 (green) staining within the HLO. Scale bars 

represent 200µm. 
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Figure 3.17. P63+ cells have an NKX2.1+ lung identity. (A) Serial sections were 

stained with NKX2.1 and P63 respectively. The adjacent sections expressed ECAD 

(white) and NKX2.1 (green) in the first section and P63 (green) in the second section. 

(B) P63+ cells (green) co-expressed the proximal lung marker SOX2 (red) in the 

epithelium labeled by ECAD (white). Scale bars represent 50µm. 
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Figure 3.18. Lung organoids possess multiple types of mesenchymal cells. (A) 

D65 HLOs have PDGFRα+ (green) VIM+ (white) double-positive myofibroblasts and 

PDGFRα-/VIM+ fibroblasts. Scale bar represents 50µm. (B) D65 HLOs also possesses 

PDGFRα+ (green) SMA+ (white) double-positive myofibroblasts and PDGFRα-/SMA+ 

smooth muscle and myofibrblasts. Scale bar represents 50µm. (C) D65 HLO do not 

contain any cartilage whereas  positive control iPSC derived teratoma had clear 

SafraninO staining specific to cartilage. Fast green marks the cytoplasm and 

hematoxylin the nuclei of both tissues. Scale bar represents 100µm. 
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Figure 3.19. Lung organoids possess abundant distal bipotent progenitor cells.  

(A) The expression of the distal progenitor marker SOX9 remained unchanged over 

time and the AECI marker PDPN had low expression in HLO cultures. (B) The majority 

of SFTPC+ cells (green, left panel) co-expressed SOX9 (red). Similarly, many cells 

expressing the AECI early marker HOPX+ (green, right panel) co-expressed SOX9 

(red). Few, scattered cells expressed the late AECII marker SFTPB (white, second 

panel) or the AECI marker, PDPN (third panel, white). Few PDPN+ cells also showed 

elongated, squamous morphology seen in the adult lung. (C) Human lung AECII cells 

labeled with SFTPC (green, left panel) did not co-express SOX9. SFTPB+ cells (white, 

second panel) in the adult human lung have similar morphology to SFTPB+ cells in 

HLOs. Human lung AECI cells expressed PDPN (white, third panel), and show 

characteristic AECI cell shape. Human AECI cells express HOPX (green, right panel), 

but did not co-express SOX9. (B-C) Scale bar in lower magnification images in B (upper 

panel) represent 50µM and higher magnification in B,C (lower panel) represent 10µM. 

(D) D50 HLOs contain lamellar bodies which are organelles specific to AECII cells. 

Scale bars represent 500nm. 
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Figure 3.20. SFTPC+ cells express lung specific markers. D65 HLOs express lung 

epithelial markers NKX2.1 (green) and SOX9 (red) and the adjacent section expresses 

SFTPC (green) and SOX9 (red). Scale bar represents 50µm. 
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Figure 3.21. Quantitative assessment of the composition of lung organoids. (A)  

HLOs were assessed for proximal airway-like structures (P63+) and distal airway-like 

structures (P63-/SFTPC+). 81% of HLOs have proximal airway-like epithelium while 
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100% have distal airway-like epithelium (n=48 individual HLOs). (B) The average cross-

sectional area within an HLO that is comprised of P63+ proximal airway-like and P63- 

distal airway-like epithelium was calculated. Proximal structures comprised 14.5% (+/- 

0.6%) of the entire area of the HLO (P63+), whereas 85.5% (+/- 0.6%) of HLO was 

distal-like epithelium and mesenchyme (P63-). (C-G) The percent of specific cell 

markers present in an organoid was determined by dividing by the total number of 

Dapi+ nuclei within the same section (n=15 individual HLOs). Each point represents the 

data from an individual HLO while the open bar represents the average percent of cells. 

(C) On average, 57% of all cells in the HLOs were NKX2.1+, (D) 39% of all cells were 

P63+, (E) 3% were FOXJ1+, (F) 5% were SFTPC+, (G) 4% of all cells were HOPX+. (B-

G) Error bars represent SEM. 
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Figure 3.22. RNA sequencing analysis associates HLOs with fetal lung tissue. 6 

HLOs (n=3 D65 HLOs and n=3 D110 HLOs) were compared to the undifferentiated H9 

stem cells (SC) and definitive endoderm (Def End) and publicly available datasets of 

adult and fetal human lungs (see Supplemental Table 3.1). (A-B) Principle component 

(PC) analysis, (C) hierarchical clustering, and (D) Spearman‟s correlation all 

demonstrate that HLOs are most closely related to the fetal lung. 
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Table 3.1 Human tissue information 
 

Sample Label Description Source Donor ID Accession # 

Lung_A_1 Adult Lung 3e EMBL-EBI 
ArrayExpress 

V80 E-MTAB-1733 

Lung_A_2 Adult Lung 3f EMBL-EBI 
ArrayExpress 

V81 E-MTAB-1733 

Lung_A_3 Adult Lung 4a EMBL-EBI 
ArrayExpress 

V130 E-MTAB-1733 

Lung_A_4 Adult Lung 4b EMBL-EBI 
ArrayExpress 

V131 E-MTAB-1733 

Lung_A_5 Adult Lung 4d EMBL-EBI 
ArrayExpress 

V133 E-MTAB-1733 

Lung_A_6 Fetal day 105, 
lung 

GEO Datasets H-24005 GSM1101693 
 

Lung_F_2 Fetal day 105, 
lung 

GEO Datasets H-24111 GSM1101708 
 

Lung_F_3 Fetal day 108, 
lung 

GEO Datasets H-23887 GSM1101684 
 

Lung_F_4 Fetal day 91, 
lung 

GEO Datasets H-23914 GSM1101685 
 

Lung_F_5 Fetal day 96, 
lung 

GEO Datasets H-24089 GSM1101699 
 

Lung_F_6 Fetal day 98, 
lung 

GEO Datasets H-23964 GSM1101687 
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Table 3.2 List of primary and secondary Antibodies 
 

Primary Antibody Source Catalog # Dilution Clone 

Chicken anti-GFP Abcam Ab13970 1:500 polyclonal 

Goat anti-β-Catenin 
(βCAT) 

Santa Cruz Biotechnology sc-1496 1:200  C-18 

Goat anti-CC10 Santa Cruz Biotechnology sc-9770 1:200 C-20 

Goat anti-E-Cadherin 
(ECAD) 

R&D Systems AF748 1:100 N-19 

Goat anti-FOXA2 Santa Cruz Biotechnology sc-6554 1:100 M-20 

Goat anti-SOX2 Santa Cruz Biotechnology sc-17320 1:100 Y-17 

Goat anti-SOX9 R&D Systems AF3075 1:500 polyclonal 

Goat anti-SOX17 R&D Systems AF1924 1:500 polyclonal 

Goat anti-VIMENTIN 
(VIM) 

Santa Cruz Biotechnology sc-7558 1:100 S-20 

Mouse anti-Acetylated 
Tubulin (ACTTUB) 

Sigma-Aldrich T7451 1:1000 6-11B-1 

Mouse anti-E-Cadherin 
(ECAD) 

