Colleges of Engineering and Architecture

Announcement
1929-1930
UNIVERSITY OF MICHIGAN

CLARENCE COOK LITTLE,* Sc.D., LL.D., President

College of Literature, Science, and the Arts, JOHN R. EFFINGER, Dean.

(Admission officers: The Dean, for advanced standing; Registrar Ira M. Smith, for freshmen.)

General literary and scientific courses; special programs in landscape design, library science, journalism, physics, chemistry, biology, geology, municipal administration, and social service; preprofessional programs; combined curricula with business administration, law, medicine, dentistry, and nursing.

Colleges of Engineering and Architecture, HERBERT C. SADLER, Dean.

(Admission officers: Associate Dean George W. Patterson, for advanced standing in Engineering; Professor Emil Lorch, for advanced standing in Architecture; Registrar Ira M. Smith, for freshmen in Engineering and Architecture.)

Four- and five-year curricula in civil, mechanical, electrical, chemical, marine, and aeronautical engineering, geodesy and surveying, mathematics, physics, and astronomy, architecture and architectural engineering, and two-year program for special students in architecture. Broad training in fundamentals. Opportunities for specialization in all departments. Practical instruction in laboratories, shops, and the field, under teachers of professional experience. Combined curricula of mechanical, chemical, and electrical engineering with business administration; co-operative curricula in civil (highway) and electrical engineering.

Medical School, HUGH CABOT, Dean.

(Admission officers: The Dean, for Medical School; Registrar Ira M. Smith, for Curricula in Nursing.)

Seventy hours of collegiate preparation required. Four-year graded professional curriculum. Modern laboratories. Ample clinical facilities in hospitals under University control. Three-year and five-year curricula in nursing.

Law School, HENRY M. BATES, Dean.

(Admission officer: The Dean.)

Requirements for admission: (1) an A.B. degree (or its equivalent); or (2) the satisfactory completion of three years' study, on the Combined Curriculum in Letters and Law, in the College of Literature, Science, and the Arts. Three-year curriculum, with graduate year. Instruction in all branches of our system of law, and in international law, Roman law, and jurisprudence. Library of approximately 80,000 volumes.

School of Dentistry, MARCUS L. WARD, Dean.

(Admission officers: The Dean, for School of Dentistry; Registrar Ira M. Smith, for Curriculum in Oral Hygiene.)

Two years of collegiate preparation required. Three-year professional curriculum. Fully equipped, modern laboratories and clinic. Abundant clinical material. Graduate work leading to M.S. and D.D.Sc. degrees. One-year curriculum in oral hygiene.

*Resignation to take effect September 1, 1929.

(Continued on inside page of back cover.)
Colleges of Engineering and Architecture

Announcement
1929-1930

Ann Arbor
Published by the University
1929
CALENDAR

1929

June 1 Semester Examinations Begin
June 17 COMMENCEMENT
June 24 - August 16 Summer Session
September 23-29 Freshman Week
September 23-27 Examinations for Admission
September 28 and 30 Classification of All Students
October 1 FIRST SEMESTER BEGINS
November 28 Thanksgiving Day
December 20 (Evening) Holiday Vacation Begins

1930

January 6 (Morning) Classes Resume
February 3 Semester Examinations Begin
February 13-15 Examinations for Admission
February 14 (Evening) First Semester Closes
February 15 and 17 Classification for Second Semester
February 18 SECOND SEMESTER BEGINS
February 22 Holiday, Washington's Birthday
April 11 (Evening) Spring Vacation Begins
April 21 Classes Resume
May 30 Holiday, Memorial Day
June 7 Semester Examinations Begin
June 23 COMMENCEMENT
June 30 - August 22 Summer Session
September 22-28 Freshman Week
September 22-26 Examinations for Admission
September 27 and 29 Classification of All Students
September 30 FIRST SEMESTER BEGINS
CONTENTS

CALENDAR .. 4

PART I

OFFICERS AND FACULTY ... 7

PART II

GENERAL INFORMATION, COLLEGES OF ENGINEERING AND ARCHITECTURE ... 25

PART III

COLLEGE OF ENGINEERING: Departments—Buildings—Degrees—Requirements for Graduation—Other Special Information ... 57

PART IV

WORK OF THE COLLEGE OF ENGINEERING: The First Year—Departments of Instruction—Engineering Research 72

PART V

WORK OF THE COLLEGE OF ENGINEERING (Continued): Professional Departments ... 113

PART VI

COLLEGE OF ARCHITECTURE ... 221

APPENDIX

SUMMARY OF STUDENTS ... 257
INDEX OF SUBJECTS ... 258
The days that the University is in session are printed in light face type; Sundays, holidays, and vacations in dark face.
Part I

OFFICERS AND FACULTY

BOARD OF REGENTS

Elected Members

Hon. WALTER H. SAWYER, Hillsdale..............Dec. 31, 1929
Hon. VICTOR M. GORE, Benton Harbor.............Dec. 31, 1929
Hon. JUNIUS E. BEAL, Ann Arbor................Dec. 31, 1931
Hon. RALPH STONE, Detroit.......................Dec. 31, 1931
Hon. WILLIAM L. CLEMENTS, Bay City...............Dec. 31, 1933
Hon. JAMES O. MURFIN, Detroit....................Dec. 31, 1933
Hon. BENJAMIN S. HANCHETT, Grand Rapids......Dec. 31, 1935
Hon. LUCIUS L. HUBBARD, Houghton...............Dec. 31, 1935

Members ex Officio (without vote)

Hon. WEBSTER H. PEARCE, Lansing, Superintendent of Public Instruction

CLARENCE COOK LITTLE, President of the University

Officers

*CLARENCE COOK LITTLE, President
SHIRLEY W. SMITH, Secretary
ROBERT A. CAMPBELL, Treasurer

ADMINISTRATIVE OFFICERS

HERBERT CHARLES SADLER, Sc.D., LL.D., Dean

1510 Hill Street

GEORGE WASHINGTON PATTERSON, S.B., Ph.D., Associate Dean,
College of Engineering

2101 Hill Street

EMIL LORCH, A.M., In charge of the College of Architecture

718 Church Street

LOUIS ALLEN HOPKINS, Ph.D., Secretary

1517 South University Avenue

CAMILLA BLANCHE GREEN, Assistant Secretary

910 Dewey Avenue

IRA MELVILLE SMITH, LL.B., Registrar

605 Oswego Street

ALBERT EASTON WHITE, Sc.D., Director, Department of Engineering Research

1417 South University Avenue

*Resignation to take effect September 1, 1929.
HARRY BURNS HUTCHINS, LL.D., President Emeritus
508 Monroe Street
MORTIMER ELWYN COOLEY, M.E., LL.D., Eng.D., D.Sc., Dean Emeritus
1405 Hill Street
ALEXANDER ZIWET, C.E., Professor Emeritus of Mathematics
WILLIAM HENRY BUTTS, Ph.D., Professor Emeritus of Mathematics
1122 Hill Street
WILLIAM HENRY WAIT, Ph.D., Professor Emeritus of Modern Languages
332 East William Street
FRED NEWTON SCOTT, Ph.D., Professor Emeritus of Rhetoric and Journalism

MEMBERS OF THE FACULTY AND OTHER OFFICERS*

Professors

EDWARD LARRABEE ADAMS, Ph.D., Professor of Romance Languages
1850 Washtenaw Avenue
HENRY CLAY ANDERSON, B.M.E., Professor of Mechanical Engineering
1610 Washtenaw Avenue
WALTER LUCIUS BADGER, M.S., Professor of Chemical Engineering
917 Church Street
BENJAMIN FRANKLIN BAILEY, Ph.D., Professor of Electrical Engineering
1019 Baldwin Avenue
ERNEST FRANKLIN BARKER, Ph.D., Associate Professor of Physics
18 Ridgeway
FLOYD EARL BARTELL, Ph.D., Professor of General and Physical Chemistry
1919 Scottwood Avenue
WELLS IRA BENNETT, M.S., Associate Professor of Architecture
500 Highland Road
SAMUEL LAWRENCE BIGELOW, Ph.D., Professor of General and Physical Chemistry
1520 Hill Street
WILLIAM WARNER BISHOP, A.M., Litt.D., Librarian
810 Oxford Road

ORLAN WILLIAM BOSTON, M.S.E., Director of Engineering Shops, and Professor of Shop Practice
1125 Olivia Avenue
EDWARD MILTON BRAGG, B.S., Professor of Marine Engineering and Naval Architecture
1056 Ferdon Road
JOHN CROWE BRIER, M.S., Professor of Chemical Engineering
1120 Oakland Avenue

†Died November 18, 1928.
*In this list are included the names of instructors with whom engineering students may take courses in other colleges.
MEMBERS OF THE FACULTY

HUGH BRODIE, C.E., Associate Professor of Geodesy and Surveying
611 Forest Avenue

GEORGE GRANGER BROWN, Ph.D., Associate Professor of Chemical Engineering
2037 Geddes Avenue

JOSEPH ALDRICH BURSLEY, B.S. (M.E.), Professor of Mechanical Engineering, and Dean of Students
2107 Hill Street

*HARRY LINN CAMPBELL, M.S., Associate Professor of Shop Practice
935 Dewey Avenue

JOSEPH HENDERSON CANNON, B.S.(E.E.), Professor of Electrical Engineering
1015 Church Street

CLIFTON O'NEAL CAREY, C.E., Associate Professor of Geodesy and Surveying
Geddes Road

ERMINE COWLES CASE, Ph.D., Professor of Historical Geology and Paleontology, and Director of the Geological Museum
619 East University Avenue

JAMES HARLAN CISSEL, B.S.(C.E.), Associate Professor of Structural Engineering
2022 Hill Street

WALTER FRANCIS COLBY, Ph.D., Professor of Physics
322 North State Street

RALPH HAMILTON CURTISS, Ph.D., Professor of Astronomy, and Director of the Observatory
1308 East Ann Street

ARTHUR JAMES DECKER, B.S.(C.E.), Professor of Sanitary Engineering
2014 Geddes Avenue

BRUCE MCNAUGHTON DONALDSON, A.M., Associate Professor of Fine Arts
716 Forest Avenue

WALTER JOHNSON EMMONS, A.M., Associate Professor of Highway Engineering, and Director of Highway Laboratory
1136 Michigan Avenue

JOHN EDWARD EMSWILER, M.E., Professor of Mechanical Engineering
1303 Granger Avenue

CHARLES HORACE FESSENDEN, M.E., Professor of Mechanical Engineering
932 Greenwood Avenue

†PETER FIELD, Ph.D., Professor of Mathematics
904 Olivia Avenue

FRANK RICHARD FINCH, Ph.B., Associate Professor of Mechanism and Engineering Drawing
1619 South University Avenue

MOSES GOMBERG, Sc.D., Professor of Organic Chemistry
712 Onondaga Street

SAMUEL A. GOUDSMIT, Ph.D., Associate Professor of Physics
508 Thompson Street

HERBERT JAY GOULDING, B.S., Associate Professor of Mechanism and Engineering Drawing
703 Berkshire Road

LEWIS MERRITT GRAM, B.S., Professor of Structural Engineering
1904 Austin Avenue

*Absent on leave, first semester 1928-1929.
†Absent on leave, second semester 1928-1929.
Ransom Smith Hawley, M.E., Professor of Mechanical Engineering
Ann Arbor Hills

William D. Henderson, Ph.D., Director of the Division of University Extension
Cutting Apartments

Henry Harold Higbie, E.E., Professor of Electrical Engineering
402 Awixa Road

Theophil Henry Hildebrandt, Ph.D., Professor of Mathematics
1930 Cambridge Road

William Christian Hoad, B.S., Professor of Sanitary and Municipal Engineering
1028 Martin Place

William Herbert Hobbs, Ph.D., Professor of Geology, and Director of the Geological Laboratory and Geological Museum
1705 Hill Street

Louis Allen Hopkins, Ph.D., Associate Professor of Mathematics, and Secretary of the Colleges of Engineering and Architecture
1517 East University Avenue

Walter Fred Hunt, Ph.D., Professor of Petrology
1030 Baldwin Avenue

*Frank Webber Hutchings, LL.B., Special Representative, Engineering Research
1430 Boston Blvd., Detroit

Clarence Thomas Johnston, C.E., Professor of Geodesy and Surveying, Custodian of the Bogardus Tract, and Director of the Davis Engineering Camp
1335 Hill Street

Walter Edwin Jominy, B.Ch.E., M.S., Investigator, Department of Engineering Research
1433 White Street

Hugh Edward Keeler, M.S.E., Associate Professor of Mechanical Engineering
1202 Olivia Avenue

Herbert Alden Kenyon, A.M., Associate Professor of French and Spanish
1103 Ferdon Road

*Lawrence Vincent Kerber, B.S.(Aero.E.), Professor of Applied Aeronautics
1130 Forest Avenue

Horace Williams King, B.S., Professor of Hydraulic Engineering
Hilldene Manor

Edward Henry Kraus, Ph.D., Sc.D., Professor of Crystallography and Mineralogy, and Director of the Mineralogical Laboratory, Dean of the College of Pharmacy, and Dean of the Summer Session
722 Church Street

