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ABSTRACT

Self-renewal of human embryonic stem cells and human induced pluripotent stem cells
(hiPSCs)—known as pluripotent stem cells (PSC)—is influenced by culture conditions, including
the substrate on which they are grown. However, details of the molecular mechanisms intercon-
necting the substrate and self-renewal of these cells remain unclear. We describe a signaling
pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to
integrin a6P1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results
in hPSC differentiation. In hPSCs, a6f1 is the dominant integrin and FAK is not phosphorylated
at Y397, and thus, it is inactive. During differentiation, integrin a6 levels diminish and Y397 FAK
is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin a6 is
upregulated and FAK is inactivated. Knockdown of integrin o6 and activation of B1 integrin lead
to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin 06
functions in inactivation of integrin f1 and FAK signaling and prevention of hPSC differentiation.
The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting
with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the
extracellular microenvironment and deposit laminin a5, the primary ligand of integrin a6f1.
Knockdown of laminin a5 resulted in reduction of integrin a6 expression, phosphorylation of
FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin a6f1, and
nuclear localization and inactivation of FAK to supports stem cell self-renewal. STEM CELLS
2016,34:1753-1764

SIGNIFICANCE STATEMENT

Villa-Diaz et al. describe a new signaling pathway in which the expression of pluripotent tran-
scription factors is linked to the expression of laminin o5 and integrin 261 and the inactiva-
tion of FAK signaling which allows self-renewal of human pluripotent stem cells.

Integrins are heterodimeric transmembrane

INTRODUCTION

Human embryonic stem cells (ESC) [1] and
induced pluripotent stem cells (iPSC) [2], collec-
tively referred to as human pluripotent stem
cells (hPSCs), are able to differentiate into all
cell types of the body and are presumed to be
capable of indefinite self-renewal in Vvitro.
Although the culture conditions in which these
cells thrive are well-documented [3], our under-
standing of how hPSCs interpret signals from
the substrate—mainly composed of extracellular
matrix (ECM) proteins—in which they are cul-
tured, is incomplete. Among the ECM proteins
that support hPSC self-renewal are fibronectin
[4], laminin isoforms 511 and 521 [5], and vitro-
nectin [6]. Therefore, we investigated the role
that their main cell-membrane receptors—
integrins—may play in self-renewal of hPSCs.

STEM CELLS 2016;34:1753-1764 www.StemCells.com

receptors that cells use to adhere to the ECM
[7] and transmit extracellular signaling inside
the cells using nonreceptor tyrosine kinases,
such as focal adhesion kinase (FAK), and com-
ponents of the cytoskeleton [8, 9]. At the cel-
lular level integrins play important roles in cell
migration, differentiation, and gene expression
[7, 10] and are known to be involved in nor-
mal organ development and function, cancer
metastases, and in the progression of several
diseases [11-15]. Integrins are subdivided into
a and B families that when combined form at
least 24 heterodimer receptor units. These het-
erodimer receptors have affinity for specific
ECM proteins. For example, integrin a5B1
functions to bind fibronectin, a6B1 to laminin,
and aVR5 to vitronectin [8]. In addition, integ-
rins have been used as cell surface markers to
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identify different cell populations, including stem cells. How-
ever, despite extensive study of these cell membrane recep-
tors in many cell functions, complete understanding of
integrin function in regulating self-renewal and differentiation
of hPSCs remains elusive.

Here, using flow cytometric analysis (FACS), immunocyto-
chemistry (ICC), and genetic manipulations we identified
integrin a6B1 as the main heterodimer integrin receptor in
hPSCs and identified a molecular signaling pathway in hPSCs,
in which integrin a6B1 blocks the activity of FAK, prevents
the degradation of pluripotency transcription factors, and
maintains self-renewal. Knowledge of this newly identified
pathway in hPSCs will contribute to a better understanding of
the interactions between the microenvironment and pluripo-
tency transcription factors that regulate self-renewal and
differentiation.

MATERIALS AND IMIETHODS

PSC Culture

All experiments were repeated at least in triplicates and with
multiple hESC and hiPSC lines. NIH approved hESCs lines H1,
H7, and H9 (WiCell Research Institute, Madison, WI, http://
www.wicell.org) and CHB8 and CHB10 (Children’s Hospital Cor-
poration, Boston, MA), and three hiPSCs derived in our labo-
ratory [16] (hGF2-iPSCs, hGF4-iPSCs, hFF [human foreskin
fibroblasts] iPSCs) were cultured on tissue culture plates (TCP)
coated with the synthetic polymer poly[2-(methacryloylox-
y)ethyl  dimethyl-(3-sulfopropyl) = ammonium  hydroxide]
referred to as PMEDSAH-grafted plates (GP), a synthetic poly-
mer that support self-renewal of hESCs and hiPSCs, or on
Matrigel hESC-qualified Matrix (Corning, Bedford, MA, http://
www.corning.com), human recombinant (hR) laminin-511
(BioLamina, Sundbygerg, Sweden, http:// www.biolamina.
com), or hR vitronectin (R&D Systems, Minneapolis, MN,
http://www.rndsystems.com) with  human-cell-conditioned
medium (hCCM, MTI-GlobalStem, Gaithersburg, MD, http://
www.mti-globalstem.com) supplemented with 5ng/ml of hR
basic fibroblast growth factor (bFGF; Invitrogen Life Technolo-
gies, Grand Island, NY, http://www.thermofisher.com) or Stem-
Pro hESC serum-free medium (SFM; Gibco Life Technologies,
Grand Island, NY, http://www.thermifisher.com) in incubators
with high humidity and 5% CO, at 37°C. The medium was
replaced every other day. Differentiating cells were mechani-
cally removed with a sterile pulled-glass pipet under a Leica
MZ9.5 stereomicroscope (Leica Microsystems, Buffalo Grove,
IL, http://www.leica-microsystems.com). Undifferentiated colo-
nies were cut and passed as small cell clusters.