BD Transduction 
Laboratories  

610181 1:500 
36/E-
Cadherin 

Mouse anti-FOXJ1 eBioscience 14-9965-82 1:500 2A5 

Rabbit anti-FOXA2 Seven Hills Bioreagents WRAB-FOXA2 1:1000 aa7-86 

Rabbit anti-NKX2.1 Abcam ab76013 1:200 EP1584Y 

Rabbit anti-P63 Santa Cruz Biotechnology sc-8344 1:200 H-129 

Rabbit anti-PAX8 Proteintech Group 10336-1-AP 1:500 Ag0306 

Rabbit anti-PDPN Santa Cruz Biotechnology sc-134482 1:200 FL-162 

Rabbit anti-N-Terminal 
Pro SP-C (SFTPC) 

Seven Hills Bioreagents WRAB-9337 1:200 aa1-35 

Rabbit anti-SOX2  Seven Hills Bioreagents WRAB-SOX2 1:500 polyclonal 

Cy3- Mouse anti Actin-
alpha smooth muscle 
(SMA)* 

Sigma C6198 1:400 MonoClonal 

Rabbit anti-Sufactant 
Protein B (SFTPB) 

Santa Cruz Biotechnology sc-13978 1:200 H-300 

Secondary Antibody Source Catalog # Dilution  

Donkey anti-goat 488 Jackson Immuno 705-545-147 1:500  

Donkey anti-goat 647 Jackson Immuno 705-605-147 1:500  

Donkey anti-goat Cy3 Jackson Immuno 705-165-147 1:500  

Donkey anti-mouse 488 Jackson Immuno 715-545-150 1:500  

Donkey anti-mouse 647 Jackson Immuno 415-605-350 1:500  

Donkey anti-mouse Cy3 Jackson Immuno 715-165-150 1:500  

Donkey anti-rabbit 488 Jackson Immuno 711-545-152 1:500  

Donkey anti-rabbit 647 Jackson Immuno 711-605-152 1:500  

Donkey anti-rabbit Cy3 Jackson Immuno 711-165-102 1:500  

Donkey anti-goat 488 Jackson Immuno 705-545-147 1:500  

Donkey anti-goat 647 Jackson Immuno 705-605-147 1:500  
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Donkey anti-goat Cy3 Jackson Immuno 705-165-147 1:500  

Donkey anti-mouse 488 Jackson Immuno 715-545-150 1:500  

Donkey anti-mouse 647 Jackson Immuno 415-605-350 1:500  

Donkey anti-mouse Cy3 Jackson Immuno 715-165-150 1:500  

Donkey anti-rabbit 488 Jackson Immuno 711-545-152 1:500  

Donkey anti-rabbit 647 Jackson Immuno 711-605-152 1:500  

Donkey anti-rabbit Cy3 Jackson Immuno 711-165-102 1:500  

 

*Secondary antibody conjugated to the primary antibody 
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Note: All above primer sequences were obtained from http://primerdepot.nci.nih.gov/ 

and all annealing temperatures 55°C unless stated otherwise. 

 

*MUC5AC Huang, SX et al. Efficient generation of lung and airway epithelial cells from 

human pluripotent stem cells. Nature Biotechnol. 1–11 (2013). doi:10.1038/nbt.2754 

Annealing temperature 60°C 

 

 

 

 

 

 

 

Table 3.3 List of primers for qRT-PCR 
 

Primer Name Forward Sequence Reverse Sequence 

CDX2 GGGCTCTCTGAGAGGCAGGT GGTGACGGTGGGGTTTAGCA 

ECADHERIN TTGACGCCGAGAGCTACAC GACCGGTGCAATCTTCAAA 

FOXA2 CGACTGGAGCAGCTACTATGC TACGTGTTCATGCCGTTCAT  

FOXJ1 CAACTTCTGCTACTTCCGCC CGAGGCACTTTGATGAAGC 

HHEX CCTCTGTACCCCTTCCCG GGGGCTCCAGAGTAGAGGTT 

HOPX GCCTTTCCGAGGAGGAGAC TCTGTGACGGATCTGCACTC 

ID2 GACAGCAAAGCACTGTGTGG TCAGCACTTAAAAGATTCCGTG 

MUC5AC* GCACCAACGACAGGAAGGATGAG CACGTTCCAGAGCCGGACAT 

NKX2.1 CTCATGTTCATGCCGCTC GACACCATGAGGAACAGCG 

NMYC CACAGTGACCACGTCGATTT CACAAGGCCCTCAGTACCTC 

P63 CCACAGTACACGAACCTGGG CCGTTCTGAATCTGCTGGTCC   

PAX8 TGCCTCACAACTCCATCAGA CAGGTCTACGATGCGCTG 

PDPN ACATCCTTTGTTTTTGCCCA AGTGTCATCTTCTGGCTGGC 

PDX1 CGTCCGCTTGTTCTCCTC   CCTTTCCCATGGATGAAGTC   

SCGB1A1 ATGAAACTCGCTGTCACCCT GTTTCGATGACACGCTGAAA 

SFTPC AGCAAAGAGGTCCTGATGGA CGATAAGAAGGCGTTTCAGG 

SOX2 GCTTAGCCTCGTCGATGAAC AACCCCAAGATGCACAACTC 

SOX9 GTACCCGCACTTGCACAAC GTGGtCCTTCTTGTGCTGC 

VIMENTIN CTTCAGAGAGAGGAAGCCGA ATTCCACTTTGCGTTCAAGG 

http://primerdepot.nci.nih.gov/
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   CHAPTER 4 

HUMAN PLURIPOTENT STEM CELL DERIVED LUNG ORGANOIDS GENERATED 

MATURE AIRWAY-LIKE STRUCTURES WHEN GROWN IN AN IN VIVO 

ENVIRONMENT 

 

Summary 

 Previously we have reported a three-dimensional human lung model derived 

from human pluripotent stem cells (hPSCs) that resemble fetal lung tissue called human 

lung organoids (HLO). Recent reports using other organoid models have demonstrated 

that an in vivo environment can further mature hPSC derived organoids. Applying this 

approach, HLOs were seeded onto a microporous scaffold and transplanted into the 

highly vascular mouse epididymis fat pad. The transplanted HLOs (tHLOs) possessed 

mature airway-like structures consisting of an organized tube of pseudostratified 

epithelium expressing basal, ciliated, goblet, and club cell markers that were 

surrounded by mesenchymal cells expressing myofibroblast, smooth muscle and 

cartilage markers. The tHLO airway structures can be isolated and cultured in vitro. The 

mature airway-like structures provide an ideal model to study human adult airway 

disease and regeneration. 

 

Introduction  
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In order to recapitulate the complex structures and cellular organization of the 

adult human lung, three-dimensional tissue models have been generated (1-10). More 

recently, three-dimensional lung models such as human lung orgnaoids (HLOs) have 

been derived by directing the differentiation of human pluripotent stem cells (hPSCs) 

including embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) (3, 

4, 10).  

