The Michigan Metrics

Office of the President
The University of Michigan
July 1995
The Michigan Metrics Project

Introduction
Statement of Purpose
The Themes of the 1990s
Major Goals and Objectives
Summary of Goals

Goals and Metrics
Quality of Academic Programs
Broad Access
Spires of Excellence
UM Firsts
Leading Research University
Michigan Mandate
University of Choice for Women
New Paradigm for Undergraduate Education
Strong Leadership Teams
Acquire New Resources
Restructure to Better Utilize Existing Resources
Increase Private Support
Increase Endowment
Quality of UM Facilities

UM as a "World University"
Leader in Knowledge Transfer to Society
Leading Intercollegiate Athletics Program
The Michigan Metrics Project is part of a larger strategic planning project, called Vision 2000: "The Leaders and the Best..." In brief, this vision statement's guiding principle is that leadership and quality are the most important characteristics in determining the impact of the University of Michigan on society, the state, the nation, and the world. Accordingly, the primary objective of this project is to position the University of Michigan to become the leading university of the 21st century.

Vision 2000: "The Leaders and Best..."

To position the University of Michigan to become the leading university of the 21st century.

In this vision statement, the goal of "leadership" is characterized as leading the way, setting the pace, and becoming the standard against which others compare themselves. Such a leadership vision requires a complex strategy, since all of the key characteristics of the University are involved:

- quality
- quantity (size)
- breadth (comprehensiveness)
- excellence
- innovation

The achievement of the Vision 2000 will require finding the ideal combination of all of these factors.

The evolution of this vision of the University of Michigan's future, its role and mission, began in the mid-1980's in anticipation of the fundamental and profound changes that would transform our society and its institutions. Such changes include the increasing ethnic and cultural diversity of our people; the growing interdependence of nations; and the degree to which knowledge itself has become the key driving force in determining economic prosperity, national security, and social well-being.

The broad themes and guidelines that characterized the early stages of the strategic planning process have been refined into more specific goals (e.g. to become the leading research university in the nation).
These goals are the focus of the Michigan Metrics Project, which has two primary objectives. The first objective is to measure our progress toward Vision 2000 and the particular goals developed as part of Vision 2000.

The second, related purpose of the Metrics Project is to provide, in one place, a set of the most important indicators that highlight areas where significant headway has been made and areas that may need special attention. The Metrics project covers a ten-year period and serves as a comprehensive source of information about the University's recent past and its current status. This resource will be a valuable tool in helping guide decisions about the direction of the University's future.

Since the University's strategic planning is a long-term process, the Metrics project will be updated on a regular basis. As part of our effort to revise and improve this resource, we want to encourage your comments and suggestions on its form and content. Please take the opportunity to review these benchmarks and, in particular, look at areas where you might have a special interest. If you have any thoughts about the Metrics project, please share them with Lucy Drotning in the Office of Academic Planning and Analysis.
A number of different themes and challenges emerged from the strategic planning process. Each theme or challenge was recognized as playing an important role in the University of Michigan's future. They serve as the rationale for major initiatives, such as the Michigan Mandate. These themes include:

Themes of Change
- The increasing pluralism and diversity of our people
- Globalization of America and the shrinking global village
- The Age of Knowledge

Challenges
- A Finite World (Global Change)
- The Post-Cold-War World
- Rebuilding America

Frontiers
- Progress (vs. optimization)
- Creation (of knowledge, objects, intelligence, life...)
- Exploration (of knowledge, planet, universe...)

Particular Challenges to Higher Education
- The Challenge of Change
- The Commitment to Excellence
- The Importance of Fundamental Values
- Building a Community of Scholars
- Restoring Public Understanding, Trust, and Support
- Acquiring and Managing the Resources Necessary for Excellence

Strategic Themes at the University of Michigan
- Inventing the University of the 21st Century
- Redefining the Nature of the Public University
- Financing the University
- The Michigan Mandate
- A World University
- The Electronic University
- Global Change
- Strategic Marketing Plan
- “Keeping our eye on the ball”...
The broad themes and challenges of the 1990s have recently been refined into specific goals that are more amenable to measurement. Measuring progress towards these goals is the purpose of the Michigan Metrics project.

Leadership Goals
1. To enhance the quality of all academic programs
2. To sustain UM blend of broad access and high quality
3. To build more spires of excellence...attract, nurture, and achieve the extraordinary
4. To achieve more firsts” for the University
5. To become the leading research university in nation
6. To achieve the objectives of the Michigan Mandate
7. To make UM the leader among American universities in promoting and achieving success of women students, faculty, and staff
8. To develop a new paradigm for undergraduate education
9. To enhance the quality of the student living/learning environment

Resource Goals
10. To build strong leadership teams for University
11. To acquire resources necessary to compensate for loss of state support
12. To restructure the University to better utilize existing resources
13. To strengthen external relationships (state, feds, public)
14. To enhance quality of institutional advancement events/facilities
15. To increase private support to exceed state appropriation by year 2000
16. To increase endowment to $2 billion by year 2000
17. To dramatically improve quality of UM facilities

Trail-Blazing Goals
18. To restructure UM to better respond to intellectual change
19. To explore new models for University of the 21st century
20. To position UM as a “world university”
21. To position UM as model of the “electronic university” of 21st century
22. To make UM a leader in knowledge transfer to society
23. To work with community leaders to position Ann Arbor for the future
24. To assist state in making transition to "post-industrial" economy
25. To have the leading intercollegiate athletics program in the nation in terms of integrity, impact on student-athletes, success
26. To build more of a sense of pride in...respect for...excitement about...and loyalty to the University of Michigan!
Summary of Goals

Vision 2000: The Leaders and Best...

To position the University of Michigan to become the leading university of the 21st century

<table>
<thead>
<tr>
<th>Goal</th>
<th>Strategic Plan / Actions</th>
<th>Progress Since 1987-88</th>
<th>Status</th>
</tr>
</thead>
</table>
| 1. Improving the quality of all academic programs | Comparison with highest standards
Continuous improvement
Investments in Engineering, Medicine, Sciences | National Surveys
Most programs and schools in top 10; many in top 5 | Some progress... |
| 2. To sustain tradition of high student quality and broad access ("an uncommon education for the common man") | Restructure tuition / fin. aid
Private gifts for financial aid
UM role in direct loan program | In-state access sustained
Out-state access jeopardized | Holding on despite decline in state support |
| 3. To build spires of excellence... attract, nurture, and achieve the extraordinary | Focus resources
Attract and sustain faculty and students of true genius
Encourage programs to strive to be the very best... #1 | Many programs ranked top in nation
Faculty awards continue to accelerate retention challenges | Some progress... more cultural change needed |
| 4. To achieve more "firsts" for the University | Create risk-taking culture
Focus resources
Leadership strategy | Human gene therapy
Most powerful laser
NSFnet, MREN, IFS
The Michigan Mandate
University Hospitals
Intercollegiate Athletics... | Significant progress... (very close to the top) |
| 5. To become the leading research university in America | Research incentives and support
Washington office
JJD leadership (NSB) | UM moved from 7th to 1st in nation in sponsored research activity | Goal achieved! |
| 6. To build a multicultural university community | The Michigan Mandate | Student Representation
Tot. Minority 12% -> 24%
African American 4.1% -> 8.3%
Grad Rates
64% African American, 74% Hispanic American
Faculty Representation
Total Minority 9% -> 13.5%
Black 2.6% -> 4.7% | Great progress... but still far to go |
| 7. To make UM the leader among American universities in promoting and achieving success of women students, faculty, and staff | Strategic plan (1993)
Women faculty initiatives
Improve campus environment | Target of opportunity program
Sexual harassment policies
Dependent leave policies | Michigan Agenda for Women |
<table>
<thead>
<tr>
<th>Goal</th>
<th>Strategic Plan/Actions</th>
<th>Progress Since 1987-88</th>
<th>Status</th>
</tr>
</thead>
</table>
| 8. To develop a new paradigm for undergraduate education in a major research university | UG Initiative Fund
LS&A, Eng UG Initiatives
Gateway Campus | New Freshman Courses
Chemistry, Math sequences
UG Research Participation | Still at early stage |
| 9. To restore the UM to a position of leadership in the quality of the living and learning environment provided for its students | Bring UM in line with best practices at other universities
Attract outstanding people to student affairs activities
Develop a greater sense of mutual trust and respect with students | Recruiting of Maureen Hartford
Re-establishing Dean of Students
Campus safety efforts
Michigan Mandate actions
Substance abuse policies
Sexual harassment/police policies
Student Rights and Responsibilities Code | Now back in line with other colleges ...positioned for leadership |
| 10. Build strong teams to lead the University | Strengthen Executive Officers
Recruit outstanding Deans
Stress teamwork and strategic approach | Exceptionally strong EO team
Strong deans | Strong progress |
| 11. Acquire resources necessary to sustain UM quality in face of loss of state support | Strategic business plan
Restructure tuition/finan. aid
Increase private support
New investment strategies
Resource management strategies | State support has declined more than 20% as a percentage of the General Fund Budget since FY84
General Fund State Appropriations are now less than 12% of total UM budget
UM has managed to absorb these cuts while preserving quality (at least for the short-term) | Strong progress ...but most difficult phase lies ahead |
| 12. To restructure the University to better utilize resources to achieve and sustain quality | Better resource allocation
Total Quality Management efforts
Reorganization of key units
Global restructuring strategy
Metrics Project | M-Quality in place
PACE, ACUB | Good progress ...but still lots of opportunity |
| 13. To build strong relationships with UM’s key external constituencies:
...State Relations
...Community Relations
...Alumni Relations | State Relations Strategy
Federal Relations Strategy | Relationships with Governor, Legislature very positive
White House, Congress relationships quite strong | Strong progress on political front ...longer term public relations effort |
| 14. To set new standards of quality for facilities and events aimed at institutional advancement | Upgrade all key facilities
Reorganize event teams
Set high standards, encourage staff to exceed them | Renovation of Pres H, Inglis H
Stadium pressbox areas
Major events (e.g., Commencement)
Campaign events strategy | Strong progress ...but sustained effort essential |
<table>
<thead>
<tr>
<th>Goal</th>
<th>Strategic Plan/Actions</th>
<th>Progress Since 1987-88</th>
<th>Status</th>
</tr>
</thead>
</table>
| 15. To build private support of UM to a level comparable to state appropriation | Goals by year 2000
...annual gifts $200M/y
...endowment $2B
Restructure Development Campaign for Michigan
President's Advisory Council | Annual gifts and pledges:
...$89M -> $152M
Endowment
...$301 M -> $912M to date
Launch Campaign
...$747M to date | Strong progress
...essentially on track |
| 16. To increase endowment to $2B by the year 2000 | Restructure Investment Strategies
Investment Advisory Committee | Endowment growth
...$301M -> $1B to date | Great progress! |
| 17. To dramatically improve quality of UM facilities | Medical Campus Plan
Central Campus (LS&A) Plan
North Campus Plan
South Campus (Athletic) Plan | Great progress on UMMC
North Campus almost complete
(FX3, ITIC, Eng Center)
South Campus almost complete
(Stadium, Carham, Schenbechler)
LS&A Plan moving rapidly ahead
(East Eng, UGII, Physics, CC Little, Angell, Haven, Pierce, LS&A, Social Work, Gateway Campus) | Great progress
...key focus during 1990s will be LS&A |
| 18. To restructure University to better respond to intellectual change | Interdisciplinary activities
More risk-taking
Structures appropriate for change | Interdisciplinary Plan
Entrepreneurial culture | First stage of implementation |
| 19. To explore new models for the University of the 21st century | Futures Group
Strategic Focus Groups | Early articulation of concepts
"New U" plan
National efforts | Some progress
...but still early |
| 20. To reposition UM as a "world university" | Launch debate
New International Structure
Establish new linkages | International linkages greatly expanded
Davidson Institute
Midwest Universities Consortium for International Affairs
Institute for Foreign Area and International Studies | Some progress
...but still searching for right model |
| 21. To position UM as a model of the "electronic university" of the 21st century | Info Tech Plan
National networking leadership
Key linkages
Decentralize management | ITD environment
NSFnet -> NREN
IBM (IFS), Apple, Apollo
CAEN, CITI | Strong early progress
...needs some redirection |
| 22. To make UM a leader in knowledge transfer | Restructure intellectual properties (IP) activities and policies
Decentralized management (e.g., Medicine, Engineering) Advisory Board | Realign IP Office
Developed new IP policies
Medicine, Engineering
Activity increasing | Some progress
...but still not where we need to be |
<table>
<thead>
<tr>
<th>Goal</th>
<th>Strategic Plan/Actions</th>
<th>Progress Since 1987-88</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>23. To work with community leaders to position Ann Arbor for the future</td>
<td>Develop plan
A.A leadership group
University Enterprise Zone</td>
<td>Very early in strategy</td>
<td>Some progress</td>
</tr>
<tr>
<td>24. To assist state in making transition to "post-industrial" economy</td>
<td>Launch IPFS Group
Leadership on K-12 education</td>
<td>Very early in strategy</td>
<td>Limited progress</td>
</tr>
<tr>
<td>25. To have leading intercollegiate athletics program in nation...in terms of integrity, impact on student-athletes, success, leadership</td>
<td>Build strong links between Athletics and the Administration
Seek outstanding coaches
Big Ten / NCAA negotiations
Improve Womens' Athletics Tiering</td>
<td>Success (5 Big Ten FB champ, 2 NCAA Final Fours, Heisman, Swimming, Hockey, CC, ...)
#1 in Men's Sports (#17 in Women's)</td>
<td>Great progress...but many challenges ahead</td>
</tr>
<tr>
<td>26. To build more of a sense of pride in...respect for...excitement about...and loyalty to the UM</td>
<td>C-word efforts
community, cooperation, collaboration, concern, caring
Internal Communications Plan</td>
<td>Early efforts to articulate community themes
Efforts to work with SACUA, MSA, Deans...</td>
<td>Inadequate progress to date</td>
</tr>
</tbody>
</table>

