THE UNIVERSITY OF MICHIGAN
OFFICIAL PUBLICATION

1962-1963

announcement

COLLEGE OF ENGINEERING
VOL. 63, NO. 71, DECEMBER 13, 1961

Entered as second-class matter at the Post Office at Ann Arbor, Michigan.
Issued triweekly July through March and semiweekly April through June
College of Engineering

1962-1963

Announcement

Published by the University Ann Arbor
Office Directory

GENERAL UNIVERSITY OFFICES

Admission of Freshmen, Student Activities Building
Appointments, Bureau of, Student Activities Building
Automotive permits, 3011 Student Activities Building
Business Office, information desk, second floor, Administration
Cashier's Office, 1015 Administration
Dean of Faculties, 2522 Administration
Dean of Men, 2011 or 2038 Student Activities Building
Dean of Women, 1011 Student Activities Building
Director of Admissions, Student Activities Building
D.O.B., 3519 Administration
Eligibility for activities, Student Activities Building
Employment:
 hospital employment, 2002 Hospital University offices, 1020 Administration
 men students, Personnel Office, 1020 Administration
Extension Service, 412 Maynard St.
Foreign Student Counselors, International Center
Fraternities, information about, Student Activities Building and Michigan Union
Graduate School, Rackham Building
Health Service, Fletcher Avenue

Housing:
 Married Students, 2364 Bishop St., North Campus
 Men, 3011 Student Activities Building
 Women, 1011 Student Activities Building

Information desk, first floor, Administration
Office of Student Affairs, Student Activities Building
Office of Veterans Affairs, 2226 Student Activities Building
Orientation, 113 Administration
President's Office, 2522 Administration
Print Lending Library, Student Activities Building
Refund of semester fees, 1015 Administration
Residence Halls:
 Business Manager, 2244 Student Activities Building
 fees, payment of, 1015 Administration
Scholarship bulletins, Student Activities Building
Secretary of the University, 2552 Administration
Sororities, information about, Dean of Women, Student Activities Building
Student activities, Student Activities Building
Summer Session, Administrative Office, 3510 Administration

COLLEGE OFFICES

Admissions: Advanced Standing, 259 West Engineering
Deans of the College:
 Dean Stephen S. Attwood, 255 West Engineering
 Associate Dean G. V. Edmonson, 247 West Engineering
 Associate Dean J. C. Mouzon, 248 West Engineering
Assistant Dean and Secretary, A. R. Hellwarth, 259 West Engineering
Assistant to the Dean, R. H. Hoisington, 259 West Engineering
Assistant to the Dean, I. K. McAdam, 312 Automotive Engineering Laboratory
 Assistant to the Dean, J. G. Young, 128H West Engineering

Lost and Found:
 Information desk, second floor lobby, Administration
 Office of the Assistant Dean, 259 West Engineering
Placement, student and alumni, 128H West Engineering, J. G. Young, and department offices
Records, 263 West Engineering
Transcripts, 263 West Engineering
Transfer students, admission of, 259 West Engineering
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar</td>
<td>4</td>
</tr>
<tr>
<td>General Information</td>
<td>5</td>
</tr>
<tr>
<td>Admission</td>
<td>13</td>
</tr>
<tr>
<td>Planning the Student's Program</td>
<td>22</td>
</tr>
<tr>
<td>Rules and Procedures</td>
<td>27</td>
</tr>
<tr>
<td>Undergraduate Degree Programs</td>
<td>36</td>
</tr>
<tr>
<td>Aeronautical and Astronautical Engineering</td>
<td>38</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>40</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>44</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>49</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>52</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>54</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>56</td>
</tr>
<tr>
<td>Mathematics</td>
<td>58</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>60</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
<td>62</td>
</tr>
<tr>
<td>Meteorology</td>
<td>64</td>
</tr>
<tr>
<td>Naval Architecture and Marine Engineering</td>
<td>67</td>
</tr>
<tr>
<td>Physics</td>
<td>71</td>
</tr>
<tr>
<td>Science Engineering</td>
<td>72</td>
</tr>
<tr>
<td>Special Fields</td>
<td>75</td>
</tr>
<tr>
<td>Communication Sciences</td>
<td>75</td>
</tr>
<tr>
<td>Instrumentation Engineering</td>
<td>76</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>76</td>
</tr>
<tr>
<td>Reserve Officers Training Corps</td>
<td>77</td>
</tr>
<tr>
<td>Graduate Studies</td>
<td>86</td>
</tr>
<tr>
<td>Master's Degrees</td>
<td>87</td>
</tr>
<tr>
<td>Professional Degrees</td>
<td>94</td>
</tr>
<tr>
<td>Doctor's Degree</td>
<td>95</td>
</tr>
<tr>
<td>Description of Courses</td>
<td>96</td>
</tr>
<tr>
<td>Aeronautical and Astronautical Engineering</td>
<td>96</td>
</tr>
<tr>
<td>Business Administration</td>
<td>102</td>
</tr>
<tr>
<td>Chemical and Metallurgical Engineering</td>
<td>103</td>
</tr>
<tr>
<td>Chemistry</td>
<td>109</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>112</td>
</tr>
<tr>
<td>Communication Sciences</td>
<td>121</td>
</tr>
<tr>
<td>Economics</td>
<td>122</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>124</td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>135</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>136</td>
</tr>
<tr>
<td>English</td>
<td>141</td>
</tr>
<tr>
<td>Geology and Mineralogy</td>
<td>146</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>146</td>
</tr>
<tr>
<td>Instrumentation Engineering</td>
<td>151</td>
</tr>
<tr>
<td>Mathematics</td>
<td>154</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>158</td>
</tr>
<tr>
<td>Meteorology</td>
<td>165</td>
</tr>
<tr>
<td>Naval Architecture and Marine Engineering</td>
<td>168</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>170</td>
</tr>
<tr>
<td>Physics</td>
<td>173</td>
</tr>
<tr>
<td>Science Engineering</td>
<td>176</td>
</tr>
<tr>
<td>Committees and Faculty</td>
<td>177</td>
</tr>
<tr>
<td>Registration Schedules</td>
<td>192</td>
</tr>
<tr>
<td>Index</td>
<td>194</td>
</tr>
</tbody>
</table>
Calendar, 1962-63

SUMMER SESSION, 1962

Registration .. June 21–23, Thursday–Saturday
Summer session classes begin June 25, Monday
Independence Day, a holiday July 4, Wednesday
Summer session ends August 18, Saturday

FIRST SEMESTER

Orientation period September 10–15, Monday–Saturday
*Registration .. September 12–15, Wednesday–Saturday
First semester classes begin September 17, Monday
Thanksgiving recess begins November 21, Wednesday (evening)
Classes resume ... November 26, Monday (morning)
Christmas recess begins December 20, Thursday (evening)

1963

Classes resume ... January 3, Thursday (morning)
Classes end ... January 16, Wednesday
Study period ... January 17, Thursday
Examination period January 18–29, Friday–Tuesday
Midyear Graduation January 26, Saturday
First semester ends February 2, Saturday

SECOND SEMESTER

Orientation period January 28–February 2, Monday–Saturday
*Registration .. January 30–February 2, Wednesday–Saturday
Second semester classes begin February 4, Monday
Spring recess begins April 6, Saturday (noon)
Classes resume ... April 15, Monday (morning)
Classes end ... May 25, Saturday
Examination period May 27–June 6, Monday–Thursday
(Examinations will be held on Memorial Day, Thursday, May 30)
Commencement ... June 8, Saturday

SUMMER SESSION, 1963

Registration .. June 20–22, Thursday–Saturday
Summer session classes begin June 24, Monday
Independence Day, a holiday July 4, Monday
Summer session ends August 17, Saturday

This calendar is subject to revision.

* For registration schedules, see pages 192 and 193.
COLLEGE OF ENGINEERING

HARLAN HATCHER, Ph.D., Litt.D., LL.D., President of the University
MARVIN L. NIEHUSS, LL.B., Executive Vice-President of the University
ROGER W. HEYNs, Ph.D., Vice-President for Academic Affairs
STEPHEN S. ATTWOOD, M.S., Dean of the College of Engineering
GLENN V. EDMONSON, M.E., Associate Dean of the College of Engineering
JAMES C. MOUZON, Ph.D., Associate Dean of the College of Engineering
WALTER J. EMMONS, B.S., A.M., Associate Dean Emeritus and Secretary Emeritus of the College of Engineering
ARLEN R. HELSWARTH, M.S., Assistant Dean and Secretary of the College of Engineering
ROBERT H. HOISINGTON, M.S., Assistant to the Dean
IRA K. McADAM, B.S.E. (M.E.), Assistant to the Dean
JOHN G. YOUNG, B.S.E. (M.E.), Assistant to the Dean

General Information

Engineering is the profession that applies the laws of physical science to the efficient and economic conversion of natural resources for the benefit of man.

To design and produce the structures, machines, and products of industry requires the application of scientific and mathematical knowledge, the utilization of natural resources and capital, and the management of men.

The engineer is a practitioner. He brings to bear on each problem all available science and experience or judgment to arrive at the best or most economical solution. He combines knowledge of what to do and how to do it with understanding of why he is doing it and of the significant results that he may expect of his actions. He becomes not only an interpreter of science in terms of material human needs but also a manager of men, money, and materials in satisfying these needs.

An ever-present challenge in engineering work is to search for something better. The successful engineer is never satisfied with the existing design. He uses his ingenuity further to improve quality or performance, to increase efficiency, to decrease cost, or to facilitate production and construction. Often motivated by competition, he strives for some optimum goal that will reward him with new and exciting opportunities for service.

The educational objective of the College of Engineering is to prepare its
students to take positions of leadership commensurate with their abilities in a world where science, engineering, and human relations are of basic importance. The programs are specially planned to prepare them, according to their aptitudes and desires, to become practicing engineers, administrators, investigators, or teachers. The useful knowledge and mental discipline gained from such educational programs, however, are so broad and fundamental as to constitute excellent preparation for other careers.

The undergraduate programs lay a sound foundation of science, sufficiently broad and deep to enable a graduate to enter understandingly into scientific investigations and, at the same time, they provide a background that will make him immediately useful in engineering practice. Many qualified graduates will continue their formal education at the postgraduate level leading to a master's or doctor's degree. One of the opportunities for continued growth and development after college is registration as a professional engineer. In each state of the United States, after a specified length of experience, usually four years, the young engineer may pass qualifying examinations to attain this status.

The student will have the opportunity of associating with teachers who have professional experience, gained through research, consultation, and engineering employment. The University of Michigan believes that engineering experience improves the ability of teachers, both in the classroom and laboratory. Members of the faculty are encouraged to be active in professional practice in order to keep informed on new developments in their respective fields. Facilities for research at the University provide for its teachers not only an atmosphere of research but also convenient opportunities for continuing their professional development, increasing their understanding of the subjects taught, and passing on to their students the benefit of their investigations and firsthand experiences.

Teaching is often at its best when the student and teacher work together in developing new relationships of fundamental scientific nature, or better and more economical ways of applying scientific knowledge to the problems of industry and the public welfare. Graduate and undergraduate students are given an excellent opportunity to take part in such activities in the well-equipped engineering laboratories, at several field locations, and on a variety of engineering research projects.

A good criterion for predicting success is superior grades in high school, particularly in mathematics, science, and English. Other important factors are: an interest and curiosity in the "why" of things, an ability to visualize objects well in three dimensions, sound habits of work and study, a persevering spirit, and good health. A serious mistake is frequently made in regarding manual dexterity or an interest in mechanical things as the only standards for judging abilities important for high achievement in the profession of engineering.

The choice of a career is a most important one and should be based on sound and complete information. If at all possible, a prospective student should discuss his interests and abilities with practicing engineers. In many communities, professional engineering societies provide counseling services. The Admissions Office of the University and the officers and program
advisers of the College of Engineering will gladly be of service in assisting students with career planning.*

Successful completion of undergraduate work leads to a degree of Bachelor of Science in Engineering. The fourteen programs offered by the College of Engineering cover a wide spectrum; they are listed in the Contents. A student should select a program near the completion of his second semester, or of approximately 30 credit hours, as explained under Freshman Program.

ACCREDITATION

The several degree programs have been examined by the Engineers' Council for Professional Development. The following have been accredited: Aeronautical, Chemical, Civil, Electrical, Engineering Mechanics, Industrial, Materials, Mechanical, Metallurgical, Naval Architecture and Marine Engineering, Physics, and Science.

.facilities

The physical facilities of the University for instruction, housing, health care, recreation, physical education, and athletic activities are described in the bulletin General Information, available upon request.

The West Engineering Building (1904) contains the offices of the College; sanitary and structural laboratories of the Civil Engineering Department; solid mechanics, fluid mechanics and dynamics laboratories of the Engineering Mechanics Department; drafting, computing, and design rooms of the Engineering Graphics Department and other departments; 360-foot ship model laboratory with dynamometers used by the Naval Architecture and Marine Engineering Department for studies on ship models; and facilities for industrial engineering demonstrations for courses offered by the Industrial Engineering Department.

Directly across the street, the East Engineering Building (1923) houses well-instrumented machine-tool and machinability laboratories; gaging and measuring laboratory of the Mechanical Engineering Department; foundry and melting laboratory; metalworking, welding, heat-treating, spectrographic (mass, infrared, ultra-violet, etc.), and metallographic laboratories; an X-ray laboratory for radiography and diffraction studies; an electron

*A vocational booklet entitled Engineering — A Creative Profession may be obtained (25 cents per copy) from Engineers' Council for Professional Development, 345 East 47th Street, New York 17, N.Y. It answers many questions commonly experienced by high school students who are considering engineering as a career and describes in particular five general fields of the engineering profession — civil, mining and metallurgical, mechanical, electrical, and chemical.
microscope; chemical, high pressure, plastics, semiconductor, nuclear metallography, and measurements laboratories of the Chemical Engineering Department; and the highway and soil mechanics laboratory of the Civil Engineering Department.

The East Engineering Addition (1947) contains two subsonic wind tunnels, supersonic jet, structures, propulsion, and instrumentation laboratories of the Aeronautical and Astronautical Engineering Department; energy converters and power systems, communications, electronics, feedback controls, computers, space and electron physics research, radiation and propagation, and solid-state devices laboratories of the Electrical Engineering Department; and the meteorological laboratory for the program in meteorology.

The Engineering Library, located on the third floor of the Undergraduate Library, is one of the more than twenty divisional libraries in the University Library system. Its collection of approximately 134,000 volumes covers all fields of engineering. The library subscribes to almost 900 periodicals and maintains large collections of pamphlets, technical reports, and industrial catalogues.

The Engineering Library also maintains two special collections: the Phoenix Library, located in the Phoenix Memorial Laboratory on the North Campus, containing an AEC depository collection of approximately 80,000 reports as well as almost 3,000 volumes on atomic energy; and the Transportation Library, containing more than 122,000 volumes on all phases of the subject of transportation.

Trained staffs are available to assist the student in making effective use of these libraries, as well as of the University Library system as a whole.

The North Campus now houses the following laboratories for instruction and research:

The memorial Mortimer E. Cooley Building (1953) provides space for the University's Office of Research Administration, for an auditorium and conference rooms, and for an electronic systems and circuits laboratory of the Electrical Engineering Department.

Phoenix Memorial Laboratory (1955) and the accompanying Ford Nuclear Reactor (1956) provides facilities for the Nuclear Engineering Department as well as for various University research activities associated with peaceful uses of atomic energy.

The Aeronautical Laboratory (1957) provides hypersonic, supersonic, and low turbulence wind tunnels and propulsion laboratories for studies by the Aeronautical and Astronautical Engineering Department in aerodynamics and propulsion.

The Automotive Laboratory (1957), generously supplied with equipment by the industry of the state, provides laboratories for the Chemical, Electrical, and Mechanical Engineering departments for studies of combustion, mechanical, and electrical systems and for work on engines, chassis, and suspension systems. It also provides space for the Civil and Nuclear Engineering departments.

The Fluids Engineering Laboratory (1958) provides space for all departments in the study of fluid flow problems; for the Mechanical Engineering
Department on heat transfer, thermodynamics, and power generation studies; for the Chemical Engineering Department on process operation and heat transfer problems; and for the Electrical Engineering Department on plasma engineering.

The Fluids Engineering Laboratory contains a memorial plaque to the late Dean George Granger Brown, whose dreams became a reality in the development of the North Campus which will ultimately provide classroom, office, and laboratory facilities for all engineering programs, as well as for research.

Camp Davis is situated in the valley of the Hoback River, twenty miles southeast of the city of Jackson, Wyoming, and seventy-five miles south of Yellowstone National Park. The University of Michigan was the pioneer in the establishment and maintenance of a camp for field work in surveying. The first camp was organized in 1874 under the supervision of the late Professor J. B. Davis. Several sites were occupied in Michigan until 1929 when the University purchased land for the location of the present camp. The elevation of the camp, more than six thousand feet above sea level, the nature of the surrounding area, and the climate combine to make the location nearly ideal for summer instruction in surveying and geology.

Buildings at the Willow Run Airport contain the Lake Hydraulic Laboratory, equipped with a large wave tank and wave-making machine and the instruments required for the study of problems arising from the action of water along shores, and a propulsion laboratory equipped with stands for testing various types of jet and rocket motors.

A new radio telescope, dedicated in 1959 and situated sixteen miles from Ann Arbor, provides opportunities for electrical engineering students interested in the engineering aspects of radio astronomy.

CO-OPERATIVE PROGRAMS WITH INDUSTRY

In certain fields a desirable combination of theory and practice is available to a limited extent through the medium of co-operative courses with industry. To be eligible for acceptance in a co-operative program a student must have completed a substantial part of his program, at least one year in residence, with good grades. He must be acceptable to the company with which he plans to work. He will devote alternate semesters to study at the University and in the employ of the company. He will receive regular compensation for his work and will be subject to the regulations of the company by which he is employed. When accepted in a co-operative program, he is expected to continue in it until he graduates or leaves the University.

Co-operative programs, arranged by several companies and public organizations, have been approved. The College is willing also to consider the proposals of students who find it possible to arrange for alternate
semesters of study and work with any organization offering opportunities for experience which will contribute to their educational progress.

Credit is not granted for work experience, but obviously such experience is desirable in many ways and, when approved and adopted by the College, constitutes a part of a student's degree program and is entered upon his records.

DEARBORN CENTER

The Dearborn Center, an integral part of The University of Michigan, provides the newest and one of the most unusual educational opportunities of the University. It offers a full-fledged co-operative program in electrical, industrial, mechanical engineering, and engineering mathematics. Students seeking admission must have completed the requirements of the first two years for the program elected either on the Ann Arbor campus, at an accredited junior college, or another accredited college or university. A student desiring further information should write: Admissions Office, Dearborn Center, 4901 Evergreen Road, Dearborn, Michigan.

PLACEMENT

The College of Engineering considers the proper placement of its graduates to be very important, since it is recognized that the first years of professional experience are of great significance in developing the full capabilities of the young engineer. For this reason the College provides an engineering placement service for both students and alumni in Room 128H, West Engineering Building. This service provides opportunities for interviewing engineering employers on campus, announcements of position openings received by mail for both graduates and experienced alumni, placement counseling service, and published information on engineering careers and employers.

Meetings for students are also conducted by the placement service at the beginning of each semester on subjects of placement interest, such as the nature and availability of engineering opportunities, techniques for effective interviewing and plant visits, and considerations of engineering practice and professional development.

Many employers of engineers provide opportunities for students, particularly after their third year in college, to work in an engineering environment during summer vacation.
EXTRACURRICULAR OPPORTUNITIES

Students at The University of Michigan enjoy many privileges outside of their classes as indicated in the bulletin General Information. Living a full life is an art, acquired by practice. The Michigan Technic, debating societies, orchestras, bands, glee clubs, sports groups, and other organizations provide excellent opportunities for self-development. They constitute an important part of the University life, and engineering students are encouraged to take an active part in them after the day's work is well done.

The following organizations, many of them related to scholastic or professional interests, are among those available to students of the College of Engineering upon meeting the respective requirements for membership or participation.

Alpha Pi Mu, national industrial engineering honor society
American Institute of Chemical Engineers, student chapter
American Institute of Electrical Engineers, student chapter
American Nuclear Society, student branch
American Rocket Society, student branch
American Society of Civil Engineers, student branch
American Society of Mechanical Engineers, student branch
American Society of Tool and Machine Engineers, student branch
Chi Epsilon, national civil engineering honor fraternity
Engineering Student Council
Eta Kappa Nu, national electrical engineering honor society
Institute of Radio Engineers, student branch
Institute of the Aeronautical Sciences, student branch
Mechanical Engineering Club
Michigan Metallurgical Society
Michigan Technic, a monthly magazine containing articles on technical subjects and other matters of interest to the College, staffed by engineering students
Phi Eta Sigma, national honor society for freshman men
Phi Kappa Phi, national honor society for seniors of all schools and colleges
Pi Tau Sigma, national mechanical engineering honor fraternity
Quarterdeck Society, honor-technical society for students in naval architecture and marine engineering
Sailing Club, an organization for dinghy sailing, iceboating, intercollegiate competition
Scabbard and Blade, national ROTC honor fraternity
Sigma Xi, a national society devoted to the encouragement of research
Society for the Advancement of Management, student branch
Society of Automotive Engineers, student branch
Society of Women Engineers
Tau Beta Pi, national engineering honor society
Triangles, junior honor society
Vulcans, senior honor society
Students interested in exploring other opportunities may review a complete list of campus organizations in the Office of Student Affairs, 2011 Student Activities Building.

SCHOLARSHIPS, FELLOWSHIPS, PRIZES, LOANS, AND EMPLOYMENT

Numerous scholarships, fellowships, and prizes, as well as loan funds, are available to engineering students. A list of these, with the conditions governing them, appears in the special bulletin University Scholarships, Fellowships, and Prizes, which is available upon request to the Office of Student Affairs, 2011 Student Activities Building. March 15 is the deadline for applying for scholarships.

The Committee on Scholarships and Loans of the College has under its jurisdiction those scholarships and aid funds which have been established for the special benefit of undergraduate students in engineering. In general, such assistance is awarded on the basis of high scholastic performance and of demonstrated need. Applications may be addressed directly to this committee at the office of the Dean.

A number of qualified seniors are employed each semester as student assistants for assigned work in the several departments. Qualified graduate students are frequently provided assistance to continue their studies toward master's or doctor's degrees either through fellowships or a variety of employment opportunities in teaching or research.

VETERANS

The University of Michigan welcomes veterans and provides information, guidance, and counseling to those eligible for educational benefits under Public Laws 550, 634, and 894.

All students who are eligible for and elect to receive education and training benefits while attending the University are required to register with the Office of Veterans Affairs, 2226 Student Activities Building, as an integral part of the registration process.

FEES AND EXPENSES

Semester fees, subject to change without notice, are as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan students</td>
<td>$140</td>
</tr>
<tr>
<td>Non-Michigan students</td>
<td>$375</td>
</tr>
</tbody>
</table>
Semester fees are payable prior to registration, at registration, or in installments during the semester. The number and dates of the installments will be specified in advance for each semester. Requirements on continuing enrollment deposit are stated under Admission.

Students are urged to provide themselves with money orders or bank drafts to cover semester fees. For the convenience of students, the Cashier's Office will cash or accept, in payment of semester or other University fees, money orders or bank drafts. Personal checks will not be cashed but will be accepted for the exact amount of fees.

Semester fees are the student's contribution to the cost of class instruction, library services, physical education privileges, membership in the Michigan Union or Michigan League, and medical attention from the University Health Service in accordance with regulations of the Health Service as given in the bulletin General Information.

Foreign students who are not provided with health-hospitalization insurance by their sponsors are required to purchase Student Group Health Insurance. The cost of this coverage (approximately $25) must be paid at the time of registration. This coverage extends for a full twelve months.

Reduced Program Fees. The election of nine hours or fewer is considered a reduced program. Before a student may elect such a program he must obtain permission from the Assistant Dean. Those electing such a reduced program must pay each semester the appropriate fee as set forth in the bulletin General Information, which should be consulted for further information.

Indebtedness to the University. Proper observance of financial obligation is deemed an essential of good conduct and students who are guilty of laxness in this regard to a degree incompatible with the general standards of conduct shall be liable to disciplinary action by proper University authorities. Students shall pay all accounts due the University in accordance with regulations set forth for such payments by the Vice-President in charge of Business and Finance.

Applicants for admission should be at least sixteen years of age and officially recommended graduates of accredited high schools. They must present acceptable evidence of good moral character and satisfy requirements as explained under Health Service Approval. General policies and requirements are stated in the bulletin General Information.

Applications for admission in September should be submitted by the preceding March 1 to receive equal consideration with other applicants. However, qualified students who seek admission after this date will always be given consideration. Since there is no application fee, no money should be sent when making application for admission.
Admission

Continuing Enrollment Deposit. In order to make best use continuously of its facilities and staff, the University needs to know in advance of each semester what enrollments may be expected. The following regulation, effective for September 1962, establishes a continuing enrollment deposit for undergraduate students. (This supersedes the previous requirement of $50 prepayment on the first semester’s tuition.)

Each newly admitted undergraduate student, and each undergraduate student returning after an absence of one or more semesters, is required to make an advance nonrefundable enrollment deposit of $50 in order to hold the admission privilege granted him. Upon completion of enrollment, this nonrefundable deposit will become a continuing enrollment deposit returnable to the enrollee when, upon proper notification from him, he relinquishes his enrollment privilege for subsequent semesters.

Instructions for making the advance payment will be sent to the student by the admissions officer who granted the admission. No student is to send money until instructed to do so by the University.

ADMISSION AS A FRESHMAN

Prospective freshmen are admitted to this College by the Director of Admissions, Student Activities Building, from whom appropriate forms and instructions may be obtained. Applications are invited from high school students who have begun the senior year. Early application will make it possible to inform students of the probability of their admission and to call attention to any requirements still unfilled.

The admission requirements are designed to ensure that each student who enters the College of Engineering has aptitude for the profession of engineering and has intellectual capacity, as well as the necessary motivation and interest, to pursue his college work successfully. The recommendations of principals as to the applicant’s character, scholarship interests and attainments, extracurricular activities, seriousness of purpose, and intellectual promise will be taken into account in determining eligibility for admission. Additional criteria are the subjects studied in high school, scholastic performance, and results of aptitude and achievement tests (covered below).

The Director of Admissions welcomes the opportunity to interview prospective students and recommends that appointments for interviews be arranged in advance. Admission, when granted to a high school student, is contingent upon satisfactory completion of his secondary school program.

Subjects Studied in High School. Admission requirements are stated in units, a unit being defined as a course covering a school year of at least 120 sixty-minute hours of classroom work. Two or three hours of laboratory, drawing, or shop work are counted as equivalent to one hour of recitation.

Applicants for admission as freshmen without entrance deficiency must present a minimum of fifteen units of acceptable high school credit in accordance with the following schedule:
English
At least three units are required ... 3

Mathematics Group
At least three units are required, including algebra, one and one-half units;
geometry (including some solid geometry), one unit; trigonometry, one-
half unit .. 3
(An additional one-half unit of algebra is strongly recommended; a total
of two units of algebra will be required in September 1964.)

Science Group
Two units are required. These should consist of one unit of physics and
one unit of chemistry but botany, zoology, or biology may be offered.... 2

Required Group
Three units are required from a group consisting of foreign languages,
botany, zoology, biology, history, economics, or additional English, mathe-
matics, or chemistry. Not less than one full unit of a foreign language
will be accepted .. 3

The remaining units required to make up the necessary fifteen units may
be elected from among the subjects listed above and any others which
are counted toward graduation by the accredited school.................. 4

Total .. 15

Four units of English, four units of mathematics, one unit of chemistry,
and one unit of physics should be presented whenever feasible since, with
excellent preparation, some acceleration is possible at the University, as
listed under Planning the Student's Program. In addition, these are the
subjects that best give a student a good background for making a well-
advised career decision.

Applicants who do not meet the preceding requirements for admission
without deficiency are advised to consult the Director of Admissions con-
cerning their particular problems. Deficiencies may be removed before the
anticipated date of entrance. When conditions warrant such action, pro-
visional admission may be granted if not more than two units are lacking.

Scholastic Performance. The student's grades—particularly in English,
mathematics, and science—together with his standing in his class, are
considered important in determining eligibility for admission to the study
of engineering. Interest and high achievement in these subjects will also
help the student to decide whether or not he is making the right choice of
a career, and to predict his likelihood of success in the engineering profes-
sion.

Aptitude and Achievement Tests. As part of a study of the potential
value of pre-admission testing, applicants who wish to enroll as freshmen
from June 1961 through February 1963 in the College of Engineering will
be required to take during their senior year in high school the following
College Entrance Examination Board tests before they will be permitted
to enroll.

a) Scholastic Aptitude Test
b) Two achievement tests
 1. English composition
2. One, chosen by the applicant, in any one of these subjects: chemistry, advanced mathematics, or physics

c) English writing sample

An Advanced Placement Program examination in any of the subjects listed under (b) is acceptable as a substitute for the College Board Achievement Test in the subject. While final admission will not be granted before test results are known, the decision on admission will not be made on the basis of the test results.

Advanced Placement. Many high schools throughout the country are offering work of such caliber that an incoming freshman may receive college credit for some subjects provided he has performed satisfactorily on Advanced Placement Program examinations conducted nationally by the College Entrance Examination Board. Such a student may significantly accelerate his education or he may enrich his stay in the College of Engineering by covering more material than does the normal student.

For information and time schedules on the tests referred to above, write to College Entrance Examination Board, Box 592, Princeton, New Jersey.

ADMISSION WITH ADVANCED STANDING

An applicant desiring to transfer from an approved college in the United States with advanced credit should write to the Assistant Dean, College of Engineering, for an application form and instructions. He will be required to arrange for an official transcript of both his secondary school and college work, together with evidence of honorable dismissal from his college. This applies also to students planning to transfer from another college in the University.

For admission without deficiencies, the applicant must satisfy the requirements for admission from high school as stated under Admission as a Freshman. The college transcript must list the subjects studied, the number of credit hours and grades earned in each subject, and the basis upon which grades are assigned. Results of aptitude and achievement tests taken in high school or college are helpful when available.

The history of an applicant must demonstrate that he has the ability to meet the requirements of the College of Engineering for a Bachelor of Science in Engineering degree. An over-all scholastic average satisfactory for good standing at his previous institution may not in itself be sufficient. The grades earned in subjects related to the program elected by the applicant will be taken into account in judging his ability to succeed. As a minimum requirement, his scholastic record as interpreted by the College of Engineering must be such that he would be considered in good standing if his work had been taken at this College.

Program with Basic Courses Taken in Another Institution. Basic pre-engineering courses in English, mathematics, chemistry, and physics are offered by many liberal arts colleges and community or junior colleges.
Generally, such courses are offered as a complete two-year program designed to meet the requirements for study at the professional level in many engineering colleges (e.g., a mathematics sequence requiring four semesters or six quarters). While a student will be considered for admission with any amount of college credit, he should weigh the advantages of completing the required basic program before seeking a transfer.

In many institutions a student is able to satisfy the requirements of physical education, economics, and nontechnical subjects; he may also be able to complete his work in engineering graphics and engineering materials and to start engineering mechanics if his institution offers adequate instruction in these fields.

A student in another college or university who desires to transfer to the College of Engineering should examine carefully the program which he plans to elect at this College and arrange his work accordingly. Questions pertaining to choice of field or program and course elections not answered in this announcement may be addressed to the program adviser in the program he wishes to elect. Other questions of a general nature and those relating to admission requirements should be addressed to the Assistant Dean.

Combined Programs with Other Institutions. The College of Engineering has an agreement with several institutions that provides an opportunity to earn two bachelor's degrees (A.B. and B.S.E.) in approximately five years. The list includes Albion College, Alma College, Calvin College, Central Michigan University, Eastern Michigan University, Emmanuel Missionary College, and Kalamazoo College. Under the plan a student who has been enrolled at one of these institutions for three years and who has completed with a good record a prearranged program, including substantially the work of the first two years of the College of Engineering, may be admitted to the College of Engineering. Under this agreement these institutions, with the exception of Calvin College, accept the first year at the College of Engineering, if the record is satisfactory, in lieu of the senior year and grant the student his Arts degree at the end of his fourth year. Calvin College grants its degree upon completion of the requirements for the degree in engineering at the University.

In cooperation with the College of Literature, Science, and the Arts of the University, combined programs are offered in the fields of chemical and civil engineering. Each of the programs generally requires five years and one summer session for completion and leads to baccalaureate degrees in both the College of Engineering and the College of Literature, Science, and the Arts. Requirements are stated on pages 44 and 49. Consideration is being given by the two Colleges to a proposal to extend this opportunity to students in other programs.

Admitting Graduates of Other Colleges. A graduate of an approved college may be admitted as a candidate for a degree in engineering. The official transcript must certify the date of graduation. If the course completed has covered substantially the equivalent of the required work in the first two or three years of the program he desires to follow and if his record meets the scholastic standards of this College, he may be admitted as an
upperclassman. Upon the satisfactory completion of the prescribed courses, covering at least two semesters' enrollment and a minimum of 30 hours of credit, the student will be recommended for the degree of Bachelor of Science in Engineering.

Adjustment of Advanced Credit. During the period of registration preceding each session, records of studies taken elsewhere are reviewed by representatives of the several teaching departments of the College, or by the Assistant Dean in the case of certain nonengineering subjects. Advanced credit is allowed as appears justified but is granted upon a tentative basis, subject to review and revision if, at any time, it develops that the student is unable to continue successfully with more advanced studies because of inadequate preparation. In general, credit will not be allowed for courses with a D or equivalent low grade.

Advanced credit is adjusted in terms of semester hours completed without recording on the student's official record the grades earned. The student's scholastic average is determined solely by grades earned while he is enrolled in this College.

High school graduates desiring to be excused from taking courses in engineering graphics may be required to pass a comprehensive examination and to submit for approval appropriate drawings completed previous to entrance.

Credit for experience is not granted. When experience in industry closely parallels the content of a required course, however, the student may be excused from taking such course.

If at any time a transfer student has any question regarding the adjustment that has been made of his credit, he should consult the Office of the Assistant Dean.

SPECIAL STUDENTS

Students who are pursuing work in college and who are not candidates for a degree are designated special students. They pay the same fees as regular students.

Persons over twenty-one years of age who wish to pursue particular studies in engineering and who present satisfactory evidence that they are prepared to do good work in the selected courses may apply for admission as special students. The purpose is to enable young men who are beyond the high school age to secure technical training along special lines when they are properly prepared for the work. Two or more years of successful experience as teacher, draftsman, surveyor, technician, or operative in engineering work will be given considerable weight in determining the fitness of the candidate. In general, a good working knowledge of English, algebra, geometry, and trigonometry is required for success in engineering studies.

Qualified college graduates are also admitted as special students and may take those courses for which their preparation is sufficient.
Request for admission as a special student should be addressed to the Assistant Dean. In addition to filling out an application stating age, education, experience, and course of study desired, the applicant should submit evidence of achievement such as reports and drawings, and letters of recommendation. His admission and program of study are subject to the approval of the program adviser of the program elected. To remain eligible for continued enrollment, he is required to meet the same academic standards as degree candidates.

A special student may become a candidate for a degree by fulfilling the regular requirements for admission, as described under Admission.

A student who is a candidate for a degree cannot become a special student without the permission of the faculty.

FOREIGN STUDENTS

Foreign students whose native language is other than English are required to complete basic college subjects (English, mathematics, chemistry, physics, engineering graphics) before applying to the Assistant Dean for admission to the College of Engineering; they must also meet prescribed standards of proficiency in English. For many students these requirements may be met at a minimum of expense by enrolling in a home college for a period of two years. Others may prefer to enroll in a liberal arts or engineering college in the United States for their basic college subjects before seeking transfer; this provides the advantages to the student of becoming accustomed to the educational system of this country and of improving his proficiency in English.

An applicant must submit an official copy in English of the scholastic record of his secondary and college education, showing the grade (or mark) earned in each course together with maximum and passing grades.

Since English is the language of instruction in the United States, a foreign student attends classes with students whose background and education has been in English, and he must maintain the same scholastic standards. In order that he may know that his control of the English language is adequate to carry on his studies without serious handicap, each student whose native language is not English is required to pass an English proficiency examination before he is admitted. This test is prepared by and administered abroad by the English Language Institute of the University. If the applicant is informed that his scholastic record is satisfactory, he will then be instructed to make arrangements for the test with the English Language Institute. The charge for this test taken abroad is $10.00, or its equivalent in the local currency.

For students who need to improve their control of English considerably before beginning regular college studies, the English Language Institute offers the eight-week Intensive Course in English (ELI 100). For further
information, write to the English Language Institute, 3021 North University Building, Ann Arbor, Michigan.

A foreign student granted entry into the United States by virtue of admission to another institution of higher education is expected to complete one academic year of study at that school. When a student wishes to transfer to this College, he is encouraged to submit an application for admission with advanced standing during the final semester or term of enrollment at the institution that issued the initial I-20 Form.

It is generally desirable that a foreign student elect a rather light schedule of studies in the first semester enrolled in the College of Engineering because he is living in an unfamiliar environment and is studying under an educational system which may be new to him. If he fails in his studies and if, in the judgment of his instructors and adviser, his failure is due primarily to his lack of proficiency in the English language, his record will be disregarded and he will be required to pursue additional remedial study of English as may be deemed necessary before resuming his professional studies.

For statement on health insurance requirements for foreign students, see Fees and Expenses.

International Center. A foreign student with financial, immigration, housing, or personal adjustment problems is assured of careful and understanding counseling at the University's International Center. Students also have opportunities to plan and participate in social activities under the sponsorship of the Center.

Counseling

To plan wisely and efficiently his educational program, each student should understand his own aptitudes, abilities, and interests and their relationship with his future. A student with some question in this regard or any other personal problem on which he feels the need of counseling is urged to consult University people who are qualified to help him.

Engineering students who are uncertain regarding procedures, or who have special problems, may seek advice from the Office of the Assistant Dean, 259 West Engineering Building.

Orientation Period. All new students, both freshmen and those transferring from other colleges, are assigned to small groups which are guided through the various steps of the orientation period. These details include testing, a call at the Health Service, preparation of the student’s identification card, the adjustment of transfer credit from other colleges, consultation with counselors, selection of courses, assignment of fees, and attendance at the necessary orientation group meetings.

Freshmen entering in September are encouraged to come to the campus during the summer for a two-day appointment during which time they may
be guided through the same orientation procedures that are offered during the orientation period in September. At the same time, parents are invited to attend a program particularly arranged for them.

Transfer students are instructed by the Office of the Assistant Dean on procedures for appraisal of their records from other colleges, necessary for determining the amount of advanced credit and schedule of courses in the program selected.

Academic Counseling for Freshmen. Freshman counselors, consisting of a group of well-qualified members of the professional teaching staff, are available in a central freshman counseling office for interviews at all times throughout the year.

Each entering freshman meets with a counselor to determine his schedule of courses for his first semester. The necessary counseling takes into account his entrance credits, level of high school achievement, test results, and other information made available to the counselor.

Developing self-reliance and ability to appraise his own performance and intellectual growth is an important part of the student's education. Nevertheless, freshmen are encouraged to consult with counselors at any time during the year concerning their career plans and academic programs and to discuss any matter of interest or concern. Particularly appropriate times to examine progress are at the time of grade reports and near the end of each semester when plans for the future must be made.

Program Adviser. At the beginning of each of the statements on the fourteen undergraduate programs (given later in this Announcement) is the name of a member of the faculty designated as program adviser. This person is available primarily to counsel students above the freshman level on their academic program and other matters such as changes in objectives and choices of subject electives. Program advisers will also assist each student with career planning and other decisions that are necessary to make a proper selection of a particular program. A freshman who needs help in this respect may, in addition to his freshman counselor, consult with the several program advisers. To enjoy a more leisurely discussion, the student should arrange such interviews at a time other than the busy registration week.

Counselor. The counselor with whom a student beyond freshman level meets during registration week is a delegate of the program adviser and assumes responsibility, along with the program adviser, of counseling a student on course changes after the semester is under way.

Other Counseling Services. In addition to academic counseling, the University provides specialized services to meet the various needs of students. A counseling service is available in the Bureau of Psychological Services for those needing more specialized assistance to clarify their educational and vocational objectives. For those students experiencing personal difficulties requiring the assistance of specially qualified counselors, the mental hygiene unit of the Health Service is available. Training in reading speed and comprehension is provided for students especially in need of such assistance. Remedial training in speech is offered by the Speech Clinic. The churches in Ann Arbor provide counselors on reli-
Planning the Student's Program

By offering a variety of programs, the College provides opportunities for meeting the special needs and interests of each individual student. Students are admitted with varying degrees of ability and with differences in high school or other pre-engineering preparation. These variations and the student's choice of an engineering field necessitate considerable flexibility in arranging schedules and programs.

FRESHMAN AND SOPHOMORE PROGRAM

The program for each freshman is planned with the objective of placing him in subjects at a level which will enable him to continue his education without repeating subject matter in which he has already demonstrated adequate proficiency. At the same time, his schedule should not include subjects or levels of work which he is unable to handle successfully. The results of English, mathematics, and chemistry tests will help the student and counselor in planning a program that meets these objectives.

Students are required to remove all admission deficiencies during their first year, unless granted an extension of time. A student who does not present three units in the mathematics group (see Admission as a Freshman) will find it to his advantage to remove the deficiency during the summer preceding the first semester of the freshman year.

Most courses have prerequisites (see Description of Courses). The completion of courses on schedule and with satisfactory grades is essential to the student's progress.

Studies of the First Year. The schedules for the first year will generally include courses from among the following subjects: mathematics, English, engineering graphics, chemistry, physics, and an elective subject in a nontechnical field. For courses common to all degree programs, see Undergraduate Degree Programs—Group A.

Physical education (twice a week through the year without credit in...
hours) is required of all first-year students unless enrolled in one of the three Reserve Officers Training Corps programs.

Opportunities are offered for reserve officer training in air, military, and naval science. Enrollment in one is not required, but those who choose to enroll are excused from taking physical education (see statement concerning conditions of voluntary enrollment under Reserve Officers Training Corps).

If Reserve Officers Training Corps enrollment is elected, hours of credit and the grades earned will be recorded and included in the computation of average grades. The only hours that may be applied to degree requirements are for those advanced courses in the third and fourth years that are permitted in the schedule of requirements of the respective programs.

While many variations in freshman schedules are possible, the following will serve as a guide to each student in planning his own personal program:

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>CREDIT HOURS</th>
<th>SUBJECT</th>
<th>CREDIT HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 111 and 121</td>
<td>4</td>
<td>English 112</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 233</td>
<td>4</td>
<td>Mathematics 234</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 101</td>
<td>3</td>
<td>Physics 145</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry</td>
<td>4 or 5</td>
<td>Eng. Graphics 2 or 3</td>
<td>2 to 7*</td>
</tr>
<tr>
<td>Physical Education or</td>
<td>0</td>
<td>Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ROTC</td>
<td>1 or 3</td>
<td>Other 2 to 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Education or</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROTC</td>
<td>2 or 3</td>
</tr>
</tbody>
</table>

Usual combinations of the subjects listed above will result in a semester schedule with 15 to 18 hours credit. The appropriate number for each student will depend on a number of factors: past scholastic record, placement tests, extracurricular activities, and need for partial self-support through outside work.

Studies of the Second Year. A part of the schedule for the third and fourth semesters consists of the remainder of the Group A courses common to all fourteen programs:

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>CREDIT HOURS</th>
<th>SUBJECT</th>
<th>CREDIT HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 371</td>
<td>4</td>
<td>Mathematics 372</td>
<td>4</td>
</tr>
<tr>
<td>Physics 146</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The remainder will be made up of appropriate courses from the list of professional and advanced subjects and electives (Group B) specified for the program selected by the student.

Choosing One of the Degree Programs. While the entering freshman does not need to select a specific field of engineering, there is some advantage in arriving at a decision during the first semester. He should consult with his freshman counselor, with program advisers, and others for assistance and counsel in planning his career. Near the close of the second semester, he should be ready to select the degree program in which he

Explanations regarding the several possibilities or combinations in this group of subjects appear in the following discussions.
Planning the Student's Program

plans to graduate. From this point on, the degree programs differ in their requirements. The differences are not so pronounced, however, as to make difficult a transfer from one program to another in the second year should the student change his career plans.

Opportunity to Attain Two B.S.E. Degrees. Through careful planning of his course elections throughout his college enrollment, a student with interests in more than one field of engineering may work for two B.S.E. degrees concurrently. Inasmuch as he must satisfy the subject requirements of both programs as specified by the two program advisers, he will find that he can accomplish this in a minimum of time by starting his plans early. (See under Requirements for Graduation, paragraph 5.)

VARIATIONS AND ACCELERATION POSSIBILITIES

The following discussions and outlines will serve as additional guides. They include a number of variations and possibilities for accelerating the progress of qualified students. A number of factors are taken into account, but other variations not covered here may be arranged in consultation with counselors and program advisers according to the needs and qualifications of each student.

English. English 111, Composition, and English 121, Speech, are generally prescribed for the first semester. A student who is considered to be unprepared for English 111 will be assigned to English 110, Preparatory Composition, but may be advanced to English 111 if the instructor finds him able to meet the requirements of that course.

Generally a student will take English 112 during the second semester and prior to electing courses from Group II. If a student met the English 112 requirement during the first semester or has been excused from the course on the basis of proficiency, he may elect a course from Group II during the second semester. Courses in Group I-A are also available to freshmen to satisfy part of the requirements for nontechnical electives. See page 142.

Mathematics. A student who lacks trigonometry preparation, and in addition has an algebra deficiency, must take Mathematics 101 (without credit) preceding Mathematics 233. When only trigonometry preparation is lacking, Mathematics 103 (without credit) must be taken, and it may either accompany or precede Mathematics 233.

Mathematics 233 and 234 shown in the freshman schedule above are followed by Mathematics 371 and 372 (each 4 hours credit). In this series of four courses, each entitled analytic geometry and calculus, calculus is introduced in the first semester and the two classical subjects are presented as an integrated basic course in college mathematics; included in the fourth semester is an introduction to probability and statistics, and to differential equations.

A freshman whose background indicates need of remedial review of
algebra and trigonometry will be required to take Mathematics 245 (no credit) along with Mathematics 233.

Transfer students from other colleges who have completed college algebra, and plane and solid analytic geometry without calculus, normally will be allowed 6 hours credit and will be required to take Math. 352 followed by Math. 364 (each 5 hours credit) to complete the Group A requirements.

Qualified students who have shown high proficiency in mathematics both in high school and in their mathematics tests may be able to complete Group A mathematics requirements by the three-semester series in analytic geometry and calculus, Mathematics 335, 336, and 337 (each 4 hours credit).

Engineering Graphics. The freshman schedule includes a three-hour engineering drawing course in the first semester, Engineering Graphics 101. The several programs vary with respect to additional requirements in engineering graphics. The student should refer to Group B of the departmental program in which he plans to enroll and should consult with his counselor for electing further graphics courses. Graphics 101 is usually followed by Graphics 102, 3 hours credit, or Graphics 104, 2 hours credit.

Chemistry. Chemistry is not required as a science unit for admission, although it is strongly recommended.

A number of factors determine the proper elections in chemistry. These are best covered in outline form as follows:

<table>
<thead>
<tr>
<th>THOSE STUDENTS WHO:</th>
<th>ELECT</th>
<th>CREDIT HOURS</th>
</tr>
</thead>
</table>
| I. Have not had chemistry in high school
 (a) and who definitely plan to take succeeding chemistry courses for programs such as Chemical, Metallurgical, Materials, or Science Engineering;
 (b) others | Chemistry 103 and 106... 8 | 8 |
| II. Have had chemistry in high school but do not qualify for Chemistry 107 or Unified Science
 (a) and who definitely plan to take succeeding chemistry courses for programs such as Chemical, Metallurgical, Materials, or Science Engineering;
 (b) others | Chemistry 104 and 106*... 8 | 8 |
| III. Have shown proficiency in chemistry in high school and on chemistry tests | Chemistry 107 5 |
| IV. Qualify for Unified Science sequence
 (see page 26) | Chemistry 194 and 195... 8 |

A student with a high record in Chemistry 104 may be invited to elect Chemistry 191, 5 hours, instead of Chemistry 105 or 106. This combination provides the student with additional background in chemistry and may permit him to take succeeding courses at a saving of credit hours.
A student planning to elect a program requiring additional chemistry should refer to the schedule of the selected program and consult with the program adviser to determine the most suitable sequence of advanced chemistry.

Physics. Physics is not required as a science unit for admission, although it is strongly recommended.

The freshman schedule includes Physics 145 in the second semester. This course assumes knowledge of calculus and follows Mathematics 233. Transfer students placed in Mathematics 363 may elect Physics 145 concurrently. Physics 145 is followed by Physics 146, making a total of 10 hours.

Those students who qualify for unified science sequence will elect Physics 153 and 154 for a total of 8 hours (see below).

Unified Science sequence. The Unified Science sequence consists of special honors-level courses in introductory college mathematics, physics, and chemistry designed for students with strong backgrounds in science and mathematics who have demonstrated outstanding academic abilities in high school. These courses are taken in the following order:

- **First Semester:** Math. 335 (4 hours) and Physics 153 (4 hours)
- **Second Semester:** Math. 336 (4 hours) and Chem. 194 (4 hours)
- **Third Semester:** Math. 337 (4 hours) and Chem. 195 (4 hours)
- **Fourth Semester:** Physics 154 (4 hours)

An example of this sequence appears in the representative Science Engineering schedule.

These courses emphasize the use of mathematics and laboratory experimentation in developing the fundamental principles and concepts of the physical sciences. In addition, they are highly integrated, with each course building on the material taught in all previous courses. This approach allows each subject to be treated in a more rigorous manner and at a more advanced level than would otherwise be possible, and it provides a superior background in science and mathematics that is especially valuable for students in engineering.

Because of their integrated character, these courses can normally be taken only in the order given above, and it is necessary for students to enroll in them as freshmen and to complete the full two-year sequence to obtain maximum benefit from them. In the College of Literature, Science, and the Arts, the Unified Science courses are part of the Honors Program, and only students qualifying for this program are selected for the Unified Science courses. Students of comparable ability are selected from freshmen entering the College of Engineering. Preliminary selection of students is made during the freshman orientation period by special counselors, based on the students' high school records and their scores on the various examinations. The final decision to elect the sequence is made by the student after consultation with these counselors. No student is required to elect these courses; conversely, students who do not meet the minimum standards for honors-level work at the time of admission will not be admitted to the sequence.

Other Possibilities for the First-Year Schedule. A student who satis-
fies his chemistry requirements with Chemistry 107 during his first semester has an opportunity to select two to seven hours from a number of subjects during his second semester.

Students planning to select the chemical or metallurgical engineering program, may elect Chemical and Metallurgical Engineering 200 in the second semester.

Students planning to select the chemical, metallurgical, materials, or science engineering program, and who have taken Chemistry 107 during their first semester, may elect Chemistry 265 in the second semester.

Acceptable nontechnical subjects may be elected as part of the requirements for nontechnical electives in Group B. For example, see English, page 142.

TRANSFER STUDENTS

Students who transfer from another college enter with a wide variety of previous preparation. After tentative adjustment of advanced credit, usually they will be counseled as follows:

a) A student with less than 25 hours will be assigned to a freshman counselor;

b) A student with 25 hours or more will be referred to the program adviser of the program he elects.

In any case, the student's courses for his first semester will be determined by the evaluation of his past work by the credit adjusters and by his counselor. If he finds at any time during the first two weeks that he has not been properly classified, he should report immediately to his counselor.

Rules and Procedures

HONOR CODE

"Honesty, justice, and courtesy form a moral philosophy which, associated with mutual interest among men, constitutes the foundation of ethics. As the keystone of professional conduct is integrity, the engineer will discharge his duties with fidelity to the public, his employers, and clients, and with fairness and impartiality to all."