PMEDSAH-GP were prepared and used as described previ-
ously [17, 18]. Briefly, PMEDSAH-GP were preincubated with
hCCM for at least 48 hours at 37°C in 5% CO, before use.
Matrigel was diluted at a concentration of 100 ug/ml in cold
Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12; Gibco
Life Technologies), added to TCPs and allowed to polymerize
during 2 hours at RT. hR vitronectin and laminin-511 were
diluted to a concentration of 5 and 10 ug/ml, respectively, in
Dulbecco’s phosphate buffered saline (D-PBS, Gibco Life Tech-
nologies), added to TCPs and allowed to polymerize during
half hour at RT. Before plating cells, dishes were washed
with D-PBS.

©AlphaMed Press 2016

Reprogramming of Human Somatic Cells into iPSCs

hFF (American Type Culture Collection, Manassas, VA, http://
www.atc.org) and human embryonic kidney 293T (HEK293T)
cells were cultured in high-glucose DMEM supplemented with
10% fetal bovine serum (FBS; Gibco Life Technologies), 1%
nonessential amino acids (NEAA) (Gibco Life Technologies), 1%
GlutaMax (Gibco Life Technologies), and 1% penicillin strepto-
mycin (Gibco Life Technologies). This medium was changed
during the reprogramming cycle and expansion of hiPS colo-
nies to hCCM supplemented with 4 ng/ml bFGF and 10 uM Y-
27632 dihydrochloride (Rock inhibitor; Enzo Life Sciences;
Farmingdale, NY, http://www.enzolifesciences.com). The Uni-
versity of Michigan Vector Core generated retroviral vectors
carrying KIf4, Sox2, Oct3/4, and c-Myc by transient cotransfec-
tion (Addgene plasmids 17217, 17219, 17220, and 17226, and
VSV-g envelope plasmid 8454) into Clontech GP2-293 packag-
ing cells using standard protocols. Fibroblasts (150,000) were
plated on a 35mm TCPs in fibroblasts culture medium and
infected the following day with 1ml of 1 X reprogramming
cocktail diluted in DMEM medium and supplemented with
10pug of hexadimethrine bromide (Polybrene; Sigma-Aldrich,
St. Louis, MO, http://www.sigmaaldrich.com). Eight hours
later, the medium was changed, and 72 hours later cells were
subcultured on Matrigel coated plates with hCCM supple-
mented with bFGF and Rock Inhibitor or collected for protein
sample and Western blot analysis.

In Vitro Cell Lineage Differentiation

Undifferentiated hESCs were induced to differentiate into
neuronal and endodermal lineage using protocols previously
described [16, 19]. Briefly, hESCs dissociated into single cells
were cultured in basal medium consisting of DMEM/F12 sup-
plemented with 1 X N2, 1XB27, 2mM L-glutamine, 1 mM
nonessential amino acids (all from Invitrogen Life Technolo-
gies), 0.11mM [B-mercaptoethanol, and 0.5mg/ml bovine
serum albumin (BSA, fraction V; both from Sigma Aldrich). To
induce neuronal differentiation, 100 ng/ml hR Noggin (Stem-
gent, Cambridge, MA, http://www.stemgent.com) was added
to the basal medium and cells cultured for 8 days. For defini-
tive endoderm differentiation, 100 ng/ml hR Activin A (Stem-
gent) was added to basal medium and cells cultured for 9
days. To induce differentiation into mesenchymal stem cells
(MSC) [20], hESCs were induced into embryoid bodies (EB)
and cultured in suspension for 7 days with hCCM in low-
attachment culture dishes. Approximately 70 EBs were plated
onto 0.1% gelatin-coated dishes in growth medium (a-MEM,
10% FBS, 200 mM L-glutamine, and 10 MM NEAA). Outgrowing
cells from EBs were cultured for up to 2 weeks. In subsequent
culture, cells were seeded at a density of 7 X 10% per cm?. To
induced osteogenic differentiation, hESC-MSCs at passages 6—
7 were incubated in a-MEM with 10% FBS, 100 U/ml penicil-
lin, 100 ug/ml streptomycin, 2mM L-glutamine, 10mM -
glycerophosphate (Sigma Aldrich), 100nM dexamethasone
(Sigma Aldrich), and 50uM ascorbate-2-phosphate (Sigma
Aldrich). Media was changed two times per week for 3 weeks.
Cells were fixed with 10% formalin for 20 minutes at RT and
stained with Alizarin Red, pH4.1 for 20 minutes at RT to ver-
ify differentiation.
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Flow Cytometry Analysis

Cells were harvested using trypsin 0.25% EDTA and washed in
cold BSA 0.5% (w/v) in DPBS and incubated at a concentra-
tion of 1 10° cells per ml in 1pg/ml unconjugated goat
anti-human 1gG (Invitrogen Life Technologies) on ice for 15
minutes, to block nonspecific protein binding. Samples
(2.5 X 10° cells) were incubated on ice with optimal dilution
of fluorochrome-conjugated monoclonal antibodies in dark,
and control samples were incubated with mouse IgG1 k iso-
type control. All fluorochrome-conjugated antibodies and iso-
type controls were of the immunoglobulin G1 (IgG1) isotype
and from BD Pharmingen (Sparks, MD, http://www.bd.com)
and used at a 1:5 dilution. The following phycoerythrin (PE)-
conjugated antibodies were used: CD29, CD49a, CDA49c,
CD49e, CD49f, SSEA-4, and Tra-1-60. After 30 minutes incuba-
tion, cells were washed twice with ice cold 0.5% BSA/DPBS.
At least 10,000 events were acquired for each sample using a
FACSCalibur instrument (Becton Dickinson, Franklin Lakes, NJ,
http://www.bd.com), and cell flow cytometry data were ana-
lyzed using CELLQUEST software (Becton Dickinson). The value
(percentage) of positive cells for each antibody was calculated
by subtracting the isotype control value from the detected
value of each antibody.

