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Analyzing clinical trial outcomes based
on incomplete daily diary reports
Neal Thomas,a*† Ofer Harelb and Roderick J.A. Littlec

A case study is presented assessing the impact of missing data on the analysis of daily diary data from a study
evaluating the effect of a drug for the treatment of insomnia. The primary analysis averaged daily diary values
for each patient into a weekly variable. Following the commonly used approach, missing daily values within a
week were ignored provided there was a minimum number of diary reports (i.e., at least 4). A longitudinal model
was then fit with treatment, time, and patient-specific effects. A treatment effect at a pre-specified landmark time
was obtained from the model. Weekly values following dropout were regarded as missing, but intermittent daily
missing values were obscured. Graphical summaries and tables are presented to characterize the complex miss-
ing data patterns. We use multiple imputation for daily diary data to create completed data sets so that exactly
7 daily diary values contribute to each weekly patient average. Standard analysis methods are then applied for
landmark analysis of the completed data sets, and the resulting estimates are combined using the standard multi-
ple imputation approach. The observed data are subject to digit heaping and patterned responses (e.g., identical
values for several consecutive days), which makes accurate modeling of the response data difficult. Sensitivity
analyses under different modeling assumptions for the data were performed, along with pattern mixture mod-
els assessing the sensitivity to the missing at random assumption. The emphasis is on graphical displays and
computational methods that can be implemented with general-purpose software. Copyright © 2016 John Wiley
& Sons, Ltd.
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1. Introduction

Missing data is a common problem in longitudinal clinical trials, with the potential to lead to loss of sta-
tistical efficiency and biased inferences. The recent National Research Council report on the topic [1, 2]
highlights the need to limit missing data in trial design and conduct, as well as to use defensible statis-
tical methods in the analysis. Concerning the latter, the report criticized simple methods like analysis of
the complete cases and last observation carried forward (LOCF) imputation, and recommended scien-
tifically defensible approaches and sensitivity analyses to assess potential violations of the assumptions
of the primary analysis method. We describe methods for handling missing data in a trial assessing a
treatment for insomnia, which involved nightly sleep measurements and a substantial amount of missing
data from item nonresponse and dropout. Methods described in the protocol were based on the analysis
of available data, revealing clear limitations because they rely on the assumption that the missing daily
reports are missing completely at random (MCAR, [3]). The analyses make no distinction, for example,
between weekly averages of daily values based on 4 instead of the intended 7 values, or 3 actual values
instead of 0 values. This practice is so pervasive in therapeutic areas where daily diary data are collected
(e.g., insomnia, pain, post-menopausal symptoms) that it is not typically noted when the results are
reported. Methods based on multiple imputation (MI, [4]) are described here to address these issues.

Existing MI-based software can produce valid results under the weaker missing at random (MAR)
assumption. The MI-based methods form weekly average values for each patient based on exactly seven
daily values, some of which may be imputed, thereby addressing potential problems that can occur even
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under MCAR when the standard errors (SEs) are computed from weekly averages of unequal numbers
of available daily reports. Sensitivity analyses are also described to assess deviations from the MAR
assumption when values are missing not at random (MNAR, [3]). Graphical displays of the missing data
patterns and the multiply-imputed values are emphasized.

For patients who discontinue treatment, it is important to be clear what treatment is being assumed
for imputations after discontinuation [5]. Our methods assume the same treatment after discontinua-
tion, because the MAR assumption is not reasonable for imputations where the treatment has changed
(for example, from active drug to placebo). In the trial, we describe, it is reasonable to assume that most
of the patients who stopped treatment early could have continued to comply with the treatment assigned,
except for a small number of patients reporting termination due to adverse events or death, as displayed
in the Supporting Information Table A.1. Alternative analysis methods, such as jump-to-placebo [6] or
principal stratification [7], were not implemented because there were few of the latter patients.

