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(blue), allowing the tyrosine to be accessible. PDB: 2GQG (blue), 

1IEP (red) 12 
Figure 1.9: Redrawn from Lamontanara et. al.40 Depicts the SH2 domain 

conformation is important in dictating activation loop 

conformation for phosphorylation of Y412. SH2-Abl kinase dead 

(D382N) was shown to be phosphorylated at Y412, demonstrating 

that the SH2 top hat conformation is necessary to force the 

activation loop into the correct conformation for phosphorylation 

by the added wt-Abl kinase domain. I164E-D382N, kinase dead 

mutation that destabilizes the top hat conformation displays no 

pY412, which reinforces the notion that the top hat conformation 

is necessary for the correct activation loop conformation for 

pY419. 13 
Figure 1.10: Redrawn from Lamontanara et. al.40 Diagram shows that DFG-

in (dasatinib) and DFG-out (imatinib) inhibitors can affect the 

conformation of the activation loop as shown thru the amount of 

phosphorylation at Y412. Dasatinib, DFG-in inhibitors prime the 

activation loop in the correct conformation for phosphorylation at 

Y412 and the DFG-out imatinib does not. 14 
Figure 2.1: The only two known crystal structures of 3D Src. Kinase domain 

is in white, SH2 is in orange, and SH3 is in magenta. The structure 

on the left is bound to a Type I ligand and is in the more open 

conformation than the structure on the right, which is bound with 

PS, is in the closed inactive configuration. Left PDB: 1Y57 

and Right PDB: 2Src. 25 
Figure 2.2: Cartoon diagram depicting c-Src regulatory mechanism involving 

c-Src’s open/closed conformations resulting from different 

phosphorylation states. Inactive c-Src is usually found in the 

cytosol and is a result of phosphorylation at Y530 from Csk. This 

causes the clamping down of both SH3 and SH2 domains which 

configures c-Src in a closed conformation. Dephosphorylation of 

Y530 and/or phosphorylation of Y419 on the activation loop 

targets c-Src to the membrane resulting in a fully activated kinase, 

where it can interact with its protein binding partners thru 

scaffolding effects and/or phosphorylate its other substrates. 27 
Figure 2.3: Chart of three main regulation mechanism of c-Src, localization, 

phosphorylation state, and conformational state. Black arrows 

indicates an effect that directly contributes as a result. Hexagons 

shows a secondary effect and the green circle is the final aggregate 

effect which is usually the signal transduction pathway that c-Src 

is involved in gets turned on/off. The red arrows are effects that 

will be investigated in this chapter as we are interested in whether 

or not mutations effect conformational state and thereby disrupts 

c-Src’s regulation mechanism. 28 
Figure 2.4: Diagram of thermolysin protease assay. c-Src mutations were 

incubated with thermolysin at various time points and then loaded 

and ran on an SDS-PAGE gel for analysis. An example gel is 
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shown. As incubation time is increased (starting from left 0min to 

right), depending on the conformational state, either 3D Src band 

starts to decrease (open) or stays the same (closed). A more close 

conformation would show a slower rate of cleavage (dashed red 

line) as oppose to a more open conformation, which would have a 

faster rate of cleavage. 29 
Figure 2.5: Cut site is shown to be between G257 and L258 and confirmed by 

mass spec. The cut site residues are shown in yellow and the linker 

is highlighted in red. PDB: 1Y57 30 

Figure 2.6: Thermolysin Half-Life of clinical and non-clinical mutations. All 

values were normalized to w-Src and depicted on a log scale. 

Negative values typify more open conformations whereas positive 

values signal more closed. 35 
Figure 2.7: FITC-SH2 Fluorescence Polarization Assay on select c-Src 

mutation constructs. Kd were taken and normalized to wt-Src (apo 

conformation) which is set to 1. Half lives from thermolysin assay 

is shown above the bars for each mutation. 37 

Figure 2.8: Vmax (RFU/sec) evaluated for those mutations with catalytic 

activity. Values were normalized to wt-Src which was set to 0. 

Higher catalytic activity compared to wt-Src are positive numbers 

and lower activity than wt-Src are negative numbers. Half lives 

from thermolysin assay added for each mutation and shown in 

colored bar graphs. Blue: closed, Black: Apo, and Orange: open. 42 
Figure 2.9: Top Left: c-helix-in crystal structure, 1Y57, c-helix and W263 is 

highlighted in blue. Top Right: c-helix-out crystal structure, 2Src, 

c-helix and W263 is highlighted in red. Bottom left is overlay of 

both crystal structure (blue is 1Y57, c-helix in; red is 2Src, c-helix-

out) depicting the movement of the c-helix with regard to W263 

position. Bottom right is same overlaid, view is from the side, 

depicting W263 in a space filled model. The positioning of W263 

triggers the positioning of the c-helix as well as the SH2/SH3 

domains. The SH2 linker is to show where the SH2/SH3 domains 

(not pictured) would be orientated. In 1Y57, a more open 

conformation, W263 is wedged in forcing the c-helix in, resulting 

in SH2/SH3 domain positioned in a more linear open 

conformation as shown in this picture, with the SH2 linker 

position coming toward the reader. In 2Src, a closed conformation, 

W263 is swung out resulting in a c-helix-out, resulting in 

SH2/SH3 domain to be clamped down alongside the back of the 

kinase domain, as depicted with the SH2-linker position going 

away from the reader, in a closed conformation. 46 
Figure 2.10: From PDB 2Src. Picture on left shows full length c-Src, SH3 

(magenta), SH2 (orange), and kinase domain (white). R163 

residue is highlighted in blue and the surrounding residues, N400, 

E160, D368, and Q372 are in green. Picture on right is a close up 

view, with red dotted lines from R163 that show the potential salt 

bridge/H-bonding that upon disruption by substitution to a 
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tryptophan, might explain the more open conformation that 

results. 47 
Figure 2.11: PDB 2Src. Top picture, depicts a close up of W121 lone H-bond 

partner to the backbone of G257. Bottom left is W121 in blue and 

G257 in green of the entire protein and bottom right depicts space 

filled image of W121 (blue) within the transient pocket formed by 

K260, A259, L258, G257, and Q256 of the SH2-linker 47 
Figure 2.12: The percent phosphorylation of Y419 on Y530F, T341R-Y530F, 

and D120N-Y530F. 50 

Figure 3.1: (A) Structure of highly selective c-Src inhibitor 3.1 (B) Kinome 

dendrogram for selectivity profiling of 3.1 at 10 µM. c-Src is 

colored blue, and off-target kinases of 3.1 are colored red. 

Dendrogram was generated using TREEspot software tool with 

10% cutoff. Green circles denote kinases included in panel that 

show no binding below cutoff. 82 

Figure 3.2: Synergy studies of selective c-Src inhibitor 3.1 (2 µM), 

panobinostat (HDACi, 10 nM), and combination (3.1 + HDACi, 2 

µM 3.1, 10 nM panobinostat) in SK-BR-3 cell line. Red line 

denotes predicted additivity of 3.1+ panobinostat. The higher level 

of inhibition than the predicted additivity indicated synergism 

between 3.1and panobinostat. Work done by Mike Steffey. 83 
Figure 3.3: Structure of PP2~Alkyne (3.2) and chimeric inhibitors 3.3 and 3.4

 85 
Figure 3.4: c-Src inhibitor 3.10 and HDAC inhibitor 3.9 88 
Figure 3.5: PDB 3G5D of c-Src bound dasatinib (green). The arrows indicate 

the ideal groups that can be substituted with the HDAC 

pharmacophore without disrupting binding to c-Src. 91 
Figure 3.6: Structure of the new dual c-Src/HDAC inhibitor that utilizes the 

dasatinib scaffold as the c-Src pharmacophore, replacing the 

pyrazolo-pyrimidine core while maintaining the same phenyl 

triazole hydroxamic acid as the HDAC warhead. Replacement of 

the 4-methyl group off of the pyrimidine results in compound 3.12 

using a morpholine instead of the hydroxyethyl piperazine to help 

decrease MW. Replacing the hydroxyethyl piperazine results in 

compound 3.11. 93 
Figure 4.1: From PDB 3G5D (c-Src and dasatinib) and 2HYY (c-Abl and 

imatinib). Picture on the left depicts an overlay of both c-Src and 

c-Abl crystal structures, shown in white, and both dasatinib 

(magenta) and imatinib (green) ligands. The picture on the right 

shows the ligands alone. From the ligand overlay, the methyl 

phenyl ring (red arrow) are almost perfectly aligned, giving the 

rationale that using the dasatinib scaffold and adding the phenyl 

methyl piperazine of imatinib (the DFG-out portion) would create 

a DFG-out ligand that would bind c-Src. 152 
Figure 4.2: Western Blot data in MDA-MB-231 cells of increasing 

concentration (0, 50, 100, 250, 500, 1000 nM) of compound 4.1. 

From selectivity data, p38 MAPK kinases were potently inhibited 
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and thus it was of interest to see if it had any cellular activity. At 

50 nM, both phosphorylated p38 MAPK (P-p38 MAPK) and 

phosphorylated Src (pY419) were completely absent suggesting 

both Src and p38 MAPK are inhibited. 155 

Figure 4.3: Compound 4.3 and 4.2. Similar to 4.1, however there is an 

additional chlorine on the CF3 phenyl ring which was installed in 

hopes of increasing metabolic stability due to increased residency 

times as well as substituting the hydroxyethyl piperazine, as the 

major metabolite of 4.1 was oxidation of the piperazine. 156 

Figure 4.4: Major metabolite of 4.1, which is oxidation of the N off of the 

hydroxylethyl end of piperazine. 157 
Figure 4.5: Top picture depicts how compound 4.4 is derived from 4.1 and 

BIRB-796. Bottom picture: PDB 3G5D (c-Src + dasatinib) and 

1KV2 (p38 + BIRB 796) with dasatinib shown in magenta and 

BIRB-796 in green  overlaid within the kinase (left) and ligand 

only overlay on the right.  159 

Figure A1: PP2, PP2-alkyne, A2, and A1. 205 

Figure A2: KINOMEscan of PP2 and A1. The red circles represent the kinase 

inhibited and the larger the radius of the circle correlates with 

increasing potency. (Taken from Brandvold et. al)1                                                                                                                

Figure A3: c‐Src is colored light green with P-loop of c-Src highlighted 

yellow. c-Abl is colored light blue with P‐loop of c‐Abl 

highlighted red. (Taken from Brandvold et.al)1 206 

Figure A4: Left is compound A1 docking model in c-Src. Right is docking 

model of compound A1 showing the S conformation. Note in the 

picture on the right, compound is not in optimized conformation. 207 

Figure A5: Biochemical assay and chemical structure of compounds A1-A5 

in c-Src 207 
Figure A6: BRAF binding assay of compounds 1, A4, A5, and A18 (3-OMe)

 208 

Figure A7: Biochemical assay of compounds A6-A13 in c-Src 210 
Figure A8: Biochemical assay of compounds 13-28 in c-Src and parent 

biphenyl compound 1. 211 
Figure A9: A simplified cartoon with ATP bound depicting the most common 

binding pockets of Type I and Type II inhibitors. 212 
Figure A10: A: Crystal structure of T341M c-Src, DFG-out (PDB: 3F3W) 

aligned with wt-Src DFG-in (PDB: 3G5D) demonstrating the 

DFG-flip, shown in yellow. The orange residues show the GK 

methionine and the xDFG residue, alanine. B: Same crystal 

structure as above instead Compound A27 (T341M) and Dasatinib 

(wt-Src) are shown. Compound A27 is split into three different 

colors signifying the binding pockets. Green = ATP pocket, red = 

GK pocket, blue = hydrophobic pocket. Dasatinib is shown in 

white and visualizes how a bulky GK can prevent access into the 

hydrophobic pocket and GK pocket. The yellow curved line 

demonstrates one design strategy to evade the GK by avoiding 

binding directly through the GK pocket (as shown by the phenyl 

205 
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ring of Dasatinib and red portion of compound A27) which all 

current Type II binding follows. 213 
Figure A11: Lead compounds of the 37 compounds tested are shown. 

Compounds marked in red are commercially available. 

Compounds in blue were provided by Prof. Dustin Maly, and 

compounds in black were synthesized. Out of the synthesized 

compounds A28 was the most potent against wt-Src. 215 
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Abstract 

 Despite being the first proto-oncogene discovered, c-Src’s role in cancer 

remains poorly understood. The usual implication of kinase involvement in 

oncogenesis is generally due to mutations leading to over-activity and thus 

dysregulation of those signal transduction pathways. However, c-Src is unusual in 

that it is frequently observed to be overexpressed and implicated in cancer, and yet 

cases of overactive c-Src mutations are rare. With the advancement of sequencing 

technology, additional somatic mutations of c-Src have been found in cancer tumors 

and human cancer cell lines. These clinical mutations have never been previously 

characterized. Whether or not these mutations are transformative, involved in cancer 

progression, development, or maintenance remains to be seen. Given that overactive 

mutants are rare, we hypothesized that mutations could dysregulate c-Src function 

by disrupting its native conformational state. The work in Chapter 2 is our beginning 

effort in characterizing these new clinical mutations of c-Src.  

In order to explore whether or not mutations affect conformations, a new 

assay, based on the principles of limited proteolytic assay, was developed using the 

protease thermolysin. This new assay is superior to previously established literature 

methods to analyze conformations as it was necessary to develop an assay that is 

high throughput to enable analysis of 29 c-Src mutations. Using our proteolytic 

assay, we found that mutations do indeed affect the global conformations of c-Src, 

displaying a wide range of conformational states from closed, apo, and open. Non-

clinical mutations were part of the analysis as well, due to the fact that many of these 

mutants were often utilized in chemical genetic studies as substitution for wt-Src. It 

is assumed that these mutations retain all the same features of wt-Src, but from our 

assay, we have found that this is not true, as native conformations of wt-Src are 

disrupted.  
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Catalytic activity was also evaluated and three mutations, W121R, V140M, 

and P171Q demonstrated at least a two-fold increase in catalytic activity compared 

to wt-Src, suggesting that these three mutations could be transformative due to their 

higher activity. Also, an interesting correlation was observed between catalytic 

activity and conformational states. In general, it appears the more open the 

conformation, the higher the catalytic activity and the more closed conformations 

have lower activity. Lastly, due to mutant-disrupted conformational states, protein-

protein interactions were found to be affected. 

Chapter 3 and 4 takes on more of an application approach. Since there are 

studies throughout literature that implicates c-Src in cancer progression, we aimed 

to explore methods to make targeting c-Src more efficacious. The approach in 

Chapter 3 takes a selective c-Src inhibitor, designed in our lab, to look for inhibiting 

other protein targets which would work in synergy with c-Src inhibition. We found 

HDAC inhibitors to work in synergy, and with that information, we explored the 

design process for the first dual acting HDAC/c-Src inhibitor, compound 3.1 (c-Src 

Ki = 138 nM, HDAC1 Ki = 0.26 nM), which also demonstrated excellent potency 

against SK-BR3 breast cancer cell lines (0.2 M) as well against 60 varying cancer 

cell lines in a National Cancer Institute screen (NCI-60).  

The goals of Chapter 4 are along the same lines except the approach was to 

improve the efficacy of dasatinib in triple negative breast cancer. The resulting 

inhibitor was a DFG-out dasatinib/imatinib hybrid, compound 4.1 which had 

unprecedented activity in triple negative breast cancer cell line MDA-MB-231 (GI50 

= 6 nM) and low toxicity profile (HMEC GI50 = 1800 nM) compared to FDA 

approved c-Src inhibitor Dasatinib (MDA-MB-231, GI50 = 830 nM). This led us to 

find the increased in potency over dasatinib was the result of the new inhibitor acting 

as a dual p38/c-Src inhibitor and we describe the process of further improving this 

new dual acting inhibitor.  
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Chapter 1  

Introduction 

1.1 Kinase Background 

The life system of a cell is driven by thousands, perhaps millions of reactions 

that happen per second. These reactions are necessary to keep the cells properly 

functioning and serves as a method of cellular communication allowing the cells to 

turn on or off important cellular functions such as growth, differentiation, 

transcription, mitogenesis, and apoptosis.1 One form of this communication is done 

through phosphorylation of proteins, which is one of the most crucial post-

translational modification in cell signaling.1,2 This simple phosphorylation step is 

facilitated by protein kinases which serves as a molecular switch to turn on/off those 

signal transduction pathways. The resulting response is reliant upon the protein 

substrate and in some cases the specific phosphorylation site. In most instances, 

phosphorylation of the protein substrate leads to an increase of catalytic activity 

which serves as a mechanism to amplify the signal towards all downstream protein 

targets.3,4 Phosphorylation can also effect structural changes which itself can have 

subsidiary side effects in signal transduction pathways such as protein-protein 

interactions.5,6 There are currently 518 known protein kinases and even though they 

only comprise 2% of the human genome, it has been estimated that they 

phosphorylate at least half of the proteins expressed.7 

Due to its importance as a key regulator in the signal transduction pathway, 

kinases are tightly regulated. Though when dysregulation occurs, either due to 

overexpression or mutations, aberrant activity results, and can lead to a myriad of 

diseases including cancer.8–10 As such, it is the number two target for drug 

development behind GPCRs.11,12  
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Our laboratory is interested in elucidating the structure and function of the 

non-receptor protein kinase c-Src, specifically its effect in oncogenesis. Discovered 

in 1978, c-Src, was the first identified protein tyrosine kinase (PTK) which was later 

implicated as a proto-oncogene. c-Src is believed to associate with a number of 

receptor tyrosine kinases (RTK) such as EGFR and PDGF, which serves in part as 

their regulator and also as a co-transducer of their originating signals.13 This 

activation of c-Src results in the phosphorylation of downstream targets such as focal 

adhesion kinase (FAK), Ras, Stat3, and phosphoinositide 3-kinase (PI3K) which 

play an integral role in cell  

  
Figure 1.1:  c-Src signaling pathway 

 

 

proliferation, division, and survival, as well as cell motility and adhesion as shown 

in Figure 1.1.14,15 As such, the dysregulation of c-Src has been implicated in cancers 

including breast, colon, pancreatic, and lung cancer and consequently, multiple 

studies conducted have validated c-Src as a target for the treatment of such cancers.15  

However, despite the wealth of research involved in c-Src, it is still poorly 

misunderstood, especially its role in oncogenesis. Therefore, the focus of my 

research that will be described here is involved in developing chemical tools that 

can be used to study c-Src kinase.   

1.2 c-Src Structure 

Src

P1K

Survival

FAK

Adhesion

Motility

MAPK

Proliferation

STAT3

Transcription
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The challenge of studying c-Src kinase lies in its structural protein fold, 

which is conserved and shared across the kinome.11,16 All protein kinases have a 

catalytic domain which can be categorized into two lobes. The N-terminus lobe 

consists of β-strands connected by flexible linkers and a C-terminus lobe composed 

of mainly α-helices as shown in Figure 1.2. Both lobes are connected by a hinge 

linker which also marks the location of the active site/ATP binding pocket.  

Two important structural motifs that will be mentioned throughout are the 

activation loop and the c-helix (Figure 1.2). Both elements have the most dynamic 

movement on the kinase structure as they are involved in catalysis as well as 

stabilization of conformational states which will be discussed in more detail later. 

The activation loop is a flexible polypeptide and resides in between the ATP pocket 

and solvent  

 

 

exposed substrate pocket. Threonine, serine, or tyrosine residues are often found on 

the activation loop as they can be subject to phosphorylation. It also contains a highly 

conserved Asp-Phe-Gly (DFG) amino acid residues that participates in catalysis as 

well being an identifying marker for two conformational states that bear its name. 

In general, phosphorylation of the activation loop leads to greater catalytic kinase 

activity.17 The c-helix motif (highlighted in purple, Figure 1.2) is located in the N-  

N-Terminus 

C-Terminus 

A. 

Figure 1.2: A. c-Src kinase domain. Highlighted in yellow is N-terminus lobe. C-terminus is shown in white. 

Activation loop is shown in blue and c-helix is in purple. Space filled model of ligand bound depicts the ATP-

pocket/active site. PDB: 2Src. B. c-Src kinase domain overlaid to demonstrate c-helix movement. C-helix-in is 

marked in purple and c-helix-out is marked in green. The glutamic acid residue, color denoted purple or green 

depending on c-helix position, is a crucial residue necessary for catalysis. PDB: 2Src and 3G5D.  

B. 
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Figure 1.3: A. Crystal structure of ligand stabilized conformations of c-Src. From left to right, DFG-in (Type 

I Inhibitor, PDB: 3G5D), DFG-out (Type II Inhibitor, PDB: 3EL8), c-helix-out (c-helix-out inhibitor, PDB: 

4DGG). B. The DFG flip. Depending on the conformations of c-Src, the DFG can be flipped in or out, which 

specifically refers to the position of the phenylalanine shown in green. The phenylalanine moves nearly 10 Å 

and rotates nearly 180˚ between the two positions.  

DFG-in DFG-out 

c-helix-out 

A. 

DFG-in 

DFG-out 

B. 
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Terminus lobe and is situated behind the ATP binding pocket. It contains a critical 

glutamic acid residue which is necessary for kinase activity. Depending on the 

conformational state of the kinase, the c-helix can either be swung in wards towards 

the active site (Figure 1.2B), which positions the glutamic acid for catalysis, or 

outward, resulting in an inactive kinase as the glutamic acid is flipped out. The 

dynamism of the c-helix and activation loop has been a studied topic as it appears 

that their concerted movement is responsible for either activating or deactivating 

kinase activity.18–21 How this movement occurs is still unknown but it has been 

suggested that an allosteric network is involved. Whether or not the activation loop 

movement is the cause of c-helical movement or vice versa is still a contentiously 

debated topic.22 

Because kinases and c-Src in general are a loosely held protein structure with 

various moving parts, it is flexible. This inherent flexibility suggest the existence of 

many transient conformational states.17 However, three main conformations of c-Src 

has been identified due in part to ligand stabilization that have been captured by 

crystallography (Figure 1.3A). Two of these structural conformations revolve 

around the DFG residues, and so are aptly termed DFG-in and DFG-out. The DFG 

refers to the aspartic acid, phenylalanine, and glycine residues on the activation loop. 

DFG-out/in (Figure 1.3B) refers to the position of the phenylalanine, which moves 

almost 10 Å and rotates nearly 180˚ to reside either in the hydrophobic pocket (an 

active DFG-in) or a solvent exposed region adjacent to the ATP pocket in a flipped 

out (an inactive DFG-out) conformation.23 This structural feature  has been widely 

studied in a variety of kinases and has only recently become a popular topic to pursue 

due to the accidental discovery of the DFG-out conformation discovered between 

imatinib (Gleevec) binding to c-Abl kinase.24  

These conformations are thought to be compound dependent however, it is 

unknown if the DFG-out is stable enough to exist in sufficient numbers without 

ligand bound; as to how or where the compounds bind can stabilize or force the 

kinase into either the DFG-in (Type I binding) or DFG-out conformation (Type II 

binding). Less than 10% of kinases have been found to adopt the DFG-out 
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conformation.14 Whether this is due to the lack of an appropriate ligand that can 

favorably force the DFG-out remains to be seen, however, this does suggest that 

Type II ligands could be exploited as a means to increase ligand selectivity as 

evidenced by imatinib (Type II), which displays impressive selectivity against the 

kinome. The reduction of kinase off-targets can help decrease the toxicity of a drug 

as well as aiding the design of selective chemical probes, which are crucial to 

interrogate individual kinase functions.  

On a side note, recent discoveries in our lab could dispel this notion that 

Type II inhibitors are more selective than Type I inhibitors. This demonstrate that 

more kinases can assume the DFG-out conformation than previously reported. The 

key to proving those statements are correlated in the Type II inhibitor design. A great 

number of kinases have a large bulky gatekeeper, which is an amino acid  

 

 

 

 

 

residue that divides the active site into two sub pockets, the front adenine pocket and 

the back DFG pocket (Figure 1.4). Type I inhibitors generally only bind within the 

adenine pocket whereas Type II inhibitors spans both sub pockets. Type II ligands 

requires access to the back DFG pocket as the additional moiety that resides there is 

a characteristic identifier of a Type II inhibitor. Therefore, the size of the gatekeeper 

Figure 1.4: A simplified cartoon with ATP bound depicting the most common 

binding pockets of Type I and Type II inhibitors.  
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residue can sterically block Type II inhibitors from binding. As a result, if the Type 

II inhibitors aren't designed to avoid bulky gatekeeper residues (as most Type II 

inhibitors are not), then it might appear that the kinases it does not bind cannot 

assume DFG-out. In reality, the poor inhibition is a direct consequence of a large 

gatekeeper. Our lab has synthesized a Type II inhibitor designed to evade large bulky 

gatekeepers and its selectivity has been profiled against 518 kinases (Data not 

shown). Unsurprisingly, this type II inhibitor is quite unselective and perhaps is the 

most promiscuous inhibitor to date.  

The third structural conformation is termed c-helix-out. Stabilized by "c-

helix-out ligands", the defining structural trait is the c-helix moiety rotated outward 

causing the catalytically important glutamic acid to flip out of the active site (Figure 

1.2B). The DFG moiety remains flipped in (DFG-in). The c-helix-out conformation, 

unlike DFG-out, has been observed natively without ligand stabilization.25 natural 

occurrence is believed to serve as an auto-inhibitory mechanism because this 

conformational state results in an inactive kinase. The c-helix-out state has also been 

observed in many other kinases.26–30  

1.3 Conformational Selective Ligands 

From an inhibition standpoint, questions have been raised concerning the 

importance of developing different categories of ligands. Are there any advantages 

conferred because of the ligand type and does ligand type really matter? As a 

therapeutic agent, it would appear that this question is moot. For all intents and 

purposes, the three ligand types (Type I, Type II, c-helix-out) all block access to the 

ATP-binding pocket and stops all catalytic activity. However, recent developments 

do suggest ligand types are important and therefore, is a necessary component to 

consider before its use. As mentioned earlier and discussed, ligand types can confer 

different benefits such as selectivity. However, one crucial detail that is often 

overlooked is the particular conformation that the ligands induce. And those 

different conformational structures have been seen to influence the 

function/localization of the kinase, in what is being defined as the modulation of 

non-catalytic activity.18 
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This non-catalytic effect has been recently observed in a few kinases, but it 

demonstrates that different conformations effect how the kinase participates in 

protein-protein interactions (PPIs).31 Consequently, different ligand types have 

ancillary side effects besides turning off kinase activity and are not due to selectivity 

differences. This modulation of non-catalytic activity has been observed in the 

kinase IRE1α and its RNase domain.31 The RNase domain is only active upon 

oligomerization of IRE1α. Type I ligands that inhibit the kinase domain of IRE1α 

was shown to not effect oligomerization and therefore, the activity of RNase remains 

unchanged. However, Type II inhibitors disrupted IRE1α 's ability to oligomerize, 

resulting in an inactive RNase domain. Thus, the ability of these ligand types to 

modulate the non-catalytic activity of kinases through conformationally stabilized 

states suggest the relevance of developing different categories of inhibitors. Further 

investigation into how each conformational selective inhibitor modulates non-

catalytic activity of other kinase is warranted. Chapter 2 investigates how these 

conformational structures might influence the non-catalytic activity of c-Src and 

could lead to a possible explanation of a c-Src role in oncogenesis.  

1.4 Global Conformation of c-Src  

  One important structural feature that wasn't mentioned earlier about c-Src is 

that in addition to its catalytic kinase domain, it has four additional domains, SH2, 

SH3, and SH4. Most structural studies of c-Src have been focused on the kinase 

domain, as it expresses well and is easier to handle than full length c-Src, which is 

only expressed in its three domain (3D, SH2/SH3/kinase domain) version.32 

However, recent literature have begun to utilize 3D c-Src in more studies as it is a 

closer mimic to its natural form. 

The SH2 and SH3 domains appear to act as a regulatory element of c-Src 

activity.20,21,25 As such, these additional domains participate in various 

conformational structures, in what is aptly termed global conformations. 

Conformational changes in the kinase domain are transmitted to the SH2 and SH3 

domains causing a rearrangement in their positions and thus, forces a transformation 

in the global conformation.1,20,25 Two previous crystal structures (shown in Figure 
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1.5) captures these global conformations.25 The first exhibits the SH2 and SH3 

domains in a more "open" conformation wherein both domains are unorganized and 

laid out in a line. The second presents a more organized "closed" conformation, 

where the SH2 and SH3 domains are clamped down together along the side of the 

kinase domain. In cellulo, the C-terminus tail of c-Src can be phosphorylated (at 

residue Y530) by a C-terminus Src kinase (Csk). The SH2 domain has a small 

hydrophobic pocket wherein the phosphorylated tyrosine residue of the tail can bind 

tightly and initiates the closed conformation of c-Src. This acts as a regulatory 

 

 

mechanism of c-Src activity as the closed version of c-Src has drastically decreased 

catalytic activity compared to the open version.13,25,33–35  

c-Src is known to have PPIs, specifically ones that interacts with its SH2 and 

SH3 domains. Therefore, these open and closed global conformations can affect 

PPIs and thus, modulate its non-catalytic activity.36–38 One example is focal adhesion 

kinase (FAK). FAK is a known substrate of c-Src and binds to the SH2 and SH3 

domains. Therefore, an open conformation of c-Src would not affect FAK binding 

whereas the closed conformation could abolish its interaction. As such, both the SH2 

and SH3 domain act as method of regulation for not only c-Src kinase activity but 

its non-catalytic activity through structural conformational states.  

SH2 

SH3 

Figure 1.5: 3D wt-Src crystal structure of global conformational changes from more 

open to closed. Kinase domain is shown in white, SH2 domain in orange, and SH3 

domain in magenta. From left to right PDB code: 1Y57 and 2Src 

Kinase Domain 
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Consequently, different types of ligands were found to affect global 

conformations. A pulldown assay was utilized to assess these distinct global 

conformational changes. A SH2 peptide was linked to a bead and incubated with 3D 

Src and either a Type I, Type II, or c-helix-out inhibitor. The accessibility of the 

SH2 domain which is dependent upon whether c-Src is open (SH2 accessible) or 

closed (SH2 inaccessible) dictated the amount of protein that was pulled down which 

can then be directly correlated to differences in the global conformation. A type II 

ligand appears to force c-Src into an open conformation, type I, an apo conformation,  

 

 

 

 

 

 

and c-helix-out into a closed conformation (Figure 1.6). The results from this study 

suggest that through these stabilized structural changes, conformational selective 

nhibitors can modulate the non-catalytic activity of c-Src. The remaining questions 

then becomes does global conformations of c-Src influence non-catalytic activity 

and if so how. Answers to these queries could lead to a possible explanation to the 

role of c-Src and further our understanding of its participation in cancer progression.  

In regards to the proposed query, c-Abl kinase might provide some insight 

into how global conformational changes could affect non-catalytic activity. Like c-

Src, c-Abl is a protein tyrosine kinase that consist of a SH2 and SH3 domain that 

also act as a regulatory mechanism for its catalytic activity. However, more is known 

SH2 

SH3 

Kinase Domain 

Open 
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domai

n 

 

Apo 
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domai
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Closed 
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Type II 
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d 

domain 

 

Type I 
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d 

domain 

 

c-helix-out 

 

 

Dsdf 

 

d 

domain 

 

Figure 1.6: A cartoon representation of the stabilized global conformations observed in 

3D c-Src kinase, open, apo, and closed.   
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about c-Abl's role in driving oncogenesis as well as examples of its structural 

conformational affecting this change.  