Walter Edwin Lay, B.M.E., Associate Professor of Mechanical Engineering
936 Dewey Avenue

Alfred Oughton Lee, M.D., Professor of Modern Languages
814 Hill Street

Eugene Hendricks Leslie, Ph.D., Professor of Chemical Engineering
Traver Road

David Martin Lichty, Ph.D., Associate Professor of General and Physical Chemistry
922 Olivia Avenue

*Absent on leave.
ANDERS FREDRIK LINDBLAD, Sc.D., Associate Professor of Naval Architecture 1408 Wells Street

GEORGE ALLAN LINDSAY, Ph.D., Associate Professor of Physics 2015 Day Street

EMIL LORCH, A.M., Professor of Architecture, in charge of the College of Architecture 718 Church Street

CLYDE ELTON LOVE, Ph.D., Professor of Mathematics 1915 Scottwood

ALFRED HENRY LOVELL, M.S.E., Professor of Electrical Engineering 3000 Geddes Avenue

GEORGE MCDONALD McCONKEY, B.A.E., Professor of Architecture R.F.D. 2, Washtenaw Road

REINOLD MELBERG, Major U.S.A., Professor of Military Science and Tactics 2117 Devonshire Road

Ferdinand Northrup Menefee, C.E., Professor of Engineering Mechanics 6 Geddes Heights

Henry Willard Miller, M.E., Professor of Mechanism and Engineering Drawing 1800 Hill Street

Arthur Deearth Moore, M.S., Associate Professor of Electrical Engineering 718 Onondaga Street

Roger LeroY Morrison, A.M., C.E., Professor of Highway Engineering and Highway Transport 929 Church Street

Joseph Raleigh Nelson, A.M., Professor of English, and Editor of Engineering Research Publications 1609 Shadford Road

George Washington Patterson, S.B., Ph.D., Professor of Engineering Mechanics, and Associate Dean of the College of Engineering 2101 Hill Street

Felix Wladyslaw Pawlowski, M.S., Professor of Aeronautical Engineering 925 Greenwood Avenue

Elmore Shaw Pettyjohn, M.S., Investigator, Department of Engineering Research 220 South Thayer Street

Vincent Collins Poor, Ph.D., Associate Professor of Mathematics 930 Packard Street

Harrison McAllister Randall, Ph.D., Professor of Physics, and Director of the Physical Laboratory 1208 Prospect Street

Daniel Leslie Rich, Ph.D., Associate Professor of Physics 1205 Forest Avenue

*Henry Earle Riggs, A.B., C.E., Professor of Civil Engineering Underdown Road, Barton Hills

Richard Alfred Rossiter, Ph.D., Associate Professor of Astronomy, and Chief Astronomer, University of Michigan Southern Station 23 Milner Road, Bloemfontein, Orange Free State, South Africa

*Absent on leave, 1928-1929.
JOSEPH JOACHIM ALBERT ROUSEAU, Professor of Architecture
2001 Vinewood Avenue

THEODORE RUDOLPH RUNNING, Ph.D., Professor of Mathematics
1019 Michigan Avenue

HERBERT CHARLES SADLER, Sc.D., LL.D., Professor of Naval Architecture and Marine Engineering, and Dean of the Colleges of Engineering and Architecture
1510 Hill Street

FRANCIS LEE SCHNEIDER, A.M., Associate Professor of English
1304 Gardner Street

CHESTER SEITZ SCHOEPFLE, Sc.D., Associate Professor of Organic Chemistry
1102 Forest Avenue

IRVING DAY SCOTT, Ph.D., Associate Professor of Physiographical Geology
1043 Olivia Avenue

ROBERT HENRY SHERLOCK, B.S.(C.E.), Associate Professor of Civil Engineering
1219 Packard Street

ALLEN FIRMAN SHERZER, B.M.E., Associate Professor of Mechanical Engineering
1213 Ferdon Road

WILLIAM GABB SMEATON, A.B., Professor of General and Physical Chemistry
1941 Geddes Avenue

ARTHUR WHITMORE SMITH, Ph.D., Professor of Physics
1008 Oakland Avenue

EDWARD A. STALKER, M.S., Associate Professor of Aeronautical Engineering
914 South State Street

FRANK HOWARD STEVENS, B.S., Associate Professor of Engineering Mechanics
1125 Lincoln Avenue

AUBREY TEALDI, Graduate Royal Technical Institute, Livorno, Professor of Landscape Design, and Director of the Nichols Arboretum
1837 Vinewood Avenue

PROKOP STEPHEN TIMOSHENKO, Adjunct of Applied Mechanics, Professor of Engineering Mechanics
2007 Washtenaw Avenue

WILLIAM CALDWELL TITCOMB, A.B., B.S.A., Professor of Architecture
520 East Jefferson Street

RALPH HAZLETT UPSON, M.E., Lecturer in Aeronautical Engineering
General Motors Building, Detroit

CLAIR UPTHEGROVE, B.Ch.E., Associate Professor of Metallurgical Engineering
547 Elm Street

JOHN A. VAN DEN BROEK, Ph.D., Professor of Engineering Mechanics
2016 Seneca Street

ROBERT MARK WENLEY, D.Phil., Sc.D., Litt.D., LL.D., D.C.L., Professor of Philosophy
1404 Cambridge Road

ALBERT EASTON WHITE, Sc.D., Professor of Metallurgical Engineering, and Director of the Department of Engineering Research
1417 South University Avenue

ALFRED HOLMES WHITE, A.B., B.S., Professor of Chemical Engineering
608 Onondaga Street

ERNEST WILBY, Professor of Architecture
13 Cutting Apartments
MEMBERS OF THE FACULTY

EDMUND WILD, M.S., Associate Professor of Modern Languages 532 Walnut Street
HOBART HURD WILLARD, Ph.D., Professor of Analytical Chemistry 332 East William Street
NEIL HOOKER WILLIAMS, Ph.D., Professor of Physics 1020 Olivia Avenue
CLYDE ELMORE WILSON, M.S.E., Professor of Mechanical Engineering 522 Linden Street
CHESTER OWEN WISLER, M.S.E., Associate Professor of Hydraulic Engineering 810 Arch Street
WILLIAM PLATT WOOD, M.S., Associate Professor of Metallurgical Engineering 1417 South University Avenue
JOHN STEPHEN WORLEY, M.S., Professor of Transportation Engineering 929 Olivia Avenue

Assistant Professors

ERNEST J. ABBOTT, M.S.E., Assistant Investigator in Engineering Research 504 Lawrence Street
HENRY CARTER ADAMS, 2nd, M.S., Assistant Professor of Naval Architecture and Marine Engineering 1421 Hill Street
JOSE M. ALBALADEJO, Bachelor, Institute Cardinal, Assistant Professor of Spanish 1500 Westminster Place
GLENN LESLIE ALT, B.C.E., Assistant Professor of Civil Engineering 918 Sybil Street
LEIGH CHARLES ANDERSON, Ph.D., Assistant Professor of Organic Chemistry 1327 Forest Court
STEPHEN STANLEY ATTWOOD, M.S.E., Assistant Professor of Electrical Engineering 1411 Wells Street
EDWIN MYRON BAKER, B.S., Assistant Professor of Chemical Engineering 1603 Morton Avenue
HARRY BOUCHARD, B.C.E., Assistant Professor of Geodesy and Surveying 1319 Wells Street
ROBERT D. BRACKETT, A.M., Assistant Professor of English 1301 Hormann Court
LEVI MONROE BRICKER, B.S., Assistant Professor of Military Science and Tactics 1214 Willard Street
HAROLD HUDSON BRITTON, A.M., Assistant Professor of Modern Languages 1316 North University Avenue
FRANK N. M. BROWN, B.S.E., Assistant Professor of Aeronautical Engineering 1216 Prospect Street
PAUL NARCISSE BUKOVSKY, M.S., Assistant Professor of Mechanism and Engineering Drawing 423 Benjamin Street
FLOYD NEWTON CALHOON, M.S., Assistant Professor of Mechanical Engineering 1047 Olivia Avenue
ROBERT JOHN CARNEY, Ph.D., Assistant Professor of Analytical Chemistry, and Director of Chemistry Store 519 Lawrence Street
ALBERT LORING CLARK, JR., B.S.E., Assistant Professor of Mechanism and Engineering Drawing
14 Ridgeway

ROBERT CARL COLE, A.M., Assistant Professor of Mechanism and Engineering Drawing
507 Walnut Street

JAMES M. CORK, Ph.D., Assistant Professor of Physics
2034 Day Street

CARL LEONARD DAHLSTROM, Ph.D., Assistant Professor of English
508 South Division Street

WILLIAM WELLS DENTON, Ph.D., Assistant Professor of Mathematics
1014 Cornwell Place

DAVID M. DENNISON, Ph.D., Assistant Professor of Physics
704 Pauline Boulevard

RUSSELL ALGER DODGE, M.S.E., Assistant Professor of Engineering Mechanics
1233 Baldwin Avenue

LLOYD HAMILTON DONNEll, B.M.E., Assistant Professor of Engineering Mechanics
712 Arch Street

ORA STANLEY DUFFENACK, Ph.D., Assistant Professor of Physics
2107 Devonshire Road

WILLIAM H. ECILY, A.M., Assistant Professor of English
1208 Cambridge Court

*Maurice Barkley Eichelberger, B.S., Assistant Professor of Mechanism and Engineering Drawing
906 Rose Avenue

ALFRED LYNN FERGUSON, B.Pd., Ph.D., Assistant Professor of General and Physical Chemistry
Packard Road

FLOYD FIRESTONE, B.S., Assistant Professor of Physics and Assistant Investigator, Department of Engineering Research
1666 Broadway

HERBERT ATHERTON FOWLER, Assistant Professor of Decorative Design
520 East Jefferson Street

GERALD W. FOX, Ph.D., Assistant Professor of Physics
610 East Kingsley Street

ROSELL EARN FRANKLIN, B.S.E., Assistant Professor of Engineering Mechanics
1328 Pontiac Street

CHARLES WINFRED GOOD, B.S., Assistant Professor of Mechanical Engineering, and Assistant to the Director of Engineering Research
622 South Seventh Street

CHARLES BURTON GORDY, A.M., Assistant Professor of Mechanical Engineering, and Lecturer on Production Management
1920 Lorraine Place

ALEXANDER P. GwIAZDOWSKI, M.E., Assistant Professor of Shop Practice
1224 Washtenaw Avenue

HOLGAR MADS HANSEN, B.C.E., Assistant Professor of Mechanism and Engineering Drawing
1210 Wells Street

JAMES HALLETT HODGES, Ph.D., Assistant Professor of General and Physical Chemistry
722 Whaley Court

*Absent on leave, 1928-1929.
*O**LIVER NELSON HOLLIS, A.B., Assistant Professor of Mechanical Engineering 1411 East Jefferson Avenue, Detroit

RUSSELL C. HUSSY, Ph.D., Assistant Professor of Geology 1420 Geddes Avenue

A**NTHONY JOSEPH JOBIN, A.M., Assistant Professor of Modern Languages 1110 White Street

C**LARENCE FRANK KESSLER, M.S.E., Assistant Professor of Mechanical Engineering Broadway Road

R**ICHARD THOMAS LIDDICOAT, B.S.E., Assistant Professor of Engineering Mechanics 1602 Morton Avenue

H**AROLD RHYS LORD, M.A., Assistant Professor of Mechanical Engineering 1321 Forest Court

R**OBERT H. LORD, B.S., Assistant Professor of Military Science and Tactics 1817 Jackson Avenue

W**ILLIAM CHARLES LOUISELL, A.B., Captain U.S.A., Assistant Professor of Military Science and Tactics 613 Oakland Avenue

R**OY KENNETH MCALPINE, Ph.D., Assistant Professor of Analytical Chemistry 926 Sylvan Street

W**ARREN LEE McCABE, Ph.D., Assistant Professor of Chemical Engineering 310 Maple Ridge

H**AROLD JAMES MCFARLAN, B.S.E., Assistant Professor of Geodesy and Surveying Long Shore Drive

D**EAN B. McLACHLIN, Ph.D., Assistant Professor of Astronomy 502 Walnut Street

A**XEL MARIN, B.S.E., Assistant Professor of Mechanical Engineering Whitmore Lake Road

W**ALTER VAN CLEVE MARSHALL, B.A.E., Assistant Professor of Architecture 1209 Henry Street

C**LIFFORD CYRILLE MELOCHE, Ph.D., Assistant Professor of Analytical Chemistry 525 Linden Street

C**HARLES FERDINAND MEYER, Ph.D., Assistant Professor of Physics 1137 Fair Oaks Parkway

F**RANK ALEXANDER MICKLE, M.E., Assistant Professor of Mechanical Engineering 1053 Olivia Avenue

T**HOMAS JOSEPH MITCHELL, B.C.E., Assistant Professor of Geodesy and Surveying 1129 Granger Avenue