The clinical trial design and data collection are described in Section 2, which includes a detailed
description of the protocol-specified primary analysis and the data used in it. Patterns of missing data
with complex dependence between intermittent and dropout missingness and adverse events and tempo-
ral proximity of diary reporting to weekly clinic visits are summarized in Section 3. The results of the
protocol-specified primary analysis are described in Section 4, along with some other analyses with dif-
ferent missing data approaches specified in the original analysis plan. As previously noted, the common
protocol-specified methods depend on the MCAR assumption, and they can be deficient even assuming
MCAR, because they do not account for the differing number of measurements included in each ‘weekly’
average. The first of the MI analyses, which addresses the problems in the protocol-specified method by
explicitly imputing all missing daily measurements, is in Section 5. It was specified before examination
of the data utilizing a model with a compound-symmetric variance-covariance matrix, and mean daily-
diary outcomes that changed only weekly. The model was selected for computational convenience and
because we were confident it could be successfully implemented. Once data were available, the impact of
the restrictive model specification was assessed using models fitted separately for each treatment group
with mean values that changed daily and with models allowing more complex variance–covariance struc-
tures selected based on exploratory data analyses. Graphical displays in Section 6.1 compare observed
responses amongst patients with different dropout patterns. They show that the observed efficacy mea-
surements are not predictive of missingness, which supports the plausibility of the MAR assumption.
Because the MAR assumption cannot be unequivocally established from observed data, sensitivity to vio-
lation of the MAR assumption was assessed using pattern-mixture models in Section 6.2. A tipping point
analysis was created by modifying an MI analysis to impute missing values that were increasingly unfa-
vorable. When these MNAR imputations were applied to each treatment group, there was minimal impact
on estimates of treatment effect, aside from increased variability due to some of the MNAR-imputed val-
ues. The unfavorable imputations were also applied to the active treatment groups only, which showed
that a shift of approximately one standard deviation (SD) in the missing responses substantively changed
the conclusions of the analyses.

2. Clinical trial design and data

2.1. Design

The case study is based on a randomized double-blind parallel-group placebo-controlled study of a
compound for chronic insomnia sponsored by a large pharmaceutical company during phase 2 of devel-
opment. There was a 1-week blinded placebo run-in period before randomization. The randomization
visit is defined as day 1 of the study. The daily diary collected during the morning of day 1 is regarded
as part of the pre-randomization baseline period. There were five treatment groups: (PBO) and 15, 30,
45, and 60 mg of the active compound. There were approximately 135 randomized patients per group.
It was planned that each patient would receive their assigned treatment for 4 weeks. There were 10 ran-
domized patients who did not start dosing; they are excluded throughout. Weekly visits were scheduled
(0,1,2,3,4) for data collection. Data from a post-dosing safety visit are not included in our analysis. The
data for each patient are longitudinal, with repeated measurements based on patient-reported outcomes
and one clinician assessment of severity. Baseline age, sex, race, and clinical site are included in the
data set. In addition to the weekly visit, patients called a data collection system each morning from their
first screening visit until their week 4 final-dosing visit and responded to questions about their sleep the
previous night.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 2894–2906
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Table I. Daily diaries contributing to subjective time awake after initial sleep onset at week 4.

Days between Row Days contributing to
visits 3 and 4 total the weekly average

1 2 3 4 5 6 7 8 9 10 11 14

2 1 1 0 — — — — — — — — — —
3 1 0 0 1 — — — — — — — — —
4 4 0 0 1 3 — — — — — — — —
5 31 0 3 2 11 15 — — — — — — —
6 81 1 0 1 12 24 43 — — — — — —
7 342 1 0 5 7 32 81 216 — — — — —
8 64 0 1 0 2 4 9 19 29 — — — —
9 21 0 0 0 0 1 1 4 4 11 — — —
10 5 0 0 0 1 0 1 1 0 1 1 — —
11 1 0 0 0 1 0 0 0 0 0 0 0 —
12 2 0 0 1 0 0 0 0 0 0 0 1 —
13 1 1 0 0 0 0 0 0 0 0 0 0 —
16 1 0 0 0 0 0 0 0 0 0 0 0 1

Counts are the number of patients amongst those with week 3 and 4 visits. Row totals are patients with
the specified days between visits. Impossible combinations are marked with a ’—’.

Weekly summaries were not determined by the common practice of setting time windows around the
scheduled date, with visits outside the window excluded. Instead, the visit designation was based on the
reported visit number on the case report form. Most subjects followed the visit schedule closely, but there
were patients with substantial deviations. The first two columns of Table I summarize the distribution of
patients by their days between the weeks 3 and 4 visits.

2.2. Data

There were five variables collected from the daily phone calls: subjective time awake after initial sleep
onset (SWASO, minutes), subjective latency to sleep onset (minutes), subjective number of awakenings
after sleep onset (SNAASO), subjective total sleep time (minutes), and sleep quality (0–100, higher is
better). The primary endpoint, SWASO, was derived from the daily phone diary data by averaging the
daily values between each weekly visit, as is commonly carried out with daily diary data (e.g., [8,9]). The
number of days between visits varied, and measurements from all days between visits were averaged. If
there were <4 diary reports between visits, the statistical analysis plan specified that the weekly average
was missing. Weekly values for each of the other sleep measures were formed using the same approach.