In 1916, thirty years before this statement was published by the Engineers' Council for Professional Development and adopted as part of the Canons of Ethics by the national professional engineering societies, the
students of the College of Engineering, with the approval of the faculty, established and adopted the following procedure:

All examinations and written quizzes in the College are held under the Honor Code, the object of which is to create the standard of honor which is essential to a successful engineer and a good citizen. Students are expected to uphold the code or declare their unwillingness to do so after having been duly instructed in all its rules. The instructor does not remain in the room during an examination. The students are placed upon their honor to refrain from all forms of cheating and to reprimand a fellow student who acts suspiciously and, in case he does not take heed, to report him to the Honor Committee. Every student must write and sign the following at the end of his examination paper, if he had not asked for an examination under a proctor:

“I have neither received nor given aid during this examination.”

HEALTH SERVICE APPROVAL

Health Service approval is a prerequisite for final admission. This approval is granted when the report of a physical examination is submitted by a physician of the applicant's choice upon a form provided by the University. It is not intended to establish standards of physical requirements for admission and the nature of the physician's report will not affect the eligibility of the applicant. It is essential, however, that the Health Service be provided with information with respect to the physical condition of each student in the best interest of the student himself and his associates. Vaccination for smallpox and tetanus is strongly urged.

Physical examinations are not required of those applicants who intend to enroll only for the summer session or who are on campus for limited periods.

All new students will report to the Health Service for a chest X-ray as a part of the normal registration procedure.

Students who have been out of residence for health reasons will go to the Health Service for clearance, as will those students who have received notice that special Health Service approval is required for readmission.

Treatment by the Health Service of those students entitled to that service is optional on their part, except when in the opinion of the Director they may be a source of danger to student health. The type and amount of service is in conformity with the rules and regulations of the Health Service.

Foreign students should observe the regulation regarding health insurance under Fees and Expenses.
Each student entering the University from a secondary school is required to complete satisfactorily a one-year course in physical education suited to his health condition, unless exempted by service in the Marching Band (one semester) or official freshman sports. A transfer student with less than sixty hours of advanced credit and without a year of physical education elsewhere will be required to elect one year of physical education at the University unless excused by the Health Committee.

Veterans who have completed a regular tour of duty (minimum of 20 months of service) or its equivalent are excused from the regular requirements of physical education. Students who enroll in a Reserve Officers Training Corps also fulfill the requirements of physical education.

All unexcused absences must be made up. Health Service statements will be accepted only for illness of more than twenty-four hours. All excuses for absences from required physical education classes must be presented to the Waterman Gymnasium office for approval.

1. A credit hour represents as a rule one hour of recitation or lecture a week for one semester, preparation for which should require two hours of study; or in the case of laboratory work, the credit hours are one-half to one-third of the actual hours spent in session, the time required depending on the necessary outside preparation. An explanation of the number of credit hours and time requirement for graduation will be found under Undergraduate Degree Programs and Requirements.

2. The responsibility for approving the proper election of courses by the student is assigned to a counselor (see under Counseling). The counselor should carefully consider the student's preparation, his demonstrated ability, his other activities and desires, and particularly any special recommendations of the Committee on Scholastic Standing. In general, no student is permitted to elect fewer than twelve credit hours, or more than eighteen unless his grade average for the preceding semester is at least 3.0. No credit will be allowed a student for work in any course unless the election of that course is formally entered on his office classification card.

3. The counselor shall see that a student entering this College with a deficiency remove this deficiency, so far as possible, during the first semester of residence and, in all cases, before the beginning of the second year of residence.

4. Credit is not given for a course in which the grade of E is received. Such a course must be repeated if it constitutes a requirement for graduation and unless a substitution is permitted. Courses in which D grades
are earned must be, or may be, repeated in accordance with instructions in the section on Grades and Scholarship.

5. All requests for changes in classification must be made on a printed form which may be secured at the Office of the Recorder, 263 West Engineering Building. A course may be dropped without record during the first eight weeks of the semester with the consent of the counselor after conference with the instructor in the course. After the first eight weeks of the semester, except under extraordinary circumstances and with the consent of the program adviser (or the Assistant Dean for freshmen), a course dropped will carry the grade of E. A student enrolled in an ROTC program must have the approval also of the professor in charge of the unit before he can drop an ROTC course or relieve himself of the obligation he assumed when he enrolled in the program.

6. A student who has been absent from studies any time in the semester for more than a week, because of illness or other emergency, should consult his counselor concerning a revision of his elections. The Assistant Dean's Office may be consulted for recommendation.

7. A student may be required to drop part of his course work at any time he appears to be undertaking too much, or to take additional work if he is not sufficiently employed. A student who supports himself wholly or in part should so inform his counselor and should elect a limited number of courses. It is very difficult for a student supporting himself to carry a full schedule and retain his health. It is even more difficult under such conditions to carry a full schedule and to earn grades sufficiently high to qualify for graduation.

8. Any student who fails to maintain a satisfactory proficiency in English in any of his work in the College of Engineering shall be reported to the Assistant Dean's Office. After consultation with the Department of English and the program adviser, the student may be required to elect further work in English as may be deemed necessary.

9. All regular students are required to complete a group of nontechnical electives in order that they may explore areas other than engineering. The choice of subjects is defined as follows:

 a) English beyond the required courses is acceptable as a nontechnical elective as, also, are courses in the College of Architecture and Design whose major emphasis is on the fine arts.

 b) Nontechnical electives may also be selected from the offerings of any instructional department or unit of this University except the following:

 1. A department already represented by a required course in the student's degree program
 2. The departments of Air, Military, or Naval Science
 3. The College of Engineering (see a, above)
 4. The School of Business Administration
 5. The College of Architecture and Design (see a, above)

10. Substitution of a course for one which is a requirement for graduation must be approved by the student's program adviser of his degree program, and is subject to review of the Curriculum Committee.

11. After admission, a student will not be allowed, without special per-
mission of the faculty, to take quizzes, tests, or examinations in any of the courses given unless he is regularly enrolled in such courses.

12. The faculty reserves the right to withdraw the offering of any elective course not chosen by at least six persons.

13. A student who wishes to pursue his studies in another unit of the University must apply for admission to that unit and be accepted before he will be permitted to elect a program.

14. Unless exempted by prior arrangements with the Assistant Dean, a student who has not been enrolled for a full semester or more should apply for readmission at least two months before the date of desired registration.

EXAMINATIONS

The regular examination at the end of the semester is an essential part of the work of the course. Classes may be examined at any time, with or without notice, on any part of the work.

Any student absent from an examination is required to report to his instructor as soon thereafter as possible. If a student presents a valid excuse for his absence, he may take the examination at such time as may be arranged by the instructor.

GRADES AND SCHOLARSHIP

1. The semester average grade and the over-all average grade are computed for each student at the end of each semester and become part of his permanent record.

2. The average grade is determined on the basis of A (excellent) equals 4 points, B (good) equals 3 points, C (satisfactory) equals 2 points, D (passed) equals 1 point, and E (not passed) equals 0.

3. The average grade is computed by multiplying the number corresponding to the grade in each course by the hours of credit for the course and dividing the sum of these products by the total number of hours represented by all the courses elected. A supplementary grade removing an incomplete shall be used in computing averages when that grade is different from the original semester grade qualifying the report of incomplete.

4. No student who has earned an over-all average grade below 2.0 in the courses elected in this College may be graduated. A student whose over-all average or semester average falls below 2.0 should consult with his freshman counselor or program adviser immediately.

5. A student whose average grade for a semester or summer session is from 1.7 to less than 2.0 shall be automatically placed on the warned list.

6. A student on the warned list who fulfills the requirements of para-
graph 10 and whose average for the following semester or summer session is 2.0 or better shall be restored to good standing, provided his over-all average grade is 2.0 or better; if not, he shall be continued on the warned list.

7. A student on the warned list whose average for the following semester or summer session is from 1.7 to less than 2.0 shall be automatically placed on probation.

8. When the average semester or summer session grade of a student is from 1.1 to less than 1.7, he is automatically placed on probation.

9. A student on probation who fulfills the requirements of paragraph 10 and obtains an average semester or summer session grade of 2.0 or more is automatically removed from probation, provided his over-all average is 2.0 or better; if not, he shall be placed on the warned list.

10. A student on probation or under warning shall not be removed from the probation or warned list unless he elects and carries at least twelve hours of work in a semester or six hours in a summer session.

11. For any one of the following reasons a student will be required to withdraw and will not be permitted to register or classify in the College of Engineering unless authorized by the Committee on Scholastic Standing after a thorough review of his case:

 a) If his average semester or summer session grade falls below 1.1.

 b) If he is on probation and fails to obtain an average grade of 2.0 during the semester or summer session next enrolled.

 c) If he is on the warned list and obtains a semester or summer session average below 1.7.

 d) If he has been on probation during any two semesters and subsequently fails to obtain an average semester or summer session grade of 1.7.

12. In cases of extenuating circumstances, at the discretion of the Committee on Scholastic Standing, students on the warned list or probation may be removed from these lists, and students who have been required to withdraw may be reinstated on probation.

13. A student who is placed on probation or under warning at the end of a semester or summer session must repeat as soon as possible all courses in which he received a grade of D. In exceptional cases this requirement may be waived by the student’s program adviser (for freshmen, the Assistant Dean).

14. Any student may at his own option repeat a course in which he has a D grade, provided he does so during the next two semesters and summer session he is in residence.

15. Except as provided above, a student may not repeat a course which he has already passed. In exceptional cases this rule may be annulled by the student’s program adviser (for freshmen, the Assistant Dean) upon recommendation of the department of instruction concerned.

16. All grades received in legally repeated courses shall be included in computing the student’s average grade.
INCOMPLETES

When a student is prevented by illness or by any other cause beyond his control from taking an examination or from completing any other part of a course, or if credit in a course is temporarily withheld for any reason, the mark I with a qualifying grade may be given to indicate that the course has not been completed. An incomplete course is thus reported IA, IB, IC, ID, or IE. The grade indicates the quality of work done in the part of the course which has been completed.

The qualifying grade is used to compute a temporary grade average. Should an I be incorrectly reported without a qualifying grade, it is considered as a D grade in the temporary average. A permanent average is recorded when a final grade is filed by the instructor.

In order that credit for a course may be given, the required work must be completed before the end of the eighth week of the first semester the student is enrolled after the semester or summer session in which the incomplete grade was recorded, unless an extension is granted by the Assistant Dean. When completed, the final grade will be based upon all of the work done in the course and may or may not be the grade reported for the partly completed course.

CLASS STANDING

Primarily for statistical purposes, students are classified in terms of the number of credit hours achieved as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underclassmen</td>
<td></td>
</tr>
<tr>
<td>Freshman</td>
<td>0 to 29</td>
</tr>
<tr>
<td>Sophomore</td>
<td>30 to 61</td>
</tr>
<tr>
<td>Upperclassmen</td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td>62 to 99</td>
</tr>
<tr>
<td>Senior</td>
<td>100 or more</td>
</tr>
</tbody>
</table>

A transfer student is classified in this manner in terms of the tentative adjustment of credit hours applicable to his elected program. When, in the opinion of his program adviser, there is a reasonable expectancy that a transfer student will graduate within one year, he will be classified as a senior.
EXCUSES FOR ABSENCES

Underclassmen in the College of Engineering must take the initiative in securing from the Assistant Dean excuses for absences from classes, which excuses must be applied for within five days after the return to class. Upperclassmen are not required to obtain excuses for irregularities of attendance from the Assistant Dean but should explain them to their instructors.

WITHDRAWAL FROM THE COLLEGE

A student should not withdraw from class even temporarily without obtaining permission from the Assistant Dean's office. Withdrawal from the college requires the approval of the Assistant Dean's office. A student under 21 may be required to present evidence of parent's approval. A student requesting withdrawal without record after the eighth week of a semester must present evidence of extraordinary circumstances. Honorable dismissal will be granted to those who wish to transfer to another college of the University and to those going elsewhere, provided in either case they are in good standing.

REQUIREMENTS FOR GRADUATION

The graduation requirements of the College of Engineering are expressed in terms of quality and level of attainment rather than in terms of a fixed number of credit hours. In order to secure a degree in the College of Engineering, a student must meet the following requirements:

1. (a) He must demonstrate a basic level of attainment in English, mathematics, engineering graphics, chemistry, and physics by completing courses common to all degree programs as specified under Group A (next section); (b) he must complete the professional and advanced subjects and electives as specified in the program of his choice under Group B (next section).

2. His average grade for all courses taken at the University must be 2.0 or more.

3. He must spend at least one year in residence and complete at the University a minimum of thirty credit hours. Attendance at four summer sessions will be accepted as the equivalent of one year in satisfying the residence requirements.
4. He must be in residence during the term in which he completes the requirements for the degree.

5. To attain a second bachelor's degree in the College of Engineering, a student must complete such subject requirements as are acceptable to the program advisers in both programs and must have completed not less than eight credit hours more than would be required for one degree.

6. All students who complete the requirements for graduation and who are entitled to receive degrees are expected to be present at the Commencement exercises.
Each of the fourteen undergraduate degree programs is composed of two groups of subjects that are identified under the program descriptions as Group A and Group B.

For information on credit for courses taken at other recognized colleges or universities, see Admission with Advanced Standing.

GROUP A SUBJECTS

Group A includes foundation subjects in those fundamental areas of communication, mathematics, and basic sciences that are common to all programs. The courses in the following schedule must be elected and passed or equivalent proficiencies must be demonstrated (see Requirements for Graduation):

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Proficiencies to be demonstrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition and Speech</td>
<td>6</td>
<td>English 111, 112, and 121</td>
</tr>
<tr>
<td>Mathematics</td>
<td>16</td>
<td>Math. 233, 234, 371, and 372 or Math. 335, 336, and 337</td>
</tr>
<tr>
<td>Chemistry</td>
<td>5 or 8</td>
<td>See Chemistry, page 25</td>
</tr>
<tr>
<td>Physics</td>
<td>10</td>
<td>Physics 145 and 146</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Physics 153 and 154</td>
</tr>
</tbody>
</table>

Note: The number of hours elected by a student enrolled in the Unified Science sequence is generally 8 for chemistry and 8 for physics.

A superior student may be allowed appropriate college credit for subjects in which he has qualified through the Advanced Placement Program as covered under Admission as a Freshman. Another possibility for attaining advanced credit is through demonstration of equivalent proficiency in any of the Group A subjects; this is done by observation of the extent of preparation, abilities, high school standing, and test scores. Such savings in credit hours resulting from careful planning of the high school program may serve either to decrease materially the time required for completing the degree requirements or to provide opportunity for special college elections.

Generally, suitable Group A subjects, with the possible exception of Engineering Graphics, are offered in liberal arts colleges and community colleges; under conditions of equivalency and satisfactory performance, they are transferable to any engineering program.
GROUP B SUBJECTS

Group B for each program is composed basically of those professional subjects, advanced subjects, and electives that will prepare the student for the particular field of engineering he selects. Included are courses in advanced mathematics and science, engineering sciences, engineering analysis and design, and elective studies in both technical and nontechnical areas as outlined below.

The requirements for each program, a total of 95 credit hours, are specified under the heading Professional and Advanced Subjects and Electives.

Elective Studies. Each program provides in Group B some freedom for the student to elect subjects that satisfy his particular interests and aptitudes. His counselor or program adviser is in a position to make helpful recommendations.

Subject to the limitations of his program and to the approval of his counselor or program adviser, a student may elect: courses within the field in which he is enrolled and courses for which he is qualified in other engineering departments; appropriate courses in other colleges or schools of the University (e.g., mathematics, the physical, biological, social, and management sciences, the humanities, fine arts, and languages); and advanced courses in air, military, or naval science.

This plan is designed to permit the greatest freedom of choice of subjects consistent with the acquisition of a sound background and a desirable breadth of education. It provides the student an opportunity to explore areas of cultural interest, and to plan in advance for continued or advanced study in a selected field—either in engineering and physical sciences or in other areas such as business administration, patent law, or medical technology.

Definitions of acceptable nontechnical courses may be found under Election of Studies. Anyone wishing to discuss suitable elections in the College of Literature, Science, and the Arts may consult the Junior-Senior Counseling office, 1223 Angell Hall.

CREDIT HOURS AND TIME REQUIREMENT

The total number of credit hours necessary to meet the level of attainment in Groups A and B varies around an average of 138. Usually the time requirement for students completing their programs on schedule will be eight semesters plus a summer session, or nine semesters.

It may be necessary for students who are required to make up deficiencies or who wish to increase their electives to enroll in more than 138 credit hours. Students who are admitted with advanced preparation or with demonstrated ability to achieve at high levels may graduate with less than 138 credit hours, thereby materially accelerating their progress.
AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

Program Adviser: Professor Eisley, 1507 East Engineering

The design of modern aircraft, missiles, and space vehicles involves problems in many branches of engineering and the sciences. The program in aeronautical engineering, therefore, has been arranged to provide the student with a broad and fundamental background. It includes a study of subsonic and supersonic aerodynamics with applications to the design of wings and bodies. A sequence of courses in propulsion treats the theory and design of power plants, with special emphasis on the turboprop, turbojet, ramjet, and rocket motors. The stress analysis and design of elastic bodies is offered in a series of structures courses. Studies in the field of instrumentation include principles of measurement, data transmission, automatic control, and systems analysis.

In the senior year, the engineering sciences described above are brought together in a sequence of courses that present the mechanics of flight. The performance and design of all types of flight vehicles are treated from the dynamics point of view.

All theoretical work is co-ordinated with laboratory periods in which the student acquires a working familiarity with modern experimental equipment.

Electives are provided with which the student may emphasize aerodynamics, propulsion, structures, aeroelasticity, mechanics of flight, or instrumentation as applied to various flight vehicle systems.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Aeronautical Engineering) are required to complete the following program:

A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, Groups II and III</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 104, Introduction to Descriptive Geometry</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Econ. 401, Modern Economics Society</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Math. 404, Differential Equations for Systems Analysis</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 208, Statics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 210, Mechanics of Material</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 212, Laboratory in Mechanics of Material</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Eng. Mech. 343, Dynamics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 411, Structural Mechanics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 335, Thermodynamics I</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Program in Aeronautical Engineering

Elec. Eng. 316, Circuit Analysis and Electronics ... 4
Aero. Eng. 200, General Aeronautics .. 4
Aero. Eng. 310, Flight Structures I .. 3
Aero. Eng. 320, Aerodynamics I ... 4
Aero. Eng. 330, Propulsion I ... 3
Aero. Eng. 410, Flight Structures II .. 4
Aero. Eng. 420, Aerodynamics II ... 4
Aero. Eng. 430, Propulsion II .. 4
Aero. Eng. 441, Mechanics of Flight .. 4
Aero. Eng. 471, Automatic Control Systems .. 4
Aero. Eng. 481, Airplane Design .. 4
Electives in the Humanities and Social Sciences .. 12
Electives* ... 12

Total hours in Group B .. 95

REPRESENTATIVE SCHEDULE

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 233</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 104</td>
<td>4</td>
</tr>
<tr>
<td>English 111</td>
<td>3</td>
</tr>
<tr>
<td>English 121</td>
<td>1</td>
</tr>
<tr>
<td>Eng. Graphics 101</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 234</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 105 or 106</td>
<td>4</td>
</tr>
<tr>
<td>Physics 145</td>
<td>5</td>
</tr>
<tr>
<td>Eng. Mech. 208</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

THIRD SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 371</td>
<td>4</td>
</tr>
<tr>
<td>Physics 146</td>
<td>5</td>
</tr>
<tr>
<td>Aero. Eng. 200</td>
<td>1</td>
</tr>
<tr>
<td>Eng. Mech. 208</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 372</td>
<td>4</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 250</td>
<td>3</td>
</tr>
<tr>
<td>English, Group II</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Mech. 210</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 212</td>
<td>1</td>
</tr>
<tr>
<td>Mech. Eng. 335</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

SUMMER SESSION

<table>
<thead>
<tr>
<th>Course</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 316</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
</tr>
</tbody>
</table>

FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 404</td>
<td>3</td>
</tr>
<tr>
<td>Aero. Eng. 320</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 349</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 411</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aero. Eng. 310</td>
<td>3</td>
</tr>
<tr>
<td>Aero. Eng. 330</td>
<td>3</td>
</tr>
<tr>
<td>Aero. Eng. 420</td>
<td>4</td>
</tr>
<tr>
<td>Aero. Eng. 441</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

* *A maximum of 4 hours of advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.*
CHEMICAL ENGINEERING

Program Adviser: Professor J. J. Martin, 3217 East Engineering

Chemical Engineering is defined by the American Institute of Chemical Engineers as "the application of the principles of the physical sciences, together with the principles of economics and human relations, to fields that pertain to processes and process equipment in which matter is treated to effect a change in state, energy content, or composition."

The work of the chemical engineer encompasses many industries, from the manufacture of chemicals and the refining of petroleum to nuclear energy and space technology. The education of the chemical engineer is based on certain functional operations that are similar regardless of the particular industry or process in which they are employed. Examples of these operations are the flow of fluids, the transfer of heat, the diffusion and transport of matter, and the reactions of chemical compounds.

The program leading to the degree begins with a firm foundation in physics, mathematics, and chemistry, as well as the communication aids of English and engineering graphics. Work in the engineering sciences, such as mechanics, materials, thermodynamics, and electronics, follows and this forms a basis for the professional engineering subjects taken near the end of the program. Only the level of attainment in the various areas is specified, with the route to that level depending upon the preparation and ability of the individual student. Because of this and because of the large proportion of elective courses, a student may readily enter the chemical engineering program from an engineering science program or from a science curriculum taken outside the College of Engineering. Proper selection of electives permits good students to prepare for graduate work.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Chemical Engineering) are required to complete the program listed below. Since elective courses are nearly half the program, the student will be encouraged to plan the program which is best suited to his individual objectives with the advice and approval of the program adviser.
A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES
TO BE DEMONSTRATED (see page 36)
(A typical sequence is shown in the first half of the representative schedule shown below.)

B. PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES

Basic Science

Advanced chemistry to include Chem. 221, 265, 266, and 346, or Chem. 195, 221, 468, and 469, or equivalent 17
An electronic computer course such as Math. 373 1

Chemical and Metallurgical Engineering Science

Introduction to Engineering Calculations, Chem.-Met. Eng. 200 3

Electives*

1. Electives in humanities, social sciences, philosophy, languages, history of art, etc., including at least 4 credit hours of literature 14
(See under English, and the Announcement of the College of L. S. & A. for courses in these fields.)

2. Electives in law, economics, and business administration 6
(Typical economics electives are: Econ. 103, 104, 271, 272, 401, 411, 412, 421, 431, and 475; and business administration electives are: Bus. Ad. 480 and 481, Accounting 271 and 272, Finance 300 and 301, Ind. Relations 300, Marketing 300, and Statistics 300.)

3. Electives in engineering science and analysis, such as mechanics of solids and fluids, network analysis, electronics, systems, energy conversion, electromagnetics, and thermodynamics 14

4. Electives in advanced science and mathematics 10
(Typical electives are: Math. 403, 404, 447, 450, and 452; Chem. 222-223 in place of 221; Chem. 425, 447, 481, and 482; Physics 305, 347, 406, 411, 418, 453, 455, 456, 457, and 463.)

5. Electives in professional chemical engineering subjects, to include laboratory, design, and materials 14
(Typical electives are: Chem.-Met. Eng. 400, 430, 445, 446, 449, 450, 451, 460, 479, 480, 481, 484, and 500-level courses where appropriate.)

Total hours in Group B 95

*Up to three hours of advanced courses (300 and 400 series) in the ROTC programs may be applied where appropriate.
selected from the following groups depending upon the student's desire to major in certain specialized branches of chemical engineering:

Electrochemistry: Chem.-Met. Eng. 510; Chem. 765
Electronic materials: Elec. Eng. 418, 425; Math. 403; Physics 453, 463
Graduate preparation: Math. 450 and language preparation
Instrumentation: Math. 404, 548; Instr. Eng. 510, 570
Molecular: Chem.-Met. Eng. 451, 560; Physics 425, 453
Nuclear: Nuc. Eng. 470, 560
Polymers: Chem.-Met. Eng. 451, 583; Physics 418
Petroleum: Geol. 218; Chem.-Met. Eng. 521

REPRESENTATIVE SCHEDULE

The number in parentheses preceding course name designates typical electives from the group under Electives above.

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>HOURS</th>
<th>SECOND SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 111</td>
<td>3</td>
<td>English 112</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Graphics 101</td>
<td>3</td>
<td>Physics 145</td>
<td>5</td>
</tr>
<tr>
<td>Chem. 107</td>
<td>5</td>
<td>Math. 294</td>
<td>4</td>
</tr>
<tr>
<td>Math. 233</td>
<td>4</td>
<td>Chem. 265</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>English 121</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD SEMESTER</th>
<th></th>
<th>FOURTH SEMESTER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 373</td>
<td>1</td>
<td>Math. 372</td>
<td>4</td>
</tr>
<tr>
<td>Physics 146</td>
<td>5</td>
<td>Chem. 346</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 266</td>
<td>4</td>
<td>(3) Eng. Mech. 310</td>
<td>4</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 200</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIFTH SEMESTER</th>
<th></th>
<th>SIXTH SEMESTER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 221</td>
<td>5</td>
<td>Chem.-Met. Eng. 350</td>
<td>3</td>
</tr>
<tr>
<td>(4) Chem. 403</td>
<td>2</td>
<td>(3) Elec. Eng. 316</td>
<td>4</td>
</tr>
<tr>
<td>(1) English 241</td>
<td>2</td>
<td>(2) Acctg. 271</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>(1) English 461</td>
<td>2</td>
</tr>
</tbody>
</table>

| | | | 18 |
SEVENTH SEMESTER HOURS EIGHTH SEMESTER HOURS
(2) Econ. 401 3 (5) Chem.-Met. Eng. 490 2
(4) Chem. 466 2 (4) Math. 473 3
(1) Russian 4 (1) Russian 4
(4) Math. 404 3 (1) English 436 2

18 17

BIOCHEMICAL ENGINEERING

Adviser: Professor L. L. Kempe

Understanding of biological as well as physical sciences offers challenging opportunities to biochemical engineers in guiding the commercial development of products and processes required for human existence. Current efforts in the exciting and progressive phase of chemical engineering involve work with antibiotics, freeze-dried foods, vaccines, marine plywood, tooth-hardening chemicals, DDT, potable water from the sea, detergents, algae in space vehicles, prosthetic metals, food yeast from industrial wastes, and frozen concentrated orange juice.

COMBINED PROGRAMS

CHEMICAL ENGINEERING AND METALLURGICAL ENGINEERING

Degrees in both chemical and metallurgical engineering may be earned by taking fourteen additional hours. Students in the chemical engineering program who desire to earn a degree in metallurgy as well will take fourteen hours in courses in metallurgical engineering in the field of process, physical, and mechanical metallurgy. Students in the metallurgical program will take six additional hours of chemistry and eight hours of professional chemical engineering courses, to include laboratory and engineering synthesis for a total of fourteen additional hours. These programs should be formulated in consultation with program advisers.

CHEMICAL ENGINEERING AND CHEMISTRY

Advisers: Associate Professor Robert C. Taylor, College of Literature, Science, and the Arts; Professor Schneidewind, College of Engineering

Combined degrees are offered in chemistry (B.S.[Chem.], College of Literature, Science, and the Arts) and in chemical engineering (B.S.E.[Ch.E.], College of Engineering).
This program aims to supply the demands of students and of industry for a strong curriculum in chemistry and in chemical engineering. It is also excellent preparation for further graduate study and for research or development.

During the first four semesters the student is under the complete jurisdiction of the College of Literature, Science, and the Arts. After completing the work of the first four semesters the student is under the complete jurisdiction of the College of Engineering. After satisfactorily completing all the course requirements listed below, the student will be granted the two degrees, B.S. (Chem.) and B.S.E. (Ch.E.).

Candidates for the degrees of Bachelor of Science in Chemistry in the College of Literature, Science, and the Arts and Bachelor of Science in Engineering (Chemical Engineering) in the College of Engineering are required to complete the following program:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMANITIES GROUP</td>
<td></td>
</tr>
<tr>
<td>English 123, 124 (L. S. & A.) and</td>
<td>10</td>
</tr>
<tr>
<td>Groups II and III (Engineering)</td>
<td></td>
</tr>
<tr>
<td>German 101, 102, 231, 232</td>
<td>16</td>
</tr>
<tr>
<td>MATHEMATICS AND SCIENCE GROUP</td>
<td>69 to 74</td>
</tr>
<tr>
<td>Chem. 104, 106 or 191, 222, 223, 346, 421, 447, 468, 469, 481, 482, and elective 3 hours</td>
<td>43 or 44</td>
</tr>
<tr>
<td>Math. 233, 234, 371, 372 (or 335, 336, 337), 373, and 403 or 404</td>
<td>16 to 20</td>
</tr>
<tr>
<td>Physics 145, 146</td>
<td>10</td>
</tr>
<tr>
<td>SOCIAL SCIENCES GROUP</td>
<td>9</td>
</tr>
<tr>
<td>Economics 103, 104</td>
<td>6</td>
</tr>
<tr>
<td>Accounting 271</td>
<td>3</td>
</tr>
<tr>
<td>ENGINEERING COURSES</td>
<td>45</td>
</tr>
<tr>
<td>Eng. Mech. 310, 343</td>
<td>7</td>
</tr>
<tr>
<td>Elec. Eng. 316</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 101</td>
<td>3</td>
</tr>
<tr>
<td>ELECTIVES IN HUMANITIES</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>155 to 160</td>
</tr>
</tbody>
</table>

CIVIL ENGINEERING

Program Adviser: Departmental Chairman

Civil Engineering, originally named to distinguish it from military engineering, has always covered a wide field of engineering practice. Civil engineers plan, design, and supervise the construction of roads, railroads, harbors, buildings, tunnels, waterways, bridges, dams, airfields, canals,
water supply and sewerage systems, and the many other facilities necessary for public works and industrial development. They plan the conservation, utilization, and control of water resources. They operate in the field of surveying and mapping. The nature of the civil engineer's work requires that he not only have a broad basic foundation in the physical sciences, but also that he be alert to the economic and social significance of what he plans and builds. This aspect of his educational foundation has been a strong contributing factor in qualifying him for positions of leadership in both industry and government. In the junior and senior years the curriculum provides an opportunity for elective courses in one of the following areas which exemplify the more important fields of civil engineering:

Construction. The methods and techniques of modern construction; fundamental principles of construction applicable to all types of engineering structures; business and legal principles of contracting as applied in the field of construction.

Geodetic Engineering. Theory and practical application of surveying and surveying techniques; theoretical and applied geodesy, figure of the earth, local and extended control surveys; precise measurements and the adjustment of observations; design and execution of municipal surveys, topographic mapping projects, boundary surveys and land subdivision; industrial applications of surveying techniques; research in fields of instrumentation, computation, mapping and photogrammetry, and the problems of land surveying and route location.

Highway. Location, design, construction, and maintenance of various types of roads and streets, including materials, surveys, plans, specifications, economics, financing, and administration.

Hydraulic. The application of the fundamental principles of hydraulics and hydrology to the development of water power, flood control, drainage, and improvement of rivers and harbors, and other hydraulic structures. Laboratory facilities and instruction are offered for students who wish to engage in research work in hydrology and hydraulics that will lead to advanced degrees.

Railroad. The design, construction, and operation of railroad properties, including metropolitan terminals, statistical analysis of operating data, freight and passenger traffic, economics, financing, administration, and regulation.

Sanitary. The planning, construction, and operation of water works, sewerage and drainage systems, water-purification plants, and works for the treatment and disposal of city sewage and industrial wastes; improvement and regulation of natural waters for purposes of municipal and industrial use.

Soils. Soil mechanics: evaluation of soil properties and environmental conditions in foundations of earth-supported structures; mass stability in excavations and subsurface construction. Soil engineering: use of soil characteristics and properties and soil classification in design and construction of highways, railways, airports, and other surface facilities.

Structural. The theory, design, and construction of structures, such
as bridges, buildings, dams, retaining walls, and reservoirs, involving the use of steel, reinforced concrete, and lumber; the testing and utilization of soils in foundations and subsurface construction.

Traffic. Methods of increasing the efficiency and safety of traffic movement; street and off-street parking; traffic surveys, geometrical design of urban and rural highways, traffic control devices, and other means of regulating and controlling the use of highways.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Civil Engineering) are required to complete the following:

A. **SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED** (see page 36)

B. **PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES**

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civ. Eng. 260, 261, 362, Surveying</td>
<td>10</td>
</tr>
<tr>
<td>English, Groups II and III</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 102, Descriptive Geometry</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 208, Statics</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 212, Laboratory in Mechanics of Materials</td>
<td>1</td>
</tr>
<tr>
<td>Eng. Mech. 343, Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Advanced mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 316, Circuit Analysis and Electronics</td>
<td>4</td>
</tr>
<tr>
<td>Mech. Eng. 333, Thermodynamics and Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Civ. Eng. 312, Theory of Structures</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 313, Elementary Design of Structures</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 350, Concrete Mixtures</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 370, Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 400, Specifications and Contracts</td>
<td>2</td>
</tr>
<tr>
<td>Civ. Eng. 415, Reinforced Concrete</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 420, Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 421, Hydraulics</td>
<td>2</td>
</tr>
<tr>
<td>Civ. Eng. 445, Engineering Properties of Soil</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 480, Water Supply and Treatment</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 481, Sewerage and Sewage Treatment</td>
<td>2</td>
</tr>
<tr>
<td>Geology 218</td>
<td>4</td>
</tr>
<tr>
<td>Economics 401</td>
<td>3</td>
</tr>
<tr>
<td>Humanities and social sciences (see below)</td>
<td>8</td>
</tr>
<tr>
<td>Technical option group* (see below)</td>
<td>10</td>
</tr>
</tbody>
</table>

Total hours in Group B | 95

The electives in humanities and social sciences are to be approved courses in such fields as economics, fine arts, history, law, literature, philosophy, political science, psychology, and sociology.

* A maximum of 3 hours of advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.
The technical option group will be composed of an approved sequence of subjects in some area of civil engineering practice and appropriate electives. As early as possible a student should select his particular area of interest and confer with the adviser in that field regarding the electives required for the completion of his program. Groupings of subjects which meet the technical group requirements are available in the following areas:

1. Construction—Adviser: Professor Alt
2. Geodetic Engineering—Adviser: Professor Berry
3. Highway—Adviser: Associate Professor Cortright
4. Hydraulic—Adviser: Professor Brater
5. Railroad—Adviser: Lecturer Heimbach
6. Sanitary—Adviser: Professor Borchardt
7. Soils—Adviser: Professor Housel
8. Structures—Adviser: Professor Maugh
9. Traffic—Adviser: Professor Kohl

Other combinations of technical courses for special fields of professional interest can be formulated and approved by the program adviser to meet the needs of individual students.

REPRESENTATIVE SCHEDULE

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>HOURS</th>
<th>SECOND SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 233</td>
<td>4</td>
<td>Math. 234</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 104</td>
<td>4</td>
<td>Physics 145</td>
<td>5</td>
</tr>
<tr>
<td>Eng. Graphics 101</td>
<td>3</td>
<td>English 112</td>
<td>2</td>
</tr>
<tr>
<td>English 111</td>
<td>3</td>
<td>Chem. 106</td>
<td>4</td>
</tr>
<tr>
<td>English 121</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD SEMESTER</th>
<th>HOURS</th>
<th>FOURTH SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 371</td>
<td>4</td>
<td>Math. 372</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 102</td>
<td>3</td>
<td>Physics 146</td>
<td>5</td>
</tr>
<tr>
<td>English, Group II</td>
<td>2</td>
<td>Eng. Mech. 210</td>
<td>4</td>
</tr>
<tr>
<td>Civ. Eng. 350</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUMMER SESSION (at Camp Davis)</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civ. Eng. 362</td>
<td>4</td>
</tr>
<tr>
<td>Geol. 218</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Program in Civil Engineering

FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Mech. 324</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 312</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 370</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 429</td>
<td>3</td>
</tr>
<tr>
<td>Advanced mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Elective*</td>
<td>2</td>
</tr>
</tbody>
</table>

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Mech. 343</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 415</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 421</td>
<td>2</td>
</tr>
<tr>
<td>Civ. Eng. 445</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 480</td>
<td>3</td>
</tr>
<tr>
<td>Elective*</td>
<td>3</td>
</tr>
</tbody>
</table>

SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civ. Eng. 313</td>
<td>3</td>
</tr>
<tr>
<td>Civ. Eng. 400</td>
<td>2</td>
</tr>
<tr>
<td>Elec. Eng. 316</td>
<td>4</td>
</tr>
<tr>
<td>Civ. Eng. 481</td>
<td>2</td>
</tr>
<tr>
<td>English, Group III</td>
<td>2</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
</tr>
</tbody>
</table>

EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. Eng. 333</td>
<td>4</td>
</tr>
<tr>
<td>Econ. 401</td>
<td>3</td>
</tr>
<tr>
<td>Technical electives</td>
<td>7</td>
</tr>
<tr>
<td>Elective*</td>
<td>3</td>
</tr>
</tbody>
</table>

COMBINED PROGRAM WITH COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS

Advisers: Associate Professor John A. Dorr, College of Literature, Science, and the Arts; Associate Professor Harris, College of Engineering.

As one of the combined programs referred to on page 17, the College of Engineering and the College of Literature, Science, and the Arts offer a combined program which leads to the degrees of Bachelor of Science in Engineering (Civil Engineering) and Bachelor of Arts.

This program is designed to meet the desires of those who wish to have a broader background in the humanities and liberal arts than can be offered in the regular four-year civil engineering curriculum. Many civil engineers find a need for a humanistic and liberal arts background in their professional work, particularly as they relate their designs and constructions to the economic and social demands of society.

The program includes those courses in languages, literature, fine arts, philosophy, and history which would normally be taken by a student receiving a Bachelor of Arts degree with science as his major. At the same time, his science elections are planned in such a manner as to satisfy the requirements for both degrees. Upon completion of the five-year program, the student will have fulfilled all of the requirements for the Bachelor of Science in Engineering (Civil Engineering) degree and for the Bachelor of Arts degree. The degrees will be granted on completion of the prescribed program, with the understanding that if military science is elected it must be carried in addition to the full requirements of the regular curriculum.

A student electing the five-year combined program will enroll in the

*Electives in the humanities and social sciences group.
College of Literature, Science, and the Arts for the first four semesters. He will then enroll in the College of Engineering for the remaining six semesters and summer session. The complete program is as follows:

<table>
<thead>
<tr>
<th>HOURS</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMANITIES GROUP</td>
<td></td>
</tr>
<tr>
<td>English 123, 124, 269</td>
<td>9</td>
</tr>
<tr>
<td>History of Art 101 or 102</td>
<td>4</td>
</tr>
<tr>
<td>Foreign language or social sciences*</td>
<td>16</td>
</tr>
<tr>
<td>Speech 211</td>
<td>2</td>
</tr>
<tr>
<td>Philosophy 131 or 134, 133</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATHEMATICS AND SCIENCE GROUP</th>
<th>37 (to 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 233, 234, 371, 372 or 335, 336, 337</td>
<td>16 (or 12)</td>
</tr>
<tr>
<td>Advanced mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Chem. 104, 106, or 107 and Psych. 101</td>
<td>8 (or 9)</td>
</tr>
<tr>
<td>Geology 218 (at Camp Davis)</td>
<td>4</td>
</tr>
<tr>
<td>Physics 145, 146</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOCIAL SCIENCES GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting 271</td>
</tr>
<tr>
<td>Economics 103, 104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENGINEERING GROUP</th>
<th>79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Graphics 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 250</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 208, 210, 212, 324, 343</td>
<td>14</td>
</tr>
<tr>
<td>Elec. Eng. 316</td>
<td>4</td>
</tr>
<tr>
<td>Mech. Eng. 252, 333</td>
<td>6</td>
</tr>
<tr>
<td>Civ. Eng. 260, 261, 312, 313, 350, 362 (at Camp Davis), 370, 400, 415, 420, 421, 445, 480, 481, group options</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTIVES IN COLLEGE OF L. S. & A.</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>167 to 172</td>
</tr>
</tbody>
</table>

ELECTRICAL ENGINEERING

Program Adviser: Professor Holland, 2511 East Engineering

The electrical engineer is concerned with electrical energy and its applications. In our homes we have electric refrigerators, electrically controlled heating and air conditioning units, phonographs, radios, and television

*The College of Literature, Science, and the Arts requires that during his fourth semester the student demonstrate, by examination, proficiency in a foreign language. If a student satisfies this requirement prior to the completion of 16 hours of language course work, he will take the remaining hours in foreign language, literature, or the social sciences.
sets. In our communities are electric power plants and power distribution lines, electric streetcars, and communication systems. The modern automobile, and still more the modern passenger or military airplane, carries a bewildering array of electric controls, gages, and instruments without which our present automobile and airplane transportation would be impossible. Radar, electrically controlled gun batteries, guided missiles, robot airplanes, and scores of other such developments are all in the realm of electrical engineering.

The program in electrical engineering emphasizes basic theory and provides the student with a broad and fundamental background. A student may achieve by careful selection of elective courses, however, a measure of specialization even within the basic undergraduate program. Extensive specialization should be reserved for graduate study.

The facilities of the Electrical Engineering Department include the following research laboratories: Digital Computer Engineering, Electron Physics, Cooley Electronics, Plasma Engineering, Radiation, Radio-Astronomy, Feedback Control Systems, Solid-State Devices, and Space Physics Research.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Electrical Engineering) are required to complete the following program:

A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)

B. PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES

<table>
<thead>
<tr>
<th>SUBJECTS</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Graphics 104, Introduction to Descriptive Geometry</td>
<td>2</td>
</tr>
<tr>
<td>Math. 373, Elementary Computer Techniques</td>
<td>1</td>
</tr>
<tr>
<td>Math. 404, Differential Equations for Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>English, Groups II and III</td>
<td>4</td>
</tr>
<tr>
<td>Econ. 103, 104,* Principles of Economics</td>
<td>6</td>
</tr>
<tr>
<td>Eng. Mech. 310, Statics and Stresses</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 343, Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 252, Engineering Materials and Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>Mech. Eng. 333, Thermodynamics and Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 210, Circuits I</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 220, Electromagnetic Field Theory I</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 301, Professional and Economic Applications in Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Elec. Eng. 310, Circuits II</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 330, Electronics and Communications I</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 343, Energy Conversion and Control I</td>
<td>3</td>
</tr>
</tbody>
</table>

*Econ. 401 and Accounting 271, or Econ. 401 and three additional hours of nontechnical electives also will satisfy this requirement.
Program in Electrical Engineering

Elec. Eng. 360, Electrical Measurements .. 3
Elec. Eng. 380, Physical Electronics of Electron Devices I 4
Elec. Eng. 410, Circuits III .. 3
Elec. Eng. 420, Electromagnetic Field Theory II 3
Elec. Eng. 444, Energy Conversion and Control II 4
Elec. Eng. 470, Electrical Design .. 4
Nontechnical electives ... 6
Electives* ... 10

Total hours in Group B ... 95

REPRESENTATIVE SCHEDULE

For studies of the first year, see page 23.

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>THIRD SEMESTER</td>
<td>FOURTH SEMESTER</td>
</tr>
<tr>
<td>Math. 371</td>
<td>Math. 372</td>
</tr>
<tr>
<td>Math. 373</td>
<td>Math. 220</td>
</tr>
<tr>
<td>Physics 146</td>
<td>Chem.-Met. Eng. 250</td>
</tr>
<tr>
<td>Nontechnical elective</td>
<td>Eng. Graphics 104</td>
</tr>
<tr>
<td></td>
<td>Nontechnical elective</td>
</tr>
<tr>
<td>SUMMER SESSION</td>
<td>FIFTH SEMESTER</td>
</tr>
<tr>
<td>Elec. Eng. 310</td>
<td>Elec. Eng. 360</td>
</tr>
<tr>
<td></td>
<td>Eng. Mech. 310</td>
</tr>
<tr>
<td></td>
<td>Math. 404</td>
</tr>
<tr>
<td></td>
<td>Econ. 103</td>
</tr>
<tr>
<td></td>
<td>SIXTH SEMESTER</td>
</tr>
<tr>
<td></td>
<td>Elec. Eng. 301</td>
</tr>
<tr>
<td></td>
<td>Elec. Eng. 330</td>
</tr>
<tr>
<td></td>
<td>Eng. Mech. 343</td>
</tr>
<tr>
<td></td>
<td>Eng. Mech. 343</td>
</tr>
<tr>
<td></td>
<td>English, Group II</td>
</tr>
<tr>
<td></td>
<td>Econ. 104</td>
</tr>
<tr>
<td></td>
<td>SEVENTH SEMESTER</td>
</tr>
<tr>
<td></td>
<td>Elec. Eng. 420</td>
</tr>
<tr>
<td></td>
<td>Elec. Eng. 470</td>
</tr>
<tr>
<td></td>
<td>Eng. Mech. 324</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
</tr>
<tr>
<td></td>
<td>EIGHTH SEMESTER</td>
</tr>
<tr>
<td></td>
<td>Elec. Eng. 420</td>
</tr>
<tr>
<td></td>
<td>Elec. Eng. 470</td>
</tr>
<tr>
<td></td>
<td>English, Group III</td>
</tr>
<tr>
<td></td>
<td>Eng. Mech. 343</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
</tr>
</tbody>
</table>

*A maximum of four hours of advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.
ENGINEERING MECHANICS

Program Adviser: Professor Clark, 201 West Engineering

Rapid technological developments have brought about an increasing need for engineers exceptionally well-trained in the basic sciences. The need is acute throughout industry and government as well as in research institutions and in universities; to help fill this need is the purpose of the program in engineering mechanics. Men with training in the field of engineering mechanics are sought by organizations of all kinds, particularly by those working on modern developments. Most young men in the field are engaged in highly technical work, but many, like other engineers, enter supervision and management.

A student majoring in engineering mechanics gets the same first year program as most other students. He may, in fact, choose this specialty without loss of time up to the beginning of the junior year. The later years are filled mainly by more advanced mechanics and science courses which are designed to acquaint the student with the fundamental principles on which engineering science is based. The required mathematics exceeds that in most curriculums, but the engineering emphasis is always present.

The major areas of study in the bachelor's program are strength of materials, elasticity, plasticity, dynamics, vibrations, fluid mechanics, and thermodynamics. The department has modern laboratories and computer and research facilities. The association of theory with the physical aspects of the work is very close. To gain practice in applying the fundamental principles of engineering, the program contains a group option in some other technical area chosen by the student. In addition there are seven to nine hours of free electives.

Graduate work toward a master's degree is a natural sequence for many mechanics graduates who qualify. It is also open to graduates in other areas of engineering.

Meteorology. Courses in meteorology offered under the sponsorship of the Department of Engineering Mechanics are of general interest to, and may be elected by, qualified students from all branches of engineering and physical science.

The meteorology program leading to a B.S.E. (Meteorology) degree is covered in undergraduate degree programs.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Engineering Mechanics) are required to complete the following program:

A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)
B. Professional and Advanced Subjects and Electives

Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, Group II and III</td>
<td>4</td>
</tr>
<tr>
<td>Math. 404, Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Math. 447, Modern Operational Mathematics, or Math. 476, Vector Analysis</td>
<td>2</td>
</tr>
<tr>
<td>Math. 450, Advanced Mathematics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Civ. Eng. 312, Theory of Structures</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 316, Circuit Analysis and Electronics</td>
<td>4</td>
</tr>
<tr>
<td>Mech. Eng. 335, Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Graphics 102, Descriptive Geometry</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 212, Laboratory in Mechanics of Material, or</td>
<td></td>
</tr>
<tr>
<td>Eng. Mech. 402</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Eng. Mech. 324, Fluid Mechanics, or Eng. Mech. 326</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Eng. Mech. 403, Experimental Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Mech., approved advanced courses</td>
<td>7</td>
</tr>
<tr>
<td>Economics 401</td>
<td>3</td>
</tr>
<tr>
<td>Nontechnical electives</td>
<td>9</td>
</tr>
<tr>
<td>Group options and electives* (see below)</td>
<td>22</td>
</tr>
</tbody>
</table>

Total hours in Group B 95

Every student is required to elect a complete group option of 12 to 14 hours from some other program in the College of Engineering in order that his theoretical training may be correlated with engineering practice in that field. Electives, 8 to 10 hours, selected in conference with the adviser will complete this group of requirements.

Suggested group options are:

- Aerodynamics
- Aeromechanics
- Chemical Engineering
- Dynamics
- Electrical Engineering
- Hydraulics
- Instrumentation
- Machine Design
- Metallurgy
- Meteorology
- Naval Architecture
- Nuclear Engineering
- Physics
- Propulsion
- Structural Engineering
- Others arranged

Details of these can be obtained from the program adviser and options in other areas can be arranged in conference with him.

Representative Schedule

The courses making up the group option are denoted by an asterisk; in this case, the suggested Electrical Engineering option is used as an example.

*A maximum of six hours of advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.
FIRST SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 233</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 103, 104, or 107</td>
<td>4 or 5</td>
</tr>
<tr>
<td>Eng. Graphics 101</td>
<td>3</td>
</tr>
<tr>
<td>English 111</td>
<td>3</td>
</tr>
<tr>
<td>English 121</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15 or 16</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 234</td>
<td>4</td>
</tr>
<tr>
<td>Physics 145</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 105 or Eng. Graphics 102</td>
<td>4 or 3</td>
</tr>
<tr>
<td>English 112</td>
<td>2</td>
</tr>
<tr>
<td>Nontechnical elective</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17 or 16</td>
</tr>
</tbody>
</table>

THIRD SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 371</td>
<td>4</td>
</tr>
<tr>
<td>Physics 146</td>
<td>5</td>
</tr>
<tr>
<td>Eng. Mech. 208 or 218</td>
<td>3</td>
</tr>
<tr>
<td>English, Group II</td>
<td>2</td>
</tr>
<tr>
<td>Nontechnical elective</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 372</td>
<td>4</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 250</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 210</td>
<td>4</td>
</tr>
<tr>
<td>Mech. Eng. 335</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 343</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

SUMMER SESSION

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 404</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 324</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 450</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 210 or 316</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 220*</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 412</td>
<td>3</td>
</tr>
<tr>
<td>Nontechnical elective</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, Group III</td>
<td>2</td>
</tr>
<tr>
<td>Elec. Eng. 310*</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 403</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Mech. 441</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 422</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elec. Eng. 438*</td>
<td>4</td>
</tr>
<tr>
<td>Math. 548</td>
<td>4</td>
</tr>
<tr>
<td>Civ. Eng. 312</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 402</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Mech. 545</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elec. Eng. 445* or 430*</td>
<td>4</td>
</tr>
<tr>
<td>Econ. 401</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 522</td>
<td>3</td>
</tr>
<tr>
<td>Nontechnical elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

INDUSTRIAL ENGINEERING

Program Adviser: Professor Gage, 235 West Engineering

Industrial engineering is concerned with the design, improvement, and installation of integrated systems of men, materials, and equipment; drawing upon specialized knowledge and skill in the mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design; to specify, predict, and evaluate the results to be
obtained from such systems. The industrial engineer is primarily interested in problems which involve economy in the use of money, materials, time, human effort, and energy. The industrial engineer should combine the aptitudes of an engineer, an accountant, and a business executive. About one half of the program of study for the B.S.E. degree consists of basic science and engineering courses, accompanied by studies in the humanities. The rest of the work is in areas such as plant analysis work, compensation, evaluation, operations research, engineering economy, production engineering, probability and statistics, organization and management, including the use of new mathematical techniques for solving industrial problems. As an aid to education the department has well-equipped demonstration facilities, laboratories, and digital and analog computers.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Industrial Engineering) are required to complete the following program:

A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)

B. PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, Groups II and III</td>
<td>4</td>
</tr>
<tr>
<td>Econ. 401</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 310, Statics and Stresses</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 343, Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 270, Metals and Alloys</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Graphics 102, Descriptive Geometry</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 316, Circuit Analysis and Electronics</td>
<td>4</td>
</tr>
<tr>
<td>Mech. Eng. 251, Manufacturing Processes I</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 335, Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 340, Dynamics of Machinery</td>
<td>4</td>
</tr>
<tr>
<td>Mech. Eng. 381, Manufacturing Processes II</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 400, Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 431, Management Control</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 441, Production Control</td>
<td>2</td>
</tr>
<tr>
<td>Ind. Eng. 445, Wage Administration</td>
<td>2</td>
</tr>
<tr>
<td>Ind. Eng. 447, Plant Layout and Materials Handling</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 451, Engineering Economy</td>
<td>2</td>
</tr>
<tr>
<td>Ind. Eng. 463, Work Measurement</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 472, Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 473, Data Processing</td>
<td>3</td>
</tr>
<tr>
<td>Accounting 271</td>
<td>3</td>
</tr>
<tr>
<td>Bus. Ad., General 454, Industrial Cost Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Math. 373, Elementary Computer Techniques</td>
<td>1</td>
</tr>
<tr>
<td>Math. 461, 462, Statistical Methods for Engineers</td>
<td>6</td>
</tr>
</tbody>
</table>
Nontechnical electives .. 7
Technical electives* .. 8

Total hours in Group B .. 95

REPRESENTATIVE SCHEDULE

For studies of the first year, see page 23.