Its auto inhibited state resembles the closed conformation of c-Src (Figure 

1.7). It is the loss of this closed conformational state, a direct consequence of fusing 

with the breakpoint cluster region (Bcr) protein to form Bcr-Abl that drives chronic 

myeloid leukemia. c-Abl's "open conformation" though takes on a different shape 

than c- Src's version and is a more organized structure. NMR has shown that c-Abl  

 

 

Adopts a "top hat" conformation, where the SH2 domain engages the kinase domain 

by sitting "on top", and this conformation is found to be responsible for activating 

c-Abl activity (Figure 1.7).39  As such, this SH2-kinase domain engagement is 

necessary to sustain in vitro and cellular activities and can be directly related to 

causing leukemogenesis. Specifically, it has been demonstrated that disrupting SH2 

from docking to the kinase domain inhibits Bcr-Abl kinase activity and 

transformation, leading to the loss of leukemogenesis. A previous literature study 

Closed 

Inactive 

Open/Top Hat 

Active 

Figure 1.7: c-Abl full length structure. On the left, is the closed/inactive form of c-Abl with the 

blue denoting the SH3 domain and the red is the SH2 domain. On the right is the active/open/”top 

hat” conformation. Only the SH2 and kinase domain were crystallized. Left, PDB: 2FO0 and Right, 

PDB: 1OPL. 
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further examined the global conformation of c-Abl, specifically this SH2-kinase 

domain "top hat" conformation.40 First, they found that the SH2-kinase domain 

interaction was crucial for c-Abl autophosphorylation. Similar to c-Src, c-Abl also 

has a tyrosine residue that can be phosphorylated/autophosphorylated on its 

activation loop, Figure 1.8. This leads to two possible conclusions, the  top hat 

conformation, being "open" affords better binding for c-Abl to bind itself or the top 

hat conformation forces the activation loop to be accessible for autophosphorylation.  

 

 

 

In a series of mutations found to stabilize and destabilize the top hat 

conformation, they were able to depict that it was indeed the activation loop 

accessibility being affected. In a catalytically dead SH2-kinase domain c-Abl where 

the top hat conformation can be stabilized, the activation loop was able to be 

phosphorylated by kinase domain (KD) c-Abl whereas in a top hat destabilized 

conformation, the activation loop was not phosphorylated (Figure 1.9). 

Figure 1.8: c-Abl kinase overlaid demonstrating the large dynamic movement and distance the 

the activation loop travels between DFG-in (blue) and DFG-out (red) conformation. Highlighted 

in green is the tyrosine residue that is phosphorylated. Top hat conformation of c-Abl could 

result in autophosphprylation at this tyrosine residue because it forces the activation loop into 

the DFG-in conformation (blue), allowing the tyrosine to be accessible. PDB: 2GQG (blue), 

1IEP (red) 
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Figure 1.9: Redrawn from Lamontanara et. al.40 Depicts the SH2 domain conformation is 

important in dictating activation loop conformation for phosphorylation of Y412. SH2-Abl kinase 

dead (D382N) was shown to be phosphorylated at Y412, demonstrating that the SH2 top hat 

conformation is necessary to force the activation loop into the correct conformation for 

phosphorylation by the added wt-Abl kinase domain. I164E-D382N, kinase dead mutation that 

destabilizes the top hat conformation displays no pY412, which reinforces the notion that the top 

hat conformation is necessary for the correct activation loop conformation for pY419.  

Kinase  
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II 
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II 

D382N 

(catalytically dead) 

I164E-D382N 

 (catalytically dead/ 

SH2 destabilized) 
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Figure 1.10: Redrawn from Lamontanara et. al.40 Diagram shows that DFG-in 

(dasatinib) and DFG-out (imatinib) inhibitors can affect the conformation of the 

activation loop as shown thru the amount of phosphorylation at Y412. Dasatinib, 

DFG-in inhibitors prime the activation loop in the correct conformation for 

phosphorylation at Y412 and the DFG-out imatinib does not.  

2xMyc-SBP 
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Dasatinib 

SH2-KD 

Imatinib 

SH2-KD 
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Interestingly, different types of ligands were found to perturb the phosphorylation 

state, though this result is not entirely without precedence. Crystal structures of c- 

Abl with the activation loop resolved shows its dynamic movement between two 

configurations (Figure 1.8). Each stabilized by a different ligand type, it 

demonstrates how a Type I or Type II ligand can influence the activation loop 

conformation and thus possibly affecting its phosphorylation state. Lamontanara et. 

al was able to prove this in a biochemical setting (Figure 1.10).40  

On the KD of c-Abl, Type I inhibitor dasatinib was found to increase 

phosphorylation of the activation loop, whereas apo and Type II inhibitor imatinib 

was not phosphorylated. With a SH2-KD c-Abl construct, which alone was able to 

rescue phosphorylation to the apo c-Abl version, the Type I inhibitor dasatinib was 

still phosphorylated whereas the Type II imatinib was not.  

The resulting findings suggest that the top hat conformation is not only 

important for catalytic activity but for the phosphorylation state of c-Abl, which 

further serves to increase kinase activity. Conformational selective ligands appears 

to have the ability to override the top hat accessible activation loop and thus can 

modulate the non-catalytic activity of c-Abl in this manner. Therefore, these 

examples here for c-Abl conformations provide an explanation of how it impacts 

phosphorylation state and thus how structure can affect its function. Given c-Abl's 

structural similarity to c-Src, it offers an insight into how c-Src's structural state can 

influence its own function. Chapter 2 describes these global conformational changes 

that occurs in c-Src, particularly those stabilized by clinical mutations. Perhaps these 

studies can lend some clarity into a possible role of c-Src in oncogenesis.  

Whereas Chapter 2 deals with understanding c-Src's role in cancer 

progression, Chapter 3 and 4 is more application based and focuses on utilizing past 

knowledge of c-Src in combating cancer. The premise of these chapters revolves 

around purposely exploiting the use of synergy in targeting cancer cells. 

Specifically, cancer cells that possess an overexpression of c-Src. Moreover, each 

of these chapters detail two separate approaches. Chapter 3 is a designed method to 

investigate the possibility of synergy with c-Src amongst other protein targets. Using 



 

16 

 

the resulting information, an inhibitor was chimerically designed to hit both targets. 

Chapter 4 details a more serendipitous approach to synergy, wherein c-Src was the 

original target of inhibition, but the surprisingly pronounced potency could not be 

explained by c-Src inhibition alone. Thus, another possible synergistic target was 

found upon closer examination of the inhibitor's off target.  

Although its role in oncogenesis hasn’t been fully elucidated, it has long been 

thought that the inhibition of c-Src alone isn’t sufficient enough to halt and/or 

reverse the growth of cancer in patients.14 Using compound 3.1, a selective c-Src 

inhibitor developed in our lab, it was found that the selective inhibition of c-Src 

alone is not potent enough in killing cancer cells.41  Therefore, while the inhibition 

of c-Src itself may aid in disrupting the ability of cancers to progress and thereby, 

help prevent metastasis, it is more likely that its full therapeutic potential will be 

realized in combination with the inhibition of another anti-cancer target.23 We 

decided to explore combination therapy to determine if it could be a successful 

method in taking advantage of the effects that inhibition of c-Src could provide while 

being able to effectively kill cancer cells in cellulo.  

One particular secondary target of interest are histone deacetylases 

(HDACs). HDACs are a current popular target for combination therapy, as the first 

HDAC inhibitor, Vorinostat (SAHA), was recently FDA approved in 2006. 

Targeting HDACs alone have proven to be a successful anti-cancer target, as the 

onset of aberrant activity has been associated with cancer.42,43 Evaluation of HDAC 

inhibitors alone has shown promising induction of growth arrest, differentiation, and 

apoptosis in vivo and in vitro, however when paired with other anti-cancer drugs, 

the results demonstrate an increase in efficacy and potency.44 Current studies show 

that HDAC inhibitors have promising synergistic effects with other anti-cancer 

agents on the market and thus fueling interest in the exploration of its use in 

combination therapies for increased efficacy against a variety of cancers. Notably, 

it has been effective when utilized in combination therapy towards cancers that have 

developed drug resistance, such as in the tyrosine kinase inhibitor imatinib (Gleevec) 

resistant chronic myeloid leukemia.45 Finding an ideal synergism with c-Src in 

cellulo has been the drive for our work as there are previous literature studies 
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suggesting that HDAC inhibitors directly repress the SRC gene transcription and 

thereby down regulating c-Src.46 

The deacetylation and acetylation of the lysine side chain of proteins are 

mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) 

respectively. These enzymes are involved in the post-translational modification of 

mainly histones, their known primary target, as well as other non-histone proteins 

such as the oncosupressor p53.42,43 A balance between substrate acetylation and 

deacetylation is thought to be an on and off switch that is in part responsible for the 

regulation of transcription and other nuclear events as well as managing several 

other cytoplasmic proteins.47 As such, the onset of aberrant activity or imbalance 

between HDAC and HAT has been associated with cancer.42,43,48  Most notably, the 

functional inactivation of HATs or overexpression of HDACs are found to mediate 

tumor cell proliferation.42,49 Initial evaluation of histone deacetylase inhibitors 

(HDACi) has shown promising induction of growth arrest, differentiation, or 

apoptosis in vivo and in vitro without affecting healthy cells, making it an attractive 

target in cancer.50–52 Because of these successful results against tumor cell 

proliferation, HDACi are currently under study in combination with other cancer 

drugs to evaluate any positive synergistic effects.  

  Despite some success of using a combination drug therapy, there are 

disadvantages with this approach such as patient compliance, cost, increased side 

effects, and drug-drug interactions (DDI).53 A new strategy to circumvent these 

issues is the design of dual inhibitor drugs. Such inhibitors are designed to possess 

two pharmacophore for two drug targets.54 Not only is the dual inhibitor inherently 

more efficacious (targeting two different cancer pathways), but also lowers the 

likelihood of resistance, has better pharmacokinetics, no DDI, and less side effects. 

The successful synergism shown in combining a PTK inhibitor, imatinib, and 

Vorinostat, holds promise in the design of a dual ligand for both HDAC and PTK 

that shows similar if not better response.45 Recently, there has been a successful 

attempt of a dual HER2/EGFR and HDAC inhibitor which is at present in clinical 

trials.55 Therefore, in an attempt to take advantage of both combination drug therapy 
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and the budding successful of a dual ligand, Chapter 3 entails a chimeric design of 

a c-Src/HDAC inhibitor.  

Metastasis is not a term a patient wants to hear in regards to their cancer. It 

is an extremely aggressive stage of cancer with nearly a 90% fatality rate.56 One of 

the most commonly known cancers associated with metastasis is breast cancer 

mainly due to its consistent repeat as the second leading cause of death of women in 

the United States.57–60 The three most prevalent types of breast cancers are 

ER+/PR+, HER2+, and ER+/PR+/HER2+. ER+ stands for estrogen receptor, PR+ 

as progesterone receptor, and HER2+ refers to EGFR kinase. In these types of 

cancers, those particular hormone receptors are overexpressed and as such, are the 

driving force for those breast cancers. Hence the specific targeting of these 

overabundant species have proven to be an effective treatment. However, a fourth 

category of breast cancer, triple negative breast cancer (TNBC), aptly named 

because of the lack of ER/PR/HER2 hormone receptor expression, has no known 

driving force and thus, no known target. This is particularly disconcerting as TNBCs 

are notoriously lethal due to their high risk of metastasis and proclivity to rapidly 

reoccur.61–65 Unfortunately, 10-15% of breast cancers fall into this subcategory and 

the lack of treatment target for these patients often results in a poor prognosis. There 

are no FDA-approved targeted therapies.66 Treatment is entirely dependent upon 

cytotoxic agents, but even such methods are not effective as non-metastatic TNBC 

reoccurs in about 40% of the patients, a much higher rate than in HER2+ breast 

cancer, which is less than 25% reoccurrence. There is evident need for a specific 

therapeutic against TNBCs. Chapter 4 addresses this issue and proposes c-Src as a 

target of choice.  

A previous in vitro study involving gene expression profiling had identified 

dasatinib, a c-Src tyrosine kinase inhibitor, to be sensitized to TNBC tumors and 

was demonstrated to reduce cell proliferation. As such, the results from the study 

validated c-Src as a viable target for TNBC. As mentioned (vide supra), c-Src is a 

ubiquitously expressed membrane-associated non-receptor kinase. c-Src participates 

in signaling pathways for adhesion, migration, and invasion, which are all 

characteristic functions hacked by TNBC. Thus, c-Src, with high expression levels 
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found in TNBCs, has been implicated in a role in cancer progression of TNBC 

cancer cell lines, making it an attractive therapeutic target.67–70  

Unfortunately, targeting of c-Src using existing FDA approved inhibitors for 

c-Src have not translated successfully to the clinical setting. Patients with advanced 

or metastatic TNBC showed little improvement while on dasatinib or bosutinib in a 

recent phase II trial.71–73 These results are puzzling as in vitro studies have proven 

targeted c-Src inhibition to be effective against TNBCs. In an effort to understand 

this perplexing issue, our lab has decided to design our own c-Src ligand. It is 

possible that the promiscuous nature of dasatinib and bosutinib for other kinases 

besides c-Src could have negated any beneficial effects it demonstrated in in vitro 

studies.  
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Chapter 2  

Exploring Global Conformations of c-Src: Clinical and Non-Clinical Mutations 

 

2.1 Introduction 

Our laboratory is interested in elucidating the structure and function of 

protein kinase c-Src, specifically its effect in oncogenesis. Discovered in 1978, c-

Src, was the first identified protein tyrosine kinase (PTK) which was later implicated 

as a proto-oncogene. c-Src is believed to associate with a number of receptor 

tyrosine kinases (RTK) such as EGFR and PDGF, which serves in part as their 

regulator and also as a co-transducer of their originating signals.1 This activation of 

c-Src results in the regulation of normal and oncogenic processes by affecting its 

downstream targets such as focal adhesion kinase (FAK), Ras, Stat3, and 

phosphoinositide 3-kinase (PI3K) and plays an integral role in cell proliferation, 

differentiation, division, and survival, as well as cell motility and adhesion.2,3 As 

such, the dysregulation of c-Src has been implicated in cancers including breast, 

colon, pancreatic, and lung cancer and consequently, multiple studies conducted 

have validated c-Src as a target for the treatment of such cancers.3  

However, despite the wealth of research involved in c-Src, it is still poorly 

misunderstood, especially its role in oncogenesis.4,5 Its overexpression is frequently 

observed in various cancers and is usually correlated with increased malignancy and 

metastasis resulting in poorer patient prognosis.4,6,7 Though when this 

overexpression is replicated in in vitro experiments, the results confusingly 

demonstrates that the overabundance of c-Src alone is only weakly oncogenic.8 

Furthermore, clinical mutations of c-Src are rarely overactive which is usually 
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prototypical for the transformation into cancerous cells.9–13 Herein lies the 

disconnect, c-Src is crucial in regulating important normal cellular functions which 

then rationally correlates with observations of its implication and maintenance of 

several human cancers, yet displays a poor innate ability as a transformative key 

towards cancer. The following assumes that c-Src is not a dominant/lone 

transforming factor.14 It is more likely that overexpression of c-Src leads to the 

dysregulation of other signaling pathways in which another target is the true 

dominant transformative switch or it’s a combination of deregulated targets resulting 

in a transformative affect to cancer.14 In this regard, the question becomes how is c-

Src involved in influencing those pathways? Could this help explain a role c-Src 

plays and its frequent observation in affecting oncogenesis?  

The existence of clinical c-Src mutations were identified in the Catalogue of 

Somatic Mutations in Cancers (COSMIC) database which encompasses over 

542,000 cancer tumors and 947 human cancer cell lines.15 Why are there mutated 

forms of c-Src if not to participate in cancer maintenance and/or progression? 

Overactive c-Src mutants that have been previously found to be involved in colon 

cancer are rare.9 However these clinical mutations of c-Src from the COSMIC 

database have not been characterized, and so the reason for their existence, whether 

or not they are transformative or occur randomly is unknown.15,16 If these mutants 

do not result in over activity, perhaps there are other aspects of c-Src dysregulation 

they affect and could lead to a deeper understanding in the role that c-Src plays in 

oncogenesis. This chapter will explore these clinical mutations and look to explain 

their possible role in c-Src dysregulation. 

c-Src native structure in cellulo contains 4 domains, SH4, SH3, and SH2 

domain with a long polypeptide linker connected to the catalytic kinase domain 

(SH1). The SH2 and SH3 domains will be the main focus in this chapter as c-Src is 

only biochemically expressed in its 3 domain (3D) form.17 The SH2 and SH3 

domains act as a regulatory element of c-Src by assuming different configurations 

in relation to the kinase domain in what is described as its global conformation.18–20 

There are two main conformations of c-Src, an open/active conformation, in which 

the SH2, SH3, and kinase domain are disorganized in space and a closed/inactive 
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conformation, where the SH2 and SH3 domains are held clamped down alongside 

the kinase domain (Figure 2.1). 

 

 

 

c-Src is normally maintained in an inactive/closed state, but transitions into 

the active/open configuration during cellular events.2 This switch between open and 

close is one method in regulating c-Src functions (as this not only affects catalytic 

activity but protein-protein interaction).19,20 The most well-known event controlling 

this switch is the phosphorylation state. The classic sites of phosphorylation on c-

Src are Y419 on the activation loop and Y530 on the C-terminus tail. 

Phosphorylation either by itself or other kinases at Y419 results in an open and fully 

catalytically active c-Src whereas phosphorylation at Y530 by Csk leads to the 

close/inactive conformation.1,20–22 Tail phosphorylation at Y530 allows the SH2 

domain, which contains a shallow phosphate pocket, to bind tightly, collapsing the 

domains together.23 Consequently, the opposite effects occur upon 

dephosphorylation by phosphatases at both sites. The balance between 

phosphorylation and dephosphorylation is the regulatory mechanism turning c-Src 

catalytic function on or off.1,21  

As such, disruption in this balance leads to dysregulation of the kinase and 

has been observed in cancer.9 Downregulated Csk and upregulated phosphatases for 

the tail pY530 have been found in cancer which could prevent c-Src from being 

Figure 2.1: The only two known crystal structures of 3D Src. Kinase domain is in white, SH2 is in orange, 

and SH3 is in magenta. The structure on the left is bound to a Type I ligand and is in the more open 

conformation than the structure on the right, which is bound with PS, is in the closed inactive 

configuration. Left PDB: 1Y57 and Right PDB: 2Src.  

SH2 

SH3 

Kinase Domain 
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turned off.24–26 There is also an abnormal mutation where the tail phosphorylation 

site is entirely truncated resulting in a constitutively active kinase form known as v-

Src.4 First, found to affect chickens, it is a retroviral oncogene which triggers 

uncontrolled cell growth leading to cancer (Rous sarcoma virus). The truncated tail 

mutation was later identified to happen in c-Src as well and found to be activating, 

transformative, and tumorigenic in some cases of advanced human colon cancer.9 

All of these dysregulated form above describes how phosphorylation states at these 

classic sites affect conformation and thereby catalytic activity precipitating into 

oncogenesis.  

Phosphorylation states not only regulate catalytic activity but dictate 

different conformational states, thereby affecting intramolecular activity or protein-

protein interactions (PPIs).27–30 Both the SH3 and SH2 domains serve as binding 

sites for other c-Src partners such as FAK, RACK1, PDGFR.31,32 Therefore, the 

accessibility to these domains facilitated by global conformational changes directly 

influences these PPIs and thereby signaling pathways that c-Src binding partners 

control. As such, a bidirectional regulatory mechanism has been proposed, in which 

the regulation of catalytic conformation also regulates PPI activity (non-catalytic 

activity) and vice versa wherein the regulation of PPI modulates catalytic 

activity.33,34  

A third aspect, often overlooked in c-Src regulation is how these 

conformations alter its location in the cell. Many of c-Src's protein partners exist in 

various locations and as a result, how c-Src signals other pathways is based on its 

proximity to its substrates/protein binding partners. Natively, c-Src remains in its 

closed form in the cytosol, specifically at perinuclear sites of the cell.4 Upon its 

activation, by the dephosphorylation of the tail Y530 and then phosphorylation at 

Y419, causes a more open/fully activated c-Src. It is subsequently transported and 

attached to the plasma membrane allowing it to interact with its protein partners, 

such as membrane bound receptor tyrosine kinases and integrins, either through 

catalysis or PPIs leading to the start of a signaling cascade.  
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In short, the entire story discussed thus far about c-Src’s regulation 

mechanism can be summarized around three main factors, location, phosphorylation 

state, and conformational state. Each one of these facets participates in how c-Src is 

regulated in the cell, Figure 2.3. In Figure 2.3, the arrows indicate a direct causation 

effect, hexagons are the resulting secondary effect, and the green circle is the final 

end result. The location of c-Src influences its proximity to substrates which dictates 

what substrates c-Src interacts with, ultimately resulting in what pathways get turn 

on and off. The localization of c-Src is determined by its phosphorylation state which 

directly affects conformational state, a physical switch earmarking c-Src’s 

destination in the cell. Phosphorylation state also affects catalytic activity. In turn, 

conformational state can affect how other protein binding partners can interact with 

it as well as indirectly affecting catalytic activity.  

 

  

Figure 2.2: Cartoon diagram depicting c-Src regulatory mechanism involving c-Src’s 

open/closed conformations resulting from different phosphorylation states. Inactive c-Src is 

usually found in the cytosol and is a result of phosphorylation at Y530 from Csk. This causes 

the clamping down of both SH3 and SH2 domains which configures c-Src in a closed 

conformation. Dephosphorylation of Y530 and/or phosphorylation of Y419 on the activation 

loop targets c-Src to the membrane resulting in a fully activated kinase, where it can interact 

with its protein binding partners thru scaffolding effects and/or phosphorylate its other 

substrates.   
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In terms of clinical mutations, the over-activity of c-Src is rarely seen to be 

responsible for oncogenesis, and thus not the main contributing factor in its 

development. However, from this regulation map, it appears that one other 

possibility is left in regards to how clinical mutations could be disrupting the 

regulation mechanism. We speculate that these clinical mutations can disrupt 

conformational states and in doing so, bypass the cell's ability to directly dictate  

 

 

localization, catalytic activity, and PPIs by interrupting the native phosphorylation 

state balance. This is indicated in red arrows in Figure 2.3 and is what this chapter 

will attempt to explore. However, for this theory to be possible, the first fundamental 

issue needs to be addressed, do mutations affect global conformations?  

2.2 Designing an Assay to Identify Global Conformation 

From the COSMIC database was characterized 19 somatic mutations of the 

SRC gene, Table 2.1. We also looked at 16 other non-clinical mutations of c-Src. 

These mutations have been utilized in various structure-function studies of c-Src 

kinase domain. We were curious if these kinase domain mutations had a distant  

Figure 2.3: Chart of three main regulation mechanism of c-Src, localization, phosphorylation state, and 

conformational state. Black arrows indicates an effect that directly contributes as a result. Hexagons 

shows a secondary effect and the green circle is the final aggregate effect which is usually the signal 

transduction pathway that c-Src is involved in gets turned on/off. The red arrows are effects that will be 

investigated in this chapter as we are interested in whether or not mutations effect conformational state 

and thereby disrupts c-Src’s regulation mechanism.  
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effect on global conformations. If this holds true, it might hold unsuspecting 

implications for c-Src studies in cellullo, specifically in cases where these kinase 

domain mutations have been substituted in place of wt-Src. To evaluate these 

Increasing incubation time 

Figure 2.4: Diagram of thermolysin protease assay. c-Src mutations were incubated 

with thermolysin at various time points and then loaded and ran on an SDS-PAGE gel 

for analysis. An example gel is shown. As incubation time is increased (starting from 

left 0min to right), depending on the conformational state, either 3D Src band starts to 

decrease (open) or stays the same (closed). A more close conformation would show a 

slower rate of cleavage (dashed red line) as oppose to a more open conformation, which 

would have a faster rate of cleavage.  

3D-Src 

Open constructs = Faster cleavage  
Closed constructs = Slower cleavage 

Thermolysin 

SH3 
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Kinase 
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mutational effects on conformation, we modified an existing assay previously 

developed to explore the conformational state of 3D c-Src. 

Back before any crystal structure of 3D c-Src was solved and knowledge of 

global configuration was known, MacAuley et. al designed a protease assay to probe 

the conformations.35 They thought the catalytic activity of c-Src is regulated thru 

conformational changes, and thus wanted to investigate. The structure of 3D Src 

possesses polypeptide linker regions to connect all three domains together and 

accessibility to these linkers, specifically the SH2 linker (the longest linker, which  

 

 

 

connects the kinase domain and SH2 domain, (shown in red in Figure 2.5) they 

reasoned, depended on the changes in conformation. Therefore, they utilized 

proteases, which cleave peptide bonds, as a tool to evaluate linker exposure and 

correlated the cleavage pattern to conformations. They assessed three different 

forms of 3D Src, phosphorylated Y530 (pY530), Y530F, and wt-Src (Y530 

dephosphorylated) using mainly trypsin and then thermolysin and pronase E. pY530 

appeared less receptive to proteolysis than either Y530F and wt-Src which were both 

similar, suggesting there were two different conformations between inactive  

Figure 2.5: Cut site is shown to be between G257 and L258 and confirmed by mass 

spec. The cut site residues are shown in yellow and the linker is highlighted in red. PDB: 

1Y57 

Linker 
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CLINICAL  NON-CLINICAL 

D407H I339W 

R483W K298M 

R163W L320I 

K298E F408G 

T341M T341I 

T341R F408A 

D521N A406S 

I113F T341M-A406S 

P307R T341G 

P171Q Y530F 

V140M Y419F 

E527K D407N 

Q529H W263A 

D120N  

K298R  

R98W  

Table 2.1: List of mutations. Ones on the left are somatic clinical mutations found from Catalogue of Somatic 

Mutations in Cancers (COSMIC) and Cancer Cell Line Encyclopedia (CCLE) and ones on the right are non-

clinical mutations.  

 

(pY530) and active (wt-Src and Y530F) c-Src. Both thermolysin and pronase E 

displayed similar results compared to trypsin. The varying cleavage products are due 

to disparate cut sites (Cut site at C-terminus tail (thermolysin and pronase E) instead 

of the linker between SH2 and kinase domain (trypsin)). As such, they concluded 

that pY530 inhibits kinase activity by exhibiting a configuration in which the C-

terminus tail was hidden as neither thermolysin or pronase E could access the 

cleavage site.  

We wanted to take this similar concept using thermolysin to evaluate how 

clinical mutations affected c-Src conformation.  Instead of looking at substrate 

products, we measured the rate of cleavage, quantified by SDS-PAGE over a period 
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of 4 hours into half-lives (Figure 2.4). Thru numerous optimizations, we found the 

concentration of thermolysin which only cuts at the SH2 linker where the SH3 

domain binds and was confirmed by mass spec (Figure 2.5). Therefore, by taking 

advantage of the SH3 linker accessibility, which should be different depending on 

the conformation, as a faster rate of cleavage, and thus smaller half-life would 

indicate an open conformation as the linker is more exposed and vice versa. Using 

three known control c-Src constructs, pY419, apo wt-Src, and pY530, the method 

was validated and demonstrated correlation between half-life and three different 

conformations (Table 2.2) that corresponds to open/closed/apo.  

2.3 Assay Results and Discussion 

Next, we evaluated all 29 mutations in the thermolysin assay and results are 

shown in Figure 2.6 and Table 2.3. Gratifyingly, mutations do stabilize different 

global conformations and exhibits a gradient from fully open to closed and various 

degrees of openness and closeness in between. Altogether, it can be rationalized that 

given the flexibility of c-Src, it must inherently lead to a myriad of transient 

conformational states.   

As a secondary assay to further confirm the results seen from the thermolysin 

assay, we decided to use a fluorescence polarization (FP) assay using a FITC labeled 

SH2 optimal peptide (EPQpYEEIPIYL). The FITC-SH2 peptide binds to the 

phosphotyrosine pocket of the SH2 domain of c-Src. Similar in concept to the 

thermolysin assay, the accessibility to this SH2 pocket would allow us to infer the 

global conformation of c-Src. For instance, tighter binding of the FITC-SH2 peptide 

would indicate an open conformation as the SH2 domain should be fully accessible 

and a close conformation would be a decrease in binding. To validate the FP assay 

and allow us to establish a correlation between Kd values and open/closed 

conformations, the three known control c-Src constructs, pY419, apo wt-Src, and 

SH2-Eng was utilized. The results are shown in 

Table 2.4. Both Kd values for wt-Src and SH2-Eng correlated well with their 

conformational state. The closed conformation did not show any binding compared 

to wt-Src (729 nM). However, results for pY419 were surprising, with a Kd value 
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~10 M (a full Kd curve could not be generated due to limited kinase concentration). 

In theory, binding of the SH2-peptide should be better than wt-Src because of the 

increased SH2 accessibility of a more open conformation. We hypothesized that the 

large concentration of pY419 c-Src causes aggregation/dimerization thru a possible 

interaction of the SH2-domain of c-Src with the pY419 of another c-Src. We also 

had difficulty in preparing pY419 thru autophosphorylation, due to precipitation of 

the kinase, which lends further credence to the aggregation theory. It wasn't until the 

addition of triton that we could successfully generate useable amount of pY419. In 

literature, Irtegun et. al. had also proposed that the open state of c-Src tends to 

dimerize upon autophosphorylation at Y419.18 Therefore, despite an open 

conformation, the dimerization/aggregation of pY419 would prevent the FITC-SH2 

peptide from binding tightly, explaining the ~10 M Kd of an open state c-Src 

construct. 

Due to the limited amount of protein available, we were only able to measure 

the Kd value of some mutations, though there are examples from each 

open/apo/closed (identified thru thermolysin assay) category, which we believed 

were sufficient to back up the thermolysin assay. The results are shown in Figure 

2.7 and Table 2.4. Surprisingly, it appears that outside of some exceptions, the Kd of 

the FITC-SH2 peptide appear to vary with mutations, but do not correlate with half-

life. These results lead us to conclude that the FP assay using the FITC-SH2 peptide 

cannot be used to identify conformational states. For the most part, Kd values are 

nearly similar between open and closed conformation with an exception with T341R 

and K298M, which think could be attributed to mutational effects on the SH2 

binding pocket. Therefore, the Kd values which would indicate SH2 accessibility, 

cannot be correlated to an open/closed configuration. Upon further investigation of 

the literature, an experiment done by Maly et. al. is possibly better at showing 

whether or not SH2 domain accessibility can be correlated to open/closed 

conformation. It appears to indicate that despite the various open/closed 

configuration generated by conformationally selective inhibitors, access to the SH2 

domain is not affected. Taken together, the global conformation of c-Src isn't 

affecting SH2 domain accessibility. In other words, the SH2 domain is in a  
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c-Src constructs Half Life (min) Conformation 

pY419 12.21 Open 

Wt-Src 32.96 Apo 

Src-SH2-Eng 356.4 Closed 

pY530 240.9 Closed 

 

 

Table 2.2: c-Src constructs from literature used as controls to correlate thermolysin half-lives to conformational 

state. Cartoon picture of what past literature has depicted as open, apo, and closed.45 
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Figure 2.6: Thermolysin Half-Life of clinical and non-clinical mutations. All values were normalized to w-

Src and depicted on a log scale. Negative values typify more open conformations whereas positive values 

signal more closed.  
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Mutation Half-Life (min) Mutation Half-Life (min) 

W121R 2.3 D407H 12.5 

W263A 3.3 D407N 12.7 

R163W 3.8 R483W 18.1 

R98W 9.3 Y419F 19.3 

K298M 10.7 T341M-A406S 22.9 

D120N 11.1   

pY419 12.2   

    

V140M 28.5 Y530F 34.7 

A406S 30.7 I339W 34.8 

L320I 30.8 T341I 34.8 

I113F 30.9 D521N 36.5 

F408G 31.4 P171Q 41.19 

Wt-Src 32.9 T341M 43.3 

    

E527K 50.2 Q529H 141 

P307R 61.6 F408A 191.6 

K298E 66.5 pY530 241 

T341G 71 pY419-pY530 258 

K298R 92 SH2-Eng 356.4 

T341R 105.7   

    

Table 2.3: Thermolysin assay half-life values grouped around the three control c-Src constructs, wt-Src, pY419, 

and pY530 (highlighted in red).  

