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CHAPTER I

Introduction

Applications of nanotechnology span diverse engineering targets including medical

devices, drug delivery mechanisms, energy conversion and storage, and reconfigurable

or self-healing materials. Microelectronics, optics, photonics, terahertz wireless com-

munication and self-cleaning (omniphobic) surfaces also rely on physics occurring at

length scales measured in nanometers or microns. Various lithographic and micro-

machining techniques can be used to produce tiny features on objects of limited size

under very controlled circumstances, but engineers also pursue fabrication through

the self-assembly of hierarchical materials from simpler small building blocks.

By fabricating huge numbers of particles that put themselves together, we can

produce large-scale hierarchical materials. One need only look in the mirror (perhaps

while holding a biochemistry book) to know it is possible to achieve great complexity

from simple building blocks. Historically, we know such reproducible complexity can

take a lot of trial and error and the emergent behaviors of many types of interactions

across many length scales.

To produce new technologies on human time scales, we must discover design prin-

ciples that we can apply to achieve target structures. Experimentalists continually

develop new synthesis and processing methods to produce ever more varied nanopar-
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ticles and colloids but the soft-matter community is still in the relatively early stages

of developing design principles that can be applied to engineer particles for target

structures or applications. At the same time, many fascinating structures are ob-

served in laboratory situations that lack reproducibility or tunability due to poor

understanding of the driving forces of these particles and the thermodynamics of

these systems. Design principles are developed through application of theoretical

work, analysis of experiments, and, increasingly, systematic simulations and compu-

tational investigations.

Simulators benefit from the availability of ever increasing computing power only

when we have software that can take advantage of it. Engineers benefit from simu-

lation only when the results can be related to experimentally accessible parameters.

Much of my work has been devoted to improvements to our simulation toolkit and

the ability to translate our results to experimental observables and tunables. My re-

search has focused on minimal interaction complexity, but rigorous thermodynamic

and structural characterization to help us know clearly what aspects of particles lead

to which self-assembly characteristics.

In this dissertation, I present several new algorithms and computational tools that

I helped develop to study the thermodynamics and structure of systems of mesoscale

particles. The parallel Monte Carlo (MC) code discussed in chapter II is a significant

advancement in simulation software for hard particle systems. There, my coauthors

and I discuss the development and implementation of highly parallel hard particle

thermodynamic Monte Carlo simulation code. The code is optimized to run on many

CPUs or many GPUs. The hard particle Monte Carlo (HPMC) simulator supports

a wide variety of shape classes, including spheres / disks, unions of spheres, sphe-
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rocylinders, convex polygons, convex spheropolygons, concave polygons, ellipsoids /

ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and con-

cave polyhedra. The code may be easily extended to support additional shapes or

specific shapes may be optimized where currently enabled by more general overlap

detection algorithms. Our work is accepted for publication (with revisions) in the

journal Computer Physics Communications.

I present an algorithm and method for measuring pressure in hard particle MC

simulations in chapter III. The state function provides important information for

thermodynamic integration to compare free energies between systems and for inves-

tigating phase changes. I discuss challenges and solutions for measuring pressure

efficiently in hard particle simulations. The resulting tools will be released with

HPMC.

In chapter IV, I primarily provide a literature review and background material for

chapter V, which presents studies of the state functions of hard polyhedron fluids.

Motivated by a desire to understand the state functions of polyhedral particles pre-

viously studied in the Glotzer group, we began to investigate how the interactions

between particle shape and degrees of freedom could affect the pressure – volume

relationship. After reviewing some analytic approaches and performing some initial

simulation work, we set aside further investigation of solid phase state functions until

after the maturation of the HPMC code to investigate first fluids of hard polyhedra.

We have not yet resumed the project.

I present attempts to understand the state functions of polyhedra in fluid systems

in chapter V. With my coauthors, I demonstrate the effectiveness of low order virial

coefficients in describing the compressibility factor of fluids of hard polyhedra. We
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obtain the second virial coefficient analytically from particle asphericity and use it

to define an effective sphere with similar low-density behavior. We present a semi-

analytic equation of state for hard polyhedron fluids and compare with others pre-

viously appearing in literature. My coauthors use higher-order virial coefficients —

efficiently calculated with Mayer Sampling Monte Carlo — to define an exponential

approximant, which I show to exhibit the best known semi-analytic characterization

of hard polyhedron fluid state functions.

In chapter VI, I describe the math behind software I developed to incorporate

particle form factor into nanoparticle super lattice diffraction pattern simulations.

Diffraction patterns are useful to understand the symmetries and periodicities of

material samples and, ideally, to confirm or refute structural models. The scattering

process and diffraction measurement maps directly to taking a slice of a Fourier

transform of the scattering density of the experimental sample. Diffraction images

are often simulated for a known configuration of particle centers (as in simulation

data) by performing a Fourier transform on a density map of coordinates. This

calculation gives the structure factor associated with the diffraction, but neglects the

form factor due to particle size or scattering density, which can have a strong effect

on relative peak brightness in systems with more than one particle type. In colloidal

or nanoparticle systems, particle form factors are additionally complicated by shape.

I give some introduction into how to simulate diffraction patterns for arbitrarily

mixed systems of finite-sized particles and briefly discuss software developed for this

purpose.

I apply these tools and others in chapter VII, in which I analyze transmission elec-

tron microscopy (TEM) data from my coauthors and perform various simulations to

4



characterize and model a binary system of nanoparticles observed to self assemble

into a dodecagonal quasicrystalline tiled structure. Quasicrystals have been dis-

covered in various soft matter and nanoscale systems, but in many situations their

complex geometry impedes structure solution, and the presence of defects limits the

quality of experimental samples. We report a dodecagonal quasicrystal and related

periodic superlattices in a binary mixture of iron-based (FePt, Fe3O4, CoFe2O4) and

gold nanocrystals. This quasicrystal has a structure type previously unreported.

We derive a structure model for the decoration of a square-triangle tiling by analy-

sis of surface terminations and electron tomography. The twelve-fold symmetry of

the quasicrystal is broken in sub-layers with only six-fold symmetry for puckered

and mirror layers, resulting in partial matching rules between square and triangle

tiles. Higher-dimensional lifting works well to describe the experimental quasi-lattice

though allowance must be made for occasional dislocations. A hard particle model

is insufficient to explain the stability of the quasicrystal despite attempts to opti-

mize particle shape. Instead, hetero-attraction allows the quasicrystal to grow in

molecular dynamics simulations.

I conclude this dissertation in chapter VIII and describe the outlook for continuing

research in these subjects.
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CHAPTER II

Scalable hard particle Monte Carlo and thermodynamic
measurement

This chapter consists primarily of material accepted for publication in Computer

Physics Communications [1], coauthored with Sharon C. Glotzer and principally au-

thored by Joshua Anderson. Subsections 2.2.2 and 2.2.3 and parts of subsection 2.2.1

do not appear in the journal article.

2.1 Introduction

CPU performance hit a performance brick wall in 2005 [2], and serial execution

performance has remained stagnant since then. Whole socket CPU performance

continues to increase due to additional CPU cores and wider single instruction mul-

tiple data (SIMD) vector instruction widths. Moore’s Law drives the increase in

core counts, with 2-core CPUs available in 2005 increasing to 18-core CPUs in 2015.

XSEDE [3] Comet is a modern commodity dual-socket CPU cluster with 24 cores

per node (12 cores per CPU). This is a typical configuration for current systems;

future clusters will have more cores per node. However, CPUs are not very power

efficient. Graphics processing units (GPUs) have thousands of cores and can pro-

cess hundreds of thousands of concurrent lightweight threads. Given a fixed power
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budget, systems that use GPUs provide significantly higher performance than those

with CPUs alone. For example, the GPUs on OLCF Titan provide over 90% of its

performance. When Jaguar was upgraded to Titan by adding GPUs, its total peak

performance increased by 10x with only a 20% increase in power usage.

Metropolis Monte Carlo (MC) simulations for off-lattice particles are usually im-

plemented in serial. This is the most straightforward way to evolve the Markov

chain, but it can achieve only a small fraction of the performance available in a sin-

gle compute node and does not scale to simulations with large numbers of particles.

Efficient sampling algorithms can achieve orders of magnitude better performance

than Metropolis MC, such as the event chain algorithm for hard spheres [4] and gen-

eral pair potentials [5]. However, it is not clear how event chain MC can be extended

to hard particles with shape, which is our primary interest.

Computational scientists need general purpose simulation tools that utilize par-

allel CPUs and GPUs effectively. They need to run simulations of a few thousand

particles as fast as possible in order to answer research questions quickly, conduct

high throughput screening studies, and sample more states with a short turnaround

time. Researchers also need scalable codes to complete large simulations with mil-

lions of particles, which is untenable with a serial code. There are a number of

possible routes to parallelizing Metropolis MC [6]: 1) execute many independent

runs in parallel to improve sampling, 2) evaluate energies in parallel for trial moves

that are proposed in serial, and 3) propose multiple trial moves in parallel. Exe-

cuting many independent serial runs is not helpful for large systems or those with

long equilibration times. Two recent open source codes fall into the second category.

CASSANDRA [7] uses OpenMP to run in parallel on the CPU and GOMC [8] uses
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CUDA to parallelize on NVIDIA GPUs. Both of these tools model atomistic systems

with classical potentials.

A number of works use checkerboard techniques to propose trial moves in parallel

in off-lattice systems with short ranged interactions [9–13]. Heffelfinger introduced

the concept [9], but found it inefficient due to high communication overhead. Ren [11]

and O’Keeffe [12] improved efficiency with sequential moves in the domains. Sequen-

tial moves obey balance in serial implementations [14], but the same argument does

not apply to checkerboard parallel moves. We showed in Ref. [13] that sequential

moves within active checkerboard domains lead to incorrect results, as does allowing

particle displacements to cross from an active domain to an inactive one as allowed

in refs [9, 11, 12]. Uhlherr [10] implemented a two color asymmetric striped decom-

position, proposes complex polymer conformation moves within the domains, and

correctly rejected moves that cross boundaries. Kampmann [15] combined event

chain MC with the parallel checkerboard scheme in a rejection free manner by re-

flecting trial moves off the domain walls.

Previously, we developed a general algorithm for massively parallel Metropolis

Monte Carlo, implemented it for two-dimensional hard disks on the GPU [13], and

used it to confirm the existence of the hexatic phase in hard disks [16]. In this

paper, we present a general purpose code for MC simulations of hard shapes, HPMC.

HPMC runs NVT and NpT [17,18] ensembles in 2D or 3D triclinic boxes. Additional

integration schemes permit Frenkel-Ladd [17] free energy computations and implicit

depletant simulations [19]. It calculates pressure in NVT simulations by volume

perturbation techniques [18, 20]. HPMC supports a wide variety of shape classes,

including spheres / disks, unions of spheres, convex polygons, convex spheropolygons,
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import hoomd scr ipt as hoomd
from hoomd plugins import hpmc

# Read the i n i t i a l c ond i t i on .
hoomd . i n i t . read xml ( f i l ename=’ i n i t . xml ’ )

# MC i n t e g r a t i o n o f squares
mc=hpmc . i n t e g r a t e . convex polygon ( seed =10,

d=0.25 , a =0.3)
square =[(−0.5 , −0.5) , ( 0 . 5 , −0.5) ,

( 0 . 5 , 0 . 5 ) , (−0.5 , 0 . 5 ) ] )
mc . shape param . set ( ’A ’ , v e r t i c e s=square )

# Run the s imu la t i on
hoomd . run (10 e3 )

Figure 2.1: Example HPMC job script. The syntax is preliminary and may change as we reorganize
components for a final release.

concave polygons, ellipsoids / ellipses, convex polyhedra, convex spheropolyhedra,

spheres cut by planes, and concave polyhedra. It runs efficiently in serial, on many

CPU cores, on a single GPU, and on multiple GPUs. Researchers have already used

HPMC in studies of shape allophiles [21] and ellipsoids with depletants [22].

2.2 Implementation

HPMC is an extension of HOOMD-blue [23–25] using the existing file formats,

data structures, scripting engine, and communication algorithms. HOOMD-blue

started off as a molecular dynamics (MD) package, but its design is general enough

to allow the addition of Monte Carlo moves with minimal modifications. HPMC is an

Integrator class inside HOOMD-blue that applies MC trial moves to the particles.

The code is object-oriented and extensible, and it is easy to add additional shape

classes and collective moves. Adding new types of local moves is not as easy, but

can be accomplished by subclassing the Integrator and re-implementing the main

loop.
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Python job scripts control HOOMD-blue execution. Users can activate HPMC

integration with a few lines, and can switch back and forth between MC and MD in

the same job script. Listing 2.1 shows a job script that runs a simulation of hard

squares for ten thousand steps. A single “step” in HPMC is approximately ns sweeps,

the approximation is due to the parallel domain decomposition. One sweep is defined

as N trial moves, where N is the number of particles in the simulation box.

2.2.1 Metropolis Monte Carlo

Correct Monte Carlo importance sampling of a thermodynamic distribution is

most easily proven by satisfying the condition of detailed balance. The condition

imposes constraints on the acceptance criterion for trial moves in relation to the

probability P (A) of being in a microstate A, the probability of transitioning between

microstates π(A→ B), and the underlying transition matrix α. The acceptance cri-

terion due to Metropolis is one way to assure detailed balance when we can use our

knowledge of thermodynamics to compare the relative likelihood of two microstates

(such as by a Boltzmann factor) in a thermodynamic distribution fΨ for some ther-

modynamic potential Ψ. Following Frenkel and Smit [17]:

detailed balance: P (A)π(A→ B) = P (B)π(B → A)

π(A→ B) = α(A→ B) acc(A→ B)

for symmetric α, P (A)× acc(A→ B) = P (B)× acc(B → A)

acc(A→ B)

acc(B → A)
=
P (B)

P (A)
=
fΨ(B)

fΨ(A)
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The Metropolis criterion satisfies detailed balance.

acc(o→ n) =


fΨ(n)
fΨ(o)

, fΨ(n) < fΨ(o)

1, fΨ(o) ≥ fΨ(n)

(2.1)

Hard particle simulations have infinite potential energy when any particles over-

lap and zero potential energy otherwise. Metropolis Monte Carlo [17, 26] for hard

particles with shape consists of the following steps. Let ~ri and qi be the position and

orientation of particle i.

1. Select a particle i at random.

2. Generate a small random trial move for that particle, resulting in a new trial

configuration ~rtrial = ~ri + δ~r, qtrial = qi · δq.

3. Check for overlaps between the trial configuration and all other particles in the

system.

4. Reject the trial move if there are overlaps, otherwise accept the move and set

~ri ← ~rtrial, ~qi ← ~qtrial.

The last step is a simplification of the more general Metropolis acceptance crite-

rion [26] for hard particle systems. It offers an important opportunity for optimiza-

tion: Once the first overlap is found, no further checks need to be made.

For new simulations, we follow a general rule of thumb and select the size of δ~r

and δq so that an (estimated) optimal percentage of the trial moves are accepted.

A simple way to measure efficiency for fluids is the diffusion rate in wall clock time

units. We check with this metric for several benchmark cases, and trial move sizes

associated with a 20% acceptance ratio are at or very close to peak efficiency for the
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high density fluids we are interested in. The rule of thumb is not always optimal, but

it is useful as researchers can trivially implement it. All benchmark results reported

in this work are initially tuned to 20% acceptance, then the trial move size is fixed.

2.2.2 Sampling volume at constant pressure

For the isobaric-isothermal (NpT) ensemble, the characteristic thermodynamic

potential is the Gibbs free energy. In this case, detailed balance is satisfied [Frenkel

and Smit eq. 5.4.11] for a volume change from V to V ′ = V +4V by the following

Metropolis acceptance scheme. The acceptance criterion is formulated using the

ratio of probabilities of states before and after trial moves drawn from the relevant

distribution. From Frenkel and Smit [17],

f(V ; sN) dV ∝ V N exp(−βpV ) exp(−βU(sN ; L)) dV

acc(V → V ′) = min(1, exp

(
−βδU − βpδV −N ln

V ′

V

)
(2.2)

Equation 2.2 is derived for box moves in volume, drawn from a symmetric distribution

of δV . The distribution of lnV is different and for trial moves drawn from lnV ,

f(lnV ; sN) d(lnV ) ∝ V N+1 exp(−βpV ) exp(−βU(sN ; L)) d(lnV )

acc(lnV → lnV ′) = min(1, exp

(
−βδU − βpδV − (N + 1) ln

V ′

V

)

Thus it is important to consider the correct distribution for a type of move in deriving

the appropriate acceptance criterion. Currently HPMC allows trial moves in volume,

box edge length, and shear, and will allow additional volume moves in the future.

Note, though, that due to cancellation of factors, the acceptance criterion for changes

12



in V or in L (a single lattice direction) are the same and can be expressed

accept(V → V ′) = min

[
1, exp

(
−β
[
U(V ′)− U(V )− N

β
ln
V ′

V
+ p(V ′ − V )

])]
(2.3)

For a partial discussion of the derivation of (2.3) see Frenkel and Smit [27], but there

are some subtleties to the appearance of the third term.

For the hard particles, U is either zero or infinity, potentially simplifying the

acceptance criterion.

accept(V → Vnew) =


min

[
1, exp

(
N ln

Vnew

V
− p(Vnew − V )

kT

)]
no overlaps

0 overlaps

(2.4)

In the specific case of convex hard particles in a box undergoing isotropic volume

changes, optimized acceptance criteria could consist of an overlap check on compres-

sion moves and comparison of a random number to the calculated pseudo-Boltzmann

factor (2.4) for expansion moves. Neither criterion is sufficient for general simula-

tions, though, even of hard particles.

Expansion moves are just coordinate rescalings and thus never result in overlaps

if performed isotropically in systems of convex particles. However, HPMC is capable

of simulating concave objects and performing anisotropic NpT. That is, trial moves

can be performed in box shear or edge length, so an overlap check must generally be

performed for all NpT move types.

For compression moves in hard particle systems, equation Equation 2.3 is domi-

nated by the potential energy term and the sum of the remaining terms is generally

less than zero. The maximum allowable volume change for this condition to be true
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depends on the compressibility factor, Z (Equation 5.1), but for physical systems

where generally Z > 1 the condition is easily satisfied for volume changes on the

order of one percent at a time. In other words, for the overlap condition to be insuf-

ficient for compression acceptance, the exponential term in (2.4) would have to be

less than one, or vr > exp(vrZ)− 1, vr ≡ δV
V

. Numerically solving for the maximum

volume change from near equilibrium gives vr = −17.6% for Z = 1.1 and vr = −94%

for Z = 3, so the condition is useful for liquid and solid systems and even for dilute

systems approaching the ideal gas limit for |vr| on the order of < 10%. Neverthe-

less, for thermodynamic integration we may want to sample near the ideal gas limit.

Intuitively, we recognize that some compression moves must be rejected despite the

lack of overlaps. The calculation of the pseudo-Boltzmann factor and generation of

the random number are computationally inexpensive compared to the overlap check,

so we disregard this potential optimization.

Pressure and temperature are not obviously separable in hard particle simulations.

The HPMC NpT updater accordingly takes βp as input in a single quantity with

dimension of inverse volume in simulation distance units. Users are left to adopt a

reduced pressure convention of their choosing, for which one must choose a length

scale relevant to the simulation at hand. E.g. p∗ = βPv0 for a monodisperse system

of particles with volume v0, p∗ = βPσ3 for hard sphere studies, or p∗ = βPa3

for a system of polyhedra with edge length a. Alternatively, note that Z(βp, ρ) is

independent of particle size for a given packing fraction and is thus of general utility.

Additional consideration for detailed balance

It is clear from the derivation of Equation 2.4 that detailed balance is maintained

for simulations in which particle trial moves are performed in scaled coordinates,
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or fractional coordinates in HOOMD parlance. Since HOOMD particle coordinates

and translations are in Cartesian coordinates, to maintain strict detailed balance the

Monte Carlo trial move domain would need to have the same distortions applied as

the box volume. This would mean drawing translation moves from a triclinic domain

that is adjusted after successful box changes.

This is needlessly complicated, however, since reversibility is regained over several

MC steps if box and particle moves occur in random sequence. In the event a box

move makes it impossible for a particle to undo a translation from the standpoint of

relative coordinates, it is equally likely the box move will be undone before another

particle move is attempted or that the particle move is undone before the box change

is attempted. This argument follows the same reasoning discussed in [14].

