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SUMMARY 

A modeling tool is described for studying the nature and relative frequency of driving 
conflicts that are likely to be encountered when the innovation called Adaptive (or 
intelligent) Cruise Control (ACC) becomes a common automotive option. As defined in 
draft form by Working Group 14 of the ISO/TC204 Committee, ACC constitutes "an 
enhancement to a standard cruise control system which allows the subject vehicle to 
adapt to the speed of a preceding vehicle at an appropriate distance by controlling the 
engine andlor power train/ andlor brake...". Thus, ACC-assisted drivers can merely set a 
desired speed and then permit the system to deal with the conflicts in longitudinal 
separation that arise when other vehicles are approached. 

This report describes the background for such modeling followed by an overview of 
the ASCOM model structure and a description of a statistical regression procedure to 
reduce the computational cost associated with a Monte Carlo procedure. Empirical data 
available for representing the distributions of the condition variables are presented as are 
results from exercising the model. 

Monte Carlo model results are included for two conflict scenarios (closure fronn long 
range and lead vehicle decelerating) using highway speed and road geometry 
distributions from the states of Michigan and West Virginia. These results show the 
relative probability of conflict for the same ACC system using the two topographical 
descriptions for these two states. Additionally, the relative probability of conflict after 
implementing an automatic-transmission downshift, for more deceleration author it:^, is 
also presented. 

To accelerate the computational turnaround regression-type "results modeling'" and 
intelligent subsetting of the condition variables, are used in the model. Encouragirig 
results were obtained with respect to the accuracy and efficiency gained from the 
regression fitting approach. Effort is required to estimate the best predictor in a design 
for accuracy as well as efficiency and future work is also required, of course, to 
implement each of the remaining four scenarios and to locate or develop empirical data 
sets as needed for representing the conflict phenomena in the longitudinal and lateiral 
realm of highway driving. 
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INTRODUCTION 

A modeling tool is described for studying the nature and relative frequency of driving 
conflicts that are likely to be encountered when the innovation called Adaptive (or 
intelligent) Cruise Control (ACC) becomes a common automotive option. Virtually 
every major auto manufacturer in the world appears to be currently developing ;such a 
system, with products already available in Japan and market introduction expected 
elsewhere during the 1998 through 2003 time frame. As defined in draft form by 
Working Group 14 of the ISOlTC204 Committee (i.e., the international body cu:rrently 
working to develop an ACC standard), ACC constitutes "an enhancement to a standard 
cruise control system which allows the subject vehicle to adapt to the speed of a 
preceding vehicle at an appropriate distance by controlling the engine and/or poweir train/ 
and/or brake...". (Draft N61.2) Thus, ACC-assisted drivers can merely set a desired. speed 
and then permit the system to deal with the conflicts in longitudinal separation that arise 
when other vehicles are approached. However many design and operating variab1.e~ can 
influence the quality of the conflict-resolution processes. It is further recognized that all 
the operating variables appear as stochastic variables--each with its characteristic 
distribution and, perhaps, correlation to other variables. Thus, all forms of encroac:hment 
conflict are probabilistic in their manifestation throughout one's driving experience. 

The stochastic nature of the problem weighs heavily on the configuration of a suitable 
modeling tool for assessing the occurrence and severity of conflicts likely to be 
encountered when driving under ACC control. Both highway geometric variables, 
distributed spatially along the road system, and inter-vehicular kinematic variables, 
distributed temporally across all driving exposure, determine the primary "conditions" 
under which the ACC system must manage encroachment conflicts. The conflicts, 
themselves, are ultimately of concern insofar as they pose at least a psychologicall stress 
and perhaps even a crash threat for the ACC operator or others in the traffic stream. 
Model-based assessment of such conflicts should help expedite the development of truly 
road-worthy ACC system designs while laying the basis for some portion of the safety- 
related specifications and standards. 

A so-called "Active Safety Conflict Model" (ASCOM) is presented as a design tool 
for predicting a variety of first-order conflicts expected to arise with ACC usage in 
normal traffic. This report addresses the background for such modeling followed by an 
overview of the ASCOM model structure and a description of a statistical regression 
procedure to reduce the computational cost associated with a Monte Carlo procedure. 
Empirical data available for representing the distributions of the condition variables are 
presented as are results from exercising ASCOM in two conflict scenarios. 

BACKGROUND 

Monte Carlo simulations of rear-end crash warning and avoidance systems have been 



reported which predict the probabilistic occurrence of conflicts that merit a warning or 
control intervention. Farber has reported modeling a single scenario in whilch the 
following vehicle approaches a braking or stopped vehicle ahead (Farber, 1994). Wilson 
has reported the development of a model that includes a complex description of a rear- 
end crash avoidance system, affording the ability to study the basis for detailed 
performance specifications (Wilson, 1995). While both of these efforts have addressed 
the longitudinal domain of motion conflict, as we have, our work introduces a 
multiplicity of conflict scenarios, adds functional constraints imposed by roadway 
geometry, introduces regression modeling, and applies the conflict analysis to the context 
of ACC rather than collision warning and avoidance systems. Also, because ACC 
constitutes an automatic function on board the host vehicle, the host driver is not modeled 
in our work while the driver's response delays are central in the referenced studies. 

