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PREFACE

The body of this dissertation consists of five chapters. Chapter I introduces the

reader to the background of this dissertation research that covers three main sub-

jects in Chapters II–IV. Chapter II is based on an article (Choe et al., 2015), which

was originally published by the American Society for Quality (ASQ) and the Amer-

ican Statistical Association (ASA). ASQ/ASA granted to me the right to reproduce

the manuscript in this dissertation. Chapters III and IV are based on two work-

ing manuscripts. Chapter V concludes the dissertation with a summary and future

research directions.
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ABSTRACT

Computationally Efficient Reliability Evaluation With Stochastic Simulation Models

by

Youngjun Choe

Chair: Eunshin Byon

Thanks to advanced computing and modeling technologies, computer simulations are

becoming more widely used for the reliability evaluation of complex systems. Yet,

as simulation models represent physical systems more accurately and utilize a large

number of random variables to reflect various uncertainties, high computational costs

remain a major challenge in analyzing the system reliability.

The objective of this dissertation research is to provide new solutions for saving

computational time of simulation-based reliability evaluation that considers large un-

certainties within the simulation. This dissertation develops (a) a variance reduction

technique for stochastic simulation models, (b) an uncertainty quantification method

for the variance reduction technique, and (c) an adaptive approach of the variance

reduction technique.

First, among several variance reduction techniques, importance sampling has been

widely used to improve the efficiency of simulation-based reliability evaluation using

deterministic simulation models. In contrast to deterministic simulation models whose

simulation output is uniquely determined given a fixed input, stochastic simulation

models produce random outputs. We extend the theory of importance sampling to

xiv



efficiently estimate a system’s reliability with stochastic simulation models.

Second, to quantify the uncertainty of the reliability estimation with stochas-

tic simulation models, we can repeat the simulation experiment multiple times. It,

however, multiplies computational burden. To overcome this, we establish the central

limit theorem for the reliability estimator with stochastic simulation models, and con-

struct an asymptotically valid confidence interval using data from a single simulation

experiment.

Lastly, theoretically optimal importance sampling densities require approxima-

tions in practice. As a candidate density to approximate the optimal density, a

mixture of parametric densities can be used in the cross-entropy method that aims to

minimize the cross-entropy between the optimal density and the candidate density.

We propose an information criterion to identify an appropriate number of mixture

densities. This criterion enables us to adaptively find the importance sampling density

as we gather data through an iterative procedure.

Case studies, using computationally intensive aeroelastic wind turbine simulators

developed by the U.S. Department of Energy (DOE)’s National Renewable Energy

Laboratory (NREL), demonstrate the superiority of the proposed approaches over

alternative methods in estimating the system reliability using stochastic simulation

models.
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CHAPTER I

Introduction

Thanks to the advance of computing and modeling technologies, simulations are

employed in many applications to understand and analyze complex system behav-

iors. Stochastic simulation models are especially of interest due to the increasing

importance of uncertainties observed in real world operations. Reliability evaluation

of systems that need high reliability typically requires many replications of stochastic

simulations to generate rare events of system failures. However, as simulation models

represent physical systems more accurately, each simulation replication takes signif-

icant computational resources. This computational challenge calls for sophisticated

approach in simulation-based reliability evaluation.

The objective of this dissertation research is to provide new solutions for sav-

ing computational time of simulation-based reliability evaluation that considers large

uncertainties within the simulation. This dissertation develops (a) a new variance

reduction technique for stochastic simulation models, (b) an uncertainty quantifica-

tion method for the variance reduction technique, and (c) an adaptive approach of

the variance reduction technique, which utilizes a novel information criterion to guide

simulation process.

First, among several variance reduction techniques, importance sampling has been

widely used to improve the efficiency of simulations, but its application has been

1



limited to deterministic simulation models. In contrast to deterministic simulation

models whose simulation output is uniquely determined given a fixed input, stochas-

tic simulation models produce random outputs. We extend the theory of importance

sampling to estimate a system’s reliability with stochastic simulation models. Given

a budget constraint on total simulation replications, we develop a new approach,

called stochastic importance sampling (SIS), which efficiently uses stochastic simu-

lation models with unknown output distribution. Specifically, we derive the optimal

importance sampling density and simulation allocation procedure that minimize the

variance of a reliability estimator.

Second, to quantify the estimation uncertainty, one possible approach is to repeat

the simulation experiment multiple times and obtain the sample standard devia-

tion of the estimation. Repeating the experiment, however, multiplies computational

burden. We develop an uncertainty quantification approach that does not require

multiple experiments. Specifically, we establish the central limit theorems for SIS-

based reliability estimators and construct asymptotically valid confidence intervals

using the data obtained from a single simulation experiment.

Lastly, theoretically optimal importance sampling densities require some approx-

imations in practice, such as the cross-entropy method. The standard cross-entropy

method uses a parametric density to approximate the optimal importance sampling

density. To overcome the rigidity of using a single parametric density, a mixture

of parametric densities can be used. The performance of the mixture model-based

cross-entropy method depends on the number of mixture components, yet no rigorous

approach to decide the number of mixture components is available in the literature.

We derive a new information criterion that can identify an appropriate number of

component densities. By choosing the component number that minimizes the pro-

posed criterion, we obtain the mixture model that asymptotically approaches the

optimal density.
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Case studies, using computationally intensive aeroelastic wind turbine simulators

developed by the U.S. National Renewable Energy Laboratory, demonstrates the

superiority of the proposed approaches over alternative methods in estimating the

system reliability using stochastic simulation models.

In this chapter, we discuss the backgrounds of the three main subjects outlined

above. Section 1.1 presents how computer simulations are used to evaluate the re-

liability of stochastic systems, why computational costs remain a challenge to the

reliability evaluation, and what approaches can potentially address the challenges.

Computational costs are closely related to the accuracy of reliability evaluation be-

cause higher accuracy (or smaller uncertainty) of the evaluation often requires more

computational efforts. Section 1.2 discusses why quantifying the uncertainty of reli-

ability evaluation is important and how existing studies approach the problem. Sec-

tion 1.3 reviews the cross-entropy method that is widely used to approximate the

optimal importance sampling method in order to reduce the computational burden

in the simulation-based reliability evaluation.

1.1 Reliability Evaluation Using Monte Carlo Simulations

With the rapid growth of computing power over the last decades, computer simu-

lation modeling has become very popular in many applications where real experiments

are expensive, difficult, or perhaps impossible. These simulation models are often used

to evaluate the reliability of large-scale, complex systems. For example, safety evalu-

ation of a nuclear power plant often employs complex computer simulations (D’Auria

et al., 2006). The U.S. DOE’s NREL has developed aeroelastic simulation tools to

help wind turbine manufacturers design reliable wind power systems (Jonkman and

Buhl Jr., 2005; Jonkman, 2009).

This dissertation is concerned with reliability evaluation of systems based on

Monte Carlo simulations that use repeated random sampling to understand prob-

3



abilistic behaviors of the systems modeled by computer simulations. As a measure of

reliability, we consider the failure probability of the system. Failure events of interest

can be soft failures (e.g., structural/mechanical loads on a wind turbine exceed a

design resistance level) or hard failures (e.g., a wind turbine experiences structural

or mechanical failures). To estimate the failure probability of a system, we use the

computer simulation model of the system. The model is built by experts in the do-

main to reflect the system reliability at the detailed level. We regard the model as a

black box to which we supply inputs in order to observe simulated outputs.

The crude Monte Carlo (CMC) method (Kroese et al., 2011) is one of the most

widely used methods to estimate the failure probability. In CMC, we sample inputs

to the simulation model from a known distribution. This input distribution is usually

estimated from the field data or specified by domain experts. Using the sampled in-

puts, we run the computer simulation model (or simulator) to generate corresponding

outputs. Each replication (or a single run of the simulator) can be computationally

intensive and time demanding. For example, the NREL aeroelastic simulators take

roughly 1-min wall-clock time (on Intel Xeon CPU E31230 3.20GHz, RAM 8GB) to

simulate 10-min actual operation of a wind turbine. After observing all simulation

outputs, we count the number of replications where the system failed. The failure

probability estimator in CMC is the proportion of the failure observations out of the

total number of observations.

When people build and use a computationally intensive simulator to understand

the reliability of a system, they usually face a very high standard on the system reli-

ability (e.g., nuclear power plant, passenger aircraft, utility-scale wind turbine, etc.)

because the reliability is very important for such systems. To meet the high relia-

bility standard, the failure event should occur rarely, if any. A computer simulation

model that well represents the actual system will similarly make us observe failure

events rarely even if we repeat running the simulator many times with many different

4



random inputs. Furthermore, observing a single failure incidence out of millions of

replications hardly gives us an accurate picture of all potential failure mechanisms.

To have more concrete understanding of the potential failures or more accurate es-

timation of the failure probability, we need to observe more failure events than just

few, requiring even more replications in CMC. This is the computational challenge

associated with understanding rare events like failures of highly reliable systems.

Due to the sheer amount of required computation, CMC for the reliability evalu-

ation is commonly implemented with high performance computing in practice (Graf

et al., 2015). For example, to evaluate the reliability of a wind turbine, Moriarty

(2008) used grid computing with 60 desktops at NREL for 5 weeks, and Manuel et al.

(2013) used cluster computing with 1,024 cores at Sandia National laboratories. To

reduce the computational burden while maintaining the evaluation accuracy, a more

sophisticated approach than CMC is needed.

A class of statistical methods called variance reduction techniques (Kroese et al.,

2011) aims to reduce the variance of the estimator that is based on computer sim-

ulations, while keeping the unbiasedness of the estimator. With the fixed amount

of computational budget, such techniques can lead to a more accurate estimator of

failure probability. On the flip side, to meet a target estimation accuracy, we can use

less computational resources by employing variance reduction techniques.

Among several variance reduction techniques, importance sampling (IS) has been

regarded as one of the most efficient methods (Kroese et al., 2011) because IS can re-

duce the estimator variance to zero in theory for the deterministic simulation model.

The underlying idea is to change the input distribution for the simulation so that

we observe outputs of interest (e.g., failures) more frequently. The optimal input

distribution or IS distribution exists regardless of whether the input is discrete, con-

tinuous, or mixed. We hereafter confine ourselves to continuous inputs for ease of

presentation, but the extension to other input types is straightforward.

5



The existing IS assumes a deterministic relationship between simulation input and

output (Kahn and Marshall , 1953). This assumption does not hold for the stochastic

simulation model that generates random outputs for the same input. Stochastic

simulation models are increasingly important for us to understand the reliability of

systems under large uncertainties, because these simulators can incorporate numerous

random variables within the simulators. Chapter II discusses the extension of IS to

the stochastic simulation model and provides the optimal IS densities and allocation

sizes that minimize the reliability estimator variance.

1.2 Uncertainty Quantification of Reliability Evaluation

When evaluating the reliability of a system under uncertainty using computer

simulations, any practical estimator of reliability or failure probability is also subject

to uncertainty. Without quantifying the uncertainty, it is hard to justify a point

estimator, which may or may not be close enough to the true failure probability.

As one of the most common measures of the uncertainty, we can consider the

variance of the estimator. To estimate the variance, a possible approach is repeating

the estimation of failure probability and obtaining multiple estimates to compute the

sample variance of the estimates as an estimator of the true variance. This empirical

approach is commonly used when repeating the reliability estimation is computa-

tionally inexpensive. On the other hand, when obtaining even a single estimate is

computationally expensive, it is necessary to rely on the theoretical property of the

estimator to quantify the estimation uncertainty without repeating the estimation.

If an estimator is an average of random variables and generally well-behaved (e.g.,

the random variables being averaged have finite variances), then it is standard in

the literature to establish the central limit theorem (CLT) of the estimator. CLT

provides information on the distribution of the difference between the estimator and

the true quantity being estimated. Specifically, CLT states that if the difference is

6



scaled up by the square root of the sample size (i.e., the total number of simulation

replications), then the scaled difference tends to follow a normal distribution as the

sample size grows (Keener , 2010).

Establishing CLT or knowing the asymptotic distributional property of the estima-

tor allows us to quantify the estimation uncertainty more precisely than knowing only

the (asymptotic) variance of the estimator. We can use the distribution information

to build an asymptotic confidence interval (CI) that provides a confidence statement

on our estimator of failure probability. When the sample size is large enough, the

asymptotic CI will cover the true quantity being estimated with a high probability.

In the literature, CLT for the CMC estimator of the failure probability is well

known (Keener , 2010). CLT for the IS estimator with deterministic simulation mod-

els is also well established (Geweke, 2005). However, the CLTs for the reliability

estimators with stochastic simulation models have not been studied yet. Chapter III

establishes CLTs for the estimators developed in Chapter II and quantifies their un-

certainties using asymptotic CIs.

1.3 Cross-Entropy Method for Importance Sampling

The optimal IS distribution is practically not attainable because we need to know

the explicit relationship between all possible simulation inputs and outputs a priori,

whereas our essential assumption is that we can only learn the relationship incremen-

tally by running the simulator. In practice, people use various approaches (De Boer

et al., 2005; Dubourg et al., 2013) for approximating the optimal IS density and find

them very effective in various application domains including structural reliability

analysis (Kurtz and Song , 2013) and computational finance (Wang and Zhou, 2015).

A common approach is building a model of the simulation model, called metamodel

or emulator, based on a small pilot sample of simulation data and using the metamodel

to approximate the optimal IS density that focuses sampling efforts on important

7



input region (Dubourg et al., 2013; Choe et al., 2015). This metamodel-based approach

works well in practice if we can build a good metamodel that captures the important

region well. We however need an alternative approach if building a metamodel is

difficult, for example, due to highly complicated simulation input-output relationship.

The cross-entropy (CE) method (Rubinstein, 1999) is a widely used alternative

method in the literature. This method confines the candidate IS density to a paramet-

ric distribution family and updates the distribution parameter as we gather simulation

data. The updating procedure aims to minimize the difference between the candidate

IS density and the optimal IS density. The difference is measured in terms of CE,

hence the name of the method.

Limiting the candidate density to a parametric distribution family makes the CE

method convenient to use. Especially when the candidate density belongs to the

natural exponential family (e.g., normal distribution with known variance, binomial

distribution with known number of trials, Poisson distribution, etc.), updating the pa-

rameter of the candidate density reduces to evaluating analytical updating equations

from numerically minimizing an estimate of the CE (De Boer et al., 2005).

The convenience of using a parametric candidate density does not come without

a price. If the optimal IS density takes a too complicated form to approximate with

a parametric density, the standard CE method cannot achieve the full potential of

using IS in terms of variance reduction and computational saving. For example, if the

important input regions (or input conditions that lead to frequent failure events in

reliability evaluation) are represented by two separate zones, a unimodal parametric

density cannot exactly capture the important zones but may focus on either one of

the two zones or diffuse the sampling efforts to cover both zones and the in-between

area, which is not necessarily important for understanding the system reliability.

To overcome the rigidity of using a parametric density with a small number of

parameters, recent studies propose using a mixture of multiple parametric densities
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(Botev et al., 2013; Kurtz and Song , 2013; Wang and Zhou, 2015). Yet, this approach

encounters another problem of being potentially too flexible. Because the CE method

minimizes an estimate of CE based on data at each updating step, allowing the candi-

date IS density to be too flexible tends to create data overfitting problem, which makes

the IS density unstable. To illustrate, Figure 1.1 shows the 2-dimensional contour

plots of (a) the optimal IS density (from the example with b = 2.5 in Section 4.4.1),

(b) a Gaussian density from the standard CE method, and (c) the mixture of many

Gaussian densities. We observe that a single Gaussian density generally captures the

important region but fails to have the right parabolic shape. On the other hand, the

mixture of many Gaussian densities overfits the data, having a too wiggly shape. It

is an open problem in the literature to find the best number of component densities,

which determines the flexibility of mixture density. Chapter IV devises a novel in-

formation criterion to find the best component number based on observed simulation

data.
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Figure 1.1: Comparison of the Optimal IS Density with Approximating Densities
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CHAPTER II

Importance Sampling for Reliability Evaluation

With Stochastic Simulation Models

2.1 Introduction

This study extends the theory of IS to estimate the reliability of systems using

simulations. Various IS methods have been proposed for deterministic simulation

models (De Boer et al., 2005; Cannamela et al., 2008; Dubourg et al., 2013). How-

ever, conventional IS methods devised for deterministic simulation models are not

applicable to stochastic simulation models (to be detailed in Section 2.2).

This study develops a new approach, which we call Stochastic Importance Sam-

pling (SIS), that efficiently uses stochastic simulations with unknown output distri-

bution. We propose two methods to estimate a failure probability. First, we use

a failure probability estimator that allows multiple simulation replications at each

input and derive the optimal IS density and allocation of simulation efforts at each

sampled input for minimizing the estimator variance. Second, we propose another

estimator that allows one simulation replication at each sampled input and derive the

optimal IS density. Both methods use variance decomposition (Kroese et al., 2011)

to account for different sources of output variability and find the optimal IS den-

sities using functional minimization (Courant and Hilbert , 1989). We demonstrate
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the proposed methods using the NREL simulators to estimate wind turbine failure

probabilities. The implementation results suggest that the SIS approach can produce

estimates with smaller variances compared to alternative approaches when the total

simulation budget is fixed.

2.2 Background and Literature Review

We first give an overview of IS for deterministic simulation models (DIS). Let

X, an input vector, denote a random vector following a known density, f . Given

X, a simulator generates an output, Y = g (X), via a deterministic performance

function, g (·). The function, g (·), is not explicitly known, but we can evaluate

it with a simulation model. In reliability analysis with a deterministic simulation

model, the failure probability is P (Y > l) = E [I (g(X) > l)], where l denotes the

system’s resistance level.

The CMC method is one of the simplest methods to estimate the failure proba-

bility. In CMC, we independently draw Xi, i = 1, 2, · · · , NT , from its density, f , and

unbiasedly estimate the failure probability by

P̂CMC =
1

NT

NT∑
i=1

I (g(Xi) > l) , (2.1)

where NT is the total number of simulation replications.

Alternatively, DIS uses the following estimator,

P̂DIS(Y > l) =
1

NT

NT∑
i=1

I (g(Xi) > l)
f(Xi)

q(Xi)
, (2.2)

where Xi, i = 1, 2, · · · , NT , is independently sampled from q, called an IS density.

Since Xi is sampled from q, we multiply the likelihood ratio, f(Xi)/q(Xi), in (2.2)

to obtain an unbiased estimator of P (Y > l). Note that P̂DIS in (2.2) is unbiased
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under the condition that q(x) = 0 implies that I (g(x) > l) f(x) = 0 for any x. An

appropriately selected IS density reduces the estimator variance. It is well-known

that the following IS density renders V ar[P̂DIS] zero (Kroese et al., 2011):

qDIS(x) =
I (g(x) > l) f(x)

P (Y > l)
. (2.3)

Here, qDIS(x) can be interpreted as the conditional density of X, given that the

failure event occurs. Since the denominator in (2.3) is the target quantity one wants

to estimate and I (g(x) > l) is unknown, qDIS (x) is not implementable in practice.

Several approximations have been developed, including the cross-entropy method

(De Boer et al., 2005) and metamodel-based approximations (Dubourg et al., 2013).

These methods aim to find good IS densities that focus sampling efforts on the failure

event region.

Existing IS studies consider the deterministic performance function, g(·). That is,

for a fixed input, x, the observed output, Y = g (x), is always the same. This case

corresponds to the simulation with a deterministic simulation model where the same

input generates the same output. On the other hand, when a stochastic simulation

model is used, the simulation output is random even at the same input. We can

express the random output as Y = g(X, ε), where ε collectively denotes the uncon-

trollable randomness inside the simulator and X denotes a controllable random vector

with its known density, f .

One might claim that in any simulations, both variables, X and ε, are controllable

because some sampling distributions are specified for both variables in order to run

the simulation. However, there are some cases where the DIS approach cannot be

applied. First, to use DIS, the joint distribution function of X and ε, which needs to

be biased in the IS method, should be explicitly defined. In many realistic simula-

tions, the relationships among the elements of ε (or between X and ε) are governed
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by physical rules and constraints, and thus finding an explicit form of the joint dis-

tribution function can be intractable. Second, even if we know the joint distribution

function of X and ε explicitly, when the dimension of ε is extremely high, applying

DIS becomes very difficult due to the curse of dimensionality (Au and Beck , 2003).

In addition, some third-party simulation software may not allow access and control

for ε.

For example, with the specification we adopted from Moriarty (2008), the NREL

simulators use over 8 million random variables for each simulation run to generate

a three dimensional stochastic wind profile at multiple grid points via the inverse

Fourier transform (Jonkman, 2009). The relationship of X, the input wind condition,

with ε, which collectively represents the 8 million plus random variables, is highly

complicated due to the spatial and temporal dependence coupled with the inverse

Fourier transform. Consequently, one cannot find the explicit joint distribution of

X and ε. Even if one were to find it, applying the DIS approach jointly to X and

ε is virtually impossible due to the curse of dimensionality as previously mentioned.

In fact, this difficulty is typical for many realistic simulations of actual stochastic

systems with high degrees of freedom.

Therefore, for the stochastic simulation models where we effectively do not have

control over ε, the DIS density in (2.3), qDIS, can no longer be optimal. In fact, qDIS

cannot be applied to the stochastic simulation model because given x, I (g(x) > l) in

(2.3) is random.

Recently, stochastic simulation models that consider stochastic outputs given an

input condition have also been studied in the literature (Huang et al., 2006; Ankenman

et al., 2010). Ankenman et al. (2010) consider a queueing system simulation as an

example of stochastic simulation models, where the arrival rate is the input, x, and the

average number of customers in the system during specific time units, T , is an output,

Y . Here, ε collectively denotes the customer inter-arrival times and the service times.
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Huang et al. (2006) also consider stochastic simulation models and use the inventory

system simulation where the output, a total cost per month, is stochastic, given the

input including a reorder point and a maximal holding quantity. Even though these

studies account for the intrinsic uncertainty in outputs, their focuses are different

from our study’s. For example, Ankenman et al. (2010) develop stochastic simulation

metamodeling, extending the kriging methodology (Joseph, 2006), and estimate an

unknown quantity based on a metamodel. We note that this metamodeling-based

approach is useful for estimating a mean response. However, this approach usually

smooths a response function so that it loses its estimation accuracy in a tail probability

estimation, as discussed in Cannamela et al. (2008).

Another well-known approach is “IS for stochastic simulations” which has been

extensively studied (Heidelberger , 1995) after the seminal paper by Glynn and Iglehart

(1989). This approach is proven effective if we can control stochastic processes inside

a simulation. However, when a simulator involves complicated processes (e.g., wind

turbine simulators), controlling these processes can be difficult, if not impossible.

Therefore, our proposed approach treats a simulator as a black box model, and thus

differs from the existing approach.

2.3 Methodology

This section devises optimal SIS methods for stochastic simulation models. We

include the detailed derivations and proofs in Appendix A.
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2.3.1 Failure probability estimators

A stochastic simulation model generates a random variable, Y , given a realization

of the input, X ∈ Rp. In this context, the failure probability is

P (Y > l) = Ef [P (Y > l | X)] =

∫
Xf

P (Y > l | X = x) f(x) dx, (2.4)

where f is the density of X with the support of Xf , and the subscript f appended to

the expectation operator in (2.4) indicates that the expectation is taken with respect

to f . We call an estimator of P (Y > l), P̂ (Y > l), a probability of exceedance (POE)

estimator.

A simple Monte Carlo estimator for P (Y > l) in (2.4) is

P̂MC =
1

M

M∑
i=1

P̂ (Y > l | Xi) =
1

M

M∑
i=1

(
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > l

))
, (2.5)

where Xi, i = 1, 2, · · · ,M , is independently sampled from f . The number of sampled

inputs, M , is called an input sample size. At each Xi, we run simulations Ni times

to obtain Ni outputs, Y
(i)
j , j = 1, 2, · · · , Ni, where Y

(i)
j denotes the output obtained

in the jth replication. Note that the estimator in (2.5) allows multiple replications

at each Xi to account for the stochastic outputs at the same input. We call the

number of simulation replications at each Xi, Ni, an allocation size. In (2.5), we

call P̂ (Y > l | Xi) a conditional POE estimator. The total number of replications is

NT =
∑M

i=1Ni. With deterministic simulation models, multiple replications at the

same input are not necessary because the outcome is conclusively determined at the

given input.
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In the spirit of IS methods, we propose the following SIS estimator:

P̂SIS1 =
1

M

M∑
i=1

P̂ (Y > l | Xi)
f(Xi)

q(Xi)
=

1

M

M∑
i=1

(
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > l

)) f(Xi)

q(Xi)
, (2.6)

where Xi is drawn from q. P̂SIS1 is unbiased if q(x) = 0 implies P̂ (Y > l|X = x) f(x)

= 0 for any x. We assume that the total simulation budget, NT , and the input

sample size, M , are given. Note that since we treat the stochastic elements inside

the simulator as an uncontrollable input, we apply the underlying idea of IS only to

X and use the sample mean to estimate the conditional POE. Here, the conditional

POE can be viewed as the success probability parameter in the binomial distribution,

and the sample mean is the unique uniformly minimum-variance unbiased estimator

for the binomial distribution (Casella and Berger , 2002).

We also propose an alternative estimator that restricts Ni to be one:

P̂SIS2 =
1

NT

NT∑
i=1

I (Yi > l)
f(Xi)

q(Xi)
, (2.7)

where Yi is an output at Xi, i = 1, 2, · · · , NT . P̂SIS2 is also an unbiased estimator of

P (Y > l) if q(x) = 0 implies I (Y > l) f(x) = 0 for any x. In the sequel, Sections 2.3.2

and 2.3.3 derive the minimum-variance solutions for the estimators in (2.6) and (2.7),

respectively.

2.3.2 Stochastic Importance Sampling Method 1

We want to find the optimal allocation sizes and the optimal IS density that

minimize the variance of the failure probability estimator in (2.6). Considering the

two sources of randomness, i.e., stochastic inputs and stochastic elements inside the

stochastic simulation model, we decompose the estimator variance into two compo-
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nents as

V ar
[
P̂SIS1

]
= V ar

[
1

M

M∑
i=1

P̂ (Y > l | Xi)
f(Xi)

q(Xi)

]

=
1

M2
Eq

[
V ar

[
M∑
i=1

P̂ (Y > l | Xi)
f(Xi)

q(Xi)

∣∣∣∣∣ X1, · · · ,XM

]]

+
1

M2
V arq

[
E

[
M∑
i=1

P̂ (Y > l | Xi)
f(Xi)

q(Xi)

∣∣∣∣∣ X1, · · · ,XM

]]
. (2.8)

Let s(X) denote the conditional POE, P (Y > l | X). Using the fact that Xi
i.i.d∼ q for

i = 1, 2, · · · ,M , we simplify V ar
[
P̂SIS1

]
in (2.8) to

V ar
[
P̂SIS1

]
=

1

M2
Eq

[
M∑
i=1

1

Ni

s(Xi) (1− s(Xi))
f(Xi)

2

q(Xi)2

]
+

1

M
V arq

[
s(X)

f(X)

q(X)

]
.