G**EORGE ALEXANDER MORLEY, B.S.(M.E.), Assistant Professor of Mechanism and Engineering Drawing 1321 Forest Court

J**OHN MINERT NICKELSEN, B.S., Assistant Professor of Mechanical Engineering 511 Linden Street

C**HARLES THOMAS OLMSLED, B.S. (C.E.), Assistant Professor of Engineering Mechanics 2132 Brockman Boulevard

J**ULIUS CLARK PALMER, B.S., Assistant Professor of Mechanism and Engineering Drawing 412 East Huron Street

*Absent on leave.
DONALD LEE PERKINS, M.S.E., Assistant Professor of Shop Practice
1602 Packard Street

LAWRENCE A. PHILIPP, Ph.D., Assistant Investigator, Department of Engineering Research
305 Washtenaw Apartments

PHILIP ORLAND Potts, B.M.E., Assistant Professor of Mechanism and Engineering Drawing
824 Granger Avenue

LEWIS STEPHEN RAMSELL, Ph.D., Assistant Professor of Mineralogy
Packard Road

LOUIS JOSEPH ROUSE, Ph.D., Assistant Professor of Mathematics
1137 Michigan Avenue

WILL CARL RUFUS, Ph.D., Assistant Professor of Astronomy
216 Pine Ridge

WALTER CLIFFORD SADLER, M.S., Assistant Professor of Civil Engineering
1429 White Street

RICHARD TURNER SCHLOSBERG, B.S., Assistant Professor of Military Science
613 Oakland Avenue

RICHARD SCHNEIDEWIND, B.S., Assistant Investigator, Department of Engineering Research
R. R. 3, Box 27

JAMES ALEXANDER SHOHAT, Magister of Pure Mathematics, Assistant Professor of Mathematics
507 Linden Street

WILLIAM WARNER SLEATOR, Ph.D., Assistant Professor of Physics
2503 Geddes Avenue

*JEAN PAUL SLUSSER, A.M., Assistant Professor of Drawing and Painting

MELVILLE BIGHAM STOUT, M.S., Assistant Professor of Electrical Engineering
1417 Morton Avenue

ROY STANLEY SWINTON, M.S.E., Assistant Professor of Engineering Mechanics
1114 Woodlawn Avenue

CHARLES H. THOMAS, A.M., Assistant Investigator, Department of Engineering Research
1212 Willard Street

JESSE EARL THORNTON, A.M., Assistant Professor of English
1547 Granger Avenue

HIRAM BARRICKLOW TURNER, A.B., Assistant Professor of Military Science and Tactics
1117 White Street

GEORGE E. UHLENBECK, Ph.D., Assistant Professor of Physics
209 Observatory Street

HARVARDB L. VINCENT, M.S., Ph.D., Assistant Investigator, Department of Engineering Research
1109 East University Avenue

IVAN HENRY WALTON, A.M., Assistant Professor of English, and Assistant to Editor of Publications, Department of Engineering Research
59 Rosewood Street

HARRY JAMES WATSON, B.M.E., Assistant Professor of Mechanical Engineering
1510 Morton Avenue

*Absent on leave, 1928-1929.
MEMBERS OF THE FACULTY

PHILIP FRANCIS WEATHERILL, Ph.D., Assistant Professor of General and Physical Chemistry 1123 Church Street

CHRISTIAN N. WENGER, Ph.D., Assistant Professor of English 420 South Fourth Avenue

HARLOW OLIN WHITTEMORE, M.L.D., Assistant Professor of Landscape Design 1920 Norway Road

RALPH A. WOLFE, Ph.D., Assistant Investigator, Department of Engineering Research 66 Harpst Street

EDWARD YOUNG, B.S.E., Assistant Professor of Geodesy and Surveying 1600 Montclair Place

Instructors

FREDERIC HOWARD ALDRICH, JR., Instructor in Freehand Drawing and Painting 510 Forest Avenue

CHARLES RONELLO BARNUM, B.S.A., Instructor in Architecture 1110 Judson Court

JOHN EVERTS BATES, Instructor in Architecture 1412 Pontiac Street

ROSS THOMAS BITTINGER, B.S.A., Instructor in Architecture Jefferson Apartments

GEORGE MOYER BLEEKMAN, M.S.E., Instructor in Geodesy and Surveying 1432 White Street

HENRY BLITON, Instructor in Shop Practice 523 East Washington Street

EDWIN A. BOYD, Instructor in Highway Laboratory Practice 832 Brookwood Place

HEMPSTEAD STRATTON BULL, M.S., Instructor in Electrical Engineering Ann Arbor Hills

CARL EDWIN BURKLUND, Ph.D., Instructor in English R. F. D. 6, Marlboro Drive

MARVIN ST. CLAIR CARR, B.S.E., Instructor in Chemical Engineering 1113 Willard Street

LEE O. CASE, Ph.D., Instructor in General and Physical Chemistry 720 Whaley Court

MYRON BUTMAN CHAPIN, Ph.B., Instructor in Drawing and Painting 1027 Forest Avenue

RUEL V. CHURCHILL, M.S., Instructor in Mathematics 28 Rosewood Street

RICHARD G. CLARKSON, M.S., Instructor in Organic Chemistry 1603 South University Avenue

WENDELL MORRIS COATES, M.Sc., Instructor in Mathematics 745 East University Avenue

HARRY N. COLE, M.S., Instructor in Analytical Chemistry 702 Forest Avenue

JOHN J. CORLISS, A.M., Instructor in Mathematics 502 East Ann Street
ENGINEERING AND ARCHITECTURE

MARIA LOUISA CRANE, Instructor in Freehand Drawing
923 Olivia Avenue

JOHN S. DONAL, JR., M.S., Instructor in Physics
548 Thompson Street

WILLIAM G. DOW, B.S.E., Instructor in Electrical Engineering
912 Dewey Avenue

BEN DUSHNIK, A.M., Instructor in Mathematics
1930 Cambridge Road

RUSSELL A. FISHER, A.B., Instructor in Physics
1014 Cornwell Place

NEVIN COTTON FISK, M.S., Instructor in Mathematics
Oakland Avenue

ALOYSIUS JOSEPH GAISS, A.M., Instructor in Modern Languages
322 East Ann Street

HARRY ROBINSON GAMBLE, A.M., Instructor in Architecture
732 South Division Street

JAMES SHERMAN GAULT, M.S., Instructor in Electrical Engineering
1508 Westminster Place

GEORGE GLUTZENHIRN, Instructor in Shop Practice
1140 Forest Avenue

JOHN GRENNAN, Instructor in Shop Practice
719 South Seventh Street

DONAL HAMILTON HAINES, A.B., Instructor in Journalism, and Director of Publicity, Engineering Research
1229 Traver Road

JOSEPH O. HALFORD, Ph.D., Instructor in Organic Chemistry
1015 Church Street

GORDON W. HARRISON, Ph.B., Instructor in Modern Languages
806 Sybil Street

RAYMOND H. HIMES, M.S., Instructor in General Chemistry
1208 South Congress Street, Ypsilanti

LEWIS NELSON HOLLAND, M.S., Instructor in Electrical Engineering
802 Monroe Street

WILLIAM STUART HOUSEL, B.S.E., Instructor in Civil Engineering
1119 Spring Street

AUSTIN ALONZO HOWE, Instructor in Architecture
503 Capitol Theatre, Detroit

ARNE A. JAKKULA, M.S., Instructor in Civil Engineering
711 Packard Street

MARY OLMSTED JOHNSON, Instructor in Freehand Drawing
711 South First Street

RALPH REDINGTON JOHNSON, A.B., Instructor in English
1514 Brooklyn Avenue

DONAT KONSTANTIN KAZARINOFF, Diploma from the University of Moscow, Instructor in Mathematics
1515 Cambridge Road

BEN KIEVIT, M.S., Instructor in Physics
548 Thompson Street
MEMBERS OF THE FACULTY

THOMAS JOHN KNEEBONE, Instructor in Shop Practice 816 Brookwood Place
THOMAS ALOYSIUS McGUIRE, A.M., Instructor in Modern Languages 906 East Huron Street
*GUSTAVO MALDONADO, B.S.E., Instructor in Geodesy and Surveying 504 Lawrence Street
LEWIS K. MARSHALL, Lieut. (j.g.), U.S.N.R., Instructor in Aviation Flint, Michigan
LORNE A. MATHESON, A.M., Instructor in Physics 1319 South University Avenue
RAYMOND MatHEwS, B.S.A., Instructor in Architecture 1508 Brooklyn Avenue
LAWRENCE CARNAHAN MAUGH, M.S., Instructor in Civil Engineering 1103 Church Street
ALLAN D. MAXWELL, Ph.D., Instructor in Astronomy 1345 Geddes Avenue
FREDERIC CHARLES O'DELL, B.S.A., Instructor in Architectural Drawing 1103 Berkshire Road
FRANCIS SKILLMAN ONDERDONK, Dr. of Technical Sciences, Instructor in Architecture 1331 Geddes Avenue
GEORGE H. SCHEFFLER, M.S., Instructor in Modern Languages 727 South State Street
CHARLES W. SELHEIMER, M.S., Instructor in Chemical Engineering 1308 East Ann Street
VICTOR VAUGHAN SLOCUM, Instructor in Modelling 3310 Kimberly Road
JAMES HARRY SPIERS, Instructor in Shop Practice 402 South Observatory Street
JOHN D. STRONG, A.B., Instructor in Physics 1232 Prospect Street
THOMAS S. TANNER, B.S., Instructor in Architecture 1514 Montclair Place
WILLIAM TELFER, Instructor in Shop Practice R. F. D. 8, Washtenaw Road
ALEXANDER MASTRO VALERIO, Instructor in Drawing and Painting 611 West Forest Avenue, Ypsilanti
CHARLES D. WILLIAMS, Jr., Lieut. U.S.N.R., Instructor in Aviation Detroit, Michigan
HUGH C. WOLFE, M.S., Instructor in Physics 1014 Cornwell Place
ROScoe LaRUE WOOD, B.S.A., Instructor in Architecture Jewett Avenue
BERNARD F. YOUNG, A.M., Instructor in English
LLOYD A. YOUNG, A.B., Instructor in Physics 2009 Washtenaw Avenue

*Absent on leave.
Teaching Assistants

HAROLD JOHN CHALK, B.S.E., Teaching Assistant in Mechanical Engineering
604 East Madison Street

STANLEY E. DIMOND, B.S.E., Teaching Assistant in Civil Engineering
332 East Jefferson Street

THEODORE BUCHANAN HANNA, Teaching Assistant in Architecture
1214 Washtenaw Avenue

RICHARD H. HARRINGTON, M.S.E., Teaching Assistant in Chemical Engineering
727 South State Street

MARTIN KATZIN, B.S.E., Teaching Assistant in Electrical Engineering
1221 South University Avenue

CARL RUDOLPH LIEBERT, Teaching Assistant in Architecture
6 Cutting Apartments

CARL CORYDON MONRAD, M.S.E., Teaching Assistant in Chemical Engineering
727 South State Street

CHARLES WILLIAM NISULA, B.S.E., Teaching Assistant in Electrical Engineering
807 Lawrence Street

RICHARD FRANKLIN OUTCALT, Teaching Assistant in Architecture
608 East Madison Street

MARVIN CARSON ROGERS, B.S.E., Teaching Assistant in Chemical Engineering
727 South State Street

HERBERT ALLEN SEAMAN, Teaching Assistant in Civil Engineering
517 South Division Street

WACLAW SZYMANOWSKI, E.E., Teaching Assistant in Electrical Engineering
1232 Prospect Street

Student Assistants

JACK CHARLES ADLER, Student Assistant in Mechanical Engineering
409 Camden Court

HARVEY LEROY ANDERSON, Student Assistant in Mechanical Engineering
314 Packard Street

ARMOUR GAYLORD BARBER, Student Assistant in Civil Engineering
1004 Forest Avenue

DUDLEY BOSWORTH BARRETT, Student Assistant in Mechanism and Engineering Drawing
533 Church Street

JOHN J. BERGHUIS, JR., Student Assistant in Civil Engineering
1109 Prospect Street

EDWIN HAWLEY BRINK, Student Assistant in Chemical Engineering
727 South State Street

LAYTON EUGENE BURY, Student Assistant in Civil Engineering
911 Greenwood

BERNARD MARION CAIN, Student Assistant in Electrical Engineering
1336 Geddes Avenue

BURR DELINE COE, Student Assistant in Mechanical Engineering
429 South Division Street

JOHN SMITH CONGO, Student Assistant in Mechanical Engineering
1336 Geddes Avenue
MEMBERS OF THE FACULTY

EUGENE EASTERLY, JR., Student Assistant in Mechanical Engineering
216 North State Street

CLARENCE MILTON ELICOCK, Student Assistant in Marine Engineering
1022 Forest Avenue

GEORGE CAMPBELL ERNST, Student Assistant in Geodesy and Surveying
441 Second Street