The SWASO endpoint requires definition when a patient reports no awakenings during the night
(SNAASO = 0). In this case, the SWASO value was coded as missing in the database and treated as
missing in the original study analyses. Combined with the use of available cases when computing the
weekly averages, this approach creates an MNAR condition that causes underestimation of the effect of
the drug when patients successfully sleep through the night. In all of the analyses reported here, when
a patient reports SNAASO = 0, the corresponding SWASO value will be assigned 0 awake time, and it
will not be regarded as missing.

The 11 variables collected at the weekly visits, which record the patients’ recall of day-time function,
drowsiness, and other sleep-related conditions, are described in the Supporting Information Table A.1.
A limited set of commonly occurring adverse events (e.g., headaches and dizziness) were included in
our data. A final status was also obtained from the case report form for each patient at their final visit,
which indicates whether the patient finished treatment as planned, withdrew consent, stopped because of
pregnancy and so on.

2.3. Pre-specified analyses

The primary statistical analysis plan pre-specified a mixed-model repeated-measures analysis for the
change from baseline in weekly average SWASO, with site, treatment, visit, baseline SWASO, treatment-
by-visit interaction, and baseline-by-visit interaction as fixed predictors, and an unstructured covariance
structure. Each dose was compared with placebo at week 4 to measure persistent effect. A similar analysis
was planned for each secondary endpoint. The primary pre-specified intention-to-treat analysis excluded
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randomized patients who did not receive a dose of study drug. We followed this convention and excluded
these patients throughout. Other randomized patients without any post-randomization endpoints were
included in our analyses, as documented in Section 3.

3. Patterns of missing data

3.1. Missingness in daily telephone diaries

Plots of missingness rates for the SWASO variable during the first 28 days after randomization are dis-
played in the Supporting Information Figure A.1. The rate of missingness increases over time with a
pattern of lower missing rates on the days of scheduled clinic visits and bigger increases in missingness
rates the day following clinic visits due to dropouts that occur at the visit. Additional analyses showed
there was much less missing diary data on the days of clinic visits. These trends are attenuated in Figure
A.1 because not all patient visits occur on the planned schedule. The highest-dose group has consistently
higher missingness rates than the placebo rate.

Most of the ‘weekly’ averages were computed based on collection time intervals that spanned 4 to
9 days, as displayed in Table I, which summarizes the collection period before the final visit. The table
also shows that many patients had unplanned missing diary entries during this collection period. The
proportion of the weekly averaged endpoints computed with at least one missing daily value ranged from
0.3 to 0.5 across the four weekly visits.

3.2. Missingness in weekly averages

The missing data rates for the SWASO averages, as defined in the protocol, at week 4 for the 0-, 15-, 30-,
45-, and 60-mg-dose groups are 0.18, 0.25, 0.16, 0.16, and 0.25, respectively. These rates are sums of
the dropout and intermittent missing (weekly) rates in Table II. The only notable dose-related pattern is
a higher rate of missing data at the early visits for the highest dose. To explore potential reasons for the
elevated missing rate in the highest-dose group, the frequencies of the reasons for the end of dosing were
examined (displayed in the Supporting Information Table A.2). Dropouts due to adverse events were also
more frequent in the highest-dose group. The excess adverse events were not concentrated in a small
number of related categories.

Further examination of the patients who dropped out of the study early showed there were 36 random-
ized patients missing all weekly diary data. It is not apparent why they do not have baseline diary data.
All of them dropped out of the study without any post-dosing endpoints. Of these patients, 13 reported
stopping because of an adverse event, out of 26 such patients in the entire study. The numbers of these
patients in the 0-, 15-, 30-, 45-, and 60-mg-dose groups are 2, 2, 0, 1, and 8, respectively. These patients
largely account for the higher rates of missingness and adverse events observed in the high-dose group.
Another potential reason for more dropouts in the highest-dose group is described in Section 4.1.