Additional literature using Monte Carlo simulation has been produced by Young 
(1995). His work reported simulation of a lane-change warning system in whiclh other 
vehicles are characterized by their ability to block the lane change actions of the host 
vehicle. Young's simulation was intended for supporting the development of 
performance specifications and represents the distributions of speed and gap conflict 
variables by derivation from police-reported crash data. 

The work reported here strikes a similar theme of combined deterministic and 
probabilistic modeling, but in a design tool that embraces many conflict types actually 
seen from field studies using ACC prototype vehicles. Another difference of th.e work 
reported here is the use of a regression model to replace the dynamic model. This 
increases the efficiency of ASCOM as a design tool. The goal is to predict the conflict 
experience of a driver over the vehicle's useful lifetime, as a function of ACC designs. 

ASCOM: A FUNCTIONAL DESCRIPTION 

Modeling encroachment conflicts requires consideration of the different aspec1.s of the 
driving environment. In addition to representing the dynamic and kinematic 
characteristics of the host vehicle, there is a need to consider the external influences, such 
as road grade and curvature. The major elements of ASCOM are shown in fjgure 1 
including (1) the dynamic system model of the host vehicle and ACC system, (2) the 
definition of common conflict scenarios, (3) the predictor consisting of a Monte Carlo 
simulation model and a regression model, and (4) the effects of road geometry anld traffic 
data on the vehicle model. 

The Dynamic System Model 

As discussed in the introduction, ACC can be thought of as an enhancement to the 
conventional cruise control system. By sensing the presence and measuring the irange of 
a leading vehicle, the ACC can change the host vehicle speed to match the speed of the 
leading vehicle at a specified following distance (also referred to as the desired headway). 



The elements and control strategy of one example system that has been implemented in 
this tool are shown in figure 2. These elements include (1) a Sensor, (2) a Headway 
Control Unit (HCU), (3) a Conventional Cruise Control (CCC) unit, (4) a powertrain 
model of the host vehicle, and (5) the vehicle dynamics of the host vehicle. The 
computational details of these elements are discussed in the subsequent sections. 

2. Scenarios 1. Dynamic System Model 
ACC System Vehicle Pl8lform 

Definition 
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Figure 1. Overview of the ASCOM Environment 

Figure 2. Diagram of the Dynamic System Model 
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information, along with the host velocity, v, and the driver's desired speed, vd, to 
determine a reference velocity, vref, that meets the control objective of the ACC'. The 
conventional cruise control compares v to vRfand adjusts the throttle position, 8, s'o as to 
minimize the difference between v and v,f. As the throttle position changes, the engine 
and the associated powertrain effects are calculated and reduced to a representative force, 
F,, that manifests itself at the vehicle wheels. This force along with the forces caused by 
grade, F,, aerodynamic drag, Fa, and tire rolling resistance, F ,  are used in a vehicle 
dynamics calculation to yield a new host velocity. 

Model of the Adaptive Cruise Control 

An ACC system can be considered for purposes of predicting conflict kinematics as 
being composed of two major components: the Sensor and the HCU. Various sensors and 
control strategies are currently being modeled and tested. ASCOM has been designed 
such that the analysis of different ACC systems is possible. For the example presented in 
this report, we chose a design based on results of previous research conducted by F'ancher 
(1994) at the University of Michigan Transportation Research Institute (UMTRI) in 
collaboration with Leica AG. The following discussion outlines our modeling of this 
particular ACC system. 

Sensor 

The ACC sensor is modeled to cover a fixed area in front of the host vehicle:. This 
fixed area of coverage is referred to as the sensor view volume and is defined by an 
elevation angle, azimuth angle, and maximum sensor range. To account for road grade 
and curvature, the sensor algorithm perfoms a coordinate shift and rotation to calculate 
the elevation and azimuth angle between the host and the vehicle ahead. These angles are 
then compared to the corresponding sensor coverage arcs to determine if the lead vehicle 
is within the sensor view volume. A target is called active if the position of the lead 
vehicle lies within the sensor view volume, and the lead vehicle is traveling at a speed 
less than that of the host vehicle speed. 

'~e ta i l s  of the ACC control objective and the determination of v,fare discussed briefly in the section labeled "Model of the 
Adaptive Cruise Control". For complete details, see Fancher (1994). 



Figure 3. Lead Vehicle Acquisition Diagram 

Figure 3 shows the lead and host vehicles along with a representation of the sensor 
view area in two dimensions. The lead vehicle will be acquired once it is inside the 
coverage arc, that is, the sensor angle, 4,' is greater than the angle y~ shown in figure 3. 
Using simple geometric relations, the angle uy is found to be, uy=(0,,- 0,)/2, where: 0,,and 
0, are determined by vehicle positions along defined tangent and constant radius paths 
(with no sideslip). 

Headway Control Unit 

The currently implemented HCU algorithm is restricted to administering throttle 
position adjustments only (i.e., the current control strategy relies only on the deceleration 
authority provided by a throttle-off condition). A feature for commanding forced 
transmission-gear downshifts is also implemented in the model. In order to desciribe the 
system's headway-control function and vehicle response under ACC control, plots of 
range-vs.-range rate relationships are employed (Fancher, 1994). Figure 4 shows a 
simplified view of the currently implemented HCU logic. 