PIERCE HALLECK FARRAR, Student Assistant in Mechanical Engineering
622 South Seventh Street

JOSEPH FELLOWS, JR., Student Assistant in Marine Engineering
332 East William Street

DONALD IRA FINCH, Student Assistant in Chemical Engineering
727 South State Street

CAROLYN MARY FISHER, Student Assistant in Engineering Mechanics
1413 Shadford Road

WILLIAM BUCKLEY FORTUNE, Student Assistant in Engineering Mechanics
1043 Baldwin Avenue

MARTIN LEE FRITTER, Student Assistant in Civil Engineering
715 Haven Avenue

HAROLD JAMES GIBSON, Student Assistant in Mechanical Engineering
711 Catherine Street

JOHN ROBERT GILMARTIN, Student Assistant in Civil Engineering
1315 Hill Street

JACK TROMBLEY GRAY, Student Assistant in Marine Engineering
733 East University Avenue

J. SAMUEL HAMEL, Student Assistant in Civil Engineering
216 North State Street

JOHN ALBERT HAPKE, Student Assistant in Civil Engineering
1003 East Huron Street

JOHN FRED HEIDBREDER, B.S.E., Student Assistant in Electrical Engineering
418 Hill Street

JOHN HESSEL, Student Assistant in Electrical Engineering
1111 Prospect Street

WILLIS FOWLER HICKES, Student Assistant in Mechanical Engineering
342 East Madison Street

EVERT CARL HOKANSON, Student Assistant in Mechanical Engineering
314 Packard Street

VANIPURAKAL KURUVILA IPE, Student Assistant in Electrical Engineering
307 North State Street

EDWARD SHERMAN JACKSON, JR., Student Assistant in Engineering Mechanics
807 South State Street

JAMES GIBSON JOBES, Student Assistant in Civil Engineering
1003 East Huron Street

RAYMOND VERNE JOHNSON, Student Assistant in Engineering Shops
533 Church Street

ROYCE LYNN JOHNSON, Student Assistant in Mechanical Engineering
1541 Washtenaw Avenue
Edmund Leroy Jones, Student Assistant in Geodesy and Surveying
Louis Daniel Kirshner, Student Assistant in Geodesy and Surveying
Witold Edmund Koniecny, B.S.E., Student Assistant in Marine Engineering
James Hull Larowe, Student Assistant in Architecture
Curtis Charles Lindfors, Student Assistant in Chemical Engineering
Stuart McLain, Student Assistant in Chemical Engineering
Peter Sinwan Mark, Student Assistant in Mechanical Engineering
George Byste Martin, Student Assistant in Mechanical Engineering
John Aulbrook Maurer, Student Assistant in Electrical Engineering
Sidney Elwood Miller, Student Assistant in Engineering Mechanics
Robert Arthur Minnear, Student Assistant in Mechanical Engineering
Gretchen Elaine Mullison, A.B., Student Assistant in Engineering Administration
Morgan Rogers Norton, Student Assistant in Chemical Engineering
Edward Eugene Pettibone, Student Assistant in Chemical Engineering
Clement Emerson Price, Student Assistant in Engineering Mechanics
Harry Augustus Reed, Student Assistant in Mechanism and Engineering Drawing
Harold Charles Reynolds, Student Assistant in Engineering Shops
Frederick Nims Rhines, Student Assistant in Chemical Engineering
Kenneth Loris Rohrbach, Student Assistant in Chemical Engineering
Harwood Faville Rundell, Student Assistant in Administration
Millard Francis Saxton, Student Assistant in Engineering Shops
John William Schultz, Student Assistant in Chemical Engineering
Gordon Edward Seavoy, Student Assistant in Chemical Engineering
Balwant Singh Sindhu, Student Assistant in Mechanism and Engineering Drawing

517 East Washington Street
733 East University Avenue
533 Church Street
604 East Madison Street
408 Hamilton Street
507 Sauer Court
328 Thompson Street
604 South State Street
1610 Granger Avenue
749 East University Avenue
531 Forest Avenue
326 East Ann Street
1309 Wilmot Street
715 Church Street
1020 South University Avenue
624 Packard Street
1923 Geddes Avenue
531 Thompson Street
1317 Washtenaw Avenue
731 Fountain Street
607 South State Street
1923 Geddes Avenue
325 East Jefferson Street

Fletcher Hall
MEMBERS OF THE FACULTY

RICHARD SHELBURNE SPINDLE, Student Assistant in Engineering Shops
1351 Washtenaw Avenue

LORIMER CARLISLE Spoor, Student Assistant in Electrical Engineering
1003 East Huron Street

WESLEY OLIVER STEWART, Student Assistant in Architecture
604 East Madison Street

MILTON FAIRFIELD STOUGHTON, Student Assistant in Engineering Mechanics
502 East Jefferson Street

ROLAND JOSEPH SWANSON, Student Assistant in Civil Engineering
1351 Washtenaw Avenue

RALPH NOBLE TOZER, Student Assistant in Engineering Mechanics
411 East William Street

LYLE CHESTER VAN MERE, Student Assistant in Geodesy and Surveying
220 South Seventh Street

Leland Keith Wenzel, Student Assistant in Civil Engineering
1109 Prospect Street

MAXWELL ROBERT WIARD, Student Assistant in Engineering Mechanics
1027 Granger Avenue

ROY RUSSEL Wilson, M.S., Student Assistant in Chemical Engineering
515 Walnut Street

LOUIS EARL WINKELHAUS, Student Assistant in Geodesy and Surveying
521 North Division Street

ROLAND JOSEPH SWANSON, Student Assistant in Civil Engineering
411 East Huron Street

STANDING COMMITTEE

COMMITTEES OF THE COLLEGE OF ENGINEERING

COMMITTEE ON CLASSIFICATION:

COMMITTEE ON DELINQUENT STUDENTS:
PROFESSORS H. W. KING, J. H. CANNON, R. S. HAWLEY

COMMITTEE ON DISCIPLINE:
PROFESSORS G. W. PATTERSON, A. H. LOVELL, A. MARIN

COMMITTEE ON EXTENSION OF TIME:
PROFESSORS C. O. WISLER, R. A. DODGE, J. M. NICKELSEN

COMMITTEE ON HOURS:
PROFESSORS O. W. BOSTON, J. H. CANNON, F. R. FINCH

COMMITTEE ON SUBSTITUTION:
PROFESSORS B. F. BAILEY, E. M. BRAGG, J. H. CISSEL
Part II

GENERAL INFORMATION

COLLEGES OF ENGINEERING AND ARCHITECTURE

HISTORY

1. The University of Michigan is a part of the educational system of the State, and derives from the State the greater part of its revenue. The University comprises the Colleges of Literature, Science, and the Arts, of Engineering, of Architecture, of Pharmacy, the School of Dentistry, the Medical School, the Law School, the School of Education, the School of Business Administration, the School of Forestry and Conservation, and the Graduate School, each of which publishes a separate annual announcement. The various Faculties include about seven hundred officers of instruction, and several hundred assistants, some of whom participate in the work of teaching. About 13,000 students, representing all the states and territories and many foreign countries, were registered at the University of Michigan during the last year.

In the legislative act of 1837, under which the University was organized in its present form, provision was made for instruction in engineering. There are few older technical schools in the United States. The first professor of civil engineering was appointed in 1853, and the first degrees were conferred in 1860. The engineering courses were included in the College of Literature, Science, and the Arts until the close of the collegiate year 1894-1895. At that time the College of Engineering was established by the Board of Regents as a separate Department of the University.

Instruction in Architecture was organized as a sub-department of the College of Engineering in 1906. In 1913 the College of Architecture was given control of its programs of study, and, in general, charged with the administration of its affairs.
The aim of the Colleges of Engineering and Architecture is to lay a foundation of sound theory, sufficiently broad and deep to enable their graduates to enter understandingly on a further investigation of the several specialties of the engineering and architectural professions; and at the same time to impart such a knowledge of the usual professional practice as shall make the students useful upon graduation in any subordinate position to which they may be called. While the adaptation of theory to practice can be thoroughly learned only by experience, there are many matters in which the routine work of an engineering field party, office, or drafting room can be carried out, on a greater or less scale, in a training school. The technical branches are under the direct charge of those who have had professional experience as well as a full scientific training. The instruction fits the students, as far as possible, for the requirements of active practice. The Department of Engineering Research was established in 1920. The general function and purpose of this department is to co-operate in every proper manner with the industries of the state.

2. Students at the University of Michigan enjoy many privileges outside their curriculum. The Student Christian Association and the Ann Arbor churches minister to the spiritual, religious, and social needs of the student body; the pastors and assistant ministers have largely been chosen because of their effective work with young people.

The University Musical Society and the University School of Music, which is maintained by the University Musical Society and is affiliated with the University, provide unusual musical advantages, including several series of concerts, either at moderate price or without charge, in which leading artists of the country and from abroad and local musicians take part. The University has in its galleries a small art collection of great merit, and the Ann Arbor Art Association gives during the year several loan exhibitions.

University lectures are given without charge throughout the year by scientists, publicists, men of letters and others; the
Oratorical Association conducts a course of lectures at moderate expense in which important lecturers appear.

THE UNIVERSITY COLLEGE

3. The Board of Regents has authorized the establishment of a new unit of the University to be designated as the University College, and a committee is now engaged in planning its organization. The University College, if established, will have charge of the instruction of students entering from preparatory schools or from other colleges with less than third-year standing.

Should the University College be established, it is expected that the work now carried on in the first two years of the Colleges of Engineering and Architecture will be transferred to the new unit. For the present the Colleges of Engineering and Architecture will admit students directly from preparatory schools as heretofore.

PROGRAMS OF STUDY

4. The College of Engineering has four-year programs of study in aeronautical, chemical, civil, electrical, and mechanical engineering, geodesy and surveying, naval architecture and marine engineering, astronomy, physics, and mathematics.

In co-operation with the School of Business Administration the College has five-year programs in chemical and industrial engineering, electrical and industrial engineering, and mechanical and industrial engineering.

Also engineering students who have completed at least three years of prescribed work with an average grade of 2.0, may transfer to the School of Business Administration, provided they have completed not less than 90 semester-hours including 18 hours of economics (not less than 6 hours in economic principles and 6 hours in accounting). On the satisfactory completion of two years of work in that School they may be granted the degree of Master of Business Administration.

The Civil Engineering Department offers a cooperative program in highway engineering in which the summer is spent with the highway department of the state or of an important county;
the Electrical Engineering Department offers a five-year cooperative program with industry.

The College of Architecture offers four-year programs in architecture, architectural design, architectural engineering, and decorative design, and a two-year program for special students in architecture.

The programs in engineering are described in Part V, those in architecture in Part VI of this Announcement.

COMBINED PROGRAMS WITH OTHER INSTITUTIONS

5. The College of Engineering has an agreement with Albion, Olivet, and Battle Creek Colleges, and the College of the City of Detroit, under which a student who has been in residence at one of these colleges for three years and has completed with a good record a prearranged program including substantially the work of the first two years of the College of Engineering may be admitted to the College of Engineering, and after two additional years be graduated in engineering.

A college under this agreement accepts the first year at the College of Engineering in lieu of its senior year, and if the student's record is satisfactory graduates him.

THE ACADEMIC YEAR AND SUMMER SESSION

6. The academic year extends from September 30, 1929, to June 23, 1930. The Summer Session, between the student's first and second, second and third, or third and fourth years, extends eight weeks, from Monday following Commencement (June 24 to August 16, 1929).

Every student in the College of Engineering, in order to finish his program in four years, is expected to attend one Summer Session.

Students enrolled in the College of Architecture must spend four months in an architect's office before graduation, receiving four hours credit for this practical experience.
7. New students expecting to take the examinations for admission to the University the first semester must present themselves September 23-27, 1929, for the second semester, February 13-15, 1930.

All freshmen are required to report on Monday, September 23, for registration and the activities of Freshman Week. Every first-year student will be assigned to a faculty adviser who will personally assist him in registration, the selection of courses of study, and the solution of his personal problems through friendly counsel and advice. In addition, a full program of orientation and recreation will enable him to become thoroughly acquainted with his new surroundings before instruction begins. No freshman will be excused from attendance during Freshman Week except on account of illness. A complete program will be furnished to all freshmen accepted for admission.

Students on arriving in Ann Arbor can obtain information in regard to rooms and board by calling at the office of the Dean of Students, Room 2, University Hall. His secretaries are actively interested in assisting newcomers to find rooms and boarding places, and conduct a free employment bureau for the benefit of students.

When admitted, every student will be furnished with a booklet containing directions for subsequent procedure.

8. The requirements for admission are the same for all students in Engineering and Architecture.

Applicants must be at least sixteen years of age, and must present satisfactory evidence of good moral character. For freshman, the record of work done in the preparatory school must be presented on a form to be obtained from the Registrar of the University; for students transferring from other colleges, the transcript of record usually includes a satisfactory statement.

