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Abstract 

 A remarkable feature of the central nervous system is the highly choreographed 

wiring of neuronal circuits, which provides the structural and functional framework for 

cognitive abilities in humans.  One critical parameter in this process is the elaboration of 

axonal and dendritic arbors as their size dictates the number of synaptic inputs a neuron 

can form. Such exquisite connectivity relies on the morphological complexity of the 

individual neuron. In neurons, cytoskeletal regulators dictate the extent of axonal and 

dendritic arborization. At the synapse, molecular mechanisms alter cytoskeletal 

dynamics in response to extracellular cues, thus linking neuronal morphological 

plasticity to synaptic activity.  

 A central goal in Neuroscience is to elucidate the molecular mechanisms that 

regulate intracellular cytoskeletal rearrangement, which mediates morphological 

transformations in dendritic spines. Importantly, aberrant dendritic spine morphogenesis 

and synaptic function are unifying features in neurodevelopmental, neuropsychiatric and 

neurodegenerative diseases. Defects in EphR/ephrin signaling and Rac1 function at the 

synapse are implicated in the etiology of neurological disorders that exhibit dendritic 

spine defects.  

 My dissertation contains three independent studies that focus on the molecular 

players that link structural and functional mechanisms at the synapse. First, I identified 

that the Rac-GAP, α2-chimaerin, is a key regulator of convergent signaling pathways 



 xv 

required for normal dendritic spine morphogenesis and synaptic function. Second, I 

demonstrate that the loss of α2-chimaerin alters proliferation in the adult dentate gyrus 

that may correlate to a reduction in basal anxiety in rodents. Third, I characterized an 

excitatory ionotropic GABA receptor in the nematode Caenorhabditis elegans, and 

determined it plays a role in extrasynaptic spillover transmission. Together, these data 

shed new insight into the molecular mechanisms that regulate dendritic spine 

morphogenesis and synaptic function, and demonstrate that α2-chimaerin is poised at 

the nexus of critical signaling pathways to transduce extracellular synaptic signaling to 

intracellular regulation of dendritic spines and synapses.  
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Chapter 1  

Introduction 

The functional unit of neuronal communication 
 
 Neurons are the fundamental computational unit of the brain, and their precise 

connectivity underlies neurological control over diverse behaviors and functions 

(Douglas and Martin, 2004; Dumont and Robertson, 1986). Neuronal connectivity and 

information processing is dependent on proper signaling at subcellular sites called 

synapses, which are highly specialized structures where electrical and/or chemical 

signals are communicated between cells. In the human brain, a cubic millimeter of 

cortex contains approximately 26,000 neurons forming 900 billion synaptic connections 

(Alonso-Nanclares et al., 2008). Astoundingly, the human brain has ~125 trillion 

synapses (Micheva et al., 2010; Risi et al., 2014). Cortical function, similar to other 

regions of the central nervous system (CNS), relies on proper synapse formation and 

accurate wiring of neuronal circuits during development, which are critical for higher 

cognitive function (Goodman and Shatz, 1993).  

 An important parameter for precise circuit assembly is outgrowth and arborization 

of specialized neuronal processes called dendrites and axons (Goodman and Tessier-

Lavigne, 1997; Katz and Shatz, 1996). In fact, the number of synaptic inputs a cell 

makes and receives is determined by the neuronal arbor size and complexity (Goodman 
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and Shatz, 1993). Thus, the regulation of axonal and dendritic morphology is critically 

important for the appropriate formation and function of neuronal circuits. 

Principles of axonal development  
 

Axonal arborization is a unique process in that the immature axon must extend 

and migrate, often up to several feet in length, before it elaborates to form a synapse 

with a target cell (Dickson, 2002). Axon migration relies on extracellular environmental 

cues that act like “traffic signs” to guide axonal outgrowth to the target cell (Dickson, 

2002; Guan and Rao, 2003). The extracellular environment is complex because it 

contains both attractive and repulsive guidance cues causing axonal outgrowth to be a 

dynamic process of progressive and regressive events (Huber et al., 2003; Stoeckli and 

Landmesser, 1998). Processing of the extracellular environment takes place at the 

axonal growth cone, a highly motile and specialized structure, which is densely 

populated by guidance receptors that bind to guidance cues present in the extracellular 

environment (Bashaw and Klein, 2010; Dickson, 2002). Through surface receptor 

interactions with extracellular signals, the axonal growth cone computationally decodes 

the extracellular environment, and activates concerted intracellular pathways that steer 

axonal outgrowth and retraction (Figure 1.1B).  

For example, the corticospinal tract (CST) is a group of cortical motor axons 

whose cell bodies reside in Layer V of the cortex and extend axons to the spinal cord to 

innervate ventral motor neurons, thereby linking higher brain processing to voluntary 

skilled-movement (Figure 1.1A) (Canty and Murphy, 2008; Donatelle, 1977). Decades of 

elegant research have demonstrated that attractive and repulsive extracellular signals 
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are utilized to appropriately guide the CST axonal trajectory (Canty and Murphy, 2008; 

Porter and Lemon, 1993). 

 

 Initially, the chemoattractant Netrin guides CST motor axons through the internal 

capsule into deep brain structures (Finger et al., 2002). In the lower medulla, the L1 cell 

adhesion molecule (L1-CAM) causes the majority of CST migrating axons to cross over 

to the contralateral side of the spinal cord (Cohen et al., 1998; Dobson et al., 2001; 

Medulla

Motor cortex
Layer V

Internal 
capsule

crossover at the 
lower medulla

skeletal
muscle

guidance cues
Netrin

L1-CAM
Ephrin

motor neuron

midline

Corticospinal tract

A.

B.growth cone

Figure 1.1 Overview of the corticospinal tract 
 
(A) The CST is a pathway that connects cortical motor processing to voluntary skilled-movement. The 
tract originates from cortical motor axons that migrate into the spinal cord where they innervate 
interneurons or directly synapse on motor neurons that target skeletal muscle. During development, 
key guidance signals, Netrin, L1-CAM and Ephrin, guide the developing CST axon to migrate through 
the internal capsule, decussate at the lower medulla and maintain spinal cord symmetry, respectively. 
These signaling ligands interact with guidance receptors concentrated on the axonal growth cone. 
 
(B) The magnified image illustrates an axonal growth cone from a developing motor neuron. At the 
growth cone, different guidance receptors interact with ligands in the extracellular environment. The 
growth cone decodes the complex extracellular environment, through the combination of guidance 
receptor signaling and intracellular processing, and steers the migrating axon to its appropriate target. 
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Jakeman et al., 2006).  As CST axons descend the contralateral cord, repulsive ephrin 

signaling prevents the re-crossing of axons across the midline (Dottori et al., 1998; Kao 

et al.; Kullander et al., 2001). The CST axons migrate until they are signaled to exit the 

CST starting at the cervical segment and ending at the lower sacral segments (Porter 

and Lemon, 1993). As the CST axons exit they enter the spinal cord gray matter; here, 

the axon arborizes forming synapses with interneurons or anterior horn motor neurons 

that innervate skeletal muscle (Nudo and Masterton, 1990). Overall, the CST is an 

example of the elegant coordination that exists between guidance cues and growth 

cone receptors to precisely guide axonal trajectories and arborization to form functional 

neuronal circuits. 

 Despite these seminal discoveries characterizing axon guidance molecules in 

vertebrate models, only a handful of human neurological disorders have been identified 

as direct results of primary errors in axon arborization and guidance (Engle, 2010; 

Nugent et al., 2012; Yüksel et al., 2010). A contributing factor is that guidance 

molecules play a developmental role in cardiogenesis, angiogenesis and bone 

formation, and genetic mutations in these systems often lead to embryonic lethality 

before potential neurological deficits manifest and functional errors can be characterized. 

(Carmeliet and Tessier-Lavigne, 2005; Serini and Bussolino, 2004).  

Principles of dendritic development 
 
           The proper formation and long-term maintenance of dendrites are crucial for 

neuronal connectivity and function (Bourne and Harris, 2008). During early development, 

dendrites and dendritic spines undergo constant structural rearrangement to facilitate 

proper wiring in response to synaptic activity (Ethell and Pasquale, 2005; McAllister, 
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2000). Later, cytoskeletal dynamics become dissociable in that a stable dendritic 

receptive field can be maintained, yet dendritic spines retain highly plastic properties in 

response to individual synaptic inputs (Ethell and Pasquale, 2005; Koleske, 2013). 

Therefore, the precise spatiotemporal regulation of molecules that control dendritic 

cytoskeletal plasticity is important for the proper formation of dendritic arbors and 

neuronal function. 

Dendritic arborization 
 
 The dendritic cytoskeleton is composed of microtubule bundles that are bridged 

by microtubule-associated proteins (MAPs) (Caceres et al., 1983). Microtubules run 

parallel to the dendritic shaft to provide structural integrity for long-term maintenance of 

dendritic arbors (Figure 1.2) (Gray, 1959). Initial contact with immature axonal terminals 

can stabilize a dendrite and activate cytoskeletal mechanisms that induce the formation 

of secondary and tertiary dendritic branches (Goodman and Shatz, 1993). Sustained 

synaptic activity can stabilize these higher order dendritic branches; likewise, the 

loss/reduction of activity can destabilize the segment simplifying dendritic complexity 

(Carlisle and Kennedy, 2005; Goodman and Shatz, 1993). As a result of constant 

outgrowth and retraction, the available area that afferent fibers can sample is 

determined by the dendritic branch pattern and total length of the dendritic field 

(Goodman and Shatz, 1993). Following the formation of the dendritic arbor, cytoskeletal 

plasticity becomes largely refined to dendritic spines allowing the neuron to retain long-

term integrity of dendritic arbors while fine tuning individual connections (Carlisle and 

Kennedy, 2005).  
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Dendritic spines 
 
 Dendritic spines are fine neuronal processes that spatially restrict activity-

dependent changes in one spine, while leaving neighboring protrusions unmodified 

(Yuste, 2010). During the development of neuronal connectivity, spines often arise from 

dendritic filopodia, which are immature protrusions that densely populate the developing 

dendrite (Fiala et al., 1998). Upon spinogenesis and synaptogenesis, postsynaptic 

mechanisms initiated by adhesion/scaffolding proteins at the filopodial-tip, stabilize and 

enlarge the structure, promoting its conversion to a dendritic spine (Maletic-Savatic et 

al., 1999; Niell et al., 2004). The dynamic cycling of proteins at the developing 

postsynaptic surface is coupled to rapid changes in dendritic spine morphology, which 

underlie the functional/structural cohesiveness of neuronal connectivity. For example, 

blockade of synaptic receptors can increase spine density and alter spine morphology 

(Segal and Andersen, 2000). These plastic properties of dendritic spines are considered 

compensatory mechanisms that maintain normal synaptic transmission. Importantly, 

dysregulation of dendritic spine density, morphology and function are known to be 

associated with cognitive pathologies and neurodevelopmental delays (Fiala et al., 

2002; Penzes et al., 2011).  

 From a molecular standpoint, the dendritic spine cytoskeleton is composed 

mostly of filamentous (F)-actin (Figure1.2A-B) (Carlisle and Kennedy, 2005; Matus, 

2000; Zhang and Benson, 2001).  In response to cell-surface signaling, F-actin can 

polymerize forming branched actin filaments that enlarge the spine head to facilitate 

incorporation of additional synaptic receptors (Korobova and Svitkina, 2010; Zhang and 

Benson, 2001). The dendritic spine head is connected to the dendritic shaft by a thin 
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and narrow neck. The spine neck consists mostly of linear F-actin that can elongate or 

shorten in response to surface signaling (Carlisle and Kennedy, 2005; Matus, 2000). 

 This form of structural plasticity can regulate Ca2+ diffusion kinetics between the 

dendritic spine head and shaft; thereby affecting Ca2+-mediated pathway activation 

along a single dendrite (Bloodgood and Sabatini, 2005; Noguchi et al., 2005). The 

precise regulation of molecules that control the dendritic spine cytoskeleton can have a 

profound influence on the formation and maintenance of neural circuits and brain 

function, including learning and memory (Carlisle and Kennedy, 2005; Chen et al., 

2007).   

Figure 1.2 The dendritic cytoskeleton 
 
(A) The micrographs illustrate an immunostained dendritic segment from a mouse hippocampal 
neuron at 18 days in vitro (DIV). F-actin is labeled with fluorescently tagged phallotoxin (PHDN1) 
(red) and is presented as small dense clusters, which are localized to dendritic spines. The MAP2 
antibody (magenta) marks microtubules, which are localized in the dendritic shaft. The merged 
image demonstrates regional-specificity of microtubules and F-actin in dendrites and dendritic 
spines, respectively; scale bar equals 10µm.  
 
(B) A typical dendritic spine (white box) is schematized demonstrating the compartmentalization of 
cytoskeleton proteins and key anatomical structures of the dendrite and dendritic spine.  
 

Dendritic

Spine

Dendritic Shaft

neck

head

F-actin

Microtubules

PHDN1

MAP2

Merge

A. B.
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Rho-GTPases 
 
 Decades of research have characterized Rho-GTPases as key regulators of the 

actin cytoskeleton (Hall, 1998; Nakayama et al., 2000; Tashiro et al., 2000). Rho-

GTPases are a subgroup of the Ras superfamily of GTPases and consist of three main 

subclasses: RhoA-GTPase (RhoA), Rac1-GTPase (Rac1) and Cdc42-GTPase (Cdc42). 

In the cell, Rho-GTPases function as molecular switches cycling between an active and 

inactive state, the ratio of which, determines their local activity (Figure 1.3) (Etienne-

Manneville and Hall, 2002). In general, Rho-GTPase downstream effector activity 

coordinates multiple signaling pathways that influence synapse formation, gene 

expression and membrane trafficking (Etienne-Manneville and Hall, 2002; Heasman 

and Ridley, 2008).  

 During dendrite outgrowth, extracellular cues activate membrane receptors that 

engage Rho-GTPases. For example, surface signaling can localize Rac1 and Cdc42 

activity to the distal end of the growing neurite and promote F-actin branching, resulting 

in outgrowth and elaboration of dendritic arbors (Nobes and Hall, 1995). The spatial 

regulation of Rac1 and Cdc42 activity are required for proper dendritic outgrowth, as 

exogenous over-expression of constituently active Rac1 abrogates normal physiological 

dendritic complexity (Aoki et al., 2004; Nakayama et al., 2000). Interestingly, surface 

signaling that locally induces high Rac1 activity is also associated with a reduction in 

RhoA activity (Machacek et al., 2009). Conversely, RhoA activation is generally 

associated with inhibition of neurite initiation and retraction (Tolias et al., 2011). The 

antagonistic roles between RhoA and Rac1/Cdc42 suggest Rho-GTPases act in a 

coordinated manner to develop and maintain neuronal arbors (Luo, 2000).  
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 In dendritic spines, Rho-GTPase activity reorganizes the actin cytoskeleton (Hall, 

1998; Luo, 2000). For example, RhoA can promote F-actin depolymerization inducing 

dendritic spine retraction; whereas, Rac1 and Cdc42 can promote F-actin 

polymerization causing dendritic spine elongation (Etienne-Manneville and Hall, 2002; 

Govek et al., 2005; Wiens et al., 2005). To function properly in dendritic spines Rho-

GTPases require precise spatiotemporal control, as dysregulation, which results from 

aberrant F-actin dynamics, manifests as abnormal dendritic spine morphologies and 

synaptic connectivity often observed in intellectual disabilities (Ramakers, 2002; 

Schaefer et al., 2014).  

GEFs and GAPs 
 
 Cell surface receptors can modulate the spatiotemporal activity of Rho-GTPases 

at dendritic spines (i.e. Rac1, RhoA and Cdc42) (Luo, 2000; Tolias et al., 2011). 

However, membrane receptors rarely interact directly with Rho-GTPases; instead, they 

interact with Rho-GTPase modulators such as guanine exchange factors (GEFs) and 

GTPase activating proteins (GAPs) that regulate the active and inactive state of Rho-

Figure 1.3 Schematic of Rac1 signaling 
 

Rac1 activity engages various effectors that can 
elaborate or simplify axonal and dendritic arbors. The 
Rac1-GTPase is a molecular switch that cycles 
between active GTP-bound and inactive GDP-bound 
states. GEFs facilitate the active Rac1-GTP form by 
inducing the release of GDP from Rac1 and promoting 
GTP binding. GAPs inactivate Rac1-GTP by 
accelerating the intrinsic GTPase activity of Rac1 thus 
promoting the Rac1-GDP form.  
 

Rac1-GTP

Rac1-GDP

GEFs:
GAPs:

effectors

effectors

dendritic branching
spine head expansion

spine elimination
growth cone collapse

Tiam-1
Kalirin-7

alpha-chimaerin
BCR
ABR
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GTPases, respectively (Etienne-Manneville and Hall, 2002; Heasman and Ridley, 2008; 

Tashiro et al., 2000). GEFs activate Rho-GTPases by promoting their guanosine 

triphosphate (GTP)-bound form, and GAPs inactivate Rho-GTPases facilitating a 

guanosine diphosphate (GDP)-bound state (Figure 1.3) (Cherfils and Zeghouf, 2013). 

Surface signaling along the dendrite and dendritic spine can target GEFs or GAPs to 

the membrane (Bos et al., 2007). Therefore, to expedite specific control over neuronal 

morphology, the spatiotemporal cycling of Rho-GTPases and their G-protein modulators 

(GEFs and GAPs) are critical for proper circuit formation and function.  

 For example, surface signaling during development can recruit GEFs or GAPs to 

modulate Rac1 activity at nascent synaptic connections (Figure 1.4). As a result, GEFs 

induce active cycling of Rac1-GTP, where its interactions with downstream effectors 

induce actin polymerization in the dendritic spine causing spine head growth. Likewise, 

GAP protein interactions inactivate Rac1-GTP, which destabilizes polymerized actin 

causing dendritic spine head collapse. Moreover, synaptic activity in mature circuits can 

recruit GEFs and GAPs to dendritic spines likely to regulate spine morphogenesis 

through modulation of Rho-GTPase activity (Liang et al., 2004; Nakayama et al., 2000; 

Oh et al., 2010; Tolias et al., 2011). However, the molecular logic by which diverse 

surface receptors uniquely recruit GEFs and GAPs in the context of neuronal 

connectivity development and adult circuits is largely unknown.  

Eph receptors regulate Rho-GTPases 
 
 In neurons, mounting evidence suggests that the Eph receptor and ephrin 

(EphR/ephrin) complex can recruit GEFs and GAPs, to execute precise control over 

Rac1 essential for local actin rearrangement in dendritic spines observed in the 
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maturing and adult brain (Kullander and Klein, 2002). Eph receptors are the largest 

tyrosine kinase receptor family in vertebrates and are divided into two groups, EphA and 

EphB, determined by their extracellular domain and ligand homology (Gale et al., 1996; 

Holder et al., 1998). While some exceptions exist, EphA receptors bind to ephrin-A 

ligands while EphB receptors bind ephrin-B ligands (Kullander and Klein, 2002).  

 

 
 

EphB  
 
 During development, highly motile dendritic filopodia sample presynaptic partners 

and, upon contact, the filopodia can stabilize facilitating initial cell-to-cell contact 

required for spinogenesis, synaptogenesis and synaptic maintenance (Okabe et al., 

2001; Zhang and Benson, 2000). In general, axonal ephrin-B interacts with postsynaptic 

EphB receptors, whose downstream activity stabilizes initial contact between the 

immature axonal terminal and dendritic protrusion (Kayser et al., 2008). The EphB 

tyrosine kinase receptor links dendritic filopodia cytoskeletal motility to the structure’s 

ability to recognize axonal partners, provide trans-synaptic adhesion and initiate 

synapse formation (Kayser et al., 2008). For example, immature hippocampal neurons 

surface Eph/ephrin
signaling

GEFs GAPs
Rho-GTPases

actin

synaptic 
receptors

synapse 
formation

synapse
maturation

mature brain circuitry

synapse
maintenance

Figure 1.4 The EphR/ephrin complex participates in 
the formation, maturation and maintenance of 
synapses in the developing and mature brain  
 
EphR/ephrin signaling can activate GEFs and GAPs to 
execute precise control over Rho-GTPases, whose 
downstream activity reorganizes the actin cytoskeleton 
in dendritic spines and synapses. Additionally, Eph 
receptors can interact with ion channels to cluster them 
at the synapse, and induce post-translational 
modifications that alter their signaling properties. 
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that lack EphB2 exhibit reduced dendritic filopodia motility and synapse formation. The 

expression of constitutively active Rac1 effectors in EphB2 knockout neurons can 

reinstate filopodia movement demonstrating that Rac1-mediated actin dynamics drive 

filopodia motility; however, this manipulation is not sufficient to direct normal synapse 

formation (Kayser et al., 2008). Instead, exogenously expressed EphB2 can localize at 

the dendritic filopodial tip and rescue filopodia motility and synapse formation, indicating 

that EphB signaling links Rac1-mediated filopodia motility to the structure’s ability to 

engage axonal partners (Kayser et al., 2008). 

 During critical periods of neuronal connectivity, ephrin-B1-treatment of 

hippocampal neurons can activate the postsynaptic EphB2 receptor to induce clustering 

of the Rac1-GEF, Kalirin-7 to synaptic membranes, which can activate Rac1 (Rac1-

GTP) (Kayser et al., 2008; Penzes and Jones, 2008). As a result, ephrin-B1 treatment 

leads to downstream phosphorylation and synaptic clustering of the Rac1 effector, 

Protein activated kinase-1 (PAK1) leading to alterations of F-actin dynamics at the 

immature dendritic protrusion and inducing filopodia actin rearrangement to form a 

dendritic spine (Dalva et al., 2000; Dunaevsky et al., 1999; Hall, 1998; Kayser et al., 

2008; Penzes and Jones, 2008). On the other hand, the loss of EphB2 signaling 

negatively impacts spinogenesis causing a reduction in spine density observed in 

developing neurons and mature dendrites, indicating a critical role of surface EphB2-

mediated Rho-GTPase regulation in dendritic spine formation and stability (Dalva et al., 

2000; Takasu et al., 2002).  

 During synaptogenesis and in mature circuits, the ephrin-B1 ligand promotes 

surface interactions between EphB2 and the N-methyl-D-aspartate receptor (NMDA 
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receptor) (Dalva et al., 2000; Takasu et al., 2002). EphB2 and NMDA receptors directly 

interact causing NMDA receptor clustering and phosphorylation of the NMDA receptor 

subunit, Glutamate receptor, ionotropic, N-methyl-D-aspartate, subunit 2B (GRIN2B) at 

the developing synapse (Dalva et al., 2000; Takasu et al., 2002). These signaling 

events are thought to drive intracellular mechanisms that ensure synaptic maturation as 

opposed to rapid cycling of surface receptors during synaptogenesis (Antion et al., 

2010; Henderson et al., 2001; Xu et al., 2011). Overall, dendritic protrusions utilize 

EphB signaling to engage trans-synaptic adhesion, potentiate Kalirin-7-GEF-mediated 

regulation of Rac1, and cluster NMDA receptors promoting dendritic spine and synapse 

maturation. 

EphA 
 
 In a mature circuit, a synapse will undergo various states of surface receptor 

remodeling that are coupled to rapid restructuring of dendritic spine morphology (Matus, 

2000; Portera-Cailliau et al., 2003). The EphA4 receptor is positioned at the 

postsynaptic surface and can induce distinct changes to dendritic spine morphology that 

result in reorganization of the postsynaptic density (Zhou et al., 2012). At the dendritic 

spine, rapid minute-based EphA/ephrin-A3 signaling activates Cofilin, an actin filament 

depolymerizing/severing factor that redistributes F-actin from the dendritic spine head to 

the neck where it interacts with actin-regulatory proteins Slingshot 1 phosphatases 

(SSH1) and calcineurin/protein phosphatatase 2B (PP2B) leading to dendritic spine 

elongation (Zhou et al., 2012). If EphA/ephrin-A3 signaling prolongs from minutes to 

hours it induces synaptic remodeling, resulting in the relocation of the postsynaptic 

density from the dendritic spine to the dendritic shaft. Concurrently, the dendritic spine 
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retracts into the dendritic shaft, simplifying the overall protrusion density (Murai et al., 

2003; Zhou et al., 2012). Thereby, surface EphA receptor signaling can transiently 

regulate discrete dendritic spine morphologies, and control synaptic remodeling through 

intracellular pathways that reorganize the actin cytoskeleton at excitatory synapses. 

 While EphA4 signaling can engage downstream Rac1-mediated regulation over 

dendritic spine morphology, emerging evidence demonstrates that EphA4 signaling is 

important for synaptic plasticity and learning (Fu et al., 2011; Murai et al., 2003). For 

example, homeostatic plasticity is a synaptic refinement mechanism where neuronal 

excitability is scaled in response to changes in the strength and number of synaptic 

connections (Bourne and Harris, 2011; Turrigiano, 1999; Turrigiano and Nelson, 2000). 

This form of synaptic refinement is thought to prevent unconstrained changes in 

synaptic strength, and is essential for maintaining the stability of neuronal networks.  

 Bicuculline treatment of cultured hippocampal neurons blocks inhibitory 

transmission leading to elevated excitatory synaptic activity (Fu et al., 2011; Jensen et 

al., 2002). In response to elevated synaptic activity via Bicuculline treatment, the EphA4 

receptor is phosphorylated, and promotes the removal of the α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor (AMPA receptor), a glutamate receptor that 

generates excitatory postsynaptic potentials (EPSP) at the synaptic surface (Fu et al., 

2011). Specifically, EphA4 activation leads to interactions with the ubiquitin ligase 

anaphase-promoting complex-CDC20 homologue 1 (APCCdh1) causing the AMPA 

receptor to undergo ubiquitin proteasomal degradation (Fu et al., 2011).  As a result, 

chronic EphA4 activity results in reduced frequency and amplitude of miniature EPSPs 

(mEPSPs), an electrophysiological measurement of small spontaneous synaptic activity, 
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suggesting that EphA4 signaling refines synaptic excitability in response to elevated 

transmission (Fu et al., 2011).  Furthermore, EphA4-knockout neurons treated with 

Bicuculline, lack the compensatory downregulation of synaptic AMPA receptors, and 

exhibit a heightened synaptic load of AMPA receptors, as detected by biochemical 

analysis of the glutamate receptor ionotropic AMPA 1 subunit (GRIA1), in synaptosomal 

fractions (Fu et al., 2011; Matsuzaki et al., 2001; Murai et al., 2003). Additionally, the 

loss of EphA4 signaling results in irregular dendritic spine morphologies and negatively 

affects induced circuit-level plasticity in the hippocampus (Murai et al., 2003). These 

results demonstrate that postsynaptic EphA4 signaling can induce functional changes at 

the synapse in response to unconstrained deviations in neuronal transmission. However, 

unlike the EphB receptor, our understanding of Rho-GTPase regulators that act 

downstream of EphA4 signaling at the synapse, are largely unknown.  

 Various GEFs and GAPs are expressed during critical developmental periods of 

neuronal connectivity, and are also detected in mature neurons where synaptic plasticity 

is refined in response to afferent input (Etienne-Manneville and Hall, 2002; Govek et al., 

2005; Hall, 1998; Luo, 2000). These observations suggest that EphA and EphB 

receptors may engage different GEFs or GAPs throughout an animal’s lifetime. In 

addition to the functional role of EphA and EphB receptors, the loss of either isoform 

results in irregular dendritic spine morphologies, suggesting that Eph receptors are 

required to control dendritic spine morphogenesis (Carlisle and Kennedy, 2005; 

Henkemeyer et al., 2003; Murai et al., 2003). Our lack of understanding of the molecular 

interplay between structural/functional synaptic mechanisms that underlie normal 

cognitive function and the prevalence of spine abnormalities observed in intellectual 
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disabilities highlights the necessity to identify and characterize downstream EphR 

effectors in the brain (Figure 1.4) (Gerlai, 2001; Tolias et al., 2011).  

The n-chimaerin gene 
 
 The n-chimaerin gene (CHN1) was discovered in the laboratory of Dr. Louis Lim 

in 1990 at University College London. N-chimaerin was identified from a complementary 

DNA (cDNA) screen conducted in human and rat brains (Hall et al., 1990). The 

messenger ribonucleic acid (mRNA) levels were found to be highest in the cerebral 

cortex and hippocampus, suggesting a potential role in higher order function such as 

learning and memory (Hall et al., 1990; Lim et al., 1992). Two gene isoforms, alpha1 

(α1)- and alpha2-chimaerin (α2), are produced from the n-chimaerin locus through 

alternative promoters (Figure1.5) (Hall et al., 1993; Lim et al., 1992).  Both α-chimaerin 

isoforms share identical diacylglycerol-binding (C1) and GTPase-activating protein 

(GAP) domains, but they differ in that the α2 isoform contains an N-terminal Src-

homology-2 (SH2) domain that is absent from the α1 isoform (Hall et al., 1993).    