Dynamics line for 

deceleration limit 

Figure 4. Range vs. Range Rate Diagram with Switching Logic 

Each point in the diagrammed space consists of an ordinate value representing the 
range between the host and lead vehicles and an abscissa value representing the rate of 
closure between the vehicles. The ordinate intercept labeled desired headway corresponds 
to the range value at which the host vehicle is commanded to follow the target vehicle 
when the system is in a steady-state following mode: 

where: xd is the desired headway range, 

vl is the speed of the lead vehicle, and 

t,,f is the reference headway time. 

Note: xd changes continually with lead-vehicle speed. 

The line passing through the desired headway (labeled the dynamics line) is defined 
as: 

where: x, is the range, and 

*rc is the slope of the dynamics line (derived from the level of 
deceleration authority available for headway control). 



Note the following in figure 4: 

1. In the first quadrant, the target vehicle has a greater speed than the host vehicll?, such 
that no conflict develops. 

2 .  In the third and fourth quadrants, the host and lead vehicles have collided. 

3. The second quadrant is divided by the dynamics line. When the host vehicle is 
operating at points above this line, the HCU determines that there is no conflict 
(allowing the conventional cruise control to maintain the present set-speed.) At 
points below the dynamics line, the HCU identifies the conflict and begins to 
command a new reference-speed which would lead toward a response that follows 
the dynamics line down to xd (i.e., the HCU attempts to satisfy equation 2 by 
typically decreasing the throttle angle and perhaps downshifting the transmissi.on.) 

4. Although not implemented in the example calculation, a warning boundary 1i:ne may 
easily serve to indicate a region of the range-rate curve that may require driver 
intervention or a warning of an impending collision. 

Model of the Conventional Cruise Control (CCC) 

The CCC algorithm used in this work seeks to achieve a reference vehicle speed, v,,,, 
by manipulating the throttle position, 8. The implemented method uses a proportional 
plus integral linear control strategy given by: 

E = V,,f - V 

where: 8 is the throttle position, 

v,,f is the reference speed as determined by the HCU, 

Kp is the proportioning gain of the system, 

KI is the integration gain of the system, and 

E is the velocity error. 

Model of the Powertrain 

The ACC either commands a throttle position determined by the engagement rules of 
the conflict avoidance algorithm or allows the conventional controller to command 
throttle input aimed at maintaining the original set-speed. This information is input into 
the powertrain algorithm to produce the required forces on the body to accelerate or aid in 



decelerating the host vehicle. A simplified powertrain model has been implemented and 
is described in block form in figure 5. 

Among the many simplifying assumptions, a few of the most notable include: 

1. The engine speed used to determine the current engine torque, coo, is taken from the 
previous simulation step. 

2. The torque delivered from the torque converter is transmitted directly to the tires after 
including the proper gear ratio, r, and torque efficiency loss, c. 

3. A means for calculating the output speed of the torque converter, cot, (see the 
Appendix). 

4. The remainder of this section briefly describes the way in which the powertrain 
response is calculated. The engine torque, Te, is a function of the engine speed, wo, 
(taken from the previous simulation time step) and the throttle positiion, 0, 
commanded either from the ACC or the CCC (see figure A-3 in the Appendix). 

Figure 5. Powertrain Block Diagram 
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where: I, is the engine rotational moment of inertia plus one half of 
the torque converter inertia, and 

o ,  is the engine speed. 

The torque converter input torque, Ti, is characterized by the torque converter input 
capacity, ki, and the torque converter torque ratio, Pt (these functions are represented as 
tables A-3 and A-4 in the Appendix): 

ki = f ,(atlwe) 1:7) 

Pt = f 2(@tl@e) @> 

where: 01 is the torque converter input speed. 

Using ki and Pt, the input and output torque are given by: 

Ti = ki we* (9) 

To = PtTi (10) 

The force delivered to the wheel from the drivetrain, Fw, is proportional to the: output 
torque, To, a gear ratio, r, and losses due to gear efficiencies, c. 

Model of the Vehicle Dynamics 

The required dynamic behavior of the vehicle model depends on the ACC conflict 
being studied. Although a single robust model would be sufficient for all sceneries, in 
order to be practically useful, the ASCOM tool requires each simulation to be resolved in 
a fraction of real-time. Therefore, in order to maximize execution speed, the alternative 
types of ACC conflicts are each studied by means of vehicle models that are matched to 
the conflict in question. In order to facilitate the generation and integration of several 
models into the ASCOM software environment, an off-the-shelf modeling tool called 
AUTOSIM (Sayers, 1989) was used to generate the equations of motion. 

The example ACC conflict scenarios that are presented here employ a model that is 
confined to longitudinal motion dynamics. The lateral and vertical aspects of motion 
induced by road geometries are dealt with only in terms of the sensor coverage along the 
curves. This model is represented mathematically by three ordinary differential equations 
that describe its kinematic and dynamic behavior. It is composed of a single point mass 
and has two degrees-of-freedom (one translational along the roadway and one rotational 
motion within the powertrain.) The forces acting to accelerate (and decelerate) the vehicle 
include those resulting from the powertrain dynamics, road grade, aerodynamic drag, and 



tire rolling resistance. The model is given by 

dvldt = l/m(Fa + Fg + F, + F,) 

where: F, is the aerodynamic drag, 

F, is the grade force, 

F, is the rolling resistance, 

F, is the powertrain force, 

v is the host vehicle velocity, and 

m is the host vehicle mass. 