Students may be admitted on certificate, by examination, on credits from another college, or by a combination of these. They may also be admitted as special students.
9. All students whose native language is other than English shall, upon matriculation and registration in the College of Engineering, be required to report at once to Professor J. R. Nelson, Chairman of the Committee on English for Foreign Students. Such students shall satisfy the Committee that they possess a sufficient knowledge of English to carry on work in the College of Engineering, before they may be classified.

On the recommendation of the Committee they may be referred to the proper classifier who will give them such a program of work as he deems best. For his first semester, however, every foreign student shall be considered as on trial. If at the end of the semester he passes his work, credit shall be given; if, however, in spite of conscientious effort, he fails, and his difficulties are, in the judgment of his instructors and of the Committee on English, due primarily to his lack of facility in the use of the English language, his record shall be disregarded but he shall then be remanded to the Department of English for such work in English as he needs, to the limit of eight hours.

If a student is judged by the Committee on English to be unfitted even for such a trial program as that outlined above, he shall be required to take for one semester such work in English as the Committee thinks necessary, and may be allowed to visit such classes as may in the judgment of the Committee be profitable to him.

No advanced credit is to be granted foreign students until they have been in residence at the University at least one semester.

REQUIREMENTS FOR ADMISSION

10. Requirements for admission are stated in units, a unit being defined as a course covering an academic year and including in the aggregate not less than the equivalent of one hundred and twenty sixty-minute hours of classroom work. Two to three hours of laboratory, drawing, or shop work are counted as equivalent to one of recitation.
REQUIREMENTS FOR ADMISSION

Applicants for admission as freshmen without deficiencies must present fifteen high school units, including the following:

GROUP I—10 UNITS

For admission to the Colleges of Engineering and Architecture, all of the following must be presented:

English .. 3 units
Grammar, Composition, Classics, History of English Literature.
Mathematics .. 3 units
Algebra, through quadratics; Geometry (Plane, Solid, and Spherical).
Physics .. 1 unit
History .. 1 unit
Greek, Latin, German, French, or Spanish—one of these. 2 units

GROUP II—1½ OR 2 UNITS

One and a half units or two units in any one of the following combinations must also be presented. The first combination is urgently advised.

Trigonometry½ or
Chemistry1 Manual Training1
or
Chemistry1 or
Foreign Language1 Chemistry1
or
Foreign Language (additional units) ...2 or
Foreign Language1 Foreign Language1
or
Foreign Language1 Trigonometry½
Manual Training1

GROUP III—3½ OR 3 UNITS

The remaining 3 or 3½ units may be presented in any subjects for which credit toward graduation is given by the accredited school and which are taught in a manner approved by the University.

NOTES ON THESE REQUIREMENTS

English.—Four units of English should always be presented whenever it is possible to do so.

Language Requirement.—Some modifications of the language requirement may be allowed in the case of students whose native tongue is other than English. These cases will be considered individually.
Chemistry and Trigonometry.—It is urgently advised that 1 unit of Chemistry and \(\frac{1}{2} \) unit of Trigonometry be included in the fifteen units offered for admission. The student who presents the full requirements without Chemistry and Trigonometry must take Chemistry 3 and Mathematics 1a in his first college year, which may necessitate more than the usual time to complete the graduation requirements. Chemistry and Trigonometry are offered in the Summer Session to accommodate those students who wish instruction in them before entering college.

Biology.—Biology is defined as one-half year of Botany and one-half year of Zoology; hence Biology cannot be accepted from an applicant who offers at the same time a unit in either, or both, of these subjects.

College of Architecture.—In order to enter the College of Architecture under the most favorable conditions, the fifteen units offered for admission should include the following: English, 3 units; Mathematics (including Plane Trigonometry), \(\frac{3}{2} \); Physics, 1; Chemistry, 1; History, 1 or more; Modern Languages, 2 or more; Freehand Drawing, 1 or more; Manual Training, \(\frac{1}{2} \) or 1.

VOCATIONAL UNITS

II. No more than three of the fifteen units required for admission will be accepted in vocational subjects and no more than two units in any one of them.

In Drawing and Manual Training, a unit means the equivalent of at least 360 periods, not less than forty-five minutes each.

All applicants must send prospectuses of the courses of study or letters from instructors describing the work done when credit is asked in the vocational subjects.—Manual Training, Drawing, Agriculture, and Commercial Branches. In general, the standards set up by the Commission on Accredited Schools and Colleges of the North Central Association of Colleges and Secondary Schools will be recognized in adjusting high school credits in vocational studies.

The Manual Training accepted in the Alternative Group must be of such a character as to be equivalent to either or both Shop 1 and 2 (Wood Working and Metal Working and Treating) in the University.

Drawing. Freehand Drawing.—One-half unit allowed. The student should show that he can represent correctly in outline and in light and shade, geometric and simple natural or decorative form. Accuracy of proportion and perspective is essential. Pencil, charcoal, or brush may be used.
Mechanical Drawing.—One-half unit allowed. This work should cover:

(a) Exercises giving evidence of skill in the use of instruments and knowledge of materials used. The exercises should consist mainly of the accurate geometrical construction of the more important plane curves, with simple problems involving tangents and normals to the same.

(b) Graded exercises in the orthographic projections of simple geometrical forms and working drawings of some of the more elementary constructions in wood and metal, all fully dimensioned, and in which the conventional signs are properly used.

(c) Exercises in line shading, shade lining, and cross hatching, together with a reasonable skill in lettering.

Design.—One-half unit allowed. In this work a student should demonstrate some knowledge of the principles of design and the ability to apply them. The exercises should consist of compositions of straight and free curved lines and simple shapes and their use in the design of simple objects, such as book covers, etc. The exercises may be in black and white, various values, or in colors, and may consist in part of objects executed in wood or metal, and the like.

Students who intend to study architecture are advised to offer one unit in drawing. This may consist of work in free-hand drawing, mechanical drawing, design, or a combination of two of these.

Manual Training.—Students may present one or two units. The work accepted may be:

- Bench work, wood turning, cabinet making, and pattern making in the wood working laboratory.
- Manufacturing of wrought iron and steel, effects on structure due to working, heat treating and equipment, case hardening, welding and brazing, protective coatings, etc.

Commercial Branches.—Not more than a total of two units will be accepted in these subjects, to be selected from the following list:

Advanced Arithmetic.—One-half unit. Credit will be allowed for arithmetic only if taken after at least one semester of algebra.

Double Entry Bookkeeping.—One-half or one unit. If credit to the extent of a full unit is sought, the student should devote at least ten periods of not less than forty-five minutes each in class each week for one academic year. The applicant should have a
working knowledge of single and double entry bookkeeping in the usual lines of business. He should understand the use of the various books, such as the journal, cash book, sales book, invoice book, ledger, and special column journals and cash books. He should know how to prepare profit and loss statements and balance sheets, and to explain the meaning of the terms involved in both kinds of statements.

Commercial Geography.—One-half unit. The amount and character of work accepted in this subject is indicated by the scope of the best text-books on the subject.

Industrial History.—One-half or one unit. The scope of this work is indicated by such texts as Cheyney or Cunningham in English industrial history, or Wright, Coman, or Bogart in American history.

Elementary Economics.—One-half unit. The applicant should have a knowledge of the leading facts and principles in Economics, including such subjects as division of labor, the factors of production, the law of diminishing returns, demand and supply, value and prices and international trade. One of the better elementary texts in use will serve as a basis. This should be supplemented with discussions and problems.

Agriculture.—One or two units. Recitations and laboratory work in the various divisions of agriculture, including farm crops and horticulture, animal and dairy husbandry, soil physics, soil fertility, and farm mechanics. The study should be preceded by a course in Botany.

ADMISSION ON CERTIFICATE

12. Only those applicants are admitted on certificate who are officially recommended graduates of high schools accredited to this University and have completed a full four-year curriculum in a standard high school, covering at least fifteen units of acceptable entrance credit.

The list of approved high schools of the University of Michigan does not necessarily include those accredited to or affiliated with other universities or colleges. It is expected that the principal will recommend not all graduates, but only those whose character, ability, application, and scholarship are so clearly superior that the school is willing to stand sponsor for their
success at the University. The grade required for recommenda-
tion should be distinctly higher than that for graduation.

It is recommended that graduates from preparatory schools
enter at once. If they do not, they must present evidence that
they are, at the time of admission, prepared to do the work of
the Colleges. They must show satisfactory preparation especially
in mathematics, in English, and in the modern language presented
for admission. This preparation may be shown by certificates of
work done since graduation, by examinations at Ann Arbor, Sep-
tember 23 to 27, 1929, or by attendance at the Summer Session,
June 24 to August 16, 1929, with a satisfactory record of eight
hours of work, a part of which must be mathematics.

College credit may be given for studies presented in excess
of the fifteen units required for admission, if these subjects are
deemed equivalent to similar courses in the University. Such
credit will be adjusted after admission. As a general rule no
advanced credit will be given for work done in the usual high
school course.

Students who for any reason have failed to secure a certificate
of graduation from an approved school and their principal's
recommendation will be required to pass the regular examinations
for entrance in all subjects.

Applicants for admission should secure an application blank
either from the high school principal or from the Registrar of
the University. The completed blank should be sent directly to
the Registrar by the principal as soon as possible following the
applicant's graduation from the high school. If, on inspection,
the data and recommendation are found satisfactory, the Regis-
trar will forward a permit to register to the applicant entitling
him to admission without examination, contingent only upon the
passing of a satisfactory medical examination. This permit is to
be presented in person at the time of registration.

Certificates from schools other than those officially approved
by the University do not excuse an applicant from the admission
examinations.
ADMISSION BY EXAMINATION

13. Fifteen units are required for admission. Eleven and one-half or twelve units are prescribed. The other three and one-half or three units may be presented in the subjects mentioned under admission requirements in section 10. In general, applicants will not be admitted with deficiencies in more than one and one-half of the prescribed units.

An outline of the preparatory work which a student should cover before presenting himself for examination in any one of these subjects is given at length in the Bulletin of General Information. This will be mailed upon application to the Registrar of the University. Specimen entrance examination questions are not furnished.

The principal examinations for admission to the University College will be held in June and September, 1929, at the University. Another opportunity is offered in February, 1930. Applicants will not be examined at any but the regular time except on payment of a special fee of five dollars for examination in one or more subjects.

Candidates for admission who have passed College Board or Canadian Matriculation Examinations with satisfactory grades will be excused from further examinations in the subjects covered.

Applicants for admission on examination should make arrangements with the Registrar at least one month in advance of the time set for the examination.

An applicant who fails in some part of the examination, but passes fifteen units, may be admitted provisionally; but all deficiencies must be made up within one year.

ADMISSION TO ADVANCED STANDING

14. A student in another college or university, who intends to enter the College of Engineering or of Architecture with advanced standing, should examine carefully the curriculum of the department in which he intends to specialize, and arrange his work accordingly.
ADMISSION TO ADVANCED STANDING

As a rule he should have completed the required work in English, foreign language, mathematics, physics, chemistry, and cultural subjects and in drawing and engineering mechanics if his institution offers adequate instruction in them.

He is advised to write to the Head of the Department in which he wishes to specialize for advice and for information not found in this bulletin. The Associate Dean of the College of Engineering or the Professor of Architecture will be glad to give information concerning admission requirements or other matters of a general nature.

Students who receive on admission less than 25 hours of advanced credit, are tentatively considered as freshmen; those presumably to be graduated within one year are considered as seniors; other entering students will be considered as sophomores until they have been in residence one semester and have satisfied the requirement for recognition as upperclassmen, for which see section 32.

(a) Graduates of the University and of other approved colleges are admitted without examination to advanced standing as candidates for a degree in Engineering or Architecture.

They should present to the Associate Dean or, for Architecture, to Professor Lorch an official certificate of their graduation—not their diploma—and an official copy of the record of the studies they have completed, showing the subjects studied, the number of weeks devoted to each, and the number of class periods a week.

The remaining requirements for students of Engineering can usually be completed in two years, if the student takes as electives, while an undergraduate,* the mathematics required of Engineering students and Courses 1, 2, and 3 in Drawing.

Those students who hope to complete the program in Architecture in two years should also complete the equivalent of Drawing 21, 22, and 23, and Architecture 1, 4, 5, 6, and 21.

*A student enrolled in the College of Literature, Science, and the Arts, who desires to elect, in the College of Engineering or Architecture, any course which is not printed in the Announcement of the former College, must obtain the written permission of his classifier and of the instructor in charge of the course. A similar procedure is necessary in case a student of these Colleges wishes to elect work in other Colleges.
Students who have completed a regular four-year course at approved colleges and other institutions may be admitted to the Colleges of Engineering and Architecture as seniors provided that, in general, the course pursued covers substantially the equivalent of the work offered in the first three years of the required courses in their chosen departments of study at the University of Michigan.

The courses to be taken during their residence at the University will depend upon their previous training and will be determined by the Head of the Department concerned, subject to the approval of the Committee on Combined Courses.

Upon the satisfactory completion of such courses, covering at least one year's residence, they will be recommended for the degree of Bachelor of Science in Engineering.

