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A Ncte of Caution to the Discerning Reader:

These Tecture notes represent a first crack at the second half of
a text or nuclear reactor analysis. It should be noted that Chapter 10
on lattice calculations actually was intended as the final chapter in
Volume I since it is certainly more involved with the study of reactor

calculational methods than applications. Unfortunately, the author's

despondence over the decision to send Ohio State to the 1974 Rose Bow]l
delayed the preparation of this chapter until this time.

The second volume is primarily intended to illustrate the applica-
tion of the concepts and methods developed earlier to problems which will
almost certainly be encountered by the practicing nuclear engineer. MWe
have attempted to present a reasonably condensed exposure to the subjects
of nuclear reactor core design and nuclear power plant analysis suitable
for seniors or first year graduate students in nuclear engineering.

While it is our hope that most of the topics relevant to these subjects
have surfaced somewhere in Volume II, we wish to stress that this is
only a.preliminary draft, and considerable modifications and rearrange-
ment are no doubt necessary.

And, as is characteristic of any set of lecture notes frantically
prepared to keep pace with an ongoing lecture course, numerous errors
appear throughout. Yet another casualty of the hot breath of impending
lectures breathing down the back of the author's neck has been adequate
acknowledgement to the many sources from which this material has been
pirated. Although these acknowledgements will be included in later
versions, we would particularly like to acknowledge here our substantial

use of course material prepared by Harvey Graves, Jr., while a



Visiting Professor at The University of Michigan. (This material will
hopefully be published 1n jts entirety elsewhere.) The lecture notes
of Paul J. Turinsky of R.P.I. were also of immeasurable assistance.
And, finally, yet one more apology to those readers of taste.
Once again, these notes have been contaminated with numerous, shall we
say, "diversions" intended not so much to relieve the boredom of the

reader, but rather to preserve the sanity of the author (although, per-

haps somewhat belatedly).
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CHAPTER 10: HETEROGENEOUS EFFECTS IN CORE LATTICES

I. A QUALITATIVE DISCUSSION OF HETEROGENEQUS EFFECTS ON CORE
MULTIPLICATION

A. Introduction

Thus far we have been concerned with homogeneous reactor cores
in which fuel, moderator, coolant, and structural materials are intimately
mixed. But of course nuclear reactor cores are constructed in a highly
heterogeneous configuration to facilitate thermal design (coolant chan-
nels, heat transfer surfaces), mechanical design (structural integrity,
fuel handling), and reactivity control (control rods, burnable poisons).
For example, a cross section of a typical PUR core is shown in Figure
10-1, while that of a fuel subassembly is shown in Figure 10-2. Such
heterogenieties in the reactor fuel array or lattice must be taken into
account in nuclear design to some degree, since they influence core
multiplication. In fact, we will find that Tumping the fuel into a
heterogeneous lattice actually tends to enhance core multiplication,
thereby reducing the fuel inventory or enrichment required for reactor
criticality.

The degree to which heterogenieties must be accounted for in reactor
design depend upon the characteristic dimensions of the nonuniformities
in the core lattice, e.g., the diameter of a fuel pin or the spacing
between fuel elements, compared to the mean free paths of neutrons in
the core. For example, in light water reactors, the thermal neutron
mean free path is typically on the order of centimeters which is compar-

able to the fuel pin diameter. Hence the flux distribution in the fuel
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might be expected to be quite different from that in the moderator or
coolant channel, thereby necessitating a detailed treatment of the
heterogeniety. By way of contrast, the much longer mean free path

lattice characteristic of the neutrons in a fast reactor (typically

tens of centimeters) allows a much grosser treatment of lattice effects.
Of course a detailed treatment of the core lattice on a scale of

a neutron mean free path is clearly out of the question, since it wouldy

12,

require an unmanagebly large array of mesh points in a multigroup

fuel elements). Indeed, the strongly absorbing nature of fuel and

[4

ment of neutron transport than that provided by diffusion theory. Henc& B s

one must adopt a more piecemeal approach by seeking to selectively
"homogenize" the analysis of the core--that is, by providing pres-
criptions for including lattice effects into existing infinite medium
neutron energy spectrum calculations or by calculating few group con-
stants which have been spatially averaged over the finer details of
the flux distribution.

Of course the type of treatment one chooses will depend upon the
purpose of the calculation. For example one can contrast a hand calcu-
lation based upon the 6-factor formula suitable for a crude survey esti-
mate with an extremely detailed transport calculation which might be
used in a comparison with a critical experiment or perhaps as a bench-
mark for the testing of other calculational schemes. Our concern in
this chapter is with more routine design calculations which must be per-
formed very frequently and hence place a premium on calculational ease.

For such schemes to yield adequate accuracy, one is forced to rely upon
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frequent cross calibration with experiment--that is, to accept a certain
amount of empiricism (fudging) in the technique. And, of course, as in
any fast yet accurate method, one relies heavily upon a cancellation of
errors. For example, in a LWR core study, one might attempt to generate
group constants for a few group diffusion analysis using a SOFOCATE-MUFT
description similar to that discussed in Chapters 8 and 9. But of course
these schemes perform calculations for a homogeneous, infinite medium.
Hence our objective here is to provide a prescription for modifying
these homogeneous results to account for heterogeneous lattice effects.
In practice, these modifications most significantly enter into the cal-
culation of the thermal utilization, the resonance absorption, and the
fast fission factor.

For more detailed calculations, one is frequently forced to utilize
a transport theory description, based either upon so-called collision
probability methods or a direct solution of the transport equation it-
self (or perhaps a Monte Carlo calculation). Since the trend in recent
years has been toward more detailed treatments of the heterogeneous
effects and more precise transport descriptions, we will include as well
some discussion of these latter techniques.

B. Core Homogenization

To be more specific, let us outline one possible approach to

the treatment of core lattice effects. We begin by noting that reactor
cores have a regular or periodic lattice structure in which one sub-
element or so-called "unit cell" is repeated throughout the core. For
example, a fuel subassembly or group of fuel subassemblies could be

regarded as a unit cell.



-461-
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@ @ cel/

coola,

@D @) &

The essential scheme then is to perform a detajled calculation of the
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flux distribution in a given unit cell of the lattice--usually assuming
that there is zero net neutron current across the boundary of the cell
(using arguments based upon the symmetry of the lattice). The various
multigroup cross sections characterizing meterials in the cell are then
spatially averaged over the cell, using the flux distribution as a
weighting function. In this way one can characterize the cell by effec-
tive group constants which take account of the inhomogeneous flux dis-
tribution in the cell. This scheme essentially replaces the actual unit
cell by an equivalent homogeneous unit cell characterized by these effec-

tive cross sections.
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For example, one usually begins by considering a typical fuel cell--
i.e., fuel plus clad plus coolant. The fuel cell is first reduced to

an equivalent cell of simpler geometry to expedite calculations:

S
;

N
O —(©B)
or —_— } —
[ /
\\‘;’/'
fuel cell equivalent cell homogeneous cell

Fuel Cell Homogenization (0.3 to 0.8 inches)

Our primary interest is usually concerned with the generation of
fast and thermal group constants for such a cell. In the fast range,
the heterogenerties enter primarily as modifications to the resonance
escape probability, for reasors which will become apparent in Section
10-3. Hence it is usually sufficient to simply perform the usual in-
finite medium fast spectrum calculation, taking care however to account

for heterogeneous effects in resonance absorption via techniques which
will be discussed later in this chapter.

The much shorter mean free path characterizing thermal neutrons
necessitates a somewhat more detailed treatment of heterogencities in
determining the thermal flux spectrum in a fuel cell. For less detailed
corecalculations, one can frequently get by with simply modifying the
results of an infinite medium thermal spectrum calculation (e.g.,

SOFOCATE) to account for the variations in average flux in the fuel,

5%2 » and the moderator, §éq . Of primary concern here is the cal-

culation of the so-called thermal disadvantage factors, §4Q//€i% s
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which enter into modifying the infinite medium spectrum results. More
detailed calculations of thermal spectra usually involve a direct solu-
tion of the neutron transport equation characterizing the cell. Bo%h
schemes will be discussed in sectjon 10-2.

Such fuel cell calculations are customarily performed under the
assumption of zero net neutron leakage between cells (which decouples
the fuel cells from one another). Actually, such single fuel rod
spectrum calculations are of questionable validity when rod neighbors
include water holes, poison shims, control rods, or Pu-loaded fuel
pins, since then one needs to account for cell-to-cell Tleakage.

The next step in the analysis of the core is to consider a typical
fuel assembly or grouping of fuel assemblies, including control or
shim elements. The few group constants calculated for the fuel cell
can be used to describe most of the assembly, with the exception of
control material which requires rather specialized techniques. Usually
a detailed multigroup 2-D diffusion or transport code is used to deter-
mine the flux in such an assembly, and then once again these fluxes are
used to generate assembly averaged group constants.

030035 o o

C000R00
500 ®

Fuel Assembly Homogenization (5 to 8 inches)

The final step is to use either these assembly averaged group con-

stants (or, in very detailed calculations, the original fuel cell group
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constants) to determine the flux and power distribution over the entire
core. The symmetry of the core will frequently allow one to consider
only a quadrant in detail. It may occasionally be desirable to homo-

genize the core still further to facilitate gross survey calculations:

Since the transverse (x-y) power

distribution in many reactor cores is

to first order independent of the axial :::I

(z) power distribution, one can fre-

quently iterate back and forth between Yy

a 2-D transverse and a 1-D axial multigroup diffusion calculation of the
flux (hence avoiding a 3-D calculation). However for certain classes of
problems (detailed power distribution studies or safety analyses), a
full 3-D calculation cannot be avoided. It has been found that accurate
multigroup calculations usually require between 4 (LWR) and 6 (HTGR)
energy groups for thermal reactor analysis.

In fast reactor cores, the neutron mean free path is quite large.
Hence fast reactors aremore susceptible to a homogeneous analysis (except
for a small fraction of neutrons with energies less than several keV).
On the other hand, it is much more important to treat the energy depen-

dence accurately in fast reactor analysis. Hence one usually relies
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on many groups (~20) in a diffusion calculation for a few region model

of the core in fast reactor analysis.

C. A Qualitative Discussion of Heterogeneous Effects in Thermal
Reactors

It is possible to obtain a very useful qualitative understanding
of the influence of fuel lumping on core multiplicdtion in thermal reac-

tors by simply examining how the various terms in the 6-factor formula

»Q:”nge Roec PNTL (10-1)
are modified in passing from a homogeneous reactor core, in which the
fuel and moderator are intimately mixed, to a heterogeneous lattice in
which the fuel is lumped. This discussion actually has a rather inter-
esting historical significance, since without fuel lumping, it would

have been impossible to achieve a critical assembly using natural uranium
and graphite in Fermi's "pile" at the University of Chicago in 1942.

More specifically, for a natural uranium system, ﬂz = 1.33 while € =

1.05. If one studies f and p for various homogeneous mixtures of natural

Lasy |
uranium and graphite, then,at best,one finds e
|
0.6} -~ l ‘
Resonance escape | -
probability pr- .|
oo / 1‘
tp = 051 os PP
P = l | T
! Product fp
0.4
Hence for a homogeneous system, Uy
ARV (VL
’ [ (J",‘"ﬁ 43
i
ka'\> < <133> ((05)(5(7310%5’ - % 20 40 60 80 100 200 SoU eoc
Ratio of graphite atoms to uramum utoms Ny, /N

Thus such a system could never be made critical.
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There are several ways in which this situation can be alleviated.
One approech would be to choose an alternative moderator. Unfortunately,
the anly moderator which would yield ko, > 1 in a homogeneous natural
uranium fueled assembly is heavy water (DZO)' Since this material was
available in only microscopic quantities at Fermi's time, one was
forced to explore other schemes. Of course, one could attempt to en-
rich the amount of U235 in natural uranium, but at that time the en-
richment facilities at Oak Ridge were still only in the planning stage.

Hence Fermi and Szilard chose the only feasible approach by noting
that by Tumping the fuel into a heterogeneous lattice, one could greatly
increase k 5 by increasing the resonance escape probability p. This
occurs because neutrons which are slowed
down to resonance energies in the moderator gb(

. ) /
Y, are primarily absorbed in the outer regions -'—-"\\\\//////// /~

of the fuel element--hence Teading to a

depression in the neutron flux within the
fuel at the resonance energy. That is, the moderafor - Fuel

outer Tayers of the fuel tend to shield its interior from resonance energy
neutrons, thereby decreasing the net resonance absorption and hence in-
creasing the resonance escape probability p. This "self-shielding”

effect is sufficiently strong, that kc0 increases to a value of 1.08

in a graphite-natural uranium lattice.

There are other effects due to fuel Tumping, however. On the posi-
tive side, the fast fission factor € also ::::;///
increases slightly in a heterogeneous assembly g

-

because the probability of a fast neutron

A
l\

\
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suffering a4 collision with a fuel nucleus while its energy is still
above the Tast fission threshold will increase. On the negative side,
the thermal utilization f will decrease somewhat because the thermal
flux tends to be depressed in the fuel, hence yielding less absorption
in the fuel at thermal energies (again due to self-shielding). Since
thermal absorption (in contrast to resonance absorption) can lead to
fission, the net result is a decrease in core multiplication due to
f. Fortunately, this decrease is far outweighed by the increase in p.
To examine these effects in somewhat more detail, we will now
consider the influence of fuel Tumping on each term in the 6-factor
formula. Then in later sections of this chapter, we will turn to the
more practical problem of just how such effects are included in core

reutronics analysis.

?Z : First recall that ,7? depends only upon the macroscopic cross
sections characterizing the fuel
(3)
éf;/ . zf/
20 = ot (10-2)
02.:: : —> _
ort f £

J

(where the latter expression holds for a mixture of fuel isotopes).