 HLOs were generated by directing the differentiation of hPSCs in a stepwise 

process, which mimics lung developmental events. HLOs possessed lung airway-like 

structures, which consisted of proximal epithelial cells that expressed markers of ciliated 

and basal cells. The airway-like structures were surrounded by mesenchyme, including 

cells positive for smooth muscle and myofibroblast markers (10). However, the airway 

structures did not possess mature airway cell types including secretory cells. In support 

with these results, the global transcriptome of the lung organoids closely associated to 

the fetal lung transcriptome. Taken together, the lung organoids were similar to the fetal 

lung (10) and can be applied to study lung development and maturation of 

developmental progenitors. However, the notable lack of mature airway cell types 

prevents the use of the current HLO model to study adult lung homeostasis and 

regeneration. 

 Similar to the HLOs, human intestinal organoids (HIOs), which are an in vitro 

three-dimensional model of the human intestine derived from hPSCs, closely resembled 

the fetal intestine (11). Strikingly, when HIOs were placed in an in vivo environment, 

under the mouse kidney capsule, the HIOs expressed mature intestinal markers and 

gained relevant adult structures including villi and crypts (11, 12). In order to develop a 
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model of human adult lung tissue, we exploited a similar approach using the HLOs. 

Distinct from HIOs, lung organoids placed under the mouse kidney capsule did not 

generate mature lung structures or cell types, and upon further examination the 

transplanted tissue did not express the lung marker NKX2.1.   

 The microenvironment of the mouse kidney capsule did not provide the 

necessary cues to maintain or mature the HLO tissue. Other transplantation sites and 

techniques such as biosynthetic scaffolds and transplant sites have been employed to 

maintain and mature in vitro grown tissue and may provide a different physical and 

chemical context that is necessary to mature the HLO tissue. Microporous poly (lactide-

co-glycolide) (PLG) scaffolds have been used to mature hPSC derived and primary 

pancreatic beta cells by seeding the cells onto the honeycomb pattern of pores that are 

molded into a flattened cylinder. The pores resemble the shape of pancreatic islets for 

the beta cells to adhere to and allow for the host vascular to infiltrate the scaffold (13-

17). In the native lung, the physical forces generated by the extracellular matrix (ECM) 

and from the surrounding tissues are critical for proper lung development and adult 

homeostasis (18-20). The PLG scaffold provides a rigid environment for HLOs to 

adhere to while the porous structure permits tissue growth and vasculature infiltration. 

The earliest stage of HLOs, foregut spheroids, were seeded onto microporous PLG 

scaffolds and were cultured for 5 to 7 days in vitro before being transplanted into the 

mouse epididymis fat pad, a highly vascularized environment that could accommodate 

the scaffold. After 8 weeks, the retrieved transplanted HLOs (tHLOs) possessed 

impressive mature airway-like structures with a proper organized pseudostratified 

epithelium that expressed mature cell markers of basal, ciliated, and secretory cells. 
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The tHLO airway structures were surrounded by mesenchymal cells that expressed 

both smooth muscle and myofibroblast markers, along with pockets of cartilage. The 

derived airways were then isolated from the transplants and cultured in vitro. This is the 

first three-dimensional mature airway model derived from hPSCs that consists of a 

pseudostratified tube of epithelium expressing mature airway cell markers surrounded 

by lung mesenchyme.  The tHLO is an ideal human airway model to study airway 

diseases and regeneration.  

 

Results 

HLOs do not mature when placed in an in vivo environment 

 Previously, it has been shown that hPSC derived intestinal organoids gain 

physiological relevant structures of the adult intestine along with mature cell types by 

growing the HIOs in an in vivo environment, the mouse kidney capsule (11,12). In order 

to mature the HLO model, the same approach was applied, in which day 35 HLOs were 

placed under the kidney capsule of NOD-scid IL2Rgnull (NSG) mice and were 

harvested after 4 weeks (Fig. 4.1A-B). The retrieved organoids expressed the human 

mitochondria marker (huMITO), but lost expression of the lung epithelial marker NKX2.1 

(Fig. 4.1C). We then hypothesized that an earlier stage of HLO cultures that expressed 

early lung developmental markers would be more susceptible to the micro-

environmental cues of the kidney capsule than the later stage HLO cultures (10). The 

earliest stage of HLO three-dimensional cultures called foregut spheroids, which consist 

of lung progenitors with few mesenchymal cells, were injected underneath the kidney 
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capsule (Fig. 4.1D). After 6 weeks, the spheroids expanded surpassing the size of the 

kidney (Fig. 4.1E); however, further analysis demonstrated expression of huMITO, but 

no NKX2.1 was detected (Fig. 4.1F). Thus, neither spheroids nor day 35 HLOs 

transplanted under the kidney capsule gave rise to mature lung tissue. 

 Next, we assessed the effect of the transplant site on HLO maturation. The 

native lung epithelium is closely associated to the vasculature, thus a highly vascular 

transplant site may allow the HLO to mature. Day 35 HLOs were sewn into the 

omentum, the fatty fold of peritoneum attached to the stomach that is highly 

vascularized, and were harvested after 12 weeks (Fig. 4.1 G-H). The majority of the 

tissue retrieved from the omentum did not express NKX2.1, but expressed huMITO (Fig. 

4.1I). Only 2 of the 13 transplants demonstrated airway-like structures similar to in vitro 

HLOs as indicated by expression of the basal cell marker P63 and ciliated cell marker 

FOXJ1 along with NKX2.1 and huMITO expression (Fig. 4.2) (10). Overall, the 

transplantation site, in vitro culture time of HLOs prior to transplantation, and the time 

the tissue was harvested did not improve the maturity of the HLO tissue.  

 

Transplanted HLOs using a scaffold derived mature airway-like structures 

 The physical environment of the lung including the extracellular matrix (ECM) 

and the forces generated by the surrounding tissues play a critical role during 

development and adult homeostasis (18-20). We hypothesized that the HLOs required a 

rigid structural platform to grow and mature in an in vivo environment.  Microporous 

PLG scaffolds provided a rigid platform while the porous structure would permit growth 
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of airway structures and infiltration of vasculature. Previously PLG scaffolds were 

transplanted into the mouse fat pad with primary and hPSC derived pancreatic beta 

cells and the mouse vasculature was able infiltrate the scaffold (13-17, 21).  For HLO 

transplants, the PLG scaffold was coated with Matrigel diluted with DMEM/F12, then 

seeded with foregut spheroids suspended in 100% Matrigel. The PLG scaffolds were 

cultured for 5 to 7 days in vitro submersed in 500ng/mL FGF10 supplemented media 

(Fig. 4.3A-B), the same media used to grow HLOs in vitro (10). The scaffolds were then 

either dipped in Matrigel supplemented with FGF10 or no Matrigel then transplanted into 

the mouse epididymal fat pad (Matrigel n=8, No Matrigel n=3 Fig. 4.3A). Both conditions 

resulted in mature airway-like structures (airway structures characterized in Fig. 4.5). 