(2.9)

To find the optimal allocation size and the optimal IS density function, we first

profile out Ni and express the variance in (2.9) in terms of q(X). Lemma II.1 presents

the optimal assignment of simulation replications to each Xi for any given q.

Lemma II.1. Given q, the variance in (2.9) is minimized if and only if

Ni =

√
s(Xi) (1− s(Xi))f(Xi) /q(Xi)∑M

j=1

√
s(Xj) (1− s(Xj))f(Xj) /q(Xj)

·NT for i = 1, 2, · · · ,M. (2.10)

Next, we use the optimal allocation size in Lemma 1 to derive the optimal IS

density for the estimator in (2.6). Plugging the Ni’s in (2.10) into the estimator

variance in (2.9) gives

V ar
[
P̂SIS1

]
=

1

M

1

NT

(
Ef

[
s(X) (1− s(X))

f(X)

q(X)

]
+ (M − 1)

(
Ef

[√
s(X) (1− s(X))

])2)
+

1

M

(
Ef

[
s(X)

2 f(X)

q(X)

]
− P (Y > l)

2

)
. (2.11)
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We minimize the functional in (2.11) using the principles of the calculus of variations

(Courant and Hilbert , 1989) and find the optimal IS density, qSIS1. We also plug qSIS1

into (2.10) to attain the optimal allocation size, which leads to Theorem II.2.

Theorem II.2. (a) The variance of the estimator in (2.6) is minimized if the fol-

lowing IS density and the allocation size are used.

qSIS1(x) =
1

Cq1
f(x)

√
1

NT

s(x) (1− s(x)) + s(x)2, (2.12)

Ni = NT

√
NT (1−s(xi))

1+(NT−1)s(xi)∑M
j=1

√
NT (1−s(xj))

1+(NT−1)s(xj)

, i = 1, 2, · · · ,M, (2.13)

where Cq1 is
∫
Xf
f(x)

√
1
NT
s(x) · (1− s(x)) + s(x)2 dx and s(x) is P (Y > l|X = x).

(b) With qSIS1 and Ni, i = 1, 2, · · · ,M , the estimator in (2.6) is unbiased.

We call this approach Stochastic Importance Sampling Method 1 (SIS1). The

optimal SIS1 density in (2.12) focuses its sampling efforts on the region where the

failure event of interest likely occurs. On the other hand, the input condition, xi, with

a smaller s(xi) needs a larger accompanying Ni. In other words, among the important

input conditions under which a system can possibly fail (that is, the conditions that

qSIS1 samples), SIS1 balances the simulation efforts by allocating a larger (smaller)

number of replications in the area with a relatively small (large) s(x).

We note that when applied to a deterministic simulation model, the proposed SIS1

method reduces to the DIS method with qDIS in (2.3). Using s(x) = I (Y > l) ,∀x ∈

Xf , in a deterministic simulation model where Y = g(x) is the deterministic output of

the simulator at an input, x, we can see that qSIS1 in (2.12) is reduced to qDIS. Also,

when s(x) is an indicator function, the first term in the variance in (2.9) vanishes,

implying that we do not need the allocation step for SIS1 as we do not for DIS.
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2.3.3 Stochastic Importance Sampling Method 2

This section derives the optimal IS density minimizing the variance of the failure

probability estimator in (2.7), which restricts the allocation size to be one at each

sampled input. This approach does not require the allocation of Ni. The estimator

in (2.7) essentially takes a similar form in (2.2) used for a deterministic simulation

model. However, it is not possible to use qDIS in (2.3) for stochastic simulation models

since Y is not a deterministic function of X. Theorem II.3 presents the optimal IS

density for the estimator in (2.7) with a stochastic simulation model.

Theorem II.3. (a) The variance of the estimator in (2.7) is minimized with the

density,

qSIS2(x) =
1

Cq2

√
s(x)f(x) , (2.14)

where Cq2 is
∫
Xf

√
s(x)f(x) dx and s(x) is P (Y > l|X = x).

(b) With qSIS2, the estimator in (2.7) is unbiased.

We call this approach Stochastic Importance Sampling Method 2 (SIS2). Sim-

ilar to SIS1, SIS2 focuses its sampling efforts on the input conditions under which

the failure event likely occurs with a high probability, s(x). Also, when applied to

deterministic simulation models, qSIS2 in (2.14) is reduced to qDIS in (2.3).

2.3.4 Implementation guidelines

In implementing SIS1, we use rounded Ni. If the rounding yields zero, we use one

to ensure the unbiasedness. Note that qSIS1, Ni’s and qSIS2 require the conditional

POE, s(x), which is unknown. Therefore, the optimal solutions in (2.12)-(2.14) are

theoretically optimal, but not implementable, which is a common problem encoun-

tered in any IS methods. In our implementation, we approximate the conditional
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POE using a parametric regression model (or metamodel). The estimators in (2.6)

and (2.7) are still unbiased with this approximation.

We can consider several methods to approximate the conditional POE. In many

studies, Gaussian regression or its variants have been used to approximate the simu-

lation model (Seber and Lee, 2003; Cannamela et al., 2008; Ankenman et al., 2010).

In particular, when the output, Y , is the average of the quantities generated from

a stochastic process or system, Gaussian regression or its variants would provide

good approximation. More generally, when Y tends to follow a distribution in the

exponential family, generalized linear model (GLM)(Green and Silverman, 1994) or

generalized additive model (GAM) (Hastie and Tibshirani , 1990) could be employed.

When the distribution belongs to a non-exponential family, generalized additive model

for location, scale and shape (GAMLSS) (Rigby and Stasinopoulos , 2005) will provide

a flexible modeling framework. For example, if Y is the maximum or minimum of

the quantities during a specific time interval (e.g., maximum stress during 10-minute

operations), the Generalized Extreme Value (GEV) distribution (Coles , 2001) can be

employed for fitting the conditional distribution with the GAMLSS framework (to be

detailed in Section 2.6).

While general regression models focus on capturing input-to-output relationships

and are relatively straightforward to check the model accuracy, determining the meta-

model accuracy for conditional POE imposes more challenges because not only is the

regression relationship important, but selecting the appropriate distribution is also

crucial. If the distribution fitting is not carefully conducted, the approximated POE

might not help achieving the full potential of the proposed method. Provided that the

primary purpose of the metamodel is to approximate the conditional POE, we rec-

ommend using goodness-of-fit tests for checking the metamodel accuracy (Stephens ,

1974). Different tests have their own pros and cons depending on the hypothesized

distribution; thus, it is advisable to decide on the specific test based on the distri-
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bution of interest. Extensive studies have been conducted on the tests for specific

distributions (e.g., Choulakian and Stephens , 2001).

We summarize SIS1 and SIS2 procedures as follows:

Step 1. Approximate the conditional POE, s(x), with a metamodel.

Step 2. Sample xi, i = 1, · · · ,M , from qSIS1 in (2.12) for SIS1 or qSIS2 in

(2.14) for SIS2 (Note that M = NT for SIS2).

Step 3. Determine the allocation size, Ni for each xi, i = 1, · · · ,M , using

(2.13) for SIS1 or set Ni = 1, i = 1, · · · ,M , for SIS2.

Step 4. Run simulation Ni times at each xi, i = 1, · · · ,M .

Step 5. Estimate the failure probability using (2.6) for SIS1 or (2.7) for

SIS2.

2.4 Benchmark Methods

We compare our two methods, SIS1 and SIS2, with two benchmark methods.

First, we use the CMC estimator in (2.1), which is an unbiased estimator of the

failure probability even if the simulation model is stochastic. The variance is known

as P (Y > l) (1− P (Y > l)) /NT .

Second, we introduce a new IS density, qBIS, that mimics qDIS in (2.3). Recalling

that it is not possible to use the IS density in (2.3) for stochastic simulation models, we

simply replace the failure indicator function in (2.3), I (Y > l), with the conditional

POE, s(x), to obtain

qBIS(x) =
s(x)f(x)

P (Y > l)
. (2.15)

With qBIS (x), we use the failure probability estimator in (2.7). We call this approach

Benchmark Importance Sampling (BIS), since it emulates DIS.
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2.5 Numerical Examples

We investigate the performances of the SIS methods using numerical examples

with various settings. We take a deterministic simulation example in Cannamela

et al. (2008) and modify it to have stochastic elements. Specifically, we use the

following data generating structure:

X ∼ N(0, 1) , Y |X ∼ N
(
µ(X) , σ2(X)

)
, (2.16)

where the mean, µ(X), and the standard deviation, σ(X), of the normal distribution

are

µ(X) = 0.95δX2 (1 + 0.5 cos(5X) + 0.5 cos(10X)) , (2.17)

σ(X) = 1 + 0.7 |X|+ 0.4 cos(X) + 0.3 cos(14X).

In practice, we do not know the conditional distribution for Y |X; thus, as a meta-

model, we use the normal distribution with the following mean and standard devia-

tion:

µ̂(X) = 0.95δX2 (1 + 0.5ρ cos(5X) + 0.5ρ cos(10X)) , (2.18)

σ̂(X) = 1 + 0.7 |X|+ 0.4ρ cos(X) + 0.3ρ cos(14X).

Here, we include the parameters δ and ρ to control the similarity of the IS density

to the original input density and the metamodeling accuracy, respectively. We set

NT = 1, 000 (with M = 300 for SIS1) and repeat the experiment 500 times to obtain

the sample average and the standard error of each method’s POE estimation. We

use the following setup as a baseline and vary each parameter to see its effect on the

performances of the proposed methods: PT = 0.01, δ = 1, and ρ = 1. We explain
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each parameter and summarize the experiment results as follows:

• PT , the magnitude of target failure probability: We study how the proposed

methods perform at different levels of PT = P (Y > l). The computational ef-

ficiency of each method is evaluated using the standard error or equivalently

the relative ratio, NT/N
(CMC)
T , where N

(CMC)
T is the number of CMC simula-

tion replications needed to achieve the same standard error of each method.

Table 2.1 suggests that the computational gains of SIS1 and SIS2 against CMC

generally increase as PT gets smaller. Also, SIS1 and SIS2 always outperform

BIS, providing more accurate estimates with lower standard errors.

Table 2.1: POE estimation results with different δ and PT (ρ = 1)
δ = 1 δ = −1
PT PT

0.10 0.05 0.01 0.10 0.05 0.01

SIS1 Sample Average 0.1004 0.0502 0.0100 0.1001 0.0500 0.0100
Standard Error 0.0068 0.0039 0.0005 0.0090 0.0062 0.0026
Relative Ratio 51% 32% 2.5% 90% 81% 68%

SIS2 Sample Average 0.0999 0.0501 0.0100 0.1001 0.0500 0.0099
Standard Error 0.0069 0.0042 0.0006 0.0086 0.0064 0.0028
Relative Ratio 53% 37% 3.6% 82% 86% 79%

BIS Sample Average 0.1002 0.0505 0.0101 0.1009 0.0503 0.0101
Standard Error 0.0089 0.0068 0.0014 0.0095 0.0067 0.0031
Relative Ratio 88% 97% 20% 100% 95% 97%

CMC Sample Average 0.1005 0.0506 0.0100 0.1005 0.0498 0.0100
Standard Error 0.0092 0.0070 0.0030 0.0096 0.0071 0.0031

Note: The ‘Relative Ratio’ is NT /N
(CMC)
T , where N

(CMC)
T = PT (1− PT )/(S.E.)2. S.E. denotes

the standard error.

• δ, the difference between the original input density and the optimal IS density:

We consider δ of 1 or −1. The densities, f and qSIS1 (or qSIS2), are more

different from each other when δ = 1 than when δ = −1. Table 2.1 suggests

that the computational gains of SIS1 and SIS2 are much more significant when

δ = 1 than when δ = −1. Interestingly, when δ = −1, BIS shows no advantage

over CMC, whereas the proposed methods still lead to lower standard errors
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than CMC.

• ρ, the metamodeling accuracy: We vary ρ in µ̂(X) and σ̂(X) in (2.18) to control

the quality of the metamodel. Table 2.2 shows that the standard errors of all

IS estimators increase as ρ decreases. However, the standard errors of both

SIS1 and SIS2 increase more slowly than BIS. The fact that the increment

of the SIS2’s standard error is minimal indicates that SIS2 is less sensitive to

the metamodel quality than SIS1. The performance of BIS differs significantly

depending on the metamodel quality, and BIS generates an even higher standard

error than CMC when ρ = 0.

Table 2.2: POE estimation results with different ρ (δ = 1)
ρ

1.00 0.50 0

SIS1
Sample Average 0.0100 0.0100 0.0101
Standard Error 0.0005 0.0008 0.0017

SIS2
Sample Average 0.0100 0.0101 0.0100
Standard Error 0.0006 0.0007 0.0010

BIS
Sample Average 0.0101 0.0100 0.0102
Standard Error 0.0014 0.0018 0.0063

CMC
Sample Average 0.0099 0.0099 0.0099
Standard Error 0.0030 0.0030 0.0030

Next, we investigate the impact of the variation of the randomness inside simu-

lations. In Section 2.3, we noted that SIS1 and SIS2 are reduced to DIS when they

are applied to a deterministic simulation model. Thus, we expect that if the uncon-

trollable randomness represented by ε has a small level of variation, the standard

errors of SIS1 and SIS2 will be close to zero. To illustrate, we consider the same data

generating structure in (2.16) and (2.17), but with a constant variance, σ2(X) = τ 2.

We use the optimal IS densities for SIS1 and SIS2 in simulations. Table 2.3 shows

that as τ gets close to zero, so do the standard errors of SIS1 and SIS2. That is, the

proposed methods practically reduce to DIS.
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Table 2.3: POE estimation results with different τ (δ = 1)
τ

0.50 1.00 2.00 4.00 8.00

SIS1
Sample Average 0.0102 0.0101 0.0101 0.0102 0.0100
Standard Error 0.0001 0.0001 0.0005 0.0021 0.0028

SIS2
Sample Average 0.0102 0.0101 0.0101 0.0104 0.0100
Standard Error 0.0001 0.0002 0.0006 0.0023 0.0028

Note: SIS1’s standard errors for τ = 0.50 and τ = 1.00 are .00007 and .00013, respectively, in more

digits.

We conduct additional experiments with other parameter settings, which are de-

tailed in Appendix A: (a) experiment results with different M/NT ratios suggest that

the standard error of the SIS1 estimator is generally insensitive to the choice of M/NT

ratio; (b) in investigating the effects of the metamodeling inaccuracy for the global

pattern and different locality levels of µ(X), we do not find any clear patterns for

this specific example. We also devise numerical examples with a multivariate input

vector and observe the similar patterns discussed above (detailed in Appendix A).

In summary, SIS1 and SIS2 always outperform BIS and CMC in various settings.

We obtain remarkable improvements of computational efficiency when the original

input density and SIS1 (or SIS2) density are different. Also, as the target failure

probability gets smaller, the efficiencies of SIS1 and SIS2 increase. Overall, SIS1

yields smaller standard errors than SIS2 in most cases. However, when it is difficult

to build a good-quality metamodel (e.g., due to complex response surface over the

input space), SIS2 would provide robust estimations because it is less sensitive to the

metamodel quality.

2.6 Implementation With Wind Turbine Simulators

We implement the proposed approach to evaluate the reliability of a wind turbine

operated in dynamic wind conditions (Byon et al., 2010), using the NREL simulators.

Implementation details are provided in Appendix A.
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2.6.1 Description of NREL simulations

Following wind industry practice and the international standard, IEC 61400-1

(International Electrotechnical Commission, 2005), we use a 10-minute average wind

speed as an input, X, to the NREL simulators. As the density of X, f , we use a

Rayleigh density with a truncated support, following Moriarty (2008).

Given a 10-minute average wind speed, X, the NREL simulators, including Turb-

Sim (Jonkman, 2009) and FAST (Jonkman and Buhl Jr., 2005), simulate the turbine’s

10-minute operations. We study two load response types, edgewise and flapwise bend-

ing moments at a blade root, as they are of great concern in ensuring a wind turbine’s

structural reliability. We calculate both load responses based on the equations in Mo-

riarty (2008, p.564) using the in-plane and out-of-plane bending moments generated

by FAST. Among the 10-minute load responses, we take the maximum response of a

load type as an output variable, Y . Hereafter, a simulation replication denotes the

10-minute simulation which generates a 10-minute maximum load (hereafter, a load,

or response), given a 10-minute average wind speed (hereafter, a wind speed).

Figure 2.1 shows the load outputs in a range of wind conditions. High wind speed

tends to cause large edgewise moments, which are dominated by gravity loading.

Flapwise moments depend on the pitch regulation (Moriarty , 2008; Yampikulsakul

et al., 2014) that controls the blade pitch angles to reduce the loading on the blades

when the wind speed is higher than the rated speed (11.5 m/s in Figure 2.1(b)).

2.6.2 Approximation of POE with a metamodel

To implement SIS1, SIS2 and BIS, we need the conditional POE, s(x), which is un-

known in practice. We approximate it using a parametric regression model. Lee et al.

(2013) model the load responses in wind turbine field data using a nonhomogeneous

GEV distribution. We apply a similar procedure for approximating the conditional

POE.
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(a) Edgewise bending moment
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(b) Flapwise bending moment

Figure 2.1: Load outputs from the NREL simulators

To begin, we obtain a pilot sample of NREL simulations to build the metamodel.

The pilot sample consists of 600 observations of (X, Y ) pairs, where X is the wind

speed uniformly sampled between 3 m/s and 25 m/s, and Y is the corresponding load

response from the NREL simulators. In the metamodel, we use a nonhomogeneous

GEV distribution to approximate the conditional distribution of Y |X = x and express

the location and scale parameters as functions of wind speeds as in Lee et al. (2013).

We also considered other parametric distributions including Weibull, Gamma, and

lognormal distributions. However, GEV provides the best fit for our chosen load

response types. The cumulative distribution function of GEV is expressed as follows,

with the location parameter function, µ(x), the scale parameter function, σ(x), and

the shape parameter, ξ.

P (Y ≤ y | X = x) =


exp

(
−
(

1 + ξ
(
y−µ(x)
σ(x)

))−1/ξ)
for ξ 6= 0

exp
(
− exp

(
−y−µ(x)

σ(x)

))
for ξ = 0 .

We model the location and scale parameter functions with cubic smoothing spline

functions. For the shape parameter, we use a constant, ξ, to avoid an overly com-

plicated model as suggested in Lee et al. (2013). To estimate the spline function

parameters and the shape parameter, we use the GAMLSS framework (Rigby and
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Stasinopoulos , 2005). Specifically, we maximize the log-likelihood function penalized

by the roughness of µ(x) and log σ(x) for fixed smoothing parameters, λµ and λσ:

maxLp = L − λµ

∞∫
−∞

µ′′(x)2 dx− λσ

∞∫
−∞

((log σ)′′(x))
2

dx,

where L is the log-likelihood function of the pilot data, (Xi, Yi), i = 1, 2, · · · , 600.

The roughness penalties based on the second derivatives are commonly emplopyed

in the literature (Hastie and Tibshirani , 1990; Green and Silverman, 1994). We

find the smoothing parameters, λµ and λσ, that minimize the Bayesian information

criterion (BIC) as suggested in Rigby and Stasinopoulos (2005). Figures 2.2(a) and

(b) present the estimated location and scale parameter functions, µ̂(x) and σ̂(x),

respectively. The estimated shape parameters, ξ̂, are -0.0359 and -0.0529 for the

edgewise and flapwise moments, respectively.
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(b) Estimated scale parameter function, σ̂(x)

Figure 2.2: Estimated parameter functions for edgewise and flapwise moments

Next, we conduct the Kolmogorov-Smirnov (KS) test to see the goodness-of-fit of

the GEV distribution. We standardize the output, using the estimated location and

scale functions shown in Figure 2.2, and perform the KS test on the standardized

loads, Zi, i = 1, 2, · · · , 600, with the null hypothesis, H0 : Z ∼ GEV (µ = 0, σ = 1, ξ̂).

The test results support the use of GEV distribution for the edgewise and flapwise
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moments with the p-values of 0.716 and 0.818, respectively. In Appendix A, we

include additional tests at important wind speeds, which also support the use of

GEV distribution.

2.6.3 Sampling from IS densities

To avoid difficulties in drawing samples from the IS densities whose normalizing

constants are unknown, we use the following acceptance-rejection algorithm (Kroese

et al., 2011).

Acceptance-rejection algorithm

Step 1: Sample x from the input distribution, f .

Step 2: Sample u from the uniform distribution over the interval, (0, f(x)).

Step 3: If u ≤ Cq · q(x), return x; otherwise, repeat from Step 1.

Here, Cq denotes the normalizing constant corresponding to the IS density, i.e., Cq1

for SIS1, Cq2 for SIS2, and P (Y > l) for BIS. Note that Cq · q(x) only involves f(x)

and s(x). Thus, without a knowledge of Cq, this algorithm returns x, which follows

the target IS density, q. This algorithm exactly samples from q when the inequality

condition, f(x) ≥ Cq · q(x), ∀x ∈ Xf is satisfied. The IS densities, qSIS1, qSIS2, and

qBIS, satisfy this inequality condition. The acceptance rate of the algorithm is equal

to Cq (Kroese et al., 2011).

The acceptance-rejection method has several advantages. First, this method keeps

the unbiasedness of the estimator because of its independent and exact sampling na-

ture. Second, we can always use the original input distribution, f , as an auxiliary

distribution. However, we can also use other sampling methods such as Markov chain

Monte Carlo (MCMC). MCMC method can be useful if the input, X, is high dimen-

sional (Kroese et al., 2011). The choice of sampling method is flexible in implementing
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SIS1 and SIS2. In practice, the computational cost of the sampling would be insignif-

icant; e.g., sampling thousands of inputs from the IS densities is a matter of seconds,

whereas thousands of the NREL simulation replications can take days.

Figure 2.3 shows the empirical SIS1 density using the sampled wind speeds from

the acceptance-rejection algorithm. In Figure 2.3(a), compared to the original input

density, the SIS1 density for the edgewise moments has a higher mass at high wind

speeds where high loads likely occur and high load variability is observed (see Fig-

ure 2.1(a)). Similarly, the SIS1 density for the flapwise moments in Figure 2.3(b)

centers around the rated speed, 11.5 m/s, where high loads and variability are ob-

served (see Figure 2.1(b)). Using the same acceptance-rejection algorithm, we also

draw wind speeds from the SIS2 and BIS densities.

(a) Edgewise moments with l =9,300 kNm (b) Flapwise moments with l =14,300 kNm

Figure 2.3: Comparison of empirical densities: original input density, f , versus SIS1 den-
sity, qSIS1

Even though we sample inputs from the IS densities without knowing the value of

the normalizing constant, Cq, we still need to compute Cq for estimating the failure

probability because the likelihood ratio in the IS estimators, f (X) /q (X), need to be

evaluated to ensure the unbiasedness of the estimators. This issue has been studied

in the literature (Hesterberg , 1995). In this study, we employ a numerical integration

to compute Cq since a state-of-the-art numerical integration leads to an accurate

evaluation of Cq (Shampine, 2008). Our numerical studies in Appendix A also show
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that the numerical integration does not affect the POE estimation accuracy.

2.6.4 Sensitivity analysis with different M in SIS1

Recall that in SIS1, we derived the optimal SIS1 density, qSIS1, and the optimal

allocation size, Ni, i = 1, 2, · · · ,M , for a given input sample size, M , and a total

computational resource, NT . To see the effect of the ratio of M to NT on POE

estimation, we consider the four ratios of M to NT , 10%, 30%, 50%, and 80%. Table

2.4 summarizes the sample average and standard error based on 50 POE estimates.

We also obtain the 95% CI of the standard error by using the bootstrap percentile

interval (Efron and Tibshirani , 1993). Overall, the standard errors are comparable

among different ratios.

Similar results are also observed in the extensive numerical studies where we have

tested 10%, 30%, 50%, 70%, and 90% of M/NT ratios for the univariate and multi-

variate examples (see Appendix A). All of these results indicate that the estimation

accuracy is not sensitive to the size of M , given NT . In the subsequent implemen-

tations, we use the ratio of 10% and 30% for the edgewise and flapwise bending

moments, respectively.

Table 2.4: Failure probability estimation by SIS1 method with different ratios of M
to NT

M/NT

Edgewise (l = 8,600 kNm, NT = 1,000) Flapwise (l = 13,800 kNm, NT = 2,000)
Sample Standard Error Sample Standard Error
Average (95% bootstrap CI) Average (95% bootstrap CI)

10% 0.0486
0.0016

0.0523
0.0034

(0.0012, 0.0020) (0.0026, 0.0041)

30% 0.0486
0.0018

0.0514
0.0028

(0.0014, 0.0022) (0.0022, 0.0033)

50% 0.0487
0.0022

0.0516
0.0032

(0.0017, 0.0026) (0.0024, 0.0039)

80% 0.0483
0.0022

0.0527
0.0033

(0.0017, 0.0025) (0.0024, 0.0041)
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2.6.5 Implementation results

Tables 2.5 and 2.6 summarize the implementation results for the edgewise and

flapwise bending moments, respectively, using 50 POE estimates for SIS1, SIS2 and

BIS. For each response type, we use two different values of the resistance level, l. In

general, the SIS1’s standard errors appear to be slightly smaller than the SIS2’s. In

all cases, SIS1 and SIS2 outperform BIS, which confirms the theoretical advantage of

their variance reductions.

We also assess the computational gains of the IS methods over CMC. Let N
(CMC)
T

denote the number of CMC simulation replications to achieve the same standard

error of the corresponding method in each row of Tables 2.5 and 2.6. With N
(CMC)
T

replications, the standard error of the CMC estimator is

√
P (1− P ) /N

(CMC)
T , where

P is the true failure probability, P (Y > l). Since P is unknown, we use the sample

average of SIS1 for P because SIS1 generates the smallest standard error in all cases.

With the estimated N
(CMC)
T , we compute the relative ratio, NT/N

(CMC)
T , as shown in

Tables 2.5 and 2.6. For the edgewise moment, the SIS methods need about 5% to 9%

of the CMC efforts. In other words, for l = 8,600 kNm, CMC needs about 11,000 to

18,000 replications to obtain the same accuracy achieved by SIS1 and SIS2 with 1,000

replications. For l = 9,300 kNm, CMC needs 51,000 to 61,000 replications compared

to SIS1 and SIS2 with 3,000 replications.