(b) A student who has completed at least one year of work in an approved college may be admitted to advanced standing without examination, except such as may be necessary to determine what credits he is entitled to receive.

An applicant must present a letter of honorable dismissal from college, an official copy of his college record, and an official record of his preparatory studies, similar to those required of students admitted on certificate. See section 12.

(c) A student who has not completed a year's college work in an approved college, but before entering the University has pursued studies beyond those required for admission, may be admitted to advanced standing. Entrance requirements in such cases may be satisfied by complying with the conditions stated in either section 12 or 13.

ADMISSION IN COMBINED PROGRAMS

15. Students who have completed the first three years of the combined programs arranged by the College of Engineering with Albion, Olivet, and Battle Creek Colleges and the College of the City of Detroit, are admitted as juniors. For the admission of other students from these colleges see the regulations in section 14.
ADJUSTMENT OF ADVANCED CREDITS

16. All advanced credits are adjusted by the Associate Dean or the Professor of Architecture; and until a transcript of record at another institution or other like information is furnished, no one is authorized to say what credit may be received for work done elsewhere or what class a student may enter after having attended another college for a specified time.

The requirements for admission must be complied with before any advanced credit is given.

Advanced credit is given only upon examination or upon an official certificate covering the work done, and showing the scholarship or proficiency attained.

Advanced credit is given only for work equivalent to courses offered in the University of Michigan.

Applicants for admission in engineering should apply at the time of entrance at Room 255, West Engineering Building; and in architecture at the office of the College of Architecture, Room 207, Architecture Building. It is desirable that credentials should be sent on in advance as much before these dates as practicable. Students desiring advanced standing in drawing must bring all drawings completed previous to entrance.

Advanced credits should be secured upon entrance. To apply for advanced credit at a later date, students of Engineering must secure the permission of the Associate Dean, and students of Architecture the permission of the Professor of Architecture, giving a satisfactory reason for the delay in making the application.

ADMISSION AS GRADUATE STUDENTS

17. Higher degrees in Engineering and in Architecture are conferred in the Graduate School of the University. See the Annual Announcement of the Graduate School.
ADMISSION AS SPECIAL STUDENTS

18. Students who are pursuing work in these Colleges, and are not candidates for a degree, are designated Special Students.

Students over twenty-one years of age who wish to pursue particular studies in Engineering or Architecture, and who show by examination or by the presentation of satisfactory certificates that they are prepared to do good work in the selected courses, may be admitted as special students on the recommendation of the heads of the departments of instruction in which they wish to study. The object of this rule is to enable young men who are beyond the high-school age to secure technical training along special lines when they are properly prepared for the work. Two or more years of successful experience as teacher, draftsman, surveyor, engineer, or operative in engineering work will be given considerable weight in determining the fitness of the candidate. In general, a good working knowledge of English, algebra, and geometry is required in order to succeed in engineering studies.

Applicants for admission as special students should send as early as possible to the head of the department concerned letters of recommendation, certificates of scholarship, and an exact statement of the courses desired.

A two-year course is provided for special students in Architecture. Such students must be qualified for the courses they wish to pursue and must have the approval of the head of the College of Architecture; they must be twenty-one years of age; must have had two or more years of experience in architects' offices, or its equivalent, and must have a practical knowledge of architectural drawing. Special students who wish to pursue courses in advanced building construction must present the regular entrance requirements in mathematics.

Students who desire to pursue a special course in Architecture should write to Professor E. Lorch as early as possible in order to learn how best to prepare for the work they may wish to do here. They should spend some time in study parallel with their office work before taking up university work, thus to review or master essential preparatory subjects and again to acquire the
FEES AND EXPENSES

habit of study, the loss of which in certain subjects is often a serious handicap to capable draftsmen otherwise well prepared to profit by some of the academic work. In general, a working knowledge of English, algebra, and plane and solid geometry is required. Advanced credit can often be given such students for work done in the field and in offices.

College graduates are also admitted as special students and may take those courses for which their preparation is sufficient.

Candidates for admission as special students in either College should state their age and what their education and experience have been. They should send letters of recommendation from former employers and bring drawings to demonstrate their experience and ability.

Special students pay the same fees as regular students. Their work is assigned and regulated by the heads of the departments of instruction in which they register.

A special student may become a candidate for a degree by fulfilling the regular requirements for admission. See section 10.

A student who is a candidate for a degree cannot become a special student without the permission of the Faculty.

FEES AND EXPENSES

19. The Matriculation Fee and the Annual Fee must be paid in advance for the entire year, and no student can enter upon his work until after such payment.

Matriculation Fee.—Every student before entering any college or school of the University is required to pay a matriculation fee. This fee, which for citizens of Michigan is ten dollars, and for those who come from any other state or country, twenty-five dollars, is paid but once, and entitles the student to the privileges of permanent membership in the University.

Annual Fee.—In addition to the matriculation fee every student has to pay an annual fee for incidental expenses. The annual fee in the Colleges of Engineering and Architecture is,
for Michigan students, $108; for all others, $133. The fee for
the second semester is sixty per cent of that for the entire year.

These fees cover class instruction, use of libraries, outdoor
physical education and admission to all athletic events on Ferry
Field, membership in the Michigan Union or Women's League,
as well as medical attention from the University Health Service
and dispensary.

Part-Time Fees.—(a) Persons whose occupations are such
as to afford them only a limited part of their time for study, but
who are duly accredited for admission to any College or School
of the University and who also give evidence of an interest in
study wholly accordant with the purpose of the College or School
to which they are accredited, may be admitted and may elect not
more than five hours in any semester upon the payment of an
annual fee of $25. Such students, if entering the University for
the first time, must also pay the usual matriculation fee. The
part-time fee of $25 covers only the usual privileges of study
and tuition; Michigan Union or Women's League membership,
Outdoor Physical Education, and Health Service are not included.
These special privileges may be secured by paying the appropriate
extra fees at the time of registration.

(b) Under certain conditions, in order to provide for the
election of a considerable number of three-hour and four-hour
courses, permission may be granted on application to the Dean
of the Graduate School and the Secretary of the University to
arrange a part-time schedule on the basis of ten hours per year
instead of strictly five hours per semester.

Late Registration.—Registration (i.e. enrollment, payment
of fees, and classification) must be entirely completed before the
first day of the semester. Students failing to complete their
registration before the first day of each semester are required
to pay a late registration fee of five dollars.

Fee for Special Examination.—An applicant for admission
who desires to take the entrance examination at a time not
announced is required to pay to the Treasurer a fee of five dol-
FEES AND EXPENSES

lars before permission to take one or more examinations can be granted him. A supplementary examination given at any other time than that stated in this Announcement will be subject to the same fee.

Graduation Fee.—The fee for graduation is ten dollars, and the by-laws of the Board of Regents prescribe that no person shall be recommended for a degree until he has paid all dues, including the graduation fee. This fee will be received by the Treasurer of the University upon the presentation of a ticket to be secured at the office of the Secretary of the College in which the candidate is enrolled. To receive a degree at Commencement the candidate must be present in person and must have paid the graduation fee at least twenty-five days prior to Commencement Day. Others who have satisfied all the requirements for graduation, including the payment of the graduation fee, will receive their degrees at a subsequent meeting of the Board of Regents.

Laboratory Fees.—Laboratory fees are abolished, but students in laboratory courses must make a cash deposit to pay for materials used and for breakage. Camp Fee.—A fee of ten dollars, in addition to the regular tuition for the Summer Session, is required of students who take Course 3 in Surveying (at Camp Davis).

Other Expenses.—There are no dormitories for men and no commons connected with the University. Students obtain board and lodging in private families. Room rent varies from four to six dollars a week for each student. Board varies from six to eight dollars a week.

Annual Expenses.—The expenses of the average student, during his first year in the College, not including clothing, railroad fare, and vacations, are estimated at $818 for residents of Michigan, $858 for non-residents. By practice of strict economy it may be possible to keep these expenses within $3,000 for the four years. Many students are enabled to complete their course by withdrawing for a year or two to earn money to carry them through the remaining years.
A set of drawing instruments costs from $18 to $32, and, if well selected, will be serviceable for many years.

The cost of attending the Camp Davis Summer Session is about $125. See section 78.

REFUNDING OF FEES

20. The Board of Regents has made the following provisions for students withdrawing from the Colleges and for those entering the second semester.

(a) Any student who withdraws not more than two weeks after his registration shall be entitled to a refund of his entire annual fee, together with the matriculation fee.

(b) A student who withdraws thus more than two weeks and less than eight weeks after his registration is entitled to a refund of one-half his annual fee.

(c) A student who withdraws thus more than eight weeks after the beginning and not later than the end of the first semester is entitled to a refund of 40% of his annual fee.

(d) A student who registers at the beginning of the second semester is required to pay 60% of the prescribed annual fee. The 40% thus refunded at enrollment shall be included in determining any further refund under (a) and (b).

(e) No refund or reduction of the matriculation fee is made except in case of those withdrawing within the first two weeks after registration.

In order to obtain a refund of fees, a student must surrender his treasurer’s receipt, his athletic book, his Michigan Union ticket, etc.

SELF-SUPPORTING STUDENTS AND STUDENT EMPLOYMENT

21. The normal number of hours that students should carry each semester is between sixteen and eighteen. Students who support themselves wholly or in part are urged to elect a smaller
number of hours. It is very difficult for a student supporting himself to carry a full schedule and retain his health. It is even more difficult under such conditions to carry a full schedule and do justice to his college work.

The University does not undertake to furnish manual labor to students; yet a considerable number find opportunities in the city to meet a portion of their expenses. The Faculty suggests to such students that they should not attempt to carry the full amount of work outlined. Much more efficient work can be accomplished by taking a longer time to cover the course. Each student doing outside work should notify the Classification Committee of such fact at the time of classification.

Students desiring employment should apply in person or by letter before they come to Ann Arbor, to the Dean of Students, Room 2, University Hall.

FELLOWSHIPS AND SCHOLARSHIPS

22. There are several fellowships and scholarships in the Colleges of Engineering and Architecture. For details see sections 44-45 and 114, or the bulletin on Scholarships, Prizes, and Loan Funds.

There are also annually appointed about thirty-five assistants at salaries ranging from $100 to $250. For the most part, these assistants are graduate students and seniors who have shown themselves proficient in certain lines.

RELATION OF STUDENTS TO THE CIVIL AUTHORITIES

23. Students are temporarily residents of the city, and, like all other residents, are amenable to the laws. If guilty of disorder or crime, they are liable to arrest, fine, and imprisonment. A rule of the University Senate provides that, if a student is arrested, or is convicted by the civil authorities, he shall be cited to appear before the Discipline Committee of the University or Faculty of the college in which he is matriculated, and shall be liable to suspension or expulsion.
24. The University of Michigan Union was organized and incorporated under the laws of the State of Michigan in 1904, to establish a University social and recreational center; to provide a meeting place for faculty, alumni, former students and resident students of the University; to furnish a home for alumni when in Ann Arbor, and a place for wholesome relaxation for students, so that their leisure time, their amusements, and their student interests, through the medium of the University atmosphere of the Union, might become a component part of their education. The Union, furthermore, seeks to inculcate educational ideals through its student activities, for as a social center it encourages and stimulates activities that are for the welfare and enjoyment of the student body, and the result is a richer, more intense University life, a product of the students' own work. This develops group spirit, a sense of loyalty to the community served, pride in work accomplished, a widened circle of friends, and broadened experience and view in life. The Union, in emphasizing the social values of education, complements the work of the University in its endeavor to graduate broadly educated men and citizens.

The Union Building is exceptionally well appointed. Among its many attractions are a swimming pool, six bowling alleys, a barber shop, a billiard room with twenty-four tables, a lounging room, restaurant service including a cafeteria, a women's dining-room, a main dining-room, and an assembly hall adapted to use for banquets, meetings, conventions, smokers, concerts and dances, and forty-nine sleeping rooms for the alumni and guests of members accommodating sixty-eight persons. The building is the headquarters and gathering place for students, alumni, former students and faculty.

The student annual membership fee is $10, fixed by the Board of Directors and by resolution of the Board of Regents. This fee is incorporated in the annual tuition of every male student of the University.
The University of Michigan is fundamentally interested in the general health and physical welfare of its students. For this purpose, the University Health Service provides adequate means for administering free advice, care and treatment to sick students.

Dispensary.—A corps of physicians and nurses is available in the dispensary daily to provide medical attention and ordinary medicines to ambulatory patients. Any student may consult any physician of the staff at choice. Prescriptions are filled in the Health Service Pharmacy. The staff of the Health Service includes several physicians who are also on the University Hospital staff, so that abundant opportunity is afforded for co-operation and consultation with specialists.

Two dentists on the staff co-operate with the Dental Clinic where care and treatment are given.

Infirmary.—The Health Service provides physicians, nurses, and equipment for the free-bed care of twenty-five patients; other cases are referred to the University Hospital when necessary. No charge is made for hospital service when first approved by the Health Service Director.

Room Calls.—Health Service physicians are on scheduled duty to make calls upon ill students at their rooms. For this service a minimum fee is charged.