 

configuration that allows the pocket to be accessed, regardless of the conformation.  

Despite the FP assay not being able to be used to indicate open/closed 

conformation, the thermolysin data still indicates that mutations, both clinical and 

non-clinical, were able to affect the global conformation of c-Src. Next, we decided 
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to further characterize these mutations and look at ways in how conformations could 

affect c-Src function.   

Since the thermolysin assay still indicates that mutations, both clinical and 

non-clinical, were able to affect the global conformation of c-Src, which addresses 

our first fundamental issue, we decided to further characterize these mutations and 

look at ways in how conformations could affect c-Src function. Going back to Figure 

2.2, if conformations were to dysregulate c-Src function, it could do so thru catalytic  

 

 

 

 

 

 

 

 

 

Figure 2.7: FITC-SH2 Fluorescence Polarization Assay on select c-Src mutation constructs. Kd were taken 

and normalized to wt-Src (apo conformation) which is set to 1. Half lives from thermolysin assay is shown 

above the bars for each mutation.  
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c-Src Constructs Kd (nM)                       Half Life (min) 

Wt-Src 729 ± 87 33 

pY419 ~10,000 12.2 

T341R 3472 105 

SH2-Eng Does not bind 356.4 

K298M 2100 ± 340 10.7 

D407H 146 ± 12 12.5 

Y419F 682 ± 47 19.33 

R163W                   397 ± 89 3.8 

I113F 332 ± 18 30.8 

F408G 297 ± 51 31.4 

K298E 192 ± 21 66.5 

F408A 699 ± 32 191.6 
 

 

Table 2.4: Select mutations representing open/apo/closed conformation were used in FP assay to evaluate SH2 

domain accessibility. Binding affinity is in Kd (nM).  Half lives from thermolysin assay shown in second column.  

activity, PPI's and native phosphorylation state balance, which would ultimately 

affect localization. We speculate that these clinical mutations can disrupt 

conformational states and in doing so, bypass the cell's ability to directly dictate 

localization, catalytic activity, and PPIs by interrupting the native phosphorylation 

state balance. We were curious if in general, different conformational states had an 

effect on catalytic activity. The catalytic activity of c-Src can be regulated thru 

phosphorylation states. It has been found that phosphorylation at Y419 on the 

activation loop leads to a fully catalytically active c-Src whereas phosphorylation at 

Y530 on the C-terminus tail greatly decreases the activity. Coincidentally, pY419 

results in an open conformation and pY530 stabilizes a closed conformation which 

has led many to believe that the changes in conformational states, triggered by 

phosphorylation, plays a role in affecting catalytic activity. As such, we were 

interested to see if our mutation stabilized conformations would have a similar effect 

on catalytic activity, which would allow us to explore if catalytic activity could be 

effected by conformations alone. The relative catalytic activity was measured using 

Vmax values and Km of both ATP and peptide substrate were assessed as well. Our 
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three control constructs, pY419, wt-Src, and pY530 were measured first and agrees 

with previous literature results.36,37 pY419 Src, which is a known open construct, 

displays 4.3-fold higher activity than wt-Src which is 2.2-fold active than pY530 Src 

(closed) and results shown in Table 2.5. It is also possible that open conformations 

have increased affinity for ATP and/or substrate peptide over the closed form, 

explaining the higher activity. The controls for open (pY419), apo (wt-Src), and 

closed (SH2-Eng and pY530) having varying affinity for ATP that does correlate 

with their conformational state. pY419 has ~2-fold increase binding to ATP than wt-

Src whereas SH2-Eng and pY530 display ~3-fold and nearly ~6-fold decrease 

binding to ATP respectively.  

2.4 Activity Assay Results and Discussion 

Next, mutant c-src was evaluated and the results are compiled in Table 2.6. 

Not all mutations could be tested as some mutations happened to abolish 

catalytically important amino acid residues. Unfortunately, there were no noticeable 

trends associated with conformational states. Open state mutations did not bind 

Kinase Wt-Src pY419 pY530 

Vmax 56 ± 6 239 ± 8 25 ±6 

ATP KM (µM) 51 ± 14 28 ± 5 340 ± 99 

Substrate KM (µM) 43 ± 2 169 ± 19 108 ± 28 

 

 

ATP or peptide substrate tighter than apo state mutations or closed states. Vmax 

values also show no correlation in open conformation being more active than their 

apo and closed counterparts, Figure 2.8. Upon further examination though, 

discrepancies between the control c-Src constructs and mutations can be explained. 

We believe the differences in ATP/peptide substrate and Vmax values are due to the 

individual mutations itself and therefore cannot be correlated to their 

open/apo/closed conformations. Oftentimes, these affects are seen in mutations on 

just the kinase domain alone. Our control c-Src construct's conformations are 

stabilized through their post-translational modifications and do not contain any 

Table 2.5: Vmax, ATP and peptide substrate KM values for the three control c-Src constructs, pY419 (open), 

wt-Src (apo), and pY530 (closed) 
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mutated residues. As such, their Vmax and affinity values can be correlated to their 

configured states. Unfortunately, we were unable to evaluate global conformational 

effects alone on catalytic activity since decoupling mutation and phosphorylation 

effects were not possible.  

A couple of other mutations of interest are V140M, P307R, and W121R. 

These clinical mutations display nearly 2-3 fold increase in catalytic activity and 

slightly better binding affinity to ATP compared to wt-Src. It would be of interest to 

see if these catalytically more active mutants are transformative since the 

hyperactive v-Src mutation leads to cancer. 

2.5 Investigating pY419-pY530 

However, there appears to be an interesting case, hinted throughout several 

literature articles, that phosphorylation states can indeed "override" most 

conformational effects on catalytic activity.18,33 Here, pY530 is demonstrated to 

have little catalytic activity, and thru thermolysin assay, assessed to be in a closed 

conformation. Therefore, the assumption has been that a closed conformation, for 

the most part equals inactivated kinase. As previously observed, however, an 

additional phosphorylation at Y419 on pY530, which has been found in a cellular 

study, retains activity despite its closed state.18 We decided to evaluate this 

biochemically and generated a pY530-pY419 c-Src construct. pY419 does indeed 

"rescue" activity, with a nearly 5-fold increase in Vmax compared to pY530 alone 

and surprisingly, a 2-fold increase above wt-Src. Activity of the double 

phosphorylation still remains less active than pY419 alone.  

  A couple studies by Gonfloni et. al. and Irtegun et al. took a closer look at 

why a "closed" conformation would still be active despite other literature articles 

describing that the closed conformation, involving the clamping down effect of SH2 

and SH3 domains, actually results in a physical distortion of the ATP pocket, thereby 

prohibiting ATP binding and ADP release.18,33,36 In observations from their expt.  
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Mutation ATP KM (µM) Substrate KM (µM) Vmax 

pY419 28 ± 5 215 ± 47 239 ± 8 

R483W 62 ± 14 55 ± 15 35 ± 6 

R163W 31 ± 4 102 ± 7 50 ± 5 

W121R 20 ± 4 101 ± 26 128 ± 21 

R98W 34 ± 5 42 ± 4 74 ± 7 

W263A 7 ± 3.5 65 ± 14 16 ± 2 

Y419F 46 ± 1 99 ± 12 126 ± 14 

    

Wt-Src 51 ± 14 43 ± 2 56 ± 6 

I113F 111 ± 12 24 ± 4 30 ± 5 

V140M 38 ± 3 104 ± 8 152 ± 1 

Y530F 54 ± 4 155 ± 14 106 ± 8 

T341I 33 ± 4 106 ± 17 58 ± 7 

D521N 81 ± 9 83 ± 8 29 ± 1 

P171Q 22 ± 6 142 ± 29  115 ± 28 

T341M 17 ± 3 53 ± 7 54 ± 5 

E527K 95 ± 5 78 ± 24 28 ± 10 

P307R 17 ± 5 222 ± 23 µM 23 ± 2 

    

SH2-Eng 150 ± 4 58 ± 10 6.5 ± 0.5 

pY530 340 ± 99 108 ± 28 25 ± 6 

Q529H 14 ± 4 89 ± 9 49 ± 11 

T341R 5.5 ± 0.9  48 ± 6 17 ± 1.4 

pY419-pY530 79 ±17 96 ± 6 118 ±24 

pY530-pY530-R163W 74 ± 4 82 ± 11 169 ± 13 

 

 

 

Table 2.6: ATP and substrate peptide KM and Vmax values of all active mutations 
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Irtegun et. al. concluded, however, that c-Src might have a complex multi-state 

conformational states that regulate activity instead of the traditional "open" and 

"closed" states. Their conclusion arises from other studies of another Src family 

Figure 2.8: Vmax (RFU/sec) evaluated for those mutations with catalytic activity. Values were normalized 

to wt-Src which was set to 0. Higher catalytic activity compared to wt-Src are positive numbers and lower 

activity than wt-Src are negative numbers. Half lives from thermolysin assay added for each mutation and 

shown in colored bar graphs. Blue: closed, Black: Apo, and Orange: open.  
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kinase, Hck, which is shown to be activated by two different mechanisms.38,39 The 

first involving displacement of the SH3 domain by high-affinity SH3 ligands such 

as the Nef protein without, most interestingly, displacing the SH2 domain interaction 

with the C-terminal tail. Therefore, in this supposedly "closed" inactive 

conformation, which they suggest is most likely an intermediate conformation 

between fully open and fully closed, Hck is actually active. The second, is a reverse 

role of the domains, whereby the displacement of the SH2 domain with the SH3 

domain still bound results in Hck activation. Taken together, this suggested that the 

proposed regulation mechanism of an open and closed conformation correlating to 

an active and inactive kinase respectively, is too simple of a model to encompass 

what has been observed.18 Also, this suggest that the different "new" conformations 

that have been found in Hck could happen in c-Src as well. Not surprisingly then, 

according to Gonfloni et al., these conformations do exist in c-Src.33 In their 

pulldown experiments using a resin coupled SH3 optimal peptide, they found a 

higher amount of pulldown pY530-pY419 compared to pY530 c-Src. This suggested 

an increased accessibility of the SH3 domain of the doubly phosphorylated c-Src 

and hence this supposedly "closed" conformation is actually more like the 

intermediate conformational state described in Hck-Nef activation.38  

Interestingly, and perhaps rather confusingly, our thermolysin assay data of 

pY530-pY419, which should have shown a faster half-life due to the increased 

accessibility of the SH3 domain and thus indicating an open conformation, instead 

showed an extremely long half-life similar to pY530 and SH2-Eng, two closed c-

Src constructs (Table 2.3). These results suggest a few things. Data from the 

thermolysin assay can actually give a crude physical image of global conformation, 

similar to SAXS and Hydrogen/Deuterium exchange MS techniques. Because 

thermolysin is a protease, it requires less steric hindrance to access the cleavage site 

on the SH2-linker and therefore cannot efficiently compete off a bound SH3-

domain. Therefore, the long half-life of pY530-pY419 is an actual reflection of a 

still bound SH3-domain correlating to a closed global conformation.  

The previous assumption that pY530-pY419 is most likely an intermediate 

state and not an actual closed state results from using a resin-bound SH3 optimal 
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peptide to look at SH3 domain accessibility. Because the resin bound SH3 peptide 

is small, it has the ability to compete with the SH2-linker for binding to the SH3 

domain, thus making pY419-pY530 look artificially more open. In short, just 

because changes to the kinase domain, like phosphorylation of Y419 on pY530 can 

certainly make the SH3 domain bind worse, this does not indicate that the 

conformation is supposed to be more open. Instead, it is the pulldown assay using 

the resin bound SH3-peptide that makes the conformation look artificially more 

open.  

  In summary, pY419-pY530 is a closed c-Src conformation with catalytic 

activity. Phosphorylation at Y419 can indeed override conformational effects on 

activity suggesting activation loop phosphorylation plays a key role in orientating 

the kinase domain into a catalytically ready conformation but can also influence SH3 

domain from binding as tightly as normal as shown in the resin-SH3 peptide 

pulldown assay.  

2.6 Non-Clinical Mutation: W263A 

How all this could happen is thru an H-bond network mechanism that starts 

with the activation loop conformation. Once positioned to perform catalysis (like the 

effect from pY419), this triggers a domino effect thru H-bond networks that causes 

the c-helix to swing inwards, forcing tryptophan 263 to dislodge, which could cause 

a change in the SH2-linker configuration to decrease binding of the SH3 domain, 

Figure 2.9. As such, this whole network system is how the activity of c-Src is 

regulated and has been explored before.40 The vice versa could happen as well, 

where the tight binding of the SH3 domain to the SH2-linker causes tryptophan 263 

to wedge itself into the c-helix, pushing the c-helix outwards, and simultaneously 

forcing the activation loop into a position that prevents catalysis.  

We explored a part of this network by looking at W263, a conserved residue 

throughout protein tyrosine kinases, thru its mutation to alanine. There have been 

literature studies suggesting the tryptophan, in the regulation model explained 

above, is an important residue involved in catalysis by propagating "signals" from 

the catalytic kinase domain to the SH2/SH3 domains, triggering a conformational 
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change.36,41 LaFevre-Bernt et. al., tested this by mutating the tryptophan to an 

alanine in Hck and found a few things; 1.) Hck W263A is more active than wt Hck; 

2.) autophosphorylation rates are higher; 3.) accessibility to the SH2 and SH3 

domains are changed.41 Gonfloni et al, has also showed that W263A in c-Src in S. 

pombe assay can partly escape downregulation by Csk.42 Our thermolysin data for 

W263A shows an open conformation which agrees with LaFevre-Bernt et. al. 

finding in Hck that the SH2/SH3 domain is more accessible. In terms of activity 

however, W236A c-Src is 3.5 times less active but does bind increase ATP binding 

by 7-fold compared to wt-Src, Table 2.5. Perhaps, W263A mutation does not 

necessarily affect c-Src activity as much as it does Hck but the increase binding to 

ATP does correlate with previous speculation that W263, thru its rearrangement, 

causes changes in the catalytic ATP pocket.43 It would be interesting to see the 

overall conformation of W263A-pY530 and its activity as this form of W263A was 

seen to escape regulation by Csk in the S. pombe assay, as well as its 

autophosphorylation rates at Y419.  

2.7 Exploring R163W and W121R 

Adding to the thermolysin assay, upon further inspection, some mutations 

and the conformations they stabilized can be logically explained. For example, the 

substitution of a bulkier side chain could prevent the domains from closing properly, 

the added positive/negative charge could lead to a repulsion (open) or a salt 

bridge/H-bond that would help keep c-Src closed, and etc. Mutations such as R163W 

and W121R (both open conformations) fits in this category. R163 located on the 

SH2 domain (but when c-Src is closed, at the interface between the kinase domain 

and SH2 domain) removes multiple salt bridge interactions with residues Q372, 

N400, E160, and D368 disrupting the native c-Src closed conformation, Figure 2.10. 

W121 sits in the SH3 domain and appears to fit in a small transient pocket created 

by the SH2-linker residues K260, A259, L258, G257, and Q256. Substituting 

tryptophan to arginine can disrupt this pocket along with the addition of a positive 

charge, which might lead to repulsive affects forcing c-Src to open (Figure 2.11). In 

short, both these mutations, R163W and W121R, prevents the closed conformation  
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Figure 2.9: Top Left: c-helix-in crystal structure, 1Y57, c-helix and W263 is highlighted in blue. Top Right: c-

helix-out crystal structure, 2Src, c-helix and W263 is highlighted in red. Bottom left is overlay of both crystal 

structure (blue is 1Y57, c-helix in; red is 2Src, c-helix-out) depicting the movement of the c-helix with regard 

to W263 position. Bottom right is same overlaid, view is from the side, depicting W263 in a space filled model. 

The positioning of W263 triggers the positioning of the c-helix as well as the SH2/SH3 domains. The SH2 linker 

is to show where the SH2/SH3 domains (not pictured) would be orientated. In 1Y57, a more open conformation, 

W263 is wedged in forcing the c-helix in, resulting in SH2/SH3 domain positioned in a more linear open 

conformation as shown in this picture, with the SH2 linker position coming toward the reader. In 2Src, a closed 

conformation, W263 is swung out resulting in a c-helix-out, resulting in SH2/SH3 domain to be clamped down 

alongside the back of the kinase domain, as depicted with the SH2-linker position going away from the reader, 

in a closed conformation.  
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Figure 2.10: From PDB 2Src. Picture on left shows full length c-Src, SH3 (magenta), SH2 (orange), and kinase 

domain (white). R163 residue is highlighted in blue and the surrounding residues, N400, E160, D368, and Q372 

are in green. Picture on right is a close up view, with red dotted lines from R163 that show the potential salt 

bridge/H-bonding that upon disruption by substitution to a tryptophan, might explain the more open 

conformation that results. 

Figure 2.11: PDB 2Src. Top picture, depicts a close up of W121 lone H-bond partner to the backbone of G257. 

Bottom left is W121 in blue and G257 in green of the entire protein and bottom right depicts space filled image 

of W121 (blue) within the transient pocket formed by K260, A259, L258, G257, and Q256 of the SH2-linker 
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of c-Src from being stabilized, thus shifting the equilibrium state of c-Src towards 

more open conformations. Hence, the thermolysin assay demonstrates that these 

mutations are more open.  

An argument could also be made for those mutations that don’t contribute to 

any significant conformational changes compare to apo-wt Src because those 

substitutions neither add nor subtract an effect compared to the original amino acid. 

However upon a cursory glance, most other mutations don't make much sense 

interms of how they are stabilizing their conformation. It is possible these mutations 

are involved with either stabilizing/disrupting a hydrogen bond network or 

hydrophobic spine within c-Src, contributing to the resulting conformation 

observed. Further mutagenesis studies would have to be performed to ascertain these 

answers. 

2.8 Exploring Conformational Effects on Phosphorylation State 

Since catalytic activity is found, in general, not to be directly dictated by 

conformations, we were curious to explore whether or not conformations could 

affect the phosphorylation state. Phosphorylation states can dictate the conformation 

of c-Src which influences its location in cells. As mentioned vide supra, c-Src can 

only signal other pathways when it is in close proximity to its substrates/protein 

binding partners and thus its localization in the cell is important. Localization of c-

Src is dependent on its conformation which is mainly influenced by its 

phosphorylation states. Therefore, mutations that disturb this native phosphorylation 

balance by stabilizing conformations that are either more prone to activation by 

phosphorylation at Y419 or less prone to inactivation by escaping phosphorylation 

at Y530 can disrupt native c-Src localization. Since phosphorylation at Y419 is 

found to be an autophosphorylation event, different conformations may influence 

how well c-Src can associate with itself and hence how well it can autophosphorylate 

itself at Y419 on the activation loop. It has been found in c-Abl kinase (described in 

Chapter 1) that conformations of its SH2 domain does modulate the conformation 

of the activation loop and thus the phosphorylation state at that residue.44 Naturally, 

we were curious if c-Src kinase, which is similar to c-Abl in structure, had an 
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activation loop that was similarly affected by the configuration of the SH2/SH3 

domains. It is possible that open/apo/closed conformations allow different 

accessibility to Y419, leading to different phosphorylation states, and thus 

influencing its location in cells. 

To demonstrate if these mutations affect phosphorylation states on Y419, 

three c-Src constructs were chosen. It was previously shown that c-Src can 

autophosphorylate itself at Y530 and thus to prevent this reaction from interfering, 

an additional Y530F mutation was introduced.18,33 The control apo construct is 

Y530F. Fully open mutation R163W-Y530F, D120N-Y530F (partly open) and 

closed mutation T341R-Y530F are the two conformational mutations used. These 

three constructs would allow us to assess if a mutation stabilized open/closed 

conformation would affect phosphorylation state at Y419. Over 1.5 hours, the c-Src 

constructs were incubated with 1mM ATP to autophosphorylate and the reaction 

was quenched at various time points. An SDS-PAGE gel was run and stained first 

with a phosphostain, which would fluoresce in the presence of phosphorylated 

proteins.  

To assess the total amount of protein at each time point, the gel was stained 

afterwards with Sypro Ruby, which fluoresces in the presence of protein. With data 

of both total amount of protein and phosphorylated protein, we can calculate the 

percent conversion of phosphorylation at each time point and obtain a rate. The 

results are shown in Figure 2.12. It appears that there is no difference between the 

phosphorylation rates of apo Y530F and open D120N-Y530F as both are nearly 

100% autophosphorylated in about 1 min. However, the close conformation, T341R-

Y530F is much slower to autophosphorylate and does not even reach 100% 

phosphorylation. This does suggest that closed conformations are slower to 

autophosphosphorylate than more open conformations. The mutation-stabilized 

closed conformation decreases phosphorylation at Y419 probably due to decrease 

protein-protein interactions as it is necessary for c-Src to bind to itself first before it 

can autophosphorylate.  
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Figure 2.12: The percent phosphorylation of Y419 on Y530F, T341R-Y530F, and D120N-Y530F.  

 

As mentioned above, phosphorylation states can affect conformational state 

of wt-Src but one aspect of this relationship we were curious about is whether or not 

phosphorylation states could affect mutation stabilized conformations. In other 

words, do phosphorylation at either Y419 and/or Y530 override the conformational 

states dictated by mutations? This is especially relevant in cellulo where c-Src has 

only ever been found in either a single phospho or double phospho state. To evaluate 

the effects of pY419 on an open/closed constructs, the pY419 versions of R163W-

Y530F, D120N-Y530F, and T341R-Y530F were assessed in thermolysin assay. 

Given that R163W is already a mutation that is open, we were curious to see if given 

a slightly less open mutation, D120N, if pY419 was able to fully open the mutation 

to the same extent as R163W. Likewise, pY419-T341R-Y530F was also of 

particular interest and given its closed state, we were interested if pY419 could allow 

for a fully open conformation.  

Phosphorylation at Y530 will most likely result in a closed conformation but 

we decided to see if this is true for an open stabilized mutation, R163W. To prevent 

autophosphorylation at Y419, the Y419F mutation was introduced and thereby it 

was R163W-Y419F that was assessed alongside Y419F, which was used as the 
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control apo construct. Thermolysin assay was used and unfortunately, at the time of 

this writing, the experiments have not been finished.  

Next we explored the double phosphorylation state of c-Src in terms of 

mutations, where both Y419 and Y530 are phosphorylated. Previous studies have 

found double phosphorylation state in cells18, but not quite sure what the function 

serves. In our thermolysin assay as described above, pY530-pY419 is a closed state 

with greater catalytic activity than wt-Src but lower than pY419 alone. We were 

curious if an open stabilized mutation like R163W, upon phosphorylation at both 

Y419 and Y530, would be able to maintain a more open conformation and if it would 

be more active compared to wt-Src pY530-pY419.  

Also, there were some mutations that were found to affect the 3/C loop 

and activation loop which happened to escape Csk downregulation effects. 

Specifically in S. pombe assays, P302E-P307E mutation was found to be active and 

phosphorylated at Y419 which is shown as a decrease in S. pombe growth. 

Surprisingly, upon expression of P302E-P307E with Csk, growth of S. pombe was 

still effectively arrested. This happened with a few other mutations as well. The 

interesting result from their S. pombe assay is that pY530-pY419, while active in 

our activity assay, did not stop yeast growth. What is the difference between pY530-

pY419 wt-Src and P302E-P307E-pY530-pY419? We decided to make P302E-

P307E as well as L410A c-Src and look at both activity and conformational state. Is 

it possible that these mutations cannot be regulated by pY530 because these 

mutations stabilize a conformation that escapes regulation by Csk or their double 

phosphorylation state is far more active than pY530-pY419 wt-Src? At the time of 

this writing, the experiments have not yet been completed.  

 

2.9 Conclusions 

There have been reported c-Src clinical mutations, but these have not been 

characterized until our investigation. c-Src is the first proto-oncogene discovered, 

yet its role in cancer oncogenesis is poorly misunderstood. It is implicated in many 

cancers, usually due to overexpression, however its increased expression alone in 
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NIH 3T3 cells does not lead to cancer transformation. There has only been one 

reported case of an overactive mutation of c-Src that lead to cancer. If this is the 

case, then why are these clinical mutations present? If they are transformative, how 

do they disrupt c-Src’s native function if these mutations do not increase catalytic 

activity?  

Due to other literature studies, we wondered if these clinical mutations could 

be affecting conformational states, which in turn can influence phosphorylation 

state, localization, and protein-protein interactions. To answer the first fundamental 

question, we had to design a new high-thru put and robust assay, which uses the 

protease thermolysin. By cleaving the SH2-linker region that binds the SH3-domain, 

we found that the assay could give us a physical global conformational shape of c-

Src similar to SAXS or hydrogen/deuterium exchange MS, albeit a rough version. 

Using the thermolysin protease assay, we tested 29 clinical and non-clinical 

mutations and found that mutations can affect conformational states.  

Next, to probe SH2-domain accessibility we utilized a FITC-SH2-optimal 

peptide and measured the binding affinity to a few open/apo/closed mutations. We 

were interested to see FITC-SH2 peptide binding affinity could be equated to SH2-

domain accessibility and then correlated to global conformations. Unfortunately, 

this was not the case as the FITC-SH2 peptide appeared to bind any open/apo/close 

c-Src with similar binding affinity, leading us to believe that the SH2 domain is 

equally accessible in any global conformation.  

The activity of each active mutant was also characterized along with their 

binding affinity to ATP and peptide substrate. Most mutations were relatively 

similar in activity to wt-Src and as such, there does not appear to be any correlation 

between open conformations being more active than close conformations. However, 

this result is most likely due to the individual point mutation affecting activity 

directly rather than affecting activity via altering conformations.  

Since phosphorylation states can directly affect conformational states, we 

explored whether or not the opposite is true, can conformational states affect 

phosphorylation states at Y419 on the activation loop and Y530 on the C-terminus 
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tail. Using c-Src autophosphorylation, Y530F (apo), D120N-Y530F (open), 

R163W-Y5340F (open), and T341R-Y530F (closed) was tested to see if 

conformations can affect autophosphorylation rates at Y419, and it appears that there 

is a difference between closed conformation autophosphorylation rates (slower) 

compared to open conformation autophosphorylation rates (faster). This suggest that 

this is a mechanism in which mutations can cause c-Src dysfunction. By disrupting 

the native phosphorylation state balance, it can influence c-Src localization, thereby 

perturbing c-Src’s proximity to its substrates and effecting when/how signal 

transduction pathways can get turned on/off.  

Future studies will move this exploration of clinical mutations into the cells. 

Clinical mutations, thru CRISPR, can be natively transfected and assessed to see if 

there is any transformative potential. Overall phosphorylation status in the cells can 

be investigated to see possible signal transduction pathways these mutations affect, 

and further protein binding partners can be explored. To see if mutations, through 

conformational states, can affect localization, fluorescence microcopy experiments 

can be performed to track changes to its native location. Altogether, these future 

studies can build further understanding of c-Src’s role in cancer progression. The 

thermolysin assay can also be applied to other kinases with 3 domains. Our lab is 

currently in the process of exploring c-Abl and c-Hck as the next kinases in which 

to explore conformational states.  
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2.10 Experimental Section 

 

 

 

 

 

 

 

 

 

 

Peptide Synthesis: Standard solid phase Fmoc peptide synthesis using rink amide 

resin was performed. Briefly, to a 10 mL peptide synthesis vessel, rink amide resin 

(0.2 mmol) was added and swelled in deprotection solution (4 mL, 20% piperidine 

in NMP) for 30 min. The reaction solution was drained via vacuum filtration and the 

resin was rinsed with NMP (3x). In a separate vial, a solution of amino acid (0.3 

mmol) and HBTU (0.3 mmol) in activator solution (5% DIPEA in NMP) was 

prepared and then added to the peptide synthesis vessel and agitated using a 

mechanical shaker for 1 hour. The reaction solution was removed via vacuum 

filtration and crude resin was rinsed with NMP (3x). Kaiser test was performed to 

ensure complete coupling before deprotection solution was added, vessel sealed and 

agitated for 30 min. Afterwards, the solution was drained and washed with NMP 

(3x) and Kaiser test was done to ensure Fmoc deprotection was complete. The 

coupling-deprotection sequence was repeated with the amino acids necessary to 

afford the final desired peptide. Fmoc-caproic acid (0.3 mmol) was added after the 

addition of the final amino acid and reacted overnight. After subsequent Fmoc 

deprotection, FITC isomer 1 (0.3 mmol) and coupling solution was added and 

 

1. Deprotection 

2. Coupling 

Repeat steps 1 and 2 to add remaining residues 

1.) Fmoc-caproic acid coupling/deprotection 

2.) FITC isomer 1 coupling 

3.) Cleavage from resin 

4.) HPLC purification 

5.) Ethyl phosphate deprotection 

6.) HPLC purification 

 

 

 

Scheme S2.1: Synthetic scheme for solid phase SH2-peptide (EPQpYEEIPIYL) synthesis 
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agitated overnight. Once coupled, the solution was drained and rinsed with NMP 

(3x) and dichlormethane (3x). The peptide was cleaved from resin using 

trifluoroacetic acid (TFA) solution (95% TFA, 2.5% water, 2.5% triisopropylsilane). 

TFA cleavage solution was drained and TFA was removed under pressure before 

ether precipitation. The resulting pellet was collected and dissolved in DMSO and 

purified using reverse phase HPLC (20%-60% acetonitrile in water). The ethyl 

protected phosphotyrosine was deprotected using 1 molar equivalent TMS-Br in 

acetonitrile at r.t. overnight. Afterwards, water was added to the reaction and 

acetonitrile removed under pressure. The peptide was then purified by reverse phase 

HPLC (20%-60% acetonitrile in water).  

 

Biochemical Characterization 

Determination of ATP KM 

General procedure for ATP Km determination. The previously described 

fluorescence assay22 was used to determine Km values. Reaction volumes of 50 µL 

were used in 96-well plates. 42.5 µL of enzyme in buffer was added to each well. 