Table 2.5: Estimation results of the failure probability for edgewise bending moments

Method
l = 8,600 kNm, NT = 1,000 l = 9,300 kNm, NT = 3,000

Sample Standard Error Relative Sample Standard Error Relative
Average (95% bootstrap CI) Ratio Average (95% bootstrap CI) Ratio

SIS1 0.0486
0.0016

5.5% 0.00992
0.00040

4.9%
(0.0012, 0.0020) (0.00032, 0.00047)

SIS2 0.0485
0.0020

8.7% 0.01005
0.00044

5.9%
(0.0016, 0.0024) (0.00036, 0.00051)

BIS 0.0488
0.0029

18 % 0.00995
0.00056

9.6%
(0.0020, 0.0037) (0.00042, 0.00068)

We explain the fact that the computational gains of the SIS methods for the
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Table 2.6: Estimation results of the failure probability for flapwise bending moments

Method
l = 13,800 kNm, NT = 2,000 l = 14,300 kNm, NT = 9,000

Sample Standard Error Relative Sample Standard Error Relative
Average (95% bootstrap CI) Ratio Average (95% bootstrap CI) Ratio

SIS1 0.0514
0.0028

32% 0.01070
0.00061

32%
(0.0022, 0.0033) (0.00047, 0.00074)

SIS2 0.0527
0.0032

42% 0.01037
0.00063

34%
(0.0025, 0.0038) (0.00046, 0.00078)

BIS 0.0528
0.0038

59% 0.01054
0.00083

59%
(0.0030, 0.0044) (0.00055, 0.00110)

flapwise moment are not as substantial as for the edgewise moment using Figure

2.3; the SIS1 density for the flapwise moment is not as different from the original

input density as is the SIS1 density for the edgewise moment. We observe similar

results for the SIS2 density. As a result, the computational gains by biasing the input

distribution using the SIS methods become less obvious for the flapwise moment than

the edgewise moment. Recall that we observed the similar pattern in the numerical

studies discussed in Section 2.5, where the computational gains of SIS1 and SIS2 are

less remarkable when the optimal IS density is similar to the original input density

(with δ = −1 in (2.17)).

2.7 Summary

This chapter proposes an extended framework of IS for the reliability evaluation

using a stochastic simulation model. The applicability of the existing IS methods

is limited to simulations with deterministic simulation models where an output is

uniquely determined for a given input.

By accounting for different sources of output variability in stochastic simulation

models, we develop two methods for estimating a failure probability. For SIS1, which

allows multiple replications at each sampled input, we derive the optimal IS density

and allocation size that minimize the variance of the estimator. For SIS2, which

uses one replication at each sampled input, we derive the optimal IS density. Since
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SIS2 imposes an additional restriction on the allocation size, SIS1 is more flexible.

However, SIS2 does not need to determine the input sample size and the optimal

allocation size. The implementation results suggest that the performance of SIS1

is comparable to SIS2 in most cases and that both SIS methods can significantly

improve the estimation accuracy over the two benchmark methods, BIS and CMC.

We also observe that the computational gains of the SIS methods become larger when

a smaller POE needs to be estimated and when the difference between the IS density

and the original input density is larger.
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CHAPTER III

Uncertainty Quantification of Importance

Sampling Estimators for Stochastic Computer

Experiments

3.1 Introduction

To improve the computational efficiency of reliability estimations using stochastic

simulation models, two important questions need to be answered: (1) what is the

optimal allocation of computational resources to minimize the estimation uncertainty

and (2) how to quantify the estimation uncertainty. Chapter II addresses the first

question and proposes two SIS methods to efficiently evaluate the system reliability.

This chapter aims to answer the second question by proposing methods to measure

the estimation uncertainty when SIS methods are used.

To this end, we establish the CLT for each of two SIS estimators under mild

assumptions. Based on the CLTs, we quantify the uncertainties of SIS estimators by

constructing CIs. We validate the proposed procedures using numerical studies, and

demonstrate the utility of the methods via a case study on the wind turbine reliability

evaluation.
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3.2 Background

Note that we use slightly different notations to better present our methods in this

chapter. First, the SIS1 estimator of the failure probability, py ≡ P(Y > y), is

P̂1,n(y) =
1

m

m∑
i=1

(
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > y

)) f(Xi)

q(Xi)
, (3.1)

where m is the input sample size, denoting the number of times that the input, X,

is sampled independently from a new density, q; Ni is the allocation size, denoting

the number of simulation replications alloted to Xi; Y
(i)
j is the jth replication output

at Xi. In other words, SIS1 samples m inputs, X1, . . . ,Xm, from q, and runs the

simulator Ni times at each sampled Xi, i = 1, . . . ,m. As a result, we observe the

total n =
∑m

i=1Ni outputs of Y
(i)
j for i = 1, . . . ,m and j = 1, . . . , Ni.

The estimator, P̂1,n(y), in (3.1) is unbiased and has the minimum variance when we

use the optimal SIS1 density, q1,y(x), and the optimal allocation size, N∗i , i = 1, . . . ,m,

as follows:

q1,y(x) =
1

Cq1
f(x)

√
1

n
sy(x) (1− sy(x)) + sy(x)2 (3.2)

and

N∗i = n
h∗(Xi)∑m
j=1 h

∗(Xj)
, i = 1, . . . ,m, (3.3)

where

h∗(x) =

√
n (1− sy(x))

1 + (n− 1) sy(x)
. (3.4)

Here, sy(x) is P(Y > y | X = x) and Cq1 in (3.2) is the normalizing constant. Because

the conditional probability, sy(x), is unknown in practice, the optimal solutions in
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(3.2) and (3.3) need to be approximated for implementation in practice.

In contrast to SIS1, SIS2 uses a single replication at each input (i.e., Ni = 1, i =

1, . . . ,m). As such, the SIS2 estimator of the failure probability is

P̂2,n(y) =
1

n

n∑
i=1

I (Yi > y)Li, (3.5)

where the likelihood ratio, Li, denotes f(Xi)/q(Xi). The optimal SIS2 density that

minimizes the variance of P̂2,n(y) takes the following form:

q2,y(x) =
1

Cq2
f(x)

√
sy(x), (3.6)

where Cq2 is the normalizing constant. This optimal density also needs an approxi-

mation in practice, due to the unknown sy(x).

Although the above optimal solutions minimizing the variances of the estimators

in (3.1) and in (3.5) have been derived for stochastic simulation models, the distri-

butional properties of the SIS estimators are not yet understood well. In particular,

quantifying the estimation uncertainty by building a valid CI would be substantially

important in practice.

In this chapter, we establish the CLTs for both SIS1 and SIS2 estimators. We

also propose consistent estimators for the asymptotic variances involved in the CLTs,

which lead us to construct asymptotically valid CIs. In the literature, the CLT for DIS

estimator is well studied (Geweke, 2005). However, the existing derivations are not

applicable to the SIS estimators due to the intrinsic randomness within the stochastic

simulation model. In this study, we address the intrinsic randomness in constructing

the CLTs and CIs for the SIS estimators.
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3.3 Asymptotic Properties of SIS Estimators

This section presents the asymptotic properties of the SIS estimators and describes

how to construct the CIs based on these properties. All the proofs are available in

Appendix B. We use the following three assumptions:

Assumption III.1. If q(x) = 0, then P(Y > y | X = x) f(x) = 0 for any x.

Assumption III.2. Eq [I(Y > y)L2] <∞ holds, where the expectation is taken with

respect to q.

Assumption III.3. The ratio, m/n = c0, is fixed for a constant, 0 < c0 ≤ 1.

The SIS1 and SIS2 methods with their optimal densities satisfy Assumptions III.1

and III.2. Assumption III.1 implies that we should use the SIS density, q(x), that

makes the SIS estimator, P̂k,n(y) (in (3.1) for k = 1 or in (3.5) for k = 2), unbiased.

This assumption is satisfied when we use the optimal SIS densities in (3.2) and (3.6)

for SIS1 and SIS2, respectively (Choe et al., 2015). Assumption III.2 implies that the

SIS estimator should have a finite variance. This assumption is also satisfied with the

optimal SIS densities as stated in the following proposition:

Proposition III.4. The optimal SIS density, qk,y (in (3.2) for k = 1 or in (3.6) for

k = 2), satisfies Assumption III.2.

Assumptions III.1 and III.2 are used to establish the CLT for SIS. Analogously,

to prove the CLT for DIS, similar or stronger assumptions are commonly made in the

literature (Koopman et al., 2009).

Assumption III.3 concerns SIS1, because SIS2 has m/n = 1. In practice, m/n

ratio for SIS1 is set at a fixed level (e.g., 30%) according to the empirical finding and

implementation guideline suggested in Choe et al. (2015).
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3.3.1 Central Limit Theorems for SIS1 and SIS2

Adding much complexity to DIS, the SIS1 estimator in (3.1) involves the allocation

size, Ni, which takes account of the intrinsic randomness within the stochastic simu-

lation model. As the first step towards proving CLT for SIS1, we need to characterize

the asymptotic behavior of Ni.

Recall that the allocation size, Ni, used in practice is an approximation of the

optimal allocation size, N∗i , in (3.3), because N∗i involves h∗(X), which is unknown

due to the unknown conditional probability, sy(X) = P(Y > y | X). Let h(X) denote

the function that approximates h∗(X). Also, we round Ni to the nearest integer and,

to ensure the unbiasedness of the estimator in (3.1), set Ni as one if the rounding is

zero. As such, the actual Ni can be expressed as

Ni ≡ max

(
1,

⌊
n

h(Xi)∑m
j=1 h(Xj)

+
1

2

⌋)
, i = 1, . . . ,m, (3.7)

where the floor function, bxc, yields the largest integer not greater than x. Thus,

bx + 1/2c is equivalent to rounding x. The sum of Ni, i = 1, . . . ,m, in (3.7) may

deviate slightly from the pre-specified total sample size, n. If we want to ensure n =∑m
i=1Ni in the implementation, we can adjust either n or some Ni’s. For simplicity,

we ignore such minor adjustments in the following discussions.

The allocation size, Ni, in (3.7) depends not only on Xi but also on all Xj, j =

1, . . . ,m. Accordingly, Ni is not independent of Nj for j 6= i. This dependency makes

the derivation of CLT for SIS1 nontrivial. We first address this issue in Lemma III.5 by

showing that under certain regularity conditions, the allocation sizes become mutually

independent as the total sample size, n, increases.

Lemma III.5. (Asymptotic independence between allocation sizes)

Suppose that Assumption III.3 holds and that the function, h(·), in (3.7) is nonnega-
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tive and satisfies the conditions

Eq[h(X)] <∞ (3.8)

and

P
(

h(X)

c0Eq[h(X)]
+

1

2
∈ N

)
= 0, (3.9)

where N ≡ {2, 3, . . .}. Then, for any index i ∈ {1, . . . ,m},

Ni
P→ Ñi (3.10)

≡ max

(
1,

⌊
h(Xi)

c0Eq[h(X)]
+

1

2

⌋)
, (3.11)

as m→∞. Therefore, Ni, i = 1, . . . ,m, is asymptotically independent of one another.

The regularity conditions in (3.8) and (3.9) generally hold in practical situations.

First, the condition in (3.8) implies that the expected value of h(X) is finite when

X is sampled from the SIS1 density, q. This condition holds in practice by Proposi-

tion III.6, which implies that if we use s′y(x), a metamodel of sy(x), in both h(x) and

q(x) to approximate h∗(x) and q1,y(x), respectively, then Eq[h(X)] is finite.

Proposition III.6. The condition, Eq[h(X)] < ∞, in (3.8) holds if q(x) and h(x)

are a density function and a non-negative function, respectively, such that a function,

0 ≤ s′y(x) ≤ 1, replaces sy(x) in both q1,y(x) in (3.2) and h∗(x) in (3.4), to yield q(x)

and h(x), respectively.

Next, the condition in (3.9) is to address discontinuous points due to the rounding

of Ni, implying that the limit of non-rounded Ni, h(X)/(c0Eq[h(X)]) + 1/2, should

not belong to a set of integers greater than 1. The condition in (3.9) holds when

we impose the continuity on h(·) for continuous X. Note that h(·) is a function
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that approximates h∗(·) in (3.4). Therefore, h(·) can be regarded as a metamodel

or emulator for h∗(·). In general simulation studies that develop metamodels (or

emulators), it is common to model an unknown function as a continuous function

(Plumlee and Tuo, 2014; Zhang and Apley , 2014, 2015). Similarly, in our case, we

expect h(x1) to be close to h(x2) for x1 close to x2, because the conditional failure

probability at x1, sy(x1), is generally expected to be close to sy(x2).

Building upon Lemma III.5 that characterizes the asymptotic independence of the

allocation sizes, we derive the CLT for SIS1 in Theorem III.7.

Theorem III.7. (CLT for SIS1 estimator)

Suppose Assumptions III.1–III.3 and the conditions in Lemma III.5 hold. Then,

√
m

σ2
1,y

(
P̂1,n(y)− py

)
d→ N(0, 1) (3.12)

as m→∞, where

σ2
1,y = Eq

[
1

Ñ
sy(X) (1− sy(X))L2

]
+ Eq

[
sy(X)2L2

]
− p2y (3.13)

with

Ñ = max

(
1,

⌊
h(X)

c0Eq[h(X)]
+

1

2

⌋)
.

Theorem III.7 describes the asymptotic normality of the SIS1 estimator, P̂1,n(y),

in (3.1). As m increases, the SIS1 estimator becomes close to a normal random

variable with the mean of py and the variance of σ2
1,y/m. We note that ‘m → ∞’ is

equivalent to ‘n→∞’, because m and n are of the same order by Assumption III.3.

Next, Theorem III.8 states the CLT for SIS2, implying that as n increases, P̂2,n(y)

becomes close to a normal random variable with the mean of py and the variance of

σ2
2,y/n.
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Theorem III.8. (CLT for SIS2 estimator)

Under Assumptions III.1–III.2,

√
n

σ2
2,y

(
P̂2,n(y)− py

)
d→ N(0, 1) (3.14)

as n→∞, where

σ2
2,y = Eq

[
sy(X)L2

]
− p2y. (3.15)

Both Theorems III.7 and III.8 provide the information on the distributional prop-

erties of SIS1 and SIS2 estimators in the asymptotic regime. Yet, the asymptotic

variances are unknown, because σ2
i,y (in (3.13) for i = 1 or in (3.15) for i = 2) involves

sy(X) = P(Y > y | X) and py. In the next section, we devise consistent estima-

tors of the asymptotic variances and use them to construct the asymptotically valid

confidence intervals for py.

3.3.2 Confidence Intervals for SIS1 and SIS2

We note that by the Slutsky’s theorem (Jiang , 2010, Theorem 2.13), replacing σ2
i,y

for i = 1, 2 in the CLTs with their consistent estimators does not change the limiting

distributions. Therefore, the asymptotic normalities in Theorems III.7 and III.8 still

hold when we substitute the asymptotic variances with their consistent estimators.

Theorems III.9 and III.10 present the consistent estimators, σ̂2
i,y, for σ2

i,y for i =

1, 2, and construct the CIs for py. We define zα/2 ≡ Φ−1(1−α/2) for α ∈ (0, 1), where

Φ(·) is the cumulative distribution function of N(0, 1).

Theorem III.9. (CI for SIS1) Suppose Assumptions III.1–III.3 and the conditions

in Lemma III.5 hold.
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(a) Then,

σ̂2
1,y

P→ σ2
1,y (3.16)

as m→∞, where

σ̂2
1,y =

1

m− 1

m∑
i=1

(
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > y

)
Li − P̂1,n(y)

)2

. (3.17)

(b)

√
m

σ̂2
1,y

(
P̂1,n(y)− py

)
d→ N(0, 1) (3.18)

as m → ∞. Therefore, P
(
py ∈

(
P̂1,n(y)± zα/2σ̂1,y/

√
m
))
→ 1− α for α ∈ (0, 1) as

m → ∞. That is,
(
P̂1,n(y)± zα/2σ̂1,y/

√
m
)

is a 100(1 − α)% asymptotic confidence

interval for py.

Theorem III.10. (CI for SIS2)

Suppose Assumptions III.1 and III.2 hold.

(a) Then,

σ̂2
2,y

P→ σ2
2,y (3.19)

as n→∞, where

σ̂2
2,y =

1

n− 1

n∑
i=1

(
I (Yi > y)Li − P̂2,n(y)

)2
. (3.20)
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(b)

√
n

σ̂2
2,y

(
P̂2,n(y)− py

)
d→ N(0, 1) (3.21)

as n → ∞. Therefore, P
(
py ∈

(
P̂2,n(y)± zα/2σ̂2,y/

√
n
))
→ 1 − α for α ∈ (0, 1) as

n → ∞. That is,
(
P̂2,n(y)± zα/2σ̂2,y/

√
n
)

is a 100(1 − α)% asymptotic confidence

interval for py.

3.3.3 Confidence Intervals With Different Thresholds

The optimal SIS solutions depend on the failure threshold, y, leading to the sam-

pling and simulation results optimized for the particular y. Suppose we obtain the

simulation outputs with y. We can still use the same simulation outputs to esti-

mate the failure probability at a different threshold, ỹ, for ỹ > y without conducting

experiments again.

Suppose we sample Xi, i = 1, . . . ,m, from qk,y (in (3.2) for k = 1 or in (3.6) for

k = 2) and obtain the simulation outputs, Y
(i)
j for i = 1, . . . ,m and j = 1, . . . , Ni

(note that n = m in SIS2). Then, we can replace y with ỹ and use the SIS estimator,

P̂k,n(ỹ) (in (3.1) for k = 1 or in (3.5) for k = 2), to estimate the failure probability,

pỹ = P(Y > ỹ). The estimator, P̂k,n(ỹ), is an unbiased estimator of pỹ for ỹ > y (Choe

and Byon, 2015). Moreover, we can construct the pointwise CI for pỹ by substituting

ỹ for y in Theorem III.9 for k = 1 (or Theorem III.10 for k = 2) for ỹ > y, as stated

in Corollary III.11 below.

Corollary III.11. (Pointwise CI for ỹ > y)

(a) Suppose the conditions in Theorem III.9 hold. Then, for ỹ > y, the CI for pỹ,(
P̂1,n(ỹ)± zα/2σ̂1,ỹ/

√
m
)

is asymptotically valid, i.e.,

P
(
pỹ ∈

(
P̂1,n(ỹ)± zα/2σ̂1,ỹ/

√
m
))
→ 1− α
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for α ∈ (0, 1) as m→∞.

(b) Suppose the conditions in Theorem III.10 hold. Then, for ỹ > y, the CI for pỹ,(
P̂2,n(ỹ)± zα/2σ̂2,ỹ/

√
n
)

is asymptotically valid, i.e.,

P
(
pỹ ∈

(
P̂2,n(ỹ)± zα/2σ̂2,ỹ/

√
n
))
→ 1− α

for α ∈ (0, 1) as n→∞.

We believe that the results in Corollary III.11, which justifies the CIs for ỹ > y,

are practically desirable. At the system design stage, designers want to estimate

the failure probability and quantify the estimation uncertainties in a range of design

parameters, ỹ, rather than at a single value of y. In particular, system designers

are interested in a large resistance level, ỹ, which corresponds to a small failure

probability, pỹ, to ensure a high level of system reliability. Corollary III.11 suggests

that we can construct the CIs for pỹ using the results optimized for py, without

running the simulation with each ỹ.

3.3.4 Implementation Summary

We summarize how to implement the proposed procedure. Recall that SIS2’s

input sample size, m, is equal to the total sample size, n, because SIS2 sets Ni = 1

for i = 1, . . . ,m.

Implementation procedure (k = 1 for SIS1 or k = 2 for SIS2):

1. Given y, sample Xi, i = 1, . . . ,m, from the SIS density, qk,y (in (3.2) for k = 1

or in (3.6) for k = 2).

2. For each Xi, run the simulator Ni (in (3.3) for k = 1 or Ni = 1 for k = 2) times

to obtain Y
(i)
j for i = 1, . . . ,m and j = 1, . . . , Ni.

3. Estimate the failure probability for ỹ by P̂k,n(ỹ) (in (3.1) for k = 1 or in (3.5)

45



for k = 2) for ỹ ≥ y.

4. Obtain σ̂k,ỹ (in (3.17) for k = 1 or in (3.20) for k = 2).

5. Construct the 100(1−α)% pointwise CI for pỹ using
(
P̂k,n(ỹ)± zα/2σ̂k,ỹ/

√
m
)

.

In Steps 1 and 2, as noted in Section 2, the SIS density and allocation size need

approximations, since the conditional probability, sy(x) = P(Y > y | X = x), is un-

known. Recall that Chapter II provides a guideline on how to approximate sy(x)

using a metamodel.

3.4 Numerical Studies

This section presents numerical examples to show that the empirical coverage

levels of the proposed CIs agree with the target coverage probability, 1 − α, under

various settings. We use two data generating models.

3.4.1 Example 1

Cannamela et al. (2008) originally develop a deterministic simulation example,

which is later modified by Choe et al. (2015) as the stochastic simulation example.

We use the same stochastic data generating model as follows:

X ∼ N(0, 1) , Y |X ∼ N
(
µ(X) , σ2(X)

)
, (3.22)

where the mean, µ(X), and the standard deviation, σ(X), of the normal distribution

are

µ(X) = 0.95δX2 (1 + 0.5 cos(5X) + 0.5 cos(10X)) , (3.23)

σ(X) = 1 + 0.7 |X|+ 0.4 cos(X) + 0.3 cos(14X),
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respectively. The metamodel of the conditional distribution of Y |X is set as the

normal distribution with the following mean and standard deviation:

µmeta(X) = 0.95δX2 (1 + 0.5ρ cos(5X) + 0.5ρ cos(10X)) , (3.24)

σmeta(X) = 1 + 0.7 |X|+ 0.4ρ cos(X) + 0.3ρ cos(14X).

In this example, all model and experiment parameters are set as in Chapter II (see

Section 2.5). The model parameter, δ, in (3.23) and (3.24) determines the similarity

of the SIS density, qk,y, k = 1, 2, in (3.2) and (3.6) to the original input density, f .

For δ = 1 (−1), the important regions are far from (close to) X = 0, which is the

mode of f , the density of N(0, 1). Consequently, the SIS densities that focus on the

important regions differ significantly for different δ’s. Another model parameter, ρ,

controls the metamodel accuracy: the metamodel with ρ = 0 captures only the global

pattern of important region, whereas the metamodel with ρ = 1 is equivalent to the

true data generating model. In this example, we set ρ as 0.5, which represents a

moderate metamodel quality. We use the failure threshold that corresponds to the

true failure probability, py = 0.01. For SIS1, the ratio of m/n is set as 30%.

To compute the empirical coverage level, we repeatedly construct the 100(1−α)%

CI,
(
P̂k,n(y)± zα/2σ̂k,y/

√
m
)

, 10,000 times and calculate the proportion of the CIs

covering the true failure probability, py. We consider the target coverage probability,

1 − α, of 0.90 and 0.95. Table 3.1 shows the experiment results. We summarize the

key observations as follows:

• With the moderate size of n of 1000 (note that py = 0.01), the corresponding

empirical coverages are close to the target coverage probabilities, 1−α, for both

SIS1 and SIS2.

• As n increases, the empirical coverage levels for both SIS1 and SIS2 reach the

target coverage probability, 1−α. This result agrees with the asymptotic results
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stated in Theorems III.9 and III.10.

• Across all cases, SIS1 and SIS2 maintain the same empirical coverage level up

to the second decimal place, showing that their CIs perform similarly.

• The parameters, α and δ, do not appear to significantly affect the behavior of

CI coverage.

Table 3.1: Empirical coverage level in Example 1
δ = 1 δ = −1

1− α 0.90 0.95 0.90 0.95
n SIS1 SIS2 SIS1 SIS2 SIS1 SIS2 SIS1 SIS2

1000 0.88 0.88 0.94 0.94 0.88 0.88 0.93 0.93
10000 0.89 0.89 0.95 0.95 0.90 0.90 0.95 0.95
100000 0.90 0.90 0.95 0.95 0.90 0.90 0.95 0.95

NOTE: The empirical coverage level is the proportion of CIs (out of 10,000 experiments)

that include the true failure probability, py = 0.01.

3.4.2 Example 2

Ackley (1987) proposes a deterministic simulation example which is later modified

by Huang et al. (2006) and Choe et al. (2015) into a stochastic simulation example

with the three-dimensional input vector, X = (X1, X2, X3), following a multivariate

normal distribution. We use the same data generating model:

X ∼MVN(0, I3) , Y |X ∼ N
(
µ(X) , σ2(X)

)
,

where I3 is the 3 by 3 identity matrix. The mean function, µ(X), and the standard

deviation function, σ(X), take the following forms that represent highly nonlinear
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response surface and heterogeneous variability over a range of input conditions:

µ(X) = 20δ

(
1− exp

(
−0.2

√
1

3
‖X‖2

))
+ δ

(
exp (1)− exp

(
1

3

3∑
i=1

cos(πXi)

))
,

σ(X) = 1 + 0.7

√
1

3
‖X‖2 + 0.4

(
1

3

3∑
i=1

cos(3πXi)

)
.

As the metamodel of the conditional distribution, Y |X, we use

N
(
µmeta(X) , σ2

meta(X)
)
,

where

µmeta(X) = 20δ

(
1− exp

(
−0.2

√
1

3
‖X‖2

))
+ ρδ

(
exp (1)− exp

(
1

3

3∑
i=1

cos(πXi)

))
,

σmeta(X) = 1 + 0.7

√
1

3
‖X‖2 + 0.4ρ

(
1

3

3∑
i=1

cos(3πXi)

)
.

Here, the model parameters, δ and ρ, play essentially the same roles as in the first

example in Section 4.1. Namely, δ = 1 (−1) means that the important input condi-

tions are far from (close to) the origin, X = 0, which is the mode of f , MVN(0, I3).

Also, ρ is the metamodel accuracy tuning parameter with the same interpretation

as the first example’s ρ. As in the first example, we set ρ as 0.5 and use the failure

threshold associated with py = 0.01. The ratio of m/n is fixed at 30% for SIS1.

Table 3.2 shows the empirical coverage level of the 100(1 − α)% CI when the

target coverage probability, 1 − α, is 0.90 or 0.95. The results are similar to the

first example’s results, echoing the characteristics of the CIs observed previously. In

particular, considering the complex mean and variance structure in this example, the

good agreements even with the moderate size of n = 1, 000 (or 10,000) for estimating

the failure probability of py = 0.01 support the usefulness of the proposed CI with

limited computational resources in practice.
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Table 3.2: Empirical coverage level in Example 2
δ = 1 δ = −1

1− α 0.90 0.95 0.90 0.95
n SIS1 SIS2 SIS1 SIS2 SIS1 SIS2 SIS1 SIS2

1000 0.87 0.87 0.92 0.92 0.88 0.88 0.93 0.93
10000 0.89 0.89 0.94 0.94 0.90 0.90 0.95 0.95
100000 0.90 0.90 0.95 0.95 0.90 0.90 0.95 0.95

NOTE: The empirical coverage level is the proportion of CIs (out of 10,000 experiments)

that include the true failure probability, py = 0.01.

3.5 Case Study: Implementation With Wind Turbine Simu-

lators

We use the same simulation setting as in Chapter II (see Section 2.6). This

case study aims to estimate the probability that the load of interest, Y , will exceed

a threshold, y. In particular, we estimate a small probability associated with an

extreme load level, which can be observed rarely with the probability less than, or

equal to, 0.01. Thus, the brute-force approach like CMC raises serious concerns on

the computational cost (Moriarty , 2008; Manuel et al., 2013). As a remedy, we use

SIS and provide the CIs for probability estimation.