Co-immunoprecipitation, SDS Page Electrophoresis,
and Western Blot Analysis

Co-immunoprecipitation (Co-IP) assays, nuclear:cytoplasmic
fractionation, and Western blot (WB) analysis were performed
in triplicate from different biological samples and were vali-
dated in different hPSC lines. IP of 700 pg/sample was per-
formed using ImmunoCruz IP/WB Optima C System (Santa
Cruz Biotechnology, Dallas, TX, http://www.scbt.com) following
the manufacturer’s protocol. Protein extracts were prepared
in CHAPS lysis and IP buffer with protease inhibitor and phos-
phatase inhibitor (all from FIVEphoton Biochemicals, San
Diego, CA, http://www.fivephoton.com). Five pg of anti FAK-
specific antibody (Clone 4.47; Millipore, Temacula, CA, http://
www.millipore.com) and normal mouse IgG (Santa Cruz Bio-
technology) were used. Samples were run in a SDS page elec-
trophoresis and analyzed by WB to detect the interaction
between N terminal domain of FAK (NT-FAK) and Nanog,
Oct4, and Sox2. Whole cell lysates were prepared using Noni-
det P40 buffer, while nuclear:cytoplasmic fractions were pre-
pared using reagents and instructions provided by NE-PER
Nuclear and Cytoplasmic Extraction Kit (Thermo Scientific,
Rockford, IL, http://www.thermoscientific.com). Protein lysates
were separated on 7.5% SDS-polyacrylamide gel and trans-
ferred to polyvinylidine flouride (PDVF) membranes. Mem-
branes were incubated with 5% milk in tris-buffered saline
and tween 20 (TBST) (w/v) for 1 hour and then incubated
with primary antibodies overnight at 4°C. Blots were incu-
bated with peroxidase-coupled secondary antibodies (Prom-
ega, Madison, WI, http://www.promega.com) for 1 hour, and
protein expression was detected with SuperSignal West Pico
Chemiluminescent Substrate (Thermo Scientific). The antibod-
ies used were: Oct4 (Santa Cruz Biotechnology), Nanog (Cell
Signaling Technology, Danvers, MA, http://www.cellsignal.
com), Sox2 (Cell Signaling Technology), FAK (Clone 4.47; EMD
Millipore, Temacula, CA, http://www.emdmillipore.com), phos-
pho Y397 FAK antibody (Abcam, San Francisco, CA), Integrin
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a6 (EMD Millipore), Lamin A/C (Santa Cruz Biotechnology), a-
tubulin (Santa Cruz Biotechnology), and 3 actin (Cell Signaling
Technology). Imagel software (http;//rsb.nih.gov/ij) was used
for quantification of WB. Relative signal intensity was calcu-
lated for all bands and compared to respective control groups
after standardization with corresponding loading control. The
value for control groups was arbitrary set up with a value of
1 or 0 in the presences/absences of protein expression,
respectively. The relative signal intensity is expressed under
each blot. For proteome profiler 400 mg protein cell lysate
from H9-hESCs per sample were prepared using reagents and
instructions provided by Human Phospho-Kinase Array Kit
(R&D Systems, Minneapolis, MN, http://www.rndsystems.
com).

Activation, Knockdown, and Block of Integrins

To activate integrins, hESCs were treated with 0.5 mM manga-
nese chloride (Mn?"; Sigma Aldrich) or 10 ug of anti-human B
Integrin Antibody (Clone TS2/16; Thermo Scientific). As con-
trol, cells were treated either with 1 mM calcium chloride
(Sigma Aldrich) or with 10 pug of mouse 1gG (Santa Cruz Bio-
technology), respectively. To knockdown integrin a6 in hESCs,
a short hairpin RNA (shRNA) doxycycline (DOX)-inducible hESC
lines was prepared. CHB10 cells were infected with lentivirus
carrying TRIPZ shRNA-ITGA6 constructs (GE Dharmacon, Lafay-
ette, CO, http://www.dharmacon.gelifesciences.com). Infected
cells were treated with 1ug/ml or 0.5pg/ml of Puromycin
(Gibco Life Technologies) to select and maintain resistant clo-
nal cell lines, respectively. To knockdown laminin a5 in hESCs,
a DOX-inducible cell line containing shRNA sequence for
LAMAS (Life Technology) was created (WIPOle-H9ishLAMADSG)
from H9 cells and provided by Dr. Sean Palecek [21]. shRNA-
ITGA6 hESCs and H9ishLAMAS cell lines were treated with
0.1 mg/ml of DOX (Sigma Aldrich) during 72 hours. To test the
role of integrin a6 and (1 in hESC adhesion, cells were
treated with integrin-blocking antibodies during passaging to
Matrigel and PMEDSAH plates. Briefly, mature colonies grow-
ing on PMEDSAH were manually dissociated in small and uni-
form clusters using the StemPro EZPassage Disposable Stem
Cell Tool (Gibco Life Technologies), then 50 clusters of hESCs
per group were resuspended in 1ml of hCCM containing
either 5pg of anti-integrin B1 blocking antibody (Clone P5D2;
EMD Miillipore), 40ug of anti-integrin a6 blocking antibody
(Clone NKI-GoH3; EMD Millipore) or corresponding amount of
IgG, as control group. Cells were subsequently seeded onto
new Matrigel coated plates or PMEDSAH-GP and cultured
overnight in incubators with high humidity and 5% CO, at
37°C. The following day, the number of newly formed colonies
and EBs was counted for each group and a mean £ SD of
attachment was calculated from three individual experiments.

Immunofluorescence Staining and Confocal Microscopy

Cells were fixed in 4% paraformaldehyde for 10 minutes, per-
meabilized with 0.2% Triton X-100 for 5 minutes, incubated in
TBS with 0.1% sodium borohydride for 5 minutes and incu-
bated in blocking solution (5% BSA/PBS) for 1 hour, all at RT.
Then samples were incubated overnight at 4°C with primary
antibodies diluted in 1% BSA. Next day samples were washed
three times with PBS, followed by 1 hour exposure to second-
ary antibodies diluted in 1% BSA. Samples were then incu-
bated for 10 minutes with DAPI, followed by three wash steps

©AlphaMed Press 2016
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tiated H1 hESC colonies growing on Matrigel and immunostained with antibodies specific for integrin isoforms al, a2, a3, a5, a6, aV,
and B1. Inlet micrographs illustrate 4’,6-diamidino-2-phenylindole (DAPI) staining of the corresponding colony. As NC, the first antibody
was omitted. Scale bar =200 um. (B): Histograms of flow cytometry analysis for specific integrin isoforms expressed in undifferentiated
hESCs (H1) cultured on Matrigel indicating the mean = SEM of positive cells. Control for fluorochrome IgG is shown in each histogram
under the white area. (C): Representative immunoblots of co-immunoprecipitation assays showing interaction between integrin 31 and
integrin a6 in hESCs. Abbreviations: NC, negative control; PE, phycoerythrin.