2.2.3 Frenkel-Ladd

Free energy calculations in solid phases can be performed using Frenkel-Ladd

integration [17], the implementation of which has been proved in concept for HPMC

with a modified Integrator. Lattice sites for an Einstein crystal, along with a spring

constant, are then provided as additional parameters and, in addition to the hard

particle overlap checks, a Boltzmann factor must be evaluated for particle moves. The

Integrator must log the energy of the harmonic lattice bonds at a range of spring

constant values sufficient to integrate from the Einstein crystal (in which particles are

sufficiently confined to their lattice sites as to never collide) to effectively zero (i.e.

the simulation results are identical to those with only hard particle interactions).

Future HPMC Integrators will support evaluation of non-hard-particle Boltz-

mann factors by optionally attaching a HOOMD Compute object to an Integrator.

The idea is to provide a generic framework for external fields, including confinement,
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implicit depletants, or harmonic wells.

One potential pitfall in some systems is the possibility of particles exchanging lat-

tice sites and getting kinetically trapped for much longer than the period normally

assumed sufficient for ergodicity. It has been pointed out [28] that free energy inte-

grated from the Einstein crystal may be better sampled by treating the lattice sites

as a field of (locally) harmonic wells, avoiding constraints on the mobility of vacan-

cies. Moreover, such an approach allows particles to swap sites with less impact on

the ergodicity of spring energy. However, this requires that a reasonable lattice can

be constructed as input, whereas it is often preferable to choose sites arbitrarily or to

use sites estimated from simulation data. Particle positions are averaged over many

steps in a system sufficiently dense that particles are confined to their lattice sites.

Lattice contribution to free energy can be calculated analytically independently of

the simulation. Because of the high spring constant necessary to prevent particles

from colliding in a dense system, it may be preferable to first thermodynamically

integrate the Einstein crystal from low density to the target density and only then

to integrate over the spring constant to zero.

2.2.4 Acceleration structures

A näıve implementation of hard particle MC would check N − 1 particles for

possible overlaps with each trial configuration. The cost of a single sweep would be

prohibitively slow: O(N2). Acceleration structures are data structures that reduce

the execution time by efficiently identifying a subset of the N particles that possi-

bly overlap with the trial configuration. Cell lists place particles in cells and have

constant lookup time to find possible overlaps: O(N) sweep execution time. Bound-

ing volume hierarchies (BVH) build a binary tree of nodes that contain particles
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and have logarithmic lookup time: O(N log(N)) sweep execution time. HPMC uses

cell lists on the GPU and BVHs on the CPU. Acceleration structures in HPMC are

discussed in [1].

2.2.5 Overlap checks

HPMC supports many different classes of shapes. It calls the shape overlap check

from the innermost loop and executes it billions of times per second in a typical

simulation run, so heavily optimized shape overlap checks are needed for good overall

performance. We write each shape overlap check ourselves and do not use existing

libraries that would require costly data conversions and function call overhead at

every check, and which lack GPU support. There is a single MC integration loop

that is templated on the shape class to enable the best performance and to make code

maintenance easy. Only that single class needs to be modified when fixing bugs or

adding additional features to the main loop. By template instantiation, the compiler

is able to inline every overlap check call, we can arrange the data in the best format

for the computation, and we can choose the best overlap detection algorithm for each

shape class. Users only need to write an overlap check to add a new shape class.

There are a number of methods to determine if two shapes overlap. Some methods

are specific for a single class of shapes, while other are more general. When there

are multiple algorithms to choose from, we test them and select the one with the

best performance. For spheres and disks, overlap detection is trivial. For unions of

spheres, all spheres in one shape are exhaustively checked against all those in the

other. We use the separating planes method [29] for convex polygons on the CPU,

but XenoCollide [30] is faster on the GPU. XenoCollide is a general algorithm that

can detect overlaps between any two convex shapes. HPMC uses XenoCollide for
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convex polygons, spheropolygons, convex polyhedra, convex spheropolyhedra, and

spheres cut by planes. To detect overlaps between two concave polygons, HPMC

checks all pairs of edges and all vertices. If no edges intersect and no vertex from

one shape is inside the other, then the shapes do not overlap. We use a matrix

method [22,31,32] to detect overlaps of ellipsoids and ellipses.

It would be expensive in both memory and compute to keep all particle geometry

(e.g. polyhedron vertices) in world coordinates. HPMC efficiently represents each

particle with a position ~ri and an orientation quaternion qi. Together, these describe

how to rotate and then translate from the frame of the particle to the world frame.

The user specifies the shape geometry in particle local coordinates once for each type

of particle.

When performing an overlap check between particles A and B, HPMC works

in a local coordinate system centered on particle A. The application of this local

coordinate system optimization depends on the shape overlap check algorithm. For

example, a support function is evaluated at every iteration of XenoCollide. The

support function for the Minkowski difference B − A is

Sworld
B−A(~n) = Sworld

B (~n)− Sworld
A (−~n) . (2.5)

Replacing Sworld
A and Sworld

B with operations on the particle support functions in their

local coordinate systems gives [30]

SB−A(~n) = RSB(R−1~n) + (~rB − ~rA)− SA(−~n) (2.6)

where R is the rotation matrix that takes B into the coordinate system of A. SB−A

is in the coordinate system of particle A, but this is irrelevant for the overlap cal-

culation. On the GPU, we replace R with an operation that rotates vectors by the
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quaternion q = q∗AqB because it is faster. The quaternion rotation uses more floating

point operations, but requires fewer registers.

Single precision particle coordinates are not accurate in large simulation boxes

(without cell-local coordinate systems [13]), so in HPMC we use double precision

particle coordinates. In mixed precision mode, we compute the displacement be-

tween particles ~rAB = min image(~rB − ~rA) in double precision, then we cast ~rAB

to single precision and compute the overlap check in single precision. Within the

local coordinate system of particle A, single precision is accurate for self-assembly

simulations, though densest packing calculations may require full double precision.

HPMC supports both full double precision and mixed precision modes as a compile

time option. Full single precision builds do not even pass simple validation tests.

All benchmark and validation studies in this work use mixed precision.

2.2.6 SIMD vectorization

The polygon, spheropolygon, polyhedron, and spheropolyhedron overlap checks

evaluate the support function many times in the innermost loop of XenoCollide.

The support function loops over all vertices in the shape, dots them with ~n, and re-

turns the vertex that gives the maximum dot product. In our initial implementation,

this code used over 80% of the CPU time (determined by line level profiling with

oprofile). We improve performance of this loop with single instruction, multiple

data (SIMD) vector instruction intrinsics available in modern CPUs. The first loop

computes the dot products for all vertices, w vertices per iteration with SIMD par-

allelism, and just stores the result to avoid branch mispredication penalties around

the floating point operations. A second w width SIMD loop starts and each itera-

tion uses masks and the BSF assembly instruction to find the index of the maximum
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element. We implement these loops in SSE (w = 4) and AVX (advanced vector ex-

tensions) (w = 8). SIMD vectorization boosts performance of the support function

evaluation by a factor of 2-3 over a serial implementation with manually unrolled

loops, achieving near peak floating point throughput in a microbenchmark. While

the vectorized support function now executes several times faster, it is only one part

of a production simulation run. We used oprofile to run a line level execution

profile of a typical polyhedra simulation in the final version of the code. About 40

percent of the runtime is spent in the vectorized support function, 10 percent in

XenoCollide iteration logic, 40 percent in AABB tree searches and the remaining 10

percent in trial moves and AABB tree generation.

2.2.7 Parallelization

Even with fast BVH trees and SIMD vector optimizations, a serial CPU simulation

still only uses a fraction of the capabilities of a single compute node. We implement

parallel computations that utilize the full capabilities of multi-core CPUs and clusters

of CPU nodes to provide faster time to solution and to enable larger scale simulations

across many nodes. In hard particle MC, there are typically only a few dozen possible

overlaps with each trial configuration. This is not large enough to parallelize over a

whole node and cannot scale to large simulations. The only path to achieving fast,

scalable simulations for MC with short range particle interactions is to perform many

trial moves in parallel [6].

To do this, we need to be able to efficiently generate many parallel random number

streams. As we have before [13,33], we use a hash based RNG, Saru [34]. Each time

a trial move is generated, we hash together the particle index, time step, user seed,

and MPI rank to initialize an independent RNG stream. We then use that stream
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Figure 2.2: Domain decomposition scheme. The outer box is the triclinic simulation box, which
is split into 4 domains. On the right and bottom edge of each domain is a gray inactive area,
one particle diameter wide. Particles in the inactive region are colored lighter and are not selected
for trial moves. Any trial configuration that ends in the inactive region must be rejected (top
left domain in this example). On the GPU, individual domains are further subdivided with a
checkerboard grid.
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to generate as many random numbers as needed for the trial move.

Domain decomposition

To scale beyond a single compute node, we employ a domain decomposition strat-

egy using MPI with one rank per CPU core, or one rank per GPU. We implement

HPMC as an extension of HOOMD-blue, a parallel MD code that already has the nec-

essary decomposition and communications routines [24]. Each rank covers a portion

of the simulation box and owns all of the particles in that region. The communi-

cations routines copy particle data from neighboring ranks in a ghost layer around

each domain, and migrate particles from one domain to another as they move.

We base HPMC domain decomposition on our previous method for massive par-

allelism [13]. However, we do not use a 2d color checkerboard grid to scale across

domains. Updating only 1
2d

of the system at a time is unnecessary with low thread

counts, and would require ghost communication after every fractional system update.

Instead, we modify the checkerboard scheme to have only two regions (active and

inactive) and make the active region as large as possible, see figure 2.2. The inactive

region has width dmax, and it is placed along the bottom, right, and back faces of

each domain.

In this layout, all inactive particles are in the neighboring domain’s ghost layer,

or separated from the neighboring domain’s active particles by an inactive region.

There is no need to communicate ghost layer updates because these particles do

not move during substeps. Communication between ranks only occurs at the end of

the step, when we apply a single random displacement to all particles and call the

migration routine. The user sets ns, the number of substeps to perform per step,

giving them control of the computation to communication ratio.
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In our previous work [13], we showed that shuffling the order of particles selected

for trial moves achieves detailed balance within the checkerboard scheme. We pro-

posed full shuffling of all 0–4 particle indices within a cell, as forward and reverse

permutations occur with equal probability. Full shuffling causes cache thrashing in

a general CPU domain decomposition implementation, where individual domains

might have thousands of particles. In HPMC, we choose randomly to loop through

particles either in forward or reverse index order. Both orders are cache friendly,

and this selection preserves the essential element required for detailed balance: that

forward and reverse sequences occur with equal probability. With this slight mod-

ification, this scheme obeys detailed balance following the same arguments as in

ref. [13].

Putting all of these elements together, HPMC with domain decomposition on the

CPU has the following stages.

1. Generate the AABB tree.

2. Choose forward or reverse index order randomly.

3. Loop through all particles i in the chosen order, skipping those where ~ri is in

an inactive region.

4. Generate a small random trial move for particle i, resulting in a new trial con-

figuration ~rtrial = ~ri + δ~r, qtrial = qi · δq. Reject the trial move if ~rtrial is in an

inactive region.

5. Check for overlaps between the trial configuration and all other particles in the

system, using the AABB tree.

6. Reject the trial move if there are overlaps, otherwise accept the move and set
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~ri ← ~rtrial, ~qi ← ~qtrial. Also, update the AABB tree with the new position of

particle i which may or may not require expanding its leaf node and all parents

up to the root.

7. Repeat stages 2–6 ns times.

8. Choose a random displacement vector and translate all particles by this vector.

9. Migrate particles to new domains and communicate ghost particles.

Stages 1–9 implement one step, and typical MC simulation runs continue for tens

of millions of steps. The amount of useful work done by a step is proportional

to the number of trial moves attempted and simulation effort is usually measured

in sweeps (N trial moves). When running on a single rank, one step executes ns

sweeps. The ratio of active to inactive particles decreases as the number of parallel

domains increases, so the number of sweeps in a step varies depending on the run

configuration. Users need to be aware of this behavior so that they can configure

their run protocols properly.

GPU kernel

For multi-GPU simulations, we use the same domain decomposition strategy as

on the CPU but assign each active domain to a single GPU. On the GPU, we run

a kernel that implements the checkerboard update scheme, similar to the one we

previously implemented [13] but with a few differences. In HPMC, user configuration

choices can lead to hundreds of particles in a cell, so we keep particle positions in

global memory and each kernel call only proposes one trial move per cell. For disk

simulations, this is slower than our specialized implementation [13], but it is not a

bottleneck for complex shaped particles where the overlap check costs dominate and
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Figure 2.3: Traces of warp execution from a benchmark run of truncated octahedra. Timing data
is captured with the clock64() function for just a single warp on the device. Colors indicate time
spent in different parts of the execution. Panel (a) shows the register queue implementation and
(b) shows the block queue. In panel (b), the later trial move and early exit condition rectangles
indicate synchronization with other warps in the block.

accessing global memory is almost free in comparison.

To assign threads to cells, we pre-compute arrays that list the active cells for

each color of the checkerboard. Then we launch 1D indexed kernels that read their

cell from this array so that a single kernel may work for all use-cases. Most research

relevant simulations are dense enough that the fraction of empty cells is small, though

these could be removed from the list with an additional overhead per step. This

structure makes one trial move for each cell that has a non-zero number of particles

in it. To approach parity between a step on the GPU and a step on the CPU, HPMC

uses particle density and the number of cells to estimate how many times to run the

kernel so that one GPU step is approximately ns sweeps.
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Block queues

For complex shaped particles, such as polyhedra with many vertices, overlap

checks take a majority of the kernel run time. They are compute limited, so GPUs

have the potential to execute these checks with very high performance, but diver-

gence is a problem. Current GPUs execute warps of 32 threads in lockstep. Threads

within a warp can take different branches, but all threads in a warp execute the in-

structions on both sides of the branch and inactive threads are masked out. A direct

translation of the MPMC checkerboard algorithm [13] loops over particles in nearby

cells, checks for circumspheres that overlap with the trial configuration, and calls the

full overlap check if the circumspheres overlap. In a typical simulation, there might

be 100 particles in the cells around the location of a trial configuration, but only five

of those pass the circumsphere test. With such low hit probabilities, that branch is

likely to diverge every time, leading to a large reduction in performance.

We improve on this by changing the structure of the loop to make a register queue.

Threads loop over potential neighbors, only checking the circumsphere overlap inside

the loop. When a thread finds a potential overlap, it breaks out of the loop. Then

the full overlap check is performed outside the loop after the threads have converged.

This modification causes the overlap checks to run as converged as possible. Figure

2.3(a) shows a trace from a warp using the register queue. The next problem is

immediately obvious in this figure: 80 percent of the threads end early when they

find their first overlap and know that the move must be rejected. The remaining

20 percent must check all potential overlaps before accepting the move. The critical

path for the entire warp to complete is determined by only 20% of the threads so

divergence is still a problem.
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We attempt to use a global queue to work around this. The first kernel generates

trial moves, performs circumsphere checks, and inserts the needed full overlap checks

into a global queue. Then a second kernel processes the queue and runs all of the

overlap checks with no divergence due to circumsphere checks or early exit conditions.

A third kernel applies the accepted moves. Overall, this method performs no better

than the register queue kernel. It was able to compute many more overlap checks

per second, but it also had to perform many more overlap checks because it is not

able to take advantage of the early exit condition.

Our fastest, and final, implementation uses the idea of a work queue for the

expensive overlap checks, but does so at a block level rather than at the global level.

One or more threads in a group run for each cell in the active set. They generate

the trial move and then loop through the particles in the nearby cells in a strided

fashion. For example, with a group size of 4, thread 0 checks nearby particles 0, 4, 8,

. . . and thread 1 checks 1, 5, 9, . . . . In this phase, threads only check for circumsphere

overlaps. When a particle passes the circumsphere test, the thread adds the particle

index and group id to a queue in shared memory. The maximum queue size is the

number of threads in the block. Once the queue is full, the loop over nearby particles

exits and all threads in the block enter the next phase. Here, each thread performs

the overlap check in the queue entry matching its thread index, which may be for

a trial move generated by a different thread. If the particles overlap, the thread

atomically increments an overlap counter for the appropriate group. Then the first

phase starts populating the queue again, except that threads with already discovered

overlaps do not add any work to the queue. These two phases repeat until there are

no more nearby particles to check for any thread in the block, then accepted trial
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moves are handled.

Figure 2.3(b) shows a trace from a warp using the block queue. The overlap check

phase of the kernel runtime is kept dense and non-divergent until the last pass of

the non-full queue. There is still divergence within the iterative XenoCollide overlap

checks themselves. We implemented XenoCollide as a single loop to avoid divergence

as much as possible, but some particle configurations require more iterations than

others. We tried a variety of ways to remove overlap checks that exit in the first

iteration from the queue, but adding that cost on top of every circumsphere check

slowed performance overall.

With the block queue implementation, any number of threads can be run per

active cell so long as the total block size is a multiple of the warp size. This allows

many threads to execute per cell, which is critical to obtain high performance on

modern GPUs. HOOMD-blue autotunes kernel launch parameters to find the fastest

performing values [24]. We autotune over all valid combinations of the group size

and block size to find the fastest performing configuration. In cases where there are

a large number of particles in nearby cells, the autotuner will pick a large group size

(i.e. 8 or 32) to have many threads available to process the overlap checks. In cases

where there are only a few particles in nearby cells, it chooses 1 or 2. We test a

variety of benchmark cases and always find the block queue outperforms the register

queue; performance benefits range from 20 to 80 percent.

2.3 Performance

We benchmark HPMC performance on a few reference systems that researchers

have previously studied. Our first benchmark is a system of 2D regular pentagons

in a high density fluid at a packing fraction of 0.676 in NVT. This is a single state
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Hours to run 10e6 sweeps
P Pentagon Dodecahedron Binary

1 7.56 21.78 32.94
2 3.58 11.33 17.40
4 1.91 6.52 9.48
8 1.06 3.72 5.86

16 0.55 1.96 3.28
24 0.39 1.37 2.45
48 0.23 0.88 -
96 0.17 0.75 -

192 0.19 - -
384 0.26 - -

(a) Comet performance (N = 4096)
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N=4096 - Binary
Ideal scaling

(b) Scaling on Comet

Hours to run 10e6 sweeps
P Pentagon Dodecahedron Binary

8 102.03 492.83 901.73
16 51.25 252.48 482.17
32 26.04 131.01 294.12
64 13.82 73.42 173.80

128 7.47 44.61 114.48
256 4.68 26.32 72.52
512 2.83 16.64 47.45

1024 1.83 17.13 32.42
2048 1.42 12.40 -
4096 1.46 10.36 -

(c) Titan performance (N=224)
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(d) Scaling on Titan

Figure 2.4: Performance is reported in hours to complete 10e6 sweeps. Scaling plots are perfor-
mance values renormalized to performance on the smallest P run. Simulations are run on CPUs
on XSEDE Comet (Intel Xeon E5-2680v3) with N = 4096 and GPUS on OLCF Titan (NVIDIA
Tesla K20X) with N = 224.

point in a previous study by Schilling, Frenkel et al. [35]. Our second benchmark is a

system of 3D dodecahedra in a high density fluid at a packing fraction of 0.5 in NVT.

This is representative of monodisperse self-assembly simulations of polyhedra [36].

Binary systems have a much larger phase space to explore (composition, size ratio), so

such studies are computationally expensive and can benefit greatly from optimized,

parallel simulation codes. Khadilkar and Escobedo [37] studied a binary mixture of

tetrahedra and octahedra with equal edge lengths that could tile space (volume ratio
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1 : 4). We use this system for our third benchmark, in the solid at a packing fraction

of 0.6 in NVT. The binary benchmark benefits greatly from the BVH tree, though

the size ratio is not large enough to demonstrate the full capabilities of the tree to

efficiently simulate huge size disparities. We leave those benchmarks for other papers

on methods to model systems with large colloids and small depletants [19] and MD

methods using BVH trees [38].

For all three benchmarks, we explore strong scaling performance in two regimes.

The first case is N = 4096, a system size representative of what researchers have

used in previous studies with serial MC implementations. Such systems are too

small to run efficiently on the GPU, but parallel CPU simulations offer tremendous

speedups over serial ones. We run this case on XSEDE Comet, a recent addition

to the XSEDE ecosystem. Comet has dual-socket nodes with Intel Xeon E5-2680v3

CPUs — a total of 24 cores per node. Figure 2.4(a–b) shows the performance of the

three benchmarks at N = 4096 on Comet. Both the pentagon and dodecahedron

benchmarks scale out to 96 CPU cores, only 43 particles per domain. At this point,

it takes 10 minutes to run 10 million sweeps in the pentagon benchmark, and 45

minutes in the dodecahedron benchmark. Contrast that with serial simulations that

would take 7.6 and 21.8 hours, respectively. Due to the size disparity, the binary

benchmark does not decompose over 24 cores. Past that point, the inactive region

covers the whole domain. Still, we reduce a serial runtime of 32.9 hours down to 2.45

to complete 10 million sweeps.

