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Abstract

A case study is presented assessing the impact of missing data on the analysis of daily diary data from a study

evaluating the effect of a drug for the treatment of insomnia. The primary analysis averaged daily diary values

for each patient into a weekly variable. Following the commonly used approach, missing daily values within a

week were ignored provided there was a minimum number of diary reports (i.e., at least 4). A longitudinal model

was then fit with treatment, time, and patient-specific effects. A treatment effect at a pre-specified landmark

time was obtained from the model. Weekly values following dropout were regarded as missing, but intermittent

daily missing values were obscured.

Graphical summaries and tables are presented to characterize the complex missing data patterns. We use

multiple imputation for daily diary data to create completed data sets so that exactly 7 daily diary values

contribute to each weekly patient average. Standard analysis methods are then applied for landmark analysis

of the completed data sets, and the resulting estimates are combined using the standard multiple imputation

approach. The observed data are subject to digit heaping and patterned responses (e.g., identical values for

several consecutive days), which makes accurate modeling of the response data difficult. Sensitivity analyses

under different modeling assumptions for the data were performed, along with pattern mixture models assessing

the sensitivity to the missing at random assumption. The emphasis is on graphical displays and computational

methods that can be implemented with general-purpose software.

Keywords: multiple imputation, pattern mixture models, clinical trials, incomplete data.

1. Introduction

Missing data is a common problem in longitudinal clinical trials, with the potential to lead to loss of statistical

efficiency and biased inferences. The recent National Research Council report on the topic [1, 2] highlights the

need to limit missing data in trial design and conduct, as well as to use defensible statistical methods in the

analysis. Concerning the latter, the report criticized simple methods like analysis of the complete cases and last
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observation carried forward imputation, and recommended scientifically defensible approaches and sensitivity

analyses to assess potential violations of the assumptions of the primary analysis method. We describe methods

for handling missing data in a trial assessing a treatment for insomnia, which involved nightly sleep measurements

and a substantial amount of missing data from item nonresponse and dropout. Methods described in the protocol

were based on the analysis of available data, revealing clear limitations because they rely on the assumption that

the missing daily reports are missing completely at random (MCAR, [3]). The analyses make no distinction,

for example, between weekly averages of daily values based on 4 instead of the intended 7 values, or 3 actual

values instead of 0 values. This practice is so pervasive in therapeutic areas where daily diary data are collected

(e.g., insomnia, pain, post-menopausal symptoms) that it is not typically noted when the results are reported.

Methods based on multiple imputation (MI, [4]) are described here to address these issues.

Existing MI-based software can produce valid results under the weaker missing at random (MAR) assumption.

The MI-based methods form weekly average values for each patient based on exactly 7 daily values, some of which

may be imputed, thereby addressing potential problems that can occur even under MCAR when the standard

errors are computed from weekly averages of unequal numbers of available daily reports. Sensitivity analyses are

also described to assess deviations from the MAR assumption when values are missing not at random (MNAR,

[3]). Graphical displays of the missing data patterns and the multiply imputed values are emphasized.

For patients who discontinue treatment, it is important to be clear what treatment is being assumed for

imputations after discontinuation [5]. Our methods assume the same treatment after discontinuation, because

the MAR assumption is not reasonable for imputations where the treatment has changed (for example, from

active drug to placebo). In the trial we describe, it is reasonable to assume that most of the patients who stopped

treatment early could have continued to comply with the treatment assigned, except for a small number of

patients reporting termination due to adverse events or death, as displayed in supplement Table A.1. Alternative

analysis methods, such as jump-to-placebo [6] or principal stratification [7], were not implemented because there

were few of the latter patients.

The clinical trial design and data collection are described in Section 2, which includes a detailed description of

the protocol-specified primary analysis and the data used in it. Patterns of missing data with complex dependence

between intermittent and dropout missingness and adverse events and temporal proximity of diary reporting

to weekly clinic visits are summarized in Section 3. The results of the protocol-specified primary analysis are

described in Section 4, along with some other analyses with different missing data approaches specified in the

original analysis plan. As previously noted, the common protocol-specified methods depend on the MCAR

assumption, and they can be deficient even assuming MCAR, because they do not account for the differing

number of measurements included in each ’weekly’ average. The first of the MI analyses, which addresses the

problems in the protocol-specified method by explicitly imputing all missing daily measurements, is in Section 5.

It was specified before examination of the data utilizing a model with a compound-symmetric variance-covariance

matrix, and mean daily-diary outcomes that changed only weekly. The model was selected for computational

convenience, and because we were confident it could be successfully implemented. Once data were available, the

impact of the restrictive model specification was assessed using models fitted separately for each treatment group

with mean values that changed daily, and with models allowing more complex variance-covariance structures

selected based on exploratory data analyses. Graphical displays in Section 6.1 compare observed responses

amongst patients with different dropout patterns. They show that the observed efficacy measurements are not

predictive of missingness, which supports the plausibility of the MAR assumption. Because the MAR assumption

cannot be unequivocally established from observed data, sensitivity to violation of the MAR assumption was

assessed using pattern-mixture models in Section 6.2. A tipping-point analysis was created by modifying a

MI analysis to impute missing values that were increasingly unfavorable. When these MNAR imputations were

applied to each treatment group, there was minimal impact on estimates of treatment effect, aside from increased
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variability due to some of the MNAR-imputed values. The unfavorable imputations were also applied to the

active treatment groups only, which showed that a shift of approximately one standard deviation in the missing

responses substantively changed the conclusions of the analyses.

2. Clinical trial design and data

2.1. Design

The case study is based on a randomized double-blind parallel-group placebo-controlled study of a compound

for chronic insomnia sponsored by a large pharmaceutical company during Phase 2 of development. There was

a one-week blinded placebo run-in period before randomization. The randomization visit is defined as Day 1 of

the study. The daily diary collected during the morning of Day 1 is regarded as part of the pre-randomization

baseline period. There were 5 treatment groups: placebo, and 15, 30, 45, and 60 mg of the active compound.