1.25 µL of DMSO was then added followed by 1.25 µL of a substrate peptide 

(“compound 3” as described in Wang et al)22 solution (1.8 mM in DMSO). The 

reaction was initiated with 5 µL of the appropriate ATP dilution (typically 1000, 

500, 250, 125, 62.5, 31.3, 15.6, 7.8, 3.9, 2.0 µM in H2O) and reaction progress was 

immediately monitored at 405 nm (ex. 340 nm) for 10 minutes. Reactions had final 

concentrations of 60 nM enzyme, 45 µM peptide substrate, 100 µM Na3VO4, 100 

mM Tris buffer (pH 8), 10 mM MgCl2, 0.01% Triton X-100. The initial rate data 

collected was used for determination of Km values. For Km determination, the kinetic 

values were obtained directly from nonlinear regression of substrate-velocity curves 

in the presence of varying concentrations of ATP. The equation Y = (Vmax * 

X)/(Km + X), X = substrate concentration (µM) and Y = enzyme velocity (RFU/s); 

was used in the nonlinear regression. Each ATP Km value was determined using at 

least three independent experiments; a representative Km curve is shown.  
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ATP KM Curves 
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SH2-Eng 

ATP KM = 148 ± 11 µM 

wt-Src 

ATP KM = 43 ± 5 µM 

I113F 

ATP KM = 111 ± 12 µM 

D521N 

ATP KM = 81 ± 9 µM 

R163W 

ATP KM = 31 ± 4 µM 

P307R 

ATP KM = 17 ± 5 µM 
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T341M 

ATP KM = 17 ± 3 µM 
R483W 

ATP KM = 215 ± 34 µM 

pY419-Y530F 

ATP KM = 215 ± 47 µM 
W263A 

ATP KM = 7 ± 3.5 µM 

T341R 

ATP KM = 53 ± 8 µM 

T341M-A406S 

ATP KM = 13 ± 3 µM 
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V140M 

ATP KM = 35 ± 7 µM 

P171Q 

ATP KM = 22 ± 6 µM 

W121R 

ATP KM = 20 ± 4 µM 

pY530-Y419F 

ATP KM = 340  ± 99  µM 

R98W 

ATP KM = 34 ± 5 µM 

Y419F 

ATP KM = 46 ± 1 µM 
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Y530F 

ATP KM = 54 ± 4 µM 

Q529H 

ATP KM = 14 ± 4 µM 

T341I 

ATP KM = 33 ± 4 µM 

E527K 

ATP KM = 95  ± 5  µM 

pY419-pY530 

ATP KM = 79 ± 17 µM 
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Determination of substrate (compound 3) KM
 

 

 

General procedure for substrate (pyrene) Km determination. Similar to ATP KM 

determination as written above except 1.25 µL of substrate peptide (“compound 3”) 

was added in the appropriate dilution (typically 450, 225, 112.5, 56, 28, 14, 7, 3.5, 

1.7  µM in DMSO) and the reaction was initiated with 5 µL of 10mM ATP.  

 

Substrate KM Curves: 
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Wt-Src 

Substrate KM = 43 ± 2 µM 

Vmax = 56 ± 6 

I113F 

Substrate KM = 24 ± 4 µM 

Vmax = 30 ± 5 

D521N 

Substrate KM = 83 ± 8 µM 

Vmax = 29 ± 1 

SH2-Eng 

Substrate KM = 58 ± 10 µM 

Vmax = 6.5 ± 0.5 
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W263A 

Substrate KM = 65 ± 14 µM 

Vmax = 16 ± 0.2 

R163W 

Substrate KM = 102 ± 7 µM 

Vmax = 50 ± 5 

T341R 

Substrate KM = 48 ± 6 µM 

Vmax = 17 ± 1.4 

T341M 

Substrate KM = 53 ± 7 µM 

Vmax = 54 ± 5 

pY419-Y530F 

Substrate KM = 169 ± 18 µM 

Vmax = 239 ± 8 

R483W 

Substrate KM = 55 ± 15 µM 

Vmax =35 ± 6 
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P307R 

Substrate KM = 222 ± 23 µM 

Vmax = 23 ± 2 

T341M-A406S 

Substrate KM = 50 ± 7 µM 

Vmax = 74 ± 6 

V140M 

Substrate KM = 104 ± 8 µM 

Vmax = 152 ± 1 

P171Q 

Substrate KM = 142 ± 29 µM 

Vmax = 115 ± 28 

W121R 

Substrate KM = 101 ± 26 µM 

Vmax = 128 ± 21 

pY530-Y419 

Substrate KM = 108 ± 28 µM 

Vmax = 25 ± 6 
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R98W 

Substrate KM = 42 ± 4 µM 

Vmax = 74 ± 7 

Y419F 

Substrate KM = 127 ±14 µM 

Vmax = 99 ± 12 

Y530F 

Substrate KM = 155 ± 14 µM 

Vmax = 106 ± 8 

Q529H 

Substrate KM = 89 ± 9 µM 

Vmax = 49 ± 11 

T341I 

Substrate KM = 106 ± 17 µM 

Vmax = 58 ± 7 

E527K 

Substrate KM = 78 ± 24 µM 

Vmax = 28 ± 10 
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pY419-pY530 

Substrate KM = 96 ± 6 µM 

Vmax = 118 ± 24 
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Thermolysin Half Life Assay 

c-Src and c-Src mutants were diluted in proteolysis buffer (50 mM Tris-HCl pH 8.0, 

100 mM NaCl, 0.5 mM CaCl2) to yield a final protein concentration of 2 µM. 

Thermolysin from a 3.8 uM stock solution was added to the reaction mixture to a 

final concentration of 60 nM. 15 µL of the proteolysis reaction was added to 5 µL 

of 50 mM EDTA to quench proteolysis at various time points and stored at -20 °C. 

The quenched samples were analyzed by SDS-PAGE (12 % Bis-Tris gel in MES 

running buffer, staining with comassie blue). Band intensities were analyzed by 

ImageJ imaging software. Percent protein remaining was plotted against time and fit 

to an exponential decay equation to obtain the half-life of the protein using GraphPad 

Prizm software. 
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FITC SH2-peptide Fluorescence Polarization 

 

General procedure for Kd determination using FITC- EPQpYEEIPIYL. Reactive 

volumes of 50 µL were used in 96-well plates. Enzyme in 50 mM Tris buffer (pH 

8), 5% glycerol, and 100 mM NaCl, was diluted 2-fold (49 µL) over 10 wells. Final 

concentration of 200 nM FITC-SH2-peptide (10 µM stock in DMSO, 1 µL) was 

added to every well and allowed to incubate for 30 min. Blank well, which consisted 

of buffer and 200 nM FITC-SH2 peptide was included to subtract out the 

background signal. For Kd determination, the values were obtained directly from 

the nonlinear regression one-site binding curves (using data with background signal 

substracted) in the presence of various concentrations of the enzyme. The equation 

Y = (Bmax * X)/(Kd + X); was used in the nonlinear regression. 3 runs were 

averaged together for each reported value. A represented Kd curve is shown 
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Wt-Src 

FITC-SH2-peptide Kd = 729 ± 87 nM 

pY419 

FITC-SH2-peptide Kd = ~10,000 nM 
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R163W 

FITC-SH2-peptide Kd = 397 ± 89 nM 

D407H 

FITC-SH2-peptide Kd = 146 ± 12 nM 

T341R 

FITC-SH2-peptide Kd = 3472 nM 

K298M 

FITC-SH2-peptide Kd = 2737 ± 956 nM 

F408G 

FITC-SH2-peptide Kd = 297 ± 51 nM 

I113F 

FITC-SH2-peptide Kd = 332 ± 18 nM 
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F408A 

FITC-SH2-peptide Kd = 699 ± 32 nM 

K298E 

FITC-SH2-peptide Kd = 192 ± 21 nM 

Y419F 

FITC-SH2-peptide Kd = 682 ± 47 nM 
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Autophosphorylation Assay 

To determine the rate of autophosphorylation at Y419 on the activation loop of c-

Src. Final concentration of c-Src (Y530F, D120N-Y530F, R163W-Y530F, T341R-

Y530F) used is 2 M. The reaction mixture consist of MgCl2 (10 mM), Na3VO4 

(20mM), Triton X-100 (0.1%), and Buffer D (50 mM Tris (pH = 8), 100 mM NaCl, 

5% glycerol). ATP (50mM) was added to initiate the reaction and incubated at 37 

ºC. At various time points (0, 15, 30, 45, 60, 180 sec and 5, 10, 30, 60 min) 15 L 

of the reaction mixture was taken out and quenched with 5 L of formic acid. 

Afterwards, 2 L of SDS-PAGE loading dye was added and analyzed by SDS-

PAGE (12% Bis-Tris gel in MES running buffer. The gel was first stained with 

Invitrogen Pro-Q Diamond phosphoprotein gel stain as per instructions, and imaged 

on Typhoon 9410 using an excitation of 532 nm (green laser) and emission filter of 

560 nm. Afterwards, the gel was post stained with Invitrogen Sypro Ruby protein 

gel stain as per instructions, and imaged on Typhoon 9410 using an excitation of 

532 nm (green laser) and emission filter of 610 nm. Band intensities from both the 

Sypro ruby stain and phosphoprotein gel stain were analyzed by ImageJ software. 

The phosphoprotein gel stain showed amount of protein phosphorylated and Sypro 

ruby shows the total amount of protein loaded in each well. Taken together, both 

band intensities would show percent protein phosphorylated and was plotted against 

time and fit to non-linear regression curve to obtain the amount of time needed for 

half the amount of c-Src to be phosphorylated at Y419. Sample gels are shown as 

well as plot data.   
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T341R-Y530F 

Half Life = 4077 sec 

Plateau = 2.5 

 

 

 

 

 

 

Y530F 

Half Life = 34 sec. 

Plateau = 2 

Y419F-Y530F 

Half Life = 2812 sec 

Plateau = 2 
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Chapter 3  

Development of a chimeric c-Src kinase and HDAC inhibitor 

Reprinted with permission from Ko, K. S.; Steffey, M. E.; Brandvold, K. R.; 

Soellner, M. B. ACS Med. Chem. Lett. 2013, 4 (8), 779. Copyright 2013. ACS 

Med. Chem. Lett. 
 

3.1 Abstract 

On the basis of synergism observed between a selective c-Src kinase inhibitor 

with an HDAC inhibitor, the development of the first chimeric c-Src kinase and 

HDAC inhibitor is described. The optimized chimeric inhibitor is shown to be a 

potent c-Src and HDAC inhibitor. Chimeric inhibitor 4 is further shown to be highly 

efficacious in cancer cell lines and significantly more efficacious than a dual-

targeting strategy using discrete c-Src and HDAC inhibitors. 

3.2 Introduction 

The non-receptor tyrosine kinase c-Src plays an important role in many 

aspects of cell physiology, regulating diverse cellular processes including division, 

motility, adhesion, angiogenesis, and survival.1,2 c-Src was the first proto-oncogene 

identified, is frequently over-expressed in cancer, and the extent of over-expression 

of c-Src correlates with malignant potential.1,2 Furthermore, c-Src expression levels 

inversely correlate with patient survival.1,2 Recently, c-Src activity was shown to be 

a main mode of resistance to Herceptin, a first line therapy for Her2+ breast cancer.3 

Therefore, c-Src kinase is an attractive therapeutic target in cancer.  

We recently reported the first highly selective inhibitor of c-Src (3.1).4 Despite 

potent biochemical activity against c-Src, our selective c-Src inhibitor (3.1) is only 

modestly potent in cellular proliferation assays using breast cancer cell lines.4 
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Following the success of combinatorial drug therapies in the treatment of HIV,5 

tuberculosis, and other microbial infections,6 the use of multiple targeted drugs for 

cancer chemotherapy is increasingly being pursued.7 We reasoned that multi-target 

inhibition using our selective c-Src inhibitor might lead to improved cellular 

efficacy.  

To identify drug combinations that would be synergistic with c-Src 

inhibition, we examined a small library of targeted inhibitors in combination with 

our selective c-Src inhibitor 3.1. These studies were performed in SK-BR-3 cells, a 

Her2+ breast cancer cell line previously shown to be growth dependent upon c-Src 

kinase activity.4,8 From these experiments, we identified that panobinostat, a histone 

 

 

 

 

 

 

 

 

                               

 

 

 

 

Figure 3.1: (A) Structure of highly selective c-Src inhibitor 3.1 (B) Kinome dendrogram for selectivity 

profiling of 3.1 at 10 µM. c-Src is colored blue, and off-target kinases of 3.1 are colored red. Dendrogram 

was generated using TREEspot software tool with 10% cutoff. Green circles denote kinases included in panel 

that show no binding below cutoff. 
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deacetylase (HDAC) inhibitor in clinical trials,9 was highly synergistic with c-Src 

inhibitor 3.1 (Figure 3.2). HDAC inhibitors have been shown to promote the growth 

arrest and apoptosis of cancer cells with minimal toxicity.10 We believe that the 

observed synergy is due to previously reported mechanisms whereby HDAC 

inhibitors can down-regulate c-Src levels through repression of SRC transcription.11 

3.3 Results and Discussion 

To determine whether the synergy observed with c-Src inhibition and 

panobinostat was general for any HDAC inhibitor, we performed combination 

experiments with vorinostat,12 an FDA approved HDAC inhibitor, and c-Src 

inhibitor 3.1 (Figure 3.2). c-Src inhibitor 3.1 and vorinostat have a GI50 of 4.8 µM 

and 1.2 µM, respectively, for SK-BR-3 proliferation. In combination, c-Src inhibitor 

3.1 + vorinostat (1:1) has a GI50 for SK-BR-3 proliferation of 0.8 µM, which is an 

improvement over either inhibitor dosed alone.13 Next, as a measure of cellular 

toxicity, we examined each compound’s ability to inhibit proliferation of primary 

human mammary epithelial cells (HMEC). c-Src inhibitor 3.1 and vorinostat have a 

GI50 of 4.3 µM and 5.8 µM, respectively, for HMEC proliferation.  

Figure 3.2: Synergy studies of selective c-Src inhibitor 3.1 (2 µM), panobinostat (HDACi, 10 

nM), and combination (3.1 + HDACi, 2 µM 3.1, 10 nM panobinostat) in SK-BR-3 cell line. 

Red line denotes predicted additivity of 3.1+ panobinostat. The higher level of inhibition than 

the predicted additivity indicated synergism between 3.1and panobinostat. Work done by Mike 

Steffey. 

 



 

84 

 

The combination of 3.1 + vorinostat (1:1) has a GI50 of 5.4 µM against primary 

mammary epithelial cells. Using the SK-BR-3 and HMEC data, we calculated a 

therapeutic index (GI50 HMEC / GI50 SK-BR-3) for c-Src inhibitor 3.1, vorinostat, 

and the combination of 3.1 + vorinostat (Table 3.1).14 c-Src inhibitor 3.1 has a poor 

therapeutic index of 0.9 while vorinostat’s therapeutic index is 4.8. Disappointingly, 

the combination of 3.1 + vorinostat has an insignificant improvement in therapeutic 

index (6.8) relative to vorinostat alone (4.8). We wondered whether there would be 

any advantage for a chimeric inhibitor, where a single molecule could serve as both 

a c-Src kinase and HDAC inhibitor, rather than using two separate agents in 

combination. For example, we thought that we might obtain improved cellular 

efficacy. In addition, using a single agent to inhibit both c-Src and HDAC does not 

lead to the additive toxicity that is often observed with combination therapy.13 

Chimeric kinase-HDAC inhibitors have previously been developed, however, no 

Src-HDAC chimeric compounds have been reported.15–17 In addition, previously 

 

 

reported studies of kinase-HDAC chimeras lack a comparison of therapeutic indices 

between combination therapy and chimeric inhibition.15–17  

We previously reported PP2~alkyne (3.2), a modular and selective c-Src 

inhibitor scaffold.4 We envisioned using this kinase inhibitor scaffold to append 

HDAC pharmacophores. The classic pharmacophore for HDAC inhibitors consists 

of a zinc-binding motif, a hydrophobic linker, and a recognition cap.18 Using 

PP2~alkyne, HDAC elements can readily be appended using “click” chemistry.19 

  
GI50 (µM), 

SK-BR-3 

GI50 (µM), 

HMEC 

Therapeutic  

Index 

Compound 3.1  4.8 4.3 0.9 

Vorinostat 1.2 5.8 4.8 

3.1 + Vorinostat 0.8 5.4 6.8 

Chimera 3.4 0.2 4.7 23.5 

Table 3.1: Cellular efficacy of selective c-Src inhibitor 3.1, vorinostat, 

3.1:vorinostat (1:1), and chimera 3.4. Work done by Mike Steffey. 
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Importantly, the use of a triazole ring as the recognition cap in HDAC inhibitors has 

previously been reported and shown to be highly efficacious both in vitro and in 

cellulo. Previous reports with triazole-based HDAC inhibitors have demonstrated 

that a 6-carbon hydrophobic linker will provide potent HDAC inhibition.20 While 

only 1,4-[1,2,3]-triazoles have been reported as HDAC inhibitors,20 we reasoned that 

because our selective c-Src inhibitor 3.1 contains a 1,5-[1,2,3]-triazole,4 we would 

synthesize and evaluate both regioisomers.  

We synthesized compounds 3.3 and 3.4 as chimeric Src/HDAC inhibitors. 

Compound 3.3 has a 1,4-triazole and was synthesized using a copper-mediated 

cycloaddition reaction,19 while compound 3.4 has a 1,5-triazole synthesized using a 

ruthenium-mediated cycloaddition reaction (Figure 3.3, see experimental for 

synthetic details).21 Using a previously reported fluorescence assay for c-Src kinase 

activity,22 we found that 3.3 and 3.4 were competent c-Src kinase inhibitors 

  

 

 

3.2           

              

                          3.3                                                                         3.4 

K i, c-Src = 371 nM               K i,  c-Src = 138 nM 

K i, HDAC1 = 0.62 nM          K i, HDAC1 = 0.26 nM 

 

 

 

 

 

             

Figure 3.3: Structure of PP2~Alkyne (3.2) and chimeric inhibitors 3.3 and 3.4 
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(Ki = 371 and 138 nM, respectively). We next examined the ability of 3.3 and 3.4 to 

inhibit HDAC1 using a Fluor de Lys based-assay23 and found both compounds were 

potent inhibitors of HDAC-1 (Ki = 0.62 and 0.26 nM, respectively, Figure 3.3). In 

our assays, compound 3.4 was a better inhibitor of both c-Src and HDAC-1. Thus, 

the 1, 5-triazole regiochemistry was used exclusively for subsequent linker 

optimization. 

In an effort to optimize potency for both c-Src and HDAC-1, we synthesized a series 

of chimeric HDAC-Src inhibitors containing varied hydrophobic linkers (Table 3.2). 

This series included alkyl linkers of varied length as well as styrene- containing 

linkers that are found in panobinostat.9 The six-carbon alkyl linker (compound 3.4) 

was found to be optimal for inhibition of both c-Src kinase and HDAC-1. Of note, 

we found the styrene linkers (compounds 3.6 and 3.5) were ineffective as c-Src 

inhibitors and only modest inhibitors of HDAC-1 compared to the n-alkyl linkers. 

Chimeric inhibitor 3.4 is one of the most potent HDAC-1 inhibitors reported to date 

(Ki = 260 pM) and is also a potent c-Src inhibitor (Ki = 138 nM). To decipher the 

binding contributions for each half of the chimera, two fragments of inhibitor 3.4 

were synthesized (Figure 3.4). Compound 3.9 contains only the HDAC inhibitor 

pharmacophore, while compound 3.10 includes the c-Src kinase binding elements. 

Interestingly, we observe a marked decrease in affinity for both c-Src and HDAC-1 

when both elements are not present. Specifically, compound 3.9, which retains all 

of the HDAC inhibitor pharmacophore elements, has a Ki for HDAC-1 that is >170-

times higher than found with chimeric inhibitor 3.4. These data imply that the c-Src 

binding elements enhance HDAC-1 inhibition observed with compound 3.4. 

Likewise, the c-Src inhibitor fragment 3.10 has nearly 10x less affinity for c-Src 

than chimera 3.4, suggesting that the addition of the HDAC fragment is important 

for c-Src inhibition. Together, these data demonstrate that chimera 3.4 is not simply 

two inhibitors linked together, but rather represents a merged inhibitor where both 

elements are required for affinity against each target. 

Our chimeric inhibitor was initially optimized for HDAC inhibition using HDAC-

1, however, we assumed it could be a promiscuous inhibitor of HDACs. Profiling of 

compound 3.4 against a panel of 11 HDACs was performed by Reaction 
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Compound R =  Ki, c-Src 

(nM) 

Ki, HDAC1 

(nM) 

 

 

 

138 

 

0.26 

 

 

 

190 

 

0.22 

 

 

 

407 

 

9.8 

 

 

 

4300 

 

35 

 

 

 

2140 

 

23 

 

3.4 

3.8 

3.7 

3.5 

3.6 

Table 3.2: SAR of Linker 
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Biology (Malvern, PA). The HDAC profiling revealed that our chimera is a 

potent and non-selective inhibitor against class I, IIa, and IV HDACs (Table 3.3). 

Consistent with Vorinostat’s selectivity, chimera 4 is not an effective inhibitor of 

class IIb HDACs (Table 3.3). Relative to vorinostat, chimera 3.4 has improved 

affinity to all HDACs except HDAC-8 and HDAC-11.  

In previously published work, we found that c-Src inhibitors that are selective for c-

Src over c-Abl are more efficacious in cell culture with non-hematopoietic cancers.4 

Thus, we wanted to determine whether chimera 3.4 has selectivity for c-Src over c-

Abl. Gratifyingly, in our biochemical assay, chimera 3.4 was selective for c-Src over 

c-Abl (Ki for c-Src = 138 nM, Ki for c-Abl = 2,350 nM). We next tested the ability 

of 3.4 to inhibit Hck, a SRC-family kinase with 85% similarity across the kinase 

domain to c-Src, and found it is a modest inhibitor (Ki for Hck = 504 nM). Together, 

these data demonstrate that chimera 3.4 is selective for c-Src over homologous 

kinases. Given that our compound shares many features with our highly selective c-

Src inhibitor 3.1, 4 the results demonstrating that chimera 3.4 is a selective kinase 

inhibitor are not surprising. 

 

Figure 3.4: c-Src inhibitor 3.10 and HDAC inhibitor 3.9 

3.10                                3.9 

K i, c-Src = 605 nM                    K i,  c-Src = > 12,500 µM 

Ki, HDAC1 = >12,500 µM                  Ki, HDAC1 = 45 nM 
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HDAC Class 

IC50 (nM),  

Chimera 4 

IC50 (nM), 

Vorinostat  

HDAC1 I 86 306 

HDAC2 I 231 232 

HDAC3 I 19 132 

HDAC4 IIb 3,982 76,000 

HDAC5 IIb 3,891 27,200 

HDAC6 IIa 2.7 20 

HDAC7 IIb 13,220 105,000 

HDAC8 I 2,311 306 

HDAC9 IIb 28,020 141,000 

HDAC10 IIa 51 432 

HDAC11 IV 224 200 

 

Table 3.3: HDAC Profiling of Chimera 4 and Vorinostat 

 

We next probed the efficacy of chimera 3.4 in cellulo to determine whether 

there was any advantage with a chimeric compound over the dual-targeting of c-Src 

and HDAC with two compounds. Combination dosing of selective c-Src inhibitor 

3.1 + vorinostat (1:1) was found to have a GI50 = 0.78 µM for SK-BR-3 cells and a 

GI50 = 5.4 µM for non-cancer HME cells. This resulted in a therapeutic index of 6.8 

(vide supra). In comparison, chimeric inhibitor 3.4 was more efficacious at 

inhibiting the growth of SK-BR-3 cells (GI50 = 0.2 µM) and has similar non-caner 

cellular toxicity (GI50 = 4.7 µM for HME cells), resulting in a cellular therapeutic 

index of 23.5 (Table 3.1). This corresponds to chimeric inhibitor 3.4 having an 

improvement in therapeutic index significantly higher than dual targeting c-Src and 

HDACs with two distinct compounds (23.5 versus 6.8, respectively). These results 

highlight an important advantage for chimeric inhibition over dual-agent targeting: 
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Table 3.4: NCI-60 Panel Data for Chimera 3.4, Vorinostat, and Dasatinib against Select Cell Lines 

 

we observe synergistic activity against cancer cells while not increasing the cellular 

toxicity relative to the single agent counterparts. 

To better characterize the cellular efficacy of our chimeric c-Src/HDAC 

inhibitor, compound 3.4 was submitted to the National Cancer Institute for screening 

in the NCI-60 panel (see Supporting Information for full NCI-60 data).24 From this 

panel, chimera 3.4 has an average GI50 = 0.26 µM. Significantly, the efficacy of 

chimera 3.4 across the NCI-60 is better than vorinostat (NCI-60 average GI50 = 0.53 

µM) and a FDA-approved c-Src inhibitor (dasatinib, NCI-60 average GI50 = 5.7 

µM). In addition to the improved efficacy across the NCI-60 panel, chimera 3.4 does 

not have increased toxicity relative to primary human mammary cells (chimera 3.4, 

HMEC GI50 = 4.7 µM; vorinostat, HMEC GI50 = 5.8 µM; dasatinib, HMEC GI50 = 

1.8 µM). Analysis of the NCI-60 data demonstrates that chimera 3.4 is a highly 

efficacious agent in cell lines where vorinostat and dasatinib are ineffective alone 

(Table 3.4a). Furthermore, chimera 3.4 is more efficacious than vorinostat when c- 

Src inhibition is shown to be efficacious (Table 3.4b). For example, chimera 3.4 is 

an efficacious inhibitor of Hs 578T, a triple negative breast cancer cell line, cell 

growth (GI50 = 0.17 µM) while vorinostat is not (GI50 = 4.83 µM), due to c-Src 
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inhibition having an important role in Hs 578T cell proliferation (dasatinib GI50 = 

0.03 µM). Finally, chimera 3.4 is observed to be more effective than dasatinib in cell 

lines where cellular proliferation is dependent upon HDAC-1 activity (Table 3.4c). 

Together, these data demonstrate that compound 3.4’s impressive cellular efficacy 

in the NCI-60 panel is inherent in its chimeric nature and the ability to inhibit both 

c-Src kinase and HDAC1 is required for the cellular potency observed. 

To explore avenues to further increase 3.4 cellular efficacy we decided to 

deploy the same dual inhibitor HDAC/c-Src strategy using a more drug-like 

scaffold. The pyrazolo-pyrimidine scaffold of 3.4, while effective in cellulo, is not 

ideal because of its inherent structure, which consist of four hydrophobic aromatic 

Figure 3.5: PDB 3G5D of c-Src bound dasatinib (green). The arrows indicate the ideal groups that can 

be substituted with the HDAC pharmacophore without disrupting binding to c-Src. 
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rings which are greasy and most likely not druggable. We decided to utilize the 

dasatinib scaffold to append with the HDAC pharmacophore, phenyl 1, 5 triazole 

hydroxamic acid, Figure 3.6.   

From the crystal structure of dasatinib bound c-Src, shown in Figure 3.6, it appears 

that there are two places where substitution and thereby the addition of the HDAC 

pharmacophore could work without interfering with c-Src binding. The 

hydroxyethyl piperazine and 4-methyl group off of the pyrimidine stick out into the 

solvent and could be used to append the HDAC pharmacophore. For compound 

3.12, the hydroxyethyl piperazine was replaced with morpholine to help decrease 

the molecular weight and ease of synthesis. Past experience with hydroxyethyl 

piperazine usually makes the compounds more difficult to purify without using a 

reverse phase column. The addition of the HDAC pharmacophore was at the 4-

methyl group on the pyrimidine. 3.11 directly swapped the piperazine group with 

the 1, 5 triazole hydroxamic acid. The usual phenyl group was left out to help reduce 

the molecular weight as well as simplifying the chemistry. Adding into the 6’ 

position of the pyrimidine ring is difficult as that position is quite deactivate. A 

Suzuki coupling, which would have been require to append the phenyl group, has 

not worked. Instead, an alkyne can be more easily attached thru Sonogashira 

reaction. 

Compound 3.12 and 3.11 were tested biochemically against HDAC1 and c-Src and 

the results are shown in Table 3.5. Changing the scaffold from pyrazolo- pyrimidine 

to dasatinib greatly increased its affinity to c-Src and mostly maintains dasatinib 

level potency (pM). However, we could not ascertain the exact value in our assay 

due to titration of the enzyme despite increasing the ATP concentration to 5mM. 

Unfortunately, potency against HDAC1 was lost. Both 3.12 and 3.11 decreased 

binding about 16-fold and 50-fold respectively compared to 3.3                                                                         

3.4, however Ki values remain in the low single digit/low double digit nM range.  
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 GI50  

Compound (Ki) c-Src (nM) HDAC1 (nM) 

3.4 138 ± 15 0.26 ± 0.02 

3.12 < 30 4.2 ± 0.3 

3.11 < 30 13 ± 1 

 

Table 3.5: Biochemical evaluation of compound 3.12 and 3.11 against c-Src and HDAC1 

 

3.4 Conclusion  

In summary, we have reported the first chimeric c-Src kinase and HDAC 

inhibitor. Furthermore, we have performed detailed studies that demonstrate that 

chimera 3.4 is a potent and selective c-Src kinase inhibitor as well as a potent and 

 

Figure 3.6: Structure of the new dual c-Src/HDAC inhibitor that utilizes the dasatinib scaffold as the c-Src 

pharmacophore, replacing the pyrazolo-pyrimidine core while maintaining the same phenyl triazole hydroxamic 

acid as the HDAC warhead. Replacement of the 4-methyl group off of the pyrimidine results in compound 3.12 

using a morpholine instead of the hydroxyethyl piperazine to help decrease MW. Replacing the hydroxyethyl 

piperazine results in compound 3.11. 

Dasatinib 

3.4 

3.12 

3.11 
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non-selective HDAC inhibitor. We demonstrated that our chimeric inhibitor has 

improved efficacy in cellular experiments compared to dosing two individual 

inhibitors targeting c-Src and HDACs. Chimera 3.4 has significant efficacy in the 

NCI-60 panel, while not possessing significant toxicity to primary human cells, and 

represents a novel small molecule probe that can provide simultaneous inhibition of 

c-Src and HDACs. Our approach to constructing kinase-HDAC inhibitor hybrids 

should be general and readily adapted to any kinase and/or HDAC pair of interest.  

Compounds 3.12 and 3.11 will need to be tested in the future against SK-BR-

3 and HMEC cells to evaluate if there is any benefits using the more druggable 

dasatinib scaffold. Despite the decrease to HDAC1 potency, these compounds could 

enable us to study the opposite effects of having a dual c-Src/HDAC inhibitor that 

has greater potency against c-Src as oppose to 3.4, which had better affinity for 

HDAC1 than c-Src. Fragment study of the separate pharmacophores could be done 

to assess whether or not these “improved” chimeric inhibitors act like a true dual-

acting compound in cells such as those studies used for 3.4 in Figure 3.4.  
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3.5 Experimental Section 

General Synthetic Methods 

Unless otherwise noted, all reagents were obtained from commercial suppliers and 

used without further purification. Recombinant, human histone deacteylase 1 was 

obtained from Cayman Chemicals. Trypsin was purchased from Sigma-Aldrich. 

Black, opaque-bottom 96 well plates were purchased from Nunc. All 1H and 13C 

NMR spectra were measured with a Varian MR400 and Inova 500 spectrometer. 

Mass spectrometry (HRMS) was carried out by the University of Michigan Ann 

Arbor Mass Spectrometry Facility (J. Windak, Director). Azido alkyl esters of 5-7 

methylene length were synthesized from adapting literature procedure.20 3-(4-

chlorophenyl)-1-(4-ethynylphenyl)-1H-pyrazolo [3,4-d]pyrimidin-4-amine 

(PP2~alkyne) was prepared as described before.4 (E)-ethyl 3-(4-

(azidomethyl)phenyl)acrylate was synthesized by adapting literature protocol.4,25 

Flash column chromatography was performed using a Biotage Isolera 1 Flash 

Purification System using KP-Sil SNAP cartridges. In all cases, ethyl acetate was 

used to transfer the crude reaction material onto the silica gel samplet. A gradient 

elution using hexane and ethyl acetate was performed, based on the recommendation 

from the Biotage TLC Wizard.  