THIRD SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 371</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 102</td>
<td>3</td>
</tr>
<tr>
<td>Physics 146</td>
<td>5</td>
</tr>
<tr>
<td>Accounting 271</td>
<td>3</td>
</tr>
<tr>
<td>English, Group II</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

SUMMER SESSION

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Mech. 310</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 461</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 343</td>
<td>3</td>
</tr>
<tr>
<td>Economics 401</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 251</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 445</td>
<td>2</td>
</tr>
<tr>
<td>Ind. Eng. 473</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 462</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 451</td>
<td>2</td>
</tr>
<tr>
<td>Ind. Eng. 472</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 340</td>
<td>4</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 270</td>
<td>3</td>
</tr>
<tr>
<td>English, Group III</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind. Eng. 441</td>
<td>2</td>
</tr>
<tr>
<td>Ind. Eng. 463</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 362</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 381</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind. Eng. 431</td>
<td>3</td>
</tr>
<tr>
<td>Ind. Eng. 447</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 316</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

MATERIALS ENGINEERING

Program Adviser: Professor Van Vlack, 4215 East Engineering

Materials Engineering and Materials Science have received an extensive

*A maximum of six hours of advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.
emphasize within the past few years. Many of the major engineering schools have followed the University's lead in offering such curricula because, with the rapid development of new and better materials to meet the more exacting demands of industry and government agencies, there has developed a demand for engineers with a sound understanding of materials and the factors that determine their various properties.

Materials engineers must have a sound foundation in physics and chemistry, as well as in engineering and in the materials used and manufactured by industry. They must also understand the utility, properties, and applications of materials such as metals, alloys, cements, plastics, ceramics, and protective coatings. They are particularly valuable in manufacturing plants where it frequently is desirable to replace present materials for the purpose of improving the product, reducing costs, reducing service failures, or because of shortages of specific raw materials. They find opportunities in the development of new products, specification of new materials, or combinations of these for existing products, development of new applications, or in the sales field. This program as designed also offers work in specifications, methods of fabrication, corrosion, high-temperature properties of metals, and stress analysis.

The program of studies offered by the Materials Engineering curriculum also provides a sound basis for advanced research in materials, an area that is fast becoming one of the most important fields of engineering activity. (See Engineering Materials, graduate studies.) This has led to the discovery of new materials and to the improvement of properties of existing materials.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Materials Engineering) are required to complete the following program:

A. **SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED** (see page 36)

B. **PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES**

<table>
<thead>
<tr>
<th>SUBJECTS</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced chemistry, to include such subjects as principles of physical chemistry, organic chemistry, and quantitative analysis*</td>
<td>17 or 18</td>
</tr>
<tr>
<td>Computer Techniques, Math. 373</td>
<td>1</td>
</tr>
<tr>
<td>Electives* (see Note 1)</td>
<td>4 or 5</td>
</tr>
</tbody>
</table>

Engineering Sciences

- Thermodynamics and Rate Processes through Chem.-Met. Eng. 340 or Sci. Eng. 340 (see Note 2) | 15 |

*All electives must receive the advance approval of the program adviser.

Note 1: Differential equations, statistics, computer programming, and 300-level courses in Physics and Chemistry.

Program in Mathematics

Engineering Materials
Chem.-Met. Eng. 450, Ceramic Materials 4

Cognate engineering areas (must include Mechanics of Solids and Electrical Circuits)* ... 14

Engineering Design

Sequence of 2 or more courses which terminate with design courses, such as one of the following: Chem.-Met. Eng. 480, 481, Mech. Eng. 460, or Elec. Eng. 470* ... 6

Elections in the humanities, arts, and social sciences
(At least four credit hours of literature; other elections must include courses in at least two of the following fields: anthropology, classical studies, economics, geography, fine arts, history, journalism, music, languages, political science, philosophy, psychology, sociology, speech)* ... 16

Total hours in Group B .. 95

MATHEMATICS

Program Co-advisers: Mr. Hedstrom, 275 West Engineering; Associate Professor Hadley J. Smith, 359 West Engineering

The mathematics program in the College of Engineering provides the student with an opportunity to extend his knowledge of the language of the scientist and to become more proficient in the application of mathematical reasoning to the formulation and solution of scientific problems in engineering. This program recognizes the ever-increasing demand that the changing physical and economic world imposes on the engineer. It therefore seeks to make available to him the knowledge with which he will be better able to understand and create the complex mathematical models which represent that world.

Many students who are candidates for degrees in engineering programs of other fields elect additional courses and qualify for the award of a degree in mathematics as well (see Requirements for Graduation).

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Mathematics) are required to complete the following program:

*All electives must receive the advance approval of the program adviser,
A. Subjects to be elected or equivalent proficiencies to be demonstrated (see page 36)

B. Professional and Advanced Subjects and Electives

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, Groups II and III</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 104</td>
<td>2</td>
</tr>
<tr>
<td>Math. 375</td>
<td>1</td>
</tr>
<tr>
<td>Mech. Eng. 252, Engineering Materials and Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>Math. 403 or 404, Differential Equations</td>
<td>5</td>
</tr>
<tr>
<td>Math. 450 or 551, Advanced Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Electives in the humanities, social sciences, and philosophy</td>
<td>12</td>
</tr>
<tr>
<td>Eng. Mech. 208 or 218</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 210 or 219</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 324 or 326</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Eng. Mech. 343 or 345</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 315, D.C. and A.C. Apparatus and Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Electives in mathematics, to include work in approved advanced</td>
<td>8</td>
</tr>
<tr>
<td>mathematics having applications to problems in the physical sciences</td>
<td></td>
</tr>
<tr>
<td>Electives in engineering analysis and design</td>
<td>15</td>
</tr>
<tr>
<td>Electives in science and engineering science</td>
<td>11 or 12</td>
</tr>
<tr>
<td>Electives*</td>
<td>9</td>
</tr>
</tbody>
</table>

Total hours in Group B .. 95

The fifteen hours of electives in engineering analysis and design must constitute a sequence of courses which provide an understanding and a useful knowledge in a specific area of engineering and should include at least one course involving laboratory measurements. Suggested areas of engineering in which these electives may be chosen follow:

Aeronautical and Astronautical Engineering
- Aerodynamics: Aero. Eng. 320, 330, 420, 520, or 525
- Aeropropulsion: Aero. Eng. 320, 330, 420, 430
- Flight Structures: Aero. Eng. 310, 410, 441, 510

Civil Engineering
- Structures: Civ. Eng. 312, 313, 415, 514, 512 or 445 or 612 or 614 or 611 or 613

Chemical Engineering

Electrical Engineering
- Electronics: Elec. Eng. 220, 310, 330, 380

Instrumentation Engineering

* A maximum of six hours of advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.
Mechanical Engineering

Automotive Engineering: Mech. Eng. 336, 343, 371, 493 or 496, 463 or 556

Meteorology

Meteor. 408, 440, 441, 462, 541.

Further details of these options and of options in other areas can be obtained from the program advisers.

All electives must be approved by a program adviser.

MECHANICAL ENGINEERING

Program Adviser: Professor Pearson, 230A West Engineering

The mechanical engineer is concerned with the generation and control of power and heat transfer systems, the design and development of a wide variety of products and machinery, and the operations and methods of manufacture. As such he engages in the design, operation, and control of conventional and nuclear power plants. He designs and develops automobiles, engines, turbines, fluid machinery, production machinery, and equipment; heating, ventilating, air conditioning, refrigeration systems and equipment, appliances and other consumer goods. He is responsible for the development, operation, and control of manufacturing processes.

The mechanical engineer is employed in many industries. Automotive, machine tool, and general machinery firms are obvious examples. Less obvious, but no less important, are the aircraft, chemical, electrical, public utilities, and materials industries.

The varied nature of mechanical engineering demands a strong foundation in the basic sciences of mathematics, physics, and chemistry. To this the program adds study in the engineering sciences: thermodynamics and heat transfer, solid and fluid mechanics, electricity and electronics, and materials. These fundamentals are then applied to the design, heat and power, and manufacturing aspects of mechanical engineering through a group of lecture, laboratory, and design courses required of all mechanical engineering students. In addition, as indicated below, the student undertakes study in an area of particular interest to himself through the selection of a sequence of electives.

The particular interest of a mechanical engineering student may make it desirable for him to work toward a second bachelor’s degree in another engineering program, simultaneously with his work toward the degree in mechanical engineering. The requirements governing work toward two degrees are presented under Requirements for Graduation. The mechanical engineering program is readily adaptable to these requirements; interested students should consult the program adviser.
REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Mechanical Engineering) are required to complete the following:

A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)

B. PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES

Electives in humanities, arts, and social sciences... 11
English, Groups II and III ... 4
Econ. 401*, Modern Economic Society .. 3
Chem.-Met. Eng. 270, Metals and Alloys .. 3
Eng. Graphics 104 .. 2
Eng. Mech. 208, Statics .. 3
Eng. Mech. 210, Mechanics of Material ... 4
Eng. Mech. 212, Laboratory in Mechanics of Material 1
Eng. Mech. 343, Dynamics .. 3
Math. 373, Elementary Computer Techniques ... 1
Math. 404, Differential Equations .. 3
Mech. Eng. 251, Manufacturing Processes I ... 3
Mech. Eng. 324, Fundamentals of Fluids Machinery 4
Mech. Eng. 335, Thermodynamics I .. 3
Mech. Eng. 336, Thermodynamics II .. 4
Mech. Eng. 340, Dynamics of Machinery ... 4
Mech. Eng. 371, Heat Transfer I .. 4
Mech. Eng. 381, Manufacturing Processes II .. 3
Elec. Eng. 316, D.C. and A.C. Apparatus and Circuits 4
Elec. Eng. 442, Motor Control and Electronics ... 4
Technical electives† .. 12

Total hours in Group B ... 95

The technical electives requirement permits the student to pursue a sequence of courses reflecting his interest in a particular field such as automotive, air conditioning, design, fluids machinery, heat power (automotive and stationary power plants, including turbines, rockets, nuclear energy, etc.), instrumentation and control, manufacturing, mathematics and science, refrigeration, etc.

The student is encouraged to formulate his own sequence of elective courses, with the advice and subject to the approval of his adviser; example elective sequences for the fields listed above are available in the Mechanical Engineering office, 225 West Engineering Building.

*Econ. 103 and 104 may be substituted for Econ. 401, plus 3 hours of electives in humanities, arts, and social sciences.
†This group of electives should include at least one advanced theory course and one advanced laboratory in mechanical engineering. A maximum of 6 hours of advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.
METALLURGICAL ENGINEERING

Program Adviser: Professor Sinnott, 4020 East Engineering

Metallurgical engineering is concerned with the production, processing, and utilization of metals and alloys. It is a broad field based on the sciences of chemistry and physics and closely related to the many other engineering disciplines.

To obtain the necessary breadth the basic program consists of courses in mathematics, chemistry, physics, the humanities, basic engineering sciences, and, in the fields of process, mechanical and physical metallurgy. Considerable choice is permitted the student in electives in related fields.
of science, engineering, and in specialized areas within the metallurgical area.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Metallurgical Engineering) are required to complete the following program:

A. **SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED** (see page 36)

A typical sequence is shown in the first half of the representative schedule below.

B. **PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES**

Basic Science

<table>
<thead>
<tr>
<th>SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced chemistry, to include such subjects as principles of physical chemistry, organic chemistry, and quantitative analysis</td>
<td>15</td>
</tr>
<tr>
<td>A course in electronic computers such as Math. 373</td>
<td>1</td>
</tr>
</tbody>
</table>

Chemical and Metallurgical Engineering Science

<table>
<thead>
<tr>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to engineering calculations, Chem.-Met. Eng. 200</td>
</tr>
<tr>
<td>Thermodynamics, Chem.-Met. Eng. 230 and 339</td>
</tr>
</tbody>
</table>

Electives

(1) Electives in English (to include 4 credit hours of literature), humanities, social science, philosophy, languages, etc | 14 |
(2) Electives in law, business administration, and economics | 6 |
(3) Electives in engineering science and analysis, to include mechanics and electrical science | 14 |
(4) Electives in advanced science and mathematics | 7 |
(5) Electives in professional metallurgical engineering subjects in the fields of process, mechanical and physical metallurgy | 19 |

Total hours in Group B | 95 |

REPRESENTATIVE SCHEDULE

The number in parentheses preceding course name designates the group under Electives above.

Courses up to four hours of advanced ROTC work will be considered for use as electives where appropriate.
Program in Meteorology

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 111</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Graphics 101</td>
<td>3</td>
</tr>
<tr>
<td>Chem. 107</td>
<td>5</td>
</tr>
<tr>
<td>Math. 233</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 234</td>
<td>4</td>
</tr>
<tr>
<td>English 112, 121</td>
<td>3</td>
</tr>
<tr>
<td>Physics 145</td>
<td>5</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 200</td>
<td>3</td>
</tr>
<tr>
<td>Math. 373</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 146</td>
<td>5</td>
</tr>
<tr>
<td>Math. 371</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 265</td>
<td>4</td>
</tr>
<tr>
<td>(3) Eng. Mech. 310</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOURTH SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 372</td>
<td>4</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 230</td>
<td>5</td>
</tr>
<tr>
<td>Chem. 266</td>
<td>4</td>
</tr>
<tr>
<td>(3) Eng. Mech. 343</td>
<td>3</td>
</tr>
<tr>
<td>(1) English, Group II</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIFTH SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.-Met. Eng. 339</td>
<td>3</td>
</tr>
<tr>
<td>(5) Chem.-Met. Eng. 370</td>
<td>2</td>
</tr>
<tr>
<td>Chem. 220</td>
<td>3</td>
</tr>
<tr>
<td>(4) Math. 104</td>
<td>3</td>
</tr>
<tr>
<td>(5) Elec. Eng. 316</td>
<td>4</td>
</tr>
<tr>
<td>(1) English, Group III</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIXTH SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.-Met. Eng. 350</td>
<td>3</td>
</tr>
<tr>
<td>Chem. 346</td>
<td>4</td>
</tr>
<tr>
<td>(2) Acctg. 271</td>
<td>3</td>
</tr>
<tr>
<td>(3) Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEVENTH SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) Chem.-Met. Eng. 470</td>
<td>4</td>
</tr>
<tr>
<td>(2) Econ. 401</td>
<td>3</td>
</tr>
<tr>
<td>(4) Chemistry or Physics</td>
<td>4</td>
</tr>
<tr>
<td>(1) Humanities</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EIGHTH SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) Chem.-Met. Eng. 489</td>
<td>4</td>
</tr>
<tr>
<td>(1) Humanities</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

METEOROLOGY

Programs and staff for Meteorology are associated with the Department of Engineering Mechanics, 201 West Engineering Building.

Program Adviser: Associate Professor Dingle, 5062 East Engineering

The increasing recognition of the importance of weather and climate in a wide range of engineering problems has created a demand for engineers with a knowledge of meteorology and the ability to apply it to specific problems. There is a need for qualified engineering meteorologists, both men and women, in industry, government, teaching, research, and private practice—a need which gives every evidence of continuing for years to come.

Weather forecasting has traditionally been the main occupation of meteorologists, but modern meteorology encompasses a much wider range of activities and interests. In the planning of a large industrial plant the
engineering meteorologist may be called upon to evaluate the proposed location, plant processes, stack characteristics, etc., in order to avoid or minimize air pollution problems. In the design of towers or suspension bridges, the dynamic wind loadings on the structure for that region and terrain must be studied and estimated. In transportation, whether by land, water, or air, weather is often the determining factor in maintaining efficient operation. Engineering meteorology has important application in many other areas, such as vehicle design; electrical power and natural gas dispatching; air conditioning; nuclear power plant design, location, and operation; cooling tower design; evaluation and prevention of weathering of materials; design of snow clearance heating systems; hydroelectric power development; solar energy use; and analysis of planetary atmospheres.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Meteorology) are required to complete the following program:

A. **SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED** (see page 36)

B. **PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES**

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, Groups II and III</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 102, Descriptive Geometry</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 208, Statics</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 210, Mechanics of Material</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 343, Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Sci. Eng. 330, Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Sci. Eng. 340, Rate Processes</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 215, Network Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 320, Electromagnetics and Energy Conversion</td>
<td>4</td>
</tr>
<tr>
<td>Ind. Eng. 472, Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>Math. 403 or 404, Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 412, Physical Climatology</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 432, Atmospheric Thermodynamics and Radiation</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 440, Principles of Weather Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 441, Laboratory in Weather Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 445, Dynamic Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 452, Physical Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 462, Meteorological Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 470, Applied Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 472, Hydrology and Hydrometeorological Design</td>
<td>1</td>
</tr>
<tr>
<td>Meteor. 475, Meteorological Analysis and Design Criteria</td>
<td>2</td>
</tr>
<tr>
<td>Civ. Eng. 420, Hydrology</td>
<td>3</td>
</tr>
</tbody>
</table>
Electives in mathematics, engineering science, physical science, and biological science* .. 11
Electives in humanities and social sciences .. 13

Total hours in Group B .. 95

With the assistance of his adviser, each student is expected to draw up his own program of studies which may include not only the required courses in meteorology but also one or more sequences of related courses in the humanities and social sciences and in such areas as instrumentation, electronics, statistics, high-speed computation, geophysics, operations analysis, upper atmosphere analysis, water resources, air sanitation, or some other appropriate area.

REPRESENTATIVE SCHEDULE

For studies of the first year, see page 23.

<table>
<thead>
<tr>
<th>THIRD SEMESTER</th>
<th>HOURS</th>
<th>FOURTH SEMESTER</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 371</td>
<td>4</td>
<td>Math. 372</td>
<td>4</td>
</tr>
<tr>
<td>Physics 146</td>
<td>5</td>
<td>Eng. Graphics 102</td>
<td>3</td>
</tr>
<tr>
<td>English, Group II</td>
<td>2</td>
<td>Eng. Mech. 210</td>
<td>4</td>
</tr>
<tr>
<td>Chem.-Met. Eng. 250 or elective</td>
<td>3</td>
<td>Electives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIFTH SEMESTER</th>
<th></th>
<th>SIXTH SEMESTER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sci. Eng. 330</td>
<td>3</td>
<td>Math. 403 or 404</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 432</td>
<td>3</td>
<td>Sci. Eng. 340</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 440</td>
<td>3</td>
<td>Meteor. 445</td>
<td>3</td>
</tr>
<tr>
<td>Meteor. 441</td>
<td>3</td>
<td>Meteor. 452</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>English, Group III</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEVENTH SEMESTER</th>
<th></th>
<th>EIGHTH SEMESTER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteor. 412</td>
<td>3</td>
<td>Meteor. 470</td>
<td>2</td>
</tr>
<tr>
<td>Meteor. 462</td>
<td>3</td>
<td>Meteor. 475</td>
<td>2</td>
</tr>
<tr>
<td>Meteor. 472</td>
<td>1</td>
<td>Electives</td>
<td>11</td>
</tr>
<tr>
<td>Civ. Eng. 420</td>
<td>3</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* A maximum of four hours of advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.
NAVAL ARCHITECTURE AND MARINE ENGINEERING

Program Advisers: Option 1: Professor Benford, 448C West Engineering; Option 2: Professor West, 448A West Engineering; Option 3: Professor Yagle, 448E West Engineering

This program is primarily arranged to train students in the analysis and design of ships and ship machinery. Such topics as the form, strength, stability, cost, and resistance and propulsion characteristics of ship hulls are included. Various types of propelling machinery, such as steam and gas turbines and oil engines as well as conventional boilers and nuclear reactors, are considered. Other items of concern include propellers, economic aspects of ship design, model testing and ship hydrodynamics, vibration, heat transfer, and piping system design and analysis.

The design of a modern ship encompasses many engineering fields; also, graduates of this department are called upon to handle diverse professional responsibilities. It is essential that the program include training in the fundamentals of the physical sciences, mathematics, human relations, and other nonengineering subjects. It is recognized that the undergraduate program cannot, in the time available, adequately treat all areas of importance. Graduate work, therefore, is strongly encouraged.

The undergraduate student elects one of three options, each of which leads to a B.S.E. (Naval Architecture and Marine Engineering) degree; he thus acquires competence in one division of the field while obtaining a good introduction to the rest. These options are:

Option 1. Naval Architecture relates to the design of ship hulls and includes such topics as form, strength, stability, arrangements, resistance, powering, and methods of preliminary design.

Option 2. Marine Engineering places emphasis on the design of various types of propelling and auxiliary machinery and on their relation to the ship as a whole.

Option 3. Maritime Engineering Science stresses preparation for research and provides a stronger grounding in basic engineering science with less emphasis on design than that found in the other options. It will be normal for students in this option to spend an extra semester and receive an additional B.S.E. degree in mathematics or engineering mechanics or to do graduate work toward an M.S.E. degree from this or other departments.

Facilities for research work are provided in the experimental ship model basin. The University also has an operating nuclear reactor and an extensive nuclear engineering graduate program. Thus, upon completion of the requirements for a B.S.E. (Naval Architecture and Marine Engineering), the student may continue with a nuclear engineering graduate program.

The department is in constant touch with the country's ship design offices, shipyards, and ship operators, and it is able to aid its graduates in obtaining positions in the various lines mentioned.
Candidates for the degree of Bachelor of Science in Engineering (Naval Architecture and Marine Engineering) are required to complete the following:

A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)

B. PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Graphics 104</td>
<td>Descriptive Geometry</td>
<td>2</td>
</tr>
<tr>
<td>English, Groups II and III</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Math. 373</td>
<td>Elementary Computer Techniques</td>
<td>1</td>
</tr>
<tr>
<td>Math. 404</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Econ. 401</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 208</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 212</td>
<td>Laboratory in Mechanics of Material</td>
<td>1</td>
</tr>
<tr>
<td>Eng. Mech. 324</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 343</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 335</td>
<td>Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 315</td>
<td>D.C. and A.C. Apparatus and Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Nav. Arch. 200</td>
<td>Introduction to Practice</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 201</td>
<td>Form Calculations I</td>
<td>3</td>
</tr>
<tr>
<td>Nav. Arch. 310</td>
<td>Structural Design I</td>
<td>3</td>
</tr>
<tr>
<td>Nav. Arch. 331</td>
<td>Marine Auxiliary Machinery</td>
<td>3</td>
</tr>
<tr>
<td>Nav. Arch. 420</td>
<td>Resistance, Propulsion, and Propellers</td>
<td>5</td>
</tr>
<tr>
<td>Electives in humanities and social sciences</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Options 1, 2, or 3</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

Total hours in Group B 95

One of the following options should be selected by the student before the second semester of his sophomore year:

1. NAVAL ARCHITECTURE. Adviser: Professor Benford

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. Eng. 337</td>
<td>Mechanical Engineering Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Mech. 411</td>
<td>Structural Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 446</td>
<td>Theory of Vibrations for Naval Architects</td>
<td>3</td>
</tr>
<tr>
<td>Nav. Arch. 300</td>
<td>Form Calculations II</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 330</td>
<td>Marine Propulsion Machinery</td>
<td>3</td>
</tr>
<tr>
<td>Nav. Arch. 400</td>
<td>Shipbuilding Contracts and Cost Estimating</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 410</td>
<td>Stress Analysis of Ship Structures</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 440</td>
<td>Ship Dynamics</td>
<td>2</td>
</tr>
</tbody>
</table>
Program in Naval Architecture and Marine Engineering

Nav. Arch. 470, Ship Design I .. 3
Nav. Arch. 471, Ship Design II 2
Nav. Arch. 472, Structural Design II 2
Free elective .. 2

HOURS: 33

2. MARINE ENGINEERING. Adviser: Associate Professor West

Mech. Eng. 252, Engineering Materials and Manufacturing Processes .. 2
Mech. Eng. 336, Thermodynamics II 4
Mech. Eng. 871, Heat Transfer I 4
Eng. Mech. 446, Theory of Vibrations for Naval Architects ... 3
Elec. Eng. 442, Motor Control and Electronics 4
Nuc. Eng. 400, Elements of Nuclear Engineering 3
Nav. Arch. 430, Design of Marine Power Plants I 2
Nav. Arch. 473, Design of Marine Power Plants II 3
Free elective .. 2

HOURS: 33

3. MARITIME ENGINEERING SCIENCE. Adviser: Associate Professor Yagle

Math. 450, Advanced Mathematics for Engineers 4
Nav. Arch. 330, Marine Propulsion Machinery 3
Eng. Mech. 403, Experimental Mechanics 2

Either of the following two sequences:

or

Eng. Mech. 446, Theory of Vibrations for Naval Architects ... 3

Eighteen hours of technical electives, at least 12 of which are chosen from the following list. Of the 12 hours chosen from the list, a minimum of 4 hours must be in mathematics and naval architecture, respectively.

Ind. Eng. 160, Operations Research 3
Instr. Eng. 510, Applications of the Electronic Differential Analyzer I 3
Instr. Eng. 570, Principles of Automatic Control 3
Instr. Eng. 571, Automatic Control Laboratory 1
Math. 415, Introduction to Matrices 3
Math. 447, Modern Operational Mathematics 2
Program in Naval Architecture and Marine Engineering

Math. 452, Fourier Series and Application ... 3
Math. 473, Introduction to Digital Computers .. 3
Math. 476, Vector Analysis ... 2
Physics 305, Modern Physics ... 2
Aero. Eng. 425, Principles of Aerodynamics ... 3
Mech. Eng. 371, Heat Transfer I ... 4
Nav. Arch. 410, Stress Analysis of Ship Structures 2
Nav. Arch. 450, Design of Marine Power Plants I 2
Nav. Arch. 440, Ship Dynamics ... 2
Nav. Arch. 470, Ship Design I .. 3
Nav. Arch. 650, Nuclear Ship Propulsion ... 3
Nuc. Eng. 400, Elements of Nuclear Engineering .. 3

HOURS

<table>
<thead>
<tr>
<th>Third Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 371</td>
<td>4</td>
</tr>
<tr>
<td>Physics 146</td>
<td>5</td>
</tr>
<tr>
<td>Eng. Mech. 208</td>
<td>3</td>
</tr>
<tr>
<td>Nav. Arch. 200</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Graphics 104</td>
<td>2</td>
</tr>
<tr>
<td>Math. 373</td>
<td>1</td>
</tr>
<tr>
<td>Math. 372</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 210</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 212</td>
<td>1</td>
</tr>
<tr>
<td>Nav. Arch. 201</td>
<td>3</td>
</tr>
<tr>
<td>Chem-Met. Eng. 250</td>
<td>3</td>
</tr>
<tr>
<td>English, Group II</td>
<td>–</td>
</tr>
<tr>
<td>Mech. Eng. 252</td>
<td>2</td>
</tr>
</tbody>
</table>

Fourth Semester

Option

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

SUMMER SESSION

Option

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

Fifth Semester

Option

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Sixth Semester

Option

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

For studies of the first year, see page 23.
<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ. 401</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 442</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 446</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Nav. Arch. 400</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 410</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 420</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Nav. Arch. 430</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 440</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 470</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Technical electives</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

SEVENTH SEMESTER HOURS

<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ. 401</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>English, Group III</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 471</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 472</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nav. Arch. 473</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Nuc. Eng. 400</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Technical electives</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

EIGHTH SEMESTER HOURS

PHYSICS

Program Co-advisers: Professor Wolfe, 4063 Randall; Professor Enns, 357 West Engineering

The rapid advance in physics and its applications in industry have developed increasing demands for applied physicists. This program is intended to meet the demand and usually leads to activities in research, development, or teaching.

Students who are candidates for degrees in engineering programs often elect additional courses in this program and qualify for graduation with a degree in physics as well. See Requirements for Graduation.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Physics) are required to complete the following program:

A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)

B. PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES

English, Groups II and III	4
Modern language	8
Chem. 265	4
Math. 373	1
Math. 403 or 404, Differential Equations	3
Program in Science Engineering

Eng. Mech. 208, Statics .. 3
Eng. Mech. 343, Dynamics, or Physics 401, Intermediate Mechanics 3
Eng. Mech. 324, Fluid Mechanics, or Physics 411, Mechanics of Fluids 3
Elec. Eng. 210, Circuits I 4
Elec. Eng. 310, Circuits II 4
Mech. Eng. 252, Engineering Materials and Manufacturing Processes 2
Physics 405, Intermediate Electricity and Magnetism 3
Physics 406, Heat and Thermodynamics, or a course in engineering thermodynamics .. 3
Physics 453, Atomic and Molecular Structure 3
Physics 455, Electron Tubes .. 4
Group options and electives .. 36

Total hours in Group B ... 95

Group options and electives are to be selected with the advice and consent of the program adviser in accordance with the distribution of hours as listed below. For the group of engineering electives, each student is expected to complete a planned sequence including analysis, design, and systems in some particular field of engineering.

SCIENCE ENGINEERING

Program Adviser: Associate Professor Bigelow, 4211 East Engineering

Recent trends in engineering have been characterized by an increasing emphasis on science, with many revolutionary advances in the scientific bases of the older fields of engineering as well as a spectacular expansion of engineering into many new fields such as nuclear energy, instrumentation, operations and systems analysis, and space technology.

The Science Engineering program is designed to develop engineers having the versatility and flexibility required to meet the needs of our expanding and changing technology by providing a broad basis of training in the fundamental principles with a sound knowledge of the application of the scientific method to engineering design and analysis.

Students completing the Science Engineering program have a scientific

*A maximum of four hours of advanced courses in air, army, or naval science (300 and 400 series) may be used as electives in this group.
background equivalent to that obtained in many programs leading to the master's degree, but they are not required to complete all of the specialized courses required for the bachelor's degree in most traditional engineering programs. In recognition of the increasing contributions of scientists and engineers to the political, social, cultural, and philosophical aspects of modern civilization, the Science Engineering program also affords an opportunity for electing a number of courses in humanities, social sciences, and foreign languages.

REQUIREMENTS

Candidates for the degree of Bachelor of Science in Engineering (Science Engineering) are required to complete the program outlined below. Among the Group A subjects, the Unified Science sequence of accelerated and integrated preparatory courses beginning with Mathematics 335, Physics 158, and Chemistry 194 are strongly recommended for those students who are qualified. The representative schedule below is expressed in terms of this sequence. The many alternative sequences of preparatory courses with the same terminal level of accomplishment are acceptable, of course, but they add hours to the preparatory portion of the illustrated schedule. The mathematics sequence beginning with Mathematics 233 adds 4 hours; the physics sequence beginning with Physics 145 adds 2 hours; the chemistry sequence beginning with Chemistry 107 adds 1 hour; and the chemistry sequence beginning with Chemistry 103 adds 4 hours.

For the engineering science courses of the Group B subjects, the special sequences of courses beginning with Engineering Mechanics 218, Electrical Engineering 215, and Science Engineering 330 are normally recommended; however, certain equivalent courses may be substituted for these, with the approval of the program adviser, when it is advantageous in developing a program to meet the special interests of individual students.

A unique feature of the science engineering program is the unusual amount of freedom allowed in the selection of advanced engineering courses. The engineering electives, together with the unspecified electives and the electives in advanced mathematics, chemistry, physics, and thermodynamics, may be selected so as to provide a high degree of competence in one of the traditional fields of engineering; or they may be used to combine courses from several fields to obtain training in some special phase of engineering that is common to several of the traditional fields of engineering. This elective freedom frequently makes it possible for a student to obtain two bachelor's degrees in engineering with only a little extra course work or to prepare for graduate work in almost any of the professional engineering fields. Science Engineering counselors work closely with the students and with counselors in other engineering programs to select courses best suited for such special purposes.

A. SUBJECTS TO BE ELECTED OR EQUIVALENT PROFICIENCIES TO BE DEMONSTRATED (see page 36)
B. PROFESSIONAL AND ADVANCED SUBJECTS AND ELECTIVES

Engineering science, including engineering materials, statics, strength of materials, dynamics, fluid mechanics, thermodynamics, electromagnetics and energy conversion, network analysis, electronics and systems, rate processes ... 36
Electives in engineering, including at least one elective in design or analysis and at least one elective involving engineering laboratory .. 17
Electives in mathematics, physics, chemistry, or thermodynamics, including Chemistry 195 or 265 and at least 3 hours of advanced mathematics ... 16
Electives in English, fine arts, philosophy, and literature (minimum 4 credit hours) .. 6–10
Electives in anthropology, economics, geography, history, journalism, political science, psychology, or sociology 6–14
Electives in foreign language 0–8
Electives* .. 6–10

Total hours in Group B ... 95

REPRESENTATIVE SCHEDULE

(In terms of accelerated sequences)

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 335</td>
<td>4</td>
</tr>
<tr>
<td>Physics 153</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Graphics 101</td>
<td>3</td>
</tr>
<tr>
<td>English 111</td>
<td>3</td>
</tr>
<tr>
<td>English 121</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 336</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 194</td>
<td>4</td>
</tr>
<tr>
<td>English 112</td>
<td>2</td>
</tr>
<tr>
<td>Electives (humanities, soc. sci., language)</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

THIRD SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 337</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 195</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 218</td>
<td>3</td>
</tr>
<tr>
<td>Electives (humanities, soc. sci.)</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective (math.)</td>
<td>3</td>
</tr>
<tr>
<td>Phys. 154</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 219</td>
<td>4</td>
</tr>
<tr>
<td>Elect. Eng. 215</td>
<td>3</td>
</tr>
<tr>
<td>Electives (humanities, soc. sci.)</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sci. Eng. 330</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 320</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 345</td>
<td>3</td>
</tr>
<tr>
<td>Elective (math., chem., physics)</td>
<td>4</td>
</tr>
<tr>
<td>Elective (humanities, soc. sci.)</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sci. Eng. 340</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 337</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 326</td>
<td>4</td>
</tr>
<tr>
<td>Elective (math., chem., physics)</td>
<td>2</td>
</tr>
<tr>
<td>Elective (engineering)</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

*Advanced air, army, or naval science (300 and 400 series) may be used as electives in this group.
Special Fields

New developments in science and in the art of engineering are reflected in new courses offered by an alert faculty. Such courses may be elected under the system of group options and electives in the undergraduate program or in a program of advanced work in the Graduate School. Many of these special fields have been specifically mentioned under the various degree programs. Information regarding these fields and others in which the student may be interested will be made available upon request. Program advisers will assist any student in preparing a program to fit his particular desires.

COMMUNICATION SCIENCES

The program of communication sciences is concerned with the communication and processing of information by natural and artificial systems. Two general areas of study are particularly important in the communication sciences: (1) the technical study of natural and artificial languages as modes of communication; (2) the investigation of systems found in nature and of mathematical automata as information processing systems. The investigation of information processing systems is directed toward the analysis, synthesis, and coding of information in such devices as digital computers, speech recognizers, and automata.

A bachelor's degree is required before the student may specialize in communication sciences. Areas of concentration which are valuable as a background for graduate work in communication sciences are: mathematics, electrical engineering, physics, biology, and psychology. Students who are preparing for graduate study in the communication sciences should consult with the chairman of the Advisory Committee, Professor Gordon E. Peterson, 2515 East Engineering or 180 Frieze Building.

Undergraduate students may begin specialization in the communication sciences by electing one or more of the following courses: Com. Sci. 400 and
INSTRUMENTATION ENGINEERING

Instrumentation engineering is a program covering the dynamical aspects of systems engineering. This involves the principles and application of areas including measurement, information theory, data transmission, computers, feedback control, and random processes as they relate and are basic to systems in all fields of technology and science.

The best preparation can be achieved by completing the requirements for one of the undergraduate B.S.E. degree programs, the science engineering program being the most appropriate, followed by special work in instrumentation at the graduate level. See under M.S.E. degree programs and course listings.

Undergraduate students may start these special studies by electing one or more of the following courses: Instr. Eng. 570, Principles of Automatic Control (3); Instr. Eng. 571, Automatic Control Laboratory (l); Instr. Eng. 530, Probability in Instrumentation (2); Elec. Eng. 418, Networks and Electron Tube Circuits (4) or Elec. Eng. 438, Electronics and Radio Communication (4); Math. 548, Operational Methods for Systems Analysis (4).

NUCLEAR ENGINEERING

Nuclear engineering is concerned with the release, control, and utilization of energy from nuclear sources. These sources have new and unusual properties and present special problems to the engineer. At present the field requires men capable of developing new ideas and new concepts. More emphasis is therefore placed on advanced training in fundamental areas than on existing technology. The degree programs in nuclear engineering are offered only at the graduate level. Undergraduates interested in electing courses in the department should consult Professor Kikuchi or Assistant Professor Gyorey, 300 Automotive Engineering Laboratory.

Students who wish to acquire a background for the use of radiation in science and industry may elect Nuc. Eng. 470, 550, and 560. Students desiring a one-semester course in nuclear engineering should elect Nuc. Eng. 400.

Students planning to enter the nuclear engineering program should take, as undergraduates, courses in atomic and nuclear physics (Nuc. Eng. 470 or equivalent), advanced calculus (Math. 450 or 551 or equivalent), and electronics (Elec. Eng. 337 or Physics 455 or equivalent). Those
entering without these prerequisites will be required to make up the
deficiencies in addition to the thirty hours required for the master's degree.
Courses in heat transfer (Mech. Eng. 371), electromagnetic field theory
(Elec. Eng. 420), and use of digital computers (Math. 473) are also
recommended as desirable preparation.

RESERVE OFFICERS TRAINING CORPS

The objective of the ROTC is to train well-qualified officers for the
armed forces.

Each entering male freshman enrolled in The University of Michigan
has the opportunity to enroll in the Army ROTC, the Navy ROTC, or
the Air Force ROTC if he meets the specific requirements of the respec-
tive unit. Enrollment is voluntary but the University and the Armed
Forces expect each student who enrolls to meet the full obligations ac-
cepted.

Each ROTC unit offers an eight-semester sequence of courses which
may be carried as electives with the student's degree program in order to
earn a Reserve or Regular commission along with the baccalaureate degree.

The student agrees to add to his own degree requirements the completion
of the ROTC program in which he is enrolled as follows:

<table>
<thead>
<tr>
<th>Unit</th>
<th>ROTC Program in which student is enrolled</th>
<th>Student agrees to add to his degree requirements for graduation</th>
<th>Credit allowed toward degree requirement as electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army or Air Force</td>
<td>2-year basic</td>
<td>Completion of 2 years—(Fr.-Soph.)*</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>2-year advanced (upon application and selection)</td>
<td>Completion of 2 years—(Jr.-Sr.)</td>
<td>See degree requirements of professional program elected</td>
</tr>
<tr>
<td>Navy</td>
<td>NROTC Contract and Regular</td>
<td>Completion of 4 years†</td>
<td>See degree requirements of professional program elected</td>
</tr>
</tbody>
</table>

*The University and the Professor of Military Science or the Professor of Air Science may jointly cancel this requirement whenever a valid reason for discontinuing the freshman-sophomore program is presented; Army ROTC cadets are normally expected to complete the basic program.
†Contract students may be permitted by the Professor of Naval Science to withdraw for valid reasons during the first two years.
The student completing four years of ROTC agrees to accept his commission as a condition of receiving his diploma.

Since there are minor variations among the three services, interested engineering students should study the pertinent information in this announcement, and if any questions arise consult the Professor of Military Science for further information about the Army; the Professor of Naval Science about the Navy; and the Professor of Air Science about the Air Force.

On permission to drop, see paragraph 5 under Election of Studies.

AIR SCIENCE

Professor Durner; Assistant Professors Archibald, Finley, and O'Neill; Instructors Buist, Keene, and Larsen. Department office, North Hall.

General Information. The Department of Air Science offers four years of generalized Air Science studies in combination with non-ROTC courses all designed to prepare selected male officer candidates for commissioning in the United States Air Force. The sequence of courses provides understanding of national and international defense requirements; of the global mission and organization of the USAF; and of officer leadership and management responsibilities and skills. To comply with federal law concerning total hours of contact time, freshman and sophomore cadets in the basic program spend three class periods per academic week in Air Science or approved non-ROTC courses; juniors and seniors in the advanced program spend five hours per week in Air Science or approved non-ROTC courses; advanced cadets attend a twenty-eight-day summer training period at an active Air Force base, normally following the junior year. Enrollment in basic program courses is the same as for all University courses, with no commitment made to seek a commission; however, the student must be interviewed by the chairman of the Department of Air Science before registering for his first Air Science course. In the spring of the sophomore year a cadet may apply for the advanced program to earn a commission. Upper-class cadets may seek a commission in one of the following categories: pilot or navigator training (regardless of college academic major), engineering and science specialties, and other specialties. Graduates who apply and are selected for pilot or navigator training will serve three and one-half to four years on active duty following completion of flying training. Graduates entering nonflying positions serve on active duty for four years. Active service may be delayed in order to study for an advanced degree.

Flying Activities. Senior year cadets qualified and desiring active service pilot training receive in a Flight Instruction Program approximately thirty-six hours of dual/solo light plane instruction under a licensed civilian instructor, having opportunity also to earn a private pilot's license. They receive thirty-five hours of "ground school" work (see A.S. 401 listing below). When possible, local area orientation flights and overnight flights to active Air Force bases are made to familiarize cadets with Air Force life.
Requirements For Enrollment. A male student enrolled in the University who is a physically qualified citizen of the United States (or will become a citizen during his fourth semester) who can complete eight semesters of air science work prior to receiving his degree and who will meet all requirements for commissioning prior to his twenty-eighth birthday may enroll in the basic program. Students with prior military service may enroll above the entry level based upon evaluation of such military service by the Professor of Air Science. Woman students may apply for enrollment in a noncommission-seeking status.

Transfer Students. Students who have completed one or more years of ROTC studies (Air Force, Army, or Navy) at any college-level institution or who have sufficient prior military service may enter the AFROTC program as late as the first semester of the junior year. They should contact the Professor of Air Science prior to registration week, if possible, in order that a tentative determination of eligibility may be made and to allow time for the Department of Air Science to procure records from the ROTC department with which previously enrolled.

Alternates for ROTC Courses. University courses have been substituted for approximately 45 per cent of the basic and advanced programs. In the fall of the freshman year and in the spring of the sophomore year students may designate from their own degree program courses one course (in mathematics, physical or natural or social sciences, foreign language, or humanities) as alternate for the academic portion of the Air Science course. Advanced cadets take non-ROTC courses in speech, political geography, and international relations along with reduced time in Air Science classes, as specified in the respective listings of courses A.S. 301, 401, and 402 below.

Monetary Allowances are paid to advanced cadets (3rd and 4th Air Science years) totaling approximately $275 per year plus approximately $75 and a travel allowance for the summer training period.

Uniforms and Books are furnished to all Air Science cadets. Each advanced program cadet is measured for a fitted uniform which becomes a gift from the University on the date of his commissioning. A uniform deposit of $20 is required; it is refunded when Air Science studies are terminated.

Commissions in the Regular Air Force. Any AFROTC cadet designated a Distinguished AFROTC Cadet and who maintains his standing and becomes a Distinguished AFROTC Graduate may be commissioned in the Regular Air Force upon entering active service.

Selective Service Deferment. Basic program cadets are entitled to deferment after the first semester, based on enrollment in ROTC. Deferment of a cadet may be continued as late as one year beyond the completion of the fourth year of Air Science studies provided the cadet is still working to earn his degree and commission.

Extracurricular Activities. The Department of Air Science sponsors a rifle team, drill team, and cadet work in Air Explorer training; it also co-sponsors a triservice ROTC band. Selected cadets may become members of the local chapter of the national Arnold Air Society. Qualified cadets may participate in triservice honorary organizations.
COURSES OFFERED IN AIR SCIENCE

To be accompanied by approved non-ROTC course. Laboratory and seminar, 1 hour a week.

Elements and potentials of air power; air vehicles and principles of flight; military instruments of national security; professional opportunities in the USAF. Seminar, 2 hours a week; laboratory, 1 hour a week.

201. Fundamentals of Aerospace Weapons. Prerequisite: A.S. 101, 102, or permission of department. I. (2).
Introduction to aerospace missiles and aircraft, their propulsion systems; aerospace defense; modern targeting and electronic warfare; high explosive, nuclear, chemical, and biological warheads; and aerospace strategic and tactical operations with contemporary Air Force weapon systems. Also includes military implications of present and future space operations. Seminar, 2 hours a week; laboratory, 1 hour a week.

202. Foundations of Leadership. Prerequisite: A.S. 101, 102, or permission of department. (1).
To be accompanied by approved non-ROTC course. Laboratory and seminar, 1 hour a week.

301. Air Force Officer Development. Prerequisite: Completion of 100 and 200 series courses in Air Science (or Military or Naval Science equivalent) and selection by department chairman. (2).
Introduction to advanced AFROTC; Air Force command and staff; military organization and channels; problem solving; briefing, instructing, and writing. Seminar, 2 hours a week; laboratory, 1 hour a week; accompanied by English 241.

302. Air Force Officer Development. Prerequisite: A.S. 301 or permission of department. (3).
Leadership principles and techniques; military justice system; preparation for summer training. Seminar, 4 hours a week; laboratory, 1 hour a week.

401. Global Relations. Prerequisite: A.S. 301, 302. I. (2).
Weather, navigation. Seminar, 2 hours a week; laboratory, 1 hour a week; accompanied by Geography 435. This academic work constitutes 30 or more of the 35 hours of "ground school" for seniors in the Flight Instruction Program seeking pilot training, and is required for senior cadets who will be pilot training or navigator training applicants. Seniors not candidates for flying training may take this course or may arrange with the Professor of Air Science for permission to take an alternate University course which will enhance their officer qualifications.

402. Global Relations. Prerequisite: A.S. 401. (1).
The AF officer, preparation for active service. Seminar, 1 hour a week; laboratory, 1 hour a week; accompanied by Pol. Sci. 160.

MILITARY SCIENCE

Professor Harris, Chairman; Assistant Professors E. Hicks, R. Hicks, and Pulver. Department office, 212 Temporary Classroom Building.

General Information. The objective of the Army ROTC program is to
produce junior officers who by their education, training, and inherent qualities are suitable for continued development as officers in the United States Army. ROTC graduates, after attaining a baccalaureate degree, are commissioned as second lieutenants in the Army Reserve. Outstanding ROTC cadets who are designated as Distinguished Military students may apply for a direct commission in the Regular Army (the same commission as given West Point Military Academy graduates).

Regularly enrolled University of Michigan male students who meet the established physical, citizenship, age, and moral standards prescribed may enroll in the Army ROTC program. Enrollment in the ROTC is elective, and ROTC cadets are excused from the University requirement of two semesters of physical education. A cadet may drop ROTC, if he so desires, only during the first few weeks of the first semester. A cadet that remains in the ROTC after the dropout period authorized by his own college is required to complete four semesters of ROTC as a University degree requirement. This requirement can be waived only in exceptionally grave circumstances such as when a student is placed on academic probation.

In order for a cadet to continue into the advanced ROTC program (junior and senior years), he must have exhibited marked leadership potential. Thus, entrance into the advanced program is on an invitational basis, the cadet having the option to accept or decline. A cadet, having accepted the advanced program, is required to sign a contract to: (1) continue the ROTC program for the remaining four semesters; (2) accept a commission, if tendered; and (3) serve his military obligation of active duty and reserve duty as required by law.

The current military obligation is either (1) two years of active duty and four years in the Reserve, or (2) six months of active duty for training and seven and one-half years in the Reserve. ROTC graduates indicate their personal preference, but determination of length of tour of active duty is based upon the current needs of the Department of the Army. In the past, almost everyone received his preference.

Each cadet is required to attend a six-week ROTC Summer Camp, normally at the end of his junior year. Emphasis of training at summer camp is on leadership and field application of studies at the University.

ROTC graduates who desire to defer their tour of active duty in order to do graduate work at any accredited university may apply for an academic delay. Academic delays are given for one year and may be renewed for a number of years. To date, no University of Michigan ROTC graduate has been denied his request for delay or extension of delay.

Branch Assignments. During their senior year, cadets will be classified for branch assignment upon commissioning to one of the following branches in accordance with their leadership, aptitude, curriculum, interest, physical condition, and the nationwide needs of the Army:

Arms. Armor, Artillery, Infantry, Corps of Engineers, Signal Corps. (Physical qualifications for all of above are the same, somewhat more demanding than for the services listed below. Engineers and Signal are both an Arm and a Service.)

Technical and Administrative Services. Adjutant General's Corps, Army
Security, Chemical Corps, Corps of Engineers, Finance Corps, Medical Service Corps, Military Intelligence, Military Police Corps, Ordnance Corps, Quartermaster Corps, Signal Corps, Transportation Corps. Though completion of the ROTC program does not lead directly to commissions in Medical Corps, Dental Corps, Chaplain's Corps, Judge Advocate General's Corps, or Veterinary Corps, students interested in these fields are encouraged to contact the Military Science Department personally as there are many cogent reasons for enrolling in the ROTC program.

Advanced Standing. Students with prior military service or prior ROTC training (high school or college) may receive advanced standing in the ROTC program. The many variables preclude a blanket statement of eligibility; thus, students should contact the Military Science Department personally for advanced standing determination.

Pay and Allowances. Pay and allowances begin with enrollment in the third year of military science and amount to approximately $265 for each of the last two years. In addition, the cadet receives approximately $117, plus travel expenses to and from summer camp, for the six-week summer camp.

Uniforms, Texts, and Equipment. All ROTC cadets are furnished a uniform and all texts and equipment without charge; however, a security deposit of $20 is required. The uniform furnished at the beginning of the third year is custom tailored and may be retained by the individual for active duty wear as an officer.

Extracurricular Activities. Cadets are free to elect as few or as many of the following activities as desired:

- Army Rifle Team—Range, rifle and ammunition available without charge.
- ROTC Marching Band—Spring semester only, instruments furnished, attendance not required at Leadership Laboratory.
- Pershing Rifles—A national honorary to promote leadership and comradeship through impeccable close order drill and fancy drill.
- Scabbard and Blade—A national honorary.

Course of Instruction. The complete course of instruction comprising eight semesters plus summer camp is divided into four major blocks of instruction: (1) American Military History; (2) Operations, Tactics, and Techniques; (3) Logistics and Material; (4) School of the Soldier and Exercise of Command (Leadership Laboratory). The instructional objective of the Department of Military Science is to integrate the instruction under the four areas of military knowledge and skill into the progressive development of self-confidence, initiative, sense of responsibility, high moral standards, and leadership.

The Department of the Army has revised the course of instruction for the four-year period to include "academic substitution." The effect of the substitution program is that it is far less demanding on the cadet's time, a reduction of 24 per cent of the classroom hours over the four-year period. For each hour that the cadet is excused from ROTC classes, he is required to attend one hour of class in one of the following broad fields: General psychology; science comprehension; effective communication; and political development and political institutions. The substitute course
may be a specific degree requirement during both semesters of the freshman year but not during the junior and senior years. The substitution during the junior and senior years may fall in the elective category.

COURSES OFFERED IN MILITARY SCIENCE

101. Organization of the Army. Prerequisite: None. (1).
Five hours of instruction on organization of the Army and ROTC; ten hours of instruction on the M-1 rifle and marksmanship; eight two-hour periods of leadership laboratory. Academic substitution of 15 hours (one credit hour) required. Leadership laboratory is designed to teach the fundamentals of drill, drill being the vehicle used by the ROTC for progressive leadership development and evaluation.

102. United States Army and National Security. Prerequisite: M.S. 101. (1).
Fifteen hours on U. S. Army and national security; seven two-hour periods of leadership laboratory. Leadership laboratory is designed to perfect individual performance and prepare cadets to serve as noncommissioned cadet officers during sophomore year.