Strategic Planning Efforts
- Initial Strategy Groups
- Refinement of goals
- Metrics Project
- Strategic Assessment

UM generally regarded as national leader in planning efforts
Clear leadership role in higher education
Goal

To improve the quality of all academic programs
Table 1-1: Academic Program Rankings by U.S. News and World Report (1992, 1993, 1994)

<table>
<thead>
<tr>
<th>Program</th>
<th>Ranking Academic Reputation</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDERGRADUATE PROGRAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROFESSIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business (only public in top 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Law</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Executive Education</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Marketing</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Law (only 2 publics in top 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Law</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicine (only 1 public in top 10)</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Drugs / Alcohol Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dentistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pharmacy</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Nursing</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Health Services Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADUATE PROGRAMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Social Sciences / Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropology</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Political Science</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sociology</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1-1 Rankings of Undergraduate Program by U.S. News and World Report
Goal

To sustain tradition of high student quality and broad access (the Michigan tradition of providing "an uncommon education for the common man")
Figure 2-1 Total Headcount Enrollment

Change Since Fall 1987: +2.4%
Figure 2-2 Total Headcount Enrollment, Dearborn

Change Since Fall 1987: +2.4%
Figure 2-3 Total Headcount Enrollment, Flint

Change Since Fall 1987: +2.4%
Figure 2-4 Undergraduate and Graduate Headcount Enrollment
Figure 2-5: Undergraduate Headcount Enrollment

Change Since Fall 1987: +1.6%
Figure 2-6 Graduate Headcount Enrollment

Change Since Fall 1987: +3.8%
Figure 2-7 Resident and Non-resident Undergraduate Headcount Enrollment
Figure 2-8 Resident Undergraduate Headcount Enrollment

Change Since Fall 1987: -1.9%
A Comparison of Resident and Non-resident Academic Year Undergraduate Tuition Rates

Change in Tuition and Fees Since 87-88:
Resident UG Tuition +90%
Non-resident UG Tuition +79%
Figure 2-10 Resident Undergraduate Tuition (actual, discounted by CPI and further discounted by UM financial aid per UG student)

Change Since 87-88 in Resident Undergraduate:

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>+90%</td>
</tr>
<tr>
<td>Tuition (CPI adjusted)</td>
<td>+46%</td>
</tr>
<tr>
<td>Net Tuition (CPI adjusted)</td>
<td>+28%</td>
</tr>
</tbody>
</table>
Figure 2-11 Non-resident Undergraduate Tuition (actual and discounted by CPI)

Change Since 87-88 in
Non-resident Undergraduate:

Tuition +79%
Tuition (CPI adjusted) +37%
Figure 2-12 UM Tuition Cost for a Michigan 1st Year Undergraduate in Relation to Tuition at Other Top Universities 1994-95
Figure 2-13

Student Financial Aid

$ in millions

Academic Year

$0

$50

$100

$150

$200

83-84 84-85 85-86 86-87 87-88 88-89 89-90 90-91 91-92 92-93 93-94

Scholarships/Fellowships Student Jobs Tuition Waivers Loans Staff Benefits
Figure 2-14: Components of Student Financial Aid

Change Since 87-88:
- Scholarships: +93%
- Student jobs: +43%
- Tuition waivers: +87%
- Loans: +36%
- Staff Benefits: +94%
- TOTAL: +74%
Figure 2-15 General Fund Undergraduate Financial Aid Support

Change Since 1987:
Undergrad GF Financial Aid
Undergrad GF Financial Aid (CPI adjusted)
+165%
+103%
Figure 2-16 Selectivity: The Percentage of Applicants Who Are Admitted by Residency Status
Figure 2.17 Yield: The Percentage of Admitted Freshmen Who Enroll by Residency Status
Figure 2-18 The Percentage of Admitted Freshmen Who Enroll by Family Income, Fall 1992
Figure 2-19 The Percentage of Admitted Freshmen Who Enroll by Family Income for Michigan Residents, Fall 1992
Figure 2-20: The Percentage of Admitted Freshmen Who Enroll by Family Income for Non-residents, Fall 1992
Figure 2-21 Median SAT Scores of Freshman Cohort
Figure 2-22 Retention of Freshman Cohorts Two Years after Initial Entry by Residency Status
Figure 2-23: Graduation of Freshman Cohorts Four Years after Initial Entry by Residency Status
Figure 2-24 Graduation of Freshman Cohorts Six Years after Initial Entry by Residency Status
Goal

To build spires of excellence...to attract, nurture, and achieve the extraordinary
Figure 3-1 Number of Major National Honors Received by Faculty

Note: Honors include election to national academies, MacArthur Fellowships, Pulitzer Prizes, National Medals of Science or Technology, Guggenheim Fellowships, and Presidential Young Investigators/Presidential Faculty Fellows.
Figure 3-2 Number of Faculty Elected to the American Academy of Arts and Sciences
Figure 3-3 Number of Faculty Selected as Presidential Young Investigators/Presidential Faculty Fellows
Figure 3-4 Number of Guggenheim Fellowships Won by Faculty

![Bar graph showing the number of Guggenheim Fellowships won by faculty from 1984 to 1994. The number of fellowships won per year is as follows: 1984 - 5, 1985 - 7, 1986 - 6, 1987 - 7, 1988 - 4, 1989 - 5, 1990 - 4, 1991 - 2, 1992 - 6, 1993 - 1, 1994 - 0. Each bar represents the number of fellowships for that year. The x-axis represents the calendar year, and the y-axis represents the number of fellowships.
Figure 3-5 Number of Major Awards Won by Undergraduates
Figure 3-6 Number of Major Awards Won by Graduate Students
Figure 3-7 Average Compensation of Assistant Professors at UM-AA and Peer Public Universities
Figure 3-8 Average Compensation of Assistant Professors at UM-AA and Peer Private Universities
Figure 3-9 Average Compensation of Associate Professors at UM-AA and Peer Public Universities
Figure 3-10 Average Compensation of Associate Professors at UM-AA and Peer Private Universities
Figure 3-11 Average Compensation of Professors at UM-AA and Peer Public Universities
Figure 3-12 Average Compensation of Professors at UM-AA and Peer Private Universities

![Graph showing average compensation of professors over years from FY90 to FY94 for various universities such as Michigan, Chicago, Columbia, Cornell, Harvard, MIT, Northwestern, Penn, Princeton, Stanford, and Yale. The vertical axis represents compensation in thousands of dollars, ranging from $50 to $130, while the horizontal axis represents fiscal years from FY90 to FY94.]
Graduate Programs
Ranked in the Top
Five Nationally

1982-83 Anthropology
 Classical Studies
 History
 Political Science
 Psychology
 Sociology

1985-86 Information and Library Studies

1986-87 Law

1987-88 Aerospace Engineering
 Anthropology
 Classical Studies
 Comparative Literature
 Dentistry
 Forestry
 History
 Industrial Engineering
 Law
 Information and Library Studies
 Nuclear Engineering
 Nursing
 Political Science
 Pharmacy
 Psychology
 Public Health
Slavic Languages
Social Work
Sociology

1989-90
Aerospace Engineering
Electrical Engineering
Industrial Engineering
Law
Nuclear Engineering

1990-91
Aerospace Engineering
Electrical Engineering
Industrial Engineering
Law
Nuclear Engineering

1991-92
Aerospace Engineering
Business
Electrical Engineering
Industrial Engineering
Law
Nuclear Engineering
Political Science
Sociology

1992-93
Aerospace Engineering
Anthropology
Classical Studies
Comparative Literature
Dentistry
Forestry
History
Industrial Engineering
Law
Information and Library Studies
Mechanical Engineering
Nuclear Engineering
Nursing
Pharmacy
Political Science
Psychology
Public Health
Social Work
Sociology

1993-94 Chemical Engineering
 Electrical Engineering
 Environmental Engineering
 Industrial Engineering
 Nuclear Engineering
 Law
 Nursing
 Public Health
 Social Work
Faculty Awards: MacArthur Fellows

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>Gregory Schoepen</td>
</tr>
<tr>
<td>1987</td>
<td>Richard Wrangham</td>
</tr>
<tr>
<td></td>
<td>Robert Axelrod</td>
</tr>
<tr>
<td>1988</td>
<td>Ruth Behar</td>
</tr>
<tr>
<td>1989</td>
<td>Sherry Ortner</td>
</tr>
<tr>
<td></td>
<td>Rebecca Scott</td>
</tr>
<tr>
<td></td>
<td>Thomas Holt</td>
</tr>
<tr>
<td>1991</td>
<td>Alice Fulton</td>
</tr>
<tr>
<td>1992</td>
<td>Ann Ellis Hanson</td>
</tr>
<tr>
<td></td>
<td>John Holland</td>
</tr>
<tr>
<td>1993</td>
<td>Henry Wright</td>
</tr>
<tr>
<td></td>
<td>Stephen Lee</td>
</tr>
</tbody>
</table>

Faculty Awards: National Academy of Sciences

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Minor Coon</td>
</tr>
<tr>
<td>1985</td>
<td>Kenneth Pike</td>
</tr>
<tr>
<td></td>
<td>Warren Wagner</td>
</tr>
<tr>
<td>1987</td>
<td>Robert Axelrod</td>
</tr>
<tr>
<td>1989</td>
<td>Fred Gehring</td>
</tr>
<tr>
<td></td>
<td>Harold Shapiro</td>
</tr>
<tr>
<td>1991</td>
<td>Mathew Alpern</td>
</tr>
<tr>
<td>1992</td>
<td>Melvin Hochster</td>
</tr>
<tr>
<td>1993</td>
<td>Francis Collins</td>
</tr>
<tr>
<td>1994</td>
<td>Henry Wright</td>
</tr>
</tbody>
</table>
Faculty Awards: National Academy of Engineering