Hence one would not expect fuel lumping to appreciably affect this ratio.
In actuality, however, the cross sections which appear in 7 are

group constants characterizing the thermal energy group. These are
dependent, of course, upon the thermal neutron energy spectrum, and

this spectrum depends, in turn, upon the fuel-moderator lattice confi-

guration. Hence there will be a slight modification in 42 when going
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to a heterogeneous Tattice. This change is usually ignored in less
sophisticated thermal spectrum codes which include heterogenieties via
thermal disadvantage factors. More elaborate cell calculations which
account for space-energy effects whithin the cell will include this

correction automatically.

f: In our earlier treatment of homogeneous systems we defined the ther-
mal utilization f as the ratio of the rate of thermal neutron absorption
in the fuel to the total rate of thermal neutron absorption in all mater-
jals. This definition can be applied as well to a heterogeneous core
by writing
j;gp ZAD $D
F= (10-3)
[ zzmvg + ﬁ?« 240 3@

Here we are considering the core to be made up of only two types of
material, fuel, denoted by the superscript F, and moderator, denoted by
M. (The extension to more than two regions will be given later.) Since

the core is made up of a number of jdentical fuel cells,

we can consider the average in (10-3) as being taken only

over the volume, Vce11’ of one such cell. Now if we recog- [-" -
nize that the macroscopic cross sections ZQF(?) and faM(?) : E
are actually constant over the volume VF of the fuel and VM E M :
of the moderator respectively, and vanish elsewhere, then " <

% s
we can 1imit the range of integration and pull the cross I} ..n
- &

SORRY (DLL.
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sections out of the integrals to write
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c 5F fd?r* (¥

cﬁmﬁrﬂ ZM & D)
Vi

(10-4)

Next, suppose we define the spatially averaged flux in each region as

Ve Ye
(10-5)
- L8 BF)
qéﬂ Vi Vi

Then we can rewrite the thermal utilization f in terms of these averages
as

2 Ve b
%; — (10-6)
fika T Z?Mb’ db

or, dividing both numerator and denominator by qé Vé ,

B 2 (10-7)
f= FF. f“ Vﬁ\g )

where we have defined the "thermal disadvantage factor" g_ as the
ratio of the average flux in the moderator to that in the fuel
¢ = 4‘7: ' (10-8)



-469-

This terminelogy arises because the thermal flux tends to be depressed
in the highly absorbing fuel region, leading to a value of S 7 1.
Hence, since the average flux is somewhat higher in the moderator than
in the fuel, the fuel nuclei are at a relative disadvantage in competing
with moderator nuclei for the capture of thermal neutrons.

The depression of the thermal flux in the fuel is again a conse-
quence of the self-shielding effect. That is, neutrons which are born
in fission events in the fuel will tend to thermalize in the moderator
and then must eventually diffuse back into the fuel to induce a further
fission. However, the highly absorbing nuclei near the surface of the
fuel pin tend to absorb the thermal neutrons diffusing back in from the
moderator and hence in effect shield the fuel nuclei in the interior of

the pin. This Teads to the observed flux
depression. é(‘s EM\
We can compare this more general N

definition of thermal utilization f with

L —

RN

our earlier expression for a homogeneous system

howm

F

S;MOW\ _ ‘f; (10-9)
- Mlrow )

pr\nom_\_ fa

if we consider the homogeneous system to consist of unit cells of the
same volume Vce11 = VF + VM as our heterogeneous cell, but with the

fuel and moderator now spread uniformly over the cell. Hence we would
now find the fuel and moderator number densities in the homogeneous cell

as
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TN _ NF \[F N Viow B I\)M \”M__-

: M 10-
Vg Veel o)

If we now note that the macroscopic cross sections for the homogeneous
- how Viom € W W ~ M

cell are Za = Neg o Oa , ZhM— N G, )

we find from Eq. (10-9)

_g\now'\ B ZGF

- (10-11)

ZFx Z,M(—V\J—»;)

Comparing this with our more general definition for a heterogeneous
system in Eq. (10-8), which we will now refer to as fhet, we note that
in general

et hhom
_i: é g ) (10-12)

since Qi >, 1 (as the flux depression in the fuel would imply).
Therefore, lumping the fuel into a heterogeneous lattice will actually
lower thermal utilization, thereby decreasing core multipiication.

One can generalize the concept of thermal utilization even further
to account for a multiregion fuel cell. Consider, for example, a three

region fuel cell composed of fuel, clad, and moderator material. Then,

in analogy with our two region example, we would write
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ZNe
= Z{:V‘zf}; +iMVMaS$—4+Z\CVC{ (10-13)

If we now divide through by the average flux in the fuel, we find that
the thermal utilization f involves two thermal disadvantage factors,
one for the fuel to moderator, 9%//45; » and one for the fuel to clad,
&/

As yet we have said nothing concerning just how one calculates
these thermal disadvantage factors. Of course it might be argued that
the concept of thermal utilization within the context of the 6-factor
formula has very limited utility aside from crude survey estimates. We
will see later, however, that the disadvantage factor fg can be used
to spatially average thermal group constants over unit fuel cells, and
hence plays an extremely important role in reactor design. For this
reason, we will devote a considerable amount of attention towards its
calculation in the next section. We will examine both approximate
("quick-and-dirty") ways to estimate § as well as more elaborate schemes

based upon transport theory and collision probability methods.

PNFL’ PNTL: Since most heterogeneous effects enter into thermal neutron

diffusion, we will consider only the thermal nonleakage probability

CAQ CHLLD, YoU
MEAN 70 TELL HE
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HERRD oF sor)
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tHere 82 characterizes the overall geometry of the system, and hence will
not be affzcted by heterogeneous effects. We will confine our immediate
attention to a study of the effects of heterogenzities upon the diffusion
length L.

If we recall L2 = D/ Z,. and define the average cross section over
a unit cell as

Zi . 2£F \@;éﬁi -+ ZfM\dnqéii

= (10-15)

éﬁ% Vi + éﬁ=\JF' :

then we find

(2}):4\/1\4 + J?: \/FBZ
3 (£t Y 50 Ve B 2B

(&‘VH@FVF A 1o-1
R | V4 (BRRARD)

Lt =

In particular, notice that for small fuel pins, VF.<’<.VM, we find
that qb ~ gﬁ; and
E
é‘rr VF‘
M
Zir \A* g

<<\

such that

L | éiflvg

M \)M

2~ O-F)LL ~ LZO_J%B

(10-17)
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Hence the diffusion length tends to be decreased from its value in a
purely moderating medium by an amount dependent upon the fuel absorption.

Thus the nonleakage probability PNTL = (1 + LZBZ)'] is increased.

p: Perhaps the most significant effect due to heterogeneous arrangement
of fuel in a thermal reactor is a significant increase in the resonance
escape probability. This modification occurs as a consequence of two
phenomena: First, there is a geometrical effect arising because the
physical separation of the fuel and the moderator will allow some neu-
trons to slow down without ever encountering the fuel. This effect is
of secondary importance to the phenomenon of self-shielding, however.

To understand this second effect more clearly, consider a sketch
of the spatial dependence of the neutron flux at several different ener-

gies characterizing a resonance:

@l\

T é (FJ Ef‘l'ssiov)

AW

«\4\:&4\
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0f course at fission energies, we might expect the flux to peak in the
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fuel since the fission sources are confined to the fuel. However once

we have dropped in energy much below the fission energy, we will begin

to see a flux depression in the fuel. This arises because the fission
neutrons must escape the fuel pin into the moderator in order to be
appreciably moderated. [Nuclear inelastic scattering from fuel isotopes
as well as elastic scattering from light isotopes such as oxygen admixed
into the fuel cause some moderation, but this is a secondary effect in
thermal reactors.] Hence the moderator presents effectively a volumetric
source of neutrons appearing at the lower energies. These neutrons must
then either downscatter to even Tower energies, or diffuse into the fuel
where they are absorbed.

The fuel presents a very highly absorbing medium to the neutrons
diffusing in from the moderator. This absorption is sufficiently strong,
that many of the neutrons incident upon the fuel are absorbed in the
outer Tayers of the fuel pin. Hence the fuel nuclei in the pin interior
see a somewhat depressed flux due to the effective shielding presented
by the fuel nuclei near the fuel pin surface. Such self-shielding is

present to a certain degree at all energies below fission energies.
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However it becomes much more pronounced when the fuel absorption cross
section is Targe--such as at a resonance in the absorption cross section
or in the thermal energy range.

This effect is quite pronounced. For example, the resonance inte-
gral characteristic of natural uranium uniformly mixed with moderating
material is about 280 barns, lumping the uranium, we can reduce the
resonance integral to a value of 9 barns--a reduction of 30-fold. We
will see later than one can usually write the effective resonance inte-

gral in the form

T =q¢ ~ Cl(%E) ) (10-18)

1=

where AF is the surface area of the fuel Tump, and MF is its mass (pro-
portional to its volume). As (AF/MF) decreases--correspanding to more
highly heterogeneous lattice configurations -- the resonance integral
decreases.

To treat the effects of heterogeneities in resonance absorption
requires the use of several concepts from transport theory. Since this
subject is of considerable importance in thermal reactor design, we will

discuss it in some detail in Section 10-3.

€ _: The fast fission factor is also increased somewhat by going to

a heterogeneous lattice. To understand why, one need only recall that
a neutron's energy must be above a certain threshold in order to induce
a fast fission reaction in a fissionable isotope such as U238. By

Tumping the fuel, one effectively increases the probability that a high
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energy fission neutron will encounter a
fuel nucleus before it is slowed down
below the fast fission energy thres-
hold, either by elastic scattering

collisions with moderator nuclei or

NN

inelastic scattering from fuel nuclei.

In summary, then, lumping the fuel into a heterogeneous lattice
can significantly increase k ,y for natural and slightly enriched (Z 5%)
uranium cores. The dominant effect is contained in the behavior of f
and p. By way of example, for a natural =
. . N . 2] & Tr5cm
uranium-graphite lattice with cylindrical TT-
fuel rods of 1.25 cm radius, the values pitfeh

of f and p for several different pitches .L. & 22

is given below:

cell pitch (cm) f b ko
10 .907 .866 1.073
11 .888 .890 1.082
12 .867 .908 1.076
13 .846 .923 1.066

We will now proceed to discuss the various techniques used to
account for Tattice effects in nuclear reactor analysis. Our primary
concern will be a consideration of just how heterogeneous effects are
included in reactor design methods. To this end, we first will study
how lattice effects enter into the generation of thermal group con-

stants, with primary attention devoted to the calculation and use of
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thermal disadvantage factors. /@e then will discuss heterogeneous effects
in fast spectrum calculations--both in resonance absorptian and fast
fission.

It should be admitted that our principal orientation in this
chapter is with thermal reactor analysis, since for these systems the
treatment of heterogeneities is of paramount importance. However many
of the techniques we will develop can be (and are) used as well in the
analysis of fast reactors (particularly those schemes used in the treat-

ment of resonance absorption).
II. HETEROGENEQUS EFFECTS IN THERMAL NEUTRON PHYSICS

A. Thermal Utilization, Disadvantage Factors, and Cell-Averaged
Thermal Group Constants

As we have seen, the core of a nuclear reactor is made up ofr
thousands of individual fuel cells, each characterized by the fuel ele-
ment itself, usually some cladding material (separated from the fuel
element by a gap), and an adjacent moderator which may also serve as a

coolant:

O O OO0 Equivalent
o cells
2 /& g :
OLHo10:
7 O0;0|0 ‘
TUST Doy knou/ Fuel
LIHD WIOULD MAKE ORNORN® g
A caap HAmRNWN, e
Square lattice Hexagonal lattice

Two typical heterogeneous lattices and equivalent cells for each.
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We have also noted that it would be prohibitively expensive to perform
a detailed few group diffusion calculation taking into account the detailed
configuration and composition of each fuel cell--indeed, the very high
absorption present in the fuel element makes the use of the diffusion
approximation highly questionable.

Instead the approach is to perform a detailed calculation of the
flux in only one typical fuel cell, and then to use this flux to spatially
average the thermal group constants over the cell. Let us illustrate
this by an example: Consider a typical
square lattice fuel cell with a cylin-
drical fuel pin. One first replaces
this geometry by an equivalent unit
cell to simplify the calculations,
taking care to preserve the same volume
of fuel, VF’ and moderator, VM' Now suppose that somehow we can ca1culite
the average thermal flux in the fuel, %%; » and in the moderatog Séi .
Suppose that we have also obtained the few group constants characterizing
a homogeneous mixture of fuel and moderator--that is, suppose we have-
performed a thermal spectrum calculation (e.g., using SOFOCATE) for an
infinite medium of identical composition, however with the number densi-
ties of fuel and moderator being uniformly distributed over the cell

volume. We then use this spectrum to determine the group constants charac-

terizing the fuel and moderator, e.g.,

dE ZHE) 95053 (10-19)
@]

F o=
Za Etn
f aE p(E)
0
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where :Z;F(Ef)fz Pd; (If(E) is the macroscopic cross section in the
fuel region alone (although the spectrum Si)(E) has been calculated for
a homogeneous mixture of fuel and moderator). Similar definitions could
be given for group constants characterizing the moderator.

One can now define cell-averaged group constants as follows:

Bz B@D
Veell

kzr 0]

leell

Ll —

cell

Zﬁ:&-p DH + 2 & 3@ (10-20)
e= VM,
Ex 56 + Pzr 3

Vi

or using our earlier definitions of region averaged fluxes, 1i.e.,

l

= RN ._': L 3
=k f;ﬁr 8@, 4= jvaj @v)) (o1)

we find

5 = Zap\/;:d—% = ZNVM(bM
< Za ce \lpﬁ—bp N VH}; ) (10-22)

or

ZF+ é"@xfi\f
|+ G//i ¢ ¢ (10-23)

<é“>ce H -
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Hence, provided we can determine the ratio of the average'thermal fluxes

in each region, i.e., the thermal disadvantage factor
€= /4g | (10-24)

then we can immediately calculate cell-averaged group comstants which
effectively replace the equivalent heterogeneous cell by an effective

homogeneous cell:

®
Y

We can perform similar cell averages of the other thermal group constants.