We first test whether the empirical coverage level of CI is similar to the target

coverage probability. Unlike the numerical studies in Section 4 where we repeat the

experiment 10,000 times, we limit the repetition to 50 times in this case study because

of the high computational cost. For each experiment, we use the same setup used

in Chapter II: namely, for the edgewise bending moment, we use y = 9300 kNm,

n = 3, 000, and m/n = 10%; for the flapwise bending moment, we use y = 14, 300

kNm, n = 9, 000, and m/n = 30%. Both y values are associated with py close to

0.01. Because py is unknown, we estimate it with the sample average of the 50 failure

probability estimates. We compute the empirical coverage level by obtaining the

proportion of CIs that cover the estimated py.

Table 3.3 shows the empirical coverage level for the different target coverage prob-
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ability (1−α = 0.90 or 0.95) and the different load type (edgewise or flapwise bending

moment). The observed coverage level is generally similar to the target level, consid-

ering that the proportion is subject to the randomness. We note that the empirical

coverage level does not exactly match the target coverage probability, although the

difference is small. We believe that the slight mismatch is due to the small number

of repetitions (50 in this case study) and the possible deviation of the sample average

of 50 estimates from the true, unknown py.

Table 3.3: CI coverage from 50 experiments in the case study (empirical coverage
level)
1− α 0.90 0.95

SIS1 SIS2 SIS1 SIS2
Edgewise 0.96 (48/50) 0.96 (48/50) 1.00 (50/50) 0.98 (49/50)
Flapwise 0.96 (48/50) 0.92 (46/50) 0.96 (48/50) 0.92 (46/50)

NOTE: The first number in each parenthesis denotes the number of experiments whose

CIs include the estimated py.

Next, to illustrate how the CIs can help a wind turbine design process, we estimate

the failure probability of 10−2 or less because such a small failure probability is desired

in the wind industry (Lee et al., 2013). To do so, we pool all the results from the

50 repetitions of experiments. The pooled estimator of the failure probability, py, is

P̂k,50n(y) (in (3.1) with m replaced by 50m for SIS1 (k = 1) or in (3.5) with n replaced

by 50n for SIS2 (k = 2)). We also construct the CIs using the results in Theorems III.9

and III.10 with 50n and 50m in place of n and m, respectively. Moreover, we obtain

the pointwise CIs of pỹ for ỹ > y, based on Corollary III.11.

To illustrate, Figure 3.1 shows the SIS1 point estimates and pointwise CIs for the

failure probabilities corresponding to ỹ greater than, or equal to, y = 9,300 kNm for

edgewise bending moments (we omit the SIS2’s result as it is similar to SIS1’s). In

Figure 3.1, we note that the CIs get wider as ỹ increases, reflecting the increasing

uncertainty in the distribution tail. This is because the experiments were optimized

to estimate py for y = 9,300 kNm. As the threshold, ỹ, increases, a smaller number
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of simulation outputs, which were obtained from the original experiments with y =

9,300 kNm, are used to compute P̂k,50n(ỹ) (in (3.1) for SIS1 (k = 1) or in (3.5) for

SIS2 (k = 2)) and the corresponding CIs in Corollary III.11, because a large number

of outputs result in I
(
Y

(i)
j > ỹ

)
= 0 in (3.1) or I (Yi > y) = 0 in (3.5). Accordingly,

as ỹ becomes substantially greater than y, the estimation uncertainties get larger.

Note that the sharp decline in the lower CI bound at the tail (around 11,600 kNm)

in Figure 3.1 is mainly due to the fact that the failure probability in the y-axis is in

the log scale.
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Figure 3.1: Failure probability estimates and 95% pointwise CIs from SIS1 for edge-
wise bending moments using the simulation outputs from 50 repetitions
with y = 9,300 kNm

3.6 Summary

SIS estimators can significantly save computational resources in estimating the

probability associated with the output of stochastic simulation model. This chapter

studies the asymptotic properties of the SIS estimators with a focus on measuring the

estimation uncertainty. We prove the CLTs for the SIS estimators and construct the

asymptotically valid CIs that use asymptotic variance estimators. Numerical studies

show that the asymptotic CI’s empirical coverage level indeed converges to the target
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coverage probability. In our case study, we use the CI to quantify the uncertainty of

the failure probability estimation for wind turbine reliability evaluation.
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CHAPTER IV

EM-Based Cross-Entropy Method With an

Asymptotically Unbiased Information Criterion

4.1 Introduction

As we discussed in the previous chapters, the theoretically optimal IS density is not

implementable in practice, necessitating some approximations such as a metamodel-

based approach (Dubourg et al., 2013) or the CE method (Rubinstein, 1999). In

Chapter II, we see that the performances of IS methods highly depend on the meta-

model quality. When the metamodel does not approximate the unknown quantities

well, the computational advantage of IS deteriorates. In this chapter, we study the

CE method that does not require the metamodel construction. The proposed ap-

proach will be useful when it is difficult to build a good metamodel, especially when

the response surface is complicated.

In the standard CE method, the candidate IS density is confined to a parametric

family, often becoming too rigid to capture the complicated important region (Botev

et al., 2013). Nonparametric approaches can overcome such limitations, but encounter

computational challenges (Rubinstein, 2005; Botev et al., 2007).

This chapter aims to overcome the limitations in the existing CE methods and

provides a new approach to find an appropriate IS density by using the Gaussian
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mixture model (GMM) in a flexible and computationally efficient manner. One of the

well-known issues of using the GMM in the statistical learning is the model selection

problem (Figueiredo and Jain, 2002), because the number of mixture components (or

model order), k, cannot be chosen by simply maximizing the likelihood. As a remedy,

some theoretically valid criteria such as Akaike information criterion (AIC) (Akaike,

1974) and BIC (Schwarz , 1978) are adopted to balance between the model fitting

and the model complexity. Noting an analogy between minimizing the deviation of

a GMM from the optimal IS density and maximizing the likelihood of a GMM by

the expectation–maximization (EM) algorithm, we derive a new information criterion

similar to AIC. The resulting criterion shares the theoretical properties of AIC, and

enables us to automatically identify the model order by balancing between the model

fitting to the optimal IS density and the model complexity. The proposed criterion

is applicable to both deterministic and stochastic simulation models.

4.2 Background

In this chapter, we use slightly different notations for better presentation. Specif-

ically, the CMC estimator is

P̂CMC =
1

n

n∑
i=1

I (Y > l) , (4.1)

where n is the number of total simulation replications. The IS estimator for deter-

ministic simulation models is

P̂DIS =
1

n

n∑
i=1

I (Yi > l)
f(Xi)

q(Xi)
, (4.2)

where Xi, i = 1, . . . , n, is sampled from q. Yi is the output corresponding to Xi. We

consider SIS1 (instead of SIS2) as a representative of SIS, because SIS1 estimator in

(3.1) reduces to SIS2 estimator in (3.5) for m = n and SIS1 density in (3.2) takes
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a more complicated form to approximate than SIS2 density in (3.6). Thus, in this

chapter, the SIS estimator denotes

P̂SIS =
1

m

m∑
i=1

(
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > l

)) f(Xi)

q(Xi)
, (4.3)

where m is the number of input drawings such that n =
∑m

i=1Ni. Y
(i)
j is the jth

output from Ni replications at the input, Xi.

4.2.1 Standard CE Method

The CE method (Rubinstein, 1999) is originally developed to find the density

that best approximates the optimal density of DIS. We later show that CE is also

applicable to SIS.

The standard CE method limits the search space for the optimal IS density, q∗(x),

to a pre-specified parametric family (e.g., Gaussian, Poisson, gamma, etc.), {q(x;θ) :

θ ∈ Θ ⊆ Rd}, and seeks the density, q(x;θ∗), that is closest to the optimal density.

The closeness is measured by the Kullback-Leibler divergence,

D(q∗, q) =

∫
q∗(x) ln q∗(x) dx−

∫
q∗(x) ln q(x;θ) dx. (4.4)

This quantity is always non-negative and takes zero if and only if q∗(x) = q(x;θ)

almost everywhere. Thus, minimizing D(q∗, q) over θ ∈ Θ leads to q(x;θ∗) = q∗(x)

if q∗ belongs to the same parametric family.

Minimizing D(q∗, q) in (4.4) over θ is equivalent to minimizing its second term,

known as the cross-entropy

C(q∗, q) = −
∫
q∗(x) log q (x;θ) dx, (4.5)

because the first term in (4.4) is constant. Noting that the IS optimal density can be
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expressed as q∗(x) ∝ h(x)f(x), where h(x) is I (g(x) > l) for DIS (later, we will also

consider h(x) =
√
s(x) (1− s(x)) /n+ s(x)2 for SIS with s(x) = P(Y > l | X = x)),

the CE method aims to equivalently minimize

Cθ = −
∫
h(x)f(x) log q (x;θ) dx (4.6)

over θ ∈ Θ.

In practice, the CE method typically uses an iterative procedure. Let θ̂
′

denote

the parameter estimate for the IS density, q, in the previous iteration. In the current

iteration, the CE method finds θ̂ that minimizes the following IS estimator of (4.6),

C̄θ = − 1

n

n∑
i=1

h(Xi)w(Xi) log q(Xi;θ) (4.7)

where w(Xi) is the likelihood ratio, f(Xi)/q(Xi; θ̂
′
), and Xi, i = 1, . . . , n, is sampled

from q(x; θ̂
′
). We summarize the CE method as follows:

Step 1. Sample Xi, i = 1, . . . , n, from q(x; θ̂
′
). At the first iteration,

q(x; θ̂
′
) can be flexible (e.g., f is commonly used.)

Step 2. Find θ̂ = argminθ C̄θ, where C̄θ is in (4.7).

Step 3. Set θ̂
′
= θ̂ and start the next iteration from Step 1 until some

stopping criterion is met.

This procedure iteratively refines q(x; θ̂). However, the refinement is limited, as the

search space is less flexibly defined by a parametric family.

4.2.2 Variations of CE Method

Some studies (Rubinstein, 2005; Botev et al., 2007) explore nonparametric ap-

proaches to allow greater flexibility on the candidate IS density than the standard
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CE method. However, the flexibility comes with great costs: finding the optimal den-

sity (Botev et al., 2007) or sampling from the optimized density (Rubinstein, 2005)

is computationally challenging.

Bridging between the two extremes of the spectrum (a parametric density with

d� n or a nonparametric density with d � n, where d is the number of parameters in

a candidate IS density and n is the number of simulation replications), a few studies

(Botev et al., 2013; Wang and Zhou, 2015; Kurtz and Song , 2013) recently consider

the mixture of parametric distributions, where d can vary between 1 and n. This

approach is particularly desirable for engineering applications because (a) it can be

as flexible as we want; (b) it is easy and fast to sample from the candidate IS density;

and (c) the optimized IS density provides an insight on the engineering system (e.g.,

means of mixture components often coincide with the so-called ‘hot spots’, where the

system likely fails).

4.3 Methodology

This section uses the GMM to find the IS density under the CE framework, and

derives a new asymptotically unbiased information criterion to automatically deter-

mine the model order, k, of the GMM.

4.3.1 Gaussian Mixture Model and EM algorithm

We express the candidate IS density by GMM:

q(x;θ) =
k∑
j=1

αj qj
(
x;µj,Σj

)
, (4.8)

where the component weights, αj, j = 1, . . . , k, sum to one. The jth Gaussian com-

ponent density, qj, is specified by the mean, µj, and the covariance Σj. Thus, θ

denotes (α1, . . . , αk,µ1, . . . ,µk,Σ1, . . . ,Σk).
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To minimize (4.7), the gradient of (4.7) is set to zero:

− 1

n

n∑
i=1

h(Xi)w(Xi)∇θ log q (Xi;θ) = 0. (4.9)

This leads to the updating equations as derived in (Kurtz and Song , 2013):

αj =

∑n
i=1 h(Xi)w(Xi)γij∑n
i=1 h(Xi)w(Xi)

, (4.10)

µj =

∑n
i=1 h(Xi)w(Xi)γijXi∑n
i=1 h(Xi)w(Xi)γij

, (4.11)

Σj =

∑n
i=1 h(Xi)w(Xi)γij(Xi − µj)(Xi − µj)

T∑n
i=1 h(Xi)w(Xi)γij

, (4.12)

where

γij =
αj qj

(
Xi;µj,Σj

)∑k
j′=1 αj′ qj′

(
Xi;µj′ ,Σj′

) . (4.13)

As the name suggests, the right-hand sides of the ‘updating’ equations (4.10), (4.11),

(4.12) involve θ = (α1, . . . , αk,µ1, . . . ,µk,Σ1, . . . ,Σk) either explicitly or implicitly

through γij. As such, the updating equations are interlocking with each other and

cannot be solved analytically. Thus, by starting with an initial value for θ on the

right-hand sides of the updating equations, we need to compute the left-hand sides

and plug the results back to the right-hand sides iteratively until the convergence is

reached.

This optimization procedure is called the EM algorithm that alternates between

the expectation step (computing γij) and the maximization step (updating θ). The

study (Kurtz and Song , 2013) that derives the updating equations does not notice

the connection with the EM algorithm. Moreover, the existing studies on the mixture

model (Botev et al., 2013; Wang and Zhou, 2015; Kurtz and Song , 2013) do not iterate

the updating equations but solves them only once in each CE iteration. To actually

‘minimize’ (4.7), it is necessary to use the EM algorithm (i.e., iterating the updating
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equations until convergence) within each CE iteration.

4.3.2 Cross-Entropy Information Criterion

Due to the difficulty choosing the number of mixture components, k, existing

studies either assume that k is given (Botev et al., 2013; Kurtz and Song , 2013) or

follow a rule of thumb based on “some understanding of the structure of the problem

at hand” (Wang and Zhou, 2015). We derive an asymptotically unbiased criterion to

choose k automatically. We borrow the ideas of the information criteria widely used

in statistical learning (Figueiredo and Jain, 2002), where the best model is chosen by

minimizing a criterion generally expressed as

− 1

n

n∑
i=1

log q
(
Xi; θ̃

)
+ P(d), (4.14)

which balances between the model’s goodness of fit and the model complexity: the

first term is the average negative log likelihood of the model, which is minimized by

the maximum likelihood estimator (MLE), θ̃mle. The second term is a monotonically

increasing function of d to penalize the overly complex model (note that d is the

dimension of θ̃ and proportional to k.). For example, when P(d) = d/n, the criterion

in (4.14) becomes AIC (Akaike, 1974); when P(d) = d(log n)/n, the criterion becomes

BIC (Schwarz , 1978).

However, we cannot directly use the existing criteria to find the best parameter of

GMM approximating the optimal IS density, because our goal is not finding the best

model explaining the given data (i.e., maximizing the likelihood). Instead, we need

to minimize the CE in (4.5). We note that the estimator in (4.7) that estimates the

CE (up to a multiplicative constant) is only different from the average negative log

likelihood (the first term in (4.14)) by the weighting term, h(Xi)w(Xi). Accordingly,

the minimum cross-entropy estimator (MCE), θ̂, that minimizes (4.7) shares the

theoretical properties such as consistency and asymptotic normality of MLE, under
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certain regularity conditions. More importantly, the similarity of MCE with MLE

leads to a criterion for CE minimization, analogous to AIC. We call the new criterion

cross-entropy information criterion (CIC). This criterion takes the following form

CIC = C̄θ̂ +Kq∗
d

n
, (4.15)

where

C̄θ̂ = − 1

n

n∑
i=1

h(Xi)w(Xi) log q
(
Xi; θ̂

)
. (4.16)

Here, C̄θ̂ is analogous to the first term in (4.14), i.e., the average negative log like-

lihood. The second term in (4.15) penalizes the model complexity by being linearly

proportional to d, the dimension of θ̂. Because (4.16) includes the weighting term,

h(Xi)w(Xi), the second term in (4.15) also includes

Kq∗ = E [h(X)w(X)] (4.17)

so that the both terms in (4.15) can be balanced as in AIC.

Below we briefly explain the derivation of CIC. First, to establish the asymptotic

unbiasedness of CIC in (4.15), we need two assumptions.

Assumption IV.1. The optimal IS density is in the parametric family of q(x;θ).

That is, there exists θ∗ such that q∗(x) = q(x;θ∗).

Assumption IV.2. Assume that 2 ≤ τ < ∞, where τ denotes the number of total

CE iterations. As n → ∞, simulation replications allocated to each CE iteration

increase at the same rate.

Under the stated assumptions and regularity conditions, the following theorem

holds (see Appendix C).
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Theorem IV.3.

E
[
C̄θ̂ − Cθ̂

]
= −Kq∗

d

n
+ o

(
1

n

)
, (4.18)

where the expectation is taken with respect to the data X1, . . . ,Xn. The little-o term

indicates that the approximation error goes to zero faster than the rate of 1/n.

Theorem IV.3 implies that the asymptotic bias of the estimator, C̄θ̂, in estimating

Cθ̂ is −Kq∗d/n. Consequently, the CIC in (4.15) asymptotically corrects the bias and

presents an asymptotically unbiased information criterion. As a result, among many

possible choices of k, by finding the model order that minimizes the CIC in (4.15),

we can find the best GMM that asymptotically minimizes the CE in (4.5). We also

note that the bias correction term depending on d prevents the overfitting, similar to

AIC.

For illustration, Figure 4.1 shows a typical pattern of CIC observed in the DIS

example in Section 4.4.1. As we use the GMM with unconstrained means and co-

variances, d is (k − 1) + k(p + p(p+ 1)/2), where p is the dimension of X. Since d

is linearly proportional to k, we see that, as k increases, CIC initially decreases and

then levels off before increasing. As such, CIC guards against the overfitting. By min-

imizing CIC, we can find the best model that minimizes the CE in an asymptotically

unbiased manner.

4.3.3 Approximations Necessary for Implementation

CIC in (4.15) involves Kq∗ in (4.17), which needs to be estimated in practice. For

DIS, P̂DIS = Kq∗ + Op(1/
√
n) holds by the central limit theorem (Keener , 2010).

Thus, the bias correction term derived in Theorem IV.3 remains valid when we use

P̂DIS in (4.2) as the estimator of Kq∗ , K̂q∗ . Similarly, for SIS, we use P̂SIS in (4.3) as

K̂q∗ .
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Figure 4.1: CIC observed in the DIS example in Section 4.4.1

To implement the proposed method, we need to know h(x) in the EM algorithm

equations (4.10)-(4.13) to find MCE, θ̂ and in CIC in (4.15). For DIS, h(x) =

I (g(x) > l) can be evaluated exactly at each x by running the simulation. However,

for SIS, h(x) =
√
s(x) (1− s(x)) /n+ s(x)2 needs to be estimated because s(Xi) is

unknown. We estimate s(Xi) by

ŝ(Xi) =
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > l

)
(4.19)

and then estimate h(x) by plugging in ŝ(Xi).

SIS also needs to allocate Ni replications at each Xi, as explained in Section 4.2.

For a large n � maxmi=1 (1− s(Xi))/s(Xi), the optimal Ni in (3.3) is approximately

proportional to

√
w(Xi)− P̂SIS (see Appendix C). Thus, we decide Ni based on this

approximation. If w(Xi)− P̂SIS ≤ 0, we assign Ni = 1, to ensure the unbiasedness of

P̂SIS in (4.3).
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4.3.4 Aggregated Failure Probability Estimation

Finally, to estimate the failure probability, we aggregate the samples obtained in

all of the CE iterations. For DIS, instead of P̂DIS in (4.2), we use

P̂DIS′ =
1

τ

τ∑
t=1

1

n(t)

n(t)∑
i=1

I
(
Y

(t)
i > l

) f
(
X

(t)
i

)
q
(
X

(t)
i ; θ̂

(t)
) , (4.20)

where the superscript (t) denotes the tth CE iteration. Similarly, for SIS, instead of

P̂SIS in (4.3), we use

P̂SIS′ =
1

τ

τ∑
t=1

1

m(t)

m(t)∑
i=1

1

N
(t)
i

N
(t)
i∑

j=1

I
(
Y

(t)
ij > l

) f
(
X

(t)
i

)
q
(
X

(t)
i ; θ̂

(t)
) . (4.21)

It should be noted that, by (4.20) and (4.21), we make further improvements over

the standard CE method discussed in Section 4.2.1. The standard CE method does

not use the intermediate CE sampling results for the failure probability estimation.

Instead, the standard CE method uses P̂DIS in (4.2) with the data obtained in the

final iteration only.

4.3.5 Summary of the Proposed Method

For DIS, we use the following pseudo-code:

1. Set the iteration counter, t = 1. Sample X
(t)
i , i = 1, . . . , n(t) from an initial

distribution (e.g., f).

2. At each X
(t)
i , run the simulators and obtain the dataset D(t) = {(X(t)

i , Y
(t)
i ) :

i = 1, . . . , n(t)}.

3. If t < τ , run the EM algorithm in Section 4.3.1 to find θ̂(k) for k = kmin, . . . , kmax

and choose k∗ = argmink CIC(k), where CIC(k) in (4.15) is computed using

θ̂(k), D(1), . . . ,D(t) and K̂q∗ = P̂DIS′ in (4.20). Otherwise, go to Step 5.
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4. Increase t by 1. Sample X
(t)
i , i = 1, . . . , n(t) from q(x; θ̂(k∗)) in (4.8). Go to

Step 2.

5. Estimate the failure probability by P̂DIS′ in (4.20).

In Step 3, K̂q∗ is estimated using all the data available up to the current iteration,

t. kmin and kmax can be flexibly chosen to find k∗ that minimizes CIC. For SIS, the

pseudo-code is essentially the same except that the dataset D(t) is constructed by

running the simulator N
(t)
i times at X

(t)
i , i = 1, . . . ,m(t) and that we use P̂SIS′ in

(4.21) instead of P̂DIS′ . Hereafter, we call the proposed method EM-based cross-

entropy (EMCE) method.

4.4 Numerical Examples

4.4.1 DIS Example

The closest work to ours is done by Kurtz and Song (2013), who use the GMM

with a pre-specified value for k. Their method, called ‘cross-entropy-based adaptive

IS using Gaussian mixture (CE-AIS-GM)’ is tested in Kurtz and Song (2013) using

a classical example of the structural safety literature. In this example, the failure

region is defined as {x ∈ R2 : g(x) ≤ 0}, where

g(x) = b− x2 − κ (x1 − e)2 . (4.22)

For comparison of CE-AIS-GM and EMCE, we vary the parameter b = 1.5, 2.0 and

2.5, to test three different failure thresholds. We fix the other two parameters, κ = 0.1

and e = 0 to maintain the shape of the failure region. We use the same sample size

used in Kurtz and Song (2013), namely, the total of 8700 replications. As in Kurtz

and Song (2013), CE-AIS-GM is set to use k = 30, whereas EMCE automatically

chooses k.
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Table 4.1 shows the estimation results based on 500 experiment repetitions. The

sample mean of the failure probability estimates (‘Mean’) decreases as the threshold,

b, increases. EMCE leads to at least twice smaller standard errors than CE-AIS-GM.

This improvement of accuracy translates into computational saving: ‘CMC Ratio’

is the number of replications used in each row’s method divided by the number of

replications necessary for CMC in (4.1) to achieve the same standard error in the

row. Although CE-AIS-GM saves significantly compared to CMC, EMCE saves even

more by 4 to 6 times.

Table 4.1: Comparison between CE-AIS-GM and EMCE
b Method Mean Standard Error CMC Ratio

1.5 CE-AIS-GM 0.082902 0.001145 15.00%
EMCE 0.082911 0.000506 2.93%

2.0 CE-AIS-GM 0.030174 0.000526 8.23%
EMCE 0.030173 0.000213 1.35%

2.5 CE-AIS-GM 0.008908 0.000211 4.39%
EMCE 0.008910 0.000099 0.97%

Figure 4.2 compares the theoretically optimal density in (2.3) and the EMCE

density, for b = 1.5. We observe that the EMCE density with automatically chosen

k = 10 is close to the theoretically optimal density, capturing the shape of important

region.

4.4.2 SIS Example

For SIS, we test EMCE with the numerical example in Section 2.5 of Chapter II.

Its data generating structure is as follows:

X ∼ N (0, 1) , Y |X ∼ N
(
µ(X) , σ2(X)

)
,
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(b) EMCE density (k = 10)

Figure 4.2: Comparison between the theoretically optimal density in (2.3) and the EMCE
density, for the DIS example with b = 1.5. The red dashed line is the failure
boundary, g(x) = 0.

where the mean and the standard deviation are

µ(X) = 0.95X2 (1 + 0.5 cos(5X) + 0.5 cos(10X)) ,

σ(X) = 1 + 0.7 |X|+ 0.4 cos(X) + 0.3 cos(14X).

To approximate the optimal density in (2.12) and the allocation in (2.13), Chapter II

approximates the conditional probability, s(X) = P(Y > l | X), by using a meta-

model. The metamodel is set as the normal distribution with the following mean and

standard deviation:

µ̂(X) = 0.95X2, σ̂(X) = 1 + 0.7 |X| .

The total number of replications is set as 1000 for each method and the experiment is

repeated 500 times to obtain the results in Table 4.2. Table 4.2 also shows the result

from the optimal SIS that uses the true s(X). It appears that EMCE is better than

the metamodel-based approach, which captures the overall pattern of the true model,

and close to the optimal SIS.
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Table 4.2: Comparison between Metamodel-based SIS, EMCE, and the optimal SIS
Method Mean Standard Error CMC Ratio

Metamodel 0.01011 0.00122 15.09%
EMCE 0.00972 0.00073 8.65%

True Model 0.00996 0.00052 2.74%

4.5 Case Study

In the case study, we evaluate the reliability of a wind turbine using the same

simulation setting described in Section 2.6 of Chapter II. In the previous chapters,

we apply the metamodel-based SIS to this problem. This section compares the per-

formance of EMCE with the metamodel-based SIS. For both methods, we use the

same number of total replications, 1000 (2000) for the edgewise (flapwise) bending

moment.

Table 4.3 compares the results based on 50 repetitions. EMCE has slightly smaller

(larger) standard error than the metamodel-based approach for the edgewise (flap-

wise) bending moment. Accordingly, both methods save the similar level of compu-

tational resource compared to CMC, as indicated by ‘CMC Ratio’.

Table 4.3: Comparison between the metamodel-based SIS and the EMCE for the case
study
Response Method Mean Standard Error CMC Ratio
Edgewise Metamodel 0.0486 0.0018 7.0%

EMCE 0.0486 0.0015 4.9%
Flapwise Metamodel 0.0514 0.0028 32%

EMCE 0.0535 0.0030 37%

In the metamodel-based SIS, recall that the metamodel is carefully built by fit-

ting a nonhomogeneous generalized extreme value distribution to the pilot data in

Chapter II. As such, we can see that the performance of EMCE is comparable to

that of metamodel-based SIS with a high quality metamodel. However, as seen in

Section 4.4.2, when the metamodel quality is not good enough, EMCE provides a

better computational efficiency. Since EMCE is an automated method, it can be a
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promising method when building a metamodel is difficult.