201. American Military History. Prerequisite: M.S. 102. (2).
Thirty hours of instruction on American military history; eight two-hour periods of leadership laboratory. Leadership laboratory designed for sophomores, acting as cadet noncommissioned officers, to develop their leadership potential teaching the freshmen.

202. Operations and Tactics. Prerequisite: M.S. 201. (2).
Fifteen hours of map and aerial photograph reading; fifteen hours of introduction to operations and basic tactics; seven two-hour periods of leadership laboratory. Leadership laboratory designed to give sophomores continued opportunity to develop their leadership potential as cadet noncommissioned officers with view toward selection by army staff into advanced course.

301. Military Teaching Principles. Prerequisite: M.S. 202 and selection. (1).
Twenty hours of instruction on military teaching principles; 45 hours (three credit hours) of academic substitution; eight two-hour periods of leadership laboratory. Leadership laboratory designed to prepare each cadet for summer camp by rotating positions of leadership (company commander, platoon lieutenant, and NCO positions) weekly within the junior class.

302. Tactics and Communications. Prerequisite: M.S. 301. (3).
Ten hours on leadership; fifteen hours on all branches of the Army; thirty hours on small unit tactics and communications; five hours on pre-camp orientation; seven two-hour periods of leadership laboratory. Leadership laboratory continuation of M.S. 301.

401. Operations, Administration, and Logistics. Prerequisite: M.S. 302. (3).
Fifteen hours of instruction in operations; fifteen hours of logistics; fifteen hours of Army administration; fifteen hours of military law; eight two-hour periods of leadership laboratory. Leadership laboratory designed for seniors to act as cadet officers by organizing, running, and evaluating the leadership laboratory for all undergraduates.

402. Role of the United States in World Affairs. Prerequisite: M.S. 401. (1).
Ten hours of instruction in the role of the United States in world affairs; ten hours of service orientation; forty-five hours (3 credit hours) of academic substitution; seven two-hour periods of leadership laboratory. Leadership laboratory
Special Fields
84

designed as the final chance in the ROTC program for continued leadership development prior to functioning as commissioned officers on active duty in the Army.

NAVAL SCIENCE

Professor Steen; Associate Professor O'Day; Assistant Professors DeMartini, Dunn, Henry, Moore, Spetz, and Stevens; Instructors Crites, Hagar, Lofquist, McMurray, Schneider, and Sweeney. Department office, North Hall.

Mission. The mission of the Naval Reserve Officers Training Corps is to provide a permanent system of training and instruction in essential naval subjects at civilian educational institutions, and to provide a source from which qualified officers may be obtained for the Navy and Marine Corps and the Naval Reserve and Marine Corps Reserve.

Objectives. The objectives of the Department of Naval Science in carrying out the above mission at the University are:

1. To provide the student with a well-rounded course in basic naval subjects, which, in conjunction with a baccalaureate degree, will qualify him for a commission in the United States Naval Service.
2. To develop an interest in the naval service and a knowledge of naval practice.
3. By precept, example, and instruction, to develop the psychology and technique of leadership in order that the young officer may be able to inspire others to their best efforts.
4. To supplement the academic work of the school year by summer cruises, aviation training, and/or Marine Corps encampments.
5. To provide certain selected groups of students with such specific training, differentiated in the last part of the course, as will qualify them for commissions in the United States Marine Corps or the United States Navy (Supply Corps).

Officer Candidates. Officer candidates in the NROTC are of two types:

a) Regular NROTC students. These students, after selection by nationwide competitive examinations, are appointed midshipmen, USNR, and are granted a retainer pay at the rate of $600 a year, with tuition, non-refundable fees, and books provided by the Navy for a maximum period of four years while under instruction at the NROTC institution or during summer training cruises. Regular students are obligated to serve four years on active duty after being commissioned as ensigns, United States Navy, or as second lieutenants, United States Marine Corps, unless released sooner by the Secretary of the Navy.

b) Contract NROTC students. The Contract NROTC students have the status of civilians who have entered into a mutual contract with the Navy. They are not entitled to the compensation or benefits paid regular NROTC students except that they are entitled to the uniform issue, naval science textbooks and equipment, and payment of commutation of subsistence (currently about $30 a month) during their last two years of NROTC training. Under this plan students must agree to accept a commission in
the Naval or Marine Corps Reserve on graduation and, while undergraduates, to engage in one summer practice cruise of approximately six weeks duration between the junior and senior years. After graduation, they are commissioned as ensigns, USNR, or second lieutenants, USMCR, and called to active duty for a period of obligated service. They may then apply, if they desire, for retention in the service.

Candidates must be between seventeen and twenty-one years of age. In special cases Contract students sixteen years of age may be enrolled. All must pass the Navy physical examination. Height must be between 64 and 78 inches and general physical development good. Vision must be not less than 20/40 uncorrected by glasses and in all cases must be correctible to 20/20. Candidates must be unmarried and agree to remain single until commissioned.

All students are required to complete eight semesters of naval science subjects. Candidates for Marine Corps commissions complete four semesters of general naval science subjects and four semesters of Marine Corps specialty courses. Candidates for Navy Supply Corps commissions complete four semesters of general naval science subjects and four semesters of Navy Supply Corps subjects. A psychology course taught by the civilian faculty of the University is required during one semester of the sophomore year.

Regular NROTC students participate in three summer cruises of six to eight weeks' duration; Contract NROTC students participate in one six-week summer cruise. Marine candidates spend the third cruise period at the Marine Corps Schools, Quantico, Virginia.

Contract students must have satisfactorily completed a sequence of mathematics through trigonometry in high school or one semester of mathematics in college by the end of their second year in the program. Regular students must satisfactorily complete one year of college mathematics and one year of college physics by the end of their sophomore year.

Each of the following subjects requires attendance at three one-hour recitations and a two-hour laboratory period each week.

COURSES OFFERED IN NAVAL SCIENCE

Study of various components of the United States Navy; shipboard organization and duties. Develops the psychology and techniques of leadership by means of practical problems and the study of the history of sea power.

102. Naval History and Sea Power. Prerequisite: N.S. 101. II. (3).

A study of history of sea power and its influence in shaping world affairs socially, economically, and politically.

200. Naval Weapons. Prerequisite: N.S. 102. I or II. (3).

A basic familiarity in modern naval weapons and the purpose of each, stressing the following specifics: ballistics and ordnance, automatic control equipment, fire control problem, and fleet air defense. Instruction in the general nature of naval weapons systems stressing guided missiles, nuclear weapons, antisubmarine warfare, and space technology. A course in psychology, as selected by the Professor of Naval Science, is required during the semester the student is not enrolled in N.S. 200.
Graduate Studies

 Thoroughly acquaints the student with the theory of dead reckoning, piloting, and celestial methods of navigation. Practical problem solution is stressed during summer cruises.

302. Naval Operations. Prerequisite: N.S. 301. II. (3).
 Provides a broad understanding of basic naval tactics, tactical communications, relative motion, and the rules of the nautical road.

 For Navy Supply Corps candidates only. Naval finance, organization, logistics, and naval accounting methods.

304 (302S). Navy Supply Management. Prerequisite: N.S. 303. II. (3).
 For Navy Supply Corps candidates only. Supply organization and administration afloat.

 For Marine Corps candidates only. Analysis of decisive battles of history according to principles of war and evolution of weapons.

306 (302M). Modern Strategy and Tactics. Prerequisite: N.S. 305. II. (3).
 For Marine Corps candidates only. Study of European and United States military policies and strategies and fundamental infantry tactics.

 Provides a broad general concept of the fundamentals of naval engineering installation including steam, diesel, nuclear power, gas turbines, and auxiliary plants, and ship stability.

402 (402, 402S). Principles and Problems of Leadership. Prerequisite: N.S. 401 or 403. II. (3).
 Introduces the basic principles of human relations, leadership, and management with emphasis on naval shipboard administration and an introduction to the uniform code of military justice. (Required for supply option students.)

403 (401S). Navy Retail Sales. Prerequisite: N.S. 304. I. (3).
 For Navy Supply Corps candidates only. Afloat retail sales functions of the supply corps officer with emphasis on the management aspects of inventory control and merchandising.

 For Marine Corps candidates only. The history, development, and techniques of amphibious warfare.

406 (402M). Amphibious Warfare. Prerequisite: N.S. 405. II. (3).
 For Marine Corps candidates only. The history, development, and techniques of amphibious warfare (15 sessions only; remaining 30 sessions deal with study of naval justice and Marine Corps leadership).

Graduate Studies

The undergraduate program in engineering offers only a limited opportunity for advanced or special studies. Many students find continued study for at least one additional year a decided advantage. It offers an attractive
opportunity to pursue their special interests and to acquire a more thorough preparation for their first employment. The University of Michigan has always maintained a leading position in postgraduate engineering education and provides excellent facilities in many fields.

Opportunities to continue advanced-level study in selected engineering subjects are available in the University's graduate residence centers in the state of Michigan, provided through the Extension Service.

All students who are candidates for graduate degrees are enrolled in the Horace H. Rackham School of Graduate Studies. Its Announcement should be consulted for complete information.

Undergraduate students contemplating graduate work should consult with the program adviser or the advisory committee for the desired program.

MASTER'S DEGREES

Master of Science in Engineering. A candidate for the degree of Master of Science in Engineering must meet the requirements for the degree of Bachelor of Science in Engineering at the University in his field of specialization, or essentially the equivalent of these requirements, with sufficient evidence that he can meet the scholastic requirements of study at an advanced level.

Master of Science. Qualified students who have attained an undergraduate degree in an appropriate field of science are offered opportunities by the faculty of the College of Engineering in several instances to pursue their studies in selected areas that will lead to a degree of Master of Science.

Admission Requirements. In general, an applicant must have earned a B average in his undergraduate work to be accepted by the Horace H. Rackham School of Graduate Studies into a master's degree program. If the preparation of an otherwise acceptable candidate is not adequate, he will be required to take the necessary preparatory courses without graduate credit.

Degree Requirement. The requirements for a master's degree include the completion of at least thirty credit hours of graduate work approved by the program adviser or advisory committee for the program elected with an average grade of at least B covering all courses elected as a graduate student. Courses numbered 400 and above are acceptable for graduate credit.

A superior student who is well prepared may complete the requirements for a master's degree in two semesters.

The degrees offered are designated in the headings to the several descriptions that follow.
M.S.E. IN AERONAUTICAL AND ASTRONAUTICAL ENGINEERING AND M.S. IN AERONAUTICS AND ASTRONAUTICS

Advisory Committee: Professors Isakson, Morrison, Uberoi; Associate Professor E. O. Gilbert.

A candidate for the M.S.E. degree will normally include in his program three to five advanced courses in aeronautical and astronautical engineering, two to three courses in mathematics beyond advanced calculus, and one or two selected courses in other cognate fields. Up to four credit hours of nontechnical studies and up to five credit hours of directed study may be elected. The courses in aeronautical and astronautical engineering may be selected to emphasize one or more of the following technical areas: aerodynamics, aero thermoelasticity, flight mechanics, guidance and control, propulsion, and structures.

A candidate for the M.S. degree in aeronautics and astronautics must present substantially the equivalent of the four-year program in engineering, physics, or mathematics at the University and must complete a program of thirty credit hours to be determined in consultation with the departmental graduate committee. Normally, this program will include Physics 451 and 452, selected courses in mathematics, and several courses in aeronautical and astronautical engineering. Up to four credit hours of nontechnical studies and up to five credit hours of directed study may be elected. The courses in aeronautical and astronautical engineering may be selected to emphasize one or more of the following technical areas: gasdynamics, aero thermoelasticity, and guidance and control.

M.S.E. IN CHEMICAL ENGINEERING

Advisory Committee: Professors Parravano, Ragone, and York; Associate Professor Tek.

The requirements for this degree include Chem.-Met. Eng. 530, 540, and such other courses as are approved by the advisory committee. Each student is encouraged to develop a program to fit his professional objectives and should consult with the advisory committee in this matter.

A full range of courses is available for those interested in many special fields, particularly: food processing, materials, petroleum refining or production, plastics and elastomers, process and equipment design, protective coatings.

M.S.E. IN CIVIL ENGINEERING

Program Adviser: Departmental Chairman

A candidate for this degree must present the equivalent of the under-
graduate civil engineering program as preparation and in addition must complete a minimum of fifteen hours of graduate work in civil engineering courses and such other courses as are approved by the adviser. Graduate study programs leading to this degree may be arranged in the following special fields: construction, geodetic engineering, highway and traffic, hydraulics, municipal, railway, sanitary, structures, and soil mechanics.

M.S.E. AND M.S. IN COMMUNICATION SCIENCES

Advisory Committee: Professor Peterson, Chairman; Professors Burks, Hok, Rapoport, Thrall, Walker; Associate Professors Garner and Paper.

Candidates may be admitted to advanced study in Communication Sciences after a bachelor's degree in an appropriate area of concentration. See Special Fields.

They may be admitted to the M.S.E. degree program from any of the undergraduate engineering curriculums if accepted by the advisory committee. The requirements have been established in co-operation with the Department of Electrical Engineering.

M.S.E. IN CONSTRUCTION ENGINEERING

Program Adviser: Professor Alt

This program is available to students interested in construction who meet the requirements for admission to master's degree work in civil engineering. The requirements for this degree include Civ. Eng. 501, 531, 532, and 545; and such other courses in engineering, economics, business administration, and other fields as may be approved by the program adviser.

M.S.E. IN ELECTRICAL ENGINEERING

Program Advisers: Professors Holland, Macnee, and Scott

A candidate for this degree must have satisfactorily completed the undergraduate electrical engineering program of the University or its equivalent. A minimum of thirty credit hours of graduate work is required for this degree and must include Elec. Eng. 620 and two courses in advanced mathematics. At least fifteen credit hours must be in electrical engineering. By suitable selection of his courses, the candidate may specialize in any of the following fields: communications engineering, computer engineering, engineering systems and design, electrical measurements and instrumenta-
M.S.E. IN ENGINEERING MATERIALS

Advisory Committee: Professors Parravano, Ragone and York; Associate Professor Tek.

A candidate for this degree is required to have a basic science background essentially equivalent to that represented by the program leading to the degree of Bachelor of Science in Engineering (Materials Engineering) at the University. This includes chemistry, through organic and physical, structure of materials, mechanics of materials, and thermodynamics. Thirty credit hours of graduate work are required, which are to be selected with the approval of the advisory committee of the program and which will include Chem.-Met. Eng. 570, 636, or 650.

M.S.E. IN ENGINEERING MECHANICS

Advisory Committee: Professors Clark, Dodge, Enns, Haythornthwaite, Masur, Ormondroyd, and Yih; Associate Professor Smith.

Candidates may be admitted to this degree program from any of the undergraduate engineering curriculums. A student whose undergraduate training is inadequate will be permitted to make up the deficiency in a manner prescribed by the advisory committee. The transition is simplified for those who have had some advanced mathematics.

A total of thirty credit hours of graduate study is required for the master’s degree, seventeen from the graduate courses offered in the Department of Engineering Mechanics and thirteen from cognate fields. The program must include Eng. Mech. 412, 422, and 441 and Math. 452 and 455 or their equivalents. Students who have had any of the required courses, or their equivalents, may substitute cognate subjects as part of the seventeen required hours if permitted to do so by the adviser. For those who expect to pursue the doctorate, Math. 557 is recommended. A master’s thesis, subject to departmental approval, may be substituted for part of the course work. The student’s program of study is to be approved by the departmental graduate adviser.
M.S.E. IN GEODETIC ENGINEERING

Program Adviser: Professor Berry

This program is available to students who have satisfactorily completed an undergraduate engineering program of the University, or its equivalent, including mathematics through differential equations and at least nine semester hours in geodetic engineering. A minimum of thirty credit hours of graduate work, approved by the Department of Civil Engineering, is required for this degree, including Civ. Eng. 560 and 561; and other courses in engineering, mathematics, astronomy, city planning, or other closely allied fields related to the professional practice of geodetic engineering in government or in private practice.

M.S.E. IN INDUSTRIAL ENGINEERING AND M.S. IN INDUSTRIAL ADMINISTRATION

Program Adviser: Associate Professor Hancock

A candidate for the M.S.E. degree must present substantially the equivalent of a bachelor's degree in Industrial Engineering at the University. He must complete in residence a minimum of 30 hours of graduate work approved by the adviser; approximately 15 hours of this will be in the industrial engineering area.

A candidate for the M.S. degree must present the equivalent of a bachelor's degree in recognized programs in any of the engineering fields, physics, or mathematics. He must complete in residence a minimum of 30 hours of graduate work approved by the adviser; approximately 15 hours of this will be in the industrial engineering area.

M.S.E. AND M.S. IN INSTRUMENTATION

Program Adviser: Professor Rauch

Candidates may be admitted to the M.S.E. degree program from any of the undergraduate engineering curriculums. The requirements for the degree include Math. 548; Elec. Eng. 418 or 438; Instr. Eng. 530, 570, 571, and a 600-level Instrumentation Engineering course; and other courses approved by the committee on instrumentation. The systems-engineering concept is emphasized throughout the program. See Special Fields and course listings.

For students lacking the essential equivalent of the degree Bachelor of Science in Engineering but having an acceptable science background at the bachelor's degree level, the degree Master of Science in instrumentation is offered.
M.S.E. IN MECHANICAL ENGINEERING

Program Adviser: Professor Clark

Candidates for this degree must complete at least fifteen hours in the department of specialization and at least two cognate subjects totaling five or more credit hours in other than mechanical engineering. Details of course requirements and fields of specialization will be furnished by the department upon request.

Students majoring in mechanical engineering will not be given graduate credit for courses equivalent to any which they have been required to take for the bachelor's degree or for courses required in the undergraduate curriculum of this department.

M.S.E. IN METALLURGICAL ENGINEERING

Advisory Committee: Professors Parravano, Ragone, and York; Associate Professor Tek.

The requirements for this degree include Chem.-Met. Eng. 535, 570, and 690 (4 hours); and a minimum of one course from each of the following groups of courses: Chem.-Met. Eng. 573, 574, 587, 589; Chem.-Met. Eng. 536, 561, 577, 636; and Chem.-Met. Eng. 571, 572, 575, 870.

Other courses are to be selected as approved by the advisory committee. Each student is encouraged to design his program to satisfy his special interest.

M.S. IN METEOROLOGY

Program Adviser: Professor Hewson

Candidates for the M.S. in meteorology must present the substantial equivalent of a bachelor's degree in engineering, physics, mathematics, or some other scientific area, including the equivalent of Math. 404 and Physics 146. Each candidate will follow a special program arranged in conference with the adviser, and the candidate may be required to make up deficiencies. A total of thirty credit hours is required, including fifteen hours of meteorology and six hours of mathematics, or three hours of mathematics and three hours of physical science. Interdisciplinary programs may be arranged.
M.S.E. IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

Program Adviser: Assistant Professor Michelsen

A candidate for this degree must have completed the equivalent engineering courses for the degree Bachelor of Science in Engineering (Naval Architecture and Marine Engineering) or, if he has had practical experience in the subject matter covered by these courses, pass an examination in them. The requirements usually include Math. 450, Nav. Arch. 590 or 591, Eng. Mech. 422, and electives in mathematics, engineering mechanics, and naval architecture.

It is also possible to obtain a combined degree Master of Science in Engineering in marine and nuclear engineering. The Graduate School requirements for such a degree are a minimum of forty hours of graduate level courses and the approval of the candidate's program by the Dean of the Graduate School.

M.S.E. IN NUCLEAR ENGINEERING AND M.S. IN NUCLEAR SCIENCE

Program Adviser: Assistant Professor Gyorey

Students entering the program in nuclear engineering must have a bachelor's degree from an accredited engineering program. The nuclear science program is available to those with bachelor's degrees from recognized programs in physics, chemistry, or mathematics and who wish to work on nuclear energy development. The undergraduate preparation required for these programs is listed under Special Fields.

The credit requirements for the master's degree are thirty hours of completed course work including twenty hours from nuclear engineering. The following core courses must be included in the twenty hours: Nuc. Eng. 560, 570, 660, 670, and 680. A B average must be maintained in the core courses. All students are required to complete a one-semester research or design problem under Nuc. Eng. 690 for at least two credit hours. When desired, facilities for and supervision of work leading to a master's thesis will be made available. Additional courses are selected with the help of the program adviser from courses in nuclear engineering, cognate fields of engineering, mathematics, physics, chemistry, and others. Where the entering student presents evidence of satisfactory completion of work equivalent to any of the core courses, substitution of other courses will be arranged by the program adviser.
M.S.E. IN PUBLIC WORKS ADMINISTRATION

Program Adviser: Assistant Professor Glysson

The program in municipal engineering and public administration is conducted in co-operation with the Institute of Public Administration. It is available to students interested in the administrative problems of municipal engineering and city management who meet the requirements for admission to master's work in civil engineering.

M.S.E. IN SANITARY ENGINEERING

Program Adviser: Professor Borchardt

The program leading to this degree is generally open to graduates in civil, chemical, and mechanical engineering. A student is expected to elect at least fifteen hours in the field of sanitary engineering and a number of courses in environmental health and public health statistics offered by the School of Public Health.

PROFESSIONAL DEGREES

Programs are offered which lead to the following professional degrees:

- AERONAUTICAL AND ASTRONAUTICAL ENGINEER—Ae. & Astrn.E.
- APPLIED MECHANICS ENGINEER—App.M.E.
- CHEMICAL ENGINEER—Ch.E.
- CIVIL ENGINEER—C.E.
- ELECTRICAL ENGINEER—E.E.
- INDUSTRIAL ENGINEER—Ind.E.
- INSTRUMENTATION ENGINEER—Instm.E.
- MARINE ENGINEER—Mar.E.
- MECHANICAL ENGINEER—M.E.
- METALLURGICAL ENGINEER—Met.E.
- NAVAL ARCHITECT—Nav.Arch.
- NUCLEAR ENGINEER—Nuc.E.

The professional degree programs require a minimum of thirty credit hours of work beyond the Master of Science in Engineering level or its equivalent, taken at this University with a grade average of B or better. Successful completion of a qualifying examination for admission to candidacy is required.

The total graduate program shall include:

1. At least twenty-four hours in the area of the department or program
cited in the degree. The department or program advisers may specify these hours in greater detail.

2. At least six hours devoted to a research, design, or development problem, including a written report covering the work. A committee of faculty members will supervise the work, approve the report, and conduct a final oral examination on this work.

3. At least three courses in cognate fields other than mathematics.

4. At least nine hours in mathematics beyond the Bachelor of Science in Engineering mathematics requirements of the department cited in the degree.

DOCTOR'S DEGREE

DOCTOR OF PHILOSOPHY—Ph.D.

The doctor's degree is conferred in recognition of marked ability and scholarship in some relatively broad field of knowledge. A part of the work consists of regularly announced graduate courses of instruction in the chosen field and in such cognate subjects as may be required by the committee. In addition, the student must pursue independent investigation in some subdivision of the selected field and must present the results of his investigation in the form of a dissertation.

A student becomes an applicant for the doctorate when he has been admitted to the Horace H. Rackham School of Graduate Studies and has been accepted in a field of specialization. No assurance is given that he may become a candidate for the doctorate until he has given evidence of superior scholarship and ability as an original investigator.

There is no general course or credit requirement for the doctorate. In most areas a student must pass a comprehensive examination in his major field of specialization, which tests his knowledge in that field and in the supporting fields, before he will be recommended for candidacy for the doctorate. A special doctoral committee is appointed for each applicant to supervise the work of the student both as to election of courses and in preparation of the dissertation.

A reading knowledge of German and French is required. A student must meet the language requirements for the doctorate before he can be accepted as a candidate for the degree. He should consult the Examiner in Foreign Languages, Dr. Leta Lewis, 3028 Rackham Building, at his earliest convenience after becoming an applicant. A student who completes French 112, German 112, Spanish 112, or Russian 112 with a grade of B or better will be recorded as having met the language requirement in the respective language. Substitutions for the French or German request may be made under certain conditions which are defined in the Announcement of the Graduate School.

A pamphlet that describes the general procedure leading to the doctorate is available in the Graduate School office upon request.
Description of Courses

The courses offered by the College of Engineering, with certain closely associated departments of other units of the University, are listed with a brief description for each.

The University year is composed of two semesters, and the credits are granted in semester hours. The present Announcement covers the first and second semesters. A special announcement is issued for the summer session. Just prior to the beginning of each semester and summer session a time schedule is issued giving hours and room assignments for classes.

As a general rule, courses numbered from 100 to 199 are introductory or beginning courses, 200 to 299 are intermediate, and 300 to 599 are advanced level courses. Those numbered 400 and above are acceptable for graduate credit. The number in () after a course number is the one formerly used for this course. A Roman numeral in boldface type indicates the position of the course in a sequence of courses on the same subject. Prerequisites appear in italics immediately after course titles.

Roman numerals in lightface type indicate the semester in which the course is given: I, first semester; II, second semester. S.S. indicates summer session. The italic number enclosed in parentheses indicates the hours of credit for the course, e.g., (3) denotes three credit hours, or (To be arranged) denotes credit to be arranged.

AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

200(1). General Aeronautics. Prerequisite: completion of freshman year in College of Engineering, or equivalent. I and II. (1).

An introduction to aeronautical and astronautical engineering. Elementary problems designed to orient the student in the program of aeronautical engineering, together with a discussion of the current state of aeronautical developments and the role of the engineer. Recitations and demonstrations.

Application of the basic equations of strength of materials and elasticity to elements of light-weight structures. Among the topics included are thin-walled beams, rings and frames, plates in bending, and an introduction to thermal stress.

Development of the fundamentals of aerodynamics which form the basis for the study of modern aircraft. Calculation of the forces and moments acting on wings and bodies in compressible inviscid flow and comparison with experiment.

Introduction to aerothrmodynamics and applications to problems in flight propulsion. Discussion of the momentum theorem, one-dimensional flow systems, with heat addition, shock waves, diffusers, compressors, and turbines.

410(131). Flight Structures II. Prerequisite: preceded or accompanied by Aero. Eng. 310 and 410. I and II. (4).
Stability of structural elements in compression and shear; beam columns; deflection analysis, influence coefficients and functions, matrix algebra; introduction to structural dynamics. Lectures and laboratory.

An accelerated coverage of the material in Aero. Eng. 310 and 410 designed primarily for graduate students. Not open to students who have elected Aero. Eng. 310 or 410.

Continuation of Aerodynamics I. Viscous and compressible fluid theory applied to the calculation of the forces and moments on wings and bodies and comparison with experiment. Loads on an airplane. Lectures and laboratory.

Critical study of the fundamental aerodynamic and strength theories of the propeller; viscosity and compressibility effects; theory and performance of axial and centrifugal blowers, with application to superchargers and jet propulsion systems.

An accelerated coverage of the material in Aero. Eng. 320 and 420 designed primarily for graduate students. Not open to students who have elected Aero. Eng. 320 or 420.

430(164). Propulsion II. Prerequisite: Aero. Eng. 330 or equivalent. I and II. (4).
Performance and analysis of flight propulsion systems including the reciprocating engine-propeller, turboprop, ramjet, pulsejet, and rocket. Lectures and laboratory.

An accelerated coverage of the material in Aero. Eng. 330 and 430 designed primarily for graduate students. Not open to students who have elected Aero. Eng. 330 or 430.

Series of experiments designed to illustrate the general principles of propulsion and to introduce the student to certain experimental techniques in the study of actual propulsive devices, using full-scale or reduced models of the pulsejet, turbojet, ramjet, and rocket motors.

442(146). Performance of High-Speed Vehicles. Prerequisite: Aero. 435 and 445 or equivalent. (3).
Properties of the atmosphere, regimes of flow, analysis and optimization of
thrust programming, performance of high-speed vehicles, including coasting and glide trajectories, optimum flight paths, orbital vehicles, and re-entry problems.

An accelerated coverage of the material in Aero. Eng. 441 designed primarily for graduate students. Not open to students who have elected Aero. Eng. 441.

447(176). Flight Testing. **Prerequisite:** Aero. Eng. 441 or equivalent. (2).

Theory and practice of obtaining flight test data on performance and stability of airplanes from actual flight tests. No laboratory fee will be charged, but a deposit covering student insurance and operating expense of the airplane will be required.

Lifting rotor and propeller analysis in vertical and forward flight; ducted fan analysis; helicopter performance analysis; transitional flight problems of VTOL aircraft; stability and control problems of helicopters and VTOL aircraft.

460(173). Wind Tunnel Instrumentation. **Prerequisite:** permission of instructor. (2).

Study of the role of schlieren, shadow, and interferometric techniques in aerodynamic research and a comparison of their relative accuracy and effect in data reduction; pressure and temperature measurements. Lectures and laboratory.

464(185). High-Altitude Studies. **Prerequisite:** a course in differential equations. (3).

Upper atmosphere pressure, density, temperature, winds, composition. Rarified gas dynamics; solar constant and spectrum; the ionosphere; techniques and results of rocket research; characteristics of research vehicles; the earth satellite.

Transient and steady-state analysis of linear control systems; transfer functions, stability analysis, and synthesis methods; airplane transfer functions and synthesis of autopilot and powerplant control systems; use of analog computer in the laboratory for simulation. Lectures and laboratory.

481. Airplane Design I. **Prerequisite:** Aero. Eng. 310 and 441. I and II. (4).

Power required and power available characteristics of aircraft on a comparative basis, calculation of preliminary performance, stability, and control characteristics. Design procedure, including layouts and preliminary structural design. Subsonic and supersonic designs. Emphasis on design techniques and systems approach. Lectures and laboratory.

482(103). Airplane Design II. **Prerequisite:** Aero. Eng. 480. (2).

Design procedure, including layouts and preliminary structural design; stress analysis and detail design. Lectures and drawing.

500(181). Directed Study. **(To be arranged).**

Individual study of specialized aspects of aeronautical engineering.

510(133). Flight Structures III. **Prerequisite:** Aero. Eng. 410. (3).

Strength and deformation analysis of light-weight structures, with emphasis on secondary stress, stress concentration and fatigue, inelastic deformation, and other selected topics.

515(134). Structures at Elevated Temperatures. **Prerequisite:** Aero. Eng. 410 or 415. (3).

Aerodynamic heating of high-speed aircraft and space vehicles. Thermal radiation. Heat transmission within the structure. Thermal stress; thermal deflection
and buckling. Brief discussion of material properties at elevated temperature, creep, thermal stress effects on structural stiffness.

520(119). Intermediate Aerodynamics. Prerequisite: Aero. Eng. 420 or 425 or a course in advanced calculus. (3).

Aerodynamics of viscous and compressible fluids. Equations of motion and energy, high subsonic, transonic, and supersonic flow, shock waves, characteristics, boundary layers, turbulence, unsteady flow. Physical aspects of subject are stressed.

521(118). Experimental Aerodynamics. Prerequisite: Aero. Eng. 520. (2).

Covers the work presented in the experiments in Aero. Eng. 420 but with more attention to detail and more elaborate discussion of the advanced theories and methods used in this field. Lectures and laboratory.

523(121). Turbulence and Diffusion. Prerequisite: a course in advanced calculus and Aero. Eng. 420 or Eng. Mech. 324. (To be arranged).

A physical picture of turbulence in boundary layers, wakes, jets, and behind a grid. The basic equations are derived, isotropic and locally isotropic turbulent fields are described, and applications to practical problems such as transfer and diffusion of heat and mass are treated.

525(123). Aerodynamics of High Speed Flight. Prerequisite: Aero. Eng. 420 or 425 or permission of instructor. (3).

Treatment of problems in the aerodynamics of flight at supersonic and hypersonic velocities; linearized theory of wings with arbitrary planform and bodies of revolution; wing body interference; hypersonic aerodynamics, aerodynamic heating, real gas effects.

530(167). Propulsion III. Prerequisite: Aero. Eng. 430 or equivalent. (3).

Continuation of Aero. Eng. 430. Further treatment of aircraft engine performance, including off-design operation, and study of selected problems in the field of propulsion.

532(168). Topics in Gas Dynamics. Prerequisite: Aero. Eng. 420 or permission of instructor. (3).

The role of transport phenomena in gas dynamics problems is stressed. The subjects covered include simplified gas kinetics, definition of transport properties, general conversation equations, laminar boundary layer and mixing problems with heat transfer and diffusion.

535(169). Rocket Propulsion. Prerequisite: Aero. Eng. 430 or 435 or equivalent. (3).

Analysis and performance of liquid and solid propellant rocket powerplants; propellant thermochemistry, heat transfer, system considerations, advanced rocket propulsion techniques.

Kinematics of motion, particle dynamics, orbital motion and calculation of orbital parameters, Lagrange's equations. Rigid body dynamics including Euler's equations, the Poinset construction, spin stabilization, the rotation matrix. Vibrations of coupled systems, orthogonality relationships, generalized co-ordinates and system parameters.

Description of the deformation characteristics of aircraft structures. Deformations of aircraft structures under dynamic loads; differential equation, integral equation, energy methods of analysis. Wing divergence, control surface effectiveness, aeroelastic effects on load distribution, flutter.
Application of the theorems of minimum potential and complementary energy, Galerkin's method, finite difference approximations, and relaxation procedures to the deformation and stress analysis of light-weight structures.

620(201). Dynamics of Viscous Fluids. Prerequisite: Aero. Eng. 520 or permission of instructor. (3).
Effect of viscosity in fluid flows. Flow in laminar and turbulent, compressible and incompressible boundary layers, boundary layer stability, real gas effects at low densities.

621(202). Dynamics of Compressible Fluids. Prerequisite: Aero. Eng. 520. (3).
Emphasis on transonic and hypersonic flow, and on real gas effects at high temperature. Heat transfer near the stagnation point.

622(222). Theory of Supersonic Wings and Bodies. Prerequisite: preceded or accompanied by Aero. Eng. 520. (3).
The linearized theory of finite wings of arbitrary planform and cross section in supersonic flow. Linearized body theory, flow field around wings and bodies, interference effects. A companion course to Aero. Eng. 520 that is directed toward aerodynamic aspects of the design of supersonic aircraft and missiles.

624(220). Theory of Thin Airfoils. Prerequisite: Aero. Eng. 320 or equivalent and preceded or accompanied by Math. 455. (3).
Application of complex variables and mapping theory to the thin airfoil in arbitrary motion; quasi-steady theory of cambered airfoils; apparent mass and wake effects, nonstationary flow equations. Aerodynamic forces and moments are developed in a form suitable for use in the gust and flutter problems.

626(205). Introduction of Magnetohydrodynamics. Prerequisite: permission of instructor. (3).
Review of electrodynamics. The basic equations of magnetohydrodynamics and magnetogasdynamics, simple solutions of these equations, stability theory in laminar flow, magnetohydrodynamic shock waves, theory of characteristics, applications to aerodynamics.

628(208). Molecular Theory of Flow. Prerequisite: Aero. Eng. 532 or permission of instructor. (3).
Statistical mechanics approach to the subject of gas and plasma dynamics and discussion of transition in outlook from the continuum to the kinetic viewpoint. Dynamics of rarefied neutral and ionized gases from the standpoint of Boltzmann's equation and its modified form. Topics in high altitude aerodynamics and high temperature flows.

632(262). Combustion and Flame Propagation. Prerequisite: permission of instructor. (3).
The fluid dynamic and thermodynamic relationships governing the propagation of combustion waves are derived and applied to deflagrations and detonations. Emphasis is placed on the close connection that exists between the hydrodynamics of burning mixtures and the heat release of chemical reactions.

640(245). Flight Mechanics of Space Vehicles II. Prerequisite: Aero. Eng. 540 and preceded or accompanied by Aero. Eng. 520 or 525. (3).
Dynamic performance of hypervelocity vehicles within the atmosphere. Problems associated with departure from and re-entry to the atmosphere.

641(246). Flight Mechanics of Space Vehicles III. Prerequisite: Math. 450, Physics 401, or equivalent. (3).
Motion of a point mass in a gravitation field. Restricted three-body problems;
perturbations from reference trajectories. Analysis of orbital transfers; capture
and hyperbolic encounters, including error analysis. Trajectories of powered
space vehicles.

644(244). Aeronautical and Astronautical Engineering. Prerequisite: Aero. Eng. 544. (3).
Static and dynamic aeroelastic problems relative to swept wings and wings of
low aspect ratio. Transient aeroelastic response problems. Aeroelastic effects on
aircraft flying qualities.

Eng. 646, Math. 548. (2).
Analysis and synthesis of missile autopilot systems. Navigational homing systems;
inertial and celestial navigation systems. Trajectories of ballistic missiles.

671(212a). Missile Guidance and Control Laboratory. Prerequisite: preceded or
accompanied by Aero. Eng. 670. (1).
Simulation of missile control and guidance systems on the electronic differential
analyzer.

674(274). Control of Space Vehicles. Prerequisite: Instr. Eng. 570 or equivalent
and Aero. Eng. 540 or equivalent. (3).
Analysis and synthesis of nonlinear control systems. Design of autopilots using
thrust vector control; transfer functions of elastic structures as part of closed-loop
systems. Mechanization of space vehicle guidance. Attitude control of satellites
and space vehicles using jet reaction and inertia wheel control systems.

720. Physics of Fluids I. Prerequisite: Aero. Eng. 520 or equivalent. (3).
A study of the physical concepts underlying the flow of fluids acted upon by
stresses arising from viscosity and from electromagnetic and gravity fields. In-
variant analysis of stress-strain relations, Maxwell’s equations, analysis of elec-
tronomagnetic stresses and energy dissipation in moving media, the equations of
motion and energy in a moving fluid, and some solutions of the complete
equations.

810(330). Seminar in Structures. (To be arranged).
820(310). Seminar in Aerodynamics. (To be arranged).
830(360). Seminar in Propulsion. (To be arranged).
870(370). Seminar in Instrumentation. (To be arranged).
880(341). Seminar in Space Technology. Prerequisite: permission of instructor. (2).
882(371). Seminar in Guided Missiles. Prerequisite: permission of instructor. (To
be arranged).
Primarily for military officers.

895(395). Seminar in Space Research. Prerequisite: permission of instructor. (2).
Detailed analyses of objectives, procedures, and results of research being carried
out at The University of Michigan. Topics will include the following: structure
of the upper atmosphere; measurement of temperature, pressure, density, com-
position, and winds. The ionosphere; measurement of ion and electron density
and temperature. Investigation of radio waves incident on the earth at frequen-
cies absorbed by the ionosphere by means of instrumented satellites. Inter-
pretation of infrared data from meteorological satellites. Research in attitude
control of multistage sounding rockets.

900(182). Research. (To be arranged).
Specialized individual or group problems of research or design nature sup-
ervised by a member of the staff.
BUSINESS ADMINISTRATION

Professors Brummet, Dixon, Dykstra, Hayes, Moore, and Rewoldt; Associate Professors Jones, Leabo, and Southwick.

The courses listed below are of special interest to engineering students. In the election of such courses attention is called to the administrative rules of the School of Business Administration which affect elections as follows:

1. No student shall elect courses in the School of Business Administration who does not have at least third-year standing (sixty credit hours). This does not apply to Accounting 271 and 272 which are listed as sophomore-level courses in the economics department of the College of Literature, Science, and the Arts.

2. Juniors may elect courses numbered 300 to 399 inclusive, and seniors may elect any course numbered 300 to 499 inclusive, provided they have satisfied particular course prerequisites.

3. Courses numbered above 500 may be elected only by properly qualified graduate students and are not open to juniors and seniors.

For a description of courses in business administration, see the Announcement of the School of Business Administration. A supplement will be issued indicating the course offerings for each semester. The following are courses of particular interest to engineering students:

BUSINESS ADMINISTRATION—GENERAL

454(154). Industrial Cost Accounting. (3).
480(180). Business Law. (3).
481(181). Business Law. (3).

ACCOUNTING

271(100). Principles of Accounting. (3).

FINANCE

300(100). Money and Banking. (3).
301(101). Financial Principles. (3).

INDUSTRIAL RELATIONS

300(100). Management of Personnel. (3).

MANAGEMENT

311(111). Production Management. (3).

MARKETING

300(100). Marketing Principles and Policies. (3).

STATISTICS

300(100). Introduction to Statistics. (3).

*School of Business Administration.
CHEMICAL AND METALLURGICAL ENGINEERING

200(3). Introduction to Engineering Calculations. Prerequisite: a university course in chemistry or physics. I and II. (3).
 Material and energy balances, the equilibrium concept. Properties of fluids and solids. Engineering systems.

 Introduction to thermodynamics; mass and energy balances; use of elementary thermodynamic properties in thermochemical calculations. Generalized gas relations, charts and tables of thermodynamic properties. Includes laboratory.

250(18). Principles of Engineering Materials. Prerequisite: Chem. 105 or equivalent; preceded or accompanied by Physics 146. (Physics 153 and Chem. 194 are equivalent to this prerequisite.) I and II. (3).
 An introductory course in the science of engineering materials. Engineering properties are correlated with (1) internal structures (atomic, crystal, micro-, and macro-); and (2) service environments (mechanical, thermal, chemical, electrical, magnetic, and radiation). Two lectures and two recitations.

 Structures and properties as affected by composition and mechanical and thermal treatment, with special emphasis on the utilization of common metals and alloys and their behavior in service. Lecture, recitation, and laboratory.

 Introduction and survey of separations based on mechanical properties, separations based on interphase activities, and capacity and performance of separations equipment. Includes laboratory.

 A unified study of heat, mass, and momentum transfer and chemical kinetics. Emphasis on the measurement, interpretation, and correlation of rate data and the use of rate data in process design. Lecture, recitation, and laboratory.

350(118). Structure of Solids. Prerequisite: Chem. 266. I and II. (3).
 Atomic structure, crystallography, equilibria, rate processes, solid types, bonding, structure, imperfections. Mechanical, thermal, electrical, magnetic, optical, and surface properties of solids. Electron and zone theories of solids.

370(13). Processing of Cast Metals. Prerequisite: preceded or accompanied by Math. 364. (2).
 Quantitative study of the operations of smelting, molding, pouring, cleaning, and inspection, as well as exercises in quality control. Melting experiments emphasize the application of physical chemistry to liquid metals. One lecture and one three-hour laboratory.

 Laboratory and/or conferences. Provides an opportunity for undergraduate students to work in research or areas of special interest such as design problems and economic studies. Where the subject covers some aspect of plant work as in summer employment in industry, arrangements should be made in advance.

 Applications of topics in mathematics to engineering problems. Solutions to ordinary and partial differential equations, orthogonality properties, matrix notations, numerical analysis.

Basic relations among thermodynamic properties; entropy balance and concept of availability. Physical and chemical equilibrium, solutions, and equilibrium stage calculations. Elementary treatment of statistical mechanics and irreversible thermodynamics.

445. Applied Chemical Kinetics. **Prerequisite:** Chem. 265 and 266. (3).

Description of kinetic systems, systematic approach to chemical reactions, mathematical and experimental characterization of kinetic systems, homogeneous and heterogeneous reactions, photochemical and chain reactions, explosions.

446. Introduction to Control and Dynamics of Chemical Systems. **Prerequisite:** Chem.-Met. Eng. 340, 400, or equivalent. (3).

The transient response of simple one- and two-time constant systems are considered. The relationships between electrical, thermal, mechanical, and hydraulic examples are established and defined on the basis of their frequency response characteristics. The mathematical models for more complex chemical processing equipment and systems are derived and applied to the problems of automatic control encountered in the chemical industry.

448(123). Unit Operations. **Prerequisite:** calculus, senior or graduate standing. I. (4).

Equipment and theory of unit operations, including separations, heat and mass transfer with particular reference to basic operations in sanitary engineering, pharmaceutical manufacturing, and the chemical industry.

Chemical properties of jet fuels, rocket fuels, and oxidizers; computation of propulsive performance under equilibrium conditions; kinetics of reactions.

450(122). Physical Ceramics. **Prerequisite:** preceded or accompanied by Chem. 266 and Chem.-Met. Eng. 350. II. (4).

The nature, properties, processing, and application of ceramic materials. Lectures, recitation, and laboratory.

451(125). Introduction to High Polymers. **Prerequisite:** organic chemistry, physical chemistry, or permission of instructor. I. (4).

Preparation, properties, and utilization of polymeric materials. Lectures, recitations, and laboratory.

Laboratory determination of factual operating data of equipment for chemical and metallurgical operations. Laboratory, conferences, and reports.

Structure and properties of nonferrous metals as related to their composition, thermal and mechanical treatments. Metallurgical laboratory techniques. Lectures, recitation, and laboratories.

Surface hardening, hardenability, hardening, tempering, isothermal transformation, related properties of iron and steel. Lecture, recitation, and laboratory.

Radiography, investigation of welds and castings; diffraction studies of metals and alloys. Lectures, recitations, and laboratory.
477(148). Metallurgy of Joining. Prerequisite: Chem.-Met. Eng. 470 or 479 or 576. II. (3).
The effects of the joining of metals on the mechanical, physical, and chemical properties of the structures. Special emphasis on the roles of solid phase transformations, liquid state reactions, properties of metallic surfaces, and residual stresses in joining processes.

Structures of metals as affected by composition and thermal and mechanical treatment; their resultant physical properties and behavior in service. Lectures, recitations, and laboratory.

Applications of fluid flow, heat transfer, mass transfer, stress analysis, and behavior of materials to the design of chemical and petrochemical process equipment for vacuum, low-pressure, high-pressure, and high-temperature services.

Application of mathematics, chemistry, and physical, natural, and engineering sciences to the design of chemical processes and engineering systems.

Concepts necessary in the adaptation of biological and biochemical principles to industrial processes and technology of the biochemical engineering industries. Lectures, problems, and library study will be used to develop the ideas presented.

Unit process treatment of extractive metallurgical operations. Applications of principles involved in the extraction of metals from ores and scrap, the production of alloys, and their commercial shapes or forms.

Calculations on steady- and unsteady-state heat and mass transfer, stagewise operations, fluid mechanics, thermodynamics, chemical reactions, and automatic control systems. Emphasizes formulation and solution of mathematical models that are often similar for different processes.

Theory and applications of electrochemistry with first half of time devoted to basic principles and last half to research problems and industrial processes. One laboratory per week included.

Design of multicomponent separation systems including absorption, distillation, extraction, and ion exchange. Emphasis is on the equilibrium stage concept with rates and efficiencies examined.

Properties of petroleum gases and liquids under pressure, process design in the production and refining of natural gas, crude oil, and other important fossil fuels.

The fluid mechanics of multiphase flow systems, such as suspensions, fluidized
solids, and gas-liquid systems, with emphasis on engineering principles and relation with equipment and surroundings.

Thermodynamic property relations, energy balances, and entropy balances applied to chemical and metallurgical processes. Statistical mechanical approach to properties of matter and irreversible thermodynamics.

535(209). Metallurgical Thermodynamics. Prerequisite: a course in physical chemistry, an undergraduate course in thermodynamics, such as Chem.-Met. Eng. 230. I. (3).
Laws of thermodynamics applied to metallurgical systems. Introduction to statistical mechanics.

Applied thermodynamics and kinetics of high-temperature melting and refining reactions employed in extractive metallurgical processes. Experiments concerning these reactions. Lecture and laboratory.

A unified study of heat, mass, and momentum transfer and chemical kinetics. The interpretation of rate data and theories and their use in process design.

550(222). Solid State Kinetics. Prerequisite: physical chemistry or a course in solid state. II. (3).

551(223). Solid State Chemical Principles of Semiconductors. Prerequisite: Chem.-Met. Eng. 500 concurrently and a course in solid state, or equivalent, or permission of instructor. II. (3).

560(126). Electron Microscopy. Prerequisite: senior or graduate standing in engineering or science. I. (3).
Theory, techniques, and applications of electron microscopy. Laboratory instruction in the preparation of specimens, operation of the microscope, and interpretation of micrographs. An opportunity will be provided for laboratory work on problems of interest to individual students.

561(216). Engineering Experiments and Their Design. Prerequisite: senior or graduate standing in engineering or science. II. (3).
The use of statistical methods in analyzing and interpreting experimental data and in planning complex experimental programs. Subjects covered include: probability, distribution functions, theory of sampling techniques and process control, use of the “Chi-Squared” and “t” tests in analyzing and comparing data from simple experiments. An introduction to the analysis of variance and the design of complex experiments. Lecture, recitation, and computation.

563(257). Chemical Process Control and Dynamics. Prerequisite: a course in Laplace transforms, or permission of instructor. I. (3).
The concepts of automatic control and process dynamics are presented and
applied to typical processes encountered in chemical engineering practice, such as the control of temperature, fluid flow, mass transfer processes, and chemical reaction system.

570(218). Theoretical Metallurgy. Prerequisite: a course in physical metallurgy. II. (3).
Electron and zone theories of metals. Theories of alloying, nucleation, and growth; theories of imperfections, transformations; topology of metallurgical structures; diffusion.

571(228). Nonferrous Metallurgy. Prerequisite: Chem.-Met. Eng. 471. II. (3).
Ternary systems, phase transformations, plastic deformation and fracture. Lecture, recitations, and laboratory.

Application of X-ray methods to the study of age hardening, cold working, and phase changes.

Fundamentals involved in choosing a metal for use in a corroding medium or at elevated temperatures.

574(207). Metals at High Temperatures. Prerequisite: Chem.-Met. Eng. 270, 470, or 479. II. (3).
Fundamental principles determining the behavior of metals at high temperatures and the selection and performance of alloys in such applications as jet-propulsion engines, gas turbines, chemical industries, and steam power plants.

575(242). Steels. Prerequisite: Chem.-Met. Eng. 471 or equivalent. II. (3).
Theory and practice of alloy additions to steel and the effect of alloying elements on properties of steels.

576(147). Metals for Process Design. Prerequisite: a course in physical chemistry. II. (3).
The structures and properties of solids. Influence of composition, mechanical and thermal treatments on the properties of metals, and their subsequent behavior in service in industry.

The plastic deformation of metals and alloys. Rolling, forging, extrusion, piercing, and deep drawing.

579(227). Nuclear Metallurgy. Prerequisite: a course in physical metallurgy. II. (3).
The process, mechanical and physical metallurgy of metals used in nuclear reactors: uranium, plutonium, and thorium. Radiation damage to solids. Container materials, fuel element design and fabrication, moderator and control elements, liquid metals.

Simultaneous rate operations and process design.

Selection and design of processes, equipment, and control systems for chemical plants. Utilization and extension of minimum available information to produce workable systems. Economic studies and comparisons in optimization of systems.

The design of chemical and petrochemical process equipment involving heat transfer and mass transfer. Process computations, stress considerations, corrosion
problems and material selections, fabrication methods, assembly and maintenance problems. Equipment evaluation and estimates. Lectures, designs, and reports.

583(232). Process Engineering of Polymer Plants. Prerequisite: Chem.-Met. Eng. 340 and 479, or permission of instructor. II. (3).
Processing methods for production of polymers from raw materials. Design of plants for the manufacture of materials such as polyhydrocarbons, cellulose plastics, nylon, and rubbers.

Detailed study of the processes, operations, and equipment involved in selected industrial fermentation processes directed towards the production of pharmaceuticals and industrial chemicals and industrial waste disposal. Lecture, calculation periods.

Designs and economic studies of selected petrochemical and refining processes.

586(267). Nuclear Fuels and Fuel Processing. II. (3).
The processing of ores containing fissionable and fertile materials; the processing of spent fuel systems; aqueous techniques including solvent extraction and ion exchange; pyrometallurgical methods for component separations. Problems arising when handling fissionable and radioactive materials will be treated in connection with student design problems.

Solidification, structures, and properties of cast ferrous metals, influence of composition, section size and other variables on the rate of malleabilization, influence of variables on the properties and structures of gray irons, selection of cast metals for specific purposes.

589(244). Cast Metals in Engineering Design. Prerequisite: Chem.-Met. Eng. 470, 479, or permission of instructor. II. (3).
An understanding of the properties of the important cast metals is obtained by melting, casting, and testing. In addition to measurement of mechanical properties, resistance to heat, wear, and corrosion is discussed. One lecture and one three-hour laboratory.

636. Metallic-Ceramic Reactions. Prerequisite: physical chemistry and graduate standing. I. (3).
Ceramic solids; metallic and nonmetallic liquid structures; polycomponent equilibria; polycomponent microstructures; high temperature kinetics. Metallurgical and ceramic applications: melting and refining slags, high temperature oxidation-reduction reactions, refractories, nonmetallic inclusions, cermets.