Figure 1 (produced by the R package, vim, [10]) summarizes the frequency of missing data patterns.
The weekly averaged endpoints based on the daily diary data display many different missing data patterns,
but the patterns associated with monotone dropout are the most common. The missing data patterns are
sorted from completely missing to completely observed by the order of the first occurrence of a missing

Table II. Dropout and intermittent missing rates for the subjective time
awake after initial sleep onset endpoint.

Cumulative dropout rates Intermittent missing rates
Dose Week Week

1 2 3 4 0 1 2 3 4

0 0.06 0.08 0.10 0.14 0.06 0.02 0.02 0.03 0.04
15 0.04 0.11 0.15 0.20 0.04 0.01 0.01 0.04 0.05
30 0.04 0.09 0.13 0.14 0.04 0.00 0.00 0.02 0.02
45 0.04 0.10 0.13 0.16 0.05 0.02 0.01 0.02 0.00
60 0.09 0.15 0.18 0.22 0.09 0.04 0.04 0.00 0.03

The intermittent missing rate refers to the weekly means of the daily values
and applies to patients remaining in the study at a visit. Note that a patient can
return for their week 4 visit and still have missing daily diary data for the week.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 2894–2906
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Figure 1. Missing data patterns for the weekly averaged subjective time awake after initial sleep onset variable.
The grey shaded regions represent missing data. The patterns are ordered by the first occurrence of missing data.

The right-hand numbers are the frequencies of each pattern.

value. The large number of patients without diary data was first revealed by this display. The histogram
at the top of the figure displays the increase in missing data by visit.

4. Efficacy based on common methods applied to weekly averaged values

4.1. Treatment effect estimates

The mean dose–response curve for the primary endpoint at week 4 is displayed in the Supporting Infor-
mation Figure A.2. The drug effect increases with dose to a plateau consistent with an Emax model [11],
which has been observed for most effective compounds [12]. The other endpoints based on the daily
diaries have similar response trends, which are also displayed in Figure A.2. The endpoints collected at
the weekly visits are displayed in the Supporting Information Figure A.3. The patient and clinician global
assessment endpoints have trends similar to the endpoints based on the daily diaries. All of the other sec-
ondary endpoints, which measure daytime function, display non-monotone dose–response. This is likely
due to residual drug effect during the day because some drug remains in the body, as has been observed
with other sleep medications [e.g., [13]]. The residual drug might also affect compliance with the dosing
regimen and dropout status.

Treatment effect estimates (and SEs) for the primary endpoint at week 4 are in the first three rows
of Table III. Estimators include maximum likelihood for the longitudinal mixed model (MLLM), which
was described in Section 2.3, a corresponding linear model estimator applied to complete data at baseline
and week 4 created by LOCF and a linear model estimator using available cases (ACs) with baseline and
week 4 data. The methods are applied to the weekly averaged values, which were computed as described
in Section 2.2. There were no pronounced differences between estimators, when assessed across all of
the endpoints (displayed in the Supporting Information Tables A.3 and A.4). The estimated SEs differed
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Table III. Estimates and standard errors for the week 4 subjective time awake after
initial sleep onset endpoint from different missing data methods.

15 mg vs. PBO 60 mg vs. PBO Pooled

Method Est SE %Mis Info Est SE %Mis Info Res SD

MLLM-week −2.93 5.97 −26.61 6 44.7
LOCF-week −2.7 5.84 −24.42 5.92 46.6

AC-week −1.59 6.46 −23.22 6.46 45.9

MVNMI1-day −4.43 5.15 11 −26.57 5.15 12 39.4
MVNMI2-day −4.23 5.17 11 −26.22 5.09 9 39.5
MVNMI3-day −5.2 5.16 12 −26.17 5.07 9 39.3
MVNMI4-day −5.09 5.25 11 −26.54 5.25 12 40.1
MVNMI5-day −4.19 5.23 10 −26.33 5.27 12 40.1

The ‘week’ in methods indicates it was applied to weekly data. The ‘day’ indicates it was
applied to daily data, which was subsequently averaged.
MLLM, mixed longitudinal model; LOCF, linear model applied to LOCF data at Week 4; AC,
available cases.

by less than 10% and, as anticipated, increased with methods in the order from LOCF, MLLM, to AC.
The standardized differences between the estimates (difference divided by the SE of an estimate) were
<0.5, except for a few differences as large as 1.0 for the LOCF-based and AC-based estimates.