The fat pad is highly vascularized similar to the omentum, but provides greater surface 

area than the omentum, which then can accommodate the scaffold. When scaffolds 

were harvested at 4 weeks, the transplanted foregut spheroids resembled in vitro HLOs 

(10). The retrieved tissue expressed the lung marker NKX2.1 and huMITO while 

possessing airway-like structures that consisted of cells expressing the basal cell 

marker P63 and ciliated marker FOXJ1, but club cell marker CC10 was not detected 

(Fig. 4.4A-B). The 4 week scaffold transplants caused the foregut spheroids to mature, 

but the transplants still resulted in tissue similar to fully grown in vitro HLOs.  

Since the lung epithelium was maintained and some maturation occurred after 4 

weeks, we predicted that extending the transplant time to 8 weeks would increase the 

maturation of the transplanted foregut spheroids. The tHLOs harvested after 8 weeks 

ranged in size from 0.5cm to 1.5cm and extended beyond the dimensions of the 

scaffold (Fig. 4.5A-B). The histology of the transplanted tissue showed airway-like 
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structures tightly surrounded by mesenchymal shaped cells. In addition, there were 

pockets of cartilage throughout the transplants (Fig. 4.5C). The airway-like epithelium 

expressed the lung marker NKX2.1 and huMiTO (Fig. 4.5D). 

In the adult native lung, airways are organized into a pseudostratified epithelium 

with basal and ciliated cells being the most prevalent cell types in the airway. Secretory 

cells, goblet and club cells, are scattered throughout mature airways (22). The tHLOs 

recapitulate a mature airway by possessing a tightly organized pseudostratified 

epithelium (outlined in red in Fig. 4.5 E-F) that consisted of cells lining the basal lamina 

that expressed basal cell markers P63 and CK5 (Fig. 4.5E, Fig. 4.6). The cells facing in 

towards the lumen of the tHLOs were multi-ciliated cells that expressed ACTTUB and 

the ciliated cell marker FOXJ1 (Fig. 4.5E, Fig. 4.7). The majority of the cells in the 

transplant expressed markers of basal cells and ciliated cells that were organized into a 

tube structure where the FOXJ1+ cells lined the lumen while the P63+cells lined the 

outside of the tube along the basal lamina similar to mature airways. The tHLOs 

possessed cells scattered throughout the airway structures that expressed club cell 

marker CC10 and goblet cell marker MUC5AC (Fig. 4.5F-G). Thus, the cellular ratios of 

basal, ciliated, goblet, and club cells in the tHLO reflected the cellular ratios in adult 

native lung airways. Foregut spheroids grown on the scaffold in vitro for 4 to 8 weeks 

had significantly less growth and although expressed lung marker NKX2.1 did not 

possess any airway structures (Fig. 4.8). This suggests that the scaffold alone does not 

induce maturation, but the combination of the scaffold and the in vivo environment 

allowed for rapid growth and maturation. 
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 Along with the epithelium, native adult airways are surrounded by smooth 

muscle, myofibroblasts, and cartilage. The tHLO airway structures were surrounded by 

cells expressing smooth muscle actin and PDGFRα positive (SMA+/PDGFRα+) and 

SMA+PDGFRα- (Fig. 4.9A), which are markers for myofibroblasts and smooth muscle 

respectively in mice (23-25). HLOs grown in vitro expressed the same combination of 

mesenchymal markers except the HLOs did not possess cartilage nor did the control 

8wk in vitro grown scaffolds (10). The tHLOs possess pockets of cartilage indicated by 

the cell morphology and the cells were positive for SafraninO, a stain specific for 

cartilage (Fig. 4.5C bottom panel, Fig. 4.9B). In adult airways vasculature and neurons 

line the airways surrounded by mesenchyme. Similarly, neuron marker TUJ1 positive 

cells and vasculature marker PECAM positive cells surrounded some of tHLO airway-

like structures (Fig. 4.10).  

 

Transplanted lung organoids can be cultured after transplantation 

 The airway-like structures were mechanically isolated from the transplant and 

cultured in a Matrigel droplet overlaid with media supplemented with FGF10 and Rho-

associated protein kinase (ROCK) inhibitor, Y27632. Previously, ROCK inhibition has 

been shown to increase epithelial proliferation in mouse and human cell lines and more 

specifically enhanced lung basal cell proliferation in vitro (26-28). These cultures had a 

mix of morphology including cyst-like structures, budding structures, and dense clumps 

(Fig. 4.11A). The cultures were analyzed after 5 days in culture by immunofluorescence. 

The majority of the cells expressed the lung marker NKX2.1 and basal cell marker P63 
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(Fig. 4.11B). These data suggest that high FGF10 and Y27632 cause the tHLO airway 

cultures to maintain basal cells, airway stem cell population (2, 29-33). This is in line 

with previous data that ROCK inhibition increases basal cell proliferation in vitro (26) 

and FGF10 maintains the basal cell population in the mouse trachea (34).  Moving 

forward, changes to the culture media will need to be implemented in order to still 

maintain the basal cell population, but in addition maintain other airway cells including 

ciliated and secretory cells. 

 

Discussion 

To date, groups have derived three-dimensional lung models derived from both 

primary cell lines and hPSCs that consist of adult epithelial airway cells.  However, 

these models do not generate a pseudostratified epithelium that reflects the cellular 

ratio of basal, ciliated, and secretory cells found in the native adult airways. In addition, 

previous three-dimensional models only consist of epithelial cells.  The tHLO airway-like 

structures are surrounded by lung mesenchyme, vasculature and neurons, in which all 

these tissues surround the native adult lung airways. 

  In order to utilize the derived mature airway-like structures, the tHLO airway 

cultures need to maintain the basal, ciliated, and secretory cell expression. Notch 

signaling has been shown to be necessary to maintain the balance of mature airway 

cells and basal cells (2, 33, 35-38). In derived human lung cultures, Notch inhibition by 

DAPT caused a significant increase in ciliated and neuroendocrine cells (4). In addition, 

FGF18 has been shown to be sufficient to generate proximal airways while inhibiting 
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distal epithelial identity in mice (39). By inhibiting Notch and/or the addition of FGF18 

may cause the tHLO airway structures to maintain the expression of mature airway 

cells. Similarly, air-liquid interface media (ALI), a manufactured media to culture primary 

bronchial epithelial cells ex vivo, has been applied to hPSC derived lung progenitors 

and caused the progenitors to express mature airway cell markers including ciliated and 

secretory cells (4, 40, 41).  