 

Synthesis of Compounds 2.3-2.10 

 

 

Scheme S 2: Synthesis of Compound 3.3 

Synthesis of S2.1: PP2~alkyne (0.14 mmol) and methyl 6-azidohexanoate (0.318 

mmol) were dissolved in THF (1 mL) and stirred under nitrogen at room 

temperature. Copper (I) iodide (0.011 mmol) and Hunig’s base (0.038 mL) were 

added to the reaction mixture which was stirred under nitrogen overnight. The 

reaction mixture was diluted with dichloromethane (8 mL) and washed with 1:4 

NH4OH/saturated NH4Cl (3x 12 mL) and saturated NH4Cl (12 mL). The organic 

layer was dried over MgSO4, filtered, and concentrated in vacuo. The crude product 

was purified by Biotage Isolera 1 Flash Purification System to give 20 mg (27% 

yield) of S2.1 as a white solid. Spectral Data. 1H NMR (500 MHz, CDCl3): δ 8.65 

(s, 1 H), 8.52 (s, 1 H), 8.26-8.24 (m, 1H), 7.89 (s, 2 H), 7.77 (d, J = 10.0 Hz, 2 H), 

7.62-7.56 (m, 3 H), 5.59 (s, 2H), 4.44 (t, J = 8.0 Hz, 2 H), 3.67 (s, 3 H), 2.34 (t, J = 

8 Hz, 2 H), 2.02-1.97 (m, 2 H), 1.72-1.68 (m, 2 H), 1.43-1.39 (m, 2H); 13C NMR 

(100 MHz, CDCl3): δ 173.77, 157.97, 156.53, 154.68, 147.14, 144.41, 139.23, 

PP2~alkyne (2.2) S2.1 2.3 
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135.59, 131.73, 131.15, 129.90, 129.62, 123.79, 121.12, 120.0, 118.76, 99.69, 51.56, 

50.12, 33.62, 29.99, 25.91, 24.17; HRMS-ESI (m/z): [M + H]+ calcd for 

C26H25ClN8O2, 517.1862; found, 517.1863. 

 

 

 

 

 

 

 

Procedure of Cp*RuCl(COD) catalyzed cycloaddition reaction.  

 

Synthesis of S2.2: PP2~alkyne (50 mg, 0.14 mmol) and Cp*RuCl(COD) (5.3 mg, 

0.014 mmol) were added into a flame-dried round bottom flask and subsequently 

purged with nitrogen gas for 5 min. THF (1mL) and methyl 6-azidohexanoate (50 

µL, 0.43 mmol) were then added. The reaction was allowed to stir under nitrogen at 

room temperature overnight. The reaction mixture was diluted with ethyl acetate 

(10mL) and washed with water and brine, dried over MgSO4, filtered, and 

concentrated in vacuo. The crude product was purified by Biotage Isolera 1 Flash 

Purification System to give a 28 mg (37% yield) of compound S2.2 as a yellow solid. 

Spectral Data. 1H NMR (400 MHz, CDCl3): δ 8.47 (s, 1 H), 8.42 (s, 2 H), 7.77 (s, 

1 H), 7.72 (s, J = 7.2 Hz, 2 H), 7.63 (t, J = 8.0 Hz, 1 H), 7.56 (d, J = 8.4 Hz, 2 H), 

7.33 (d, J = 8.0 Hz, 1 H), 5.67 (s, 1H), 4.44 (t, J = 8 Hz, 2 H), 3.59 (s, 3 H), 2.21 (t, 

J = 8.0 Hz, 2 H), 1.94-1.86 (m, 2 H), 1.61-1.53 (m, 2 H), 1.35-1.27 (m, 2 H); 13C 

NMR (100 MHz, CDCl3): δ 173.71, 157.94, 156.72, 154.98, 144.89, 139.52, 137.09, 

135.92, 133.26, 130.96, 129.99, 129.61,128.11, 126.49, 121.90, 121.19, 99.93, 

51.49, 48.27, 33.64, 29.82, 25.99, 24.23; HRMS-ESI (m/z): [M + H]+ calcd for 

C26H25ClN8O2, 517.1862; found, 517.1861. 
 

 

Synthesis of S2.3: Reaction of PP2~alkyne (50 mg, 0.14 mmol) and methyl 7-

azidohexanoate (40 µL, 0.28 mmol) was prepared as described for the synthesis of 

S2.2. The crude product was purified by Biotage Isolera 1 Flash Purification System 

to give a 36 mg (47% yield) of compound S2.3 as a yellow solid. Spectral Data. 1H 

S2.7 2.10 

S2.2: n = 5 

S2.3:    = 6 

S2.4:    = 7 

 

S2: n = 5 

S3:    = 6 

S4:    = 7 

 

2.4: n = 5 

2.5:    = 6 

2.6:    = 7 

 

Scheme S 3: Synthesis of Compound 2.4-2.6 and 2.10 
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NMR (500 MHz, CDCl3): 8.48 (s, 1H), 8.43 (s, 2H), 7.77 (s, 1H), 7.72 (d, J = 6.8, 

2H), 7.64 (t, J = 8 Hz, 1H), 7.58-7.53 (m, 2H), 7.34 (d, J = 8.0 Hz, 1H), 4.44 (t, J = 

7.2 Hz, 2H), 3.61 (s, 3H), 2.19 (t, J = 7.6 Hz, 2H), 1.92-1.85 (m, 2H), 1.56-1.48 (m, 

2H), 1.28-1.23 (m, 4H); 13C NMR (100 MHz, CDCl3): 173.93, 158.07, 156.63, 

154.94, 144.92, 139.50, 137.07, 135.86, 133.20, 130.95, 129.83, 128.12, 126.46, 

121.86, 121.17, 99.88, 51.43, 48.37, 33.76, 29.96,28.42, 26.14, 24.57 HRMS-ESI 

(m/z): [M + H]+ calcd for C27H27ClN8O2, 531.2018; found, 531.2022. 

 

Synthesis of S2.4: Reaction of PP2~alkyne (50 mg, 0.14 mmol) and methyl 8-

azidohexanoate (40 µL, 0.28 mmol) was prepared as described for the synthesis of 

S2.2. The crude product was purified by Biotage Isolera 1 Flash Purification System 

to give a 36 mg (45% yield) of compound S2.4 as a yellow solid. Spectral Data. 1H 

NMR (500 MHz, CDCl3): δ 8.52 (s, 1 H), 8.46 (s, 2 H), 7.81 (s, 1 H), 7.77-7.73 (m, 

2 H), 7.70-7.64 (m, 1 H), 7.61-7.58 (m, 2 H), 7.37 (d, J = 7.5 Hz, 1 H), 5.52 (s, 2H), 

4.46 (t, J = 10 Hz, 2 H), 3.65 (s, 3 H), 2.24 (t, J = 7.5 Hz, 2 H), 1.94-1.88 (m, 2 H), 

1.57-1.51 (m, 2 H), 1.32-1.23 (m, 6 H); 13C NMR (100 MHz, CDCl3): 174.08, 

158.03, 156.65, 154.94, 144.91, 139.49, 137.06, 135.87, 133.22, 130.95, 129.84, 

128.17,126.49, 121.86, 121.21, 99.89, 51.44, 48.44, 33.88, 30.08, 28.8, 28.58, 26.27, 

24.69; HRMS-ESI (m/z): [M + H]+ calcd for C28H29ClN8O2, 545.2180; found, 

545.2180.Synthesis of S2.7: Reaction of phenylacetylene (54 µL, 0.49 mmol) and 

methyl 6-azidohexanoate (69 µL, 0.59 mmol) was prepared as described for the 

synthesis of S2.2. The crude product was purified by Biotage Isolera 1 Flash 

Purification System to give 70 mg (52% yield) of compound S2.7 as light brown oil. 

Spectral Data. 1H NMR (500 MHz, CDCl3): δ 7.69 (s, 1 H), 7.51-7.49 (m, 3 H), 

7.39-7.38 (m, 2 H), 4.36 (t, J = 10 Hz, 2 H), 3.65 (s, 3 H), 2.29-2.22 (m, 2 H), 1.85 

(m, 2 H), 1.59-1.55 (m, 2 H), 1.32-1.26 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ 

173.68, 137.64, 132.98, 129.41, 129.07, 128.66, 127.14, 51.45, 47.96, 33.57, 29.64, 

25.84, 24.12; HRMS-ESI (m/z): [M + H]+ calcd for C15H19N3O2, 274.2550; found, 

274.1553.   
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Procedure for conversion of methyl esters to hydroxamic acid 

 

Synthesis of 2.3: A solution of hydroxylamine hydrochloride (271 mg, 3.9 mmol) 

in 10 mL of MeOH, KOH (219 mg, 3.9 mmol) was added and stirred at 40 ºC for 10 

min. The reaction mixture was cooled to 0 ºC and filtered. Compound S2.1 (10 mg, 

0.02 mmol) was added to the filtrate followed by KOH (0.04 mmol) at room 

temperature for 3 hours. The reaction mixture was extracted with EtOAc. The 

organic layer was washed with saturated NH4Cl solution and brine, and dried over 

MgSO4, filtered and concentrated. The residue was purified by reverse-phase 

preparative HPLC (linear gradient of 5 to 95% acetonitrile and water) to give 7.3 mg 

of compound 2.3 (73%) as a white powder. Spectral Data. 1H NMR (500 MHz, 

CD3OD): δ 8.64 (s, 1H), 8.47 (s, 2H), 8.16 (d, J = 5 Hz, 1H), 7.92-7.86 (m, 1H), 

7.86-7.79 (m, 2H), 7.67-7.63 (m, 3H), 4.49 (t, J = 7 Hz, 2H), 2.12 (t, J = 7.5 Hz, 2H), 

2.03-1.99 (m, 2H), 1.74-1.68 (m, 2H), 1.44-1.34 (m, 2H); 13C NMR (100 MHz, 

DMSO-d6): 169.32, 157.08, 155.06, 146.32, 145.06, 139.62, 134.36, 132.31, 131.47, 

130.75, 130.20, 129.64, 123.52, 122.22, 120.81, 117.85, 99.19, 49.89, 32.47, 29.77, 

25.89, 24.93; HRMS-ESI (m/z): [M + H]+ calcd for C25H24ClN9O2, 518.1814; found, 

518.1822. 

 

Synthesis of 2.4: Compound S2.1 (8.9 mg, 0.02 mmol) was added to the 

hydroxylamine hydrochloride solution as described for the synthesis of 3 to give 7.2 

mg of compound 2.4 (82%) as a white powder. Spectral Data. 1H NMR (500 MHz, 

CD3OD): δ 8.49 – 8.43 (m, 2H), 8.34 (d, J = 10 Hz, 1 H), 7.92 (s, 1 H), 7.83-7.80 

(m, 2 H), 7.77 (t, J = 8.0 Hz, 1 H), 7.65-7.63 (m, 2 H), 7.59 (d, J = 8.0 Hz, 1 H), 4.57 

(t, J = 7.0 Hz, 2 H), 2.01 (t, J = 7.0 Hz, 2 H), 1.93-1.87 (m, 2 H), 1.60-1.54 (m, 2 H), 

1.35-1.28 (m, 2 H); 13C NMR (100 MHz, DMSO-d6): δ 169.26, 157.77, 155.76, 

154.74, 145.69, 139.26, 137.05, 134.58, 133.46, 131.07, 130.74, 129.69, 128.16, 

127.04, 122.16, 121.26, 99.27, 48.35, 32.44, 29.62, 25.96, 24.94; HRMS-ESI (m/z): 

[M + H]+ calcd for C25H24ClN9O2, 518.1814; found, 518.1811. 

 

Synthesis of 2.5: Compound S2.3 (36 mg, 0.07 mmol) was added to the 

hydroxylamine hydrochloride solution as described for the synthesis of 2.3 to give 

19 mg of compound 2.5 (53%) as a white powder. Spectral Data. 1H NMR (500 

MHz, DMSO-d6): δ 8.42 (s, 2 H), 8.34 (d, J = 7.4 Hz, 1 H), 7.98 (d, J = 0.9 Hz, 1 

H), 7.81 – 7.77 (m, 2 H), 7.74 (t, J = 8.0 Hz, 1 H), 7.65 (d, J = 8.5 Hz, 2 H), 7.56 (d, 

J = 7.8 Hz, 1 H), 4.46 (t, J = 7.2 Hz, 2 H), 1.85 (t, J = 7.4 Hz, 2 H), 1.79-1.75 (m, 2 

H), 1.41-1.37 (m, 2 H), 1.20-1.16 (m, 4 H); 13C NMR (100 MHz, DMSO-d6): δ 

169.59, 158.63, 156.05, 154.86, 145.39, 139.33, 137.06, 134.52, 133.44, 131.13, 

130.71, 129.67, 128.16, 126.92, 122.05, 121.11, 99.31, 48.43, 32.51, 29.77, 28.34, 

26.00, 25.29; HRMS-ESI (m/z): [M + H]+ calcd for C26H26ClN9O2, 532.1971; found, 

532.1978.     
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Synthesis of 2.6: Compound S2.4 (35 mg, 0.06 mmol) was added to the 

hydroxylamine hydrochloride solution as described for the synthesis of 2.3 to give 

5.4 mg of compound 2.6 (15%) as a white powder. Spectral Data. 1H NMR (500 

MHz, CD3OD): δ 8.49 (s, 1 H), 8.43 (s, 1 H), 8.36 (d, J = 7.5 Hz, 1 H), 7.92 (s, 1 H), 

7.84-7.80 (m, 2 H), 7.78 (t, J = 8.0 Hz, 1 H), 7.67-7.63 (m, 2 H), 7.60 (d, J = 7.7 Hz, 

1 H), 4.56 (t, J = 7.5 Hz, 2 H), 1.99 (t, J = 7.3 Hz, 2 H), 1.89-1.84 (m, 2H), 1.51-1.46 

(m, 2H), 1.29-1.20 (m, 6H); 13C NMR (100 MHz, DMSO-d6): δ 169.43, 158.21, 

156.29, 154.90, 145.56, 139.36, 137.06, 134.52, 133.41, 131.16, 130.72, 129.67, 

128.19, 126.92, 122.03, 121.08, 99.30, 48.34, 32.57, 29.83, 28.76, 28.43, 26.14, 

25.37; HRMS-ESI (m/z): [M + H]+ calcd for C27H28ClN9O2, 546.2127; found, 

546.2129. 

 

Synthesis of 2.10: Compound S2.7 (30 mg, 0.11 mmol) was added to the 

hydroxylamine hydrochloride solution as described for the synthesis of 2.3 to give 

15 mg of compound 2.10 (50%) as an oil. Spectral Data. 1H NMR (500 MHz, 

CD3OD): δ 7.79 (s, 1 H), 7.58-7.50 (m, 5 H), 4.49 (t, J = 7.0 Hz, 2 H), 2.01 (t,  J = 

7.4 Hz, 2 H), 1.84-1.78 (m, 2 H), 1.57-1.51 (m, 2 H), 1.27-1.20 (m, 2 H); 13C NMR 

(100 MHz, DMSO-d6): δ 169.28, 137.69, 133.70, 129.75, 129.55, 128.97, 127.30, 

48.13, 32.39, 29.40, 25.85, 24.85; HRMS-ESI (m/z): [M + H]+ calcd for 

C14H18N4O2, 275.1503; found, 275.1508. 

 

Scheme S 4: Synthesis of Compound 2.7 and 2.8 
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Synthesis of 2.7: Reaction of PP2~alkyne (20 mg, 0.06 mmol) and (E)-ethyl 3-(4-

(azidomethyl)phenyl)acrylate (16 mg, 0.07 mmol) was prepared as described for the 

synthesis of S2.2. The crude product was carried on without further purification and 

was added to the hydroxylamine hydrochloride solution as described for the 

synthesis of 2.3 to give 1.3 mg of compound 2.7 (20%) as a white powder. Spectral 

Data. 1H NMR (500 MHz, DMSO-d6): δ 8.35 (s, 3 H), 8.10 (s, 1 H), 7.75-7.63 (m, 

5 H), 7.47 (t, J = 8.1 Hz, 3 H), 7.37 (d, J = 15.72 Hz, 1 H), 7.09 (d, J = 7.5 Hz, 2 H), 

6.40 (d, J = 15.84 Hz, 1 H), 5.79  (s, 2 H); 13C NMR (100 MHz, DMSO-d6): 158.79, 

157.05, 155.12, 145.33, 139.43, 138.16, 137.69, 137.15, 135.64, 134.44, 133.83, 

131.30, 130.71, 130.54, 129.79, 129.65, 128.39, 127.76, 126.84, 126.02, 122.08, 

121, 120.02, 99.23, 51.51; HRMS-ESI (m/z): [M - H]- calcd for C29H22ClN9O2, 

562.1512; found, 562.1502. 

 

 

Synthesis of 2.8: Reaction of PP2~alkyne (10 mg, 0.03 mmol) and (E)-ethyl 3-(4-

(azidomethyl)phenyl)acrylate (8 mg, 0.04 mmol) was prepared as described for the 

synthesis of S2.2. The crude product was carried on withour further purification and 

was added to the hydroxylamine hydrochloride solution as described for the 

synthesis of 2.3 to give 1.4 mg of compound  2.8 (74%) as a white powder. Spectral 

Data. 1H NMR (500 MHz, DMSO-d6): δ 8.38 – 8.28 (m, 2 H), 8.09 (s, 1 H), 7.74 - 

7.64 (m, 6 H),  7.49 (d, J = 7.75 Hz, 1 H), 7.42 (d, J =7.9 Hz, 1 H), 7.37 – 7.24 (m, 

3 H), 7.05 (d, J = 7.8 Hz, 1 H), 6.35 (d, J = 15.8 Hz, 1 H), 5.78 (s, 2 H); 13C NMR 

(100 MHz, DMSO-d6): δ 158.80, 157.06, 145.34, 139.44, 138.18,137.69, 137.16, 

134.45, 133.84, 131.31, 130.71, 130.55, 129.79, 129.66, 128.40, 127.77, 

126.85,126.04, 122.09, 120.03, 99.23, 51.51; HRMS-ESI (m/z): [M - H]- calcd for 

C29H22ClN9O2, 562.1512; found, 562.1496. 

 

 

 

 

 

 

S2.8 2.9 

Scheme S 5: Synthesis of Compound 2.9 
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Synthesis of S2.8: To an oven-dried round bottom flask was added 2-((4- 

chlorophenyl)(methoxy)methylene)malononitrile2 (500 mg, 2.29 mmol). Ethanol 

(11.4 mL) was added, followed by phenylhydrazine (247 mg, 2.29 mmol). The 

reaction mixture was then heated to 85 ˚C for 1 hour. The reaction was then allowed 

to cool to room temperature. During the cooling process visible precipitation began 

to occur. After sufficient cooling the reaction mixture was filtered to provide the 

product S2.8 as a fluffy light pink solid (290 mg, 43% yield). Spectral data. 1H 

NMR (500 MHz, DMSO-d6): δ 7.89-7.85 (m, 2 H), 7.60-7.53 (m, 2 H), 7.49-7.44 

(m, 1 H), 6.88 (s, 2 H); 13C NMR (100 MHz, DMSO-d6): δ 153.44, 149.50, 137.70, 

134.18, 130.49, 129.95, 129.36, 128.56, 128.05, 124.79, 115.83; HRMS-APCI 

(m/z): [M + H]+ calcd for C79H95ClN20O22, 295.0746; found 295.0746. 

 

Synthesis of 2.9: To an oven-dried round bottom flask was added S2.8 (205 mg, 0.7 

mmol). Formamide (2 mL) was then added. The reaction mixture was heated to 220 

˚C for 5 hours. The reaction was then allowed to cool to room temperature. After 

sufficient cooling, water (6 mL) was added to precipitate the reaction. The reaction 

was then filtered, and the resulting solid was rinsed with water (2 mL x 3). After 

drying the product 2.9 was obtained as a light brown solid (190 mg, 85% yield). 

Spectral data. 1H NMR (500 MHz, DMSO-d6): δ 8.38 (s, 1 H), 8.23-8.20 (m, 2 H), 

7.79-7.76 (m, 2 H), 7.66-7.62 (m, 2 H), 7.59-7.54 (m, 2 H), 7.39-7.34 (m, 1 H); 13C 

NMR (100 MHz, DMSO-d6): δ 158.84, 157.02, 154.91, 144.88, 139.03, 134.31, 

131.53, 130.70, 129.64, 129.59, 129.83, 121.55, 99.13; HRMS-APCI (m/z): [M + 

H]+ calcd for C79H95ClN20O22, 322.0854; found 322.0864. 
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Spectral Data for Compounds 2.3-2.10 

 
 

 

 

 

 

 

 

S2.1 

Compound S2.1 1H 

Compound S2.1 13C 
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S2.2 

Compound S2.2 1H 

Compound S2.2 13C 
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S2.3 

Compound S2.3 1H 

Compound S2.3 13C 
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S2.4 

Compound S2.4 1H 

Compound S2.4 13C 
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S2.7 

Compound S2.7 1H 

Compound S2.7 13C 
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2.3 

Compound 2.3 1H 

Compound 2.3 13C 
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2.4 

Compound 2.4 1H 

Compound 2.4 13C 
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2.5 

Compound 2.5 1H 

Compound 2.5 13C 
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2.6 

Compound 2.6 1H 

Compound 2.6 13C 
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2.7 

Compound 2.7 1H 

Compound 2.7 13C 
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2.8 

Compound 2.8 1H 

Compound 2.8 13C 
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S2.8 

Compound S2.8 1H 

Compound S2.8 13C 
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2.9 

Compound 2.9 1H 

Compound 2.9 13C 
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2.10 

Compound 2.10 1H 

Compound 2.10 13C 
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Biochemical Characterization 

General procedure for determination of inhibitor Ki for c-Src: c-Src inhibition 

assay was performed using a continuous, fluorimetric assay as previously 

described.22 Reaction volumes of 100 µL were used in 96-well plates. To each well 

was added 85 µL of buffer + enzyme. 2.5 µL of varying concentrations of inhibitor 

was then added (typically 10000, 2500, 625, 156, 39, 10, 2.4, 0.61, 0.15, 0 µM in 

DMSO). 2.5 µL of peptide substrate (“compound 3” as described in Wang et. al.)22 

solution (1.8 mM in DMSO) was added. 10 µL of ATP (1 mM in water) was added 

to initiate the reaction and was immediately monitored at 405 nm (ex. 340 nm) for 

10 minutes. Final concentrations in the reaction are 30 nM enzyme, 45 µM peptide 

substrate, 100 µM ATP, 100 µM Na3VO4, 100 mM Tris buffer (pH 8), 10 mM 

MgCl2, 0.01% Triton X-100. The initial rate of the reaction was used to determine 

Ki values. For Ki determination, the kinetic values were obtained directly from 

nonlinear regression of substrate-velocity curves in the presence of various 

concentrations of the inhibitor. The equation Y = Bottom + (Top – Bottom)/1 + 10x 

– LogEC50), X = log(concentration) and Y = binding; was used in the nonlinear 

regression.   

 

General procedure for determination of inhibitor Ki for HDAC 1: HDAC 1 assay 

was performed in a fluorescence assay in 96-well plates with a reaction volume of 

100 µL as was previously described.23 To each well was added buffer (75 µL), 

trypsin (10 µL), and HDAC 1 enzyme (10 µL). 2.5 µL of varying concentrations of 

inhibitor was then added (typically 781, 195, 49, 12, 3, 0.76, 0.19, 0.05, 0.01, 0.003, 

0 nM in DMSO). 2.5 µL of peptide substrate (Ac-Leu-Gly-Lys(Ac)AMCA) solution 

(2 mM in DMSO) was added to initiate the reaction and was monitored at 370 nm 

(ex. 455 nm) for 30 min. after a 30 min. lag phase. Final concentrations in the 

reaction are 400 pM HDAC 1, 1 µM trypsin, 50 µM peptide substrate (KM = 39.5. 

µM), 15 mM Tris buffer (pH 8.1), 250 µM EDTA, 250 mM NaCl, 10% glycerol, 

and 0.01% Triton X-100. The initial rate of the reaction was used to determine Ki 

values. Note: For those compounds where it is titrating with enzyme (2.3-2.5), the 

compound was reassess at a higher peptide substrate concentration of 500 µM and 

the Ki remained unchanged (data not shown). For Ki  determination, the kinetic 

values were obtained directly from nonlinear regression of substrate-velocity curves 

in the presence of various concentrations of the inhibitor. The equation Y = Bottom 

+ (Top – Bottom)/1 + 10x – LogEC50), X = log(concentration) and Y = binding; was 

used in the nonlinear regression. 

 

Analytical data for Ki determination. Each inhibitor Ki value was determined 

using at least 3 independent measurements. An example curve is provided for each 

inhibitor. 
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c-Src Assay Data: Representative Curves 
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HDAC 1 Assay Data: Representative Curve 
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c-Abl Assay Data: Representative Curve 
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c-Hck Assay Data: 
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Analytical HPLC trace for Compounds 2.3-2.10 

Compound 2.3: 

     5-95% CH3CN/H2O gradient 

 

95% CH3OH/H2O gradient 
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Compound 2.4: 

            5-95% CH3CN/H2O gradient 

 

5-95% CH3OH/H2O gradient 
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Compound 2.5 

5-95% CH3CN/H2O gradient 

 

 

5-95% CH3OH/H2O gradient 
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Compound 2.6 

Concentration of compound 6 is less than 100 M 

 

5-95% CH3CN/H2O gradient 

 

5-95% CH3OH/H2O gradient 

 

Compound 2.7 
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Compound 7 was dissolved in 100% DMSO to 1 mg/mL and injected into Waters 

and eluted using a linear gradient of CH3CN (5-95%) in H2O over 60 min. at a flow 

rate of 10 mL/min. 

 

 

5-95% CH3OH/H2O gradient 
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Compound 2.8 

5-95% CH3CN/H2O gradient 

 

 

5-95% CH3OH/H2O gradient 
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Compound 2.9 

5-95% CH3CN/H2O gradient 

 

 

5-95% CH3OH/H2O gradient 

 

 

Compound 2.10 
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5-95% CH3CN/H2O gradient 

 

5-95% CH3OH/H2O gradient 
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Analytical HPLC trace of Compound 2.4 stability in cell lysate 

Compound 2.4 was incubated with SK-BR-3 cell lysate at 500 M for 24 hours at 

37˚C.  Afterwards, an aliquot (10 L) was injected into a Waters© Xbridge C18 

column (2.1 x 100 mm) and eluted using a linear gradient of CH3CN (5-95%) in 

H2O over 15 min. at a flow rate of 0.5 mL/min. 

 

Time = 0 min.  

Retention time of Compound 4 was determined from previous HPLC trace 

previously shown.  

Time = 24 hours 
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ATP KM CURVES 

 

General procedure for ATP Km determination. The previously described 

fluorescence assay22 was used to determine Km values. Reaction volumes of 100 µL 

were used in 96-well plates. 85 µL of enzyme in buffer was added to each well. 2.5 

µL of DMSO was then added followed by 2.5 µL of a substrate peptide (“compound 

3” as described in Wang et al)22 solution (1.8 mM in DMSO). The reaction was 

initiated with 10 µL of the appropriate ATP dilution (typically 1000, 500, 250, 125, 

62.5, 31.3, 15.6, 7.8, 3.9, 2.0 µM in H2O) and reaction progress was immediately 

monitored at 405 nm (ex. 340 nm) for 10 minutes. Reactions had final concentrations 

of 30 nM enzyme, 45 µM peptide substrate, 100 µM Na3VO4, 100 mM Tris buffer 

(pH 8), 10 mM MgCl2, 0.01% Triton X-100. The initial rate data collected was used 

for determination of Km values. For Km determination, the kinetic values were 

obtained directly from nonlinear regression of substrate-velocity curves in the 

presence of varying concentrations of ATP. The equation Y = (Vmax * X)/(Km + 

X), X = substrate concentration (µM) and Y = enzyme velocity (RFU/s); was used 

in the nonlinear regression. Each ATP Km value was determined using at least three 

independent experiments; a representative Km curve is shown. The Km for c-Src that 

was used here is 98 M and was previously determined by our group.26 

 

ATP Km Curve with KD c-Hck enzyme: 

 

 

 

 

ATP Km Curve with KD c-Abl enzyme: 
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CELLULAR CHARACTERIZATION 

 

Cell growth inhibition assays. 

 

WST-1 reagent was obtained from Roche. The cell proliferation colorimetric assay 

using WST-1 was performed following the protocol provided by Roche.  

Cell Culture and Seeding Procedure:  Cells were dispersed from flasks and collected 

by centrifugation (200xg for 5 minutes at room temperature). An aliquot of the 

resuspended cells was mixed with trypan blue solution and the cell number was 

quantified using a hemacytometer. In general, depending on the growth rate of the 

untreated cells, the cells were plated at 5.0 – 7.5 x 103 cells per well. The cells were 

plated into sterile, clear bottom 96 well plates and cultured under normal growth 

conditions overnight prior to dosing with compound. 

Dosing: 100% DMSO compound stocks were prepared to 100X the final 

concentration desired in the assay. 3 µL of the DMSO stock solution was then added 

to 297 µL of the cell growth media to give a DMSO concentration of 1%. The cell 

media was removed by aspiration for adherent cells and replaced with 100 µL per 

well of the cell growth media containing the compound. In general, each compound 

concentration was dosed in triplicate wells. Assay: After the dosing period (24 

hours) was complete, the plates were removed from the incubator and 10 µL per 

well of WST-1 reagent was added. The plates were returned to the incubator and 

incubated for 1 hr, followed by shaking on a plate shaker for 60 seconds prior to the 

absorbance read (450 nm) on a BioTek Synergy 4 multimode plate reader. 