4.6 Summary

We propose a method called EMCE that uses the EM algorithm to improve the

updating scheme of the CE method. Furthermore, we derive an asymptotically un-

biased model selection criterion, called CIC, to automatically find the model order

that minimizes the cross-entropy between the optimal IS density and the candidate

IS density. The numerical examples and case study demonstrate the superior perfor-

mance of EMCE over the standard CE method and show the advantage of EMCE

over the metamodel-based IS.
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CHAPTER V

Conclusion

This dissertation develops three approaches to tackle computational challenges

associated with reliability evaluation using stochastic simulation models. The com-

putational challenges arise mainly from the fact that: (a) a simulation model, which

accurately represents a stochastic system with millions of random variables, tends to

be computationally expensive, (b) it is necessary to repeat running the simulation

model many times to observe rare events which are critical for understanding system

reliability, and (c) a conventional estimator of the rare event probability based on

CMC is subject to large uncertainty, requiring sufficient enough simulation replica-

tions to observe several rare events in order to ensure a reasonable accuracy of the

estimator.

Chapter II proposes SIS as the main solution approach for saving the computa-

tional resources when stochastic simulation models are used to estimate the prob-

ability of a failure event which occurs rarely. The goal of this chapter is to devise

methods to optimally use stochastic simulation models under computational bud-

get constraints. The proposed methods, SIS1 and SIS2, have the optimal properties

of minimizing the variances of two different failure probability estimators. The first

method, SIS1, prescribes how to optimally sample simulation inputs and allocate sim-

ulation resources at each sampled input, given the total number of simulation repli-
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cations and the number of inputs to sample. The second method, SIS2, optimizes

sampling efforts when only a single replication is allocated at each sampled input.

Our numerical studies and case studies show that the performances of both methods

are similar, while significantly outperforming the conventional method, CMC, and

another benchmark method, BIS, which is similar to the existing IS designed for

deterministic simulation models.

Chapter III develops computationally efficient approaches to quantify the uncer-

tainty of SIS-based failure probability estimation. Such uncertainty quantification is

important for reliability evaluation because any estimator based on stochastic simu-

lations is subject to randomness and a highly uncertain estimator can be misleading

in evaluating the system reliability. In Chapter II, to measure the uncertainty (vari-

ability or variance) of a failure probability estimator, we repeat obtaining failure

probability estimates and compute the sample standard deviation. Such repetitions

multiply the computational burden when obtaining a single estimate is already com-

putationally expensive. Chapter III establishes CLTs for SIS1 and SIS2 and constructs

asymptotic CIs for the failure probability estimation without repeating the estima-

tion. Numerical studies validate that the resulting CIs indeed quantify the estimation

uncertainty accurately. Case studies demonstrate the usefulness of having the CIs for

the reliability evaluation of a wind turbine.

Chapter IV proposes a novel information criterion, CIC, to enhance the CE

method that adaptively guides simulation process in efficiently estimating the failure

probability of a system. The standard CE method has been widely used in prac-

tice for reliability evaluation with deterministic simulation models. The standard

approach uses a parametric distribution, usually in the exponential family, as the IS

distribution that focuses sampling efforts on important simulation inputs to improve

the estimation accuracy. Because of the rigidity of common parametric distributions,

recent studies propose using the mixture of the parametric distributions to have the
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flexible shape of IS distribution. To the best of our knowledge, none of the studies,

however, provides a rigorous approach to determine the number of component dis-

tributions in the mixture. We devise CIC that has a desirable asymptotic property

to enable us to decide a good number of components in the mixture density, based

on the information at hand. We use the EM algorithm, which minimizes an estimate

of CE for the distribution parameter estimation, for the mixture-based CE method,

and show that this method is applicable not only to deterministic simulation models

but also to stochastic simulation models. Our numerical studies and case studies

demonstrate that the proposed approach performs comparably or better than the

benchmark methods we consider.

In the future, it would be interesting to investigate the methods that estimate

a very small probability in the binomial distribution to improve the estimation of

the conditional POE in stochastic simulation models. A new SIS method can be also

developed to optimize a simulation experiment for evaluating the reliability associated

with multiple responses. The resulting estimator will need an accompanying approach

to quantify the estimation uncertainty, extending the work in Chapter III. Important

extensions of CIC proposed in Chapter IV includes adopting the Bayesian paradigm

and devising a CE-based criterion that is analogous to BIC (Schwarz , 1978) or an

advanced criterion like in Figueiredo and Jain (2002), which may improve the stability

and performance of EM algorithm.

The proposed approaches in this dissertation are applied to the reliability evalua-

tion of a wind turbine in the case studies. We, however, expect that the methodologies

are widely applicable to various domains. For structural safety evaluation in the civil

engineering, IS has been used extensively to improve the reliability evaluation ac-

curacy in civil infrastructure systems (Dubourg et al., 2013; Kurtz and Song , 2013).

Because uncertainty is a very important dimension to consider in many safety-critical

systems, the results presented in this dissertation will benefit those who use stochastic
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simulation models to evaluate the system safety. Finance is another area where rare

events are of significant interests (Wang and Zhou, 2015). The proposed approaches

in this dissertation that consider rare events under large uncertainties will benefit

researchers and practitioners in finance to improve the estimation accuracy, quantify

the associated uncertainty, and adaptively guide simulation process for efficient use

of computational resources.
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APPENDIX A

Appendix for Chapter II

In this Appendix, Section A.1 includes the derivations for the optimal solutions

of SIS1 and SIS2 with the multivariate input vector. Sections A.2 and A.3 present

the numerical examples with the univariate input variable and the multivariate input

vector, respectively, which are used to investigate the impacts of various factors on

the performances of the proposed methods. Section A.4 discusses the implementation

details with the wind turbine simulators.

A.1 Derivations for Optimal SIS

This section details the derivations of the optimal allocation size, Ni, i = 1, · · · ,M ,

and the optimal IS density, qSIS1, for SIS1 and the optimal IS density, qSIS2, for SIS2,

presented in Section 2.3. In the sequel, we consider the multivariate input vector,

X ∈ Rp. Note that the univariate input variable is a special case with p = 1.
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A.1.1 Optimal importance sampling density and allocations in SIS1

First, we consider the SIS1 estimator,

P̂SIS1 =
1

M

M∑
i=1

P̂ (Y > l | Xi)
f(Xi)

q(Xi)

=
1

M

M∑
i=1

(
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > l

)) f(Xi)

q(Xi)
.

We decompose the variance of this estimator into two components, the expectation

of the conditional variance and the variance of the conditional expectation, as

V ar
[
P̂SIS1

]
= V ar

[
1

M

M∑
i=1

P̂ (Y > l | Xi)
f(Xi)

q(Xi)

]

=
1

M2
Eq

[
V ar

[
M∑
i=1

P̂ (Y > l | Xi)
f(Xi)

q(Xi)

∣∣∣∣∣ X1, · · · ,XM

]]

+
1

M2
V arq

[
E

[
M∑
i=1

P̂ (Y > l | Xi)
f(Xi)

q(Xi)

∣∣∣∣∣ X1, · · · ,XM

]]
, (A.1)

where the subscript q appended to E or V ar indicates that the expectation or the

variance is taken with respect to q. For simplicity, let s(X) denote the conditional

POE, P (Y > l | X). Using the fact that Xi
i.i.d∼ q for i = 1, 2, · · · ,M , we simplify

V ar
[
P̂SIS1

]
in (A.1) to

V ar
[
P̂SIS1

]
=

1

M2
Eq

V ar
 M∑

i=1

 1

Ni

Ni∑
j=1

I
(
Y

(i)
j > l

) f(Xi)

q(Xi)

∣∣∣∣∣∣ X1, · · · ,XM


+

1

M2
V arq

[
M∑
i=1

s(Xi)
f(Xi)

q(Xi)

]

=
1

M2
Eq

 M∑
i=1

 1

N2
i

Ni∑
j=1

s(Xi) (1− s(Xi))

 f(Xi)
2

q(Xi)2

+
1

M
V arq

[
s(X)

f(X)

q(X)

]

=
1

M2
Eq

[
M∑
i=1

1

Ni
s(Xi) (1− s(Xi))

f(Xi)
2

q(Xi)2

]
+

1

M
V arq

[
s(X)

f(X)

q(X)

]
.
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We express the allocation size, Ni, at Xi as a proportion of the total simulation

budget, NT ,

Ni = NT ·
c(Xi)∑M
j=1 c(Xj)

, i = 1, 2, · · · ,M, (A.2)

where c(X) is a non-negative function. Lemma II.1 presents the optimal assignment

of simulation replications, Ni, to each Xi for any given q.

Lemma II.1 Given q, the variance in (2.9) is minimized if and only if

Ni =

√
s(Xi) (1− s(Xi))f(Xi) /q(Xi)∑M

j=1

√
s(Xj) (1− s(Xj))f(Xj) /q(Xj)

·NT for i = 1, 2, · · · ,M.

Proof. We want to find Ni, i = 1, 2, · · · ,M , that minimizes the variance in (2.9)

for any given density function, q(X). Note that the second term in (2.9) is constant,

provided that the function q(X) is given, and the other functions, f(X) and s(X), are

fixed. Thus, we find Ni that minimizes the first term in (2.9),

1

M2
Eq

[
M∑
i=1

1

Ni
s(Xi) (1− s(Xi))

f(Xi)
2

q(Xi)
2

]

=
1

M2

M∑
i=1

Eq

[
1

Ni
s(Xi) (1− s(Xi))

f(Xi)
2

q(Xi)
2

]

=
1

M
Eq

[
1

N1
s(X1) (1− s(X1))

f(X1)
2

q(X1)
2

]
(A.3)

=
1

M

1

NT
Eq

[∑M
j=1 c(Xj)

c(X1)
s(X1) (1− s(X1))

f(X1)
2

q(X1)
2

]
(A.4)

=
1

M

1

NT

 M∑
j=1

Eq

[
c(Xj)

c(X1)
s(X1) (1− s(X1))

f(X1)
2

q(X1)
2

]
=

1

M

1

NT

Eq

[
s(X1) (1− s(X1))

f(X1)
2

q(X1)
2

]
+

M∑
j=2

Eq

[
c(Xj)

c(X1)
s(X1) (1− s(X1))

f(X1)
2

q(X1)
2

]
=

1

M

1

NT

(
Eq

[
s(X) (1− s(X))

f(X)
2

q(X)
2

]
+ (M − 1) · Eq [c(X)] · Eq

[
1

c(X)
s(X) (1− s(X))

f(X)
2

q(X)
2

])
(A.5)

≥ 1

M

1

NT

(
Eq

[
s(X) (1− s(X))

f(X)
2

q(X)
2

]
+ (M − 1) ·

(
Eq

[√
s(X) (1− s(X))

f(X)

q(X)

])2
)

(A.6)
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The equalities in (A.3) and (A.5) are due to the fact that Xi, i = 1, 2, · · · ,M , is

independent and identically distributed. We use the definition in (A.2) for (A.4). The

inequality in (A.6) follows by applying the Cauchy-Schwarz inequality to the second

term in (A.5). The equality in (A.6) holds if and only if

c(X) = k
√
s(X) (1− s(X))f(X) /q(X) ,

where k is a positive constant. Therefore, by the definition in (A.2), the optimal

allocation size in (2.10) follows. �

Plugging Ni’s in (2.10) into the estimator variance in (2.9) leads to

V ar
[
P̂SIS1

]
=

1

M

1

NT

(
Eq

[
s(X) (1− s(X))

f(X)
2

q(X)
2

]
+ (M − 1)

(
Ef

[√
s(X) (1− s(X))

])2)

+
1

M
V arq

[
s(X)

f(X)

q(X)

]
(A.7)

=
1

M

1

NT

(
Ef

[
s(X) (1− s(X))

f(X)

q(X)

]
+ (M − 1)

(
Ef

[√
s(X) (1− s(X))

])2)
+

1

M

(
Eq

[
s(X)

2 f(X)
2

q(X)
2

]
−
(
Eq

[
s(X)

f(X)

q(X)

])2
)

=
1

M

1

NT

(
Ef

[
s(X) (1− s(X))

f(X)

q(X)

]
+ (M − 1)

(
Ef

[√
s(X) (1− s(X))

])2)
+

1

M

(
Ef

[
s(X)

2 f(X)

q(X)

]
− P (Y > l)

2

)
, (A.8)

where we obtain the equation in (A.7) using the expression in (A.6). Please note

that Eq

[√
s(X) (1− s(X))f(X)

q(X)

]
= Ef

[√
s(X) (1− s(X))

]
.

Recall that s(X) denotes P (Y > l | X). Thus, only the following terms in (A.8)

contain q,

1

M

1

NT

Ef

[
s(X) (1− s(X))

f(X)

q(X)

]
+

1

M
Ef

[
s(X)2

f(X)

q(X)

]
=

1

M

∫
Xf

(
1

NT

s(x) · (1− s(x)) + s(x)2
)
f 2(x)

q(x)
dx, (A.9)

where Xf = {x ∈ Rp : f (x) > 0} is the support of f . Finding q that minimizes (A.9)
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is a functional minimization problem. To specify the boundary conditions, we define

the joint cumulative distribution function (CDF) of X ∈ Rp with the IS density, q, as

Q (x1, x2, · · · , xp) ≡
x1∫
−∞

x2∫
−∞

· · ·
xp∫
−∞

q (x̃1, x̃2, · · · , x̃p) dx̃1dx̃2 · · · dx̃p.

Then, we impose the boundary conditions,

Q (−∞,−∞, · · · ,−∞) = 0,

Q (∞,∞, · · · ,∞) = 1.

Therefore, we minimize the functional in (A.9) over the set of functions,

{q : Q (−∞,−∞, · · · ,−∞) = 0; Q (∞,∞, · · · ,∞) = 1; q (x) ≥ 0,∀x ∈ Rp}.

In the following, we use principles of the calculus of variations. The integrand in

(A.9) is the Lagrangian function, L(x1, x2, · · · , xp, q). The optimal q should satisfy

the Euler-Lagrange equation (Courant and Hilbert , 1989),

0 = (−1)p
∂p

∂x1∂x2 · · · ∂xp

(
∂L
∂q

(x1, x2, · · · , xp, q)
)

= (−1)p
∂p

∂x1∂x2 · · · ∂xp

(
−L(x1, x2, · · · , xp, q)

q(x1, x2, · · · , xp)

)
.

This Euler-Lagrange equation is satisfied if the function q satisfies

C2
q1 =

(
1

NT

s(x) (1− s(x)) + s(x)2
)
f 2(x)

q2 (x)
,

where Cq1 is a positive constant. Rearranging the above equation gives

q(x) =
1

Cq1
f (x)

√
1

NT

s(x) (1− s(x)) + s(x)2. (A.10)
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This function q also satisfies the boundary conditions on Q by setting Cq1 to satisfy

the normalizing constraint of the joint IS density, q, as follows:

Cq1 =

∞∫
−∞

∞∫
−∞

· · ·
∞∫

−∞

f(x)

√
1

NT

s(x) · (1− s(x)) + s(x)2 dx1dx2 · · · dxp

≡
∫
Xf

f(x)

√
1

NT

s(x) · (1− s(x)) + s(x)2 dx. (A.11)

To guarantee that the resulting q is a minimizer of the functional in (A.9), we verify

that the following second variation (Courant and Hilbert , 1989) is positive definite,

J [Q;R] =

∫
Xq

R2 ∂
2L
∂Q2

+ 2Rr
∂2L
∂Q∂q

+ r2
∂2L
∂q2

dx, (A.12)

where Xq = {x ∈ Rp : q (x) > 0} is the support of q. The function, R (x1, x2, · · · , xp),

in (A.12) represents a variation that should satisfy the boundary conditions,

R (−∞,−∞, · · · ,−∞) = 0,

R (∞,∞, · · · ,∞) = 0,

so that the varied function, Q̃ (x1, x2, · · · , xp) ≡ Q (x1, x2, · · · , xp)+R (x1, x2, · · · , xp),

satisfies the prescribed boundary conditions,

Q̃ (−∞,−∞, · · · ,−∞) = 0,

Q̃ (∞,∞, · · · ,∞) = 1.

The function, r (x1, x2, · · · , xp), in (A.12) is

r (x1, x2, · · · , xp) ≡
∂pR

∂x1∂x2 · · · ∂xp
(x1, x2, · · · , xp) .
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We note that

∂2L
∂Q2

(x1, x2, · · · , xp, q) = 0,

∂2L
∂Q∂q

(x1, x2, · · · , xp, q) = 0,

∂2L
∂q2

(x1, x2, · · · , xp, q) = 2

(
1

NT

s(x) (1− s(x)) + s(x)2
)
f 2(x)

q3 (x)

> 0 for all x ∈ Xq = {x̃ ∈ Rp : q(x̃) > 0}.

Therefore, the second variation in (A.12) is reduced to

J [Q;R] =

∫
Xq

r2
∂2L
∂q2

dx,

where ∂2L
∂q2

is positive. Therefore, J [Q;R] vanishes if and only if r (x) = 0 for all

x ∈ Xq. The latter condition implies that R (x) is a constant function of 0, since R (x)

is 0 at (x1, x2, · · · , xp) = (−∞,−∞, · · · ,−∞) and (x1, x2, · · · , xp) = (∞,∞, · · · ,∞).

Therefore, for all allowable nonzero variations, R (x), the second variation is positive

definite (i.e., J [Q;R] > 0). This verifies that the IS density, q, in (A.10) with the

normalizing constant in (A.11) is the minimizing function of the variance in (A.8).

We also plug this q into (2.10) to obtain the optimal allocation size, which leads to

Theorem II.2.

Theorem II.2 (a) The variance of the estimator in (2.6) is minimized if the following

IS density and the allocation size are used.

qSIS1(x) =
1

Cq1
f(x)

√
1

NT

s(x) (1− s(x)) + s(x)2,

Ni = NT

√
NT (1−s(xi))

1+(NT−1)s(xi)∑M
j=1

√
NT (1−s(xj))

1+(NT−1)s(xj)

, i = 1, 2, · · · ,M,

81



where Cq1 is
∫
Xf
f(x)

√
1
NT
s(x) · (1− s(x)) + s(x)2 dx and s(x) is P (Y > l|X = x).

(b) With qSIS1 and Ni, i = 1, 2, · · · ,M , the estimator in (2.6) is unbiased.

Proof. (a) We already derived the optimal qSIS1 in (2.12) from the above discussion.

Plugging the optimal qSIS1 into the formula of Ni in (2.10) gives

Ni ∝
√
s(xi) (1− s(xi))

f(xi)

qSIS1(xi)

=
√
s(xi) (1− s(xi))f(xi)

(
1

Cq1
f(xi)

√
1

NT

s(xi) (1− s(xi)) + s(xi)
2

)−1
∝
√

s(xi) (1− s(xi))
1
NT
s(xi) (1− s(xi)) + s(xi)

2

=

√
NT (1− s(xi))

1− s(xi) +NT s(xi)

=

√
NT (1− s(xi))

1 + (NT − 1) s(xi)
.

By imposing the normalizing constraint of NT =
∑M

i=1Ni, the expression of the opti-

mal allocation size in (2.13) follows.

(b) The estimator in (2.6) is unbiased if qSIS1(xi) = 0 implies

P̂ (Y > l | X = xi) f(xi) =

(
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > l

))
f(xi)

= 0

for any xi. Note that qSIS1(x) = 0 holds only if f(x) = 0 or s(x) = 0. If s(x) = 0,

then P̂ (Y > l|X = x) = 0. Therefore, if qSIS1(x) = 0, then P̂ (Y > l|X = x) f(x) =

0, which concludes the proof. �
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A.1.2 Optimal importance sampling density in SIS2

Now we consider the SIS2 estimator with a multivariate input vector, X ∈ Rp,

P̂SIS2 =
1

NT

NT∑
i=1

I (Yi > l)
f(Xi)

q(Xi)
,

where Yi is an output at Xi, i = 1, 2, · · · , NT . Theorem II.3 presents the optimal

IS density, q, for the estimator in (2.7). Similar to the derivation of qSIS1 in (2.12),

we first decompose the estimator variance and apply the principles of the calculus of

variation.

Theorem II.3 (a) The variance of the estimator in (2.7) is minimized with the

density,

qSIS2(x) =
1

Cq2

√
s(x)f(x) ,

where Cq2 is
∫
Xf

√
s(x)f(x) dx and s(x) is P (Y > l|X = x).

(b) With qSIS2, the estimator in (2.7) is unbiased.
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Proof. (a)

V ar
[
P̂SIS2

]
= V ar

[
1

NT

NT∑
i=1

I (Yi > l)
f(Xi)

q(Xi)

]

=
1

N2
T

Eq

[
V ar

[
NT∑
i=1

I (Yi > l)
f(Xi)

q(Xi)

∣∣∣∣∣ X1, · · · ,XNT

]]

+
1

N2
T

V arq

[
E

[
NT∑
i=1

I (Yi > l)
f(Xi)

q(Xi)

∣∣∣∣∣ X1, · · · ,XNT

]]

=
1

N2
T

Eq

[
NT∑
i=1

s(Xi) · (1− s(Xi))
f(Xi)

2

q(Xi)2

]

+
1

N2
T

V arq

[
NT∑
i=1

s(Xi)
f(Xi)

q(Xi)

]

=
1

NT

Eq

[
s(X) · (1− s(X))

f(X)2

q(X)2

]
+

1

NT

(
Eq

[
s(X)2

f(X)2

q(X)2

]
−
(
Eq

[
s(X)

f(X)

q(X)

])2
)

=
1

NT

Eq

[
s(X)

f(X)2

q(X)2

]
− 1

NT

(
Eq

[
s(X)

f(X)

q(X)

])2

=
1

NT

Ef

[
s(X)

f(X)

q(X)

]
− 1

NT

P (Y > l)2 . (A.13)

To find the optimal IS density which minimizes the functional in (A.13), we apply

the similar procedure discussed for SIS1. Since only the first term of (A.13) involves

q, we consider the following Lagrangian function,

L(x, q) = s(x)
f 2(x)

q(x)
.

Note that the Lagrangian function for SIS2 replaces

(
1

NT

s(x) · (1− s(x)) + s(x)2
)

in the Lagrangian function for SIS1 (i.e., the integrand in (A.9)) with s(x). Therefore,
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the Euler-Lagrange equation and the second variation for SIS2 are analogous to those

for SIS1. They lead to the minimizing function in (2.14) for SIS2, which is also

analogous to the minimizing function in (2.12) for SIS1.

(b) The estimator in (2.7) is unbiased if qSIS2(x) = 0 implies I (Y > l) f(x) = 0

for any x. Note that Y is an output corresponding to x. qSIS2(x) = 0 holds only if

f(x) = 0 or s(x) = 0. Also, if s(x) = 0, then I (Y > l) = 0. Therefore, it follows

that I (Y > l) f(x) = 0 if qSIS2(x) = 0. �

A.2 Univariate Example

To design a univariate stochastic example, we take a deterministic simulation ex-

ample in Cannamela et al. (2008) and modify it to have stochastic elements. Specif-

ically, we have the following data generating structure:

X ∼ N(0, 1) ,

Y |X ∼ N
(
µ(X) , σ2(X)

)
,

where the mean, µ(X), and the standard deviation, σ(X), are

µ(X) = 0.95δX2 (1 + 0.5 cos(10κX) + 0.5 cos(20κX)) ,

σ(X) = 1 + 0.7 |X|+ 0.4 cos(X) + 0.3 cos(14X),

respectively. The metamodel of the conditional distribution, Y |X, is

N
(
µ̂(X) , σ̂2(X)

)
,
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where

µ̂(X) = 0.95βδX2 (1 + 0.5ρ cos(10κX) + 0.5ρ cos(20κX)) ,

σ̂(X) = 1 + 0.7 |X|+ 0.4ρ cos(X) + 0.3ρ cos(14X).

We vary the following parameters to test different aspects of our proposed methods

compared to alternative methods.

• PT , the magnitude of target failure probability: By varying PT = P (Y > l),

where l is a threshold for the system failure, we want to see how the proposed

methods perform at different levels of PT . Based on 1 million CMC simulation

replications, we decide l that corresponds to the target failure probability, PT .

We consider the three levels of PT , namely, 0.10, 0.05, and 0.01.

• δ, the difference between the original input density, f , and the optimal IS den-

sity, qSIS1 (or qSIS2): We want to investigate how the computational gains of

SIS1 and SIS2 change when the optimal IS density is more different from the

original input density, f . Note that the original input density, f , is a standard

normal density with a mode at 0. When δ = 1, qSIS1 and qSIS2 will focus their

sampling efforts on the input regions far from 0, since the response variable, Y ,

tends to be large in such regions due to the term, 0.95X2, in µ(X). Conversely,

when δ = −1, qSIS1 and qSIS2 will focus their sampling efforts on the regions

close to 0.

• ρ, the metamodeling accuracy for the oscillating pattern: We vary ρ in µ̂(X)

and σ̂(X) to control the quality of the metamodel in capturing the oscillating

pattern of the true model with µ(X) and σ(X). We consider ρ of 0, 0.5, and

1. When ρ = 1, the metamodel mimics the oscillating pattern perfectly in both

the mean and standard deviation, whereas ρ = 0 means that the metamodel
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fails to capture the oscillating pattern.

• β, the metamodeling accuracy for the global pattern: We consider a variation

of β in µ̂(X) with five levels, β = 0.90, 0.95, 1, 1.05, and 1.10. Note that when

β = 1 (and ρ = 1), the metamodel perfectly mimics the true model.

• M/NT , the ratio of the input sample size to the total number of simulation

replications: We consider various choices of M/NT including 10%, 30%, 50%,

70%, and 90% to see how sensitive the performance of SIS1 is to the choice of

M/NT .

• κ, the locality (or roughness, nonlinearity) of the location function, µ(X): We

consider the three levels of κ = 0, 0.5, and 1. When κ is far from zero, the

cosine terms in µ(X) add locality, roughness, or nonlinearity to the shape of

µ(X). On the other hand, when κ = 0, the location function, µ(X), simply

becomes a quadratic function of X.

We use the following setup as a baseline and vary each parameter to see its effect on

the performances of the proposed methods: PT = 0.01, δ = 1, M/NT = 30%, ρ = 1,

β = 1, and κ = 0.5. Figure A.1 shows the scatter plots at the baseline setup with

δ = 1 and −1.
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Figure A.1: Scatter plots of the baseline univariate example with different δ
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We set NT , the total simulation replications, as 1,000. To obtain the sample aver-

age and standard error of each method’s POE estimation, we repeat the experiment

500 times.

A.2.1 Effects of PT and δ

Table A.1 summarizes the effects of PT and δ. Except these two, we keep the

other parameters at their baseline values. We use the perfect metamodel (i.e., ρ = 1,

β = 1) so that we can examine the main effect of PT and δ without any interaction

effects with the metamodel quality.