For example, the transport cross section is defined by

e A0 (%)
, i LV"/\IF\? ’

Now since < D> = }%<fh—> ., we find

A
4—‘—)-:_ —[I’HF " ﬁ(ﬁ}g (10-26)
Dea |+ Q%ﬂﬁéﬁ,f '

<fo‘>ce”

(10-25)

Finally, noting that [:2:: Y)//%ia ,

[+ %5
| . (10-27)
R T T [ Z6e5]
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It should be noted here that we have merely performed a formal
spatial average of these quantities over the thermal flux shape, just
as we did when we expressed the thermal utilization in terms of the

thermal disadvantage factor
5 F

A Zi: _%K>§

Ve

(10-27)

Thus we once again find that the key to including heterogeneities in
the generation of thermal group constants rests on our ability to esti-
mate the spatial dependence of the thermal flux in the cell--that is,
to determine the thermal disadvantage factor g .

[We might remark here that we have only presented one of several
possible schemes to perform cell averaging using disadvantage factors.
Later in the next section we will present an alternative scheme which
utilizes an energy-dependent disadvantage factor g'(E).]

For the large natural uranium-graphite moderated reactors of inter-
est during the early years of the nuclear energy program, one could
actually utilize one-speed diffusion theory to calculate § . However
in the more highly enriched and tightly packed core lattices utilized
in today's modern power reactors, diffusion theory estimates are quite
poor. Hence we will describe two alternative schemes useful for deter-
mining the thermal disadvantage factor, both of which are based upon
transport theory. The first method is an analytic scheme first proposed
by Amouyal, Benoist, and Horowitz, the so-called ABH method. It relies
upon concepts very closely related to the method of collision proba-

bilities we will introduce in more detail when we discuss resonance
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absorption. The second scheme we shall discuss actually solves the energy-
dependent neutron transport equation for the equivalent cell of interest

to generate the thermal flux and perform spatial averaging over the

cell. This scheme, known as THERMOS, discretizes the integral form

of the transport equation, thereby reducing it to a system of algebraic
equations which can be solved on a computer.

There are still other methods for calculating spatially dependent
thermal neutron spectra, ranging all the way from the assumption of a
fundamental spatial mode (such as was used in the BN or PN methods dis-
cussed in Chapter 8) to direct SN solutions of the transport equation
or Monte Carlo calculations. The choice of the method will depend both
upon the detail required in the design as well as upon computer
capability (and allowable expense). In recent years, the trend has
been towards more careful treatment of the spatial detail of the lattice,
and towards more precise transport descriptions, with increasing use
of Monte Carlo techniques.

B. The ABH Method

The ABH method combines aspects of transport theory, collision
probability methods, and diffusion theory to calculate the thermal dis-
advantage factor characteristic of a unit fuel cell. More specifically,
diffusion theory is used to describe the flux in the moderator, al-
though a transport correction is introduced into the boundary condition
at the moderator-fuel interface. Neutron transport in the fuel is
described by multiple collision probabilities. A1l of these calcula-
tions are performed in the one-speed approximation and yield f; in terms

of the one-group constants characterizing materials in the cell.
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Before we begin our description of the method, let us be a bit
more precise in our definition of a unit fuel cell. We will make four

assumpticns concerning the treatment of the cell:

(1) There are no neutrons slowing to thermal energies in the
fuel region. This assumption is quite reasonable in therma]
power reactor lattices, since moderation in the fuel occurs
only via inelastic scattering or elastic scattering with
admixed materials such as oxygen or carbon, both of which
yield inconsequential moderation when compared to the sur-

rounding moderating region.

(ii) We can treat the spatial distribution of neutrons slowing
down within the moderator region as uniform. To motivate
this assumption, notice that in most cases, the distance
required to slow a fission neutron to thermal energies
(&> = Lz ) is quite large compared to the Tattice
spacing or pitch. For example, in a LWR, the rms distance to
slow down is roughly 12 cm, compared to a typical pitch of
2-3 cm. Hence the neutrons slowing down within any modera-
ting region come from a large number of the surrounding
fuel pins. This tends to yield a more uniformly distributed

slowing down source, as the simple sketch below indicates:
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(i11) We will finally assume that there is no net flow of neutrons
between the cells. Surely this requirement would be true for
an infinite Tattice of identical fuel cells. It would be
expected to break down only near the core boundaries or
near to control elements or fuel pins of nonuniform enrich-
ment or composition (e.g., Pu loaded fuel pins which are
characterized by strong absorption resonances in the~5 eV
range).

(iv) We will assume that a one-speed treatment of the neutron flux
in the cell is sufficient. Actually, a one-speed calcula-
tion ignores the fact that the flux in the cell is frequently
inseparable in space and energy, but provided the proper
thermal group constants are used in the one-speed treatment,
this latter correction can frequently be ignored.

Hence our task now is to determine the neutron flux in a cell
resulting from a uniformly distributed source in the moderator region,
subject to the condition of zero neutron current on the boundaries of
the cell.

To proceed, suppose we can determine the flux at a point T in the

fuel due to a unit point source at r'--that is, suppose that by hook or

by crook we have obtained the point source '“\\\\
i \
kernel or Green's function for this geo- Z :37 I
. — . - madéﬂ?.s“‘

metry, call it G(r,¥'). Now the effective r o o

source in the moderator is just the slow-
ing down density at thermal energies, q(?,Eth).

Hence we can use the point source kernel to write the flux at any point r as
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BF) = ﬁz\r G () (@ En)

\Lelf

=% ﬁ; " GG omee)
W

where we have noted that the slowing down source is presumed to be zero
— S5
in the fuel, and to be constant, say q(r,Eth) = CH for r in the moderator.
Let's now calculate the rate at which neutrons are absorbed in the

fuel

rate of ;
absorption = c!ng{f@(T ZF% F/r é( ) (10-29)

in fuel

V% Ve \A4

The total number of neutrons slowing down per second in the cell is just

q VM In a steady state situation, all of these neutrons must be absorbed.
Hence the total rate at which absorption is occurring in the cell is just

q VM' We can use this to calculate the thermal utilization for the cell

0
as

= rate of absorption in fuel Z;-JL%JLEF éﬂ(

total rate of absorption in cell Ve Yy (10-30)

We will turn this problem around a bit by using a rather interesting
'3

property of the one-speed point source kernel known as the reciprocity

»
theorem:
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Notice that this theorem says that the
flux at a point'? due to a unit point source

at 7' is the same as when the source and

detector positions are switched. A quick
inspection of the explicit forms we obtained for G(r,r') in Chapter 5
using one-speed diffusion theory indicates that at Teast in this approxi-
mation, G(¥,r') does indeed exhibit this symmetry. However, the reci-
procity theorem is much more general, and indeed one can show that it
holds even when G(?;?') is obtained from the one-speed transport equa-
tion (see Appendix J for details).

We will now use Eq. (10-31) to rewrite f as

rB G(EF) = J*f %ré("‘) (10-32)
\/M‘[Adr ¥ Vi

r:

Notice that J[ﬁ3r G(r',r) is just the flux produced at a point T oin
Ve
the moderator due to a uniformly distributed source in the fuel. Further-

more we can identify
H 3 e'rY =
%e fr'ﬁr clev) =P (10-33)
F VM \/‘:

as the probability that a neutron produced by a uniformly distributed

source in the fuel will be absorbed in the moderator. In this sense,
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we have used the reciprocity theorem to formally switch our problem

around.

It 1s useful to formally break this probability into two components:

= '
P PF P
where
PF = probability that a neutron born uniformly in the fuel escapes
from the fuel without being absorbed
P' = conditional probabiiity that the neutron, having escaped from

the fuel will be absorbed in the moderator

Hence we can now rewrite the thermal utilization in terms of these pro-

babilities as

PARTAVA Y
{z-—g RP . (10-34)
2"\
We are usually not interested in the thermal utilization f, but rather
in the thermal disadvantage factor g which can be used directly in
the generation of cell-averaged group constants. But if we use Eq. (10-27),

we Cah express S§ in terms of f as

T I

After some manipu1ation, we can rewrite

()= (Fe 57 v
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This rearrangement proves useful because the second term on the RHS
is usually much smaller than the preceding term. Hence rather crude
estimates for f and P' can be used to evaluate this term.

In fact, one can usually just assume for this calculation that
the fuel Tump is "black"--that is, 1t absorbs all incident neutrons.

For such a cell, obviously

f = PM = pfobabi]ity that a neutron born uniformly and iso-

tropically in the moderator passeés into the fuel

Furthermore, the escape probability in a black fuel Tump will Tater

be shown to be

Sk
T back - AVe &5 (10-37)
temp

where SF Ts the surface area of the fuel Tump. If we recall

G,

we can solve for

P = S, . (10-39)

Hence, using these results for P' and f in the second term of Eq. (10-36),

we find

LN L 2 M\ L L =B Az
(;C—#l) - (Z'F)(VF) & N Ry S - (10-40)
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We now turn to a more precise estimate of the escape probability
for a "grey" fuel lump--that is, for a fuel lump in which scattering
may occur--which is necessary in order to adequately calculate the

first term. Suppose we first write

| ob
Fl?:: % + PF! + F1+"' — Z PF-_([ (10-41)

Y=o

where PFn is the probability that a neutron escapes from the fuel Tump
after scattering n times within the fuel.

Let's begin by considering

PFo = probability that a neutron

escapes from fuel without

scattering

Let there be S0 neutrons emitted uniformly and isotropically in the fuel
per cm3—sec. Then the number of neutrons from d3r passing through a

differential surface area is

P A
Se £ dQ e
41

Hence the total escape rate is obtained by integrating over all angles

and all the surface

Fle—g!
escape rate = Eﬂ-ﬁ A e” ZFlP-e )
4T e

(10-42)
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But

esca2 ﬂu+? ,-2§F1Y-r
% = Vs, 4“\,[__ (10-43)
£ AN

[Of course, for a purely absorbing or black fuel Tump, Pe = PO.]

Now it is useful to introduce a variable transformation:
A A
Fr= 2-ndsdR

Thus

1

R —SF R
—1_ f;\sﬁfz (Ga) (- = )
AV &F
S 4N

To proceed further, we will utilize the so-called “chord method" devel-
oped by Dirac. First note that the number of chords which are drawn

in a given direction are proportional
to IA?. V"\ls » the cosine of the ang1e
between the normal to the surface, V? .
and the chord direction S&Z . Define

the chord length distribution function

(4)(R) as
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q?tﬁﬁci%e = probability that a chord is of Tength between

R and R + dR
Then we see J;SJ'AA- S,-\Z ﬁ
(;D(RXCJQ: Rse (p:‘@ (]0_45)
fofi 24
k2 Vk)ﬁb

Ty |
ﬁsﬁez A= fiofi ﬁaﬂ: s
120 © 5 o

(,Q)CMQ J_j;\s dd D%

so that

(10-47)
609d§5
Thus the average chord length is [,
: - ] A A . A
LR>= chP(Q}cJQ- e A%SJJQ Rlc2-v15) -
Re(8dR)
A
Thus we can write

FSIA& ANy = W SPRYAR (10-49)

Re(RdR)
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and

J;\Sﬂifl Qs = 4” CP(\Q)c“Q (10-50)

>
% €(RdR)

Hence, from Eq. {10-44), we find
Rova

& = 5%'22 f‘@(\" ﬁQ)CP(Q) (10-51)
t

Therefore, the calculation of PFo 1s reduced to the purely geometrical

problem of calculating the chord length distribution function c{)(R).

Example: Calculate PFO for a sphere

PUIR= L [lsjdﬁ foxo
" ReRdR
l!’!""' = :#S Jci;/;MHQAMkh# CoSO
7 (R dR)
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and 3 S
@0: 4’?{—0\ AQ U‘C ¢ )‘i%z

o

= g 261 s (e

We have plotted PFo VS, j?;CL below for several typical fuel geometries
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These functions have been calculated and tabulated in detail by Case,
de Hoffman, and Placzek.

We next turn to the calculation of Ppys the probability of escape
after making one scattering collision. If we assume that the distri-

bution of first collisions is uniform, then we can write

=

= U'PFD é“; 7 (10-52)

Likewise, if we assume the distribution of second collisions to be uni-

form as well, then



CYLINDER

 SLAB

and a

z is in units of mean free paths.

For a cylinder, a sphere,

probabilities for uniform source density.

hemisphere, z is the radius; for a slab, z is the half thickness.

—QCollision
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2= (- g(\‘%} zé: . (10-53)

In a similar fashion, we find under the assumption of spatially uniform

collision densities

R=Rot B e
= R [ \+dvd®+ J

F
where A = (l-ﬁ,-‘) é’t—ﬁ < 1 . Summing the geometric

series, we obtain

(10-54)

P - R _ l ~ _ (10-55)
F l_d\ \+ _f_c_l_li(‘_' Ro)
Z#r

In the ABH method, this result is Improved somewhat by using the

actual distribution of first collisions. In this case, PF is given by

= § 1 F el oo

where the coefficients ©{ and @ are tabulated for cylindrical fuel

elements as
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where & is the fuel rod radius. [Note that if &f = é? = 0, this is
identical to Eq. (10-55).] Now recall from the chord method that

R

S _ZTR |
- 2F _e <t (R (10-57)
FoT vz 4R (1-€ )ti) ) |
th

For a "black" fuel rod, we have

F
]__— Cf#.ék R ~ 1

(10~58)

and since ﬁ&u;
C()GQ}CW\) - 1 (10-59)

‘ Qm'r\

we have
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Sr

ek A& (10-60)
R
a result we used earlier.