4.2. Distribution of the subjective time awake after initial sleep onset endpoint

The distribution of the primary SWASO endpoint was examined to assess the appropriateness of the
planned analyses and to support selection of imputation models. Boxplots of SWASO by dose group for
individual study days displayed right-skewed distributions. The transformed values are closer to normally
distributed, but a floor at 0 remains. Boxplots of the distributions for selected study days after applying
the square root transform are displayed in the Supporting Information Figure A.4.

Boxplots for the weekly averages of the daily values, with and without transformation, display distribu-
tions similar to the corresponding daily values, but the averaging produces closer agreement to the normal
distribution. As a consequence, models for daily values will be applied to the square root-transformed
values. Because the original scale is more interpretable and the skewness after weekly averaging is not
severe, daily values will be back transformed before applying the primary analysis methods.

5. Multiple imputation methods applied to daily values

By basing the weekly averages on available cases, we in effect impute the missing nights using the mean
outcome for the nights reported that week. This assumes that the reported nights are representative of
all the nights in that week; sleep patterns are assumed to be no different for the nights where no report
was provided. Also, weekly averages are treated as having the same precision, regardless of how many
measurements are included in the average. The analysis in this section still assumes the missing data are
MAR, but imputes missing nights based on a regression of the missing on the recorded nights and uses
multiple imputation to reflect the imputation uncertainty.

Model-based multiple imputation of missing daily diary values was performed for the primary SWASO
endpoint. The completed daily values were averaged to produce weekly values, and the primary analysis
was applied to these data. Completed data sets were created for study days −5 to 28 for each patient.
The weekly averages corresponding to baseline and four post-randomization visits were computed from
exactly seven daily values determined by the planned visit schedule. This differs from the protocol-
specified weekly averages, which could include more than seven values, because there were no planned
windows around the weekly visits. The imputations were performed for the square root-transformed
values. The daily values were back transformed before weekly averages were computed. Any negative
imputed values were set to 0 before back transformation. One-hundred imputed data sets were generated
for each multiple imputation method.

The imputation models assume a multivariate normal (MN) distribution for the transformed daily
SWASO values (including the baseline values) with means determined by a multiple linear regression.
The transformed SWASO values are denoted by Yij, where patients are indexed by i = 1,… ,N and

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 2894–2906
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study days are indexed by j = −5,… , 29. The patient-specific mean models include the following fully
observed predictors denoted by Xi: age (continuous), sex, race, and one post-randomization variable,
the reason for terminating dosing (planned end of study, AE or death, other). The regression parame-
ters associated with X are denoted by 𝛽. The dose group is denoted by Ti, with values (0, 15, 30, 45, 60).
A potentially different mean value for each study day for each dose is denoted by 𝛿T

j . For some of the
models, the daily means are assumed to be the same within a study week:

𝛿T
j = ΔT

⌈(j−1)∕7⌉ ,

where ⌈ ⌉ denotes the integer ceiling and the ΔT
k , k = 0,… , 4 represent the weekly means. Because of

the randomization, 𝛿T
j ≡ 𝛿j when j ≤ 1 and ΔT

0 ≡ Δ0. For the initial models, equi-correlated variance
matrices were specified through random (normal) patient-specific terms denoted by 𝜃i, i = 1,… ,N, with
mean of 0 and variance𝜓2. The residuals about the daily mean values are denoted by 𝜖ij, with variance 𝜎2.

The first model assumes that the daily means change weekly:

Yij = X′
i𝛽 + ΔTi

⌈(j−1)∕7⌉ + 𝜃i + 𝜖ij . (1)

The second imputation model is the same as the first model except that it was fit separately for each
dose group, and thus implicitly included interaction terms between dose and all of the main effects in the
model. The second model also included separate within and between variance parameters for each dose
group. The first two models were fit using the R package pan [14, 15]. Results from these models are
denoted by MVNMI1 and MVNMI2.

A third imputation model, denoted by MVNMI3, was similar to model (1), except that the mean values
were allowed to change daily rather than weekly:

Yij = X′
i𝛽 + 𝛿

Ti

j + 𝜃i + 𝜖ij . (2)

The model was fit, and the imputations were generated using the general-purpose Bayesian Markov
chain Monte Carlo program STAN [16]. Results from the same model fit using the pan software (not
shown) were similar. The same diffuse prior distributions (i.e., diffuse normal prior distributions for fixed
effects and diffuse gamma distributions for random effects) were utilized in both programs. The flexibility
of the general-purpose software can be used to impute from many alternative models for the mean and
variance structures, but it is somewhat slower to execute. The imputation approaches described here took
from 30 min to a full day to create 100 imputed data sets on a mid-range desktop computer.