The second regime we benchmark is large systems of N = 224 (16.8 million)

particles. Running such a large system is inconceivable with a serial simulation

code, where it would take more than a month to complete 10 million sweeps and
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years to equilibrate a system. Large systems easily fill the GPU, so we run these

benchmarks on OLCF Titan, which has 1 NVIDIA Tesla K20X GPU per node.

Figure 2.4(c–d) shows the results. The pentagon benchmark scales out to 2048 GPUs

(8192 particles/GPU), where it takes 1.4 hours to complete 10 million sweeps. The

dodecahedron benchmark scales out to 4096 GPUs (4096 particles/GPU), where it

takes 10.36 hours to complete 10 million sweeps. As on the CPU, domain size limits

the scaling of the binary benchmark, this time to 1024 GPUs (16384 particles/GPU).

The strong scaling limit is the fastest possible simulation one can achieve, though

it uses compute resources inefficiently. Given a fixed compute time budget, one can

get more simulations completed with fewer MPI ranks at the cost of longer wait

times to finish each run. Efficiency depends primarily on the number of particles per

CPU core (or per GPU). HPMC obtains a reasonable efficiency of 60–70% with 85

particles per CPU core for the pentagon benchmark and 170 for the dodecahedron

benchmark. The same efficiency is reached at 65536 pentagons/GPU and 131072 do-

decahedra/GPU, though Titan’s usage policies strongly encourage runs much closer

to the strong scaling limit. These are representative of 2D and 3D simulations of

single particle type systems in general, so researchers can use these as rules of thumb.

For systems with particle size disparity, we advise users to run their own short scaling

benchmarks for their systems to determine an appropriate selection. Efficiency as a

function of N/P varies greatly with size ratio and composition parameters.

GPU speedup over the CPU is not a focus of this work; we instead present what

types of simulations the CPU and GPU hardware architectures are well-suited for

and how well HPMC performs those benchmarks. However, some readers may still be

interested in relative speedup. It is difficult to make a GPU/CPU comparison at scale
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and it is not fair to compare several year old K20X GPU to the brand new Haswell

CPUs on Comet. However, these are the systems currently available to researchers

at scale — Comet has K80s, but limits users to no more than 16 GPUs at a time.

One way to compare is to pick points at the 60–70% efficiency level and compare

trial moves per second. At reasonable efficiency on the pentagon benchmark, HPMC

performs 12.5 million trial moves per second per CPU socket and 38.9 million per

GPU socket, for a socket to socket speedup of 3.1. At reasonable efficiency on the

dodecahedron benchmark, HPMC performs 4.45 million trial moves per second per

CPU socket and 8.16 million per GPU socket, for a socket to socket speedup of 1.8.

2.4 Validation testing

We rigorously test HPMC for validity at three levels. At the lowest level, we

perform unit tests on the AABB tree, move generation code, and shape classes. We

test that AABBs are generated properly, and that queries on the resulting trees

find all possible overlapping particles. We verify that trial moves are generated

from the proper uniform distribution and that the particle update order is correctly

randomized. For each shape class, we place many test configurations and validate

that overlapping and non-overlapping configurations are correctly detected. This

is essential to ensure the quality of the overlap check algorithms as there are many

corner cases to account for. The shape overlap unit tests contain many configurations

captured from simulation runs that we identified were overlapping by independent

methods. Low level unit tests cover 14 classes with over 1400 different checks.

MC Integrators cannot be checked with low level unit tests because their stochas-

tic nature makes it impossible to define what a correct output is given an input.

Instead, we validate the Integrators with system level tests which are python job
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scripts that perform simulation runs. System tests verify different operating modes of

the Integrator and ensure that documented interfaces for controlling those modes

work. Additionally, we run short simulations and check for any overlaps in the gener-

ated configurations. Most bugs in the Integrator implementation result in accepted

moves that have overlapping particles.

We run unit and system level tests on every commit to the repository with a

Jenkins continuous integration server. Jenkins runs these tests on the CPU and on

4 different generations of GPU, in both mixed and double precision, and with and

without MPI for a total of 20 build configurations. It e-mails developers when a

commit fails any of the tests.

Unit and system level tests are designed to run quickly and automatically to detect

bugs in the implementation. They are not sufficient to verify that HPMC correctly

samples the ensemble of states available to the system. Such tests take much longer

to run and we do so by hand. We test three separate systems to validate HPMC

in NVT: disks, spheres, and truncated octahedra. We run each system in multiple

compute configurations, sample the pressure to high precision, and ensure that all

simulations produce the same result. For hard disks, we have three independent data

points to compare to from event chain MC, event driven MD, and our previous GPU

checkerboard implementation [16]. No such high precision data exists to validate

hard spheres and truncated octahedra, so we instead verify that serial and all parallel

builds agree. From our previous work, and from tests that introduce issues in HPMC,

we know that this validation technique is sensitive enough to detect when there are

subtle problems - such as looping through particles in sequence instead of randomly

choosing the forward or reverse order.
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Mode Disk Sphere
Truncated
octahedron

Serial 9.1707(4) 9.3135(4) 13.8975(17)
24 CPU cores 9.1709(2) 9.3136(2) 13.8972(11)

1 GPU 9.1708(2) 9.3134(2) 13.8970(7)
4 GPUs 9.1710(3) 9.3134(2) 13.8970(6)

Table 2.1: Pressures obtained during NVT validation test runs, in reduced units. In 2D, p∗ = βpσ2,
where σ is the diameter of the disk. In 3D, p∗ = βPv0, where the reference volume v0 is the single
particle volume for the respective shape. The numbers in parentheses are two standard errors of
the mean in the last given digit(s).

Specifically, we run: 65536 hard disks at a packing fraction of 0.698 (fluid), 131072

hard spheres at a packing fraction of 0.60 (solid), and 16000 truncated octahedra at a

packing fraction of 0.7 (solid). We initialize the hard disks randomly and allow them

to equilibrate, while we place the two solid systems on the known self-assembled

FCC and BCC lattices. We prepare a number of independent equilibrated initial

configurations and run as many sampling runs, 30 for disks, and 8 for the other

shapes. We ran each parallel disk simulation for 60 million sweeps (only 24 million

in serial), spheres for at least 8 million, and truncated octahedra for up to 80 million

sweeps, all after suitable equilibration periods. Estimated error is reported as 2

standard errors of the mean from the independent runs. We perform the set of

runs in serial, on 24 CPU cores in parallel with domain decomposition, on a single

GPU with checkerboard parallelism, and on 4 GPUs with both checkerboard and

domain decomposition. Tests are performed on the XSEDE Comet and University

of Michigan Flux systems.

To sample the pressure in NVT runs, we build a histogram of scale factors s

that cause two neighboring particles to overlap and extrapolate the probability of

overlap at s = 0. This is a generalization of the g(r) based technique we previously

used for hard disks [13,16], see those references for full details on how to sample and
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extrapolate the histogram without introducing any systematic errors. We use a more

general volume perturbation technique [18,20] to extend this method to particles with

shape.

Figure 2.1 shows the results of these tests. For each shape, all run configurations

give the same pressure within error and verify that HPMC performs correct simu-

lations in all parallel modes. Additionally, HPMC’s hard disk results match, within

error, the previous pressures obtained with three simulation methods [16], where

P ∗ = 9.1707(2) for this state point.

2.5 Conclusions

We presented HPMC, a parallel simulation engine for hard particle Monte Carlo

simulations we developed as an extension to HOOMD-blue. HPMC executes in

parallel on many CPU cores and many GPUs, and we optimized HPMC to run as

fast as possible on both architectures. On the CPU, we used efficient bounding

volume hierarchies to search for possible overlaps, and SIMD vector intrinsics in

the innermost loop to take full advantage of modern processors. On the GPU, we

performed trial moves in parallel on a checkerboard with many threads per cell, and

implemented a block level queue to limit performance degradation due to divergence.

Our implementation is general and works for any shape, given an implementation

of an overlap check. Users can easily add new shapes to the code without needing

to write GPU kernels. HPMC ships with overlap checks for many classes of shapes,

including spheres / disks, unions of spheres, convex polygons, convex spheropolygons,

concave polygons, ellipsoids / ellipses, convex polyhedra, convex spheropolyhedra,

spheres cut by planes, and concave polyhedra.

Completing 10 million sweeps of a system of 4096 pentagons required 7.6 hours
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in serial. HPMC achieved the same in 10 minutes when running in parallel on 96

cores. GPUs allow efficient runs with tens of millions of particles. On 2048 GPUs,

HPMC ran 10 million sweeps of a system of 16.8 million pentagons in 1.4 hours.

HPMC is available open-source in HOOMD-blue, starting with version 2.0.
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CHAPTER III

Measuring pressure in hard particle simulations

This chapter includes material being prepared for submission to Molecular Physics

with coauthors Michael Engel, Joshua A. Anderson, and Sharon C. Glotzer.

3.1 Introduction

In the field of colloidally self-assembled materials, simulations of large systems

allow researchers to study phase coexistence and nucleation, or to observe novel

phenomena such as hexatic phases. One of the basic tools for investigating the

thermodynamics of any system is to measure state functions. However, there are

computational challenges for the non-differentiable potentials of the simplest particle

models, hard colloids, whose interaction is by excluded volume only and dominated

by the particle geometry.

In particular, simulations in the constant pressure (NpT) ensemble are slow. In

general, the simulation box is one of the slowest observables to decorrelate in hard

particle Monte Carlo. Additionally, unlike simulations at constant volume (NVT),

the time to convergence for NpT simulation is super-linear in system size, rendering

NpT simulations practically impossible in many cases. The tractability of an NpT

simulation is also ultimately limited by the precision of the simulation to make box
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changes sufficiently small to succeed. Pressure measurement in NVT simulations

is analytic for few particle shapes. Perturbative numerical techniques, historically

underutilized, are unclear or insufficient as previously published [18, 20, 39–41] for

general application to large systems of arbitrary particle shapes.

In this contribution, we combine and extend previous methods of pressure calcula-

tion in hard particle simulations from a perturbative thermodynamics approach and

present an efficient and highly scalable implementation that works for hard particles

of any shape. This has allowed us to extract previously elusive thermodynamic data

with high computational efficiency. We implement our method in a highly parallel

hard particle Monte Carlo code for CPU and GPU and demonstrate its use.

3.2 Background

In 1950, Kirkwood [42] summed up existing theory relating intermolecular po-

tential, radial distribution, and other thermodynamic functions of liquids, noting

the equation of state for a liquid with pair-wise isotropic intermolecular force. The

time-averaged Clausius virial function, separated into external (applied pressure) and

internal (particle interaction) terms gives the familiar virial equation:

βp

ρ
= 1− β

νN

〈
N∑
i=1

ri · ∇iφi(r
N)

〉
(3.1)

for the N particles in ν dimensions and potential φ. We commonly assume ergodicity

to equate the time average and ensemble average in Equation 3.1, which is the formula

commonly used to calculate pressure in molecular dynamics simulations [17]. An

equation of state for hard spheres is then straightforward [43] in terms of the radial

pair distribution function, a quantity measurable in NVT simulations.

βp

ρ
= 1− 2πβρ

3

∫ ∞
0

dr φ′(r) g(r) r3
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Let y = exp(βφ)g, e = exp(−βφ)→ e′ = −βφ′ exp(−βφ). Then, for hard spheres of

diameter σ,

βp

ρ
= 1 +

2πρ

3

∫
dr r3y(r)e′(r)

= 1 +
2πρ

3

∫
dr r3y(r)δ(r − σ),

which gives the well known result for pressure in a system of hard spheres.

βp

ρ
= 1 +

2πρ

3
σ3g(σ+) (3.2)

where g(σ+) is taken to be the limit of g(r) from the positive direction approaching

contact.

The approach can be generalized using a contact function, if one can be found [44,

45], opening the way for pressure measurement in NVT simulations using statistics

across many particle pairs. More generally, the equation of state for hard particles

can be expressed in terms of the probability of introducing overlaps between particle

pairs under small volume perturbation.

For an isolated system (closed and thermally insulated) that does work by chang-

ing volume adiabatically and quasi-statically, conservation of energy (first law of

thermodynamics) tells us that the internal energy U of the system must change as(
∂U
∂V

)
N,S

dV = −pdV . The thermodynamic potential of the NVT ensemble is the

Helmholtz free energy, here denoted F , so by Legendre transform p = −
(
∂F
∂V

)
N,T

.

This serves as the starting point for the so-called “thermodynamic route” to pressure

measurement by volume perturbation taken by several authors [18, 20, 39–41]. The

thermodynamic route also leads naturally to measurement of the full pressure tensor,

even in systems of concave particles.
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Eppenga and Frenkel [20] introduced the idea of per-particle volume perturba-

tions to calculate pressure, demonstrating it leads to the same results as the virial

approach. The technique was later treated by Harismiadis, Vorholz, and Pana-

giotopoulos [39] in application to potentials with non-infinite energies (continuous

potentials) at fixed ghost volume change. Evaluating the expectation value of the

Boltzmann factor at fixed volume change is reasonable for finite-energy systems, but

projecting to zero volume change is useful and accurate, as well as necessary, for

hard particle systems.

A less terse general description incorporating volume increases and decreases ap-

pears in [40], drawing attention to interpretation of the approximation as a finite dif-

ference method. The expression used, based on a central finite difference derivative

of free energy in volume, is valid for continuous potentials but not for discontinuous

potentials (with a non-differentiable free energy volume derivative).

Eppenga and Frenkel do not generalize the technique by considering volume ex-

pansions as must be for full pressure tensors for anisotropic particles [18]. They

consider only the scalar pressure of convex hard particles.

Brumby, et al., give a clear and thorough review of the perturbative thermody-

namic route to calculation of the full pressure tensor for arbitrary particles (convex,

concave, hard or soft). However, they do not provide a clear route to using statistics

from the overlap state of every particle individually (as per Eppenga and Frenkel), if

such was their intent, rather than the state of the system as a whole. Additionally,

the histogramming method for determining probabilities can be improved upon. It

remains unclear why it appears to be uncommon to perform pressure calculation by

per-particle contributions to free energy changes under volume perturbation.
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3.3 Theory

3.3.1 Thermodynamic route

Summarizing [18, 20, 39–41], the thermodynamic definition of pressure allows us

to quickly find an equation of state in terms of an ideal gas term and an excess term

as a derivative. The forward difference equation leads us to an expression in terms

of the expectation value of the ratio of Boltzmann factors between microstates for a

system undergoing a small volume perturbation.

p = −∂F
∂V

= − ∂

∂V
Fideal −

∂

∂V
Fexcess (3.3)

=
∂

∂V
kBT lnZid +

∂

∂V
Fexcess (3.4)

βp = ρ+
1

β
lim
δV→0

F ′ − F
δV

= ρ+
1

β
lim
δV→0

kBT lnZ ′ − kBT lnZ
δV

(3.5)

βp = ρ+ lim
δV→0

ln
〈(

1 + δV
V

)N
exp(−βδU)

〉
δV

(3.6)

where the expectation value is an ensemble average.

For hard particle systems, exp(−βδU) is 0 or 1 depending on whether the change

introduces overlaps into the system. For PNO(δV ) the probability of no overlaps

being generated by the volume change δV ,

βp = ρ+ lim
δV→0

lnPNO

δV
. (3.7)

3.3.2 Detailed balance route

Recall the discussion of Equation 2.3 and Equation 2.4. Then, given the satisfac-

tion of detailed balance, we can equate the compression and expansion acceptance

probabilities. For the probability PNO of no overlaps in the system resulting from a
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volume change, we have

PNO(δV ) = exp

(
N ln

δV + V

V
− βpδV

)
(3.8)

lnPNO(δV ) = N ln
δV + V

V
− βpδV. (3.9)

Continuing to assume small δV ,

lim
δV→0

lnPNO(δV )

δV
→ N

V
− βp (3.10)

where we use ln(1 + δV
V

) = δV
V

to first order in δV .

Observe that this can be rearranged into a familiar equation of state by multiply-

ing both sides by −V/N and adding 1 to both sides.

βpV

ρ
= 1− V

N
lim
δV→0

lnPNO(δV )

δV
(3.11)

Equation 3.11 is presented in terms of a density perturbation rather than a volume

perturbation in [20]. The expression is left more general in [41] for application to

soft potentials.

For anisotropic particles, anisotropic box changes can introduce overlaps. For

concave particles, even isotropic box expansions can introduce overlaps. Equation

3.11 can be extended to treat the full pressure tensor for general hard particles [18]

by arguing that, for small δV ,

P (V → V + δV ) = P (V → V − δV ).

Then, acc(V → V − δV ) = acc(V → V + δV )

PNO(V → V − δV ) = PNO(V → V + δV ) exp

(
N ln

V + δV

V
− βpδV

)
.

Taking the logarithms of both sides and applying the same small δV assumptions as
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before, then,

βp

ρ
= 1− V

N
lim
δV→0

(
lnPNO(V → V − δV )− lnPNO(V → V + δV )

δV

)
. (3.12)

Next, replace the probability of no overlaps in the system with the product of

the probabilities that each particle has no overlaps. Then replace the probability of

no overlaps with one minus the probability of at least one overlap, and linearize the

remaining logarithm.

Observe that the probability PNO of no overlaps in the system is the product of

the probabilities of each of the pairs not overlapping. Also note that the probability

P S
NO of a single particle having no overlaps is the product of the probabilities that it

does not overlap with any other particle.

P S
NO = 〈PNO,i〉 = 〈Pi 1 · Pi 2 · · ·Pi 6=j · · ·PiN〉 =

〈∏
i 6=j

Pi j

〉
(3.13)

then

PNO =

〈
N∏
i

∏
j>i

Pi j

〉
=

N∏
i

〈∏
j>i

Pi j

〉
=

N∏
i

〈√∏
j 6=i

Pi j

〉
=

N∏
i

〈
(PNO,i)

1
2

〉

=
N∏
i

〈PNO,i〉
1
2 (3.14)

PNO =
N∏
i

(
P S

NO

) 1
2 = (P S

NO)
N
2 (3.15)

If the reader finds this probability manipulation too tenuous, follow Eppenga and

Frenkel [20] to arrive at (3.15) by a different route. In both cases, it is observed

that the correlation between introduced overlaps becomes vanishingly small in the

limit of small volume perturbations. PNO,i is independent and identically distributed.
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Equation 3.11 becomes

pV

NkBT
= 1− V

N
lim
δV→0

N
2

lnP S
NO(δV )

δV

= 1− V

2
lim
δV→0

lnP S
NO(δV )

δV
(3.16)

Replacing the probability of no overlaps with one minus the probability of at least

one overlap, we have

pV

NkBT
= 1− V

2
lim
δV→0

ln
(
1− P S

O (δV )
)

δV

= 1 +
V

2
lim
δV→0

P S
O(δV )

δV
(3.17)

once we linearize the remaining logarithm. We see, then, that a reduced pressure

p
kt

is easy to determine from within the machinery of the Monte Carlo simulation

by gathering statistics of how many particle overlaps are generated by compression

attempts.

If we consider a volume change resulting from a box rescaling, for which box

vectors and coordinates are all rescaled as x → x(1 + λ), then V ′ = V (1 + λ)d in d

dimensions and δV = V ′ − V = V ((1 + λ)d − 1). Note that limλ→0(1 + λ)d − 1 = dλ

The compressibility factor Z is then given by

Z =
βpV

N
= 1 +

1

2d
lim
λ→0

P S
O(λ)

λ
. (3.18)

for d the number of spatial dimensions of the system volume, λ a scaling factor (as

for the volume change V → V ′ = V (1 +λ)d), P S
O the probability for a single particle

to produce an overlap under rescaling, and thermodynamic β.
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3.3.3 Overlap probability as a function of free volume and free surface

For cavity volume and surface area vf and sf in ν dimensions, we have that [46–48]

βp

ρ
= 1 +

σ

2ν

〈
sf
vf

〉
(3.19)

The probability of overlap can be similarly estimated for a volume change. A

compression move causes overlap if a particle sitting near the surface of its free

volume moves outside of its free volume as a result of the coordinate rescaling. For

a coordinate rescaling of x→ x(1 + λ), there is a skin region to the free volume of a

particle with thickness σλ for which overlaps will occur. Thus,

P S
O(λ) =

〈
σλsf
vf

〉
= σλ

〈
sf
vf

〉
(3.20)

Combining (3.20) and (3.18) returns (3.19).