  After determining the ideal combination of growth factors and media to maintain 

the tHLO adult airway structures, the next step will be to apply these models to study 

airway diseases and acute injuries. Since the tHLOs form a lumen in culture, these 

lumens can  be microinjected with pathogens or toxins that have been shown to disrupt 

airway homeostasis, including human respiratory syncytial virus, SO2, naphthalene, and 

allergens (2, 42-46). This technique has been demonstrated by injecting pathogens into 

the intestinal organoid lumen (47). In addition to environmental factors, there are 

genetic disorders including cystic fibrosis that affect lung airway funtion. Since the 

tHLOs are derived from hPSCs, iPSC lines derived from patients with airway genetic 

disorders can be generated, and then the tHLOs containing the genetic mutations can 

be challenged with different toxins. Along the lines of diseases, inflammatory cytokines 

such as IL-13 and IL-17A  have been introduced into human airway models and have 

been shown to disrupt the cellular composition of the airways (48). Taken together, 

disease models, acute injuries, and cytokines can be introduced into tHLO cultures in 

order to study human airway maintenance and regeneration including the balance 

between ciliated and secretory cell populations, mucus secretion, and mesenchymal 

population changes. 
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 The in vivo environment of the mouse fat pad consists of several cell types and 

tissues that can affect the transplant chemically and physically. However, by breaking 

down the environment by tissue or cell type may lead us to the key cell/tissues that are 

necessary for airway maturation in vitro. For instance, the transplant was infiltrated with 

mouse vasculature suggesting that the vasculature plays a key part in the maturation 

process of the tHLO. Vasculature cells, endothelial cells, can be derived from hPSCs 

(49-51). Thus by deriving endothelial cells and foregut spheroids separately then 

combining the two derived tissues may cause airway maturation in vitro.  

 The tHLO is the first adult airway model to possess a pseudostratified tube of 

epithelial airway cells surrounded by lung mesenchyme. In addition, tHLO airways 

recapitulate the cellular ratio of the adult airway by the majority of the cells expressing 

basal cell markers, P63 and CK5, and ciliated cell markers, FOXJ1 and ACTTUB, with 

fewer cells expressing secretory cell markers, goblet cell marker MUC5AC and club cell 

marker CC10. These cells are surrounded by mesenchyme expressing myofibroblast 

and smooth muscle markers along with pockets of cartilage. The mature airway-like 

structures can be removed from the transplant and cultured in vitro. Overall, tHLOs 

provide a novel human airway model to study airway diseases and regeneration. 

 

Materials and Methods 

Maintenance of hESCs and generation of foregut spheroids and HLOs 

 Human ES line UM63-1 (NIH registry #0278) was obtained from the University of 

Michigan. Stem cells were maintained on Matrigel (BD Biosciences) in mTesR1 medium 
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(STEM CELL Technologies). HESCs were passaged as previously described (52). 

HLOs were generated as previously described (10).  

 

Kidney Capsule and Omentum Transplants 

D35 HLOs were placed under the kidney capsule of male NOD-scid IL2Rgnull 

(NSG) by forceps. The mice were sacrificed and transplant retrieved after 4 weeks. 

Foregut spheroids mixed with 100% Matrigel were pipetted underneath the mouse 

kidney capsule and transplants were retrieved after 6 weeks. D30 HLOs were sewn into 

the mouse omentum and transplants were retrieved after 12 weeks.  

 

Scaffolds Transplants 

 PLG scaffolds were washed in ddH2O for two 1 hour washes. The scaffold were 

then washed in 70% EtOH for 2 minutes and dried for 5 minutes. PLG scaffolds were 

filled with 15µL of cold Matrigel diluted in DMEM/F12 (dilution factor is lot dependent) 

and incubated at 37°C for 15 minutes. This step was repeated twice. Lung spheroids 

were mixed with 100% Matrigel and pipetted into the scaffold. The seeded scaffolds 

were incubated for 15 minutes at 37°C and then overlaid with HLO media (500ng/mL 

FGF10 and 1% FBS in basal foregut media described in (10)). Scaffolds were cultured 

for 5 to 7 days in vitro with media being changed every other day. Scaffolds cultured 

with spheroids were removed from culture and were then immersed in Matrigel 

supplemented with 500ng/mL FGF10, allowed to solidify for 5 minutes or no Matrigel. 
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The epididymal fat pads of male NOD-scid IL2Rgnull (NSG) were exposed using a 

lower midline incision. Matrigel coated scaffolds were then placed along the epididymal 

blood vessels and covered with epididymal fat. The incision was closed in 2-layers 

using absorbable suture. Mice were sacrificed 4 and 8 weeks post-transplant. 

 

Immunohistochemistry 

 Immunostaining was carried out as previously described (19). Antibody 

information and dilutions can be found in Table 1. All images were taken on a Nikon A1 

confocal microscope or an Olympus IX71 epifluorescent microscope.  

 

Experimental Replicates 

 All immunofluorescence (IF) were done on at least three (n=3) independent 

biological samples per experiment except for foregut spheroids injected into the kidney 

capsule. Only 1 out 3 transplanted foregut spheroids under the kidney capsule worked; 

therefore only 1 sample was used for the IF analysis.  
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Figure 4.1 Various in vivo environments did not maintain lung identify. (A) D35 

HLOs were placed under a mouse kidney capsule and retrieved after 4 weeks. (B) 

Wholemount of the retrieved tissue within the kidney capsule. The white bumps on top 

of the kidney was the transplanted tissue. (C) Tissue retrieved from the kidney capsule 

did not express lung marker NKX2.1 (green), but expressed human mitochondria 

marker (huMITO, white) n=6. (D) Foregut spheroids were placed under the kidney 

capsule and retrieved after 6 weeks. (E) The foregut spheroids grew out from the kidney 

capsule and consisted of transparent and dense white tissue. (F) Tissue retrieved from 

the kidney capsule did not express NKX2.1 (green), but expressed huMITO (white) n=1. 

(G) D65 HLOs were sewn into the omentum, fat tissue surrounding the stomach and 

proximal intestine. The tissue was retrieved after 12 weeks. (H) The white outgrowth is 

the transplant after 12 weeks. (I) The majority of the tissue did not express NKX2.1 

(green), but all the retrieved tissue expressed huMITO n=13 Scale bars in B,E,H 

represent 250µm and scale bars in C,F,I represent 50µm. 
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Figure 4.2 Only 2 out of 13 HLO omentum transplants maintained lung identity. 

(A) 2 out of 13 HLO omentum transplants expressed lung marker NKX2.1 (green) and 

all the transplant tissue expressed human mitochondria marker (huMITO, white). (B) 2 

out 13 transplants possessed airway-like structures that expressed basal cell marker 

P63 (green) and ciliated cell marker FOXJ1 (white), which were similar to HLOs grown 

in vitro for 50 days (Chapter 3). Scale bars represent in A-B 50µm. 
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Figure 4.3 Foregut spheroids grown on a scaffold and transplanted into the 

mouse fatpad expressed lung markers when harvested at 4 weeks. (A) PLG 

scaffolds were coated with a mix of Matrigel and DMEM/F12. Foregut spheroids were 

then seeded onto the scaffold in 100% Matrigel. The scaffolds were cultured for 5 to 7 

days in vitro in media supplemented with FGF10. The scaffolds were retrieved after 4 

weeks. (B) Whole mount image of foregut spheroids seeded on the scaffold and 

cultured for 5 days in vitro. (C) Tissue retrieved after 4 weeks expressed lung marker 

NKX2.1 (green) and human maker, huMITO (white) within the airway-like structures 

4week: n=4. Scale bars in B represent 500µm and in C represent 50µm.  
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Figure 4.4 Transplanted scaffolds retrieved after 4 weeks possessed airway-like 

structures similar to HLOs grown in vitro. (A) Foregut spheroids transplanted on a 

scaffold into the mouse fat pad and retrieved after 4 weeks had airway-like structures 

that expressed basal cell marker P63 (green), but did not express club cell marker 

CC10 (white). (B) Airway-like structures also expressed ciliated cell marker FOXJ1 

(white) along with P63 (green). β-Catenin (βCAT, red) outlines the epithelium n=4. 