 

Data Analysis: The reference absorbance reading was subtracted from the formazan 

absorbance (background control well no compound added, 1% DMSO) and the data 

was plotted as a percentage of the vehicle (1% DMSO alone). Data analysis and 

curve fitting was performed using Graphpad Prism. For each cell line, there were n 

= 3 data points for each concentration. Each dose response curve was performed at 

least twice, providing n ≥ 6 for each data point. 
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A. SK-BR-3 with Vorinostat: 

 

 

B. SK-BR-3 with Compound 2.1: 

 

 

 

 

C. SK-BR-3 with Compound 2.4: 
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D. SK-BR-3 with 1:1 combination of Vorinostat + Compound 2.1: 
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E. HMEC with Vorinostat: 

 

 

 

F. HMEC with Compound 2.1: 
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G. HMEC with Compound 4: 

 

 

H. HMEC with 1:1 combination of Vorinostat + Compound 2.1: 
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I. HMEC with Dasatinib 
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NCI Cancer Cell Profiling for Compound 2.4 

For the most up to date, detailed protocol for the NCI-60 screen is provided by the 

Developmental Therapeutics Program National Cancer Institute/National Institute of 

Health (DTP NCI/NCI) website.27  
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NCI Cancer Cell Profiling for Vorinostat (Zolinza), NSC 701852 

 

Data provided by the DTP NCI/NIH website, NCI 60 cell line screen dose 

response data from 08/2012.7 

 

Concentration 

Unit 

CellPanelName CellLineName 
logValue, 

GI50 
logValue, 

TGI50 
logValue, 

LC50 
log10(M) 

Leukemia CCRF-CEM -6.133 -5.082 -4 

log10(M) 

Leukemia HL-60(TB) -5.901 -4.855 -4 

log10(M) 

Leukemia K-562 -6.318 -4.926 -4.17 

log10(M) 

Leukemia MOLT-4 -6.433 -4.957 -4 
log10(M) 

Leukemia RPMI-8226 -6.515 -5.427 -4.151 
log10(M) 

Leukemia SR -6.403 -4.471 -4 

log10(M) Non-Small Cell 
Lung A549/ATCC -5.766 -4.655 -4.081 

log10(M) Non-Small Cell 
Lung EKVX -5.848 -4.277 -4 

log10(M) Non-Small Cell 
Lung HOP-62 -5.805 -4.112 -4 

log10(M) Non-Small Cell 
Lung HOP-92 -5.534 -4.488 -4 

log10(M) Non-Small Cell 
Lung NCI-H226 -5.375 -4.192 -4 

log10(M) Non-Small Cell 
Lung NCI-H23 -5.953 -5.009 -4.233 

log10(M) Non-Small Cell 
Lung NCI-H322M -6.072 -4.886 -4.159 

log10(M) Non-Small Cell 
Lung NCI-H460 -6.111 -4.146 -4 

log10(M) Non-Small Cell 
Lung NCI-H522 -6.331 -5.161 -4.051 

log10(M) 

Colon COLO 205 -6.051 -5.581 -5.084 
log10(M) 

Colon HCC-2998 -5.733 -4.819 -4.154 
log10(M) 

Colon HCT-116 -6.411 -5.231 -4.633 

log10(M) 

Colon HCT-15 -5.562 -4.071 -4 

log10(M) 

Colon HT29 -6.127 -4.807 -4.054 

log10(M) 

Colon KM12 -5.732 -4.64 -4.058 
log10(M) 

Colon SW-620 -6.205 -5.051 -4.165 

log10(M) 
Central 
Nervous 
System SF-268 -5.775 -4.477 -4.044 
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log10(M) 
Central 
Nervous 
System SF-295 -5.88 -5.046 -4.166 

log10(M) 
Central 
Nervous 
System SF-539 -5.723 -4.316 -4 

log10(M) 
Central 
Nervous 
System SNB-19 -5.681 -4.748 -4.037 

log10(M) 
Central 
Nervous 
System SNB-75 -6.1 -4.258 -4 

log10(M) 
Central 
Nervous 
System U251 -5.805 -4.766 -4.328 

log10(M) 

Melanoma LOX IMVI -5.939 -4.99 -4.474 

log10(M) 

Melanoma MALME-3M -6.576 -5.417 -4 
log10(M) 

Melanoma M14 -5.886 -4.695 -4.067 
log10(M) 

Melanoma MDA-MB-435 -6.294 -5.228 -4.043 

log10(M) 

Melanoma MDA-N -6.271 -5.495 -4.458 

log10(M) 

Melanoma SK-MEL-2 -5.889 -4.767 -4.033 

log10(M) 

Melanoma SK-MEL-28 -5.926 -5.07 -4.227 
log10(M) 

Melanoma SK-MEL-5 -6.183 -5.574 -5.056 
log10(M) 

Melanoma UACC-257 -6.308 -5.028 -4.049 
log10(M) 

Melanoma UACC-62 -6.351 -5.561 -4.826 

log10(M) 

Ovarian IGROV1 -5.963 -5.089 -4.372 

log10(M) 

Ovarian OVCAR-3 -5.867 -5.01 -4.226 

log10(M) 

Ovarian OVCAR-4 -5.38 -4.011 -4 
log10(M) 

Ovarian OVCAR-5 -6.091 -4.944 -4.111 
log10(M) 

Ovarian OVCAR-8 -6.286 -4.649 -4 
log10(M) 

Ovarian NCI/ADR-RES -6.806 -5.568 -4.375 

log10(M) 

Ovarian SK-OV-3 -5.955 -4.881 -4.134 

log10(M) 

Renal 786-0 -5.52 -4.258 -4.03 

log10(M) 

Renal A498 -5.865 -5.174 -4.628 
log10(M) 

Renal ACHN -5.855 -5.124 -4.305 
log10(M) 

Renal CAKI-1 -5.921 -5.403 -4.721 

log10(M) 

Renal RXF 393 -5.9 -5.266 -4.334 
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log10(M) 

Renal SN12C -5.645 -4.515 -4.238 

log10(M) 

Renal TK-10 -6.194 -5.095 -4.188 

log10(M) 

Renal UO-31 -6.262 -5.199 -4.159 

log10(M) 

Prostate PC-3 -5.683 -4.174 -4 
log10(M) 

Prostate DU-145 -5.89 -4.747 -4 
log10(M) 

Breast MCF7 -5.644 -4.385 -4 
log10(M) 

Breast 
MDA-MB-
231/ATCC -5.607 -4 -4 

log10(M) 

Breast HS 578T -5.449 -4.155 -4 

log10(M) 

Breast BT-549 -5.77 -4.629 -4.016 

log10(M) 

Breast T-47D -6.278 -5.36 -4 
log10(M) 

Breast MDA-MB-468 -6.046 -4.965 -4.067 
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NCI Cancer Cell Profiling for Dasatinib (Sprycel), NSC 723517 

 

Data provided by the DTP NCI/NIH website, NCI 60 cell line screen dose 

response data from 08/2012.7 

 

Concentration 

Unit 

Cell Panel 

Name 

Cell Line 

Name 

logValue, 

GI50 

logValue, 

TGI 

logValue, 

LC50 

log10(M) Leukemia CCRF-CEM -5.135 -4.699 -4.699 

log10(M) Leukemia HL-60(TB) -5.111 -4.699 -4.699 

log10(M) Leukemia K-562 -8.699 -4.699 -4.699 

log10(M) Leukemia MOLT-4 -5.271 -4.699 -4.699 

log10(M) Leukemia RPMI-8226 -5.132 -4.699 -4.699 

log10(M) Leukemia SR -5.199 -4.699 -4.699 

log10(M) 

Non-Small Cell 

Lung A549/ATCC -7.378 -5.484 -4.699 

log10(M) 

Non-Small Cell 

Lung EKVX -5.374 -4.699 -4.699 

log10(M) 

Non-Small Cell 

Lung HOP-62 -7.439 -4.699 -4.699 

log10(M) 

Non-Small Cell 

Lung NCI-H226 -7.334 -4.699 -4.699 

log10(M) 

Non-Small Cell 

Lung NCI-H23 -5.282 -4.699 -4.699 

log10(M) 

Non-Small Cell 

Lung NCI-H322M -6.757 -4.699 -4.699 

log10(M) 

Non-Small Cell 

Lung NCI-H460 -5.054 -4.699 -4.699 

log10(M) 

Non-Small Cell 

Lung NCI-H522 -6.939 -4.825 -4.699 

log10(M) Colon COLO 205 -7.431 -4.699 -4.699 

log10(M) Colon HCC-2998 -4.887 -4.699 -4.699 

log10(M) Colon HCT-116 -5.431 -4.699 -4.699 

log10(M) Colon HCT-15 -6.101 -4.699 -4.699 

log10(M) Colon HT29 -7.883 -4.699 -4.699 

log10(M) Colon KM12 -5.128 -4.699 -4.699 

log10(M) Colon SW-620 -5.074 -4.699 -4.699 

log10(M) 

Central 

Nervous 

System SF-268 -6.95 -4.782 -4.699 

log10(M) 

Central 

Nervous 

System SF-295 -5.479 -4.865 -4.699 

log10(M) 

Central 

Nervous 

System SF-539 -7.273 -4.699 -4.699 
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log10(M) 

Central 

Nervous 

System SNB-19 -5.264 -7.25 -4.699 

log10(M) 

Central 

Nervous 

System SNB-75 -8.329 -4.699 -4.699 

log10(M) 

Central 

Nervous 

System U251 -5.551 -6.435 -4.699 

log10(M) Melanoma LOX IMVI -8.017 -4.699 -5.226 

log10(M) Melanoma MALME-3M -5.18 -4.699 -4.699 

log10(M) Melanoma M14 -5.309 -4.699 -4.699 

log10(M) Melanoma MDA-MB-435 -5.221 -4.699 -4.699 
 

log10(M) Melanoma SK-MEL-2 -5.11 -4.699 -4.699 

log10(M) Melanoma SK-MEL-28 -5.038 -4.699 -4.699 

log10(M) Melanoma SK-MEL-5 -5.171 -4.76 -4.699 

log10(M) Melanoma UACC-257 -5.571 -4.699 -4.699 

log10(M) Melanoma UACC-62 -5.245 -4.699 -4.699 

log10(M) Ovarian IGROV1 -7.599 -4.699 -4.699 

log10(M) Ovarian OVCAR-3 -6.761 -4.699 -4.699 

log10(M) Ovarian OVCAR-4 -5.151 -4.699 -4.699 

log10(M) Ovarian OVCAR-5 -7.302 -6.294 -4.699 

log10(M) Ovarian OVCAR-8 -7.307 -4.699 -4.699 

log10(M) Ovarian NCI/ADR-RES -5.363 -5.476 -4.699 

log10(M) Ovarian SK-OV-3 -6.649 -4.699 -4.699 

log10(M) Renal 786-0 -6.909 -6.728 -4.699 

log10(M) Renal A498 -7.65 -4.699 -4.983 

log10(M) Renal ACHN -7.736 -6.059 -4.699 

log10(M) Renal CAKI-1 -7.725 -7.014 -4.699 

log10(M) Renal RXF 393 -8.045 -4.699 -5.003 

log10(M) Renal SN12C -7.545 -7.14 -4.699 

log10(M) Renal TK-10 -8.074 -4.769 -4.699 

log10(M) Renal UO-31 -7.705 -4.699 -4.699 

log10(M) Prostate PC-3 -5.646 -4.699 -4.699 

log10(M) Prostate DU-145 -6.801 -4.699 -4.699 

log10(M) Breast MCF7 -5.08 -5.42 -4.699 

log10(M) Breast 
MDA-MB-

231/ATCC -7.809 -4.699 -4.729 

log10(M) Breast HS 578T -7.601 -4.699 -4.699 

log10(M) Breast BT-549 -5.117 -4.699 -4.699 

log10(M) Breast T-47D -6.387 -5.902 -4.699 

log10(M) Breast MDA-MB-468 -7.065   -4.699 
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Chapter 4  

Development of a dual p38/c-Src Inhibitor for Triple Negative Breast Cancer 

 

4.1 Introduction 

Metastasis is not a term a patient wants to hear in regards to their cancer. It 

is an extremely aggressive stage of cancer with nearly a 90% fatality rate.1 One of 

the most commonly known cancers associated with metastasis is breast cancer 

mainly due to its consistent repeat as the second leading cause of death of women in 

the United States.2–5 The three most prevalent types of breast cancers are ER+/PR+, 

HER2+, and ER+/PR+/HER2+. ER+ stands for estrogen receptor, PR+ as 

progesterone receptor, and HER2+ refers to EGFR kinase. In these types of cancers, 

those particular hormone receptors are overexpressed and as such, are the driving 

force for those breast cancers. Hence the specific targeting of these overabundant 

species have proven to be an effective treatment. However, a fourth category of 

breast cancer, triple negative breast cancer (TNBC), aptly named because of the lack 

of ER/PR/HER2 hormone receptor expression, has no known driving force and thus, 

no known target. This is particularly disconcerting as TNBCs are notoriously lethal 

due to their high risk of metastasis and proclivity to rapidly reoccur.6–10 

Unfortunately, 10-15% of breast cancers fall into this subcategory and the lack of 

treatment target for these patients often results in a poor prognosis. There are no 

FDA-approved targeted therapies.11 Treatment is entirely dependent upon cytotoxic 

agents, but even such methods are not effective as non-metastatic TNBC reoccurs 

in about 40% of the patients, a much higher rate than in HER2+ breast cancer, which 

is less than 25% reoccurrence. There is evident need for a specific therapeutic 
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against TNBCs. Chapter 4 addresses this issue and proposes c-Src as a target of 

choice.  

A previous in vitro study involving gene expression profiling had identified 

dasatinib, a c-Src tyrosine kinase inhibitor, to be sensitized to TNBC tumors and 

was demonstrated to reduce cell proliferation. As such, the results from the study 

validated c-Src as a viable target for TNBC. As mentioned (vide supra), c-Src is a 

ubiquitously expressed membrane-associated non-receptor kinase. c-Src participates 

in signaling pathways for adhesion, migration, and invasion, which are all 

characteristic functions hacked by TNBC. Thus, c-Src, with high expression levels 

found in TNBCs, has been implicated in a role in cancer progression of TNBC 

cancer cell lines, making it an attractive therapeutic target.12–15  

Unfortunately, targeting of c-Src using existing FDA approved inhibitors for 

c-Src have not translated successfully to the clinical setting. Patients with advanced 

or metastatic TNBC showed little improvement while on dasatinib or bosutinib in a 

recent phase II trial.16–18 These results are puzzling as in vitro studies have proven 

targeted c-Src inhibition to be effective against TNBCs. In an effort to understand 

this perplexing issue, our lab has decided to design our own c-Src ligand.  

Many TNBC cancer cell lines have an overexpression of c-Src which is 

usually in its fully activated form, pY419 and thus open conformation. Type II 

(DFG-out) ligands prefer binding to the open conformation of c-Src and therefore 

we reasoned that designing a Type II ligand for c-Src might be more efficacious. 

19,20 As previously described in Chapter 2, different ligands can have varying non-

catalytic effects and so using a Type II vs. Type I (DFG-in) could also provide 

additional efficacy. There are currently no FDA-approved Type II inhibitors for c-

Src. Both dasatinib and bosutinib are Type I inhibitors. Perhaps our designed Type 

II ligand would prove more successful for TNBC and show better results in a clinical 

setting, helping to provide evidence that c-Src can used as a target. 

4.2 Rational Design in Improving Dasatinib Efficacy in TNBC 

To evaluate if any variable differences is due to the ligand type, we 

previously designed a Type II inhibitor based off of the dasatinib scaffold ( 
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4.1 

Figure 4.1: From PDB 3G5D (c-Src and dasatinib) and 2HYY (c-Abl and imatinib). Picture on the left depicts 

an overlay of both c-Src and c-Abl crystal structures, shown in white, and both dasatinib (magenta) and 

imatinib (green) ligands. The picture on the right shows the ligands alone. From the ligand overlay, the methyl 

phenyl ring (red arrow) are almost perfectly aligned, giving the rationale that using the dasatinib scaffold and 

adding the phenyl methyl piperazine of imatinib (the DFG-out portion) would create a DFG-out ligand that 

would bind c-Src.  

Dasatinib 

Imatinib 
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Figure 4.1). Using crystal structures, dasatinib was overlaid with imatinib, a c-Abl 

Type II inhibitor.  The dasatinib portion that bound in the ATP pocket was utilized 

and the Type II piece of imatinib was appended. This rationale design gives us a 

more definite chance of designing a ligand that binds c-Src in a DFG-out 

conformation. For the ease of synthesis, the para methyl piperazine was replaced 

with a meta CF3 group which was borrowed from the type II sorafenib scaffold. 

Previous literature SAR studies of imatinib has found the methyl piperazine group 

was added as a solubilizing group and thus, not as necessary for potency. Instead, a 

CF3 group was substituted, as previous compounds synthesized in our lab using a 

pyrazolopyrimidine scaffold had suggested this group was necessary for more potent 

binding to c-Src. Altogether, this would help us to explore Type I vs Type II effect 

in TNBC without varying effects from differing scaffolds.   

4.3 Biochemical Evaluation of 4.1 using BODIPY 

As a result, Compound 4.1, was synthesized. Since dasatinib is extremely 

potent against c-Src with pM affinity, it was not surprising that 4.1 titrates enzyme 

(less than 30 nM) in our biochemical assay. To properly evaluate binding affinities 

of 4.1, a BODIPY version was developed, which can be used in a binding assay to 

ascertain Kd values. A BODIPY version of dasatinib was made as well for 

comparison. Along with Kd values, koff rates can be obtained, which would allow us 

to assess residency times of inhibitors. It has been previously described that one 

advantage of Type II inhibitors over Type I is a longer koff rate which would prove 

beneficial in a clinical setting. The results are shown in Table 4.2. Dasatinib-

BODIPY (0.74 nM) is 3.6 fold more potent than 4.1-BODIPY (2.7 nM). However, 

as expected, 4.1-BODIPY has a longer koff value (1.8E-04 sec-1) than dasatinib 

(7.9E-04 sec-1) which is a 4.4 fold longer residency time. Since c-Src is oftentimes 

phosphorylated in cancer cell lines, its phosphorylated (pY419) version was 

assessed as well. Gratifyingly, compound 4.1 remains similarly effective against 

pY419 c-Src as in wt-Src.  

4.4 Cellular Evaluation of 4.1  
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With similar biochemical data, we wanted to assess cellular proliferation in 

TNBC cancer cell lines. First, using MDA-MB-231 cell lines, we were surprised to 

see that compound 4.1 (GI50 = 6nM) is 138-fold more potent than dasatinib (GI50 

= 830nM),  

Table 4.1. To ensure the potency is not the result of toxicity, both 4.1 and 

dasatinib was dosed in HMECs, a healthy human mammary epithelial cell line. 

Satisfyingly, 4.1 is only 1800 nM vs. 700 nM for dasatinib and thus relatively 

resistant to the anti-proliferation effects of either compound. Overall these results, 

could explain dasatinib's poor effect in clinical trials of TNBC patients. While the 

large increase of potency between compound 4.1 and dasatinib could be attributed 

to a longer koff rate, it is more plausible that there are a number of other factors at 

play. One easily explored factor is kinase selectivity. It is known that dasatinib is a 

promiscuous inhibitor of other kinases besides c-Src, which could lead to possible 

negation of its inhibition of c-Src, as inhibition of other pathways through other 

kinases could be detrimental to killing TNBC cell line. Another more easily 

considered explanation is compound 4.1 could be inhibiting another kinase 

important in TNBC proliferation that dasatinib does not target. As such, a proteomic 

profiling in MDA-MB-231 lysate was performed with both compounds. In a 

proteomic profiling, an active-site directed covalent probe, ATP-biotin, is used to 

label any ATP binding enzyme, which in our case is kinases. Inhibitors, such as 4.1 

and dasatinib, can block ATP-biotin from labeling kinases which is how kinase 

selectivity can be assessed in a cell line. From the profiling, 4.1 and dasatinib have 

similar targets except p38 kinases. Specifically, compound 4.1 potently inhibits 

p38α and p38β. Biochemical Kd values were found against p38β to be 7.8 nM (data 

from DiscoverX). p38 phosphorylation in MDA-MB-231 was stopped upon 

treatment with compound 4.1 in 15 min, lending further credence to the profiling 

results, Figure 4.2.  

To see if this dual inhibition effect of 4.1 is consistent and necessary, 

dasatinib and BIRB-796, a potent and selective p38 kinase family inhibitor, was 

dosed together in 3D cell culture. Dasatinib + BIRB-796 was found to have similar 
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effect as 4.1, suggesting inhibition of both p38 and c-Src is synergistic and important 

for anti-TNBC activity (data not shown). 

From this preliminary data, we hoped to improve on compound 4.1 and further 

explore this dual p38/c-Src inhibition which will be addressed in this chapter.  

 GI50  

Compound  MDA-MB-231 (nM) HMEC (nM) 

Dasatinib 830 700 

4.1 6 1800 

 

Table 4.1: GI50 (nM) of dasatinib and 2.1 in MDA-MB-231 and HMEC cells. 

 

 

 

 

4.5 Metabolic Stability of 4.1 

One area of improvement to address is metabolic stability of compound 4.1. 

In collaboration with the Sun Lab, preliminary metabolic stability of 4.1 and 

dasatinib was found. Compounds (1 µM final) are incubated in mouse liver 

microsomes and initiated with the addition of NADPH. At various time points, 

samples were taken and analyzed by LC/MS/MS. The results are shown in  

Figure 4.2: Western Blot data in MDA-MB-231 cells of increasing concentration (0, 50, 100, 250, 500, 

1000 nM) of compound 4.1. From selectivity data, p38 MAPK kinases were potently inhibited and thus 

it was of interest to see if it had any cellular activity. At 50 nM, both phosphorylated p38 MAPK (P-

p38 MAPK) and phosphorylated Src (pY419) were completely absent suggesting both Src and p38 

MAPK are inhibited.   

4.1 

Increasing concentration (nM) 
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Table 4.3. The half-life of compound 4.1 (3 min.) was 6.5 fold worse than 

dasatinib (22 min.). As such, modifications to 4.1 is needed to improve its metabolic 

stability. Half-life results were compared to dasatinib as it is an FDA approved drug 

and thus gave us a standard half-life to achieve in creating a more metabolically 

stable c-Src drug inhibitor. 

 

 

4.6 Analogs of 4.1 

A derivative of compound 4.1, 4.3 (Figure 4.3) was synthesized and includes 

an additional chlorine to the CF3-phenyl ring, thereby replicating sorafenib’s type II 

fragment. Reports have suggested that this added chlorine improves residency times 

and hopefully this addition would translate into a prolonged half-life in metabolic 

stability test.  

Preliminary metabolic study was performed on 4.3 and unfortunately, the 

added chlorine only increased the half-life to 9.3 min, which is still 2.2-fold worse 

than dasatinib. Further analysis of the results revealed a major metabolite from the 

oxidation at the hydroxyethyl piperazine which would also explain the abysmal 

metabolic stability of its parent compound, Figure 4.4. Of note, dasatinib was 

previously found to have similar metabolites as well as additional modifications on 

its phenyl ring. Another derivative, 4.2 was synthesized, in which the hydroxylethyl 

piperazine was substituted for a morpholine, Figure 4.3, and a metabolic stability 

test was performed. Half-life of 4.2 was greatly improved, >60min demonstrating 

Figure 4.3: Compound 4.3 and 4.2. Similar to 4.1, however there is an additional chlorine on the CF3 

phenyl ring which was installed in hopes of increasing metabolic stability due to increased residency 

times as well as substituting the hydroxyethyl piperazine, as the major metabolite of 4.1 was oxidation 

of the piperazine. 

4.3 4.2 
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that the major metabolite was indeed happening at the piperazine ring and could be 

improved by removing the oxidation site.  

While swapping the hydroxyethyl piperazine for other substituents is a 

logical next step, the piperazine group serves as a favorable solubility factor and one 

in which dasatinib was able to retain while maintaining an increased half-life. In a 

compound consisting of greasy hydrophobic rings, its beneficial effects should be 

retained. Therefore, we decided to take a second approach towards improving the 

metabolic stability of 4.1.  

From previous experience of developing c-Src kinase inhibitors, we have 

gathered that compounds derive most of its potency from the fragment residing in 

the ATP-pocket as they make key hydrogen bonding interactions with the hinge 

region. Therefore, in designing a new derivative of either compound 4.1 or 4.3, the 

core pyrimidine and thiazole rings should remain unchanged. This leaves us with  

 

 

 

modifying the type II fragment. Since the dual inhibition of p38 and c-Src kinases 

and DFG-out binding mode needs to be preserved, we reasoned a type II fragment 

from a p38 ligand could be utilized. Crystal structures of BIRB-796 and dasatinib 

were overlaid and a hybrid molecule was proposed (Figure 4.5). Also, previous 

literature and compounds synthesized in our lab has utilized the phenyl pyrazole 

type II fragment on a pyrazolopyrimidine scaffold and found to be an excellent 

substitute/potent inhibitor of c-Src. We hypothesize that the added large phenyl 

Major metabolite 

Figure 4.4: Major metabolite of 4.1, which is oxidation of the N off of the hydroxylethyl end of piperazine.  
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pyrazole ring could sterically block its binding to cytochrome p450s, making it a 

poorer substrate and thus less prone to metabolic modifications.  

 

4.7 Evaluation of 4.4 Analog 

Compound 4.4 was biochemically evaluated in our activity assay and was found to 

titrate enzyme. Therefore, a BODIPY version of compound 4.4 was synthesized and 

the binding affinity was assessed. The Kd of 4.4 was 2 nM and had a koff = 3.3E 10-

4 sec-1. As expected, the phenyl pyrazole had a longer residency time than the type I 

dasatinib due to the binding mode. However, there was a 2-fold decrease in koff rate 

than 4.1 suggesting that a larger Type II fragment hinders the ability of the 

compound to stay bound to c-Src.  

Compound (wt-Src) Kd (nM) koff (sec-1) Kd (nM) koff (sec-1) 

 wt-Src pY419 wt-Src 

Dasatinib-BODIPY 0.74 7.9E-04  0.7 5.15E-04 

4.1-BODIPY 2.7 1.8E-04  3.0 1.48E-04 

4.4-BODIPY 2 3.3 E-04 - - 

 

Table 4.2: Fluorescence assay, Kd values from BODIPY version of compounds dasatinib, 4.1, 

and 4.4 

 

Compound Half-Life (min) 

Dasatinib 22 

4.1 3 

4.2 9.3 

4.3 > 60 

4.4 41.2 

 

Table 4.3: Microsomal half-life in minutes of dasatinib, 4.1, 4.2, 4.3, and 4.4.  
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Next, a preliminary metabolic study was performed on 4.4. The theory was 

that the additional bulky phenyl pyrazole could help decrease binding to cytochrome 

P450 and hence increase its metabolic stability. Gratifyingly, the half-life was 

improved 2-fold compared to dasatinib to 41 min.  

 

 

 

4.1 

Figure 4.5: Top picture depicts how compound 4.4 is derived from 4.1 and BIRB-796. Bottom picture: PDB 

3G5D (c-Src + dasatinib) and 1KV2 (p38 + BIRB 796) with dasatinib shown in magenta and BIRB-796 in green  

overlaid within the kinase (left) and ligand only overlay on the right.  

4.4 
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 % Activity Remaining 

Compound 

Kinase 4.2 4.4 4.1 

FGFR2 15.8 88.1 30.1 

FLT1 4.1 80.7 6.7 

LOK 45.1 -0.6 DNT 

PKN3 21.9 100 67 

RIPK2 2.4 80.6 51.8 

TESK1 45.4 98.8 78.3 

TESK2 33.5 83.9 50.4 

TRKB 23.2 76.8 54.8 

VEGFR2 8.3 77.7 49.3 

 

Table 4.4: The nine kinases that differed in the Luceome selectivity panel between 4.2 and 4.4. 

Compound 4.1 is shown as well but was done in a separate Luceome panel which is why LOK was 

not tested.  

 

Both 4.2 and 4.4 were sent to Luceome to be profiled against 131 kinases at 

a concentration of 500 nM. The full selectivity data is shown in the experimental 

section. Besides a handful of kinases, their selectivity looks relatively similar. 

Unfortunately, Luceome did not carry p38 which will have to be tested at a later 

date by DiscoverX. The nine kinases, FGFR2, FLT1, LOK, PKN3, RIPK2, TESK1, 

TESK2, TRKB, and VEGFR2 they differ in selectivity is shown in 

Table 4.4. When 4.4 was compared to both 4.2 and 4.1, all nine kinases were 

generally less inhibited by 4.4 than either 4.2 or 4.1. Highlighted in red are kinases 

that still have at least 50% activity remaining. This leaves FGFR2 and FLT1 that are 
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better inhibited by 4.1 and 4.2 and only LOK where 4.4 is a better inhibitor, though 

4.1 was not tested in this panel.  

The selectivity data shown above is interesting with respect to the 

compounds response in MDA-MB-231 cells. Compound 4.2, 4.3, and 4.4 were 

dosed and the results are shown in Table 4.5. Both compounds 4.3 and 4.4 

demonstrated a  

GI50 (nM) 4.1 4.2 4.3 4.4 

MDA-MB-231 6 49 539 546 

 

Table 4.5: MDA-MB-231 GI50 values for compounds 4.1, 4.2, 4.3, and 4.4.  

 

substantial decrease in potency (539 nM and 546 nM respectively) whereas 4.2 

decrease in potency by 8-fold to 49 nM. From this data, the substitution of 

hydroxyethyl piperazine to morpholine is responsible for the decrease in potency 

between 4.2 and 4.3 demonstrating that the piperazine group is an essential 

pharmacophore, despite the morpholine possessing better metabolic stability. 

Interestingly, swapping of the DFG-out fragment of 4.1 for BIRB-796 phenyl 

pyrazole also devastates its cellular activity. This brings into question whether or not 

p38inhibition is necessary in these TNBC cell line, however 4.3 inhibition of 

p38biochemically remains to be seen. It does inhibit p38and since it takes on 

BIRB-796’s DFG-out head group, one would assume that p38would be 

maintained. From the selectivity data, it could also be that FLT1 and FGFR2 would 

be necessary to inhibit and could explain the loss of potency. However, a previous 

KiNativ assay done with dasatinib and 4.1 in MDA-MB-231 cells does not show 

FLT1 and FGFR2 to be expressed in the cell line.  

 

4.8 Conclusions  

In an effort to improve upon dasatinib c-Src inhibition in triple negative 

breast cancer, we designed a DFG-out inhibitor. Utilizing dasatinib as the core ATP-

pocket scaffold, we installed the imatinib DFG-out fragment to make a Type II 



 

162 

 

inhibitor, 4.1. Compound 4.1 was tested against MDA-MB-231 and showed 

surprisingly potent activity of 6 nM, nearly a 140-fold improvement over dasatinib 

(830 nM). We were curious if the increased in potency was related to a kinase that 

4.1 inhibited but dasatinib did not, thus providing a synergy combination that could 

be used against triple negative breast cancer cells alongside c-Src inhibition. Kinome 

selectivity scan from Luceome pinpointed the inhibition of p38 as a possible reason 

for 4.1 efficacy over dasatinib. In a separate assay, it was confirmed that inhibition 

of p38 and c-Src from two separate inhibitors lead to synergy. Unfortunately, the 

metabolic stability of 4.1 is poor (3min) compared to dasatinib (22min) and to 

improve upon the pharmacophore kinetics, we decided to rationally design a 

dasatinib/BIRB-796 (Das-BIRB) hybrid molecule, 4.4. Due to the BIRB-796 piece, 

inhibition against p38 should be maintained if not improved while hopefully 

decreasing binding to cytochrome P450 in an attempt to bolster metabolic stability.  

This strategy worked and metabolic stability was increased, as found in 

mouse liver microsome LC/MS/MS assay (4.4 half-life = 42min from 4.1 half-life 

= 3min), which prompted us to send 4.4 to Luceome to assess kinase selectivity 

against 137 kinases to compare against the original p38/c-Src inhibitor, 4.1 as well 

as 4.2. Selectivity was relatively similar. Luceome, however, did not carry p38 

which will need to be tested later at DiscoverX, but due to the 4.4 being able to 

inhibit p38, one would assume that p38is also inhibited. Unfortunately, the Das-

BIRB inhibitor as poor against MDA-MB-231 cell lines (546 nM) compared to the 

original 4.1 (6 nM) so despite the improved metabolic stability, the decrease in in 

cellullo potency was not acceptable. This result might throw into doubt whether or 

not p38and c-Src dual inhibition is responsible for the parent p38/c-Src 

inhibitor’s success, compared to dasatinib, against MDA-MB-231 cell, and if it is 

actually another unknown kinase or non-kinase target that is needed for efficacy. A 

full kinome scan against all 518 kinases is warranted to further explore all possible 

kinase targets as the previous kinome scan was only a panel of 137 kinases.  
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4.9 Experimental Section 

 

General Synthetic Methods. Unless otherwise noted, all reagents were obtained 

from commercial suppliers and used without further purification. Black, opaque-

bottom 96 well plates were purchased from Nunc. BODIPY FL NHS ester was 

purchased from Lumiprobe. All 1H and 13C NMR spectra were measured with a 

Varian MR400 and Inova 500 spectrometer. Mass spectrometry (HRMS) was 

carried out by the University of Michigan Ann Arbor Mass Spectrometry Facility 

(J. Windak, Director). Flash column chromatography was performed using a 

Biotage Isolera 1 Flash Purification System using KP-Sil SNAP cartridges. In all 

cases, ethyl acetate was used to transfer the crude reaction material onto the silica 

gel samplet. A gradient elution using hexane and ethyl acetate was performed, 

based on the recommendation from the Biotage TLC Wizard.  
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Synthesis of Compound 4.4 

 

 

 

Synthesis of S4.2: Ethyl 3-(tert-butyl)-1H-pyrazole-5-carboxylate (0.87 g, 4.4 

mmol) was added to a flamed dried rbf containing 4Å molecular sieves in 50 mL 

dichloromethane. p-tolylboronic acid (1.2 g, 8.8 mmol), copper II acetate (1.2 g, 

6.6 mmol), and pyridine (0.7 mL, 8.8 mmol) was added and the reaction was 

stirred over night at r.t. Afterwards, the reaction was filtered over celite and the 

crude product was purified by Biotage Isolera 1 Flash Purification System to give 

0.54 mg (43% yield) of compound S4.2  as a clear oil. Spectral Data. 1H NMR 

(500 MHz, CD3Cl2-d) δ 7.31 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 6.87 (s, 

1H), 4.24 (q, J = 7.1 Hz, 2H), 2.41 (s, 4H), 1.59 (s, 1H), 1.37 (s, 11H), 1.27 (t, J 

= 7.1 Hz, 4H). 