3.3.4 Equivalence to the virial route to hard sphere pressure

For d dimensional spheres of diameter σ, the probability of producing an overlap

is the probability of at least one particle being present in the spherical shell between

the old excluded volume and the new. For small λ the volume of the shell is the area

of a sphere of radius σ times the thickness λσ. The probability of a particle being

located in a volume V is the particle density ρ(r) integrated over the volume. Note

that g(r) is a well-behaved function and for sufficiently small range of integration we

can take it to be constant.
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lim
λ→0

P S
O(λ) = lim

λ→0

∫ V ′

V

ρ(r) d3r = lim
λ→0

∫ λσ

σ

A(r)ρg(r) dr = A(σ)λσρg(σ+)

lim
λ→0

P S
O(λ)

λ
=


2πσ2ρg(σ+) d = 2

4πσ3ρg(σ+) d = 3

Then, by Equation 3.18

βpV

N
=


1 + π

2
σ2ρg(σ+) d = 2

1 + 2π
3
σ3ρg(σ+) d = 3

(3.21)

βp =


ρ+ π

2
σ2ρ2g(σ+) d = 2

ρ+ 2π
3
σ3ρ2g(σ+) d = 3

(3.22)

Here, g(σ+) is found by building a histogram of particle separations for r > σ,

fitting a curve and projecting to r = σ. Note the equivalence to Equation 3.2.

3.4 Method

For non-spherical particles, the relationship between g(r) and the probability of

a collision is not as clear. Since we can, however, produce a histogram of the scaling

factor required to produce collisions for each particle in the system, we can restate

the problem. If the density s(x)dx gives the number of particles whose first collision

occurs at a scaling factor in the range [x− δ
2
, x+ δ

2
), then the function

S(λ) ≡
∫ λ

0

s(x) dx (3.23)

is the number of particles that have had at least one collision as the system was

scaled by λ. Note that S(λ) goes to N for large λ.
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As above with g(r), we assert that s(x)/λ is a well-behaved function such that

for very small range of integration it can be taken to be constant.

lim
λ→0

P S
O(λ)

λ
= lim

λ→0

S(λ)

λN
= lim

λ→0

∫ λ
0
s(x) dx

λN
=

1

N
s(0+) (3.24)

As before, s(x) can be built as a histogram from which the value s(0+) extrapo-

lated.

βpV

N
=


1 + 1

4
s(0+)
N

d = 2

1 + 1
6
s(0+)
N

d = 3

(3.25)

βp =


ρ(1 + 1

4
s(0+)
N

d = 2

ρ(1 + 1
6
s(0+)
N

d = 3

(3.26)

3.4.1 Implementation

s[i] is to be an unweighted histogram of the number of particles for which the first

collision occurs at a scaling factor corresponding to bin i, where iδ ≤ xi < (i + 1)δ

for bin width δ. When an analytic or numeric solution to the collision distance be-

tween particles is possible, contributions to the histogram can be calculated directly.

A more general method is to determine the collision distance by bisection, which

is O(lnN) in number of bins rather than linear when all bin positions are evalu-

ated. For concave particles or for anisotropic volume scalings, the system energy is

not monotonic across the scaling parameter. That is, configurations may alternate

between overlapping and non-overlapping at different bin values of the histogram,

raising concern over whether the bisection technique is valid. However, the first over-

lapping configuration could similarly be missed by digitization of any histogramming
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method. Moreover, we are encouraged by the validity of NpT simulations, which sam-

ple non-overlapping configurations regardless of whether a continuous transformation

between steps would result in passage through an overlapping configuration. Future

work will include further testing of histogramming methods for different systems, but

here we restrict ourselves to measuring scalar pressure in systems of convex particles.

Thus, for each particle in the system, we solve by bisection the scaling value xi that

causes a collision for each neighbor within a cutoff radius defined by the sum of the

two circumsphere diameters and λmax. If xi ≤ λmax, we add 1 to the corresponding

bin s[i].

Using x[i] = (i+ 1
2
)δ, a polynomial can be fit to the points s[i] and x[i] and solved

for s(λ→ 0). A fifth order polynomial seems to yield a low error extrapolation. It has

been pointed out that a linear fit in the logarithm of probability versus density change

may also be effective [20] but brief experimentation indicated the precision lost by

this unnecessary simplification could limit precision to as few as three significant

digits.

Furthermore, using g(r) as above implies a neglect of 3-body correlations. Having

established the effectiveness of equation Equation 3.21, we may expect that binning

the several nearest neighbor distances in s(r), rather than just the closest, will allow

us to gather more statistics while maintaining accuracy. With such a redefinition of

s(x), the normalization of P S
O goes from 1

N
to 1

N(N−1)
.

3.4.2 Validation and benchmarking

Several researchers in the Glotzer group have independently verified that the

method is sufficiently precise for their investigations of various particle shapes and

phases. The implementation has been validated to five significant digits of precision
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against NpT simulations for hard disks and polygons at only a single state point each

due to the computational cost of high precision NpT volume data. This seems suffi-

cient thermodynamic validation, but additional state points and shapes will continue

to be investigated.

The analysis code does not noticeably impact the speed of an NVT simulation

since it only needs to run at a frequency comparable to the autocorrellation interval.

Future work will include evaluation of wall-clock time required to obtain pressure–

volume measurements of a given precision in both NpT and NVT. The factors affect-

ing the convergence time of the pressure measurement vary between particle shapes

and state points, so several different systems will need to be compared.

By several approaches and concurrence with literature, we justified an expression

for volume perturbation approaches to pressure measurement in terms of the proba-

bility of introducing overlaps through trial volume moves in a hard particle system.

We presented a histogramming method to generate the required probability value,

optimized for scalar pressure of convex hard bodies.

To prepare for publication, we will provide validation data obtained by compar-

ison to NpT simulations of solids and fluids in two and three dimensions. We are

also preparing benchmark results demonstrating the catastrophic slow down of NpT

sampling in large system sizes and the high performance of our implementation.

Future work includes implementing the extensions to measuring pressure for non-

convex particles and to measuring the full pressure tensor.

Potential optimizations take two routes, addressing either the histogram construc-

tion or the scale factor to collision. The bisection method to determining collision

points is only applicable to scalar pressure (isotropic volume changes) and convex
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particles. Rather than sample all bins in the histogram for every particle, it seems

likely some sort of Monte Carlo sampling of bins and particles should work, and

this will be the focus of future investigation. We know of few shapes (spheres, ellip-

soids [41]) for which it is possible to determine analytically the scale factor leading

to particle collision. However, for such systems, the bisection method or any other

repeated sampling would be unnecessary to construct the histogram and evaluating

the probability for overlaps would be O(1) per particle.
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CHAPTER IV

Towards analytic equations of state

This chapter provides a literature review and background information beyond the

scope of the journal article for which chapter V is being prepared.

During past work in the Glotzer group, a discussion with Rolfe Petschek led to an

ansatz (4.7) for an equation of state in the high-pressure limit for systems of hard

shapes. It prompted much discussion of the role of particle degrees of freedom in the

state functions. What follows are preliminary observations to guide a study of the

solid phase state functions of hard particles, which has not yet been undertaken.

We will use the convention of a “compressibility factor” defined as the ratio be-

tween the volume of a system at a given pressure, temperature, and quantity, with

that of an ideal gas under the same conditions.

Z ≡ V

Videal

=
βp

ρ
(4.1)

by the ideal gas law, for thermodynamic β ≡ 1
kB

and number density ρ ≡ N
V

.

4.1 Experimental equations of state and our current ansatz

The van der Waals equation serves as a reasonable model for a first attempt at

deriving an equation of state for impenetrable hard spheres that are otherwise non-
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interacting. If we assume no particle interactions other than excluded volume vex

per particle, we can evaluate the partition function, Z.

Z =
1

N !

[(
2πm

h2β

) 3
2

(V − vex)

]N
(4.2)

Trivially, then,

p̄ =
1

β

∂ lnZ
∂V

=
NkBT

V − vex

(4.3)

This is fine if the scaling of the free volume (V − vex with changes in system volume

V can be known, but note that then

p̄ =
NkBT

V − vex

∂(−vex)

∂V
. (4.4)

Historically, free volume theorists have frequently applied a Voronoi tessellation

as a starting point. Free volume and the excluded volume for which each particle is

responsible can be calculated. Kirkwood reformulates the free volume expression of

Eyring and Hirschfelder [49] as

pV

RT
− 1 =

1

(V/Vmin)
1
3 − 1

, (4.5)

where Vmin is the close-packed volume of a face-centered lattice. Salsburg and Wood

[50] generalize the equation of state to

βp

ρ
= 1 +

1(
V
Vmin

) 1
ν − 1

, (4.6)

where ν is the number of spatial dimensions, V is the system volume, and Vmin is the

value of V in the close packed limit of the configuration. Salsburg and Wood [50]

present a derivation of the exact free volume without the independent approximation.

The resulting equation of state, neglecting terms of O(1) and less, is

βp

ρ
≈ ν

V
Vmin
− 1

, (4.7)
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which is equivalent to Equation 4.6 to O(1) if
(

V
Vmin

) 1
ν

is replaced by a Taylor ex-

pansion to two terms near V = Vmin.

Equation 4.7 is a nicely simple relationship at high densities, but the partition

function presented is not readily evaluated analytically to give an absolute entropy or

Helmholtz free energy. Stillinger, Salsburg, and Kornegay [51] discuss the challenges

presented by consideration of collective motion as per [50], formulating an asymptotic

expansion in which successive terms treat increasing sizes of collectively moving

clusters. The approach is demonstrably convergent in the analytically solvable 1-

dimensional system, but the problem quickly becomes very challenging even in 2-

dimensions. The authors were able only to evaluate the correlated integrals up

to clusters of size 4 in the high-density limit of hexagonally packed disks where

the accessible shells in 2-dimensional configuration space could be considered as

hexagons. Five years later, Salsburg, Rudd, and Stillinger [52] summarized and

updated their previous work, considering clusters of up to size 5 in general and to 6

in a particular model system for which they could compare their results to particle

simulation data.

The technique can be generalized to a system with ν dimensions of configuration

space and Salsburg and Wood [50] have shown that

βp

ρ
= 1 +

ν(1−N−1)
v
v0
− 1

+O(1) (4.8)

→ βp

ρ
≈ ν

V
V0
− 1

(4.9)

Salsburg and Wood [50] presented an equation of state for hard spheres in the high-

pressure limit that is equivalent to the ansatz from Rolfe Petschek.
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4.2 From spheres to polyhedra: translational and rotational partition
function

The Wood equation is general enough to include rotational degrees of freedom in

the configuration space dimensionality ν, but it is not as clear how to describe the

free volume analytically, and the hyper-volume in configuration space becomes much

more confusing. The polyhedron’s position within its free volume has an effect on

the accessible orientations and the orientation of a particle has an effect on the size

and shape of the free volume.

Fortunately, we can get statistical values for both translational and angular free

“volume” from Monte Carlo. What remains to be done is to study these statistics to

see whether and how they truly map to our ansatz. The mobility of particles ought

to tell us what to expect from the equation of state and vice versa.

At high density, free volume theory is applicable and we observe that the phase

behavior can be approximate in a first order by the equation p(V − Vmin) = cNkBT ,

resembling a van der Waals equation with free volume Vmin. The dimensionality

factor c is related to the scaling of the free volume, which is expected to be c = 6 for

anisotropic particles. We observe significant deviations from this ideal value even at

very high densities. We conjecture the deviation is due to the presence of unbalance

degrees of freedom (rattlers).

We will probably find it useful to understand the relationship between compress-

ibility factors and equations of state for objects of various dimensionalities. Wu and

Sadus [53] provide a starting point and references.
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CHAPTER V

State functions for hard polyhedron fluids

This chapter includes material being prepared for submission for publication with

coauthors Michael Engel, Andrew Schultz, David Kofke, and Sharon C. Glotzer.

5.1 Introduction

The equation of state of hard spheres is a classical problem of statistical me-

chanics and has been studied extensively using analytical calculations and computer

simulations over the last 50 years. Yet, little is known about the thermodynamics of

anisotropic particles despite experimental and theoretical interest.

Synthetic techniques abound for producing a variety of different polyhedral nano

crystals [54]. Various nano crystals are observed experimentally to self-assemble

with strictly hard particle interactions or with other tunable parameters by Henzie,

et al., [55]. High-pressure experiments performed by Bian, et al., [56] explore the

effects of the orientational order of cuboctahedral nano crystals with varying degrees

of roundness in FCC or BCC superlattices.

Computational studies have recently probed the nature of the assembly and pack-

ing behavior of hard shapes. Dense packings have been rigorously characterized for

Platonic and Archimedean solids [57, 58] as well as for some continuous families of
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shapes [59]. Other work seeks to bridge observed assembly behavior and our un-

derstanding of packing [60]. Assembly behavior has been reported for an extensive

zoology of polyhedra [61] following more targeted research on tetrahedra [62, 63],

triangular bipyramids [64], truncated octahedra, rhombic dodecahedra, hexagonal

prisms, cubes, gyrobifastigia, and triangular prisms [65]. The assembly behavior of

continuous families of parameterized shapes has also been explored, including the

interpolation of cubes to octahedra via superballs [66], and progressively truncated

tetrahedra [61]. New thermodynamic techniques are changing the way we study

families of shapes [67] and will continue to improve our understanding of shape as a

thermodynamic parameter.

In the present work, we focus on the role of shape on the equation of state. As

examples of hard polyhedra we select 13 shapes representative of different assembly

behaviors. At fluid densities, virial theory is applicable (subsection 5.2.1), and we

apply the scaled particle theory results of Song and Mason [68].

We calculate the state functions of 13 polyhedron fluids using NpT hard particle

Monte Carlo simulation. Precision is sufficient to distinguish the data from ideal

gas behavior at number densities down to 10−4. Polyhedra are selected from differ-

ent classes of assembly behavior with an attempt to include and expand on shapes

common in the literature. Particle asphericity, defined by Equation 5.7, ranges from

1.184 for cubes to 2.853 for obtuse golden rhombohedra. As discussed below, as-

phericity appears in the second virial coefficient and in many attempts at analytical

equations of state for convex hard particles.

We demonstrate the importance of the second virial coefficient in choosing the

volume of a hard sphere against which to compare a polyhedron, showing that a
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transforms into a nonrotator phase at higher
packing fractions. Elongated triangular cupolas
assemble a plastic BCC crystal (Fig. 2F). The
formation of a high-symmetry phase is counter-
intuitive given the asymmetric shapeof the cupola.
The paradiminished rhombicosidodecahedron
has two large parallel faces and forms a plastic
TCP phase isostructural tob-W (Fig. 2G). This
phase, also known as the A15 structure, is fre-
quently observedwithmicelles (32). Dodecahedra
assemble into the complexb-Mn structure (Fig.
2H). Because the distribution of Bragg peaks in
the di�raction pattern resembles eight-fold sym-

-Mn can be interpreted as an approximant
of an octagonal quasicrystal (33). Indeed, we often
observe eight-fold symmetry in the di�raction
pattern during intermediate stages of crystalliza-
tion. Truncated dodecahedra formg-brass (Fig. 2I).
With 52 atoms per unit cell, it is the most complex
periodic crystal observed in this study.

A nematic liquid crystal is formed by the pen-
tagonal pyramid, which has a plateletlike shape
(Fig. 2J). The up-down orientation of the pyramid
relative to the director is random. The elongated
square pyramid assembles into smectic layers
(Fig. 2K). We con�rmed that there is no preferred
orientation or long-range translational order within
the layers. Like all regular prisms and antiprisms
with �ve-fold or higher symmetry, the pentagonal
prism assembles a columnar phase (34). Particles
are free to both shift along and rotate around the
column axis (Fig. 2L).

Forty-four polyhedra never self-assemble into
an ordered structure on the time scale of our
simulations, despite run times more than an order
of magnitude longer than that needed for the
slowest formation of a crystal. Instead, the par-

Fig. 1. Polyhedra are separated into four categories of organization as indicated by di�erent colors:
liquid crystals, plastic crystals, crystals, and disordered (glassy) phases. Subcategories (classes) are
indicated by shades. The assembly category o� iquid crystals contains the classes discotic columnar,
smectic, and nematic (di�erent shades of pink). Plastic crystal classes are FCC (dark blue), BCC (blue), and
TCP (light blue). In the case of crystals, we distinguish Bravais lattices (dark green) and non-Bravais
lattices (light green). RT stands for random tiling. For the glasses, no assembly is observed, and we
distinguish those that strongly order locally with preferential face-to-face alignment (light orange) from
thosewith only weak local order (dark orange). The piechart in the center compares the relative frequency
of the 10 observed classes. In each of the classes, polyhedra are listed in decreasing order of the
isoperimetric quotient. A polyhedron is includedmultiple times i� t was found to assemble intomore than
one ordered structure.
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Figure 5.1: Particle shapes were chosen from different classes of assembly behavior with a range of
asphericities. The yellow to black color bar shows how data points and trend lines are colored by
the asphericity of the represented particle in other figures.
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sphere with the resulting effective volume is a good approximation at low density.

The compressibility factor, Z, for a polyhedron is always less than that of such an

effective hard sphere and asphericity is a good predictor of the rate of deviation.

For more aspherical particles, the Song-Mason equation of state is fairly effective

when generalized to polyhedra, improving on earlier Padé approximants appearing in

scaled particle theory literature. Asphericity continues to predict the deviation from

this equation of state, but the nature of the deviation is not as clearly characterized.

We demonstrate the applicability of a recent general scheme for constructing Padé

approximants [69] in these hard polyhedron fluids to high density, though numerical

precision in the calculated virial coefficients limits the precision of these equations

of state.

5.2 Theoretical background

Equations of state are often represented in terms of the so-called compressibility

factor Z, which is essentially a measure of the deviation of a fluid’s volume from

that of an ideal gas under the same temperature, pressure, and number of particles.

Some useful expressions of Z follow.

Z ≡ V

Videal gas

=
pV

NkBT
=
βp

ρ
=
p∗

η
(5.1)

where ρ = N/V is the number density, η = Nv0/V is the packing fraction of particles

of size v0, p∗ = βpv0 is our reduced pressure convention, and thermodynamic β =

(kBT )−1. Note that Z itself is unitless, though it may be written in terms of non-

unitless independent variables.
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5.2.1 Virial theory

A virial equation of state takes the form

pV

NkBT
= Z = 1 +

∞∑
k=2

Bk(T )ρk−1 (5.2)

or βp = ρ+
∞∑
k=2

Bk(T )ρk (5.3)

where Bk is the kth virial coefficient. Equation 5.2 is unitless and intensive. ρ is

intensive, and Bk is intensive with units of σ(k−1)ν for the characteristic length σ in

ν dimensions. If we express Bk in terms of characteristic particle volume v0 then we

can write the equation of state:

p∗ = βpv0 = η(1 +
∞∑
k=2

Bk(T )

vk−1
0

ηk−1) (5.4)

for the packing fraction η where p∗ is a unitless reduced pressure. For hard particles,

then, we have

p∗ = η +
∞∑
k=2

Bk

vk−1
0

ηk (5.5)

where Bk

v
(k−1)
0

is given by a Mayer cluster expansion.

Analytic expressions for some Bk have been determined for some shapes, but B2

has a simple analytic expression for all convex hard bodies [70] in terms of asphericity

α. Asphericity is calculable from the integrated mean curvature r, the surface area s,

and the volume v for any characteristic shape function with a clearly defined surface

normal.

B2

v0

= 1 + 3α (5.6)

α =
rs

3v
(5.7)
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The integrated mean curvature of a polyhedron, derived as the limiting case of a

spheropolyhedron [71], is determined from the edge lengths li and the corresponding

dihedral angles φi.

r =
∑
i

li
φi
12

(5.8)

for edge length and dihedral angle li and φi.

5.2.2 Free volume and scaled particle theories

In the first half of the 20th century, free volume theory was used to analyze

dense systems of hard spheres. The basic assumptions are that a particle uniquely

occupies its own disconnected region of configuration space (single occupancy) in

which it moves independently of other particles within its Voronoi cell.