We compute the relative ratio, NT/N
(CMC)
T , as follows. Let N

(CMC)
T denote the

number of CMC simulation replications to achieve the same standard error of each

method in the table. With N
(CMC)
T replications, the standard error of the CMC failure

probability estimator is

√
PT (1− PT ) /N

(CMC)
T . Table A.1 shows that the relative

ratios of SIS1 and SIS2 are comparable to each other and clearly better than BIS, and

that they generally decrease as PT gets smaller. That is, the efficiencies of the SIS

methods against CMC improve as PT gets close to zero. For example, when δ = 1 and

PT are 0.10, 0.05, and 0.01, SIS1 requires 51%, 32%, and 2.5% of the CMC simulation

efforts to achieve the same estimation accuracy, respectively (in other words, CMC

needs about twice, three times, and forty times more simulation efforts than SIS1,

respectively.) These remarkable computational savings are also observed in our case

study with the wind turbine simulators (see Table 2.5). Specifically, SIS1 and SIS2

respectively lead to 4.9% and 5.9% of the relative ratios for edgewise bending moments

with l = 9,300 kNm. Note that the corresponding sample averages, namely 0.00992

and 0.01005, are close to the failure probability of PT = 0.01.

Table A.1 also shows that the computational gains of SIS1 and SIS2 are much

more significant when δ = 1 (i.e., when f and qSIS1 (or qSIS2) are quite different)

than when δ = −1. This finding is intuitive and also consistent with the observation
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in the wind turbine simulation that the computational gains of SIS1 and SIS2 for

the edgewise bending moments are much more remarkable than those for the flapwise

bending moments. Interestingly, when δ = −1, BIS has no advantage over CMC,

whereas the proposed methods still lead to lower standard errors than CMC.

Table A.1: POE estimation results with different δ and PT
δ = 1 δ = −1

Method PT PT
0.10 0.05 0.01 0.10 0.05 0.01

SIS1 Sample Average 0.1004 0.0502 0.0100 0.1001 0.0500 0.0100
Standard Error 0.0068 0.0039 0.0005 0.0090 0.0062 0.0026
Relative Ratio 51% 32% 2.5% 90% 81% 68%

SIS2 Sample Average 0.0999 0.0501 0.0100 0.1001 0.0500 0.0099
Standard Error 0.0069 0.0042 0.0006 0.0086 0.0064 0.0028
Relative Ratio 53% 37% 3.6% 82% 86% 79%

BIS Sample Average 0.1002 0.0505 0.0101 0.1009 0.0503 0.0101
Standard Error 0.0089 0.0068 0.0014 0.0095 0.0067 0.0031
Relative Ratio 88% 97% 20% 100% 95% 97%

CMC Sample Average 0.1005 0.0506 0.0100 0.1005 0.0498 0.0100
Standard Error 0.0092 0.0070 0.0030 0.0096 0.0071 0.0031

A.2.2 Effects of metamodel accuracy

Now, we consider how computational efficiency varies when the metamodel ac-

curacy changes. First, we study the effect of ρ, the metamodeling accuracy for the

oscillating pattern. We keep all other parameters at their baseline values. The results

in Table A.2 suggest that the standard errors for SIS1, SIS2, and BIS increase as ρ

decreases (i.e., the metamodel quality deteriorates). However, the standard errors

for both SIS1 and SIS2 increase more slowly than for BIS as ρ decreases. Also, SIS1

and SIS2 produce lower standard errors than BIS by 50-85% and CMC by 40-85%.

Interestingly, the increase of the SIS2’s standard error is minimal, indicating that

SIS2 is the least sensitive to the metamodel quality. The performance of BIS differs

significantly depending on the metamodel quality, and BIS generates an even higher

standard error than CMC when ρ = 0.
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Table A.2: POE estimation results with different ρ

Method
ρ

1.00 0.50 0

SIS1
Sample Average 0.0100 0.0100 0.0101
Standard Error 0.0005 0.0008 0.0017

SIS2
Sample Average 0.0100 0.0101 0.0100
Standard Error 0.0006 0.0007 0.0010

BIS
Sample Average 0.0101 0.0100 0.0102
Standard Error 0.0014 0.0018 0.0063

CMC
Sample Average 0.0099 0.0099 0.0099
Standard Error 0.0030 0.0030 0.0030

Second, we consider the effect of β, the metamodeling accuracy for the global pat-

tern. We keep all other parameters at their baseline values. The results in Table A.3

do not show any clear patterns to explain the impact of the metamodel accuracy of

the global pattern on the performances of SIS1 and SIS2. However, in all cases, SIS1

and SIS2 outperform BIS and CMC, reducing the standard errors by 45-70% and

80-85%, respectively.

Table A.3: POE estimation results with different β

Method
β

0.90 0.95 1.00 1.05 1.10

SIS1
Sample Average 0.0101 0.0101 0.0100 0.0101 0.0101
Standard Error 0.0005 0.0005 0.0005 0.0005 0.0005

SIS2
Sample Average 0.0101 0.0100 0.0100 0.0100 0.0101
Standard Error 0.0006 0.0006 0.0006 0.0006 0.0006

BIS
Sample Average 0.0101 0.0100 0.0101 0.0101 0.0101
Standard Error 0.0013 0.0016 0.0014 0.0013 0.0011

CMC
Sample Average 0.0100 0.0100 0.0099 0.0100 0.0099
Standard Error 0.0031 0.0031 0.0030 0.0030 0.0030

Third, we investigate the effect of the metamodel quality on the computational

gains of the proposed methods as the failure probability gets smaller, when the meta-

model is poor. Specifically, we consider the cases of (ρ = 0.5, β = 1), (ρ = 0, β = 0.6),

and (ρ = 0, β = 1.2). We keep all other parameters at their baseline values. Table A.4

shows that the computational efficiencies of SIS1 and SIS2 are substantially better
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than BIS in all cases. Similar to the pattern in Table A.2, SIS2 tends to perform

better than SIS1 when the metamodel is inaccurate, and when PT changes from 0.10

to 0.01, the efficiencies of SIS1 and SIS2 improve remarkably. However, we note that

there are some cases (e.g., SIS1 with ρ = 0, β = 1.2 and SIS2 with ρ = 0, β = 0.6)

where the efficiency slightly diminishes when PT changes from 0.10 to 0.05. This

result indicates that if the metamodel is inaccurate, the efficiencies of SIS1 and SIS2

do not necessarily improve when smaller PT is estimated. Even so, SIS1 and SIS2

perform much better than BIS.

Table A.4: POE estimation results with different ρ and β
ρ = 0.5, β = 1 ρ = 0, β = 0.6 ρ = 0, β = 1.2

Method PT PT PT
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

SIS1 Ave. 0.0998 0.0503 0.0100 0.0998 0.0503 0.0100 0.1001 0.0503 0.0102
S.E. 0.0080 0.0046 0.0008 0.0104 0.0066 0.0016 0.0120 0.0090 0.0024

Ratio 71% 44% 6.4% 120% 91% 26% 160% 170% 58%
SIS2 Ave. 0.0999 0.0503 0.0101 0.0999 0.0506 0.0100 0.0993 0.0503 0.0101

S.E. 0.0068 0.0045 0.0007 0.0082 0.0064 0.0009 0.0078 0.0054 0.0010
Ratio 51% 42% 4.9% 75% 86% 8.1% 67% 61% 10%

BIS Ave. 0.1007 0.0502 0.0100 0.1014 0.0493 0.0105 0.1028 0.0511 0.0105
S.E. 0.0134 0.0078 0.0018 0.0355 0.0086 0.0082 0.0665 0.0184 0.0104

Ratio 199% 128% 32% 1398% 155% 673% 4905% 710% 1082%
CMC Ave. 0.1004 0.0506 0.0099 0.1005 0.0504 0.0100 0.1001 0.0504 0.0099

S.E. 0.0091 0.0071 0.0030 0.0093 0.0071 0.0030 0.0093 0.0070 0.0030

Notes: ‘Ave.’ denotes the sample average, ‘S.E.’ denotes the standard error, and ‘Ratio’ denotes

the relative ratio of NT /N
CMC
T .

A.2.3 Effects of the ratio, M/NT

Here, we want to see how sensitive SIS1 is to the choice of M/NT . We keep all

other parameters at their baseline values. The results in Table A.5 suggest that the

standard error of the SIS1 estimator is generally insensitive to the choice of M/NT .

This result is consistent with the result of the wind turbine simulations. Note that

the standard error in Table A.5 is presented up to 5 digits (not 4 digits).
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Table A.5: Effect of different M/NT ratios in the univariate example
M/NT Sample Average Standard Error

10% 0.0100 0.00055
30% 0.0100 0.00050
50% 0.0101 0.00059
70% 0.0101 0.00063
90% 0.0100 0.00076

A.2.4 Effects of locality, κ

We consider the effect of κ, the locality (or roughness, nonlinearity) of the location

function, µ(X). We keep all other parameters at their baseline values. The results

in Table A.6 show that the standard errors for SIS1 and SIS2 slightly increase as

κ increases. However, regardless of κ, SIS1 and SIS2 outperform BIS and CMC,

lowering the standard errors by 30-65% and 75-90%, respectively.

Table A.6: POE estimation results with different κ

Method
κ

0 0.50 1.00

SIS1
Sample Average 0.0100 0.0100 0.0100
Standard Error 0.0004 0.0005 0.0007

SIS2
Sample Average 0.0100 0.0100 0.0101
Standard Error 0.0005 0.0006 0.0007

BIS
Sample Average 0.0100 0.0101 0.0100
Standard Error 0.0008 0.0014 0.0010

CMC
Sample Average 0.0100 0.0099 0.0099
Standard Error 0.0031 0.0030 0.0031

A.2.5 Effects of variation of ε

Theoretically, SIS1 and SIS2 are reduced to DIS when the simulator is determin-

istic. Recall that the standard error for DIS with qDIS is zero. Thus, in a stochastic

computer model, if the uncontrollable randomness represented by ε has a smaller level

of variation, then the standard errors for SIS1 and SIS2 will get closer to zero. We

conduct a numerical study to illustrate the impact of the variance of ε. We consider
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the same data generating structure as before except that the variance of ε does not

depend on the input, X, but is constant:

σ2(X) = τ 2.

Equivalently, we consider Y = µ(X) + ε, where ε follows a normal distribution with

mean zero and standard deviation, τ . We use the optimal IS densities for SIS1 and

SIS2 with the perfect knowledge of s(X). We consider τ of 0.5, 1, 2, 4, and 8. In

Figure A.2, we can see the scatter plots of Y versus X for τ of 0.5, 2, and 8, by which

the variation of Y given X is controlled. We set all other parameters at their baseline

values: PT = 0.01, δ = 1, M/NT = 30%, and κ = 0.5.
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(a) τ = 0.5
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Figure A.2: Scatter plots of the baseline case with different τ

Table A.7 shows that as τ gets close to zero (please see from right to left), so do

the standard errors of SIS1 and SIS2. The results indicate that the proposed methods

practically reduce to DIS, since the optimal DIS density makes the standard error

zero for the deterministic simulation (i.e., the case with τ = 0).

Also, Figure A.3 illustrates that the optimal SIS1 and SIS2 densities are almost

the same as the BIS density when the variation of ε is very small (in the figure,

we use τ = 0.5). Since the BIS density theoretically reduces to the DIS density

for deterministic simulation and closely mimics the DIS density when τ is negligibly

small, we can see that the proposed methods practically reduce to DIS when the
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Table A.7: POE estimation results with different τ

Method
τ

0.50 1.00 2.00 4.00 8.00

SIS1 Sample Average 0.0102 0.0101 0.0101 0.0102 0.0100
Standard Error 0.0001 0.0001 0.0005 0.0021 0.0028

SIS2 Sample Average 0.0102 0.0101 0.0101 0.0104 0.0100
Standard Error 0.0001 0.0002 0.0006 0.0023 0.0028

BIS Sample Average 0.0102 0.0101 0.0100 0.0103 0.0101
Standard Error 0.0002 0.0003 0.0010 0.0033 0.0033

CMC Sample Average 0.0100 0.0100 0.0099 0.0101 0.0101
Standard Error 0.0030 0.0031 0.0030 0.0032 0.0031

Notes: SIS1’s standard errors for τ = 0.50 and τ = 1.00 are 0.00007 and 0.00013, respectively, in

one more digit.

variation of the uncontrollable randomness is very small.
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Figure A.3: Density plots for SIS1, SIS2, and BIS optimal densities when τ = 0.50
along with the original input density

A.2.6 Precision of numerical integration

When we use the numerical integration to compute the normalizing constant of

an IS density, we make sure that the numerical precision is accurate enough so that

the POE estimation accuracy is unaffected. We present POE estimation results up

to 5 digits after the decimal point. Given that we bound the numerical error by -7

orders of magnitude or smaller, the numerical integration does not contribute to the

error of POE estimation. To check the precision, we also conduct numerical studies
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with the same data generating structure used in Section A.2.5. In Table A.8, the

sample averages and standard errors are based on 500 POE estimates. The POEs in

the last column are estimated by CMC with 100 million replications. We note that

the estimated POE values from SIS1 and SIS2 are the same as the values from CMC.

Table A.8: POE estimation results for SIS1 and SIS2, compared to the POE estimated
by CMC with 100 million replications, for different τ

Sample Average
τ (Standard Error) CMC

SIS1 SIS2

0.50
0.0102 0.0102 0.0102

(0.0001) (0.0001)

1.00
0.0101 0.0101 0.0101

(0.0001) (0.0002)

2.00
0.0101 0.0101 0.0101

(0.0005) (0.0006)

A.3 Multivariate Example

We also design a multivariate stochastic example. We take an example in Huang

et al. (2006), which adds a normal stochastic noise to a deterministic example orig-

inally in Ackley (1987). We slightly revise the example in Huang et al. (2006) by

adding more complexity to the stochastic elements, and use the following data gen-

erating structure where the input vector, X = (X1, X2, X3), follows a multivariate

normal distribution:

X ∼MVN(0, I3) ,

Y |X ∼ N
(
µ(X) , σ2(X)

)
,
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where the mean, µ(X), and the standard deviation, σ(X), are

µ(X) = 20δ

(
1− exp

(
−0.2

√
1

3
‖X‖2

))

+ δ

(
exp (1)− exp

(
1

3

3∑
i=1

cos(2πκXi)

))
,

σ(X) = 1 + 0.7

√
1

3
‖X‖2 + 0.4

(
1

3

3∑
i=1

cos(3πXi)

)
,

respectively. The output, Y , with the above µ(X) and σ(X) presents a very compli-

cated pattern over the input domain. The metamodel for the conditional distribution,

Y |X, is N(µ̂(X) , σ̂2(X)), where

µ̂(X) = 20βδ

(
1− exp

(
−0.2

√
1

3
‖X‖2

))
+ ρδ

(
exp (1)− exp

(
1

3

3∑
i=1

cos(2πκXi)

))
,

σ̂(X) = 1 + 0.7

√
1

3
‖X‖2 + 0.4ρ

(
1

3

3∑
i=1

cos(3πXi)

)
.

The parameters in the above equations take similar roles in the univariate example.

We use the same baseline setup we used in the univariate example, namely, PT = 0.01,

δ = 1, M/NT = 30%, ρ = 1, β = 1, and κ = 0.5. We explain each parameter as

follows.

• PT , the magnitude of target failure probability: Based on 10 million CMC simu-

lation replications, we decide l that corresponds to the target failure probability,

PT = P (Y > l). We consider the three levels of PT , 0.10, 0.05, and 0.01.

• δ, the difference between the original input density, f , and the optimal IS den-

sity, qSIS1(or qSIS2): We consider δ of 1 or −1. The densities, f and qSIS1

(or qSIS2), are more different from each other when δ = 1 than when δ = −1.

Note that the original input density, f , has the highest likelihood at the origin.

When δ = 1, qSIS1 and qSIS2 will focus their sampling efforts on the regions

far from the origin, since the response variable, Y , tends to be large in such
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regions due to the term, 20
(

1− exp
(
−0.2

√
1
3
‖X‖2

))
, in µ(X). Conversely,

when δ = −1, qSIS1 and qSIS2 will focus their sampling efforts on the regions

close to the origin.

• ρ, the metamodeling accuracy for the oscillating pattern: We consider ρ of 0,

0.5, and 1. When ρ = 1, the metamodel mimics the oscillating pattern perfectly,

whereas ρ = 0 implies that the metamodel captures no oscillating term.

• β, the metamodeling accuracy for the global pattern: We consider β = 0.95, 1,

and 1.05. Note that when β = 1 (and ρ = 1), the metamodel perfectly mimics

the true model.

• M/NT , the ratio of the input sample size to the total number of simulation

replications: We consider M/NT of 10%, 30%, 50%, 70%, and 90%.

• κ, the locality (or roughness, nonlinearity) of the location function, µ(X): We

consider the four levels of κ, 0, 0.5, 1, and 2. When κ is far from zero, the

cosine terms in µ(X) add locality, roughness, or nonlinearity to the shape of

µ(X). On the other hand, when κ = 0, the location function, µ(X), simply

becomes a monotonically increasing function of ‖X‖.

We set NT , the total simulation replications, as 1,000. To obtain the sample aver-

age and standard error of each method’s POE estimation, we repeat the experiment

2,000 times.

A.3.1 Effects of PT and δ

Table A.9 summarizes the effects of PT and δ. We keep all other parameters

at their baseline values. Similar to the univariate example, the experiment results

suggest that the computational gains of SIS1 and SIS2 against CMC increase as PT

gets smaller. We also see that the computational gains of SIS1 and SIS2 are more
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significant when δ = 1 (i.e., f and qSIS1 (or qSIS2) are quite different) than when

δ = −1. In all cases, SIS1 and SIS2 perform better than BIS and CMC.

We note that when δ = 1, the relative ratios of SIS1 and SIS2 decrease more slowly

than the univariate input example results in Table A.1. Specifically, for PT = 0.01,

SIS1 and SIS2 yield 2.5% and 3.6% of the relative ratios in Table A.1; but, both

methods give 29% of the relative ratio in Table A.9. We attribute such differences

in the two example results to the differences in the data generating structures. The

data generating structure of the univariate example in Section A.2 and that of the

multivariate example in Section A.3 are different not only in the input dimension

but also in the mean function, µ(x), and the standard deviation function, σ(X). We

detail this point in Section A.3.5.

Table A.9: POE estimation results with different δ and PT in the multivariate exam-
ple

δ = 1 δ = −1
Method PT PT

0.10 0.05 0.01 0.10 0.05 0.01

SIS1 Sample Average 0.1002 0.0501 0.0100 0.1000 0.0500 0.0100
Standard Error 0.0070 0.0046 0.0017 0.0072 0.0051 0.0020
Relative Ratio 54% 45% 29% 58% 55% 40%

SIS2 Sample Average 0.1002 0.0499 0.0100 0.1001 0.0499 0.0100
Standard Error 0.0070 0.0048 0.0017 0.0078 0.0050 0.0020
Relative Ratio 54% 49% 29% 68% 53% 40%

BIS Sample Average 0.1000 0.0500 0.0100 0.1001 0.0500 0.0102
Standard Error 0.0082 0.0062 0.0026 0.0096 0.0069 0.0036
Relative Ratio 75% 81% 68% 102% 100% 131%

CMC Sample Average 0.0997 0.0500 0.0101 0.0998 0.0499 0.0101
Standard Error 0.0094 0.0069 0.0031 0.0093 0.0069 0.0031

A.3.2 Effects of metamodel accuracy

We consider the effect of ρ, the metamodeling accuracy for the oscillating pattern.

We keep all other parameters at their baseline values. Similar to the univariate

example, Table A.10 shows that the standard errors of the SIS1 and SIS2 estimators
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increase as ρ decreases. Also, the standard error for SIS2 increases more slowly than

that for SIS1, which shows that SIS2 is less sensitive than SIS1 to the metamodel

quality. It appears that the performance of BIS is the most sensitive to the metamodel

quality. In all cases, SIS1 and SIS2 lead to smaller standard errors than BIS and CMC

by 20–60% and 20–50%, respectively.

Table A.10: POE estimation results with different ρ in the multivariate example

Method
ρ

1.00 0.50 0

SIS1
Sample Average 0.0100 0.0101 0.0100
Standard Error 0.0017 0.0019 0.0024

SIS2
Sample Average 0.0100 0.0100 0.0099
Standard Error 0.0016 0.0018 0.0020

BIS
Sample Average 0.0100 0.0100 0.0098
Standard Error 0.0022 0.0040 0.0047

CMC
Sample Average 0.0101 0.0102 0.0101
Standard Error 0.0031 0.0031 0.0031

Notes. At ρ = 1, standard errors for SIS1 and SIS2 are 0.00167 and 0.00163, respectively, in one

more digit.

We consider the effect of β, the metamodeling accuracy for the global pattern. We

keep all other parameters at their baseline values. Table A.11 shows that the standard

errors of the SIS1 and SIS2 estimators do not vary significantly, so the performances

of SIS1 and SIS2 are insensitive to the metamodeling accuracy for the global pattern

in this example. In all cases, SIS1 and SIS2 outperform BIS and CMC, providing

lower standard errors than BIS and CMC by 25–40% and 45-50%, respectively. .

A.3.3 Effects of the ratio, M/NT

We want to see how sensitive SIS1 is to the choice of M/NT . We keep all other

parameters at their baseline values. The results in Table A.12 suggest that the stan-

dard error of the SIS1 estimator is generally insensitive to the choice of M/NT as we

observed in the univariate example and the wind turbine simulations. Note that the

standard error is presented up to 5 digits (not 4 digits).
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Table A.11: POE estimation results with different β in the multivariate example

Method
β

0.95 1.00 1.05

SIS1
Sample Average 0.0099 0.0099 0.0100
Standard Error 0.0016 0.0017 0.0017

SIS2
Sample Average 0.0100 0.0100 0.0100
Standard Error 0.0017 0.0017 0.0017

BIS
Sample Average 0.0101 0.0100 0.0100
Standard Error 0.0025 0.0023 0.0023

CMC
Sample Average 0.0101 0.0101 0.0101
Standard Error 0.0031 0.0031 0.0031

Table A.12: Effect of different M/NT ratios in the multivariate example
M/NT Sample Average Standard Error

10% 0.0100 0.00168
30% 0.0100 0.00167
50% 0.0100 0.00168
70% 0.0100 0.00173
90% 0.0100 0.00185

A.3.4 Effects of locality, κ

We consider the effect of κ, the locality (or roughness, nonlinearity) of the location

function, µ(X). We keep all other parameters at their baseline values. The results in

Table A.13 suggest that κ has little effect on the standard errors of the SIS1 and SIS2

estimators in this specific example. For all κ values, SIS1 and SIS2 lead to smaller

standard errors than BIS and CMC by 20–50% and 45–50%, respectively.

Table A.13: POE estimation results with different κ in the multivariate example

Method
κ

0 0.5 1 2

SIS1
Sample Average 0.0099 0.0100 0.0101 0.0099
Standard Error 0.0017 0.0017 0.0016 0.0016

SIS2
Sample Average 0.0101 0.0100 0.0100 0.0100
Standard Error 0.0017 0.0017 0.0016 0.0016

BIS
Sample Average 0.0101 0.0100 0.0101 0.0100
Standard Error 0.0031 0.0022 0.0033 0.0031

CMC
Sample Average 0.0102 0.0101 0.0102 0.0103
Standard Error 0.0031 0.0031 0.0031 0.0032
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A.3.5 Analysis with the univariate input

In Section A.3.1, as PT gets smaller, we observe that the relative ratios of SIS1

and SIS2 with δ = 1 decrease more slowly than those in the univariate example (see

Tables A.1 and A.9 with δ = 1). These different patterns in the two numerical ex-

amples are mainly due to the different data generating structures not only in the

input dimension but also in the mean function, µ(x), and the standard deviation

function, σ(X). For the univariate example in Section A.2, we take a deterministic

simulation example in Cannamela et al. (Cannamela et al., 2008) and modify it by

adding stochastic elements to it, whereas for the multivariate example in Section A.3,

we add a normal stochastic noise to a deterministic multivariate example originally

in Ackley (Ackley , 1987). In the sequel, we call these univariate and multivariate ex-

amples as Cannamela1D and Ackley3D, respectively, based on their respective sources

(Cannamela et al., 2008; Ackley , 1987).

To clarify the different patterns in Cannamela1D and Ackley3D, we devise a new

univariate example which is one-dimensional version of Ackley3D, and we call this new

example as Ackley1D. Specifically, we consider the following data generating structure:

X ∼ N(0, 1) ,

Y |X ∼ N
(
µ(X) , σ2(X)

)
,

where the mean, µ(X), and the standard deviation, σ(X), are

µ(X) = 20δ (1− exp (−0.2|X|)) + δ (exp (1)− exp (cos(2πκX))) ,

σ(X) = 1 + 0.7|X|+ 0.4 cos(3πX),

respectively.
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The metamodel for the conditional distribution, Y |X, is N(µ̂(X) , σ̂2(X)), where

µ̂(X) = 20βδ (1− exp (−0.2|X|)) + ρδ (exp (1)− exp (cos(2πκX))) ,

σ̂(X) = 1 + 0.7|X|+ 0.4ρ cos(3πX).

For the experiments of Ackley1D, we use the same baseline setup used in Cannamela1D

and Ackley3D, namely, PT = 0.01, δ = 1, M/NT = 30%, ρ = 1, β = 1, and κ = 0.5.

Note that ρ = 1 and β = 1 imply that the metamodel is perfect so that the optimal

IS densities and allocations can be used.

Table A.14 below compares the results of Ackley1D and Ackley3D. We note that

the relative ratios of SIS1 and SIS2 for PT = 0.01 in Ackley1D, namely, 15% and 17%,

are smaller than those in Ackley3D, namely, 29% and 29%. Yet, the performances

in Ackley1D are not as remarkable as those in Cannamela1D in Table A.1, namely,

2.5% and 3.6%. Such performance differences in Cannamela1D and Ackley1D can be

explained mainly by the difference in their underlying data generating structures: See

Figure A.4 below, where we plot the optimal SIS1 density along with the original input

density for both examples. Apparently, the optimal SIS1 density for Cannamela1D is

deviating much more from the original input density than that for Ackley1D is. We

observe the similar pattern for SIS2. This explains the better performances of SIS1

and SIS2 for Cannamela1D.

Obviously, the computational gains of SIS1 and SIS2 over CMC largely depend on

the general trend represented by the location parameter function, µ(X). In addition,

the scale parameter function, σ(X), also makes a difference in the performances of

SIS1 and SIS2 for Cannamela1D and Ackley1D. We plot 20,000 input-output pairs,

(X, Y )’s, generated from the baseline setups for Cannamela1D and Ackley1D in Fig-

ures A.5(a) and (b), respectively. We draw the solid horizontal line in each plot to

indicate the resistance level, l, corresponding to PT = 0.01. We observe that the lo-
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cation parameter functions, µ(X), in both examples tend to have large values at the

regions where f(X) is small. However, the scale parameter functions, σ(X), lead to a

major difference around the region, (−2,−1)∪(1, 2), where µ(X) itself is not yet close

to l but many responses of Ackley1D in Figure A.5(b) exceed l unlike Cannamela1D

in Figure A.5(a). Accordingly, we observe the relevant peaks at (−2,−1) ∪ (1, 2) in

Figure A.4(b), which disperse sampling efforts in a larger input area and make qSIS1

(and qSIS2) more overlapped with f for Ackley1D.