There were approximately 135 randomized patients per group. It was planned that each patient would receive

their assigned treatment for 4 weeks. There were 10 randomized patients who did not start dosing; they are

excluded throughout. Weekly visits were scheduled (0,1,2,3,4) for data collection. Data from a post-dosing safety

visit are not included in our analysis. The data for each patient are longitudinal, with repeated measurements

based on patient reported outcomes (PRO) and one clinician assessment of severity. Baseline age, sex, race, and

clinical site are included in the data set. In addition to the weekly visit, patients called a data collection system

each morning from their first screening visit until their Week 4 final-dosing visit and responded to questions

about their sleep the previous night.

Weekly summaries were not determined by the common practice of setting time windows around the scheduled

date, with visits outside the window excluded. Instead, the visit designation was based on the reported visit

number on the case-report form. Most subjects followed the visit schedule closely, but there were patients with

substantial deviations. The first two columns of Table 1 summarize the distribution of patients by their days

between the Week 3 and Week 4 visits.

2.2. Data

There were 5 variables collected from the daily phone calls: subjective time awake after initial sleep onset

(SWASO, minutes), subjective latency to sleep onset (SLSO, minutes), subjective number of awakenings after

sleep onset (SNAASO), subjective total sleep time (STST, minutes), and sleep quality (SQUALITY, 0− 100,

higher is better). The primary endpoint, subjective time awake after initial sleep onset (SWASO), was derived

from the daily phone diary data by averaging the daily values between each weekly visit, as is commonly done

with daily diary data (e.g., [8, 9]). The number of days between visits varied, and measurements from all days

between visits were averaged. If there were < 4 diary reports between visits, the statistical analysis plan (SAP)

specified that the weekly average was missing. Weekly values for each of the other sleep measures were formed

using the same approach.

The SWASO endpoint requires definition when a patient reports no awakenings during the night (SNAASO =

0). In this case, the SWASO value was coded as missing in the database, and treated as missing in the original

study analyses. Combined with the use of available cases when computing the weekly averages, this approach

creates an MNAR condition that causes under-estimation of the effect of the drug when patients successfully sleep

through the night. In all of the analyses reported here, when a patient reports SNAASO = 0, the corresponding

SWASO value will be assigned 0 awake time, and it will not be regarded as missing.

The 11 variables collected at the weekly visits, which record the patients’ recall of day-time function,

drowsiness, and other sleep-related conditions, are described in supplement Table A.1. A limited set of commonly
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occurring adverse events (e.g., headaches, dizziness) were included in our data. A final status was also obtained

from the case-report form for each patient at their final visit, which indicates whether the patient finished

treatment as planned, withdrew consent, stopped due to pregnancy, etc.

2.3. Pre-specified Analyses

The primary SAP analysis pre-specified a mixed-model repeated-measures analysis for the change from baseline

in weekly average SWASO, with site, treatment, visit, baseline SWASO, treatment-by-visit interaction and

baseline-by-visit interaction as fixed predictors, and an unstructured covariance structure. Each dose was

compared to placebo at Week 4 to measure persistent effect. A similar analysis was planned for each secondary

endpoint. The primary pre-specified intention-to-treat analysis excluded randomized patients who did not receive

a dose of study drug. We followed this convention and excluded these patients throughout. Other randomized

patients without any post-randomization endpoints were included in our analyses, as documented in Section 3.

3. Patterns of missing data

3.1. Missingness in daily telephone diaries

Plots of missingness rates for the SWASO variable during the first 28 days after randomization are displayed

in supplement Figure A.1. The rate of missingness increases over time with a pattern of lower missing rates on

the days of scheduled clinic visits, and bigger increases in missingness rates the day following clinic visits due to

dropouts that occur at the visit. Additional analyses showed there was much less missing diary data on the days

of clinic visits. These trends are attenuated in Figure A.1 because not all patient visits occur on the planned

schedule. The highest-dose group has consistently higher missingness rates than the placebo rate.

Most of the ’weekly’ averages were computed based on collection-time intervals that spanned 4 to 9 days,

as displayed in Table 1, which summarizes the collection period before the final visit. The table also shows

that many patients had unplanned missing diary entries during this collection period. The proportion of the

weekly-averaged endpoints computed with at least 1 missing daily value ranged from 0.3-0.5 across the 4 weekly

visits.

3.2. Missingness in weekly averages

The missing data rates for the SWASO averages, as defined in the protocol, at Week 4 for the 0, 15, 30, 45,

and 60 mg dose groups are 0.18, 0.25, 0.16, 0.16, and 0.25, respectively. These rates are sums of the dropout

and intermittent missing (weekly) rates in Table 2. The only notable dose-related pattern is a higher rate of

missing data at the early visits for the highest dose. To explore potential reasons for the elevated missing rate

in the highest dose group, the frequencies of the reasons for the end of dosing were examined (displayed in

supplement Table A.2). Dropouts due to adverse events were also more frequent in the highest-dose group. The

excess adverse events were not concentrated in a small number of related categories.

Further examination of the patients who dropped out of the study early showed there were 36 randomized

patients missing all weekly diary data. It is not apparent why they do not have baseline diary data. All of them

dropped out of the study without any post-dosing endpoints. Of these patients, 13 reported stopping due to

an adverse event, out of 26 such patients in the entire study. The numbers of these patients in the 0, 15, 30,

45, and 60 mg dose groups are 2, 2, 0, 1, 8, respectively. These patients largely account for the higher rates of

missingness and adverse events observed in the high dose group. Another potential reason for more dropouts in

the highest dose group is described in Section 4.1.
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Figure 1 (produced by the R package, VIM, [10]) summarizes the frequency of missing data patterns. The

weekly-averaged endpoints based on the daily diary data display many different missing data patterns, but the

patterns associated with monotone dropout are the most common. The missing data patterns are sorted from

completely missing to completely observed by the order of the first occurrence of a missing value. The large

number of patients without diary data was first revealed by this display. The histogram at the top of the figure

displays the increase in missing data by visit.