The Birch-Murnaghan equation of state [72, 73] is an attempt to generalize and

extend the applicability of the Murnaghan EOS [74, 75]. In a separate evolution,

the Rose-Vinet equation of state [76] attempts to correct the excessive stiffness of

the Murnaghan equation of state. Meanwhile, Salsburg, Rudd, and Stillinger [51,52]

discuss the considerations of successively larger clusters of dense disks on evaluating

free volume.

The Carnahan-Starling equation of state for hard spheres is well-studied and

widely used, and lacks only the asphericity term used in the Padé approximants of

scaled particle theory. Attempts to generalize departures from spherical particles by

incorporating a shape factor use an asphericity term α (Equation 5.7). Nezbeda sum-

marized these results, particularly for spherocylinders, and presented an improved

equation of state [77], Equation 5.9. (His more recent work [78] explores alternatives

to hard-sphere based approaches when modeling simple fluids with soft potentials.)
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βp

ρ
=

1 + (3α− 2)y + (α2 + α− 1)y2 − α(5α− 4)y3

(1− y)3
(5.9)

y = ρV is the packing ratio

Speedy analyzes the statistical geometry of hard spheres [79], presenting an equa-

tion of state (5.10) involving the dimensionality of the system and an interesting

geometric construction. The volume uniquely attributable to clusters of sizes zero

and up is defined Vj, the volume that lies within one diameter, σ, of j and only j

particle centers.

βp

ρ
= 1 +

σ

2ν

S0

V0

(5.10)

The geometric construction employed avoids the disconnected requirement of free

volume in the Salsburg and Wood analysis to give a statistical representation valid

at low densities that also detects the liquid-solid phase transition. V0 sites correspond

to cavities, but can be related to sphere sites in a corresponding N+1 sphere system.

This is the foundation for the work of Sastry, et al., in discussing free volume and

pressure of hard spheres in simulations through tesselating cell construction and

analysis [48]. Equation Equation 5.10 is modified to consider particle free volumes

instead of cavity volumes.

βp

ρ
= 1 +

σ

2ν

〈
sf
vf

〉
(5.11)

The accompanying analysis techniques provide an effective approach to measure-

ments on simulation data, but don’t do much to advance theory.

Song and Mason have introduced a now well-known equation of state [68] for hard
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Table 5.1: Some expressions for equations of state of varying complexity.

virial: βp
ρ = 1 +

∑∞
k=2Bkρ

k−1

Carnahan-Starling: βp
ρ ≈

1+η+η2−η3
(1−η)3

Nezbeda: βp
ρ ≈

1+(3α−2)η+(α2+α−1)η2−α(5α−4)η3
(1−η)3

Song-Mason: βp
ρ ≈ 1 +

η

(
(1+3α)−(2+3α−3α2)η+

(
1+

[(
B4
v3
0

)
HS

−12
]
α−7α2

)
η2

)
(1−η)3

convex bodies that seems to be oriented to use in isotropically (un)structured fluids.

βp

ρ
≈ 1+

η

(1− η)3

(
(1 + 3α)− (2 + 3α− 3α2)η +

(
1 +

[(
B4

v3
0

)
HS

− 12

]
α− 7α2

)
η2

)
(5.12)(

B4

v3
0

)
HS

is the fourth virial coefficient for the hard sphere model, which is exactly

calculable. In three dimensions,
(
B4

v3
0

)
HS
≈ 18.3647684.

An equation of state for a rigid body of tetrahedrally arranged hard spheres

is given by Abascal and Bresme [80]. Potentially important unification of theory

originally developed by Kirkwood is presented in a short paper by Khanpour [81] in

2011.

5.3 Methods

5.3.1 Thermodynamic hard particle Monte Carlo

We used NpT hard particle Monte Carlo simulations to measure packing fraction

at state points from a reduced pressure of 10−4 to the freezing transition in thirteen

hard shapes.

Metropolis Monte Carlo volume changes are performed with the acceptance cri-

terion

acc(A→ B) = min

[
1, exp

(
−βδU − βp(VB − VA) +N ln

VB
VA

)]
.

The change in energy δU is either zero or infinity, determined by an overlap check.
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The conventions associated with Equation 5.1 make it convenient to operate with

state variables p∗ and η or with p and ρ, for particles of unit volume, interchangeably.

The acceptance criterion is then

acc(A→ B) = min

[
1, exp

(
−p∗ (VB − VA)

v0

+N ln
VB
VA

)]
.

5.3.2 Virial coefficients from Mayer sampling Monte Carlo

A recent recipe for the construction of Padé approximants [69] takes an arbitrary

number of virial coefficients as inputs. When applied to hard particles, the resulting

equation of state can be expressed in an exponential form.

Z(ρ) = exp
(
N2ρ̄+N3ρ̄

2 + · · ·+NJ ρ̄
J−1
)

(5.13)

for reduced density ρ̄ = ρσ3, with σ as a characteristic length scale and coefficients

Ni calculated as by Barlow et al. [69].

The first 8 virial coefficients for all of the polyhedra studied are calculated nu-

merically by our coauthors, Andrew Schultz and David Kofke, who evaluate the

Mayer cluster integrals numerically by sampling particle configurations with a tech-

nique called Mayer Sampling Monte Carlo (MSMC). MSMC code is implemented on

GPUs and discussed in a separate paper [82].
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5.3.3 Effective sphere

From Equation 5.6 it is clear that we can match the second virial coefficient of any

convex hard shape to that of a sphere of an appropriate size, which we can calculate.

B2

v0

= 1 + 3α (5.14)

βp = ρ+ v0(1 + 3α)ρ2 +O(ρ3) (5.15)

ves

v0

=
1

4
+

3

4
α (5.16)

We calculate α for each of our polyhedra using Equation 5.7 and Equation 5.8.

Effective sphere volumes are then given by Equation 5.16.

5.4 Results
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Figure 5.2: At low densities, measurement precision on the order of O(η) is sufficient to distinguish
the compressibility factor Z of a finite-sized particle from one (that of an ideal gas). We gathered
data down to a packing fraction of η = 10−4, or number density ρ = 10−4v−30 for particles of volume
v0.

The aphericity is a parameter in the second virial coefficient as well as in the

Nezbeda, Song-Mason, and other scaled particle theory equations of state. We cal-
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Figure 5.3: For the shapes studied, finding an effective sphere by matching second virial coefficients
is a quick and effective way to find an upper bound on the compressibility factor and the effective
sphere VEOS12 is always a better match to simulation data than VEOS2 (not shown). It is worth
noting that all 12 known virial coefficients for hard spheres are positive. B2 through B4 for the
studied shapes are greater than those for the sphere (all of which are fully analytic) when compared
at the same particle volume. The trend is broken by the gyrobifastidium in the fifth virial coefficient,
which is less than that of the equal-sized sphere. Several of the more aspherical shapes have B6 < 0.

culated the asphericity α for each polyhedron by Equation 5.7, determining that our

polyhedra range from α = 1.184 to α = 2.853 (Figure 5.1).

It is customary to express compressibility factor in terms of number density ρ.

In order to perform illustrative comparisons between state functions, we present the

deviations between data in terms of ρ as well, though this means putting our depen-

dent variable on the horizontal axis. Error bars for pressure in terms of density have

been estimated from our simulation data, in which density is in terms of pressure.

Deviation from ideal gas behavior can be detected at arbitrarily low density ac-

cording to the chosen measurement precision (Figure 5.2). We find that our data

is of sufficient precision to distinguish the deviation from ideal gas behavior in the

sparsest systems studied. At the same time they differentiate themselves from hard

spheres of the same volume. To demonstrate the role of particle shape in low density
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Figure 5.4: We show the suitability of different equations of state to the relatively spherical trun-
cated octahedron. Plots show the relative deviation between the equations of state and the measured
data from simulation. Comparisons include Z = 1 (ideal gas), the hard sphere 12th order virial
equation of state for a sphere of the same particle volume (HSVEOS12), the effective hard sphere
virial equation of state (EHSVEOS12) using Equation 5.16, the Song–Mason equation of state from
Equation 5.12, and the exponential approximant due to Barlow, Schultz, and Kofke (BSK) from
Equation 5.13. Error bars are omitted for clarity. In all but the exponential approximant, error
bars are on the order of the visible fluctuations.

systems, it is instructive to compare hard polyhedra to hard spheres of an appro-

priate effective volume. We recognize that initial departure from ideal gas behavior

appears in the second virial coefficient as

B2

v0

= 1 + 3α.

By matching the (analytic) second virial coefficients, an effective sphere volume can

be found that much better approximates the low density behavior of all particles

(Figure 5.3). An anisotropic convex particle has the same B2 as a sphere of size

ves =
(

1
4

+ 3
4
α
)
.

Despite the expected differences in the cluster integrals of aspherical particles, an

equation of state based on the effective sphere is an improvement over the second

order virial equation of state in all cases examined. Results for the most spherical
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Figure 5.5: For completeness, the error bars for the exponential approximant in Figure 5.4 are
shown here. The large error bars represent the accumulated uncertainty due to higher order virial
coefficients all calculated with Mayer Sampling Monte Carlo.

shape, the truncated octahedron, are shown in Figure 5.4 and Figure 5.5. Particles

with greater asphericity deviate from effective hard sphere behavior more dramati-

cally and at lower densities.

Higher density behavior is better captured by equations of state incorporating α,

indicating asphericity is at least somewhat related to higher order cluster integrals

than just B2. For less spherical particles, the Song-Mason equation of state describes

particles better than an effective sphere. The approximant created by the recipe

of Barlow et al.describes even nearly spherical shapes better than the Song-Mason

equation of state, within a few percent up to near the freezing transition (Figure 5.6

and Figure 5.7).

5.5 Conclusions

No general analytic or semi-analytic equation of state exists to describe hard

polyhedron fluids to high density. However, we have identified several ways to ap-
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Figure 5.6: The exponential approximant is accurate to within a few percent for all shapes studied
up to densities over ten percent. Unlike the effective sphere VEOS12, its deviation at higher density
is not entirely predicted by particle asphericity. It would be interesting to evaluate the approximant
recipe in other contexts of anisotropic potentials or potentials of different symmetries.

proximate or find the limiting behavior of assembly precursors in solutions of colloids

or nanoparticles that may be useful to experimentalists. We have shown that an ef-

fective sphere can reproduce the pressure – volume relationship in particles with

asphericity on the order of that found in the Platonic solids and other common poly-

hedra. We show that a recipe developed for producing Padé approximants from virial

coefficients is surprisingly applicable to hard particles as well as the soft potentials

for which it was designed. From this work we also grow our intuition of the densities

at which finite sized objects begin to “notice” each other and the emerging role of

shape (not just particle size) as density is increased.

We are thus reminded that when comparing systems of differently shaped parti-

cles, it is not sufficient to use a universal length scale based on unit volume or some

other arbitrary quantity. A length scale derived from the second virial coefficient is

probably a better first guess, but it is evident that comparing the thermodynamic
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Figure 5.7: Error bars are shown for the data in Figure 5.6

properties of different particles requires care in considering both particle shape and

size. This author conjectures that in order to derive meaningful information from

comparisons of hard shapes, one must devote some consideration to the application.

For instance, if one desires to self-assemble a metamaterial with optical properties,

the relevant length scale is given by the final density of the material to be active

at particular wave lengths. Conveniently, the scaling behavior of hard particle state

functions is simple. The compressibility factor, Z, is unaffected by temperature or

particle size. That is, a relationship between reduced pressure and packing fraction

can be calculated for hard particles of arbitrary size or temperature and applied to

particles of the same shape at any size or temperature (Equation 5.1).
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CHAPTER VI

Diffraction simulation

This dissertation work included the development of rudimentary diffraction pat-

tern simulation code for application to colloidal and nano particle super structures.

This chapter describes basic scattering and diffraction theory, numerical models, and

applications to systems of spherical and non spherical particles. It includes a general

method for performing the Fourier transform that I have not been able to find in

literature. Many software packages exist to model scattering from nano- to mesoscale

structures [83–87], but when individual particle form factors are considered, they are

treated statistically rather than individually modeled (presumably for performance

reasons). I find it difficult to believe that ours is the first description of a com-

pletely general polyhedron Fourier transform, though it may be that the method is

peculiarly applicable to the data structures common to computational geometry and

not of any broader utility. The formulae presented here have been implemented in

software for use within the Glotzer group to be integrated with the in-house freud

analysis software framework. I hope that, with additional work, these tools will ulti-

mately be contributed to open source software for diffraction modeling of mesoscale

structures.
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It is common for computational scientists to simulate structure factors for their

simulated systems through Fourier transforms. A grid of particle density can be pro-

cessed with a discrete Fast Fourier Transform (FFT) [88], but it is unclear how best

to incorporate arbitrary particle orientations and off-lattice positions with minimal

discretization artifacts.

We developed code to simulate diffraction patterns of particles with various form

factors, scattering densities and arbitrary orientations. Using analytic expressions

for particle form factors and explicitly evaluating scattering density at pre-calculated

k-space points yielded good results with reasonable computational cost for small

systems. Our method is more general than methods for specific shapes or that first

decompose an object into simpler shapes [89]. The approach is particularly suited for

application to known structures achieved in simulation for comparison to diffraction

patterns obtained through microscopy.

6.1 Background

The following discussion of classical scattering of waves largely follows Ibach and

Luth [90].

Consider a small illuminated sample being observed at point B. The amplitude of

the probe wave (before encountering the sample) is given by A0 exp i(k0 · r− ω0t+ φ)

for a coherent plane wave probe with wave vector k0. Choosing to measure phase

relative to the coordinate system origin, we choose φ = 0. The incoming wave is

described by

AP (r, t) = A0e
ik0·r−iω0t (6.1)
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for a scatterer at point P at location r in the sample.

If we assume that spherical waves are elastically scattered from isotropic (but

possibly complex-valued) scattering density ρ(r) at fixed P ,

AB(R, r, t) =
1

|R− r|AP (r, t)ρ(r) exp (ik1,r,B · (R− r)) (6.2)

observed at point B at location R. For B in the far field, we can make some

approximations based on large R.

lim
1

|R− r| '
1

R
(6.3a)

k1,R,B ' k1 (6.3b)

k1 ·R ' kR (6.3c)

That is to say that all scattered waves observed at B are parallel to R and are

attenuated by the same amount.

AB(R, r, t) =
AP (r, t)

R
ρ(r)eik1·(R−r) (6.4)

=
A0

R
ei(k1·R)e−iω0tρ(r)eik0·re−ik1·r (6.5)

=
A0

R
ei(kR)e−iω0tρ(r)e−i(k1−k0)·r (6.6)

∝ e−iω0tρ(r)e−i(k1−k0)·r (6.7)

Scattering intensity is determined as |A|2 = A∗A, meaning the exponential term in

time will go to unity. We will ignore it for clarity from now on. Then

AB(R, r) ∝ ρ(r)e−iK·r , for K ≡ k1 − k0. (6.8)

The amplitude at B due to all scattering centers is found by integrating r over the

sample.

AB(R) ∝
∫
ρ(r)e−iK·rdr (6.9)
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6.2 Calculation of scattering intensity

The measured scattering intensity, proportional to the square of the amplitude

due to all scattering locations P , is then

I(K) ∝
∣∣∣∣∫ ρ(r)e−iK·rdr

∣∣∣∣2 = |P (K)|2 , where P (K) = F(ρ). (6.10)

Equation (6.10) shows that scattering intensity is the square of the Fourier transform

of the scattering density.

6.2.1 Separability of form factor and structure factor

A given scatterer α has a scattering density ρα(r′) in its own coordinate system.

Translating that particle to a location rα is equivalent to convolving with a delta

function. We will use ∗ to denote the convolution operator. Let δα(r) = δ(r − rα).

Then

(δα ∗ ρα) (r) =

∫
δα(r− r′)ρα(r′)dr′ (6.11)

=

∫
δ(r− r′ − rα)ρα(r′)dr′ (6.12)

= ρα(r− rα) (6.13)

ρ(r) = ρα(r− rα) = (δα ∗ ρα) (r) (6.14)
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In general, the distribution ρL can describe many particles.

ρL(r) =
∑
α

δ(r− rα) (6.15)

P (K) =

∫
dr
∑
α

(δ(r− rα) ∗ ρα(r)) e−iK·r (6.16)

=
∑
α

F(δα ∗ ρα) (6.17)

=
∑
α

e−iK·rαF(ρα) (6.18)

=
∑
α

Fα(K)e−iK·rα (6.19)

where F is the scattering form factor of particle α. For many particles with the same

scattering profile ρp, ρ(r) takes a similar form to (6.14).

ρ(r) =
∑
α

(δ(r− rα) ∗ ρα(r)) (6.20)

=

(∑
α

δ(r− rα)

)
∗ ρp(r) (6.21)

ρ(r) = (ρL ∗ ρp)(r) (6.22)

P (K) = F(ρL ∗ ρp) = F(ρL)F(ρp) = S(K)F (K) (6.23)

Combining (6.23) and (6.10) shows that the scattering intensity is separable into a

structure factor S and a form factor F .

I(K) ∝ |F(ρ)|2 = |F(ρL)|2 |F(ρp)|2 (6.24)

I(K) = |S(K)F (K)|2 = S2(K)F 2(K) (6.25)

In reciprocal space, the structure factor contains all of the information about

the distribution of scatterers, while the form factor describes the scattering profile.

Experimental diffraction measurements have access only to the intensity I, in which
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the material structure and particle scattering profile are muddled, and in which phase

information is lost due to the squaring.

However in some cases the form factor can be measured, such as by scattering off

of a diffuse, randomly arranged sample of particles, and the squared structure factor

can be determined by dividing an ordered sample’s scattering intensity by that of a

disordered sample.

It is convenient to calculate the structure factor and form factor separately (see

below).

6.2.2 Structure factor

As we can see from (6.15) and (6.23), the structure factor is the Fourier transform

of a set of delta peaks. If we want to simulate a diffraction pattern or perform some

sort of periodicity analysis, we must evaluate the structure factor over a region of k-

space with each particle in the system contributing an exponential (or trigonometric)

function at each point. This leads to consideration of performance versus accuracy

considerations.

Explicit FT at reciprocal lattice points

In the special case that we know the lattice parameters a priori we may calculate

the reciprocal lattice vectors in order to compute a scattering intensity at specific

points of interest. For simplicity, first consider one spatial dimension. Recognize

that for a periodic structure, ρ(x) = ρ(x + na), leading us to rewrite ρ as a Fourier
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series.

ρ(x) =
∞∑

n=−∞

ρne
in 2πx

a (6.26)

ρn =
1

2π

∫ a

0

dx ρ(x)e−in
2πx
a (6.27)

In three dimensions, we write

r = n1a1 + n2a2 + n3a3 (6.28)

G · r = 2πm, m ∈ integers (6.29)

ρ(r) =
∑
G

ρGe
iG·r (6.30)

Note that, for G = (hg1, kg2, lg3), equation (6.29) is satisfied for gi · aj = 2πδij, or

g1 = 2π
a2 × a3

a1 · (a2 × a3)
and cyclic permutations. (6.31)

Using the Fourier series representation of ρ(r), we see that

I(K) ∝ |A0|2
R2

∣∣∣∣∣∑
G

ρG

∫
dr eiG·re−iK·r

∣∣∣∣∣
2

. (6.32)

The integral is a familiar Fourier transform and evaluates to
∏

α δ(Kα−Gα) giving

us the Laue condition K = G. The structure factor, then, is only non-zero (and only

needs to be evaluated) at reciprocal lattice sites. If we do not know a unit cell, but we

have a simulation box with periodic boundary conditions, we effectively have a single

large cell for which we can calculate and evaluate K values. We must be careful,

though to ignore k-space features of length 2π
aα

in the gα direction, which result from

the periodicity of the box.

The Fourier coefficients are given by

ρG = ρhkl =
1

Vcell

∫
cell

ρ(r)e−iG·rdr (6.33)

→ I(K) ∝ |A0|2
R2

∣∣∣∣ 1

Vcell

∫
cell

ρ(r)e−iK·rdr

∣∣∣∣2 , K = G. (6.34)
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Then, for scatterers α in a unit cell with local coordinates rα = uαa1 + vαa2 +wαa3,

I(K) = I(h, k, l) ∝ |Phkl|2 , Phkl =
∑
α

fαSα,hkl (6.35)

Sα,hkl = e−iG·rα = e−i2π(huα+kvα+lwα) (6.36)

For particles with identical form factors, such that
∑
fαSα = f

∑
Sα, we may write

Shkl =
∑
α

Sα,hkl =
∑
α

e−i2π(huα+kvα+lwα) (6.37)

In this way we may simplify calculation of a diffraction pattern, but we also

gain insight into the contributions of each particle in the unit cell to the scattering

intensity at the reciprocal lattice points. Note that systems of non-identical particles

may still contain a small number of particles for which contributions to scattered

wave amplitude can be calculated.