Our final task is to determine

PM = probability that a neutron born uniformly and isotropically
in the moderator is absorbed in the fuel (which is assumed

to be black to all incident neutrons)

We will use diffusion theory to calculate Pﬁ, d]though we will insert
a transport theory correction at the fuel-moderator tnterface. That

is, we will solve

DWVAR () - 283 = - 9@
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Here, we have used a transport boundary condition at r = a, involving
a parameter d which is given below in terms of the fuel radius and

the transport mean free path

We need only solve this diffusion problem, and then use the fact that

Ry = 2ra Dy AQ’E?.\ (10-61)
c’b‘\jﬂ IF O )
In order to determine PM' Avoiding the details, we will only give

the final result here

L~ Wwad | E (U, ib) ocee)
R 2Ve L -

where

14;1 = }QQE- = [)*/{ZZH

(10-63)
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and E is a Tattice function, which for cylindrical geometries takes

the form

() [ ) Kilab) 3+ Ko6:0) T, liauh) ]
E(M’K"b) - 29 [ L)\ @) ~ Ky (b)Y L pea) | (10-64)

Hence our final expression becomes

Tl = %’i %H %[Hv‘é;)*r? 27

+ (%f‘;‘)." Oiﬂu)\{/ﬁé + E("(Ha}qyb)'—*l (10-65)

It is useful to present similar results for a three region cylindri-
cal fuel cell in which the clad is taken into
account. [One usually homogenizes the gap
and clad together.] As we have seen, for
this cell the thermal utilization is given

in terms of two disadvantage factors as

c Za Ve
Ze+ £V, %F-t ZM ¢i~/¢;




ANV VAT 2
\\ \\ X\ \\\\ t~
| ) AV RANAN N
N A YRR 2
WA NERNN VIHANE :
%, AN N \< , vy
NN AN K A\ -
N A q}l% I\ \\ .
N AN YN \\a. \ N =
‘\\\\ Y\ﬁ\&:\d\ '{\ } §§\ =
™ N M, \ h PAY \ \c-‘
s n ANAN \\‘\ N A ’&%@1 o
RO NANBNNNNONOO Sy
™~ h M N \\\\\Q\ \\t\ —
T DRAIND Ry “
T TS PR R ST Y,
\ AR Y Y YN
\ AR RN WA
\\\ NN [ RIAVAVA)
. AVANAY WRRA
\) VAW N AL A D
AN INAUATIRTRAR R AVAVAN
AR LA
AV V\\\\\\\ \\\\ ‘\\ s
Q% \% (AN \ |
A ? INEND, !%.- . )
AN %}\\0\\'\"\\?\ \ S\
R T
AT ;
UASRRITRRN Y
I L RIMRTIT CaA |

006 007 008 009 0.10

M3

002 003 004 005
Contours of the lattice function E(xya, xxb) — 1 for cylindrical rods.

[From The Reactor Handbook, Vol. 1, p. 518, U. 5. Atomic Energy Commission Report

AECD-3645 (1955).]
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The ABH method yields expressions for these disadvantage factors of

the form

gg- = — +
& & 24, (10-66)

3 tC = clad thickness

while * éi &F* ¥
% _ s fii’:[ R aftﬂ[“‘d(ft" +@(§)}

R
(10-67)

F%_ S¥[i_ Fr_ sF(I_ = F
Here fs - fs (l /“") and ft B Z (l /u“\"'Z ) the
transport corrected cross sections, while Eb is the collision probab-

ility for a cylinder. Similarly

—

__i.-. 3 + . 32 cfléif ( |+ - ___))<
(10-68)

2 E (ub W la+t) 4o 3_1
X 3 C\o"—;i—t\") N a*fc(é‘ 3)
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The ABH method actually gives remarkably good results. For a range
of fuel-to-moderator ratios, the values of %% ,/ QE% calculated by
the ABH method are within 0.5% of those calculated by a transport theory
analysis (DSB).

It should be noted that the disadvantage factors calculated by
the ABH method depend upon various macroscopic cross sections. The
most common scheme is to consider these cross sections as being evalu-
ated at the mean energy of the Maxwellian spectrum characterizing the
moderator temperature. However, it is possible to also regard the dis-
advantage factors as depending implicitly upon energy via energy depen-
dence of the cross sections which appear in them. That is, one can
calculate a disadvantage factor for each energy point utilized in the
thermal spectrum calculation. These energy dependent disadvantage fac-
tors can then be utilized to determine cell-averaged group constants
as follows:

(i) Determine the macroscopic cross sections at each energy

using the energy dependent disadvantage factors

Z(E)= Z ZM 0 (E) ur(‘E) (10-70)

mfupes vesms

(i1) Calculate the spectrum%{Eﬁ(ﬁgqusing SOFOCATE) using these
cross sections.

(iii) Calculate the cell-averaged group constants as

ﬁuz 4(E) PE)

4 éaze — (10-71)
! [z v
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j;SE' »4(E) 4YE)
PE PLE) (10-72)

L Z 2

J;\E D(E) Ple)
< D >cell = PELP(E) (10-73)

where

D) = [32 2 Nee Or(E) 4?‘“(5)\—\

lsoi'opes WSM'MS
i v

It should be noted that in most cases, the use of energy-dependent dis-
advantage factors yieldsresults which are qhite comparable to those
using the somewhat simpler disadvantage factors simply calculated at

the mean enérgy of the spectrum.

C. Integral Transport Methods for Thermal Cell Calculations
(THERMOS)

Thus far we have described methods for including lattice hetero-
geneities in thermal spectrum calculations which essentially separate
the treatment of the spatial and energy dependence of the neutron flux.
That §s, the spatial behavior of the flux in the unit cell is treated
in the one speed approximation (such as in the ABH method), and then
the thermal disadvantage factors calculated from this spatial analysis
are used to generate cell-averaged or "self-shielded" thermal group con-
stants using the results of an infinite homogeneous medium thermal spec-

trum code., Such a scheme is characterized by a minimal calculational
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effort while still producing results of sufficient accuracy for many
reactor design calculations.

However, occasionally a more detailed analysis of the spatial
dependence of the thermal spectrum in a fuel cell is required, for
which the assumption of space-energy separability is inadequate. For
such calculations it is usually also necessary to take into account the
more detailed nature of thermal neutron sc&ttering in the moderator
using the scattering kernels generated by more elaborate methods (e.g.,
GASKET) than those such as the Wigner-Wilkins scheme.

Such an analysis usually requires a detailed solution of the energy-
dependent transport equation characterizing the cell. Perhaps the most
popular of such transport methods is the THERMOS code developed by
Honeck, which uses an integral form of the transport equation to cal-
culate the spatially dependent thermal neutron spectrum in a cell
characterized by one-dimensional symmetry (usually cylindrical). The
feasibility of the approach used in THERMOS relies heavily upon the
assumption of isotropic scattering.

To sketch the method, let us first recall the form of the energy-

dependent transport equation, assuming isotropic sources and scattering:

A - Al " ' -
Q-V + £ = %‘J;j;ﬂé(vﬁ"’a#)(n%fi ¥ %‘uﬁ@) (10-74)
o
1 —~
OLELE
where we have noted that for such thermal spectrum problems, one is
usually interested in energies E below some cutoff energy EC (typically
of the order of 1 eV). The source term actually represents‘neutrons

slowing down below Ec from higher energies:
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Jors
S(’F,E): clE' fsCﬁE"’E)@.SG:E') ' (10-75)
Ec

Now notice that the transﬁort Eq. (10-74) contains only a single deriva-
tive in space. Hence, one can use standard integrating factor techni-

ques (see Appendix J for details) to integrate this equation over space.
After a subsequent integration over angle, one arrives at the so-called

"integral form" of the neutron transport equation
dFe)= FTEF E)[ J;IE (\rEaE)C_b(rE)’f S(H% (10-76)

where =
¥-v

Cxp ["fd‘s f{-(r"s IR E‘)]
2oy - 712 :

(10-77)

""Eﬁ —

Note here that T(¥,r',E) is in fact the
uncollided flux at T of energy E from a

unit point source at v' of the same

energy E. It is sometimes known as the
"transport" or "first flight kernel",
and we will later see that it is closely related to a collision probabiiity.

This equation is now solved numerically for

a unit fuel cell, assuming zero net neutron
current across cell boundaries and a
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uniformly distributed siowing down source only in the moderator. The

integral transport equation is first written in multigroup form

G
PR = f - TR Ea)[ Z 2R P + S”(F‘)] (10-78)
3=
\ésﬁG

To handle the spatial variable, the cell is divided into N subregions.
One then assumes that éE?(F) is spatially independent within each

subregion such that Eq. (10-78) can be written as

Z Toon [ A 5"1 (10-79)

£ 6 éwél\}
where

T3 = :lj- T(F I E) (10-80)

Notice here that Tgm can be interpreted as the transfer or coupling
coefficient characterizing neutron transport between subregions n and m.
The THERMOS method first calculates the coupling coefficients Tgm

for the cell of interest, usually by numerically performing the inte-
gration indicated in Eq. (10-77). Then the N x G multigroup, spatially
discretized equations are solved using standard iterative techniques
(e.g., overrelaxation). As one might expect, the calculation of the

Tgm is very time consuming. Furthermore, since we are actually solving
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a discretized integral equation in space (as opposed to a differential
equation), it is not surprising to find that the matrices involved are
full (which restricts one in practice to using a small number of sub-
regions).

THERMOS works best for small, highly absorbing lattices with rapfd]y
spatially varying properties. Once having obtained the spatially de-
pendent flux in the cell, & (7,E), one can directly calculate the

cell-averaged or self-shielded cross sections as

& NUE) T9E) olr e

. ?ED I (10-81)
% BGEE)
URT

Of course one can also calculate thermal disadvantage factors, e.g.,

& [ BFRE)
M Iy (10-82)

\‘,; fcﬁp BE)
Ve

< (E) =

The problem with codes such as THERMOS which attempt to calculate
in some detail the spatial dependence of the flux in a unif fuel cell
is one of cost relative to less sophisticated schemes such as the ABH
method. Typical running times for such detailed transport codes are
several orders of magnitude longer than schemes based upon relative
simple estimates of the disadvantage factors. Hence the typical pro-
cedure is to calculate the fine structure within fuel cells using

THERMOS only in detailed design studies. These results are then used
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to homogenize or self-shield group constants for a few group, 2-D
diffusion or transport calculation performed on a fuel subassembly
or group of subassemblies. The procedure is usually augmented by a

few experimentally obtained corrections.
ITI. HETEROGENEOUS EFFECTS IN FAST NEUTRON PHYSICS

A. Resonance Escape Probabilitfes in Lumped Fuels
1.) The Stowing Down Equations for a Two-Region Cell
In our introductory discussion of lattice effects on core multi-
plication, it was stressed that fuel lumping can cause rather dramatic
changes in resonance absorption due to self-shielding effects. Indeed,
the effective resonance integrals for the fuel can be decreased from
their homogeneous values by as much as an order of magnitude. Hence
it i1s essential that we discuss schemes for calculating the resonance
integrals characterizing heterogeneous lattices. It is evident that
such schemes must account for the spatial dependence of the flux in
the fuel cell. The method we will describe s based upon fhe concept
of collision or escape probabilitijes--that is, the probability that a
neutron originating in one region will make its next collision in
another region. .
For convenience, we will consider the fuel cell to be composed
of only two species, fuel and moderator. [The extension to multiple
isotopes or moderator admixed into the fuel is given in many of the
standard references on this subject.] Our first task is to write a

balance equation describing the neutron flux in the cell. Recall
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that the balance equation describing neutron slowing down in an infin-

ite, homogeneous medium is
Ely Elly

= [ ZEDE)E + | 4ME)SEVE
4P (1-<la)E" Q-du)E' e

E E

We will develop a generalization of this equation to account for a

heterogeneous fuel cell by defining the escape probabilities:

PF(E) = probability that a neutron of energy E
originating in the fuel will make its
next collision in the moderator (that % y
is, will escape the fuel without

suffering a collision)

PM(E) = probability that a neutron of energy E _5:2555)
' M

originating in the moderator will make

its next collision in the fuel

We can now use these escape probabilities to develop a generalization
of Eq. (10-84). For suppose we interpret gh%(E) and géh(E) as the

volume averaged flux in the fuel and moderator, respectively. Then,
for example, -
g E Jofut

ZM(E) & (E)dE
(\- dn) E'

N

E
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represents the average rate at which neutrons slow down to an energy E
in the moderator. Hence, by mulitplying this expression by PM(E), we
can compute the rate at which neutrons of energy E are transferred from
the moderator into the fuel. In a similar fashion, one can calculate
the rate at which neutrons slowing down to energy E in the fuel suffer

their next collision in the fuel as
/ol

i-pEV de- ZHE) B.6)
E

(1-oe) E

The sum of these two contributions must equal the total rate at which

coilisions are occurring in the fuel; hencé we arrive at the balance

relation for the fuel: E%!p
Ve FHOG(E) = Ve [1-R(E)] [ f,F(Ec)’%(e)
) €li (10-84)
Uy € ]&r_ 21E) g (€)
E C\ JM)E' i
We can write a similar balance relation for the moderator region:
Bl
Vo ZRE B (6) = Vi D-R ()] dk ' ZHE)he)
(-} E (10-85)
e
+Ve B (E) jAE’ ZF(e) dJE(E‘)
£ (-l ) E’

These two equations represent the generalization of the slowing down

equation (10-83) for an infinite, homogeneous medium. As they stand,
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these counled integral equations are exact. However they are only
formal until the escape probabilities PF(E) and PM(E) have been
specified (in much the same sense that the multigroup equations were
also exact but of only a formal significance until the multigroup
constants were determined). We can (and will later) give an alterna-
tive derivation of these equations in an effort to arrive at a more
explicit form for the escape probabilities. For now, however, we
will proceed to apply Eq. (10-84) and (10-85) to the study of reso-
nance absorption in lattices, deferring the calculation of the escape
probabilities until later.