with PBS. These steps were at RT and in dark conditions. Sam-
ples in glass slides were treated with BD Stabilizing Fixative
solution (BD Biosciences) diluted in PBS for 5 minutes, then
treated with ProLong Gold Antifade Reagent (Molecular
Probes Life Technologies, Grand Island, NY, http://www.ther-
mofisher.com), and mounted with a glass cover slide. Images
were captured using a Nikon TE2000-S Epifluorescent micro-
scope with a Nikon DS-Ril camera or using a Nikon A-1 Spec-
tral Confocal microscope system. The following antibodies
were used: Oct4 (Santa Cruz Biotechnology), Nanog (Cell Sig-
naling Technology), Sox2 (Cell Signaling Technology), FAK
(Clone 4.47; EMD Millipore), phospho Y397 FAK (Abcam, San
Francisco, CA, http://www.abcam.com), and from Millipore:
integrin a2, integrin a3, integrin a5, integrin a6, integrin aV,
integrin B1.

RNA Isolation, Preparation, Quantitative Real-Time
PCR, and Reverse Transcription PCR

Total RNA was reverse transcribed using the MultiScribe
Reverse Transcriptase System (Applied Biosystems, Foster city,
CA, http://www.appliedbiosystems.com). The ABI 7300 PCR
and Detection System (Applied Biosystems) with SYBR Green
PCR Master Mix (Applied Biosystems) were used to conduct
real-time polymerase chain reaction (PCR) in triplicate for
each sample. Primers used are listed in Supporting Informa-
tion Table 2. Human [-ACTIN was amplified as an internal
standard. Relative quantification of gene expression was per-
formed using the comparative C; Method. For reverse-
transcription PCR, total RNA was reverse transcribed using
SuperScript One-Step RT-PCR with platinum Taqg (Invitrogen,
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Carlsbad, CA, http://www.invitrogen.com). In a single reaction
(25 ul), 0.5pg of total RNA and 20pmol of forward (f) and
reverse (r) primers were used. Primer sequences are in Sup-
porting Information Table 2. The cDNA synthesis and predena-
turation were carried out at 95°C for 2 minutes. The PCR
amplification was performed for 35 cycles at 95°C for 30 sec-
onds, 55°C for 30 seconds, and 72°C for 30 seconds. The final
extension cycle was run at 72°C for 10 minutes. Finally, 10 pl
of PCR reaction product were loaded onto a 1.0% agarose gel.

Statistical Analysis

Experiments were performed in triplicate and data are
expressed as mean value = SEM and analyzed by an unpaired
t test. Levels of statistical significance were set at p <.05.

RESULTS

Integrin a6 Expression Parallels the Undifferentiated
State of hPSCs

The expression of integrin subunits a1l (CD49a), a2 (CD49b),
a3 (CD49c), ad (CD49d), o5 (CD49e), a6 (CDA9F), aV, and P1
(CD29) was analyzed in undifferentiated H1-hESCs cultured on
Matrigel by ICC (Fig. 1A). Quantitative analysis by flow cytom-
etry (FACS) demonstrated that 96% and 98% of cells were
positive for integrins a6 and (1, respectively. In addition, it
was observed that greater than 80% of cells were a3 and a5
positive, whereas 11% were «l positive (Fig. 1B). FACS analy-
sis of other hESC cell lines (H9 and CHB10) and a hiPSC lines
(hGF2-iPSCs) confirmed that both a6 and B1 integrins are
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Figure 2. Integrin a6 expression parallels the pluripotent state of human pluripotent stem cells. (A): Panel with representative micro-

graphs of undifferentiated (top) and differentiating (bottom) hESC colonies immunostained with Oct4 and integrin a6 antibodies. DAPI
was used to stain the nuclei of all cells in both colonies. The blue dotted lines delineate the borderline of colonies, while the red and
yellow dotted lines indicate the borderline of Oct4 + and integrin a6 + cells. Scale bar = 200 um. (B): Representative immunoblot show-
ing reduction in both Oct4 and integrin a6 protein levels during treatment with/without BMP2. B-Actin was used as the loading control.
(C): Graph showing change in RNA levels (mean = SEM) of specific integrin isoforms expressed in undifferentiated hESCs (white columns)
and in hESC differentiated into MSCs (light grey color) and osteoblasts (dark grey color). Quantitative polymerase chain reaction was
performed from three independent replicates to calculate the mean = SEM of the relative mRNA expression for each gene and different
letters between columns for a specific integrin isoform indicate significant statistical differences (p <.05). (D): Representative immuno-
blot showing increase in Oct4 and integrin a6 protein levels in protein lysates of parental fibroblasts 72 hours postinfection with Sendai
Virus construct for KMOS (middle lane) and in resulting fully reprogram hiPSCs (right lane), compared to protein lysate of parental fibro-
blasts before infection (left lane). B-Actin was used as loading control. (E): Representative immunoblot showing reduction in integrin a6,
Oct4, Nanog, and Sox2 protein levels in lysates from a hESC line with carrying an inducible shRNA construct for integrin a6 and treated
during 72 hours with Dox compared to nontreated cells. a-Tubulin was used as loading control. Protein expression in Western blot anal-
ysis was calculated in relative signal intensity for each band, and it is indicated below each blot as average = SEM of three independent
replicates. Abbreviations: BMP4, bone morphogenetic protein 4; DAPI, 4',6-diamidino-2-phenylindole; Dox, doxycycline; FAK, focal adhe-
sion kinase; hESCs, human embryonic stem cells; hiPSCs, human induced pluripotent stem cells; KMOS, KlIf4, c-Myc, Oct4, and Sox2;

MSCs, mesenchymal stem cells.

predominantly expressed when cultured on defined substrates
that support self-renewal, such as hr Laminin-511 [5], hr
Vitronectin [6], and the synthetic polymer coating PMEDSAH-
GP [17] (Supporting Information Figs. 1-7). By co-IP assays it
was determined that integrin a6 interacts with integrin 31 in
hESCs, suggesting that they form the a6B1lheterodimer (Fig.
10).