Vacations.—The Health Service provides service during the Christmas and Spring vacations.

Summer Session.—All Summer School students who have paid the Health Service fee, have the usual privileges at the Health Service.

Summer Camp (Camp Davis).—A Health Service physician and a nurse are maintained at Camp Davis during the Summer Session.
ENGINEERING AND ARCHITECTURE

FACILITIES FOR PHYSICAL EDUCATION

26. The University is provided with excellent gymnasiums, the Waterman Gymnasium for men, and the Barbour Gymnasium for women. The main floor of the Waterman Gymnasium, which is a rectangle with truncated corners and dimensions of 246 by 90 feet, is well equipped with the various kinds of apparatus usually found in the best modern gymnasiums. A number of smaller rooms are devoted to administration, fencing, boxing, and other special purposes, while the basement is given up to baths, lockers, handball, and boxing. The main hall is lighted in the daytime by means of a large skylight 60 feet above the floor, and in the evening by electricity. A gallery makes room for an elliptical running track, ten laps to the mile, making it one of the largest gallery running tracks in the country.

All men entering the University for the first time are given a thorough medical and physical examination before University fees are paid. At this time also a measurement of various parts of the body is taken and plotted on an Anthropometric Chart. A comparison with the average measurements can be made in this way, and any existing abnormalities corrected. A second measurement is taken after class work is finished, in order to note what changes have taken place. Abnormal posture conditions are corrected, and special exercises for strengthening weak parts are given. Realizing the fact that most college men have inferior chest development, the character of the class work is arranged to overcome this condition. Both athletic and gymnastic work is given, however, in order to produce variety and enthusiasm for exercise. Men qualifying for freshman football, cross-country, hockey, track, basketball, and wrestling teams are given gymnasium credit, while these sports are in progress, after which they are transferred to the regular gymnasium classes. Arrangements for the exchange of this work must be made with the Director of the Gymnasium, otherwise no credit will be given.

Barbour Gymnasium for women, contains, in addition to the gymnasium proper, offices of the Advisers of Women and the Director of the Gymnasium; a club room and parlors; and a hall (Sarah Caswell Angell Hall) accommodating 550 people, for lec-
Facilities for Physical Education

The gymnasium is a large room with floor space of 90 x 80 feet, well lighted, well ventilated, and equipped with the necessary apparatus for individual and class work. The gallery has a running track 310 feet long. The basement contains dressing rooms, shower baths, and a swimming tank which, with instruction in swimming, is open to all women registered in the University. The new field house for women on Palmer Field provides bowling alleys, indoor golf school, indoor archery range, rifle range, lockers, and showers.

The facilities of the Gymnasiums, including physical examination and instruction, are free for all students, the only charge being a rental of $2 a year for a locker. Attendance twice a week is required of all first-year students in the Colleges of Engineering and Architecture, Literature, Science, and the Arts, and Pharmacy. Classes begin the third Monday in October.

The Athletic Field, known as Ferry Field, comprising seventy-eight acres of land, has been set apart and equipped for outdoor sports of every kind. Several football fields and baseball diamonds, running tracks, soccer fields, indoor baseball diamonds, tennis courts and space for numerous other games afford possibilities for complete programs of intramural and intercollegiate athletics. In addition to the playing field there are a new football stadium seating 82,000, a baseball stand accommodating 8,000, an Athletic Administration Building, an indoor playground known as Yost Field House, and the Intramural Sports Building.

The Yost Field House provides accommodations for all kinds of athletics during the winter months when they cannot be conducted out of doors. The building is 342 feet long by 165 feet wide. It contains ample locker and shower facilities and seats 8,000 spectators in the main activities room. The activities room, itself, is 286 feet long by 160 feet wide and contains an eighth-of-a-mile track, a 75-yard straight-away, a basketball court and provisions for indoor practice in football and baseball. There are also provisions for handball and wrestling. All of which gives to Michigan a complete athletic plant that functions the year around.
The new Intramural Sports Building, similar in design and construction to Yost Field House, contains almost every conceivable facility for indoor sport and recreation. It is not planned to provide facilities for spectators, but to utilize every foot of space for athletic activity. The new building forms the north side of a quadrangle which includes the Administration Building, concrete stand for track and field athletics, west tennis court unit, and Yost Field House.

THE ASSEMBLY AND MENTOR SYSTEM

27. Each engineering class has its separate assembly. The freshman class (now in the University College) is brought together once a week and the sophomore, junior, and senior classes once a month. At these meetings faculty members and visiting engineers address the students and the regular business of each class is assured of attention by the class as a whole.

Closely connected with these assemblies is the mentor system. As soon as a student enters the College of Engineering he is assigned to a mentor who is to be his faculty adviser throughout his college course, and definite arrangements are made for him to meet his mentor directly after the first assembly. Both socially and in his advisory capacity, moreover, the mentor is the personal representative of the Dean, so that each student may feel free to call on his mentor at any time with reference to any subject relating to his college life.

The students receive reports on each of their studies through their mentors or faculty advisers. These reports reach the mentor six weeks after the beginning of the semester, and four weeks before the final examinations, and he is therefore able to give the men in his group not merely general advice but definite information as to how they are getting along in their college work.

THE HONOR SYSTEM

28. The students of the College of Engineering have adopted the following system: All examinations and written quizzes in the College are held under the Honor System, the object of which
ELECTION OF STUDIES

is to create a standard of honor which is essential to a successful engineer and a good citizen. Students are expected to uphold the system or declare their objections to it, after having been duly instructed in all its rules. The instructor does not remain in the room during an examination. The students are placed upon their honor to refrain from all forms of cheating and to reprimand a fellow student who acts suspiciously, and in case he does not take heed, to report him to the Honor Committee. Every student must write and sign the following at the end of his examination paper, if he does not ask for an examination under a proctor:

"I have neither received nor given aid during this examination."

The Honor Committee consists of one student elected annually from each class in the College of Engineering, and one from the College of Architecture, each member to serve two years.

WOMEN STUDENTS

29. All undergraduate women of the University must make arrangements for their rooms through the office of the Advisers of Women from the lists of approved houses. This ruling applies to the undergraduate women enrolled in the Colleges of Engineering and Architecture. Individual adjustments can sometimes be made by securing special permission from the office of the Advisers of Women.

Matters of scholarship and attendance are handled by Associate Dean Patterson for Engineering and Professor Lorch for Architecture. Assistant Secretary Green acts as educational mentor for the women in Engineering and Architecture.

RULES GOVERNING ELECTION OF STUDIES

30. (a) No student will be allowed to elect merely a part of a course without special permission of the Classification Committee.

(b) No credit will be allowed to a student for work in any course unless the election of the work is formally entered on his office classification card.
(c) After the first Saturday of each semester no study can be taken up or dropped without special permission of the Committee on Classification.

(d) All requests to the Faculty must be made out on a printed form furnished by the Secretary of the College.

(e) A student is required to drop a part of his work at any time if he appears to be undertaking too much; or to take additional work if he is thought not to be sufficiently employed.

(f) Only such students as are regularly enrolled in a class will be allowed to take quizzes, tests, or final examinations in the same.

(g) The Faculty reserves the right to withdraw the offer of any elective study not chosen by at least six persons.

(h) After matriculation, a student cannot, without special permission of the Faculty, be admitted to examination in any one of the courses given until he has received in the University the regular instruction in such course.

EXCUSES FOR ABSENCES

31. Underclassmen in the College of Engineering must take the initiative in securing from the Associate Dean excuses for absences from classes, which excuses must be applied for within five days after their return to classes. Upperclassmen* should explain irregularities of attendance to their instructors. Students in the College of Architecture should obtain excuses from Professor Lorch.

UPPERCLASSMEN

32. The Faculty recognizes as upperclassmen: a, those students in good standing, i.e., not on probation, who have obtained at least 65 hours of credit, with an average grade of at least C for all work taken at the University of Michigan; b, all new students who have completed a four-year course at approved colleges and other like institutions; and c, other new students with good previous record who in the opinion of the department heads may qualify for graduation within one year.

An upperclassman's privilege will be withdrawn should his average grade for all work at the University fall below C or

*For the definition of upperclassmen see section 32.
should he be put on probation, and will be restored when his delinquency is removed.

Upperclassmen are not required to obtain excuses for irregularities of attendance from the Associate Dean, but should explain them to their instructors.

EXAMINATIONS AND ENTRANCE DEFICIENCIES

33. Examinations for admission are held before the beginning of each semester. See section 13.

An applicant who fails, or is deficient, in some part of the admission requirements may, at the discretion of the Faculty, be admitted, provided he passes in fifteen units; but the removal of entrance deficiencies shall take precedence of all other work; any deficiency must be removed at one of the next two regular examinations for admission, but the Classification Committee is empowered and instructed to see that students entering this college with deficiency remove the same as far as possible during the first semester of residence.

No student who has an admission deficiency outstanding at the beginning of his second year of residence will be allowed to enter his classes until such deficiency is removed, unless for valid reason an extension of time is granted for its removal.

Examinations in college work are held at the end of each semester, but classes are liable to be examined at any time, without notice, or with one week's notice, on any portion of their work. The regular examination in any course at the end of each semester is an essential part of the work of the course.

MARKING SYSTEM

34. At the end of each semester the quality of the work of every student in each course which he elects and completes is reported by the instructor as A (excellent), B (good), C (satisfactory), D (passed), or E (not passed).

When a student is prevented by illness or by any other cause beyond his control from taking an examination or from complet-
ing any other part of a course, or if credit in a course is temporarily withheld for any reason, the mark I may be placed before the grade to indicate that the course has not been completed. An incomplete course is thus reported IA, IB, IC, ID, or IE. The grade indicates the quality of work done in the part of the course which has been completed.

Any student absent from an examination is required to report to his instructor as soon thereafter as possible. If a student presents a valid excuse for his absence, he may take the examination at such time as may be arranged by the instructor. If such excuse is deemed unsatisfactory, the record shall be reported E. In order that credit for a course may be given it must be completed before the end of the semester of residence next succeeding that in which it was elected.

The final grade in a course which has been completed during the semester of residence following that in which it was elected will be based upon all of the work done in the course. It will not necessarily be the grade reported for the partially completed course.

At the time of completing a course students must obtain from the Secretary a blank form for presentation to the instructor. The blank when filled out must be deposited by the student with the Secretary within one week of the date entered upon it by the instructor. The same procedure is followed when an entrance condition has been removed.

RULES GOVERNING GRADES AND SCHOLARSHIP

35. (a) The average semester grade and the general average grade is computed for each student at the end of each semester and becomes part of his permanent record.

(b) The average grade is determined on the basis of A equals 4, B equals 3, C equals 2, D equals 1, and E equals 0.

(c) The average grade is computed by multiplying the number corresponding to the grade in each course by the hours of credit for the course and dividing the sum of these products by the total number of hours represented by all the courses considered.
(d) No student may graduate whose general average grade is below 2.0.

(e) When the average semester grade of a student falls below 1.6 he is automatically placed on probation.

(f) Students on probation must elect at least 12 hours work for semesters or 6 hours for summer sessions.

(g) Students on probation who obtain an average semester or summer session grade of 2.0 or more are automatically removed from probation.

(h) A student will be placed on the home list for any one of the following reasons:

1. If his average semester grade falls below 1.0.
2. If he is on probation and fails to obtain an average semester grade of 2.0.
3. If he has been on probation during any two semesters and subsequently fails to obtain an average semester grade of 1.6.

(i) In cases of extenuating circumstances, at the discretion of the Committee on Delinquent Students, students placed on probation may be removed from probation, and students placed on the home list may be continued on probation.

(j) Students having a general grade of less than 3.0 may not elect extra hours; students having an average of 3.0 or more may elect extra hours, the number of extra hours which such students may elect to be determined by the classifier.

(k) Students on probation may not elect less than 6 hours work in the summer session. When the average grade for the summer session of a student on probation becomes 2.0 or more he is automatically removed from probation.

REGENTS RULE GOVERNING OPERATION OF MOTOR VEHICLES BY STUDENTS

36. "No student in attendance at the University from and after the beginning of the first semester of the University year 1927-1928 shall operate any motor vehicle. In exceptional and extraordinary cases in the discretion of the Dean of Students this rule may be relaxed."
WITHDRAWAL FROM THE COLLEGES

37. A student should not withdraw from class even temporarily without obtaining permission.

Leave of absence will be granted to those who expect to return before the end of the year.

Honorable dismissal will be granted to those who wish to transfer to another College of the University and to those going elsewhere, provided in either case they are in good standing.