 From a signaling perspective, the C1 domain binds diacylglycerol (DAG), causing 

translocation of α-chimaerins from the cytosol to the plasma membrane (Buttery and 

Beg et al., 2006; Herrera and Shivers, 1994). The GAP domain is highly selective for 

Rac1 and, to a lesser extent, Cdc42 (Hall et al., 1993). The SH2 domain in α2-chimaerin 

binds phosphotyrosine residues, and has been shown to interact with several receptor 

tyrosine kinases (Beg et al., 2007; Iwasato et al., 2007; Wegmeyer et al., 2007a). 

Sequence analysis revealed ~97% homology between human and rat α1-chimaerin 

protein, and ~96% homology between the human and mouse α2-chimaerin protein (Hall 

et al., 2001; Lim et al., 1992). This striking sequence conservation suggests these 
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proteins retained a highly conserved function throughout evolution (Hall et al., 1990). 

Over the last two decades, research from several groups has identified physiological 

roles for the α-chimaerins, which are summarized below. 

 

Alpha1-chimaerin 
 
 Rapid changes in dendritic spine structure are coupled to the dynamic cycling of 

cell surface receptors, whose cooperative activity underlies subcellular facets of 

synaptic plasticity (Bourne and Harris, 2008; Fischer et al., 1998). Importantly, 

dysregulation of dendritic spine density, morphology and function are known to be 

associated with cognitive pathologies and neurodevelopmental delays (Penzes et al., 

2011). Alpha1-chimaerin is an essential Rac1-GAP that contributes to dendritic 

arborization (Buttery and Beg et al., 2006; Van de Ven et al., 2005). In neurons, basal 

α1-chimaerin is highly regulated and targeted for rapid polyubiquitination-dependent and 

proteasomal degradation; however, synaptic signaling can stabilize α1-chimaerin 

preventing its basal degradation (Marland et al., 2011). More specifically, receptor-

mediated activation of phospholipase-Cβ (PLC) increases local diacylglycerol production, 

which interacts with the C1 domain of α1-chimaerin promoting its translocation to the 

membrane (Buttery and Beg et al., 2006).  

C1

C1 GAP

GAP

SH2

Į�

alpha-chimaerin isoforms

Į�

Figure 1.5 Alpha-chimaerin 
 
The α1- and α2-chimaerin isoforms share identical 
C1 and GAP domains. The C1 domains can bind 
to diacylglycerol, and the GAP domains exhibit 
high specificity for Rac1. The α2-chimaerin isoform 
exhibits a unique N-terminal SH2 domain that can 
interact with tyrosine kinase receptors. 
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 As an essential Rac-GAP protein, too much or too little α1-chimaerin significantly 

modifies Rac1-GTP levels, and as a result α1-chimaerin can significantly alter the 

dendritic arbor. The overexpression of α1-chimaerin reduces dendritic branching and 

prunes dendritic spines simplifying the arbor (Buttery and Beg et al., 2006). The 

suppression of α1-chimaerin causes spine dysmorphogenesis highlighted by an 

increase in filopodia-like protrusions and atypical dendritic spines, which exhibit multiple 

protrusions that emit from the spine head suggesting loss of its precise regulation may 

prevent proper dendritic arbor maturation (Buttery and Beg et al., 2006).    

Alpha2-chimaerin 
 
 A decade of research revealed that α2-chimaerin is essential for axon guidance 

in sensory neurons of the dorsal root ganglion, the corticospinal tract, the spinal cord 

central pattern generator, and spinal motor neurons. Similar to other systems, axonal 

guidance in the spinal cord is mediated by attractive and repulsive signals that engage 

Rho-GTPases for proper axonal outgrowth. As an essential effector, α2-chimaerin 

interacts with guidance receptors such as the neuropilin-1/Plexin-A receptor complex 

and EphA and EphB receptor protein tyrosine kinases, which link membrane signaling 

to actin dynamics at the migrating axon for proper circuit formation.  

Alpha2-chimaerin in the dorsal root ganglion 

 In the spinal cord, dorsal root ganglion (DRG) neurons link sensory afferent 

information from the periphery to the brain. The Semaphorin-1A and Neuropilin-

1/Plexin-A signaling complex maintain proper axon guidance for DRG neurons by 

preventing irregular axonal outgrowth during development (Figure 1.6) (Nakamura et al., 

2000). Intracellular processing of Semaphorin1A leads to phosphorylation of Collapsin 
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response mediator protein family-2 (CRMP-2) by Cyclin-dependent kinase 5 (CDK5), 

causing growth cone collapse and retraction of the migrating axon (Huber et al., 2003; 

Nakamura et al., 2000).  Alpha2-chimaerin is essential for Semaphorin signaling in DRG 

axonal migration, as it interacts with the Neuropilin1/Plexin-A receptor complex, CDK5 

and CRMP2.  Mutations to the SH2 and GAP domains of α2-chimaerin eliminate CDK5 

and CRMP2 interactions, respectively, and as a result block Semaphorin induced 

growth cone collapse in DRG neurons (Brown et al., 2004). The α2-chimaerin/CDK5 

interaction likely localizes the complex to the growth cone where the GAP domain of α2-

chimaerin inhibits Rac1-GTP, rearranging the cytoskeleton to induce growth cone 

collapse. The α2-chimaerin/CRMP2 interaction may place CRMP2 in proximity to CDK5 

leading to CRMP2-phosphorylation, which is also required for Semaphorin induced 

growth cone collapse. Taken together, these data suggest that α2-chimaerin links 

Semaphorin signaling and actin dynamics at the growth cone in DRG neurons (Figure 

1.6) (Brown et al., 2004). 

Alpha2-chimaerin signaling in the corticospinal tract 

 The EphA4 tyrosine kinase receptor controls multiple axon guidance steps in 

locomotor circuitry such as the corticospinal tract (Beg et al., 2007; Iwasato et al., 2007; 

Wegmeyer et al., 2007b). The CST is a group of axonal fibers from the motor cortex that 

largely crossover at the lower medulla and descend the contralateral spinal cord to 

target ventral motor neurons (Figure 1.1). During CST development, EphA4 receptor 

signaling triggers axonal growth cone collapse preventing aberrant ipsilateral 

misprojections (Canty et al., 2006). As a result, the loss of EphA4 activity leads to 

abnormal bilateral organization of the CST causing synchronous hindlimb movement 
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(Coonan et al., 2001; Dottori et al., 1998). The intracellular effector that transduces 

EphA4 signaling in CST axon migration had yet to be identified as several candidates, 

such as Ephexin and Vav1, failed to phenocopy hindlimb synchrony in EphA4 mutant 

mice (Bashaw and Klein, 2010; David and Lacroix, 2003; Yoshida et al., 2006). 

Therefore, an unknown effector was required for EphA4 signaling in CST axonal 

migration.  

 

 

 

 

Figure 1.6 Αlpha2-chimaerin is an essential effector for locomotor circuit assembly 
The schematic illustrates a decade of research that has identified distinct neuronal populations in the 
motor cortex and spinal cord that utilize α2-chimaerin for axon guidance. Surface receptors such as 
EphA and Semaphorin utilize α2-chimaerin effector processing to engage rapid changes in actin at 
the axonal growth cone during the assembly of locomotor circuits. 
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 The α2-chimaerin Rac-GAP was identified to be an essential intracellular EphA4 

protein effector in the CST (Beg et al., 2007; Iwasato et al., 2007; Wegmeyer et al., 

2007a). Several research groups generated α2-chimaerin knockout mice and observed 

a synchronous hindlimb gate that phenocopied the EphA4 mutant mouse (Beg et al., 

2007; Iwasato et al., 2007; Wegmeyer et al., 2007a). CST pathway analysis in α2-

chimaerin mutant mice demonstrated aberrant bilateral organization as previously 

observed in the EphA4 knockout mouse (Coonan et al., 2001; Dottori et al., 1998). 

Therefore, α2-chimaerin is a highly dedicated EphA4 effector required for the assembly 

of CST locomotor circuits, which control voluntary movement (Figure 1.6) (Beg et al., 

2007; Evarts, 1981; Iwasato et al., 2007; Wegmeyer et al., 2007a). 

Alpha2-chimaerin signaling in the central pattern generator 

 In contrast to the CST, the central pattern generator (CPG) is an autonomous 

neuronal network localized within the spinal cord and does not rely on top-down control 

from the motor cortex (Saint-Amant and Drapeau, 2001). As a result, the CPG is not 

involved in voluntary movement; instead, it is responsible for rhythmic motor patterns 

that are independent of sensory and motor feedback (Cazalets et al., 1995; Saint-Amant 

and Drapeau, 2001). Movements such as swallowing and walking are examples of CPG 

mediated control over stereotypic locomotion (Lanuza et al., 2004). The CPG network 

consists of interneurons that project to different ipsilateral and contralateral targets 

specific to each spinal cord hemisegment. In the medial hemisegments, EphA4 

repulsive signaling prevents aberrant midline crossing of CPG axonal fibers (Canty et al., 

2006). The EphA4 knockout mice exhibit aberrant midline line crossing of CPG 

interneurons.  Therefore, to determine if α2-chimaerin mutant mice develop a similar 
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phenotype, the mutant was injected with a fluorescent tracer at the lumbar spinal cord 

region. Fluorescence analysis revealed that, similar to EphA4, α2-chimaerin mutants 

exhibit aberrant midline interneuron crossing, providing additional evidence to its role as 

an essential EphA4 protein effector in locomotor circuit assembly and function (Figure 

1.6) (Beg et al., 2007; Borgius et al., 2014; Iwasato et al., 2007; Wegmeyer et al., 

2007a). 

Alpha2-chimaerin signaling in the lateral motor column motor neurons 

 Alpha2-chimaerin is an essential effector of EphA4-mediated axon guidance 

throughout the motor cortex and local spinal cord circuitry. It was unknown if α2-

chimaerin was a class-specific Eph receptor signaling intermediate, or acted 

downstream of both EphA and EphB subfamilies. The spinal lateral motor column 

(LMC) motor neurons utilize both Eph subfamilies to guide lateral and medial motor 

axons, which innervate dorsal and ventral limb muscles, respectively (Hollyday and 

Hamburger, 1977; Kao et al.). Specifically, EphA-expressing lateral LMC axons target 

the dorsal limb in response to ventral limb ephrin-A. Likewise, EphB-expressing medial 

LMC motor axons migrate to the ventral limbs in response to dorsal limb ephrin-B 

(Eberhart et al., 2004; Klein, 2004). This binary axon paradigm was utilized to test the 

specificity of α2-chimaerin as a functionally relevant effector for Eph receptor 

subfamilies.  

 Stripe assays demonstrate that ephrin-A5 and ephrin-B2 prevented axonal 

migration when incubated on alternating stripes seeded with LMC motor neuron 

explants (Kao et al., 2015). When the LMC motor neurons were electroporated to 

overexpress or suppress α2-chimaerin, the results revealed a selective defect in ephrin-
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A5 repulsive axonal signaling but not in ephrin-B2. Specifically, chick LMC motor axons 

ignored the ephrin-A5 repulsive cue, extending axons on ephrin-A5- and Fc (control)-

treated stripes. However, the axons maintained ephrin-B2 repulsiveness, as migration 

was not detected on ephrin-B1-treated stripes (Kao et al., 2015). The in vitro data 

demonstrated the gain or loss of α2-chimaerin yields similar axonal defects, suggesting 

EphA receptor repulsive signaling accuracy is critically dependent upon spatially 

restricted pools of activated α2-chimaerin (Kao et al., 2015).  

 The functional role of α2-chimaerin was further tested in an in vivo experimental 

model (Kao et al., 2015). Here, chick LMC neurons were electroporated with EphA or 

EphB expressing cDNA plasmids to redirect LMC motor axonal trajectories to ventral 

muscular targets (upon EphB electroporation) or dorsal muscular targets (upon EphA 

electroporation). The results demonstrated that EphA ectopic expression drives LMC 

motor axons to the dorsal hindlimb, and EphB ectopic expression drives LMC motor 

axons to the ventral hindlimbs (Kao et al., 2015). However, when LMC motor neurons 

were co-electroporated to suppress α2-chimaerin and ectopically express either EphA 

or EphB, loss of redirection was only observed in EphA co-expression experiments, 

while EphB redirection remained unmodified (Kao et al., 2015). These data corroborate 

the in vitro findings that intracellular α2-chimaerin levels, and downstream activity, may 

be a “bottleneck” for EphA-mediated cell surface axonal guidance.   

 In α2-chimaerin mutant animals, lateral (EphA4-mediated) LMC misprojections 

are detected in the ventral nerve, demonstrating that subsets of lateral LMC motor 

neurons maintain abnormal axonal projections into adulthood (Kao et al., 2015). The 

lateral LMC motor axon misprojections result in “hyperflexion” of the hindlimb 
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characterized as uncoordinated antagonistic muscle contraction (Kao et al., 2015). 

Overall, these data reveal that α2-chimaerin/EphA signaling mediates accurate 

embryonic motor axon guidance which is critical for optimal neuromuscular function in 

adulthood (Figure 1.6) (Kao et al., 2015).  

The neurological role of α2-chimaerin 
 
 Alpha2-chimaerin protein is distributed throughout the neuronal layers of the 

developing and adult hippocampus (Hall et al., 1993; Iwata et al., 2014; Wegmeyer et 

al., 2007a). Biochemical analysis from hippocampal neurons has revealed that α2-

chimaerin is enriched in postsynaptic protein fractions and is likely a core postsynaptic 

protein (Shi et al., 2007). Taken together, the ubiquitous hippocampal neuronal 

expression and subcellular distribution in synaptic compartments, suggest α2-chimaerin 

may play a prominent role in regulating dendritic spine morphology in response to 

synaptic activity within the hippocampus (Bourne and Harris, 2008; Eichenbaum et al., 

1999; Izquierdo and Medina, 1997). However, only a few studies have begun to unravel 

the role of α2-chimaerin in the hippocampus.   

Alpha2-chimaerin modulates cognitive abilities in adulthood 

 A recent report evaluated the function of α2-chimaerin in hippocampal dependent 

behaviors (Iwata et al., 2014). The group utilized a mutant mouse that lacks α2 in the 

dorsal telencephalon (α2KO-DT), thereby knocking out α2 expression in the 

hippocampus, amygdala and cerebral cortex (Iwata et al., 2014). To evaluate the role of 

α2-chimaerin in hippocampal-dependent behaviors, the group conducted contextual fear 

conditioning to evaluate if a neutral context or tone could elicit a fear response as a 

result of a pairing with an electric foot shock (McEchron et al., 1998). Αlpha2KO-DT 
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mice demonstrated a higher percentage of freezing when placed in the context of the 

electric foot shock but not from the tone presentation alone. The authors propose that 

heightened freezing in the α2 mutant is indicative of enhanced cognition (Iwata et al., 

2014). Interestingly when α2 was selectively silenced in the adult dorsal telencephalon 

(Adult-α2KO-DT), leaving early perinatal and adolescent expression unaltered the 

animal performed similar to controls in contextual fear conditioning and context 

discrimination (Iwata et al., 2014). The data indicate that α2 plays a critical role during 

perinatal development to shape cognition in the adult brain, and expression in mature 

circuitry is dispensable for hippocampal function (Iwata et al., 2014). 

Alpha2-chimaerin and disease 

Hyperactive α2-chimaerin mutation in Duane’s Retraction Syndrome 

 Duane’s retraction syndrome (DRS) is a congenital eye movement disorder 

caused by aberrant motor axon innervation to extraocular muscles (Hotchkiss et al., 

1980). DRS patients exhibit strabismus resulting in abnormal eye movement preventing 

inward and outward ocular mobility (DeRespinis et al., 1993). Genetic analysis from 

individuals with variant forms of DRS revealed dominant nucleotide substitutions 

common in the α-chimaerin gene located on chromosome 2q31 (Chan et al., 2011) 

(Miyake et al., 2008). Three of the seven mutations altered amino acids specific to the 

α2-chimaerin isoform and four altered amino acids that reside in both the α1 and α2-

chimaerin isoforms. Structural modeling of the amino acid substitutions determined that 

the missense nucleotide mutations negatively affected the closed configuration of α2-

chimaerin. Recombinant α2-chimaerin cDNA encoding wild type and the mutant 

isoforms were expressed in HEK293T cells to evaluate α2-chimaerin Rac-GAP activity 
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(Miyake et al., 2008). The results demonstrated that human DRS α2-chimaerin mutants 

exhibited an enhanced reduction in Rac-GTP levels, suggesting that the mutants 

generate a hyperactive α2-chimaerin isoform (Miyake et al., 2008).  

 To investigate the functional consequence, the α2-chimaerin point-mutant cDNAs 

were electroporated in embryonic chick midbrains, and the oculomotor nerve axonal 

projection pattern was analyzed. (Miyake et al., 2008). Expression of the α2-chimaerin 

mutant constructs resulted in oculomotor nerve stall, and axons terminated prematurely 

adjacent to the dorsal rectus muscle that controls eye movement. Furthermore, previous 

clinical findings in humans with the same α2-chimaerin mutations support the observed 

primary defect in oculomotor nerve development (Yüksel et al., 2010). Overall α2-

chimaerin mutations identified in DRS patients confer hyperactive Rac-GAP activity that 

lead to an ocular motor phenotype as a result of errors in cranial nerve development 

(Chan et al., 2011; DeRespinis et al., 1993).  

A potential role in Autism Spectrum Disorder 

 Autism Spectrum Disorder (ASD) is a developmental psychiatric condition where 

cellular abnormalities in synaptic structure and function are prominent (Penzes et al., 

2011). Many ASD patients display social impairment, communication difficulties and 

altered behavioral patterns that begin at infancy and persist throughout adulthood 

(Zoghbi and Bear, 2012). Human studies have implicated more than 284 candidate 

genes in ASD (IMGSAC, 2001; Williams et al., 1980). A whole-genome screen of ASD 

children revealed that the familial autism susceptibility genomic region with the greatest 

maximum likelihood score contains CHN1 (Bacchelli et al., 2003; IMGSAC, 2001).  
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 A leading hypothesis is that neurons control the spatial and temporal parameters 

of redundant developmental factors to different subcellular compartments and 

timepoints (Govek et al., 2005).  For this reason, a mutation or loss to one or more of 

these molecules may have deleterious effects on neuronal function. Functionally, α2-

chimaerin interacts with EphB receptors and is an essential EphA4 receptor tyrosine 

kinase protein effector, both of which exhibit altered synaptic signaling in psychiatric 

disorders (Beg et al., 2007; Iwata et al., 2014; Pasquale, 2008; Wegmeyer et al., 2007b). 

Early work demonstrated that suppression or overexpression of α-chimaerins alters 

Rac1-GTP levels, and generates abnormal dendritic spine morphologies similar to the 

unique phenotypes often observed in ASD (Buttery and Beg et al., 2006; Durand et al., 

2011; Van de Ven et al., 2005; Williams et al., 1980). Perhaps the lack of dynamic 

control over Rac1-mediated pathways by α-chimaerins could be a contributing cause of 

structural and functional defects in ASD at the synapse (Buttery and Beg et al., 2006; 

Iwata et al., 2014; Shi et al., 2007). 

Looking Forward 
 
 The motivation behind this dissertation was inspired by work from Donald Hebb 

who suggested that coordinated changes in the structural and functional efficacy of 

individual synapses could alter neuronal connectivity and ultimately affect neurological 

behavior (Hebb, 1949). In Chapter Two, I address this central hypothesis by evaluating 

the structural and functional role of α2-chimaerin in the mouse hippocampus. 

Accordingly, I tested if α2-chimaerin is required for dendritic arbor and synapse 

formation. Furthermore, I conducted electrophysiological and behavioral experiments to 

ask if the loss of α2-chimaerin alters hippocampal function. I hypothesized that the loss 
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of α2-chimaerin would affect neuronal connectivity and dendritic arbor formation by 

uncoupling the coordination between structural and functional mechanisms at the 

synapse. In Chapter 5, I discuss my findings in the context of normal brain function, and 

in neurological disorders characterized by aberrant synaptic connectivity.  

 In Chapter Three, I expanded my investigation of α2-chimaerin by evaluating its 

potential role in subgranular zone proliferation, and oligodendrocyte precursor cell 

division throughout the dentate gyrus. Additionally, I mapped the spatial and temporal 

expression profile of α2-chimaerin in the hippocampus, which revealed dynamic control 

over α2-chimaerin in different neuronal populations. Lastly, I discuss the potential role of 

α2-chimaerin in oligodendrocytes, and in neuronal subsets that express α2-chimaerin in 

the adult hippocampus.  

 Chapter Four addresses a collaborative project that identified a novel GABA-

mediated receptor in the nematode Caenorhabditis elegans. Under most circumstances, 

GABA-activated channels conduct chloride ions resulting in inhibition of neuronal 

activity. On the contrary, this novel GABA-activated receptor, LGC-35, conducts cations 

and is therefore excitatory (Jobson and Valdez et al., 2015). Phylogenetic analysis 

suggest that the pore-forming domain of LGC-35 contains molecular determinants that 

confer cation selectivity, but that channel has evolved from GABA-A receptors. Overall, 

the data presented in this chapter demonstrate that both direct and indirect excitatory 

GABA signaling plays important roles in regulating neuronal circuit function and 

behavior in C. elegans. 

 In Chapter Five, I summarize the main contributions of my thesis work on α2-

chimaerin to our understanding of structural and functional plasticity at the synapse. I 
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discuss unanswered questions that address the role of α2-chimaerin in dendritic spines, 

and elaborate on key cell-surface mechanisms that may recruit α2-chimaerin to 

activated synapses. From a physiological prospective, I discuss the role of α2-chimaerin 

in the development of neuronal connectivity, and mature synapses in the adult brain. 

Moreover, I explain how my dissertation work challenges current published data 

describing α2-chimaerin's role in the mouse hippocampus.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 30 

 

 

Chapter 2  

The Rac-GAP alpha2-chimaerin regulates hippocampal 
dendrite and spine morphogenesis 

 

Abstract 
 
 Neurons possess a dynamic cellular morphology that can be modulated by 

synaptic transmission. In particular, dendritic spines are fine neuronal processes where 

spatially restricted input can induce activity-dependent changes in one spine while 

leaving neighboring spines unmodified.  Rapid changes in spine morphology are 

coupled to the dynamic cycling of cell-surface receptors, which underlie aspects of 

synaptic plasticity. Dysregulation of synaptic receptors can result in an increase in spine 

density and alterations in morphology. These plastic properties of dendritic spines are 

considered to be compensatory mechanisms that maintain normal synaptic 

transmission. Importantly, alterations in dendritic spine density, morphology and 

function are known to be associated with cognitive pathologies and neurodevelopmental 

delays. From a molecular standpoint, the Rho-GTPase, Rac1 is associated with the 

recruitment of synaptic receptors and exerts dynamic control over dendritic spines, thus 

contributing to their architecture and function.  However, the key molecules and 

mechanisms that regulate Rac1-dependent pathways at the synapse are not well 

understood. We have identified a Rac-GTPase activating protein, α2-chimaerin, that is a 
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negative modulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin 

increased active Rac1-GTP levels and induces the formation of polymorphic and 

polysynaptic dendritic spines. Using a combination of cellular, electrophysiological and 

behavioral analyses, our data demonstrate that α2-chimaerin is a critical regulator of 

spine morphogenesis and synaptic connectivity.  

Introduction 

Nervous system function relies on the precise wiring of neuronal circuits during 

development (Goodman and Shatz, 1993).  A key parameter in this process is the 

elaboration of axonal and dendritic arbors, as their size and complexity determines the 

number of synaptic connections a neuron makes and receives, respectively (Cline, 

2001; Goodman and Tessier-Lavigne, 1997). With billions of neurons in the brain, 

individual axons and dendrites have the momentous task of locating the appropriate 

partner in which to form synaptic connections. The majority of excitatory synaptic 

neurotransmission occurs at dendritic spines, tiny F-actin rich protrusions that emanate 

from the dendritic shaft (Harris, 1999; Matus, 2000).  A typical dendritic spine contains a 

single glutamatergic synapse, thus spine density reflects the amount of excitatory drive 

a neuron receives (Fiala et al., 2002).  Moreover, spines are highly modifiable and 

exhibit tremendous structural and functional plasticity.  Structural plasticity involves 

cytoskeletal rearrangement that affects spine morphology; whereas, functional plasticity 

leads to changes in glutamate receptor dynamics (Fischer et al., 2000; Segal and 

Andersen, 2000).  These changes in spine shape and number can last for weeks in vivo 

and are thought to reflect cellular mechanisms underlying cognitive processes like 

learning and memory (Bhatt et al., 2009).  Not surprisingly, mutations in signaling 
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pathways that regulate F-actin cause abnormalities in dendritic spine shape, density 

and function; pathological hallmarks highly correlated with neurodevelopment, 

neuropsychiatric and neurodegenerative disorders (Penzes et al., 2011).    

In response to physiological stimuli, a complex network of signaling events can 

trigger changes in dendritic spine number and morphology. Rho-GTPases are key 

proteins that regulate actin cytoskeletal dynamics by coupling upstream signals with the 

correct downstream effector proteins (Hall, 1998; Luo, 2000). Rho-GTPases control 

diverse cellular processes, thus signaling specificity is achieved through regulatory 

proteins that modulate Rho-GTPase activity (Cherfils and Zeghouf, 2013).  Like all Rho-

GTPases, Rac1 acts as a molecular switch cycling between a GDP-bound inactive form 

and a GTP-bound active form.  Rac1 is activated by guanine nucleotide exchange 

factors (GEFs) and inactivated by GTPase-activating proteins (GAPs) (Bos et al., 2007).  

Despite the importance of these regulatory factors, it is unclear how GEFs and GAPs 

coordinately act to regulate Rac1 signaling in dendrites and spines. 

Here, we demonstrate that the Rac-GAP α2-chimaerin plays an important role in 

hippocampal dendrite arborization and spine morphogenesis. Our findings reveal that 

α2-chimaerin is a major negative regulator of Rac1, and loss of α2-chimaerin simplifies 

dendritic arbor complexity, decreases dendritic spine protrusion density, alters spine 

morphology, and increases the density of polysynaptic dendritic spines.  Together, 

these data provide important insight into the molecular repertoire that shapes dendrites, 

spines and synapses.  Importantly, our data identify α2-chimaerin as a novel Rac-GAP 

protein that plays a key role in counterbalancing GEF activation of Rac1 in spines and 

synapses.    
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Results 

Alpha2-chimaerin is localized to dendrites and spines in the hippocampus 

 The Rac-GAP α2-chimaerin is essential for the proper guidance of corticospinal, 

oculomotor, spinal interneuron and spinal motor neuron axons (Aoto et al., 2007; Beg et 

al., 2007; Iwasato et al., 2007; Shi et al., 2007; Wegmeyer et al., 2007a).  To determine 

if α2-chimaerin plays a role in regulating the structural and functional plasticity of 

dendrites and spines, we co-transfected wild type (WT) mouse hippocampal neurons 

with soluble mCherry and low levels of EGFP-tagged α2-chimaerin.  We found that 

EGFP-α2-chimaerin was expressed throughout the neuron with robust expression in 

dendrites and spines (Figure 2.1A). The subcellular localization of EGFP-α2-chimaerin 

to dendritic spines suggests the protein is expressed at synapses, which is supported 

by biochemical studies demonstrating that α2-chimaerin is a tightly associated with core 

components of the post-synaptic density (PSD) (Shi et al., 2007). Taken together, the 

expression data suggest that α2-chimaerin may play a pivotal signaling role in 

hippocampal dendrites and spines.   