4. Efficacy based on common methods applied to weekly averaged values

4.1. Treatment effect estimates

The mean dose response curve for the primary endpoint at Week 4 is displayed in supplement Figure A.2. The

drug effect increases with dose to a plateau consistent with an Emax model [11], which has been observed for

most effective compounds [12]. The other endpoints based on the daily diaries have similar response trends,

which are also displayed in Figure A.2. The endpoints collected at the weekly visits are displayed in supplement

Figure A.3. The patient and clinician global assessment endpoints have trends similar to the endpoints based on

the daily diaries. All of the other secondary endpoints, which measure daytime function, display non-monotone

dose response. This is likely due to residual drug effect during the day because some drug remains in the body,

as has been observed with other sleep medications [e.g.,[13]]. The residual drug might also affect compliance

with the dosing regimen and dropout status.

Treatment effect estimates (and standard errors, SEs) for the primary endpoint at Week 4 are in the first 3

rows of Table 3. Estimators include maximum likelihood for the longitudinal mixed model (MLLM), which was

described in Section 2.3, a corresponding linear model estimator applied to complete data at baseline and Week

4 created by last observation carried forward (LOCF), and a linear model estimator using available cases with

baseline and Week 4 data (AC). The methods are applied to the weekly averaged values, which were computed

as described in Section 2.2. There were no pronounced differences between estimators, when assessed across all

of the endpoints (displayed in supplement Tables A.3 and A.4). The estimated standard errors differed by less

than 10%, and as anticipated, increased with methods in the order LOCF, MLLM, to AC. The standardized

differences between the estimates (difference divided by the SE of an estimate) were < 0.5, except for a few

differences as large as 1.0 for the LOCF and AC-based estimates.

4.2. Distribution of the SWASO endpoint

The distribution of the primary SWASO endpoint was examined to assess the appropriateness of the planned

analyses and to support selection of imputation models. Boxplots of SWASO by dose group for individual study

days displayed right-skewed distributions. The transformed values are closer to normally distributed, but a floor

at 0 remains. Boxplots of the distributions for selected study days after applying the square-root transform are

displayed in supplement Figure A.4.

Boxplots for the weekly averages of the daily values, with and without transformation, display distributions

similar to the corresponding daily values, but the averaging produces closer agreement to the normal distribution.

As a consequence, models for daily values will be applied to the square-root-transformed values. Because the

original scale is more interpretable, and the skewness after weekly averaging is not severe, daily values will be

back-transformed before applying the primary analysis methods.
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5. Multiple imputation methods applied to daily values

By basing the weekly averages on available cases, we in effect impute the missing nights using the mean outcome

for the nights reported that week. This assumes that the reported nights are representative of all the nights in

that week; sleep patterns are assumed to be no different for the nights where no report was provided. Also weekly

averages are treated as having the same precision, regardless of how many measurements are included in the

average. The analysis in this section still assumes the missing data are MAR, but imputes missing nights based

on a regression of the missing on the recorded nights, and uses multiple imputation to reflect the imputation

uncertainty.

Model-based multiple imputation of missing daily diary values were performed for the primary SWASO

endpoint. The completed daily values were averaged to produce weekly values, and the primary analysis applied

to these data. Completed data sets were created for study days −5 through 28 for each patient. The weekly

averages corresponding to baseline and 4 post-randomization visits were computed from exactly 7 daily values

determined by the planned visit schedule. This differs from the protocol-specified weekly averages, which could

include more than 7 values, because there were no planned windows around the weekly visits. The imputations

were performed for the square-root-transformed values. The daily values were back-transformed before weekly

averages were computed. Any negative imputed values were set to 0 before back-transformation. One hundred

imputed data sets were generated for each multiple imputation method.

The imputation models assume a multivariate normal distribution for the transformed daily SWASO values

(including the baseline values) with means determined by a multiple linear regression. The transformed

SWASO values are denoted by Yij , where patients are indexed by i = 1, · · · , N , and study days are indexed

by j = −5, · · · , 29. The patient-specific mean models include the following fully-observed predictors denoted by

Xi: age (continuous), sex, race, and one post-randomization variable, the reason for terminating dosing (planned

end of study, AE or death, other). The regression parameters associated with X are denoted by β. The dose

group is denoted by Ti, with values (0, 15, 30, 45, 60). A potentially different mean value for each study day for

each dose is denoted by δTj . For some of the models, the daily means are assumed to be the same within a study

week:

δTj = ∆T
d(j−1)/7e ,

where d e denotes the integer ceiling, and the ∆T
k , k = 0, · · · , 4, represent the weekly means. Due to the

randomization, δTj ≡ δj when j ≤ 1 and ∆T
0 ≡ ∆0. For the initial models, equi-correlated variance matrices

were specified through random (normal) patient-specific terms denoted by θi, i = 1, · · · , N , with mean of 0 and

variance ψ2. The residuals about the daily mean values are denoted by εij , with variance σ2.

The first model assumes the daily means change weekly:

Yij = X ′iβ + ∆Ti

d(j−1)/7e + θi + εij . (1)

The second imputation model is the same as the first model except that it was fit separately for each dose group,

and thus implicitly included interaction terms between dose and all of the main effects in the model. The second

model also included separate within and between variance parameters for each dose group. The first two models

were fit using the R package PAN [14, 15]. Results from these models are denoted by MVNMI1 and MVNMI2.

A third imputation model, denoted by MVNMI3, was similar to model (1), except that the mean values were

allowed to change daily rather than weekly:

Yij = X ′iβ + δTi

j + θi + εij . (2)
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The model was fit and the imputations were generated using the general-purpose Bayesian MCMC program

STAN [16]. Results from the same model fit using the PAN software (not shown) were similar. The same

diffuse prior distributions (i.e., diffuse normal prior distributions for fixed effects, diffuse gamma distributions

for random effects) were utilized in both programs. The flexibility of the general-purpose software can be used

to impute from many alternative models for the mean and variance structures, but it is somewhat slower to

execute. The imputation approaches described here took from 30 minutes to a full day to create 100 imputed

data sets on a mid-range desktop computer.

The estimated magnitudes of the within (σ2) and between patient (ψ2) variability were roughly equal for

all of the fitted models. The variance-covariance matrix of the square-root transformed daily SWASO values

was examined by pooling the residuals across dose groups after applying dose-group analysis of variance to

the available SWASO values for each day. The pairwise correlations displayed a weak trend towards increased

correlation for nearby days. A more pronounced difference was much higher correlations between daily values

collected during the post-randomization period compared to correlations involving days from the baseline period.