To investigate the role of integrins a6 and 1 in hPSC
adhesion, H1-hESCs were incubated separately with their
respective blocking antibodies during subculture to Matrigel-
coated plates and PMEDSAH-grafted plates. Treatment with
ab-blocking antibody did not suppress hESC adhesion to
either Matrigel or PMEDSAH-GP, and colonies were formed on
both substrates. However, incubation with (1-blocking anti-
body completely inhibited hESC adhesion and colony forma-
tion on both substrates (Supporting Information Table 1),
suggesting that 1 integrin, and not the a6 subunit, is primar-
ily involved in hPSCs adhesion to supportive extracellular mat-
rices and PMEDSAH-GP.

To determine the extent to which expression of integrin
a6 is associated with the undifferentiated state of hPSCs, the
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expression of integrin a6 was studied in conditions that
induce stem cell differentiation. First, by ICC it was observed
that when hESCs were exposed to differentiation medium,
cells at the periphery of colonies exhibited reduced expression
of both Oct4, a hallmark transcription factor of PSCs, and
integrin a6 (Fig. 2A). By immunoblotting it was observed that
undifferentiated hESCs and hiPSCs express two isoforms of
integrin a6: the A form (higher molecular weight band) and
the B form (lower molecular weight band) (Fig. 2B, 2D, 2E).
After BMP4 treatment, a well-established inducer of hPSC dif-
ferentiation [22], the A form band of integrin a6 was no lon-
ger detected, while the B form was reduced. Similarly, both
Oct4 and Sox2 were no longer detected in the BMP4 treated
cells (Fig. 2B). Pluripotent hESCs were also directed to differ-
entiate into either MSCs or osteoblasts to determine how
integrin subunits mRNA levels may be altered as a function of
stem cell differentiation. Expression of integrin subunits o,
o2, a3, a5, a7, and «V increased during directed differentia-
tion. In contrast, a6 was the only integrin subunit that dem-
onstrated significantly reduced RNA expression during
differentiation to either MSCs or osteoblasts (Fig. 2C).
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Figure 3. Focal adhesion kinase (FAK) and other kinases of focal adhesions are not phosphorylated in human embryonic stem cells

(hESC). Protein lysates from undifferentiated hESCs cultured on hR Laminin 511, hR Vitronectin, and PMEDSAH were analyzed to detect
relative levels of protein phosphorylation. In this array the phosphorylation of specific protein kinase was detected in duplicated spots
with captured antibodies. Reference spot (highlighted in yellow box) demonstrated the incubation of whole array with Streptavidin-HRP.
As a control, the phosphorylation of MAPK family members is highlighted (orange and brown box). Note the lack of phosphorylation in
spots specific for FAK (red box), paxilin (green box), Src (blue box), and Fyn (purple box). Abbreviations: hR, human recombinant.

The expression of integrin a6 was studied during reprog-
ramming of human fibroblasts into iPSCs to further explore
the specificity of the distinctive changes in integrin a6 in plu-
ripotent cells. hiPSCs were generated by overexpressing Klf4,
c-Myc, Oct4, and Sox2 (KMOS) [2, 23] in fibroblasts. WB analy-
sis demonstrated that integrin a6 was not expressed in paren-
tal fibroblasts, but the B-form band became detectable three
days postinfection with KMOS, and both isoforms of integrin
ab were expressed in fully reprogrammed hiPSCs (Fig. 2D).

To investigate the role of integrin a6 in maintenance of
the self-renewal phenotype in hPSCs, the knockdown of this
integrin was induced in the CHB10-hESC line with a DOX-
inducible shRNA. The induced knockdown of integrin a6 pro-
tein in hESCs, as observed by disappearance of A-isoform
band and reduction in the B-isoform band, led to a reduction
in Nanog, Oct4, and Sox2 levels (Fig. 2E), while treatment
with DOX in control cells did not affect the expression of
these transcription factors (data not shown). Interestingly, the
knockdown of integrin a6 also increased the expression of
FAK (Fig. 2E). Taken together, these results indicated that the
heterodimer combination of integrin a631 is dominantly pres-
ent in hPSCs, and that the expression of a6 is aligned with
the undifferentiated state, since it is upregulated during
hiPSCs formation and reduced during cell differentiation. Fur-
thermore, a possible role of integrin a6 in maintaining self-
renewal is indicated by the reduction in expression of pluripo-
tent transcription factors in hESCs after its knockdown.

The Integrin-FAK Signaling Pathway is not Active in
hPSCs

Because FAK mediates signaling from activated integrins [24,
25], we investigated the activity of this kinase in hPSCs. The
activation of FAK is regulated by autophosphorylation at tyro-
sine (Y)397 [26], which is localized to a linker region between
the NT and central kinase domains. The NT domain of FAK is
known to repress the catalytic activity of the enzyme by intra-
molecular autoinhibition. Upon integrin-mediated activation,
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the carboxyl (C) T domain of FAK is recruited to focal adhesion
sites, placing it in proximity and allowing the interaction
between the cytoplasmic tail of integrin B subunits and the NT
domain of FAK. This action results in relief of the NT domain-
mediated autoinhibition and therefore, the activation of FAK
catalytic activity [24]. The autophosphorylation at Y397 creates
high-affinity binding sites for proteins with SH2 domains,
including Src family kinase, which in turn phosphorylate other
FAK tyrosine residues that mediate the activation of ERK1/2
and PI-3 kinase. Results obtained from a phosphokinase array
analysis of protein lysates from undifferentiated H9-hESCs cul-
tured on hr Laminin-511, hr Vitronectin, or PMEDSAH-GP
showed no detectable phosphorylation of FAK at Y397 (Fig. 3).
Similarly, no phosphorylation was detected in FYN [27], paxilin
[28], and Src [29], proteins associated with FAK signaling and
components of focal adhesions. Furthermore, only a small
number of cells in undifferentiated H9-hESC colonies exhibited
focal adhesions, and those were localized mainly to the colony
periphery (Fig. 4 upper panel). However, incubation with an
integrin B1l-activating antibody induced multiple focal adhe-
sions that were observed throughout the hESC colonies (Fig. 4
lower panel). Interestingly, the expression of Oct4 in the
activated-antibody treated group was reduced and localized to
the cytoplasm. Similar results were obtained with H1- and
CHB10-hESCs and hiPSC lines (data not shown).