Alpha2-chimaerin is a major negative regulator of Rac1 in the hippocampus 

 Several groups including ours have used recombinant expression systems to 

assay the Rac-GAP activity of α2-chimaerin (Buttery et al., 2006; Kao et al., 2015; Shi et 

al., 2007).  Given α2-chimaerin’s spatial distribution in hippocampal dendrites, we 

sought to investigate if it’s loss altered active Rac1 levels in mature hippocampal 

neurons (Buttery and Beg et al., 2006; Iwata et al., 2015; Iwata et al., 2014). Primary 

hippocampal neurons cultured for 18-20 DIV were lysed, and a quantitative 

spectrophotometric assay was used to detect the cellular levels of active Rac1-GTP.  
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 The results from the small GTPase-activation assay (G-LISA) demonstrated that 

α2-chimaerin gene-trap (mutant) neurons had significantly increased Rac1-GTP levels 

compared to controls, suggesting that α2-chimaerin is a major negative regulator of 

Rac1 in hippocampal neurons (Figure 2.1C). In dendrites and spines, active Rac1 can 

promote F-actin polymerization by initiating several downstream signaling effector 

pathways (Nakayama et al., 2000). Thus, we investigated if the heightened Rac1-GTP 

levels led to changes in polymerized F-actin in dendrites and spines. Primary 

hippocampal neurons were fixed and stained with fluorescently labeled phalloidin, which 

binds selectivity to polymerized F-actin.  Quantification revealed a significant 9% 

increase in baseline levels of polymerized F-actin intensity, selectively, in the dendritic  

spine head but not the dendritic shaft in α2-chimaerin mutants.  

Alpha2-chimaerin regulates dendritic arborization and spine 

morphogenesis 

 To examine the role of α2-chimaerin in dendritic arborization and spine 

morphogenesis, we cultured primary hippocampal neurons from WT and α2-chimaerin 

mutant mice and transfected cells with a pCAG-EGFP plasmid to assess dendrite 

morphology.  Morphological assessment at 18 DIV revealed α2-chimaerin mutant 

neurons exhibited a simplified dendritic arbor (Figure 2.2A). To further confirm our in 

vitro findings, we crossed α2-chimaerin mutants to Thy1-GFP-M animals in which a 

subset of CA1 pyramidal cells express GFP. Dendritic complexity was similarly 

simplified in α2-chimaerin; Thy1-GFP-M+ mutants corroborating our in vitro findings and 

identifying α2-chimaerin as a key player in shaping dendritic arbor complexity (Figure 

2.2B-C).  
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 Endogenous α2-chimaerin is a core component of the PSD (Iwasato et al., 2007; 

Shi et al., 2007) and EGFP-α2-chimaerin can localize to dendritic spines, thus we asked 

if its loss altered dendritic spine density and morphology.  Loss of α2- chimaerin both in 

vitro and in vivo resulted in a significant decrease in the number of protrusions 

Figure 2.1, Alpha2-chimaerin is localized to hippocampal dendrites and is a regulator of 
Rac1 in dendritic spines  
 
(A) WT primary hippocampal neurons at DIV 16 were co-transfected with 50ng of EGFP-α2-
chimaerin and 550ng of mCherry to resolve fine dendritic structures. Scale bar equals 5µm. 
 
(B) Representative dendritic segments from WT and α2-chimaerin mutant hippocampal neurons at 
DIV 18. The cells have been transfected with GFP to resolve fine dendritic structures, and treated 
with phalloidin, a fluorescently tagged phallotoxin to label polymerized F-actin. The white 
arrowheads identify dendritic spines, and the white arrows delineate polymerized F-actin in these 
dendritic spines. Scale bar equals 10µm. 
 
(C) Rac1-GTP G-LISA activation assay from hippocampal lysate of WT and α2-chimaerin 
hippocampal neurons at DIV 18. Optical density measurements of Rac1-GTP (mean±SEM): WT = 
0.218 ± 0.134 and α2 = 0.395 ± 0.148; N = 4 per genotype; paired two-tailed t-test, *p = 0.0331, 
absorbance was read at 490nm  
 
(D) Quantification of phallotoxin intensity (a.u.) in the spine head (mean ± SEM): WT = 74.03 a.u. ± 
3.0; N=7 cells and α2 = 83.17 a.u. ± 3.38; N=8 cells; unpaired two-tailed t-test, *p = 0.0444. 
Quantification of phallotoxin intensity in the dendritic shaft (mean ± SEM): WT = 4.434 a.u. ± 0.36; 
N = 7 cells and α2 = 4.863 a.u. ± 0.38; N = 8 cells.  
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emanating from secondary and tertiary dendritic shafts (Figure 2.3A-C).   

To determine if specific classes of spines were affected, we quantitated spine 

shape frequency.  Examples of our categorical classification of dendritic protrusions are 

shown in Figure 2.3D: 1) Filopodia: thin and narrow protrusions that lack a bulbous 

head; 2) Stubby spines:  a short bulbous head with an unresolved neck; 3) Mushroom 

spines: a defined narrow neck terminating to a bulbous head; and 4) Atypical spines: 

bifurcated in which two spine heads share a common neck, or branched where 

secondary and tertiary spine heads branch from the primary spine head (Bourne and 

Figure 2.2, Alpha2-chimaerin mutant neurons exhibit a simplified dendritic arbor 
 
(A) In vitro, representative images of WT and α2-chimaerin mutant hippocampal primary neurons at 
DIV 16. In vivo, representative images of CA1 apical dendrites from WT;Thy1-GFP-M+  and α2-
chimaerin;Thy1-GFP-M+ hippocampal slices. Scale bar equal 30µm     
 
(B-C) Alpha2-chimaerin mutant neurons exhibit a significant reduction in dendritic complexity both in 
vitro and in vivo; In vitro sholl analysis: t-test, α = .05, Holm-Sidak method, *p < 0.001, N = 75 cells per 
genotype. In vivo sholl analysis: t-test, α = .05, Holm-Sidak method, *p < 0.004 , N = 17 cells per 
genotype. 
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Harris, 2008; Harris et al., 1992). Confocal imaging of cultured hippocampal neurons 

revealed the reduction in protrusion density was due to a selective loss of mushroom 

shaped spines, whereas stubby spines and filopodia were unchanged compared to 

controls (Figure 2.3E).  Furthermore, the reduced mushroom spine population in the α2-

chimaerin exhibited an overall increase in spine length and head area (Figure 2.2G-H). 

One possibility is that the heightened levels of polymerized F-actin (Figure 2.1D) may 

drive the significant increase in dendritic spine head area observed in α2-chimaerin 

mutant hippocampal neurons (Figure 2.3H). Analysis of atypical spine types revealed a 

significant increase in irregular branched spines, but no change in bifurcated spines in 

α2-chimaerin mutants (Figure 2.3F).  

Given the presence of irregular dendritic spine morphology in several 

neuropsychiatric diseases, we next used acute shRNA-mediated knockdown of α2-

chimaerin to determine if cell-autonomous neuronal loss also caused a similar increase 

in irregular branched spines observed in the constitutive gene-trap mutants (Penzes et 

al., 2011). Wild type neurons were transfected with α2-chimaerin specific shRNAs at 

DIV 10, and analyzed at 16-18 DIV (Figure 2.4A). Similar to the in vitro and in vivo 

findings, acute cell-autonomous knockdown resulted in significantly increased atypical 

spine density compared to scrambled shRNA (control) expressing neurons (Figure 

2.4A-B).  Furthermore, we demonstrated that the increased irregular branched spine 

density was specifically due to loss of α2-chimaerin, as re-expression of a EGFP-α2-

chimaerin into α2-chimaerin mutant neurons at 10 DIV rescued the irregular dendritic 

spine defects. (Figure 2.4D-F). Together, these data strongly argue that α2-chimaerin is 
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a cell-autonomous determinant of spine density, and key regulator of mature spine 

morphology (Figure 2.4H-I). 
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Figure 2.3, Alpha2-chimaerin is a key regulator of mature spine morphology 
 
(A) In vitro and in vivo representative images of WT and α2-chimaerin mutant hippocampal 
dendrites. Scale bar equals 5µm 
 
(B-C) Alpha2-chimaerin dendrites exhibit a reduction in protrusion density. In vitro quantification 
of dendritic protrusion density (mean ± SEM):  WT = 17.71 ± 0.46; N = 33 cells and α2 = 15.66 ± 
0.58; N = 35 cells; unpaired two-tailed t-test, **p = 0.0068. In vivo quantification of CA1 apical 
dendritic protrusion density: WT = 29.17 ± 0.91; N = 8 cells and α2 = 25.17 ± 0.84; N = 7 cells; 
unpaired two-tailed t-test, **p = 0.0019. 
 
(D) Dendritic spines were categorized based on their morphological structures. In brief, filopodia 
protrusions lack a bulbous head (white asterisk); stubby, mushroom, bifurcated, and branched 
spines exhibit a spine neck (white arrows) and spine head (white arrow-heads). Dendritic scale 
bar equals 5µm and protrusion image scale bar equals 1µm. 
 
(E) Alpha2-chimaerin mutant hippocampal neurons exhibit a reduction in mushroom spine 
density, in vitro. Protrusion shape density quantification (mean ± SEM): mushroom-shaped 
spines: WT = 10.42 ± 0.36; N = 32 cells and α2 = 7.77 ± 0.46; N = 35 cells; t-test, α = .05, Holm-
Sidak method, *p < 0.0001. 
 
(F) Alpha2-chimaerin mutant hippocampal neurons exhibit an increase in atypical dendritic 
spines, in vitro. Atypical dendritic spine density quantification (mean ± SEM):  revealed a 
significant difference in branched spine density between WT = 1.39 ± 0.13; N = 32 cells and α2 = 
2.28 ± 0.21; N = 35 cells; t-test, α = .05, Holm-Sidak method, *p < 0.0001. 
 
(G) Alpha2-chimaerin mutant hippocampal neurons exhibit an increase in the length of mushroom 
spines. Quantification of mushroom spine length (mean ± SEM): WT = 1.35 ± 0.017, N = 32 cells, 
n = 819 mushroom spines and α2 = 1.54 ± 0.0219, N = 35 cells, n = 813 mushroom spines; 
unpaired two-tailed t-test, **p < 0.0001. 
 
(H) Alpha2-chimaerin mutant hippocampal neurons exhibit an increase in mushroom spine head 
area. Quantification of mushroom spine head area (mean ± SEM): WT = 0.36µm2 ± 0.00813, N = 
32 cells, n = 819 mushroom spines and α2 = 0.45µm2 ± 0.00981, N = 35 cells, n = 813 mushroom 
spines; unpaired two-tailed t-test, **p < 0.0001. Inserted are representative images of WT and α2-
chimaerin mutant mushroom dendritic spines. Scale bar equals 1µm. 
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Figure 2.4 Alpha2-chimaerin is a cell-autonomous determinant of dendritic spine morphology 
 
(A) Representative images of DIV 16 dendritic segments from WT primary neurons transfected at DIV 
10 with scramble or alpha2-chimaerin shRNA, respectively. Scale bar equals 5µm 
 
(B) Alpha2-chimaerin suppression increases the density of atypical bifurcated and branched dendritic 
spines. Quantification of bifurcated dendritic spines (mean ± SEM): scramble = 0.36 ± 0.16 and α2-
KD= 1.037 ± 0.23; N = 8 cells per genotype; t-test, α = .05, Holm-Sidak method, *p = 0.0307 and *p < 
0.0001. Quantification of branched dendritic spines (mean ± SEM): scramble = 0.77 ± 0.19 and α2-KD 
= 2.33 ± 0.320; N = 8 cells per genotype; t-test, α = .05, Holm-Sidak method, *p = 0.0307 and ***p = 
0.000278. 
 
(C) Representative images of DIV 16 dendritic segments from wt primary neurons transfected at DIV 
10 to express GFP or co-transfected to express GFP plus α2:GFP, respectively. Scale bar equals 5µm 
 
(D) Exogenous expression of α2-chimaerin rescues the altered atypical branched spine density in α2-
chimaerin mutant hippocampal neurons. Quantification of atypical branched spine density (mean ± 
SEM): WT = 1.39 ± 0.13; N = 33, α2 = 2.28 ± 0.22; N = 35 and α2+α2:GFP = 0.73 ± 0.11; N = 25; 
ordinary one-way ANOVA F(2,274) = 20.6;  **p < 0.001.  
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Alpha2-chimaerin regulates monosynaptic innervation  

 The hallmark of mature dendritic spines is that they form a single synapse with a 

presynaptic axon (Ethell and Pasquale, 2005). The selective loss of mature mushroom 

shaped spines coupled with increased atypical spines in α2-chimaerin mutants suggests 

that synaptic connectivity and function may be altered.  To quantitate synapse density, 

18 DIV hippocampal neurons were immunostained with the presynaptic marker 

synaptophysin and the excitatory postsynaptic marker PSD-95 (Figure 2.5A).  In 

comparison to controls, α2-chimaerin mutants exhibited a significant increase in 

synapse density along secondary and tertiary dendrites (Figure 2.5B).  To determine if 

the increased synapse density was due to synaptic changes in specific spine classes, 

we counted the total number of synapses formed across dendritic segments and 

assigned each synapse to one of the categorical classes of spines described above. In 

control neurons, mushroom (72.9%) and stubby (14.41%) spines accounted for the 

majority of synapses.  In α2-chimaerin mutants, mushroom-shaped spines also 

accounted for the majority of synapses (59.6%) (Figure 2.5C).  Strikingly, atypical 

branched spines (20.7%) accounted for the second highest percentage of synapses, 

which was significantly increased compared to controls (6.04%) (Figure 2.5C).  Thus, 

loss of α2-chimaerin shifts the distribution of synapse-to-spine type from mature 

mushroom synapses to atypical branched synapses.   
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Figure 2.5 The loss of α2-chimaerin alters spine-to-synapse dynamics 
 
(A) Representative images of DIV 16 WT and α2-chimaerin dendritic segments expressing GFP, and 
immunostained with synaptophysin (red) and PSD-95 (blue). Scale bar equals 5µm 
 
(B) Alpha2-chimaerin mutant hippocampal neurons exhibit an increase in synapse density. 
Quantification of synapse density (mean ± SEM): WT = 16.00 ± 0.0877; N = 18 cells and α2 = 20.56 
± 1.069; N = 14 cells; unpaired two-tailed t-test, **p = 0.0011 
 
(C) Alpha2-chimaerin exhibit an increase in the percent of synapses formed on branched dendritic 
spines. Quantification of the percent of synapses formed on mushroom-shaped dendritic spines: WT 
= 72.94 ± 2.66, N = 18 cells and α2 = 59.64 ± 2.81, N = 14 cells; t-test, α = .05, Holm-Sidak method, 
**p = 0.001. Quantification of the percent of synapses formed on branched-shaped dendritic spines: 
WT = 6.04% ± 1.29; N = 18 cells and α2 = 20.77% ± 2.5; N = 14 cells; t-test, α = .05, Holm-Sidak 
method, ***p < 0.0001. 
 
(D). Representative image of multiple synapses depicted in red arrowheads (SYN) and blue 
arrowheads (PSD-95) where spine heads are positive for both synaptophysin and PSD-95. Even on 
the same spine, some branched spine heads are only positive for PSD-95 suggesting the potential 
for synaptic integration.  Scale bar equals 2.5µm 
 
(E) Alpha2-chimaerin mutant neurons exhibit an increase in the density of synapses formed on 
branched dendritic spines. Quantification of the percentage of synapses formed on multiple dendritic 
spines heads (mean ± SEM): WT = 42.95% ± 9.00, N = 18 cells and α2 = 63.51% ± 6.00; N = 14 
cells; unpaired two-tailed t-test; p = .0615  
 
(F) Representative image of a DIV 16 hippocampal dendritic segment that exhibits an irregular 
branched spine. The cell was treated with Alexa 594-phallotoxin to fluorescently label polymerized F-
actin. Scale bar equals 5µm. 
 
(G) A line profile spine revealed polymerized F-actin in the multiple spine heads across an atypical 
branched spine. 
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Atypical branched spines have multiple spine heads, suggesting these 

polymorphic protrusions may be poly-innervated (Figure 2.5D). Thus, we quantitated the 

number of synapses a single atypical branched spine receives to determine the extent 

of poly-innervation.  In control neurons 42% of atypical branched spines received more 

than one synapse (Figure 2.5E).  In contrast, 63% of atypical branched spines from α2-

chimaerin mutants were associated with more than one synapse (Figure 2.5E).  Finally, 

the bulbous secondary and tertiary heads on atypical branched spines are 

morphologically reminiscent of mature mushroom shaped spine heads.  To determine if 

these structures contain hallmark cytoskeletal features of spines, we stained neurons 

with Alexa594-phalloidin, revealing these supernumerary spine heads are highly 

enriched in F-actin (Figure 2.5F-G).  Together, these data suggest that atypical 

branched spine heads are structurally similar to mature spines, and are capable of 

receiving multiple synaptic inputs.   

Alpha2-chimaerin is dispensable for long-term potentiation and fear 

conditioning 

 The morphological and synaptic alterations in dendrites and spines suggest that 

α2-chimaerin may be a critical regulator of hippocampal network connectivity and 

function. A recent study reported that α2-chimaerin functions during development to 

adjust cognitive ability in adulthood (Iwata et al., 2014).  Specifically, loss of α2-

chimaerin during early development was reported to increase contextual fear 

conditioning, a hippocampal-dependent behavior (Iwata et al., 2014).  Our cellular 

findings of reduced dendritic complexity, decreased protrusion density, altered spine 
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morphologies, and increased synapse density suggest these key structural changes 

may account for the altered behavioral changes previously reported.  

 We conducted fear conditioning experiments and assessed long-term 

potentiation in the α2-chimaerin mutant mouse. In brief, fear conditioning is a form of 

learning where a neutral stimulus (tone/context) is paired with an aversive stimulus (i.e. 

foot shock). After pairing, the once neutral variable becomes a conditioned stimulus that 

elicits fear (conditioned response) in the animal. Fear conditioning relies on LTP-

dependent mechanisms in the amygdala and hippocampus (Anagnostaras et al., 2001; 

Maren, 2001; Rogan et al., 1997). These circuits exhibit an increase in synaptic strength 

that presumably transmits information about the conditioned stimulus to neurons that 

have previously processed the neutral tone/context, suggesting LTP is an underlining 

component of memory encoding and storage (Schafe et al., 2001; Stevens, 1998). 

 However, we found that the α2-chimaerin mutants, either males or females, 

exhibited no difference in contextual fear conditioning to either the conditioning tone or 

context (Figure 2.6). Due to the failure to observe an effect in hippocampal-dependent 

contextual fear conditioning, we next assayed the functional consequence of ablating 

α2-chimaerin.  Changes in spine number, morphology and plasticity are associated with 

long-term potentiation (LTP), a cellular model for learning and memory (Chen et al., 

2007; Martinez and Tejada-Simon, 2011). We assessed network connectivity and 

synaptic plasticity by inducing LTP at Schaffer collateral afferents in area CA1.  

Recording and stimulating electrodes were placed in the stratum radiatum and input-

output curves were constructed showing that loss of α2-chimaerin resulted in no change 

between the presynaptic fiber volley and slope of the field excitatory postsynaptic 
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potential (fEPSP), demonstrating that basal transmission was not modified compared to 

controls (Figure 2.7A). 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2.6 The loss of α2-chimaerin does not impair Pavlovian fear conditioning 
 
(A) On Day One, the WT and α2-chimaerin mutant mice, from both sexes, were trained in three 
sequential training trials, and exhibited an increased level of freezing as training progressed. 
However both genotypes revealed no significant difference in their performance during training. On 
Day Two, the mice were re-exposed to the conditioning chambers, and the male α2-chimaerin 
mutant mice responded with an 8% increase in freezing, but the increase was not significantly 
different compared to wildtype. On the other hand, α2-chimaerin mutant female mice exhibited an 
8% reduction in total freezing, but the percentage was not statistically significant.  On Day Three, 
we tested the mice for tone conditioning in a novel context, and the α2-chimaerin mutant exhibited 
a 6% decrease in freezing compared to WT, but the difference was not statistically significant. The 
female cohort exhibited a 7% reduction in total freezing that was also not statistical significant.  
 
(B) Pavlovian fear conditioning was completed on age-matched male and female mice. Females: 
WT = 96.88 days ± 1.90; N=8 and α2 = 97.36 days ± 2.58; N=11. Males: WT = 92.88 days ± 3.12; 
N = 5 and α2 = 95.50 days ± 1.82; N = 6. Mixed sexes: WT = 95.31 days ± 1.69; N = 13 and α2= 
96.71 days ± 1.76; N=17.  
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  Theta burst stimulation (100Hz, 4 pulses) of CA3 Schaffer collaterals revealed 

no difference in the induction or maintenance of LTP in CA1 in α2-chimaerin mutants 

compared to controls (Figure 2.7B).  Taken together, these functional data demonstrate 

that CA3-CA1 hippocampal synaptic efficacy is neither compromised nor potentiated in 

α2-chimaerin mutants. However, the morphological and synaptic changes we identified 

may underlie defects in other forms of synaptic signaling that mediate the cognitive 

defects previously reported in α2-chimaerin knockout mice (Iwata et al., 2014). 

 

 

 

Figure 2.7 CA3-CA1 hippocampal synaptic efficacy is neither compromised, nor potentiated in 
α2-chimaerin mutants 
 
(A) The loss of α2-chimaerin does not alter synaptic transmission. Input and Output curve plotting the 
fEPSP against fiber volley amplitude (mean ± SEM). Recording derived from four 5-6 old mice: WT N 
= 7 animals, n = 12 slices and α2 N = 7 animals, n = 18 slices. 
 
(B) LTP is not affected in α2-chimaerin mutant mice. LTP was induced by theta burst stimulation 
(black arrow) at 100Hz (4 pulses) in the CA1 region of acute hippocampal slices from α2-chimaerin 
mutant and WT mice. Representative fEPSP recordings before and 60 minutes after LTP induction 
are displayed for WT (black) and α2-chimaerin mutants mice (red).  The fEPSP slope (mean ± SEM) 
is graphed for the completion of the time course. Recording derived from 5-6 month old mice: WT N = 
5 animals, n = 10 slices and α2 N = 6 animals, n = 12 slices. 
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Discussion 
 

The function of α2-chimaerin has been studied predominantly in the context of 

axonal guidance in locomotor circuit assembly (Beg et al., 2007; Iwasato et al., 2007; 

Kao et al., 2015; Wegmeyer et al., 2007a). Here, we identify a novel function for α2-

chimaerin in regulating dendrite arborization and spine morphogenesis in hippocampal 

neurons. Cellular, electrophysiological and behavioral data reveal that loss of α2-

chimaerin (1) simplifies dendritic arbor complexity, (2) decreases dendritic protrusion 

density, (3) induces atypical branched spine formation, (4) augments neuronal Rac1-

GTP levels and increases spine head F-actin content, (5) increases the incidence of co-

innervated atypical branched spines, but (6) α2-chimaerin is dispensable for 

hippocampal LTP.  We discuss these findings in the context of the regulatory 

mechanisms of Rho-GTPase activity and the role of actin-based structural and 

functional plasticity in neurological disorders associated with aberrant dendritic spine 

morphogenesis and plasticity.  

 The ability of dendritic spines to rapidly change shape is due to their highly 

enriched and labile F-actin cytoskeleton (Matus, 2000).  As central regulators of actin 

cytoskeletal dynamics, the Rho-GTPases are critical determinants of spine 

morphogenesis and synaptic plasticity (Hall, 1998; Luo, 2000).  The regulated cycling 

between active and inactive states is critically important as gain- and loss-of-function 

mutations in Rac1, RhoA and Cdc42 impact dendrite arborization and spine density, 

morphology and plasticity (Tolias et al., 2011).  Furthermore, several disease-

associated mutations have been identified in genes that regulate Rho-GTPase activity, 

underscoring that tight control of Rho-GTPase activity is imperative given its diverse 
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roles in a plethora of cellular processes (Bacchelli et al., 2003; De Rubeis et al., 2014; 

Ebert and Greenberg, 2013; Penzes et al., 2011; Zoghbi and Bear, 2012).  Although, 

the molecular logic of GEF/GAP regulation of Rho-GTPases in response to synaptic 

activity is not well understood, the precise spatiotemporal activity of these modulatory 

proteins is likely to be highly choreographed and context-dependent (Duman et al., 

2015). Thus, the cellular expression, subcellular localization, developmental regulation 

and protein interactions of GEFs and GAPs are major factors that contribute to the 

spatiotemporal regulation and signaling specificity of Rho-GTPases (Tolias et al., 2011)  

Rac-GEF and Rac-GAP regulation of dendrites and spine morphogenesis 

Several Rac-GEF proteins are known to localize at synapses and play critical 

roles in synaptogenesis (Penzes and Jones, 2008; Tolias et al., 2005).  An emerging 

model is that Rac-GEFs play specific spatiotemporal roles in Rac1-dependent dendritic 

spine formation, maturation, maintenance and activity-dependent plasticity (Bai et al., 

2015).  For example, mice lacking the Rac-GEF, Kalirin-7, exhibit decreased spine 

density and neurocognitive defects (Penzes et al., 2003). Kalirin-7 expression occurs 

later during development and is maintained throughout adulthood, suggesting that it’s 

role may be important in spine maturation/maintenance as opposed to early synapse 

development (Cahill et al., 2009; Ma et al., 2008; Xie et al., 2007). Furthermore, RNA 

interference knockdown of the Rac-GEF Tiam1 results in dendritic arbor simplification 

and a reduction in spine and synapse density (Tolias et al., 2005). Tiam1 interacts with 

the partitioning defective (PAR) protein PAR-3, which may act to spatially restrict Tiam1 

to modulate a specific subpool of Rac1 within the dendritic spine head (Tolias et al., 

2011; Zhang and Macara, 2006). While several other Rac-specific GEFs (i.e. a/b-PIX, 
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Vav2/3, Farp1) are known to play important roles in dendrite arborization and spine 

morphogenesis, relatively few Rac-GAP proteins have been characterized whose loss 

of function affects dendrites and spines (i.e. BCR, ABR, srGAP, Rich2) (Luo, 2000).  We 

and others have shown that the shorter α1-chimaerin isoform plays a role in the pruning 

of dendrites and spines, suggesting that as a family, the α-chimaerins are important 

regulators of neuronal arborization (Buttery and Beg et al., 2006; Van de Ven et al., 

2005).  Importantly, our data demonstrate that dendritic dysmorphogenesis caused by 

loss of α2-chimaerin is not compensated for by α1-chimaerin, suggesting these two 

isoforms play unique and non-overlapping roles in dendritic arborization and spine 

morphogenesis.  Taken together, these examples highlight that Rac-GEF/GAP protein 

localization, developmental regulation, and protein-protein interactions are critically 

important in modulating the spatiotemporal activity of Rac1 in dendrites and spines. 

Cell surface regulation of GEF and GAPs in dendrites and spines 

 Activity-dependent signal transduction pathways need to be tightly controlled to 

ensure that individual dendritic spines respond appropriately to local signals.  Coupling 

upstream receptor activation to the correct downstream effector proteins permits 

signaling specificity and is essential for driving morphological and functional plasticity in 

activated spines.  In this context, α2-chimaerin is known to interact with several receptor 

tyrosine kinases that have important roles in dendritic spine morphogenesis and 

synaptic plasticity.  The cell surface Eph receptors (EphR) play essential roles in 

dendritic spine morphogenesis (Gerlai, 2001). Activation of EphA4 causes spine 

retraction and shortening, whereas EphB2 promotes spine formation, maintenance and 

clustering of NMDA receptors (Dalva et al., 2000; Zhou et al., 2012).  An outstanding 
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question is whether EphA4 and EphB1/2 receptors share common molecular pathways 

in differentially sculpting spines, or if they use distinct molecular pathways.  Mounting 

evidence suggests that EphR regulate spine morphogenesis and synaptic plasticity by 

modulating Rho-GTPase activity (Calo et al., 2006).  Significantly, the Rac-GEFs 

Kalirin-7, Tiam1 and Intersectin-L are required for EphB-induced spine remodeling 

(Tolias et al., 2007).  We have previously demonstrated that α2-chimaerin interacts with 

both EphA4 and EphB1/2 receptors, and our data demonstrate that the loss of α2-

chimaerin results in significant spine abnormalities (Beg et al., 2007). Together, these 

data suggest that the Rac-GAP α2-chimaerin may be a critical mediator of EphR-

dependent spine morphogenesis and synaptic plasticity.  However, it remains unclear 

what role α2-chimaerin plays in EphR-dependent spine morphogenesis.  Is α2-

chimaerin: 1) a dedicated EphA4 effector required for spine pruning; 2) required for 

EphB-mediated spine maturation and maintenance; or 3) a global EphR effector in 

spine morphogenesis? Given the lack of Rac-GAP proteins that have been 

characterized in spine morphogenesis, one possibility is that α2-chimaerin is recruited to 

synapses in response to EphR activation to counterbalance GEF activation of Rac1. 