It is possible to decouple these equations by making the narrow
resonance approximation for the moderator. That is, we wil] assume
that

AE\M :Q—:;H}E' << f; (10-86)

so that we can replace the average flux in the moderator by its asymp-

totic form

R (E)~ £z, E (10-87)

P

where

. REVes §20,
§2e = Vg + iy : (10-88)
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If we now use this in the second term on the RHS of.Eq. (10-84) corres-

ponding to slowing down in the moderator, we find that it becomes

€My
N
Vau R (E) AF_Z"LE‘)Q - VuR(E) _{_’ ~ {1089)
A (1-<lM) E' SZ5lE

Hence, by substituting this NR form into Eq. (10-84), we will have
eliminated the appearance of the moderator flux in the equation for
the fuel region, thereby decoupling this equation from the moderator
region balance equation.

It is useful to make one further manipulation before inserting
the NR approximation for the moderator into Eq. (10-84). Uding the
reciprocity theorem, one can demonstrate that the escape probabilities

relating the fuel and moderator regions must satisfy
P(E) ZF(E) Vi = By (E) ZMe)V, (10-90)

If we furthermore assume that absorption is negligible in‘the moderator

[ gf:“(E) " 2§M(E) 1, we can rewrite (10-89) as

€l
Vi Ba(B) | g2 SHE) R, E) V. R (E) _éf_E)_ (10-91)
(I~} E' e E
Hence our slowing down equation for the fuel region becomes
Bl
£ (E) = \-.P{E_)] AE'Z’SF(E') (E.‘) 10-
£5D)E) [-% R, (10-92)

E ZE)
+ PF (E) gc E
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Once we know PF(E), we can solve this equation for géz(E)--either
using analytical approximations or brute force numerical methods--and

thereby calculate the effective resonance integral for the rescnance:

T = g_f; dE (};F(E)déCE)- (10-93)
=

Notice that for a homogeneous system, PF —» 0, and Eq.(10-89) reduces
to our earlier slowing down equation (10-83).

2) The Rational Approximation

But we still need to calculate PF(E). To facilitate this cal-
culation, it is customary to introduce the
“flat flux approximation" in which PF(E)
.and PM(E) are obtained for uniform

(spatially independent) sources of TN

neutrons in the fuel or the moderator.

AN

Although this approximation might be
reasonable far from the resanance
energy, it is certainly not strictly valid at this energy since the flux
in the fuel element is quite strongly varying due to self-shielding.
However, once again we are saved by a fortunate cancellation of errors.
[God watches out for drunks, fools, and reactor physicists.]

Hence we are now faced with calculating PF(E), the probability
that a neutron born uniformly and jsotropically in the fuel makes its
next collision in the moderator. Fortunately, the resonance integral
is not overly sensitive to the detailed behavior of PF(E). In fact,

it is usually sufficient to introduce a particularly simple approximation
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for PF(E) first suggested by Wigner. First notice that we know the

limiting behavior of PF(E) for both small anrd large fuel lumps. For

small fuel lumps, obviously

REY—= 1 as gﬁ‘_— -0 (10-24)

For large fuel Tumps, we can effectively use the black 1Uhp result

L (€ s Ve (10-95)
S B-(€) = 4\/5( S o6

. ??ﬁ"fﬁese Timits in mind, Wigner chose a simple interpolation formula

i ‘ietween the 1imits (known as the "Wigner rational apprbximation")

(Se/ 4\ 5,F)
|+ (Se/4V:ZF)

R(E) =

(10-96)

It is customary to define a fictitious macroscopic cross .section

= Iv <R> (10-97)

where < R 7>, is the mean chord length of the fuel lump. One can simi-

larly define its microscopic counterpart

Ze Se
O = 3 =
© Ne 4Ve Ng

(10-98)

Notice that these quantities represent the effective cross section for
neutron removal from the fuel lump via Teakage to the moderator. Using

this definition, we can now write Wigner's rational appfoximation as

Ee . 0 .
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To proceed further, we can now return to Eq. (10-09) and introduce
the standard approximations for the scattering integral characterizing

the absorber. First, in the narrow resonance approximation (N.R.)

Ede

AE' st(E')CbE(E') y i.e' _ (10-100)
(- ) E ez E
e

Hence we can solve for the flux as

R (E) = 0- E{EﬂfF RE)E (10-101)
L fféﬂp

The corresponding N.R. approximation to the resonance integral is then
~— - |dE @& F F. F] }
in"fr: o OoF+ R (0:-G.7)| | (10-102)

or using the rational approximation {10-99)

Te= |dE (GG (10-103)
E g F+ Te

In a similar fashion, the wide resonance or N.R.I.M. approximation for

the absorber implies

Edlr

B FERE) | sre) & (€) (10-104)
(- o) E

This approximation leads one to
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T =ﬁ_’5 Be G (10-105)
TR R (6

or in the rational approximation

- o=F
= |dg Pl (10-106)

It is informative to compare these expressions with the earlier

results we obtained for homogeneous systems:

Yiow (T'QF
e = Xdég £ 5D/0%
|+ (%F+ GD/0p (10-107)
hom £ Tp GaF
e e
i O;F.g-(];,
where we define the potential scattering cross section per fuel atom

of the fuel-moderator mixture as
Op = =% 4+ GpF (10-108)

Notice that by replacing the potential scattering cross section in

(10-107) by

TpF + (¢
Tp = Ve e (10-109)
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we arrive at the same value of resonance integral. Hence we can very
simply adapt the schemes used to calculate homogeneous resonance inte-
grals to heterogeneous lattices by merely replacing Up by OB;:+ (e
It is useful to alsc give the resonance integrals for the more
general case in which there is moderator {such as oxygen or carbon)
admixed into the fuel. If we identify this element by a scattering
cross section, CTaz: » then our two approximations to the resonance

integral become

F
T = J:i‘E s v
MR T JE T\ (0RO L0 0o To)

(10-110)

T = 4E (@e+%a)0&
MOTE OzFe 0e + Tk

Two interesting limits of these resonance integrals are

Q) Tow + Je<< Oy 5 O"<<«Te

Then

~ SF A = VN
T = A+BIN > - (10-111)

) Ope +0:<< Gy 0">> 0%

In this case

T = C+ D (;%%i
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3) Empirical Correlations for Resonance Integrals
Very similar expressions have been verified experimentally in
a series of experiments by Hellstrand* who found the following

empirical correlations for oxide fuels

12 _ 16+ 2280 M) )

415 + 26.6 {5=/Me

(10-113)

H

I‘JB

for a temperature T = 20°C. These two forms have been found to work
equally well over the range of SF/MF examined. Repeated experiments

for the temperature range T = 20°C to 600°C can be fitted by

2 — T2®(1=20%) [H» 6(\‘7*&?)] - (10-114)

Strawbridge and Barry** have proposed a single correlation to fit all
of the Hellstrand data which is more commonly used in the analysis of

1ight water reactors

T2 _ by + 250+ [027dx — 0837 [T (0.5

Here ) [jzé;f 0 4 Dect —} 2
= FF
<KX Nz

*J. Hellstrand, J. App. Phys. 28, 1493 (1957)
Hellstrand, B1omberg, and Horner Nuc. Sci. and Eng. 497 (1960)
**Strawbr1dge and Barry, Nuc. Sci. and Eng. 23, 58 196—)
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and

.ZQIZE potential scattering cross section of fuel (599:1cy75
. G:0=38b)

NB= 0238 number density in fuel
<<E§§ = mean chord length

Degp = effective shielding factor (Dancoff correction)

Typical results from this correlation are shown for several different

fuel temperatures below:

WP
i & HELLSTRAND'S CORKLLATION FOR U0, RODS

+  HELLSTRAND'S CORRELATION FOR U-METAL RODS 299K

== METAL-OXiDE CORRELATION

DR

oy . 1
[; ¥ ‘.J-__” fI

P an ™

0 uLw g

. Comparison of metul-oxide resonunce integral

coireliiion with Hellstrand’s correiations for isolated

rods.
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4) Rod Shadowing and the Dancoff Correction

Thus far we have treated resonance absorption in a fuel Tump
as if the unit fuel cell were truly isolated from other fuel cells.
But, in fact, if the fuel rods in a lattice are separated by a modera-
tor which is not many mean free paths thick, it is possible for neutrons
with energies in the resonance region to pass from one fuel Tump to
another. This invalidates our earlier calculation basedtupon coliision
probabiTities, for in that calculation we assumed that the escape pro-
bability from the fuel PF implied that upon escaping from the fuel,
the neutron would suffer its next collision in the moderator. But if
other fuel lumps are nearby, this next collision might also occur in
the fuel. Hence we should try to calculate a modified escape probab-
ility, P; , that a source neutron born in the fuel suffers:its next
collision in the moderator--even though there may be fuel elements
adjacent. Then we can use our earlier analysis, merely reb]acing
p

3*
F by PF .

Recall that the escape probability for a given region could be

_ _ K2
ﬁﬁam a4 (1-e~ %)

f&%ﬁ&f% na (10-116)

written as

Now to handle a periodic array of fuel rods, we merely extend the chord
under consideration in the integration to see whether it intercepts

further fuel rods

/kVZﬂMZZ'ZZ%r52£M£D
ﬂéﬂ?c:4étﬁv THE
LANT cAARSTEN

i

CORRELTION).
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tence the contribution to the integral from a given chord should he

reduced by
_ 5NN A A% L7
2N, - ) ~Z2tKFy ~ZMku
(- ) + %M (1-e7 %)+
m
collision transmission (10-117)
probability probabilities through
in region F2 M1 and F2

We can develop a useful approximation to the integral as follows:

Define the modified collision probabilities:

P& = probability that a neutron incident on the moderator after i
previous traversals of fuel will collide in the moderator
P; probability that a neutron incident on fuel after i previous

traversais of fuel will collide in fuel

Then we can write

- (B O-R0-R)R (10-116)
 O-RI-R0-RRIRE ]
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If we replace all P&—v Pﬁ and P;rv Pg, then we can sum this series to

find
R;:
R* = B i
F F - U' Rq‘.')“"ﬁf) (10-119)
Usually one writes
Ro= (- C) (10-120)

where C is referred to as the Dancoff correction. To handle Pg, ohe

uses the approximate form

R* ~ ZF<RX% ¥ ; (10-121)

then one finds
- (-
Pyl ¢ (1- £RR0: ) (10-122)

12

pp*

The Dancoff factor has been tabulated in numerous references, among them
ANL-5800.
One can now merely use PF' in place of PF in the calculations of
the resonance integrals for the lattice of interest. The effect of
such a correction is to decrease the surface area of a single fuel
element by a factor of 1-C. This fact is of particular use if one of
the various correlations for the resonance integral is to be used.
Notice that decreasing the surface area of a fuel Tump will reduce

the corresponding resonance integral from its value for an isolated
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fuel element. Hence one finds that the Dancoff correction for neigh-
boring fuel elements corresponds effectively to a correction for the
shadowing of one fuel element by another.

5) Generalized Slowing Down Equations for a Two-Region Cell

It is possible to give a more rigorous derivation of the coupled
slowing down equations (10-$4) and (10-85) characterizing a two-region
fuel cell. We begin by recalling the integral form of the neutron trans-

port equation under the assumption of isotropic scattering
P(rE) = ﬁ?r TG v, r:) JdE f (7E'-E) B(FE)

where

FF,'CB—- A"r;‘i;.—:":\: eXP[ I(F*F' —]

. . )
)= [ 20 B9

Notice that the source term has been eliminated from the equation, con-
sistent with our interest only in resonances which are many collision
intervals below the source energy. 1In this spirit, one usually attaches

the boundary condition

lim @C\?‘“,E\—_- )/E : (10-142)

E= oD
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Next we divide the volume integral into
two contributions, one from the fuel
volume VF and one from the moderator

volume V

M E/:(F
@(‘F,E)_ TG E)jcje LFEN PRE)
(1-ols)E'
(10-143)
Jﬂ Y )
& TR E) [aE' (s"f?iﬁ:k‘)
- |
Vi . H
Now define
PR E) = ZM [P T(e 7 E) (o140
Vi

This is the probability of a first collision in the moderator due to a
unit isotropic source at r in V emitting neutrons of energy E. Hence
the general escape probability for the fuel lump s obtained by inte-

grating this quantity over V. and dividing by V
F F

P-(E) = fﬁr?,:(?”a‘ j&%f”ﬁT(hr,E) (10-145)
VE Vi
In a similar fashion, we can define the average escape probability for
the moderator as
RE= s L FaTERD
Vi Vo K
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It is also useful to recall the definitions of the volume averaged

%le) = - jc*?\(‘ blie)
\

fluxes

(10-147)

- L g BGE
% () VHLA% E)
A
Now volume average Eq. (10-143) over the fuel region

e
[as@m) L Lo Tt e /z\gzqe)(ﬂrt)
VF Vi (-dg)E'

Ebf, (10-148)
L [CFV" TFEE) [4e &) EE)
Vv [ ER
VE Wy

or using our above definitions

Bl
ICE z’F\/ 4"‘*’ [I-R@e] j;E‘ £7(e) Pe)
(l'dF)E'
E/o(ﬂ i ( P ( 10- ]4(;)
) CEE) Dy
4ﬂvajr~ Rl(YL f;k 3 0(,1)5-

Ve E
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Here we have identified the number of first collisions in the fuel Tump

V-V (F, E) = Z(.F(E) d’r' T(f‘, FI E) (10-150)
Ve

Next, add and subtract PF(E) and PM(E) to rewrite this as

Eble Eld
ZFhE) = [\-R(ED[de £ RE) + Ru(E) [ £E) R E)

e (-4} E (1-dn)E'
E

E

e
+ -\&—ﬁ [R;(E)—%C\?,E)] A zZ"[E)d}(l(‘[E)
FV (\~de)E (10-151)
s E

=

4 | [plee-niell de Zee) BlRe)

1 t
8 CI—AH)E'
One can write a similar equation for the moderator region by merely
interchanging the F and M subscripts. Notice now that Eq. (10-)51)
would be identical to our earlier Eq. (10- 84) were it not for the
presence of the last two terms. These terms may be though of as a
correction to the flat flux approximation, since they will vanish if

the narrow resonance is applied to the terms, since then one assumes

, !
HEE) ~ = (10-152)
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is independent of position. Hence, in addition to providing a formal
basis for the development of the volume-averaged slowing down equation
(10- 84}, Eq. (10-)51) also provides a consistent means to estimating
the error introduced by making the flat flux approximation.