Scale bars represent in A-B 50µm. 
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Figure 4.5 Transplanted foregut spheroids harvested at 8 weeks outgrew the 

scaffold and possessed mature airway-like structures. (A) PLG scaffold was coated 

with Matrigel diluted in DMEM/F12 then foregut spheroids were seeded onto the 
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scaffold in 100% Matrigel. The scaffolds were cultured for 5 to 7 days in vitro in media 

supplemented with FGF10. The scaffold were then placed in the mouse fat pad and 

retrieved after 8 weeks. (B) Whole mount image of transplanted human lung organoids 

(tHLOs). The tHLOs ranged from 0.5cm to 1.5cm length. (C) H&E of tHLOs showed 

airway like structures (top panel) and clusters of cartilage (bottom panel). (D) Tissue 

retrieved after 8 weeks expressed lung marker NKX2.1 (green) and human maker, 

huMITO (white) within the airway-like structures (E-F) 8 week transplants possessed 

airway structures organized into a pseudostratified epithelium outlined by βCAT (red). 

(E) The airway-like structures expressed basal cell marker P63 (green) that lined the 

basal lamina of the epithelium outlined by β-Cat (red). The majority of the cells adjacent 

to the cells lining the basal lamina were multiciliated cells positive for acetylated tubulin 

with the cilia facing in toward the lumen area (ACTTUB, white). (F) The airway-like 

structures lined with basal cell marker P63 (green) also expressed club cell marker 

CC10 (white), in which the high mag image on the right shows the punctate staining of 

the secreted protein stain. (G) Transplanted organoids expressed goblet cell marker 

MUC5AC (white) that was secreted in toward the lumen area and lined with P63+cells 

(green) n=12. 7 out of 8 tHLOs possessed airway structures. Scale bars in C represent 

50µm, in D-G low mag scale bars represent 50µm and E-G high mag represent 10µm. 
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Figure 4.6 Transplanted organoids expressed basal cell marker Cytokeratin5. 

Airway-like structures possessed cells lining the basal lamina that expressed basal cell 

marker Cytokeratin5 (CK5, green). Scale bars represent 50µm in the low mag image 

and 10µm in the high mag image. 
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Figure 4.7 tHLOs possessed airway-like structures that expressed airway markers 

within a tube structure. 3D rendering of z-stack images revealed tube structures that 

were outlined by basal cell marker P63 (green) and within the tube cells expressed 

ciliated cell marker FOXJ1 (white). Bottom panel is the z-stack images stacked looking 

through the tube where the P63 (green) outlines the tube and the FOXJ1 (white) is 

within the tube. The lumen (L) is not visible because the cells are stacked one on top of 

each other. Scale bars represent 100µm. 
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Figure 4.8 Foregut spheroids grown on PLG scaffolds in vitro maintained the lung 

identity but did generate airway-like structures. (A) Whole mount image of scaffold 

grown for 8 weeks in vitro. Organoid tissue stayed within the scaffold. (B) The tissue 

within the scaffold expressed lung marker NKX2.1 (green) and huMITO (white), but did 

not form airway-like structures. Scale bars represent 500µm in A and 50µm in B. 
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Figure 4.9 Transplanted organoids consisted of different mesenchymal cells. (A) 

Cells surrounding the airway-like structures expressed myofibroblast markers PDGFRα 

(green) SMA (white) and expressed smooth muscle markers PDGFRα-/SMA+ (white 

only). (B) Cartilage stain SafraninO showed clusters of cartilage in the 8wk tHLO (right 

panel) while there was no cartilage in the scaffold grown in vitro for 8 weeks (left panel). 

Scale bars in A represent 50µm lower mag image (left panel) 25µm in bottom panel in 

lower mag image (right panel). Scale bar in B represent 100µm. 
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Figure 4.10 tHLO airway-like structures were surrounded by cells expressing 

neuron markers and vasculature markers. (A-B) Some of the cells surrounding the 

airway-like structures outlined by βCAT (red) expressed (A) neuron marker TUJ1 (white) 

and (B) vasculature marker PECAM (white). Scale bars represent 50µm.  
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Figure 4.11 Transplanted tissue can be cultured in vitro. (A) Whole mount image of 

transplanted airway cultures from day 0 (left panel) and after 5 days in culture (right 

panel). After 5 days the cultures formed cyst structures (black arrowhead), dense 
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cultures (blue arrowhead), and budded structures (yellow arrowhead). (B) 5 day tHLO 

cultures expressed lung marker NKX2.1 (green) and huMITO (white). (C)The majority of 

the cells expressed basal cell marker P63 (green) in 5 day tHLO cultures. Scale bars in 

A represent 250µm and in B-C represent 50µm. 
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Table 4.1 List of primary and secondary antibodies 
 
Primary Antibody Source Catalog # Dilution Clone 

Goat anti-β-Catenin 
(βCAT) 

Santa Cruz 
Biotechnology 

sc-1496 1:200  C-18 

Goat anti-CC10 
Santa Cruz 
Biotechnology 

sc-9770 1:200 C-20 

Goat anti-SOX9 R&D Systems AF3075 1:500 polyclonal 

Goat anti-VIMENTIN 
(VIM) 

Santa Cruz 
Biotechnology 

sc-7558 1:100 S-20 

Mouse anti-Acetylated 
Tubulin (ACTTUB) 

Sigma-Aldrich T7451 1:1000 6-11B-1 

Mouse anti-E-Cadherin 
(ECAD) 

BD Transduction 
Laboratories  

610181 1:500 
36/E-
Cadherin 

Mouse anti-FOXJ1 eBioscience 14-9965-82 1:500 2A5 

Mouse anti- Human 
Mitochondria (huMITO) 

Millipore MAB1273 1:500 113-1 

Rabbit anti-
Cytokeratin5 (CK5) 