The aerodynamic forces are given by, 

where: A is the aerodynamic cross-section of the vehicle, 

p is the air density, and 

CD is the drag coefficient. 

Rolling resistance force, F,, is assumed to be a function of vehicle speed (while: also a 
function of several other variables, including tire load, which is assumed to be constant 
during the simulation). In the model this force is represented as a bilinear function of 
vehicle speed (table A-2 in the Appendix) for a midsize vehicle. 

The forces resulting from road grades are simulated by changing the direction of the 
gravity vector to include the appropriate component parallel to the ground, 

where: is the grade angle between the horizontal plane and the road. 

CONFLICT SCENARIOS 

A conflict scenario is defined as a stereotypical interaction between an ACC-equipped 
vehicle and one or more others that (1) is provoked by conditions andlor driving 
behaviors normally appearing in the traffic environment, (2) is influenced by the ACC 
hnctionality to some degree, and (3) can pose an encroachment conflict for either the 
ACC driver or another nearby driver. Six such scenarios have been identified to date 
based upon driving experience with ACC prototypes in everyday freeway traffic in 

10 



Michigan (Sayer, 1995). Among the six, the first three have been implemented in the 
ASCOM simulation tool to date, and are described below in terms of a defined set of 
influential condition variables. The second three are known to exist based upon field 
experience but have not yet been codified within the model and involve a. more 
speculative set of condition variables. The scenarios are as follows: 

Closurefiom Long Range - With the host vehicle approaching a slower- 
moving vehicle ahead, the ensuing headway closure may require a 
deceleration level and/or an extent of headway time that exceeds the sys'tem's 
ability to control. Conflict is in the form of a potential undershoot beyond the 
intended headway time and is influenced by roadway grade, horizontal 
curvature, the initial velocity of the ACC vehicle and the velocity differlence 
between the two vehicles. 

Lead Vehicle Braking - With the host vehicle initially traveling at a steady and 
relatively short value of controlled headway, the preceding vehicle applies its 
brakes.. Conflict is characterized by an undershoot of the intended headway 
time. Although a range value of zero or less would imply a crash, it is 
believed that the results speak more to the severity and frequency of driver 
brake intervention events than to crash issues, per se. The influential 
conditions include road grade, initial velocity of the vehicle pair, and the 
severitylduration of deceleration by the preceding vehicle. 

Cut In - From an initial condition of steady speed keeping, a vehicle cui:s in 
from the side at constant lateral and longitudinal velocity, terminating its 
lateral excursion upon reaching the center of the lane ahead of the host 
vehicle. The intensity of headway conflict is influenced by the road grade, the 
initial velocity of the ACC vehicle, and the initial range and range-rate values 
presented by the cut-in vehicle. 
Merge-Lane Conflict - With the host vehicle traveling in the right-hand 
through lane, another vehicle approaches along an entrance ramp and merges 
within the fixed location of the ramp terminus. While this conflict has not 
been fully defined to present, it is presumed to be influenced by the forward 
speed, rate of lateral movement, and point of through lane entry by the 
merging vehicle, the available length of the merge zone, the prevailing grade, 
and the initial speed of the host vehicle. 
Flying Pass - While in the process of approaching a slower-moving vehicle, 
the host driver steers into the left in an attempt to pass without slowing down. 
This scenario superimposes a passing transient onto the process of 
approaching-a sequence in which the ACC system may begin to decelerate, 
thus disrupting the rhythm of the intended flying pass. Performance is 
influenced by host vehicle speed, closing speed, the range at which passing 
commences, the lateral rate of passing movement, the grade and the road 
curvature. 



Pull Out To Pass - The host vehicle terminates a headway keeping episode by 
pulling out to pass. A conflict is posed by the delay in reaching a free stream 
speed, following commencement of the pass. The condition variables irlclude 
the initial speed, the rate at which the passing maneuver proceeds, the final 
speed, and the grade. 

IMPLEMENTATION OF TWO CONFLICT SCENARIOS 

Implementation of the closure from long range (CLR) and lead vehicle braking (LVB) 
scenarios is described here as background for results that are presented later in the paper. 
In both cases, implementation has covered the relatively straightforward computa,tion of 
the longitudinal conflict dynamics, mechanization of the Monte Carlo selection of 
condition variables for setting up each of the individual conflict simulation runs, and 
computation of a measure of merit from the output time histories that are produced. The 
merit scores are then compiled as cumulative distribution functions (CDF) for 
presentation of results. Concerning conditions variables, empirically derived 
distributions from which the Monte Carlo sampling is accomplished are presented later in 
the paper. A synopsis of the implementation of the two indicated scenarios  follow!^. 