To investigate whether FAK is phosphorylated and acti-
vated during differentiation of pluripotent cells, H1-hESCs
were differentiated into endoderm and ectoderm lineages,
and protein lysates were analyzed by WB analysis. The cell lin-
eage differentiation was confirmed by upregulation in mRNA
levels of endodermal and ectodermal lineage specific genes,
as well as reduction of pluripotent genes (Supporting Informa-
tion Fig. 8). FAK was detected in undifferentiated hESCs as
well as in both endoderm- and ectoderm-induced cells, how-
ever the phosphorylation of FAK at Y397 was only detected in
lysates from differentiated cells (Fig. 5A). The phosphorylation
status of FAK was also determined during induction to the
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Figure 4. Activation of integrin 31 signaling induces focal adhesions and reduction in Oct4 expression in human embryonic stem cells
(hESC). Representative micrographs of a hESC colony (top panel) immunostained with specific antibodies for NT FAK to identified focal
adhesion sites (white arrows). Oct4 specific antibody was used to verify the undifferentiated state of hESCs (yellow arrows). Cells were
counterstained with DAPI. Treatment with integrin 31 activating antibodies to undifferentiated hESCs (bottom panel) induces the forma-
tion of focal adhesion sites. Note this treatment also induced a reduction in nuclear expression of Oct4. Scale bar = 100 um. Representa-
tive micrographs in inserts at the lower left corner of top panel show control immunostaining, in which first antibody was omitted.
Abbreviations: DAPI, 4, 6-diamidino-2-phenylindole; FAK, focal adhesion kinase; NT, N terminal domain.

pluripotent state by reprogramming human fibroblasts into
iPSCs. Phosphorylation of FAK at Y397 was detected in paren-
tal fibroblasts but was nondetectable in fully reprogrammed
hiPSCs (Fig. 5B).

To investigate a potential role of FAK in self-renewal of
hPSCs, undifferentiated H1-hESCs were treated with Mn**, a
strong promoter of integrin function [30]. After 1 hour of
Mn?"  treatment, phosphorylation of FAK at Y397 was
observed, and the intensity of phosphorylation increased after
24 hours treatment (Fig. 5C). In parallel with the activation
and phosphorylation of FAK, Oct4 levels were significantly
reduced (Fig. 5C). Taken together, these results indicated that
in undifferentiated hPSCs both integrin and FAK Y397 signaling
are inactive. During differentiation of hPSCs, FAK is phospho-
rylated, while this kinase is dephosphorylated during reprog-
ramming of human fibroblast into iPSCs. Interestingly, the
activation of FAK by either an integrin B1-activating antibody
(Fig. 4 lower panel) or Mn®" treatment (Fig. 5C) induced sig-
nificant reduction of Oct4 in hESCs.

The N-Terminal Domain of FAK is Located in the
Nuclei of hPSCs and Interacts with Pluripotent
Transcription Factors

Our results in undifferentiated hPSCs indicating inactivity of
FAK at Y397 and lack of focal adhesion sites, as well as recent
findings that the NT or FERM domain of FAK can be localized
in cell nuclei [31-33] prompted us to investigate the immuno-
localization of this FAK domain in hESCs. By confocal micros-
copy, differences in the immunolocalization of the NT domain
of FAK between fibroblasts and hESCs were observed. The NT
domain of FAK was observed in the cytoplasm but not in the
nucleus of fibroblasts (Fig. 6A), while in hESCs, it was localized
in both the cytoplasmic and the nucleus (Fig. 6A). Interest-
ingly, a strong colocalization signal was detected between NT
FAK and Sox2 in the nucleus of hESCs (Fig. 6A). The nuclear
and cytoplasmic localization of NT FAK in hESCs was verified
by fractionation studies and WB analysis (Fig. 6B). To further
investigate the potential interaction of NT FAK with this pluri-
potent transcription factor, co-IP assays were performed (Fig.
6C). WB analysis demonstrated that the NT domain of FAK
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coimmunoprecipitated with both Oct4 and Sox2 in protein
lysates from undifferentiated H1-hESCs (Fig. 6C). No co-IP
between NT FAK and Nanog was observed in the same lysates
(data not shown).

To investigate the extent to which Oct4 and/or Sox2 are
able to regulate the nuclear localization of the NT domain of
FAK, both transcription factors were overexpressed in
HEK293T cells. Immunoblotting results indicated an increase in
nuclear NT FAK when Oct4 was overexpressed in HEK293T
cells compared to control lysates (Fig. 6D). All together these
results indicated that in hPSCs, the NT domain of FAK is local-
ized to the nucleus and interacts with Oct4 and Sox2. The
upregulation of NT FAK in the nucleus by overexpression of
Oct4 suggests a possible role of this transcription factor in
controlling the activity of FAK.

Laminin a5 Maintains Integrin 6 Expression, Inactivity
of FAK, and Expression of Pluripotent Transcription
Factors in hPSCs

Because integrin «6B1 is the primary laminin receptor
[34-36] and the dominant integrin heterodimer in hPSCs
when laminin was not provided (i.e., hr Vitronectin and
PMEDSAH), we hypothesized these cells might remodel the
substrate in which they are growing by secreting and deposit-
ing their own laminin. Thus, we investigated whether hESCs
secrete and deposit laminin on PMEDSAH-grafted plates. By
ICC, laminin a5 was detected in CHB10-hESCs colonies cul-
tured on PMEDSAH-GP (Fig. 7A). Next, we investigated the
effects of knocking down laminin a5 in H9-hESCs, and it was
observed that laminin o5 (LAMAS), integrin «6 (ITGA6), and
Sox2 mRNA levels decreased compared to control cells in
which Dox-induction was omitted. In contrast, Nanog and
Oct4 (also known as POU5F1) expression did not change (Fig.
7B). At the protein level, knockdown of laminin o5 decreased
the expression of integrin a6 and Oct4, while the phosphoryl-
ation of FAK Y397 was enhanced (Fig. 7C). These results indi-
cated that hPSCs secret and deposit laminin «5, and the
knockdown of this ECM decreases the protein levels of integ-
rin a6, induces the phosphorylation of FAK, reduces Oct4 and
induces differentiation.
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Figure 5. Phosphorylation of FAK correlates negatively with the
undifferentiated state of human pluripotent stem cells. (A): West-
ern blot analysis showing changes in FAK phosphorylation at tyro-
sine (Y) 397 between undifferentiated hESCs and differentiated
cells (endoderm and ectoderm derivatives). Oct4 was used to
indicate the undifferentiated state of hESCs. (B): Representative
immunoblot showing changes in FAK phosphorylation between
parental fibroblasts (Oct4-) and resulting human induced pluripo-
tent stem cells (hFF-iPSCs), indicated by Oct4 protein levels. (C):
Immunoblot indicating an increase in phosphorylation of FAK in
hESCs treated with Mn®" during 1 and 24 hours, which resulted
in reduction in Oct4 levels. B-Actin was used as loading control.
Protein expression in Western blot analysis was calculated in rela-
tive signal intensity for each band, and it is indicated below each
blot as average = SEM of three independent replicates. Abbrevia-
tions: FAK, focal adhesion kinase; hESCs, human embryonic stem
cells; hiPSCs, human induced pluripotent stem cells.
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DiscussioN