Symmetry

We may further reduce the number of k-space points to evaluate through symme-

try. For elastic scattering, ρ(r) is real valued [90]. Then

ρhkl = ρ∗h̄k̄l̄ → Ihkl = Ih̄k̄l̄ (Friedel’s rule) (6.38)

6.3 Calculation of form factor

The following integrals tend to lead to Bessel functions. The 0th order spherical

Bessel function of the first kind, j0(x), is the unnormalized sine cardinal function

and will be abbreviated in the following equations according to the standard math-

ematical convention sinc(x) = sin(x)
x

for x 6= 0 and sinc(0) = 1, the limiting value.
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Figure 6.1: Fast Fourier Transform (discrete) of a sphere of uniform density.

6.3.1 Uniform sphere

We define a uniform sphere of radius R centered at the origin of its coordinate

system to have a density

ρ(r) =


ρ0 r <= R

0 r > R

(6.39)

We then seek to evaluate the Fourier transform

F (K) =

∫
dr ρ(r)e−iK·r. (6.40)

An analytic solution allows evaluation at any K value without interpolation or

transformation of pre calculated results. The integrand of the form factor has support

defined by the sphere and the integral can be rewritten.
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F (K) =

∫
dr ρ(r)e−iK·r (6.41)

=

∫ 2π

0

dφ

∫ π

0

dθ

∫ R

0

dr ρ0r
2 sin θe−iKr cos θ (6.42)

Let µ = − cos θ. dµ = sin θ dθ.

F (K) = 2πρ0

∫ 1

−1

dµ

∫ R

0

dr r2eiKrµ (6.43)

= 2πρ0

∫ R

0

dr r2

[
1

iKr
eiKrµ

]1

−1

(6.44)

= 2πρ0

∫ R

0

dr r2 e
iKr − e−iKr

iKr
(6.45)

= ρ0

∫ R

0

dr 4πr2 sincKr (6.46)

= ρ04π

(
sinKR

K3
− KR

K3
cosKR

)
(6.47)

F (K) = ρ0
4πR

K2
( sinc (KR)− cos (KR)) (6.48)

The integral in (6.48) can be evaluated by considering the recursion relations of

spherical Bessel functions, but I just used Mathematica. As a check, we can confirm

that the Fourier transform for unity density at K = 0 gives the volume of the sphere.

lim
K→0

4πR

K2
( sinc (KR)− cos (KR)) =

4π

3
R3 (6.49)
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Figure 6.2: Analytic solution to sphere Fourier transform shows that the discrete FT (Figure 6.1)
includes many artifacts that could confuse simulated diffraction analysis.
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6.3.2 Polygons and polyhedra

We start by considering the Fourier transform of a polygonal surface Σ, defined by

a shape function, the distribution ρ(r). In three dimensions, the Fourier transform

is given by

F =

∫
<3

ρ(r)e−ik·rd3r (6.50)

but the function only has polygonal support in the plane of the surface.

F = exp(−ik · n̂d)

∫
Σ

ρ(s,dn̂)e−i(k−(k·n̂)n̂)·sd2s (6.51)

where s is the projection of r to the polygonal surface, n̂d is is the projection of r

along the surface normal, and d the distance of the surface from the origin. We then

consider just the Fourier transform of a polygon in two dimensions.

McInturff and Simon [91] present a solution in which we use Stokes’ theorem to

convert the surface integral to a line integral around the edges of the polygon. The

derivation (somewhat involved) relies on proper selection of a field F allowing us to

write

S(k) =

∫
Σ

ρ(r) exp(−ik · r)dr =

∫
Σ

∇× F · dA (6.52)

where dA = n̂ dx dy for x, y in the plane of Σ and n̂ = ẑ the plane normal. For

ρ(r) = ρ0 constant over Σ, a suitable choice of F is

F = −iρ0 exp(−ik · r)
k× n̂

|k|2 . (6.53)

Note that due to the difference in convention adopted for the form of the Fourier

transform, the sign on our choice of F is opposite that in [91].

We check that (6.53) satisfies (6.52) as follows. For clarity, assume ρ0 = 1.
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Let r = xx̂ + yŷ, dA = ẑ dx dy.

F = −i exp(−ik · r)
k× n̂

|k|2

=
−i
|k|2 e

−i(kxx+kyy)(kyx̂− kxŷ) (6.54)

Note that Fz is zero and the partial derivatives with respect to z are zero.

∇× F = (∂xFy − ∂yFx)ẑ (6.55)

= (−ikxFy + ikyFx)ẑ (6.56)

Note that k× F = (kxFy − kyFx)ẑ.

∇× F = −ik× F =
i2

|k|2 exp(−ik · r)k× (k× ẑ) (6.57)

= exp(−ik · r)ẑ
k · k
|k|2 (by triple vector product rule) (6.58)

= exp(−ik · r)ẑ (6.59)

S(k) =

∫
Σ

exp(−ik · r)dr =

∫
Σ

∇× F · dA (6.60)

Now apply Stokes’ theorem.

S(k) =

∮
∂Σ

F · dr =
N−1∑
n=0

∫ rn+1

rn

F · dr (6.61)

where we now integrate over each edge of the polygon. To present the integral in a

more general form, we would like to parameterize r in terms of t, rn, and rn+1. Find

r(t) such that

∫ rn+1

rn

dr =

∫ tf

t0

p(t, rn, rn+1)dt = rn+1 − rn = ln (6.62)
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where ln is the nth edge of the polyhedron. To simplify a later integral, we will

choose tf = 1, t0 = −1.

r(t) =
tf − t
tf − t0

rn +
t− t0
tf − t0

rn+1 (6.63)

= 1
2

[(1− t)rn + (1 + t)rn+1] (6.64)

dr = 1
2
(rn+1 − rn)dt = 1

2
lndt (6.65)

Also note that

1
2

[(1− t)rn + (1 + t)rn+1] =
l t

2
+

rn+1 + rn
2

= 1
2
l t+ cn (6.66)

where cn is the center of the nth edge.

S(k) =
N−1∑
n=0

∫ rn+1

rn

F · dr =
1

2

N−1∑
n=0

∫ 1

−1

F · lndt (6.67)

=
−i

2|k|2
N−1∑
n=0

∫ 1

−1

exp(−ik · (1
2
l t+ cn))(k× ẑ) · lndt (6.68)

=
−i

2|k|2
N−1∑
n=0

(k× ẑ) · ln e−ik·cn
∫ 1

−1

e−i
k·l
2
tdt (6.69)

=
−i
|k|2

N−1∑
n=0

ẑ · (ln × k) e−ik·cn
1

2

[
−1

ik·l
2

(e−i
k·l
2 − ei

k·l
2 )

]
(6.70)

=
−i
|k|2

N−1∑
n=0

ẑ · (ln × k) e−ik·cn
1
k·l
2

eik·l2 − e−i
k·l
2

2i

 (6.71)

S(k) =
−i
|k|2

N−1∑
n=0

ẑ · (ln × k) e−ik·cnsinck·l
2

(6.72)

The solution is not valid for |k| = 0. McInturff and Simon choose to make F a

piecewise function of k with a different definition for |k|2 = 0, but it is sufficient

to observe that for |k|2 = 0, the exponential is unity and the Fourier transform is

simply ρ0A, where A is the area of the polygon.
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With this derivation as inspiration, we may pursue the Fourier transform of the

polyhedron by recognizing that the divergence theorem allows us to turn a volume

integral into a surface integral. Again, we will need a suitable choice for a vector field

F but we gain inspiration from McInturff and Simon. Let a polyhedron be defined

by a shape function of uniform density over the region Ω.

ρ(r) =


ρ0 r ∈ Ω

0 otherwise

(6.73)

F =

∫
<3

ρ(r)e−ik·rd3r =

∫
Ω

ρ0e
−ik·rdV (6.74)

S(k)

ρ0

=

∫
Ω

e−ik·rdV (6.75)

Again, we’ll neglect the constant density for the purpose of clarity and try to find F

such that

∫
Ω

e−ik·rdV =

∫
Ω

∇ · F dV. (6.76)

Try

F = ie−ik·r
k

|k|2 . (6.77)

Check.

∇ · F = −ikxFx +−ikyFy +−ikzFz (6.78)

= −ik · F = −i2 k · k
|k|2 e

−ik·r = e−ik·r (6.79)
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Now we may apply the divergence theorem where Σ = ∂Ω is the boundary of Ω.

S(k) =

∫
Ω

∇ · F dV =

∫
Σ

F · dA (6.80)

=
N−1∑
n=0

∫
Σi

F · n̂i dSi (6.81)

=
i

|k|2
N−1∑
i=0

k · n̂i

∫
Σi

e−ik·rdSi (6.82)

where we have decomposed the surface of the polyhedron into its facet surfaces and

for which we will carry out integrals in local coordinate systems. Aligning the ẑ axis

with the face normal, it is instructive to decompose r into vectors aligned with the

local axes and distribute.

k · r = k · rx + k · ry + k · rz (6.83)

Note that rz = (r · n̂)n̂ = ẑd is the distance d of the face from the origin, so

k · rz = (k · n̂)(r · n̂) = (k · n̂)d. (6.84)

k · rx + k · ry = k · (rx + ry) = kxy · (rx + ry) (6.85)

where kxy = k− (k · n̂)n̂ is the projection of k into the plane of the surface. Letting

s = rx + ry be the location on the surface,

k · r = kxy · s + (k · n̂)d. (6.86)

S(k) =
i

|k|2
N−1∑
i=0

(k · n̂i)

∫
Σi

e−ik·rdSi (6.87)

=
i

|k|2
N−1∑
i=0

(k · n̂i)e
−i(k·n̂i)di

∫
Σi

e−ikxy ·sdSi (6.88)

=
i

|k|2
N−1∑
i=0

(k · n̂i)e
−i(k·n̂i)di

∫
Σi

e−i(k−(k·n̂i)n̂i)·sdSi (6.89)
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Figure 6.3: Fast Fourier Transform (discrete) of a cubic region of uniform density oriented to be
viewed along the body diagonal.

The remaining integral is the Fourier transform of a polygon (6.72). Reintroducing

the scattering density ρ0, we can write the form factor of a polyhedron.

P (k) =
iρ0

|k|2
N−1∑
i=0

(k · n̂i)e
−i(k·n̂i)diPi(k− (k · n̂i)n̂i) (6.90)

Pi is the Fourier transform of the ith polyhedron as given by (6.72). As before, for

|k|2 we observe that the Fourier transform becomes trivial and S(0)
ρ0

= V , where V is

the volume of the polyhedron.

Equation (6.90) is structured such that it is straight-forward to directly compute

the form factor of a polyhedron with a sufficiently rich data structure that contains

information on the vertices contained in the facets and the hyperplane equations of

the facets.
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Figure 6.4: Analytic solution to cube Fourier transform shows that the discrete FT (Figure 6.3)
includes many artifacts that could confuse simulated diffraction analysis.

6.4 Orientation

For anisotropic structures or particles, we would prefer to rotate our k0 or K

vectors instead of the particles or structure to save on computation. Note that we

may conveniently write the Fourier transform of a rotated system in terms of the

Fourier transform of the non-rotated system.
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6.4.1 Fourier transform under rotation

For a rotation operator R (an orthogonal matrix with determinant 1) let F (k) be

the Fourier transform of f(x) and F ′(k) be the Fourier transform of f ′(x) = f(Rx).

F (k) =

∫
f(x) exp(−ik · x)dx (6.91)

=

∫
f(x) exp(−ikTx)dx (6.92)

F ′(k) =

∫
f ′(x) exp(−ikTx)dx (6.93)

=

∫
f(Rx) exp(−ikTx)dx (6.94)

=

∫
f(y) exp(−ikT (R−1y))dy, with y = Rx (6.95)

Note that kT (R−1y) = (kTR−1)y = ((R−1)Tk)Ty = (Rk)Ty. Then

F ′(k) =

∫
f(y) exp(−i(Rk)Ty)dy (6.96)

F ′(k) = F (Rk) (6.97)

6.4.2 Handling orientation through wave vector rotation

In practice, we might intuitively think of an orientation as a rotation operation

that rotates a shape from a local coordinate system to a global coordinate system.

If ρ(r) is a shape function or distribution and F (K) its Fourier transform, let F ′(K)

be the Fourier transform of the rotated shape ρ′(r). Let R be the rotation operator

that maps points in f to f ′.

ρ′(r) = ρ(R−1x) (6.98)

F ′(K) = F (R−1K) (6.99)

In the same way, we can rotate K vectors relative to the particles in the case that

the system is being probed from a different angle. However, in the case of examining
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a single unit cell at a pre-calculated number of k-space points, it probably makes

sense to rotate the particle positions and orientations instead.

6.5 Other considerations

6.5.1 Multiple scattering

One of the assumptions in the above discussion is that scattered rays all have the

same k vector before interacting with a scatterer. The relative amount of incident

energy that is scattered is generally small and the chances of a probe (electron,

photon, neutron, etc.) interacting twice with the sample is small if the sample is not

very thick. However, in the case of the samples discussed in chapter VII, the samples

are thicker than what is typical for TEM diffraction measurements and multiple

scattering is almost assured. We do not present here any attempt to simulate or

account for multiple scattering.

6.5.2 Complex scattering density

This author does not profess to have any particular knowledge of whatever scat-

tering physics may be peculiar to mesoscale particles. Elastic scattering does not

preclude a phase shift in scattered waves. For a single species of particle, we could

neglect any such phase shift in our calculations, but for multiple particle types, dif-

ferences in the phase shift from different particles would effect the scattering pattern.

Brief consultation with the microscopists Xingchen Ye and Mike Katz did not yield

any insight into the matter, so I chose not to assume real-valued scattering densities

in a software implementation. The formulae in this chapter are similarly agnostic.
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6.6 Application

I developed proofs of concept in Python and later accelerated with C++ for

the computationally intensive Fourier transforms. A graphical interface, using QT

libraries, allows the user to interactively adjust particle sizes, form factor, and scat-

tering density. Both the magnitude and phase of the (complex-valued) scattering

density are adjustable. The user may select from a menu any particle form factor for

which Fourier transforms have been implemented. Initial versions of the tool allow

delta functions, spheres of uniform density, and polyhedra (if defined in the input

file). Particle positions and orientations are loaded from an input file along with a

box matrix that is assumed to be periodic. Real space and reciprocal space lattice

vectors are displayed as working parameters, along with the number and maximum

value of the k-space coordinates that must be processed for the chosen display size

and resolution.

For the session shown in Figure 6.5, peak brightness for spherical scatters was

shown to be modulated radially according to the diameter and magnitude of particle

scattering densities. Relative peak brightness is profoundly affected by scattering

densities of different relative phases.

6.7 Outlook

This project has been on hiatus since it was deemed to be unnecessary for the

completion of the project described in chapter VII, but could ultimately be of broad

utility. Code now exists for performing explicit analytic Fourier transforms of parti-

cles with form factors of delta functions, uniform spheres, or polyhedra at arbitrary

orientations. To be of general use, this code should be provided with effective test-
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Figure 6.5: Sample interface for diffraction simulation. A single cell of a CaCu5 structure (shown
red and blue, mid-left) is modeled with various particle sizes, shapes, and scattering densities for
comparison to experimental diffraction patterns. A particular instrument is modeled by setting
the angular wave number of the “probe beam,” |k|. For the interface shown, peak intensities
are calculated for the relevant k-space points and interpolated onto a grid with a Gaussian. A
faster, cleaner display consistent with graphics in literature is obtained by simply rendering circles,
centered at each diffraction peak, with a diameter representative of the peak intensity.
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ing and better integrated into an analysis workflow. Full integration into the Glotzer

group’s in-house analysis software suite (freud) may also require debugging of some

shared data structures. Moreover, the Fourier transform code would benefit greatly

from a parallel computing framework.

There are also many cases in which users may prefer not to evaluate Fourier trans-

forms of hard particles at precise positions and orientations. If certain correlations

between particle positions or orientations are known various averaging techniques

may be applied to form factors without considering individual particles [92]. In gen-

eral, softer form factors (i.e. non-uniform scattering densities) may be necessary [93].

Other experimental effects on diffraction peak can be modeled [92, 94], such as the

Debye-Waller factor for brightness due to temperature, and the Lorentz factor for

peak shape. Multiple scattering is not an insurmountable challenge [95] and could

be addressed in future revisions.

Different types of output may warrant different optimizations. For instance, many

x-ray diffraction measurements produce data for one-dimensional scattering angle or

wave-number. Reduced k-space dimensionality reduces the computational cost of

modeling the experimentally accessible data [88].

Finally, this chapter has not discussed past work in the Glotzer group to calculate

structure factors through discrete Fourier transforms. Due to the efficiency of the

numeric Fast Fourier Transform (FFT) method, approximate structure factors for

many simulation systems can be calculated in near real time. Data transformations

associated with non-cubic boxes and arbitrary viewing angles have not yet been

ported from the group’s injavis visualization software to the actively developed

freud framework.
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CHAPTER VII

Discovery, analysis, and modeling of a dodecagonal
quasicrystalline nanometallic binary super-lattice

This chapter includes material being prepared for submission for publication with

coauthors Xingchen Ye, Jun Chen, Michael Engel, Sharon C. Glotzer, and Chris

Murray.

7.1 Introduction

Quasicrystals are aperiodic ordered solids that exhibit rotational symmetries in-

compatible with periodic lattices. Since the initial discovery in metallic alloys [96–98],

quasicrystals have been found in a broad range of soft matter and nanoscale systems.

We now know that dendritic macromolecules [99] (12 fold symmetry, tile edge length

8.2 nm), ABC star polymers [100] (12 fold, 80 nm), binary nanoparticle mixtures [101]

(12 fold, 16 nm), block co-polymer micelles [102] (12 fold/18 fold, 42 nm/65 nm),

tetrablock terpolymers [103] (12-fold, 40 nm), mesoporous silica [104] (12 fold, 8.5

nm), perovskite thin films [105] (12-fold, 0.69 nm), and pentameric molecules [106]

(10 fold, 0.82 nm) are all capable of forming quasicrystals in non-metallic systems on

a range of length scales. So far, all known non-metallic quasicrystals have n-fold axial

symmetry, which means they are quasiperiodic in two dimensions and periodic in the
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third. When projected along the periodic direction, axial quasicrystals correspond

to two-dimensional tilings.

Understanding the stability of quasicrystals or designing a new quasicrystal re-

quires targeting the right local order found in individual tiles as well as an appropriate

arrangement of the tiles. In soft matter or nanoscale systems, where quantum me-

chanical effects play a minor role in the ordering of the components, local order can be

controlled systematically by the presence of two competing length scales [107–109],

packing constraints [62], or appropriate bond angle [110, 111]. Two extreme scenar-

ios are distinguished: matching rules and random tilings. Matching rules enforce

quasiperiodicity by energetically penalizing any incorrect tile attachment [112]. In

contrast, random tilings embrace tile reshuffling and predict the emergence of a

quasicrystal due to entropy maximization [113]. In practice, the growth of a qua-

sicrystal can proceed by a rapid stochastic process followed by a slower error-and-

repair process minimizing energy [114]. The structural quality will then depend on

the strength of tile interactions and the available time for the repair process dur-

ing growth or annealing. Matching rules are particularly important for dodecagonal

(12-fold) square-triangle quasicrystals [115]. Squares and triangles easily tile the

plane periodically and can form ordered or disordered tilings depending on match-

ing rule strength [116, 117]. To achieve a well-ordered square-triangle quasicrystal,

certain tile contacts or vertex configurations should be biased [118,119]. We call this

process of biasing ‘partial matching rules’ if the bias is incomplete or too weak to

enforce quasiperiodicity without disorder. Quasicrystals with partial matching rules

are expected to be better ordered than maximally random tilings.