Closure From Long Range 

The CLR scenario is initialized with the host vehicle approaching the slower-]moving 
target vehicle, both at constant initial speeds. As the closure transient proceeds, the ACC 
vehicle decelerates in order to arrive at its desired headway range (defined i:n these 
calculations, as the product of the target vehicle speed and a constant value of hieadway 
time, Th = 1.5 seconds). The initial conditions for the scenario are defined as: 

where: Ra is the range at which the ACC control logic causes a change in the 
commanded velocity, 

Rs is the maximum range of the ACC sensor (Ra Rs), 
XTarget is the initial position of the preceding, or target vehicle, 

XHOS~ is the initial position of the host vehicle, and 

the velocity of the host vehicle is greater than the velocity of the target 
vehicle. 

Grade and curve radius are held constant throughout the simulation. The performance 
measure, or merit score, is defined as the ratio of the minimum value of rang(: to the 
desired value of range (which, in turn, is based upon the speed of the preceding vehicle). 



Lead Vehicle Braking 

In the LVB scenario, the host vehicle is initially at a selected, close, value of headway 
time behind the preceding vehicle. Then the target vehicle stimulates a conflict by 
braking at a given level of deceleration for a prescribed period of time. Deceleration 
levels and durations are drawn from empirical data distributions, as is the initial velocity 
selection. Road grade is held fixed throughout each single simulation. As above, the 
merit score is defined as the ratio of the minimum value of range to the desired healdway. 

MEASURES OF PERFORMANCE 

Obviously, many candidate measures of performance can be imagined for 
characterizing the encroachment conflicts arising with ACC. The two conflict sc'enarios 
addressed in this paper are scored by use of a single "merit" measure, defined as: 

Rmin Merit = - 
R d 

where: Rmin is the minimum value of range between the host and target 
vehicles, in the course of the conflict transient (Both positive and negative 
values of Rmin are observed. While negative values nominally denote a 
crash, the quantity simply depicts conflict severity and thus the inteinsity of 
the braking intervention that is required), and 

Rd is the system-determined value of intended headway range. 

Merit performance is thus interpreted as follows: 

merit < 0.0 indicates that driver intervention was required simply to avoid a 
crash. 

0.0 < merit < 1.0 indicates closure inside of the desired headway range, 
calling for driver intervention on a discretionary basis. 

merit near 1.0 indicates that the ACC controller achieved an essentially 
conflict-free response. 

EMPIRICAL DATA COVERING THE STATISTICALLY DISTRIBUTED 
VARIABLES 

Implementation of a Monte Carlo simulation of any of the conflict scenarios requires 
that empirical data be available documenting the probability distribution of each of the 
condition variables mentioned above. These variables roughly divide into geometric 
properties of the roadway environment and kinematic variables depicting the motion of 
vehicles in real traffic. Admittedly, additional environmental variables pertaining to wind 



conditions, surface friction, atmospheric obscuration, and so on, may also impact upon 
ACC operations but are not addressed in the first-order conflict scenarios presented here. 
Figure 6 below presents distributions of the variables that have been employed in 
computing ACC conflicts arising during closure from long range and lead vehicle braking 
scenarios. 

Taking the respective sub figures left to right from the top, empirical distributions and 
data representations are employed as follows: 

Vehicular speeds were selected from the files of the so-called "REAMACS" 
data edited from New Mexico freeway data (Farber, 1994). Individual 
velocity values, V, are employed as initial speed conditions in both the CLR 
and LVB scenarios. 

In the CLR scenario, each value of V for the host vehicle is paired with an 
individual value of V for the target vehicle, although only in the negative 
range and range rate cases do vehicles actually close on one another. 

The probability of braking deceleration levels as seen in the third and fourth 
sub-figures represent the individual brake applications exhibited by 36 
subjects in moderate freeway traffic (Sayer, 1995). The sampled data are 
represented by a probability distribution of the normalized deceleration and 
normalized deceleration as a function of brake application (i.e., duration) time. 
Because both deceleration level and brake application time determine the 
velocity profile of the target vehicle, they both are included in the model in 
the form of deceleration level and time-duration pairs. The model randiomly 
selects from the deceleration distribution and then associates the selected 
value with a corresponding duration to derive the velocity profile of the; target 
vehicle. (Please note that the authors consider these data to be only a 
preliminary indication of the deceleration-duration relationship. These 
findings may have been skewed by the odd nature of the route that included 
four freeway-to-freeway interchanges or exits in a 50 mile drive. A more 
authoritative empirical basis for this relationship is currently being 
developed.) 

Highway geometry representing the states of Michigan (i.e., flat terrain) and 
West Virginia (i.e., hilly terrain) were drawn from the primary system 
mileages in the Highway Performance Monitoring System (HPMS) database 
compiled by the Federal Highway Administration. Distributions of r0a.d grade 
are presented with equal probability assumed for uphill and downhill. 
Horizontal curvature values in HPMS were also selected from the primary 
system mileages in the two indicated states. While the grade severity 
influences ACC performance because of the represented limitations in 
deceleration authority, the influence of curvature derives from non steered, 
monobeam sensing which acquires vehicular targets at shortened range values 
on tight-radius curves. 
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PREDICTORS: MODEL EXECUTION 

Monte Carlo simulation 

Monte Carlo simulation offers a classical means for predicting the cumulative or life- 
cycle experience of a physical system that will be operated under the joint probabi1i.ties of 
multiple condition variables and initialization values. The Monte Carlo nnethod 
employed here assumes that the input variables are independent of one another. To 
compile a schedule of runs, random sampling is performed on empirically-measured 
distributions of each of the condition variables to create a set of N simulation runs. As 
the value of N grows, the results tend toward a representative distribution of the conflicts 
accruing over a long-term driving experience with the defined vehicle and ACC system. 
While more work is needed to calibrate ASCOM results relative to credible long-term 
driving exposures, run batches totalling a nominal N = 600 have been found to yield 
practicably asymptotic distributions of results within a single conflict scenario. 