Intriguingly, the similar dysmorphic spine phenotypes shared between EphA4 and α2-

chimaerin mutant mice suggest that α2-chimaerin may be a critical downstream 

mediator of EphA4-dependent spine morphogenesis, which remains to be determined 

(Murai et al., 2003).  Moreover, although α2-chimaerin can biochemically interact with 

EphB1/2, we have yet to identify a phenotype linked to these signaling pathways 

resulting from the loss of α2-chimaerin. Adding to the complexity of GEF/GAP regulation, 

a recent and elegant study revealed that GEFs and GAPs can form regulatory 
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complexes that modulate spine morphogenesis and synaptic plasticity (Um et al., 2014).  

Specifically, in response to Brain-derived neurotrophic factor- Tropomyosin receptor 

kinase B (BDNF-TrkB) signaling, a GEF/GAP complex comprised of Tiam 1 and BCR 

has been demonstrated to dynamically regulate the spatiotemporal activity of Rac1 

within spines (Um et al., 2014). This intriguing example suggests that α2-chimaerin may 

form a similar regulatory complex with other GEF proteins to dynamically regulate spine 

morphogenesis and synaptic plasticity, but experimental evidence supporting this model 

remain to be determined.  

Why are LTP and hippocampal-dependent behavior unaffected in α2-

chimaerin mutants? 

 Actin cytoskeletal reorganization is critical for synaptic plasticity such as LTP 

(Chen et al., 2007). The effects of α2-chimaerin on the loss of F-actin organization, 

spine morphology and dendrite arborization suggest that α2-chimaerin-dependent 

signaling may contribute to activity-dependent synaptic plasticity. Given that disruption 

of other Rac-GAPs such as BCR, ABR and Rich2 result in decreased LTP maintenance, 

it is surprising that the loss of α2-chimaerin, which increases neuronal active Rac1-GTP 

and spine head F-actin, had no effect on LTP induction or maintenance (Oh et al., 2010; 

Raynaud et al., 2013).   Our data suggests that α2-chimaerin may function to maintain 

the mature morphological hallmarks of dendritic spines, but may not be critical for 

functional changes within the spine.  Accordingly, it has been reported that different 

pools of F-actin within the spine serve distinct functions in hippocampal LTP induction 

and maintenance (Honkura et al., 2008).  Moreover, distinct molecular pathways can 

modulate Rho-GTPase signaling in spines, which are required for either the induction or 
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maintenance phases of LTP (Kennedy et al., 2005; Martinez and Tejada-Simon, 2011).   

An important observation from our results is that loss of α2-chimaerin dissociates 

morphological form and function. Specifically, the structural abnormalities in the 

dendritic receptive field and at the single spine level are not reflected as functional 

deficits within the hippocampus.  A possible explanation is that the high basal levels of 

active Rac1 caused by loss of α2-chimaerin may invoke compensatory mechanisms 

that homeostatically inhibit downstream pathways associated with LTP.  Alternatively, 

upregulation or enhanced activity of other Rac-GAPs such as BCR and ABR, or 

reduced activity of Rac-GEFs may compensate for loss of α2-chimaerin.  

Mature mushroom-shaped spines are autonomous units that compartmentalize 

synaptic activity and restrict the diffusion of postsynaptic signaling molecules (Dailey 

and Smith, 1996; Harris, 1999). One possibility is that the dysmorphic spines in α2-

chimaerin mutants may permit the spread of activity from one synapse to another, 

thereby compensating for alterations at the neuronal level to balance network activity.  

Alternatively, the increased occurrence of poly-innervated spines may compensate for 

the reduced protrusion density and simplified dendritic arbor.  Accordingly, although α2-

chimaerin loss results in decreased protrusion density, the number of synapses per unit 

length is increased, which may be a compensatory mechanisms that equalizes synaptic 

drive in α2-chimaerin mutant neurons. 

Loss of α2-chimaerin during development has recently been reported to increase 

hippocampal-dependent contextual fear conditioning (Iwata et al., 2014).  Our 

behavioral experiments are inconsistent with those reported by Iwasato et al, which 

suggested loss of α2-chimaerin early in development affects cognitive abilities in 
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adulthood.  A possible explanation is that our behavioral experiments were performed 

on age-matched, mixed-gender P90 animals.  Alternatively, the nature of the gene-trap 

mutation may be subtly different than the knockout strategy used by Iwasato et al 

(Stanford et al., 2001).  However, both strains are phenotypically identical and exhibit 

similar axonal guidance and locomotor defects (Beg et al., 2007; Iwata et al., 2014).  

Regardless, the functional data strongly argue that hippocampal (CA3-CA1) LTP is 

unaffected by loss of α2-chimaerin, suggesting the reported changes in cognitive ability 

may be due to alterations in other forms of hippocampal synaptic plasticity.  

In conclusion, our study provides the first evidence that α2-chimaerin is a critical 

regulator of Rac1 signaling in dendrites and spines. Elucidating the molecular 

mechanisms of how α2-chimaerin integrates and transduces cell-surface receptor 

activation to downstream effector pathways that alter dendritic spine cytoskeletal 

regulation are pressing questions for future studies.  

Methods 
 
Animal strains 

Mice containing a gene-trap insertion in the a-chimaerin gene were obtained from 

Lexicon Genetics. For in vivo imaging, α2-chimaerin gene-trap mice were bred with 

Thy1-GFP-M transgenic mice (Feng et al., 2000). 

Primary cell cultures 

P0-1 C57BL/6J (WT) and α2-chimaerin homozygous mutant pups were utilized to 

prepare primary hippocampal neuronal cultures (Kaech and Banker, 2006). In short, 

hippocampi were isolated in Hanks-buffered salt solution (HBSS) without MgCl2 and 

CaCl2 containing 10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). 
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The isolated hippocampi were washed once with HBSS + 10mM HEPES to remove 

small tissue debris then the solution was replaced with 1% Tyrpsin + 0.01% DNaseI in 

HBSS + 10mM HEPES. The hippocampi were exposed to the trypsin solution for 15 

minutes at 37°C. Next, the solution was removed, and the tissue was washed with 5mLs 

of culture media containing DMEM (Gibco 11995-065), 0.8% D(+)Glucose, 1% 

Glutamax and 10% FBS. We then triturated the hippocampi in 1mL of this media with 10 

pipette strokes from a 9” glass pipette. The tissue was again triturated with a 9” glass 

pipette that was 50% (eight triturations) and 25% (five triturations) of the original 

opening. We added 4mLs of DB1 to the triturated tissue and placed the tube on ice for 

15 minutes. Afterwards we transferred the middle layer of the cell suspension (~4.5mLs) 

to a new tube. The cell suspension was pelleted via a spin at 1,500 rotations per minute 

(r.p.m.) for three minutes. We removed the culture media and re-suspended the cells in 

1mL of fresh culture media via 10 triturations from a 9” glass pipette, and five triturations 

from a 9” glass pipette that was fire-polished to 50% of the original opening. The cells 

were then counted in Trypan Blue to exclude dead cells from the quantification. We 

plated 120,000 cells in culture media on 10mm poly-D-lysine coated coverslips placed 

individually in a 24-well cluster plate. After three hours the media was aspirated and 

replaced with Neurobasal media containing 1x B27 and 1x Glutamax. After two days, 

we treated the neurons with 10uM cytosine d-D-arabinofuranoside (AraC). Every 4 days 

we removed 50% of the media, which was replaced with fresh neural growth media.  
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Transfections 

To analyze dendritic arborization and dendritic spines we transfected WT and α2-

chimaerin mutant hippocampal neurons at 10 DIV with 600ng of β-actin GFP. All 

transfections were completed with 0.5µLs of Lipofectamine 2000 per well.  

Rac1-GTP G-LISA 

Primary hippocampal cultures were plated at a density of 500,000 cells per 35mm dish. 

After 17-19 DIV, cells were lysed and protein concentration was determined. We utilized 

equivalent amounts of protein lysate between the WT and α2-chimaerin mutant neurons 

to access basal Rac-GTP levels from the G-LISA colorimetric assay. A detailed protocol 

can be found at www.cytoskeleton.com/bk128.  

Immunocytochemistry 

 Between 16-17 DIV, primary neurons were fixed with 4% paraformaldehyde 

(PFA) / 4% Sucrose in Dulbeco’s phosphate buffer containing MgCl2 and CaCl2 (DPBS-

MC) for 15 minutes at room temperature (RT). The coverslips were washed three times 

in DPBS-MC, for five minutes per wash and permeabilized in 0.01% TritonX-100 for ten 

minutes at RT. The cells were then washed three times for five minutes per wash at RT 

then incubated in 5% Donkey serum for 30 minutes at 4°C in a humidifying chamber. 

Afterwards, the coverslips were incubated with primary antibodies overnight at 4°C in a 

humidifying chamber. The next day the coverslips were washed three times with DPBS-

MC for five minutes each at RT. The coverslips where incubated in secondary 

antibodies for 30 minutes at RT in a humidifying chamber. The coverslips were then 

washed three times for five minutes each at RT and mounted on glass slides.  
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Antibodies 

PSD-95 (NeuroMab clone K28/43); Synaptophysin (Millipore 04-1019); anti-

CHN1(abcam156869); GluR1 (Millpore MAB2263); GAPDH (GeneScript A00191-40); 

GFP (NeuroMab N86/38) 

Image analysis 

 To analyze dendritic arborization in primary WT and α2-chimaerin mutant 

hippocampal neurons, we imaged GFP positive cells with a 20x objective on a wide-field 

fluorescence microscope. We utilized a semi-automated approach to trace dendritic 

segments from a single neuron with a NeuroJ Plugin in ImageJ (Meijering, 2010). From 

the generated binary image, we analyzed dendritic complexity by counting the number 

of proximal to distal dendritic intersections on concentric circles placed in a 20µm fixed 

radius around the soma via the Sholl Analysis Plugin in ImageJ (Longair et al., 2011). 

For in vivo dendritic arborization analysis, we utilized the same process and quantitative 

approaches; however, single cell images were collected from Z-series confocal 

micrographs that were Z-projected with a 20x objective.  

 Dendritic spine images were collected from Z-series confocal micrographs under 

the 60x objective plus a 3x digital zoom at 1024 pixel2. The images were Z-projected 

and then we utilized the segmented line function to straighten 30µm segments of 

secondary and tertiary dendrites. The 30µm straightened dendritic segments were used 

to analyze spine density and protrusion shape frequencies.  The protrusion shapes 

were binned into three categories: 1) Filopodial-like protrusions that exhibit a thin 

protrusion and lack a bulbous-shaped head; 2) dendritic spines, which are divided into; 

a) stubby spines that are stocky bulbous shaped protrusions and b) mushroom spines 
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that exhibit a narrow neck with a bulbous-like head; and 3) atypical spines are either 

bifurcated spines that exhibit a split spine neck and two separate bulbous-like protrusion 

heads, or branched spines, that resemble mushroom spines with a single or multiple 

mushroom-shaped protrusions emanating from the primary spine head. For in-vivo 

protrusion analysis, we counted secondary and tertiary dendritic protrusions on CA1 

neurons from WT;GFPm+ and α2-chimaerin mutant;GFPm+ mice. The image 

acquisition parameters and processing of the 30µm dendritic segments were similarly 

collected as in our in-vitro approach. 

 For synapse analysis, we immunostained primary neurons that were previously 

transfected to express GFP with synaptophysin to label all pre-synaptic sites and PSD-

95 to label the protein dense post-synaptic structures. We collected Z-series confocal 

micrographs of secondary and tertiary dendrites under the 60x objective plus a 3x digital 

zoom at 1024 pixel2, and similarly we straightened 30µm dendritic segments from the 

collected images. The combination of the synaptic marker staining and the EGFP- 

expressing cells allowed for quantification of synapse density and synapse localization 

per protrusion-type.   

Fear Conditioned Learning 

 Individual animals were placed into a conditioning chamber constructed of 

aluminum sides and clear acrylic backs and doors. The floor consisted of a stainless 

steel grid, spaced 1/8 inches apart with a stainless steel drop pan. A 120-Watt 

fluorescent bulb, placed ~10 feet away from the conditioning chambers, generated the 

ambient lighting, and we used 70% ethanol to clean the chambers between animal 

exposures. On Day One we trained squads of 4 animals that were individually placed in 
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the conditioning chambers and cameras mounted above each chamber monitored the 

animal’s movement. We monitored 120 seconds (sec.) of baseline movement followed 

by a 30 sec. tone (2.8kHz and 75Db) that co-terminated with a 2 sec. electric shock 

(0.75 milliAmp.) to the stainless steel grid floor. The training protocol was repeated three 

times before the animal was removed from the chamber.  

 The shock was delivered through a solid-state shock scrambler, and an 

electronic constant current shock source. A desktop PC running Actimetrics Freeze-

Frame software controlled the electric source and live-camera footage. On Day Two 

(Context Test), we monitored the animal’s movement for five minutes in the conditioning 

chamber with the same context as Day One, but in the absence of tone or electric shock. 

On Day Three (Tone Test) the animals were placed in conditioning chambers but in a 

novel context. The new environment consisted of opaque white acrylic tiles placed over 

the stainless steel grid, and white walls producing a semicircular chamber. The light 

source was switched to a red fluorescence bulb (60 Watts), and chambers were 

cleaned with 2% acetic acid between animals.  Once the animal was placed in the 

chamber we monitored 120 sec. of baseline movement followed by six, 30-second 

tones with a 30 sec. inter-tone interval for a total exposure of 7.5 minutes. From Day 

one through three, we recorded the animal’s movement in conditioning chambers to 

analyze the percentage of time spent freezing. We defined freezing as the lack of 

motion, except for movement acquired during respiration that lasted longer than one 

second. We obtained the data from a sensitive global motion-detection algorithm to 

calculate the percentage freezing, and used GraphPad Prim 6.0 for statistical analysis. 
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Slice Preparation 

 Mice were anesthetized with isoflurane followed by decapitation to isolate the 

brain. We removed the cerebellum and glued the posterior end of the brain to a cutting 

stage that was immediately placed in ice-cold oxygenated artificial cerebrospinal fluid 

(aCSF: 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 0.4 

ascorbic acid, and 25 D-glucose). From a vibrating blade microtome (VT1000S, Leica 

Microsystems), we prepared 400µm coronal sections at a slicing speed of 0.14mm/sec. 

and 1.00mm amplitude. Brain slices containing the hippocampus were cut at the mid-

sagittal line and transferred to a holding chamber filled with oxygenated-aCSF. After 

one hour the brain slices were individually transferred to a submersion chamber and 

continuously perfused with oxygenated aCSF at 31°C.  

Electrophysiology 

 To examine LTP in the CA3-CA1 hippocampal circuit, we placed recording and 

stimulating electrodes in the Schaffer Collateral region of CA1. The recording electrode 

was constructed from a Clark Borosilicate Standard Wall glass pipette pulled from a P-

97 Flaming-Brown pipette puller and filled with aCSF. The recording electrode was 

connected to an amplifier and subsequent recordings were digitized. The stimulating 

electrode was purchased from WPI (WPI, TST33C05KT) and current was generated 

from a stimulus isolator. The digitized tracings were acquired to a Dell PC with pClamp 

9.8. To collect field recordings, we first examined the fEPSP response to different 

stimulating current amplitudes to obtain an input-output curve. The fEPSP response 

was recorded from stimulus steps from 0-60 µA at 10 µA intervals. We evaluated the 

recordings and selected a stimulus intensity that produced 50% of the max fEPSP 
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response, and exhibited a symmetrical geometry related to the downward and upward 

slope of the fEPSP. The selected stimulus intensity was delivered to the slice every 15 

seconds to collect ten minutes of basal synaptic activity followed by a theta burst 

stimulation at 100Hz (4 pulses) where we recorded the fEPSP response to the same 

baseline stimulus for one hour every 15 seconds.  
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Chapter 3  

Alpha2-Chimaerin Alters Proliferative Properties in the Adult 
Mouse Hippocampus 

Abstract 
 
 The subventricular zone (SVZ) of the lateral ventricle and subgranular zone 

(SGZ) in the hippocampal dentate gyrus are two neural regions that exhibit ongoing 

proliferation in the adult brain. In particular, the SGZ contains neural stem cells (NSCs) 

that divide to generate neurons and glial cells, or self-renew by generating progenitor 

cells to maintain the NSC population within the hippocampus. On a cellular level, the 

molecular players that regulate NSC cell division, and physically maintain the SGZ 

niche, remain elusive. Eph receptor signaling regulates proliferation of NSCs within the 

SGZ, and suppresses stem cell division outside this neurogenic region. The Rac1-GAP 

α2-chimaerin can interact with EphA4 and EphB1 receptors, and is a well-characterized 

protein effector that transduces EphA4 surface signaling. Our preliminary findings 

suggest α2-chimaerin expression may be targeted to the SGZ in the adult hippocampal 

dentate gyrus, where EphR/ephrin signaling modulates aspects of NSC proliferation. 

Our goal was to elucidate the potential role of α2-chimaerin in the adult SGZ. Here, we 

demonstrate that α2-chimaerin may contribute to the formation and cell cycle 

progression of proliferative cells in the adult SGZ. Further, we identified a previously 

uncharacterized role of α2-chimaerin in oligodendrocyte precursor cell proliferation 
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throughout the dentate gyrus. Given that the loss of α2-chimaerin produced similar 

cellular phenotypes in the SGZ as EphB1 receptor knockout mice, our research 

supports further testing of α2-chimaerin’s activity as an Eph protein effector in the adult 

SGZ.   

Introduction 
 
 The SVZ of the lateral ventricle and SGZ in the hippocampal dentate gyrus are 

two neural regions that exhibit proliferative capabilities in the adult brain (Alvarez-Buylla 

and Garcıá-Verdugo, 2002; Eriksson et al., 1998). Unlike other brain regions that 

actively suppress proliferation, the SVZ and SGZ contain neural stem cells (NSCs) that 

actively divide, and give rise to neurons and glia, or self-renew by generating progenitor 

cells to maintain the NSC population within the hippocampus (Gage, 2002). On a 

functional level, a reduction of adult-born neurons has been correlated to an increase in 

basal anxiety in rodents (Revest et al., 2009). Administration of anti-depressants (ADs) 

increases the rate of adult neurogenesis, and presumably the efficacy of ADs is affected 

by the increased incorporation of these adult-born neurons into the existing granule 

layer circuitry (Revest et al., 2009). While adult hippocampal proliferation may be 

subjected to modulation from pharmacological stimuli, the molecular players that 

regulate NSC cell division and preserve the SGZ niche under physiological conditions 

remain elusive (Ming and Song, 2011).  

 The EphR/ephrin signaling complex has been shown to regulate neural 

proliferation within the SGZ, and prevent stem cell division in non-neurogenic areas 

throughout the brain (Chumley et al., 2007; Khodosevich et al., 2011). For example, 

mice that lack EphB1 receptors exhibit a significantly reduced population of NSCs, and 
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neuronal progenitors exhibit defects in polarity and cell positioning within the SGZ 

(Chumley et al., 2007). Additionally, ephrin-A2 and ephrin-A3 signaling in astrocytes can 

suppress stem cell division outside the SGZ region (Mori et al., 2005). In these non-

neurogenic areas, the loss of ephrin-A2 and ephrin-A3 signaling can induce presumably 

quiescent NSCs to generate adult-born neurons and glia (Jiao et al., 2008). 

Furthermore, mice that lack EphA4 exhibit a reduction in self-renewal of NSCs and have 

cell-cycle defects in neuronal progenitors, causing premature differentiation 

(Khodosevich et al., 2011). Taken together, these data suggest that EphR/ephrin 

signaling is important for various aspects of adult hippocampal proliferation.  However, 

the protein effectors that transduce EphR/ephrin-mediated signaling are largely 

unknown.  

 We have previously demonstrated that the Rac1-GAP α2-chimaerin can interact 

with EphA4 and EphB1/2 receptors and is a well-characterized effector protein that 

transduces EphA4-mediated surface signaling in axonal guidance (Beg et al., 2007; 

Iwasato et al., 2007; Kao et al., 2015; Wegmeyer et al., 2007a).  Here, we show that α2-

chimaerin is expressed in SGZ primary neurospheres, an in vitro free-floating culture 

derived from NSCs in the adult hippocampus. In α2-chimaerin mutant mice, there was a 

significant increase in proliferative cells within the SGZ, and primary neurosphere 

formation was increased compared to controls. Intriguingly, the loss of α2-chimaerin 

increased oligodendrocyte precursor cell (OPC) proliferation throughout the adult 

mouse dentate gyrus.  Taken together, our preliminary results suggest that α2-

chimaerin may contribute to the formation and cell cycle progression of proliferative 

cells in the adult SGZ, which may affect basal anxiety levels in rodents.  
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Results 

Alpha2-chimaerin is selectively expressed in the adult hippocampus 

We first evaluated α2-chimaerin protein expression in neural tissues throughout 

the body. In adult WT mouse tissue lysates, we detected strong α2-chimaerin protein 

expression in the brain and testis and minimal levels in the heart and lungs (Figure 

3.1A). We focused our analysis on the hippocampus because of its well-characterized 

role in learning and memory (Izquierdo and Medina, 1997; Squire, 1992). Currently, 

there is no commercially available α2-chimaerin antibody that is effective for 

immunohistochemical analysis. Thus, we took advantage of the lacZ reporter cassette 

in the α2-chimaerin mutant mouse to determine the spatial distribution, and temporal 

onset of α2-chimaerin expression in the early postnatal and adult hippocampus (Beg et 

al., 2007). Using this approach, we observed the onset of α2-chimaerin transcription in 

the pyramidal cell layer at P1 and expression in the granular cell layer at P5 (Figure 

3.1B). From P5-P25, β-galactosidase (β-gal)+ cells were observed in the pyramidal and 

granular neuronal cell layers (Figure 3.1B). In P60-P90 hippocampi we observed a 

reduction of β-gal+ cells within the dentate gyrus; however, expression remained in the 

pyramidal cell layer (PCL). High magnification images revealed that β-gal+ cells were 

selectivity lost in the granule cell layer (GCL), but remained in the SGZ and hilus region 

of P60 and P90 adult hippocampi (Figure 3.1B). These data suggest that the temporal 

reduction of the α2-chimaerin protein in adult animals, relative to early postnatal stages, 

may be due to a spatially distinct and a selective loss of α2-chimaerin in adult granule 

neurons as opposed to an overall reduction throughout the hippocampus.  
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Alpha2-chimaerin protein is expressed in proliferative cells 

 Given that α2-chimaerin transcription perdures in the adult SGZ, a stem cell 

niche in the adult hippocampus, we next utilized several in vitro approaches to 

determine if α2-chimaerin protein is expressed in neural stem cells. To this end, we 

cultured human embryonic neural stem cells (H9) and primary SGZ neurospheres, and 

demonstrated that α2-chimaerin protein was expressed in these cell types (Figure 3.2A-

B). Next, we generated and probed primary SVZ neurospheres, a stem cell niche lining 
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Figure 3.1 The spatial distribution of β-gal+ cells in the α2-chimaerin mutant mouse 
hippocampus 

(A) Tissue was harvested from WT mice at 5-weeks of age, and 20µg of protein were loaded 
per well  

(B) β-gal+ cells are present in the PCL from P1-P90. In the dentate, β-gal+ cells are 
observed at P5 and continue to P25. However, at P60 and P90 β-gal+ cells are present in 
the PCL, but are mostly cleared from the dentate. At higher magnification, β-gal+ cells are 
visible in the P60 and P90 dentate, but only in the SGZ and hilus, and are no longer visible in 
the GCL. Scale bar equals 120µm 
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the lateral wall of the lateral ventricle, revealing that α2-chimaerin protein is also 

expressed in this NSC-enriched population (Figure 3.2B). Overall, the results suggest 

that the α2-chimaerin protein is expressed in embryonic neural stems cells, and adult 

SGZ and SVZ primary neurospheres, which are distinct cellular populations enriched in 

adult neural stem cells as compared to whole tissue lysates.  

 To further characterize α2-chimaerin expression, we generated SGZ primary 

neurospheres from adult α2-chimaerin mutant mice and, using the β-gal reporter within 

the gene trap cassette, observed that a subset of β-gal+ cells distributed throughout the 

neurosphere (Figure 3.2C). At the single cell level β-gal+ and β-gal- cells were detected 

that co-localized with the proliferative cell marker, Ki67 (Figure 3.2E). 

 Since α2-chimaerin is expressed in Ki67+ cells in SGZ primary neurospheres, we 

next asked if the loss of α2-chimaerin affects the number of primary hippocampal 

neurospheres. We quantified the number of free-floating primary SGZ neurospheres in 

α2-chimaerin mutant mice and the α2-chimaerin mutant generated significantly more 

SGZ neurospheres compared to WT (Figure 3.2D). These data indicate that the loss of 

α2-chimaerin may increase the number neural stem cells capable of generating 

neurospheres, and suggests that, in vivo, the α2-chimaerin mutant hippocampus may 

exhibit altered levels of proliferative neural stem or progenitor cells.  

Postnatal hippocampal proliferation in the α2-chimaerin mutant mouse 

To assay SGZ proliferation, in vitro, we injected postnatal day (P)15 and 60 WT 

and α2-chimaerin mutant animals with 5-bromo-2’-deoxyuridine (BrdU) with a two-hour 

pulse before the animals were scarified and brains were isolated. From P15 animals, we 

quantified the number of BrdU+ cells in the SGZ, and observed no significant difference 
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between α2-chimaerin mutants and WT (Figure 3.3A-B). Additionally, we assayed P60 

animals, and observed no significant difference in the number of BrdU+ cells in the SGZ 

between genotypes (Figure 3.4A-B). We further evaluated SGZ proliferation by 

immunostaining hippocampal slices for Ki67.  At P15, we observed a significant 

reduction in the number of Ki67+ cells in the α2-chimaerin mutant (Figure 3.3A and E); 

however, the observation was transient, as we detected a significant increase in the 

total number of Ki67+ cells in the α2-chimaerin mutant hippocampus at P60 (Figure 

3.4A and E).  Taken together, these data suggest that the α2-chimaerin mutant SGZ 

does not display altered cell proliferation rates, as deduced by incorporation of BrdU 

over a two-hour pulse. However, the α2-chimaerin mutant SGZ displayed altered levels 

of proliferation, as measured by the number of Ki67+ cells. Given that α2-chimaerin 

mutants and WT controls exhibit equivalent numbers of BrdU+ cells in the SGZ, but that 

only the α2-chimaerin mutants display changes in numbers of Ki67+ cells, it is possible 

that the loss of α2-chimaerin alters cell cycle progression in proliferative cells within the 

hippocampus (See Discussion for details pg. 84).  

Intriguingly, we observed increased numbers of BrdU+ and Ki67+ cells in the 

granule cell layer and molecular layer of the α2-chimaerin mutant dentate gyrus (Figure 

3.3A and Figure 3.4A). Thus, we calculated the total number of proliferative cells 

localized throughout the dentate including the SGZ, GCL and ML.  At P15 and P60, 

there was no significant difference in total BrdU+ cells localized throughout the α2-

chimaerin mutant and WT dentate gyrus (Figure 3.3C and Figure 3.4C). We next 

quantified the total number of Ki67+ cells localized throughout the dentate gyrus.  
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Figure 3.2 Alpha2-chimaerin expression in proliferating cells 
 
(A) Western blot of H9, embryonic stem cells, grown on MEFs. Alpha2-chimaerin protein was 
detected in human embryonic neural stem cells grown on a bed of MEFs but not in MEFs grown 
alone as a control. Twenty micrograms of protein were loaded per well, and GAPDH protein was 
used as a loading control.  
 
(B) Western blots demonstrating that α2-chimaerin protein is present in neurospheres derived from 
the adult mouse SGZ and SVZ. Fifty micrograms of protein were loaded per well, and GAPDH 
protein was utilized as a loading control. 
 
(C) Upon X-gal exposure, we identified β-gal+ cells in neurospheres derived from the α2-chimaerin 
mutant hippocampus indicating α2-chimaerin transcription in primary neurospheres. The WT 
neurospheres were utilized as a negative control. Scale bar equals 25µm. 
 