1982 Emmett Leith
1984 Robert Hanson
1985 Walter Weber
1987 Chen-To Tai
 James Duderstadt
1989 Lynn Conway
1991 Gerald Faeth
1992 William Brown
1993 Peter Banks
 Albert Schultz
1994 Donald B. Griffin
 Elmer G. Gilbert
 George I. Haddad

Faculty Awards: National Institute of Medicine

1984 Rhetaug Dumas
1985 Stefan Fajans
 William Kelley
1986 June Osborn
1987 Minor Coon
 Marshal Becker
1989 David Kuhl
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Peter Ward</td>
</tr>
<tr>
<td>1991</td>
<td>Francis Collins</td>
</tr>
<tr>
<td></td>
<td>Bernard Agranoff</td>
</tr>
<tr>
<td>1993</td>
<td>Jack Dixon</td>
</tr>
<tr>
<td>1994</td>
<td>Huda Akil</td>
</tr>
<tr>
<td></td>
<td>Stanley J. Watson, Jr.</td>
</tr>
<tr>
<td></td>
<td>Tadataka Yamada</td>
</tr>
</tbody>
</table>

Faculty Awards:

<table>
<thead>
<tr>
<th>Year</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>National Medal of Science</td>
</tr>
<tr>
<td>1979</td>
<td>National Medal of Technology</td>
</tr>
<tr>
<td>1980</td>
<td>National Medal of Science</td>
</tr>
<tr>
<td>1984</td>
<td>National Medal of Technology</td>
</tr>
<tr>
<td>1987</td>
<td>National Medal of Science</td>
</tr>
<tr>
<td>1991</td>
<td>National Medal of Technology</td>
</tr>
</tbody>
</table>

Faculty Awards:

<table>
<thead>
<tr>
<th>Year</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>James Neal (Science)</td>
</tr>
<tr>
<td>1979</td>
<td>Emmett Leith (Science)</td>
</tr>
<tr>
<td>1980</td>
<td>Elizabeth Crosby (Science)</td>
</tr>
<tr>
<td>1983</td>
<td>Donald Katz (Technology)</td>
</tr>
<tr>
<td>1984</td>
<td>H. Richard Crane (Science)</td>
</tr>
<tr>
<td>1991</td>
<td>James Duderstadt (Technology)</td>
</tr>
</tbody>
</table>

Faculty Awards:

<table>
<thead>
<tr>
<th>Year</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Donald Glaser</td>
</tr>
<tr>
<td>1980</td>
<td>Lawrence Klein</td>
</tr>
<tr>
<td>1985</td>
<td>Jerome Karle</td>
</tr>
<tr>
<td>1987</td>
<td>Joseph Brodsky</td>
</tr>
</tbody>
</table>
Faculty Awards: Pulitzer Prize

1966 Leslie Bassett
1988 William Bolcom

Faculty Awards: American Academy of Arts and Sciences

1933 Hans Kurath
1945 J. Lawrence Oncley
1952 Halvor N. Christensen
1969 Philip Converse
 Ross L. Finney
1970 William K. Frankena
1971 H. Richard Crane
 James V. Neel
1974 Richard D. Alexander
 Horace W. Davenport
 Ronald Freedman
 Theodore M. Newcomb
1975 Francis A. Allen
 John W. Atkinson
 Richard B. Brandt
 Charles Tilly
1976 R. Arnheim
1977 Dorwin P. Cartwright
 Clyde H. Coombs
Samuel J. Eldersveld
Stanley M. Garn
Warren Miller
John R. Platt
Edward G. Seidensticker
1978 Robben W. Fleming
1979 D.R. Shackleton Bailey
 Sylvia L. Thrupp
1980 Albert Feuerwerker
 George Katona
 Chester G. Starr
 Robert B. Zajonc
1981 Elizabeth L. Eisenstein
1982 William Hamilton
 Charles E. Trinkaus, Jr.
1984 Minor J. Coon
 James N. Morgan
1985 Robert M. Axelrod
1987 Terrance Sandalow
1989 Frederick Gehrung
 Daniel Katz
1990 Allan F. Gibbard
 Harold K. Jacobson
 Warren H. Wagner
1991 Robert L. Kahn
 John Kingdon
Roy Rappaport
Harold W. Stevenson

1992
Lee Bollinger
John H. D'Arms
Phoebe Ellsworth
W. Reynolds Farley
Melvin Hochster
Richard Nisbett
Sherry Ortner
James Boyd White
Leslie Kish

1993
James J. Duderstadt
Bruce Frier
Donald Kinder
Ludwig Koenen
Richard Lempert
Howard Schuman
Alfred Simpson
Barbara Smuts

1994
June Osborn
Hazel Markus
Edward E. Smith
Mayer Zald
Arlene Saxonhouse
Leonard Barkan
Goal

To achieve more "firsts" for the University
1983 Computer Aided Engineering Network (CAEN-most sophisticated computer network in any university)

1986 Transplant Policy Center (J. Turcotte)
 UM's School of Information and Library Science ranked first

1987 Information technology campus-wide networking

1988 Entrepreneurial Environment
 Continued decentralization of control of discretionary resources (Rackham, Vice President for Research, Vice President for Student Services, Schools and Colleges)
 Research Incentives Program (Returning 5% of Indirect Cost Recovery directly to Principal Investigators)
 Modification of Intellectual Properties Policies (Allowing ownership by inventor)
 Return of Indirect Cost Recovery on Graduate Student Research Assistant tuition to units
 Indexing of Indirect Cost Recovery Department Research Administration

1989 Cystic fibrosis gene defect found (F. Collins)
 Mammastatin discovered (M. Wicha)
 Development of positron microscope (A. Rich)
 UM becomes first university to win both a Rose Bowl and a NCAA Basketball Championship

1990 Discovery of hind limbs on 40 million year-old whales (P. Gingerich)
 Neurofibromatosis gene defect found (F. Collins)
 UM Sunrunner wins Sunrayce USA-1990
 UM Medical Center ranks as largest in nation
 NSF establishes National Science and Technology in Ultrafast Optics at Michigan

1991 UM library becomes one of first major research libraries in the nation to have its entire public card catalog on-line (6 million volumes listed)
 The EPA selects UM for two national centers, one to lead the country's first environmental education consortium, and the other to manage the new National Pollution Prevention Center
 UM Business School joins with European counterparts in Brussels to inaugurate the Global Business Partnership
Fran Blouin, director of the Bentley Library, initiates the first scholarly exchange program between an American university and the new Russian State University for the Humanities

UM receives a $30 million gift to found the William Davidson Institute, to assist nations in making transitions from command- to free-market economies

UM Engineering students win national championship in Student Robotics Competition

UM becomes first university to exceed $1 million in United Way drive

JJD elected as chair of the National Science Board

1992

World's first clinical trials in using modified human genetic material to treat human disease (hypercholesterolema and malignant melanoma)

Creation of the most powerful laser pulse to date (G. Mourou)

Francis Collins selected to head Human Genome Project

First in externally funded research and development expenditures

Department of Political Science ranked first

Law School ranked first

1993

Rated first overall in men's athletics by USA Today

Department of Anthropology ranked number one

Department of Health Services Administration ranked first

First public university to undertake a $1 billion campaign

First in externally funded research and development expenditures

Researchers at the UM create a new target-specific cancer treatment using radioactive antibodies to attack lymphoma cancer cells

Researchers in the Department of Human Genetics are the first to use gene therapy to cure Duchenne muscular dystrophy (DMD) in mice. DMD is the most common form of the disease

UM researchers successfully performed the first gene therapy using direct transfer of modified human genetic material

UM physicists are among the scientists who announced evidence for the possible discovery of the top quark, the last of six types of quarks to be discovered. Quarks are the subatomic particles that comprise the nuclei of atoms

Philip Gingerich, UM paleontologist, along with researchers from Pakistan, discovered fossils of a 46-million-year-old whale that walked on four legs on land but swam with the undulating tail motion of a modern whale. The discovery provides important information about the structural and behavioral changes that occurred 40 to 50 million years ago as whales made the transition from land-dwelling to ocean-dwelling mammals
Dr. Ruth Decker, a UM surgeon, developed a breakthrough in the treatment and cure of thyroid cancer. The simple blood test identifies the gene responsible for medullary thyroid cancer and allows doctors to remove the thyroid before the cancer appears.

UM, through its new Center for High-Definitions Display Technologies is one of the nation’s leading research institutions in computer screen technologies.

The UM is the leading source of academic research on the environmental justice movement.
Goal To become the leading research university in America
<table>
<thead>
<tr>
<th>Rank</th>
<th>Institution</th>
<th>Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University of Michigan</td>
<td>$393,059,000</td>
</tr>
<tr>
<td>2</td>
<td>Stanford University</td>
<td>$367,980,000</td>
</tr>
<tr>
<td>3</td>
<td>University of Wisconsin-Madison</td>
<td>$352,706,000</td>
</tr>
<tr>
<td>4</td>
<td>Massachusetts Institute of Technology</td>
<td>$324,453,000</td>
</tr>
<tr>
<td>5</td>
<td>University of Minnesota</td>
<td>$317,026,000</td>
</tr>
<tr>
<td>6</td>
<td>University of Washington</td>
<td>$313,514,000</td>
</tr>
<tr>
<td>7</td>
<td>Texas A & M</td>
<td>$305,390,000</td>
</tr>
<tr>
<td>8</td>
<td>Cornell University</td>
<td>$299,342,000</td>
</tr>
<tr>
<td>9</td>
<td>University of California-San Francisco</td>
<td>$295,784,000</td>
</tr>
<tr>
<td>10</td>
<td>University of California-Berkeley</td>
<td>$284,545,000</td>
</tr>
<tr>
<td>11</td>
<td>University of California-San Diego</td>
<td>$282,114,000</td>
</tr>
<tr>
<td>12</td>
<td>Pennsylvania State University</td>
<td>$278,305,000</td>
</tr>
<tr>
<td>13</td>
<td>Johns Hopkins University</td>
<td>$272,542,000</td>
</tr>
<tr>
<td>14</td>
<td>University of California-Los Angeles</td>
<td>$270,954,000</td>
</tr>
<tr>
<td>15</td>
<td>Harvard University</td>
<td>$253,126,000</td>
</tr>
<tr>
<td>16</td>
<td>University of Illinois-Urbana</td>
<td>$251,970,000</td>
</tr>
<tr>
<td>17</td>
<td>University of Texas at Austin</td>
<td>$228,545,000</td>
</tr>
<tr>
<td>18</td>
<td>University of Pennsylvania</td>
<td>$222,424,000</td>
</tr>
<tr>
<td>19</td>
<td>University of Arizona</td>
<td>$221,999,000</td>
</tr>
<tr>
<td>20</td>
<td>University of Maryland-College Park</td>
<td>$219,041,000</td>
</tr>
</tbody>
</table>
Growth in Research Expenditures

Change Since FY88: +65%
Figure 5-2 Growth in Indirect Cost Recovery

Change Since FY88: +55%
Figure 5-3 Changes in Indirect Cost Effective Rate

![Bar Chart showing changes in indirect cost effective rate from FY84 to FY94. The bars indicate a significant increase in the rate over this period.](image-url)
Figure 5-4 National Ranking in Research Activity
Figure 5-5 Trends in Research Expenditures: Medical School, Engineering, LS&A, and ISR
Figure 5-6 Trends in Research Expenditures: Public Health, Social Work, and Business Administration
Figure 5-7 Trends in Research Expenditures: Dentistry, Natural Resources & Environment, and Education
Figure 5-8 Trends in Research Expenditures: Pharmacy, Nursing, Law, and Kinesiology
Figure 5-9 Trends in Research Expenditures: Architecture & Urban Planning, Information & Library Studies, Music, and Art
UM’s Laurentian sails for Africa to serve as a floating laboratory for a U.S. Agency for International Development’s $4.6 million project

An $8.2 million grant from NASA will fund the construction of High Resolution Doppler Imager, a satellite designed to monitor changes in weather and climate

Research done by UM neuroscientists indicates that a single exposure to amphetamines may cause permanent changes in some nerve cells of the brain

Research conducted by UM gerontologists suggest that a gradual personality change in aging persons may signal the onset of Alzheimer’s disease

Howard Hughes Medical Research Institute, established at UM, to conduct research on clinical applications of molecular genetics

UM selected by the Semiconductor Research Corporation as a National Center of Excellence for Advanced Manufacturing Sciences

UM researchers conduct experiments on NASA’s space shuttle to test the efficacy of image producing radar to create two-dimensional pictures of earth’s terrain

UM researcher develops a mechanical heart that helps keep a 6-month old heart transplant patient alive

UM researchers and space shuttle astronauts collaborate to determine how the body attempts to adapt to weightlessness

UM scientists are part of international group of researchers that define the goals and strategies of the Earth Observatory System, one of NASA’s top priorities

UM Medical Center is designated a model spinal injury center by the National Institute for Handicapped Research, becoming only one of nine in the nation

Jonas Salk visits UM to celebrate the 30th anniversary of his announcement that a vaccine for polio had been discovered after a year of field trials at the UM

UM’s School of Education receives a $5 million grant from the National Institute of Education to establish a Center for Improving Postsecondary Learning and Teaching
UM collaborates with several industrial firms to develop an "integrated" information technology environment on UM campus — the first such environment anywhere.