645. Process Analysis. Prerequisite: Chem.-Met. Eng. 500 or equivalent. II. (3).
Problems in the analysis, design, stability and sensitivity, optimization, and transient response of staged, continuous, and batch operations are considered with emphasis on their common mathematical and physical foundations.

650(204). High Polymer Processes and Materials. Prerequisite: a course in physical and organic chemistry or permission of instructor. I. (3).

Consideration of statistical methods which are useful in designing and analyzing experiments involving several variables.

690(210). Research and Special Problems. I, II, and S.S. (To be arranged).
Laboratory and conferences. Provides an opportunity for individual or group work in a particular field or on a problem of special interest to the student. The program of work is arranged at the beginning of each semester by mutual agreement between the student and a member of the staff. Any problem in the field of chemical and metallurgical engineering may be selected; current elections include problems in the following fields: fluid flow, heat transfer, distillation, filtration, catalysis, petroleum, plastics, paint, varnish, ferrous metallurgy, metals at high temperature, nonferrous metallurgy, foundry and cast metals, X-ray applications, electrodeposition, and nuclear energy. The student writes a final report on his project.

691. Engineering Problems. Prerequisite: permission of instructor. I and II. (To be arranged).
A study of contemporary engineering problems and of new areas of engineering exploitation of recent mathematical or scientific advances or breakthroughs.

Special topics in the thermodynamics of chemical engineering processes. Review of latest developments and current research in thermodynamics. Students select individual problems for intensive study.

Advanced study and design of multicomponent and nonideal separations with emphasis on distillation, absorption, and extraction. Equilibrium, rate, and stage.

835. Seminar in Metallurgical Thermodynamics. Prerequisite: a graduate course in thermodynamics. II. (3).
Selected subjects in thermodynamics. Irreversible thermodynamics, and statistical mechanics applied to metallurgical systems.

Theoretical aspects of heat transfer. Classical and current developments presented by students, staff, and guest lecturers. Term paper on original work.

845. Seminar in Applied Chemical Kinetics. Prerequisite: a course in chemical kinetics. (2).

Selected topics in the more advanced fields of physical metallurgy.

Individual study of advanced topics in production, commercial natural gas, refining and petrochemical processes. Seminar and reports.

CHEMISTRY*

Professor Anderson; Professors Bernstein, Brockway, Case, Elderfield, Elving, Halford, Parry, Rulfs, Smith, Vaughan, and Westrum; Associate Professors Meinke, Nordman, Stiles, Tamres, and Taylor; Assistant Professors DeRocco, Elsch, Gordus, Ireland, Jaselskis, Liu, Martin, and Schilt; Instructors Cooke and Longone.

*College of Literature, Science, and the Arts
Elementary course for students who have not studied chemistry in high school.
Two lectures, three recitations, and one three-hour laboratory.

104(3). General and Inorganic Chemistry. Prerequisite: one year of high school chemistry. I and II. (4).
Elementary course for students who have studied chemistry in high school.
Two lectures, two recitations, and four hours of laboratory.

105(6). General Chemistry. Prerequisite: Chem. 103 or 104. II. (4).
Continuation of Chem. 103 or 104 for students who are planning to take no further courses in chemistry. Includes all engineering students except those planning to enter the curriculum in chemical, metallurgical or materials engineering, who should elect Chem. 106. Chem. 105 will not be accepted as a prerequisite for more advanced courses in chemistry. Two lectures, two recitations, and four hours of laboratory.

106(4). General and Inorganic Chemistry. Prerequisite: Chem. 103 or 104. I and II. (4).
Continuation of Chem. 103 or 104 for students not planning to take additional work in chemistry. Students in engineering not planning to enter the curriculum in chemical, metallurgical, or materials engineering should elect Chem. 105 rather than Chem. 106. In Chem. 103 or 104 and 106 the fundamental principles of chemistry are studied, accompanied by the descriptive chemistry of most nonmetallic elements (Chem. 103 or 104) and of the important metallic elements (Chem. 106). Two lectures, two recitations, and four hours of laboratory.

107(5E). General and Inorganic Chemistry. Prerequisite: one year of high school chemistry validated by a satisfactory grade on the placement test given during the orientation period. All other students should elect Chem. 103 or 104 followed by Chem. 105 or 106. I and II. (5).
Fundamental principles of chemistry and a study of the more important elements and compounds, omitting the common nonmetallic elements. Two lectures, three recitations, and four hours of laboratory.

191(8). Inorganic Chemistry and Qualitative Analysis. Prerequisite: Chem. 104 with a grade of A or high B. II. (5).
Ionic equilibrium, descriptive chemistry of the metallic elements, and qualitative analysis of the metallic ions. Three lecture-recitation periods and eight hours of laboratory.

194(14). Unified Chemistry. Prerequisite: Physics 153. II. (4).
The properties of matter discussed from the viewpoint of dynamics; discussions of thermodynamic functions, kinetic theory, and chemical kinetics. Lectures, recitations, and laboratory.

Properties of matter from the viewpoint of atomic structure, including periodic relationships; organic and inorganic chemistry. Lectures, recitations, and laboratory.

220. Organic Chemistry. Prerequisite: Chem. 106, 107, 191, or 195. II. (3).
A survey of the field of organic chemistry. Will not meet premedical or pre-dental requirements and is not accepted as a prerequisite for any other course in the Chemistry Department except Chem. 419 or 465. Students wishing more organic chemistry will be required to take Chem. 222 and 223.

221. Organic Chemistry. Prerequisite: same as for Chem. 220. II. (5).
This course is the same as Chem. 220 with the additional requirements of seven hours of laboratory for experiments which illustrate typical reactions of important types of organic compounds and standard laboratory techniques.
222-223. **Organic Chemistry.** *Prerequisite: Chem. 106, 107, 191, or 195. I and II. (5 each).*

These two courses constitute a year course in organic chemistry. The first part (222) covers aliphatic compounds, carbohydrates, and other selected topics; the second part (223) covers aromatic compounds, proteins, and other topics. Students should plan programs which permit following 222 with 223 in the next semester and at the same time. Three lectures, one recitation, and two afternoons of laboratory work each week.

265. **Principles of Physical Chemistry.** *Prerequisite: Chem. 106 or 107 and preceded or accompanied by Math. 234 or 336 and Physics 145 or 153. (4).*

An introduction to topics such as: kinetic theory of gases and liquids, the first and second laws of thermodynamics, free energy and spontaneity of chemical reactions, and phase equilibrium. Lecture and recitation.

266. **Principles of Physical Chemistry.** *Prerequisite: Chem. 265 and preceded or accompanied by Math. 337 or 371 and Physics 146 or 154. (4).*

A continuation of Chemistry 265 covering topics such as: chemical kinetics, electrochemistry, elementary quantum theory, and atomic and molecular structure. Lecture, recitation, and laboratory.

346(41). **Quantitative Analysis.** *Prerequisite: Chem. 191, 195, or 266. I and II. (4 required).*

A survey of the theory and practice of volumetric, gravimetric, electrometric, and colorimetric analysis. Systematic analysis of complex materials. Two lectures, one recitation, and two four-hour laboratory periods.

403(107). **Inorganic Chemistry.** *Prerequisite: Chem. 346. I and II. (2).*

A systematic survey of the chemistry of the elements from the standpoint of atomic structure, periodic and group relationships.

425(163). **Qualitative Organic Analysis.** *Prerequisite: Chem. 223, 295, or 421. I and II. (3).*

Laboratory fee. Fundamental organic reactions are studied as a basis for systematic analysis and identification of organic compounds.

447. **Physicochemical Methods in Analytical Chemistry.** *Prerequisite: Chem. 346 and 468. I and II. (4).*

Laboratory fee. Theory, operation, and applicability of the principal physical and physicochemical approaches used in chemical analysis, including electrical, optical, and radiocchemical methods. Lecture, recitation, and laboratory.

466(171). **Electrochemistry.** *Prerequisite: Chem. 469. I. (2).*

Elementary treatment of the fundamentals of the subject. Two lectures.

468(182). **Physical Chemistry.** *Prerequisite: Chem. 346, Physics 126, and Math. 364 or 372. I and II. (3).*

Nature of the gaseous and liquid states, solution theory, homogeneous and heterogeneous equilibria, thermochemistry and thermodynamics.

469(183). **Physical Chemistry.** *Prerequisite: Chem. 468. I and II. (3).*

Electrochemistry, atomic concepts of matter and energy, molecular and crystal structures, chemical kinetics.

481(185). **Physiochemical Measurements.** *Prerequisite: Chem. 346, and preceded or accompanied by Chem. 465 or 468. I and II. (2).*

Laboratory fee. Laboratory work, including determinations of molecular weights, measurements of properties of pure liquids and solutions, and thermochemical measurements. One discussion period dealing with treatment of errors and related topics to be arranged.
482(186). Physiochemical Measurements. Prerequisite: Chem. 481. I and II. (2).
Laboratory fee. A continuation of Chem. 481. Homogeneous and heterogeneous equilibria, kinetics, atomic and molecular properties, and electrochemistry. One discussion period to be arranged.

538(256). Organic Chemistry of Synthetic Polymers. Prerequisite: Chem. 223 or 421. II. (2).
Chemistry of synthetic polymers, including the preparation of the intermediates for resins and rubber substitutes of commercial importance. Two lectures and reading.

555(235). Radiochemical Techniques. Prerequisite: permission of instructor. I and II. (3).
A laboratory course illustrating measurement, manipulatory and safety techniques and equipment used with radioactive isotopes at the microcurie, milli-curie, and multicurie levels; includes radiochemical separations, weak beta emitter (C14) work, typical tracer experiments, and use of high-level handling facilities.

CIVIL ENGINEERING

260(1). Basic Surveying. Prerequisite: Math. 233. I and II. (3).
Use, care, and adjustment of basic surveying instruments; horizontal angle measurement, leveling, taping; circular curves, grades and vertical parabolic curves, profiles, earthwork; computations, significant figures, errors, desk calculators, U.S. Public Land System.

261(2). Surveying Computations. Prerequisite: Civ. Eng. 260 or equivalent, preceded or accompanied by Math. 234. I and II. (3).
Principles of horizontal control, unified system of geometric computations based on rectangular co-ordinates and the “Intersection Solution”; logical synthesis of computations for complicated geometrical engineering applications; introduction, applications, and use of electronic computers; principles of surveying astronomy, use of ephemeris and star catalog; elements of photogrammetry.

Analysis of stresses in simple and continuous structures; calculation of reactions, shear, and bending moment due to fixed and moving loads; design of steel, reinforced concrete, and wood structures. Discussion of framing plans. Not open to civil engineering students.

Calculations of reactions, shears, and bending moments in simple, restrained, and continuous beams due to fixed and moving loads; simple trusses with fixed and moving loads; determinate frames; columns; tension members; girders; introduction to design.

Design and details of simple beams, girders, columns, and trusses. Computations, drawing work, and laboratory experiments.

350(30). Concrete Mixtures. I and II. (1).
Theory and design of concrete mixtures; analysis of aggregate grading; bulking due to moisture; strength, permeability, durability, yield, and economy. Discussions, problems, and laboratory.
Precise observational methods for triangulation and control levels; use of theodolite and geodetic level, base-line measurements; electronic distance measurements; field assessment of errors and adjustments; astronomical observations for precise azimuth determinations; application of precise control to layout of engineering projects.

363(4). Basic Surveying. Prerequisite: Math. 233 or equivalent. I and II. (2).
For noncivil engineering students or those having permission of program adviser. Care, adjustment, and use of basic surveying instruments; leveling, taping, horizontal angle measurement, traverse surveys; computation, use of calculating machines.

364(12). Surveying. Prerequisite: Math. 241. II. (3).

Planning, location, design, construction, and maintenance of inland transportation facilities. Introduction to transportation economics.

Legal principles of contracts, torts, and agency; ethics, professional registration and professional conduct; technical specifications; engineering-legal relationships and problems. Lectures, reading, problems, and discussion.

Properties of materials; stress analysis and design of reinforced concrete structures; introduction to prestressed concrete and ultimate strength analysis. Lectures, problems, and laboratory.

420(140). Hydrology. Prerequisite: preceded or accompanied by Eng. Mech. 324 or permission of instructor. I and II. (3).
The hydrograph and the various factors that affect and determine its characteristics; precipitation, evaporation, transpiration, infiltration; the unit hydrograph; the distribution graph; maximum flood flows and frequency of occurrence; normal flow and low flow; effect of forests, cultivation, and drainage; yield of wells; stream flow records. Lectures and laboratory.

Hydrostatic stability; orifices and weirs; Venturi meters; cavitation; pump characteristics; flow in pipes and fittings; unsteady-uniform flow; steady-nonuniform flow. Lecture, laboratory, and computation.

Origin, evolution, and classification of soil; characteristics and properties of soil; soil moisture, ground water, capillarity, and frost action; theories of soil resistance and an introduction to practical applications including pressure distribution, bearing capacity of spread footings and pile substructures; excavations and embankment stability; highway and airport construction.

Sources of water supply, quality and quantity requirements, design fundamentals of works for development, collection, purification, and distribution of water.

481(53). Sewerage and Sewage Treatment. Prerequisite: Civ. Eng. 480. I and II. (2).
Requirements of residential and municipal sewerage systems, procedures for the design and construction of sewerage and sewage treatment works.

The scientific method, its elements and procedures. Design of experiments, analysis of data, inferences, and conclusions; preparation for publication. Discussion, problems, and laboratory.

501(181). Legal Aspects of Engineering. I and II. (3).

505(115). Boundary Surveys. Prerequisite: Civ. Eng. 260 or equivalent. I. (3).

Problems relating to the establishment of land boundaries, including study of special legal phases which confront the land surveyor; basic principles of the U.S. Public Land System.

Physical characteristics of structural woods; grading rules; design of timber structures.

Stresses in subdivided panel trusses; principle of virtual displacements and virtual work; energy theorems; graphical methods; analysis of statically indeterminate trusses and frames.

514(124). Rigid Frame Structures. Prerequisite: preceded or accompanied by Civ. Eng. 415. I and II. (3).

Analysis of rigid frames by methods of successive approximations and slope deflections; special problems in the design of continuous frames.

Fundamental principles of prestressing; prestress losses due to shrinkage, elastic action, plastic flow, creep, etc.; stress analysis and design of prestressed concrete structures.

Functional design of buildings; selection and analysis of structural elements; reinforced concrete flat slab design; digital computer applications. Lectures and computation laboratory.

517(227). Bridge Engineering and Design. Prerequisite: Civ. Eng. 513 or 573. II. (3).

History of bridges; selection and design of reinforced concrete and steel highway and railway bridge structures based upon the requirements of economics, underclearance, site, foundations, erection, maintenance, aesthetics, safety, and financing. Lectures and computation laboratory.

Introduction to water power development, including selection of type of turbine; storage and pondage; surge in pipe lines; water hammer analysis; digital programing of unsteady flow situations.

523(143). Flow in Open Channels. Prerequisite: Civ. Eng. 421 or equivalent. I and II. (3).

Laminar and turbulent flow; rapidly varied flow; subcritical and supercritical flow; transitions; channel controls; gradually varied flow translatory waves.

Two-dimensional potential flow: the flow net; percolation and hydrostatic
uplift; side-channel spillways; boundary-layer; hydraulic similitude; hydraulic models; stilling pools.

526(146). Hydraulic Engineering Design. Prerequisite: Civ. Eng. 415 and 420; preceded or accompanied by Civ. Eng. 523. II. (3).
Design of hydraulic structures such as diversion dams, head gates, control works, silt traps, siphon spillways, side-channel spillways, earth canals, and other structures involving accelerated flow, backwater, hydraulic jump, sedimentation, and erosion.

Open to seniors and graduates. Elements of cost in construction; determination of unit costs; analysis of cost records; estimates of cost; amortization and debt retirement; quantity surveys.

532(132). Construction Methods and Equipment. II. (3).
Open to seniors and graduates. Contractors' organizations; plant selection and layout; equipment studies; methods of construction. Seminar.

533(133). Estimating Practice. Prerequisite: preceded or accompanied by Civ. Eng. 531. I. (1).
Laboratory practice in the estimating and pricing of construction work. Quantity surveys, unit costs of labor and material, indirect costs.

Open to seniors and graduates. Contractors' organization; plant selection and layout; equipment studies; methods of construction. (Similar to Civ. Eng. 532 but does not include seminar.)

535. Analysis of Highway Construction Operations. Prerequisite: Civ. Eng. 370 and preceded or accompanied by Civ. Eng. 531 or permission of instructor. II. (3).

Evaluation of soil in highway design and construction; soil surveys and mapping; identification and classification; subgrade bearing capacity, drainage, frost action, soil stabilization and design of flexible and rigid pavements; fills and embankments, swamp construction. Airphoto analysis; typical land forms, drainage patterns, field mapping, and materials surveys.

Selected problems in airport design and construction with emphasis on soil engineering; soil investigation and use of soil surveys in site selection; runway layouts, grading plans, and earthwork estimates; design and surface and subsurface drainage; airport pavement design. Airphoto analysis; typical land forms, drainage patterns, and mapping.

Analysis and evaluation of field borings, soil test data, and field loading tests; bearing capacity for spread footings, piles and pile groups; earth pressure and mass stability; surface excavation and embankments; tunnel construction and design; subsidence and control of damage due to subsurface excavation; investigation of overloaded foundations. Lectures, references, and design problems.
Laboratory and field practice in soil sampling and testing, analysis and interpretation of test results; mechanical analysis, Atterberg limits, shrinkage and expansion; measurement of physical properties, direct shear, unconfined and triaxial compression and internal stability; compaction characteristics; soil surveys and soil mapping.

Sources, production, and testing of highway materials; specifications; minor research problems.

551(130). Physical Properties of Concrete Masonry. (2).
Design of concrete mixtures to obtain specified physical properties, including strength, elasticity, plasticity, impermeability, durability, and economy. Seminar, problems, and laboratory.

Selection of bituminous materials for various uses; pavement types; design of mixtures; construction and maintenance methods.

560(113). Photogrammetry. Prerequisite: preparation in trigonometry and physics. II. (2).
Basic theory of photogrammetry, geometry of photogrammetric systems, analytical solutions; application to mapping from aerial photographs.

Introduction to geodesy; history, theory, figure of the earth, geographic position, map projections, state plane co-ordinate systems, application to the several branches of surveying. Each student will prepare a term paper on a subject approved by the instructor. Lectures, reference work, and recitation.

562(102). Geodetic Field Methods. Prerequisite: Civ. Eng. 561 or permission of instructor. II. (2). Camp Davis. S.S. (4).
Reconnaissance for geodetic triangulation; special observing methods for first-order horizontal and vertical control; Laplace stations and deflection of the vertical; actual observations, reduction, and adjustment of results in an actual field situation. Term paper or project report required of each student.

Theory of least squares, applications to the adjustment of geodetic observations; arrangement for solution of complex adjustments on electronic computers; actual solution of selected problems.

564(106). Special Problems in Advanced Surveying. I and II. (To be arranged).
Special advanced work can be provided for those who have received credit in Civ. Eng. 362.

Control surveys, methods and adjustments for use in municipal mapping and administration, surveys for streets, utilities, property lines, tax maps, subdivision control and development.

570(165). Highway Traffic. Prerequisite: restricted to senior and graduate students. (2).
Characteristics of highway traffic and driver behavior, traffic control and regulation, highway safety, traffic organization and administration.
571(166). Traffic Engineering. *Prerequisite: Civ. Eng. 370 or permission of instructor.* II. (3).

Principles of highway traffic flow, traffic surveys and planning, analysis and presentation of data, traffic design.

Principles of engineering economics applied to highway planning, location, and design; highway finance, taxation, and administration.

Studies of highway capacity, alignment, profiles, intersections, interchanges, and grade separations.

Theory and practice of railroad engineering principles. Stresses in track, performance and durability of track materials, stabilization of ballast and roadway, maintenance of way-work equipment, organization and administration of maintenance operations.

Design of railroad, highway, waterway, and airport terminals, joint terminals, layout of the various types of yards, and traffic facilities.

Statistical analysis of operating expenses. Curve, grade, and train resistances, ruling grades, rise and fall, and virtual profiles; line changes, grade reductions, and elimination of grade crossings.

580(151). Microbiology I. (3).

Lectures and laboratory. Principles and techniques of microbiology with an introduction to their application in the several fields of engineering.

581(156). Sanitary Chemistry. *Prerequisite: Chem. 104 and 106 or equivalent.* I. (2-3).

Procedures required in the analysis of water, sewage, and industrial wastes.

Computations and design of processes and typical structures related to water supply, water purification, sewerage, and sewage disposal. Drawing room and visits to plants and work under construction.

583(152). Water Purification and Treatment. *Prerequisite: Civ. Eng. 480 and 581 or permission of instructor.* II. (3).

Engineering methods and devices for obtaining and improving the sanitary quality and economic value of municipal water supplies; processes of sedimentation, use of coagulants, filtration, softening, iron removal, sterilization; devices and structures for accomplishing these objectives. Lectures, library reading, and visits to municipal water purification plants.

584(153). Waste Water Treatment and Disposal. *Prerequisite: Civ. Eng. 481 and 581 or permission of instructor.* I. (3).

Engineering, public health, legal, and economic problems involved in the design and construction of facilities for the treatment and disposal of sewage and other waste waters. Lectures, library reading, and visits to nearby disposal plants.

585(155). Municipal and Industrial Sanitation. (3).

Scientific foundations of public sanitation, in particular relation to closely built-up areas and to industrial environments.
586(157). Industrial Waste Treatment. Prerequisite: Civ. Eng. 581 and 584 or permission of instructor. II. (2).
Evaluation of the industrial waste problem, the character and quantity of wastes produced, and the application of engineering principles to the satisfactory disposal of these wastes.

587. Industrial Bacteriology. Prerequisite: Civ. Eng. 580 or equivalent. II. (3).
Lectures and demonstrations to illustrate the application of microbiological principles and techniques to industrial processes.

Monopoly as an advancement of the arts and sciences; patentability; statutory provisions; rights of inventors generally; patent royalty contracts and assignments; procedure in preparation of patents. Texts, cases, and discussion.

603(183). Public Utility Problems. II. (2).
Nature of public service corporations; organization; ownership; valuation; depreciation; accounting; regulations; taxation; rates.

611(231). Structural Dynamics. Prerequisite: Math. 404 or equivalent. (3).

612(222). Structural Members. I. (3).
Analysis and design of structural members under bending, torsion, and axial load. Beams on elastic foundations, box girders, and curved beams. Buckling of columns and beams. Emphasis on numerical methods.

613(233). Structural Plate Analysis. Prerequisite: Math. 403 or equivalent. II. (2).
Stress analysis of flat plates loaded either in their plane or in bending. Numerical analysis. Applications to special problems in flat slab construction.

Continuous truss bents; hinged and fixed arches; rings; frames with curved members; flexible members including suspension bridges; frames with semirigid connections.

615(221). Analysis and Design of Folded Plates, Domes, and Shells. Prerequisite: Civ. Eng. 512 and 514 or equivalent. I. (3).
Stresses and special design problem in folded plate construction; membrane stresses in domes and double curved shells; flexural action near boundaries; cylindrical concrete shell roofs; cylindrical tanks.

Yield, fracture, and fatigue failure of metals. Plate buckling design criteria. Rules of practice for the plastic design of structures. Plastic analysis and design of continuous beams and frames.

617(229). Mechanical Methods of Stress Analysis. Prerequisite: preceded or accompanied by Civ. Eng. 514. II. (1).
Mechanical analysis of stresses in statically indeterminate structures by means of models. Use of the Begg's apparatus in analyzing complicated structures is given particular attention. Students are required to make the models and the necessary observations and calculations.

The analysis of beams, frames, trusses, and arches by high-speed digital computer. The general method of influence coefficients; matrix methods, Algorithm development, flow charts, programing. Students will solve a sequence of problems on the high speed computer in the University Computing Center.
Problems in laminar flow; viscometry; the mechanics of turbulent flow; sedimentation; waves; high velocity flow in open channels; variable flow in open channels.

652(262). Advanced Bituminous Materials and Flexible Pavement Design. Prerequisite: Civ. Eng. 552. (To be arranged).
Conferences and special problems on new developments in bituminous materials, bituminous mixture design, and flexible pavement design for highways and airports. Conferences, assigned reading, laboratory investigations, and reports.

670(265). Transportation Planning. Prerequisite: Civ. Eng. 570 and 672, or permission of instructor. (3).
Analysis of supply and demand for transportation services, transport relationships to land use and other elements of regional and urban planning, and planning techniques applied to transportation problems.

Seminar course dealing with special phases of highway design and construction. Assigned reading and reports.

672(178). Transportation. Prerequisite: principles of economics. I. (3).
Transportation facilities, services, and policies, with emphasis on comparative performance of the various agencies of transport.

673(164). Highway Transport. II. (2).
Fundamentals of transportation of passengers and commodities over highways; regulation of motor carriers, management of transportation companies.

674(264). Industrial Transport Management. Prerequisite: Civ. Eng. 672 or Econ. 433, or permission of instructor. (4).
Analysis of industrial transportation requirements; classification, rates, and tariffs; management of private transport services; organization of traffic department; regulatory procedures and practices.

675. Advanced Highway Design. Prerequisite: Civ. Eng. 573 or permission of instructor. (3).
Comparative analysis of alternate locations and designs of urban and rural highways.

680. Microbiology II. Prerequisite: Civ. Eng. 580 or equivalent. (2).
Lectures and laboratory dealing with inter-relationships between organisms of sanitary significance such as fungi, algae, protozoa, and higher forms of invertebrates.

Specialized techniques in sanitary engineering laboratory studies designed to acquaint the graduate student with modern applications of the latest analytical equipment and the fundamental principles of its operation.

682(254). Advanced Sanitary Engineering Design. Prerequisite: Civ. Eng. 584 and preceded or accompanied by Civ. Eng. 583. II. (3).
Functional design of sanitary engineering structures and typical plant layouts; drafting room and field studies; preparation of design reports.

685. Special Problems in Sanitary Engineering I. (To be arranged).
Special problems in sanitary engineering offered the first semester only. Designed to broaden the graduate student’s perspective in one or more special fields.

686. Special Problems in Sanitary Engineering II. (To be arranged).
Further special problems in sanitary engineering offered the second semester only for additional special work in a limited field.
780(251). Water Resource Engineering. II. (3).
Conservation and protection of sources of water supply; laws governing appropriation and use of water resources as affecting both quantity and quality; standards of water quality, purposes and results of water purification; legal rights and responsibilities of public water utilities. Text and library reading, lectures, and seminar.

Preparation and presentation of reports covering assigned subjects.

Lectures, assigned reading, and student reports on problems selected from the field of hydraulic engineering.

Preparation and presentation of reports covering assigned topics.

910(220). Structural Engineering Research. (To be arranged).
Assigned work in structural engineering as approved by the professor of structural engineering. A wide range of subject matter is available, including laboratory and library studies.

920(240). Hydrological Research. Prerequisite: Civ. Eng. 420. (To be arranged).
Assigned work on some special problem in the field of hydrology; an enormous amount of data is available for such studies.

Assigned work in hydraulic research; a wide range of matter and method permissible.

946(236). Soil Mechanics Research. (To be arranged).
Advanced problems in soil mechanics, foundations, or underground construction selected to provide the student with knowledge of recent application and development in engineering design and construction practice. Assigned problems must be carried to a stage of completion sufficient for a written report which will normally be required for credit.

960(210). Geodetic Engineering Research. Prerequisite: Civ. Eng. 561. (To be arranged).
Assigned work in geodetic engineering, or other special field in surveying of interest to the student and approved by the professor of geodetic engineering.

970(260). Highway Engineering Research. Prerequisite: permission of instructor. I and II. (To be arranged).
Individually assigned work in the field of highway engineering.

971(270). Transportation Engineering Research. Prerequisite: Permission of instructor. I and II. (To be arranged).
Individual research and reports on library, laboratory, or field studies in the areas of transportation and traffic engineering.

980(250). Sanitary Engineering Research. (To be arranged).
Assigned work upon some definite problem related to public sanitation; a wide range of both subject matter and method is available, covering field investigations, experimental in the laboratory, searches in the library and among public records, and drafting room designing.

990(280). Civil Engineering Research. I and II. (To be arranged).
Assigned work in the field of public utilities, or engineering relations and ethics. To obtain credit, a thesis must be prepared which would be acceptable for publication.
The following courses have been developed through co-operation of the College of Engineering and the College of Literature, Science, and the Arts, including departments of Mathematics, Psychology, and Philosophy. These courses are offered by the graduate degree Program in Communication Sciences.

400. Introduction to the Communication Sciences I. Prerequisite: Math. 364 or 372 and Physics 126 or 146, or permission of instructor. I. (3).
Introduction to the concepts of communication and processing of information by natural and artificial systems.

401. Introduction to the Communication Sciences II. Prerequisite: Com. Sci. 400. II. (3).
Continuation of Com. Sci. 400.

410. Communications Electronics. Prerequisite: Com. Sci. 400 (may be taken concurrently) and Math. 404, or permission of instructor.
I. (3).
Passive circuit theorems, steady-state and transient analysis, active circuits, and switching networks.

I and II. (3).
Wide-band amplifiers; radio-frequency amplification; modulation and detection; transmitting and receiving circuits; radio-frequency transmission lines. Similar to Elec. Eng. 430 without laboratory.

522. Theory of Automata. Prerequisite: Philos. 414 or Math. 497, Math. 473 or Elec. Eng. 465, and Com. Sci. 400, or permission of instructor. II. (3).
The application of logic to finite computers, Turing machines, probabilistic automata, and self-reproducing automata.

The theory of the design and programming of automata which change their structure and behavior in order to adapt to environments containing them.

541. Descriptive Models of Natural Languages. Prerequisite: Com. Sci. 400, and Math. 429 or 561, or permission of instructor. I or II. (3).
Introduction to the physical, structural, and mathematical methods of analyzing and describing natural languages. Lecture and laboratory.

542. Mathematical Linguistics. Prerequisite: Com. Sci. 541. II. (3).
The statistical properties of linguistic units; lexicostatistics. Finite-state and nonfinite-state languages. Algebraic models of natural languages.

546. Acoustical Analysis in Speech Communication. Prerequisite: Com. Sci. 541 or permission of instructor. II. (3).
The application of instrumental and experimental techniques to the study of the linguistic structure of speech. The relation between linguistic units and experimental measurements. Lecture and laboratory.

Finite coding theory for error checking and secrecy; linear codes, error correction capabilities of linear codes, burst error correction and codes for the checking of arithmetic, linear switching circuits; cyclic codes, Bose-Chaudhuri Codes.

An analysis of the research literature on the acoustical theory of speech. It
includes the study of advanced instrumental and experimental techniques in speech analysis. Lecture and laboratory.

648. Automation of Natural Languages. Prerequisite: Com. Sci. 541. (3).
Automatic speech recognition, speech synthesis, and the machine translation of languages. The basic theoretical problems involved, the current research literature, and current instrumental techniques in the field are studied.

802. Interdisciplinary Seminar in Communication Sciences I. Prerequisite: permission of instructor. I. (3).
The integration of information essential to the communication sciences, and the study of theoretical formulations and experimental research in the communication sciences.

803. Interdisciplinary Seminar in Communication Sciences II. Prerequisite: Com. Sci. 802. II. (3).
Continuation of Com. Sci. 802.

900. Advanced Studies in the Communication Sciences. Prerequisite: permission of instructor. I and II. (To be arranged).
Individual study and research.

ECONOMICS*

Economics 103 and 104 are introductory courses designed especially for students in the College of Engineering and are the usual prerequisite to the election by engineering students of the more advanced courses in the Department of Economics listed below. Upperclassmen, however, may take Economics 271, 473, and 475 without having had Economics 103 and 104. For further details with respect to these courses and for additional courses in the field of economics, consult the Announcement of the College of Literature, Science, and the Arts.

Students who elect any course without first completing the necessary prerequisites will be denied credit in that course.

103, 104(53, 54). General Economics. Prerequisite: Econ. 103 is prerequisite to Econ. 104. 103, I and II; 104, I and II. (3 each).
For students in the Colleges of Engineering and of Architecture and Design and other professional schools and colleges. Not open to freshmen. General survey of economic principles and problems, with primary emphasis on the latter during the second semester.

271, 272(71, 72). Accounting. Prerequisite: Econ. 271 is prerequisite to Econ. 272. Not open to freshmen. 271, I and II, (3); 272, I and II. (4).
Concepts and procedure of accounting from the standpoint of investors and business management.

*College of Literature, Science, and the Arts.
An introduction to problems and methods in budgeting and spending the consumer's money and effort. Among other topics are consumer co-operation, insurance, and other security measures.

For juniors, seniors, and graduates who have had no course in economics and who desire one semester of work in the subject. May be used as prerequisite for advanced courses with permission of course instructor. Economic principles and their application to questions of public policy.

411, 412(101, 102). Money and Banking. Prerequisite: Econ. 103 and 104. Econ. 411 is prerequisite to Econ. 412. 411, I and II; 412, I and II. (3 each).
Nature and function of money and banking and contemporary monetary problems.

421, 422(121, 122). Labor. Prerequisite: Econ. 103 and 104. Econ. 421 is prerequisite to Econ. 422. 421, I and II; 422, I and II. (3 each).
Econ. 421 considers the labor force, its employment and unemployment, wages, hours, social security, and an introduction to trade unions. Econ. 422 deals with union history, union structure and organization, the development of collective bargaining, labor disputes, labor law, and the significant issues in labor relations.

423(123). Social Security. Prerequisite: Econ. 421 or permission of instructor. I. (3).
Application of the principles of social insurance to the problems of economic insecurity; unemployment compensation, old age and survivors insurance, and health insurance; federal and state legislation and current proposals.

431(131). Corporations. Prerequisite: Econ. 103 and 104. I. (3).
Large enterprises and especially the corporate form of organization and corporation financing, with emphasis on the public interest therein and on government policies.

433(133). Transportation. Prerequisite: Econ. 103 and 104. II. (3).
An economic analysis of the transportation industries and the application of this analysis to public policy problems.

434(134). Public Utilities. Prerequisite: Econ. 103 and 104. II. (3).
Nature and problems of the public utility industries from the standpoint of government regulation.

447. Economic Development and Problems of South Asia. Prerequisite: Econ. 441 or permission of instructor. I. (3).
A study of economic development problems and programs in South Asia, especially India, Pakistan, and Ceylon.

457(197). Comparative Economic Systems. Prerequisite: Econ. 103 and 104. I. (3).
Theories of capitalism and socialism and of market and planned economies, and their application in selected countries, including the United States, the Soviet Union, and others.

475(175). Elementary Economics Statistics. Prerequisite: Econ. 103 or 104. Juniors and seniors may elect this course concurrently with Econ. 103 or 104. I and II. (3).
Introduction to the principal methods of statistical analysis as applied to economic problems.

481(181). Public Finance. Prerequisite: Econ. 103 and 104. I. (3).
Principles and problems of government finance—federal, state, and local.
ELECTRICAL ENGINEERING

210(3). Circuits I. Prerequisite: Math. 234. (4).
Direct current and alternating current circuits. Kirchoff's laws, loop and node equations, network theorems. Alternating-current wave forms, effective and average values, instantaneous and average power. Single phase circuits, resonance, complex operator, polyphase circuits, ideal transformers. Two lectures, one three-hour computing period, and one three-hour laboratory.

215(9). Network Analysis. Prerequisite: preceded or accompanied by Math. 372. (3).
Analysis of resistive, inductive, and capacitive circuits, direct current, transient and sinusoidal steady-state solution. Phasor and complex number analysis techniques. Superposition and reciprocity; mesh and nodal analysis; Thevenin's and Norton's theorems; maximum power transfer. Coupled circuits and transformers; polyphase systems, Transmission lines.

220(10). Electromagnetic Field Theory I. Prerequisite: Physics 146 and preceded or accompanied by Math. 372. (3).
The physical and mathematical treatment of forces and energy in electrostatic fields, the capacitance and inductance of systems of conductors; the concept of polarization and magnetization; relative permittivity and permeability; Faraday's Law of Induction, Ampere's Law and applications to simple conduction systems; Maxwell's Equations.

301(141). Professional and Economic Applications in Electrical Engineering. Prerequisite: preceded or accompanied by Elec. Eng. 330 or permission of instructor. (2).
Economic, financial, and intangible analysis, corporate finance, time element of values, comparison of alternatives, economic decay, replacement, effect of income taxes. Kelvin's Rule, Game theory, linear programming, and economics of large systems.

Writing circuit equations; node and loop methods; transient and steady-state response; Fourier series analysis; Fourier integral; transients by Laplace methods; complex frequency; poles and zeros; admittance and impedance; network theorems; graphical analysis methods; energy and power effects; polyphase circuits; electromechanical systems.

315(5). Direct and Alternating Current Apparatus and Circuits and Electronics. Prerequisite: Math. 364 or 372 and Physics 146. (4).
Electric circuits; direct and alternating current motors and generators; electron ballistics, tubes, and R. C. coupled amplifiers. Three lectures and one three-hour laboratory.

A comprehensive treatment of linear and nonlinear (electronic) circuit theory expressly developed to satisfy the requirements of nonelectrical engineering students. Laboratory experiments demonstrate and corroborate the theory developed in the class. Recitations and laboratory. Not open to electrical engineering or science engineering students.

Discussion of the physical quantities, electrical charge, and current. Analysis of phenomena dependent on these quantities in terms of the field concept. Electric and magnetic forces; introduction to electric and magnetic properties of materials,
definition of circuit elements, transient and nonlinear phenomena; magnetic cir-
cuits and principles of energy conversion. Three lectures and one three-hour
laboratory.

330(120). Electronics and Communications I. Prerequisite: Elec. Eng. 310 and 380
or Physics 455. (4).
Circuit models of electronic devices; linear and nonlinear analysis of basic elec-
tronic circuits; rectification, amplification, modulation, and oscillation; circuit
and device noise analysis. Lectures and laboratory.

Introduction to electronic systems, block diagrams with identification of com-
ponents. Analysis and design of rectifiers, amplifiers, waveform generators, and
pulse circuits. Design and application of modulation and detection systems. Study
of close-loop systems including transient and steady-state response. Discussion of
electronic equipment and systems, computers, control systems, and special instru-
ments and devices. Lectures and laboratory.

343(153). Energy Conversion and Control I. Prerequisite: Elec. Eng. 220 and 310,
and Math. 404. (3).
A unified and integrated treatment of the basic principles governing the dy-
namic behavior of physical components and systems utilizing field, torque, current,
voltage, force, and energy relations. Application to transformers, d-c and a-c
machines; hydraulic, pneumatic, photo-electrical, and thermal electric elements.

Methods of measuring current, resistance, electromotive force, capacitance, in-
ductance, and hysteresis of iron, and the calibration of the instruments employed.
Two lectures and one three-hour laboratory.

361(131). Technical Electrical Measurements. Prerequisite: Elec. Eng. 360 or
equivalent. (2).
Selected topics in technical electrical measurements; dielectric measurements
by Schering bridge methods, watt-hour meter calibration, magnetic measurements.
One lecture and one three-hour laboratory.

376(172). Electric Lighting and Distribution. Prerequisite: Math. 403. (2).
For students of architecture particularly; students of electrical engineering
cannot receive credit for this course.

or 315; preceded by Elec. Eng. 220. (4).
Electron tube and transistor characteristics; amplifiers, rectifiers, and equivalent
circuits; electron ballistics and space-charge flow in cathode-ray and grid-con-
trolled vacuum tubes; thermionic emission, gaseous conduction devices; energy-
level diagrams for atoms, metals, and semiconductors; transistor physics. Lectures
and laboratory.

407(187). Seminar in Professional and Industrial Practices in Electrical Engineer-
ing. Prerequisite: open to seniors and graduate students. (1).
The nature of typical engineering decisions in electronic and other research,
development, and production; organizational pattern and operating and personnel
practices in major engineering establishments; the nature of operations research;
stages in the growth of a new engineering field; compatibility between electronic
and other devices and equipment; reliability, specifications, patents, origin and
use of professional and commercial standards; functions of professional societies
and trade associations; professional ethics; the consultant's function.

Analysis of distributed parameter systems; transmission of electromagnetic waves
in lines and waveguides; reflections; measurements; equivalent circuits; image wave filter analysis.

Matrix analysis of multiterminal networks; network function properties; two-port networks; synthesis of driving-point and transfer functions; cascaded networks; image filter synthesis.

418(108). Networks and Electronic and Transistor Circuits. Prerequisite: Elec. Eng. 315 or equivalent. (4).
Network analysis; vacuum tube and transistor circuits; amplifiers, mixers, modulators, and detectors. Not open to electrical engineering students. Lectures and laboratory.

419(109). Transistor Circuits. Prerequisite: Elec. Eng. 315 or equivalent. (2).
Not open to electrical engineering students. Basic semiconductor principles and transistor characteristics; the properties of small signal transistor amplifiers; bias considerations and temperature effects; power amplifiers, oscillators, and other circuits employing transistors; noise in transistors.

Review of electrostatics and magnetostatics using vector calculus, solution of Laplace's and Poisson's equations in several co-ordinate systems; Maxwell's Equations, wave propagation, retarded potentials, reflection and refraction of electromagnetic radiation; applications to elementary radiating systems. Antennas.

425(112). Electromagnetism of Continuous Media I. Prerequisite: Elec. Eng. 420 or permission of instructor. (3).
Application of Maxwell's Equations to material media. The electromagnetic relations derivable from thermostatic and thermodynamics; single electron atoms, periodic table, bonding of simple molecules; covalent, ionic and metallic bonding of solids; band theory of solids; engineering applications.

Wide band amplifiers, radio-frequency amplification; modulation and detection; transmitting and receiving circuits; radio-frequency transmission lines. Lectures and laboratory.

433(103). Electroacoustics and Ultrasonics. Prerequisite: Math. 404 and Elec. Eng. 310, or permission of instructor. (3).
Derivation of the equations for propagation of sound; electromechanical and electroacoustical systems in terms of equivalent electrical networks; loudspeakers and microphones; acoustic instrumentation and measurements. Lectures and laboratory.

434(104). Architectural Acoustics. Prerequisite: Math. 234 or permission of instructor. (2).
The application of acoustics to architectural problems. Acoustical terminology and the properties of sound waves. Sound absorptive materials, noise control in relation to architecture, and the acoustics of rooms and buildings.

435(225). Television. Prerequisite: preceded or accompanied by Elec. Eng. 430. (2).
Basic principles, cathode-ray scanning devices and television receivers and transmitters.

Electron tubes and semiconductors as circuit elements; network theory including these elements; amplifiers, radio-frequency circuits. Amplitude, frequency and pulse modulation, frequency spectra. Radio receivers and transmitters, noise in
Electrical Engineering 127

communication circuits. Not open to electrical engineering students. Lectures and laboratory.

441(151). Induction Machinery. Prerequisite: Elec. Eng. 444. (3).
Theory and operating characteristics of polyphase and single-phase induction motors, performance tests, speed control, time and space harmonics, unbalanced operation, transient operation, design considerations including the use of the computer.

Direct- and alternating-current motors and control equipment; electronic tubes and circuits including industrial types. Not open to electrical engineering students. Three lectures and one four-hour laboratory.

444(154). Energy Conversion and Control II. Prerequisite: Elec. Eng. 343 or permission of instructor. (4).
Generalization of the basic principles of the dynamic behavior and energy conversion of physical elements, including an introduction of Lagrange's equations, Hamiltonian functions, and Legendre transformations. Introduction to feedback control system principles and transfer functions. Laboratory experiments demonstrating and corroborating the theory developed in class. Lectures and laboratory.

Analysis and synthesis of linear feedback control systems utilizing the Laplace transform, frequency response and root locus as methods of analysis. Laboratory experiments involve the study of several control systems and their simulation on the differential analyzer. Lectures and laboratory.

447(157). Introduction to Servomechanisms. Prerequisite: Math. 404 and Elec. Eng. 310 or permission of instructor. (2).
A theoretical study of feedback control systems; transfer function analysis; conditions governing the stability of these systems; applications to position, speed, and process control systems.

Traffic studies, train schedules, speed-time and power curves, locomotive train haulage, signal systems, cars and locomotives, control systems, electrification of trunk lines.

Application of electrical methods to the measuring and recording of physical quantities, such as displacement, stress, strain, pressure, velocity, and acceleration; basic methods and their application to particular measurement problems.

Similar to Elec. Eng. 460 in subject matter, but the treatment is adapted to students not majoring in electrical engineering. Studies of electron tubes and circuits are introduced as required. Lectures, demonstrations, and problems.

462(137). Instrumentation Laboratory. Prerequisite: to accompany Elec. Eng. 460 or 461. (1).
Transducers of resistive, inductive, and other types; strain gages; differential transformers; frequency characteristics of transducers and recorders; amplifiers and power supplies; complete gaging systems. Laboratory experiments and special problems. One four-hour laboratory.

465(132). Electronic Computers I. Prerequisite: Math. 404; preceded or accompanied by Math. 373. (4).
Introduction to the design and engineering application of digital computers, differential analyzers, and digital differential analyzers. Treats computer organization and languages; system modeling and simulation; elementary numerical
analysis; and application of computers to engineering problems, Lectures and laboratory.

466(233). Digital Computer Engineering Laboratory. Prerequisite: Elec. Eng. 465 or permission of instructor. (2).

Study of logic circuits and electronic circuits of digital computer systems. Laboratory projects are carried out on the MIC (Michigan Instructional Computer) to investigate circuits for arithmetic, control, and storage. Lecture and laboratory.

467(134). Switching Circuits and Logical Design. Prerequisite: junior standing in engineering. (3).

Introduction to methods of designing and minimizing networks of switching elements, such as relays, magnetic cores, transistors, or other computer elements. Use of switching algebra and graphical techniques for the logical design of combinational and sequential switching circuits.

Design problems from various types of apparatus involving the electric and magnetic circuits; field mapping, heat-transfer and temperature-rise work. Three lectures and one four-hour computing period.

Sources of incoherent electromagnetic radiation; black body radiation, electronic transitions, molecular transitions. The incoherent radiant field; luminous emittance, illumination, luminance, light vector, luminous intensity. Geometric optics. Receptors of radiant energy; the human eye, energy conversion from ultraviolet and infrared to optical, photoelectric cells, photoconductive cells.

Selection and application of equipment, design of circuits, study of methods of installation for electric-power supply lamps.

477(176). Residence Lighting. Prerequisite: preceded by Elec. Eng. 376 or 475. (2).

For students of architecture and engineering. Co-ordination of architecture with illumination as applied to residence lighting.

Special problems are selected for laboratory or library investigation with the intent of developing initiative and resourcefulness. The work differs from that offered in Elec. Eng. 699 in that the instructor is in close touch with the work of the student. Elec. Eng. 699 is for graduates.

Advanced theory of electrical circuits; Laplace transform method of solution for transients in circuits with lumped constants; introduction to the complex frequency domain.

515(205). Network Synthesis I. Prerequisite: Elec. Eng. 415 or 510, or permission of instructor. (3).

Energy relations in passive networks; complex variable theory; realizability and synthesis of driving point impedance and transfer functions.

525(212). Electromagnetism of Continuous Media II. Prerequisite: Elec. Eng. 425 or permission of instructor. (3).

Theory and practice of microwave techniques; microwave generation, detection, and measurement; electromagnetic waves; wave guides and cavity resonance phenomena; special circuits. Lectures and laboratory.

Fundamental theory; linear antennas and arrays in free space and in proximity to the earth; effective aperture and gain; basic transmission loss; ground-wave propagation; the ionosphere and sky-wave propagation; tropospheric propagation; ionospheric and tropospheric scatter.

Waveform generation multivibrators, sawtooth generators, ringing oscillators, regenerative circuits, pulse-forming lines; pulse amplifier design; overshoot, sag, and applied transient analysis of linear amplifiers; use of maximally flat, linear phase, equal ripple, and other amplifier functions. Lectures and demonstrations.

534(284). Noise in Electronic Circuits and Devices. Prerequisite: Elec. Eng. 310, Math 404, and preceded or accompanied by Math. 452, or permission of instructor. (3).
Probability and random processes; extension of Fourier analysis; sampling in the time domain; entropy of a random process; properties of a noise process; response of linear and nonlinear circuits to noise; noise factor; sources of noise in electronic circuits and devices.

536(226). Cosmic Radio-Frequency Radiation. Prerequisite: Elec. Eng. 330 and 420 or permission of instructor. (2).
A description is given of the results of planetary, solar, and cosmic radio observations. The propagation characteristics for radio waves through space is treated. The generation of radio-frequency energy by the synchrotron process, by Cerenkov radiation, by gyroradiation, and by thermal processes in plasmas and in planetary atmospheres will be discussed and related to the above astronomical observations.

Transmission lines, standing waves, impedance transformation; Maxwell's equations, waves, wave guides, cavity resonators; antennas, arrays, radiation patterns; tropospheric and ionospheric propagation, radar equation, ducts. A special course for the guided missile program.

541(251). Alternating Current Apparatus. Prerequisite: Elec. Eng. 444. (3).
Advanced treatment of coupled circuits as applied to transformers and the induction machine. Generalized four terminal network theory and generalized circle diagrams. Space m.m.f. harmonics, rotating m.m.f. components, and harmonic iron losses of polyphase and single phase windings.

M.m.f. and flux distribution in the air gap and voltage wave shapes of nonsalient and salient pole machines. Direct and quadrature reactances under steady-state and transient conditions.

552(242). Electric Rates and Cost Analysis. Prerequisite: permission of instructor. (1).
Capitalization; fair return on investments; analysis of costs and value of electrical energy; customer charge, demand charges, energy charges; investigations of practical systems used in charging for electrical energy.

Energy sources; transmission line constants; generalized circuit constants; circle
diagrams; transmission line loss formulas; load dispatching; tap changing and phase shifting transformers. Problem solving on the network computer.

554. Computer Applications in Power Systems I. Prerequisite: preceded or accompanied by Elec. Eng. 553. (2).
Application of the digital computer to problems in network reduction, power plant performance, system losses, and economic loading of alternators. On-line and off-line dispatch computers. Problem solving on the digital computer.

557(247). Power System Protection. Prerequisite: permission of instructor. (2).
Theory of overcurrent, differential, distance, pilot wire and carrier current relaying systems and their application for the protection of power systems. System grounding and the ground fault neutralizer.

558(248). Power System Transients. Prerequisite: permission of instructor. (2).
Lightning and its effects on a power system. Insulation and design for integrated protection. Transients due to lightning and system switching. Attenuation and reflection of traveling waves. Ground wires, counterpoise, and application of lightning arresters.

559. Power Systems Laboratory. Prerequisite: permission of instructor. (1-3).
Facilities available for laboratory studies in power systems. Graduate students electing this course, while working under the general supervision of a member of the staff, are expected to plan and carry out the work themselves and to make reports in the form of theses.

Finite coding theory for error checking and secrecy; linear codes, error correction capabilities of linear codes, burst error correction and codes for the checking of arithmetic, linear switching circuits; cyclic codes, Bose-Chaudhuri Codes.

Logical structure of computers; methods of problem preparation and scope of problems; study of computer components such as integrating amplifiers, magnetic and electrostatic storage elements, input and output devices. Lectures, laboratory work on department computers, and demonstrations of University computing facilities.

Logical structure and organization of digital computers; number systems, flow diagrams, and problem preparation; special topics in digital computer applications to simulation and system study. Lectures and laboratory work on the University computing facilities.

570(260). Heat Problems in Electrical Design. Prerequisite: permission of instructor. (2).
Advanced work in the fundamentals of heat transfer by radiation, conduction, and natural and forced convection; application to specific situations.

Calculation for machines of given ratings, use of design sheets, practical limits for many items of design, calculation of performance, and use of ventilation. Computing period.

Unusual as well as typical designs of lighting, particularly those which have
been actually built and are available for testing as a check upon the calculations, are analyzed quantitatively and qualitatively.