 

  

Synthesis of S4.3: (.54 mg, 1.9 mmol) was added to THF (40 mL) and water 

(10mL). Lithium hydroxide (0.9 mg, 37.5 mmol) was then added and the reaction 

was refluxed overnight. Afterwards, the reaction mixture was acidified (pH = 2.0) 

and extracted with EtOAc. The organic layer was washed with water and brine, 

dried over MgSO4, filtered, and concentrated in vacuo. The crude solid was 

carried forward without further purification.  

 

 

 

 

  
S 4.4 

 

S 4.3 

 
S 4.7 

S 4.2 

S 4.1 

S 4.6 

4.4  

 
Scheme S 4.4: Synthesis of 4.4 and 4.4-BODIPY 

S 4.5 

S 4.8 
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Synthesis of S4.4: Compound S4.3 (0.58 mg, 2.2 mmol) was dissolved in THF 

(10 mL) and was cooled to 10 ºC. Oxalyl chloride (589 µL, 6.7 mmol) was added 

along with DMF (few drops). The reaction mixture was allowed to warm to r.t. 

and stirred for 3 hours. Afterwards, the reaction mixture was concentrated. DIPEA 

(779 µL, 4.4 mmol), THF (10 mL), and 4-methyl-3-nitroaniline (0.68 mg, 4.5 

mmol) was added and stirred at r.t. overnight. Afterwards, THF was removed in 

vacuo, diluted with EtOAc and washed with water, brine, dried over MgSO4, 

filtered, and concentrated in vacuo. The crude product was purified by Biotage 

Isolera 1 Flash Purification System to give compound S4.4 as a yellow solid (224 

mg, 39% yield). Spectral Data. 1H NMR (500 MHz, DMSO-d6) δ 10.15 (s, 1H), 

7.28 (s, 3H), 7.24 (s, 3H), 7.05 (s, 1H), 6.87 – 6.79 (m, 2H), 6.68 (s, 1H), 2.33 (s, 

4H), 1.99 (s, 3H), 1.32 (s, 9H). 

 

Synthesis of S4.5: Compound S4.4 (0.22 mg, 0.56 mmol), iron (0.16 mg, 

2.9mmol), and HCl (few drops) were dissolved in 80% EtOH and refluxed for 3 

hours. Afterwards, the reaction mixture was filtered thru celite, concentrated in 

vacuo and precipitated with water. The crude product was carried forward without 

further purification.  

 

Synthesis of S4.6: Compound S4.5 (0.2 mg, 0.55 mmol), pyridine (53 µL, 0.67 

mmol), and THF was added and cooled on ice before (E)-3-ethoxyacryloyl 

chloride (0.97 mg, 0.72 mmol) was added. The reaction mixture was allowed to 

warm to r.t. and stirred for 2 hours. Afterwards, the reaction was cooled on ice, 

1N HCl (3 mL) was added and then diluted with water (9 mL), concentrated in 

vacuo to give a slurry, and filtered. The crude product was carried forward without 

further purification.  

 

Synthesis of S4.7: Compound S4.6 (0.23 mg, 0.49 mmol) was added to 

THF/water and cooled to 0 ºC. N-bromosuccinimide (0.09 mg, 0.51 mmol) was 

added and the reaction mixture was allowed to warm to r.t. and stirred for 3 hours. 

Afterwards, 1-(6-chloro-2-methylpyrimidin-4-yl)thiourea (0.1 mg, 0.49 mmol) 

was added and the reaction mixture was refluxed for 2 hours. The reaction was 

then cooled and filtered. The resulting solid was purified by reverse phase 

preparative HPLC (linear gradient of 5 to 95% acetonitrile in water) to give 

compound S4.7 (38%) as a white powder. Spectral Data. 1H NMR (500 MHz, 

DMSO-d6) δ 10.49 (s, 1H), 9.91 (s, 1H), 8.27 (s, 1H), 7.74 (s, 1H), 7.41 (d, J = 

8.2 Hz, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.25 – 7.20 (m, 3H), 6.94 (s, 2H), 2.59 (s, 

3H), 2.33 (s, 3H), 2.18 (s, 3H), 1.33 (s, 9H). 

 

Synthesis of S4.8: Compound S4.7 (5 mg, 0.008 mmol) was added to n-butanol 

(1 mL), DIPEA (7 µL, 0.04 mmol), and piperazine () and refluxed overnight. The 

reaction mixture was purified by reverse-phase preparative HPLC (linear gradient 

20-95% acetonitrile in water) to give compound S4.7 (37%) as a white powder. 

Spectral Data. 1H NMR (500 MHz, DMSO-d6) δ 10.48 (s, 1H), 9.76 (s, 1H), 8.17 

(s, 1H), 7.72 (s, 1H), 7.40 (d, J = 9.8 Hz, 1H), 7.29 (d, J = 8.3 Hz, 2H), 7.22 (dd, 
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J = 17.4, 8.4 Hz, 3H), 6.94 (s, 1H), 6.01 (s, 1H), 4.11 (d, J = 5.2 Hz, 2H), 3.44 (s, 

5H), 3.16 (d, J = 4.9 Hz, 5H), 2.73 (s, 4H), 2.50 (p, J = 1.9 Hz, 38H), 2.39 (s, 3H), 

2.33 (s, 3H), 2.18 (s, 3H), 1.33 (s, 9H). 
 

Synthesis of 4.4-BODIPY: BDP FL NHS ester (2 mg, 0.005 mmol) was added 

to S4.8 (2 mg, 0.003 mmol) and DIPEA (14 µL, 0.010 mmol) in DMF (1 mL) and 

stirred at r.t. overnight. The crude mixture was purified by reverse-phase 

preparative HPLC (linear gradient of 30-95% acetonitrile in water) to give 

compound 4.4-BODIPY(1.8 mg, 36%) as powder. Spectra Data. 1H NMR (500 

MHz, DMSO-d6) δ 10.48 (s, 1H), 9.78 (s, 1H), 8.18 (s, 1H), 7.71 (d, J = 11.4 Hz, 

2H), 7.40 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 8.3 Hz, 2H), 7.26 – 7.19 (m, 3H), 7.10 

(d, J = 4.0 Hz, 1H), 6.94 (s, 1H), 6.44 (d, J = 3.9 Hz, 1H), 6.31 (s, 1H), 6.06 (s, 

1H), 3.58 (s, 5H), 3.17 (s, 1H), 3.11 (d, J = 7.3 Hz, 2H), 2.85 – 2.75 (m, 2H), 2.47 

(s, 3H), 2.42 (s, 3H), 2.33 (s, 3H), 2.26 (s, 3H), 2.18 (s, 3H), 1.33 (s, 9H). 
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S4.8 

S4.9 
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S4.10 

S4.8 
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4.4  
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Biochemical Characterization 

Affinity Measurements:  

General Procedure for BODIPY probe Kd for c-Src: c-Src binding affinity was 

done as previously described.1 Briefly, reaction volumes of 50 µL were used in 

96-well plates. 49 µL of c-Src kinase (125 nM, 3-fold serial dilution down to 0.006 

nM) in 100 mM Tris buffer (pH 8) and 10 mM MgCl2 was incubated with 1 µL 

of compoundError! Reference source not found. (10 nM in DMSO) for 30 min. 

Fluorescence was read at room temperature (excitation = 485 nm; emission = 535 

nm). The Kd was determined by fitting the data to non-linear regression analysis 

(one site total binding) with Prism GraphPad software.  

 

 

General procedure for inhibitor off-rate determination. 

A multiple time point read fluorescence assay was used to determine dasatinib 

analog BODIPY off-rates, similar to past published reports.1 Briefly, 60 µL of 

total volume with 700 nM c-Src kinase and 500 nM probe (4.4-BODIPY) in 

buffer A 1X (Master Mix) was incubated at rt for 4 h along with 60 µL of 500 nM 

probe (4.4-BODIPY) alone in buffer A 1X (Blank Mix). Following this 

incubation period, 4 µL of the master mix was added into 5 wells and 4 µL of the 

blank mix was added into 2 wells via multichannel pipette into 116 µL of buffer 

A 1X containing 5 µM (final concentration) unlabeled dasatinib (120 µL total, 30-

fold dilution). Additionally, 4 µL of master mix was added into a single well of 

116 µL of buffer A 1X containing 100 nM (final concentration) probe to maintain 

consistent plate reader gain values over the course of the fluorescent reads. Master 

mix dilutions with competitor had final concentrations of 23 nM enzyme, 17 nM 

BODIPY-probe, 5 µM unlabeled dasatinib, 100 mM Tris buffer pH 8 and 10 mM 

MgCl2. Reads (ex/em 485/535 nm) were taken every 10 minutes for the first 2 h, 

then every 20 min for next two hours and finally every 30 min for the remainder 

of the assay (12 h total). The values for koff determination were obtained directly 

from the nonlinear regression fits for one-phase decay curves (using blanked data). 

The equation Y = (Y0 - Plateau)*exp(-K*X) + Plateau; was used in the nonlinear 

regression. An average of 5 wells at each time point was utilized for the final fit 

values produced. 
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Kd Determination 

 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

KD wt-Src 

4.4-BODIPY Kd = 2 nM 

 

 

 

 

 

3D wt-Src 

4.4-BODIPY Kd = 4.2 ± 3 nM 

 

KD wt-Src 

Dasatinib-BODIPY Kd = 0.74 nM 

 

 

 

 

 

KD wt-Src 

4.1-BODIPY Kd = 2.7 nM 
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Koff Curves 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

KD wt-Src 

4.4-BODIPY koff = 3.3E 10-4 sec-1  

Half-Life = 34.5 min 

 

 

 

 

 

KD wt-Src 

Dasatinib-BODIPY koff = 7.88E 10-4 sec-1 

Half-Life = 14.67 min 

 

KD wt-Src 

Dasatinib-BODIPY Kd = 0.74 nM 

 

 

 

 

 

KD wt-Src 

4.1-BODIPY Kd = 2.7 nM 
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Cellular Characterization 

 

Cell growth inhibition assays. 

 

WST-1 reagent was obtained from Roche. The cell proliferation colorimetric 

assay using WST-1 was performed following the protocol provided by Roche.  

 

Cell Culture and Seeding Procedure:  Cells were dispersed from flasks and 

collected by centrifugation (200xg for 5 minutes at room temperature). An aliquot 

of the resuspended cells was mixed with trypan blue solution and the cell number 

was quantified using a hemacytometer. In general, depending on the growth rate 

of the untreated cells, the cells were plated at 5.0 – 7.5 x 103 cells per well. The 

cells were plated into sterile, clear bottom 96 well plates and cultured under 

normal growth conditions overnight prior to dosing with compound. 

 

Dosing: 100% DMSO compound stocks were prepared to 100X the final 

concentration desired in the assay. 3 µL of the DMSO stock solution was then 

added to 297 µL of the cell growth media to give a DMSO concentration of 1%. 

The cell media was removed by aspiration for adherent cells and replaced with 

100 µL per well of the cell growth media containing the compound. In general, 

each compound concentration was dosed in triplicate wells. Assay: After the 

dosing period (24 hours) was complete, the plates were removed from the 

incubator and 10 µL per well of WST-1 reagent was added. The plates were 

returned to the incubator and incubated for 1 hr, followed by shaking on a plate 

shaker for 60 seconds prior to the absorbance read (450 nm) on a BioTek Synergy 

4 multimode plate reader. 

 

Data Analysis: The reference absorbance reading was subtracted from the 

formazan absorbance (background control well no compound added, 1% DMSO) 

and the data was plotted as a percentage of the vehicle (1% DMSO alone). Data 

analysis and curve fitting was performed using Graphpad Prism. For each cell line, 

there were n = 3 data points for each concentration. Each dose response curve was 

performed at least twice, providing n ≥ 6 for each data point. 
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4.1  

GI50 | 6 nM 

MDA-MB-231 with Compound 4.1 
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4.2  

GI50 | 49 nM 

MDA-MB-231 with Compound 4.2 
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4.3  

GI50 | 539 nM 

MDA-MB-231 with Compound 4.3 
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4.4  

GI50 | 546 nM 

MDA-MB-231 with Compound 4.4 
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Microsomal Stability Studies  

Compounds were sent to Duxin Sun Laboratory, University of Michigan 

Pharmacokinetics Core for metabolic stability test using mouse microsomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Half-Life | 22 min 

Half-Life | 3 min 
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Half-Life | 9.3 min 

Half-Life | >60 min 
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Half-Life | 41.2 min 
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Kinome Selectivity 

Compounds dasatinib, 4.1, 4.2, and 4.4 were sent to Luceome Biotechnologies 

(Tucson, Arizona) to be profiled against 131 kinases in their KinaseSeeker 

platform. The compounds were profiled at 500 nM. 

 

Dasatinib 

Kinases Family 
% Activity 
Remaining 

ABL1  TK  1.9 

ABL2  TK  50.7 

AKT1  AGC  95.1 

AKT1(FL)  AGC  100 

AKT2  AGC  100 

AKT2(S474A)  AGC  100 

AKT2(S474D)  AGC  66.2 

AKT2(T309A,S474A)  AGC  90.2 

AKT2(T309D,S474D)  AGC  81 

AKT3  AGC  73.3 

AMPK-1  CAMK  93 

AMPK-2  CAMK  67.8 

AURKA  Other  100 

AURKB  Other  100 

AURKC  Other  80.7 

AXL  TK  27.4 

BIKE  Other  100 

BLK  TK  0 

BTK  TK  35.5 

CAMK1  CAMK  100 

CAMK1D  CAMK  99.3 

CAMK1G  CAMK  100 

CAMK2A  CAMK  85.8 

CAMK2B  CAMK  68.4 

CAMK2D  CAMK  79.8 

CAMKK1  Other  75 

CAMKK2  Other  78.9 

CHEK1  CAMK  90.9 

CK1D  CK1  100 

CLK1  CMGC  100 

CLK2  CMGC  100 

CSK  TK  31.3 

DAPK1  CAMK  100 

DAPK2  CAMK  100 

DAPK3  CAMK  100 
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DDR1  TK  84.8 

DDR2  TK  51.8 

DMPK  AGC  100 

EPHA1  TK  1.1 

EPHA2  TK  1.3 

EPHA3  TK  5.8 

EPHA4  TK  0 

EPHB2  TK  0 

EPHB3  TK  35.2 

EPHB4  TK  1.8 

FGFR2  TK  100 

FLT1  TK  100 

FLT2  TK  57.2 

FLT3  TK  36.8 

FYN  TK  3.8 

GSK3a  CMGC  100 

HCK  TK  16.6 

IGF1R  TK  75.7 

IKK-e  Other  100 

INSR  TK  100 

ITK  TK  42.3 

LIMK1  TKL  50 

LYN  TK  5.9 

MARK1  CAMK  100 

MARK2  CAMK  100 

MARK3  CAMK  100 

MARK4  CAMK  100 

MELK  CAMK  92 

MET  TK  100 

MLK1  TKL  38.4 

MLK3  TKL  18.3 

MST2  STE  83.3 

MUSK  TK  86.4 

MYLK  CAMK  75.4 

MYLK2  CAMK  100 

MYT1  Other  46.9 

p38-g  CMGC  100 

PAK1  STE  100 

PAK1(T423A)  STE  100 

PAK1(T423E)  STE  95.2 

PDGFRA  TK  21.3 

PDGFRB  TK  38.4 

PDK1  AGC  100 
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PHKG1  CAMK  95.7 

PIM1  CAMK  96.1 

PIM2  CAMK  97.4 

PKAC-a  AGC  78.1 

PKAC-b  AGC  95.1 

PKC-d  AGC  100 

PKC-e  AGC  100 

PKC-g  AGC  100 

PKC-h  AGC  92.4 

PKC-t  AGC  100 

PRKD2  CAMK  100 

PRKD3  CAMK  100 

PKG1  AGC  100 

PKN3  AGC  92 

PLK4  Other  12.4 

PKX  AGC  72.8 

PTK2  TK  100 

PTK2B  TK  100 

PTK6  TK  33.8 

RET  TK  92.2 

RIPK2  TK  0.1 

RPS6KA1/RSK1  AGC  92.5 

RPS6KA2/RSK3  AGC  100 

RPS6KA3/RSK2  AGC  100 

RPS6KA4/MSK2  AGC  100 

RPS6KA5/MSK1  AGC  88.3 

RPS6KA6/RSK4  AGC  100 

SGK2  AGC  74.3 

SGK3  AGC  100 

SNF1LK  CAMK  12.9 

SNF1LK2  CAMK  41.3 

SIK3  CAMK  57 

SLK  STE  100 

SNARK  CAMK  81.3 

SRC  TK  8.8 

STK16  Other  79.4 

STK33  CAMK  100 

SYK  TK  73.3 

TBK1  Other  39.5 

TEC  TK  41.6 

TESK1  TKL  49.1 

TESK2  TKL  45.1 

TIE1  TK  100 
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TIE2  TK  100 

TNK2  TK  24.8 

TNNI3K  TKL  25.9 

TRKB  TK  100 

TRKC  TK  100 

TXK  TK  16.2 

VEGFR2  TK  100 

YANK2  AGC  100 

YES1  TK  8 

YSK1  STE  100 
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Compound 4.1  

Kinases Family % Activity Remaining 

ABL1  TK  10.9 

ABL2  TK  12.2 

AKT1  AGC  100 

AKT1(FL)  AGC  100 

AKT2  AGC  100 

AKT2(S474A)  AGC  100 

AKT2(S474D)  AGC  100 

AKT2(T309A,S474A)  AGC  100 

AKT2(T309D,S474D)  AGC  100 

AKT3  AGC  100 

AMPK-1  CAMK  100 

AMPK-2  CAMK  100 

AURKA  Other  93.9 

AURKB  Other  100 

AURKC  Other  94.1 

AXL  TK  100 

BIKE  Other  100 

BLK  TK  6.2 

BTK  TK  26.4 

CAMK1  CAMK  100 

CAMK1D  CAMK  100 

CAMK1G  CAMK  97.2 

CAMK2A  CAMK  100 

CAMK2B  CAMK  100 

CAMK2D  CAMK  100 

CAMKK1  Other  100 

CAMKK2  Other  100 

CHEK1  CAMK  100 

CK1D  CK1  100 

CLK1  CMGC  100 

CLK2  CMGC  100 

CSK  TK  11.5 

DAPK1  CAMK  97.4 

 
Kinases 

 
Family 

 
% Activity Remaining 

DAPK2  CAMK  100 

DAPK3  CAMK  100 

DDR1  TK  1.1 

DDR2  TK  9.1 

DMPK  AGC  100 

EPHA1  TK  7.9 

EPHA2  TK  68.9 
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EPHA3  TK  11.7 

EPHA4  TK  2.7 

EPHB2  TK  4.4 

EPHB3  TK  47.6 

EPHB4 TK  4 

FGFR2  TK  30.1 

FLT1  TK  6.7 

FLT2  TK  56.7 

FLT3  TK  91.5 

FYN  TK  53.7 

GSK3a  CMGC  100 

HCK  TK  10 

IGF1R  TK  94.5 

IKK-e  Other  100 

INSR  TK  64.2 

ITK  TK  100 

LIMK1  TKL  63.9 

LYN  TK  54.1 

MARK1  CAMK  100 

MARK2  CAMK  100 

MARK3  CAMK  100 

MARK4  CAMK  100 

MELK  CAMK  95.9 

MET  TK  97 

MLK1  TKL  100 

MLK3  TKL  96.6 

MST2  STE  97.6 

MUSK  TK  60.6 

MYLK  CAMK  100 

MYLK2  CAMK  100 

MYT1  WEE  100 

p38-g  CMGC  100 

PAK1  STE  100 

PAK1(T423A)  STE  100 

PAK1(T423E)  STE  100 

 
Kinases 

 
Family 

 
% Activity Remaining 

PDGFRA  TK  79.1 

PDGFRB  TK  57.8 

PDK1  AGC  100 

PHKG1  CAMK  98.2 

PIM1  CAMK  97.5 

PIM2  CAMK  100 

PKAC-a  AGC  97.7 
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PKAC-b  AGC  100 

PKC-d  AGC  92.3 

PKC-e  AGC  100 

PKC-g  AGC  100 

PKC-h  AGC  100 

PKC-t  AGC  100 

PRKD2  CAMK  97.9 

PRKD3  CAMK  100 

PKG1  AGC  97.4 

PKN3  AGC  67 

PLK4  Other  100 

PKX  AGC  100 

PTK2  TK  100 

PTK2B  TK  100 

PTK6  TK  27 

RET  TK  11.9 

RIPK2  TK  51.8 

RPS6KA1/RSK1  AGC  100 

RPS6KA2/RSK3  AGC  100 

RPS6KA3/RSK2  AGC  99.1 

RPS6KA4/MSK2  AGC  100 

RPS6KA5/MSK1  AGC  100 

RPS6KA6/RSK4  AGC  100 

SGK2  AGC  96.4 

SGK3  AGC  100 

SNF1LK  CAMK  10 

SNF1LK2  CAMK  47.9 

SIK3  CAMK  95 

SLK  STE  95.3 

SNARK  CAMK  100 

SRC  TK  16 

STK16  Other  100 

STK33  CAMK  100 

SYK  TK  100 

TBK1  Other  100 

   

Kinases Family % Activity Remaining 

TEC  TK  28.8 

TESK1  TKL  78.3 

TESK2  TKL  50.4 

TIE1  TK  64.9 

TIE2  TK  15.2 

TNK2  TK  39.6 
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TNNI3K  TKL  20.1 

TRKB  TK  54.8 

TRKC  TK  48.3 

TXK  TK  18 

VEGFR2  TK  49.3 

YANK2  AGC  88.2 

YES1  TK  12.7 

YSK1  STE  98.6 
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Compound 4.2 

Kinases Family % Activity Remaining 

ABL1  TK  0.6 

ABL2  TK  1.1 

AKT1  AGC  100 

AKT1-FL  AGC  100 

AKT2  AGC  96.3 

AKT3  AGC  100 

AMPKa1  CAMK  100 

AMPKa2  CAMK  89.8 

AURKA  Other  100 

AURKB  Other  69.2 

AURKC  Other  95.6 

AXL  TK  83.3 

BIKE  Other  92.2 

BLK  TK  0.8 

BTK  TK  2.1 

CAMK1  CAMK  100 

CAMK1D  CAMK  100 

CAMK1G  CAMK  99.5 

CAMK2A  CAMK  93.1 

CAMK2B  CAMK  94.4 

CAMK2D  CAMK  100 

CAMKK1  Other  95.1 

CAMKK2  Other  64.5 

CHK1  CAMK  100 

CK1d  CK1  98.4 

CLK1  CMGC  100 

CLK2  CMGC  97 

CSK  TK  6 

DAPK1  CAMK  99.3 

DAPK2  CAMK  97.5 

DAPK3  CAMK  100 

DDR1  TK  0 

DDR2  TK  0.3 

DMPK  AGC  100 

EGFR  TK  68.4 

EPHA1  TK  3.4 

EPHA2  TK  1.2 

EPHA3  TK  7.3 

EPHA4  TK  4 

EPHB2  TK  2.7 

EPHB3  TK  2.8 
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EPHB4  TK  8.7 

FAK  TK  64.3 

FGFR2  TK  15.8 

FGR  TK  2.7 

FLT1  TK  4.1 

FLT2  TK  31.4 

FLT3  TK  90.3 

FYN  TK  1.5 

GSK3A  CMGC  100 

HCK  TK  3.4 

IGF1R  TK  90.9 

IKKe  Other  77.3 

INSR  TK  63.5 

ITK  TK  95.9 

LCK  TK  -0.2 

LIMK1  TKL  36.1 

LOK  STE  45.1 

LYN  TK  1.4 

MARK1  CAMK  100 

MARK2  CAMK  100 

MARK3  CAMK  84.1 

MARK4  CAMK  78.1 

MELK  CAMK  100 

MET  TK  90.1 

MLK1  TKL  88.5 

MLK3  TKL  92 

MSK1  AGC  88.8 

MSK2  AGC  77.5 

MST2  STE  85.2 

MUSK  TK  26.6 

MYLK  CAMK  89.2 

MYLK2  CAMK  97.5 

MYT1  Other  100 

p38a  CMGC  5.4 

p38d  CMGC  100 

p38g  CMGC  100 

PAK1  STE  83.8 

PDGFRA  TK  35.7 

PDGFRB  TK  6.9 

PDPK1  AGC  100 

PHKG1  CAMK  75.4 

PIM1  CAMK  84.1 

PIM2  CAMK  92.9 
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PKA  AGC  90 

PKAb  AGC  97.6 

PKCd  AGC  99.4 

PKCe  AGC  68.1 

PKCg  AGC  88.4 

PKCh  AGC  100 

PKCt  AGC  96.9 

PKG1  AGC  87.7 

PKN3  AGC  21.9 

PLK4  Other  100 

PRKD2  CAMK  100 

PRKD3  CAMK  100 

PRKX  AGC  85.6 

PTK6  TK  2.4 

PYK2  TK  86.3 

QSK  CAMK  99.6 

RET  TK  1.9 

RIPK2  TKL  2.4 

RSK1  AGC  88.8 

RSK2  AGC  100 

RSK3  AGC  100 

RSK4  AGC  100 

SGK2  AGC  100 

SGK3  AGC  100 

SLK  STE  80.7 

SNARK  CAMK  96.2 

SNF1LK  CAMK  0.4 

SNF1LK2  CAMK  2.8 

SRC  TK  0.4 

STK16  Other  100 

STK33  CAMK  100 

SYK  TK  92.2 

TBK1  Other  79 

TEC  TK  1.2 

TESK1  TKL  45.4 

TESK2  TKL  33.5 
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Compound 4.4 

Kinases Family % Activity Remaining 

ABL1  TK  1.9 

ABL2  TK  3.8 

AKT1  AGC  98.2 

AKT1-FL  AGC  95.4 

AKT2  AGC  98.1 

AKT3  AGC  99.6 

AMPKa1  CAMK  98.8 

AMPKa2  CAMK  81.4 

AURKA  Other  100 

AURKB  Other  90.7 

AURKC  Other  97.6 

AXL  TK  95 

BIKE  Other  94.4 

BLK  TK  0.3 

BTK  TK  10.8 

CAMK1  CAMK  95.8 

CAMK1D  CAMK  94.1 

CAMK1G  CAMK  87.9 

CAMK2A  CAMK  79.3 

CAMK2B  CAMK  92.6 

CAMK2D  CAMK  100 

CAMKK1  Other  88.6 

CAMKK2  Other  66.9 

CHK1  CAMK  100 

CK1d  CK1  100 

CLK1  CMGC  100 

CLK2  CMGC  93.7 

CSK  TK  3.7 

DAPK1  CAMK  100 

DAPK2  CAMK  95.6 

DAPK3  CAMK  100 

DDR1  TK  2.8 

DDR2  TK  0 

DMPK  AGC  98.4 

EGFR  TK  72.2 

EPHA1  TK  5.6 

EPHA2  TK  1.2 

EPHA3  TK  2.1 

EPHA4  TK  2.6 

EPHB2  TK  3.5 

EPHB3  TK  15.1 
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EPHB4  TK  5.6 

FAK  TK  66.8 

FGFR2  TK  88.1 

FGR  TK  6 

FLT1  TK  80.7 

FLT2  TK  100 

FLT3  TK  88.5 

FYN  TK  1.1 

GSK3A  CMGC  100 

HCK  TK  6 

IGF1R  TK  89.6 

IKKe  Other  100 

INSR  TK  77.1 

ITK  TK  96.3 

LCK  TK  1.2 

LIMK1  TKL  41 

LOK  STE  -0.6 

LYN  TK  3.3 

MARK1  CAMK  92 

MARK2  CAMK  85.4 

MARK3  CAMK  88.6 

MARK4  CAMK  94.3 

MELK  CAMK  98.4 

MET  TK  95.9 

MLK1  TKL  56 

MLK3  TKL  87.6 

MSK1  AGC  84.1 

MSK2  AGC  74.6 

MST2  STE  94.3 

MUSK  TK  89.3 

MYLK  CAMK  85.2 

MYLK2  CAMK  97.3 

MYT1  Other  69.4 

p38a  CMGC  6.9 

p38d  CMGC  100 

p38g  CMGC  100 

PAK1  STE  95.5 

PDGFRA  TK  42 

PDGFRB  TK  17.9 

PDPK1  AGC  89.1 

PHKG1  CAMK  65.7 

PIM1  CAMK  81.7 

PIM2  CAMK  91.9 
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PKA  AGC  87.4 

PKAb  AGC  98.6 

PKCd  AGC  93.9 

PKCe  AGC  66 

PKCg  AGC  95.5 

PKCh  AGC  85.6 

PKCt  AGC  99.5 

PKG1  AGC  78.8 

PKN3  AGC  100 

PLK4  Other  100 

PRKD2  CAMK  93.8 

PRKD3  CAMK  91.2 

PRKX  AGC  80.1 

PTK6  TK  25.9 

PYK2  TK  76.7 

QSK  CAMK  100 

RET  TK  5.7 

RIPK2  TKL  80.6 

RSK1  AGC  70.7 

RSK2  AGC  97.4 

RSK3  AGC  100 

RSK4  AGC  96.1 

SGK2  AGC  100 

SGK3  AGC  100 

SLK  STE  56.5 

SNARK  CAMK  86.2 

SNF1LK  CAMK  1.4 

SNF1LK2  CAMK  4.2 

SRC  TK  0.8 

STK16  Other  96.7 

STK33  CAMK  100 

SYK  TK  99.3 

TBK1  Other  93 

TEC  TK  11.4 

TESK1  TKL  98.8 

TESK2  TKL  83.9 
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Chapter 5  

Conclusions and Future Outlook 

 Despite being the first proto-oncogene discovered, c-Src’s role in cancer 

remains poorly understood. The usual implication of kinase involvement in 

oncogenesis is generally due to mutations leading to over-activity and thus 

dysregulation of those signal transduction pathways. However, c-Src is unusual in 

that it is frequently observed to be overexpressed and implicated in cancer, and yet 

there are very rare cases of overactive c-Src mutation. Somatic mutations of c-Src 

have been found but, with regards to their role in c-Src dysregulation, if not to cause 

increase in activity, how might these mutations disrupt c-Src’s regulation? This work 

is explored in Chapter 2, which is a project that is more mechanistic based, and 

attempts to study the structure-function of c-Src.  