(D) Alpha2-chimaerin mutants formed significantly more primary neurospheres per well as 
compared to WT. Primary neurospheres formed (mean ± SEM): WT = 119.4 ± 64.75 and α2 = 232.3 
± 28.8; N = 3, n = 18 per strain; unpaired two-tailed t-test, **p < 0.0001. Scale bar equals 100µm  
 
(E) Immunostaining combined with X-gal treatment revealed α2-chimaerin expression on a single 
cell level in primary neurospheres grown on glass coverslips in self-renewal media for 7 DIV. The 
arrow indicates a Ki67+ proliferative cell that is β-gal+; while the asterisks specify β-gal+ cells that 
are not co-localized with Ki67. Scale bar 5µm 
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At P15, we observed a significant reduction in Ki67+ cells in the α2-chimaerin mutant 

dentate gyrus followed by a significant increase at P60 compared to WT (Figure 3.3F 

and Figure 3.4F). Importantly, these data demonstrate that loss of α2-chimaerin alters 

the number of Ki67+ cells throughout the hippocampus and not just the SGZ.  

 Next, we evaluated the percent distribution of total BrdU+ and Ki67+ cells in the 

SGZ, GCL and ML in the α2-chimaerin mutant and wild type hippocampus. At P15, we 

calculated that 96% of total BrdU+ cells in the WT dentate gyrus were localized in the 

SGZ in WT (Figure 3.3D); whereas, 88% of the total BrdU+ cells in the α2-chimaerin 

mutant dentate gyrus were localized in the SGZ (Figure 3.3D). In the α2-chimaerin 

mutant 11% of the total BrdU+ cells were localized in the GCL and ML as opposed to 

4% in WT (Figure 3.3D). At P60 we observed a similar trend, in that 93% of the total 

BrdU+ cells were localized to the SGZ in control animals, and 84% were localized in the 

SGZ of the α2-chimaerin mutant, leaving 15% of the total BrdU+ cells in the GCL and 

MCL (Figure 3.4D) (control = 7% of total BrdU+ cells in the GCL and ML). Similar 

analyses were performed using Ki67 immunostained hippocampal slices. At P15, 

control animals exhibited 96% of total Ki67+ cells in the SGZ and 4% were localized in 

the GCL and ML (Figure 3.3G). α2-chimaerin mutants displayed 85% of total Ki67+ cells 

in the SGZ and 15% in the GCL and ML (Figure 3.3G). At P60, control animals 

expressed 96% of total Ki67+ cells in the SGZ and 4% in the GCL and ML (Figure 

3.4G). In P60 α2-chimaerin mutants, 88% of the total Ki67+ cells were localized in the 

SGZ, and 12% were localized in the GCL and ML (Figure 3.4G). These data suggest 

that the loss of α2-chimaerin disrupts the distribution of BrdU+ and Ki67+ cells in the 

young and adult hippocampus.  
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Figure 3.3 P15 hippocampal proliferation 
 
(A) Representative images of P15 wild type and α2-chimaerin mutant hippocampi immunostained to 
identify BrdU+ and Ki67+ cells. The dashed line delineates the GCL that contains mature neurons 
and the SGZ that houses neural progenitors. The ML contains dendrites from the granule neurons in 
the GCL. The yellow and red arrows identify BrdU+ and Ki67+ cells localized outside the SGZ, 
respectively. Scale bar 100µm 
 
(B) Quantification of BrdU+ cells localized in the SGZ (mean ± SEM): WT = 76.61 ± 2.2; N = 3, n = 31 
and α2 = 81.67 ± 2.4; N = 3, n = 27 
 
(C) Quantification of BrdU+ cells localized throughout the hippocampus (SGZ+GCL+MCL) (mean ± 
SEM): wt = 79.95 ± 2.86; N = 3, n = 31 and α2 = 91.17 ± 3.32; N = 3, n = 27 
 
(D) Quantification of the percentage of BrdU+ cells that reside in the GCL, SGZ and ML (mean ± 
SEM): WT: 96.1 ± 0.39%(SGZ), 2.40 ± 0.28%(GCL) and 1.49 ± 0.44%(ML); N = 3,n = 31 and α2 = 
88.5 ± 0.19%(SGZ), 7.62 ± 0.58%(GCL) and 3.87 ± 0.42%(ML); N = 3,n = 27; t-test, α = .05, Holm-
Sidak method; ***p < 0.0001 (SGZ), **p = 0.001 (GCL), and *p = 0.017 (ML) 
 
(E) Quantification of Ki67+ cells localized in the SGZ (mean ± SEM): WT = 128.7 ± 7.1; N = 3, n = 31 
and α2 = 105 ± 4.7 N = 3, n = 27; unpaired two-tailed t-test, **p = 0.0083  
 
(F) Quantification of Ki67+ cells localized throughout the hippocampus (SGZ+GCL+MCL) (mean ± 
SEM): WT = 168.1 ± 10; N = 3, n = 31 and α2 = 124.9 ± 6.9; N = 3, n = 27; unpaired two-tailed t-test, 
*p = 0.0347 
 
(G) Quantification of the percentage of Ki67+ cells that reside in the GCL, SGZ and ML (mean ± 
SEM): WT: 96.30 ± 1.56%(SGZ), 1.16 ± 0.30%(GCL) and 2.52 ± 0.91%(ML); N = 3, n = 31 and α2 = 
85.07 ± 0.65%(SGZ), 7.44 ± 0.488%(GCL) and 7.47 ± 0.73%(ML); N = 3, n = 27; t-test, α = .05, 
Holm-Sidak method; ***p = 0.0004 (SGZ), **p = 0.001 (GCL), and *p = 0.013 (ML) 
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Assessment of neurogenic defects in the dentate gyrus of the α2-chimaerin 

mutant mouse  

 Our data suggest that loss of a2-chimaerin results in increased number of 

proliferative cells localized outside the SGZ. This unique phenotype is also observed in 

EphB1 knockout mice, as they exhibit ectopically localized BrdU+ proliferative cells in 

the granule cell layer and molecular layer of the dentate gyrus (Chumley et al., 2007). 

Given the shared phenotype, we next assessed if the α2-chimaerin mutant mouse 

exhibited additional phenotypes observed in the EphB1-/- or the EphB1/2-/-double 

Figure 3.4 P60 hippocampal proliferation 
 
(A) Representative images of P60 wildtype and α2-chimaerin mutant hippocampus immunostained 
to reveal BrdU+ and Ki67+ cells. The yellow and red arrows identify BrdU+ and Ki67+ localized 
outside the SGZ, respectively. Scale bar equals 120µm 
 
(B) Quantification of BrdU+ cells localized in the SGZ (mean ± SEM): WT = 19.43 ± 2.9; N = 3, n = 
28 and α2 = 17.43 ± 0.83; N = 3, n = 28  
 
(C) Quantification of BrdU+ cells localized throughout the hippocampus (SGZ+GCL+MCL) (mean ± 
SEM): WT = 21.03 ± 4.9; N = 3, n = 28 and α2 = 20.84 ± 4.75; N = 3, n = 28  
 
(D) Quantification of the percentage of BrdU+ cells that reside in the GCL, SGZ and ML (mean ± 
SEM): WT: 93.34 ± 0.43% (SGZ), 0.92 ± 0.462% (GCL) and 5.73± 0.14% (ML); N = 3, n = 28 and 
α2 = 84.93 ± 1.53% (SGZ), 6.07 ± 1.67% (GCL) and 8.98 ± 0.38% (ML); N = 3, n = 28; t-test, α 
= .05, Holm-Sidak method; **p = 0.006 (SGZ), *p = 0.03 (GCL), and ***p = 0.005 (ML) 
 
(E) Quantification of Ki67+ cells localized in the SGZ (mean ± SEM): WT = 29.2 ± 1.7; N = 3, n = 26 
and α2 = 41 ± 1.5; N = 3, n = 28; unpaired two-tailed t-test, **p < 0.0001 
 
(F) Quantification of Ki67+ cells localized throughout the hippocampus (SGZ+GCL+MCL) (mean ± 
SEM): WT 30.3 ± 2.72; N = 3, n = 26 and α2 = 47.62 ± 3.98; N = 3, n = 28; unpaired two-tailed t-
test, *p = 0.0234 
 
(G) Quantification of the percentage of Ki67+ cells that reside in the GCL, SGZ and ML (mean ± 
SEM): wt: 95.21 ± 0.94%(SGZ), 2.38 ± 1.11%(GCL) and 2.40 ± 0.34%(ML); N = 3, n = 26 and α2 = 
88.20 ± 1.67%(SGZ), 4.84 ± 0.02%(GCL) and 6.94 ± 1.68%(ML); N = 3, n = 28  
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knockout animal. For example, the EphB1- /- and EphB1/2-/- double-knockout mice 

exhibit a reduction in granule cell layer size and volume.   While EphB1 knockout  

animals do not have a reduced granule cell layer volume, suggesting an EphB2-specific 

deficit, they do exhibit a decrease in the number and dendritic complexity of immature 

neurons in the SGZ (Catchpole and Henkemeyer, 2011; Chumley et al., 2007).  

Figure 3.5 The loss of α2-chimaerin does not alter the size of the granule cell layer, or 
number and dendritic complexity of DCX+ neurons in the SGZ  
 
(A) Representative Dapi stained images of the granule cell layer from P60 WT and α2-chimaerin 
mutant animals. Scale bar equals 50µm 
 
(B) Representative images of DCX+ cells from the P60 WT and α2-chimaerin SGZ. The rectangle 
boxes delineate the subgranular zone (SGZ); the granule cell layer (GCL), which was divided into 
three sections from beginning at GCL 1 (proximal to the SGZ) to GCL 3 (distal to the SGZ) and the 
molecular layer (ML). Scale bar equals 50µm  
 
(C) Quantification of the granule cell layer size in WT and α2-chimaerin (mean ± SEM): WT = 
71.17 ± 0.52µm and α2 = 71.39 ± 1.95µm; N = 4, n = 30 per genotype 
 
(D) Quantification of DCX+ cells in a 200µm2 quantification box (mean ± SEM): WT = 38.40 ± 4.87 
and α2 = 34.93 ± 2.08; N = 3, n = 15 per genotype.  
 
(E) Quantification of the percentage of DCX+ fluorescence intensity distributed across the SGZ, 
GCL1-3 and ML in wt and α2-chimaerin mice (mean ± SEM): WT = 24.61 ± 0.61%(SGZ), 24.92 ± 
0.97%(GCL1, 17.66± 0.33%(GCL2), 17.00 ± 0.41%(GCL3) and 15.79 ± 0.46 %(ML); N = 4, n = 20 
and α2 = 22.53 ± 1.13%(SGZ), 24.97 ± 0.54%(GCL1, 18.82 ± 0.46%(GCL2), 17.87 ± 
0.22%(GCL3) and 15.78 ± 0.10%(ML); N = 4, n = 20. 
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 To assess granule cell layer morphology, we measured the size of the granule 

cell layer by utilizing DAPI staining to label all cells within the section. We did not 

observe a difference in granule cell layer size in the α2-chimaerin mutant as compared 

to WT (Figure 3.5A). Additionally, we assessed the number and complexity of immature 

neurons by immunostaining hippocampal sections with an anti-doublecortin (DCX) 

antibody, and observed no significant difference in these metrics (Figure 3.5B). The 

partial phenocopy observed between EphB and α2-chimaerin mutants suggests that 

EphB signaling may utilize α2-chimaerin as a protein effector for distinct mechanisms, 

but that some EphB activity may be independent of α2-chimaerin activity.  

Identifying proliferative cells in the α2-chimaerin mutant hippocampus 

 We next aimed to determine the cellular identity of the BrdU+ and Ki67+ cells 

localized in the GCL and ML in the α2-chimaerin dentate gyrus using the following 

markers: immature neuronal marker, doublecortin (DCX); neuronal precursor marker, 

Nestin; neural stem cell marker, glial fibrillary acidic protein (GFAP) and apoptotic 

marker, cysteine-dependent aspartate-directed proteases (Caspase-3). From the 

immunostained hippocampal sections, we did not detect co-localization of GFAP, DCX, 

Nestin or Caspase with BrdU+ or Ki67+ cells localized in the α2-chimaerin mutant GCL 

and ML (Figure 3.6E-F). The results from the antibody screen suggest that the 

proliferative cells present in the granule cell layer and molecular layer of the α2-

chimaerin dentate gyrus are not immature neurons (DCX), astrocytes (GFAP), apoptotic 

cells (Caspase-3) or Nestin/GFAP expressing neural stem cells (Figure 3.6F-G). As 

expected, we did observe co-localization of the aforementioned cell markers with BrdU+ 

and Ki67+ cells in the SGZ of both α2-chimaerin mutant and WT (Figure 3.6A-D).  



 77 

To date, α2-chimaerin is thought to be exclusively expressed in CNS neurons 

(Hall et al., 2001). To determine if other CNS cell types express α2-chimaerin protein, 

we probed purified cell type lysates with a specific α2-chimaerin antibody.  Using this 

approach, we identified that α2-chimaerin is robustly expressed in oligodendrocyte 

precursor cells (OPCs), but largely absent in Schwann cells, microglia and astrocytes 

(Figure 3.6G). Due to the robust expression in OPCs, we sought to determine if the 

ectopic proliferative cells in the α2-chimaerin dentate gyrus were positive for OPC 

markers.  

The loss of α2-chimaerin induces proliferation of oligodendrocyte 

precursor cells in the hippocampus 

 
 To identify OPCs, we utilized an antibody against the oligodendrocyte 

transcription factor-2 (Olig2), a protein expressed in OPCs that is a multifunctional 

regulator of proliferation throughout the CNS, and a key-determinant for OPC 

maturation to oligodendrocytes (Takebayashi et al., 2000). Confocal Z-series images of 

the α2-chimaerin mutant dentate gyrus revealed BrdU+/Olig2+ cells localized outside 

the SGZ in the α2-chimaerin mutant (Figure 3.7A). We further analyzed the images by 

counting the number of BrdU+ cells localized outside the SGZ (Figure 3.7B-D). From 

these cells, we quantified the number of BrdU+/Olig2+ and BrdU+/Olig2- cells in the 
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GCL and ML, respectively.  In the GCL, we observed a significant increase in BrdU+ 

cells, and a significant number of these cells were Olig2- in the α2-chimaerin mutant 

(Figure 3.7C). In the ML, the α2-chimaerin mutant exhibited an overall increase in 

BrdU+ cells, and exhibited both a significant increase in Olig2+ and Olig2- cells 

compared to control (Figure 3.7D). The data suggest that OPC proliferation in the ML is 

increased by the loss of α2-chimaerin.  

Figure 3.6 Cell marker screen to identify aberrant proliferative cells in the α2-chimaerin 
hippocampus 
 
(A). Representative images demonstrating the specificity of cell markers utilized in the antibody screen:  
Nestin antibodies label Type 1-2b stem cell/progenitor cells in the SGZ of the adult hippocampus. As 
expected, we observed Ki67+ (magenta arrows) and Nestin+ cells (green arrows) throughout the SGZ.  
The white arrows mark co-labeled Nestin+/Ki67+ cells. Scale bar equals 80µm 
 
(B). GFAP antibodies label Type 1 neural stem cells and the cytoskeleton of mature astrocytes. The 
representative image reveals a BrdU+/GFAP+ Type 1 stem cell in the SGZ. Scale bar equals 4µm.  
 
(C) DCX antibodies label the cytoskeleton of immature neurons. The representative image reveals 
DCX+ immature BrdU+ and BrdU- neurons in the adult SGZ. The BrdU+ cells localized to the SGZ that 
display DCX+ extensions (white arrows) indicate newly generated immature neurons. Scale bar equals 
4µm 
 
(D) Caspase-3 antibodies label cells that are targeted for apoptosis. The representative images capture 
a Caspase-3+ cell (white arrow) and a BrdU+/Caspase- cell in the dentate hilus. Scale bar equals 4µm 
 
(E) Aberrant BrdU+ cells in the α2-chimaerin mutant dentate gyrus. The yellow arrows delineate BrdU+ 
cells localized outside the SGZ. In this brain section, we do not observe co-labeling with DCX or GFAP. 
Scale bar equals 100µm 
 
(F) An aberrant Ki67+ cell in the α2-chimaerin mutant dentate gyrus. The magenta arrows mark a 
Ki67+ cell outside the SGZ that is not co-labeled with Nestin antibodies. The DAPI staining is used as a 
control to label cellular DNA. Scale bar equals 100µm 
 
(G) Western blot analysis demonstrates that, in addition to being expressed in neurons, the α2-
chimaerin protein is expressed in OPCs, but not in astrocytes, microglia or Schwann cells; purified cell 
lysates were derived from human samples and loaded at 30µg/well. 
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Behavioral defect in α2-chimaerin mutant mouse 

The marble-burying test has been postulated to measure basal anxiety in rodents 

(Deacon, 2006). Experimentally, animals that are injected with anxiolytics such as 

diazepam, chlordiazepoxide or pentobarbitone bury fewer marbles than control-treated 

rodents suggesting that a reduction in basal anxiety attenuates marble burying behavior 

in mice (Handley, 1991). In the brain, anxiolytics have been demonstrated to influence 

adult neurogenesis in the hippocampus presumably by causing an increase in adult-

born neuron proliferation, survival and incorporation into existing neuronal circuitry 

(Deng et al., 2010; Huang et al., 2008; Ming and Song, 2011). Given the altered 

proliferation levels in the α2-chimaerin mutant hippocampus, we sought to determine if 

basal anxiety was altered in the α2-chimaerin mutant mouse.  

Figure 3.7 The loss of α2-chimaerin results in aberrant proliferation of oligodendrocyte 
precursor cells 
 
(A) Aberrant BrdU+ cell localized in the ML of the α2-chimaerin dentate gyrus co-localizes with Olig2. 
Scale bar equals 5µm  
 
(B) Representative images of the α2-chimaerin mutant and WT dentate gyrus immunostained to label 
BrdU+ and Olig2+ cells. The green arrowheads highlight BrdU+ cells outside the SGZ and red 
arrowheads mark Olig2+ cells. In the Olig2 panel, the gray arrowheads mark BrdU+/Olig2- cells. In the 
Merge panel, white arrowheads label BrdU+/Olig2+ cells. Scale bar equals 200 µm 
 
(C) Quantification of BrdU+ cells in the GCL (mean ± SEM): WT = 0.81 ± 0.37; N = 3,n = 11 and α2 = 
3.91 ± 0.84; N = 3,n = 12; unpaired two-tailed t-test, **p = 0.004. Quantification of BrdU+/Olig2+ cells in 
the GCL (mean ± SEM): WT = 0.18 ± 0.18; N = 3,n = 11 and α2 = 1.00 ± 0.53; N = 3,n = 12. 
Quantification of BrdU+/Olig2- cells in the GCL (mean ± SEM): WT = 0.63 ± 0.36; N = 3,n = 11 and α2 = 
2.91 ± 0.55; N = 3,n = 12; unpaired two-tailed t-test, **p = 0.003 
 
(D) Quantification of BrdU+ cells in the ML (mean ± SEM): WT = 2.00 ± 0.61; N = 3,n = 11 and α2 = 
8.33 ± 1.32; N = 3,n = 12; unpaired two-tailed t-test, **p = 0.0004. Quantification of BrdU+/Olig2+ cells 
in the ML (mean ± SEM): WT = 1.81 ± 0.61; N = 3,n = 11 and α2 = 5.91 ± 1.37; N = 3,n = 12; unpaired 
two-tailed t-test, *p = 0.0153. Quantification of BrdU+/Olig2- cells in the ML (mean ± SEM): WT = 0.18 ± 
0.122; N = 3,n = 11 and α2 = 2.41 ± 0.70; N = 3,n = 12; unpaired two-tailed t-test, **p = 0.0067 
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 After a 30-minute exposure to a 3x4 grid of equally spaced marbles (12 marbles 

total), we observed that α2-chimaerin mutants buried significantly fewer marbles as 

compared to WT controls (Figure 3.8A-B). Furthermore, we extended the assay for 90 

minutes and α2-chimaerin mutants buried approximately the same number of marbles 

as compared to the 30-minute examination.  A potential confounding factor is that α2-

chimaerin mutant mice exhibit a rabbit-like hopping gait locomotor phenotype, thus the 

inability to bury marbles might be due to decreased overall movement.  Live video 

tracking during these tasks revealed that α2 mutant mice explore the environment 

equally as well as controls, demonstrating that reduced movement is unlikely to explain 

this phenotype (Figure 3.8B). Our behavioral 

assessment provides preliminary data 

suggesting that α2-chimaerin mutants may 

exhibit a reduction in basal anxiety, which 

maybe mediated through altered dynamics 

in hippocampal proliferation or other brain 

areas such as a the cortex (Davidson, 

2002). 

Figure 3.8 Marble-burying test 
 
(A) The left image is a representation of the 3x4 marble grid at the start of the marble burying 
examination. The center and right images represent marble burying activity of wt and α2-chimaerin 
mutant mice after a 30-minute exposure. Scale bar equals 5cm  
 
(B) Live video tracking of mice during the marble burying text. The tracer tracks core body 
movement. Scale bar equals 5cm 
 
(C) Quantification of marbles buried (mean ± SEM): After 30 minutes: WT = 10.2 ± 0.46; N = 9 and 
α2 = 5.1 ± 0.98; N = 9. After 1.5 hours: WT = 10.80 ± 0.37 and α2 = 4.4 ± 1.7; N = 5 per genotype; 
one-way ANOVA F(3,25) = 11.29,  **p < 0.0001. 
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Discussion 

The state of SGZ proliferation in the α2-chimaerin mutant mouse 

 We assessed neural proliferation in the α2-chimaerin mutant by quantifying the 

number of Ki67+ and BrdU+ proliferative cells in the SGZ. Unlike BrdU, Ki67 is an 

endogenous protein that is expressed during all proliferative stages of the cell cycle (G1, 

S, G2 and Mitosis), and therefore identifies the proliferative fraction of cells within the 

SGZ (Figure 3.9) (Kee et al., 2002; Taupin, 

2007). For example, progeny of adult born 

neurons will express Ki67 during all proliferative 

stages, and will incorporate BrdU only during 

DNA replication (S-phase). However, as the 

neuron matures it will suppress Ki67 expression 

and enter the post-mitotic, G0 cell cycle phase 

(Endl and Gerdes, 2000; Eriksson et al., 1998). 

Although the loss of α2-chimaerin altered the 

number of Ki67+ cells in the SGZ, we did not 

observe a significant difference in the level of proliferative neural progenitor cells that 

incorporated BrdU. Taken together, the altered level of Ki67+ cells, but relatively 

equivalent incorporation of BrdU between α2-chimaerin mutants and WT mice suggest; 

1) that the rate of neural proliferation in the SGZ is unaffected by the loss of α2-

chimaerin, and 2) that the loss of α2-chimaerin may alter cell cycle 

dynamics/progression in the adult SGZ as heightened levels of Rac1-GTP, observed in 

the alpha2-chimaerin mutant animal, can affect cell-cycle progression both, in vitro and 

M

G1G2

G0

S

cell
cycle

BrdU

Ki67

Figure 3.9 Cell cycle schematic 
BrdU is incorporated into cells 
undergoing DNA replication in the S-
phase, while Ki67 marks all 
proliferative stages of the cell cycle.  



 84 

in vivo (Michaelson et al., 2008). For example, cancerous cells exhibit high levels of 

Rac1-GTP, which has been found to contribute to aggressive growth and metastasis 

(Dokmanovic et al., 2009; Kamai et al., 2004; Schnelzer et al., 2000). In the α2-

chimaerin mutant SGZ, elevated Rac1-GTP may modulate temporal aspects of cell 

cycle progression in neural progenitor cells, and delay/accelerate progression out of the 

proliferative stages of the cell cycle (Michaelson et al., 2008).  

Is there a potential role of α2-chimaerin in oligodendrocytes? 

 Our results reveal a previously uncharacterized role for α2-chimaerin in 

oligodendrocytes. We have identified that the loss of α2-chimaerin results in an increase 

in oligodendrocyte precursor proliferation throughout the postnatal dentate gyrus, and 

that α2-chimaerin is expressed in human OPCs. In the vertebrate brain and spinal cord, 

OPCs generate oligodendrocytes that myelinate axons.  The insulation provided by the 

myelin increases the speed and efficiency of axonal signal propagation affecting neural 

network communication (Jackman et al., 2009). In diseased states, such as Multiple 

Sclerosis (MS), axons in the brain and spinal cord are demyelinated causing a 

disruption of nervous signal propagation resulting in a wide range of physical, mental 

and, sometimes, psychiatric problems (Alonso and Hernán, 2008; Ferguson et al., 

1997). Current research has pointed to an autoimmune deficiency that destroys myelin, 

and another possibility is that genetic mutations in oligodendrocyte and/or 

oligodendrocyte precursor cells fail to establish or maintain proper axonal myelination 

(Franklin, 2002; Kuhlmann et al., 2008). The future direction of this work is to determine 

if the elevated OPC proliferation observed in the α2-chimaerin mutant results in the 

increased formation of oligodendrocytes. Likewise, α2-chimaerin may be involved in the 
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morphological maturation of oligodendrocytes where it could play a role in Rho-

GTPase-dependent regulation of cytoskeletal proteins that establish oligodendrocyte 

arbors (Jackman et al., 2009). Previous reports also suggest α2-chimaerin may be 

involved in oligodendrocyte maturation, as α-chimaerin was 11 among 21 actin 

cytoskeletal genes that were upregulated more than two fold during oligodendrocyte 

differentiation (Nielsen et al., 2006). Given these preliminary findings, a detailed 

assessment of α2-chimaerin function in oligodendrocytes/OPCs will be important in 

elucidating mechanisms that may combat the cellular disruption in MS.   

Is α2-chimaerin involved in EphA or EphB control over SGZ proliferation? 

Mounting evidence suggests that EphR/ephrin signaling is an important regulator 

of adult neurogenesis (Ming and Song, 2011; Zhao et al., 2008). For example, loss of 

EphA or EphB signaling reduces the number of adult SGZ neural stem cells and 

produces prematurely differentiated neuronal progenitors (Chumley et al., 2007; 

Khodosevich et al., 2011). Additionally, ephrin-A/B presenting cells that surround the 

SGZ have been observed to influence aspects of neurogenesis such as polarity, 

migration and proliferation (Jiao et al., 2008). Our lab, along with others have 

demonstrated that α2-chimaerin interacts with EphA4 and EphB1/2 receptors, and one 

possibility is that α2-chimaerin acts downstream of select EphA or EphB signaling in the 

SGZ niche (Beg et al., 2007; Iwasato et al., 2007; Shi et al., 2007; Wegmeyer et al., 

2007a). Interestingly, the loss of EphB1 results in BrdU+ proliferative cells ectopically 

localized to the granule cell layer and molecular layer (Chumley et al., 2007). Similarly, 

our results demonstrate that the loss of α2-chimaerin results in BrdU+ cells present in 

the granule cell layer and molecular layer of the dentate gyrus, suggesting that α2-
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chimaerin may act downstream of EphB1 signaling in the SGZ. However, unlike EphB1 

receptor studies thus far, we conducted a cell-marker antibody screen and identified 

that a percentage of the BrdU+ cells are OPCs. It would be interesting to evaluate if 

EphB1 knockout mice also display altered OPC proliferation similar to the α2-chimaerin 

mutant mouse. A future goal would be to test the potential role of EphB1 and α2-

chimaerin in cell cycle progression of neural stem cells in the adult SGZ.  

Marble burying defects in the α2-chimaerin mutant animal 

 The marble-burying test has been used to measure basal anxiety in rodents 

(Handley, 1991). Administration of anxiolytics reduces basal anxiety in mice resulting in 

a reduction of buried marbles (Handley, 1991; Huang et al., 2008). Anti-anxiety drugs 

have been found to increase adult neurogenesis, which may be the cellular correlate to 

the reduction of basal anxiety (Eriksson et al., 1998; Huang et al., 2008; Ming and Song, 

2011). Our assessment of the α2-chimaerin mutant mouse reveals that the mutant 

buries less marbles compared to WT, suggesting that these mice exhibit a reduction in 

basal anxiety. One possibility is that altered aspects of hippocampal proliferation 

dynamics such as cell cycle progression or OPC proliferation due to the loss of α2-

chimaerin may regulate basal anxiety levels.  