Conformal analysis of fields in space-charge control tubes; multigrid-tube inter-electrode capacities; electron transit time principles; electron optics of cathode ray focusing; solid state physics of thermionic, secondary, and photo-electric emission; mobilities, mean free times, and conductivities in semiconductors and in gaseous conducting plasmas; television pickup and camera tubes; initiation of current in thyatrons, ignitrons, and circuit breakers; Paschen's Law, radiation counter tubes. Lectures and laboratory.

Cathrode-ray oscilloscope measurements of fast transient voltages such as occur on electric utility power lines, in automobile ignition systems, and in radar modulators; circuit breaker principles; surge generators; lightning arresters; insulation and corona problems. One four-hour laboratory.

Laboratory exercises and the techniques employed in vacuum-tube research and engineering and in physical electronics. One four-hour laboratory.

Synthesis for prescribed transfer functions; the approximation problem; synthesis for a prescribed time response; application to engineering problems.

617(208). Network Analysis. Prerequisite: Elec. Eng. 510 or 515, or permission of instructor. (3).
Stability theory and feedback amplifier design, and selected topics from the following: Hilbert transforms, band pass analysis, Z-transforms, correlation and spectral analysis, and radar and communication systems analysis by circuit theory concepts.

Review of electrostatics from an advanced viewpoint; multipole fields, Green's functions, electric and magnetic energies, volume forces, and stress tensors in material media; Maxwell's Equations, inhomogeneous vector wave equation, Hansen's Method, Hertz potentials, radiation and scattering. Fields of point charges in uniform motion and accelerated charges.

630(224). Microwaves II. Prerequisite: Elec. Eng. 530 or permission of instructor. (3).
General field theory for wave guides; the impedance concept and the application of network theory to microwave structures, general network theorems; analytical methods for determining equivalent circuits for microwave structures, the integral equation formulation, Green's function, variational techniques, and applications.
to typical boundary value problems; propagation in anisotropic media, nonreciprocal devices; the scattering matrix, and the analysis of multiport networks.

Communication signals as random processes. Power spectra and correlation functions of various signals; entropy as a measure of information; optimum prediction and filtering; statistical inference applied to detection of signals in noise; components of communication channel; theoretical capacity of discrete and continuous channels; systems for encoding information into signals. Evaluation of amplitude, frequency and pulse modulation systems for transmission of information.

645(255). Feedback Control Systems II. Prerequisite: Elec. Eng. 445 or Instr. Eng. 570 and 571 or permission of instructor. (3).
Linear feedback control systems using circuit synthesis techniques; approximation to the frequency and time domain; sampled-data systems using z and w transforms; correlation functions; design of linear systems with random inputs; design for the minimization of the mean-square-error.

646(256). Feedback Control Systems III. Prerequisite: Elec. Eng. 445 or Instr. Eng. 570 and 571 or permission of instructor. (3).
Linear time-varying systems; nonlinear systems using describing function and phase space analysis; analysis of piece-wise linear systems of the optimum control type using phase-space techniques. Laboratory demonstrations of typical systems.

A theoretical study of the basic concepts which underlie celestial, Doppler, and inertial navigation systems. Emphasis is placed on the following topics: Doppler spectrum, matrix co-ordinate transformation, Shuler tuning, and other selected topics. Theory and application of gyroscopes, accelerometers, and astrocompasses as applied to navigation systems.

Symmetrical and alpha, beta, zero components; alternator impedances; balanced and unbalanced faults; steady state and transient stability. Problem solving on network computer.

654. Computer Applications in Power Systems II. Prerequisite: preceded or accompanied by Elec. Eng. 653. (2).
Application of the digital computer in the determination of load flow, transient stability, and fault conditions in a power network. Problem solving on the digital computer.

A continuation of Elec. Eng. 560. Finite arithmetic code theorems, finite arithmetic codes and machine arithmetic, unit distance codes, error correcting and detection properties of arithmetic codes.

Study of the logic of series and parallel type computers; logic circuits for computation and control; characteristics of pulse circuits, memory elements, and input-output system.

667(234). Theory of Networks of Switching Elements. Prerequisite: Elec. Eng. 467, Philos. 414, or permission of instructor. (3).
The use of Boolean algebra and propositional calculus in the study of two-terminal and multiterminal relay contact networks; analysis and synthesis of sequential networks and functional automata; use of predicate calculi in the
theory of logical design; other current topics. The point of view is that of abstract algebra.

673(265). Large-Scale Systems Design I. Prerequisite: Math. 450 and permission of instructor. (2).
A treatment of the functional organization of large-scale systems touching on those areas of mathematics and scientific endeavor relevant to this organization. Particular attention will be directed towards the applications of probability theory, theory of testing statistical hypotheses, observation theory, and communication theory. Optimization problems will be considered, with particular attention to the time range over which the outcomes are optimized.

674(266). Large-Scale Systems Design II. Prerequisite: Elec. Eng. 673. (2).
Steps in system design; input measurement; measures of effectiveness, preliminary design; systems analysis; component choice, analysis and test; systems test and evaluation; other tools as needed.

686(286). Microwave Electron-Beam Tubes I. Prerequisite: Elec. Eng. 620 or permission of instructor. May be elected for 2 hours credit without laboratory with permission of instructor. (3).
Llewellyn-Peterson analysis; general induced-current theory; electron optics of low-density and high-density beams, conservation of momentum, Busch’s theorem, confined flow, Brillouin flow, Harris flow, electrolytic tanks; space-charge wave analysis; velocity modulation, klystrons, small-signal traveling-wave tubes, magnetron amplifiers, backward-wave oscillators, double-beam tubes. Lectures and laboratory.

687(287). Microwave Electron-Beam Tubes II. Prerequisite: Elec. Eng. 686 or permission of instructor. (3).
Electric and magnetic lenses, periodic magnetic focusing, effect of magnetic field on space-charge wave propagation; nonlinear theory of O-type amplifiers and oscillators; nonlinear theory of M-type amplifiers and oscillators; space-charge models; omega-beta diagram, periodically loaded waveguides.

Statistical mechanics of multi-electron systems; medium-like models of an electron gas, applied to electron beams, gas discharges and solids; single-velocity and Maxwellian streams; generation and propagation of noise; general discussion in three dimensions of the noise output of an electron gun; the one dimensional model, its justification and limitations; the transmission-line analogy; noise in the retarding-field diode and in the space-charge-limited equivalent diode of the electron gun of a traveling-wave amplifier; the conditions for minimum noise factor; modulation noise in a semiconductor and the transistor noise factor. (To be offered first semester, alternate years.)

699(279). Research Work in Electrical Engineering. Prerequisite: permission of program adviser. (To be arranged).
Graduate students electing the course, while working under the general supervision of a member of the staff, are expected to plan and carry out the work themselves and to make reports in the form of theses.

720(211). Electromagnetic Field Theory IV. Prerequisite: Elec. Eng. 620. (3).
Individual and collective motions of charged particles in electromagnetic field. Absorption, propagation, scattering, and generation of radiation in plasmas. Least action and Fermat’s principles, Eikonal Equations, and Hamilton’s Canonical Equations of optics and mechanics. The concepts and techniques of Special Relativity and Lorentz Covariance are introduced.
725(215). Methods of Solving Radiation and Scattering Problems. **Prerequisite:** Elec. Eng. 620 or equivalent. (3).

Determination of approximate solutions of scattered electromagnetic fields from simple and complex shapes which have been illuminated by electromagnetic energy, such as radio waves. Solutions of various radiation problems are obtained by using the reciprocity theorem, together with the techniques developed for the scattering problem. Simple and complex antenna shapes including slotted arrays are considered. The emphasis in this course will be on recent literature and in current research.

735(222). Microwave Antenna Theory. **Prerequisite:** Elec. Eng. 531 and 620 or permission of instructor. (3).

Methods of solution of microwave antenna design problems, reciprocity theorem, circuit relationships, impedance concept, reaction concept, slots, mutual coupling.

802(403). Interdisciplinary Seminar in Communication Sciences I. **Prerequisite:** permission of instructor. (3).

General aspects of human communication. Selected topics related to the application of information theory to psychology, speech, linguistics, logical nets, and communication engineering.

803(404). Interdisciplinary Seminar in Communication Sciences II. **Prerequisite:** Elec. Eng. 802. (3).

A continuation of Elec. Eng. 802.

820(310). Topics in Electromagnetic Field Theory. **Prerequisite:** Elec. Eng. 620. (3).

Differential, integral, and variational formulation of field problem; classical solutions. Method of linear operators; discontinuous solutions and theory of distributions; propagations in random medium, coherent and incoherent discrete processes; approximate solutions; theory of multiple scattering and problem of radiative transfer.

The analytical design of feedback control systems by perturbation theory and variational principles; study of adaptive control systems of the input-signal and extremum type; laboratory demonstrations using computers as control system elements. (To be offered first semester, alternate years.)

846. Seminar on Lyapunov's Second Method and Its Applications to Control System Design. **Prerequisite:** Elec. Eng. 646 or permission of instructor. (2).

Stability concepts; Lyapunov functions and Lyapunov's Second Method; selection of Lyapunov functions; application of Lyapunov's Second Method to the design of nonlinear control systems.

865(335). Seminar on Research Topics in Computer Organization. **Prerequisite:** Elec. Eng. 565 or permission of instructor. (1).

Study and discussion of current research in computer organization, language, structure, and logic, with particular reference to recent periodical literature.

883(383). Topics in Physical Electronics. **Prerequisite:** Elec. Eng. 380 or 580, and Math. 450. (2) without a laboratory; (3) with a laboratory. (2 or 3).

Suggested topics for analysis: high pressure and high temperature plasmas, including magnetohydrodynamic effects; interactions producing extreme electron temperatures; mean free paths and ion mobilities and ionization rates; ambipolar diffusions; probe measurements in gas discharges; initiation of microwave gas discharges; high density electron beam formation, focusing, hysteresis, and instability; the quantum-mechanics of electron emission; initial electron velocity effects; space charge suppression of slot noise. Lectures and optional laboratory.
886(386). Special Topics in Microwave Circuits and Tubes. Prerequisite: Elec. Eng. 687 or permission of instructor. (2).
Energy theorems for electron streams; beam-type parametric amplifiers; modulation and nonlinear bunching of beams; linear accelerators; relativistic beams, electronic waveguides. Lectures.

895(395). Seminar in Space Research. Prerequisite: permission of instructor. (2).
Detailed analyses of objectives, procedures, and results of research being carried out at The University of Michigan. Topics will include the following: structure of the upper atmosphere; measurement of temperature, pressure, density, composition and winds. The ionosphere; measurement of ion and electron density and temperature. Investigation of radio waves incident on the earth at frequencies absorbed by the ionosphere by means of instrumented satellites. Interpretation of infrared data from meteorological satellites. Research in attitude control of multistage sounding rockets.

ENGINEERING GRAPHICS

Drawing, the one universal language of all engineers regardless of native tongues, is presented at the college level, as distinguished from the technical or drafting levels. Engineers must be able to read drawings and, frequently, to make them. They are always dealing with drawings in one way or another.

The ability to visualize and think in three dimensions is essential to understanding atomic, molecular, crystallographic, nuclear, and outer-space relationships, as well as more commonplace ones. Such an ability is directly developed by the practice of thinking analytically to arrive at graphical results and, conversely, by the use of graphical representation to enhance and expand analytical visualization. These processes come into direct application in descriptive geometry as in few other courses of study.

Accuracy and neatness are essential to good engineering and are necessarily important aspects in the study of drawing.

Elementary college-level course. Use of instruments in mechanical drafting techniques in freehand drawing; lettering practice; geometric construction; first principles of orthographic projection, pictorial drawing; sectional and auxiliary views; conventions and simplified representation; dimensioning, threads and fasteners; detail and assembly drawings, drawn both mechanically and freehand.

Application of the principles of geometry and orthographic projection toward describing all engineering devices and objects accurately and usefully. The relationships of points, lines, and planes; the graphical measurement of distances and angles from all possible relative positions; the determination of intersections of planes and curved surfaces with straight lines, planes, curved lines, and surfaces; tangent and secant surfaces; shape and size of plane areas and curved surfaces by development. Practical applications of descriptive geometry to engineering design problems.

Elementary principles of orthographic projection in representing relations of lines and planes, and in the graphical measurement of distances, angles, and areas.
Constructions employing auxiliary views as utilized in engineering practice. Credit cannot be allowed for both this course and Eng. Graphics 102.

141(41). Mechanical Drawing for Foresters. II. (1).
Use of instruments, geometric constructions, lettering practice, orthographic projection, dimensioning, and elementary working drawings. As far as possible, drawing assignments are taken from material with which the forestry student will later have contact.

232(32). Graphical Analysis and Computation. Prerequisite: permission of instructor. II. (2).
Special geometrical constructions, graphical solutions of equations, theory of graphical scales and nomography, empirical equations, graphical calculus and vector graphics. Theory and execution of methods followed by construction of working charts and computing aids.

233(33). Advanced Engineering Drawing. Prerequisite: Eng. Graphics 102 or 104. II. (2).
Advanced work in orthographic and pictorial representation, including engineering sketching; machine drawing; working drawings, both detail and assembly, with emphasis on auxiliary views and tolerance dimensioning; piping and structural layouts; creating and planning engineering devices.

Advanced drawing, mechanical and freehand; lettering; emphasis on the use of orthographic, axonometric, oblique and perspective projection in making various kinds of pictorial drawings, including sectional, exploded, assembly, and individual part views.

ENGINEERING MECHANICS

208(1). Statics. Prerequisite: preceded by Math. 234 or 363 and Physics 145, or written permission. I and II. (3).
Fundamental principles of mechanics and their application to the simpler problems of engineering; forces, vector algebra, moments, couples, friction, hydrostatics, virtual work, and centroids.

Application of mechanics to problems in stress and strain on engineering materials; resistance to direct force, bending, torque, shear, eccentric load, deflection of beams, buckling of columns, and compounding of simple stresses.

Behavior of engineering materials under load in both the elastic and the plastic ranges; use of testing machines; use of mechanical, optical, and electrical strain measuring instruments; tension, compression, torsion, bending, and hardness tests; column experiments; demonstrations in photoelasticity and stress coat.

218(11). Statics. Prerequisite: Physics 153, preceded or accompanied by Math. 234. I and II. (3).
Basic principles of mechanics; laws of motion, concepts of statics, vectors and vector addition and products; moments and couples; resultants and equilibrium.
of general force systems; free body method of analysis; applications to simple problems in all fields of engineering; elementary structures, cables, friction, centroids, hydrostatics, stability of floating bodies, virtual work.

Stress-strain relations, elastic and inelastic behavior of materials, combined stresses, introduction to theories of failure, statically determinate and indeterminate problems, axial stresses and strains including the thermal effect, torsion and bending of bars; shear center, deflection of beams, combined loading of a bar, buckling of columns, thick-walled cylinders.

310(5). Statics and Stresses. Prerequisite: Physics 145 and Math. 364 or 372. I and II. (4).

Fundamental principles of statics and their application to engineering problems; forces, moments, couples, friction, centroids, moment of inertia; application of statics to problems in stress and strain on engineering materials, including resistance to direct loads, bending, torque, shear, eccentric loads.

Principles of mechanics applied to liquids and gases. Dynamic similitude; special topics; manometers, Venturi and orifice meters, equilibrium of floating bodies, laminar and turbulent flow; resistance to flow, circulation, lift, boundary layers, free-surface flow, adiabatic flow of ideal gases in conduits.

An introduction to the statics, dynamics, and thermodynamics of real and ideal fluids; laminar, turbulent, compressible and incompressible flows; the Euler, Bernoulli and continuity equations; construction of flow nets; dimensional analysis and similitude applied to such subjects as flow in channels and conduits and lift and drag of bodies.

328(4a). Fluid Mechanics Laboratory. Prerequisite: preceded or accompanied by Eng. Mech. 324 or 326. I and II. (1).

Visualizing flow of liquids; Reynolds' experiment; viscometry; hydrostatics; stability of floating bodies; photographing flow patterns; measuring flow and calibrating orifices, flow nozzles, Venturi meters; hydraulic jump and critical depth; resistance to flow, boundary layer, transition.

343(3). Dynamics. Prerequisite: Eng. Mech. 208 or 310 and preceded by Math. 364 or 372. I and II. (3).

Vectorial kinematics of moving bodies in both fixed and moving reference frames. Kinetics of particles, assemblies of particles and of rigid bodies with emphasis on the concept of momentum. Keplerian motion, moment of inertia tensor and its transformations, elementary vibrations and conservative dynamic systems are treated as special topics.

Kinematics, rectilinear and curvilinear motion, Coriolis' acceleration, kinetics of particles and bodies, d'Alembert's principle, momentum, conservative and non-conservative systems, impact, dynamic stresses, propulsion; vibrations of rigid bodies, vibrating mass systems, electrical and acoustical analogies, gyroscopes, balancing.

Review of plane stress-strain relationships, with mechanical, optical, and electrical resistance strain-measuring techniques; applications including strain rosettes;

Theory and practice in the design and execution of experiments in engineering. Modeling theory. Probability and elementary statistics applied to data treatment; analysis, design and use of instruments for static or dynamic conditions, including measurement of strain, pressure, temperature, and viscosity. One-hour lecture and two-hour laboratory, with assigned experiments.

Lectures and laboratory experiments covering the fundamentals of the photoelastic method of stress determination including the use of double refraction and interference of light, determination of the maximum shear stress, methods of separating the principal stresses, and three-dimensional photoelasticity. Models to suit interest of students.

Basic concepts of stress and strain in two dimensions; curved beams and beams on elastic foundations; fundamentals of photoelasticity.

Continuity, stream functions, vorticity; Euler and Bernoulli equations; irrotational flows, Laplace equation, conformal mapping, relaxation method; hydrodynamic forces and moments; compressible flows, method of characteristics; Navier-Stokes equations, elements of hydrodynamic stability, and turbulence; boundary layers, jets, wakes, drag.

Free and forced vibration for lumped and continuous mechanical systems; vibration of multimass systems, strings, bars and plates; normal modes, mechanical impedance, vibration control; Rayleigh's Method and introduction to Lagrange's Equations.

General outline of vibration theory; vibration of masts, longitudinal and torsional vibration of propulsion machinery; hull vibrations, vertical, lateral, longitudinal, and torsional; other selected problems.

Basic equations of three-dimensional elasticity. Variational principles, the plane problem, and torsion and bending of prismatic beams, with application of complex function theory.
515(125). Theory of Plates. Prerequisite: Eng. Mech. 412 or equivalent. II. (3).
Classical linear plate theory, with application to various shapes, boundary conditions, and loading systems; refinements to account for anisotropy, shear deformations, large deflections; plastic collapse and elastic instability.

Elastic and inelastic buckling of bars and frameworks: variational principles and numerical solutions; lateral buckling of beams. Instability of rings.

519(129). Theory of Plasticity I. Prerequisite: Eng. Mech. 412 or equivalent. II. (3).

Solution of Laplace's equation by various methods; added masses, Taylor theorem; forces and moments, Blasius and Lagally theorems; free-streamline flows, wave motion, vortex motion, and shear flows; theory of thin airfoils or projectiles; high speed flow.

Stress and rates-of-deformation tensors, dissipation function, exact solutions of the Navier-Stokes equations, very slow motion, boundary layers, jets and wakes, energy equation, forced and free convections, hydrodynamic stability, statistical theories of turbulence.

524. Wave Motion in Fluids. Prerequisite: Eng. Mech. 422 or permission. (3).
Surface waves in liquids, group velocity and dispersion; shallow-water waves, kinematic waves, method of characteristics; subcritical and supercritical flows; analogy between free-surface flows and gas flows; subsonic flows of a gas, hodographs, Molenbroek's transformation, Legendre's transformation, Chaplygin's treatment, Karman-Tsien method; supersonic flows, Riemann's nonlinear treatment of finite waves, nonlinear expansion flows, Prandtl-Busemann method of characteristics; shock waves; wave motion of a conducting fluid in an electromagnetic field.

525(145). Mechanics of Control of Fluid Systems. Prerequisite: Math. 450. II. (2).
Analysis of the dynamics of closed-loop feedback systems, pressure-controlled hydraulic systems, and velocity-control systems.

527(142). Thermodynamics. Prerequisite: Math. 403 or 404. I. (2).
Fundamental concepts; first and second laws of thermodynamics, equilibrium of homogeneous systems; applications to elastic and plastic deformations and fluid dynamics.

529(149). Advanced Laboratory in Mechanics of Fluids. Prerequisite: Eng. Mech. 422 or permission of instructor. II. (2).
Laboratory experiments designed to give the student an insight into the physical behavior of fluids and the role of experimentation in research. Experimental results are compared with existing theory whenever possible. Experiments include fundamental studies of free streamline flows, drag forces and moments, pressure distributions, thermal instability, slow-motion flows, and the Prandtl-Meyer flows.

542(132). Advanced Dynamics. Prerequisite: Eng. Mech. 441, or equivalent and Math. 430. II. (3).
Vector mechanics for particle and rigid body motions. Lagrange's equations. Introduction to Hamilton's development of mechanics.

A review of the important publications in which the fundamental principles of dynamics were developed from Aristotle to Lagrange. The influence of astronomical theories on the development of dynamics.

Problems of balance and vibration in turbine rotors and reciprocating engine moving parts, blade and disc vibrations, harmonic analysis, vibration dampers and absorbers, vibration stress analysis.

545(135). Vibrations of Continuous Media. Prerequisite: Eng. Mech. 412 and 441, or permission of instructor. I. (3).
Wave motion and vibration of elastic systems, including strings, bars, shafts, beams, and plates. Problems in free and forced vibrations with various end conditions and types of loading; effect of damping on the motion; applications of Rayleigh-Ritz and other methods to the approximate calculation of frequencies and normal modes of nonuniform systems.

547(137). Theory of Gyroscopes. Prerequisite: Eng. Mech. 441, or permission of instructor. I. (2).
General theory of rigid body rotational dynamics applied to gyroscopes of one and two degrees of freedom. Various applications of gyroscopes to measurement and control problems.

707(200). Theory of a Continuous Medium. Prerequisite: Eng. Mech. 412, 422, or permission of instructor. (3).
General theory of a continuous medium and its specialization to elastic, fluid, plastic, and other special media; basic kinematics; stress and strain tensors and their invariants; conservation of momentum, conservation of energy; the restrictions placed upon the equation of state and the dissipation equations by the second law of thermodynamics.

Three-dimensional elasticity problems. Derivation of approximate systems (plates shells, etc.) from variational principles; introduction to nonlinear elasticity.

The general theory for deformation of thin shells with small deflections; various approximate theories, including the membrane theory. Application to various configurations with special reference to shells of revolution; stability of shells. Shells of revolution with large deflections.

Plastic theory for materials with isotropic hardening, kinematic hardening, and time dependence. Theories based on crystal slip; variational theorems; range of validity of total deformation theories. Theory of generalized stresses applied to circular plates; behavior at finite deflection; limit analysis of shells. Plane stress.

Theory of large-amplitude motion of fluids with variable density and entropy in a gravitational field, flow of heterogeneous fluids in porous media, gravity and sound waves in stratified fluids, stability of stratified fluids. Flow in a rotating system or a magnetic field.

Treatment of hydrodynamic equations in general co-ordinates by tensorial methods; gravitational, hydromagnetic, and surface-tension instabilities; instability of rotating fluids and of flow in porous media. Tollmien-Schlichting waves; instability of free-surface flows.

Transient motion in linear systems caused by forces or motions which are functions of time. Methods of treating the motions of nonlinear mechanical systems of one degree of freedom.

745(235). Wave Motion in Continuous Media. Prerequisite: Eng. Mech. 441 or equivalent and permission of instructor. II. (3).
Wave propagation in bounded and extended elastic media, including transmission, reflection, and refraction phenomena, transient stress states, and analogies with acoustical and optical effects. Forced motion of continuous elastic systems such as plates, membranes, shells, and other forms.

801(100). Seminar in Engineering Mechanics. Prerequisite: permission. I and II. (1 or 2).
A series of weekly seminars. Students who contribute may elect one or two hours credit.

911(120). Research in Mechanics of Solids. I and II.
Research in theory of elasticity, plasticity, photoelasticity, structures, and materials. Special problems involving application of theory and experimental investigation.

921(140). Research in Mechanics of Fluids. I and II.
Analytical or experimental investigation of special problems in fluid flow, or intensive study of a special subject in fluid mechanics.

941(130). Research in Dynamics. I and II.
Original investigations in the field of body motions such as vibrations of mechanical systems, control problems, and other fundamental problems in the mechanics of rigid body motion.

991. Doctoral Thesis. I and II.
For doctoral candidates only, under supervision of the doctoral committee. Credit hours to be arranged.

ENGLISH

The work offered in English prepares the student to write and speak effectively and to broaden and deepen his interest in literature. To these ends the department offers a variety of courses in written composition, speech, and literature.
It is presupposed that the student is adequately prepared in the fundamentals of English usage and that he has some knowledge of literature. Normally, a student will take ten hours of English: six hours in Group I, two hours in Group II, and two hours in Group III. The actual number of hours required, however, will depend in part upon the student's preparation and ability. The student of marked superiority may graduate with fewer hours in English; and, conversely, the student who needs additional training may be required to take additional hours of work in English. The student who enters with advanced credit will be required to show a proficiency equal to that of the student with the same number of hours of English credit earned in this College.

In his work for other courses in the engineering curriculum the student is also expected to maintain a satisfactory standard of English. If he fails to do so, he may be reported to the Assistant Dean who, with the student's program adviser and the chairman of the Department of English, may prescribe additional study.

GROUP I: BASIC COURSES

Courses in this group provide basic instruction and practice in writing and speaking. English 111 and 121 are elected during the first semester of the freshman year and English 112 during the second semester. Students with outstanding ability can be exempted from one or more of these courses, whereas students who are not prepared for English 111 may be required to take English 110 before taking English 111.

110(10). Preparatory Composition. I and II. (3).
A course in composition and reading for those in need of further preparation. Study and drill in diction, spelling, grammar, and punctuation; in the structure of the sentence, paragraph, and short essay; and in the techniques of reading.

111(11). Freshman Composition I. I and II. (3).
A course in the essentials of composition with stress on sentence structure, paragraph development, and theme organization. Spelling, diction, punctuation, and grammatical usage are considered as the need arises. Essays and some imaginative literature are analyzed to provide models and ideas for themes and to develop skill in reading.

112(12). Freshman Composition II. I and II. (2).
A continuation of English 111 with further stress on the essentials of composition but with the chief emphasis on various techniques of exposition and argument, such as analysis, analogy, comparison, and definition. The student also receives instruction and practice in writing research papers. As in English 111 essays and some imaginative literature are read and analyzed.

121(21). Introductory Speech. I and II. (1).
A course in the preparation and delivery of short expository and persuasive speeches. It is intended to help the student develop the ability to present his ideas to a group in an orderly and effective manner. Two hours of classwork.

GROUP I-A: NONTECHNICAL ELECTIVES FOR FRESHMEN (AND OTHERS WITH PERMISSION)

To serve the need for three-hour nontechnical electives in the humanities for freshmen (and others by permission of the instructor), the English Department offers these three courses. They differ from Group II courses in three respects: (1) there are no prerequisites; (2) they focus almost entirely on reading and discuss-
sion; (3) they use literature as a means of broadening the student's interest in and awareness of other humanistic subjects.

114(14). Quest for Utopia. II. (3).
Reading and discussion of some of the major efforts to chart the good society from Plato's *Republic* to Orwell's *1984*. The chief purpose of this survey of utopias and anti-utopias is to help the student assess the values in the present order.

115(15). Literature and Philosophy. II. (3).
Reading and analysis of literature as a means of introducing the student to some major philosophical issues. Authors to be read include Swift, Voltaire, Dostoevsky, and Mark Twain.

116(16). Literature and Art. II. (3).
Reveals and explains the close connections between the literature of a given period and its painting, sculpture, and architecture. The primary emphasis will be on reading with parallels illustrated in the fine arts.

GROUP II: INTERMEDIATE COURSES — LITERATURE

Prerequisite: English 111, 112, and 121.

Group II includes courses in composition, speech, and literature. To satisfy the Group II requirement, the student must either elect one of these courses or present a satisfactory equivalent. The courses in this group may also be taken for credit as nontechnical electives. The courses are designed to help the student read with insight as well as pleasure and gain thereby a richer understanding of the nature of man and his world. Themes or written analyses are required in each of the courses.

251(51). Contemporary Literature. *Prerequisite: English 111, 112, and 121.* I and II. (2).
Reading and analysis of contemporary fiction, drama, and poetry.

Reading and analysis of twentieth-century biographies and autobiographies.

Reading and analysis of contemporary short stories.

263(63). Contemporary Drama. *Prerequisite: English 111, 112, and 121.* I and II. (2).
Study of representative drama from Ibsen to the present day.

Reading and discussion of outstanding European and American novels from about 1890 to the present.

Study of the principal British and American poetry of the twentieth century.

Open only to students whose native language is not English. An introduction to literature designed for the foreign student. The literature to be read, the method of presentation, and the reading and writing assignments are adapted to the particular needs of the foreign student.
GROUP III: ADVANCED COURSES — LITERATURE

Prerequisite: English 111, 112, and 121. Open to juniors, seniors, and others by permission.

Group III courses in literature are specialized and intensive and require more maturity of the student than the courses in Group II. To satisfy the Group III requirement, the student must elect one of these courses, which are open only to juniors, seniors, and graduate students, or present a satisfactory equivalent. The courses may also be taken for credit as non-technical electives. All courses in this group may be taken for graduate credit, provided that the student has the approval of the instructor and his program adviser and provided that he completes additional work. In each of these courses a considerable amount of writing is required.

300. Studies in Literature. Prerequisite: English 299. II. (2).
Open only to students whose native language is not English. An introduction to literature designed for the foreign student. The literature to be read, the method of presentation, and the reading and writing assignments are adapted to the particular needs of the foreign student.

419(119). Major Speeches in American History. Prerequisite: English 111, 112, and 121. I and II. (2; 3 with permission of instructor.)
A study of selected American speakers and their speeches in relation to the history of our times.

455(155). American Folklore. Prerequisite: English 111, 112, and 121. I and II. (2).
The life and spirit of the American people as reflected in their folksongs and ballads, tales, legends, superstitions, proverbs and sayings, games, and customs. Extensive use will be made of regional and type collections and of recordings.

Reading and critical analysis of major poetry of the Western World from Homer to our own day, with the following as objectives: to acquaint the student with the worlds of belief, meaning, and beauty that have become a part of our Western tradition; to acquaint him with the nature and place of poetry by means of which he may more adequately understand and enjoy poetry; and to sharpen his powers of analysis and expression through writing assignments.

458(158). Literature of Science. Prerequisite: English 111, 112, and 121. I and II. (3).
Reading and discussion of some classics of scientific literature, such as Darwin’s Origin of Species and Freud’s A General Introduction to Psychoanalysis, as well as writings by contemporary scientists on the nature of the scientific method, its application in various fields, and its limitations. The course is designed to extend the student’s awareness of the impact of science, especially on man’s conception of himself, his society, and his place in the universe.

461(161). Shakespeare. Prerequisite: English 111, 112, and 121. I and II. (2).
Twelve or more of the principal plays with a view to acquainting the student with something of Shakespeare’s breadth and variety and illustrating the growth of his mind and art.

462(162). Drama. Prerequisite: English 111, 112, and 121. I and II. (2).
Significant drama in classical, Elizabethan, neoclassic, and modern western civilizations.

467(167). The Novel. Prerequisite: English 111, 112, and 121. I and II. (2).
Significant works of fiction from Robinson Crusoe to Moby Dick, such as Tom
Jones, Pride and Prejudice, and Vanity Fair, with emphasis upon reading with understanding and delight.

475(175). American Literature. Prerequisite: English 111, 112, and 121. I and II. (2).
Readings in the works of leaders in American thought from the early eighteenth century to the present. The course concentrates on those authors who best represent the changing ideals that have dominated American life in the past and that are important for an understanding of the contemporary American scene.

485(185). Literary Masterpieces. Prerequisite: English 111, 112, and 121. I and II. (2 or 3).
Distinguished literary works in the western tradition, from the Greeks to our own day. Typical of the works that have been used are plays by Sophocles, Shakespeare, Ibsen, and Shaw; dialogues by Plato, selections from the Bible and from Machiavelli; poetry by Homer, Dante, Wordsworth, and Frost; fiction by Turgenev, Maupassant, and Katherine Mansfield.

488(188). Literature and Modern Thought. Prerequisite: English 111, 112, and 121. I and II. (3).
The three objectives of the course are: (1) to acquaint the student with some major forces on modern thought, e.g., Marxism, Freudianism, and existentialism; (2) to acquaint him with significant works of literature which place these intellectual conceptions in humane perspective, e.g., fiction of Zola, Steinbeck, Koestler, Sartre; and (3) to encourage him to evaluate these ideas and also literature which expresses and comments upon them.

492(192). Major American Writers. Prerequisite: English 111, 112, and 121. I and II. (2).
An intensive study of the works of two or three major American writers with emphasis on their ideas, their relationship to their period, their form of expression, and their literary significance. Writers are chosen who make possible an integrated exploration of significant cultural developments.

493(193). Major European Writers. Prerequisite: English 111, 112, and 121. I and II. (2).
An intensive study of the works of two or three major European writers with emphasis on their ideas, their relationship to their period, their form of expression, and their literary significance. Writers are chosen who make possible an integrated exploration of significant cultural developments.

GROUP IV: SPECIAL ELECTIONS IN SPEECH AND WRITING

235(35). The Technical Article. Prerequisite: English 111 and 112. I and II. (2).
An advanced composition course with special emphasis on the writing of technical and scientific articles for both professional and nonprofessional readers. The course includes some study of current scientific and technical articles from such periodicals as Scientific American.

241(41). Public Speaking. Prerequisite: English 111 and 121. I and II. (2).
Preparation and delivery of persuasive speeches. Frequent opportunity for practice and class criticism.

The fundamentals of scientific and technical writing with emphasis on clear and orderly exposition.
441(141). Argumentation and Debate. Prerequisite: English 111, 112, and 121. I and II. (2).
Training in the organization and the delivery of the principal types of persuasive speeches, with emphasis on conference speaking and debating.

GEOLOGY AND MINERALOGY*

Associate Professor Eschman; Professors Arnold, Briggs, Denning, Goddard, Hibbard, Heinrich, Kellum, Kesling, Landes, Slawson, Stumm, Turneaure, Wilson, and Zumberge; Associate Professor Dorr; Assistant Professors Cloke, DeNoyer, and Kelly; Instructors Driscoll and Thoms; Lecturer Reimann.

111(11). Introductory Geology. Not open to those who have had Geol. 219. I. (4).
An introduction to science through geology. The study of the materials making up the earth, the processes which act upon them, and the effects these processes have on the earth's surface; the development of the tools for the interpretation of the history of the earth; and the major geologic concepts which make geology unique from the other natural sciences. One or more Saturday field trips will be required. Lectures, laboratory, and field trips for an average weekly total of seven hours.

218(98). Geology for Engineers. II and S.S. (4).
Geologic processes with special emphasis on structural geology, ground water, soil genesis, and the relation of geology to engineering problems. Laboratory includes rock and mineral identification, and the interpretation of geologic and topographic maps and aerial photographs. Geol. 218 is required of students in civil engineering and is open to others as an elective. Lectures, laboratory, and field trips.

219(99). Geology and Man. Not open to freshmen, or to those who have had Geol. 111. II. (4).
Geologic processes and their effect on civilization. Lectures and demonstrations.

For other courses in geology for which students of engineering are eligible, see the Announcement of the College of Literature, Science, and the Arts. It is suggested that Geol. 112, Introductory Geology; Geol. 280, Minerals and World Affairs; and Geol. 447, Ground Water Geology, are especially useful for engineering students.

INDUSTRIAL ENGINEERING

112. Industrial Administration.
Extension course covering principles of management, business games, budgeting control, purchasing, ethics, research and development, and policies and procedures.

114. Introduction to Management Sciences.
Extension course version of Ind. Eng. 401.

*College of Literature, Science, and the Arts.
 Extension course covering Ind. Eng. 445 and 463.

400(100). Industrial Management. Prerequisite: junior standing or permission of department. I and II. (3).
 Management problems and methods involved in the operation of manufacturing institutions, including location, layout, equipment selection, methods, work measurement, methods of wage payment, inspection, organization procedures, production and material control, budgets. A Business Game is used to study dynamic aspects of industrial decisions.

401(170). Introduction to Management Sciences. Prerequisite: preceded or accompanied by Math. 462 and Ind. Eng. 472, or permission of department. II. (3).
 Current studies in management problems, including management games, management design and control of research programs, organization and information theories.

431(135). Management Control. Prerequisite: Ind. Eng. 400 and 463. I and II. (3).
 A study of problems in the application of principles of industrial engineering to management personnel, including such things as training, working conditions, safety, wage administration, suggestion systems, employment procedures, labor relations, and nonindustrial application.

433(125). Human Factors in Engineering Design. Prerequisite: Ind. Eng. 400 or permission of instructor. I. (3).
 The application by engineers of the data available concerning vision, illumination, color, noise, atmospheric conditions, physical measurements, and the arrangement of controls and equipment in the areas of work place and equipment design. Emphasis will be placed on sources and method of collection of the available data.

434(127). (Psych. 563). Psychology of Management. Prerequisite: Psych. 101 or graduate standing. Permission of instructor. Credit is not given for both Psych. 263 and 563.
 Primarily for advanced students in psychology, engineering, and business administration. The application of psychological principles to the management of personnel in business and industry. Conference leadership, face-to-face contacts, and interviewing situations are analyzed in terms of principles and skill requirements.

441(140). Production Control. Prerequisite: Ind. Eng. 400. I and II. (2).
 Principles of planning and control in mass production and job-lot industries. Includes analysis of operating times and plant capacity, routing, scheduling and dispatching, inventory control, and techniques of evaluating operating results.

445(130). Wage Administration. Prerequisite: Ind. Eng. 400. I and II. (2).
 Principles and evaluations of major types of wage incentive systems. Appraisal of various job evaluating systems and use of job evaluation in developing equitable wage structures.

447(110). Plant Layout and Materials Handling. Prerequisite: Ind. Eng. 400. I and II. (3).
 Analysis and planning of the layout of industrial plants. The study and selection of material handling equipment as influenced by material, processing, production equipment, building, and related factors.

*Students not enrolled in the industrial engineering program and not presenting the usual prerequisite may elect courses indicated by * with the permission of the department.
Economic selection of equipment, consideration of cost, methods of financing, depreciation methods, and the planning of future production.

461. Engineering Statistics II. Prerequisite: Math. 461. I and II. (3).

Analysis of variance and regression analysis are developed and applied to a number of industrial experiments. Two-hour lecture and two-hour demonstration.

463(120). Work Measurement. Prerequisite: Ind. Eng. 400. I and II. (3).

Operating methods, work-center layout according to the laws of motion economy, and time-study techniques. Recitations, problems, and demonstrations.

464. Work Simplification. Prerequisite: Ind. Eng. 463 or permission of department.

II. (3).

Application of tools and techniques of work simplification to improve work systems requiring the integration of people, machines, methods, and procedures. Current literature and cases are studied.

466. Quality Control. Prerequisite: Ind. Eng. 461. I and II. (3).

Surveys of current practices in acceptance sampling and control charts. Some of the more important quality measuring equipment is discussed and used in experiments. Emphasis is placed on the economics of alternative quality control procedures. Two-hour lecture and two-hour demonstration.

472(160). Operations Research. Prerequisite: Math. 234 or equivalent. I and II. (3).

Introduction to operations research; the methodology of mathematical models and its application to various industrial problems, including experimental design and analysis; introduction to queueing theory, game theory, and linear programming.

473(165). Data Processing. Prerequisite: Math 234 or equivalent. I and II. (3).

Digital computer arithmetic operations, circuit logic, simple programing, computer data processing in industry, and introduction to computer simulation of industrial operations. Two-hour lecture and two-hour demonstration.

491(190). Study in Selected Industrial Engineering Topics I. Prerequisite: permission of department. I and II. (To be arranged, 3 maximum).

Individual or group study, design, or laboratory research in a field of interest to the student. Topics may be chosen from any of the areas of industrial engineering including management, work measurement, methods, organization, industrial sciences, industrial mathematics, systems, and procedures.

522. Theories of Administration. Prerequisite: Ind. Eng. 341. I and II. (3).

Provides insight into theories concerning administration of research and industrial organizations. Wages, rewards and sanctions, delegation concepts, management functions, and labor relations are discussed.

524(220). Industrial Management—Field Work. Prerequisite: Ind. Eng. 463. I and II. (3).

Principles of production are applied to specific problems in factory management. Inspection trips to manufacturing plants, with problems and discussions based on these trips. A fee is required.

527(245). Management Games. Prerequisite: Ind. Eng. 472 and 473 or permission of department. I. (3).

Analysis of the structure of representative total enterprise and functional management games, problems of development, the role of the computer, study of applications in research education, and system design.

528(210). Industrial Engineering Problems. Prerequisite: Ind. Eng. 400. I and II. (3).

Problems and the application of the principles of industrial engineering, using

*Students not enrolled in the industrial engineering program and not presenting the usual prerequisite may elect courses indicated by * with the permission of the department.
the case method in solving typical management situations. The application of engineering methods to the study and analysis of management in an era of rapid scientific and technical advance.

533(226). Problems Concerning Human Factors in Engineering Design. Prerequisite: Ind. Eng. 433 or 534. II. (3).
Problems and field exercises on the application of human factors to engineering problems. Students will formulate problems, select the experimental or other procedures for their solution, and report the findings.

534(124) (Psych. 560). Human Performance in Man-Machine Systems. Prerequisite: Psych. 101 or 521, or permission of instructor. II. (3).
Introduction to human performance theory, including human capabilities and limitations in man-machine systems. Emphasis on principles applicable in engineering psychology.

541(233). Inventory Theory I. Prerequisite: Ind. Eng. 472 or permission of department. I. (3).
A survey of models of inventory and production control assuming that demand is known. Seasonal demand situations are considered and formulated. Problems involving changing demand and specific cost structure are also considered.

542. Inventory Theory II. Prerequisite: Ind. Eng. 541 and one year of statistics. II. (3).
Inventory problems are considered when demand can only be described in terms of probabilities. Conditions for the optimality of S_s policies are studied. Stability of inventory against random demands is discussed.

Inventory management, selection of sources, price analysis, standards and specification, organization of a purchasing department, buying policies.

547. Plant Flow Analysis. Prerequisite: Ind. Eng. 447, 472, and 473, or permission of department. II. (3).

Economic analysis procedures, consideration of replacement, expansion, product and new enterprise analysis and expenditures, capital budgeting, case problems.

Principles of industrial systems and instrumentation are applied to specific problems in factory operation. Inspection trips to manufacturing plants with problems and discussion based on these trips. A fee is required.

Application of work sampling and memo-motion techniques as methods of work measurement; use of standard data time standards and their determination by actual time study, motion pictures, predetermined time standards systems. Recitations and demonstrations.

571(255). Queueing Theory I. Prerequisite: one year of statistics. I. (3).
An introduction to mathematical probability theory from the industrial engineering point of view. Simple Markov queueing processes are considered.

572. Optimization in General Systems. Prerequisite: Ind. Eng. 401 or permission of department. II. (3).
The problem of searching for an optimum policy when it cannot be solved by

*Students not enrolled in the industrial engineering program and not presenting the usual prerequisite may elect courses indicated by * with the permission of the department.
a standard programming code. Various general extreme value search procedures with and without estimation errors and self-improving codes are considered.

 The use of a digital computer as a simulator of industrial processes. Construction of flow charts, fixed time increment and time status register methods of organization. Experimental designs for computer experiments are considered and students will run simple simulations.

575. Linear Programming. Prerequisite: Ind. Eng. 472 or permission of department. I. (3).
 An introduction to programming. Primary attention is focused on linear programming. The abstract structure of the problem is discussed. A number of examples of uses of linear programming are introduced. Machine codes for solution are discussed and used.

591(200). Study in Selected Industrial Engineering Topics II. Prerequisite: Ind. Eng. 491. I and II. (To be arranged).
 Continuation of Ind. Eng. 491.

631. Advanced Management Controls. Prerequisite: Ind. Eng. 431 or permission of department. I. (3).
 Studies of current methods for analyzing management control problems. The course uses actual cases as well as current publications and consists of further investigations and solution of those cases.

641. Advanced Production Control II. Prerequisite: Ind. Eng. 541. II. (3).
 The use of operations research techniques in production smoothing and scheduling. Applications of mathematical methods of sequencing and loading to optimization of facility utilization, interaction with inventory policies, and design of complex production control systems.

644. Production Design. Prerequisite: Ind. Eng. 447 and 524 or permission of department. II. (3).
 The co-ordination of product design with the necessary manufacturing processes. Evaluation of the available facilities is made with possible alternatives to aid management decisions. Case studies are selected from actual industrial situations.

 Considerations in the selection and design of executive salary and fringe benefit policies. Problems of motivation and morale, development, recruitment and performance measurement. Effect of management environment on performance.

 Introduction to automatic control of manufacturing processes; Laplace transformations and their application to design of process control systems; numerically controlled machine tool synthesis, application and programming problems.

671. Queueing Theory II. Prerequisite: Ind. Eng. 571. II. (3).
 Continues the development of probability theory. Queues are analyzed by the embedded Markov chain concept. Transient behavior is considered. Analysis by the addition of random variables is discussed. Generating and characteristic functions are introduced.

691. Graduate Study in Selected Problems. Prerequisite: permission of graduate committee. I and II. (To be arranged).

722(260). Great Works of Scientific Management. Prerequisite: permission of department. II. (2 or 3).
 Acquaints the industrial engineer with the origins of his profession and develops an understanding of the creative process in this area. The works of the
founders of scientific management and original papers by outstanding men in the field will be studied and discussed.

749. Automatic Process Control II. Prerequisite: Ind. Eng. 649. II. (3).
Continuation of Ind. Eng. 649 into study of multiple process system control and use of real time computers.

806(240). Seminar in Special Industrial Engineering Topics. Prerequisite: Ind. Eng. 463 or permission of department. II. (1 or 2).

876(250). Seminar in Operations Research I. Prerequisite: permission of department. I. (1 or 2).

878(251). Seminar in Operations Research II. Prerequisite: permission of department. II. (1 or 2).

906. Research in Industrial Engineering. (To be arranged).

992. Thesis Project. (To be arranged).

INSTRUMENTATION ENGINEERING

510(175). Applications of the Electronic Differential Analyzer I. Prerequisite: a course in differential equations. I and II. (3).
Basic theory and principles of operation of electronic differential analyzers. Applications to one and two degree-of-freedom vibration problems, automatic control systems, heatflow, eigenvalue problems, nonlinear vibration problems, and other selected topics. Lecture and laboratory. Laboratory consists of the solution of problems on the electronic differential analyzer.

530(177). Probability in Instrumentation. Prerequisite: a course in differential equations. I and II. (2).
Probability basis of measurement errors and random events; probability distributions; precision indices and their propagation; confidence intervals; tests for distributions; least squares fitting; linear correlation; discrete and continuous time series.

Transient and steady-state analysis of linear feedback control systems; transfer functions and operational calculus. Stability analysis of single and multiple-loop systems using the Nyquist criterion. Synthesis of control systems using Nyquist plots, attenuation methods, and root-locus diagrams.

571(174a). Automatic Control Laboratory. Prerequisite: to be taken concurrently with or following Instr. Eng. 570. I and II. (1).
Laboratory experiments covering the automatic control theory presented in Instr. Eng. 570. Use of the electronic differential analyzer for simulation and as a design tool.

610(275). Applications of the Differential Analyzer II. Prerequisite: Instr. Eng. 510 or equivalent. (3).
Theory of operational amplifiers, including stability, reliability, and drift-effects and their influence on d.c. amplifier circuitry. Drift-stabilized d.c. amplifiers. Design of integrators, summers, and operational analog circuits. Design of servo-multipliers, time-division multipliers, function-generators, drift-stabilized power supplies, and other selected topics. Lectures and laboratory.

620(250). Introduction to Nonlinear Systems. Prerequisite: Math. 404 and 450. I and II. (3).
Study of systems represented by nonlinear autonomous (unforced) differential equations, including the following: concept of phase space; singular points and their stability; conservative systems; limit cycles; jump phenomena; Van der Pol's equation; index of Poincare; theorems of Bendixson. Many physical examples are used to illustrate the theory. Solutions are illustrated on the electronic differential analyzer.

621(252). Simulation and Solution of Nonlinear Systems. Prerequisite: Instr. Eng. 510 and preceded or accompanied by Instr. Eng. 620 or permission of instructor. (1).
Supervised work on assigned problems and problems of interest to the student of the types treated in Instr. Eng. 620 and 720. The principal tool used is the electronic differential analyzer.

Role and characteristics of transmission links; modulation and multiplex theory in the light of signal-to-noise improvement, crosstalk, and improvement thresholds. Modulation and multiplex methods include amplitude, frequency, phase, subcarrier, pulse-amplitude, pulse-width, pulse-position, and pulse-code. Information efficiencies of the above methods; transducers and various methods of data recording.

641(215). Radio Telemetry Laboratory. Prerequisite: to be taken concurrently with or following Instr. Eng. 640. (1).
Laboratory experiments involving the various modulation and multiplex methods and associated instrumentation described in Instr. Eng. 640.

Static response, static sensitivity, calibration. Analysis of dynamic response. Statistical aspects of measurement including estimation of statistical parameters, theory of random processes, correlation, and spectral functions. Instrument errors and their propagation. Application of information theory to design of measuring systems. Analysis and laboratory investigation of instruments to measure such things as displacement, velocity, acceleration, pressure, temperature, stress, and strain. Lectures and laboratory.

Alternating current carrier systems; design and use of operational amplifiers as control system elements. Analysis and synthesis of nonlinear control systems; phase plane and describing function methods. Sampled data feedback systems and z transforms. Response of linear control systems to random inputs; correlation functions and spectral densities; optimum linear filtering.

671(249). Feedback Control Laboratory. Prerequisite: to be taken concurrently with or following Instr. Eng. 670. I and II. (1).
Laboratory experiments covering the feedback control theory given in Instr. Eng. 670.

672(274). Sampled Data Systems. **Prerequisite:** Instr. Eng. 570 and Math. 548 or equivalent. (2).

Concept and implications of sampling, interpolation and extrapolation; operational methods for analysis of linear systems with sampled data inputs including transforms, modified z transforms, stability determination, and evaluation of dynamic and steady-state response; analysis and synthesis of sampled data feedback systems by time and frequency domain techniques; synthesis of compensation transfer functions with digital computers and lumped element linear systems; multiple rate systems; finite width sampling; analysis and synthesis of linear systems with sampled random inputs; z-transform and z-form techniques for numerical analysis.

Linear time-variant systems with a finite number of degrees of freedom; general theory of linear dynamical systems, Green's function, adjoint systems, perturbation equations and methods, Floquet theory, the Brillouin-Wentzel-Kramers method, matrix methods, the time-variant impulse response and transfer function, operational methods, and computer techniques. Applications to automatic control and filtering. Use of electronic differential analyzer for the solution of problems is demonstrated.

Principally considered are forced systems with nonlinearities and a finite number of degrees of freedom, as represented by systems of nonlinear ordinary differential equations containing functions of the independent variable. Harmonic and subharmonic response and synchronization and entrainment of oscillatory systems are considered. Various methods of analysis are treated.

730(277). Random Processes in Instrumentation and Control. **Prerequisite:** Instr. Eng. 530 or equivalent and Math. 450 or equivalent. (3).

Introduction to random processes; behavior of time-invariant linear systems with stationary random inputs; optimum filtering and prediction for stationary processes; treatment of time varying and nonlinear systems with random inputs; interpolation and filtering of sampled data.

732(278). Special Topics in Random Processes. **Prerequisite:** Math. 548 or equivalent; Instr. Eng. 730 or Elec. Eng. 634 or equivalent. (3).

Topics of current research interest to be selected from among the following: detection theory, nonlinear devices with random inputs, generalizations of Wiener optimum filtering, estimation of spectra, noise in sampled data systems.

770(276). Special Topics in Automatic Control. **Prerequisite:** Instr. Eng. 570 or Elec. Eng. 445 or equivalent, and Math. 548 or equivalent. (3).