Abcam ab53121 1:500 polyclonal 

Rabbit anti-NKX2.1 Abcam ab76013 1:200 EP1584Y 

Rabbit anti-P63 
Santa Cruz 
Biotechnology 

sc-8344 1:200 H-129 

Rabbit anti-PDGFRα 
Santa Cruz 
Biotechnology 

sc-338 1:100 C-20 

Rabbit anti-SOX2  
Seven Hills 
Bioreagents 

WRAB-SOX2 1:500 polyclonal 

Biotin-Mouse anti 
MUC5AC* 

Abcam ab79082 1:100 MonoClonal 

Cy3- Mouse anti Actin-
alpha smooth muscle 
(SMA)* 

Sigma C6198 1:400 MonoClonal 

Secondary Antibody Source Catalog # Dilution  

Donkey anti-goat 488 Jackson Immuno 705-545-147 1:500  

Donkey anti-goat 647 Jackson Immuno 705-605-147 1:500  

Donkey anti-goat Cy3 Jackson Immuno 705-165-147 1:500  

Donkey anti-mouse 488 Jackson Immuno 715-545-150 1:500  

Donkey anti-mouse 647 Jackson Immuno 415-605-350 1:500  

Donkey anti-mouse 
Cy3 

Jackson Immuno 715-165-150 1:500  

Donkey anti-rabbit 488 Jackson Immuno 711-545-152 1:500  

Donkey anti-rabbit 647 Jackson Immuno 711-605-152 1:500  

Donkey anti-rabbit Cy3 Jackson Immuno 711-165-102 1:500  

Donkey anti-goat 488 Jackson Immuno 705-545-147 1:500  

Donkey anti-goat 647 Jackson Immuno 705-605-147 1:500  

Donkey anti-goat Cy3 Jackson Immuno 705-165-147 1:500  

Donkey anti-mouse 488 Jackson Immuno 715-545-150 1:500  
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Donkey anti-mouse 647 Jackson Immuno 415-605-350 1:500  

Donkey anti-mouse 
Cy3 

Jackson Immuno 715-165-150 1:500  

Donkey anti-rabbit 488 Jackson Immuno 711-545-152 1:500  

Donkey anti-rabbit 647 Jackson Immuno 711-605-152 1:500  

Donkey anti-rabbit Cy3 Jackson Immuno 711-165-102 1:500  

 

*Secondary antibody conjugated to the primary antibody 
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CHAPTER 5 

DISCUSSION 

 

Contribution of work 

The work presented in Chapter 2 of this dissertation assigns a novel functional 

role to the transcription factor Sox9 during lung development, and indicates that it is an 

important factor for proper branching morphogenesis.  Previously, Sox9 had been 

shown to be expressed in the actively branching epithelium during development, but 

was concluded to have no role in branching morphogenesis (1). By using a ShhCre 

driver to delete Sox9 in the lung epithelium during lung induction, we have 

demonstrated that Sox9 is necessary for proper branching morphogenesis. With further 

characterization, we illustrated that Sox9 regulates extracellular matrix (ECM) protein 

deposition of Col2a1 and laminin. This relationship between distal progenitor marker 

Sox9 and epithelial ECM deposition is a novel connection and will further our 

understanding of the interactions of the branching epithelium and the ECM. These 

results shed new light on the importance of the physical environment surrounding the 

bud tip, and highlight an important transcriptional role for Sox9 in regulating this physical 

environment.  

Chapter 3 and 4 of this dissertation described methods to generate immature 

human lung organoids from pluripotent stem cells, and further showed that 

transplantation of these organoids into mice resulted in structural and cellular
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maturation. These studies made several major contributions to the field. Our studies 

were the first to show that hPSCs could be used to generate three-dimensional lung 

tissue with appropriate architecture and cellular composition.  Previous studies have 

demonstrated differentiation of lung tissue from hPSC in 2D culture conditions (2-8). 

The three-dimensional cultures allowed for relevant structures to form including lung 

airway-like structures. Having such relevant structures is necessary in order to study 

complex cell-cell interactions and tissue remodeling during a disease or injured context. 

For instance, the HLO model has airway-like structures that are lined with cells 

expressing basal cell markers that are adjacent to multi-ciliated cells. The basal cell is 

the adult stem cell of the airway and can give rise to ciliated cells upon injury (9-14). 

This cellular organization allows for complex signaling between basal and ciliated cells 

thus recapitulating human airway homeostasis.  

In addition, the HLOs possess both lung epithelium and mesenchyme, whereas 

all other hPSC-derived models only possess lung epithelial cells (2-8, 15-17). Having 

both cellular compartments allows for cross talk between the epithelium and 

mesenchyme as it does in the native lung during development and adult homeostasis. 

In addition, lung diseases can originate in the lung epithelium, mesenchyme, or both. 

Thus, having both epithelium and mesenchyme will allow us to better simulate complex 

tissue crosstalk that may be necessary for understanding multi-faceted diseases such 

as pulmonary fibrosis.  For example, pulmonary fibrosis is thought to originate from 

epithelial defects, which subsequently lead to activation and remodeling of 

mesenchymal cells that produces dense tissue in the distal airway spaces (18-21).  

Currently, HLOs are the only human lung model that contains both epithelial and 
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mesenchymal tissue, which are both important contributors to human pulmonary 

disease and will allow for more accurate recapitulation of complex diseases in vitro. 

Taken together the HLOs possess multiple lung tissues (epithelium and mesenchyme), 

diverse cell types, and structures similar to the native lung that result in an ideal model 

study development, homeostasis and diseases.  

 

Future Directions 

In chapter 2, our studies in the developing mouse lung suggest that Sox9 is a 

crucial regulator of epithelial movement in the lung epithelium by directly and indirectly 

affecting the ECM and cytoskeleton. Consistent with this idea, Sox9 regulates cell 

movement during other developmental and disease contexts. For example, high levels 

of Sox9 are associated with invasiveness and lower survival in several cancers, 

including non-small cell lung cancer (22-28). During development Sox9 is necessary for 

neural crest cell migration (29). Lastly, Sox9 directly regulates various ECM genes in 

chondrocytes including Col2a1 (30). Therefore, future studies could explore the 

mechanisms by which Sox9 regulates the ECM and cytoskeleton in the developing lung 

in order to coordinate cellular movement at the branch tips.  

During branching morphogenesis the physical environment plays an important 

role regulating the branching pattern (31-33). We have shown at the different stages of 

a branch bifurcation, there is a thicker deposition of ECM protein laminin where the cleft 

of the bifurcation will form and a thinner layer of laminin where the buds will grow out 

from and become two new branches (33). This pattern is consistent with ECM protein 

fibronectin, which is distributed in a similar manner (34). More recently, the degradation 
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of the ECM during branching morphogenesis was observed in real time through live 

imaging of ECM proteins collagenIV, laminin, and perlecan. This revealed that the ECM 

forms a mesh-like network around the epithelial bud tip to allow parts of the basal 

surface of the epithelial cells to poke through the ECM as the entire epithelial bud 

branches (32). Lastly, isolated mouse epithelial lung buds cultured in different matrix 

stiffness‟s caused different number of branch tips to form (35). Therefore, the ECM 

composition affects branching, but how the ECM is regulated is unknown. Our results 

showed that Sox9 regulates the ECM, either directly or indirectly, therefore; using 

genetic mouse models (gain- and loss-of-function) will allow us to define a mechanism 

for how Sox9 regulates the ECM, which will then further our understanding of how the 

ECM regulates branching morphogenesis.  