In this work, we present a square-triangle dodecagonal quasicrystal (DQC) in
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a binary mixture of nanocrystals (NCs). NCs are now routinely synthesized with

sufficient monodispersity to be used as ‘superatoms’ for self-assembling simple or

exotic superlattices [120] including quasicrystals [101,121–123]. NCs are large enough

to be easily resolved via electron microscopy and sufficiently small to diffuse fast

enough to achieve equilibration. Although the structure of superlattices can often be

determined directly from projections using electron microscopy images, this is not

always possible if the superlattice is too complex. In this case electron tomography

can assist [124]. It is then possible not only to extract the unit cells of a periodic

superlattice, but also to study the appearance of dislocations [125] or other defects

[122] and structural variations of quasicrystals. The quasicrystal we report is of

hitherto unknown structure type. We demonstrate how the decoration of the square

and triangle tiles naturally gives rise to partial matching rules via symmetry breaking

in layers perpendicular to the dodecagonal axis. We analyze the geometry of the

experimental tiling and reproduce the growth of the binary quasicrystal via molecular

dynamics simulation of a simplified model system.

7.2 Observation of quasicrystalline binary NC superlattice (BNSL)

The DQCs were formed by slow drying of a binary NC solution on top of an

immiscible liquid subphase. Figure 7.1a shows a large-area TEM image of binary

nanoparticle super lattices (BNSLs) self-assembled from 6.8 nm CoFe2O4 and 12.0

nm Fe3O4 NCs. The BNSLs appear to possess long-range order, yet no translational

periodicity can be found. Small-angle electron diffraction (SAED) pattern is charac-

terized by a set of sharp diffraction spots with a clear 12-fold rotational symmetry

(Fig. 7.1b), which is the characteristic signature of a DQC and indicates that the

structural perfection persists over length scales greatly exceeding prior observations
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Figure 7.1: Self-assembled BNSLs with quasiperiodic and periodic order. (a-c) Low-magnification
TEM image (a), SAED pattern (b) and high-magnification TEM image of dodecagonal quasicrys-
talline BNSLs self-assembled from 6.8 nm CoFe2O4 and 12.0 nm Fe3O4 NCs. (d) Low-magnification
TEM image and SAED pattern (inset) and (e) high-magnification TEM image of dodecagonal qua-
sicrystalline BNSLs self-assembled from 6.2 nm FePt and 11.5 nm Fe3O4 NCs. (f) TEM image
and SAED pattern (inset) of competing periodic Frank-Kasper σ-phase in FePt–CoFe2O4 BNSLs.
(g) TEM image and SAED patterns (insets) showing the coexistence of quasicrystalline and the
Frank-Kasper σ-phase in CoFe2O4–Fe3O4 BNSLs.
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of DQCs in BNSLs. High-magnification TEM imaging shows that the DQCs can be

described by a self-similar aperiodic arrangement of square and triangle tiles (Fig.

7.1b). In a common motif, the squares and triangles form dodecagons by having six

triangles in the center, surrounded by an alternating arrangement of six squares and

triangles, giving rise to a 12-fold rotational symmetry. The same DQC phase was also

realized in BNSLs composed of FePt and Fe3O4 NCs (Figs.7.1d, e), Fe3O4 and Fe3O4

NCs and 5.8 nm Au and 9.7 nm Fe3O4 NCs, provided that the NC size ratio lies in

the range of 1.51–1.67. The NC size is computed as the sum of the inorganic core

diameter plus the ligand shell thickness. These results provide compelling evidence

that the formation of DQC is robust and does not depend significantly on details of

the constituent NCs such as their chemical composition. In line with previous stud-

ies [101, 121–123], the present DQC can coexist with its approximant, the so-called

Frank-Kasper σ-phase (Fig. 7.1f), which is observed to grow alongside DQCs in the

FePt-Fe3O4 and the CoFe2O4-Fe3O4 systems (Fig. 7.1g). The σ-phase is a periodic

(32.4.3.4) Archimedean square-triangle tiling, and is indistinguishable from DQC lo-

cally, but differs in global ordering. Other periodic BNSLs of the NaZn13-type and

the CaCu5-type were also found to coexist with DQCs and the σ-phase, though these

phases occurred less frequently.

7.3 Electron microscopy and tomographic reconstruction

Although the tiling we observe is the common square-triangle tiling, the decoration

of the tiles is distinct from previous reports of quasicrystals in binary NC BNSLs. Its

structure is more complex and cannot easily be solved by direct visual inspection of

TEM images. We therefore use scanning electron microscopy (SEM), which allows us

to image the surface termination, as well as tomographic reconstruction from TEM
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Figure 7.2: Tomographic reconstruction and SEM imaging reveals the 3D structure of quasicrys-
talline BNSLs. (a-e) Horizontal reconstruction slices showing the NC arrangement within layers M,
P, T, P′, M′ at different heights. (a-e)Tomographic slices (top row), corresponding decorated square-
triangle tiling (middle), and the Fourier transform pattern of each tomographic slice(bottom) are
shown. Except for layer T, all other layers exhibit six-fold rotational symmetry. (f-h) SEM image
of quasicrystalline (f,g) and σ-phase (h) CoFe2O4–Fe3O4 BNSLs. (i-k) SEM image of quasicrys-
talline FePt–Fe3O4 BNSLs. Three distinct surface terminations of the quasicrystalline phase were
observed from different BNSL domains.
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for a full three-dimensional structure analysis. SEM of CoFe2O4–Fe3O4 samples

reveals that the surface termination in the quasicrystal (Fig. 7.2f,g) and the σ-

phase (Fig. 7.2h) is dominated by large NCs packed together closely in triangles and

separated by small NCs sitting slightly lower. The large NCs do not sit exactly at

tile vertices, as is visible by connecting their positions with lines. The resulting tiling

consists of small triangles, large triangles, and rectangles, and is distinct from the

square-triangle tiling that emerges in projection in the TEM images. Red and blue

overlays in the figure show how each motif in each system can be constructed two

ways by swapping large and small triangles while rotating rectangles by 90 degrees.

The complete crystallographic structure of the BNSLs can be obtained using elec-

tron tomography. In this technique TEM projections are recorded from various

directions and, with the help of tracer NCs, three-dimensional structure information

reconstructed. The resulting tomographic data is of high enough resolution to re-

solve the positions and type (large or small) of most individual NCs. Though NCs

are not well discriminated in the perpendicular axis in the tomographic data, we can

clearly identify layers in which the centers of NCs are approximately located. Slices

through the middles of the layers of a quasicrystal BNSL sample are depicted in Fig.

7.2a–e (top). Note that interpenetration of layers and z-axis blurring cause NCs to

also appear in neighboring slices.

Next, by visual inspection, we show only NCs whose centers lie in roughly the

same plane (Fig. 7.2a–e (middle)). Depending on the tile decoration in the layers,

and for reasons discussed below, we distinguish mirror (M, M′), puckered (P, P′), and

tile (T) layers. The sequence of panels illustrates that the spots of low transmittance

in the TEM images defining the square-triangle tiling vertices correspond to stacks of
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large NCs. We also see that the different surface terminations imaged in Fig. 7.2i–k

correspond to the M–P–T sequence.

The symmetries of the layers are easily seen in Fourier transforms of the full

tomography slices (Fig. 7.2a–e (bottom)). Features of interest are enhanced with

smoothing and contrast by applying a short-range Gaussian blur and extreme value

clipping. Interestingly, the 12-fold symmetry of the overall structure is broken into 6-

fold symmetry in all layers except the T layer. The orientation of the 6-fold symmetric

layers rotates by 30 (or 90) degrees between the non-primed (P, M) and primed (P′,

M′) layers. Such a symmetry breaking has recently also been observed in the hard-

core/square-shoulder model [126].

We should reiterate that the Fourier transforms shown in Fig. 7.2a–e (bottom) are

from a much larger sample area than that shown in the real space images. The full

sample contains small areas of other structures that contribute a six-fold pattern,

seemingly breaking the twelve-fold symmetry of the T layer. We note that the

particle correlations at the orientation and length scale indicated by the dimmer

six-fold peaks are incommensurate with the square-triangle tiling contributing the

strong peaks and clearly can not be attributed to the same structure.

7.4 Structure solution

We solve the geometric decoration of the square and triangle tiles with large and

small NCs. As is clear from this structure model shown in Fig. 7.3a, mirror layers

(M, M′) are in fact mirror planes, puckered layers (P, P′) are not perfectly planar but

slightly ‘puckered’, and the tile layer (T) contains small particles at the tile vertices.

For square tiles, the tiling layer contains a local roto-inversion symmetry in the tile

center mapping M on M′ and P on P′. Square tiles contain 2 large and 16 small NCs

100



z = 0 M
z ≈ 1/6 P
z = 1/4 T
z ≈ 1/3 P′

z = 1/2 M′

z ≈ 2/3
z = 3/4 T
z ≈ 5/6 P

Mz = 1

Triangle Square

top
view

side
view

P′

he
ig

ht

la
ye

r

a

c

b

Figure 7.3: Binary nanoparticle super-lattice structure model. (a) The square-triangle tiling consists
of two symmetry-equivalent triangle tiles and a square tile. NCs align on flat mirror layers (M,
M′), flat layers that contain small particles at tile vertices (T), and puckered layers (P, P′). (b)
In the σ-phase the tile decoration slightly adjusts to the local symmetry. (c) In the M and P
layers the twelve-fold symmetry of the quasicrystal is broken, which is possible because the edges
of square-triangle tilings are bipartite, as highlighted here in the tiling with two colors. For (c)
we averaged the tomographic slices of Fig. 7.2g–k to demonstrate that twelve-fold symmetry is
restored in projection.
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(AB8). Triangle tiles contain 1 large and 7 small NCs (AB7). The observed σ-phase

unit cell then contains 8 large and 60 small NCs (AB7.5). For a full sequence M, P, T,

P′, M′, P′, T, P, M of height z = 1 and M′ at z = 1/2, the puckered and tile layers are

not evenly spaced vertically in the cell but lie at approximately z = 2/12, 3/12, 4/12

and z = 8/12, 9/12, 10/12. This is evident both from packing considerations and by

examination of the tomographic data. The large NCs occurring in M and M′ layers

form staggered columns. Lines connecting large NCs to neighbors in the same layer

provide tile edges of two lengths. Long and short edges alternate from M to M′ layers

so that a square tile consists of layers of rectangles with alternating orientations and

triangular tiles contain layers of alternating large and small triangles. Based on the

structure model we postulate a point group 12/mmm and five-dimensional space

group P 126/m 2/c 2/m.

The square and triangle decorations shown in Fig. 7.3a are developed geomet-

rically with maximal symmetry. Some symmetry is lost with the internal strain

necessary for different neighbor relationships. For instance, in the σ-phase, the al-

ternating layers of large NCs lie along the shared edge of two triangles rather than

shifting radially from the tile center (Fig. 7.3b). Depending on the environment, one

or more columns of large NCs may be pinned to a tile vertex (as in a hexagon of six

triangle tiles) producing internal strain within the tile, where large NCs would oth-

erwise be staggered within the column between layers. In some instances, the strain

can be resolved through defects (e.g. the replacement of a large NC by a small one),

which we observe frequently in the electron tomography data. The distribution of

the two edge types (long and short) in the M and M′ layers is governed by two rules:

(1) the edges in a triangle are of the same type; (2) the edges in a square alternate
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in type. As can be shown, these rules are applicable to any square-triangle tiling.

The result is a grouping of edges into short and long based on their orientation alone

(Fig. 7.3c). This explains the breaking of the 12-fold symmetry to 6-fold symmetry

observed in individual M and P layers. 12-fold symmetry is observed only in the T

layer or when averaging all layers by projection.

The unusual decoration of the square and triangle tiles affects the tiling geometry.

Joining two triangles or two squares along an edge or more than two triangles without

the separation of a square around a vertex introduces internal stress, and thus an

energetic penalty in the form of partial matching rules. The matching rules are

not strict, because the dodecagonal quasicrystal BNSL has the ability to absorb

a certain amount of that stress as is visible from the presence of various local tile

neighborhoods. Still, we expect that the presence of the partial matching rules means

our dodecagonal quasicrystal will be less random than without it. Such randomness

can be quantified by analyzing the phason displacement field of the quasiperiodic

tiling.

7.5 Image processing and tiling analysis

7.5.1 Analysis of tomography data

Using code developed for tracking ellipsoidal colloids in confocal microscopy data

using watershed cuts [127], we attempted to identify particle positions and orien-

tations in the tomography data to confirm the structural model and help refine an

anisotropic particle model. Noise, particularly in the z-direction, inhibited our ability

to effectively localize particles and we were not able to automatically locate particles

with sufficient accuracy in three dimensions (3d). However, we were able to develop

an effective workflow to identify and analyze two-dimensional (2d) features from the
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TEM images.

7.5.2 Extraction of tile vertices

Dark spots of relatively uniform size and shape in the TEM images mark tile

vertices. The sequence of panels in figure 7.2 illustrates that the stacks of large

particles correspond to the spots of low transmittance in the TEM images as in the

structural model. By convolving the image with a disk of the same size, the centers

of the spots are accentuated. A threshold separates the peaks, then a watershed cut

is applied to build clusters of pixels associated with each local maximum. Centers of

clusters serve as candidate vertices. The 2d vertex coordinates so determined serve as

the input for quantitative analysis of the tilings. The automated tile vertex detection

worked well for CoFe2O4 – Fe3O4 systems where the vertices were notably darker in

TEM. The small FePt particles in other systems have a higher electron scattering

density and the resulting TEM has lower contrast between columns of particles. We

attempted to work around this by identifying the ring of high electron transmission

immediately around the tile vertices, but convolving an image with an annulus was

not effective at extracting the inconsistent and irregular rings. Automated image

processing plus some manual touch-up work has been effective at extracting as many

as 15,000 vertices (from lowest magnification images) of three CoFe2O4 – Fe3O4

samples, referred to hereafter as samples A, B, and C.

7.5.3 Lifting of tile vertices

The quasicrystals we observe are described as tilings of squares, triangles, and

thin 30 degree rhombi, which occur with low probability. Tiles have edges of uni-

form length a at one of twelve orientations throughout a single quasicrystalline grain.
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Figures 17
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Figure 5. The twelve possible nearest neighbor directions can be addressed in terms of four (quasi-) lattice
vectors. The basis vectors referred to in this article are shown e1 through e4. Relative coordinates in terms

of this basis are given for the remaining eight directions.

Figure 7.4: The twelve possible nearest neighbor directions can be addressed in terms of four (quasi)
lattice vectors. The basis vectors referred to in this article are shown e1 through e4. Relative
coordinates in terms of this basis are given for the remaining eight directions.

Only four of the twelve edge-defining vectors are linearly independent. We describe

the relative coordinates of vertices along a path of edges as an integer linear com-

bination of the four basis vectors (Fig. 7.4) The four two-dimensional vectors can

be understood as projections of lattice vectors in four dimensional space onto a two-

dimensional plane. The nature of the four dimensional lattice and the slope of the

plane define the possible tile shapes. It has been shown that projecting the D4 lattice

as shown below can represent all tilings of squares, triangles, and thin rhombs with

quasiperiodicity when tile vertices are selected so as to minimize the distance from

a plane parallel to the plane of projection.

A convenient transformation from four lattice vectors to Cartesian coordinates is

given by [128]

M =

 M‖

M⊥

 = 2−1/2a′



1 cos(π/6) cos(2π/6) 0

0 sin(π/6) sin(2π/6) 1

1 cos(5π/6) cos(10π/6) 0

0 sin(5π/6) sin(10π/6) 1


(7.1)

where a′ is the higher dimensional lattice constant.
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The matrix M transforms integer lattice coordinates in D4 to space in which two

dimensions lie in the projection plane and two are perpendicular. The horizontal line

in the matrix is a visual aid to separate the parallel space from the perpendicular

space. Since this paper is primarily concerned with parallel and perpendicular space

projects of D4, we will conveniently choose a′ = a
√

2 with a = 1 the normalized tile

edge length.

For a four-dimensional coordinate, then, applying the transform M gives a four-

dimensional vector, the first coordinates of which are in parallel space and the latter

two of which are in perpendicular space. E.g.

{v(2)‖,v(2)⊥} = Mv(4)D4 (7.2)

It is convenient to map four lattice vectors between two and four dimensions as

follows.

(1, 0) = e
(2)
1 ↔Me

(4)
1 = M(1, 0, 0, 0) (7.3)

(cos
π

6
, sin

π

6
) = e

(2)
2 ↔Me

(4)
2 = M(0, 1, 0, 0) (7.4)

(cos
2π

6
, sin

2π

6
) = e

(2)
3 ↔Me

(4)
3 = M(0, 0, 1, 0) (7.5)

(0, 1) = e
(2)
4 ↔Me

(4)
4 = M(0, 0, 0, 1) (7.6)

7.5.4 Tile identification

The identified vertices are lifted onto the four-dimensional D4 lattice by assigning

each vertex a four-dimensional lattice point x4d
j . Assigning coordinates (0,0,0,0)

to an arbitrary point in the 2d input data, a breadth first search is performed

on neighboring points, assigning 4d coordinates as possible, constrained by user-

definable tolerances. Each four-dimensional lattice point is then projected onto (i)
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Figure 7.5: Geometric analysis of the dodecagonal quasicrystal BNSL. (a) Columns of large parti-
cles are identified with image processing (bottom left) and mapped to vertices of a square-triangle
tiling (right). The mapping is hindered by the occasional presence of a dislocation (highlighted
in orange). (b) The Burgers vector around the dislocation can be identified in the idealized co-
ordinates by performing a Burgers circuit around the dislocation core. (c) We embed the tiling
in four-dimensional space and analyze it for the presence of phason displacement by correlating
distances in parallel space r‖ with distances in perpendicular space r⊥ in units of tile edge length a.
Different samples show varying amounts of phason displacement. The data shows a linear increase
of phason displacement, as expected for two-dimensional quasicrystals [129]. (d) The radial density
of occupation domains in perpendicular space is smoothed out for experimental samples relative to
the generated tiling.
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a two-dimensional parallel space, x
‖
j = P‖

(
x4d
j

)
, describing the ideal, i.e. phonon

strain-corrected position of the vertex, as well as (ii) onto the two-dimensional per-

pendicular space, x⊥j = P⊥
(
x4d
j

)
, quantifying the amount of phason displacement,

i.e. the deviation from ideal quasiperiodic order.

The resulting 4d coordinates can then be projected back to 2d to compare with

the input data. Nearest neighbor distances could be seen to be closer along one than

another of more or less perpendicular axes, so we attempt to correct for small tilts of

the imaged sample by fitting a linear transform. Optimizing input stretch, shear and

rotation, through user interaction and linear regression on the transform between

input and output coordinates, we are able to detect large areas of tile vertices for

which the ideal 4d coordinate mapping well describes the input data.

However, actual strain in the sample is not distinguishable from apparent strain

from sample alignment in our simple matrix fitting. Thus the optimal transform

obtained varies depending on the order in which the network is explored and how

many candidate coordinates are so obtained. In general, we find the largest detectable

net with the lowest error occurs for nets initiated near the middle of the image. The

lifting procedure is robust and not sensitive to point defects. Overall, it works well

in our samples except for the presence of occasional dislocations (Fig. 7.5b).

For visualization purposes and for tile statistics, we identify as square, triangle,

and rhomb tiles any closed loop of three or four points. Once tiles are identified and

categorized, polygons can be drawn and colored using either the ideal coordinates or

the original input coordinates.
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7.5.5 Comparing idealized and measured coordinates

Projecting the 4d coordinates onto perpendicular space allows analyzing the qual-

ity of a tiling and distinguishes quasicrystals and approximants. Under the projection

the tile vertices fall into the so-called occupation domain [130]. In agreement with

dodecagonal quasicrystals found in alloys [131], typical occupation domains of our

experimental samples are compact but thermally broadened (Figure 7.6). We do not

observe a faceting of the occupation domain or fractal behavior, which occurs in ideal

dodecagonal square-triangle tilings generated by inflation schemes as in Ref. [128]

(Figure 7.6 versus Figure 7.7).

Figure 7.6: Experimental tiling in parallel (left) and perpendicular space (right), colored by distance
of lattice points in the other two dimensions from a reference point.

7.5.6 Presence of dislocations

Some parameters, particularly the starting point of the network exploration, and

the presence of defects have a strong effect on the lifting procedure, limiting our anal-

ysis (Figure 7.17). The most pronounced defects, predicted by quasicrystal growth
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Figure 7.7: Generated tiling in parallel (left) and perpendicular space (right), colored by distance
of lattice points in the other two dimensions from a reference point.

models [119], are dislocations. As the network exploration proceeds past dislocations,

strain perpendicular to the direction of exploration is produced by a Burgers vector.