The estimated magnitudes of the within (𝜎2) and between patient (𝜓2) variability were roughly equal
for all of the fitted models. The variance–covariance matrix of the square root-transformed daily SWASO
values was examined by pooling the residuals across dose groups after applying dose group analysis
of variance to the available SWASO values for each day. The pairwise correlations displayed a weak
trend toward increased correlation for nearby days. A more pronounced difference was much higher
correlations between daily values collected during the post-randomization period compared with corre-
lations involving days from the baseline period. The empirical (5th, 95th) percentiles for correlations
including at least one baseline value are (0.23, 0.45), while they are (0.46, 0.67) for post-randomization
values. The residual SD also displayed a marked increase following the end of the baseline period
that continued to increase more gradually during the post-randomization period. An empirical fit of the
trend was obtained by a least squares fit of the daily SDs on study day, which is given by f (day) =
3.72 + 0.203 log{0.5 + (day)I(day > 1)}. The daily SDs and the empirical curve, f (day), are displayed
in the Supporting Information Figure A.5.

Two additional imputation models, denoted by MVNMI4 and MVNMI5, were fit to better represent
the changing variances and correlations. In model MVNMI4, both the within and between patient random
terms were multiplied by f :

Yij = X′
i𝛽 + 𝛿

Ti

j + f ( j)𝜃i + f ( j)𝜖ij . (3)

This model has an increased variance over time while maintaining a common correlation. The
increasing multiplier over time was applied to the between patient random term only in model MVNMI5:

Yij = X′
i𝛽 + 𝛿

Ti

j + f ( j)𝜃i + 𝜖ij . (4)
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This model yields increasing variance with time and higher correlations between values from later
study days compared with early days, as was observed in the complete case analysis.

Results based on the multiply-imputed data are in the lower portion of Table III; the reported results
include only comparisons of the lowest and highest doses to placebo at week 4. All of the imputation
models yielded estimates of treatment effect that were substantively similar to the MLLM approach based
on the protocol-specified weekly averages, but the estimates for the 15-mg dose trended toward larger
effects. The maximum absolute difference between the MLLM and various MI estimates divided by the
SE of the MLLM estimate for the 15- and 60-mg effects versus placebo were 0.38 and 0.07, respectively.
A difference of 0.4, even if it were replicated across repeated data sets, would only reduce the coverage
of a nominal 95% interval to 93% (p. 14, [17]).

Plots of observed and imputed daily values for individual patients displayed agreement in location and
trend over time. The proportions of imputed values across the models that were originally negative and
subsequently truncated ranged from 0.01 to 0.039. The proportion of zero values in the observed data
was 0.115, and the corresponding proportion after imputation ranged from 0.099 to 0.101. Figure 2 dis-
plays the observed values and the first five imputed daily values from model MVNMI3 for three patients
treated with the 60-mg dose who have common missing data patterns. Patients ‘239’ and ‘270’ were
selected for display because they had a pronounced tendency to repeatedly report rounded times (e.g.,√

60 and
√

120), which the normal-based imputation models cannot accurately reproduce. Aside from
this common situation, the imputed values appeared in good visual agreement with the observed values.
Boxplots in Figure 3 summarize all of the imputed values for the three patients. They display more clearly
the distributions of the missing values implied by the imputation model.

The SEs from the MVN imputation models were smaller than those produced by the other methods.
Most of the difference between the MVN-based SEs and those from the MLLM and LOCF methods is
due to the smaller residual SDs estimated in the primary analysis model, which are displayed in the final
column of Table III. It is not apparent why the MVN-based imputations yielded less residual variation in

Figure 2. Longitudinal plot of
√

SWASO for three patients treated with the 60-mg dose. The observed data are
displayed using bold black lines and points. The first five sets of imputed values from model MVNMI3 are dis-
played using smaller, lighter lines and symbols. Software to produce this graphic is included in the Appendix.

SWASO, subjective time awake after initial sleep onset.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 2894–2906
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Figure 3. Boxplots summarizing all of the imputed values from model MVNMI3 for the three patients treated
with the 60-mg dose in Figure 2. The observed values are represented by the larger black dots. The patient ID’s are
displayed in the right panels. Software to produce this graphic is included in the Appendix. SWASO, subjective

time awake after initial sleep onset.

the weekly averaged values. The larger SEs for the AC method are due primarily to its smaller sample
sizes. The differences in the estimates and SEs did not change the substantive conclusions of this trial, but
in a trial with treatment differences near boundaries for statistical significance, changes of the magnitude
observed would likely yield p-values below and above the boundary.