UM physicians launch a program to test high risk newborns for hearing impairments.

UM Medical Center establishes its Neurofibromatosis Center.

1986-87

UM researchers conclude that clay barriers are not enough to prevent pollutants from entering ground water.

National Science Foundation awards $3 million grant to UM to help develop a nationwide electronic information exchange network for scientists and engineers called "EXPRES".

National Science Foundation awards a team of UM scientists a grant to study the use of light instead of electricity for ultra high speed computing and signal processing.

A new satellite data center and facilities in the Space Research Building are among the nation's largest.

Three members of the Howard Hughes Medical Institute at the UM are part of a team that identifies the one gene that may be responsible for both Alzheimer's disease and Downs syndrome.

UM astronomers discover a new galaxy that is one of the largest but least visible on record.

UM astronomers report massive black holes lie at the center of two nearby galaxies and may be found at the centers of other galaxies.

1987-88

UM is one of four institutions to share $7.4 million National Science Foundation grant for basic materials research.

UM Medical Center opens its center for the study of kidney disease through a National Institutes of Health grant of $4 million.

UM and Michigan State University share a hazardous waste study project funded by Dow Chemical Company.

UM (via MERIT) wins contract for managing NSFnet, the computer network linking together the nation's universities and national laboratories.

A Center for Excellence in Geriatrics is established at UM's Medical Center.

UM's Medical Center establishes a Substance Abuse Center of Excellence.

UM physicists build and test the first positron transmission microscope.

The National Institutes of Health gives UM $11.2 million for the Michigan Diabetes Research and Training Center.
The Lucille P. Markey Charitable Trust awards UM $7.25 million to study message exchange between nerve cells in the brain.

The National Institute of Health awards $6 million to UM for a Multipurpose Arthritis Center, one of only 13 centers nationwide.

UM’s College of Engineering selected as one of nine NASA Space Engineering Research Centers.

UM shares a $6.7 million grant with the Urban Institute of Washington to develop and maintain a national kidney registry.

UM researchers, in a joint study with IBM, begin to develop software to enhance the university’s computer networking system.

1988-89 UM’s Biological Station receives a 3-year grant from the Kellogg Foundation to establish SEE-North, a program designed to improve science literacy in Michigan’s northern Lower Peninsula and eastern Upper Peninsula.

UM establishes the Alcohol Research Center through a $7.5 million grant from National Institute of Alcohol Abuse and Alcoholism.

UM’s Bentley Historical Library receives prestigious Distinguished Service Award of the Society of American Archives. Later in 1989, the library is awarded funding to modernize the Vatican’s archives system.

UM scientists among handful of American researchers sponsored by NASA as co-investigators for Soviet mission to Mars.

UM researchers collaborate with Russian scientist to conduct the first experiment on the world’s highest energy proton accelerator.

UM researchers isolate pure protein, called mammastatin, that inhibits breast cancer growth.

1989-90 Scientists at the Howard Hughes Medical Institute at UM and at the Hospital for Sick Children in Toronto identified the gene responsible for cystic fibrosis.

UM hosts EDUCOM ’89, the 25th national conference on computer technology in higher education. 3500 delegates are on site for conference at the movement’s birthplace, making it the largest conference ever held at UM and city of Ann Arbor.

$6.17 million grant from National Institute on Aging funds Michigan Alzheimer’s Disease Research Center at UM Medical Center.

UM researchers involved in discovery of drug that delays onset of disabling symptoms of Parkinson’s Disease.

Physicians at UM Cancer Center are first in country to use three-dimensional radiation therapy planning, a technique that allows doctors to direct radiation to a tumor more precisely.
UM researchers collaborate with scientists from the French National Atomic Energy Committee to create the world's most powerful beam of laser light to date.

UM researcher discovers whales once had feet

1990-91 Researchers at UM's Howard Hughes Medical Institute identify the gene believed to be responsible for neurofibromatosis

National Institute of Health grants UM Medical Center $5 million to establish the nation's only program project for gene therapy. Later in 1990, UM researchers develop gene therapy that may correct an inherited genetic defect responsible for a high cholesterol disorder in humans.

Howard Hughes Medical Institute researchers at UM and the University of Iowa have used gene replacement techniques in a lab culture to correct the defect in human cystic fibrosis cells.

UM researchers Elizabeth G. Nabel, Gregory E. Plantz and Gary J. Nabel successfully direct modified genes.

UM awarded $14.3 million to establish a National Science Foundation Science and Technology Center to study high speed optics and laser technology.

Andrew W. Mellon Foundation gives $3 million to establish yearly fellowships for doctoral candidates; gift is one of the largest single grants ever given to an institution to support doctoral education in humanities and social sciences.

1991-92 UM scientist Richard M. Laine develops a procedure that transforms beach sand into silicon based chemicals, polymers, glasses, and ceramics.

UM experiments are carried on four NASA space shuttle missions, one of them involving a High Resolution Doppler Imager designed by UM engineers.

EPA selects UM over 28 other institutions to manage the National Pollution Prevention Center.

UM's School of Business Administration inaugurates the Global Business Partnership, designed to conduct research into human resource practices around the world.

UM initiates the first scholarly exchange program between an American University and the new Russian State University for the Humanities.

UM's School of Social Work uses a $674,000 grant from the Ford Foundation to conduct the first comprehensive study of the economic and social effects of the 1991 state welfare cutbacks.
UM performs world's first gene therapy trial using direct transfer of modified human genetic material into the body to treat disease.

EPA awards UM $4.8 million to establish a national center at the UM that will serve as a clearinghouse for information on K-12 environmental education.

UM scientist Hunein F. Maassab developed a new strain of influenza virus that can be used for vaccines, and it can be updated each year to match new influenza strains.

UM astronomers and scientists, led by Douglas Richstone, working with researchers at the University of Hawaii's Institute for Astronomy, may have discovered a black hole 100 times more massive than any previously documented.

UM Medical Center establishes a Center for Molecular Medicine to enhance gene discovery and therapy through an $8.9 million grant from the National Institutes of Health (NIH); it is the only such center in the nation focusing on human disease genes. UM research teams are the only researchers outside of the NIH to conduct therapy experiments in humans.

UM paleontologist Daniel C. Fisher discovers over 20 footprints of an adult male mastodon.

1992-93

UM researchers at the Center for Great Lakes and Aquatic Sciences discover the remains of the Newell A. Eddy, a 19th century three-masted schooner, on the bottom of Lake Huron.

The Warner-Lambert/Parke-Davis Company's $5.5 million gift to the Medical School, College of Pharmacy and Department of Chemistry is one of the largest single contributions in UM's history.

ISR receives an $18 million grant from the National Institute on Drug Abuse (NIDA) to continue and to expand its annual national survey of America's secondary students. The grant is one of the largest in UM's history, as well as one of the largest for the NIDA.

Researchers at the UM and at Duke University develop a way to prevent the human immunodeficiency virus (HIV) from infecting human T leukemia cells.

UM researchers are part of the six team international research group that has identified the gene responsible for Huntington's disease.

Researchers at UM's Comprehensive Cancer Center are part of a group that has identified a particular gene that reverses the cancer-like growth characteristics of human melanoma cells.

1993-94

Researchers at the University of Michigan created a new target-specific cancer treatment using radioactive antibodies to attack lymphoma cancer cells.
Researchers in the Department of Human Genetics were the first to use gene therapy to cure Duchenne muscular dystrophy (DMD) in mice. DMD accounts for half of all muscular dystrophy cases and causes muscle weakness, joint stiffening, and spinal curvature.

Researchers at the University of Michigan Biological Station found that rising carbon dioxide in the atmosphere produced fundamental changes in growth rates of plants and microorganisms living in soil and levels of carbon and nitrogen in soil.

NASA has chosen a team of UM atmospheric scientists to develop plans for an unmanned mission to Mars in 1998.

UM researchers successfully performed the first gene therapy using direct transfer of modified human genetic material.

UM researchers unveiled the M-ROVER, a remote-operated vehicle used for underwater exploration and recovery.

Using technology they developed, UM scientists helped NASA’s space shuttle count trees in a 2,500 square-mile section of the Upper Peninsula. The experiment will help scientists learn more about the impact trees and other plant life may have on global warming and climate change.

UM physicists were among the group of physicists who announced evidence for the possible discovery of the top quark, the last of six types of quarks to be discovered. Quarks are the subatomic particles that comprise the nuclei of atoms.

UM paleontologist Philip Gingerich, along with researchers from the Geological Survey of Pakistan, discovered fossils of a 46-million-year-old whale that waled on four legs on land but swam with the undulating tail motion of a modern whale. The whale provides important information about structural and behavioral changes that occurred 40 to 50 million years ago as whales made the transition from land-dwelling to ocean-dwelling mammals.
Goal: To build a multicultural university community
Table 6.1

Representation of Persons of Color in the Nation, the State, and UMAA, Fall 1994

<table>
<thead>
<tr>
<th>Persons of Color</th>
<th>Black</th>
<th>Hispanic/Latino</th>
<th>Native American</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>National*</td>
<td>24.80%</td>
<td>12.10%</td>
<td>9.00%</td>
<td>0.80%</td>
</tr>
<tr>
<td>State*</td>
<td>17.80%</td>
<td>13.90%</td>
<td>2.20%</td>
<td>0.60%</td>
</tr>
</tbody>
</table>

UMAA

Students #	24.16%	8.27%	4.67%	0.79%	10.43%
Undergraduate	24.92%	8.34%	4.68%	0.83%	11.07%
Graduate	20.42%	7.10%	4.73%	0.60%	7.99%
Professional	24.45%	9.09%	4.58%	0.78%	10.00%

Faculty (Tenured & Tenure Track)	13.50%	4.70%	1.90%	0.30%	6.60%
Academic Administration	15.80%	14.20%	1.70%	0.00%	0.00%
Professional Non-faculty	15.00%	6.10%	1.20%	0.30%	7.40%

*1990 Census Data

#Percentages for students refer to African Americans, Hispanic/Latino Americans, Native Americans, and Asian Americans. Numbers for Academic Administration and Professional Non-faculty are from 1993.
Table 6-2
Representation of Persons of Color in the Nation, the State, and UM - Dearborn, Fall 1993