Minimum mean-square or integral-square design of linear feedback systems; multipole control systems; final value controllers; perturbation methods for control of complex nonlinear systems; optimalizing control; optimizing control; adaptive control systems; other selected topics taken from recent literature.

800(385). Seminar. (To be arranged).

810(170). Seminar on Electronic Analog Computers. **Prerequisite:** open only to graduates and seniors who receive special permission. (To be arranged).

Study of selected topics in design and application of electronic analog computers.

900(183). Directed Study. (To be arranged).

Individual study of specialized aspects of instrumentation engineering.
902(184). Research. (To be arranged).
Specialized individual or group problems of research or design instrumentation supervised by a member of the staff.

MATHEMATICS*

101(7). Algebra and Trigonometry. Prerequisite: one year of plane geometry. (No credit).
Number systems; factoring; fractions; exponents and radicals, systems of equations; linear, quadratic, trigonometric, exponential, and logarithmic functions, their graphs and properties, triangle solutions.

103(8). Trigonometry. Prerequisite: one year of geometry, and one and one-half years of high school algebra. I and II. (No credit).
Includes the trigonometry of Math. 101.

233(33). Analytic Geometry and Calculus I. Prerequisite: one and one-half to two years of high school algebra; one to one and one-half years of plane geometry; one-half year of trigonometry. I and II. (4).
Review of school algebra, binomial theorem; functions and graphs; derivatives, differential of algebraic and trigonometric functions, applications; definite and indefinite integrals, applications to polynomial functions.

Differentiation and integration of logarithmic and exponential functions; formal integration; determinants; polynomials and curve sketching; conic sections; rotation of axes.

Transformation of axes; general second-degree equations; polar co-ordinates; curve tracing; solid analytic geometry; calculus through differentiation of algebraic functions with applications. Omitted in second semester, 1962–63.]

243(15D). Mathematics Drill. Prerequisite: one and one-half units of high school algebra, one and one-half units of geometry, one-half unit of trigonometry. Math. 233 must be taken concurrently. I and II. (No credit).
A tutorial type course; meeting for two hours a week and designed to assist

*College of Literature, Science, and the Arts. Other courses in mathematics are listed in the announcements of that College and of the Horace H. Rackham School of Graduate Studies.
students whose mathematics background is weak. Review of high school algebra and trigonometry, drill in elementary college algebra.

298, 299(17, 18). Analytic Geometry and Calculus. Prerequisite: permission of the L. S. & A. Honors counselor or instructor. 298, I; 299, II. (4 each).

For superior students having outstanding high school records in mathematics. The sequence Math. 298, 299, 397, 398 includes the content of Math. 233, 234, 371, 372, 551, with deeper penetration into many topics and with additional material.

335, 336, 337(35, 36, 37). Analytic Geometry and Calculus. Prerequisite: permission of the Honors or the Unified Science counselor or instructor. 335, I; 336, II; 337, I. (4 each).

For students well qualified in mathematics. Material covered is approximately that included in Math. 233, 234, 371, and 372.

352(52). Calculus I. Prerequisite: Math. 222. I and II. (5).

Basic calculus of functions of a single variable. Course covers the calculus portion of Math. 242 and all of Math. 363.

Differentiation of transcendental functions with applications; differentials; antiderivatives; definite integral; methods of integration; arc length, geometric applications of integration. Course will not be offered after 1962–63.

364(54). Calculus II. Prerequisite: Math. 352 or 363. I and II. (5).

Physical applications of integration; infinite series; calculus of functions of several variables; first order differential equations, linear differential equations with constant coefficients.

Polar co-ordinates; complex numbers; two- and three-dimensional vectors; solid analytic geometry; partial derivatives; multiple integrals.

Infinite series, first-order differential equations, linear differential equations with constant coefficients; permutations and combinations; elementary probability and statistics.

373(73). Elementary Computer Techniques. Prerequisite: to be preceded by or taken concurrently with Math. 299, 336, 352, or 371. I and II. (1).

To cover mathematical methods used on electronic computers and the ways one communicates with a computer. Students will have the opportunity to write a program for the computer.

397, 398, 399(98, 99, 100). Analysis I, II, III. Prerequisite: Math. 298, 299. 397, I; 398, II; 399, I. (397, 398, 4 each; 399, 3).

Designed primarily for mathematics honors students who have had Math. 298 and 299. The material covered is approximately that of Math. 364, 403, and 551, but there is a deeper penetration into many topics.

403(103). Introduction to Differential Equations. Prerequisite: Math. 364 or 372. I and II. (3).

Solutions and applications of differential equations of the first order; linear equations with constant coefficients; linear equations of the second order; solution by the power series method; applications.

405(105). Differential Equations. Prerequisite: Math. 364 or equivalent. I. (4).
Solution and application of differential equations of the first order; linear
equations; second-order linear equations; solution by means of power series;
further applications.

415(113). Introduction to Matrices. Prerequisite: Math. 412 or permission of in-
structor. I and II. (3).
Vector spaces; linear transformations and matrices, equivalence of matrices and
forms, canonical forms; application to linear differential equations.

447(147). Modern Operational Mathematics. Prerequisite: preceded by or con-
currently with Math. 450 or 551. I and II. (2).
Laplace transformation, with emphasis on its application to problems in ordi-
nary and partial differential equations of engineering and physics; vibrations of
simple mechanical systems, of bars and shafts; simple electric circuits, transient
temperatures, and other problems.

450(150). Advanced Mathematics for Engineers. Prerequisite: Math. 364 or 372
and preferably Math. 403 or 404. I and II. (4).
Topics in advanced calculus including infinite series, Fourier series, improper
integrals, partial derivatives, directional derivatives, line integrals, Green's
theorem, vector analysis. Students cannot receive credit for both Math. 450 and
551.

452(152). Fourier Series and Applications. Prerequisite: Math. 450 or 551. I and
II. (3).
Orthogonal functions, Fourier series, Bessel functions, Legendre polynomials
and their application to boundary value problems in mathematical physics.

453(153). Introduction to Approximation Theory. Prerequisite: Math. 450 or
551. II. (3).
For students in analysis or computer mathematics. Theorems of Weierstrass,
best approximations, Tschebyscheff and orthogonal polynomials, interpolation
and approximate quadrature with reference to convergence of sequences of
operations.

455(155). Introduction to Functions of a Complex Variable with Applications.
Prerequisite: Math. 450 or 551. I and II. (3).
Complex numbers; limit, continuity; derivative; conformal representation; in-
tegration; Cauchy theorems; power series; singularities; applications to engineer-
ing and mathematical physics.

461(161). Statistical Methods for Engineers I. Prerequisite: Math. 364 or 372. I and
II. (3). Students cannot receive credit for both Math. 461 and 561.
Statistical methods of quality control; normal, binomial, and Poisson distribu-
tions; Shewhart control chart; sampling methods in scientific acceptance inspec-
tion. Math. 461 and 462 together form an introductory course especially designed
for the needs of engineers in both experimental work and the flow of production.

462(162). Statistical Methods for Engineers II. Prerequisite: Math. 461 or 561. I
and II. (3). Students cannot receive credit for both Math. 462 and 562.
Significance tests; tests valid for small samples; introduction to linear correla-
tion; elementary design of experiments.

473(173). Introduction to Digital Computers. Prerequisite: Math. 364 or 372. I.
(3).
Characteristics and logic of general purpose high-speed digital computers; in-
troduction to logical design. The concept of algorithm, language, and symbol
manipulation as applied to computer instruction. Computational methods for
linear systems, differential equations, linear programming, etc. Laboratory work
in programing the IBM 7090 computer.
474(174). Numerical Analysis. Prerequisite: Math. 403 or 404 and 413 or 415 and 473 or equivalent. I. (3).

The formal processes of vector analysis with applications to mechanics and geometry.

517(117). Introduction to Linear Algebra and Its Application. Prerequisite: one course beyond calculus or permission of instructor. I and II. (3).

Boolean algebra and elements of set theory; matrix operation; equivalence, congruence, and similarity of matrices and forms; emphasis on applications. Intended primarily for students in engineering and social sciences.

518(118). Optimization in Linear Systems. Prerequisite: Math. 517 or permission of instructor. II. (3).

Solution of linear equations; linear inequalities and convex geometry; linear programming; simplex method; two-person zero-sum games, n-person games. Emphasis on applications of these topics. Students in mathematics should elect Math. 727.

Introduction to complex variables. Fourier series and integrals, Laplace transforms, application to systems of linear differential equations; theory of weighting function, frequency response function, transfer function, stability criteria, including those of Hurwitz-Routh and Nyquist.

551(151). Advanced Calculus. Prerequisite: Math. 364 or 373 and preferably Math. 403 or 404. I and II. (4).

Continuity and differentiation properties of functions of one and several variables; the definite integral and improper definite integrals, surface integrals and line integrals, Stokes' and Green's theorem, infinite series. Students cannot receive credit for both Math. 450 and 551.

557(157). Intermediate Course in Differential Equations. Prerequisite: Math. 403 or 404 and 450 or 551 or equivalent. I and II. (3).

Linear equations of the second order; solution by power series, Riccati equations; extensive treatment of the hypergeometric equation; solutions of the equations of Bessel, Hermite, Legendre, and Laguerre.

Basic probability and statistical concepts; univariate theory; calculational methods, distribution functions; binomial, normal, and Poisson distributions. Introduction to sampling theory. This course should be followed by Math. 562. Students cannot receive credit for both Math. 451 and 561.

Significance tests and confidence limits for large samples; exact sampling theory including derivation and the use of Student-Fisher t; variance ratio and \(\chi^2 \); correlation and regression; the bivariate normal distribution; introduction to multivariate analysis. Students cannot receive credit for both Math. 462 and 562.

Topics in automatic programming of digital computers, including the structure of compilers and assemblers, the use of macroinstructions, the structure and
use of executive systems, list storage, threaded lists, and automatic programming languages.

Equations of motion, continuity, and energy for a compressible fluid; thermodynamics; theory of discontinuities (shocks, weak shocks, and characteristics); the method of characteristics for two- and three-dimensional flows; simple waves; other degenerate flows.

749(249). Methods of Partial Differential Equations. **Prerequisite:** Math. 447, 452, and 455. I and II. (3).

Theory and application of the solution of boundary value problems in the partial differential equations of engineering and physics by various methods; orthogonal functions, Laplace transformation, other transformation methods. Green's functions.

750(250). Methods of Mathematical Physics I. **Prerequisite:** Math. 450, 452 and 455 or the equivalent. I. (3).

751(251). Methods of Mathematical Physics II. **Prerequisite:** Math. 750 or permission of instructor. II. (3).

Classification of partial differential equations, representation theorems. Selected topics, such as direct methods and singular differential and integral equations.

754. Advanced Partial Differential Equations. **Prerequisite:** Math. 785 or permission of instructor. II. (3).

757(257). Special Functions in Classical Analysis. **Prerequisite:** permission of instructor. II. (3).

773(271). Advanced Numerical Analysis. **Prerequisite:** Math. 474 or permission of instructor. II. (3).

Truncation, round-off and propagation error analysis for the solution of linear and nonlinear functional equations using a large hyphen-scale digital computer. Solution of partial differential equations by numerical techniques. Laboratory work in solution of one or more of such problems using the IBM 7090 computer.

777(277). Tensor Analysis. II. (3).

Definition of tensors; tests for tensor character; manifolds; geodesics; absolute derivatives, covariant and contravariant derivatives; the curvature tensor; relative tensors; Cartesian tensors; applications to mechanics, elasticity, hydrodynamics, heat conduction, electricity, and magnetism.

MECHANICAL ENGINEERING

Fundamentals of manufacturing processes. Effect of the process on surface
condition, residual stresses, strain hardening, wear, and failure. Influence of the mechanical properties of materials on the process. Material selection for processing and design. Two recitations and one three-hour laboratory.

Correlation of the structure of metals with their mechanical properties; control of mechanical properties by modifying the microstructure; mechanical properties of commonly used metals; failure by corrosion; relations between mechanical properties and the manufacturing processes of casting, welding, plastic working, machining, and heat-treating. One lecture, one problem period, and two hours of laboratory.

Theory, construction, and operation of the principal types of fluid machinery. Review of fundamentals of fluid mechanics. Compressible fluid flow. Three one-hour lectures and one three-hour laboratory.

335(105). Thermodynamics I. Prerequisite: Physics 145 and Math. 371. I and II. (3).

Basic course in engineering thermodynamics. First law, second law, properties of a pure substance, ideal gases, mixtures of ideal gases and vapors, availability.

Continuation of Mech. Eng. 335. Power and refrigeration cycles; flow through nozzles and blade passages; general thermodynamic relations, equations of state, and compressibility factors; chemical reactions; combustion; gaseous dissociation. Three one-hour lectures and one three-hour laboratory.

357(17). Mechanical Engineering Laboratory. Prerequisite: preceded or accompanied by Mech. Eng. 335. I and II. (2).

Demonstration and application of basic principles in various areas of mechanical engineering; instrumentation and the reliability of measurements; behavior and nature of typical machinery and equipment. One four-hour period. Not open to mechanical engineering students.

The principles of kinematics and dynamics applied to the analysis of existing designs of mechanical systems. Transient and steady-state vibrations of lumped systems of one degree of freedom. Three one-hour periods and one three-hour laboratory.

Application of the principles of mechanics in the study of existing designs of mechanical systems. Not open to mechanical engineering students. Three one-hour periods.

Application of the fundamentals of mechanics, materials, and manufacturing to the analysis and design of machine elements and mechanical systems. Three one-hour periods.

Study of the mechanisms of heat transfer processes. Steady and transient conduction in solids, numerical and graphical methods; heat exchanger design, performance and economics; thermal radiation; convective processes, turbulent and laminar flow, steady and transient diffusion, mass transfer between phases. Three one-hour lectures and one three-hour laboratory.

A study of machining, welding, and plastic forming of materials; analysis of forces, energy requirements, and temperature effects; design specifications economically obtainable in terms of dimensional accuracy, surface finish, and material properties; functional characteristics of equipment. Two recitations and one three-hour laboratory.

398(128). Heating and Ventilating. I and II. (3).

Theory, design, and construction of warm-air, steam, hot-water, and fan-heating systems; air conditioning and temperature control. Lectures, recitations. For architects only.

408(108). Experimental Research in Mechanical Engineering. Prerequisite: Senior standing and permission of instructor. I and II. (3). Not for graduate credit.

Individual or group experimental research in a field of interest to the student under the direction of a member of the Mechanical Engineering Department. Topics may be selected from a list offered each semester including such areas as air conditioning, automotive engineering, fluids, heating, heat transfer, machine design, materials, processing, thermodynamics. The student will submit a report. Two four-hour laboratories per week. Time to be arranged.

Plastic deformation of metals with respect to their mechanical properties and metallurgical characteristics. Introduction to Cartesian tensors; analysis of stress, strain and displacement; elastic stress strain relations; yielding criteria; theory of dislocation and slip mechanism; plastic stress strain relations, theory and experimental data; temperature and strain rate effect; work of deformation; slip line fields.

One-dimensional compressible flow involving change of area, normal shock, friction, and heat transfer. Two-dimensional subsonic and supersonic flow.

The laws of thermodynamics, laws of motion and flow of fluids as applied to the design theory of axial and radial flow turbo-machinery.

Economic conversion of natural energy in stationary power plants. Major topics treated: combustion practice, steam generation, steam turbines, diesel engine power plants, hydraulic power plants, gas turbines, nuclear energy power plant economics, load curves, energy rates. Selected power plant problems are assigned.
Independent design of a machine or a mechanical system, including synthesis, layout, analysis, and critical review. Two four-hour periods a week.

Methods and instruments for measuring and recording displacement, velocity, acceleration, and force; introduction to the principles of automatic control systems encountered in mechanical engineering; the Laplace transform; stability; design considerations for feedback control systems.

463(183). Wear Considerations in Design. Prerequisite: Mech. Eng. 343 or 362. II. (3).
Design of machine members to avoid surface damage due to wear, pitting, scoring, frettage, and cavitation. Application to the design of press-fitted, keyed, and bolted assemblies; bearings, gears, cams, pumps, and liners.

Laboratory use of instrumentation to measure forces, stresses, displacement, pressure, etc., in mechanical devices; use of transducers, display and recording devices, and of the analog computer for experimental analysis; short experiments plus squad projects; lectures, laboratory, brief reports. Two three-hour periods per week.

Viscosity; hydrostatic and hydrodynamic analysis of journal and thrust bearings; lubrication of rolling surfaces; thin-film lubrication; bearing materials; methods of lubrication; bearing design.

Specification, design, construction, and operation of production machines and allied tooling. Consideration of bearings, lubrication, motors, controls and materials. Hydraulic and electric control units and circuits.

Application of fundamental principles to problems arising in manufacturing. Particular attention is devoted to planning operations, designing special equipment, statistical quality control, cost analysis and reduction, and similar functions which engineers perform in connection with manufacturing. Two one-hour periods and two three-hour laboratories.

Principles, methods, and instrumentation used in making engineering analyses of product design and machining processes; planning of investigations; design of mechanical dynamometers; electrical strain gages; transducer characteristics; related topics. Two lectures and two three-hour laboratories.

484(173). Gas Welding. Prerequisite: Mech. Eng. 487 or permission of instructor. I and II. (2).
Techniques and gas welding, brazing, flame cutting of ferrous and nonferrous materials. Emphasis on gas welding metallurgy; heat treatment of weldments. Visual, mechanical, and metallurgical inspection of weldments. Study of equipment, accessories, supplies, plant layout, supervision, certification, production procedures, cost analysis, welding safety, and introduction to research problems. One-hour recitation and three-hour laboratory. Graduate credit not allowed for mechanical and industrial engineering students.
485(174). Electric Welding. *Prerequisite: Mech. Eng. 487 or permission of instructor. I and II. (2)*

Scientific study of techniques; filler materials; arc, inert and automatic arc, and resistance welding. Study of welding metallurgy; failures and stress analysis. Destructive and nondestructive weldment tests; micro-preparations and examinations. Welding of aluminum, high-temperature alloys, pipes, bases, pressure vessels, and structures. Study of designing; symbols, joints, weldments, and introduction to research problems. One-hour recitation and three-hour laboratory. Graduate credit not allowed for mechanical and industrial engineering students.

486(182). Manufacturing Considerations in Design. *Prerequisite: Mech. Eng. 343 or 362. II. (3)*

Correlation between functional specifications and process capabilities. Study of tolerances on basis of fabricability. Case studies in process engineering, including standards application. Problems in redesign for producibility.

Study of mechanism of surface bonding, welding metallurgy, effect of rate of heat input on resulting micro-structures, residual stresses and distortion, economics and capabilities of the various processes.

491(125). Heating and Air Conditioning. *Prerequisite: Mech. Eng. 335. II. (3)*

Theory and design of warm-air, steam, hot-water, and radiant heating systems; moisture temperature control; cooling and air conditioning; fans, air flow; fume exhaust systems.

The student is given the usual data furnished the heating and ventilating engineer. He then makes a layout of piping, ducts, and auxiliary apparatus, with computation for the size of principal equipment. Two four-hour periods.

Application of gas dynamics and heat transfer to rocket engines; propellant thermo-chemistry, feed system hydraulics, design of liquid and solid propellant rockets; advanced rocket propulsion systems.

494(166). Design of Gas Turbine Engines. *Prerequisite: Mech. Eng. 362 and 493. II. (3)*

Preliminary design of gas turbine powerplants; component matching and off-design performance: compressor, turbine, and combustor characteristics.

Application of gas dynamics and heat transfer to rocket engines; propellant thermo-chemistry, feed system hydraulics, design of liquid and solid propellant rockets; advanced rocket propulsion systems.

Comparison of characteristics and performance of the several forms of internal combustion engines including the Otto and Diesel types of piston engines, gas turbines, ramjets, and rockets; thermodynamics of cycles, combustion, ignition, fuel metering and injection, supercharging, and compounded engines.

497(155). Automotive Laboratory. *Prerequisite: preceded or accompanied by Mech. Eng. 496. I and II. (3)*

Experimental study of automobile and aircraft engines, including horsepower, fuel economy, thermal efficiency, mechanical efficiency, energy balance, indicator cards, carburetion, compression ratio, electrical systems, and road tests for car performance. Laboratory and reports. Four or five hours each week.

501 to 510, inclusive.
These courses are offered at University of Michigan Centers outside of Ann Arbor. For course titles, prerequisites, and credits see the Announcement of the Horace H. Rackham School of Graduate Studies. For complete descriptions, see the Announcement of the University of Michigan Dearborn Center. These courses will also be scheduled in the Extension Service bulletins. Credit will not be granted to students who have completed the corresponding course in Ann Arbor; i.e., Mech. Eng. 540, 556, 535, 571, 524 for Mech. Eng. 501, 502; 503, 504; 505, 506; 507, 508; 509, 510; respectively.

517(237). Plastic Forming of Metals II. Prerequisite: Mech. Eng. 417 or equivalent. II. (3).

Dimensional analysis, basic concepts, equations of continuity, stream lines and stream surfaces, vorticity and circulation; equations of motion; irrotational flow theory, mathematical techniques for solution of flow equations; complex variables, conformal mapping with applications to solution of two-dimensional flow problems.

Introduction to statistical methods for evaluating thermodynamic and transport properties. Elements of quantum mechanics, statistical mechanics, and kinetic theory, as applied to engineering thermodynamics.

Definitions and scope of thermodynamics, first and second laws, Maxwell's relations, Clapeyron relation, equation of state, thermodynamics of chemical reactions, availability.

Theoretical and design aspects of producing temperatures below ambient. Vapor compression systems; absorption systems; liquefaction and separation of air; liquefaction and properties of cryogenic fluids; insulation problems; and unique phenomena at extremely low temperatures.

Analysis, reduction, and isolation of machine vibrations. Mounting of machines and equipment; critical speeds and torsional vibrations of rotors; balancing of machines; vibration absorbers and dampers. Transients. Vibrating systems.

Atomic mechanisms involved in the plastic behavior of metals. Theories of dislocation, generation, and propagation. Ductile and brittle fractures; notch and size effects; causes of fatigue; anelastic effects in metals; surface anomalies. Effects of nuclear radiation on mechanical properties.

556(186). Stress Considerations in Design. Prerequisite: Mech. Eng. 343 or 362. I and II. (3).
Treatment of stress and strength aspects of machine design. Analytic and experimental determination of stresses in machine members. Evaluation of strength under steady and fatigue loadings. Post-yield behavior, residual stresses, temperature and corrosion effects.

563(203). Advanced Instrumentation and Control. Prerequisite: a degree in engineering or permission of instructor. II. (3).
Automatic controls; fluid metering; measurements of temperature, humidity, pressure, displacement, strain, speed, sound, etc.

567. Reliability Consideration in Design. Prerequisite: Mech. Eng. 343 or 362 or equivalent. I. (3).

Conduction heat transfer in steady and transient state, including heat sources. Analytical, numerical, graphical, and analog methods of solution for steady and fluctuating boundary conditions. Thermal stresses. Dynamics of thermal instrumentation and heat exchangers.

583(273). Machinability. Prerequisite: Mech. Eng. 482 or 483. II. (3).
Metal-cutting theory and its application to practical problems. Basic theory of tool wear, cutting forces, surface finish, and chip formation is studied in class and correlated with work in the laboratory. Special research problems are investigated. Field trips to local manufacturing plants are included.

Balance and vibration; advanced thermodynamic analysis of engines; chemical equilibrium and kinetics of combustion; theory and control of detonation; combustion analysis; principles underlying recent advances in engines.

Advanced experimental and research work. Laboratory and reports.

600(200). Study or Research in Selected Mechanical Engineering Topics. Prerequisite: graduate standing; permission of instructor who will guide the work should be obtained before classification. I and II. (Credit to be arranged).
Individual or group study, design, or laboratory research in a field of interest to the student. Topics may be chosen from any of the areas of mechanical engineering. The student will submit a report on his project and give an oral presentation to a panel of faculty members at the close of the semester.

607(207). Advanced Mechanical Engineering Problems. Prerequisite: preceded by Math. 403 or 404. I and II. (3).
Analysis of problems in mechanical vibrations, resonance and critical speeds.
fluid flow, thermodynamics, heat flow, weight distribution, and strength of materials, processing, and materials.

625(145). Introduction to Viscous Flow Theory. Prerequisite: Mech. Eng. 524 or Eng. Mech. 422 or permission of instructor. II. (3).

Fundamental concepts, exact and approximate solutions of the Navier-Stokes equations; exact and approximate solutions of equations for two- and three-dimensional laminar boundary layers; similarity solutions; momentum-integral methods; series solutions. Applications to flow in turbomachinery.

672(212). Heat Transfer III. Prerequisite: Mech. Eng. 335 and 371. II. (3).

Study of the nature of convective processes involving the transfer of heat, mass and momentum. Boundary layer theory. Analogy between heat and momentum transfer. Condensation and boiling phenomena, two-phase flow. Natural convective processes, steady and transient diffusion, mass transfer between phases.

700(300). Professional Problems. I and II. (9).

Professional degree candidate only. Student selects a problem in research, analysis, or design in any field of mechanical engineering and submits a written proposal to the Graduate Committee for approval before enrolling in course. Letter from staff member who will direct work must accompany proposal.

772(312). Heat Transfer V. Prerequisite: Mech. Eng. 571 and 672, Math. 452 or equivalents. II. (3).

Generalized methods of analysis applied to advanced problems in heat and mass transfer including the influence of magnetic field phenomena; transient processes in distributed fluid-solid systems having mixed boundary conditions; systems undergoing ablation and melting, transient thermal stresses.

820(304). Fluids Machinery Seminar. Prerequisite: graduate standing and permission of instructor. (To be arranged). Offered upon sufficient demand.

Reports and discussions on library study and laboratory research in selected topics.

835(305). Seminar in Thermodynamics. Prerequisite: Mech. Eng. 531 and 535 or permission of instructor. II. (3).

P-V-T behavior of gases and liquids, equilibria, electrochemistry, thermoelectricity, and irreversible thermodynamics.

838(308). Heat-Power Seminar. Prerequisite: graduate standing and permission of instructor. (To be arranged). Offered upon sufficient demand.

Reports and discussions on library study and laboratory research in selected topics.

METEOROLOGY

Note: Extra work is required for graduate credit in Meteorology 432, 440, 441, 445, 452 and 470.

202(4) (Geog. 202). Weather, Climate, and Life. I and II. (3).

An elementary description of the atmosphere, its characteristics, and behavior; weather and climate as basic factors in life and civilization.
Meteorology

404(104) (Geog. 404). Introductory Meteorology—Weather. Prerequisite: preceded or accompanied by Math. 101 or equivalent. No credit allowed in a degree program in meteorology. I and II. (3).

Wind and storm systems, cloud and precipitation, and other weather processes as revealed by meteorological research, with an elementary discussion of weather instruments and forecasting. Lectures, term paper, and field trips.

405(105) (Geog. 405). Introductory Meteorology—Climate. Prerequisite: Meteor. 202 or 404. No credit allowed in a degree program in meteorology. II. (3).

Climatic elements, controls, and regimes with a discussion of their distribution, classification, and fluctuation, and of the significance of climatic influences in the modern world. Lectures and term paper.

408(120). Principles of Meteorology. Prerequisite: Math. 364 and Physics 146 or equivalent. I. (3).

Introduction to the basic thermodynamic, radiative, and dynamic processes in the atmosphere; physical analysis of wind and turbulence; cloud, precipitation, and evaporation physics; physics of the high atmosphere. Lectures and problems.

412(153). Physical Climatology. Prerequisite: preceded or accompanied by Meteor. 408 or 432 or 445. I. (3).

A survey of the general circulation of the atmosphere; the physical processes governing climate; solar radiation and the terrestrial heat balance; influence of large scale condensation and evaporation processes; the formal classification of climates according to zones and types; the application of climatic concepts.

415(156). Statistical Methods in Meteorology I. Prerequisite: one year of calculus. I. (3).

Distributions in time and space of meteorological elements; measures of central tendency and dispersion; distributions of scalar and vector quantities; introduction to statistical inference and significance tests; fiducial limits; regression analysis; trends and cycles; forecast verification. Lectures and laboratory exercises.

422(115). Introductory Microclimatology. II. (3).

The physical processes which govern microweather and microclimate; temperature, humidity, and wind near the ground in relation to height, time, soil, vegetation, and topography. Lectures and field experiments.

432(122). Atmospheric Thermodynamics and Radiation. Prerequisite: Math. 364 and Physics 146 or equivalent. I. (3).

Composition of the atmosphere; atmospheric statics; thermodynamic diagrams; solar and terrestrial radiation; the heat balance of the earth. Lectures and problems.

440(132). Principles of Weather Analysis. Prerequisite: preceded or accompanied by Meteor. 408 or 432 or 445. I. (3).

Air mass analysis, representative and conservative properties; detailed three-dimensional structure of fronts and pressure systems; principles of construction of prognostic pressure charts; procedures for forecasting the weather elements; the verification of weather forecasts. Lectures and problems.

441(135). Laboratory in Weather Analysis I. Prerequisite: preceded or accompanied by Meteor. 440. I. (3).

Construction of meteorological charts from current and past weather data. Analytical codes: measurement of geostrophic and gradient winds; graphical determination of thickness patterns; jet stream analysis; principles of prognosis from thermodynamic diagrams, isallobaric and isobaric analyses.

445(126). Dynamic Meteorology. Prerequisite: Math. 364 and Physics 146 or equivalent. II. (3).

The stratification of the atmosphere; the hydrostatic equation; virtual tempera-
ture; the equations of motion; barotropy and baroclinicity; stream function; circulation and vorticity; local change of pressure; atmospheric turbulence; the jet stream; weather prediction by high-speed computing methods.

452(144). Physical Meteorology. Prerequisite: Meteor. 408 or 432 or 440. II. (3).
Cloud and precipitation physics; aircraft icing; radar meteorology; atmospheric electricity; atmospheric optics and visibility. Lectures and problems.

462(162). Meteorological Instrumentation. Prerequisite: Meteor. 408 or 432 or 445 or equivalent. I. (3).
Principles of meteorological instruments; methods of measurement of pressure, temperature, humidity, precipitation, evaporation, and wind; analysis of response characteristics; introduction to the design of single instruments and of instrument systems. Lectures, laboratory, and field trips.

470(180). Applied Meteorology. Prerequisite: Meteor. 404 or 408 or equivalent. II. (2).
Topics in applied meteorology, selected in accordance with the requirements of the class. Representative topics: meteorological aspects of air pollution; atmospheric phases of the hydrologic cycle; wind and precipitation loading of structures. Lectures and problems.

Selected topics relating meteorology and hydrology; typical problems of wind and waves, intensity and persistence of drought, snow melt and stream runoff, cloud seeding. Recitation and laboratory.

Statistical and graphical techniques used in meteorology: binomial, Poisson, and normal distributions; correlation and regression; statistical tests of significance; construction of nomographs. Basic concepts applied to air pollution, microwave transmission, and other fields. Recitation, laboratory, and problems.

500(110). Meteorology for Teachers. Not open to engineering students (2-3).
Lectures and discussions on elementary meteorology, combined with workshop on problems of introducing meteorology into individual school programs; survey of material sources, demonstration methods, laboratory and field exercises and equipment design. For science teachers of all levels.

541(136). Laboratory in Weather Analysis II. Prerequisite: Meteor. 441. II. (3).
Application of prognostic methods from analyses of vorticity patterns; trajectories and fallout computations; streamlines and isogons as used in tropical analyses; vertical cross sections; vertical motion calculation; introductory demonstration of numerical weather prediction; long waves and hemispheric weather.

566(166). Micrometeorological Instrumentation. Prerequisite: permission of instructor. II. (3).
Analysis of requirements for instrumentation; measurement of radiation, temperature, humidity, and wind velocity near the ground and of their fluctuations and vertical gradients; exposure and ventilation of instruments in relation to soil, terrain, vegetation, and water surfaces. Lectures, laboratory, and field studies.

605(295). Current Topics in Meteorology. Prerequisite: permission of instructor. I and II. (2).
Advances in specific fields of atmospheric science, as revealed by recent research. Lectures, discussion, and assigned reading.

615(256). Statistical Methods in Meteorology II. Prerequisite: permission of instructor. II. (3).
Homogeneity of climatometric series; forecast economics; stochastic prediction;
Naval Architecture and Marine Engineering

168

multiple regression; statistical screening; orthogonal representations; harmonic analysis; filtering and rectification of time series; power spectra; extreme values. Lectures and the solution of problems on desk calculators and on the IBM 704.

622(215). Micrometeorology. Prerequisite: Meteor. 432 or 445 or permission of instructor. II. (3).

Physical processes in the atmosphere near the ground; laminar and turbulent flow; transfer of heat, mass and momentum; eddy diffusion; evaporation from natural surfaces. Lectures and problems.

701(291). Special Problems in Atmospheric Science. Prerequisite: permission of instructor. I and II. (To be arranged).

Supervised analysis of selected problems in various areas of meteorology and associated fields.

804(297). Interdisciplinary Seminar on Atmospheric Sciences. Prerequisite: permission of instructor. I and II. (1-3).

Reading, preparation of term papers, and seminar discussion of fundamental atmospheric properties and characteristics and their relation and interaction with other disciplines. Course credit assigned each student on registration.

990(293). Meteorological Research. Prerequisite: permission of graduate adviser. I and II. (To be arranged).

Assigned work in meteorological research; may include field measurements, analysis of data, development in physical or applied meteorology.

NAVAL ARCHITECTURE AND MARINE ENGINEERING

Types of ships, nomenclature, methods and materials of construction, shipyard and drawing room practices. The lines of a vessel are faired, and drawings prepared for typical ship structures.

Methods of determining areas, volumes, centers of buoyancy, displacement and wetted surface; the use of hydrostatic curves; trim; initial stability; stability in damaged condition; launching; and watertight subdivision.

300(13). Form Calculations II. Prerequisite: Nav. Arch. 201 and Math. 373. I and II. (2).

Programming of hydrostatic curves; other problems for digital and analog computers.

Design of the ship's principal structure and fastenings to meet the general and local strength requirements. Application of the classification societies' rules to framing, shell, decks, bulkheads, welding, and testing.

The principles of design and operation of the ship's boilers, turbines, and other major machinery items.

Piping systems; electrical distribution; engine room auxiliaries, deck machinery; steering gear; and emergency apparatus.

Principal features of ship specifications and contracts; methods and practices of cost estimating and production control of ships.

401(136). Small Craft Design. Prerequisite: preceded or accompanied by Nav. Arch. 420. (2).

Design of motorboats, sailboats, hydrofoils, and other small craft.

402. Small Commercial Vessel Design. Prerequisite: preceded or accompanied by Nav. Arch. 420. (2).

Design of small commercial craft such as fishing boats, tugs, towboats, barges, and coasters.

Beams under action of axial and lateral loads, beams on elastic supports; analysis of bulkheads, plating supported by a grillage system of stiffeners; effective width of plating, closed frame analysis.

Fundamentals of the resistance and propulsion of ships including the theory of model testing. Theory and practice of propeller design with reference to model propeller testing. Ship powering predictions and calculations. Four recitations and one three-hour laboratory.

430(146). Design of Marine Power Plants I. Prerequisite: Nav. Arch. 331. I and II. (2).

Preliminary heat balance and other problems encountered in marine power-plant design.

The motion of ships at sea, rolling, pitching, sea-keeping qualities; steering and maneuvering.

470(132). Ship Design I. Prerequisite: senior standing. I and II. (3).

Preliminary design methods, general arrangements and outfitting of ships. Given the owner's general requirements, the student blocks out initial design characteristics for the ship.

Basing his work on the design started in Nav. Arch. 470, the student prepares the preliminary design drawings and final calculations for the subject vessel.

Student develops the midship section for the vessel designed in Nav. Arch. 470 and Nav. Arch. 471 and makes freeboard, strength, and steel weight calculations.

473(144). Design of Marine Power Plants II. Prerequisite: Nav. Arch. 430. I and II. (3).

Design calculations to establish the heat balance of an approved machinery installation. Preliminary machinery arrangement and piping diagrams are prepared.
510(123). Advanced Structural Design. Prerequisite: Nav. Arch. 410. I and II. (To be arranged).

Special problems and ship model testing will be investigated varying with the student’s interest.

571(135). Advanced Ship Drawing and Design. I and II. (To be arranged).

572(138). Economics of Ship Design and Operation. Prerequisite: Nav. Arch. 470. II. (2).
Review of mathematics of finance, estimating ship construction and operating costs and income; interpretation of data; profitability; optimum design conditions; replacement; intangible factors.

590(145). Advanced Reading and Seminar in Marine Engineering. I and II. (To be arranged).

591(154). Advanced Reading and Seminar in Naval Architecture. I and II. (To be arranged).

592(156). Thesis Research. Prerequisite: Nav. Arch. 470 or design course in Option 2 and Nav. Arch. 420. I and II. (3).

Fundamentals of circulation theory of screw propeller design; propeller cavitation; supercavitating propellers.

630(148). Nuclear Ship Propulsion. Prerequisite: Nuc. Eng. 400 or 470 or equivalent. I. (3).
A discussion of the basic problems encountered in the application of nuclear reactors; the engineering problems of a reactor. Brief review of the nontechnical problems of nuclear merchant ship propulsion.

NUCLEAR ENGINEERING

400(190). Elements of Nuclear Engineering. Prerequisite: senior standing or permission of instructor. I and II. (3).
A quantitative survey of nuclear engineering for those in fields other than nuclear engineering. Elementary nuclear physics, neutron mechanics, the nuclear reactor, radiation shielding, instrumentation and control, and nuclear power plant systems are the principal topics surveyed.

Designed to give students a background in the aspects of atomic and nuclear physics prerequisite to an understanding of neutron processes. Discussion of Planck’s constant and basic properties of the neutron.

550(195). Handling and Use of Radioactive Materials. Prerequisite: senior standing or permission of instructor. I and II. (3).
Uses of nuclear radiation in industry and research. Procedures in the safe
handling of radioactive materials, hazard evaluations, and design of radiation facilities. One hour lecture, demonstrations, and experiments with high-level sources.

560(192). Nuclear Radiation Detection and Measurement. Prerequisite: Nuc. Eng. 470, preceded or accompanied by a course in electronics. I and II. (3).

Study of ionization chambers, proportional and Geiger-Mueller counter systems, scintillation counters and related circuity. Instruments are used to study fundamental nuclear phenomena and the characteristic properties of alpha, beta, gamma, and neutron radiation. Lectures and laboratory.

630(297). Nuclear Power Plant Engineering. Prerequisite: preceded or accompanied by Nuc. Eng. 680, or preceded by Nuc. Eng. 400. II. (3).

Application of reactor core theory, reactor control, fluid flow, heat transfer, thermodynamics, stress and strain and economic parameters to integrated nuclear power plant designs. Examination of significant nuclear power plant concepts and applications.

631. Nuclear Power Plant Laboratory. Prerequisite: preceded or accompanied by Nuc. Eng. 630, or permission of instructor. I. (1).

The application of heat transfer, fluid flow, thermodynamics, and the stresses of special importance to nuclear power plant engineering. Techniques of research in these areas. An idea of the present state of the art. Lecture and laboratory.

Basic theory and principles of operation of the electronic analog computer. Practice in the operation of the computer. Solution of linear and nonlinear problems in nuclear engineering such as fission product buildup and decay, nuclear reactor kinetics and control. Lecture and laboratory.

641(292). Nuclear Reactor Instrumentation and Control. Prerequisite: preceded or accompanied by Nuc. Eng. 680, or preceded by Nuc. Eng. 400. II. (3).

Reactor kinetics, reactor stability studies; measurement of reactor power level and period; automatic control methods for thermal and fast reactors; temperature effects; accident studies; the use of analog computers in studying reactor dynamics; the loaded reactor.

Characteristics and operation of a nuclear reactor and the use of a reactor as a radiation source, using the one megawatt Ford Nuclear Reactor in the Phoenix Memorial Laboratory. Lectures and laboratory.

 Development of a neutron balance equation and its application in an investigation of the problems of criticality and control of nuclear reactors.

 Individual or group investigations in a particular field or on a problem of special interest to the student. The program will be arranged at the beginning of each semester by mutual agreement between the student and a staff member. Attendance at a weekly seminar is required. The student will write a final report and may be required to make a seminar presentation.

700(399). Special Topics in Nuclear Engineering. **Prerequisite:** permission of instructor. I and II. (To be arranged).
 Selected advanced topics such as neutron and reactor physics, reactor core design, and reactor engineering. The subject matter will change from semester to semester.

 Fundamentals of the physics of fusion and of ionized gases. The basic equations describing the collective behavior of charged particles are formulated. Some general physical implications of these equations are examined.

721(397). Thermonuclear Theory II. **Prerequisite:** Nuc. Eng. 720. II. (3).

 Detailed analytical investigation and experimental demonstration of specific problems involving the interrelations between nucleonics, heat transfer, thermodynamics, stress and strain parameters, and fluid flow theory which occur in the design of nuclear power plants.

750(293). Radiation Shielding. **Prerequisite:** Nuc. Eng. 560 and 670. I. (3).
 A macroscopic study of the absorption of nuclear radiation in dense materials with applications to radiation shielding. Topics considered include radiation sources, permissible radiation levels, gamma ray attenuation, neutron attenuation, shield optimization, heat generation and removal in shields, and other related problems.

 Study of the effects of high energy radiations in solids, such as germanium and silicon. Topics such as the theory of atomic displacements, ionization effects in solids, and others relating to nuclear solid state devices.

780(395). Nuclear Reactor Theory II. **Prerequisite:** Nuc. Eng. 680, Math. 452, or Physics 452. I. (3).
 General formulation of the transport problem with application to refinements of calculation techniques for studying neutron and gamma ray distributions. Several applications of these calculational techniques are discussed in detail.

 Individual or group investigations in a particular field or on a problem of special interest to the student. The project will be arranged at the beginning of the semester by mutual agreement between the student and a staff member.

PHYSICS*

Professor Dennison; Professors Case, Crane, Hazen, Katz, Laporte, McCormick, Parkinson, Sawyer, Wiedenbeck, and Wolfe; Associate Professors Ford, Franken, Hecht, Jones, Krimm, Lewis, Meyer, Perl, Peters, Sands, Sherman, Terwilliger, and Weinreich; Assistant Professors Chagnon, Coffin, Fishbeck, Hendel, Overseth, Roe, Sinclair, Tickle, Uberall, Vander Velde, and Worthington; Instructors Brun and Lambert.

Two lectures, three recitations, and one two-hour laboratory.

146(46). Electricity and Light. Prerequisite: Physics 145. I and II. (5).

Two lectures, three recitations, and one two-hour laboratory.

153(53). Elementary Mechanics. Prerequisite: preceded or accompanied by Math. 233 or equivalent. I. (4).

Mechanics of particles, kinematics, Newton’s laws of motion, wave motion in mechanical systems, special relativity. One lecture, three recitations, and one laboratory.

154(54). Electricity, Light, and Modern Physics. Prerequisite: Physics 153 and preceded or accompanied by Math. 364 or equivalent. II. (4).

Electricity and magnetism, physical optics, atomic and nuclear structure. One lecture, three recitations, and one laboratory.

303(103). Introduction to the Use of Radioactive Isotopes. Prerequisite: Physics 126 or 146. II. (2).

Sources, properties, and methods of measuring radiations; determination of safe dosage; tracer techniques and their applications.

305(105). Modern Physics. Prerequisite: Physics 126 or 146. I. (2).

A discussion of fundamental experiments on the nature of matter and electromagnetic radiation. Survey of special relativity, Bohr’s quantum theory, and wave mechanics of simple systems.

307(107). Modern Physics II. Prerequisite: Physics 126 or 146 and calculus, preferably Math. 372. (3).

A survey of modern physics including an introduction to special relativity, wave mechanics and associated particle problems. Not open to students having Physics 305.

347(147). Electrical Measurements. Prerequisite: Physics 126 or 146 and Math. 364. I and II. (4).

Direct, alternating, and transient currents; measurements of inductance, capacitance, and losses due to hysteresis. Two lectures and one afternoon of laboratory.

401(171). Intermediate Mechanics. Prerequisite: Physics 126 or 146 and Math. 372 or equivalent. I and II. (3).

Study of the motion of particles and rigid bodies using Newtonian force methods. Such topics as harmonic oscillators, coupled oscillators, and planetary motion will be considered.

*College of Literature, Science, and the Arts.
Physics

402(186). Light. Prerequisite Physics 126 or 146 and Math. 372 or equivalent. I. (3).
The phenomena of physical optics, reflection, refraction, dispersion, interference, diffraction, polarization, etc., interpreted in terms of the wave theory of light.

403(188). Light Laboratory. Prerequisite: to accompany or follow Physics 402. I. (2).
Experiments in interference, diffraction, and polarization, with use of photography and optical instruments.

405(180). Intermediate Electricity and Magnetism. Prerequisite: Physics 126 or 146 and Math. 372 or equivalent. I and II. (3).
The laws and principles of electrostatics, moving electric charges, and electromagnetism; alternating current circuit theory, including transients.

406(181). Heat and Thermodynamics. Prerequisite: Physics 126 or 146 and Math. 403. II. (3).
Thermal expansion, specific heats, changes of state, and van der Waals' equation; elementary kinetic theory and the absolute scale of temperature.

407(183). Heat Laboratory. Prerequisite: to follow or accompany Physics 406. II. (2).
Use of modern methods and instruments for the measurement of thermal quantities.

411(172). Mechanics of Fluids. Prerequisite: Physics 401. II. (3).
The Navier-Stokes equation is developed and is used to treat several classical problems. The student is introduced to elementary aspects of turbulence, shock waves, and hydromagnetics.

417(177). Applications of Physical Measurements to Biology. Prerequisite: Physics 126 and eight hours of biological science. I. (3).
A review of physical instruments and techniques which are applicable to the study of biological materials.

418(178). Introduction of Physics of Macromolecules. Prerequisite: Math. 364 and Physics 402 or permission of instructor. II. (3).
Physical principles underlying the behavior and characterization of macromolecular systems, with emphasis on applications to biological processes.

Equipment and methods for spectrochemical analysis, with laboratory practice. Lecture and laboratory.

425(185). Introduction to Infrared Spectra. Prerequisite: Physics 126 or 146 and Math. 364. I. (2).
The elements of infrared spectroscopy and the basic principles involved in the interpretation of Raman and infrared data in terms of molecular structure.

451, 452(191, 192). Introduction to Theoretical Physics. Prerequisite: Physics 401 and Math. 450 or 554. 451, I; 452, II. (3 each).
A survey of mathematical methods employed in theoretical physics, e.g., vectors, tensors, matrices, tensor fields, boundary value problems, approximation and variational methods.

453(196). Atomic and Molecular Structure. Prerequisite: Physics 126, Chem. 106, Math. 403, and five hours of intermediate physics or physical chemistry. I and II. (3).
A critical discussion of developments in atomic and molecular structure based upon fundamental experiments and interpreted in part in terms of Schroedinger's equation.

The characteristics of electron tubes and transistors, and their functions in electric circuits such as amplifiers and oscillators. Three lectures and a laboratory.
456(166). Electronic Circuits. **Prerequisite:** Physics 455. II. (3).
A study of circuit elements, amplifiers, coincidence and scaling circuits, and
the various types of detectors and circuits used in experimental nuclear physics.
Two lectures and a laboratory.

457(197). Nuclear Physics. **Prerequisite:** Physics 453. II. (3).
Properties and systematics of nuclei; nuclear forces and nuclear models;
understood from an experimentalist's point of view.

458(199). Laboratory in Nuclear Physics. **Prerequisite:** to accompany or follow
Physics 457. II. (2).
Equipment is available for a large variety of measurements on the characteristics
of different nuclear transformations.

461(198). Introduction to Quantum Theory. **Prerequisite:** Physics 401 and 453.
II. (3).
An introduction to the concepts of quantum theory. Development of Schrodinger's wave mechanics and Heisenberg's matrix mechanics with applications to
simple systems.

463(173). Introduction to Physics of the Solid State. **Prerequisite:** Physics 453 or
permission of instructor. II. (3).
Theories of magnetism.

505, 506(205, 206). Electricity and Magnetism. **Prerequisite:** Physics 405 and Math.
450 or 554. 505, I; 506, II. (3 each).
Electromagnetic theory; Maxwell's equations and the radiation from a Hertzian oscillator; connections with the special relativity theory.

507(207). Theoretical Mechanics. **Prerequisite:** an adequate knowledge of differential equations; an introductory course in mechanics is desirable. I. (3).
Lagrange equations of motion; the principle of least action, Hamilton's principle, the Hamilton-Jacobi equation; Poisson brackets.

509(209). Thermodynamics. **Prerequisite:** Physics 406. II. (3).
The two laws and their foundation; gas equilibria and dilute solutions; phase rule of Gibbs; theory of binary mixtures.

Kinetic and statistical methods of Boltzmann, and explanation of the second law, extension to the quantum theory; nonideal gases and the theory of the solid body; theory of radiation; fluctuation; fluctuation phenomena.

511, 612, 613(211, 212, 213). Quantum Theory. **Prerequisite:** Physics 453. Physics 511 is a prerequisite for Physics 612. 511, I; 612, II. (3 each).
Wave mechanics, matrix mechanics, and methods of quantizations, with applications.

715, 716(215, 216). Special Problems. I and II. (To be arranged.)
Qualified graduate students who desire to obtain research experience in work supervised by members of the staff may, upon consultation, elect these courses.

718(218). Physics of Continuous Media. II. (3).

724(224). Cosmic Radiation. II. (3).

726(226). High Energy Nuclear Physics. II. (3).

SCIENCE ENGINEERING

The following courses have been developed through interdepartmental co-operation specifically for the Science Engineering degree program. Since these courses may be taught by staff members of various departments of instruction, they are listed separately rather than placed among the offerings of any one department. They may be elected by any student who presents prerequisites equivalent to those stated in the course definitions.

Introduction to thermodynamic properties, generalized gas equations, mass, energy, and entropy balances, with examples from various fields of engineering.

A unified study of heat, mass, and momentum transfer, and chemical kinetics, with emphasis on description, measurement, correlation, and process design.

480. Engineering Design. Prerequisite: senior standing or permission of instructor. I and II. (3).
A study of the general principles of engineering design applicable to all fields of engineering. Analysis and definition of the problems, synthesis and formulation of a solution, evaluation and optimization of components and the over-all system, and presentation of the finished design. Work on original design problems.
Committees and Faculty*

EXECUTIVE COMMITTEE

Dean S. S. Attwood, Chairman
ex officio

L. M. Legatski, term, 1958–62
A. Marin, term, 1959–63
S. K. Clark, term, 1960–64
L. H. Van Vlack, term, 1961–65

STANDING COMMITTEE

Dean S. S. Attwood, Chairman, W. Allen, C. G. Brandt, S. K. Clark,
R. B. Couch, R. A. Dodge, W. G. Dow, G. V. Edmonson, A. R. Hellworth,
Wylen.

COMMITTEE ON CLASSIFICATION

A. W. Lipphart, Chairman, E. A. Glysson, R. H. Hoisington, M. B.

COMMITTEE ON SCHOLASTIC STANDING

R. Schneidewind, Chairman, F. J. Beutler, H. S. Bull, J. J. Carey, W. R.
Debler, D. C. Douglas, K. W. Hall, R. B. Harris, R. C. Porter, D. A.
Ringe, S. S. Stanton, and R. E. Townsend.