6. Pattern mixture models and MNAR analyses

6.1. Comparing data distributions from different missing data patterns

Most of the weekly missing data are monotone because of dropouts. Data from weeks common to differ-
ent missing data patterns were compared with check potential dependence of dropout status on observed
efficacy data. In Figure 4, boxplots of the weekly SWASO values from the completers are compared with
corresponding boxplots of patients who dropped out after 1, 2, or 3 weeks, respectively. The weekly aver-
aged SWASO values computed per protocol are displayed. The observed data from the different dropout
patterns are very similar. Other weekly endpoint plots within dose groups were also assessed and dis-
played close agreement. The observed responses up to any visit do not predict who will subsequently
drop out or complete the study. Because the observed data cannot unequivocally demonstrate MAR or
related conditions, sensitivity analyses are described in the next section under MNAR models.

6.2. Multiple imputation -based assessment of missing not at random pattern mixture models

The pattern mixture models [18, 19] in this section are constructed from the MVN model for complete
data, MVNMI3, which has different means for each study day within dose group, and a common equi-
correlated variance–covariance matrix. The posterior means for the within (𝜎2) and between (𝜓2) patient
variances from the fitted model are 𝜎2 = 8.9 and 𝜓2 = 8. An MNAR model similar to the one in Guisti
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Figure 4. Response for patients with monotone missing (dropout) patterns compared with completers for weekly
averaged subjective time awake after initial sleep onset (SWASO). The number of completers is 514. The numbers

of dropouts at weeks 2, 3, and 4 are (33,23,33). Software to produce this graphic is included in the Appendix.

and Little [20] is fit with the data distribution given by (2), except that each missing SWASO value is
increased (worsened) by the amount c ∗ 𝜎. If Yij is missing with imputed values Yij,imp, imp = 1,… , 100,
the imputed values under the MNAR model are Yij,imp + c𝜎imp, where 𝜎imp are drawn from the posterior
distribution of 𝜎 as part of the generation of the imputations. Following the recommendation in Guisti
and Little [20], low, medium, and high values of the sensitivity multiplier are c = 0.8, 1.2, 1.6. A second
MNAR model was fit using the same approach, but missing data following dropout were assigned a larger
offset derived from the total variance observed in the SWASO variable after accounting for dose group
and baseline characteristics, c

√
𝜎2 + 𝜓2. The offset for intermittent missing values remained c ∗ 𝜎.

Results for the models with differing sensitivity parameters are in Table IV. The mean difference
for the 15-mg dose versus placebo decreased, while the mean difference for the 60-mg dose increased.
The changes do not substantively impact the interpretation of the results, but the largest changes for the
15-mg dose were >1.5 SE. The change in the 15-mg dose was not anticipated because this group did
not have more missing data. It occurred because there were more imputations in the upper tail of the
distribution for this group. The addition of the offsets combined with the back transformation from the
square root scale produced a more skewed distribution and the difference in the regression-based primary
complete data analyses. Many of the imputations under the MNAR models appear as outliers when plotted
with the observed data in plots like those in Figure 2. This is reflected in the increases in the estimated
SD and SE in Table IV. Similar to the results from different models under the MAR assumption in
Section 5, there was no high sensitivity of the results to the different MNAR models, but the combination
of changes in the estimates and increased SEs could affect the interpretation of a study with less robust
treatment differences.

The two MNAR models described here are not dependent on the treatment group. MNAR models
that use different imputation models for different treatment groups [6, 19, 21, 22] were also explored
by modifying the second MNAR model. The offsets were only applied to patients who dropout from
the active treatment groups, with no offsets applied to intermittent missing values. The results for these

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 2894–2906
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Table IV. Estimates and standard errors for the week 4 subjective time awake after
initial sleep onset endpoint from different missing not at random models.