<table>
<thead>
<tr>
<th>Persons of Color</th>
<th>Black</th>
<th>Hispanic/Latino</th>
<th>Native American</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>National*</td>
<td>24.80%</td>
<td>12.10%</td>
<td>9.00%</td>
<td>0.80%</td>
</tr>
<tr>
<td>State*</td>
<td>17.80%</td>
<td>13.90%</td>
<td>2.20%</td>
<td>0.60%</td>
</tr>
<tr>
<td>UMAAA Students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate</td>
<td>13.70%</td>
<td>6.60%</td>
<td>2.10%</td>
<td>0.60%</td>
</tr>
<tr>
<td></td>
<td>11.20%</td>
<td>3.60%</td>
<td>1.80%</td>
<td>0.20%</td>
</tr>
<tr>
<td>Faculty (Tenured & Tenure Track)</td>
<td>23.90%</td>
<td>4.00%</td>
<td>1.00%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Academic Administration</td>
<td>26.70%</td>
<td>6.70%</td>
<td>0.00%</td>
<td>6.70%</td>
</tr>
<tr>
<td>Professional Non-faculty</td>
<td>16.00%</td>
<td>11.80%</td>
<td>1.80%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

*1990 Census Data
#Percentages for students refer to African Americans, Hispanic/Latino Americans, Native Americans, and Asian Americans.
Table 6-3
Representation of Persons of Color in the Nation, the State, and UM - Flint, Fall 1994

<table>
<thead>
<tr>
<th></th>
<th>Persons of Color</th>
<th>Black</th>
<th>Hispanic/Latino</th>
<th>Native American</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>National*</td>
<td>24.80%</td>
<td>12.10%</td>
<td>9.00%</td>
<td>0.80%</td>
<td>2.90%</td>
</tr>
<tr>
<td>State*</td>
<td>17.80%</td>
<td>13.90%</td>
<td>2.20%</td>
<td>0.60%</td>
<td>1.10%</td>
</tr>
</tbody>
</table>

UMAA

<table>
<thead>
<tr>
<th></th>
<th>Students</th>
<th>Faculty (Tenured & Tenure Track)</th>
<th>Academic Administration</th>
<th>Professional Non-faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Graduate</td>
<td>14.30%</td>
<td>16.50%</td>
<td>22.20%</td>
<td>15.70%</td>
</tr>
<tr>
<td></td>
<td>9.80%</td>
<td>7.30%</td>
<td>11.10%</td>
<td>11.60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00%</td>
<td>0.00%</td>
<td>3.30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.80%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1990 Census Data

#Percentages for students refer to African Americans, Hispanic/Latino Americans, Native Americans, and Asian Americans.
Table 6-4

Enrollment of Students of Color, Fall 1994

<table>
<thead>
<tr>
<th></th>
<th>Students of Color</th>
<th>African American</th>
<th>Hispanic/Latino American</th>
<th>Native American</th>
<th>Asian American</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>5,590</td>
<td>1,871</td>
<td>1,050</td>
<td>186</td>
<td>2,483</td>
</tr>
<tr>
<td>Graduate</td>
<td>1,024</td>
<td>356</td>
<td>237</td>
<td>30</td>
<td>401</td>
</tr>
<tr>
<td>Professional</td>
<td>1,313</td>
<td>488</td>
<td>246</td>
<td>42</td>
<td>537</td>
</tr>
<tr>
<td>Total</td>
<td>7,927</td>
<td>2,715</td>
<td>1,533</td>
<td>258</td>
<td>3,421</td>
</tr>
</tbody>
</table>
Figure 6-1
Minority Student Enrollments

Change Since Fall 1987:

<table>
<thead>
<tr>
<th>Minority Group</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian Americans</td>
<td>+90%</td>
</tr>
<tr>
<td>African Americans</td>
<td>+57%</td>
</tr>
<tr>
<td>Hispanic/Latino American</td>
<td>+126%</td>
</tr>
<tr>
<td>Native Americans</td>
<td>+100%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>+83%</td>
</tr>
</tbody>
</table>
Figure 6.2: Minority Student Enrollment Percentages

Change Since Fall 1987:
- Asian Americans: +86%
- African Americans: +53%
- Hispanic/Latino American: +122%
- Native Americans: +96%
- TOTAL: +79%
Figure 6-3 Minority Student Enrollment Percentage

Change in the Percent of Minority Students Since Fall 1987: +79%
Figure 6-4 Minority Undergraduate Student Enrollments

Change Since Fall 1987:

- Asian Americans: +85%
- African Americans: +56%
- Hispanic/Latino American: +157%
- Native Americans: +109%
- TOTAL: +84%
Figure 6-5

Minority Graduate Student Enrollments

Change Since Fall 1987:

- Asian Americans: +93%
- African Americans: +89%
- Hispanic/Latino American: +110%
- Native Americans: +58%
- TOTAL: +94%
Figure 6-6

Minority Professional Student Enrollments

Change Since Fall 1987:

- Asian Americans: +114%
- African Americans: +41%
- Hispanic/Latino American: +59%
- Native Americans: +100%
- TOTAL: +70%
Figure 6-7 Enrollment Percentage of African American Students

Change Since Fall 1987:
Undergraduate +53%
Graduate +85%
Professional +38%
TOTAL +53%
Figure 6-8 Enrollment Percentage of Asian American Students

Change Since Fall 1987:
Undergraduate +81%
Graduate +89%
Professional +109%
TOTAL +86%
Figure 6-9 Enrollment Percentage of Native American Students

Change Since Fall 1987:
Undergraduate +104%
Graduate +54%
Professional +96%
TOTAL +96%
Figure 6-10 Enrollment Percentage of Hispanic/Latino American Students

Change Since Fall 1987:
Undergraduate +151%
Graduate +105%
Professional +55%
TOTAL +122%
Figure 6-11 Graduation Rates of Freshman Minority Cohorts Six Years After Initial Entry

Change Since 87-88:
- Asian Americans: +6%
- African Americans: +10%
- Hispanic/Latino American: +18%
- Native Americans: -14%
- TOTAL: +12%
Figure 6-12 Graduation Rates of Freshman Asian American Cohorts Six Years After Initial Entry

Change Since 87-88: +6%
Figure 6-13 Graduation Rates of Freshman African American Cohorts After Six Years Initial Entry

Change Since 87-88: +10%
Figure 6-14 Graduation Rates of Freshman Hispanic/Latino American Cohorts Six Years After Initial Entry

Change Since 87-88: +18%
Figure 6-15. Graduation Rates of Freshman Native American Cohorts Six Years After Initial Entry

Change Since 87-88: -14%
Figure 6-16 Minority Undergraduate Degrees Conferred

Change Since 87-88:

- Asian Americans: +90%
- African Americans: +67%
- Hispanic/Latino American: +207%
- Native Americans: +94%
Figure 6-17 Minority Undergraduate Degrees Conferred

Change Since 87-88:
Total Minorities +96%
Figure 6-18 Minority Masters and Intermediate Degrees Conferred

Change Since 87-88:

- Asian Americans: +100%
- African Americans: +146%
- Hispanic/Latino American: +156%
- Native Americans: +67%
Figure 6-19 Minority Masters and Intermediate Degrees Conferred

Change Since 87-88:
Total Minorities +129%
Figure 6-20 Minority Professional Degrees Conferred

Change Since 87-88:
- Asian Americans +148%
- African Americans +63%
- Hispanic/Latino American +54%
- Native Americans +40%
Figure 6-21 Minority Professional Degrees Conferred

Change Since 87-88:
Total Minorities +86%
Figure 6-22 Minority Ph.D. Degrees Conferred

Change Since 87-88:
- Asian Americans: +94%
- African Americans: -32%
- Hispanic/Latino American: +100%
- Native Americans: +300%
Figure 6-23: Minority Ph.D. Degrees Conferred

Change Since 87-88:
Total Minorities +71%
Figure 6-24 Rackham Minority Graduate Fellows

Change Since 87-88: +118%
Figure 6-25 Number of Minority Faculty

Change Since 87-88:

- Asian: +39%
- Black: +62%
- Hispanic/Latino: +117%
- Native American: +75%
- TOTAL: +55%
Figure 6-26 Number of Blacks/African Americans on Faculty

Change Since 87-88: +62%
Figure 6-27 Senior Hires of Minorities (EOs, deans, directors)

Change Since FY88: +400%
Goal

By the end of the decade, the UM will become the leader among American universities in promoting and achieving the success of women as students, faculty, and staff.
Figure 7-1

Total Enrollment by Gender
Figure 7-2 Enrollment by Gender as a Percentage of Total Enrollment
Figure 7-3 The Percentage of Women Students

[Bar chart showing the percentage of women students from 1983 to 1994, with slight increases over time.]
Figure 7-4 Percentage of Women Enrolled by Student Level

Change Since Fall Term 1987:
Graduates +10.3%
Undergraduates +0.7%
Figure 7-5 Degrees Conferred by Gender

Change Since 87-88:

Women +9%
Men +6%
Figure 7-6 Percentage of Degrees Conferred by Gender

Change Since 87-88:

Women +1.5%
Men -1.2%
Figure 7-7 Percentage of Degrees Conferred to Women by Degree Level

Change Since 87-88:
Graduates +8.8%
Undergraduates -4.9%
Figure 7-8 Percentage of Faculty by Gender

Change Since 87-88:
Women: +18.6%
Men: -4.0%
Figure 7-9 Number of Women Faculty

Change Since 87-88: +14.6%
Figure 7-10: Percentage of Women Staff in Academic Units (excluding hospitals)

Change Since 87-88:

- All Staff: +1.6%
- P & A Staff: 5.4%
Goal

To develop a new paradigm for undergraduate education in a major research university
1957 Honors Program
1963 Pilot Program
1967 Residential College Program
1969 Minority Engineering Program
1983 Comprehensive Studies Program
1985 Summer Research Opportunity Program (SiROP)
1986 Training of International Graduate Student Teaching Assistants
 LS&A Blue Ribbon Panel on Undergraduate Education
1987 New standards for Teaching Assistant language proficiency
 Thurnau Professorships for undergraduate teaching
 Institute for Humanities involvement in undergraduate education (Hewlett
 Foundation grant)
 Provost's White Paper on Undergraduate Education (JJD) Presentation to
 Senate Assembly
 Undergraduate Initiatives Fund
 Central Campus Classroom Renovation Projects (ongoing)
1988 Angell-Haven Computer Courtyard Project
 UGLI Renovation (Phase I)
 Focusing of Undergraduate Initiatives Fund
 Intergroup Relations and Conflict Program
 Teaching Assistant Training Program
 Residence Hall Study
 LS&A Advisors assigned to Residence Halls
 Engineering Commission on Undergraduate Education
 The Collegiate Fellows Program
 Undergraduate Research Opportunity Program
1989
LS&A Task Forces
Collegiate Seminars
Curricular Reform of Introductory Chemistry Courses
Global Rivers Environmental Education Network
Language Resource Center Media Projects
Engineering Efforts

1990
Report of Planning Committee on Undergraduate Education (PCUE)
Appointment of Assistant Dean for Undergraduate Curriculum in LS&A
Appointment of Associate Dean for Undergraduate Affairs in Engineering
“Sunrunner”: 1st in US, 3rd in World Solar Car Challenge

1991
21st Century Program
Advisory Office for Women in Engineering
College of Engineering Faculty Fellows Program
LS&A Race or Ethnicity Requirement (UC 299)
English: Senior faculty required to teach an Undergraduate course
LS&A Teaching Awards
Mentoring Program for Undergraduates
Report of the Central Committee on Undergraduate Education (CCUE)
College of Engineering Teaching Awards