Chapter 3 and 4 takes on more of an application approach. Since there are 

studies throughout literature that implicates c-Src in cancer progression, we aimed 

to explore methods to make targeting c-Src more efficacious. The approach in 

Chapter 3 takes a selective c-Src inhibitor, designed in our lab, to look for inhibiting 

other protein targets which would work in synergy with c-Src inhibition. We found 

HDAC inhibitors to work in synergy, and with that information, we explored the 

design process for the first dual acting HDAC/c-Src inhibitor. The goals of Chapter 

4 are along the same lines except the approach was to improve the efficacy of 

dasatinib in triple negative breast cancer. The resulting inhibitor was a DFG-out 

dasatinib/imatinib hybrid which had unprecedented activity in MDA-MB-231 cell 

lines. This led us to find the increased in potency over dasatinib was the result of the 

new inhibitor acting as a dual p38/c-Src inhibitor and we describe the process of 

further improving this new dual acting inhibitor.  
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 The work in Chapter 2 attempts to elucidate the possible role of c-Src 

mutations. Because c-Src is regulated thru localization, phosphorylation, and 

conformational states, we were curious whether or not mutations participate in 

disrupting any of these native regulation mechanism. Because there are previous 

studies that have found ligand binding to the kinase domain to influence the global 

conformational state of c-Src, we reasoned that clinical mutations could affect the 

same changes. Therefore, if clinical mutations were to destabilize the native 

conformational states of c-Src, it would be affecting its regulation thereby causing 

dysfunction to c-Src’s native function. Whether or not this dysfunction can lead to 

c-Src’s role in oncogenesis remains to be seen but first, to explore this possibility, 

we had to design an assay that would allow us to detect changes imparted by clinical 

mutations on the conformational state of c-Src.  

  The assay designed had to be high-thru put, robust, and consistent. We 

decided to look at a total of 29 mutations (clinical and non-clinical), of which 16 

were clinical mutations and 13 were non-clinical mutations. Non-clinical mutations 

were of interest as they have been utilized in various structure-function studies of c-

Src kinase domain. Other techniques such as NMR, H/D exchange MS, and SAXS 

could be utilized to investigate conformational changes, however they had 

disadvantages that we would not be able to overcome. NMR would require high 

concentrations of protein (100-200M) which would be difficult given poor c-Src 

yields and 29 mutations that needed to be expressed. SAXS and H/D exchange MS 

would require special equipment and be more expensive as a result.  

We eventually settled on developing a protease assay, visualized by SDS-

PAGE. After optimization, we determined that thermolysin would be the best 

protease to use, as it cleaves between G257 and L258 which is located on the SH2-

linker. We later discovered that cleavage at this site was opportune as this was where 

the SH3 domain binds. The affinity of the SH3 domain to the SH2-linker happens 

to determine the global conformation of c-Src and surprisingly gives us an actual 

crude physical assessment of c-Src’s conformational state, similar to the information 

obtained by SAXS and H/D exchange MS but more high-thru put and cheaper to 

conduct.  
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Mutations that stabilized a more open conformation would display a faster 

rate of cleavage as the SH2-linker cleavage site is more accessible and vice versa. 

The rate was shown in half-life of total c-Src concentration. To validate the 

thermolysin assay, we tested three c-Src control constructs, pY419, apo-wt-Src, and 

pY530 (open, apo, and closed respectively). Gratifyingly, the thermolysin assay was 

able to relate half-life to different conformational states, with a lower half-life 

corresponding to open conformation and slower half-life to a close conformation. 

29 mutations were tested in the thermolysin assay and the results demonstrate that 

mutations can influence the conformational state of c-Src.  

Because thermolysin assay assesses the conformation based on SH3 domain 

affinity, we were curious as to the availability of the SH2-domains in these 

conformations and whether or not this could be correlated with an open/closed 

conformation. We utilized a fluorescence polarization assay to look at the SH2-

domain. A c-Src SH2 optimal peptide was synthesized and a FITC fluorophore was 

appended to be used as our reporter molecule to assess Kd values. A higher affinity 

for the FITC-SH2 peptide should indicate better accessibility of the SH2-domain, 

correlating to an open conformation, whereas a decrease in affinity signified poor 

accessibility, indicating a closed conformation.  

We decided to look at a select few open/apo/closed mutations. Surprisingly, 

it appears that outside of some exceptions, the Kd of the FITC-SH2 peptide are 

arguably all the same regardless of the half-lives/conformational state. These results 

lead us to conclude that the FP assay using the FITC-SH2 peptide cannot be used to 

identify conformational states. A plausible explanation is that the global 

conformation of c-Src isn't affecting SH2 domain accessibility. The SH2 domain is 

in a configuration that allows the pocket to be accessed, regardless of the 

conformation.  

To further characterize these mutations, we decided to explore the catalytic 

activity and binding affinities to ATP and substrate peptide. According to the 

activity assay data collected from all active mutations, there does not appear to be 

any that are over-active as none surpassed the activity of pY419 wt-Src. Also, there 
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was unfortunately no correlation between conformational states and activity. Since 

pY419 is an open state and fully active and pY530 is closed but inactive it was 

hypothesized conformations were correlated to the catalytic activity of c-Src. 

Therefore, mutations that stabilized an open conformation was thought to be more 

active compared to mutations stabilizing a closed conformation. We reasoned that 

this could be due to the individual mutations effecting catalytic activity more than 

the conformational state.  

Next, we explored, specifically, how these conformational states affected c-

Src function. What exactly do changes in conformational states disrupt? The most 

intriguing question is whether or not conformational states could affect 

phosphorylation states. We took an open conformation D120N-Y530F, apo Y530F, 

and a closed T341R-Y530F and looked at autophosphorylation rates at Y419. 

Gratifyingly, T341R-Y530F autophosphorylation is slower than Y530F and D120N-

Y530F. 

Whether or not the faster phosphorylation rates are due to open 

conformations or activation loop conformations dictated by the mutation stabilized 

conformational state is an experiment we would like to look further into in the future. 

It is possible that depending on the conformational changes, the activation loop 

might be in conformations that does not make Y419 available for phosphorylation 

similar to c-Abl’s activation loop tyrosine phosphorylation studies done by 

Lamontanara et. al. We would propose expressing a kinase dead mutation along with 

an open and closed mutation such as K298R-R163W-Y530F and K298R-T341R-

Y530F and using kinase domain c-Src to investigate activation loop phosphorylation 

accessibility. It would also be of interest to do this with inhibitors as well. These 

additional experiments could enable us to study activation loop dynamics and to take 

a look at whether or not c-Src’s activation loop acts similarly to c-Abl.  

Taken together, it appears there is a strong case that these clinical mutations 

can disrupt c-Src regulation by influencing the native conformational c-Src state and 

changing the rate of autophosphorylation at Y419. The next steps would be to assess 

whether or not these effects can lead to cancer progression. CRISPR would be 
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needed to introduce these mutations into healthy cell lines such as NIH 3T3 cells to 

see if over time, these mutations are transformative. Overall phosphorylation states 

should be measured as well cell viability, which would be clues as to these mutant 

c-Src’s involvement in oncogenesis.  

Chapter 3 describes the design and reasoning behind the development of the 

first dual HDAC/c-Src inhibitor. Panobinostat, an HDAC inhibitor was found to 

have synergy with the selective inhibition of c-Src. We decided to combine a 

pyrazolo-pyrimidine scaffold, 3.1, which would serve as the c-Src pharmacophore, 

and a previously published HDAC inhibitor, 3.10 which could be used in its entirety 

as the HDAC pharmacophore on the same molecule to create a dual c-Src/HDAC 

inhibitor. After SAR optimization, compound 3.4 was found to be the most potent 

against HDAC1 and c-Src. We ascertained that both pharmacophores needed to be 

on the same scaffold for the dual inhibition to be efficacious, which we attributed to 

decrease in toxicity and that synergistic effects of inhibiting both HDAC and c-Src 

were maintained. Interestingly, the chimeric inhibitor 3.4 was more potent against 

HDAC1 than c-Src which lead us to believe that most cellular activity seen could be 

due to potent HDAC1 inhibition. In an attempt to improve upon this dual inhibitor, 

dasatinib versions of the HDAC/c-Src inhibitor were synthesized, 3.11 and 3.12. 

This would allow us to greatly increase inhibition to c-Src as well as maintain HDAC 

potency, which both 3.11 and 3.12 has demonstrated.  This will need to be tested in 

cellulo to see if synergy is retained and whether or not the increase inhibition of c-

Src could help increase overall efficacy. Similar to the pyrazolopyrimidine version 

of the dual HDAC/c-Src inhibitor, the das-HDAC should be assessed to evaluate 

whether or not there is any benefits to having a dual acting inhibitor on the same 

scaffold.  

Chapter 4 takes on a similar story as Chapter 3, but instead of a rationally 

designed dual HDAC/c-Src inhibitor, we serendipitously found a dual p38/c-Src 

inhibitor, 4.1 in an attempt to improve dasatinib c-Src inhibition in triple negative 

breast cancer. In an interest to improve the pharmacokinetics of this dual p38/c-Src 

inhibitor, we decided to rationally design a dasatinib/BIRB-796 (Das-BIRB) hybrid 

molecule, 4.4. Due to the BIRB-796 piece, inhibition against p38 should be 
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maintained if not improved while hopefully decreasing binding to cytochrome P450 

in an attempt to bolster metabolic stability.  

This strategy worked and metabolic stability was increased, as found in 

mouse liver microsome LC/MS/MS assay (4.4 half-life = 42min from 4.1 half-life 

= 3min), which prompted us to send 4.4 to Luceome to assess kinase selectivity 

against 137 kinases to compare against the original p38/c-Src inhibitor, 4.1 as well 

as 4.2. Selectivity was relatively similar. Luceome, however, did not carry p38 

which will need to be tested later at DiscoverX, but due to the 4.4 being able to 

inhibit p38, one would assume that p38is also inhibited. Unfortunately, the Das-

BIRB inhibitor as poor against MDA-MB-231 cell lines (546 nM) compared to the 

original 4.1 (6 nM) so despite the improved metabolic stability, the decrease in in 

cellullo potency was not acceptable. This result might throw into doubt whether or 

not p38and c-Src dual inhibition is responsible for the parent p38/c-Src 

inhibitor’s success, compared to dasatinib, against MDA-MB-231 cell, and if it is 

actually another unknown kinase or non-kinase target that is needed for efficacy. A 

full kinome scan against all 518 kinases is warranted to further explore all possible 

kinase targets as the previous kinome scan was only a panel of 137 kinases.  
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Appendix A 

A.1 Introduction: Developing a Truly Selective c-Src Inhibitor 

Most kinase drug discovery efforts are involved in targeting the ATP pocket 

of the catalytic domain and in fact, greater than 99% of all previously reported kinase 

inhibitors are ATP-competitive.1,2 The ATP binding site, specifically the pocket 

where adenine resides (A-pocket) with its well defined recessed hydrophobic cavity, 

is an attractive target site that has yielded potent inhibition which has been translated 

into therapeutic drugs for cancer. However, despite these successes, difficulties exist 

with this approach. First, the highly conserved nature of the A-pocket throughout 

not only kinases but other enzymes that require ATP is a problem.3  The ATP-

competitive inhibitors are designed to mainly mimic the adenine portion of ATP 

which has been described as a highly recognized template as nearly similar binding 

contacts are retained, such as the H-bonding between the kinase ‘hinge’ and the 

adenine ring which greatly reduces selectivity.2,4 This can decrease the therapeutic 

value of the drug, due to undesired side effects caused from off-target binding, as 

well as limiting its usefulness as a biological probe in studying signal transduction 

pathways.3,5,6 Second, ATP-competitive inhibitors have to compete with ATP, 

which has a low micromolar binding affinity to kinases and present oftentimes in 

saturating concentrations as high as 10 mM in cancer cells.7 Therefore, to achieve 

potent binding in the ATP pocket in cellulo requires high affinity inhibitors with low 

nanomolar to picomolar range.3,8 

To address these limitations, different strategies have evolved in an effort to 

improve upon selectivity while retaining potency.6 An approach we have taken is to 

design an inhibitor, wherein a portion of the compound still resides within the A-

pocket as an anchor that binding while the other portion is devised to increase 

selectivity by sampling interactions that are immediately outside of the adenine 
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binding domain.  As our laboratory is interested in studying the signal transduction 

pathways affected by the PTK c-Src, an exclusive biological probe is crucial and 

could hopefully be obtained from this approach. Discovered in 1978, c-Src, was the 

first identified PTK which was later implicated as a proto-oncogene. c-Src is 

believed to associate with a number of receptor tyrosine kinases (RTK) such as 

EGFR and PDGF, which serves in part as their regulator and also as a cotransducer 

of their originating signals.9 This activation of c-Src results in the phosphorylation 

of downstream targets such as focal adhesion kinase (FAK), Ras, Stat3, and 

phosphoinositide 3-kinase (PI3K) which play an integral role in cell proliferation, 

division, and survival, as well as cell motility and adhesion as shown in Figure 1.9,10 

As such, the dysregulation of c-Src has been implicated in cancers including breast, 

colon, pancreatic, and lung cancer and consequently, multiple studies conducted 

have validated c-Src as a target for the treatment of such cancers.9 Our goal is to 

design selective inhibitors of c-Src that can be used as biological probes.  

As an initial gauge for c-Src inhibitor selectivity, c-Abl, also a PTK, was 

selected based upon high sequence similarity (68%) and nearly identical ATP-

binding pockets. Selectivity between c-Src and c-Abl has been difficult to achieve 

and at present, there are no reported clinical or preclinical inhibitors of c-Src that do 

not also inhibit c-Abl.11 Furthermore, recent studies suggest that c-Abl activity 

corresponds to tumor suppression in solid cancers and accordingly, it is desirable to 

avoid the inhibition of c-Abl while targeting c-Src.12  

Our lab recently developed compound A1 for the inhibition of c-Src using a 

strategy that involves not only targeting the A-pocket but also the adjacent P-loop 

pocket.13 1 shown in Figure 1 was found to have a selective inhibition for c-Src (Ki 

= 64 nM) over c-Abl (> 125,000 nM). A1 was also subjected to an in vitro ATP-site 

competition binding assay (KINOMEScan) against 200 kinases at a concentration 

of 10 µM.14 The results, shown in Figure A2 demonstrate impressive selectivity and 

stands in stark contrast alongside PP2, which was previously classified in the 

literature as a highly selective c- Src inhibitor.15   
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The remarkable selectivity of compound A1 is believed to be due to the 

compound interaction within the P-loop. Unfortunately, A1 still targets c-Raf, and 

B-Raf which remains the last remaining hurdle to an otherwise perfectly selective 

inhibitor in this panel. In developing A1 as a biological probe exclusively for c-Src, 

it will be necessary to exclude the residual binding from c-Raf and B-Raf. As such, 

we will explore the following: 1.) Validating a possible key interaction located 

within the P-loop pocket that is shown in a docking model of A1 in c-Src for a 

possible approach in improving selective inhibition. 2.) SAR studies probing the P-

loop pocket using analogs of A1 and its benzyl analog A2 (shown in Figure 1). 3.) 

Utilizing a recently developed BRAF binding assay to assess improved analogs.  

A.2 Probing the Validity of the Docking Model of Compound A1 

Developing an inhibitor that binds to two different sites within the ATP 

pocket, A-pocket and the adjacent P-loop pocket, also known as the glycine-rich 

loop, could retain potency while improving upon selectivity. Usually occupied by  

 

 

A1 A2 

Figure A1: PP2, PP2-alkyne, A2, and A1. 

Figure A2: KINOMEscan of PP2 and A1. The red circles represent the kinase inhibited and 

the larger the radius of the circle correlates with increasing potency. (Taken from Brandvold 

et. al)1 
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the phosphate groups of ATP, the P-loop has been underutilized in regards to 

inhibition and to our knowledge, there have been no attempts to build into this region 

to improve selectivity. Recent reports, have cited the impact that the P-loop has on 

ligand-protein interactions and it has been shown that mutations in the P-loop are 

responsible for imatinib resistance to c-Abl.16 Studies resulting from this observation 

have also suggested that the conformational variability of the P-loop across PTKs 

might be a promising alternative in exploring specific binding.16,17 From our initial 

modeling analysis, c-Src appears to exhibit a wider P-loop opening compared to c-

Abl (shown in Figure A3) and therefore this slight difference in conformation could 

be exploited to achieve selectivity. If the strategy proves successful for c-Src, it 

could also be applied in other PTK inhibitor blueprint as well.  

 

 

The docking model in Figure A4 is of A1 in an optimized conformation 

within the binding site of c-Src. The PP2-alkyne portion of the inhibitor occupies 

the A-pocket as predicted. The phenyl group is situated right at the juncture between 

the A-pocket and the P-loop pocket and is where the ribose of ATP usually resides. 

Within the P-loop itself sits the triazole and biphenyl ring, which is currently 

orientated to maximize van der Waals contacts within the pocket. Upon further 

inspection, the short methylene linker between the triazole and biphenyl ring serves 

as the first logical option from which to probe the validity of the docking model  

Figure A3: c‐Src is colored light green with P-loop of c-Src highlighted yellow. c-Abl is colored light blue 

with P‐loop of c‐Abl highlighted red. (Taken from Brandvold et.al)1 
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while possibly improving upon selectivity. By introducing a chiral center upon 

insertion of a methyl group directly on the linker (Figure A5), we can assess, through 

biochemical assay, whether the triazole and biphenyl groups are positioned correctly 

in the docking model. According to the model in Figure A4, the A3 would be weakly 

binding/not bind due to unfavorable steric clash with the P-loop pocket whereas the 

A4 would bind more favorably.   

 

 

A.3 SAR of Compound A1 and A2  

 SAR will be performed around the second biphenyl ring of compound A1 

and benzyl ring of A2. These analogs can be biochemically assayed as a method to 

probe the P-loop pocket for favorable interactions while further optimizing potency 

and selectivity of the initial compounds. Electron withdrawing groups (F, CF3) and 

A1 

Figure A4: Left is compound A1 docking model in c-Src. Right is docking 

model of compound A1 showing the S conformation. Note in the picture on the 

right, compound is not in optimized conformation. 

Figure A5: Biochemical assay and chemical structure of compounds A1-A5 

in c-Src 
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electron donating group (Me, O-Me) were added around the phenyl rings as a first 

round assessment and from there improved in a second round assessment if need be. 

Also, if the compound (in Figure A5) proves potent, SAR results from Figure A7 

and A8 can be pooled together to create a derivative using the best combination of 

substituents.  

A.4 Results and Discussion  

In order to assess whether or not the previous SAR analogs of compound A1 

and A2 eliminate BRAF and c-RAF binding, TR-FRET Eu binding assay for BRAF 

will be employed to assess the best inhibitors of c-Src and determine whether or not 

they bind to BRAF.18 BRAF will be GST-tagged, whereupon Eu labeled anti-GST 

labeled and an Alexa Fluor 647 labeled substrate will serve as the two FRET pairs. 

When the substrate is bound to BRAF, this brings the substrate linked fluorophore 

in relatively close proximity to the Eu labeled anti-GST thereby inducing FRET and 

increase of fluorescence is observed. Upon inhibitor binding, FRET can no longer 

occur and a decrease in fluorescence is monitored and a binding curve can be plotted.  

 

 

To validate the possible key interactions shown in a docking model of A1 

both A3 and A4 were prepared from the PP2-alkyne scaffold via ruthenium 

catalyzed click chemistry. The results of the assay are shown in Table A6. We were 

encouraged to see that the biochemical data agreed with our docking model as A3 

has high Ki of 1733 nM vs. the A4 with Ki = 409 nM. When A4 is compared to A2 

(Ki = 139 nM), the potency is slightly worse. In the hopes of improving potency, a 

phenyl substituent was added A5, which is a similar modification previously done 

to further optimize the binding of A2 into A1. Compared to its benzyl predecessor 

A4, the Ki of the biphenyl A5 is slightly improved, however, when contrasted against 

Figure A6: BRAF binding assay of compounds 1, A4, A5, and A18 

(3-OMe) 
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A1 (Ki = 64 nM) the addition of the phenyl ring doesn’t seem to impart additional 

favorable interactions.   

However, the 4-fold difference in potency between the two benzyl isomers 

A3 and A5, which should in theory translate to the biphenyl A5 as well, could be 

exploited for selectivity against other kinases, especially BRAF, one of the 

remaining kinases we want to rid of inhibition. As such, we employ a recently 

developed BRAF binding assay and the initial results are shown in Table A6.18 An 

IC50 of 4.6 µM was obtained for A4 compared to IC50 = 0.55 µM of 1, which is an 

8-fold decrease in inhibition. Unfortunately, A5 (IC50 = 0.33 µM) displays similar 

IC50 to 1 which is not beneficial in our case. However, this might suggest that the 

extra phenyl ring in A1 compared to the benzyl A2 not only augmented binding to 

c-Src but either introduced/improved BRAF inhibition as well. This suggest, the 

methyl isomer might therefore not be the reason of selectivity of A4 between c-Src 

and BRAF. This could also partly explain why the further optimization of the 

scaffold PP2, which only moderately inhibit BRAF, towards specific binding of 

only c-Src abolished nearly all other kinase inhibition, but surprisingly introduced 

BRAF inhibition.  

SAR around the benzyl ring of compound A2 was generated (shown in Table 

A7) from a collection of benzyl azides previously synthesized. These substituted 

azides were appended to PP2-alkyne through ruthenium mediated click chemistry. 

From the collection of compounds synthesized (A6-A13) only A6 (4-F, Ki = 143 

nM) showed 2-fold improvement over the parent compound A2. To evaluate if 

additional potency could be conferred by the addition of the phenyl substituent, A28 

(4-F, Ph) was synthesized and unfortunately, no appreciable increase in binding was 

observed.  

The biphenyl ring in A1 was also subjected to a round of SAR using 

substituted biphenyl azides made through Suzuki coupling (Table A8). In general, 

any group in the ortho position or possessing the electronegative CF3 group was not 

as favorable for c-Src inhibition as parent compound A1. It was revealed that A16 

(4-Me) and A20 (3-Me) only had slightly decreased binding affinity compared to 
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the parent biphenyl compound A1. We hypothesized that since these functionalities 

are being extended  

 

 

towards a broader opening of the P-loop pocket, a slightly larger hydrophobic group 

such as an isopropyl may be more advantageous for binding due to increased surface 

area contact. Unfortunately, these new modifications do not bind as well and have a 

Ki in the low single digit µM range (Table A8). 

It was promising to see that one compound, A18 (3-OMe) has comparable 

Ki to the parent biphenyl A1. The introduction of any substituents leading to new 

interactions within the P-loop pocket, that could either improve or retain similar 

binding affinities to the parent biphenyl A1, could concede additional selectivity for 

c-Src and hopefully decrease its viability for BRAF. A18 (3-OMe), along with A16 

(4-Me) and A20 (3-Me) were analyzed in an initial BRAF binding assay whereupon 

only A18 (3-OMe) exhibited decreased BRAF potency with an IC50 = 10 µM 

compared to the parent biphenyl A1, IC50 = 0.55 µM. This infers that the extra 3-

OMe, does interfere with BRAF binding thereby A18 (3-OMe) could be a suitable 

alternative to A1. A profiling of A18 will be performed in the near future.   

Figure A7: Biochemical assay of compounds A6-A13 in c-Src 
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A.5 Introduction: Gatekeeper c-Src Inhibitors and DFG-out Conformation 

Our next project goal focuses on c-Src itself, namely exploring an important 

structural conformation termed the DFG-flip. The DFG refers to the aspartic acid, 

phenylalanine, and glycine residues on the activation loop. DFG-out/in (Figure 

A10A) refers to the position of the phenylalanine, which moves almost 10 Å and 

rotates nearly 180˚ to reside either in the hydrophobic pocket (an active DFG-in,  

 

Figure A8: Biochemical assay of compounds 13-28 in c-Src and parent biphenyl 

compound 1. 



 

212 

 

 

 

FigureA9) or a solvent exposed region adjacent to the ATP pocket in a flipped out 

(an inactive DFG-out) conformation.19 This structural feature has been widely 

studied in a variety of kinases and has only recently become a popular topic to pursue 

due to the accidental discovery of the DFG-out conformation discovered between 

imatinib (Gleevec) binding to c-Abl kinase.20 

Due to its dynamic and highly flexible nature of the DFG, it has been difficult 

to examine its kinetics. Therefore, it is unknown if the DFG-out is stable enough to 

exist in sufficient numbers without any ligands. As such, this conformation can be 

compound dependent; as how or where the compounds bind can stabilize or force 

the kinase into either the DFG-in (Type I binding) or DFG-out conformation (Type 

II binding). Unfortunately, efforts to design small molecules to explore SAR of the 

binding pocket of the DFG-out conformation are troublesome and tedious. As a 

result, there aren’t many known Type II inhibitors for c-Src as just a small change 

in SAR can cause small shifts in the conformation of the pocket of interest leading 

to a completely different binding mode than its parent compound. It is even possible 

the compound will no longer bind to the DFG-out, but such conclusions cannot be 

drawn without a crystal structure.  

Figure A9: A simplified cartoon with ATP bound depicting the most common binding pockets of 

Type I and Type II inhibitors. 
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Less than 10% of kinases have been found to adopt the DFG-out 

conformation.21 Whether this is due to the lack of an appropriate ligand that can 

favorably force the DFG-out remains to be seen, however, it has been observed that 

certain amino acid residues can disfavor this conformation. DFG-out inducing 

ligands, Type II inhibitors, can be physically blocked from binding by a bulky 

gatekeeper (GK) residue, which allows access to a back hydrophobic pocket, which 

is the characteristic cavity to which all type II inhibitors bind. Another possible 

residue is the one preceding the DFG moiety. This particular residue is also located 

at the juncture right before the hydrophobic pocket (Figure A10B). It may not have 

an effect in Type II binding alone but in conjunction with a bulky GK we 

hypothesized it could prevent the DFG-out conformation altogether. We observed 

this situation in some MAP kinases, as they are unable to adopt the DFG-out 

conformation. These MAP kinases consist of a bulky methionine GK and a serine 

residue at the xDFG position, compared to c-Src (GK = threonine and xDFG = 

alanine) which can assume the DFG-out conformation.  

 

 

Figure A10: A: Crystal structure of T341M c-Src, DFG-out (PDB: 3F3W) aligned with wt-

Src DFG-in (PDB: 3G5D) demonstrating the DFG-flip, shown in yellow. The orange residues 

show the GK methionine and the xDFG residue, alanine. B: Same crystal structure as above 

instead Compound A27 (T341M) and Dasatinib (wt-Src) are shown. Compound A27 is split 

into three different colors signifying the binding pockets. Green = ATP pocket, red = GK 

pocket, blue = hydrophobic pocket. Dasatinib is shown in white and visualizes how a bulky 

GK can prevent access into the hydrophobic pocket and GK pocket. The yellow curved line 

demonstrates one design strategy to evade the GK by avoiding binding directly through the GK 

pocket (as shown by the phenyl ring of Dasatinib and red portion of compound A27) which all 

current Type II binding follows. 
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A.6 Results and Discussion 

Therefore, to investigate if these two residues can prevent kinases from 

adopting a DFG-out we questioned if it was possible to turn a known kinase that can 

adopt DFG-out into a kinase that cannot adopt DFG-out through the mutation of 

those two residues simultaneously. We believe this can yield some insight into how 

certain residues can affect the DFG-out inactive conformation and also how these 

residues contribute to ligand binding. Depending on results obtained, this mutation 

can be incorporated onto other kinases and used as a simple test to identify between 

Type I (binding only in ATP pocket) vs. Type II compounds. Presently, the only 

method to conclusively categorize compound binding is to obtain a crystal structure.  

A double point mutation was applied to c-Src, T341M (GK) and A406S 

(xDFG) and was evaluated against known Type II inhibitors. As controls, T341M c-

Src and A406S c-Src was also tested to eliminate these single point mutations as the 

reason for decreased inhibitor binding. Known Type I inhibitors were also included 

as these compounds should bind c-Src regardless of its conformation. The results of 

the study are summarized in Figure A11 (red indicates the commercially available 

compounds). Unfortunately, there were no known commercially available inhibitors 

of T341M for c-Src. We also found that even a literature conceived compound 

(resynthesized here) purported to inhibit T341M was actually a weaker than 

expected binder of T341M c-Src (Compound A27). Therefore, it was not possible 

to validate T341M, A406S model accurately as we concluded that a Type II inhibitor 

that binds T341M, A406S, and wild type (wt) c-Src equipotent was ideal. It was 

reasoned that difficulties in obtaining such a compound would lie in the inhibition 

of T341M c-Src, as the extremely bulky GK itself can sterically exclude any Type 

II binding. Based upon several devised strategies to evade the GK, 31 compounds 

were synthesized. The results of the lead compounds are shown in Figure A11. 

Eventually, it was found that literature compound A30, which was never tested 

against T341M, afforded equipotent binding to T341M (Ki = 19 nM), A406S (Ki = 17 

nM), and wt-Src (Ki = 28 nM), and demonstrated a 6-fold shift in potency for the 

T341M-A406S mutant (Ki = 114 nM). While these results suggested that using the  
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Figure A11: Lead compounds of the 37 compounds tested are shown. Compounds marked in red are commercially 
available. Compounds in blue were provided by Prof. Dustin Maly, and compounds in black were synthesized. Out of the 

synthesized compounds A28 was the most potent against wt-Src. 

 

T341M-A406S mutant could aid in the identification of Type II inhibitors, these two 

residues, at least in c-Src, were not able to prevent a DFG-out conformation.  

During the course of this study, several other compounds demonstrated 

interesting results, most notably compound A29. Devised to evade the GK by 

building around the GK pocket (a strategy in which there is no literature precedent, 

shown in Figure A10B by the yellow line), A29 demonstrated equipotent binding to 

wt-Src, T341M, A406S, as well as T341M-A406S. Based on the data collected, even 

if the Type II inhibitors bound potently to wt-Src but less potently to T341M, there 

was still an observable decreased shift in binding affinity against T341M-A406S. 

These findings thereby might implicate A29 as a Type I binder despite its structural 

similarities to all Type II inhibitors (a urea moiety is usually indicative of Type II 

binding). Further SAR of A29 was explored in an effort to tease out the binding 

mode. Unfortunately, none of the data were conclusive about the mode of binding. 

Inevitably, a crystal structure would have to be obtained to assess the binding mode 

of A29 and whether or not its GK evading strategy would be useful for future design 

of other GK evading Type II binders.   
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In this regard, current efforts are underway in developing NMR as an 

alternative approach in identifying DFG-out binders. There are only a few literature 

precedents in using NMR to identify Type I vs. Type II.22 However, the system 

developed appears tedious, a possible reason as to why it is not widely adopted, 

involving the expression of more than several different forms of 15N labeled kinase 

of interest. These strategies involve the 15N labeling of backbone amides of the 

kinase, as well as the selective individual 15N labeling of certain amino acids in order 

to identify each amino acid signal through 2D TROSY, as well as comparing to 

known crystal structures to ascertain which signal belonged to the phenylalanine of 

the DFG. Therefore, monitoring the absence (DFG-in) or presence (DFG-out) of the 

phenylalanine signal would allow the identification of Type I vs. Type II binders.22 

Instead, we propose to directly monitor the DFG flip by mutating the phenylalanine 

to a tryptophan (F408W) (which shares similar properties, and therefore shouldn’t 

affect the kinetics of the DFG flip) and use it as a reporter in NMR studies.   

A F408W c-Src mutant has already been expressed and determined to be 

fully active. The single mutation on the DFG allows the ability to directly monitor 

the kinetics of the DFG flip by being able to selectivity replace any tryptophan 

residues, including the tryptophan of the DWG with a 15N indole or cheaper fluoro-

indole reporter. There is literature precedent for the relatively easy incorporation of 

15N indole or fluoro-indoles into both wt-Src and F408W Src, as the protein 

expression system can easily replace any tryptophans with any indole of choice.23 

There are only 8 tryptophans in wt-Src and therefore comparing labeled wt-Src with 

labeled F408W should allow the ease of distinguishing the tryptophan signal of the 

DWG. The absence or presence of the 15N or fluorine signal of the DWG should 

enable the determination of Type I vs. Type II compounds using the library of 

compounds that have already been synthesized. With the success of this developed 

method, we envision the general application towards other kinases in determining 

the mode of compound inhibition as well as further developing these NMR 

techniques in studying the dynamics of the DFG flip.   
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