Monte Carlo Results for Closure from Long Range and Lead Vehicle Braking 

Results from exercising the ASCOM tool in the two illustrative scenarios are 
presented here. Both the CLR and LVB scenarios were explored by conducting a 
nominal 600 runs under each of two versions of controller design (i.e., with or without 
the additional deceleration resulting from downshift of the host vehicle transmission) and 
two topographical descriptions for the road network. 

Closure from Long Range 
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Figure 7. Results for the CLR Scenario Showing Predicted Conflict 
Distributions for ACC Usage in West Virginia and Michigan 



The results plotted in figure 7 show cumulative (CDF) distributions for the CLR 
scenario over the merit score range from zero to one. A CDF value of 0.1 appeariing at a 
merit value of 0.7, for example, would indicate that 10% of all CLR episodes occmrring 
on the indicated system of roads would arrive at a minimum headway value equal to 70% 
of the intended reference value, barring driver intervention. CDFs are presented -for the 
Michigan and West Virginia freeway networks, assuming equal driving exposure 
throughout all miles of each respective network. The number listed within the legend 
block indicate the number or runs, out of a total of 600, with steady-state initial 
conditions. For example, if the host vehicle did not have enough deceleration authority to 
hold its initial speed on negative grade road, then the simulation was not countecl. Data 
are shown for two versions of ACC controller, one having throttle-only control (labeled 
"downshift-disabled" on the figure) whose deceleration authority is rated at 0.035 gs at 65 
mph and a second whose throttle-plus-downshift control (labeled "downshift-enabled") 
yields a deceleration authority of 0.065 gs at 65 mph. 

We see that ACC operation in Michigan (whose roads are characterized by mild 
grades and large-radius highway curves) encounters virtually zero-conflict CLR 
approaches (i.e. merit = 1) in approximately 80% of all episodes, with or without 
downshift capability. Cases in which the Michigan driver must brake to avoid simply 
crashing his ACC vehicle into the slower vehicle ahead (merit = zero or below) occur in 
less than 5% of all approaches without downshift and in less than 1% of approachles with 
it. (Early field experience without downshifting ACC control, by the way, indicates that 
drivers readily perceive crash-intervention needs and begin to brake well in advance of 
the critical headway zone (Sayer, 1995). Thus, the point of even noting the zero-level 
merit data is not to predict crash experience, per se, but rather to acknowleclge the 
statistical occurrence of conflicts which tend to diminish the expected satisfaction of the 
ACC customer.) 

Since the Michigan road system is quite flat, those CLR episodes that register low 
merit scores are typified by high closure speeds (rather than steep downgrades). Further, 
the downshift-enabled control feature produces a large fractional reduction in CDI: levels 
at low merit scores. (Please note that the discontinuity around a merit of 0.8 derives from 
an implementation feature by which downshift engages when the anticipated finail range 
falls below 80% of the desired range (Fancher, 1994)) 

The corresponding West Virginia results show zero conflict in only about 64% of the 
closures and an absolute need to brake in approximately 10% of all closures without the 
downshifting controller. When downshift is enabled, improvements (lower CDF values) 
appear below the merit = 0.8 level at which downshift engagement prevails, leaving only 
3% of closures that result in a zero-merit outcome. Clearly, the steep grades in this state 
and delayed target acquisition on its tighter highway curves cause much higher rates of 
conflict when considering a low-authority ACC controller and the non steered sensor 
such as was modeled here. 
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The set of cumulative distributions in figure 8, show that conflicts in the! LVB 
scenario would require the driver to intervene relatively frequently with these ACC 
controllers, due to braking ahead. An estimate of the absolute frequency of intervention 
can be obtained by considering the original empirical source of freeway braking data used 
in these calculations. These data, measured during moderate, midday, traffic conditions 
as a kind of "average" case, showed that one brake application occurs in approximately 
every 8.2 miles of conventional driving. Assuming that all lead vehicles are :human 
controlled and not ACC equipped, we can compute the absolute intervention rate by 
dividing the 8.2 miles per LVB episode by the CDF value measured at a sul?posed 
intervention merit threshold. For example, driver intervention to deal with a pending 
LVB merit level of 0.5 or below would occur approximately every 27 miles of ACC 
headway keeping in Michigan using a nondownshifting control system, and, 
correspondingly, every 51 miles if a downshifting controller was in use. Further, if the 
host driver's behavior and traffic conditions resulted in ACC headway keeping for only, 
say, 50% of all driving miles, these respective LVB interventions would occur once in 
every 54 and 102 total miles of ACC operation. 