 A future direction will be to generate an α2-chimaerin mutant mouse via 

Tamoxifen-inducible Nestin:CreER-loxP recombination. Using this approach, we can 

selectively ablate α2-chimaerin in neural stem/progenitor cells in the adult hippocampus 

(Lagace et al., 2007). One potential outcome is that these cell-type specific knockouts 

would bury less marbles. If true, such data would suggest that the loss of α2-chimaerin 

in Nestin+ cells of the adult hippocampus impacts aspects of adult neurogenesis.  
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Methods 

Neurosphere preparation 

 Primary free-floating SGZ neurospheres were prepared from P60 WT and α2 

mutant mice. In short, we dissected hippocampi from three to four animals per strain, 

and collected the tissue in a 15mL conical tube containing ice-cold dissection media 

HBSS without MgCl2 CaCl2 containing 10mM HEPES. The isolated hippocampi were 

washed once with HBSS + 10mM HEPES to remove small tissue debris then the 

solution was replaced with 1% Tyrpsin + 0.01% DNaseI in HBSS + 10mM HEPES. The 

hippocampi were trypsinized in 0.025% trypsin solution for 20 minutes at 37°C, then 

triturated with a fire-polished nine inch glass Pasteur pipette. The cell suspension was 

centrifuged at 500 rpm for seven minutes at 4°C, re-suspended in 1mL of dissection 

media and filtered with a 40µm mesh cell strainer to remove large cellular debris. The 

cells where then counted in Trypan Blue to exclude dead cells and plated at 10,000 

cells per 35mm well in 2mLs of self-renewal media (DMEM:F12, N2, B27, Fibroblast 

growth factor (20ng/mL) and Epidermal growth factor (20ng/mL)). For 10 DIV, the cell 

suspension was left undisturbed in the incubator (37°C/5%CO2/90% humidity) to 

prevent neurosphere doublet formation. After 10 DIV, we recorded the number of 

primary neurospheres formed in each well. To prepare primary adherent SGZ 

neurospheres, the cell suspension was plated on a 12mm glass coverslip coated with 

50ug/uL Poly-D lysine and 200ug/uL of Fibronectin in self-renewal media. After 7 DIV 

the adhered cells were fixed and processed for immunocytochemistry.  
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BrdU injections, perfusion and brain sectioning 

 To evaluate SGZ proliferation we injected WT and α2-chimaerin mutant animals 

with 5-bromo-2’-deoxyuridine (BrdU), a synthetic thymine analog that incorporates into 

cellular DNA during the synthesis (S)-phase of the cell cycle (Kee et al., 2002), at  

(200mg/1kg of body weight). The animals were sacrificed two hours post-BrdU 

intraperitoneal (IP) injection to obtain a snapshot of SGZ proliferation. All BrdU-injected 

mice were sacrificed through a cardiac perfusion where the animal was first 

administered an IP injection of a 10/20 mg/mL Ketamine/Xylazine solution. After the 

animal was unresponsive to tail and paw pinches, we completed the cardiac perfusion 

by passing 5mLs of PBS followed by 5mLs of 4% PFA diluted in PBS. Physical signs of 

the fixation process were noted, including blood clearing of the liver, tail flinching and 

body stiffening. We dissected the brain and post-fixed the tissue overnight in 4% PFA at 

4°C. The following day the brains were washed in PBS and mounted in 2% low-melt 

agar. Utilizing a VT2-12000 microtome, we collected 50µm coronal sections and placed 

each individual slice in a 15mm well of a 24-well cluster plate containing 1mL of 

PBS/well. After control and α2-chimaerin mutant slices were prepared, we anatomically 

matched the slices to ensure similar hippocampal sections were analyzed for the 

experiment. For immunostaining, we divided the slices into groups where odd numbered 

slices were stained with BrdU antibodies, and even numbered slices were treated with 

Ki67 antibodies, as Ki67 is an endogenous nuclear protein expressed during all 

proliferative stages of the cell cycle (Kee et al., 2002),. 
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Immunostaining 

 Coronal brain slices were blocked and permeabilized in 5% Donkey serum 

containing 0.1% TX-100 for two hours at 4°C. To assay BrdU+ proliferative cells, 

coronal brain sections were incubated in 2N HCl at 37°C for 20 minutes to denature 

DNA before blocking and permeabilization. The brain slices were incubated in primary 

antibodies overnight followed by incubation with secondary antibodies for two hours at 

room temperature. Afterwards, three to six coronal sections were mounted on 

Superfrost microscope glass slides with Fluoromount-G mounting media.   

Imaging and data analysis 

 All immunostained hippocampi sections were imaged with a Leica multi-channel 

fluorescent microscope, or a Nikon A1 confocal microscope to collect Z-series images. 

We utilized the Cell Counter Plugin in ImageJ image processing software to count and 

categorize the localization of BrdU+ and Ki67+ cells throughout the dentate. We 

calculated the mean BrdU+ and Ki67+ cells per hippocampi that were localized in the 

subgranular zone, granule cell layer and molecular layer of the dentate gyrus. For 

statistical analysis we utilized GraphPad Prism 6.0.  
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Chapter 4  

Discussion 

Temporal and spatial profile of α2-chimaerin 
 
 In vertebrates, Rac1 is expressed in most cell types and its activity is critical for 

cytoskeletal dynamics during cell growth, migration and proliferation. Given its various 

functions, Rac1 activity and its regulators, GEFs and GAPs, are often altered in 

diseased states such carcinogenesis, where cells are transformed exhibiting expansive 

proliferation and invasive outgrowth (Etienne-Manneville and Hall, 2002; Schnelzer et 

al., 2000). 

 Numerous GEF and GAP isoforms have been identified in various cell types, and 

single cells that express multiple GEF and GAP isoforms may functionally 

compartmentalize these modulatory proteins to distinct subcellular regions (Bos et al., 

2007; Cherfils and Zeghouf, 2013). Additionally, GEFs and GAPs can be temporally 

regulated, limiting expression to developmental periods or expressed continuously into 

adulthood to regulate a particular function (Cherfils and Zeghouf, 2013). Thus, 

assessing the precise spatial and temporal profile of α2-chimaerin is an important goal 

in better understanding the molecular and cellular mechanisms of α2-chimaerin function. 

In tissue, we observed relatively high levels of α2-chimaerin protein in the brain 

and testis and, to a lesser extent, in the heart and lungs. We did not detect α2-chimaerin 

expression in the liver, kidney or spleen. To determine α2-chimaerin transcription levels 
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in the nervous system, we utilized the lacZ reporter cassette expressed in the α2-

chimaerin mutant mouse.  Using this approach, we observed a dense population of β-

gal+ cells in neuronal layers of the hippocampus, corroborating a previous report which 

detected α2-chimaerin expression in neurons (Iwata et al., 2014). When we looked at 

expression in other neural cells, we observed α2-chimaerin expressed in 

oligodendrocyte precursor cells, but not in Schwann cells of the peripheral nervous 

system or astrocytes and microglia from the CNS. Taken together, these data 

demonstrate another layer of regulation within the nervous system. 

  Given that the role of α2-chimaerin in the hippocampus was a focus for this 

dissertation, we also evaluated the spatial and temporal distribution of α2-chimaerin 

among hippocampal neuronal populations. Our investigation of β-gal+ cells from the α2- 

chimaerin mutant mouse revealed that granule neurons may suppress α2-chimaerin as 

the hippocampal dentate gyrus matures and, as a result, α2-chimaerin may be limited to 

pyramidal neurons in the stratum pyramidale of the adult hippocampus.  Consequently, 

one potential reason for the temporal reduction of α2-chimaerin, beginning at P6, may 

be due to this suppression of α2-chimaerin from the granule cell layer, suggesting that 

α2-chimaerin is only developmentally regulated in granule neurons (Buttery et al., 2006).  

While our studies suggest α2-chimaerin expression is present in granule neurons up to 

P25, one caveat is that the lacZ reporter only informs of the onset of gene transcription, 

but does not inform about protein expression (Gossler et al., 1989).  Nevertheless, our 

data suggests that β-gal+ cells in the dentate gyrus are differentially regulated as 

compared to pyramidal neurons and, taken together; these findings support further 

inquiry into the differential expression of α2-chimaerin across neuronal subsets within 
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the hippocampus. More importantly, these findings may impact the interpretation of our 

data in characterizing the role of α2-chimaerin in various aspects of hippocampal 

neuronal morphology and function. 

One possibility that arose from our analysis of mature primary neurons and adult 

brain slices, is that mature and adult hippocampal neurons may exhibit α2-chimaerin-

dependent regulation of Rac1 in pyramidal neurons, but α2-chimaerin-independent 

regulation in granule neurons. Such a scenario could explain the slight, but statistically 

significant, changes in dendritic morphology and synaptic connectivity that we quantified, 

as we included both pyramidal and granule neurons in our analysis. Furthermore, our 

results may be an underrepresentation of the true impact of α2-chimaerin in the 

hippocampus due to the fact that we assessed hippocampal neurons as a whole 

(pyramidal and granule neurons) versus discrete analysis of only actively expressing 

α2-chimaerin neurons. The development of an α2-chimaerin antibody with 

immunostaining capabilities is necessary for further investigation.  

 Overall, our assessment of the spatial and temporal distribution of α2-chimaerin 

has provided new insight into α2-chimaerin expression in the hippocampus and 

throughout the body. In the hippocampus, our analyses suggest that α2-chimaerin may 

exhibit “intrahippocampal regulation”, where it may have only a developmental role in 

granule neurons, but an on-going role in pyramidal neurons that persists into adulthood.  

The impact of α2-chimaerin at the synapse 
 
  Most excitatory connections in the brain consist of the presynaptic axonal 

terminal, the postsynaptic dendritic spine and the surrounding glial cell, which together 

form a single synaptic connection (Araque et al., 1999). From our analysis, we reveal a 
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divergence from the well-documented observation that a postsynaptic spine forms a 

singular synapse with a single presynaptic axon terminal (Hell and Ehlers, 2008). In α2-

chimaerin mutant neurons, we often detected two to three synapses on a single 

branched dendritic spine. This unusual phenotype is likely due to defects in the 

presynaptic axon terminal, the postsynaptic dendritic spine, or from both of these 

neuronal partners. As astrocytes do not express α2-chimaerin it is unlikely they play a 

role in the phenotype.  

 An outstanding question is when and how are atypical branched spines formed 

as a result of the loss of α2-chimaerin. In an attempt to explain this, we generated two 

working models that describes when and how irregular branched dendritic spines might 

be formed in the α2-chimaerin mutant hippocampus.  

When are branched spines formed?  
 
 Under wild type conditions, 

branched spines are transiently 

observed during the development 

of neuronal connectivity and are 

competitively refined/pruned during 

developmental periods of synaptic 

maintenance (Figure 4.1) (Ethell 

and Pasquale, 2005; Petrak et al., 

2005). However, upon the loss of 

α2-chimaerin, the intracellular processing that drives the competitive refinement to 

prune multiple connections on a single dendritic spine may be altered allowing atypical 

Figure 4.1 Model #1: Branched spines formed 
during development  
Polymorphic spines are formed during development 
and, despite synaptic refinement, persist in the adult 
brain. 

synaptic 

re!nement

Scenerio #1- Polymorphic spines formed during development

α2

WT
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spines and polysynaptic connections to persist into the adult brain. Furthermore, 

EphR/ephrin signaling has been demonstrated to direct and regulate axonal migration; 

however, the loss of α2-chimaerin impacts EphR/ephrin control over this process 

causing aberrant synapse formation during spinal cord development that persists into 

the adult animal (Beg et al., 2007; Kao et al.; Kao et al., 2015). A future goal of this work 

is to determine if EphR/ephrin signaling targets α2-chimaerin activity to refine synapses 

in the hippocampus.   

 In the mature α2-chimaerin mutant brain, branched spines can form due to 

synaptic activity, which drives irregular outgrowth and polysynaptic connectivity from 

mushroom-shaped spines (Figure 4.2). For example, the persistent increase in synaptic 

strength following high frequency 

stimulation, also known as long-term 

potentiation (LTP), can cause 

cytoskeletal rearrangements in the 

dendritic spine head due to an 

enhancement of F-actin 

polymerization (Chen et al., 2007). 

As a result, these actin-dependent 

cytoskeletal changes have been 

found to remodel the receptor topography of the synaptic active zone (Matus, 2000).  

 In this scenario, a key regulatory principle is that actin-based remodeling during 

synaptic connectivity must be transient in nature, because non-regulated actin 

polymerization would cause a continuous expansion of the dendritic spine head 

Figure 4.2 Model #2: Branched spines form as a 
result of synaptic activity. Polymorphic spines are 
formed upon synaptic activity as a result of altered 
Rac1 regulation at the synapse. 

synaptic 
activity

Scenerio #2- Polymorphic spines induced by activity 

α2

WT
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resulting in a loss of the in-step and phasic structural plasticity that is coupled to activity. 

Under normal conditions, α2-chimaerin would provide the “brakes” after Rac1-GTP 

induced cytoskeletal re-arrangement of the dendritic spine head during synaptic activity. 

Upon the loss of α2-chimaerin, Rac1-GTP-mediated actin dynamics aberrantly continue 

after the synaptic signaling event; thereby inducing the formation of the branched spines 

and polysynaptic connections observed in the α2-chimaerin mutant. Our 

electrophysiological results suggest that, on a circuit level, these spines do not 

negatively affect function, and are the result of altered Rac1 regulation. However, not all 

neurophysiology encompasses the strengthening of synaptic connections. Instead, 

distinct forms of signaling such as long-term depression (LTD) can induce a persistent 

weakening of synaptic connections, dendritic spine shrinkage and ultimately a loss of 

synaptic connections (Ito, 1989). On a broad level, LTD is thought to prevent memory 

saturation, by depotentiating the circuit-level effects of LTP (Artola and Singer, 1993; 

Mulkey and Malenka, 1992).  Given these parameters, one possibility is that α2-

chimaerin mutant mice exhibit attenuated LTD, as high Rac1 levels may prevent the 

activity-induced structural collapse of dendritic spines, and thereby the reduction of 

synaptic connections.  

How are branched spines formed?  
 
 One possibility is that polysynaptic dendritic spines are the result of a single axon 

that redundantly synapses on a single dendritic spine (Figure 4.3). Since α2-chimaerin 

expression is also lost in the dendritic spine, the postsynaptic structure compliments the 

aberrant presynaptic partner by developing multiple spine heads from a single dendritic 

protrusion; hence, the significant increase in polysynaptic and branched spines in the 
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α2-chimaerin mutant. Another possibility is that polysynaptic dendritic spines arise from 

aberrant outgrowth at the dendritic spine head that breaks away portions of the 

postsynaptic density thus forming connections with different afferent axon terminals 

(Figure 4.3). 

 From a mechanistic perspective, it is likely that heightened Rac1-GTP in the 

dendritic spine or axon drive the altered cytoskeletal dynamics represented in both of 

these models (Figure 4.3). Rac1 is a central regulator of dendritic architecture, and 

during early-stages of development Rac1-GTP is important for activating various 

effectors that promote initial dendrite outgrowth and branching (Govek et al., 2005). 

Future studies to determine when and how polymorphic dendritic spines are formed will 

be instrumental to our understanding of α2-chimaerin function in neurons during 

development, and in response to activity. Further research is required to address our 

working model, and combining live-imaging experiments with inducible neural activity 

paradigms would be an appropriated approach to address these outstanding questions.  

 

 

Neuronal circuitry in α2-chimaerin mutants 

 Despite a simplified dendritic arbor, reduction in spine density and an increase in 

dysmorphic spines, α2-chimaerin mutant neurons exhibit no change in synaptic strength 

Figure 4-3 How are polysynaptic branched synapses 
formed? 
 
A) Axonal terminal redundantly synapses on a single 
branched spine.  
 
B) Aberrant outgrowth of the dendritic spine head synapses 
with multiple axonal terminals 

A. B. 
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following high frequency stimulation induced long-term potentiation. One possibility is 

that synapse density is not negatively affected in α2-chimaerin mutant hippocampal 

neurons. The increased synapse density in α2-chimaerin mutants can be partially 

explained by the significant increase in multiple synapses formed on atypical branched 

spines. These polymorphic spines exhibit the second highest percentage of protrusion-

based synapses in the α2-chimaerin mutant, and may be functional similar to a 

mushroom-shaped spine. For this reason, the simplification and reduction of dendritic 

arbors and spines in the α2-chimaerin mutant is perhaps functionally compensated 

through an increase in synaptic connections that is partially attributed to polysynaptic 

dendritic spines.  

Alpha2-chimaerin is an essential regulator of Rac1-mediated control over 
neuronal morphology 
 

 Our data demonstrate that α2-chimaerin mutant neurons exhibit elevated Rac1-

GTP levels in hippocampal neurons, and increased polymerized F-actin in dendritic 

spines. For this reason, we analyzed morphological characteristics of mature α2-

chimaerin mutant neurons including dendritic complexity and dendritic spine 

morphology. In agreement with previous reports that evaluated neuron morphology from 

overexpression of constituently active Rac1-GTP, we similarly observed a simplification 

of dendritic arborization, and an increase in abnormal dendritic spine density in α2-

chimaerin mutant neurons (Govek et al., 2005; Nakayama et al., 2000; Nobes and Hall, 

1995). However, we did not observe an accumulation of dendritic spines as previously 

reported (Hall, 1998; Luo, 2000). One possibility is that heightened Rac-GTP levels in 

α2-chimaerin mutants results in the accumulation of polymorphic spines as opposed to 
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mushroom or stubby-shaped dendritic spines. Additionally, our analysis revealed that 

atypical dendritic spines exhibit spatially distinct F-actin puncta localized to the multiple 

spine heads, demonstrating a potential physiological effect of elevated Rac1-GTP, 

which was previously uncharacterized until this report. Likewise, the knockdown of α1-

chimaerin, also results in the increase of branched spines and loss of mushroom spines 

in hippocampal neurons, suggesting that α1- and α2-chimaerin negatively regulate 

Rac1-GTP under distinct physiological conditions that contribute to the maintenance of 

dendritic spine shape (Buttery and Beg et al., 2006). 

EphA4/α2-chimaerin signaling at the synapse 
 
 Our laboratory, along with others, has established that α2-chimaerin is an 

essential intracellular effector of EphA4 surface signaling that mediates axon guidance 

during the assembly of spinal cord neuronal circuits (Beg et al., 2007; Iwasato et al., 

2007; Wegmeyer et al., 2007a). These previous studies provided the basis of my 

dissertation work, investigating the role of α2-chimaerin in shaping neuronal dendritic 

architecture, synaptic function and behavior.  One possibility, based on our results, is 

that α2-chimaerin may be a key intracellular regulator of Eph receptor activity at the 

synapse (Calo et al., 2006; Filosa et al., 2009; Fu et al., 2011).  

 EphA4 receptor activity can promote dendritic spine shortening and lead to the 

removal of AMPA receptors from the membrane (see Introduction for details pg. 14) (Fu 

et al., 2011; Murai et al., 2003). Alternatively, EphB signaling can promote dendritic 

spine stability and stabilize NMDA receptors at the synapse (see Introduction for details 

pg. 12) (Dalva et al., 2000; Henderson et al., 2001; Sheffler-Collins and Dalva, 2012; 

Takasu et al., 2002). Akin to the loss of EphA4 receptor signaling, our lab has similarly 
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observed an increase in surface levels of glutamate receptor ionotropic AMPA 1 

(GRIA1); suggesting EphA4 synaptic signaling is attenuated in α2-chimaerin mutants 

preventing the removal of AMPA receptors from the synapse. Supporting this 

hypothesis, we have also observed that α2-chimaerin mutant mice exhibited elevated 

levels of the AMPA receptor subunit, GRIA1, in synaptosomal protein fractions similar to 

EphA4 knockout mice (Fu et al., 2011). While further experiments are required to 

identify and functionally characterize α2-chimaerin as an intracellular effector of EphA4 

and EphB receptors at the synapse, we propose the following working model to 

describe the role of α2-chimaerin in synaptic Eph receptor signaling (Figure 4.4).  

 Based on previously published data, we predict that the SH2-domain of α2-

chimaerin is critical for EphR/α2-chimaerin signaling at the synapse (Beg et al., 2007; 

Shi et al., 2007). At the synapse, EphB receptors can interact with Glutamate receptor 

ionotropic, NMDA 1 (NR1), and this complex may negatively regulate Rac1-GTP after 

the expansion or incorporation of receptors in the synapse. In regards to EphA signaling, 

α2-chimaerin may interact directly with it, and participate in actin-dependent collapse of 

the dendritic spine as a result of EphA4-mediated removal of AMPA receptors from the 

synapse (Zhou et al., 2012) (Murai et al., 2003). Our future goal would be to conduct 

single-cell recordings combined with time-lapse imaging of dendritic spines. These 

experiments will require high-speed imaging, as we will also monitor spine motility 

combined with electrophysiology. 

Perspective on GEFs and GAPS at the synapse 
 
 Neurons express an orchestra of GEFs and GAPS to maintain precise control of 

Rac1 activity in dendrite branches and spines (Hall, 1998) (Nakayama et al., 2000). In 
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the dendrite, Rac1 functions as a gatekeeper of cytoskeletal dynamics by initiating 

various protein effectors that alter dendritic spine stability and morphology (Luo, 2000). 

Recent work has begun to unravel how GEFs and GAPs are spatially regulated to 

execute precise control of Rac1 in the dendrite (Um et al., 2014). For instance, a recent 

publication reported that the T-lymphoma invasion and metastasis-inducing protein 1-

GEF (Tiam1-GEF) and Breakpoint Cluster Region-GAP (BCR-GAP) complex together 

and translocate to the membrane in response to synaptic activity (Um et al., 2014). As a 

result, leading questions in the field are (1) how are various GEFs and GAPs regulated 

in neurons? (2) What are the different receptors that regulate GEF and GAP activity at 

the synapse? 

 Overall, these biological questions suggest that there is precise, positive and 

negative control of Rac1 at each individual dendritic spine. We propose that when 

multiple GEFs and GAPs, or different cell-surface receptors are altered, the result can 

culminate into unique phenotypes that are often observed in Autism Spectrum Disorder 

(ASD) (Durand et al., 2011) (Williams et al., 1980). Perhaps the lack of dynamic control 

over Rac1-mediated pathways may be a leading cause of structural and functional 

defects in ASD. 

 
 
 



 101 

 

 

 

 

Figure 4.4 Working model demonstrating the role of α2-chimaerin in Eph receptor signaling 
at the synapse 
 
A-B) At the dendritic spine, α2-chimaerin may directly interact with synaptic receptors or with Eph 
receptors to regulate Rac1-GTP. 
 
C) In wild type neurons, synaptic activity can drive EphB receptor signaling to promote expansion 
of the dendritic spine head and the incorporation of additional AMPA and NMDA receptors.  
Alternatively, EphA4 signaling promotes the shortening of dendritic spines and the removal of 
synaptic receptors from the membrane. Both Eph receptors can activate GEFs/GAPs, and 
modulate the balance of Rac1-GTP at the synapse.  
 
D) In the α2-chimaerin mutant, Rac1-GTP levels are heightened at baseline and upon EphB 
signaling, GEFs further potentiate Rac-GTP leading to irregular dendritic spine head outgrowth and 
incorporation of synaptic receptors. Upon EphA signaling, the loss of α2-chimaerin protein effector 
signaling prevents the shrinkage of dendritic spines, and the removal of synaptic receptors from the 
membrane.  
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Alpha2-chimaerin expression in the adult hippocampus and potential role 
in adult neurogenesis 
 
 We took advantage of the β-gal reporter in α2-chimaerin mutant mice to identify 

what cellular populations would otherwise express α2-chimaerin protein. While we 

identified β-gal+ neurons in the pyramidal and granule cell layers from P1-P25, we, 

interestingly, observed a selective loss of β-gal+ neurons from the granule cell layer at 

P60. What would drive the selective loss of β-gal+ neurons from the granule cell layer of 

the adult hippocampus? 

 While both cell layers consist of post-mitotic neurons, the dentate gyrus exhibits 

a neural stem cell niche, known as the subgranular zone (SGZ), localized between the 

hilus and the granule cell layer (Eriksson et al., 1998). In the SGZ, stem cells generate 

neuronal progenitors that give rise to adult born neurons, which migrate into the GCL, 

differentiate and replace existing granule cells (Gage, 2002). In the adult rat 

hippocampus approximately 2,000 neuronal progenitors are born a day, and 

proliferation rates can be influenced by exercise or anxiety (Cameron et al., 1993; Van 

Praag et al., 2005). Despite the birth rate of adult-born neurons, the granular layer does 

not continuously expand throughout the animal’s lifespan. Instead, there is a balance 

between birth of adult born neurons and apoptosis of existing neurons (Gage, 2002). 

For this reason, a working model is that the selective loss of β-gal+ cells from the adult 

granule cell layer may be due to the turnover of β-gal+ developmentally derived neurons 

with the replacement of β-gal- adult born granule neurons, due to neurogenesis in the 

SGZ.  
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 This model suggests that α2-chimaerin promoter activity is developmentally 

regulated in the GCL and no longer targeted in adult born granule neurons (Mizuno et 

al., 2004). In such a scenario, several questions arise: 1) If α2-chimaerin is not 

expressed in adult born neurons, then what Rac-GAP takes its place? 2) What are the 

genomic and proteomic differences between an adult born and a developmentally born 

neuron? 3) Would an adult born neuron in an α2-chimaerin mutant mouse also ignore 

ephrin-A1 repulsive signaling (Beg et al., 2007; Kao et al., 2015)? While these questions 

propose experiments that are out of the scope of this dissertation, the preliminary data 

that supports further investigation originated from the efforts put forth in completing this 

dissertation.   
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Appendix 1  

Spillover Transmission is mediated by the Excitatory GABA 
Receptor LGC-35 in C. elegans 

Abstract 
 

Under most circumstances γ-aminobutyric acid (GABA) activates chloride-

selective channels and thereby inhibits neuronal activity.  Here, we identify a GABA 

receptor in the nematode Caenorhabditis elegans that conducts cations and is therefore 

excitatory. Expression in Xenopus oocytes demonstrates that LGC-35 is a 

homopentameric cation-selective receptor of the cys-loop family exclusively activated by 

GABA.  Phylogenetic analysis suggests that LGC-35 evolved from GABA-A receptors, 

but the pore-forming domain contains novel molecular determinants that confer cation 

selectivity.  LGC-35 is expressed in muscles, and directly mediates sphincter muscle 

contraction in the defecation cycle in hermaphrodites, and spicule eversion during 

mating in the male. In the locomotory circuit, GABA release directly activates chloride 

channels on the muscle to cause muscle relaxation.  However, GABA spillover at these 

synapses activates LGC-35 receptors localized on acetylcholine motor neurons, which 

in turn cause muscles to contract, presumably to drive wave propagation along the 

body.  These studies demonstrate that both direct and indirect excitatory GABA 

signaling play important roles in regulating neuronal circuit function and behavior in C. 

elegans.
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Introduction 

The family of cysteine-loop ligand-gated ion channels (cys-loop LGICs) mediate 

rapid neurotransmission and consists of four major receptor types: acetylcholine, 

serotonin, glycine, and GABA receptors.  These receptors are comprised of five 

subunits arranged to form a central ion-conducting pore (Thompson et al., 2010). Each 

subunit is composed of an extracellular ligand-binding domain (LBD), a cysteine-loop 

motif (C-X13-C), four transmembrane domains (M1-M4), and a large intracellular loop 

connecting M3 to M4.  Typically, cation conductance mediates excitation and anion 

conductance mediates inhibition.  

The Caenorhabditis elegans (C. elegans) genome encodes ~102 cys-loop 

receptor subunits, making it the largest and most diverse known eukaryotic cys-loop 

superfamily (Jones and Sattelle, 2008).  As in vertebrates, there are classical excitatory 

acetylcholine and inhibitory GABA receptors.  However, C. elegans employs an arsenal 

of unusual cys-loop receptor subtypes, including: inhibitory anion-selective receptors 

gated by acetylcholine, choline, serotonin, dopamine, tyramine, and octopamine; and 

excitatory cation-selective receptors activated by GABA, betaine and protons (Bamber 

et al., 1999a; Beg et al., 2008; Beg and Jorgensen, 2003a; Jones and Sattelle, 2008; 

Peden et al., 2013; Pirri et al., 2009; Putrenko et al., 2005; Ranganathan et al., 2000; 

Ringstad et al., 2009; Yassin et al., 2001).  This diversity adds tremendous flexibility, as 

each transmitter can be excitatory, inhibitory, or have mixed-action within the same 

tissue depending on the dedicated or combinatorial expression of particular receptor 

subtypes.  Importantly, only a fraction of cys-loop receptors have been characterized in 
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C. elegans, suggesting that new modes of neurotransmission within this simple 

organism have yet to be identified. 

Over twenty years ago, a strategy was designed to identify genes required for 

GABA function in C. elegans (McIntire et al., 1993a). Three major GABA-dependent 

behavioral phenotypes were identified using genetic and laser ablation techniques: 

locomotion, foraging, and defecation (McIntire et al., 1993b). During locomotion and 

foraging, GABA acts to relax body muscles via GABA-activated chloride channels and 

thereby helps generate a sinusoidal wave along the body axis (Bamber et al., 1999b). 