15 mg vs. PBO 60 mg vs. PBO Pooled

Method Est SE %Mis Info Est SE %Mis Info Res SD

MVNMI3-day −5.2 5.16 12 −26.17 5.07 9 39.3

AllLow-day −2.39 5.74 16 −27.48 5.63 13 42.7
AllMed-day −0.58 6.23 17 −27.9 6.12 14 46.1
AllHigh-day 1.49 6.86 17 −28.16 6.75 14 50.8
DropLow-day −1.6 5.99 16 −26.92 5.89 14 44.5
DropMed-day 0.77 6.78 16 −26.94 6.68 14 50.4
DropHigh-day 3.49 7.83 15 −26.75 7.74 13 58.6
DiffLow-day 5.48 5.77 12 −16.22 5.69 11 43.7
DiffMed-day 12.28 6.51 11 −9.64 6.45 10 49.8
DiffHigh-day 20.03 7.6 9 −1.99 7.55 9 58.6

The All in the method denotes the same offset for all missing measurements, Drop denotes
higher offsets following dropout, and Diff denotes higher offsets applied differentially to the
active treatment groups. Low, Med, and High are offset multiples of 0.8, 1.2, and 1.6.
placebo; SE, standard error; SD, standard deviation.

models are in the lower portion of Table IV. As anticipated, these models substantially discount the results
from the active treatment groups. An offset with c > 1 eliminates the clinical and statistical significance
of even the large effect observed in the high-dose group. These sensitivity results are dubious, however,
as they predict a substantial increase in SWASO for the lowest-dose group and a small decrease for the
high-dose group. There is no apparent mechanism to explain a large differential in potential responses
for dropouts in the active groups, and the results are in sharp contrast with the observed effects that are
consistent with dose–response across numerous measures of sleep and the previously observed effects of
related compounds. The effect of the high dose versus placebo on square root SWASO is approximately
0.4

√
𝜎2 + 𝜓2, so even the ‘low’-sensitivity setting implies a much larger shift than would occur under

jump-to-placebo models [6, 21, 22]. An overall summary of the MNAR results could be obtained by
specifying a distribution for the offset parameter c, which would assign higher probabilities to smaller
values, and then applying the methods in [23].

7. Conclusions

Missing data rates for the weekly endpoints of approximately 15–25% at week 4 are within expectations
based on past experience with trials of similar duration. There is evidence that dropout might be related to
dose, but less so for intermittent missing values. The higher number of patients reporting adverse events
on the highest dose support this conjecture, but the number of dropouts spread across five treatment
groups is too low for definitive conclusions. No simple model using a small number of measurements
was found that could predict which measurements would be missing.

The estimated proportions of missing information computed from the multiple imputations in Table III
show that recovery of some of the missing information is possible because of the correlation between the
numerous diary and the baseline values. The differences in estimates and SEs for the treatment effects
from the different models under the MAR assumption and the MNAR models without differential behav-
ior by treatment group were not large enough to change the substantive interpretation of the results. The
differences would be large enough, however, to create ambiguity in the results from a trial with smaller
treatment effects that achieved borderline statistical significance. Models under MNAR with differential
behavior by treatment group attenuated the effects for all active treatment groups when dropouts have
increased SWASO of approximately one SD. The SWASO values for dropouts implied by a shift of one
SD yield patients with response patterns that were not observed in any patients, including those treated
with placebo, so the relevance of such models to any estimate is dubious.

Multivariate normal models were utilized after data transformation to form the multiply-imputed
missing SWASO values. With some data-driven adjustments to these models, the mean, variance, and
correlation structure of the data could be represented. The clear preference for reporting rounded times
(e.g., 30 min and 1 h) and the tendency of patients to repeat the same values for several consecutive days
could not be easily reproduced with the normal-based models. Some hot deck-type approaches with sam-
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pling of observed SWASO values were explored, such as predictive mean matching [4,24], but the results
are not presented here because they were unstable, depending on methodological features such as the
order the variables were imputed. Alternative approaches involving weights based on estimates of the
missingness probabilities were not developed here [25,26]. Such models would also be difficult to spec-
ify because of the complex multivariate nature of the data and the added complexities that arise because
of the dependence between missingness and the scheduling of weekly clinic visits.

With current desktop computing and general-purpose statistical software, it is feasible to account
for missing daily diaries in aggregated endpoints. The most challenging aspect is the specification of
models that can adequately represent the missing data. This problem becomes more difficult when
pre-specification of the models is required for confirmatory trials. The approach used to assess model sen-
sitivity fitted several models with flexible mean functions and different variance–covariance structures.
MVN models, however, are unlikely to reproduce some of the features present in subjectively reported
diary data.

R programs to create graphical displays like those in Figures 2–4 are included in the the Supporting
Information [27, 28].
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