In order to define the mechanism of Sox9 during branching morphogenesis, a 

careful study of migration and ECM at the branching tips needs to be conducted. By 

using explant cultures as demonstrated in Chapter 2, epithelial migration during 

branching morphogenesis can be recorded and compared in both Sox9LOF and Sox9GOF 

E12.5 mouse lung. Similar to Harunaga et al. 2014, the mesh network of ECM proteins 

laminin and Col2a1 can be compared between Sox9LOF and Sox9GOF lungs in order to 

test if the level of Sox9 expression affects the ECM network. Lastly, a scratch assay on 

epithelial bud cultures in control and Sox9LOF distal lung epithelium demonstrated in 

Chapter 2, can be used to measure changes in epithelial cell migration when the cells 

are grown on different ECM protein combinations. This assay will first test if the ECM 

composition affects overall in vitro lung epithelial cell migration and then more 

specifically if the delayed Sox9LOF epithelial cell migration can be rescued with different 
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ECM combinations. There are still many unanswered questions regarding the role and 

regulation of ECM and cytoskeleton during branching morphogenesis. For example, 

does epithelial cell cytoskeleton disruption lead to aberrant ECM protein deposition, or 

do these defects occur independently of one another? Does Sox9 directly or indirectly 

regulate cytoskeletal proteins and ECM proteins? Is the cytoskeletal defect in Sox9LOF 

epithelium secondary to improper ECM protein deposition?  

There are also several unanswered questions and outstanding problems in the 

field of pluripotent stem cell differentiation that remain. For example, in Chapters 3 and 

4, I demonstrated that 3-dimensional lung organoid tissue can be derived from hPSCs, 

however; there are currently no in vitro human lung models to study branching 

morphogenesis. More specifically, the HLO model begins as a lung progenitor 

population expressing the lung marker NKX2.1 and then directly differentiates into 

pockets of distal epithelium and proximal airway-like structures, seemingly without going 

through a stage of branching morphogenesis.  Thus, HLOs and tHLOs lack the 

complex, arborized tree-like network of the adult lung, and tHLOs appear only to 

possess airway-like structures. Therefore, a major direction of future research will be to 

determine the appropriate chemical and physical environment that will allow in vitro 

development of HLOs to undergo branching morphogenesis and establish proximal-

distal axis, ultimately giving rise to the adult lung structures.  

Branching morphogenesis is a dynamic process involving both directional 

chemical and physical cues. The chemical environment consist of signaling factors that 

are important for both branch growth and for establishing the proximal-distal axis 

including. Several pathways are known to play very important roles during this process, 
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including Wnts, BMP4, FGFs, and SHH (36-38). Currently we grow the HLOs in media 

supplemented with high FGF10. FGF10 is known to promote epithelial growth, and 

during late development FGF10 is necessary to maintain the basal cell population in the 

mouse trachea (39-41). Therefore, high FGF10 in the HLO cultures maintains epithelial 

growth and may be inducing and maintaining cells that express basal cell markers, but 

this growth factor does not appear to induce branching morphogenesis in vitro. Recently 

it has been shown for in vitro mouse bud cultures with no mesenchyme present that 

FGF1 and FGF9 cause extensive epithelial budding (42). Therefore, it is possible that 

other FGFs besides FGF10 may be important for branching. A simple experiment to 

perform would be to supplement the media with FGF9 and FGF1 in order to induce 

budding as seen in the mouse bud cultures. Such a finding would also be very 

interesting, as it would provide a system to understand how a tissue responds differently 

to signaling ligands from a single family in order to give diverse biological outcomes.  As 

mentioned earlier, the ECM also plays a significant role in epithelial movement during 

branching (31-33). Therefore, the matrix surrounding the HLOs could affect epithelial 

movement, and their ability or inability to branch in vitro. To date, we have grown HLOs 

in Matrigel, which is enriched in laminin (43). The native lung ECM consists of many 

proteins including laminin, collagen, perlecan, fibronectin, and elastin (35, 44). 

Therefore, by changing the matrix composition to represent the native lung ECM, we 

may predict that the change in environment would induce HLOs to form branching 

structures. Lastly, the surrounding vasculature and the invading neural crest cells, which 

give rise to neurons, are both important for branching morphogenesis (45-52). It is 

possible that HLOs do not branch because they are missing these cellular components. 
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By deriving endothelial cells and neural crest cells from hPSCs and combining these 

cells with the foregut spheroids, which consist of lung progenitors and mesenchyme, it 

is possible that HLOs will form budding structures (53-58).  This would be an interesting 

result, and would lead to further exploration on understanding the mechanistic basis by 

which tissue-tissue interactions or signaling between different tissues could promote 

branching morphogenesis.  

As branching occurs, a proximal-distal axis is established in which the proximal 

epithelium will give rise to the conducting airways and the distal epithelium will give rise 

to the alveoli where gas exchange occurs. Although the HLO model does not undergo 

branching morphogenesis, the HLOs have clusters of proximal and distal cell types. 

However, we do not know the exact factors or the overall environment that induces a 

proximal cell instead of a distal cell. In order to generate specific structures of the lung, 

proximal and distal identities need to be established. During branching morphogenesis, 

the proximal epithelium expresses Sox2 while the distal epithelium expresses 

Sox9/Id2/Nmyc (1, 33, 59, 60). Wnt2/2b, BMP4, and FGF10 are expressed at high 

levels in the distal mesenchyme and Wnt7a from the distal epithelium signal to the distal 

epithelium establish distal identity in mouse lungs (39-41, 61-65). In addition, loss of 

Wnt signaling in mice causes an expansion of the proximal domain during lung 

development (65, 66). In order to screen the different signaling factors, mouse 

embryonic epithelial bud tips can be cultured in different combinations of Wnt, BMP, and 

FGFs to see if the buds maintain Sox9 expression or turn off Sox9 and express Sox2. 

This screen will then show the essential growth factors to maintain distal or proximal 

identity. The top candidates of growth factor combinations from the mouse bud screen 
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could then be applied to the HLO cultures, which may create an environment to develop 

either proximal conducting airways or distal alveoli accordingly. However, many 

questions remain with regards to deriving airways and/or alveoli including: How do you 

generate alveolar structures without the support of a scaffold? How can we set up a 

chemical gradient to establish a proximal-distal axis in vitro? If we can form budding 

structures that resemble branches, will the budding structures eventually become 

airway or alveoli and can we induce one over the other by changing the physical and 

chemical environment? 

Currently, both HLOs and tHLOs can be applied to model diseases affecting the 

airway. HLOs and tHLOs possess lumens similar to the intestinal organoids. The 

intestinal organoids are able to be injected with various substrates including pathogens 

and chemicals (67). We can apply this approach to HLOs and tHLOs and microinject 

pathogens that are known to infect the airway epithelium such as human respiratory 

syncytial virus infection (68), or microinject chemicals that induce injury including SO2, 

naphthalene, and allergens (69-72). We can then model human airway epithelial 

reaction and regeneration. More specifically, HLOs and tHLOs possess cells expressing 

basal cell markers, which are the adult stem cell of the airways (9-14); thus we can 

study basal cell maintenance and the balance of the secretory and ciliated cell 

populations. Both organoid systems, HLO and tHLO provide a developmental and adult 

lung context respectively to study airway disease and regeneration.  

Taken together, the work presented in this dissertation has utilized both animal 

models and human pluripotent stem cells to generate three-dimensional human lung 

tissue models in order to better understand how the lung develops. In the future, it will 
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be interesting to see how these models can be leveraged to further our understanding 

of human development and adult lung diseases.  
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