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Abstract 

History of species arrival can influence plant community assembly. In this issue of the Journal of 

Vegetation Science, Sarneel et al. show that the strength of such historical contingency, or 

priority effects, varies with soil moisture in riparian plants. We discuss this study within a 

theoretical framework describing how and when priority effects occur via destabilizing and 

equalizing mechanisms. 
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How do plant species assemble into communities? This question has been central to vegetation 

science at least since Cowles (1899). Many processes affect community assembly, but one that is 

receiving renewed interest is priority effects, in which the impact that species exert on one other 

depends on the order of species arrival (Drake 1991). A fundamental goal is to predict how and 

when priority effects occur (Fukami 2015). This goal has been difficult to achieve because 

arrival order cannot be reconstructed in adequate detail in most cases. It is possible, however, to 

manipulate arrival order and watch what happens to community assembly (Ejrnæs et al. 2006), 

the approach taken by Sarneel et al. (2016) in this issue of the Journal Vegetation Science. 

 

Three aspects of Sarneel et al.'s study are particularly worth noting. First, it involved a rare 

combination of greenhouse and field experiments. Greenhouse experiments afford greater 

experimental control, whereas field experiments yield more realistic data. The findings that were 

broadly consistent between the two complementary methods enhance support for the results. 

Second, the study made use of an environmental gradient along a river to determine if the 

strength of priority effects is affected by a particular environmental factor, soil moisture. Sarneel 

et al.'s use of the river gradient places the results in a realistic context, which few other authors 

have done. Third, arrival order was manipulated so as to simulate seed dispersal by flood or wind, 

with a clear link to understanding the effect of fluctuations in seasonal flood timing and other 

causes of natural variation in arrival order. These aspects of the study make the conclusion—that 

the strength of priority effects varies with soil moisture as well as species identity—both relevant 

and robust. 

 

Experiments like Sarneel et al. (2016) are increasing in number, but papers on priority effects 

remain a minor part of the community assembly literature (Fukami 2015). One reason for this 

trend may be the lack of an intuitive conceptual framework for priority effects. Here we present 

one framework, building on Chesson’s (2000) classification of mechanisms of species 

coexistence. This seminal paper is widely cited, but its potential utility for understanding priority 

effects is not well known. 

 

According to Chesson (2000), there are two types of mechanisms that promote species 

coexistence, stabilizing and equalizing (right hand side of Fig. 1). To briefly explain these 
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mechanisms, let us consider coexistence of a pair of species as the simplest case. In species pair 

A shown in Fig. 1, the fitness difference is too large (i.e., one species is too fit compared to the 

other), and the niche difference is too small (i.e., the species are too similar in, e.g., resource 

requirements), to permit coexistence. In pair B, the niche difference—as seen in, for example, 

root depth—is large enough to compensate for the large fitness difference to permit coexistence. 

In other words, stabilizing mechanisms are strong enough to allow coexistence. In pair C, fitness 

difference is kept small enough—by, for example, foliar pathogens causing more harm to the 

competitively dominant species—to make up for the small niche difference to permit coexistence. 

In other words, equalizing mechanisms are strong enough to allow coexistence. 

 

Chesson (2000) focused on species coexistence, but a similar explanation is possible for 

mechanisms that realize priority effects. Using Mordecai’s (2011) conceptual diagram that 

extended Chesson (2000) and Adler et al. (2007), we can see that there are two types of 

mechanisms, destabilizing and equalizing (left hand side of Fig. 1). In species pair D, one species 

is so much more fit than the other and they are so similar in their niche requirements that 

coexistence is not possible. The more fit species always excludes the other regardless of arrival 

order, leaving little room for priority effects. 

 

In contrast, in pair E, the fitness difference is still large, but mechanisms that make the more 

abundant species even more abundant operate strongly enough that whichever species gets a 

head start ends up excluding the other. An example of these destabilizing mechanisms is 

differential niche modification (sensu Fukami 2015), as in fire-adapted plants promoting fire 

through dry litter production vs. fire-sensitive plants suppressing fire by creating moist 

microclimate (Paritsis et al. 2015). Another example of destabilization is the reduction that each 

species may experience in reproduction when they are locally rare owing to mate limitation 

(Gerla & Mooij 2014).  

 

In pair F, the fitness difference is small because, for example, species require a similar set of 

limiting factors (Levin 1970) and have similar intrinsic performance in the local environment. In 

this scenario, whichever species arrives early preempts the niche that the other species also needs. 

Mechanisms that set up such symmetric niche preemption (sensu Fukami 2015) act as an 
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equalizing force, which lowers the strength of destabilization that is needed for priority effects to 

occur. For example, Sarneel et al. (2016) found stronger priority effects under dry than wet soil 

conditions, and one potential explanation for this finding may be that dry soil makes all species, 

even those that are sensitive to water stress, similar in their intrinsic performance, creating an 

opportunity for even mildly destabilizing mechanisms to cause priority effects.  

 

We see three reasons why a framework like this can be useful. First, it provides a way to 

systematically predict when priority effects will occur. As an illustrative example, wet soil that 

favors certain species may preclude priority effects by increasing fitness differences, but priority 

effects may still occur if , for example, plants alter soil microbiota greatly to their own benefits, a 

niche modification process contributing to destabilization. Second, knowing the strength of both 

destabilizing and equalizing mechanisms can inform us about the resilience of alternative 

community states driven by priority effects. Communities should be more resilient (i.e., harder to 

move between alternative states) when both mechanisms are strong, as in pair G in Fig. 1, as 

opposed to pairs E and F. Third, knowing which of the mechanisms is operating can help predict 

the extent to which alternative communities will differ not only in species composition, but also 

in functional properties, such as total biomass production (Körner et al. 2007) and decomposition 

(Dickie et al. 2012). Communities may differ greatly in function when niche modification is 

strong, whereas equalization and other types of destabilization that involve ecologically similar 

species may mostly affect the species composition, and not the functioning, of communities. 

 

We expect that testing, refining, and expanding general concepts like the preliminary one 

presented here (Fig. 1) will take us in the right direction by suggesting what questions to ask and 

what data to collect toward more mechanistic understanding of how and when priority effects 

occur. Sarneel et al.’s (2016) work will serve as an exemplary case in this effort by showing how 

to design experiments. 
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Figure legends 

Figure 1. Theoretical framework describing mechanisms of stable coexistence and priority 

effects. The x-axis quantifies the strength of stabilization or destabilization. In stabilization, a 

species’ per-capita growth rate is negatively related to its abundance relative to the other species. 

In destabilization, it is positively related. The y-axis quantifies fitness difference between species. 

Each dot marked by a letter represents a hypothetical pair of species interacting with each other 

at a local site (see text for detail). Modified from Mordecai (2011). 

Figure 1 
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