The empirical (5th, 95th) percentiles for correlations including at least one baseline value are (0.23,0.45), while

they are (0.46,0.67) for post-randomization values. The residual SD also displayed a marked increase following

the end of the baseline period that continued to increase more gradually during the post-randomization period.

An empirical fit of the trend was obtained by a least squares fit of the daily SDs on study day, which is given by

f(day) = 3.72 + 0.203 log{0.5 + (day)I(day > 1)}. The daily SDS and the empirical curve, f(day), are displayed

in supplement Figure A.5.

Two additional imputation models, denoted by MVNMI4 and MVNMI5, were fit to better represent the

changing variances and correlations. In model MVNMI4, both the within and between patient random terms

were multiplied by f :

Yij = X ′iβ + δTi

j + f(j)θi + f(j)εij . (3)

This model has an increased variance over time while maintaining a common correlation. The increasing

multiplier over time was applied to the between patient random term only in model MVNMI5:

Yij = X ′iβ + δTi

j + f(j)θi + εij . (4)

This model yields increasing variance with time, and higher correlations between values from later study days

compared to early days, as was observed in the complete-case analysis.

Results based on the multiply imputed data are in the lower portion of Table 3; the reported results include

only comparisons of the lowest and highest doses to placebo at Week 4. All of the imputation models yielded

estimates of treatment effect that were substantively similar to the MLLM approach based on the protocol-

specified weekly averages, but the estimates for the 15 mg dose trended toward larger effects. The maximum

absolute difference between the MLLM and various MI estimates divided by the SE of the MLLM estimate for

the 15 and 60 mg effects versus placebo were 0.38 and 0.07, respectively. A difference of 0.4, even if it were

replicated across repeated data sets, would only reduce the coverage of a nominal 95% interval to 93% (p. 14,

[17]).

Plots of observed and imputed daily values for individual patients displayed agreement in location and trend

over time. The proportions of imputed values across the models that were originally negative and subsequently

truncated ranged from 0.01 to 0.039. The proportion of zero values in the observed data was 0.115, and the

corresponding proportion after imputation ranged from 0.099 to 0.101. Figure 2 displays the observed values

and the first 5 imputed daily values from model MVNMI3 for 3 patients treated with the 60 mg dose who have

common missing data patterns. Patients ’239’ and ’270’ were selected for display because they had a pronounced

tendency to repeatedly report rounded times (e.g.,
√

60 and
√

120), which the normal-based imputation models
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cannot accurately reproduce. Aside from this common situation, the imputed values appeared in good visual

agreement with the observed values. Boxplots in Figure 3 summarize all of the imputed values for the 3 patients.

They display more clearly the distributions of the missing values implied by the imputation model.

The standard errors from the MVN imputation models were smaller than those produced by the other methods.

Most of the difference between the MVN-based SEs and those from the MLLM and LOCF methods is due to

the smaller residual standard deviations estimated in the primary analysis model, which are displayed in the

final column of Table 3. It is not apparent why the MVN-based imputations yielded less residual variation in

the weekly-averaged values. The larger SEs for the AC method are due primarily to its smaller sample sizes.

The differences in the estimates and standard errors did not change the substantive conclusions of this trial,

but in a trial with treatment differences near boundaries for statistical significance, changes of the magnitude

observed would likely yield p-values below and above the boundary.

6. Pattern mixture models and MNAR analyses

6.1. Comparing data distributions from different missing data patterns

Most of the weekly missing data are monotone due to dropouts. Data from weeks common to different missing

data patterns were compared to check potential dependence of dropout status on observed efficacy data. In

Figure 4, boxplots of the weekly SWASO values from the completers are compared to corresponding boxplots of

patients who dropped out after 1, 2, or 3 weeks, respectively. The weekly-averaged SWASO values computed per

protocol are displayed. The observed data from the different dropout patterns are very similar. Other weekly

endpoints plots within dose groups were also assessed and displayed close agreement. The observed responses

up to any visit do not predict who will subsequently dropout or complete the study. Because the observed data

cannot unequivocally demonstrate MAR or related conditions, sensitivity analyses are described in the next

section under MNAR models.

6.2. MI-based assessment of MNAR pattern mixture models

The pattern mixture models [18, 19] in this section are constructed from the multivariate normal model for

complete data, MVNMI3, which has different means for each study day within dose group, and a common

equi-correlated variance-covariance matrix. The posterior means for the within (σ2) and between (ψ2) patient

variances from the fitted model are σ2 = 8.9 and ψ2 = 8. A MNAR model similar to the one in Guisti and Little

[20] is fit with the data distribution given by (2), except that each missing SWASO value is increased (worsened)

by the amount c ∗ σ. If Yij is missing with imputed values Yij,imp, imp = 1, · · · , 100, the imputed values under

the MNAR model are Yij,imp + cσimp, where σimp are drawn from the posterior distribution of σ as part of the

generation of the imputations. Following the recommendation in Guisti and Little [20] low, medium, and high

values of the sensitivity multiplier are c = 0.8, 1.2, 1.6. A second MNAR model was fit using the same approach,

but missing data following dropout were assigned a larger offset derived from the total variance observed in

the SWASO variable after accounting for dose group and baseline characteristics, c
√
σ2 + ψ2. The offset for

intermittent missing values remained c ∗ σ.

Results for the models with differing sensitivity parameters are in Table 4. The mean difference for the 15

mg dose versus placebo decreased, while the mean difference for the 60 mg dose increased. The changes do not

substantively impact the interpretation of the results, but the largest changes for the 15 mg dose were > 1.5SE.

The change in the 15 mg dose was not anticipated because this group did not have more missing data. It occurred

because there were more imputations in the upper tail of the distribution for this group. The addition of the

offsets combined with the back-transformation from the square root scale produced a more skewed distribution
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and the difference in the regression-based primary complete data analyses. Many of the imputations under the

MNAR models appear as outliers when plotted with the observed data in plots like those in Figure 2. This is

reflected in the increases in the estimated SD and SE in Table 4. Similar to the results from different models

under the MAR assumption in Section 5, there was not high sensitivity of the results to the different MNAR

models, but the combination of changes in the estimates and increased SEs could affect the interpretation of a

study with less robust treatment differences.