COMMITTEE ON DISCIPLINE

A. Marin, Chairman, E. F. Brater, and A. R. Hellworth.

COMMITTEE ON SCHOLARSHIPS AND LOANS

G. L. Alt, Chairman, H. Diamond, K. W. Hall, A. R. Hellworth, E. J.
Lesher, and D. R. Mason.

*Listed for the academic year, 1961-62.
AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

WILBUR CLIFTON NELSON, M.S.E., Professor of Aeronautical Engineering and Chairman of the Department of Aeronautical and Astronautical Engineering
ARNOLD MARTIN KUETHE, Ph.D., Felix Pawlowski Professor of Aerodynamics
LAWRENCE LEE RAUCH, Ph.D., Professor of Instrumentation, Department of Aeronautical and Astronautical Engineering
ROBERT MILTON HOWE, Ph.D., Professor of Aeronautical Engineering
RICHARD BOYD MORRISON, Ph.D., Professor of Aeronautical Engineering
GABRIEL ISAKSON, Sc.D., Professor of Aeronautical Engineering
MAHINDER SINGH UBEROI, Dr.Eng., Professor of Aeronautical Engineering
VI-CHENG LIU, Ph.D., Professor of Aeronautical Engineering
WILLIAM WALTER WILLMARTH, Ph.D., Professor of Aeronautical Engineering
THOMAS CHARLES ADAMSON, JR., Ph.D., Professor of Aeronautical Engineering
CHEMICAL AND METALLURGICAL ENGINEERING

DONALD LAVERNE KATZ, Ph.D., Professor of Chemical Engineering and Chairman of the Department of Chemical and Metallurgical Engineering
RICHARD SCHNEIDEWIND, Ph.D., Professor of Metallurgical Engineering
LARS THOMASSSEN, Ph.D., Professor of Chemical and Metallurgical Engineering
CLARENCE ARNOLD SIEBERT, Ph.D., Professor of Chemical and Metallurgical Engineering
RICHARD A. FLINN, Sc.D., Professor of Metallurgical Engineering
Lloyd Earl Brownell, Ph.D., Professor of Chemical and Metallurgical Engineering and of Nuclear Engineering
James Wright Freeman, Ph.D., Professor of Metallurgical Engineering and Research Engineer, Sponsored Research
Maurice Joseph Sinnott, Sc.D., Professor of Metallurgical Engineering
Joseph J. Martin, D.Sc., Professor of Chemical and Metallurgical Engineering
George Brymer Williams, Ph.D., Professor of Chemical and Metallurgical Engineering
Stuart Winston Churchill, Ph.D., Professor of Chemical Engineering
Jesse Louis York, Ph.D., Professor of Chemical and Metallurgical Engineering
Lawrence H. Van Vlack, Ph.D., Professor of Materials Engineering, Department of Chemical and Metallurgical Engineering
Lloyd L. Kempe, Ph.D., Professor of Chemical Engineering and of Sanitary Engineering, Department of Civil Engineering
Edwin Harold Young, M.S.E., Professor of Chemical and Metallurgical Engineering
Giuseppe Parravano, Ph.D., Professor of Chemical and Metallurgical Engineering
David Vincent Ragone, Sc.D., Professor of Metallurgical Engineering
Edward Ernest Hucke, Sc.D., Professor of Metallurgical Engineering
John Crowe Brier, M.S., Professor Emeritus of Chemical Engineering
Leo Lehr Carrick, Ph.D., Professor Emeritus of Chemical Engineering
Donald William McCready, Ph.D., Associate Professor of Chemical Engineering
Richard Emory Townsend, Ch.E., Associate Professor of Chemical and Metallurgical Engineering
Donald Romagné Mason, Ph.D., Associate Professor of Chemical Engineering
Kenneth Fraser Gordon, Sc.D., Associate Professor of Chemical Engineering
Wilbur Charles Bigelow, Ph.D., Associate Professor of Chemical and Metallurgical Engineering
Mehmet Rasim Tek, Ph.D., Associate Professor of Chemical Engineering
William Allen Spindler, M.S., Assistant Professor of Metallurgical Engineering
Walter Bertram Pierce, Assistant Professor of Foundry Practice, Department of Chemical and Metallurgical Engineering
Robert Donald Pehlke, Sc.D., Assistant Professor of Metallurgical Engineering
Richard Earl Balzhiser, Ph.D., Assistant Professor of Chemical Engineering
Robert H. Kadlec, Ph.D., Assistant Professor of Chemical Engineering
James Oscroft Wilkes, M.S.E., Instructor in Chemical Engineering
Arnold Milton Ruskin, M.S.E., Instructor in Materials Engineering, Department of Chemical and Metallurgical Engineering
DALE EDWARDS BRIGGS, M.S.E., Instructor in Chemical and Metallurgical Engineering
JAMES R. STREET, M.S.E., Instructor in Chemical Engineering
JOHN GRENNA, Instructor Emeritus in Foundry Practice

CIVIL ENGINEERING

LAWRENCE CARNANAN MAUGH, Ph.D., Professor of Civil Engineering and Acting Chairman, Department of Civil Engineering
EARNEST BOYCE, M.S., C.E., Professor of Municipal and Sanitary Engineering and Chairman of the Department of Civil Engineering, and Professor of Public Health Engineering, School of Public Health (on retirement furlough)
WILLIAM STUART HOUSEL, M.S.E., Professor of Civil Engineering
BRUCE GILBERT JOHNSTON, Ph.D., Professor of Structural Engineering
ERNEST FREDERICK BRATER, Ph.D., Professor of Hydraulic Engineering
VICTOR LYLE STREETER, Sc.D., Professor of Hydraulics
JOHN CLAYTON KOHL, B.S.E. (C.E.), Professor of Civil Engineering and Director of the Transportation Institute
RALPH MOORE BERRY, B.C.E., Professor of Geodetic Engineering, Department of Civil Engineering
LEO MAX LEGATSKI, Sc.D., Professor of Civil Engineering
GLEN LESLIE ALT, C.E., Professor of Civil Engineering
JACK ADOLPH BORCHARDT, Ph.D., Professor of Civil Engineering
LLOYD L. KEMPE, Ph.D., Professor of Sanitary Engineering and of Chemical Engineering
GLENN VIRGIL BERG, Ph.D., Professor of Civil Engineering
JOSEPH W. HOWE, Ph.D., Visiting Professor of Hydraulic Engineering (first semester)
WALTER JOHNSON EMMONS, A.M., Professor Emeritus of Highway Engineering, Associate Dean Emeritus and Secretary Emeritus of the College of Engineering
CLARENCE THOMAS JOHNSTON, C.E., Professor Emeritus of Geodesy and Surveying
ARTHUR JAMES DECKER, B.S. (C.E.), Professor Emeritus of Civil Engineering
WILLIAM CHRISTIAN HOAD, B.S. (C.E.), Professor Emeritus of Civil Engineering
ROBERT HENRY SHERLOCK, B.S. (C.E.), Professor Emeritus of Civil Engineering
EDWARD YOUNG, B.S. (C.E.), Professor Emeritus of Geodesy and Surveying
WARD KARCHER PARR, B.S.E. (Ch.E.), Associate Professor of Highway Engineering
ROBERT BLynn HARRIS, M.S.C.E., Associate Professor of Civil Engineering
HAROLD JAMES MCFARLAN, B.S.E. (C.E.), Associate Professor of Geodetic Engineering, Department of Civil Engineering
ELECTRICAL ENGINEERING

WILLIAM GOULD DOW, M.S.E., Professor of Electrical Engineering and Chairman of the Department of Electrical Engineering
STEPHEN STANLEY ATTWOOD, M.S., Professor of Electrical Engineering and Dean of the College of Engineering
ARTHUR DEARTH MOORE, M.S., Professor of Electrical Engineering
MELVILLE BIGHAM STOUT, M.S., Professor of Electrical Engineering
LEWIS NELSON HOLLAND, M.S., Professor of Electrical Engineering
GUNNAR HOK, E.E., Professor of Electrical Engineering
ALAN BRECK MACNEE, Sc.D., Professor of Electrical Engineering
HEMPSTEAD STRATTON BULL, M.S., Professor of Electrical Engineering
JOHN JOSEPH CAREY, M.S. (E.E.), Professor of Electrical Engineering
NORMAN ROSS SCOTT, Ph.D., Professor of Electrical Engineering
LOUIS JOHN CUTRONA, Ph.D., Professor of Electrical Engineering
JAMES CARLISLE MOUZON, Ph.D., Professor of Electrical Engineering and Associate Dean of the College of Engineering
RAYMOND FRED MOSHER, S.M., Professor of Electrical Engineering
KEEVE MILTON SIEGEL, M.S., Professor of Electrical Engineering
GORDON E. PETERSON, Ph.D., Professor of Electrical Engineering, Professor of Communication Sciences, Department of Speech in the College of Literature, Science, and the Arts, and Director of the Communication Sciences Laboratory
JOSEPH AUBREY BOYD, Ph.D., Professor of Electrical Engineering and Director of the Institute of Science and Technology
NELSON WARNER SPENCER, M.S.E. (E.E.), Professor of Electrical Engineering
FRED T. HADDOCK, M.S., Professor of Electrical Engineering, Professor of Astronomy, College of Literature, Science, and the Arts and Director, Radio Astronomy Observatory
RICHARD KEMP BROWN, Ph.D., Professor of Electrical Engineering
JOHN A. M. LYON, Ph.D., Professor of Electrical Engineering
NEWBORN SMITH, Ph.D., Professor of Electrical Engineering
LOUIS FRANK KAZDA, Ph.D., Professor of Electrical Engineering
JOSEPH EVERETT ROWE, Ph.D., Professor of Electrical Engineering
DALE MILLS GRIMES, Ph.D., Professor of Electrical Engineering
HANSFORD WHITE FARRIS, Ph.D., Professor of Electrical Engineering
JOSEPH HENDERSON CANNON, B.S. (E.E.), Professor Emeritus of Electrical Engineering
EDWIN RICHARD MARTIN, E.E., Professor Emeritus of Electrical Engineering
WALTER ALFRED HEDRICH, M.S., Associate Professor of Electrical Engineering
CHARLES BRUCE SHARPE, Ph.D., Associate Professor of Electrical Engineering
CHIAO-MIN CHU, Ph.D., Associate Professor of Electrical Engineering
ARLEN R. HELLWARTH, M.S., Associate Professor of Electrical Engineering and Assistant Dean and Secretary of the College of Engineering
EDWARD ANTHONY MARTIN, Ph.D., Associate Professor of Electrical Engineering and of Nuclear Engineering
Herschel Weil, Ph.D., Associate Professor of Electrical Engineering
CHARLES WARREN McMULLEN, Ph.D., Associate Professor of Electrical Engineering
HARVEY LOUIS GARNER, Ph.D., Associate Professor of Electrical Engineering
ANDREJS OLTE, Ph.D., Associate Professor of Electrical Engineering
CHAI YEH, D.Sc., Associate Professor of Electrical Engineering
MURRAY HENRI MILLER, Ph.D., Assistant Professor of Electrical Engineering
KUEI CHUANG, Ph.D., Assistant Professor of Electrical Engineering
EDWARD LAWRENCE McMATHON, Ph.D., Assistant Professor of Electrical Engineering
HOWARD DIAMOND, Ph.D., Assistant Professor of Electrical Engineering
ARCH W. NAYLOR, Ph.D., Assistant Professor of Electrical Engineering
RONALD J. LOMAX, Ph.D., Visiting Assistant Professor of Electrical Engineering and Associate Research Engineer, Sponsored Research
WILLIAM WOLSEY RAYMOND, M.S.E. (E.E.), Instructor in Electrical Engineering
ANTHONY JAMES PENNINGTON, M.S.E., Instructor in Electrical Engineering
DALE CARNEY RAY, M.S.E. (E.E.), Instructor in Electrical Engineering
MICHAEL A. HARRISON, M.S. (E.E.), Instructor in Electrical Engineering
DAVID KENDALL ADAMS, M.A., Instructor in Electrical Engineering
GEORGE I. HADDAD, M.S.E., Instructor in Electrical Engineering
SHU-YUN CHAN, M.S.E., Instructor in Electrical Engineering
THOMAS O. MOTT, M.S.E. (E.E.), Instructor in Electrical Engineering
HAROLD C. EARLY, M.S., Lecturer in Electrical Engineering and Research Engineer, Sponsored Research
HAL FREDERIC SCHULTE, JR., M.S.E., Lecturer in Electrical Engineering and Associate Research Engineer, Sponsored Research
GILBERT HALL, M.S., Lecturer in Electrical Engineering and Research Engineer, Institute of Science and Technology
WILSON P. TANNER, JR., Ph.D., Lecturer in Electrical Engineering and Research Psychologist, Sponsored Research
FREDERICK B. LLEWELLYN, Ph.D., Lecturer in Electrical Engineering and Research Physicist, Institute of Science and Technology
BEN FREDERICK BARTON, Ph.D., Lecturer in Electrical Engineering and Research Engineer, Sponsored Research
NORMAN E. BARNETT, M.S. (Phys.), Lecturer in Electrical Engineering and Associate Research Physicist, Institute of Science and Technology

ENGLISH

CARL GUNARD BRANDT, LL.M., Professor of English and Chairman of the Department of English in the College of Engineering, and Lecturer in Speech in the College of Literature, Science, and the Arts
CARL EDWIN BURKLUND, Ph.D., Professor of English, College of Engineering
IVAN HENRY WALTON, A.M., Professor of English, College of Engineering
WEBSTER EARL BRITTON, Ph.D., Professor of English, College of Engineering
GEORGE MIDDLETON MCEWEN, Ph.D., Professor of English, College of Engineering
WILFRED MINNICH SENSEMAN, Ph.D., Professor of English, College of Engineering
JOSHUA McCLENNEN, Ph.D., Professor of English, College of Engineering
JESSE EARL THORNTON, A.M., Professor Emeritus of English, College of Engineering
THOMAS MITCHELL SAWYER, JR., Ph.D., Associate Professor of English, College of Engineering
ROBERT P. WEEKS, Ph.D., Associate Professor of English, College of Engineering
DONALD ARTHUR RINGE, Ph.D., Associate Professor of English, College of Engineering
STEPHEN SADLER STANTON, Ph.D., Associate Professor of English, College of Engineering
WILLIAM BYROM DICKENS, Ph.D., Associate Professor of English, College of Engineering
EDWARD MERL SHAFTER, JR., Ph.D., Associate Professor of English, College of Engineering
ROBERT D. BRACKETT, A.M., Associate Professor Emeritus of English, College of Engineering
William Henry Egly, A.M., Associate Professor Emeritus of English, College of Engineering
Chester Fisher Chapin, Ph.D., Assistant Professor of English, College of Engineering
Ralph Andrew Loomis, Ph.D., Assistant Professor of English, College of Engineering
Warne Conwell Holcombe, Ph.D., Assistant Professor of English, College of Engineering
Richard John Ross, Ph.D., Assistant Professor of English, College of Engineering
Edmund Pendleton Dandridge, Jr., Ph.D., Assistant Professor of English, College of Engineering
W. Harry Mack, A.M., Assistant Professor Emeritus of English, College of Engineering
Thomas C. Edwards, A.M., Instructor in English, College of Engineering
Arthur Willard Forbes, A.M., Instructor in English, College of Engineering
Roger Milliken Jones, M.A., Instructor in English, College of Engineering
Peter Roberts Klaver, M.A., Instructor in English, College of Engineering
Richard Emerson Young, M.A., Instructor in English, College of Engineering
Dwight Ward Stevenson, M.A., Instructor in English, College of Engineering
William Victor Holtz, M.A., Instructor in English, College of Engineering
Myron Berkley Shaw, A.M., Instructor in English, College of Engineering
Alton Lewis Becker, M.A., Instructor in English, College of Engineering

ENGINEERING GRAPHICS

Herbert Theodore Jenkins, M.S.E., Professor of Engineering Graphics and Chairman of the Department of Engineering Graphics
Julius Clark Palmer, B.S., Professor of Engineering Graphics
Frank Harold Smith, M.S.E., Professor of Engineering Graphics
Philip Orland Potts, M.S.E., Professor of Engineering Graphics
Henry Willard Miller, M.E., Professor Emeritus of Engineering Drawing
Robert Carl Cole, A.M., Professor Emeritus of Engineering Drawing
Martin J. Orbeck, C.E., M.S.E., Professor Emeritus of Engineering Drawing
Dean Estes Hobart, B.S., Professor Emeritus of Engineering Drawing
Maurice Barkley Eichelberger, B.S., Associate Professor of Engineering Graphics
Robert Horace Hoisington, M.S., Associate Professor of Engineering Graphics and Assistant to the Dean, College of Engineering
Robert Seaton Heppinstall, M.S. (M.E.), Associate Professor of Engineering Graphics
ENGINEERING MECHANICS

RUSSELL ALGER DODGE, M.S.E., Professor of Engineering Mechanics and Chairman of the Department of Engineering Mechanics
JESSE ORMONDROYD, A.B., Professor of Engineering Mechanics
RICHARD THOMAS LIDDICOAT, Ph.D., Professor of Engineering Mechanics
(on retirement furlough)
ROBERT LAWRENCE HESS, Ph.D., Professor of Engineering Mechanics and Associate Director, Institute of Science and Technology
ERNEST FRANK MASUR, Ph.D., Professor of Engineering Mechanics
CHAI-SHUN YIH, Ph.D., Professor of Engineering Mechanics
SAMUEL KELLY CLARK, Ph.D., Professor of Engineering Mechanics
ROBERT MORPHET HAYTHORNTHWAITE, Ph.D., Professor of Engineering Science
JOHN HERMANN ENNS, Ph.D., Professor of Engineering Mechanics
EDWARD LEERDRUP ERIKSEN, B.C.E., Professor Emeritus of Engineering Mechanics
HOLGER MADS HANSEN, B.C.E., Professor Emeritus of Engineering Mechanics
CHARLES THOMAS OLMSTED, B.S. (C.E.), Professor Emeritus of Engineering Mechanics
FRANKLIN L. EVERETT, Ph.D., Associate Professor of Engineering Mechanics
EDWARD AXEL YATES, M.S.E., Associate Professor of Engineering Mechanics
HADLEY JAMES SMITH, Ph.D., Associate Professor of Engineering Mechanics
WALTER RALPH DEBLER, Ph.D., Assistant Professor of Engineering Mechanics
WILLIAM PAUL GRAEBEL, Ph.D., Assistant Professor of Engineering Mechanics
MOVSES JEREMY KALDJIAN, Ph.D., Assistant Professor of Engineering Mechanics
BERTRAM HERZOG, Ph.D., Assistant Professor of Engineering Mechanics
WILLIAM WALTER O'DELL, Jr., M.S.E., Instructor in Engineering Mechanics
DAVID RICHARD JENKINS, M.S. (Eng.Mech.), Instructor in Engineering Mechanics
GEORGE HAZEN STICKNEY, M.B.A., M.S.E., Instructor in Engineering Mechanics
DEAN TRITCHLER MOOK, M.S., Instructor in Engineering Mechanics
PHILIP GERALD KESSEL, M.S. (M.E.), Instructor in Engineering Mechanics
BRUCE DOUGLAS GREENSHIELDS, Ph.D., Lecturer in Engineering Mechanics, Lecturer in Transportation Engineering, Department of Civil Engineering, and Assistant Director of the Transportation Institute

METEOROLOGY

EDGAR WENDELL HEWSON, Ph.D., Professor of Meteorology
ALBERT NELSON DINGLE, Sc.D., Associate Professor of Meteorology
GERALD CLIFFORD GILL, M.A., Associate Professor of Meteorology
EDWARD S. EPSTEIN, Ph.D., Assistant Professor of Meteorology
FRANK ROLLAND BELLAIRE, M.S., Lecturer in Meteorology and Associate Research Meteorologist, Sponsored Research
FLOYD CHALMERS ELDER, M.S., Lecturer in Meteorology, U. S. Public Health Service grant, and Assistant Research Meteorologist, Sponsored Research
JAMES BISHOP HARRINGTON, Jr., M.A., Lecturer in Meteorology and Assistant Research Meteorologist, Sponsored Research
EUGENE WENDELL BIERLY, M.S., Lecturer in Meteorology and Assistant Research Meteorologist, Sponsored Research
DONALD J. PORTMAN, Ph.D., Lecturer in Meteorology and Associate Research Meteorologist

INDUSTRIAL ENGINEERING

WYETH ALLEN, B.M.E., D.Eng., Professor of Industrial Engineering and Chairman of the Department of Industrial Engineering
MERRILL MECKS FLOOD, Ph.D., Professor of Industrial Engineering, Senior Research Mathematician, Mental Health Research Institute, and Professor of Mathematical Biology in the Medical School
ROBERT McDOowell THRALL, Ph.D., Sc.D., Professor of Operations Analysis, Department of Industrial Engineering and Professor of Mathematics, College of Literature, Science, and the Arts
MECHANICAL ENGINEERING

GORDON JOHN VAN WYLEN, Sc.D., Professor of Mechanical Engineering and Chairman of the Department of Mechanical Engineering
AXEL MARIN, B.S.E. (M.E.), Professor of Mechanical Engineering
RICHMOND CLAY PORTER, M.S., M.E., Professor of Mechanical Engineering
LESTER VERN COLWELL, M.S., Professor of Mechanical Engineering
JAY ARTHUR BOLT, M.S., M.E., Professor of Mechanical Engineering
JOSEPH EDWARD SHIGLEY, M.S.E., Professor of Mechanical Engineering and Associate Dean of the College of Engineering
RUNE L. EVALDSON, Ph.D., Professor of Mechanical Engineering and Associate Director, Institute of Science and Technology
CHARLES LIPSON, Ph.D., Professor of Mechanical Engineering
WILLIAM HORACE GRAVES, B.S.E. (Ch.E.), Professor of Automotive Engineering
JOHN ALDEN CLARK, Sc.D., Professor of Mechanical Engineering
JOHN RAYMOND PEARSON, M.S.C.M.E., Professor of Mechanical Engineering
KEITH WILLIS HALL, B.S.M.E., Professor of Mechanical Engineering
HERBERT HERLE ALVORD, M.S.E., Professor of Mechanical Engineering
Ransom Smith Hawley, M.E., Professor Emeritus of Mechanical Engineering
Orlan William Boston, M.S.E., M.E., Professor Emeritus of Mechanical Engineering and of Production Engineering
Walter Edwin Lay, B.M.E., Professor Emeritus of Mechanical Engineering
Hugh Edward Keeler, M.S.E., M.E., Professor Emeritus of Mechanical Engineering
Edward Thomas Vincent, B.Sc., Professor Emeritus of Mechanical Engineering
Floyd Newton Calhoon, M.S., Professor Emeritus of Mechanical Engineering
Arnet Berthold Epple, M.S., Associate Professor of Mechanical Engineering
Joseph Reid Akerman, Ph.D., Associate Professor of Mechanical Engineering
Joseph Datko, M.S.E., Associate Professor of Mechanical Engineering
Arthur Gene Hansen, Ph.D., Associate Professor of Mechanical Engineering
William Mirsky, Ph.D., Associate Professor of Mechanical Engineering
Robert Charles Juvinall, M.S.M.E., Associate Professor of Mechanical Engineering
Howard Rex Colby, M.S.E., Associate Professor of Mechanical Engineering
Don E. Rogers M.S.E. (Ae.E.), A.E., Associate Professor of Mechanical Engineering
Leland James Quackenbush, M.S.E. (M.E.), Associate Professor of Mechanical Engineering
Vedat S. Arpacı, Sc.D., Associate Professor of Mechanical Engineering
David Kniseley Felbeck, Sc.D., Associate Professor of Mechanical Engineering
Leslie E. Wagner, M.A., Assistant Professor of Mechanical Engineering
Frederick John Vesper, M.S.E., Assistant Professor of Mechanical Engineering
John Graham Young, B.S.E. (M.E.), Assistant Professor of Mechanical Engineering and Assistant to the Dean of the College of Engineering
Julian Ross Frederick, Ph.D., Assistant Professor of Mechanical Engineering
Joseph Casmere Mazur, M.S.E., Assistant Professor of Mechanical Engineering
Franklin Herbert Westervelt, Ph.D., Assistant Professor of Mechanical Engineering
Richard Edwin Sonntag, Ph.D., Assistant Professor of Mechanical Engineering
Herman Merte, Jr., Ph.D., Assistant Professor of Mechanical Engineering
Robert Brindle Keller, Ph.D., Assistant Professor of Mechanical Engineering
Leroy Carl Eichberger, Ph.D., Visiting Assistant Professor of Mechanical Engineering and Ford Foundation Project on Computers
Harry James Watson, B.M.E., Assistant Professor Emeritus of Mechanical Engineering
Kenneth C. Ludema, M.S.E., Instructor in Mechanical Engineering
James Robert Cairns, M.S.E., Instructor in Mechanical Engineering
John Allan Sullivan, M.S., Instructor in Mechanical Engineering
Alexander Henken, M.S., Instructor in Mechanical Engineering
Edward Russell Lady, S.M., Instructor in Mechanical Engineering (second semester)
William Telfer, Instructor Emeritus in the Working, Treating and Welding of Steel
Robert Macormac Caddell, B.S. (Mech. Eng.), M.S. (Ind. Eng.), Lecturer in Mechanical Engineering
Francis Elwyn Fisher, B.S., Lecturer in Mechanical Engineering

Naval Architecture and Marine Engineering

Richard Bailey Couch, A.B.E., Professor of Naval Architecture and Marine Engineering and Chairman of the Department of Naval Architecture and Marine Engineering
Henry Carter Adams 2d, M.S., Professor of Naval Architecture and Marine Engineering (on retirement furlough)
Harry Bell Benford, B.S.E. (Nav. Arch. & Mar. E.), Professor of Naval Architecture and Marine Engineering
Louis Landweber, Ph.D., Visiting Professor of Naval Architecture and Marine Engineering and Ford Foundation Engineering Faculty Development Program
Louis A. Baier, B. Mar. E., Nav. Arch., Professor Emeritus of Naval Architecture and Marine Engineering
George Lauman West, Jr., B.S.E., Associate Professor of Naval Architecture and Marine Engineering and of Nuclear Engineering
Raymond A. Yagle, M.S.E., Associate Professor of Naval Architecture and Marine Engineering
Finn Christian Michelsen, Ph.D., Assistant Professor of Naval Architecture and Marine Engineering

Nuclear Engineering

William Kerr, Ph.D., Professor of Nuclear Engineering and Chairman of the Department of Nuclear Engineering
Henry Jacob Gomberg, Ph.D., Professor of Nuclear Engineering (absent on leave, 1961-62)
Lloyd Earl Brownell, Ph.D., Professor of Nuclear Engineering and of Chemical and Metallurgical Engineering
Richard Kent Osborn, Ph.D., Professor of Nuclear Engineering
Chihiro Kikuchi, Ph.D., Professor of Nuclear Engineering
Paul Frederick Zweifel, Ph.D., Professor of Nuclear Engineering
John Swinton King, Ph.D., Professor of Nuclear Engineering
Frederick Gnichtel Hammitt, Ph.D., Professor of Nuclear Engineering
George Lauman West, Jr., B.S.E., Associate Professor of Nuclear Engineering and of Naval Architecture and Marine Engineering
Edward Anthony Martin, Ph.D., Associate Professor of Nuclear Engineering and of Electrical Engineering
Terry B. Kammash, Ph.D., Associate Professor of Nuclear Engineering
Dietrich Hermann Vincent, Dr. Rer. Nat., Associate Professor of Nuclear Engineering
Geza Leslie Gyorey, Ph.D., Assistant Professor of Nuclear Engineering
Registration Schedules, 1962-1963

Each of the following groups of students is allotted a definite period for admission to the gymnasiums for registration. Please complete all registration forms distinctly and according to directions on the forms before you enter the gymnasium. Elections should be approved previously as specified in the Announcement of your school or college.

FIRST SEMESTER, 1962-1963

<table>
<thead>
<tr>
<th>DAY</th>
<th>A.M.</th>
<th>P.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPTEMBER 12, 1962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00-8:10</td>
<td>Bot</td>
<td>Boo</td>
</tr>
<tr>
<td>8:10-8:20</td>
<td>Bot</td>
<td>Coo</td>
</tr>
<tr>
<td>8:20-8:30</td>
<td>Bou</td>
<td>Crp</td>
</tr>
<tr>
<td>8:30-8:40</td>
<td>Bra</td>
<td>Dam</td>
</tr>
<tr>
<td>8:40-8:50</td>
<td>Bro</td>
<td>Dan</td>
</tr>
<tr>
<td>8:50-9:00</td>
<td>Brown, F.</td>
<td>Deng</td>
</tr>
<tr>
<td>9:00-9:10</td>
<td>Bruc</td>
<td>Dia</td>
</tr>
<tr>
<td>9:10-9:20</td>
<td>Buc</td>
<td>Dou</td>
</tr>
<tr>
<td>9:20-9:30</td>
<td>Buh</td>
<td>Dup</td>
</tr>
<tr>
<td>9:30-9:40</td>
<td>Bur</td>
<td>Eg</td>
</tr>
<tr>
<td>9:40-9:50</td>
<td>Bz</td>
<td>En</td>
</tr>
<tr>
<td>9:50-10:00</td>
<td>Cam</td>
<td>Eo</td>
</tr>
<tr>
<td>10:00-10:10</td>
<td>Cao</td>
<td>Fil</td>
</tr>
<tr>
<td>10:10-10:20</td>
<td>Car</td>
<td>Foc</td>
</tr>
<tr>
<td>10:20-10:30</td>
<td>Cas</td>
<td>Fran</td>
</tr>
<tr>
<td>10:30-10:40</td>
<td>Cey</td>
<td>Fz</td>
</tr>
<tr>
<td>10:40-10:50</td>
<td>Chb</td>
<td>Gaul</td>
</tr>
<tr>
<td>10:50-11:00</td>
<td>Chiv</td>
<td>Gill</td>
</tr>
<tr>
<td>11:00-11:10</td>
<td>Cj</td>
<td>Goldf</td>
</tr>
<tr>
<td>11:10-11:20</td>
<td>Cob</td>
<td>Goldm</td>
</tr>
<tr>
<td>11:20-11:30</td>
<td>Cohf</td>
<td>Gra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPTEMBER 13, 1962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00-8:10</td>
<td>Hae</td>
<td>Ham</td>
</tr>
<tr>
<td>8:10-8:20</td>
<td>Harrison</td>
<td>He</td>
</tr>
<tr>
<td>8:20-8:30</td>
<td>Harris, R.</td>
<td>Ho</td>
</tr>
<tr>
<td>8:30-8:40</td>
<td>Henl</td>
<td>Hu</td>
</tr>
<tr>
<td>8:40-8:50</td>
<td>Hile</td>
<td>Hu</td>
</tr>
<tr>
<td>8:50-9:00</td>
<td>Holl</td>
<td>Hu</td>
</tr>
<tr>
<td>9:00-9:10</td>
<td>Holm</td>
<td>Hu</td>
</tr>
<tr>
<td>9:10-9:20</td>
<td>Hox</td>
<td>Hu</td>
</tr>
<tr>
<td>9:20-9:30</td>
<td>Hus</td>
<td>Hu</td>
</tr>
<tr>
<td>9:30-9:40</td>
<td>Jacl</td>
<td>Hu</td>
</tr>
<tr>
<td>9:40-9:50</td>
<td>Joh</td>
<td>Hu</td>
</tr>
<tr>
<td>9:50-10:00</td>
<td>Jones, K.</td>
<td>Hu</td>
</tr>
<tr>
<td>10:00-10:10</td>
<td>Kan</td>
<td>Hu</td>
</tr>
<tr>
<td>10:10-10:20</td>
<td>Keb</td>
<td>Hu</td>
</tr>
<tr>
<td>10:20-10:30</td>
<td>Kes</td>
<td>Hu</td>
</tr>
<tr>
<td>10:30-10:40</td>
<td>Kin</td>
<td>Hu</td>
</tr>
<tr>
<td>10:40-10:50</td>
<td>Knj</td>
<td>Hu</td>
</tr>
<tr>
<td>10:50-11:00</td>
<td>Koti</td>
<td>Hu</td>
</tr>
<tr>
<td>11:00-11:10</td>
<td>Kruh</td>
<td>Hu</td>
</tr>
<tr>
<td>11:10-11:20</td>
<td>Lamj</td>
<td>Hu</td>
</tr>
<tr>
<td>11:20-11:30</td>
<td>Lawrf</td>
<td>Hu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPTEMBER 14, 1962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00-8:10</td>
<td>Perf</td>
<td>Pick</td>
</tr>
<tr>
<td>8:10-8:20</td>
<td>Picl</td>
<td>Stev</td>
</tr>
<tr>
<td>8:20-8:30</td>
<td>Poq</td>
<td>Stev</td>
</tr>
<tr>
<td>8:30-8:40</td>
<td>Pri</td>
<td>Stev</td>
</tr>
<tr>
<td>8:40-8:50</td>
<td>Ram</td>
<td>Stev</td>
</tr>
<tr>
<td>8:50-9:00</td>
<td>Reid, S.</td>
<td>Stre</td>
</tr>
<tr>
<td>9:00-9:10</td>
<td>Richb</td>
<td>Stre</td>
</tr>
<tr>
<td>9:10-9:20</td>
<td>Richman</td>
<td>Stre</td>
</tr>
<tr>
<td>9:20-9:30</td>
<td>Rog</td>
<td>Stre</td>
</tr>
<tr>
<td>9:30-9:40</td>
<td>Rou</td>
<td>Stre</td>
</tr>
<tr>
<td>9:40-9:50</td>
<td>Sa</td>
<td>Stre</td>
</tr>
<tr>
<td>9:50-10:00</td>
<td>Sarr</td>
<td>Stre</td>
</tr>
<tr>
<td>10:00-10:10</td>
<td>Schm</td>
<td>Stre</td>
</tr>
<tr>
<td>10:10-10:20</td>
<td>Schwartz, R.</td>
<td>Stre</td>
</tr>
<tr>
<td>10:20-10:30</td>
<td>Send</td>
<td>Stre</td>
</tr>
<tr>
<td>10:30-10:40</td>
<td>Shem</td>
<td>Stre</td>
</tr>
<tr>
<td>10:40-10:50</td>
<td>Siem</td>
<td>Stre</td>
</tr>
<tr>
<td>10:50-11:00</td>
<td>Si</td>
<td>Stre</td>
</tr>
<tr>
<td>11:00-11:10</td>
<td>Smith, M.</td>
<td>Stre</td>
</tr>
<tr>
<td>11:10-11:20</td>
<td>Som</td>
<td>Stre</td>
</tr>
<tr>
<td>11:20-11:30</td>
<td>Stai</td>
<td>Stre</td>
</tr>
</tbody>
</table>

SATURDAY

Any student may register from 9:30 to 11:30 A.M. Saturday registration is unavoidable, however, as many sections of course offerings will be closed. It is essential that registration and classification be completed according to schedule.
SECOND SEMESTER, 1962-1963

WEDNESDAY

<table>
<thead>
<tr>
<th>Time</th>
<th>A.M.</th>
<th>P.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-8:10</td>
<td>Coo</td>
<td>1:00-1:10</td>
</tr>
<tr>
<td>8:10-8:20</td>
<td>Coo</td>
<td>1:10-1:20</td>
</tr>
<tr>
<td>8:20-8:30</td>
<td>Cov</td>
<td>1:20-1:30</td>
</tr>
<tr>
<td>8:30-8:40</td>
<td>Crob</td>
<td>1:30-1:40</td>
</tr>
<tr>
<td>8:40-8:50</td>
<td>Crp</td>
<td>1:40-1:50</td>
</tr>
<tr>
<td>8:50-9:00</td>
<td>Gau</td>
<td>2:00-2:10</td>
</tr>
<tr>
<td>9:00-9:10</td>
<td>Dan</td>
<td>2:10-2:20</td>
</tr>
<tr>
<td>9:10-9:20</td>
<td>Daw</td>
<td>2:20-2:30</td>
</tr>
<tr>
<td>9:20-9:30</td>
<td>Deb</td>
<td>2:30-2:40</td>
</tr>
<tr>
<td>9:30-9:40</td>
<td>Denh</td>
<td>2:40-2:50</td>
</tr>
<tr>
<td>9:40-9:50</td>
<td>Dib</td>
<td>2:50-3:00</td>
</tr>
<tr>
<td>9:50-10:00</td>
<td>Dir</td>
<td>3:00-3:10</td>
</tr>
<tr>
<td>10:00-10:10</td>
<td>Dom</td>
<td>3:10-3:20</td>
</tr>
<tr>
<td>10:10-10:20</td>
<td>Don</td>
<td>3:20-3:30</td>
</tr>
<tr>
<td>10:20-10:30</td>
<td>Dov</td>
<td>3:30-3:40</td>
</tr>
<tr>
<td>10:30-10:40</td>
<td>Dub</td>
<td>3:40-3:50</td>
</tr>
<tr>
<td>10:40-10:50</td>
<td>Duq</td>
<td>3:50-4:00</td>
</tr>
<tr>
<td>10:50-11:00</td>
<td>Eck</td>
<td>4:00-4:10</td>
</tr>
<tr>
<td>11:00-11:10</td>
<td>Eh</td>
<td>4:10-4:20</td>
</tr>
<tr>
<td>11:10-11:20</td>
<td>Ej</td>
<td>4:20-4:30</td>
</tr>
<tr>
<td>11:20-11:30</td>
<td>Em</td>
<td>4:30-4:40</td>
</tr>
</tbody>
</table>

THURSDAY

<table>
<thead>
<tr>
<th>Time</th>
<th>A.M.</th>
<th>P.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-8:10</td>
<td>Joh</td>
<td>1:00-1:10</td>
</tr>
<tr>
<td>8:10-8:20</td>
<td>Jones, K.</td>
<td>1:10-1:20</td>
</tr>
<tr>
<td>8:20-8:30</td>
<td>Kan</td>
<td>1:20-1:30</td>
</tr>
<tr>
<td>8:30-8:40</td>
<td>Kea</td>
<td>1:30-1:40</td>
</tr>
<tr>
<td>8:40-8:50</td>
<td>Kes</td>
<td>1:40-1:50</td>
</tr>
<tr>
<td>8:50-9:00</td>
<td>Kne</td>
<td>1:50-2:00</td>
</tr>
<tr>
<td>9:00-9:10</td>
<td>Knj</td>
<td>2:00-2:10</td>
</tr>
<tr>
<td>9:10-9:20</td>
<td>Kot</td>
<td>2:10-2:20</td>
</tr>
<tr>
<td>9:20-9:30</td>
<td>Kruh</td>
<td>2:20-2:30</td>
</tr>
<tr>
<td>9:30-9:40</td>
<td>Lamj</td>
<td>2:30-2:40</td>
</tr>
<tr>
<td>9:40-9:50</td>
<td>Lawrf</td>
<td>2:40-2:50</td>
</tr>
<tr>
<td>9:50-10:00</td>
<td>Leit</td>
<td>2:50-3:00</td>
</tr>
<tr>
<td>10:00-10:10</td>
<td>Lewj</td>
<td>3:00-3:10</td>
</tr>
<tr>
<td>10:10-10:20</td>
<td>Liu</td>
<td>3:10-3:20</td>
</tr>
<tr>
<td>10:20-10:30</td>
<td>Lucb</td>
<td>3:20-3:30</td>
</tr>
<tr>
<td>10:30-10:40</td>
<td>M(a)clem</td>
<td>3:30-3:40</td>
</tr>
<tr>
<td>10:40-10:50</td>
<td>M(a)cGi</td>
<td>3:40-3:50</td>
</tr>
<tr>
<td>10:50-11:00</td>
<td>M(a)cMa</td>
<td>3:50-4:00</td>
</tr>
<tr>
<td>11:00-11:10</td>
<td>Malm</td>
<td>4:00-4:10</td>
</tr>
<tr>
<td>11:10-11:20</td>
<td>Marsh</td>
<td>4:10-4:20</td>
</tr>
<tr>
<td>11:20-11:30</td>
<td>Mau</td>
<td>4:20-4:30</td>
</tr>
</tbody>
</table>

FRIDAY

<table>
<thead>
<tr>
<th>Time</th>
<th>A.M.</th>
<th>P.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-8:10</td>
<td>Sa</td>
<td>1:00-1:10</td>
</tr>
<tr>
<td>8:10-8:20</td>
<td>Sarh</td>
<td>1:10-1:20</td>
</tr>
<tr>
<td>8:20-8:30</td>
<td>Schm</td>
<td>1:20-1:30</td>
</tr>
<tr>
<td>8:30-8:40</td>
<td>Schwartz, R.</td>
<td>1:30-1:40</td>
</tr>
<tr>
<td>8:40-8:50</td>
<td>Sene</td>
<td>1:40-1:50</td>
</tr>
<tr>
<td>8:50-9:00</td>
<td>Shem</td>
<td>1:50-2:00</td>
</tr>
<tr>
<td>9:00-9:10</td>
<td>Siem</td>
<td>2:00-2:10</td>
</tr>
<tr>
<td>9:10-9:20</td>
<td>SL</td>
<td>2:10-2:20</td>
</tr>
<tr>
<td>9:20-9:30</td>
<td>Smith, M.</td>
<td>2:20-2:30</td>
</tr>
<tr>
<td>9:30-9:40</td>
<td>Som</td>
<td>2:30-2:40</td>
</tr>
<tr>
<td>9:40-9:50</td>
<td>Stai</td>
<td>2:40-2:50</td>
</tr>
<tr>
<td>9:50-10:00</td>
<td>Stev</td>
<td>2:50-3:00</td>
</tr>
<tr>
<td>10:00-10:10</td>
<td>Stp</td>
<td>3:00-3:10</td>
</tr>
<tr>
<td>10:10-10:20</td>
<td>Suq</td>
<td>3:10-3:20</td>
</tr>
<tr>
<td>10:20-10:30</td>
<td>Taf</td>
<td>3:20-3:30</td>
</tr>
<tr>
<td>10:30-10:40</td>
<td>Thomq</td>
<td>3:30-3:40</td>
</tr>
<tr>
<td>10:40-10:50</td>
<td>Tomm</td>
<td>3:40-4:00</td>
</tr>
<tr>
<td>10:50-11:00</td>
<td>Tuq</td>
<td>4:00-4:10</td>
</tr>
<tr>
<td>11:00-11:10</td>
<td>Vander</td>
<td>4:10-4:20</td>
</tr>
<tr>
<td>11:10-11:20</td>
<td>Ves</td>
<td>4:20-4:30</td>
</tr>
<tr>
<td>11:20-11:30</td>
<td>Wald</td>
<td>4:30-4:40</td>
</tr>
</tbody>
</table>

SATURDAY

Any student may register from 9:30 to 11:30 A.M. Saturday registration is inadvisable, however, as many sections of course offerings will be closed. It is essential that registration and classification be completed according to schedule.

FEBRUARY 1, 1963

<table>
<thead>
<tr>
<th>Time</th>
<th>A.M.</th>
<th>P.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-8:10</td>
<td>Sarg</td>
<td>1:00-1:10</td>
</tr>
<tr>
<td>8:10-8:20</td>
<td>Sargh</td>
<td>1:10-1:20</td>
</tr>
<tr>
<td>8:20-8:30</td>
<td>Schwartz, R.</td>
<td>1:20-1:30</td>
</tr>
<tr>
<td>8:30-8:40</td>
<td>Send</td>
<td>1:30-1:40</td>
</tr>
<tr>
<td>8:40-8:50</td>
<td>Shel</td>
<td>1:40-1:50</td>
</tr>
<tr>
<td>8:50-9:00</td>
<td>Shiel</td>
<td>1:50-2:00</td>
</tr>
<tr>
<td>9:00-9:10</td>
<td>Sia</td>
<td>2:00-2:10</td>
</tr>
<tr>
<td>9:10-9:20</td>
<td>Smith, L.</td>
<td>2:10-2:20</td>
</tr>
<tr>
<td>9:20-9:30</td>
<td>Som</td>
<td>2:20-2:30</td>
</tr>
<tr>
<td>9:30-9:40</td>
<td>Stah</td>
<td>2:30-2:40</td>
</tr>
<tr>
<td>9:40-9:50</td>
<td>Steu</td>
<td>2:40-2:50</td>
</tr>
<tr>
<td>9:50-10:00</td>
<td>Sto</td>
<td>2:50-3:00</td>
</tr>
<tr>
<td>10:00-10:10</td>
<td>Sup</td>
<td>3:00-3:10</td>
</tr>
<tr>
<td>10:10-10:20</td>
<td>Tas</td>
<td>3:10-3:20</td>
</tr>
<tr>
<td>10:20-10:30</td>
<td>Thomp</td>
<td>3:20-3:30</td>
</tr>
<tr>
<td>10:30-10:40</td>
<td>Toml</td>
<td>3:30-3:40</td>
</tr>
<tr>
<td>10:40-10:50</td>
<td>Tump</td>
<td>3:40-4:00</td>
</tr>
<tr>
<td>10:50-11:00</td>
<td>Vandeq</td>
<td>4:00-4:10</td>
</tr>
<tr>
<td>11:00-11:10</td>
<td>Ver</td>
<td>4:10-4:20</td>
</tr>
<tr>
<td>11:10-11:20</td>
<td>Walc</td>
<td>4:20-4:30</td>
</tr>
<tr>
<td>11:20-11:30</td>
<td>Wark</td>
<td>4:30-4:40</td>
</tr>
</tbody>
</table>
Index

Absence
excuses, 30, 34
physical education, 29

Accreditation, 7

Adjustment of advanced credit, 18

Admission, 13
advanced placement, 16
aptitude and achievement tests, 15
as a freshman, 14
as a special student, 18
enrollment deposit, 14
of foreign students, 19
with advanced standing, 16
with deficiencies, 15

Advanced standing, 16

Aerodynamics and aeromechanics, 38
option in engineering mechanics, 53

Aeronautical engineering
courses offered, 96
degree program, 38
graduate studies, 88
special fields, 75

Air conditioning, see Mechanical engineering

Air science, ROTC, 77

Aircraft propulsion, 38

Astronautical engineering
courses offered, 96
ggraduate studies, 88
special fields, 75

Attainment levels, 36

Automotive, see Mechanical engineering

Business administration, 102

Calendar, 4

Camp Davis, 9

Chemical engineering
combined program with chemical engineering, 43
courses offered, 103
degree program, 40
graduate studies, 88
option in engineering mechanics, 53
special fields, 75
Chemistry, 25
combined program with chemical engineering, 43
courses offered, 124

Civil engineering
combined program with liberal arts, 48
courses offered, 112
degree program, 44
graduate studies, 88
special fields, 75
Class standing, 33
Combined programs
with other institutions, 17
chemical engineering and chemistry, 43
civil engineering and metallurgical engineering, 43
civil engineering and liberal arts, 48

Committees of the College, 177

Communication sciences, 75, 89, 121

Communications, see Electrical engineering

Construction engineering, 45
ggraduate studies, 89

Co-operative programs with industry, 9
Counseling, 20
Counselor, 21, 29
Credit adjustment, 18
Credit hour, 29, 37

Dearborn Center, 10

Deficiencies, 15, 29

Degree programs, 36-75
choosing a program, 23
Degree requirements, 34, 37
Degree, second bachelor's, 35

Description of courses, 96

Doctor's degrees, 95

Drawing, see Engineering graphics
Dropping courses, see Election of studies

Economics, 122

Election of studies, 29

Elective studies, 37

Electric power, see Electrical engineering

Electrical engineering
courses offered, 124
degree program, 49
graduate studies, 89
option in engineering mechanics, 53
special fields, 75
Electronics, see Electrical engineering
Employment, 12
Engineering graphics, 25, 135
Engineering Library, 8
Engineering materials, graduate studies, 90
Engineering mechanics
courses offered, 136
degree program, 52
graduate studies, 90
special fields, 75
English, 24
courses offered, 141
foreign students, 19
proficiency, 36, 142
Examinations, 31
Extracurricular opportunities, 11

Facilities, 7
Faculty of the College, 178
Fees and expenses, 12
Fellowships, 12
First-year studies, 22
Fluid mechanics, see Engineering mechanics
Food processing, see Chemical engineering
Ford Nuclear Reactor, 8
Foreign students, 19
Freshman counseling, 20-27
Freshman program, 22

General information, 5
Geodetic engineering, 45
Geology and mineralogy, 146
Grades and scholarship, 31
Graduate studies, 86
Graduation requirements, 34

Health Service approval, 28
Heat power engineering, see Mechanical engineering
Highway engineering, 45
Highway traffic engineering, 46
Home list, 82
Honor code, 27
Honor societies, 11
Hydraulic engineering, 45
option in engineering mechanics, 53
Illumination, see Electrical engineering
Incompletes, 35
Indebtedness to the University, 13
Industrial engineering
courses offered, 146
degree program, 54
graduate studies, 91
special fields, 75
Instrumentation engineering, 76
courses offered, 151
graduate studies, 91
option in engineering mechanics, 53
Internal combustion engines, see Mechanical engineering
Laboratories, 7-9
Loan funds, 12
Machine design, see Mechanical engineering
option in engineering mechanics, 53
Marine engineering
courses offered, 168
degree program, 67
graduate studies, 93
special fields, 75
Master of Science in Engineering, 87
Materials engineering
degree program, 56
graduate studies, 90
special fields, 75
Mathematics, 24
courses offered, 154
degree program, 58
special fields, 75
Mechanical engineering
courses offered, 158
degree program, 60
graduate studies, 92
special fields, 75
Metallurgical engineering
combined program with chemical engineering, 43
courses offered, 103
degree program, 62
graduate studies, 92
option in engineering mechanics, 53
special fields, 75
Meteorology
courses offered, 165
degree program, 64
option in engineering mechanics, 53
special fields, 75
Michigan Technic, 11
Military science and tactics, ROTC, 80

Naval architecture and marine engineering
courses offered, 168
degree program, 67
graduate studies, 93
option in engineering mechanics, 53
special fields, 75
Naval science, ROTC, 84
Nontechnical electives, 27, 30
North Campus, 8
Nuclear engineering, 76, 93
courses offered, 170
graduate studies, 93
option in engineering mechanics, 53

Objectives of the College, 5
Office directory, 2
Opportunities for specialization, see Special fields
Organizations, 11
Orientation, 20

Petroleum production and refining, see Chemical engineering
Physical education, 22, 29
Physical metallurgy, see Metallurgical engineering
Physics, 26
courses offered, 173
degree program, 71
option in engineering mechanics, 53
special fields, 75
Placement, 10
Plastics, see Chemical engineering
Probation, 31
Process metallurgy, see Metallurgical engineering
Production engineering, see Mechanical engineering and industrial engineering
Professional degrees, 94
Program adviser, 21
Propulsion
option in engineering mechanics, 53
Protective coatings, see Chemical engineering
Public works administration, 94
Pulp and paper, see Chemical engineering

Qualifications for success in engineering, 6, 14
Railroad engineering, 45
Refrigeration, see Mechanical engineering
Registration
dates, 4
schedules, 192-93
Reinstatement, 32
Repeating courses, 30, 32
Requirements for graduation, 34
Research, 6
Reserve Officers Training Corps, 23, 77
Rules and procedures, 27
Sanitary engineering, 45
graduate studies, 94
Scholarship, see Grades
Scholarships, 12
Science engineering
courses offered, 176
degree program, 72
special fields, 75
Societies and organizations, 11
Soils engineering, 45
Special fields, 75
Special students, 18
Structural engineering, 45
option in engineering mechanics, 53
Student aid, 12
Student organizations, 11
Studies of the first year, 23
Substitution of courses, 30
Summer camp (Camp Davis), 9
Surveying, 9
Thermodynamics, see Chemical and metallurgical engineering, mechanical engineering, engineering mechanics, and science engineering
Time requirement, 37
Traffic engineering, 46
Transfer students, 16
Undergraduate degree programs, 36-75
Veterans, 12
Warned list, 31
Withdrawal from the College, 34
The University of Michigan Official Publication is the title given to the series of administrative bulletins published by the University. This series includes the following:

BULLETINS FOR PROSPECTIVE STUDENTS

The prospective student should have, in addition to a copy of the bulletin General Information, a copy of one or more of the announcements or bulletins listed under this head. These will be sent, without charge, on request to The University of Michigan.

General Information

Announcements:

- Architecture and Design, College of
- Business Administration, School of
 - Graduate
 - Undergraduate
- Dearborn Center
- Dentistry, School of
- Education, School of
- Engineering, College of
- Flint College
- Graduate Dentistry, W. K. Kellogg Foundation Institute
- Graduate Studies, Horace H. Rackham School of
- Law School
- Literature, Science, and the Arts, College of
- Medical School
- Music, School of
- Natural Resources, School of
- Nursing, School of
- Pharmacy, College of
- Postgraduate Dentistry, W. K. Kellogg Foundation Institute
- Public Administration, Institute of
- Public Health, School of
- Social Work, School of
- Summer Session

OTHER BULLETINS

Extension courses
Bulletins describing the work of various departments and curriculums

For general information concerning the University, address University of Michigan, Ann Arbor, Michigan.
College of Engineering