Table A.14: POE estimation results with different input dimension and target failure
probability, PT , for the numerical examples based on Ackley (1987)

Ackley1D Ackley3D
Method PT PT

0.10 0.05 0.01 0.10 0.05 0.01

SIS1 Sample Average 0.1001 0.0501 0.0100 0.1002 0.0501 0.0100
Standard Error 0.0059 0.0038 0.0012 0.0070 0.0046 0.0017
Relative Ratio 39% 30% 15% 54% 45% 29%

SIS2 Sample Average 0.0998 0.0501 0.0100 0.1002 0.0499 0.0100
Standard Error 0.0060 0.0040 0.0013 0.0070 0.0048 0.0017
Relative Ratio 40% 34% 17% 54% 49% 29%

BIS Sample Average 0.1000 0.0499 0.0100 0.1000 0.0500 0.0100
Standard Error 0.0072 0.0052 0.0027 0.0082 0.0062 0.0026
Relative Ratio 58% 57% 74% 75% 81% 68%

CMC Sample Average 0.1001 0.0501 0.0100 0.0997 0.0500 0.0101
Standard Error 0.0098 0.0071 0.0031 0.0094 0.0069 0.0031

In summary, the performances of the proposed methods will depend on the charac-

teristics of the simulation model. Note that the variances of the proposed estimators

depend only on the functions, s(x) and f(x), according to Theorems II.2 and II.3

(note that the SIS1 and SIS2 densities are also expressed in s(x) and f(x)) and both

functions are determined by the true data generating structure. Lastly, we remark

that the higher relative ratios of SIS1 and SIS2 for Ackley3D compared to those for

Ackley1D should not be generalized as that the input dimension negatively affects

the performances of SIS1 and SIS2. In the case of Ackley3D, due to the highly os-

cillating response over the three dimensional input space, the sampling efforts are

103



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

D
e

n
s
it
y

 

 

Original

SIS1

(a) Cannamela1D

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

D
e

n
s
it
y

 

 

Original

SIS1

(b) Ackley1D

Figure A.4: Comparison of the optimal SIS1 density and the original input density for the
two examples
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Figure A.5: Scatter plots of the data generated from the baseline data generating struc-
tures: the solid horizontal line is the quantile, l, corresponding to PT = 0.01

more distributed in the larger input space and the resulting qSIS1 (and qSIS2) is more

overlapped with f , compared to the case of Ackley1D. However, even with high di-

mensional input vectors, significant computational reduction can be achieved when

the joint density of the input vector, f , and the optimal SIS1 (and SIS2) density,

qSIS1 (and qSIS2), are different.

104



A.3.6 Summary

Overall, we observe similar patterns both in the univariate example and the multi-

variate example. These patterns are also consistent with the wind turbine simulation

results. For a wide range of parameter settings, the performances of SIS1 and SIS2

are superior to BIS and CMC.

A.4 Implementation Details with Wind Turbine Simulators

In this section, we present the implementation details with wind turbine simula-

tors.

A.4.1 NREL simulators and the original input distribution

The NREL simulators used in this study include TurbSim (Jonkman, 2009) and

FAST (Jonkman and Buhl Jr., 2005). Given a wind condition (e.g., 10-minute average

wind speed), TurbSim produces a three-dimensional stochastic wind profile. FAST,

taking the generated wind profile as an input, simulates load responses (or loads) at

turbine subsystems such as blades and shafts. Noting that there are many types of

load responses, we limit our study to consider edgewise and flapwise bending moments

at a blade root as output variables, where edgewise (flapwise) bending moments imply

structural loads parallel (perpendicular) to the rotor span at a blade root. These two

load types are of great concern in ensuring a wind turbine’s structural reliability

(Moriarty , 2008).

As in Moriarty (2008), we use the same turbine specification for an onshore version

of an NREL 5-MW baseline wind turbine (Jonkman et al., 2009). The target turbine

operates within a specified wind speed range between the cut-in speed, xin = 3 meter

per second (m/s), and the cut-out speed, xout = 25 m/s. Following wind industry

practice and the international standard, IEC 61400-1 (International Electrotechnical
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Commission, 2005), we use a 10-minute average wind speed as an input, X, to the

simulators. We use a Rayleigh density for X with a truncated support of [xin, xout]

as in Moriarty (2008):

f(x) =
fR(x)

FR(xout)− FR(xin)
,

where FR (x) = 1− e−x2/2τ2 denotes the cumulative distribution function of Rayleigh

distribution with a scale parameter, τ =
√

2/π · 10 (unit: m/s). Also, fR denotes the

Rayleigh density function with the same scale parameter.

A.4.2 Acceptance rates of the acceptance-rejection algorithm

We use the acceptance-rejection algorithm in the implementation. The algorithm’s

acceptance rate is equal to the normalizing constant of each IS density because we

use the original input density, f , as an instrumental (or auxiliary) density for the

algorithm (Kroese et al., 2011). Note that the normalizing constants of the optimal

IS densities are Cq1 for SIS1, Cq2 for SIS2, and P (Y > l) for BIS.

The acceptance rates differ, depending on POE, P (Y > l). In our implementation,

when POE is around 0.05 (i.e., edgewise moments with l = 8,600 kNm or flapwise

moments with l = 13,800 kNm), the acceptance rates are 5–21%. When POE is

around 0.01 (i.e., edgewise moments with l = 9,300 kNm or flapwise moments with

l = 14,300 kNm), the acceptance rates are 1–14%. In practice, the computational cost

of the acceptance-rejection algorithm would be insignificant. For example, sampling

thousands of inputs from the IS densities is a matter of seconds, whereas thousands

of the NREL simulation replications can take days.
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A.4.3 Goodness-of-fit test for the model

In constructing the metamodel, we assume no prior information on important

area, so sampling X from the uniform distribution would be generally suitable. We

use the GEV distribution for approximating the conditional POE given X regardless

of the choice of distribution for X, and the GEV distribution is employed over the

entire input space with varying location and scale parameters, µ(X) and σ(X). In our

implementation, we use the metamodel based on the GEV distribution to approximate

the theoretically optimal IS density, qSIS1 (or qSIS2). That is, the GEV distribution

is used as a means to find the good IS density. Then, we run the real simulators (not

the metamodel) to gather Y for each X sampled from qSIS1 (or qSIS2).

Obviously, the metamodel quality affects the performance of the proposed ap-

proach. Therefore, in our study, we used the GEV goodness-of-fit to check if the

GEV provides a good approximation of the conditional distribution over the entire

input space, as shown in Chapter II. In this section, we additionally check if the

GEV is suitable in the area where X is likely sampled. Noting that high edgewise

(flapwise) bending moments are most likely observed when wind speeds are between

17 and 25 (11 and 19), we take 50 observations each at 17, 19, · · · , 25 (11, 13, · · · , 19)

m/s and conduct Kolmogorov-Smirnov (KS) tests to assess the goodness-of-fit of the

GEV distribution at each wind speed. The results in Table A.15 below support the

use of GEV distribution for edgewise and flapwise bending moments, as the p-values

are greater than a reasonable significance level, say, 5%.

Table A.15: KS tests for GEV at imporant wind speeds
Edgewise bending moments Flapwise bending moments
x (m/s) p-value x (m/s) p-value

17 0.34 11 0.31
19 0.60 13 0.52
21 0.89 15 0.35
23 0.19 17 0.57
25 0.64 19 0.36
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A.4.4 CMC simulations

We want to ensure that the estimations of N
(CMC)
T are accurate, which are used

to compute the relative ratios in Tables 2.5 and 2.6. Thus, we run CMC simulations

with N
(CMC)
T corresponding to SIS1 and SIS2 for the flapwise moment with l = 13, 800

kNm and compute the standard errors based on 50 repetitions. The corresponding

N
(CMC)
T for SIS1 and SIS2 are 6,219 and 4,762, respectively. In addition, we run

simulations with N
(CMC)
T = 5, 000 and N

(CMC)
T = 6, 000. With N

(CMC)
T of 6,000 and

6,219, we obtain the CMC’s standard error of 0.0028, which is the same with the

SIS1’s standard error with NT = 2, 000. With N
(CMC)
T = 4, 762 and N

(CMC)
T = 5, 000,

we obtain the CMC’s standard errors of 0.0036 and 0.0033, respectively, which are

close to the SIS2’s standard error of 0.0032. We omit the CMC implementation for

other cases due to the intensive computational requirement.
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APPENDIX B

Appendix for Chapter III

This Appendix contains the proofs of Propositions III.4–III.6, Lemma III.5, The-

orems III.7–III.10, and Corollary III.11.

B.1 Proof of Proposition III.4

We first prove that the optimal SIS1 density, q1,y, satisfies Assumption III.2 and

then that the optimal SIS2 density, q2,y, does too. Because both optimal SIS densities

satisfy Assumption III.1 (see Chapter II), we will use the property, Eq(L) = Ef (1),

in the subsequent derivation.

• Proof for q1,y satisfying Assumption III.2: By plugging the optimal SIS1 density,
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q1,y, in (3.2) into Eq [I(Y > y)L2] leads to

Eq
[
I(Y > y)L2

]
= Eq

[
E [I(Y > y) | X]L2

]
= Eq

[
sy(X)L2

]
= Ef

[
sy(X)

f(X)

q1,y(X)

]

= Ef

sy(X)
f(X)

1
Cq1
f(X)

√
1
n
sy(X) (1− sy(X)) + sy(X)2


= Cq1Ef

 sy(X)√
1
n
sy(X) (1− sy(X)) + sy(X)2


≤ Cq1Ef

 sy(X)√
sy(X)2

 (B.1)

= Cq1.

The inequality in (B.1) holds because 1
n
sy(X) (1− sy(X)) ≥ 0. Here,

Cq1 =

∫
Xf

f(x)

√
1

n
sy(x) · (1− sy(x)) + sy(x)2 dx

≤
∫
Xf

f(x)
√

(1 + 1) dx (B.2)

=
√

2

<∞,

where Xf is the support of f . The inequality in (B.2) holds because the

both summands within the square root are bounded above by 1. Therefore,

Eq [I(Y > y)L2] <∞ holds for the optimal SIS1 density.

• Proof for q2,y satisfying Assumption III.2: Now consider the optimal SIS2 den-
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sity, q2,y, in (3.6). With this density,

Eq
[
sy(X)L2

]
= Ef

[
sy(X)

f(X)
1
Cq2

√
sy(X)f(X)

]

= Cq2Ef
[√

sy(X)

]
= C2

q2,

where the last equality holds because Cq2 is Ef
[√

sy(X)
]

by definition. Here,

Cq2 =

∫
Xf

√
sy(x)f(x) dx

≤
∫
Xf

f(x) dx

= 1

<∞.

Therefore, Eq [I(Y > y)L2] <∞ holds for the optimal SIS2 density. �

B.2 Proof of Lemma III.5

To prove Ni
P→ Ñi in (3.10), we first define

ηi ≡ n
h(Xi)∑m
j=1 h(Xj)

+
1

2
, i = 1, . . . ,m, (B.3)

η̃i ≡
h(Xi)

c0Eq[h(X)]
+

1

2
, i = 1, . . . ,m,
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and

r(x) ≡ max (1, bxc) , (B.4)

so that Ni in (3.7) and Ñi in (3.11) can be expressed as

Ni = max

(
1,

⌊
n

h(Xi)∑m
j=1 h(Xj)

+
1

2

⌋)
, i = 1, . . . ,m

= r(ηi) , i = 1, . . . ,m,

and

Ñi = max

(
1,

⌊
h(Xi)

c0Eq[h(X)]
+

1

2

⌋)
, i = 1, . . . ,m

= r(η̃i) , i = 1, . . . ,m,

respectively.

Next, we prove ηi
P→ η̃i and then r(ηi)

P→ r(η̃i), which in turn implies that

Ni, i = 1, . . . ,m, is asymptotically independent of one another.

• Proof of ηi
P→ η̃i: Note that ηi in (B.3) can be expressed as

ηi = n
h(Xi)∑m
j=1 h(Xj)

+
1

2
, i = 1, . . . ,m

=
1

c0

h(Xi)
1
m

∑m
j=1 h(Xj)

+
1

2
, i = 1, . . . ,m,

where in the denominator of the first term, we note

1

m

m∑
j=1

h(Xj)
P→ Eq[h(X)]

as m → ∞ by the weak law of large numbers (Jiang , 2010, Theorem 6.1)
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because h(Xj), j = 1, . . . ,m, are i.i.d. random variables with a finite mean of

Eq[h(X)] by the condition in (3.8). Thus, by the continuous mapping theorem

(Van der Vaart , 1998, Theorem 2.3), it follows that

ηi
P→ η̃i. (B.5)

• Proof of r(ηi)
P→ r(η̃i): By definition, we prove the following convergence for

any ε > 0,

P (|r(ηi)− r(η̃i)| > ε)→ 0 (B.6)

as m→∞.

For any fixed δ > 0, the left-hand side of (B.6) can be expressed as

P (|r(ηi)− r(η̃i)| > ε) = P (|r(ηi)− r(η̃i)| > ε, |ηi − η̃i| > δ)

+ P (|r(ηi)− r(η̃i)| > ε, |ηi − η̃i| ≤ δ)

≡ α1 + α2,

where

α1 = P (|r(ηi)− r(η̃i)| > ε, |ηi − η̃i| > δ) ≤ P (|ηi − η̃i| > δ)→ 0 (B.7)

as m → ∞, because of (B.5). On the other hand, to prove α2 → 0, we define

the set

Gδ ≡ {x ∈ R−N | ∃y : |r(y)− r(x)| > ε, |y − x| ≤ δ}

for each δ > 0. Because r(x) in (B.4) is continuous at x ∈ R − N , it follows
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that

lim
δ→0

Gδ = ∅,

which implies that P(η̃i ∈ Gδ)→ 0 as δ → 0. Thus,

P(|r(ηi)− r(η̃i)| > ε, |ηi − η̃i| ≤ δ, η̃i /∈ N ) ≤ P(η̃i ∈ Gδ) (B.8)

→ 0 (B.9)

as δ → 0. Therefore,

α2 = P (|r(ηi)− r(η̃i)| > ε, |ηi − η̃i| ≤ δ)

= P(|r(ηi)− r(η̃i)| > ε, |ηi − η̃i| ≤ δ, η̃i /∈ N )

+ P(|r(ηi)− r(η̃i)| > ε, |ηi − η̃i| ≤ δ, η̃i ∈ N )

≤ P(η̃i ∈ Gδ) + P(|r(ηi)− r(η̃i)| > ε, |ηi − η̃i| ≤ δ, η̃i ∈ N ) (B.10)

≤ P(η̃i ∈ Gδ) + P(η̃i ∈ N )

= P(η̃i ∈ Gδ) (B.11)

→ 0, (B.12)

as δ → 0. The inequality in (B.10) is due to (B.8). The equation in (B.11) is

due to the condition in (3.9). The convergence in (B.12) is due to (B.9).

In summary, (B.7) and (B.12) together imply (B.6), completing the proof of

r(ηi)
P→ r(η̃i) in (3.10). Because Ñi in (3.11) depends only on Xi (not Xj, j 6= i),

it follows that Ñi, i = 1, . . . ,m, is independent of one another. �

114



B.3 Proof of Proposition III.6

Under the given conditions, we want to show Eq[h(X)] <∞. We bound Eq[h(X)]

from above by a constant:

Eq[h(X)] = Ef

[
h(X)

1

C ′q1

√
1

n
s′y(X)

(
1− s′y(X)

)
+ s′y(X)2

]

≤ 1

C ′q1
Ef
[
h(X)

√
s′y(X)

]
(B.13)

=
1

C ′q1
Ef

[√
n
(
1− s′y(X)

)
1 + (n− 1) s′y(X)

√
s′y(X)

]

=
1

C ′q1
Ef

[√
1− s′y(X)

1/n+ (1− 1/n) s′y(X)

√
s′y(X)

]

≤ 1

C ′q1
Ef

[
√

2

√
1− s′y(X)

s′y(X)

√
s′y(X)

]
(B.14)

=

√
2

C ′q1
Ef
[√

1− s′y(X)
]

≤
√

2

C ′q1
(B.15)

<∞

where C ′q1 is the normalizing constant of q when sy(x) in q1,y(x) in (3.2) is replaced

by s′y(x). Because q is a density function, C ′q1 is a positive constant. The inequalities

in (B.13) and (B.14) hold because n ≥ 1. The inequality in (B.15) holds because

s′y(x) ≥ 0. �

B.4 Proof of Theorem III.7

To prove the CLT in (3.12),

√
m

σ2
1,y

(
P̂1,n(y)− py

)
d→ N(0, 1),
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we introduce the following estimator:

P̃1,n(y) =
1

m

m∑
i=1

 1

Ñi

Ñi∑
j=1

I
(
Y

(i)
j > y

) f(Xi)

q(Xi)
. (B.16)

Then, we express the left-hand side of (3.12) as

√
m

σ2
1,y

(
P̂1,n(y)− py

)
=

√
m

σ2
1,y

(
P̂1,n(y)− P̃1,n(y) + P̃1,n(y)− py

)
=

√
m

σ2
1,y

(
P̂1,n(y)− P̃1,n(y)

)
+

√
m

σ2
1,y

(
P̃1,n(y)− py

)
(B.17)

Our proof for (3.12) consists of three main steps:

1. Proof for the first term in (B.17) converging to zero in probability:

√
m

σ2
1,y

(
P̂1,n(y)− P̃1,n(y)

)
P→ 0. (B.18)

2. Proof for the second term in (B.17) converging to N(0, 1) in distribution:

√
m

σ2
1,y

(
P̃1,n(y)− py

)
d→ N(0, 1). (B.19)

3. Application of the Slutsky’s theorem (Jiang , 2010, Theorem 2.13) to (B.17).

To prove the first main step’s result in (B.18), we show

P
(∣∣∣√m(P̂1,n(y)− P̃1,n(y)

)∣∣∣ > ε
)
→ 0 (B.20)

for any ε > 0 as m→∞. Both estimators, P̂1,n(y) and P̃1,n(y), are unbiased estima-
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tors of py by Assumption III.1, making

Eq
[
P̂1,n(y)− P̃1,n(y)

]
= Eq

[
P̂1,n(y)

]
− Eq

[
P̃1,n(y)

]
= py − py

= 0.

By Chebyshev’s inequality (Jiang , 2010, Equation (5.77)), the left-hand side of (B.20)

is bounded from above as follows:

P
(∣∣∣√m(P̂1,n(y)− P̃1,n(y)

)∣∣∣ > ε
)
≤ m

ε2
V arq

[
P̂1,n(y)− P̃1,n(y)

]
. (B.21)

Now we show that the right-hand side of (B.21) converges to zero as m → ∞. We

obtain

m

ε2
V arq

[
P̂1,n(y)− P̃1,n(y)

]
=
m

ε2

(
Eq
[
V ar

[
P̂1,n(y)− P̃1,n(y) | X1, . . . ,Xm

]]
+ V arq

[
E
[
P̂1,n(y)− P̃1,n(y) | X1, . . . ,Xm

]])
(B.22)

by variance decomposition (Kroese et al., 2011). The second term of (B.22) vanishes

because

E
[
P̂1,n(y)− P̃1,n(y) | X1, . . . ,Xm

]
= E

 1

m

m∑
i=1

 1

Ni

Ni∑
j=1

I
(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑
k=1

I
(
Y

(i)
k > y

)Li | X1, . . . ,Xm


=

1

m

m∑
i=1

(sy(Xi)− sy(Xi))Li

= 0.
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In the first term of (B.22), we obtain

V ar
[
P̂1,n(y)− P̃1,n(y) | X1, . . . ,Xm

]
= V ar

 1

m

m∑
i=1

 1

Ni

Ni∑
j=1

I
(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑
k=1

I
(
Y

(i)
k > y

)Li | X1, . . . ,Xm


=

1

m2

m∑
i=1

V ar

 1

Ni

Ni∑
j=1

I
(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑
k=1

I
(
Y

(i)
k > y

) | X1, . . . ,Xm

L2
i

=
1

m2

m∑
i=1

E

 1

Ni

Ni∑
j=1

I
(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑
k=1

I
(
Y

(i)
k > y

)2

| X1, . . . ,Xm

L2
i .

Here, the conditional expectation in the last equation can be simplified as follows:

E

 1

Ni

Ni∑
j=1

I
(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑
k=1

I
(
Y

(i)
k > y

)2

| X1, . . . ,Xm


= E

[
1

N2
i

Ni∑
j=1

I
(
Y

(i)
j > y

)
+

2

N2
i

Ni∑
k=1

Ni∑
l>k

I
(
Y

(i)
k > y

)
I
(
Y

(i)
l > y

)

+
1

Ñ2
i

Ñi∑
j=1

I
(
Y

(i)
j > y

)
+

2

Ñ2
i

Ñi∑
k=1

Ñi∑
l>k

I
(
Y

(i)
k > y

)
I
(
Y

(i)
l > y

)

− 2

NiÑi

Ni∑
k=1

Ñi∑
l=1

I
(
Y

(i)
k > y

)
I
(
Y

(i)
l > y

)
| X1, . . . ,Xm


=

1

Ni

(
sy(Xi) + (Ni − 1) s2y(Xi)

)
+

1

Ñi

(
sy(Xi) +

(
Ñi − 1

)
s2y(Xi)

)
− 2

NiÑi

(
min(Ni, Ñi)sy(Xi) +

(
NiÑi −min(Ni, Ñi)

)
s2y(Xi)

)
= sy(Xi) (1− sy(Xi))

Ni + Ñi − 2 min(Ni, Ñi)

NiÑi

= sy(Xi) (1− sy(Xi))

∣∣∣Ni − Ñi

∣∣∣
NiÑi

= sy(Xi) (1− sy(Xi))

∣∣∣∣ 1

Ni

− 1

Ñi

∣∣∣∣ (B.23)
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Therefore, the equation in (B.22) is simplified as

m

ε2
V arq

[
P̂1,n(y)− P̃1,n(y)

]
=
m

ε2
Eq

[
1

m2

m∑
i=1

sy(Xi) (1− sy(Xi))

∣∣∣∣ 1

Ni

− 1

Ñi

∣∣∣∣L2
i

]

=
1

ε2m

m∑
i=1

Eq
[
sy(Xi) (1− sy(Xi))

∣∣∣∣ 1

Ni

− 1

Ñi

∣∣∣∣L2
i

]
=

1

ε2
Eq
[
sy(X1) (1− sy(X1))

∣∣∣∣ 1

N1

− 1

Ñ1

∣∣∣∣L2
1

]
, (B.24)

where the last equation in (B.24) holds becauseX1, . . . , Xm are identically distributed.

We show that the expectation in (B.24) converges to zero as m → ∞. By the

continuous mapping theorem (Van der Vaart , 1998, Theorem 2.3) and Lemma III.5,

we obtain

sy(X1) (1− sy(X1))

∣∣∣∣ 1

N1

− 1

Ñ1

∣∣∣∣L2
1
P→ 0

as m→∞. Because

sy(X1) (1− sy(X1))

∣∣∣∣ 1

N1

− 1

Ñ1

∣∣∣∣L2
1 ≤ 2sy(X)L2 (B.25)

and Eq [sy(X)L2] < ∞ by Assumption III.2, the dominated convergence theorem

(Jiang , 2010, Theorem 2.16) yields that the expectation in (B.24) converges to zero

as m→∞. Because the right-hand side of (B.21) converges to zero, we complete the

proof of (B.20), which implies (B.18).

To prove the second main step’s result in (B.19),

√
m

σ2
1,y

(
P̃1,n(y)− py

)
d→ N(0, 1),

we use the Lindeberg-Lévy central limit theorem (Jiang , 2010, Equation (4.23)). For
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the theorem to hold, we verify its conditions as follows. First, P̃1,n(y) in (B.16) is the

sample mean of

Z̃i ≡

 1

Ñi

Ñi∑
j=1

I
(
Y

(i)
j > y

)Li, i = 1, . . . ,m, (B.26)

which are i.i.d. with

Eq
[
Z̃i

]
= Eq

 1

Ñi

Ñi∑
j=1

I
(
Y

(i)
j > y

)Li


= Eq

 1

Ñi

Ñi∑
j=1

E
[
I
(
Y

(i)
j > y

)
| Xi

]
Li


= Eq [P (Y > y | Xi)Li]

= py, (B.27)

where the last equality holds by Assumption III.1.

Next, we obtain V arq

[
Z̃i

]
= σ2

1,y <∞ because

V arq

[
Z̃i

]
= Eq

[
Z̃2
i

]
−
(
Eq

[
Z̃i

])2
= Eq

 1

Ñ2
i

 Ñi∑
j=1

I
(
Y

(i)
j > y

)2
+ 2

Ñi∑
k=1

Ñi∑
l>k

I
(
Y

(i)
k > y

)
I
(
Y

(i)
l > y

)L2
i

− p2y
= Eq

E
 1

Ñ2
i

 Ñi∑
j=1

I
(
Y

(i)
j > y

)
+ 2

Ñi∑
k=1

Ñi∑
l>k

I
(
Y

(i)
k > y

)
I
(
Y

(i)
l > y

)L2
i | Xi

− p2y
= Eq

[
1

Ñ
sy(X)L2 +

Ñ − 1

Ñ
sy(X)2L2

]
− p2y

= Eq

[
1

Ñ
sy(X) (1− sy(X))L2

]
+ Eq

[
sy(X)2L2

]
− p2y (B.28)

= σ2
1,y
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and Assumption III.2 ensures that the expectation terms in σ2
1,y are finite:

Eq
[

1

Ñ
sy(X) (1− sy(X))L2

]
≤ Eq

[
sy(X) (1− sy(X))L2

]
≤ Eq

[
sy(X)L2

]
<∞,

(B.29)

Eq
[
sy(X)2L2

]
≤ Eq

[
sy(X)L2

]
<∞. (B.30)

Thus, V arq

[
Z̃i

]
= σ2

1,y <∞ follows, completing the proof of (B.19) by the Lindeberg-

Lévy central limit theorem.

By applying the Slutsky’s theorem (Jiang , 2010, Theorem 2.13) to (B.17) based

on (B.18) and (B.19), we complete the proof of (3.12). �

B.5 Proof of Theorem III.8

The CLT for the SIS2 estimator, P̂2,n(y), in (3.5) follows from the Lindeberg-Lévy

central limit theorem (Jiang , 2010, Equation (4.23)), because P̂2,n(y) is the sample

mean of Zi ≡ I (Yi > y)Li, i = 1, . . . , n, which are i.i.d. with

Eq [Zi] = Eq [E [Zi | Xi]]

= Eq [sy(Xi)Li]

= Ef [sy(X)] (B.31)

= py,
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where the equality in (B.31) holds by Assumption III.1. Also, we have V arq [Zi] =

σ2
2,y <∞ because

V arq [Zi] = Eq
[
Z2
i

]
− (Eq [Zi])

2

= Eq
[
I (Yi > y)L2

i

]
− p2y

= Eq
[
E [I (Yi > y) | Xi]L

2
i

]
− p2y

= Eq
[
sy(X)L2

]
− p2y (B.32)

<∞,

where the last inequality follows from Assumption III.2. �

B.6 Proof of Theorem III.9

(a) To prove σ̂2
1,y

P→ σ2
1,y in (3.16), we want to show

P
(∣∣σ̂2

1,y − σ2
1,y

∣∣ > ε
)
→ 0 (B.33)

for any ε > 0, as m → ∞. We bound the left-hand side of (B.33) from above as

follows:

P
(∣∣σ̂2

1,y − σ2
1,y

∣∣ > ε
)

= P
(∣∣σ̂2

1,y − σ̃2
1,y + σ̃2

1,y − σ2
1,y

∣∣ > ε
)

≤ P
(∣∣σ̂2

1,y − σ̃2
1,y

∣∣+
∣∣σ̃2

1,y − σ2
1,y

∣∣ > ε
)

≤ P
(∣∣σ̂2

1,y − σ̃2
1,y

∣∣ > ε/2
)

+ P
(∣∣σ̃2

1,y − σ2
1,y

∣∣ > ε/2
)
, (B.34)

where

σ̃2
1,y ≡

1

m− 1

m∑
i=1

 1

Ñi

Ñi∑
j=1

I
(
Y

(i)
j > y

)
Li − P̂1,n(y)

2

.
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To prove (B.33), we show that the two terms in (B.34) converge to zeros as follows.