We see that no-conflict responses (i.e., merit = 1) occur in 27% to 37% of LVB cases, 
over all four of the combinations of state highway topography and ACC contirollers. 
Curiously, the Michigan cases with downshift disabled show CDF values above those of 
West Virginia throughout the center of the Merit range, revealing an anomaly of the LVB 
scenario definition. Namely, if the downgrade is so steep that the ACC controller cannot 
maintain the initial headway keeping mode of operation, the headway keeping 
assumption becomes invalid and the run is disqualified. As a result, West Virginia LVB 
cases are biased into the more benign, higher-merit range because the steep upgrades in 
this state are not counterbalanced by steep downgrades in the surviving set of Monte 
Carlo selections. 
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Cases in which brakes must be applied simply to avoid crashing the ACC vehicle 
number between 8% and 20% of all LVB episodes. 

Regression Model 

Monte Carlo simulations are, in general, computationally intensive. Results of the 
CLR scenario implemented in ASCOM for one host vehicle and one ACC configuration, 
such as those shown in figure 7, require 15 to 40 seconds on a typical desktop computer. 
Thus, in a Monte Carlo context where the simulation must be repeated approximately 600 
times to get reasonable confidence limits on the merit score distributions, two to three 
hours of computation time are required for each scenario. If separate merit score 
distributions are required for all 50 states, then approximately 150 hours of simulation 
time are necessary. Thus, the efficiency of computation is important and a method to 
drastically reduce this computational burden has been developed in this work. 

One solution is to replace the dynamic model of the host vehicle and ACC with a 
regression model. That is, a simple polynomial function is used to regress the output of a 
set of simulation runs to the inputs used for those simulation runs (Crary, 1995). In the 
example given, one set of condition variables contains numerical values for grade, 
curvature, absolute vehicle speed, and initial vehicle speed difference for CLIR. The 
regression model can predict, with known statistical accuracy, the output of the 
simulation at untried input points. In addition the regression model, once derived, applies 
as long as the host vehicle and ACC system remain fixed. Therefore merit CDFs can be 
determined for as many different sets of condition variable distributions as one has. For 
example, one can compute fifty merit score distributions, one for each state in the U.S.. 
A final advantage the regression model provides is its ability to predict the sensitivity of 
the merit scores to the condition variables. This can be found by simply differentiating 
the regression model equation with respect to the condition variable of interest. 

A piecewise fourth order regression model was used in the CLR scenario. The 
regression model is given by 

for i t r /  > 1 9 set Y,,, = 1 
n 

for k<o, set Y,, = o 
where: Y,,, is the merit score predicted by the regression model, 

cv, is the inverse road grade condition variable, 

cv3 is the curvature condition variable, 

cv, is the initial variable representing the speed difference between 



host and lead vehicle, and 

cv, is the average speed of the two vehicles. 

The betas, are found by the following standard minimum least squares 
procedure. 

p = (xTx)-lxT~,,  (17) 

where: p = [ PO PI ... P 5 7 ]  

X is the matrix of input condition variables such that: 

[cv, ,  CV,, ... CVl4 1 

where: cv, is the ith sample of the jth condition variable, 

Y,, is a [mxl] vector of true merit scores found from the simulati.on. 

The current design matrix, X,,,, consists of m=625 input condition variable sets 
evenly distributed over the condition variable space. Several other more efficient 
designs, such as the Latin Hypercube and the I-Optimality statistical designs, we:re also 
considered for use in the condition variable selection process. The merit scores, Y,,, 
from this set of condition variables, resulting in less than 1 and greater than -1 (i.e., - 
l<Ym,>l) were regressed to the input variable sets to provide the betas of equation 18. 
To determine the goodness of fit of the regression model, an empirical integrated squared 
error term, e,,,, is used. The e,,, is a means of evaluating the "average" error of the 
regression with respect to the true values produced by the Monte Carlo simulation. This 
error equation is given by: 

where: , are predicted merits at input vector x (i.e., a row of matrix. X) of 
the regression model, 

Y,, are the actual merit values at input vector x given by Monte Carlo 
simulation, 

n is the total number of runs. 



Regression Results 

Results from exercising the ASCOM tool in the illustrative scenario are prlesented 
here. The reader should note that the ACC implementation used in these calculations 
employed a throttle-only control provision, thus limiting the controller's range of 
deceleration authority to approximately 0.04 g. Clearly, this limitation has a, major 
influence on the numerical results shown below. 

The plotted results in figures 9 and 10 show the cumulative distribution function 
(CDF) over the range of merit scores from zero to one. Two issues will be addrelssed in 
discussing these results. Firstly, the confidence bands which bracket the simulation-based 
CDF results are addressed in light of the total number of Monte Carlo runs. Selcondly, 
the utility of the CDF result obtained using regression equation 16, is discussed insofar as 
this estimation technique offers a practicable alternative to the computationally 
burdensome Monte Carlo simulation, itself. 

Regressed CDF 
Actual CDF 

Figure 9. A comparison of results obtained from the fourth order regression 
equation (16) and the true Monte Carlo results for MichiganICLR. 

Figure 10. A comparison of results obtained from the fourth order regression 
equation (16) and the true Monte Carlo results for West VirginiaICLR. 