We identified a correlation of integrin a6 expression and the
hPSC state, and confirmed [5, 37-40] that a6B1 is the domi-
nant integrin heterodimer present in undifferentiated hESCs
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(H1, H7, H9, CHB8, and CHB10) and hiPSCs (hGF2-iPSCs,
hGF4-iPSCs, and hFF-iPSCs) in all in vitro cell culture condi-
tions tested here; that is, culture on hr Laminin 511, hr Vitro-
nectin, and PMEDSAH coated plates. When hESCs were
differentiated, the expression of integrin a6 decreased, while
reprogramming to pluripotency upregulated integrin o6
expression. Furthermore, the knockdown of integrin a6 by
shRNA led to decreased expression of Nanog, Oct4, and Sox2
in hESCs, suggesting a role of this integrin in maintaining PSC
self-renewal.

To gain molecular insight into the role of integrins in
maintaining self-renewal of hPSCs, we examined the activity
of FAK, a cytoplasmic kinase that mediates the signaling of
active integrins. Surprisingly, the phosphorylation of FAK at
Y397 was not observed in undifferentiated hESCs, suggesting
inactivity of integrin signaling. Integrins can be present in
three main conformational states: ligand-bound, active, and
inactive [41], and our results indicated that in hPSCs, subpo-
pulations of integrins co-exist in different activation states.
Integrin B1 was present in the ligand-bound state, as was
required for cell adhesion of hESCs. Focal adhesion sites were
observed mainly at cells at the periphery of colonies, suggest-
ing the presence of a subpopulation of active integrins. How-
ever, we found that in the majority of cells from
undifferentiated hESC colonies, integrins were diffusely dis-
tributed and were present in the inactive state as illustrated
by the absence of both focal adhesions and the absence of
FAK, paxilin, Src, or Fyn phosphorylation. However, incubation
with integrin-activating antibodies or Mn>* resulted in p1
integrin activation, formation of focal adhesions, phosphoryla-
tion of FAK, and notably, in reduction in Oct4 expression.
These data suggest that in undifferentiated hPSCs the majority
of integrins are in an inactive state, but are poised to be acti-
vated. When integrins are active, Oct4 expression is reduced
in hPSCs. However, the knockdown of integrin a6 in hESCs
also induced the reduction of Nanog, Oct4, and Sox2. This
suggests that in hPSCs, integrin a6 may be pro-pluripotency,
by inhibiting the ability of integrin B1 to phosphorylate FAK
at Y397 and with it preventing the repression of pluripotency
transcription factors.

The interaction between integrins and signaling molecules
is primarily regulated by the B isoform. The cytoplasmic tail
of B integrins interacts with cytoskeletal elements and regu-
lates molecules with enzymatic or regulatory functions within
focal adhesion sites [9]. However, it has also been established
that the cytoplasmic tail of a subunits regulate the localiza-
tion to focal adhesions and activation of 1 integrin [42, 43].
In particular, evidence in myoblasts suggests that the integrin
abA isoform modulates the activity of integrin B1A and sup-
presses FAK phosphorylation [44]. This mechanism may also
be functioning in hPSCs because phosphorylated FAK and
focal adhesions were not detected in undifferentiated cells
that express integrin a6. Our results confirm that undifferenti-
ated hPSCs express both the A and B isoforms of integrin a6
and during directed differentiation of hESCs the A form was
downregulated at a faster rate than the B form. Thus, we
show that undifferentiated hPSCs express isoforms of integrin
a6B1 that are known to suppress the phosphorylation and
activity of FAK.

Interestingly, new roles for FAK have been identified that
involve its localization and function in the nuclei of cells. For
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Figure 6. The NT domain of FAK interacts with pluripotent transcription factors in the nuclei of human embryonic stem cells (hESCs). (A):
Representative micrographs obtained by confocal microscopy showing nuclear and cytoplasmic immunolocalization of NT FAK in hESCs (top
panel) compared to only cytoplasmic immunolocalization in fibroblasts (bottom panel). The undifferentiated state of hESCs is demonstrated
by positive expression of Nanog, Oct4, and Sox2. Note the high colocalization signal in merge image between NT FAK and Sox2. Scale bar for
top panel = 25 um, for bottom panel = 100 um. (B): Representative immunoblot of nuclear and cytoplasmic fractions of hESCs showing
detection of NT FAK in both cellular fractions. Oct4 was used to identify both the undifferentiated state of hESCs and the nuclear fraction,
while 3-actin to identify the cytoplasmic fraction. (C): Representative immunoblots of coimmunoprecipitation assays showing interaction
between NT FAK and both Oct4 and Sox2. (D): Representative immunoblot of nuclear and cytoplasmic fractions of HEK 293T cells treated
with/without retrovirus to overexpress (O.E.) Oct4. The overexpression of Oct4 increased NT FAK protein levels in the nuclei. Lamin A/C was
used to indicate the nuclear fraction, while a-tubulin to show equal protein loading. Protein expression in Western blot analysis was calcu-
lated in relative signal intensity for each band, and it is indicated below each blot as average = SEM of three independent replicates. Abbre-

viations: DAPI, 4, 6-diamidino-2-phenylindole; FAK, focal adhesion kinase; NT, N terminal domain; O.E., overexpression.