• Proof of P
(∣∣σ̂2

1,y − σ̃2
1,y

∣∣ > ε/2
)
→ 0: To simplify

∣∣σ̂2
1,y − σ̃2

1,y

∣∣, we first define

ŝy(Xi) ≡
1

Ni

Ni∑
j=1

I
(
Y

(i)
j > y

)

and

s̃y(Xi) ≡
1

Ñi

Ñi∑
j=1

I
(
Y

(i)
j > y

)
.

Also, we simplify σ̂2
1,y by algebraic operations as follows:

σ̂2
1,y =

1

m− 1

m∑
i=1

(
ŝy(Xi)Li − P̂1,n(y)

)2
=

1

m− 1

m∑
i=1

(
ŝy(Xi)

2L2
i − 2ŝy(Xi)LiP̂1,n(y) + P̂ 2

1,n(y)
)

=
m

m− 1

(
1

m

m∑
i=1

ŝy(Xi)
2L2

i − 2P̂ 2
1,n(y) + P̂ 2

1,n(y)

)

=
m

m− 1

(
1

m

m∑
i=1

ŝy(Xi)
2L2

i − P̂ 2
1,n(y)

)
.

Similarly, we can simplify σ̃2
1,y as

σ̃2
1,y =

m

m− 1

(
1

m

m∑
i=1

s̃y(Xi)
2L2

i − P̂ 2
1,n(y)

)
.
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Then, we obtain

P
(∣∣σ̂2

1,y − σ̃2
1,y

∣∣ > ε/2
)

= P

(∣∣∣∣∣
(

1

m− 1

m∑
i=1

ŝy(Xi)
2L2

i − P̂ 2
1,n(y)

)
−

(
1

m− 1

m∑
i=1

s̃y(Xi)
2L2

i − P̂ 2
1,n(y)

)∣∣∣∣∣ > ε/2

)

= P

(∣∣∣∣∣ 1

m− 1

m∑
i=1

(
ŝy(Xi)

2 − s̃y(Xi)
2
)
L2
i

∣∣∣∣∣ > ε/2

)

≤ 2

ε
Eq

[∣∣∣∣∣ 1

m− 1

m∑
i=1

(
ŝy(Xi)

2 − s̃y(Xi)
2
)
L2
i

∣∣∣∣∣
]

(B.35)

≤ 2

ε
Eq

[
1

m− 1

m∑
i=1

∣∣ŝy(Xi)
2 − s̃y(Xi)

2
∣∣L2

i

]

=
2

ε

1

m− 1

m∑
i=1

Eq

[∣∣ŝy(Xi)
2 − s̃y(Xi)

2
∣∣L2

i

]
=

2

ε

m

m− 1
Eq

[∣∣ŝy(X1)2 − s̃y(X1)2
∣∣L2

1

]
(B.36)

=
2

ε

m

m− 1
Eq

[
|ŝy(X1)− s̃y(X1)| (ŝy(X1) + s̃y(X1))L2

1

]
≤ 2

ε

m

m− 1

√
Eq

[
(ŝy(X1)− s̃y(X1))

2
L2
1

]√
Eq

[
(ŝy(X1) + s̃y(X1))

2
L2
1

]
(B.37)

=
2

ε

m

m− 1

√
Eq

[
sy(X1) (1− sy(X1))

∣∣∣∣ 1

N1
− 1

Ñ1

∣∣∣∣L2
1

]√
Eq

[
(ŝy(X1) + s̃y(X1))

2
L2
1

]
, (B.38)

→ 0 (B.39)

where the inequality in (B.35) holds by the Chebyshev’s inequality (Jiang , 2010,

Equation (5.77)). The equality in (B.36) holds because |ŝy(Xi)
2 − s̃y(Xi)

2|L2
i ,

i = 1, . . . ,m are identically distributed. The inequality in (B.37) holds by the

Cauchy–Schwarz inequality (Jiang , 2010, Equation (5.60)). The equality in

(B.38) holds by (B.23). The convergence in (B.39) holds by the following three

facts:

– The ratio, m
m−1 , in (B.38) goes to one as m→∞.

– The first square-rooted expectation in (B.38),

√
Eq
[
sy(X1) (1− sy(X1))

∣∣∣∣ 1

N1

− 1

Ñ1

∣∣∣∣L2
1

]
,
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goes to zero as m→∞, as it was shown that (B.24) goes to zero as m→∞

based on Assumption III.2, Lemma III.5, and the dominated convergence

theorem (Jiang , 2010, Theorem 2.16).

– The second square-rooted expectation in (B.38) is finite:

√
Eq
[
(ŝy(X1) + s̃y(X1))

2 L2
1

]
=
√
Eq[(ŝy(X1)2 + 2ŝy(X1)s̃y(X1) + s̃y(X1)2)L2

1]

≤
√
Eq[(ŝy(X1) + 2s̃y(X1) + s̃y(X1))L2

1] (B.40)

=
√
Eq[(sy(X1) + 2sy(X1) + sy(X1))L2

1]

= 2
√
Eq[sy(X1)L2

1]

<∞, (B.41)

where the inequality in (B.40) holds because of 0 ≤ ŝy(X1) ≤ 1 and

0 ≤ s̃y(X1) ≤ 1. The inequality in (B.41) holds by Assumption III.2.

• Proof of P
(∣∣σ̃2

1,y − σ2
1,y

∣∣ > ε/2
)
→ 0: By definition, we want to show

σ̃2
1,y

P→ σ2
1,y. (B.42)

Because

σ̃2
1,y =

m

m− 1

(
1

m

m∑
i=1

s̃y(Xi)
2L2

i − P̂ 2
1,n(y)

)
.

and

σ2
1,y = Eq

[
1

Ñ
sy(X) (1− sy(X))L2

]
+ Eq

[
sy(X)2L2

]
− p2y,
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the convergence in probability in (B.42) follows if

1

m

m∑
i=1

s̃y(Xi)
2L2

i
P→ Eq

[
1

Ñ
sy(X) (1− sy(X))L2

]
+ Eq

[
sy(X)2L2

]
(B.43)

and

P̂ 2
1,n(y)

P→ p2y. (B.44)

– Proof of the convergence in probability in (B.43): This convergence holds

by the weak law of large numbers (Jiang , 2010, Theorem 6.1) because

s̃y(Xi)
2L2

i , i = 1, . . . ,m are i.i.d. and

Eq
[
s̃y(X)2L2

]
= Eq

[
1

Ñ
sy(X) (1− sy(X))L2

]
+ Eq

[
sy(X)2L2

]
(B.45)

<∞, (B.46)

where the equation in (B.45) is derived in (B.28). The inequality in (B.46)

holds by Assumption III.2 based on (B.29) and (B.30).

– Proof of the convergence in probability in (B.44): We want to show

P
(∣∣∣P̂ 2

1,n(y)− p2y
∣∣∣ > ε′

)
→ 0

for any ε′ > 0 as m→∞. Note that

P
(∣∣∣P̂ 2

1,n(y)− p2y
∣∣∣ > ε′

)
= P

(∣∣∣(P̂1,n(y)− py
)(

P̂1,n(y) + py

)∣∣∣ > ε′
)

≤ P
(

2
∣∣∣P̂1,n(y)− py

∣∣∣ > ε′
)

= P
(∣∣∣P̂1,n(y)− P̃1,n(y) + P̃1,n(y)− py

∣∣∣ > ε′/2
)

≤ P
(∣∣∣P̂1,n(y)− P̃1,n(y)

∣∣∣ > ε′/4
)

+ P
(∣∣∣P̃1,n(y)− py

∣∣∣ > ε′/4
)
,

where the right-hand side of the last inequality goes to zero because the
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first term,

P
(∣∣∣P̂1,n(y)− P̃1,n(y)

∣∣∣ > ε′/4
)
→ 0

as m→∞ by (B.20) and the second term,

P
(∣∣∣P̃1,n(y)− py

∣∣∣ > ε′/4
)
→ 0

as m→∞ by the weak law of large numbers (Jiang , 2010, Theorem 6.1)

because P̃1,n(y) is a sample mean of i.i.d. random variables with the finite

mean of py as shown in (B.27) based on Assumption III.1.

Because (B.43) and (B.44) hold, the convergence in probability in (B.42) holds.

By (B.39) and (B.42), the right-hand side of the inequality in (B.34) goes to zero,

completing the proof of (B.33) and, equivalently, (3.16).

(b) The statement in (3.18) follows from the Slutsky’s theorem (Jiang , 2010, Theorem

2.13) based on (3.12) and (3.16). �

B.7 Proof of Theorem III.10

(a) To prove σ̂2
2,y

P→ σ2
2,y in (3.19), we first simplify the expression of σ̂2

2,y in (3.20)

as follows:

σ̂2
2,y =

n

n− 1

(
1

n

n∑
i=1

I (Yi > y)L2
i − P̂ 2

2,n(y)

)
. (B.47)

Because n/(n−1) in (B.47) converges to one as n→∞, we consider the convergences

of the two terms within the outermost parentheses in (B.47). The first term is the

average of i.i.d. random variables, I (Yi > y)L2
i , i = 1, . . . , n, which have the mean of
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Eq [sy(X)L2] <∞ from (B.32) and Assumption III.2. Thus, by the weak law of large

numbers (Jiang , 2010, Theorem 6.1), we have

1

n

n∑
i=1

I (Yi > y)L2
i

P→ Eq
[
sy(X)L2

]
.

Similarly, P̂2,n(y)
P→ py by the weak law of large numbers. Therefore, it follows that

σ̂2
2,y =

n

n− 1

(
1

n

n∑
i=1

I (Yi > y)L2
i − P̂ 2

2,n(y)

)
P→ σ2

2,y

as n→∞ by the continuous mapping theorem (Van der Vaart , 1998, Theorem 2.3),

completing the proof of (3.19).

(b) The statement in (3.21) follows from the Slutsky’s theorem (Jiang , 2010, Theorem

2.13) based on (3.14) and (3.19). �

B.8 Proof of Corollary III.11

(a) Among the conditions in Theorem III.9, only Assumptions III.1 and III.2

involve y. We show that the conditions in Assumptions III.1 and III.2 hold when y

is replaced by ỹ for ỹ > y. Then, it follows that Theorem III.9 where y is replaced

by ỹ holds.

• Assumption III.1 with ỹ in place of y: If we replace y in Assumption III.1 with
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ỹ, the condition still holds because if q(x) = 0, then

0 ≤ P(Y > ỹ | X = x) f(x)

≤ P(Y > y | X = x) f(x)

= 0

for any x.

• Assumption III.2 with ỹ in place of y: If we substitute ỹ for y in Assump-

tion III.2, the condition remains satisfied because

Eq
[
I(Y > ỹ)L2

]
≤ Eq

[
I(Y > y)L2

]
<∞

for ỹ > y.

Therefore, it follows that Theorem III.9 with ỹ in place of y holds for ỹ > y. That is,

P
(
pỹ ∈

(
P̂1,n(ỹ)± zα/2σ̂1,ỹ/

√
m
))
→ 1− α holds for α ∈ (0, 1) as m→∞.

(b) Similarly, because the conditions in Assumptions III.1 and III.2 hold when y is

substituted by ỹ for ỹ > y, it follows that Theorem III.10 with ỹ in place of y holds.

Thus, P
(
pỹ ∈

(
P̂2,n(ỹ)± zα/2σ̂2,ỹ/

√
n
))
→ 1−α holds for α ∈ (0, 1) as n→∞. �
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APPENDIX C

Appendix for Chapter IV

This Appendix provides the proof of Theorem IV.3 and the detail of approximating

Ni for SIS.

C.1 Proof of Theorem IV.3

Theorem IV.3 states the asymptotic bias of C̄θ̂ in estimating Cθ̂, the CE of q
(
x; θ̂

)
from q∗, C

(
q∗(x), q

(
x; θ̂

))
. Based on this key result, CIC guides us to correct the

asymptotic bias.

We note that AIC (Akaike, 1974) similarly corrects the asymptotic bias in esti-

mating the log-likelihood under the key condition that MLE should be consistent and

asymptotically normal (Cavanaugh and Neath, 2014). Analogously, to prove Theo-

rem IV.3, we show that MCE is consistent and asymptotically normal in Lemmas C.1

and C.2 below, respectively. Because MLE is a special case of MCE, we can de-

rive parallel results for MCE with those established for MLE under similar regularity

conditions.

We assume the regularity conditions (Keener , 2010; Cavanaugh and Neath, 2014),

such as identifiability, continuity, and differentiability, that are necessary to prove the
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consistency and asymptotic normality of MLE. Also, we assume E [h2(X)w2(X)] <∞

to ensure that the IS estimator has a finite variance. Additionally, Assumption IV.1

in Chapter IV is necessary to simplify the model complexity penalty. Note that the

similar assumption is also made to derive AIC (Akaike, 1974), namely, the true data

generating density belongs to the parametric family of the density whose parameters

are being estimated by MLE.

Recall that MCE is defined as the minimizer of (4.7) as follows:

θ̂ = argmin
θ
C̄θ

= argmin
θ

− 1

n

n∑
i=1

h(Xi)w(Xi) log q(Xi;θ).

This MCE converges in probability to the optimal parameter, θ∗, as stated in the

following lemma.

Lemma C.1. MCE, θ̂, is a consistent estimator of the parameter, θ∗, of the density,

q (X;θ∗) that minimizes the cross-entropy, C(q∗, q).

Proof. When Θ is compact, the consistency of MCE is proved in Theorem A1

in Rubinstein and Shapiro (1993). Extending the result to Θ = Rd follows from

Theorem 9.11 in Keener (2010).

The intuition behind this lemma is as follows: (a) C̄θ(q∗, q) is a consistent es-

timator of C(q∗, q) by the weak law of large numbers (Keener , 2010) and (b) the

MCE minimizes C̄θ(q∗, q) by definition. Therefore, the minimizer, θ̂, of C̄θ(q∗, q) also

converges in probability to the minimizer, θ∗, of C(q∗, q).

To establish the asymptotic normality of MCE in the following lemma, we define a

few notations. Let ∇θ and ∇θθ denote the gradient with respect to θ and the Hessian

matrix of second order derivatives, respectively. Define θ′ as the MCE at the last CE

iteration such that X1, . . . ,Xn are sampled from q(x;θ′). The expectation operator,

Eq, is taken with respect to X that follows q(x;θ′).
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Lemma C.2. MCE is asymptotically normal, i.e.,

√
n
(
θ̂ − θ∗

)
d→ N(0, J−1IJ−1),

where

J = −Eq [h(X)w(X)∇θθ log q (X;θ∗)]

and

I = Eq
[
h2(X)w2(X)∇θ log q (X;θ∗) (∇θ log q (X;θ∗))T

]
.

Proof. By definition of MCE, we know

0 =
1

n

n∑
i=1

h(Xi)w(Xi)∇θ log q
(
Xi; θ̂

)
.

By using the mean value theorem on the right-hand side, we have

0 =
1

n

n∑
i=1

h(Xi)w(Xi)∇θ log q (Xi;θ
∗)

+

(
1

n

n∑
i=1

h(Xi)w(Xi)∇θθ log q
(
Xi; θ̃

))(
θ̂ − θ∗

)
,

where θ̃ is an intermediate value between θ̂ and θ∗. Rearranging the terms leads to

√
n
(
θ̂ − θ∗

)
= J−1n Sn,

where

Jn = − 1

n

n∑
i=1

h(Xi)w(Xi)∇θθ log q
(
Xi; θ̃

)
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and

Sn =
1√
n

n∑
i=1

h(Xi)w(Xi)∇θ log q (Xi;θ
∗) .

By the weak law of large numbers (Keener, 2010) and the consistency of θ̂ in

Lemma C.1, it follows that

Jn
P→ J.

By the central limit theorem (Keener, 2010), we also have

Sn
d→ N(0, I),

where

I = V arq [h(X)w(X)∇θ log q (X;θ∗)]

= Eq
[
h2(X)w2(X)∇θ log q (X;θ∗) (∇θ log q (X;θ∗))T

]
− (Eq [h(X)w(X)∇θ log q (X;θ∗)])2

= Eq
[
h2(X)w2(X)∇θ log q (X;θ∗) (∇θ log q (X;θ∗))T

]
.
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Here, we used

Eq [h(X)w(X)∇θ log q (X;θ∗)] = Eq
[
h(X)w(X)

∇θq (X;θ∗)

q (X;θ∗)

]
=

∫
h(x)

f(x)

q(x;θ′)

∇θq (x;θ∗)

q (x;θ∗)
q(x;θ′) dx

=

∫
h(x)f(x)

∇θq (x;θ∗)

q (x;θ∗)
dx

=

(∫
h(x)f(x) dx

)
∇θ

∫
q (x;θ∗) dx

= 0, (C.1)

where

q (x;θ∗) =
h(x)f(x)∫
h(x)f(x) dx

by Assumption IV.1. The equation in (C.1) holds because the regularity conditions

allow the interchange of integration and differentiation and q (x;θ∗) is integrated to

one. Therefore, it follows that E [Sn] = 0.

Note that

V ar
[
J−1Sn

]
= J−1V ar [Sn] J−1.

By Slutsky’s theorem (Jiang, 2010, Theorem 2.13), it follows that

√
n
(
θ̂ − θ∗

)
d→ N(0, J−1IJ−1).

�

With Lemmas C.1 and C.2, we now prove Theorem IV.3. Specifically, we want to
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derive the bias, E
[
C̄θ̂ − Cθ̂

]
, where

C̄θ̂ = − 1

n

n∑
i=1

h(Xi)w(Xi) log q
(
Xi; θ̂

)

and

Cθ̂ = −Eq
[
h(X)w(X) log q

(
X; θ̂

)]
.

Note that θ̂ is a function of X1, . . . ,Xn and considered as a constant by the expecta-

tion operator, Eq, that is taken with respect to X following q(x;θ′). Also, recall that

the normalizing constant of q∗ is

Kq∗ =

∫
h(x)f(x) dx.

Theorem IV.3

E
[
C̄θ̂ − Cθ̂

]
= −Kq∗

d

n
+ o

(
1

n

)
,

where the expectation is taken with respect to the data, X1, . . . ,Xn.

Proof. The Taylor expansion (Keener, 2010) leads to

Cθ̂ = −Eq
[
h(X)w(X) log q

(
X; θ̂

)]
= −Eq

[
h(X)w(X)

(
log q (X;θ∗) +

(
θ̂ − θ∗

)T
∇θ log q (X;θ∗)

+
1

2

(
θ̂ − θ∗

)T
∇θθ log q (X;θ∗)

(
θ̂ − θ∗

))]
+ op

(
1

n

)
.

The error bound holds by Lemma C.2 and the regularity condition on the third deriva-

tive of log-likelihood, similar to the condition necessary to establish AIC (Cavanaugh
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and Neath, 2014). Recall that θ̂ is not a function of X and that the expectation

operator, Eq, is taken with respect to X. The expectation of the first-order term in-

volving the score function is zero in a similar manner that leads to (C.1). Define

δn =
√
n
(
θ̂ − θ∗

)
. Then, we can simplify the expression of Cθ̂ as

Cθ̂ = Cθ∗ +
1

2n
δTnJδn + op

(
1

n

)
.

Similarly, we can express

C̄θ̂ = − 1

n

n∑
i=1

h(Xi)w(Xi) log q
(
Xi; θ̂

)
= − 1

n

n∑
i=1

h(Xi)w(Xi)

(
log q (Xi;θ

∗) +
(
θ̂ − θ∗

)T
∇θ log q (Xi;θ

∗)

+
1

2

(
θ̂ − θ∗

)T
∇θθ log q (Xi;θ

∗)
(
θ̂ − θ∗

))
+ op

(
1

n

)
= C̄θ∗ −

1

n
δTnSn +

1

2n
δTnJ

∗
nδn + op

(
1

n

)
,

where J∗n is − 1
n

∑n
i=1 h(Xi)w(Xi)∇θθ log q (Xi;θ

∗). By the weak law of large numbers

(Keener, 2010), we have J∗n − J = op(1), so we can further express

C̄θ̂ = C̄θ∗ −
1

n
δTnSn +

1

2n
δTnJδn + op

(
1

n

)
.

Note that E
[
C̄θ∗
]

= Cθ∗. Thus, the bias of interest is

E
[
C̄θ̂ − Cθ̂

]
= E

[
C̄θ∗ −

1

n
δTnSn +

1

2n
δTnJδn −

(
Cθ∗ +

1

2n
δTnJδn

)]
+ o

(
1

n

)
= E

[
C̄θ∗ −

1

n
δTnSn − Cθ∗

]
+ o

(
1

n

)
= −E

[
1

n
δTnSn

]
+ o

(
1

n

)
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Because δn = J−1n Sn and Jn − J = op(1), we have

E
[
C̄θ̂ − Cθ̂

]
= −E

[
1

n
STn J

−1Sn

]
+ o

(
1

n

)
= − 1

n
E
[
tr
(
STn J

−1Sn
)]

+ o

(
1

n

)
= − 1

n
E
[
tr
(
J−1SnS

T
n

)]
+ o

(
1

n

)
= − 1

n
tr
(
J−1E

[
SnS

T
n

])
+ o

(
1

n

)
= − 1

n
tr
(
J−1I

)
+ o

(
1

n

)
. (C.2)

To further simplify the trace, tr (J−1I), we derive the simpler expressions of J and I

as follows:

J = −Eq [h(X)w(X)∇θθ log q (X;θ∗)]

= −Eq
[
h(X)w(X)

(
− 1

q2 (X;θ∗)
∇θq (X;θ∗) (∇θq (X;θ∗))T

+
1

q (X;θ∗)
∇θθq (X;θ∗)

)]
,

where the second term is zero because

− Eq
[
h(X)w(X)

(
1

q (X;θ∗)
∇θθq (X;θ∗)

)]
= −

∫
h(x)

f(x)

q(x;θ′)

(
1

q (x;θ∗)
∇θθq (x;θ∗)

)
q(x;θ′) dx

= −Kq∗

∫
∇θθq (x;θ∗) dx

= −Kq∗∇θθ

∫
q (x;θ∗) dx

= 0
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by Assumption IV.1 and

q (x;θ∗) =
1

Kq∗
h(x)f(x) . (C.3)

The remaining first term can be rewritten as

J = −Eq
[
h(X)w(X)

(
− 1

q2 (X;θ∗)
∇θq (X;θ∗) (∇θq (X;θ∗))T

)]
= −

∫
h(x)f(x)

(
− 1

q2 (X;θ∗)
∇θq (X;θ∗) (∇θq (X;θ∗))T

)
dx

= Kq∗

∫
1

q (X;θ∗)
∇θq (X;θ∗) (∇θq (X;θ∗))T dx.

On the other hand,

I = Eq
[
h2(X)w2(X)∇θ log q (X;θ∗) (∇θ log q (X;θ∗))T

]
=

∫
h2(x)

f 2(x)

q2(x;θ′)

1

q2 (x;θ∗)
∇θq (x;θ∗) (∇θq (x;θ∗))T q(x;θ′) dx

= K2
q∗

∫
1

q(x;θ′)
∇θq (x;θ∗) (∇θq (x;θ∗))T dx

= K2
q∗

∫ (
1

q (x;θ∗)
+ o(1)

)
∇θq (x;θ∗) (∇θq (x;θ∗))T dx

= Kq∗J + o(1)

∫
∇θq (x;θ∗) (∇θq (x;θ∗))T dx,

where we used the fact that θ′ is the MCE at the last CE outer iteration. Thus, θ′ is

also a consistent estimator of θ∗ by Assumption IV.2 and Lemma C.1. Plugging this

result to (C.2) leads to

E
[
C̄θ̂ − Cθ̂

]
= − 1

n
tr
(
J−1Kq∗J

)
+ o

(
1

n

)
= −Kq∗

d

n
+ o

(
1

n

)
.

�
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C.2 Approximation of Ni for SIS

Chapter II uses a metamodel to approximate the optimal Ni in (2.13). To cir-

cumvent the need for building a metamodel, we use an asymptotic approximation of

the optimal allocation size,

Ni =

√
s(Xi) (1− s(Xi))f(Xi) /q(Xi)∑m

j=1

√
s(Xj) (1− s(Xj))f(Xj) /q(Xj)

· n, i = 1, . . . ,m,

in (2.10).

First, for a large n� maxmi=1 (1− s(Xi))/s(Xi), we can approximate

q(Xi) =
1

Cq1
f(Xi)

√
1

n
s(Xi) (1− s(Xi)) + s(Xi)

2

≈ 1

Cq1
f(Xi)

√
s(Xi)

2

=
1

Cq1
f(Xi) s(Xi)

for any i = 1, . . . ,m. This asymptotic approximation may be not good for some Ni

if s(Xi) is close to zero. However, in that case, q(Xi) is small too, and such Xi is

unlikely to be sampled in the first place. Therefore, we can approximate

s(Xi) ≈ Cq1
q(Xi)

f(Xi)
,

where f(Xi) and q(Xi) are known.
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Furthermore, for a large n� maxmi=1 (1− s(Xi))/s(Xi), we can also approximate

Cq1 =

∫
Xf

f(x)

√
1

n
s(x) · (1− s(x)) + s(x)2 dx

≈
∫

{x: s(x)>1/(n+1)}

f(x)

√
1

n
s(x) · (1− s(x)) + s(x)2 dx

≈
∫

{x: s(x)>1/(n+1)}

f(x) s(x) dx

≈ P̂SIS.

Thus, it follows that

s(Xi) ≈
P̂SIS
w(Xi)

.

Therefore,

Ni ∝
√
s(Xi) (1− s(Xi))f(Xi) /q(Xi)

≈

√√√√ P̂SIS
w(Xi)

(
1− P̂SIS

w(Xi)

)
w(Xi)

∝
√
w(Xi)− P̂SIS.

Although it does not happen frequently, if w(Xi) − P̂SIS ≤ 0, then we set the cor-

responding Ni as 1, the smallest allocation possible to maintain the unbiasedness of

the SIS estimator.
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