By contrast, GABA stimulates enteric muscle contraction during defecation via the 

GABA-gated cation channel EXP-1 (Beg and Jorgensen, 2003b; McIntire et al., 1993b).  

The enteric muscles comprise the intestinal, anal depressor, and sphincter muscles.  

Although EXP-1 is required for intestinal and anal depressor muscle contraction, it is 

neither expressed in, nor required for, sphincter muscle contraction (Beg and 

Jorgensen, 2003b). Importantly, GABA is the primary neurotransmitter released on the 

enteric muscles, suggesting that an unidentified GABA receptor mediates sphincter 

muscle contraction (White et al., 1986a).  

Here, we demonstrate that lgc-35 encodes a homopentameric excitatory GABA-

gated cation channel that is required for diverse modes of neuromuscular transmission.  

Our findings demonstrate that LGC-35 mediates sphincter muscle contraction, is 

expressed in a subset of acetylcholine motor neurons where it functions as a spillover 

receptor to modulate locomotory behavior, and is involved in male-specific copulatory 

muscle contraction. Together, our data show that excitatory GABA signaling is not a 



 107 

specialized mode of signaling confined to enteric muscle function, but plays a broader 

role in the modulation of neuronal circuits in C. elegans.  

Results 

LGC-35 is a GABA-gated Cation-Selective Receptor 

We identified lgc-35 (ligand-gated channel-35) by searching the C. elegans 

genome for exp-1 homologs. LGC-35 is most closely related to the excitatory GABA 

receptor EXP-1 (53% identity) and contains the canonical motif (C-X13-C) that defines 

the cys-loop superfamily (Figure A.1A-B).  LGC-35 contains highly conserved amino 

acid residues within the putative GABA binding pocket and transmembrane domains 

(Figure A.1C, data not shown).  The LGC-35 M2 domain region, which lines the ion 

channel pore and determines ion selectivity, is nearly identical to the cation-selective 

EXP-1 receptor (Figure A.1D). The pore domain seems to have arisen by deletion of the 

proline, alanine, and arginine residues (PAR motif) that are critical for chloride ion 

selectivity in ionotropic GABA receptors, but does not otherwise resemble the cation 

permeable pore found in acetylcholine and serotonin-gated ion channels (Figure A.1D) 

(Beg and Jorgensen, 2003b; Keramidas et al., 2000). This unusual channel family is 

confined to nematodes; homologs of LGC-35 and EXP-1 are not readily identified in 

other phyla (see Methods).   

To determine whether LGC-35 can form a functional GABA receptor, we 

expressed complementary RNA (cRNA) in Xenopus laevis oocytes and tested for 

receptor activity using two-electrode voltage clamp recordings. Application of a panel of 

ligands revealed that LGC-35-expressing oocytes evoked whole-cell currents in 

response to GABA, but not other ligands; water-injected oocytes did not respond to 
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GABA (Figure A.2A, data not shown).  LGC-35 was activated in a dose-dependent 

manner by GABA, with a median effective concentration (EC50) of ~15 µM (Figure A.2).  
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 To determine LGC-35 ion selectivity, we substituted extracellular ions and 

measured the reversal potentials of agonist-evoked responses.  In control solution, the 

GABA-dependent current reversed at -11 mV, similar to the non-selective cation 

channel, EXP-1 (-5 mV), and significantly different from the UNC-49B GABA receptor (-

30 mV), a chloride selective channel (Figure A.2D, Control, solid black line) (Bamber et 

al., 1999b; Beg and Jorgensen, 2003b).  Replacement of extracellular chloride with 

gluconate did not markedly shift the reversal potential (-13 mV).  Additionally, agonist-

evoked inward current was not abolished, suggesting that LGC-35 is not permeable to 

anions (Figure A.2D, Cl- free, blue line).  In contrast, replacement of extracellular 

sodium with N-methyl-D-glucamine (NMDG) shifted the reversal potential to -77mV, 

near the predicted potassium equilibrium potential in Xenopus laevis oocytes (Weber, 

Figure A.1 lgc-35 encodes for a cys-loop GABA receptor 

(A) Phylogenetic tree of human and C. elegans cys-loop LGICs. Alignments were 
performed using clustalX and the tree was generated by the ‘neighbor-joining’ bootstrap 
method. LGC-35 is most closely related to the cation selective GABA receptor EXP-1.  
Genbank Accession Numbers:  C. elegans Sequences: UNC-49B (CAC42346.1), ACR-16 
(P48180.1), LGC-38 (CCD63396.1); Human Sequences:  GABRA2 (P47869.2), GABRG2 
(P18507.2), GABRB3 (P28472.1), GABRR1 (P24046.2), GLYRA1 (CAA36257.1), 
CHNRA7 (P36544.5), 5HT3A (NP_000860.2).  
 
 (B) Protein alignment showing the conserved C-X13-C motif present in all cys-loop LGICs.   
 
(C) Protein sequence alignment of the ligand-binding loops in ionotropic cys-loop 
receptors.  Alignments were made with clustalX. Residues implicated in GABA binding by 
a1 (asterisks, loops D and E) and b2 (black circles, loops A, B, C) subunits are indicated 
(Amin and Weiss, 1993; Beg and Jorgensen, 2003b; Boileau et al., 1999; Boileau et al., 
2002; Sigel et al., 1992; Wagner and Czajkowski, 2001; Westh-Hansen et al., 1999; White 
et al., 1986b). 
 
(D) Alignment of the M2 region shows that LGC-35 is nearly identical to EXP-1.  Residues 
determining ion selectivity are boxed in red and numbered.  
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1999), and abolished GABA-evoked inward whole-cell currents (Figure A.2D, Na+ free, 

red line).  Lastly, when extracellular sodium was replaced with equimolar potassium, 

robust inward currents were observed with a reversal potential of +6 mV (Figure A.2D, 

K+, green line), demonstrating that LGC-35 is permeable to both sodium and potassium.  

Taken together, the electrophysiological data demonstrate that LGC-35 is a GABA-

gated non-selective cation channel.   
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LGC-35 localization 

To identify cells expressing lgc-35, we built a transcriptional reporter using the 

~3kb lgc-35 promoter attached to the coding region of a red fluorescent protein (Plgc-

35::TagRFP).  Reporter expression was observed in a subset of ventral cord motor 

neurons and head interneurons (Figure A.3A).  To visualize LGC-35 protein localization, 

we made a translational fusion with the coding sequence of green fluorescent protein 

(GFP) inserted into the cytoplasmic loop between M3-M4 in a 7.6 kb lgc-35 genomic 

fragment (LGC-35::GFP) (Figure A.3B, 4A). The TagRFP transcriptional reporter and 

translational GFP-tagged fusion protein exhibited similar cellular distributions, with some 

important exceptions (Figure A.3A-B). In both reporter lines, we observed expression in 

a subset of ventral cord motor neurons (VA, VB, DA, DB) (Figure A.3A-B), the motor 

neuron PDA (Figure A.3F), the tail interneurons DVA and PVT (Figure A.3F), the head 

interneurons AIY and AVD (Figure A.3C-D), and in the head mesodermal cell (Figure 

A.3C). However, the LGC-35::GFP construct, which includes the introns, exhibited 

Figure A.2 LGC-35 is a GABA-gated cation channel  

(A) Whole cell currents recorded from Xenopus laevis oocytes expressing LGC-35 in response to 
1mM: glutamate, serotonin (5-HT), choline, acetylcholine, glycine and GABA (black bar is 10 
second application of ligand). Only GABA application evoked whole cell currents in LGC-35 
expressing oocytes.  
 
(B) Representative traces of LGC-35 dose response experiments (Black bar denotes 1-1000 µM 
GABA application, 30 seconds).  
 
(C) Dose response curve for LGC-35 expressing oocytes. Oocytes expressing LGC-35 were 
voltage-clamped at -60 mV and GABA was bath-applied in series (1-1000 µM) for 5 seconds. 
Points indicate mean current value normalized to maximum value. For LGC-35 receptors, EC50 = 
15.04 ± 1.04 µM and Hill coefficient = 1.9 ± (n =26). Error bars represent s.e.m.  
 
(D) Current-voltage relations of LGC-35-expressing oocytes. I-V curves determined in control 
Ringers solution (Erev = -10.86 ± 1.15 mV, n = 12, black), Cl- free Ringers (Erev = -12.94 ± 2.79 
mV, n = 8, blue), and Na+ Free Ringer (Erev = -76.85 ± 0.65 mV, n = 7, red), K+ Ringers (Erev = 
6.35 ± 1.26 mV, n = 7, green). Each point represents the mean ± s.d.  
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robust expression in the sphincter muscle (Figure A.3E), and all of the acetylcholine 

ventral cord motor neurons except the AS and VC class of neurons (Figure A.3B and 

Fig3-5A). The LGC-35::GFP fusion protein was localized to the plasma membrane as 

expected, but fluorescence was also observed in the cytoplasm probably due to 

transgene overexpression (Figure A.3F and Figure A.5A).  These data suggest that 

regulatory elements within the lgc-35 introns are necessary for cell-type specific 

expression.  

To determine the function of lgc-35 in these cells we characterized two different 

mutant alleles disrupting the lgc-35 gene. lgc-35(tm1444) is a ~1.3 kb deletion of the 

first five exons that removes the extracellular GABA binding domains and cys-loop, and 

thus likely represents a null allele (Figure A.4A).  To verify that lgc-35(tm1444) is a null 

allele, we generated a second deletion allele (ox469) that eliminates the entire gene 

using the MosDEL technique (Frøkjær-Jensen et al., 2010) (Figure A.4A).  

LGC-35 mediates contraction of the sphincter muscle 

Expression of LGC-35 in the sphincter muscle suggested that this receptor could 

play a role in defecation (Figure A.3E).  The defecation motor program in the adult 

hermaphrodite is a stereotyped behavior initiated approximately every 50 seconds when 

the animal is feeding (Croll, 1975; Liu and Thomas, 1994; Thomas, 1990).  The motor 

program begins with a posterior body contraction, followed by an anterior body 

contraction and ends with contraction of the enteric muscles (Emc).  The EXP-1 

excitatory GABA receptor mediates contraction of the intestinal and anal depressor 

muscles; mutants lacking this gene exhibit a significant reduction in enteric muscle 

contractions (Emc/cycle) compared to control animals (Figure A.4B, wild-type = 99% vs. 
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exp-1 = 31% Emc/cycle, p<0.0001). However, the defect in exp-1 mutants is milder than 

complete loss of GABA function, suggesting that a second GABA receptor may be 

involved. Specifically, mutations in unc-25, which encodes the biosynthetic enzyme for 

GABA, glutamic acid decarboxylase, cause a severe defect in enteric muscle 

contractions (Figure A.4B, exp-1 = 31% vs. unc-25 = 8.7% Emc/cycle, p<0.0001).  

 

Figure A.3 LGC-35 is expressed in the sphincter and a subset of ventral cord motor neurons 
(A) Transcriptional reporter.  Plgc-35::TagRFP is expressed in a subset of VA, VB, and DB 
acetylcholine motor neurons anterior to the vulva, and in a subset of VA and DA acetylcholine motor 
neurons posterior to the vulva. Note that this construct lacks introns.  
(B) Translational reporter. LGC-35::GFP is expressed in all acetylcholine motor neurons (VA, VB, 
DA, DB), except the AS and VC class.  Note that this construct includes all introns.  
 
(C) Plgc-35::TagRFP (pseudocolored green) expression in the adult nerve ring.  In addition to the 
ventral cord motor neurons, lgc-35 is expressed in the AVD neurons and the head mesodermal cell.  
 
(D) LGC-35::GFP expression is observed in the AIY and AVD interneurons and commissural 
(comm.) processes.   
 
(E) Close-up of posterior hermaphrodite tail region.  LGC-35::GFP sphincter muscle expression is 
denoted by white arrowhead.   
 
(F) High magnification of the hermaphrodite tail.  LGC-35::GFP is expressed in DVA, PDA and PVT 
neurons.  Scale bars = 100mm (A-B); 10mm (C-F).  Images are lateral views of an adult 
hermaphrodite, anterior is to the left.  Arrowhead marks the location of the vulva, white boxes in 
panel B mark the imaged areas in panels C-F. 
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To determine if the LGC-35 receptor contributes to enteric muscle contractions 

we generated double mutants. Mutants lacking both receptors (lgc-35 exp-1) exhibited 

decreased enteric muscle contractions compared to exp-1 single mutants (Figure A.4B, 

exp-1 = 31% vs. lgc-35(tm1444) exp-1 = 12% or lgc-35(ox469) exp-1 = 13% Emc/cycle, 

p< 0.0001) and were not significantly different than unc-25 single mutants (Figure A.4B, 

lgc-35(tm1444) exp-1  p=0.24 or lgc-35(ox469) exp-1  p=0.06). Additionally, RNA 

interference knockdown of lgc-35 recapitulated the genetic loss-of-function experiments 

(Figure A.4B).  Finally, LGC-35::GFP transgene expression in the double mutant 

rescued defecation to exp-1 single mutant levels demonstrating the enhanced 

phenotype was specifically due to the loss of lgc-35 (Figure A.4B, exp-1 = 31% vs. lgc-

35(tm1444) exp-1;Ex[LGC-35::GFP] = 29% Emc/cycle, p=0.81). These findings 

demonstrate that LGC-35 and EXP-1 together mediate GABA-dependent enteric 

muscle contraction.  

 The enteric muscles are coupled by gap junctions and appear to contract almost 

simultaneously.  However, analysis of the related nematode Oscheius myriophila and 

high-speed videos of C. elegans indicates that there is a distinct order to the contraction 

(J. Delafield-Butt and E. Jorgensen, personal communication).  The intestinal muscles 

contract first and fill the rectum with intestinal fluid. Contraction of the sphincter muscle 

seals the rectum, preventing reflux. Once the intestine is sealed, contraction of the anal 

depressor muscle opens the anus, and gut contents are expelled. Due to the close 

temporal activation of the enteric muscles, it is difficult to observe contraction of the 

sphincter muscle when the intestinal and anal depressor muscle contractions are 

present.  Therefore, we used the exp-1 mutant background to specifically isolate 
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sphincter muscle contraction because these mutants rarely exhibit intestinal and anal 

depressor contractions.  High-speed video analysis revealed sphincter muscle 

contraction in exp-1 mutants (Movie 4.1, n=12), confirming that EXP-1 is not required for 

this muscle contraction.  By contrast, in lgc-35 exp-1 double mutants, the sphincter 

muscle did not contract, and the rare expulsions that occurred were explosive, 

uncoordinated and were not accompanied by sphincter muscle contraction (n=15, Movie 

4.2). These behavioral data demonstrate that LGC-35 specifically mediates GABA-

induced contraction of the sphincter muscle and contributes to the contraction of all 

enteric muscles during the defecation motor program (Figure A.4C). 

 

 

 

 

 

 

 

 

Movie A.1 Visualizing sphincter muscle 
contraction in exp-1(ox276) mutants 
Sphincter contraction with no expulsion. exp-1(ox276) 
mutant recorded during a non-expulsive cycle. The 
sphincter contracts (red arrow) after the posterior 
body contraction in the absence of exp-1 mediated 
anal depressor contraction and expulsion (n = 12). 

Movie A.2 Sphincter muscle does not contract in 
lgc-35 mutants 
In lgc-35(tm1444) exp-1(ox276) double mutants, 
expulsions rarely occurred and were explosive. 
Sphincter contraction was never observed (red arrow, 
n =15). This video is recorded during an expulsive 
cycle, the posterior intestine swells and the rectum fills 
with food. The sphincter is passive and flaccid. The 
anal depressor contracts and opens the anus. The 
sphincter fails to contract and the gut contents 
explode from the anus. 
 

exp-1(ox276)

lgc-36(tm1444)exp-1(ox276)

contraction

contraction expulsion

Movie 4.1

Movie 4.2
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GABA spillover stimulates acetylcholine release in the locomotory circuit 

To confirm that lgc-35 is expressed in the acetylcholine motor neurons, we 

created double transgenic animals in which the ventral cord acetylcholine motor 

neurons express the fluorescent protein mCherry under the control of the acr-2 

promoter (Pacr-2::mCherry). acr-2 is expressed in VA, VB, DA, and DB acetylcholine 

motor neurons (Jospin et al., 2009). In Plgc-35::LGC-35::GFP; Pacr-2::mCherry double 

transgenics, co-localization of fluorescent reporter proteins was observed, verifying that 

lgc-35 is expressed in these acetylcholine motor neurons (Figure A.5A). To determine if 

lgc-35 is expressed in GABA motor neurons, Plgc-35::LGC-35::GFP expressing animals 

were crossed into a strain expressing the fluorescent protein mCherry under the control 

of the unc-47 promoter (Punc-47::mCherry), which labels all 26 GABA motor neurons 

Figure A.4 lgc-35 mediates contraction of the sphincter muscle 

(A) Exon-intron structure of the lgc-35 genomic locus.  The deletion extent for each allele is marked 
by red bars.  Black bars mark transmembrane domain (M1-M4) location.  The GFP insertion site is 
shown.   
 
(B) lgc-35(tm1444 or ox469) exp-1(ox276) double mutants are more defective in enteric muscle 
contractions than exp-1(ox276) mutants alone. Enteric muscle contractions per posterior body 
contraction were scored to determine successful enteric muscle contractions per defecation cycle 
(Emc/cycle). Eleven defecation cycles were scored from young adult hermaphrodites for each 
genotype. The strain lgc-35(tm1444) exp-1(ox276); Ex[LGC-35::GFP] contains an 
extrachromosomal genomic lgc-35::gfp rescuing array (oxEx1291). Percentage of Emc/Cycle 
(mean ± s.e.m.): wild-type = 99.5 ± 0.36%, exp-1(ox276) = 31.2 ± 1.2%,  unc-25(e156) = 8.68 ± 
1.6%, lgc-35(tm1444) exp-1(ox276) =12.7 ± 1.53%, lgc-35(ox469) exp-1(ox276) =13.65 ± 1.06%, 
lgc-35(RNAi) exp-1(ox276) = 13.74 ± 1.4,  lgc-35(tm1444) exp-1(ox276); Ex[LGC-35::GFP] = 28.6 ± 
1.4%, lgc-35(tm1444) = 99.3 ± 0.46%,  lgc-35(ox469) = 97.9 ± 0.79%, One-way ANOVA with Tukey 
post-hoc was used for multiple comparison, ****p<0.0001,  n.s. = not significant. Error bars are 
s.e.m. The number of animals scored for each genotype is shown at the bottom of each bar.   
 
(C) Schematic model of the enteric muscles.  Red circles mark clustered EXP-1 receptors at the 
AVL/DVB synapse.  The sphincter muscle is colored green to illustrate diffuse and non-clustered 
LGC-35 expression.  Figure adapted from (Beg and Jorgensen, 2003b). 
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(Jin et al., 1999). We observed no co-localization between lgc-35 and unc-47 

expression in these animals, confirming that LGC-35 is expressed in ventral cord 

acetylcholine, but not GABA motor neurons (Figure A.5B). 

Both diffuse and punctate localization of the LGC-35::GFP translational fusion 

protein was observed in the dorsal and ventral nerve cords and in the acetylcholine 

motor neuron cell bodies (Figs.3-3A and Figure A.5A and C). To determine if LGC-35 is 

juxtaposed to GABA synapses, we labeled the synaptic vesicle protein synaptobrevin 

with TagRFP in GABA neurons (Punc-47::SNB-1::TagRFP).  Synaptobrevin distribution 

was punctate, marking GABA neuromuscular junctions along the nerve cord (Bamber et 

al., 1999b). LGC-35::GFP puncta were not juxtaposed to GABA synapses but were 

rather localized to intersynaptic regions along the nerve cord between the GABA 

synapses (Figure A.5C).  These data suggest that GABA spillover from GABA 

neuromuscular junctions activates LGC-35 on acetylcholine motor axons.  

The presence of LGC-35 on acetylcholine motor neurons suggests that GABA 

stimulates acetylcholine release onto muscles and that there may be deficits in 

acetylcholine transmission in the absence of LGC-35. To determine if acetylcholine 

release is decreased in the absence of LGC-35, we assayed the sensitivity of lgc-35 

mutants to aldicarb, an acetylcholinesterase inhibitor (Mahoney et al., 2006). 
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Figure A.5 lgc-35 is expressed in ventral cord acetylcholine motor neurons  

A, Lateral view of LGC-35::GFP expression in Pacr-2::mCherry background. Co-localization is seen 
in all acr-2-expressing acetylcholine motor neurons (DA, DB, VA, VB).  Lateral view of the vulva 
region of an adult hermaphrodite, anterior is to the left and dorsal is up.  The acetylcholine motor 
neurons are labeled in the middle panel.  
 
B, Lateral view of LGC-35::GFP motor neuron expression in Punc-47::mCherry background. LGC-
35::GFP (green) is not localized to GABA motor neurons (red).  Lateral view of the vulva region of an 
adult hermaphrodite, anterior is to the left and dorsal is up.  The GABA motor neurons are labeled in 
the middle panel.    
 
C, LGC-35::GFP is localized to intersynaptic regions. Punc-47::SNB-1::TagRFP (red, top panel) co-
injected with Plgc-35::LGC-35:GFP (green, middle panel).  Lateral view of the dorsal cord.  Scale 
bars = 100mm (A-B); 10mm (C). 
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Both lgc-35 mutant strains were resistant to aldicarb, suggesting a presynaptic 

defect in neuronal excitability or neurotransmitter release (Figure A.6A).  To 

demonstrate that this phenotype was specifically due to loss of LGC-35, we rescued the 

sensitivity to aldicarb by transgenic expression of LGC-35::GFP (Figure A.6A). These 

pharmacological data indicate a decrease in acetylcholine transmission at 

neuromuscular junctions in the mutants. To determine if this decrease in 

neurotransmission affects locomotion, we performed thrashing assays in liquid. lgc-35 

mutants not only exhibited a significant decrease in the number of body bends, but also 

displayed uncoordinated body bending compared to wild- type controls (Figure A.6B, 

data not shown).  These phenotypes were rescued by transgene expression of LGC-

35::GFP (Figure A.6B), suggesting that loss of LGC-35 results in an imbalance in the 

excitation to inhibition ratio within the locomotor circuit. 

To determine the function of lgc-35 in locomotory behavior, we analyzed lgc-35 

mutants crawling on agar using a computerized worm tracker. Animals were evaluated 

under high magnification during normal, unstimulated movement on food. lgc-35 

mutants spent comparable amounts of time moving forward and backward compared to 

wild-type controls (data not shown). However, the animals moved faster and the 

amplitude of body bends was increased in lgc-35 mutants; both phenotypes were 

rescued by transgene expression of LGC-35::GFP (Figure A.6C-D). Together, these 

data suggest that lgc-35 functions in motor neurons to regulate animal locomotion.   
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Figure A.6 lgc-35 mutants have altered locomotion and neuromuscular transmission 

(A) lgc-35 mutants are resistant to aldicarb, an acetylcholinesterase inhibitor. lgc-35 mutants (tm1444 
and ox469) are resistant to the paralyzing effects of aldicarb compared to wild-type. A known 
hypersensitive mutant unc-49(e407), and resistant mutant snt-1(md290) were used as controls. Data 
are mean ± s.e.m., n=30 animals, 3 plates per genotype. Aldicarb resistance in lgc-35(tm1444) 
mutants is rescued by LGC-35::GFP transgene expression.  
 
(B) Liquid thrash assays were used to assess neuromuscular transmission and coordination.  lgc-
35(tm1444) mutants exhibited a significant decrease in the number of body bends per minute 
compared to wild-type controls: lgc-35(tm1444) = 133 ± 9.7 vs. wild-type = 193 ± 6.9, ****p<0.0001, 
which was rescued by LGC-35::GFP transgene expression: lgc-35(tm1444); Ex[LGC-35::GFP] = 195 
± 7.9, p=0.64 compared to the wild-type, ***p=0.0003 compared to lgc-35(tm1444).   
 
(C) lgc-35 mutants move with increased speed compared to the wild-type controls: lgc-35(tm1444) = 
306 mm/s vs. wild-type = 229 mm/s ,****p<0.0001.  This increase is rescued by transgenic 
expression of LGC-35::GFP (262 mm/s vs. wild-type (p= 0.19), and *p=0.039 compared to lgc-
35(tm1444) mutants).   
 
(D) lgc-35(tm1444) mutants exhibit an increased body bend amplitude compared to the wild-type 
controls: lgc-35(tm1444) = 0.29 vs. wild-type = 0.25, ***p=0.0002. This increase in lgc-35(tm1444) 
mutants is rescued by transgenic expression of LGC-35::GFP (0.26 mm, p=0.57, compared to the 
wild-type, *p=0.012 compared to lgc-35(tm1444) mutants). The body bend amplitude ratio 
(Amplitude/Length) is shown. One-way ANOVA with Tukey post hoc analysis was used for multiple 
comparison and the p-values are indicated for each condition. Not significant (n.s) is p>0.05.  The 
number of animals tested for each genotype or assay is shown at the bottom of each bar. 
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LGC-35 is involved in male spicule eversion 

After hatching, larval C. elegans hermaphrodites and males are largely 

indistinguishable.  However, in the fourth larval stage (L4), male-specific neurons and 

copulatory muscles are generated and the enteric muscles are extensively remodeled. 

Specifically, the anal depressor attaches to the spicule protractor and the sphincter 

muscle becomes enlarged and attaches to the dorsal surface of the body wall.  We 

generated males expressing either transcriptional or translational GFP fusions to 

determine if lgc-35 is expressed in male-specific muscles and neurons.  In contrast to 

hermaphrodites, lgc-35 is not expressed in any of the male enteric muscles, including 

the sphincter muscle, suggesting that it does not play a role in defecation in adult males 

(Figure A.7A-B).  Like hermaphrodites, adult males expressed lgc-35 in acetylcholine 

motor neurons, the head mesodermal cell, and in the head interneurons AIY and AVD 

(data not shown).  In the male tail, lgc-35 is expressed in sensory rays 2, 3, 4, 5 and 9, 

the SPV neurons and the oblique muscles (Figure A.7A-C).  

Consistent with this expression pattern, GABA neurons are known to innervate 

these cells.  The vesicular GABA transporter (unc-47) is expressed in the male specific 

PCB, PCC post-cloacal sensilla neurons and the SPC proprioceptive motor neurons 

(Figure A.7C-D).  Interestingly, in addition to expressing the GABA transporter, these 

motor neurons also express the vesicular acetylcholine transporter UNC-17 (Garcia et 

al., 2001) (Figure A.7D).  It is likely that these sensory-motor neurons redundantly use 

GABA and acetylcholine to induce muscle contraction during copulation (Jarrell et al., 

2012).  The SPC neurons make chemical synapses directly with the spicule muscles 

and presumably act via a different GABA receptor than LGC-35 (Figure A.7D).  The 
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PCB and PCC neurons make chemical synapses with the LGC-35-expressing oblique 

muscles (Figure A.7D). During intromission, the post-cloacal PCB and PCC neurons 

mediate insertion of the spicules into the vulva by initially stimulating oblique muscle 

contraction.  In turn, the oblique muscles transduce the signals to the spicule-associated 

sex muscles through electrical junctions (Garcia et al., 2001; Jarrell et al., 2012; Liu and 

Sternberg, 1995; Liu et al., 2011) (Figure A.7D).  

The expression of LGC-35 in male-specific muscles and neurons suggests the 

receptor might play a role in male mating. We assayed mating efficiency by placing 

single males with four wild-type hermaphrodites and then removed the male after four 

time points (1, 3, 6, and 24 hours). With the exception of the 6 hour time point, lgc-

35(tm1444) him-8(e1489) double mutants males were not significantly different than 

control him-8(e1489) single mutants males for the percentage of cross progeny sired 

(Figure A.7E); nor was male potency in aged animals affected in lgc-35 mutants.  

Specifically, single males, aged 1-6 days, were paired with a young adult pha-1(ts) 

hermaphrodite and the presence of any cross progeny was scored three days later. The 

virility of lgc-35 males diminished at a similar rate as control males over six days (Figure 

A. 7F), suggesting that lgc-35 does not play an overt role in male mating ability or 

potency.  
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Figure A.7 LGC-35 is expressed in male specific muscles and neurons and is involved in spicule 
eversion  
(A) Nomarski (left panels) and fluorescence (right panels) images of LGC-35::GFP expression in the 
male.  The top panels show LGC-35::GFP expression in rays (R) 2,3,4, and 9 (Ray 5 expression not 
shown).  The bottom panels show LGC-35::GFP expression in ray 2, the SPV neurons, and possibly the 
SPD neuron.  
 