B. Modifications in the Treatment of Fast Fission

Although the number of fast fission events which occur in a
thermal reactor is not large, such reactions can be quite significant
since they can provide a sizeable fraction of the excess reactivity of
a core. It is particularly important to take some account of the fact
that the probability of a fast fission reaction occurring is enhanced
somewhat by fuel lumping. Thus the fast fission factor € 1is increased
from its value for a homegenecus reactor core.

The calculation of heterogeneous modifications to the fast fission
factor is a subject which is considered in detail in several of the
standard references, e.g., Lamarsh, pp. 402-407 or Megreblian & Holmes,
pp. 692-698. We will focus our attention instead on the more practical
question of just how heterogeneous effects are included in the treat-
ment of fast fission in conventional fast spectrum codes.

The rate at which fast fission reactions occur depends upon the
magnitude of the fast neutron flux in the fuel region. From our earlier
discussion, we expect this fast flux (say, in the energy range .821 MeV
to 10 MeV) to be somewhat larger in the fuel thar in the moderator,
since once neutrons have entered the moderator, they are rapidly slowed
down below the fast fission energy threshold. Hence we might expect
that a homogeneous fast spectrum calculation will tend to underpredict
the amount of fast fission occurring, since it will use the average.

flux characterizing a homogeneous systenm.
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To correct this, we will follow a procedure*very similar to that
used in our treatment of thermal fission-~that is, we will define a
"fast utilization factor® (similar to the thermal utilization factor)
which is the ratic of the rate of neutron removal in the fuel to the
total rate of fast neutron removal. Notice that we include in this
definition all mechanisms for neutron removal, including neutron
absorption, elastic and inelastic scattering. Then it is evident

in analogy to our treatment of p that

£F Ve B
-FF = 2“.:\/':{7, . Z;{VM&;( (10-123)

Here, Zfr js the remoyal cross sections for fast neutrons. We wiTl

now introduce a flux "fast advantage factor", defined as

Se

C#%/a‘% (10-124)

(Notice that in the fast range, the fuel is now at an advantage in
competing with the moderator for neutron absorption). Using this defini-
tion and our expression for fF’ we can solve for the fast advantage

factor in terms of the fast utilization factor as

¢ = A ( £\ A2-G)\e ( e ))

ZF Ve W8 )7 ARGV (V- Ko

(1p-125)

where we have defined

|-C = é'/ft :

(10+126)

*Proposed by R. C. Hellens and described by Strawbridge and Barry.
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One usually normalizes the fluxes appearing in this ratio such that

%: Ve + é%\lﬂ =1 . (10-127)

Once we have determined SfF » we can calculate new group constants
characterizing the fast range which include the effect of fast flux
enhancement due to fuel Tumping.

O0f course, the success of this technigue hinges upon our ability
to calculate PF' One could always use brute force methods based upon
Monte Carlo calculations. But we will instead introduce an alterna-
tive technique based upon the methods of successive generations using
collision probabiljties for the moderator and fuel regions.

To this end, we will define the following collision probabilities
for a given fast energy micro-group in the fast spectrum code energy
mesh
P. = probability that a neutron born uniformly and

isotropically in the fuel will escape the fuel

region if every collision removes the neutron

from the fast group

P, = probability that a neutron born uniformly and

isotropically in the moderator will escape

the moderator region if every collision re- W
M

moves the neutron from the fast group

We will also introduce two additional quantities
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é?F = probability that a neutron entering the fuel region will
be removed from the group if every collision removes the

neutron

é?M = probability that a neutron entering the moderator region
will be removed from the group if every collision removes

the neutron

Here €F and@ y are referred to as the "blackness" coefficients of the
fuel and moderator regions respectively. Notice we have modified the
usual definitions of Pp and Py by specifying that all collisions re-
move neutrons from the fast group. But of course this is not strictly
true. In general, only a fraction 1-C:= ék%ét of the collisions re-
sult in removals, while a fraction C remain in the region. For example,
in the first generation, if one neutron is born in the fuel,

P escape fuel region

F
(1-PF) have a collision in fuel
(1-PF)(]-CF) are removed from fast group
Continuing on in this fashion, in the second generation, assuming after
each collision the neutrons are still uniformly distributed,
(1—PF)CF remain in rod
(1-PF)CFPF escape fuel region
(1-PF)CF(1-PF)(1-CF) are removed from group

and so on. Hence we can sum the escapes from all generations to calcu-

late the effective escape probabilities:
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=B+ U-PF)CFPF+ (l'PF)CF(\-PF)CFR: *

PF (10-128)
- ) - CF L\'PF)
Similarly
P4
pr = _
M | - CH“‘PH) (10-129)

[Note that an essential ingredient in this calculation was the assumption

that each generation remained uniformly and isotropically distributed.]
We can perform the same stunt to calculate the effective blackness

coefficients. Suppose one neutron is incident at the fuel surface.

Then

63F have a colTision
G?F: (1-CF) are removed from fast group
In the second collision generation
é FCF remain in the fast group
@FCFPF* escape fuel region in all successive generations

*
G?FCF(1-PF ) are removed from group in all successive generations

Hence we can add all removals to find

GF*

6F L\“ CF) ¥ 8{: Cp L\‘PF*)

(10-130)

)i

Q?F (1- Ckrji;*)
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and

@* = Gy (V- G B9 (10-131)

Now to calculate the fast utilization fF' we will use the above
quantities to follow a neutron born in the fuel as it suffers collisions

in the fuel or passes back and forth between fuel and moderator

] neutron born in fuel

1-P;F removed from fast group

B in fuel

P#‘ enter moderator

Pex 6,\,* removed from fast group

' in moderator

P;%(]— {ﬁf) reenter fuel
* x

P (1- ,)fgﬁ removed from fast group
F éﬁ* F in fuel

Pﬁ*l]- Eﬁ;)(1-€§i) e?ter moderator

Thus, summing all removals in the fuel due to this source neutron to

calculate a fast utilization for the fuel

£ = 1R+ R*0-800% + R (-ED0-69(-89)4%+

or summing

Ry
e = 17 T0am e
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In a similar fashion, we can calculate a fast utilization factor for
the moderator
R G
{: ¥ M -
= ¥ - 10-133
nF |- (=gH0-E) o)

We can calculate similar fast utilization factors for the situation in
which the source neutron is born in the moderator by simply reversing
region subscripts
x *
‘F = b @F Py (10-134)
F * X -
H | - (I- @XN-G)

and
= |- R
MM )—(1—61:*)(\73«*) = (10-135)

Hence, to calculate the fast utilization characteristic of the fuel, we
simply weight the utilizations by the fractional source in each region
I;FF Qp VF + .FFH Q" \/n

s:‘: = (10-136)

Qe Ve + G W

_where Qj is the source in region j. The source QF is the sum of the

direct fission source, X(E), and the slowing-down source in the fuel
region of all upper groups. The source QM is simply the slowing down
source from the moderator regions of all upper groups.

To calculate PF’FHP @F,Q?M,ﬁone uses our earlier work on collision
probabilities, with 1iberal help from Case, de Hoffwann, and Placzek.

Here we merely note
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R=1-R (10-137)

where PC is tabulated in Case, et. al. Then

Br = <R» 4T B (10-138)

where~<R:>F is the mean chord length in the fuel. Next, é?M is calcu-

lated as a Dancoff factor for the moderator

— T ZM<RM

- |- e
e 1+ (10) SR,

T= {["T(l”yﬁ: *I}%ﬁ ~.08

(for a square lattice)

(10-139)

while

P, = __@1__,
=

<K>1 ftﬂ (10-140)

One can now calculate this fast utilization and the corresponding
fast advantage factor for each of the fast groups, and then use these
quantities to adjust the cross sections in these groups for heterogen-
eous effects.

Actually, the inclusion of lattice effects in fast fission is not
hearly so critical as in thermal group constant generation, since errors

in the treatment of fast fission rarely lead to an error of over several
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tenths of a per cent in core multiplication. Hence rather crude methods
are usually sufficient for accounting for lattice heterogens1 ties in

fast fission for thermal reactor design.

C. The Inclusion of Heterogeneous Effects in Fast Spectrum Codes

As we have seen, the most significant effects of a heterogen-

eous fuel arrangement on the calculation of fast group constants enter

into the treatment of resonance absorption, although modifications are
frequently also included in the treatment of fast fission.

-~ The dominant heterogeneous effect in resonance absorption is that
of self-shielding which substantially reduces the value of the resonance
integral. One can include this effect in the calculation of resonance
integrals by using the expressions obtained in section 10-2-1 utilizing
the rational approximation for the escape probability from a fuel Tump.
[One could also simply use one of the various empirical correlations
for I.] It is customary to account for rod shadowing effects as well
by including the Dancoff correction factor in the calculation of I.

The resonance integral can then be used to obtain the corresponding

resonance escape probability

B (10-153)
z -

P‘-‘—' exp [— g_
which enters into the fast spectrum calculation.
Frequently, the resonance escape probabilities for each group are

adjusted (fﬁdged) so that the total resonance integral agrees with an

empirical correlation (aTthough the amount of resonance absorption
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assigned to each microgroup in the fast spectrum code will vary with
the details of the calculation). For example, one scheme might be to
multiply every resonance escape probability Pn for U238 by the same
fudge factor L, and then vary L until 128 when calculated assuming
zero absorption for all other elements agrees with the Strawbridge

and Barry correlation (this is known as the '*-search", where
18
OC)*-E \;P )

One also scales the cross sections in the fast microgroups to
account for fast flux peaking in the fuel which tends to enhance fast
fission,

With these adjusted resonance escape probabilities and cross
sections, one can now calculate the fast neutron energy spectrum and

generate the fast few group constants.
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CHAPTER 11: GENERAL ASPECTS OF NUCLEAR REACTOR CORE DESIGN

A SURVEY OF DESIGN PROBLEMS FACED BY THE NUCLEAR ENGINEER

A. Introductory Comments on Nuclear Design

The primary responsibility for the nuclear design of a reactor

within numerous constraints imposed upon the reactor operation. The
neutronic analysis and design of a reactor core is highly interdepen-
dent upon other areas of core design, including thermal-hydraulic design,
structural analysis, economic performance, and so on. The primary tools
used by the nuclear engineer in his analysis of the reactor core

consist of a multiplicity of computer programs or codes which are

used to simulate the nuclear behavior of the reactor.

The complete nuclear design of a given core configuration is per-
formed many times--initially to identify design constraints, then to
refine the design while interacting with thermal-hydraulic and plant
design--then,finally, to establish a reference design which provides a
calculational base against which optimization calculations can be com-
pared. Naturally, during the latter stages of the design process, the
analysis becomes much more detailed (and expensive) as one narrows in
on the final design configuration.

This design process is very similar to those utilized in other
fields of engineering. One first must attempt to define the various
design constraints which include considerations of system performance

(both from the aspect of reliability as well as economic performance)
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and safety criteria. One then attempts to synthesis a preliminary de-
sign, drawing on available information such as plants already in opera-
tion, experimental mockups, and frequently, old-fashioned intuition.
The preliminary design results in a set of specifications'invo1v1ng
quantities such as fuel enrichment, coolant flow rates, core configura-
tion, reload patterns, etc.

One next performs a detajled analysis of this preliminary design
in order to evaluate its predicted performance and verify whether it
conforms to the constraints imposed upon the system. For example, one
would want to calculate the core power and temperature distribution,
the pressure drop of the coolant, the fuel lifetime, coolant flow condi-
tions (e.g., DNBR). When possible, these calculations are compared
against experiments in order to validate the computational models which
are used. A detailed evaluation of the preliminary design will then
lead to more detailed designs and analyses as one attempts to optimize
the tradeoff between system performance and design constraints. As a
final design is approached, one attempts to define detailed system speci-
fications (frequently allowing for several alternative subsystem designs)
as a preliminary to actual core fabrication.

B. Types of Design Problems

The various functions of a nuclear designer can be grouped into

one of several classifications:

(i) Core criticality and power distributions: Of course the first
concern of the nuclear engineer is to determine the multipli-
cation factor or criticality of a given core configuration.
He 1s concerned as well with the determination of the core

power distributions since these are of central importance in
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the corresponding thermal analysis of the core. For example,
one would like to design a core which will result in a flat
radial and axial power distribution through core Tifetime
while at the same time providing sufficient reactivity to
yield adequate fuel burnups while maintaining adequate reac-
tor control over core 1ife. The analysis of the core power
distribution or flux distribution involves consideration of
the arrangement of fuel assemblies, control elements, fis-
sion product concentrations, and moderator densities (e.g.,

moderator void distributions).

(i1) Reactivity coefficients: A closely related analysis is

GOTHA ANDTHER
LOAD OF MATERIAL
SR8 THIS CHARTER,

concerned with the varjous mechanjsms which affect core reac-

tivity. One is particularly interested in the various reac-

tivity coefficients which characterize the transient behavior
of the reactor. In order to determine such coefficients,

some information concerning the temperature distribution
through the reactor is necessary. Then one needs to deter-
mine the effect of coolant density changes--~that is, the so-
called coolant void coefficient of reactivity. Of comparable
concern is the Doppler coefficient of reactivity, which of
course involves the study of resonance absorption in the reac-
tor. One must also study reactivity coefficients character-
1zing thermal expansion of the structural material comprising
the core. Such calculations are of vital importance to reac-
tor safety studies.

(111) Fuel Loading Requirements and core arrangement: Of course the
nuclear designer must determine that fuel loading which will

guarantee reactor criticality over the desired core
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Tifetime. This requires compensating for both fuel deple-
tion as well as reactivity effects due to both temperature
feedback and fission product buildup. At this point various
details of the fuel design enter such as the moderator to
fuel volume ratio, the fuel element dimensions and configura-
tion, enrichment, and so on.