The two MNAR models described here are not dependent on the treatment group. MNAR models that use

different imputation models for different treatment groups [6, 19, 21, 22] were also explored by modifying the

second MNAR model. The offsets were only applied to patients who dropout from the active treatment groups,

with no offsets applied to intermittent missing values. The results for these models are in the lower portion of

Table 4. As anticipated, these models substantially discount the results from the active treatment groups. An

offset with c > 1 eliminates the clinical and statistical significance of even the large effect observed in the high-

dose group. These sensitivity results are dubious, however, as they predict a substantial increase in SWASO for

the lowest dose, and a small decrease for the high-dose group. There is no apparent mechanism to explain a large

differential in potential responses for dropouts in the active groups, and the results are in sharp contrast with the

observed effects that are consistent with dose response across numerous measures of sleep, and the previously

observed effects of related compounds. The effect of the high dose versus placebo on square root SWASO is

approximately 0.4
√
σ2 + ψ2, so even the ’low’ sensitivity setting implies a much larger shift than would occur

under jump-to-placebo models [6, 21, 22]. An overall summary of the MNAR results could be obtained by

specifying a distribution for the offset parameter c, which would assign higher probabilities to smaller values,

and then applying the methods in [23].

7. Conclusions

Missing-data rates for the weekly endpoints of approximately 15-25% at Week 4 are within expectations based

on past experience with trials of similar duration. There is evidence that dropout might be related to dose,

but less so for intermittent missing values. The higher number of patients reporting adverse events on the

highest dose support this conjecture, but the number of dropouts spread across 5 treatment groups is too low

for definitive conclusions. No simple model using a small number of measurements was found that could predict

which measurements would be missing.

The estimated proportions of missing information computed from the multiple imputations in Table 3 show

that recovery of some of the missing information is possible due to correlation between the numerous diary and

baseline values. The differences in estimates and standard errors for the treatment effects from the different

models under the MAR assumption and the MNAR models without differential behavior by treatment group

were not large enough to change the substantive interpretation of the results. The differences would be large

enough, however, to create ambiguity in the results from a trial with smaller treatment effects that achieved

borderline statistical significance. Models under MNAR with differential behavior by treatment group attenuated

the effects for all active treatment groups when dropouts have increased SWASO of approximately one SD. The

SWASO values for dropouts implied by a shift of one SD yield patients with response patterns that were not

observed in any patients, including those treated with placebo, so the relevance of such models to any estimand

is dubious.

Multivariate-normal models were utilized after data transformation to form the multiply imputed missing

SWASO values. With some data-driven adjustments to these models, the mean, variance, and correlation

structure of the data could be represented. The clear preference for reporting rounded times (e.g, 30 minutes,
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one hour), and the tendency of patients to repeat the same values for several consecutive days could not be

easily reproduced with the normal-based models. Some hot-deck-type approaches with sampling of observed

SWASO values were explored, such as predictive mean matching [4, 24], but the results are not presented here

because they were unstable, depending on methodological features such as the order the variables were imputed.

Alternative approaches involving weights based on estimates of the missingness probabilities were not developed

here [25, 26]. Such models would also be difficult to specify due to the complex multivariate nature of the data

and the added complexities that arise due to the dependence between missingness and the scheduling of weekly

clinic visits.

With current desktop computing and general-purpose statistical software, it is feasible to account for missing

daily diaries in aggregated endpoints. The most challenging aspect is the specification of models that can

adequately represent the missing data. This problem becomes more difficult when pre-specification of the models

is required for confirmatory trials. The approach used to assess model sensitivity fitted several models with

flexible mean functions and different variance-covariance structures. Multivariate normal models, however, are

unlikely to reproduce some of the features present in subjectively reported diary data.

R programs to create graphical displays like those in Figures 2, 3, and 4 are included in the supplement

[27, 28].
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Days Between Row Days Contributing to
Visits 3 and 4 Total the Weekly Average

1 2 3 4 5 6 7 8 9 10 11 14
2 1 1 0 - - - - - - - - - -
3 1 0 0 1 - - - - - - - - -
4 4 0 0 1 3 - - - - - - - -
5 31 0 3 2 11 15 - - - - - - -
6 81 1 0 1 12 24 43 - - - - - -
7 342 1 0 5 7 32 81 216 - - - - -
8 64 0 1 0 2 4 9 19 29 - - - -
9 21 0 0 0 0 1 1 4 4 11 - - -
10 5 0 0 0 1 0 1 1 0 1 1 - -
11 1 0 0 0 1 0 0 0 0 0 0 0 -
12 2 0 0 1 0 0 0 0 0 0 0 1 -
13 1 1 0 0 0 0 0 0 0 0 0 0 -
16 1 0 0 0 0 0 0 0 0 0 0 0 1

Table 1. Daily diaries contributing to SWASO at Week 4. Counts are the number of patients amongst those
with Week 3,4 visits. Row totals are patients with the specified days between visits. Impossible combinations

are marked with a ’-’.

Cumulative Dropout Rates Intermittent Missing Rates
Dose Week Week

1 2 3 4 0 1 2 3 4
0 0.06 0.08 0.10 0.14 0.06 0.02 0.02 0.03 0.04
15 0.04 0.11 0.15 0.20 0.04 0.01 0.01 0.04 0.05
30 0.04 0.09 0.13 0.14 0.04 0.00 0.00 0.02 0.02
45 0.04 0.10 0.13 0.16 0.05 0.02 0.01 0.02 0.00
60 0.09 0.15 0.18 0.22 0.09 0.04 0.04 0.00 0.03

Table 2. Dropout and intermittent missing rates for the SWASO endpoint. The intermittent missing rate refers
to the weekly means of the daily values and applies to patients remaining in the study at a visit. Note that a

patient can return for their Week 4 visit and still have missing daily diary data for the week.