1992
Introduction of new “non-calculus” sequence in mathematics
Gateway Campus Plan
College of Engineering surveys on the undergraduate educational experience
Revision of introductory calculus courses
New B.A. Degree Program in Physics
1993 New B.A. Degree offered in Biology
 College of Engineering curricular revisions
 Task Force on the First-Year Experience
 WISE (Women in Science and Engineering) Residence Hall
1994 Revitalization of Center for Research on Learning and Teaching
 Classical Studies concentration in Classical Civilization
 Expansion of Freshman Seminars into “Gateway” Seminars
 New B.S. Degree offered in Biochemistry
 Quantitative Reasoning Requirement passed
Goal To build strong teams to lead the University
Figure 9-1 A Comparison of the Number of Presidents Produced During the Past 25 Years
Milestones

The Teams: Leadership Groups

Executive Officer Team
Management Committee

The Teams: Strategic Groups

Strategic Assessment Team
Futures Group (10-30 year planning horizon)
Committee on Institutional Advancement
Campaign Steering Group
Council on a Multicultural University (COMU)
Advisory Committee on University Budgets (ACUB)
Dean’s Development Committee
Change Group II (1991)
Strategic Planning Team (1989)
State Strategy Team (1989)
Change Group (1989)
State Outreach Group (1989)
Communications Advisory Team (1989)

The Teams: Other Standing Groups

Academic Policy Group
Medical Center EO Group
Federal Relations Strategy Group
State Relations Strategy Group
EO/SACUA/Deans/Regents/Student retreats
Committee on Budget Administration (1988)
Additional involvement of Deans in University Planning (1988)
Academic Policy Group
The Teams: Special Task Forces

Strategic Planning Team
Development Policy Group
Science Development Council
AAAC/EO Retreats
Science Development Council (1988)

Task Force on Town-Gown Interface (Bob Beckley, Chair)
Task Force on First-Year Experience
University Events (ongoing, John D'Arms, Chair)
University History and Traditions (ongoing, Bob Warner, Chair)
Campus Safety Committee (ongoing, Jim Snyder, Chair)
Substance Abuse Task Force (ongoing, George Zuidema, Chair)
Study Committee on Status of Lesbians and Gay Men (1991)
Minority Retention (1990)
Task Force on Campus Safety (1989)
Task Force on University Events (1989)
Task Force on Faculty Recruitment, Retention, and Retirement (1989)
Task Force on Quality of Student Life (1989)
Task Force on Student and Faculty Housing (1989)
EO/SACUA/Student Leadership Retreats (1989)
"Campus Urbanization" Study (1989)

The Teams: External Groups

President's Advisory Council (1989)
Capital Campaign Steering Committee (1991)
Investment Advisory Council (1990)
Michigan CEO-Presidents Roundtable (1990)
Technology Transfer Advisory Committee (1993)
Other Leadership Indicators

UM Administrators Going on to University Presidencies

1965 Roger Heyns (UC-Berkeley)
1969 Frederick Thieme (Colorado)
1971 Stephen Spurr (Texas)
1975 James Zumberge (Nebraska, USC)
1977 Frank Rhodes (Cornell)
1978 Arthur Hanson (Purdue, Texas A&M)
1980 David Ragone (Case-Western Reserve)
1980 Harold Shapiro (Michigan)
1985 John Crecine (Georgia Tech)
1987 Harold Shapiro (Princeton)
1988 George Lewis (Vermont)
1988 J. Duderstadt (Michigan)
1989 Niara Sudarkasa (Lincoln)
1990 Linda Wilson (Radcliffe)
1991 Charles Vest (MIT)
Goal

To acquire the resources necessary to sustain UM’s excellence in face of decline in state support
State Appropriations (both in actual and HEPI adjusted to FY84$, showing decline since FY88 relative to inflation)

$ in millions

Change Since FY88:
State Appropriations +18%
State Appropriations (HEPI) -9.2%
Figure 10-2 State Appropriations (both actual and HEPI adjusted to FY69$)
Figure 10-3 State Appropriations per Fiscal Year Equated Student (in actual dollars and HEPI adjusted to FY69$)
Figure 10-4 State Appropriations per Fiscal Year Equated Student (in Actual Dollars and HEPI adjusted to FY84$)
Figure 10-5 A Comparison of FY92 State Appropriations per Fiscal Year Equated Student
Figure 10-6
A Comparison of 1993-94 Undergraduate Tuition Rates at Peer
Public and Private Universities

Note: Numbers for public universities are non-resident undergraduate tuition rates.
Figure 10-7 A Comparison of 1993-94 Undergraduate Tuition Rates at Peer Public and Private Universities

Note: Numbers for public universities are resident undergraduate tuition rates.
Figure 10-8
A Comparison of Effective Support per Student (as measured by the sum of FY92 State Appropriations per FYES and Resident Undergraduate Tuition Rates)
Figure 10-9

Comparison of General Fund State Appropriations and All Funds Budget

Change Since FY88:
- GF State Appropriations: +20%
- All Funds Budget: +70%
Figure 10-10 General Fund State Appropriations as a Percentage of All Funds Budget

Change Since FY87: 17.2 to 11.6%
(a decline of 33%)
The Changing Mix of General Fund Revenue

Change in % of Total Since FY88:
- State Appropriations: -25%
- Tuition and Fees: +26%
- Other: +15%
Figure 10-12: The Changing Mix of General Fund Revenue

- State Appropriations
- Tuition and Fees
- Other Revenue
Figure 10-13
Annual Percent Change in Total General Fund Revenue Compared with Annual Percentage Changes in CPI and HEPI Inflation Indexes
Figure 10-14 The Changing Mix of All Funds Revenue in Dollars

Change Since FY88:
All Funds Budget
+78%
Change Since FY88:

- Hospitals: +102%
- Tuitions and Fees: +101%
- Federal Support: +94%
- State Support: +19%
- Other External: +50%
- Other Auxiliary: +76%
- Other Internal: +64%
Figure 10-16 The Changing Percentage Mix of All Funds Revenue

Change in % of Total Since FY88:
- Hospitals: +13%
- Tuition and Fees: +12%
- Federal Support: +9%
- State Support: -33%
- Other External: -16%
- Other Auxiliary: -2%
- Other Internal: -8%
Figure 10-17 State Appropriations as a Percentage of Operating Budgets

[Bar chart showing state appropriations as a percentage of operating budgets from FY84 to FY95. The chart compares General Fund Budget Excluding Auxiliary to General Fund Budget Including All Funds Budget.]
Goal

To restructure the University to better utilize resources to achieve and sustain quality and mission
Figure 11-1
Comparison of Institutional Support as a Percentage of Current Funds Expenditures and Transfers (FY92) at Various Peer Universities

Notes: 1) Current Funds Expenditures include auxiliary and hospital expenditures. 2) An asterisk indicates institutions with hospitals whose revenue and expenditures are included in the university's IPEDS Reports. 3) Minnesota data are FY93.
Figure 11-2 Full-time Equivalent Administrative Staff Supported on the General Fund

Change Since Fall Term 1987:

- Schools & Colleges: +7%
- Non-Schools & Colleges: +9%
- Medical Center: +16%
Figure 11-3 Full-time Equivalent Administrative Staff Supported on the General Fund

Change Since Fall Term 1987:
Total General Fund FTEs +8%
Figure 11-4
Full-time Equivalent Administrative Staff Supported on All Funds

Change Since Fall Term 1987:
- Schools & Colleges: +23%
- Non-Schools & Colleges: +20%
- Medical Center: +19%
Figure 11-5 Full-time Equivalent Administrative Staff Supported on All Funds

Change Since Fall Term 1987:
Total All Fund FTEs +20%
Figure 11-6. Growth in Administrative Staff by Area (Fall 1985-Fall 1994)
Goal: To build private support of UM (private giving and endowment income) to a level comparable to state appropriation by 2000.
Table 12-1 Largest Single Gifts to UM

<table>
<thead>
<tr>
<th>Year</th>
<th>Source</th>
<th>Amount</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(in actual dollars)</td>
<td>(in 1990 dollars)</td>
</tr>
<tr>
<td>1931</td>
<td>Cook</td>
<td>$21 million</td>
<td>$200 million</td>
</tr>
<tr>
<td>1934</td>
<td>Rackham</td>
<td>$10 million</td>
<td>$90 million</td>
</tr>
<tr>
<td>1969</td>
<td>Mott Foundation</td>
<td>$7 million</td>
<td>$27 million</td>
</tr>
<tr>
<td>1976</td>
<td>Mott Foundation</td>
<td>$6 million</td>
<td>$15 million</td>
</tr>
<tr>
<td>1983</td>
<td>Benton Estate</td>
<td>$7.3 million</td>
<td>$10 million</td>
</tr>
<tr>
<td>1984</td>
<td>General Motors</td>
<td>$7.5 million</td>
<td>$10 million</td>
</tr>
<tr>
<td>1986</td>
<td>Kellogg Foundation</td>
<td>$10 million</td>
<td>$12 million</td>
</tr>
<tr>
<td>1988</td>
<td>Markey Trust</td>
<td>$8.2 million</td>
<td>$8 million</td>
</tr>
<tr>
<td>1989</td>
<td>Francois-Xavier Bagnoud Association</td>
<td>$6 million</td>
<td>$6 million</td>
</tr>
<tr>
<td>1992</td>
<td>Guardian Industries (William Davidson)</td>
<td>$30 million</td>
<td>$28 million</td>
</tr>
<tr>
<td>1994</td>
<td>Lurie Family</td>
<td>$12 million</td>
<td>$10 million</td>
</tr>
<tr>
<td>1994</td>
<td>Ford Motor Co.</td>
<td>$5.5 million</td>
<td>$5 million</td>
</tr>
<tr>
<td>1995</td>
<td>Markey Trust</td>
<td>$4 million</td>
<td>$3 million</td>
</tr>
</tbody>
</table>
Figure 12-1: Private Giving (Gifts and Pledges)

Change Since FY88:

Gifts +78%
Pledges +48%
Figure 12-2 Total Private Giving (Gifts and Pledges)

Change Since FY88:
Total +71%
Figure 12-3 Cumulative Growth in Number of Endowed Professorial Chairs
Figure 12-4: Campaign Goals and Progress for Selected Major Universities as of 1993-94
Goal

To increase endowment to $2 billion by year 2000
Figure 13-1 Growth in University Endowment
Figure 13-2 Growth in Dollars Under Investment Management
Figure 13-3 Real Value Added to Endowment
Figure 13-4 Performance of Endowment Investments
Figure 13-5 Distribution of Endowment Investments
Figure 13-6
A Comparison of the Market Value of the Endowments for Various UM Units (March, 1993)
Goal

To complete the renovation or rebuilding of the physical infrastructure of the University
Figure 14-1
State Appropriations to UMAA for Academic Facilities

![Bar chart showing state capital outlay (in millions) for academic facilities from FY69 to FY95. The chart indicates significant variations in funding over the years.]
Figure 14-2 Progress on Meeting Major Capital Facilities Needs

Note: 1998 estimates are based on projects currently underway.
Figure 14-3 Total Dollar Value of Projects in Progress
Milestones

1983 Alumni Center
 Industrial and Operations Engineering Building
 Advanced Technology Lab

1984 Business Administration Computer Center and Executive Education Building

1985 Medical Science Research Building I
 Industrial Technology Institute
 Vocal Arts Center and Organ Studio
 Kellogg Eye Center
 Lorch Hall
 North Ingalls Building (Nursing)
 G. G. Brown Laboratory

1986 Electrical Engineering and Computer Science Building
 University Hospital
 Taubman Center
 Business Administration Executive Dorm

1987 Space Research Building addition
 Medical Inn

1988 Canham Natatorium
 Manufacturing Systems Engineering Lab (UM-Dearborn)
 Riverfront Campus Parking Deck (UM-Flint)
 Murchie Science Building (UM-Flint)
 Institute for Social Research (ISR) addition
 Physics renovation projects
 Information and Technology Division (ITD) move to Argus Building
Nursing School relocation to North Ingalls Building (NIB)