example, FAK has been shown to function as a scaffold pro-
tein that enhances CHIP E3 ligase-dependent [32] and Mdm?2
E3 ligase-dependent [45] ubiquitination and degradation of
Gatad and p53, respectively. Furthermore, interconnections
between FAK with pluripotent transcription factors have also
been described recently. In glioblastoma cells, Oct4 upregu-
lates the expression of FAK [46], and in 293 cells Nanog
directly binds and regulates the NT domain of FAK [47]. Inter-
estingly, both the nuclear localization signal and nuclear
export signal sequences of FAK have been identified in its NT
domain [48]. Therefore, we investigated the localization of
FAK in hPSCs by confocal microscopy. Using an antibody that
specifically recognizes the NT domain of FAK, we found the
NT domain to be localized mainly in the cytoplasm and nuclei
of undifferentiated hESCs, while minimally in focal adhesion
sites of cells in the periphery of colonies. However, upon
treatment with Mn?* or B1 integrin-activating antibodies, FAK
NT was observed in newly formed focal adhesions in cells
that also expressed reduced levels of Oct4 in the nuclei. Fur-
thermore, the nuclear localization signal of NT FAK in undiffer-
entiated hESCs strongly colocalized with Sox2, and to a lesser
extent with Oct4 and Nanog.

Co-IP studies demonstrated that NT FAK interacts with
Oct4 and Sox2, but not with Nanog. This prompted us to
investigate whether Oct4 and Sox2 may be involved in the
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nuclear localization of NT FAK. Overexpression of Oct4 in
HEK293T cells led to increased NT FAK in nuclear fractions.
This finding suggests that in hPSCs the activity of FAK is indi-
rectly downregulated by Oct4 in two possible mechanisms:
first, by promoting the transportation of NT FAK to the nuclei,
or alternatively by promoting the expression of specific iso-
forms of integrins that block the activation of FAK. In fact, it
is known that Oct4 and Sox2 bind to promoter regions of
ITGA6 and ITGB1 [49, 50]. Accordingly, we also showed that
during the reprogramming of fibroblasts into hiPSCs, integrin
b is expressed as early as 3 days postinfection with reprog-
ramming factors.

Another important observation obtained from our studies is
that integrin a6B1 is the dominant heterodimer combination
expressed in undifferentiated hPSCs, regardless of the support-
ing substrate on which they were cultured. Integrin a6B1 is the
main receptor for laminin [8, 34—36], and it is known that lami-
nins are a major component of Matrigel [51]. Thus, it was not
surprising to find high expression of integrin a6@1 in hPSCs cul-
tured on either Matrigel or hr Laminin-511. However, the main
receptor for vitronectin is integrin aV35 [8, 52], and although
oV was also detected, it was not as highly expressed as integrin
a6B1 in hESCs cultured on hr Vitronectin. PMEDSAH-GP, in con-
trast, is a synthetic polymer coating that does not contain
motifs that would likely mimic laminin or RGD [17]. However,
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Figure 7. Laminin o5 is secreted and deposited by human embryonic stem cells (hESC). (A): Representative micrographs of a hESC colony cul-

tured on PMEDSAH and immune-stained with laminin and Oct4 antibodies. DAPI was used as counterstaining to show the delimitations of the
colony. Scale bar = 150 um. (B): Graphs showing RNA relative levels (mean fold change == SEM) in genes expressed in hESCs after knockdown
of LAMA5 by shRNA. Asterisk indicates statistical differences (p < .05). (C): Representative immunoblot showing changes in protein levels in
hESCs after knockdown of LAMAS5 by shRNA. To induce LAMA5 knockdown, cells were treated with Dox during 72 hours. Note the increase in
phosphorylation of FAK while reduction in integrin a6 and Oct4 in LAMAS5 knockdown cells. GAPH was used as loading control. Protein expres-
sion in Western blot analysis was calculated in relative signal intensity for each band, and it is indicated below each blot as average = SEM of

three independent replicates. Abbreviations: DAPI, 4/, 6-diamidino-2-phenylindole; Dox, Doxycycline; FAK, focal adhesion kinase.

a6B1 integrin was identified as the dominant integrin present in
hESCs growing on PMEDSAH-GP. This suggests, that hPSCs may
remodel the substrate in which they are cultured, by degrading
existing ECM, as well as secreting and depositing new ECM.
Recently, it has been demonstrated that hESCs secrete and
deposit laminin a5, and that this ECM is necessary for survival
and expansion of these cells [21]. Here, we demonstrated that
hESCs cultured on PMEDSAH-GP express laminin «5, and the
knockdown of this protein resulted in reduction of integrin a6
and Oct4 protein levels, and Sox2 at RNA levels, while an
increase in FAK phosphorylation was observed and Nanog pro-
tein levels were not affected. The reduction of Oct4 at protein
levels but not at RNA expression suggests a post-transcriptional
effect of laminin knockdown on Oct4. However, our data indi-
cated that laminin knockdown does not have an effect in Nanog
regulation, as reported previously [21]. These results however
are intriguing since knockdown of integrin a6 resulted in reduc-
tion on protein levels of both Nanog and Oct4. Further investiga-
tion will be required to elucidate whether the lack of laminin
effects on Nanog are due to a pathway other than integrin «6.
Taken together, these findings suggest a molecular circuit in
hPSCs linking laminin o5 deposition, expression and synthesis of
integrin a6P1, suppression of FAK activity, and maintenance of
pluripotency transcription factors.

CONCLUSION

In summary, our results demonstrate that undifferentiated
hPSCs express high levels of integrin a6 that prevent integrin
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B1 from phosphorylating FAK at Y397. However, upon activa-
tion of B1 integrin by Mn?" treatment or activating antibody,
numerous focal adhesion sites are formed, FAK becomes
active, and Oct4 nuclear expression is decreased. Other asso-
ciations between the expression of integrin a6B1, FAK activity,
and self-renewal of hPSCs included decreased levels of Oct4
after the knockdown of integrin a6 or laminin «5, which
resulted in phosphorylation of FAK. These observations,
together with the results indicating that pluripotency tran-
scription factors Oct4 and Sox2 interact and upregulate the
expression of N-T FAK in the nucleus, suggest that several
mechanisms exist in hPSCs to prevent the phosphorylation
and activity of FAK and the exit from the state of self-
renewal.
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