15mg vs PBO 60mg vs PBO Pooled
Method Est SE %Mis Info Est SE %Mis Info Res SD

MLLM-week -2.93 5.97 -26.61 6 44.7
LOCF-week -2.7 5.84 -24.42 5.92 46.6

AC-week -1.59 6.46 -23.22 6.46 45.9
MVNMI1-day -4.43 5.15 11 -26.57 5.15 12 39.4
MVNMI2-day -4.23 5.17 11 -26.22 5.09 9 39.5
MVNMI3-day -5.2 5.16 12 -26.17 5.07 9 39.3
MVNMI4-day -5.09 5.25 11 -26.54 5.25 12 40.1
MVNMI5-day -4.19 5.23 10 -26.33 5.27 12 40.1

Table 3. Estimates and standard errors for the Week 4 SWASO endpoint from different missing data methods.
The ’week’ in methods indicates it was applied to weekly data. The ’day’ indicates it was applied to daily data,
which was subsequently averaged. MLLM (mixed longitudinal model), LOCF (linear model applied to LOCF

data at Week 4), AC (available cases).
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15mg vs PBO 60mg vs PBO Pooled
Method Est SE %Mis Info Est SE %Mis Info Res SD

MVNMI3-day -5.2 5.16 12 -26.17 5.07 9 39.3
AllLow-day -2.39 5.74 16 -27.48 5.63 13 42.7
AllMed-day -0.58 6.23 17 -27.9 6.12 14 46.1
AllHigh-day 1.49 6.86 17 -28.16 6.75 14 50.8

DropLow-day -1.6 5.99 16 -26.92 5.89 14 44.5
DropMed-day 0.77 6.78 16 -26.94 6.68 14 50.4
DropHigh-day 3.49 7.83 15 -26.75 7.74 13 58.6
DiffLow-day 5.48 5.77 12 -16.22 5.69 11 43.7
DiffMed-day 12.28 6.51 11 -9.64 6.45 10 49.8
DiffHigh-day 20.03 7.6 9 -1.99 7.55 9 58.6

Table 4. Estimates and standard errors for the Week 4 SWASO endpoint from different MNAR models. The
All in the method denotes the same offset for all missing measurements, Drop denotes higher offsets following
dropout, and Diff denotes higher offsets applied differentially to the active treatment groups. Low, Med, High

are offset multiples of 0.8, 1.2, and 1.6.
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Figure 1. Missing data patterns for the weekly averaged SWASO variable. The grey shaded regions represent missing data. The patterns are

ordered by the first occurrence of missing data. The right-hand numbers are the frequencies of each pattern.’
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Figure 2. Longitudinal plot of
√
SWASO for 3 patients treated with the 60 mg dose. The observed data are displayed using bold black lines

and points. The first 5 sets of imputed values from model MVNMI3 are displayed using smaller, lighter lines and symbols. Software to produce

this graphic is included in the appendix.
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included in the appendix.
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A. Supplement

Variable Symbol Values Improvement
Clinical global impression of severity CGIS 1-7 Lower
Leeds sleep evaluation-awakening from sleep LSEAFS 0-100 Higher
Leeds sleep evaluation-quality of sleep LSEQOS 0-100 Higher
LSE-Behaviour following wakefulness LSEBFW 0-100 Higher
Multidimensional assessment of fatigue index MAFGFI 1-50 Lower
Patient global impression of change PGIC 1-7 Lower
Restorative sleep questionnaire weekly RSQW 0-100 Higher
Sheehan disability scale SDS 0-30 Lower
SF36-Vitality SF36V 0-100 Higher
Daytime consequences of sleep questionnaire DCSQTOT 0-100 Lower
Benzodiazepine withdrawal symptom questionnaire BWSQTOT 0-22 Lower

Table A.1. Efficacy variables collected at weekly clinic visits.

Dose
0 15 30 45 60

RANDOMIZED 143 134 134 124 137
COMPLETED STUDY 124 110 115 104 109
ADVERSE EVENT 3 4 1 5 13
SUBJECT DIED 0 0 0 0 1
PROTOCOL VIOLATION 4 5 2 3 3
LOST TO FOLLOW UP 1 1 3 5 4
OTHER 2 0 2 0 1
FAILED ENTRANCE CRITERIA 1 0 1 0 0
SUBJECT WITHDREW CONSENT 8 13 10 7 6
PREGNANCY 0 1 0 0 0

Table A.2. Reason for end of dosing as recorded on the case report form at the final visit. The number
randomized is included in first row.

15mg vs PBO 60mg vs PBO
Endpoint MLLM LOCF AC MLLM LOCF AC

swaso -2.93 -2.7 -1.59 -26.61 -24.42 -23.22
(5.97) (5.84) (6.46) (6) (5.92) (6.46)

slso -5.79 -5.08 -5.24 -6.1 -5.44 -5.46
(4.23) (4.16) (4.49) (4.25) (4.22) (4.49)

tst 4.51 4.63 1.93 23.34 22.85 23.18
(7.83) (7.68) (8.29) (7.87) (7.77) (8.28)

squality 1.01 0.97 1.43 8.04 7.46 7.88
(2.49) (2.43) (2.66) (2.5) (2.45) (2.66)

Table A.3. Estimates (standard errors) for the Week 4 endpoints formed from weekly averages of the daily
diaries. Results are presented for the low and high doses versus placebo. Estimation based on the saturated

longitudinal model (MLLM), last observation carried forward (LOCF), and available cases at Week 4 (AC).
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Figure A.1. The proportion of missing SWASO values for study days 1-28. The left panel displays the daily rates for all patients, and the right

panel for placebo and 60 mg patients.
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Figure A.2. Mean dose response at Week 4 for weekly endpoints computed from daily diary data using the pre-specified method for computing

weekly averages. Dose group means are computed from available cases. The error bars are ±SE. The variables are defined in Section 2.2.
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Figure A.3. Mean dose response at Week 4 for the secondary endpoints collected at the weekly visits. Dose group means are computed from

available cases. The error bars are ±SE. The variables are defined in Table A.1.
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Figure A.4. Box plots of Square root transformed daily SWASO values at selected study days (1, 7, 14, 21, 28).
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SWASO after removing dose group mean differences. The dashed curve is f(day) = 3.72 + 0.20 log{0.5 +

(day)I(day > 1)}.