(iv) Reactivity control calculations: Closely related analyses
must be performed to determine the amount of negative reac-
tivity which must be included to compensate for the excess
reactivity contained in the initial fue] loading as well as
to allow for flexible and safe reactor operation. One must
allocate this reactivity among several different control
mechanisms, including movable control rods, soluble neutron
poisons in the coolant (chemical shim), and neutron poisons
which burn out over core life (burnable poisons or mechani-
cal shim). The study of such control mechanisms involves a
fair degree of black magic, coupled with both djffysion and
transport theory calculations to account for the very highly
absorbing control elements. Such calculations are neces§ary
to perform the detailed design of individual control rods,

as well as control rod patterns and withdrawal and insertion

You Look A
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sequences (rod programing).

(v) Depletion analysis: During reactor operation the fie] com-

position will change as fissile 1sotopes are consumed and
fission products are produced. The nuclear designer must
monitor these processes over core 1ife in an effort to ascer-

tain fuel composition and reactivity vs. energy removal.
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This requires studying the depietion and production chains

235_U238 or U233-Th232

for the principal isotopes (e.g., U
systems} coupled with the equations determining the neutron
flux in the core. This analysis is closely related to the
topic of nuclear fuel management in which one tries to opti-
mize the fuel Toading, arrangement, and reloading in order
to achieve the most economical power generation within the
design constraints (e.g., safety margins) placed upon reac-
tor operation. The so-called "fuel cycle" is characterized
by the fuel 1ifetime, the fraction of the core refueled from
time to time, the power density and specific power, and the
method of managing the bred fissile material. The choice
of a fuel cycle will invariably represent a compromise be-
tween economic and engineering considerations. The primary
engineering Timitions are usually the maximum fuel tempera-
tures, maximum coolant temperatures, control margins, and
the maximum allowable exposure of the fuel. Such quantities
must be monitored throughout core 17fe.

From this discussion it is apparent that the responsibilities of
the nuclear designer are quite varied and numerous. He must establish
the 1imits upon and determine the values of the fue]-to?moderator volume
ratio, the fuel rod diameter, and the fuel element arrangement. The
fuel loading requirement must then be determined taking intoc account tem-
perature and power reactivity defects, fuel depletion, and fission pro-
duct buildup. Next control requirements must be established, including

reactivity requirements, control rod geometry and patterns, and the
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possible use of chemical shim and burnable poisons. The fuel distribu-
tion and refueling arrangement must then be studied in order to achieve
economic fuel management within the constraints imposed by safe reactor
operation. The kinetic characteristics of the reactor must be determined
for safety analyses of core operation, including the various reactivity
coefficients which arise, fission product poisoning, and the analyses

of various hypothetical accidents.

A1l of these design functions rely upon the basic theory of nuclear
chain reactions that we have developed in the preceding chapters. How-
ever because of the accuracy and detail of the information required for
actual reactor design, rather sophisticated applications of this theory
are necessitated, which, in turn, require the extensive use of modern
digital computers.

C. Reactor Calculational Models

As we have mentioned, modern nuclear reactor design depends heavily
upon various mathematical models of the nuciear fission chain reaction
which are studied and analyzed using digital computers. The computer
programs or "codes" which represent these mathematical simulations of the
reactor core are generally quite complex and frequently are the result
of many years of extensive development and testing at the various nuclear
laboratories in this country and abroad. More recently, such codes have
become the subject of varjous proprietary restrictions and while their
general features are usually common knowledge, the details of the codes
used jn present day reactor design are classified as proprietary informa-
tion by the reactor manufacturers. Hence our discussion here must be

of a general nature.
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One can generally group such codes into one of four different types:

B(i) cross section Tibrary handling codes: Such codes are used

to manipulate and arrange the massive amount of data on

nuclear cross sections contained in such sources as ENDF/B.

In particular, such codes must be used to prepare this
data in a form suitable for input into other reactor design
codes.
multigroup constant generation codes: As we have seen, most
S analyses of nuclear reactor cores are based upon the multi-

group treatment of the neutron energy. The group constants
necessary for such treatment must themselves be generated
by neutron energy spectra codes.

(i11) static design codes: The most common type of calculation
involves the steady state analysis of the reactor criticality
or the determination of the neutron flux distribution within
the core. Such information is required for accurate predic-
tions of the fuel loading, power distribution, temperature
dependence of reactivity, excess reactivity, shutdown margins,
shielding requirements, and other quantities.

(iv) time dependent codes: One is basically concerned with two
types of time-dependent calculations. The first of these
concerns changes in the reactor properties over the core life
such as fuel depletion or fission product bui]&ﬂp. Hence
the time scale is of the order of weeks or months. The
second type of calculation is concerned with the short time

response of the reactor to reactivity perturbations on time
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scales of minutes, seconds, or less and is of coasiderable

relevance to both reactor operation and safety analyses.

D. Design Responsibilities

As we have repeatedly emphasized, the neutronic anmalysis of a

reactor core is only one facet of core design. And the core design itself

is only a part of the myriad of considerations which are required for

the design of a modern nuclear power plant. A very rough classification

of these design responsibilities are as follaws:

(1)

(1)

(i11)

User (utility): The electrical utility owns and -operates
the plant. Their primary concerns are minimum energy costs,
plant reliability and safety, and minimum environmental

impact. Hence the user establishes the gross system require-

ments and evaluates the proposals submitted by the various

reactor manufacturers.

Nuclear equipment manufacturer: Designs and manufactures

the nuclear steam supply system (the reactor, steam generator,
and primary coolant system).

Architect-engineer: Designs the non-nuclear portion of the
plant, including the containment building, piping, turbo-
generator, condensor, and electrical switchgear. (If the
nuclear equipment manufacturer supplies these non-nuclear
components as well as the NSSS, the plant is sajd to be con-
structed on a "turnkey" basis.) The architect engineer also
coordinates the engineering details, supervises the construc-
tion and inspection of the various contractors working on

the plant. It subcontracts the manufacture of the non-nuclear

equipment and the plant construction.
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It is evident from these descriptions of various design respon-
sibilities that the design and construction of a moedern nuclear plant
is an extremely complicated business involving the coordination of
many different disciplines. Although our concern in this text has
been with the nuclear design of the nuclear reactor itself, it is
important to keep in mind the intimate relationship between nuclear
design and non-nuclear aspects of the plant design.

E. How to Design a Reactor--Revisited

Perhaps the simplest way to illustrate the various ways in
which the design of a nuclear reactor is constrained within various
engineering limitations is to review our earlier discussion in Chapter
3 of the steps involved in reactor design.

1. Determine the plant electrical output

The electrical output of the plant is usually chosen by the
utility ordering the plant. Since the cost per unit of electrical
energy generated decreases with increasing plant size, there is incen-
tive to build as large a nuclear plant as would be allowed by the A.E.C.
However, there is also the rough rule of thumb that a utility is re-
Tuctant to build a single generating unit that is larger than 10% of
its present generating capacity--a feature which many nuclear plants
exceed,

2. Determine the maximum 1inear power density

We will see later in section 12-2 that the linear heat flux
passing from the fuel rod into the coolant is given by a simple rela-

Q= 4k (T -T)

tionship
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where T$lis the coolant temperature and It is the centerline temperature
of the fuel element. Since the ‘coolant temperature T;iis usually deter-
mined by other considerations, one must 1imit the linear heat flux in
order to prevent the fuel temperature from exceeding the fuel melting
point (roughly 5000°F for UOZ)' For example, this corresponds to
roughly

CEIWW ~ 20 w/ft

in 1ight water reactors.
3. Determine the maximum-to-average power density ratio
The max imum-to-average power density ratio depends upon a
number of factors such as fuel arrangement, the spaces between the fuel
assemblies, the presence of coolant slots when control rods are with-
drawn, and so on. Furthermore, this ratio wil] change as a function
of core burnup. One must determine the maximum value of this ratio
over the operating 1ife of the core.
4. Determine the fuel rod size and pitch
A number of factors must be considered in determining the fuel
rod diameter and spacing. For example, an increase in fuel rod size
implies more fuel per nod--hence more energy from the rod for the same
burnup. But the effective heat transfer area of the fuel assemblies
is correspondingly decreased, implying a lower power density. In a
similar fashion, the effects of changing the fuel-to-moderator volume

ratio must be considered. Since most LWR cores are undermoderated,
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decreasing this ratio will increase the core reactivity for fixed fuel
enrichment. It will also increase the coolant channel cross sectionsl
area, hence decreasing the coolant pressure drop through the core and
thereby decreasing the required coolant pumping power. Increasing
the fuel rod diameter for a fixed fuel-to-moderator volume ratio wif]
increase the core diameter, thereby implying increased pressure vessel
size, as well as a larger fuel inventory. Many such factors must be
weighed against each other in the determination of the fuel configura-
tion.

-'5. Determine the thermal efficiency of the plant

In order to determine the thermodynamic efficiency of the

nuclear plant, one must study the thermodynamic cycle efficiency of

the various thermal processes (both heat generation, heat transfer,

and the conversion of heat energy into mechanical and finally electrical
energy).
6. Establish the core volume

Here one can simply use

core volume = plant electrical output
efficiency x power density

To determine the core power density, one can estimate

power density = average linear power density
(fuel rod p1'tt:h)';I

7. QDetermine the excess reactivity requirements and the fuel
enrichment

Here we need to consider a number of reactivity effects such as

y temperature and power defects, fission product poisoning, fuel depletion,
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as well as allowing sufficient reactivity control for power level
changes and for computational uncertainties.
8. Optimization
Certaiﬁly the most difficult and éxpensive facet of the design
involves optimization to achieve minimum electrical genefation costs
consistent with operational requirements. Numerous parametric studies
over a broad range of variables must be made in order to zero in on

an optimum design.

I1.” CONSTRAINTS ON REACTOR CORE DESIGN

A. Nuclear Analysis
We have already outlined the various types of calculations

required in the nuclear analysis and design of a reactor core. These
include the calculation of core criticality and power distributions,
the determination of reactivity coefficients, fuel loading require-
ments and core arrangement, reactivity control calculations, fuel de-
pletion studies, and reactor safety analysis. There are numerous con-
straints imposed on such nuclear design, Of course, the core composi-
tion and configuration must be chosen such that sufficient excess reac-
tivity 1is available for power generation over a reasonable time period
(usually on the time scale of years). The reactivity control must be
capable of insuring the safe and reliable operation of the reactor over
core Tife. And these requirements must be met while at the same time
minimizing the economic cost of the power generation. These constraints

are frequently in conflict with one another. For example, there is
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incentive to operate the reactor at the largest possible power density
consistent with maintaining fuel and coolant temperatures below limits
set by safety considerations. Yet such a Eigh power density is fre-
'quéntly not consistent with economic power generation over the entire
core Tife, since the flux and hence the power distribution will shift
as the fuel is depleted.

The nuclear analysis and design of the core cannot be decoupled
from other considerations such as the thermal behavior of the core or
the behavior of the various materials which comprise the core. This
can perhaps be understood more clearly by briefly describing the other
types of analysis which arise in reactor core design.

B. Thermal Core Analysis

The energy released in nuclear fission appears as kinetic
energy of fission reaction products and eventually as heat generated
in the reactor fuel elements. This heat must be removed from the reac-
tor core and used to generate electrical power. Below we have sketched
the sequence of processes involved in the transport and utilization of

fission heat energy:

fission product energy in fuel

thermal conduction across fuel, gap, and clad

thermal conduction-convection from clad surface into coolant
forced thermal convection in coolant primary loop

production of steam in steam generator in PWR NSSS (this
occurs in the reactor vessel in a BWR NSSS)

conversion of steam energy into mechanical energy in turbine

condensation of wet steam discharged from turbine {and
subsequent return as feedwater to steam generator)
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The study of each of these processes is most properly the concern of

the mechanical engineer. However since they have such a significant

{4§LQAZM95m3
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bearing on the huclear design of the core, we will devote a considerable

portion of Chapter 12 to a summary of the thermal analysis of nuclear

reactor cores.

The primary objectives of the thermal analysis are three-fold:

(i) high power density (kw/liter): This will minimize the core
pressure vessel sjze.

(i1) high fuel specific power (kw/kgu): This minimizes fuel
inventory.

;<(111) high coolant outlet temperature: This maximimizes the

thermodynamic efficiency.

These objectives are subject to several very important constraints.
First, one must always insure that the fuel temperatures remain below
the fuel melting point. There are also 1imits on the amount of heat .
transfer which can occur between the fuel element clad and the coolant,
since if this heat transfer rate becomes too large, film boiling of the
coolant may occur which will result in a rapid rise in clad (and hence
fuel) temperatures. One must also insure that the coolant pressures
always remain below those which can be safely constrained by the core
pressure vessel.

Such constraints must be studied over core Tife, since as the
power distribution in the core changes due to fuel burnup or core re-
loading, the témp;rature distribution will similarily change. Furthermore,
since the cross sections which govern the neutronics of the core are

strongly temperature and density dependent, there will be a strong
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coupling between the thermal-hydraulic and neutronic behavior of the
reactor core. We will see in the next chapter that this coupling has
a strong influence on the manner in which reactor criticality calcula-
tions must be performed.
C. Mechanical Analysis of Reactor Cores

It is of vital importance to choose materials and design core
components-which can withstand the intense radiation, high pressure,
and high thermal gradient environment of a reactor core. Of central
concern is the mechanical behavior of fuel elements--which are subjected
to severe stresses, both internally due to fission gas and fuel swel-
ling, and externally due to high external pressures in the-coolant
or large thermal gradients across the clad or clad-fuel interactions.
But the mechanical design of additional core components must also be
considered. For example, the various internal structure required to
support the fuel, flow baffles, and control rod assemblies must be
designed to withstand the intense core environment. And of course
the reactor pressure vessel itself represents a formidable mechanical
design problem, since it must withstand extremely high pressures over
the operating lifetime of the reactor. Related mechanical design pro-
blems concern the fabrication and maintenance of the mechanical assem-
blies in the core. Particular attention must be made to refueling
operations.