Dislocations can then be located and characterized by examining several nets (pro-

duced from different starting points). Each dislocation causes a string of detected

coordinates to disagree by the Burgers vector b (Figures 7.8, 7.14 – 7.17), which is a

4d vector that maps onto a fractional and small vector in parallel space b‖ = M‖b

(phonon component) and a typically larger vector in perpendicular space b⊥ = M⊥b

(phason component). We call the disagreements lifting continuity violations and ana-

lyze their frequency in three TEM samples. In Table 7.1 Burgers vectors are grouped

by symmetry equivalence. In agreement with prior works [125] the dislocations we

observe are predominantly of one type, though the Burgers vector we observe most

frequently is different. The Burgers vector type (0,1,-2,1), which corresponds to the

smallest phonon component in our samples, is found most frequently in our samples.

Additional figures are included at the end of this chapter to show results from the

network exploration of all three samples.
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Figure 7.8: Burgers vectors are revealed during network exploration. The white dot in the center
left shows the tiling vertex from which automated network exploration initiated. As exploration
proceeded around the noted dislocations, the Burgers vectors produced disagreeing tile coordinates.
The strain in the sample complicates coordinate detection or phason strain analysis. We merely
note the path of irreconcilabity in the lattice exploration.

Table 7.1: Statistics of lifting continuity violations in three CoFe2O4–Fe3O4 samples. Dislocations
with small phonon or small phason component are preferred (emphasis).

Burgers vector (type) Phonon component Phason component Number detected

(0,1,-2,1) 0.268 3.73 58
(2,-3,1,1) 0.379 5.28 4
(0,0,-1,1) 0.518 1.93 12
(0,1,-2,1) 0.78 4.63 2
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Figure 7.9: Schematic of all of the Burgers vectors observed across the three samples, normalized
to the coordinate system shown in Figure 7.4

7.5.7 Phason analysis

We perform a phason displacement analysis of the TEM images. Such an analysis

was previously performed for an icosahedral quasicrystal formed in a computer sim-

ulation [132] and for a dodecagonal quasicrystal found in a Mn-Cr-Ni-Si alloy [131].

We focus on CoFe2O4-Fe3O4 samples, in which image analysis is reasonably effective

to automatically identify the tiling. Due to the strain introduced by dislocations, we

identify dislocation cores and do our best to limit our phason analysis to a convex

region not including any dislocation.

The phason displacement analysis correlates the distances of two vertices in par-

allel space, r
‖
jk =

∣∣∣x‖j − x
‖
k

∣∣∣, and perpendicular space, r⊥jk =
∣∣x⊥j − x⊥k

∣∣. We analyze

three samples and compare them with an ideal square-triangle quasicrystal con-

structed via an inflation rule [128] (Fig. 7.5c). The comparison shows that our

experimental samples deviate slowly from the ideal tiling and follow the behavior

expected for a two-dimensional random tiling [113], r⊥ = K−1 ln
(
r‖/a

)
+ C with

a phason elastic constant K, the tile edge length a, and an offset C. Apparently,

phason fluctuations vary in our samples and are lowest in sample A. The compari-

son of the distribution of r⊥jk with the ideal tiling (Fig. 7.5d) provides information

112



about the compactness of the occupation domain. As expected, phason fluctuations

smoothen and slightly broaden the occupation domain boundary.

Given two 4d coordinates t
(4)
i and t

(4)
j , the parallel space separation r

‖
ij and per-

pendicular space separation r⊥ij can be determined, where r
‖
ij = M‖

(
t

(4)
i − t

(4)
j

)
and

r⊥ij = M⊥
(
t

(4)
i − t

(4)
j

)
. The relationship r⊥

(
r‖
)

=
〈
rij

∣∣∣r‖ij ≈ r‖
〉
ij

, obtained by av-

eraging over pairs, is called phason displacement. Lower values correspond to a more

compact occupation domain. At longer distances, phason displacement increases

and dislocations create strain. We therefore limit our analysis to connected regions

of moderate uncorrected phonon strain. Such regions have at most a few thousand

points. Although the growth of phason displacement with r‖ depends on the starting

point of the tile vertex detection, the general shape of the curve remains unchanged

(Figure 7.10). We therefore choose the centermost input point as the starting vertex

in Figure 7.5.
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Figure 7.10: Phason displacement analysis of the (smaller) sample A (left) and the (larger) sample
B (right). Each curve shows the analysis starting from a different tile vertex.
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Figure 7.11: Stabilization and growth of the binary dodecagonal quasicrystal. (a) Spherotruncated
octahedra as found in the CoFe2O4-Fe3O4 system are positioned on the decoration model for the σ-
phase and densest packings numerically obtained. The particles show well-defined but not unique
orientations. (b) Particle size ratio and rounding radius were varied in an attempt to discover
good particle geometries that entropically favor the formation of the quasicrystalline BNSL. The
optimization suggests an optimal size ratios between 1.6 and 1.7 for hard particles. (c-e) We observe
the growth of the dodecagonal quasicrystal in molecular dynamics (MD) simulations of isotropic
particles with A–B attraction from a seed in a simple soft particle model of size ratio 1.8. Particles
are identified as solid and shown as larger spheres in the figure if they move slowly relative to their
neighbors.
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7.6 Insights from computer simulations

7.6.1 Hard particle model

To better understand the stabilization of the quasicrystal and to study its for-

mation in a computer simulation, we consider its feasibility due solely to geometric

effects as a binary packing of hard particles. As NC shape we choose a spheropoly-

hedron interpolating between a sphere and a truncated octahedron (Fig. 7.11a).

Packing considerations had been successful in describing the ordering of binary

sphere [133] and rod-sphere [134] mixtures. Here, however, as quantified by the

packing fraction deficit (Fig. 7.11b), we find that the σ-phase always has lower den-

sity than separated single-species phases, independent of the choice of circumsphere

(size) ratio or rounding radius. Packing fraction deficit is defined as the difference of

the packing fraction of the densest lattice packing of the individual particles (phase

separated state) and the packing fraction of the densest packing of the σ-phase in the

limit of infinite pressure. This finding suggests that entropy alone is not sufficient

to stabilize the quasicrystal at any pressure. Nevertheless, if we choose a rounding

radius of 1 (binary spheres) and a circumradius ratio between 1.6 and 1.7, close to

the NC size ratio used in experiment, then the packing fraction deficit is small at

around 10%. We also observe that rounded truncated octahedra fit together well

in our structure model of the quasicrystal (Fig. 7.11a) and observe metastability at

packing fractions above 65%.

Electron micrographs indicate the large metallic nanoparticles in at least some

samples have shapes somewhat between spheres and truncated octahedra. Systems

were therefore parameterized in two different ways and parameter space was swept

to optimize a candidate for dense packing. We performed parameter sweeps of hard
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particle Monte Carlo simulations to find the shape, size, and orientations of particles

that optimized packing for structures in the neighborhood of the candidate structure.

In the first parameterization, small particles were assumed to be round enough to

be considered as spheres, while the larger particles were sphero-truncated octahedra.

Parameters are the ratio of the circumradii of the two particles and the ratio of the

rounding radius to the overall circumradius of the larger particle.

In the second parameterization, the particle model assumes that the rounding

radius is determined primarily by the oleic acid ligand coating, which is further

assumed to be similar on both particles. Both large and small particles are treated as

sphereo-truncated octahedra with the same rounding radius. Adjustable parameters

are the ratio of circumradii of the two particles and the ratio of the rounding radius

to the overall circumradius of the smaller particle.

Simulation boxes of the σ-phase unit cell were repeatedly compressed to high

pressure and relaxed using a Monte Carlo simulation following the procedure in

[59]. Overlap checks consider particles as the Minkowski sum of a sphere and an

Archimedean truncated octahedron [1,30]. We used the σ-phase unit cell as a starting

configuration and search in the neighborhood of the candidate structure.

As a baseline we consider the densest packing of sphero-truncated octahedra (Fig-

ure 7.12) and calculate the maximum packing fraction η, which is obtained when the

two particle species phase separate using the formula

η =
1 +NrVr

1 +NrVr
ηL

ηS

ηL (7.7)

where Nr = Nsmall

Nlarge
= 7.5 is the stoichiometry (small-to-large) of the σ-phase, the

volume ratio Vr = Vsmall

Vlarge
is calculable in terms of R and size ratio, and ηsmall and ηlarge

are determined analytically or numerically (Figure 7.12).
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Figure 7.12: Densest obtained packing for sphero-truncated octahedra interpolating between sphere
(circumradius ratio 1.0) and Archimedean truncated octahedron (circumradius 0.0). Strong agree-
ment was found with boxes of 1, 2, 3, and 4 particles, implying that at infinite pressure the stable
structure primitive unit cell contains a single particle. It is worth noting that a primitive unit cell
defined by the vectors between a particle and three of its neighbors can be continuously transformed
from the BCC to the FCC lattice, corresponding to the continuous transformation of the truncated
octahedron to the sphere. The edge length of the primitive cell is larger than the insphere diameter
of the particles during the transformation, though, as the nearest neighbors kissing faces become
shifted relative to each other.

We find that while density can be readily improved over binary sphere packing,

the density of the σ-phase is always lower than phase-separated dense packing (Fig-

ure 7.13). This indicates that a hard particle model alone cannot explain the σ-phase

or quasicrystal at high pressures.

Nevertheless, the hard particle compressions show that truncated octahedral par-

ticles have preferred orientations. A two-fold axis of the polyhedra tends to align

with the 12-fold axis of the tiling. Although the clusters of large particles give the

impression of the Voronoi cells of four neighboring particles in a BCC lattice, the ori-

entation compatible with BCC does not seem to be strongly favored. Contact tends

to be between like faces. Deviation from BCC local neighborhoods may be neces-

sary for the long-range ordered structure due to constraints on the angles between

neighboring particles.
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Figure 7.13: Numerically obtained maximal packing fractions. We compare mixtures of sphero-
truncated octahedra and smaller spherical particles (left), and mixtures of sphero-truncated octa-
hedra of different sizes (right), in the phase separated state (top), in the σ-phase (middle), as well as
the difference of both (bottom). In all cases the stoichiometry 15:2 found in the σ-phase was used.
In (bottom left), the densest packing of 0.721(3) occurred for circumsphere ratio 1.75 at rounding
ratio 0.4. In (bottom right), the densest packing of 0.780(3) occurred for circumsphere ratio 1.60
at rounding ratio 0.3.
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7.6.2 Shaped soft particle model

We undertook molecular dynamics simulations to try to determine what interpar-

ticle interactions were necessary to stabilize or self-assemble the observed structures.

We tried to develop a particle model with an interaction potential one might reason-

ably assume for metallic nanoparticles with the (oleic acid) ligand coating used. The

repulsive part of the potential was mapped to a WCA potential around the surface

of truncated octahedra using Discrete Element Model (DEM) [135].

The softness introduced to the particle model in this way did not improve the

stability of a constructed sigma phase, so we attempted to introduce an attractive

element to the potential. Our DEM algorithm does not yet have an effective way to

incorporate appropriate attractive forces, so an isotropic attraction was added to the

potential instead. A Morse potential was parameterized to capture the shape and

width of the well, but it turned out to be geometrically impossible to have a realistic

attraction over a majority of the surface of the particles while maintaining the shape

provided by the DEM potential.

Relaxing the parameterization of the Morse potential to accommodate a more

uniform surface attraction seemed like an inappropriate complexity in an increas-

ingly arbitrary particle model. Rather than develop a new anisotropic particle pair

potential or a computationally expensive tabulated potential we decided to pursue

a simpler particle model.

7.6.3 Isotropic soft particle model

We next pursued a simple isotropic binary particle model at the size ratio sug-

gested by the packing study. To promote mixing between small (S) and large (L)
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particles, we include S–L attraction via a Morse potential in addition to S–S and

L–L excluded volume repulsion at the particle radius via a truncated shifted Morse

potential. A fluid is seeded with several unit cells of σ-phase in a fluid of the same

stoichiometry testing various values of the parameters. We observe growth of the

seed for a narrow range of parameters. After initial rapid growth along the 12-fold

axis, growth is significantly slower perpendicular to this axis. Despite the current

inability to nucleate the quasicrystal from the melt, our results agree with the exper-

imental findings and confirm the soundness of the structure model in Fig. 7.3a. Our

simulations also establish that the width of the attractive well and in particular the

particle size ratio are crucial factors in stabilizing the quasicrystal over competing

phases. The best parameters for seeded growth are consistent with experimentally

observed particle size ratio and surface variation. Competing phases have not been

rigorously characterized.

For hard particle simulations, the best packing sphero-truncated octahedra had a

circumsphere ratio of rL/rS = 1.6 and rounding radius R/rS = 0.3 (Figure 7.13). We

assume (per the experiments) that the hard core of the smaller particles has circum-

sphere diameter dS = 6.8 nm, which gives rS = dS/2/(1 − R/rS) = 4.86 nm. The

ligand coating thickness is then R = 1.46 nm and the larger particle hard core has

circumsphere diameter dL = 2(rL −R) = 12.6 nm. For the small particles, then, we

choose r0 = 9.7, on which the other length scales are based. We introduce an attrac-

tive Morse potential, Φ(r) = D(e−2α(r−r0) − 2e−α(r−r0)), reminiscent of the potential

from Ref. [136] to represent an orientationally averaged interparticle interaction.

The repulsive part of the potential between like particles was mapped to a shifted
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and truncated Morse potential.

Φ(r) =


D(e−2α(r−r0) − 2e−α(r−r0)) +D 0 ≤ r ≤ r0

0 r0 ≤ r

Size ratio is determined by the cut-off radius rcut, which is averaged to define the

center of the attractive well in the S–L interaction. For the optimal size ratio of 1.8,

Morse potential parameters are r0=9.7,13.58,17.46 for S–S, S–L, and L–L particle

pairs, respectively. For like particles, rcut = r0. For the S–L interaction, rcut = 2r0

and the potential and force are smoothed to zero beyond 0.9rcut . The truncation

and smoothing causes a small offset of the potential minimum of about 5% of D.

The best interaction width investigated is set by α = 0.3, 0.214, 0.167 for the different

types of particle pairs. The relationship between α for each pair type is determined

by the ratio of r0 of the larger to smaller particle to maintain similar potential shape

for each particle type pair. Masses were assigned based on the ratio of presumed

metallic core volumes. A good balance of cohesion and kinetics was found for an

interaction strength of D = 5kBT .

Molecular dynamics simulations were performed using HOOMD-blue [23,24] with

a Nosé-Hoover thermostat. The Morse potential was shifted and smoothed to zero

using the HOOMD-blue xplor option to retain differentiability. Simulations were

initialized using a seeded fluid with composition equal to the known quasicrystal tile

ratio

NS

NL

=
16
√

3 + 7 · 4
2
√

3 + 4
= 4 + 2

√
3 = 7.464 . . .

A target density was based on the density of stable balls with open boundary condi-

tions and later adjusted to apply a small amount of positive pressure on the seeded
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system. A simulation box of 17,000 particles was initialized at about half of the tar-

get density, then thermalized and compressed for 105 steps. Particles were removed

from the resulting configuration to make room for a ball of σ-phase, six unit cells

in diameter, containing 4459 particles. Configurations with the seed in place thus

ranged from 18190 to 18249 particles. The seeded fluid was first relaxed with FIRE

energy minimization, then brought to the target temperature through 104 steps of

Langevin dynamics integration. Simulations were then run for a total of up to 2×109

steps.

Time scale

Based on the width of the first RDF peak, it seems reasonable to choose as a

basic time scale the expected time for a small particle to move about one nanometer,

assumed to be roughly the distance between collisions.

In the simulations, we assume the small particles have an average kinetic energy

of (3/2)T = (1/2)mv2 so that

t =
x√
3T
m

(7.8)

for x in simulation distance units D, T in simulation energy units ε, and m in

simulation mass units M. We have chosen our simulation units such that x =

1.0D ≈ 1.0 nm. Mass m = 112M and T = 1ε gives

t =
112

3

√
MD2

ε
= 37.3̄τ (7.9)

for simulation time unit τ .

For Brownian motion in the experimental system, we expect a particle to travel an

average 〈x2〉 = 6Dt where the diffusion constant D = µkBT and the Stokes mobility

for a spherical particle µ = 1
6πηr

.
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For the solvent, hexane, we use the dynamic viscosity η = 3 × 10−4 Pa.s, or

η = 3× 10−4 J ·s
m3 . Then

t =
〈x2〉
6D

=
〈x2〉

6µkBT
=
πηr 〈x2〉
kBT

(7.10)

At room temperature and assuming the small particles have a radius about 4nm,

then,

t =
π 3× 10−4 · 4× 10−9 · 1× 10−18

298 · 1.38× 10−23
seconds. (7.11)

or about 1 nanosecond. Then 37.3̄τ = 1 ns, or τ = 2.7× 10−11 s or about 27 picosec-

onds. Our simulations ran for about 1 billion τ , equivalent to about 27 milliseconds.

7.7 Conclusion

Experiment, simulation and geometric modeling is a powerful combination to

find new phases of order in BNSLs. Here we have applied these techniques to a

binary quasicrystal of hitherto unknown structure type. The decoration of square

and triangle tiles is peculiar but similar to typical models of axial quasicrystals found

in alloys [97] in the sense that it consists of well-defined layers. In contrast to atomic

quasicrystals, we can perform a structure solution in real space and do not have to

take a detour via the diffraction pattern. The geometric order in the BNSL tiling

is comparable to atomic dodecagonal quasicrystal, suggesting that there are more

similarities than differences between these two systems.
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Figure 7.14: The full image of sample A with the dislocations and lattice coordinate disagreements
less obtrusively annotated.
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Figure 7.15: Some of the most obvious dislocations in sample B are noted with emphasis on the
overlaid net.
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Figure 7.16: Sample B shown again square, triangle, and rhomb tiles colored. Sigma phase motifs
are common.
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Figure 7.17: Sample C contains many defects and dislocations that can be seen in the difficulty
to computationally obtain self-consistent tile coordinates in the net. Also note the occurrences of
small sigma phase regions.
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CHAPTER VIII

Conclusions and outlook

Through this work, we have advanced the ability for simulators and experimental-

ists to share thermodynamic and structural data. We have developed more powerful

simulation tools as well as shown several methods and applications for measuring

state functions of model colloidal (or nanoparticle) systems. In a collaboration with

experimentalist colleagues, we show that a uniquely thorough and varied application

of characterization and modeling techniques provides a compelling analysis of a new

soft matter structure.

We have developed highly parallel thermodynamic Monte Carlo software that is

finding broad application within the research group and will soon be released with

the open-source HOOMD-blue particle simulation package. The software currently

supports a broad variety of shapes. Careful software engineering means the code is

easily extensible so we expect the functionality to continue to expand to new par-

ticle types and additional thermodynamic ensembles. Additionally, as with other

HOOMD-blue tools, simulation data can be easily accessed a variety of ways for

versatility in work flows or analysis techniques. As combining shape and energetic

interactions continues to be a computational challenge, it seems likely that future

expansions of HPMC capabilities will include finite-valued interparticle potentials.
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Though developments in other parts of the HOOMD-blue code will continue to im-

prove our ability to perform molecular dynamics with anisotropic particles, a number

of discontinuous potentials (better addressed by HPMC) are historically important

to advancing theoretical understanding of statistical mechanics. It is natural to in-

corporate and expand on these canonical particle types as HOOMD-blue becomes

more powerful.

Having explored the fluid phase of a variety of hard polyhedra, it is appropriate

now to apply the power and flexibility of HOOMD-blue with HPMC to the study

of polyhedron solids. We should take advantage of recent developments in the un-

derstanding of shape alchemy and the ease with which new simulation and analysis

code can be added. In particular, we should explore the nature of free volume in

systems of greater than 3N degrees of freedom (anisotropic particles) and we should

continue to improve our methods for determining the “best” shape to assemble a

target structure. We expect thermodynamic integration for free energy estimation

to continue to be an important tool, so the volume perturbation techniques explored

above will benefit from refinement and optimization in more use cases.

We add image processing and a variety of geometric techniques to our tool set for

the investigation of experimental data. In a long running project, we are preparing

to report on an exciting new structure produced in several high-quality binary soft

matter samples. The structure consists of square and triangle tiles, decorated with

more than a dozen particles per tile, which we demonstrate to be arranged in a

dodecagonal quasicrystalline tiling. It is clear from microscopy that the particles

in some systems are regular non-spherical shapes, distinguishing them from earlier

soft-matter quasicrystals, but we have not yet established the role of shape in this
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system. Simulations show that the structure may be explained by allowing for an A–

B particle attraction, but the mechanism of this attraction is not yet well-understood.

Future work should combine interparticle attractions and shape in a search for the

optimal particle parameters for self-assembly of this structure.
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