15mg vs PBO 60mg vs PBO
Endpoint MLLM LOCF AC MLLM LOCF AC
bwsqtot 0.6 0.64 0.66 0.4 0.4 0.39

(0.33) (0.3) (0.34) (0.33) (0.3) (0.35)
cgis -0.06 -0.02 -0.15 -0.37 -0.29 -0.42

(0.15) (0.14) (0.15) (0.15) (0.14) (0.15)
dcsqtot -0.98 -1.6 -0.26 -2.58 -2.66 -1.68

(1.78) (1.74) (1.89) (1.78) (1.73) (1.89)
lseafs -0.39 -0.11 0.21 -1.46 -2.57 0.04

(2.53) (2.31) (2.68) (2.53) (2.29) (2.68)
lsebfw 1.22 1.12 2.05 -0.95 -1.35 -1.11

(2.57) (2.43) (2.72) (2.58) (2.41) (2.72)
lseqos 1.4 0.99 2.49 6.07 4.69 6.59

(2.28) (2.16) (2.42) (2.29) (2.15) (2.42)
mafgfi 0.12 0.19 -0.32 -0.31 -0.1 -0.66

(1.26) (1.22) (1.36) (1.27) (1.22) (1.36)
pgic 0.1 0.12 0.1 -0.34 -0.31 -0.35

(0.14) (0.14) (0.15) (0.14) (0.14) (0.15)
rsqw 1.09 0.99 1.49 2.76 2.14 2.97

(2.33) (2.22) (2.46) (2.34) (2.21) (2.47)
sds 0.16 0.36 -0.14 -0.07 0.11 -0.7

(0.76) (0.75) (0.82) (0.77) (0.74) (0.84)
sf36v 0.27 -0.17 0.76 1.34 1.26 1.92

(2.41) (2.27) (2.54) (2.44) (2.28) (2.56)

Table A.4. Estimates (standard errors) for the Week 4 secondary endpoints. Results are presented for the low
and high doses versus placebo. Estimation based on the saturated longitudinal model (MLLM), last observation

carried forward (LOCF), and available cases at Week 4 (AC).
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R Graphics Functions

library(ggplot2)

### Fig 4

impPlot <-function(yin ,id,impin ,visits ,impcol =1: ncol(impin),ylab=’Y’,xlab=’Time’,

cbbPalette=c( "#E69F00", "#56 B4E9", "#009 E73", "#D55E00", "#0072B2"),

obsColor="black",legend=TRUE)

{

### yin outcome data from first to last visit. any missing data must

### be NA so there exactly nvis values per patient. outcomes from multiple

### multiple patients are stacked

###

### id patient identifiers corresponding to yin

###

### impin matrix of multiply imputed values. rows correspond to yin

### columns are imputations . if a value in yin is observed , imputations

### are repeated observed values

### visits Increasing visit numbers corresponding to outcomes in yin

###

### impcol columns of impin to use. typically 1:( number imputations in impin)

###

### cbbPalette R cookbook color scheme used for up to 5 imputed values

### It will need to be redefined if more than 5 imputations plotted

### otherwise the colors will be repeated

###

### obsColor Color used to represent observed values

###

### legend FALSE to suppress print of legend

###

### output

### scatter plot of outcome vs time. observed data plotted with larger black lines and dots.

### the imputed values are assigned different colors with thin lines connecting them

###

uid <-sort(unique(id))

nimp <-length(impcol)

nvis <-length(visits)

if(length(yin)!=nvis*length(uid))stop(’yin , id, and visits have inconsistent lengths ’)

if(max(impcol)>ncol(impin))stop(’impcol must be a subset of the columns of impin’)

rcol <-ceiling(nimp/length(cbbPalette ))

cbbPalette <-rep(cbbPalette ,rcol) ## repeat colors if needed

cbbPalette <-c(cbbPalette [1: nimp],obsColor)

obsdat <-NULL

segdat <-NULL

visdat <-NULL

for(curid in uid){

### set up observed values for printing

y<-yin[id==curid]

misind <-is.na(y)

nobs <-sum(!misind)

nmis <-sum(misind)

yobs <-y[!misind]

visobs <-visits[!misind]

idobs <-rep(curid ,sum(!misind ))

impid <-rep(’OBS’,sum(!misind ))

obsdat <-rbind(obsdat ,data.frame(id=idobs ,impid ,visobs ,yobs))

### set up line segments between observed values

xstart <-NULL

xend <-NULL

ystart <-NULL

yend <-NULL

for(i in 1:(nvis -1)){

if(!misind[i] & !misind[i+1]){

xstart <-c(xstart ,visits[i])

xend <-c(xend ,visits[i+1])

ystart <-c(ystart ,y[i])

yend <-c(yend ,y[i+1])

}

}

idseg <-rep(curid ,length(xstart ))

impid <-rep(’OBS’,length(xstart ))
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segdat <-rbind(segdat ,data.frame(id=idseg ,impid ,xstart ,xend ,ystart ,yend))

### create stacked imputed values vectors

yimp <-impin[id==curid ,impcol]

yimp <-as.vector(yimp[,])

idmis <-rep(curid ,nvis*nimp)

vismis <-rep(visits ,nimp)

impid <-rep(impcol ,rep(nvis ,nimp))

visdat <-rbind(visdat ,data.frame(id=idmis ,vismis ,impid ,yimp))

}

### create factor variables

obsdat[,’id’]<-factor(obsdat[,’id’])

segdat[,’id’]<-factor(segdat[,’id’])

visdat[,’id’]<-factor(visdat[,’id’])

obsdat[,’impid’]<-factor(obsdat[,’impid’],levels=c(’OBS’,impcol ))

segdat[,’impid’]<-factor(segdat[,’impid’],levels=c(’OBS’,impcol ))

visdat[,’impid’]<-factor(visdat[,’impid’],levels=c(’OBS’,impcol ))

plotimp <-ggplot(data=visdat ,aes(x=vismis ,y=yimp ,color=impid ))+ geom_line ()+ geom_point()

plotimp <-plotimp+facet_grid(id~.)

plotimp <-plotimp+geom_point(data=obsdat ,aes(x=visobs ,y=yobs),size =3)

plotimp <-plotimp+geom_segment(data=segdat ,aes(x=xstart ,xend=xend ,y=ystart ,yend=yend),size =1)

plotimp <-plotimp+xlab(xlab)+ylab(ylab)

plotimp <-plotimp+scale_colour_manual(values=cbbPalette ,name="Imputation:")

plotimp <-plotimp+theme_bw()

if(legend ){ plotimp <-plotimp+theme(legend.position=’top’)