D.  Materials Problems in Reactor Core Design

Materials used in nuclear reactor construction are subjected

to intensive bombardments by nuclear radiation. Over a period of time,

such radiation can dramatically alter the properties of these materials.
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For example, metals will become britt]e and swell, corrosion is enhanced.
and so on. The reactor engineer must be very careful to antifcipate
such radiation damage in his design.

These effects of radiation on reactor materials have become parti-
cularly important in today's maturing nuclear reactor industry. In
order to achieve the lowest possible power costs, nuclear fuel e]emeﬁts
must be used in a reactor as long as possible (i.e., high burnup).

Actually, the principal limitation on the amount of burnup is not the
5 239

loss of U23 or Pu nuclei through fissfon, but rather the attendant
radiation damage to the fuel and the cladding material which would Tead
to fuel element failure if the fuel is left in the core too long. Hence,
whereas nuclear reactors were limited by nuclear considerations during
the 1950's, and by thermal design during the 1960's, today's modern

power reactors are primarily limited by the radiation damage which can
be withstood by reactor materials.

Life will get even more difficult in fast breeder reactors because
of the intensity of fast neutron radiation. Several years ago it was
found that stainless steel (a major structural component of the fast
breeder) swells rather dramatically (several per cent) when irradiated
over long periods of time by fast neutrons. Such swelling must be ac-
counted for in the mechanical design of the fast reactor core (no mean
feat).

There are several types of high energy radiation present in a nuciear
reactor core. Most of these result from the nuclear fission reaction

itself, although lesser amounts arise feom associated reactions such as

radiative neutron capture. Of course most fission energy is carried by
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the massive fission fragment nuclei. These cause catastrophic damage

to the adjacent fuel material. But because of their large electrical
charge, the range of the fission fragments is extremely short (less

than 20 microns), and hence this damage is localized in the fuel to

the immediate vicinity of the fission event. A potentially more serious
type of radiation is that due to fast neutrons. Because of their
neutrality, neutrons have rather long ranges (as much as several mefers).
Hence they can damage material located anywhere in the reactor core.
Gamma radiation is also characterized by large ranges, but is of secon-
dary importance to fast neutron damage.

The actual effect of radiation on a material depends sensitively
on the type of material, the type of radiation, and the conditions
during the time of irradiation ( such as temperature). However some
general observations can be made. For example, for irradiated metals,
hardness, tensile strength and impact resistance increase, while duc-
tility decreases (corresponding to an increase in brittleness).

The signifiéance in radiation damage in reactor core design becomes
particularly apparent when one examines nuclear fuel performance in
Tight water reactors. As we have seen, it is the low cost of nuclear
fuel (relative to the electrical power produced) which is the princi-
pal factor in the low cost of nuclear power. That such costs are reali-

zable is due in nc small measure to the significant advances made in

nuclear fuel design and performance since the mid-1960's. Nuclear fuel

elements must be designed subject to several criteria intended to guar-

antee the fuel performance up the Tifetime limit:
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(i) The fuel temperature at the hottest point always must be
below the melting point,

(1) Axial fuel displacement influencing temperature distribution
and multiplication are tolerable only to a very small extent.

(i11) The cladding must remain leak tight.

(iv) The outer geometry of the fuel pin (length, diameter,
straightness) is subject to very small tolerances.

As we have seen, nuclear fuel elements are subjected to enormous
irradiation. They are furthermore subject to extremely large tempera-
ture variations. This is caused to a large degree by the rather poor
ability of the principal type of nuclear fuel, uranium oxide, to con-
duct heat. Such temperature variations place enormous thermal stresses
on the fuel elements and interact strongly with the changes in the fuel
induced by irradiation.

The principal radiation effects which must be accounted for in
fuel element design include:
fuel: creep and swelling, fission gas release, pcre migra-

tion, chemical changes, change in radiation and axial
fuel density profile
cladding: mechanical properties, swelling by void formation,
corrosion
fuel pins: radial heat transfer and temperature distribution,
mechanical and chemical interaction between fuel and
cladding, swelling and bowing of the pin
: changes of component geometry, interaction of pin and

spacers
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Such considerations have led to a number of modifications in fuel
element designs for LWR's. Current designs provide for increased void
volume to accomodate fuel swelling and fission gas release associated
with the higher burnups used in today's power reactors. The excellent
corrosion resistance of zirconium alloys has led to their almost exclu-
sive use as a cladding material. As the huclear power industry obtains
more operating experience with fuel design and behavior under long term
irradiation, it is able to develop advanced désigns capahle of very
high burnups and power densities.

The commercial success of the LMFBR will also be critically depen-
dent on the attainment of Tow fuel-cycle costs and therefore on the
satisfactory behavior of the fuel to high burnup. Only rather recently
has any experience at all in the behavior of materials in high fast
neutron flux environments been available. Perhaps the most dramatic
effect thus far observed occurs in structural materials such as stain-
less steel. After long periods of irradiation by fast neutrons, the
steel is observed to swell. Closer examination indicates the presence
of small voids in the irradiated material. OF course, such swelling
and void formation are highly undersirable in a reactor core in which
mechanical and structural tolerances must be kept very refined over the
Tifetime of the core (up to 30 years).

The voids are caused by fast neutrons which rip through the crystal
Tattice knocking atoms out of their lattice positions. These vacancies
tend to migrate together to form voids and hence induce the swelling.
By raising the steel to high temperatures the voids can be annealed out.
Unfortunately, at the anticipated operating temperatures of the LMFBR,

such swelling is quite pronounced and is still not thoroughly understood.
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E. Economic Analysis

The justification for nuclear power plants must reside in their
economic advantages over more conventional sources of electrical power.
The cost of electrical power can be broken down into a number of factors
including the cap1ta1 cost of constructing the plant, the annual cost
of operating and maintaining the plant, and the annual costs for fuel.
The capital investment required for the construction of nuclear power
plants is equal to or greater than that required for conventional power
plants. Furthermore, operating and maintenance costs account for only
a small fraction of the total cost of producing electricity. Hence
the primary advantage enjoyed by nuclear power is in the lower cost of
its fuel.

Nuclear fuel costs are much different than fossil fuel costs. A
number of charges other than direct materials costs are involved, and
these may lead or lag wutilization of the fuel material by several
years. There are a large number of rather sophisticated and expensive
processing operations required by the fuel before it is inserted into
the reactor core, and by the spent fuel after it is removed from the
core. The major portions of the fuel cycle costs include the charges
for uranium consumption (burnup charges), the cost of fabricating the
fuel element, the cost for recovery of spent fuel (reprocessing and
shipping charges), and working capital charges for the fuel fabrication
cost and the fuel inventory. [Working capital charges are interest
charges to be paid for the invested capital and are based on all of
the fuel in the reactor.]

Needless to say, the complexity of accounting for nuclear fuel

costs and capital plant investment requires rather sophisticated
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and expensive processing operations required by the fuel before it is
inserted into the reactor core and by the spent fuel after it is re-
moved from the core. The major portions of the fuel cycle costs include
the charges for uranfum consumption (burnup charges), the cost of fabri-
cating the fuel elements, the cost for recovery of spent fuel (reproc-
essing and shipping charges), and working capital charges for the fuel
fabrication cost and the fuel inventory. [Working capital charges are
interest charges to be paid for the invested capital and are based on
all of the fuel in the reactor.]

Needless to say, the complexity of accounting for nuclear fuel
costs and capital plant investment requires rather sophisticated econ-
omics analysis of the plant design. Nuclear power costs will depend
upon parameters that vary widely, depending upon the location of the
plant, the type of the reactor, and even the time at which the economic
study is performed. Such considerations make it apparent that each
reactor manufacturer and utility have access to a technical group cap-
able of predicting the behavior of the nuclear fuel, performing an
economic analysis of such fuel utilization, and analysing the total
power system requirements involving the plant (including other conven-
tional and nuclear plants in the system).

F. Safety and Regulatory Considerations

Of course, all reactor designs are subjected to extremely
thorough studies to insure that they are compatible with existing safety
and regulatory standards. For example, the response of the reactor
design to reactivity insertions resulting from severe disturbances which
could arise only under the most extreme circumstances must be determined.

Other topics
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include the analysis of accidents inftiated by local fuel element
failure (and subsequent failure propagation), loss of coolant accidents,
failure of control systems, and so on.

Such analyses are important not only for determining the necessary

engineered safeguards systems, but to study as well the performance

......

and interaction of these systems under various postulated accident

conditions.

III. REACTOR CALCULATIONAL MODELS

A. An Overview Of Reactor Design Codes
We have mentioned that reactor design codes can be classified

into one of several groups, namely, cross section 1ibrary codes, multi-
group constant (MGC) generation codes, static design codes, and time-
dependent codes. Of course the latter three types of codes are based
upon models which can be traced back to the neutron transport equation.
But as we have repeatedly emphasized, the direct solution of this equa-
tion s usually quite intractible, hence numerous approximations are
usually reguired in order to develop the mathematical models which serve
as the basis of reactor design codes. Typically, these codes suppress
certain independent variables in order to allow a detailed analysis of
the process of interest. For example MGC generation codes usually
suppress spatial dependence--either by assuming an infinite medium or a
single diffusion mode--in order to facilitate a detailed treatment of
the neutron energy. In a similar sense, static design codes employ a

rather course multigroup structure in order to allow a detailed study
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of the spatial dependence of the neutron flux. In time-dependent codes
one frequently ignores both spatial and energy dependence.

The proper. utilization of such nuclear reactor codes requires not
only a thorough knowledge of the various approximations which have
entered into the development of the code, but as well a good deal of
common sense, experience, and just plain old-fashioned good luck. In
this brief summary, we will attempt to review the function of each of
the major types of nuclear design codes as well as the approximations
which usually enter them. We will also discuss how these codes are
interrelated and-how they are blended together in a reactor design.
In the next section we will discuss how the codes are verified and/>
"fuaged" using experimental measurements.

8. Cross-Section Preparation Codes

The basic ingredient in any nuclear analysis is a set of cross

sections characterizing the probabilities of various neutron-nuctear
reactions which might occur. Most generally this would consist of a
tabulation of cross section data covering the energy range from 0 to
10 MeV for (n,¥ ), (n,o), (n, fission), (n,p), (n,2p), (ﬁ,Zn), and
{n,n') reactions as well as differential scattering cross sections des-
cribing neutron energy and angle transfers in scattering collisions.
Such cross section data is provided by a plethora of diverse experiments,
approximate theoretical calculations, and extrapolations of experimental
measurements. In any collection of raw cross section data there exist
many duplications, disagreements, and gaps in the tabulated cross sec-
tions. It 1s the job of a cross section evaluator to select the most

consistent set of cross section data. The standard source of cross
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sections for nuclear design in this country is the Evaluated Nuclear
Data File/Version B which contains data compiled and evaluated from
all known cross section information. The amount of such data requires
that it be stored on magnetic tape and manipulated using complex data
handling codes. Such codes not only select out the cross section data
of interest and prepare it into a form suitable for input to reactor
design codes, but as well they interpolate existing data to fill in
any gaps which may exist, as well as apply various theoretical models
(such as the optical model of the nucleus) to generate cross section
data in those regimes in which no experimental data exists. These
Tibrary codes also generate differential scattering cross sections,
resonance integrals, and thermal energy scattering kernels. |

The differential scattering cross sections for elastic scattering
are usually generated as a sequence of terms in a Legendre polynomial
expansion. By way of contrast, inelastic scattering and (n,2n) processes
are usually assumed to be jsotropic in the laboratory system and calcu-
lated using availabie data on the appropriate nuclear states or the
evaporation model of the nucleus.

One of the more difficult aspects of cross section generation con-
cerns the treatment of resonance cross sections. Because such resonances
are usually quite large in magnitude and yet quite narrow compared to
even epergy intervals characterizing the cross sectior data, it is
necessary to make some attempt to account for fiux depression in the

resonances in order to include effective resonance integrals in the cross

Ref: ANL-7411 Computer Code Abstract
ANL-5800 Reactor Physics Cons%aﬁts (Chapter 10)

Advances in Nuclear Science & Technology, Vol. 2 (1954); Roos and
Sangren
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section data set. In the regime in which the resonances are isolated
and measured, this can be accomplished using the standard techniques
(e.g., the NR or NRIM approximattons). Various nuclear models can be
used to generate resonance parameters for the energy range in which
the resonances are still isolated but not measured. The most difficylt
area to treat is the energy range in which the resonances are not

only unresolved, but overlap as well so appreciably that they cannot
be considered Independently. It is also usually necessary to account
for heterogeneous effects (a Ta Chapter 10), temperature effects on
the resonance structure, and overlap of resonances of different mater-
ials.

C. Multigroup Constant Generation Codes

‘As we have seen, the énergy range spanned by the neutrons as
they are born in fission and slow down to eventual capture or leakage
at thermal energies (at least in thermal reactors) is enormous, cover-
ing some eight orders of magnitude. Since the cross sections them-
selves depend sensitively upon energy, it is apparent that one must
proceed rather carefully in generating few group constants for use in
multigroup diffusion calculations.

One usually proceeds in two steps. The energy range of interest
is first divided up tnto a very fine multigroup structure, and the
cross section data supplied by a 1ibrary code is simply averaged over
these groups (for example, in the stowing down range one might use a
1/E spectrum). Appropriate approximatiens to the effective resonance
integrals of interest are also included in this set of "fine group

constants". These fine group constants then serve as the microscopic
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cross section data used in fast and thermal spectrum codes which perform
an approximate calculation of the neutron energy dependence for the
nuclear assembly of interest, and then average or collapse the fine
group constants into few group constants over these approximate spectra.
It should be noted that whereas fine group constants are usually evalu-
ated without reference to the detailed system under consideration, the
spectrum generation codes generate few group MGC for the specific sys-
tem of interest. These MGC are then used in static and kinetic design
analysis.

Of course the trick enabling one to perform a detai