(B) Confocal image of a transgenic male expressing Plgc-35::LGC-35::GFP and Punc-47::mCherry.  
Arrows indicate spicules and oblique muscles.   
 
(C) Male cloacal neurons express the GABA vesicular transporter gene unc-47. Nomarski (left panel) 
and fluorescence (middle panel) images of the lateral tail of Punc-47::GFP expressing in an oxIs12 him-
5(e1490) male. The PCC neurons strongly express the transgene, whereas weak expression can be 
detected in the PCB postcloacal sensilla neurons and the SPC proprioceptive neurons.   
 
(D) Panel depicts an abbreviated connectome of the post-cloacal sensilla neurons and the male sex 
muscles. Lines with arrows or bars depict chemical or electrical connections, respectively.  Muscles in 
the male cloacal region: AOB, POB, anterior and posterior oblique; GER, GRT, gubernaculum erector 
and retractor; DSP, VSP dorsal and ventral spicule protractor; ADP anal depressor.   
 
(E)  lgc-35 mating ability. There is no difference in cross progeny number between lgc-35(tm1444) him-
8(e1489) double mutants vs. him-8(e1489) single mutant controls for a single males performance at 1, 
3, and 24-hour timepoints  (p>0.05, n=4 plates/time point/genotype).  There was a significant difference 
at the 6-hour timepoint (p=0.037, n=4 plates/time point/genotype).  
 
(F) lgc-35 mating potency.  There is no difference between lgc-35(tm1444) him-8(e1489) vs. him-
5(e1490) male mating potency measured by the percent of males that can sire progeny over time 
(Fisher exact test, n= 20 males/genotype/day).   
 
(G)  Spicule eversion. An everted spicule refers to spicules permanently everted from the body cavity of 
adult male at 48 hours. All animals are in a him-8(e1489) background.  Spicule eversion is not different 
in wild-type males (5.7% ± 2.8, n=70) compared to him-8(e1489) controls (9.83% ± 3.8, n=61, p>0.05). 
lgc-35(tm1444) mutants (1.58% ± 1.5, n=63) have significantly fewer everted spicules compared to him-
8(e1489) controls (*p<0.05). unc-49(e407) mutants (40.4% ± 6.8, n=52) exhibit significantly increased 
spicule eversion compared to him-8(e1489) controls (****p<0.0001). The enhanced spicule eversion 
phenotype in unc-49(e407) mutants is suppressed by loss of lgc-35 (lgc-35(tm1444) unc-49(e407) 
(1.22% ± 1.1, n=82), ****p<0.0001).  Suppression of spicule eversion in lgc-35(tm1444) unc-49(e407) 
mutants was reversed by microinjection of a LGC-35::GFP rescuing construct (34.1% ± 7.23, n=44).  
One-way ANOVA with Tukey post-hoc was used for multiple comparisons.  Data are mean ± s.e.m., 
Scale bar, 10mM. 
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  To determine whether there were more subtle defects in the male, we examined 

spicule extension and retraction between mating events.  During periods between sex, 

the male generally keeps his spicules inside his tail. However, at a low probability, he 

will spontaneously protract his spicules during defecation (Garcia and Sternberg, 2003).  

In rare cases, the spicules become permanently everted in adult wild-type males (5.7% 

everted) or from the strain him-8, which produces males at high frequency (9.8% 

everted) (Figure A.7G). Spicule eversion is significantly reduced by the loss of the 

excitatory GABA receptor LGC-35 compared to him-8 controls (1.6% everted in lgc-35; 

him-8, p<0.05) (Figure A.7G).  By contrast, spicule eversion is greatly exacerbated by 

the loss of the inhibitory GABA receptor UNC-49 compared to him-8 controls (40.4% 

everted spicules in unc-49; him-8, p<0.0001) (Figure A.7G).  Moreover, loss of lgc-35 

completely suppressed the everted spicule phenotype observed in unc-49 mutants 

(1.2% in lgc-35; unc-49; him-8) and suppression of spicule eversion was reversed by 

transgene expression of LGC-35::GFP (34.1% in lgc-35; unc-49; him-8; Ex[LGC-

35::GFP]) (Figure A.7G). Taken together, these data suggest that inhibitory GABA 

signaling inhibits spicule extension, whereas excitatory GABA signaling stimulates 

spicule extension, probably via GABA inputs into the spicule-associated muscles, which 

is in part formed from remodeled enteric muscles during the L4 stage.   

Discussion 
 

We found that the GABA receptor LGC-35 acts as an excitatory ion channel at 

the sphincter muscle in hermaphrodites, at the spicule protractor in males and on 

acetylcholine motor neurons involved in locomotion. We discuss these results in regard 

to the structure and evolution of ligand-gated ion channels, the relationship of EXP-1, 
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and LGC-35 in the control of muscle contraction, and finally the role of LGC-35 in 

spillover transmission between motor neurons.  

How did LGC-35 acquire cation-selectivity? 

 How did GABA-gated cation channels evolve?  Phylogenetic analysis 

demonstrates that these receptors are more closely related to other GABA receptors 

than they are to acetylcholine or serotonin receptors (Figure A.1A and C).  However, the 

M2 domain is divergent from other cation channels indicating that there are multiple 

solutions for generating cation permeability (Figure A.1D).  

Mutational studies have demonstrated that pore geometry, size and electrostatic 

charge are critical features that determine cys-loop receptor ion-selectivity (Jensen et 

al., 2005b).  Changes in three residues are sufficient to convert ion selectivity of GABA 

and glycine receptors from anions to cations: 1) a deletion of the -2’ proline (P-2’D), 2) a 

glutamate substitution at the -1’ position (A-1’E), and 3) a hydrophobic valine 

substitution at the 13’ position (T13’V) (Jensen et al., 2005a; Jensen et al., 2002; 

Keramidas et al., 2000; Wotring et al., 2003).  The reciprocal changes have also been 

demonstrated to convert the cation-selective nicotinic acetylcholine and serotonin 

receptors to anion-selective (Corringer et al., 1999; Galzi et al., 1992; Gunthorpe and 

Lummis, 2001).  Significantly, the single A-1’E point mutation is sufficient to make the 

glycine receptor (GlyRa1) permeable to cations (Keramidas et al., 2002), while the 

reverse mutation (E-1’A) renders the serotonin (5-HT3A) receptor non-selective 

(Gunthorpe and Lummis, 2001). 

LGC-35 has several features that differ from canonical inhibitory cys-loop 

receptors and may explain cation-selectivity: 1) a significantly shorter linker region that 
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lacks the conserved PAR motif present in the majority of anion-selective receptors that 

may alter pore diameter and geometry (Jensen et al., 2005b), 2) a hydrophobic 

phenylalanine at the 13’ position, which is a hydrophilic threonine in anion-selective 

receptors (Keramidas et al., 2000), and 3) a negatively charged glutamate residue at 

the extracellular ring of charge, a position that is predominantly positive in anion 

channels (19’) and negative in cation channels (20’) (Imoto et al., 1988) (Figure A.1D).  

Surprisingly, LGC-35 does not contain the critical negative charge at the -1’ position.  

Instead, the closest residue is a neutral serine.  One model is that phosphorylation of 

the -3’ serine may provide the negative electrostatic environment that favors cation-

selectivity. Interestingly, the analogous residue in EXP-1 is a negatively charged 

glutamate residue, suggesting that charge in this position may play an important role in 

conferring cation-selectivity. Alternatively, the ETS motif in LGC-35 may substitute for 

the PAR motif present in anionic-channels and provide the electrostatics for cation 

permeability (Jones and Sattelle, 2008; Wotring and Weiss, 2008). Together, these 

observations suggest that LGC-35 evolved a novel strategy for cation-permeability and 

that the molecular and electrostatic requirements for ion-selectivity may be more flexible 

than previously appreciated. 

Enteric muscle contraction 

The enteric muscles are comprised of two intestinal muscles, the sphincter and 

anal depressor muscle; contraction of these muscles during the defecation cycle is 

mediated by the GABA motor neurons AVL and DVB (McIntire et al., 1993b; White et 

al., 1986a) (Figure A.4C).  Contraction of the intestinal and anal depressor muscles is 

mediated by the GABA-gated cation channel EXP-1 (Beg and Jorgensen, 2003b; 
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McIntire et al., 1993a; Thomas, 1990) and the sphincter muscle contraction is mediated 

by LGC-35 (this manuscript) (Figure A.4C).  Contraction of these muscles is ordered 

from anterior to posterior.  First the intestinal muscles contract and fill the rectum with 

gut contents (EXP-1-mediated); second, the sphincter muscle contracts to seal the 

intestine and prevent reflux (LGC-35-mediated); third, the anal depressor lifts the roof of 

the anus (EXP-1-mediated) and turgor pressure collapses the rectum driving expulsion.  

Because the enteric muscles are connected by gap junctions, the presence of either 

one of these receptors is able to stimulate some muscle contractions. Only by 

eliminating both receptors are contractions eliminated, fully recapitulating the defecation 

phenotype of mutants lacking the biosynthetic enzyme for GABA (Jin et al., 1999).  

Why are two GABA-gated cation channels (LGC-35 and EXP-1) needed for 

enteric muscle contraction?  One possibility is that differences in receptor localization 

and desensitization coordinate the proper timing and length of each muscle contraction. 

EXP-1 is less sensitive to GABA (~27mM), rapidly desensitizing and highly clustered at 

the AVL/DVB neuromuscular junction (Beg and Jorgensen, 2003b), whereas LGC-35 is 

more sensitive to GABA (~15mM), desensitizes slowly and is diffusely expressed in the 

sphincter muscle, with no apparent clustering or enrichment at the synapse (Figure 

A.4C). These properties suggest that synaptic signaling from AVL and DVB motor 

neurons rapidly activates the intestinal muscles via EXP-1, while spillover transmission 

onto LGC-35 causes a prolonged sphincter muscle contraction safeguarding against 

reflux of the expellant during opening of the anus.  In addition, the inhibitory GABA 

receptor isoform UNC-49B is expressed in the sphincter muscle but not in the anal 

depressor or intestinal muscles (Bamber et al., 1999b).  Sphincter relaxation is 
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important for defecation in adult males, but there is not an apparent role in 

hermaphrodites (Reiner and Thomas, 1995).  

Spicule Eversion and Mating 

Lack of inhibitory inputs into male specific muscles mediated by the GABA–gated 

chloride channel UNC-49 causes the spicules to extend, become permanently everted 

and hang from the cloaca. This phenotype is likely due to an excess of excitatory inputs 

into these muscles caused by loss of inhibitory input.  Because loss of the excitatory 

GABA receptor LGC-35 suppresses this phenotype, it is likely that GABA acts to 

stimulate the spicule protractor muscle.  Surprisingly, loss of LGC-35 did not result in a 

significant defect in male mating ability or potency in lgc-35 mutants.  It is possible that 

exp-1 and lgc-35 provide overlapping functions but the contribution from exp-1 is 

essential because it is required for male mating (E. Jorgensen, unpublished).  

Alternatively, lgc-35 GABA signaling might be redundant with acetylcholine signaling. 

Surprisingly the PCC, PCB and SPC neurons express vesicular transporters for both 

GABA and acetylcholine, and the target oblique muscles express both the GABA 

receptor LGC-35 and acetylcholine receptor subunits (UNC-38, UNC-63, UNC-29, LEV-

1, ACR-16, and ACR-18) (Liu et al., 2011). The release of two transmitters violates 

Dale’s principle of ‘one neuron: one transmitter’ (Eccles et al., 1954), but there are now 

several examples of transmitter corelease (Hnasko and Edwards, 2012) and even an 

example of GABA and acetylcholine corelease (Lee et al., 2010). 
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GABA acts in spillover neurotransmission on locomotory motor neurons 

In C. elegans, GABA receptors mostly act at neuromuscular junctions (Schuske 

et al., 2004). Here, we find that the excitatory GABA receptor LGC-35 is expressed in 

the sphincter muscle and also in the acetylcholine motor neurons.  The loss of 

excitatory GABA input into the acetylcholine motor neurons leads to decreased 

acetylcholine output, observed as an aldicarb-resistant phenotype in lgc-35 mutants.  

These excitatory GABA inputs are both direct and indirect. 

There are some direct synaptic contacts between the ventral VD GABA motor 

neurons and the ventral acetylcholine motor neurons that are observed in the wiring 

diagram (Chen et al., 2006).  However, they are a minor component of the output of 

these motor neurons; for example, the VD3 GABA motor neuron forms 23 synapses to 

ventral body muscle, but only 2 synapses each to VA3 and VB2 (Chen et al., 2006).  

Moreover, the DD neurons for the most part do not have similar inputs into the DA and 

DB motor neurons. This connectivity appears counterproductive: GABA release will 

simultaneously inhibit muscle contraction directly via UNC-49 and indirectly drive 

muscle contraction by stimulating acetylcholine release. However, it is likely that these 

direct inputs serve to initiate a rebound of the acetylcholine motor neurons to reverse 

the flexure during locomotion. Consistent with this model, lgc-35 mutants exhibit 

exaggerated bending in liquid or on solid surfaces, likely due to an inability to reverse 

ipsilateral relaxation that leads to flexures of greater amplitude. 

The dominant inputs from GABA neurons to acetylcholine neurons are not via 

direct inputs but rather through indirect inputs, mediated by spillover transmission. In 

addition to receiving direct inputs from GABA neurons, LGC-35 is largely distributed on 
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acetylcholine axons between GABA neuromuscular junctions; in other words LGC-35 is 

not juxtaposed to GABA release sites but rather is found between them.  As expected 

for a receptor that is distant to a release site, LGC-35 exhibits increased sensitivity to 

GABA compared to the inhibitory GABA receptor on muscles juxtaposed to the release 

site (LGC-35 EC50 = 15 mM; UNC-49 EC50 = 44 mM) (Bamber et al., 1999b).  In 

addition, unlike other GABA neurons in the worm, the ventral cord GABA motor neurons 

do not express the GABA transporter SNF-11 (Mullen et al., 2006), nor do they show 

GABA uptake activity (McIntire et al., 1993a). In the absence of rapid clearance, GABA 

spillover along the motor neurons will activate the acetylcholine motor neurons.  

 Spillover transmission is not unique to nematodes. There are examples in 

vertebrate circuits where neurotransmission has indirect components (Nishiyama and 

Linden, 2007).  In these circuits, spillover transmission may function to modify direct 

synaptic signaling.  For example, climbing fibers in the mouse cerebellum make 

thousands of direct excitatory synaptic contacts with their primary target Purkinje cells. 

These same climbing fibers also communicate with inhibitory cerebellar basket and 

stellate interneurons exclusively by spillover transmission (Szapiro and Barbour, 2007).    

Additionally, inhibitory golgi-granule cell communication in the cerebellum is 

predominantly mediated by spillover transmission (Rossi and Hamann, 1998).  Together, 

these data and our findings reveal that spillover transmission adds an additional layer of 

complexity to neuronal circuits and underscores that simply mapping synaptic 

connectivity cannot describe how behavioral output is encoded at the circuit level. 
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Material and Methods 

Strains 

For all experiments, the Bristol N2 strain was used as the wild-type control. Worms were 

grown at 22°C on NGM plates seeded with E. coli OP50 or HB101. EG4787 lgc-

35(tm1444) II, a deletion mutation removing the first five exons of lgc-35, was obtained 

from the Japan National BioResource project and outcrossed six times. To obtain a 

second null allele of lgc-35, the MosDEL technique was used to generate the targeted 

deletion EG6027 lgc-35(ox469) II (Frøkjær-Jensen et al., 2010). Briefly, the Mos1 

transposon in lgc-35(ttTi13013) II was remobilized causing a break in the DNA, which 

was repaired by a template encompassing a deletion of lgc-35. The following strains 

were used for experiments described in this work: JT6 exp-1(sa6) II, EG276 exp-

1(ox276) II, EG4920 unc-25(e156) III,  EG7856 unc-49(e407) III, EG3328 exp-1(ox276) 

II; unc-49(e407) III,  and CB1489 him-8(e1489) IV. The following strains were generated 

for the experiments described in this work: EG4563 lgc-35(tm1444) exp-1(ox276) II, 

EG4869 lgc-35(tm1444) exp-1(ox276) II; unc-49(e407) III, EG5035 lgc-35(tm1444) exp-

1(ox276) II; lin-15(n765ts) X, EG5377 lgc-35(tm1444) II; him-8(e1489) IV, EG5330 exp-

1(ox276) lgc-35(tm1444) II; oxEx129 [Plgc-35::LGC-35::GFP, Psur-5::GFP, lin-15(+)], 

EG7253 lgc-35(tm1444) II; oxEx1291[Plgc-35::LGC-35::GFP, Psur-5::GFP, lin-15(+)], 

and EG5331 lgc-35(tm1444) II; unc-49(e407) III; him-8(e1489) IV; oxEx1328 [Plgc-

35::LGC-35::GFP::let858-UTR, Psur-5:GFP, lin-15(+)].       

Sequences 

Orthologs of LGC-35 found in nematode species include: C. japonica (JA09778, 

87% identity), C. brenneri (CN11371, 76% identity), C. briggsae (CB18417, 71% 
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identity), and P. pacificus (PP42968, 58% identity), and in the parasitic nematodes 

Ascaris suum (ERG83865.1, 43% identity), Brugia malayi (XP_001900837.1, 48% 

identity), Loa loa (XP_003137178.1, 47% identity), and Onchocera volvulus 

(OVOC9886, 41% identity).   

Transcriptional fusion 

A 7.6 kb genomic fragment including ~3 kb upstream sequence, the 3.54 kb 

Y46G5A.26 (lgc-35) open reading frame, and 1.0 kb downstream sequence was PCR 

amplified and cloned into the vector pCR2.1 (Invitrogen) to generate pAB12. To 

generate the transcriptional reporters, a 2.9kb lgc-35 promoter fragment was PCR 

amplified from pAB12 using primers containing attB4 and attB1 sites. The promoter 

fragment with flanking sites was recombined into pDONR P4-P1R (Invitrogen) using the 

BP recombination reaction to make pMJ50. The EGFP transcriptional reporter pMJ52 

(Plgc-35::EGFP::let-858 terminator) was made by recombining pMJ50, pGH115, and 

ADA-126 in a multisite LR reaction into pDEST R4-R3 (Invitrogen). The TagRFP 

transcriptional reporter pMJ53 (Plgc-35::TagRFP::let-858 terminator) was made by 

recombining pMJ50, pRH142, ADA-126 in a multisite LR reaction into pDEST R4-R3 

(Invitrogen). Sequencing and restriction digests confirmed correct construction of all 

reporter constructs. The two transcriptional reporters, pMJ52 and pMJ53, were 

separately injected at 20 ng/µL with 80 ng/µL of pEK1(lin-15+) into lin-15(n765ts) 

animals to generate oxEx1314(pMJ52) and oxEx1315(pMJ53).  
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Translational GFP fusion 

To determine protein localization, GFP was inserted into the open reading frame of 

LGC-35 within the intracellular loop between M3-M4. To generate pAB10, an in-frame 

translational LGC-35::GFP fusion plasmid, an XmaI/AgeI restriction fragment from 

pPD102.22 containing the EGFP coding region was ligated to AgeI linearized pAB12. 

Sequencing confirmed that the EGFP insertion site was in-frame within pAB10. pAB10 

was injected at 30ng/µL with pEK1(lin-15+) at 30 ng/µL and 1kb+ DNA Ladder at 40 

ng/µL into lin-15(n765ts) animals to generate oxEx1253. An additional translational 

reporter was generated using the gateway system.  LGC-35::GFP from pAB10 was 

PCR amplified using primers containing attB1 and attB2 sites. The PCR product was 

recombined with attP1 and attP2 sites into pDONR P1-P2R (Invitrogen) using the BP 

recombination reaction to make pMJ51 (LGC-35::GFP). An EGFP translational reporter, 

pMJ54 (Plgc-35::LGC-35::GFP-let-858 terminator), was made by recombining pMJ50, 

pMJ51, ADA-126 in a multisite LR reaction into pDEST R4-R3 (Invitrogen).   

Cell Identification 

To determine if LGC-35 protein is expressed in acetylcholine motor neurons (VA,VB, 

DA, DB), an injection mix of 30 ng/µL of pAB10, 2.5 ng/µL of pCFJ90, 30 ng/µL of Pacr-

2::mCherry and 37.5 ng/µL of 1Kb+ DNA Ladder (Invitrogen) was injected into wild-type 

animals to generate aabEx13. To determine if LGC-35 is expressed in GABA motor 

neurons (DD and VD) 30 ng/µL of pAB10, 30 ng/µL of pGH21 and 40 ng/µL of pEK1(lin-

15+) were injected into lin-15(n765ts) animals to generate oxEx1224. Cell identifications 

were made from young adult hermaphrodite animals using the vulva as a landmark for 

orientation. Sequencing and restriction digests confirmed correct construction for all 
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constructs. Standard microinjection techniques were used to generate all transgenic 

strains (Mello et al., 1991). Strains were imaged on a Pascal LSM5 confocal microscope 

(Carl Zeiss) or Nikon A1R confocal.  

Lgc-35 rescue constructs 

Rescue of lgc-35(tm1444) mutants was achieved by injecting 15 ng/µL of pMJ54, 5 

ng/µL of Psur-5::GFP, and 80 ng/µL of pEK1 generating the array oxEx1291.  

RNAi 

RNA interference (RNAi) was performed by feeding (Kamath et al., 2003). Ten adult 

gravid hermaphrodites were placed on RNAi bacteria and allowed to lay eggs for six 

hours before being removed. RNAi plates were grown at room temperature until eggs 

grew into adults (2-3 days). Ten F1 young adult animals were scored for defecation 

cycle steps from each genotype as previously described (Thomas, 1990).  

Behavioral Assay 

Defecation 

To determine enteric muscle contractions (Emc) per defecation cycle, animals were 

scored for a positive enteric muscle contraction following a posterior body contraction 

(Emc /Pboc). Each animal was observed for eleven cycles and fifteen animals were 

scored for each genotype. Animals were raised and scored at room temperature (22°C) 

on OP50 bacteria.  

High-speed video 

Contraction of the intestinal muscles occurs on a millisecond time scale. To observe 

contraction of the intestinal muscle, videos were recorded at 60 frames per second at 
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400X total magnification. The raw data was converted to an AVI file and slowed to 5 

frames a second to manage the large size of these files. The videos were edited to 

capture the expulsion step for qualitative analysis. 

Worm tracking 

Worm movement was analyzed by filming lgc-35(tm1444), or lgc-35(tm1444) oxEx1291, 

or wild-type (N2) animals. Each genotype was raised and filmed at room temperature 

(22°C) on OP50 bacteria on standard NGM plates. Young adult worms were picked 

individually and placed briefly on an intermediate NGM plate until clear of residual 

bacteria. An individual animal was then placed on a test plate of room temperature 

NGM agar and allowed to move for one minute before filming. Each animal was filmed 

for a single 30-second duration. Worm movement was filmed using a Leica MS 5 

microscope, a Prior Scientific OptiScan II moving stage and a CCD Firewire camera 

(Sony XCD-V60). Worm locomotion was analyzed using the Track-A-Worm software 

platform (Wang and Wang, 2013).  

Aldicarb 

We determined sensitivity to aldicarb, an acetylcholine esterase inhibitor, by measuring 

the onset of paralysis after exposure to 1 mM of aldicarb as previously described 

(Mahoney et al., 2006). Thirty worms were placed on an NGM plate treated with 

aldicarb and screened for paralysis. Conditions were repeated in triplicate.  

Thrash Assay 

Locomotor defects were quantified by counting the number of body thrashes in 100ml of 

liquid M9 media at room temperature for a 2-minute interval (Miller et al., 1996).  Single 

animals were placed into an agarose coated well of a 96 well plate and allowed to 
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acclimate for 2 minutes prior to recording.  Animals were recorded using a Leica 

IC80HD camera for 2 minutes.  The total number of body bends was counted offline by 

slowing videos to one-quarter speed using ImageJ.  A blinded scorer counted the total 

number of body bends and divided this number by two to yield a bodybend/minute 

count. 

Spicule eversion and rescue 

To determine if spicule eversion and retraction was functional, males were 

scored for functional spicules (spicules that could retract into the body after attempting 

to mate over time). Spicules that were permanently everted and were unable to retract 

into the body were scored as nonfunctional.  Ten young adult males and 

hermaphrodites were fed on an OP50 plate for 24 hours.  At 24 hours, a new group of 

ten virgin hermaphrodites were introduced and the older hermaphrodites were removed 

in order to increase mating attempts.  At 48 hours, the males’ spicules were scored for 

functionality.  him-8(e1489) was the control strain and all genotypes were in a him-

8(e1489) background to maintain males in the population.  

Rescue of lgc-35(tm14444) II; unc-49(e407) III; him-8(e1489) IV mutants was 

achieved by injecting 15 ng/µL of pMJ54, 5 ng/µL of pTG96, and 80ng/µl EK1(lin-15+) 

into triple mutants animals generating the array oxEx1328.  

Male mating 

Male mating efficiency was assessed as previously described (Hodgkin, 1983). 

One young adult male was placed on a NGM plate seeded with HB101 with four young 

adult wild-type hermaphrodites.  Males were removed at different time intervals (1, 3, 6, 

and 24 hours).  At day three and four, plates were blinded for genotype and were 
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scored by eye for cross progeny. All male genotypes tested were in a him-8(e1489) 

background.  

To determine if males could sire progeny over time 120 L4 lgc-35(tm1444) II; 

him-8(e1489) IV males and 120 L4 him-5(e1490) males were separated into 

populations of 20 worms per plate. Each day for 6 days, 20 adult males were tested for 

mating potency.  Mating potency was measured by pairing a single male with a single 

24-hour old virgin adult pha-1(ts) hermaphrodite on a plate containing a 10mm OP50 

lawn. Mating plates were incubated at 20°C and scored after three days for the 

presence of at least one cross progeny.  

Electrophysiology 

LGC-35 cDNA isolation: To determine the full-length mRNA of lgc-35, wild-type poly-A+ 

selected RNA was subjected to reverse-transcription and polymerase chain reaction 

(RT-PCR).  The 5’ end of the gene was determined using circular RACE (Maruyama et 

al., 1995), and the 3’ end of the gene was predicted by sequence analysis of the 

genome based on predictions that had homology to the fourth transmembrane domain 

of EXP-1.  Full-length cDNAs were isolated by designing oligonucleotide primers to the 

5’ and 3’ untranslated regions of Y46G5A.26. PCR products were cloned into the 

pCR2.1 TA cloning vector (Invitrogen) and cDNAs were sequenced to obtain full-length 

error-free clones (Applied Biosystems). 

Xenopus oocyte expression: A SpeI /XhoI fragment containing the full-length lgc-35 

cDNA, including the 5’ and 3’ UTRs, was cloned into the SpeI/XhoI sites of pSGEM 

(courtesy of M. Hollmann), creating plasmid pAB08. Capped RNA was prepared using 

the T7 mMessage mMachine kit (Ambion). Xenopus oocytes were collected and 
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injected with 10 ng of cRNA and two-electrode voltage clamp recordings were 

performed 2-5 days post injection.  

Dose-response and ion selectivity experiments: The standard bath solution for dose-

response and control I-V experiments was Ringer’s (in mM): 115 NaCl, 2.5 KCl, 1.8 

CaCl2, 10 HEPES (pH 7.2 NaOH). For dose-response experiments, each oocyte was 

subjected to a five-second application of GABA (1-1000 mM) with 2 minutes of wash 

between applications. Ion selectivity experiments and data analysis were performed as 

previously described (Beg and Jorgensen, 2003b). All recording were done at room 

temperature. We used 3M KCl-filled electrodes with a resistance between 1-3 MΩ. A 3M 

KCl agar bridge was used to minimize liquid junction potentials, and all liquid junction 

potentials arising at the tip of the recording electrode were corrected online. 

Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 6. Two-tailed unpaired 

Student’s t-tests were performed to determine the difference between two genotypes (p 

<0.05 was considered significant).  One-way ANOVA with Tukey post-hoc test was used 

for comparison involving more than two groups. Data are reported as mean ± s.e.m. 

unless otherwise noted and all experiments were performed blind to the observer.  
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