Bounds of Confidence 

Figure 9 and 10 present upper and lower confidence bounds for the respective 
Michigan and West Virginia merit scores obtained using Monte Carlo simulation. As 
indicated earlier, the size of the confidence band is a function of the inverse square root of 
the number of Monte Carlo runs used to create each CDF plot. Based upor) a 600-run 
group in each case, the upper and lower bounds delimit the range of results satisfying the 
95% confidence level. The bounding limits show that we have 95% confidence that any 
point on the "real CDF" lies within a cumulative distribution band that is approximately 
0.1 1 high. 

Utility of Regression Results 

The thin solid line in each CDF plot was produced by Monte Carlo execution of a 
fourth-order regression equation in thirty six terms corresponding to the CLR coindition 
variables shown in equation 16. We see that the regression-derived results for Michigan 
in figure 9 and West Virginia in figure 10, lie within 0 to 0.03 of the CDF values obtained 
from simulation results. We note, firstly, that this form of the regression equation 
approximates the simulation-based CDF curve to a degree that appears suitable far first- 
order engineering design. In support of this contention, consider that a common 
application of the ASCOM tool may entail the comparison of design alternatives in terms 
of the CDF value that prevails at a chosen threshold value of the merit score. For 
example, we have already discussed the likely utility of finding the percentage of all CLR 
approaches falling below the merit value of 0.5 for which manual intervention is 
warranted. For the illustrated case, the simulation results show that 5% of all CLR 
approaches in Michigan fall below 0.5 compared with a corresponding regression- 
estimated result of 8%. Similarly, a simulation result of 22% of all CLR approaches in 
West Virginia falling below a merit of 0.5 compares with a regression estimate of 24%. 
Thus, we see that an adequate accurate fit may be obtained through a relatively simple 
(and thus computationally efficient) regression expression that relates condition variables 
to the performance metric. 

As to the nature of errors encountered with a fourth-order regression expression, 
figure 1 1 presents scatterplots comparing regression and simulation-derived merit values 
for the Michigan and West Virginia road environments. The scatterplots show good 
correspondence of results in the range of merit values between zero and one (i.e., the 
range within which the regression equation was fitted to the simulation results). Ninety- 
eight percent of the points contained on the scatterplots are in good agreement, although 
not in a visually apparent way since the great majority overlay one another at the elxtreme 
upper right of the two plots (at the nominal coordinates, (1 ,I)). Thus, one can say that a 
relatively simple regression equation provides an accurate and efficient supplement to the 
ASCOM numerical simulation. 
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Virginia and Michigan Respectively. 

CONCLUDING REMARKS 

The ASCOM tool offers a means of reaching an overall assessment of the general 
suitability of an ACC system design, in recognition of the variety of operatiorlal and 
topographical variables found in the highway environment. While it is true that the 
absolute validation of a tool of this kind would require extensive field work, the ability to 
consolidate the known influential variables within desktop evaluation is compelling. The 
fact that statistical distributions of these variables can begin to be represented with the 
crude data resources available today provides a means of making some useful level of 
design assessment, forthwith. The substantial number of new empirical measurement 
programs being initiated during the 1990s offers hope that in the next five to ten1 years, 
very persuasive estimations of certain major aspects of system performance, over a 
vehicle's lifetime, will be achievable (NHTSA, 1995). 

Notwithstanding the inherent potential of an ASCOM approach for support:ing the 
development of ACC and related active safety technologies, the speed of brute Monte 
Carlo implementations is too slow for an efficient desktop tool. Even with a 1010 MHz 
computing platform, performing 600 runs under a typical ASCOM scenario requires more 



that 90 minutes of continuous computing. Obtaining a complete set of results for several 
geographic regions andlor driving behaviors would seem prohibitive for supporting 
engineering development. In order to dramatically accelerate the computational 
turnaround, remedial techniques have been undertaken, including regression-type "results 
modeling" and intelligent subsetting of the condition variables (to delete all the "benign" 
cases). Encouraging results have been obtained with respect to the accura.cy and 
efficiency gained from the regression fitting approach. Further effort is required to 
estimate the best predictor in a design for accuracy as well as efficiency. Future work is 
also required, of course, to implement each of the remaining scenarios and to locate or 
develop empirical data sets as needed for representing the conflict phenomena. 
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APPENDIX 

Vehicle Dynamics and Regression Models 

Figure A-1 contains the engine map used to find the engine torque, Te, given a 
throttle position, 8, and engine speed, ot. Tables A-1 to A-5 provide the nu~merical 
values for the equations 1 to 14. 
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Figure A-1. Engine Torque vs. Engine Speed Given a Throttle Position 

TABLE A-1: 

TABLE A-2: Speed (v) vs. Total Tire Rolling Resistance (F,) Wl 
60 rnph 45 Ibf 

TABLE A-3: Speed Ratio (ad) vs. Input Capacity (ki, A-lbf/rpm2) 



TABLE A-4: Speed Ratio (a,) vs. Torque Ratio (P,) 

TABLE A-5: Gear vs. Gear Transmission Ratio Table 

Determining a , :  

or = v/2nrt (A-1) 

o h =  corr (A-2) 

01 = ads Rtran (A-3) 

where: or rear axle speed 

o,, driveshaft speed 

r, tire radius 

r gear ratio 

R,,,, Transmission Ratio (see table A-5) 



Finally, table A-6 gives the numerical beta values obtained by solving equation (19). 

TABLE A-6: Betas of the Regression Equation 