North Campus Commons expansion

Angell-Haven Courtyard Project

Chemical Sciences progress

Dow Building-G.G. Brown Laboratory Connector

Central Campus classroom renovation project
 UGLI
 Angell Auditoriums
 Angell-Haven Courtyard project
 All Central Campus classrooms

Cooley Lab renovation

1989
 Medical Sciences Research Building II
 Dow Laboratory for Chemical Sciences
 Angell Auditorium project
 Old Main demolition
 UGLI Renovation
 E. H. Kraus renovation
 Nursing renovation in North Ingalls Building (NIB)
 West Engineering renovation
 Ingalls Mall Phase II

1990
 Schembechler Hall
 School of Information and Library Studies renovation
 Ingalls Mall Phase III
 Shepard Wing—Revelle Hall
 Pharmacy Addition
1991
North Campus Family Housing Center
General Campus Renovation Project (UM-Dearborn)
University Pavilion (UM-Flint)
Randall Laboratory
1908 and 1948 Chemistry Buildings
UM Stadium Project
Child and Maternal Health Care Center
UMH Hospital Child Care Center
North Campus Community Center

1992
Administrative Services (acquiring Wolverine Towers)
Pharmacy Wing
Medical Science Research Building III (schematic drawings)
UM Stadium Renovations (second phase completed)

1993
Francois-Xavier Bagnoud Building (FXB Aerospace Laboratory)
Athletics Administration Building

Projects Underway:

 East Engineering Renovation (construction started-8/93)
 Randall Laboratory Addition (construction started-7/93)
 ULGI Renovation (construction started-6/93)
 ITIC (state funding approved, construction started-11/93)
 Engineering Center (state funding approved, construction started)
 C. C. Little renovation (state funding approved)
 Angell Hall renovation (state funding approved)
 Administrative Services (moves into Wolverine Towers)
 Medical Sciences Research Building III (under construction)
 Cancer and Geriatrics Center (construction started, 8/93)
UMH Parking Structure (preparing for bid)
Mott II (under construction)
Taubman Expansion (working drawings)
UM Stadium renovations (third phase underway)
UM Golf Course Clubhouse (under construction)
UM-Flint Library (under construction)
UM-Flint takeover of State Office Building (state funding approved)
UM-Dearborn Classroom Project (state funding approved)
Social Work Building (working drawings)
Angell-Haven Connector (schematic drawings)
Hill Auditorium (schematic drawings)
Projects in Planning

Angell/Haven Hall Connector
Art Museum
Hill Auditorium Renovation and Addition
Intercollegiate Athletics Tennis Center
Medical Center North Entrance Parking Structure
North Campus Bell Tower
School of Social Work Building
Visitor's Center
Dearborn General Campus Renovation - Phase II
Dearborn Campus Support Services Building

Projects Completed During 1993-94

Chemical Sciences Building - Phase II
Completed November, 1993
Financed by gifts and University funds

François-Xavier Bagnoud Building
Completed September, 1993
Financed by gifts and University funds

Intercollegiate Athletics - Administration
Building Renovation
Completed December, 1993
Financed by Athletic funds

Kellogg Eye Center and Turner Clinic
Mechanical Room and Renovation
Completed March, 1994
Financed by gifts and Hospital Funds

Medical Science Research Building III
Completed June, 1994
Financed by University funds
PROJECTS IN PROGRESS DURING 1993-94

Central Campus Renovations - Angell Hall
Work started in March, 1994 with an estimated completion date of July, 1996
Financing is from a State appropriation and University funds

Central Campus Renovations - C. C. Little
Work started in April, 1994 with an estimated completion date of August, 1996
Financing is from a State appropriation and University funds

Central Power Plant and North Campus Electrical Expansions
Work started in October, 1993 with an estimated completion date of June, 1995
Financing is from Utility system revenues and a bond issue

East Engineering Building Remodeling
Work started September, 1993 with an estimated completion date of March, 1996
Financing is from University funds and a bond issue

Integrated Technology Engineering Center
Work started in April 1994 with an estimated completion date of December, 1995
Financing is from a State appropriation and University funds

Integrated Technology Instruction Center
Work started in December 1993 with an estimated completion date of June, 1996
Financing is from a State appropriation and University funds

Mary Markley and South Quad Renovation
Work started in May, 1993 with an estimated completion date of May, 1995
Financing is from Housing revenues and a bond issue

Michigan League Improvements - Phased
Work started in March, 1990 with an estimated completion date of March, 1995
Financing is from University funds

Randall Laboratory - Addition
Work started in June, 1993 with an estimated completion date of August, 1995
Financing is from University funds and a bond issue

Randall Laboratory Renovation - Phased
Work started in March, 1990 with an estimated completion date of December, 1994
Financing is from University funds

Undergraduate Library Addition, Renovation and Connector Bridge
Work started in May, 1993 with an estimated completion date of January, 1995
Financing is from University funds and a bond issue

University Hospitals Cancer and Geriatric Centers
Work started September, 1993 with an estimated completion date of August, 1996
Financing is from Hospital funds, Medical School grants, and a bond issue

University Hospitals - Mott Renewal Project
Work started in August, 1992 with an estimated completion date of February, 1995
Financing is from Hospital funds

Flint Central Energy Plant and Utility Distribution
Work started in April, 1993 with an estimated completion date of July, 1995
Financing is from University funds and a bond issue

Flint Library and Learning Resource Center - The Francis Willson Thompson Library
Work started in December, 1992 with an estimated completion date of September, 1994
Financing is from gifts and a bond issue
Building on Tradition

At special groundbreaking ceremonies last fall, under the theme of “Building on Tradition,” the University recognized the many campus-wide projects designed to enhance and renew University facilities. The following section highlights these projects, which include: renovated classrooms, additional office space, modernized laboratories, advanced medical facilities, and combined reference collections.

Hill Auditorium Renovation and Addition

Plans: New seats, lighting, and air conditioning are included in plans for the auditorium renovation. An addition will be constructed at the rear of the building.

Price tag: $20 million, to be financed by gifts as part of the Campaign for Michigan.

Projected completion: To be determined.

School of Business Administration’s Kresge Business Administration Library, Computer and Executive Education Building, and Executive Residence

Features: One of the nation’s largest business libraries, Kresge features open stack collections on three levels, areas for study carrels, individual work areas for research, and group study rooms. The Computer Executive Education Building houses the School’s computing and research facilities, including 170 advanced microcomputers, and large- and medium-sized case discussion rooms, seminar rooms, and offices. The Executive Residence has eight classrooms, offices, and offers complete hotel services.

Price tag: $15 million, financed by gifts and the School of Business Administration.

School of Nursing Building
(Formerly 400 North Ingalls Building)

Features: Part of what was once the old St. Joseph Mercy Hospital, the building was renovated and converted into administrative offices and classrooms for the School of Nursing.

Price tag: $3.5 million, financed by the Medical School and the University.

Completed: 1990.
E. H. Kraus Natural Science Building
Features: Renovations include modern heating, ventilating, and lighting systems for the entire building. Older laboratories on the third and fourth floors were renovated for heavy-duty biological research.
Price tag: $12.5 million, financed by the state and the University.

School of Social Work
Plans: A 5-level building is proposed at the southwest corner of East University and South University, to be joined to the School of Education by a connector bridge.
Price tag: $22 million, to be financed by gifts.
Projected completion: To be determined.

Randall Laboratory Renovation and Addition
Plans: A 4-story addition and an oversized basement to be added to the west side of the building will provide state-of-the-art physics research laboratories.
Price tag: $22.4 million, financed by the issuance of tax-exempt bonds secured by a pledge of student fees and the University.
Projected completion: Mid-1995.

Angell Hall Courtyard Computer Terminal and Laboratory Facility
Features: The 300-computer terminal facility was constructed by enclosing the courtyard of the Angell-Mason complex.
Price tag: $2.7 million, financed by the University; Literature, Science, and the Arts; and the Information Technology Division.

Undergraduate Library Renovation and Addition
Plans: Renovations and approximately 26,000-square-foot addition to the UGLi, which will also get a new facade of brick and limestone. Connector bridges will link the library to Harlan Hatcher Graduate Library and West Engineering.
Price tag: $11 million, financed by gifts, issuance of tax-exempt bonds secured by a pledge of student fees, and the University.
Alumni Center
Features: Built on the mall that runs between the Harlan Hatcher Graduate Library and Horace H. Rackham Building, the Alumni Center meshes in color and style with its neighbor, the Michigan League. The center houses a library, meeting rooms, and offices. A 2-story atrium welcomes visitors to the 32,000-square-foot center. Price tag: $3.5 million, financed by gifts.
Completed: 1983.

East Engineering Renovation
Plans: Renovations to the building, which will become home to the departments of mathematics and psychology.
Price tag: $28.6 million, financed by the issuance of tax-exempt bonds secured by student fees and the University.
Projected completion: March 1996.

Willard Henry Dow Laboratory, Chemistry Building Renovation
Features: The three-phase project included a new building of 270,000 gross square feet and renovation of the 1908 and 1948 buildings. One of the most striking features of the Willard Henry Dow Laboratory is its large atrium. The new facility plus renovations to the old made it possible to accommodate several related programs—biophysics, macromolecular and protein structures—in one Central Campus location.
Price tag: $45 million for Willard Henry Dow Laboratory and $19.9 million for renovations, financed by the state, gifts, and the University.

Tappan Hall Addition
Features: This 10,000-square-foot addition houses the U-M's Fine Arts Library in a fire-safe and climate-controlled environment.
Price tag: $2.3 million, financed by gifts, the University, and Literature, Science, and the Arts.
Completed: 1983.
C. C. LITTLE BUILDING AND ANGELL HALL
RENOVATIONS

Plans: Heating and cooling systems, elevators, restrooms, and other basic components are included in these two renovations, as well as upgraded teaching and research space.
Price tag: $32.5 million, financed by the state and the University.
Projected completion: Mid-1996.

KELLOGG EYE CENTER

Features: The Kellogg Eye Center consolidates in one location the inpatient, outpatient, research, educational, and administrative activities of the Department of Ophthalmology, providing a comprehensive referral center offering highly specialized care to more than 34,000 patients annually.
Price tag: $8.5 million, financed by gifts and the University.

MEDICAL SCIENCE RESEARCH BUILDING III

Features: The 207,000-square-foot building provides modern research space for the Medical School. MSRB III houses both basic research and clinical departments, encouraging interdisciplinary, complementary work.
Price tag: $50.1 million, financed by the University.

HOSPITALS COMPLEX: UNIVERSITY HOSPITAL, A. ALFRED TAUBMAN HEALTH CARE CENTER, AND THE MATERNAL AND CHILD HEALTH CENTER (MCHC)

Features: University Hospital with 558 beds, is the largest of the Medical Center’s seven hospitals. Its 11 floors are spread across more than 1 million square feet. Taubman Center houses state-of-the-art specialty clinics and outpatient services. This 4-story building connects to the new University Hospital and the 2,000-car patient/visitor parking structure. The MCHC, an addition to Taubman Center and Mott Hospital, allowed for the relocation of a number of units. The pediatric intensive care unit was expanded, and a new neonatal intensive care unit was built.
Price tag: approximately $400 million, financed by the state, gifts, and the University.
Completed: University Hospital and the Taubman Center 1986; the MCHC 1992.
Cancer and Geriatrics Centers

Plans: The two centers, housed in a 10-story building west of University Hospital, will provide research and clinical space. Also planned adjacent to the centers is a 1,000-car parking structure, possibly topped by a 5-story office building.

Price tag: $88.6 million for the Cancer and Geriatrics Centers, financed by the Hospital, Medical School, and a bond issue.

Projected completion: August 1996.