}else plotimp <-plotimp+theme(legend.position=’none’)

print(plotimp)

return(invisible(plotimp ))

}

# ##################################################################################################

#### fig 5

impBox <-function(yin ,id,impin ,visits ,bwidth=1,ylab=’Y’,xlab=’Time’)

{

### yin outcome data from first to last visit. any missing data must

### be NA so there exactly nvis values per patient. outcomes from multiple

### multiple patients are stacked

###

### id patient identifiers corresponding to yin

###

### impin matrix of multiply imputed values. rows correspond to yin

### columns are imputations . if a value in yin is observed , imputations

### are repeated observed values

### visits Increasing visit numbers corresponding to outcomes in yin

###

### bwidth The user can specify the (uniform) widths of the boxplots summarizing

### the imputed values

###

### output

### Observed outcomes are represented as a scatter plot vs time. Imputations at times with

### missing outcomes are represented by boxplots

###

uid <-sort(unique(id))

nimp <-ncol(impin)

nvis <-length(visits)

if(length(yin)!=nvis*length(uid))stop(’yin , id, and visits have inconsistent lengths ’)

obsdat <-NULL

visdat <-NULL

for(curid in uid){

### set up observed values for printing

y<-yin[id==curid]

misind <-is.na(y)

nobs <-sum(!misind)

nmis <-sum(misind)

yobs <-y[!misind]

visobs <-visits[!misind]

idobs <-rep(curid ,sum(!misind ))

obsdat <-rbind(obsdat ,data.frame(id=idobs ,visobs ,yobs))

### create stacked imputed values vectors
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yimp <-impin[id==curid ,]

yimp <-as.vector(yimp[misind ,])

idmis <-rep(curid ,nmis*nimp)

vismis <-rep(visits[misind],nimp)

visdat <-rbind(visdat ,data.frame(id=idmis ,vismis ,yimp))

}

### create factor variables

obsdat[,’id’]<-factor(obsdat[,’id’])

visdat[,’id’]<-factor(visdat[,’id’])

boxp <-ggplot(data=visdat )+geom_boxplot(aes(x=vismis ,y=yimp ,group=vismis),outlier.colour=’grey’,

width=bwidth ,outlier.shape =8)

boxp <-boxp+geom_point(data=obsdat ,aes(x=visobs ,y=yobs),size=3,col=’black’)

boxp <-boxp+facet_grid(id~.)

boxp <-boxp+xlab(xlab)+ylab(ylab)

boxp <-boxp+theme_bw()

print(boxp)

return(invisible(boxp))

}

# ##################################################################################################

#### fig 6

patComp <-function(gmat ,visits =0:( ncol(gmat)-1),vstart=2,bwidth=1,xlab=’Time’,ylab=’Y’){

### compare completer response to responses

### for patient who dropout for each observed

### dropout pattern using side -by -side boxplots

### gmat rectangular data matrix with one row per

### patient with visits sequentially ordered

### and missing values assigned NA

###

### visits visit numbers corresponding to columns in gmat

###

### vstart Starting column for dropout patterns , i.e., patients

### are present at vstart and dropout

### at (vstart +1)

###

### bwidth The user can specify the (uniform) widths of the boxplots

###

### output

###

### side -by -side boxplots. for visit i, find all patients who are present

### at visit i, but dropout at visit i+1. form boxplots at each visit up

### to visit i for these patients. also form boxplots for these visits

### based on the patients who complete the study. the dropout/completer

### boxplots are side by side. one panel for each dropout time.

### The number of completers and dropouts contributing to each panel

### are also output. patients with intermitent dropouts are excluded

### from all patterns

nvis <-length(visits)

maxw <-ncol(gmat)

gmis <-is.na(gmat)

comp <-apply(!gmis ,1,prod)

compvec <-as.vector(gmat[comp ==1,])

compvis <-rep(1:maxw ,rep(sum(comp),maxw))

yvec <-NULL

vvec <-NULL

tvec <-NULL

dvec <-NULL

for(i in vstart :(maxw -1)){

ycomp <-compvec[compvis <=i]

leny <-length(ycomp)

yvec <-c(yvec ,ycomp)

vvec <-c(vvec ,visits[compvis[compvis <=i]])

tvec <-c(tvec ,rep(’Completers ’,leny))

dvec <-c(dvec ,rep(visits[i],leny))

monpatL <-apply(!gmis[,1:i,drop=F],1,prod)

monpatH <-apply(gmis[,(i+1):maxw ,drop=F],1,prod)

monpat <-monpatL*monpatH

ydrop <-as.vector(gmat[monpat ==1,1:i,drop=F])

lenyd <-length(ydrop)
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yvec <-c(yvec ,ydrop)

vvec <-c(vvec ,rep(visits [1:i],rep(sum(monpat),i)))

tvec <-c(tvec ,rep(’Dropouts ’,lenyd))

dvec <-c(dvec ,rep(visits[i],lenyd))

}

dveclev <-sort(unique(dvec))

dveclev <-paste(’Dropout -’,dveclev ,sep=’’)

dvec <-paste(’Dropout -’,dvec ,sep=’’)

dvec <-factor(dvec ,levels=dveclev)

tvec <-factor(tvec)

vvec <-factor(vvec)

cbbPalette <-c( "#E69F00", "#56 B4E9") ### fill colors

bplot <-ggplot(data=data.frame(yvec ,dvec ,tvec ,vvec ))+

geom_boxplot(aes(y=yvec ,x=vvec ,fill=tvec),width=bwidth ,notch=TRUE)

bplot <-bplot+facet_grid(dvec~.)

bplot <-bplot+xlab(xlab)+ylab(ylab)

bplot <-bplot+scale_fill_manual(values=cbbPalette ,name="Status")

bplot <-bplot+theme_bw()

print(bplot)

return(invisible(list(counts=table(dvec[vvec== visits [1]], tvec[vvec== visits [1]]), bplot=bplot )))

}
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