Mott Children’s Hospital Renovation and Addition

Plans: A 6-floor addition is being built to the west of the building. Patient rooms are being renovated in the first major project of this nature since Mott was built 23 years ago. The addition and renovations are needed to meet the demand for more acute pediatric care.

Price tag: $49 million, financed by the Hospital.

North Campus Commons Addition

Features: The 44,700-square-foot addition includes retail space, a mall, office space, and two guest suites. Renovation of the existing Commons Building expanded the lounge and informal snack bar space, provided an elevator for handicapped access to all levels and a computing center branch site.

Price tag: $4.36 million, financed by the issuance of tax-exempt bonds secured by a pledge of student fees.

Engineering Center Building

Plans: The 65,000-square-foot academic and student services center to be built south of the Walter E. Lay Automotive Laboratory will provide space for undergraduate student records, counseling and financial aid offices, engineering placement, College of Engineering administrative offices, and engineering student organizations plus academic space for the Department of Industrial and Operations Engineering.

Price tag: $15 million, financed by the state and the University.

Integrated Technology and Instruction Center

Plans: A high-technology facility on North Campus, the center will have instructional areas, including a library and study space, design laboratories, and areas for musical performances. The center will stress links between engineering, architecture, music, and art. The 3-story building will be connected to the Chrysler Center and the North Campus Commons addition.

Price tag: $42 million, financed by the state and the University.

Projected completion: June 1996.

Herbert H. Dow Laboratory

Features: This 3-story red brick, steel, and glass structure houses the departments of Chemical Engineering and Materials Science and Engineering.

Price tag: $10.8 million, financed by gifts.

Electrical Engineering and Computer Science Building

Features: The 232,000-square foot, 4-story building is connected to the G. G. Brown Building to the north and the Walter E. Lay Automotive Laboratory to the south. It houses the Department of Electrical Engineering and Computer Science, parts of mechanical engineering and applied mechanics, administrative offices, other engineering programs and student services.

Price tag: $30 million, financed by the state.

Building completed: 1986.

François-Xavier Bagnoud Building

Features: The 93,400-square foot aerospace engineering facility includes a large atrium, 30 teaching and research labs, 156-seat lecture hall, 3 classrooms, 30 faculty/staff offices, 30 graduate student offices, and a student lounge. The building is named for François-Xavier Bagnoud, a U-M aerospace graduate who was killed in a helicopter crash.

Price tag: $14.7 million, financed by gifts and the University.

Goal

To reposition the UM as a "world university"
Figure 15-1 Number of International Students

![Bar chart showing the number of international students from 1983 to 1994.](chart_image)
Goal

To make UM a leader in knowledge transfer and economic impact
Figure 16-1 Royalty Revenue

Change Since FY88: +154%
Figure 16-2

Intellectual Property Activity

Changes Since FY88:

Disclosures +8%
Patent Applications 34%
Patents Issues -84%
Goal

To develop the nation’s leading programs in men’s and women’s intercollegiate athletics
Figure 17-1 Rankings of Men's Sports Programs

Note: The article ranks universities in each of ten NCAA Division I sports. Teams are ranked from 1-20, with 20 points going to the national champion.
Figure 17-2 Rankings of Women's Sports Programs

Note: The article ranks universities in each of ten NCAA Division I sports. Teams are ranked from 1-20, with 20 points going to the national champion.
Table 17-1

Conference and National Rankings of Men's Athletics

<table>
<thead>
<tr>
<th>Men's Baseball</th>
<th>Men's Basketball</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Big Ten</td>
</tr>
<tr>
<td>83-84</td>
<td>1</td>
</tr>
<tr>
<td>84-85</td>
<td>3</td>
</tr>
<tr>
<td>85-86</td>
<td>1</td>
</tr>
<tr>
<td>86-87</td>
<td>1</td>
</tr>
<tr>
<td>87-88</td>
<td>1</td>
</tr>
<tr>
<td>88-89</td>
<td>1</td>
</tr>
<tr>
<td>89-90</td>
<td>5</td>
</tr>
<tr>
<td>90-91</td>
<td>5</td>
</tr>
<tr>
<td>91-92</td>
<td>8</td>
</tr>
<tr>
<td>92-93</td>
<td>7</td>
</tr>
<tr>
<td>93-94</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men's Cross Country</th>
<th>Men's Football</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Big Ten</td>
</tr>
<tr>
<td>83-84</td>
<td>2</td>
</tr>
<tr>
<td>84-85</td>
<td>2</td>
</tr>
<tr>
<td>85-86</td>
<td>6</td>
</tr>
<tr>
<td>86-87</td>
<td>5</td>
</tr>
<tr>
<td>87-88</td>
<td>6</td>
</tr>
<tr>
<td>88-89</td>
<td>3</td>
</tr>
<tr>
<td>89-90</td>
<td>8</td>
</tr>
<tr>
<td>90-91</td>
<td>2</td>
</tr>
<tr>
<td>91-92</td>
<td>2</td>
</tr>
<tr>
<td>92-93</td>
<td>2</td>
</tr>
<tr>
<td>93-94</td>
<td>1</td>
</tr>
<tr>
<td>94-95</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men's Golf</th>
<th>Men's Gymnastics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Big Ten</td>
</tr>
<tr>
<td>83-84</td>
<td>8</td>
</tr>
<tr>
<td>84-85</td>
<td>3</td>
</tr>
<tr>
<td>85-86</td>
<td>9</td>
</tr>
<tr>
<td>86-87</td>
<td>6</td>
</tr>
<tr>
<td>87-88</td>
<td>3</td>
</tr>
<tr>
<td>88-89</td>
<td>8</td>
</tr>
<tr>
<td>89-90</td>
<td>7</td>
</tr>
<tr>
<td>90-91</td>
<td>7</td>
</tr>
<tr>
<td>91-92</td>
<td>7</td>
</tr>
<tr>
<td>92-93</td>
<td>7</td>
</tr>
<tr>
<td>93-94</td>
<td>9</td>
</tr>
<tr>
<td>Men's Hockey</td>
<td>CCHA</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
</tr>
<tr>
<td>83-84</td>
<td>9</td>
</tr>
<tr>
<td>84-85</td>
<td>9</td>
</tr>
<tr>
<td>85-86</td>
<td>8</td>
</tr>
<tr>
<td>86-87</td>
<td>7</td>
</tr>
<tr>
<td>87-88</td>
<td>5</td>
</tr>
<tr>
<td>88-89</td>
<td>4</td>
</tr>
<tr>
<td>89-90</td>
<td>4</td>
</tr>
<tr>
<td>90-91</td>
<td>2</td>
</tr>
<tr>
<td>91-92</td>
<td>1</td>
</tr>
<tr>
<td>92-93</td>
<td>2</td>
</tr>
<tr>
<td>93-94</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men's Swimming and Diving</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>84-85</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>85-86</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>86-87</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>87-88</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>88-89</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>89-90</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>90-91</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>91-92</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>92-93</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>93-94</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>94-95</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men's Tennis</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>84-85</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>85-86</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>86-87</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>87-88</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>88-89</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>89-90</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>91-92</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>92-93</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men's Indoor Track and Field</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>84-85</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>85-86</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>86-87</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>87-88</td>
<td>6</td>
<td>44</td>
</tr>
<tr>
<td>88-89</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>89-90</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>91-92</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>92-93</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men's Outdoor Track and Field</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>84-85</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>85-86</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>86-87</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>87-88</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>88-89</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>89-90</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>91-92</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>92-93</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men's Wrestling</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>84-85</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>85-86</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>86-87</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>87-88</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>88-89</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>89-90</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>90-91</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>91-92</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>92-93</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>93-94</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 17-2: Conference and National Rankings of Women's Athletics

<table>
<thead>
<tr>
<th>Women's Basketball</th>
<th>Women's Cross Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Ten</td>
<td>National</td>
</tr>
<tr>
<td>83-84</td>
<td>9</td>
</tr>
<tr>
<td>84-85</td>
<td>10</td>
</tr>
<tr>
<td>85-86</td>
<td>7</td>
</tr>
<tr>
<td>86-87</td>
<td>10</td>
</tr>
<tr>
<td>87-88</td>
<td>6</td>
</tr>
<tr>
<td>88-89</td>
<td>8</td>
</tr>
<tr>
<td>89-90</td>
<td>4</td>
</tr>
<tr>
<td>90-91</td>
<td>9</td>
</tr>
<tr>
<td>91-92</td>
<td>9</td>
</tr>
<tr>
<td>92-93</td>
<td>11</td>
</tr>
<tr>
<td>93-94</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Women's Field Hockey</th>
<th>Women's Golf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Ten</td>
<td>National</td>
</tr>
<tr>
<td>83-84</td>
<td>4</td>
</tr>
<tr>
<td>84-85</td>
<td>5</td>
</tr>
<tr>
<td>85-86</td>
<td>6</td>
</tr>
<tr>
<td>86-87</td>
<td>5</td>
</tr>
<tr>
<td>87-88</td>
<td>5</td>
</tr>
<tr>
<td>88-89</td>
<td>4</td>
</tr>
<tr>
<td>89-90</td>
<td>4</td>
</tr>
<tr>
<td>90-91</td>
<td>5</td>
</tr>
<tr>
<td>91-92</td>
<td>4</td>
</tr>
<tr>
<td>92-93</td>
<td>4</td>
</tr>
<tr>
<td>93-94</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Women's Gymnastics</th>
<th>Women's Softball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Ten</td>
<td>National</td>
</tr>
<tr>
<td>83-84</td>
<td>4</td>
</tr>
<tr>
<td>84-85</td>
<td>4</td>
</tr>
<tr>
<td>85-86</td>
<td>6</td>
</tr>
<tr>
<td>86-87</td>
<td>5</td>
</tr>
<tr>
<td>87-88</td>
<td>7</td>
</tr>
<tr>
<td>88-89</td>
<td>7</td>
</tr>
<tr>
<td>89-90</td>
<td>6</td>
</tr>
<tr>
<td>90-91</td>
<td>3</td>
</tr>
<tr>
<td>91-92</td>
<td>1</td>
</tr>
<tr>
<td>92-93</td>
<td>1</td>
</tr>
<tr>
<td>93-94</td>
<td>1</td>
</tr>
</tbody>
</table>
Women's Swimming and Diving

<table>
<thead>
<tr>
<th>Year</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>84-85</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>85-86</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>86-87</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>87-88</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>88-89</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>89-90</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>90-91</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>91-92</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>92-93</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>94-94</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>93-95</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Women's Tennis

<table>
<thead>
<tr>
<th>Year</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>84-85</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>85-86</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>86-87</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>87-88</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>88-89</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>89-90</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>91-92</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>92-93</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Women's Indoor Track and Field

<table>
<thead>
<tr>
<th>Year</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>84-85</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>85-86</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>86-87</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>87-88</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>88-89</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>89-90</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>91-92</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>92-93</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Women's Outdoor Track and Field

<table>
<thead>
<tr>
<th>Year</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>84-85</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>85-86</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>86-87</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>87-88</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>88-89</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>89-90</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>91-92</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>92-93</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td>1</td>
<td>23</td>
</tr>
</tbody>
</table>

Women's Volleyball

<table>
<thead>
<tr>
<th>Year</th>
<th>Big Ten</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-84</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>84-85</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>85-86</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>86-87</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>87-88</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>88-89</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>89-90</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>91-92</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>92-93</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td>7 (tie)</td>
<td></td>
</tr>
<tr>
<td>94-95</td>
<td>9 (tie)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 17-3 Number of Freshman Men’s Football Participants Enrolling and Number Graduating Six Years After Initial Entry
Figure 17-4 Number of Freshman Men's Basketball Participants Enrolling and Number Graduating Six Years After Initial Entry
Figure 17-5 Number of Freshman Men's Baseball Participants Enrolling and Number Graduating Six Years After Initial Entry