Engineering students must obtain this permission or dismissal from the Associate Dean, and architectural students from the Professor of Architecture.
38. The broad subject of Engineering has been defined as "the art and science of directing the great sources of power in nature to the use and convenience of man." It includes the discovery, conservation, and utilization of the resources of the earth, the waters, and the air. Discovery includes not only the exploration of mineral, timber, and other visible resources of the world, but also the experimental investigations of the laws controlling important phenomena and processes. Conservation includes the prevention of waste of all sorts, whether of natural resources or in manufacturing processes. Utilization includes the generation and transmission as well as the actual application of heat, light, and electricity by mechanical, electrical, and chemical means to serve useful purposes; the design and erection of structures and machines of all types, and the efficient operation of all processes, involving preparation, manufacture, transportation, or utilization of materials on a large scale. In the newer conception of Engineering efficient operation must consider not only the physical property but also the relation of the industry to the outside world, including its duty to stockholders, employees, clients, and the community in which it is situated.

Until a century ago engineering was divided into two branches, military and civil engineering. Since then civil engineering has developed in so many directions and to such an extent that new designations have come into use for its various branches.

The name "civil engineering" has been retained at the University of Michigan to designate the courses given by its civil engineering department.
The other departments, some of which are outgrowths of civil engineering and others of different origin, are Geodesy and Surveying, Mechanical Engineering, Electrical Engineering, Marine Engineering and Naval Architecture, Chemical Engineering, and Aeronautical Engineering, all degree-conferring departments. Until 1911 the Department of Civil Engineering gave instruction in engineering mechanics, now entrusted to a separate department of instruction.

Also the Departments of Astronomy, Mathematics, and Physics, which serve the whole University, co-operate with the College of Engineering in its programs leading to the degree of B.S. in Engineering with specialization in Astronomy, Mathematics, or Physics.

In addition to the degree-conferring departments, the College of Engineering has departments of instruction in Mechanism and Engineering Drawing, Engineering Mechanics, and Shop Practice; and it uses, with the rest of the University, the Departments of English, Modern Languages, Chemistry, Military Science, etc., which give special courses for engineering students. Engineering students are allowed wide liberty to elect courses in history, philosophy, economics, and other cultural subjects without additional cost.

Beside the departments of instruction, the College of Engineering includes the Department of Engineering Research which was established by an act of the Regents in October, 1920. The purpose of this act was to establish a point of contact between the University and the technical and industrial interests in the State in the field of research.

The department, because of the extensive laboratory and library facilities available at the University, in addition to its ability to call upon members of the teaching staff to direct and supervise research, is in a position to undertake and investigate a large number of problems of varied character.

Full descriptions of the various departments, their scope, facilities for instruction and the courses offered, will be found elsewhere in this bulletin.
BUILDINGS AND OTHER EQUIPMENT

39. The work of the College of Engineering is carried on in several buildings belonging to the College, viz., the West Engineering and the East Engineering Buildings, the West Engineering Annex (the old Engineering Shops), the R. O. T. C. Headquarters (the old Power House), East Hall; the College shares with the rest of the University the use of the Library, the East and the West Physics Buildings, the Chemistry Building, the Astronomical Observatory, the Gymnasium, etc. The summer work in surveying is carried on at Camp Davis located between Burt and Douglas Lakes in Cheboygan County. See section 78.

The West Engineering Building built about twenty-five years ago to house most of the work of the Colleges of Engineering and Architecture is now used by the College of Engineering for the Departments of Civil, Mechanical, Electrical, Marine and Aeronautical Engineering, Geodesy and Surveying, Mechanism and Engineering Drawing, Engineering Mechanics and Mathematics.

The East Engineering Building completed in 1923, with a floor area of 160,000 square feet, houses the Engineering Shops, and the Departments of Chemical Engineering and Engineering Research, and provides additional space for Aeronautical Engineering and Civil Engineering (highway engineering).

The West Engineering Annex provides additional space for Mechanical Engineering (automobile engineering) and Geodesy and Surveying, the R. O. T. C. Headquarters houses the Department of Military Science; and East Hall is used for offices and classrooms.

A new building has recently been completed for the College of Architecture.

For the equipment of these buildings and Camp Davis, see later articles concerning the various departments of instruction.

The College recognizes that the benefits of instruction are far more dependent on the character of the instructors than upon any adjunct in the way of laboratory apparatus or of physical illustration, and with this in view the instructing staff has been selected from among those qualified both by technical training and
practical experience; in addition extensive use is made of the ordinary supplementary aids.

40. The Libraries.—A large modern library building, erected at a cost of $615,000, was opened in January, 1920. This building has general and special reading rooms for eight hundred students at one time, and is equipped with modern appliances for the housing and serving of books. The University Libraries receive over 3,600 periodicals annually.

The University Libraries contain at present about 600,000 volumes, of which many are of importance to engineers and architects.

The West Engineering Library, comprising over 17,600 volumes, is housed in the West Engineering Building. The latest and best books on professional subjects are added yearly to the library, where they are accessible to all, and frequent references are made to them in the classroom as the various subjects are brought forward. Over one-half of the collection consists of files of professional periodicals and proceedings of engineering societies. Funds being now available, extensive additions to the books and periodicals, particularly foreign periodicals, will be made during the coming year.

The East Engineering Library, opened in 1924, is housed on the third floor of the East Engineering Building. It is provided with 15,000 books, and 125 periodicals of particular interest to students in Chemical Engineering, Engineering Shops, and Aeronautics. A special collection of books is available to those students pursuing courses in English.

The Architectural Library in the new building for the College of Architecture contains a collection of books of value to Architectural students. For additional information see Part VI, section III.

The English Library, in East Hall, contains a collection of reference books for the use of students in English courses.

The William L. Clements Library of American History completed in 1923, the gift of Hon. William L. Clements, B.S., 1882, houses the invaluable collection gathered by him and given to the University. The collection of books, manuscripts, and maps relating to the discovery of the western continent, its settlement, and later history, is especially rich in rare books, pamphlets, and manuscripts dealing with our early colonial history and the period of the American Revolution.
41. University Power Plant.—The University Power Plant is a fine example of modern power plant construction and is available for instruction and for use. There have been installed eight 400 h.p. Wickes water-tube boilers with Murphy stokers, supplying steam at 150 pounds gauge pressure; an Allis-Chalmers cross-compound engine direct connected to a 625 kv-a generator producing 3-phase, 60-cycle alternating current at 2,300 volts; a 300 kv-a Curtis turbo-generator, equipped with a Westinghouse-Le Blanc condenser; a 25 kw Allis-Chalmers motor-generator set; a 25 kw Allis-Chambers turbine-driven exciter; a 15-ton engine room crane, a 3½ ton coal-handling crane; a pneumatic ash conveyor; two 2,000 h.p. feed-water heaters; two turbine-driven pumping units; two hot-well pumps; an air compressor; power and lighting transformers; and a distribution system for power and light. It is proposed in the future to obtain a supply of water from the river by means of an electrically-operated pumping station erected near the river. The feed-water heaters supply hot water to the boilers and also for domestic purposes. Coal is brought directly from the Michigan Central Railroad to the plant over an electrically-operated road, delivering the coal to a storage bin; thence, it is taken to a coal-crusher and delivered to the steel bunker above the stoker-hoppers. The ashes are carried by a pneumatic conveyor to a bunker over the track, from which they are loaded directly into the cars. Tunnels are provided for the underground distribution of steam, hot water, and electrical energy. There is available alternating current at 2,300 volts, 220 volts for lighting and other voltages for power; also direct current at 220 volts and 500 volts; high and low-pressure steam, and hot water.

42. Visits of Inspection.—The University is well situated for excursions to engineering industries. In Ann Arbor there are a large modern telephone exchange and a power substation of the electric railroad. The Detroit Edison Company has four hydro-electric power stations, one at Ann Arbor and the others within a distance of four miles. These stations are of recent construction and illustrate the very latest engineering practice in hydraulic and electrical design.

At Detroit there is much of interest to students of electrical engineering, including the main power houses and substations of the Detroit Edison Company, and of the Detroit Street Railway, the electrically-operated Michigan Central Railroad tunnel under the Detroit River, and the new railroad terminal.

The classes in Hydraulics have been given the opportunity to assist in the tests of new power plants, and recently forty seniors spent four days on the tests of one of the largest plants in the State. The managements of the companies operating these
plants are all in hearty sympathy and accord with the College of Engineering and afford the students every opportunity for inspection of the plants.

There are within forty miles two of the most complete modern classification yards in the United States, illustrating all types of humps and other modern sorting, the New York Central freight terminals at Toledo and the Michigan Central passenger terminals at Detroit. The Detroit River tunnel and the street railway properties in both cities afford exceptional opportunities for the inspection of important work. The co-operation of railways with the work of the department extends not only to giving students access to the properties but to giving freely to the University plans of all standard and special structures, for illustrative material, as well as courses of lectures by officers of the companies.

From the standpoint of automobile engineering, the University of Michigan has a strategic location at the very center of the automobile industry of the country. Detroit, Toledo, Flint, Jackson, Lansing, and Indianapolis, with the greatest automobile factories in the world, are within easy excursion distances and each year an inspection trip is made under the direction of the Automobile Department. These trips, while primarily for Engineering students, are open to any who are interested.

The classes in Chemical Engineering visit about forty industrial plants a year illustrating the transition of raw materials to finished products. The list includes large and modern plants illustrating the manufacture and treatment of iron and steel, copper, brass, and aluminum; Portland cement, clay products, and glass, salts, acids and alkalies, electrolytic and electric furnace products; gas, ammonia, tar, and other products from the destructive distillation of coal; petroleum; the vegetable fats and oils, including paint, varnish, and soap; sugar; food products, leather, and paper.

The students in Marine and Aeronautical Engineering have opportunities of visiting both Detroit and Toledo where various shipyards and aircraft factories are situated. The airports at the same places also afford an opportunity of inspecting the various types of aircraft and port equipment both for water and air transportation.

SOCIETIES

43. The Engineering Society.—The Engineering Society of the University of Michigan is an organization of students formed by the affiliation of sections from each department of the College of Engineering. Membership in the sections is voluntary and is regulated by the constitution of each section. Such membership entitles the students to all the privileges of the general society.
In the several sections of the society original papers are presented and the members are encouraged to take active part in the discussions, thus fitting themselves for a broader field of endeavor when they enter into the actual practice of their chosen profession. Helpful criticisms and suggestions are given by faculty members and the student is aided in every way in acquiring the art of public speaking.

The general society has as its primary purpose the creating of a broader field of vision for the engineering student. This it attempts to accomplish by providing the opportunity for closer associations and the promotion of a social spirit among the students of the several departments; by securing as speakers at its meetings engineers of prominence in all fields of the profession; and by the publication of articles of general information to the student. As a further means to this end the society publishes quarterly a journal, called *The Michigan Technic*, which contains papers read before the society, abstracts of these, contributed articles from the alumni and faculty members, and other matters of interest to the student and the profession. A reading room is also maintained by the society where all the leading magazines and technical papers are accessible.

The sections of the general society are as follows:

Student Branch, American Society of Civil Engineers.—This Chapter was founded in 1923, and differs from other student chapters in that its membership is limited in numbers, and is confined to senior and junior students whose scholarship is above the college average.

Mechanical Engineering Section.—This section of the general society is also a student branch of the American Society of Mechanical Engineers. Meetings of the section are held about once a month. Some of the meetings are of a purely social nature while others are addressed by members of the faculty or by outside engineers and business men on subjects of general interest to the profession.

Electrical Engineering Section.—This section is a student branch of the American Institute of Electrical Engineers. In joining it, the student makes a connection which usually extends throughout his whole professional life after graduation, and which helps him materially in furnishing opportunities for advancement. The meetings, which are held twice each month, are managed entirely by the students, who procure speakers from among themselves or from professionals in the field, and who derive valuable experience in self-expression as well as technical knowledge from the discussions which they must make for themselves. Each member of the branch receives, in addition to the monthly *Michigan*
Technic, a copy of the Proceedings of the A. I. E. E., which are issued once each month.

Chemical Engineering Section.—This section is a student branch of the American Institute of Chemical Engineers. The student branch holds meetings where subjects of professional interest are discussed. It has been assigned a clubroom in the East Engineering Building.

The Transportation Club is an organization formed by students with a mutual interest in the general subject of transportation. It forms a common meeting ground for students of railroads, highway engineering and transport, aeronautics, marine engineering, business administration, and economics. Because of its universal nature, it has developed a general appeal to the student body, and the monthly meetings are addressed by prominent engineers.

Tau Beta Pi, the national engineering honor society, has a chapter in the College of Engineering. For membership in this society good scholarship is essential.

The National Society of the Sigma Xi has a chapter in the University. The aim of the society is to encourage research. High scholarship and the promise of ability in research are required of its candidates.

Phi Eta Sigma, a national honorary society for freshman men, elects members each year on the basis of high scholarship.

Phi Kappa Phi, a national scholastic honor society, elects its members each year from the senior class of all schools and colleges on the basis of scholarship, personality, and service to the University.

FELLOWSHIPS

44. Roy D. Chapin Fellowship in Highway Transport.—This fellowship is offered to provide for the investigation of an approved subject relative to Highway Transport. It pays the sum of $250, with an allowance of $50 for expenses.

Roy D. Chapin Fellowship in Highway Engineering.—This fellowship is offered to provide for the investigation of an approved subject relative to hard-surfaced roads and pavements. It pays the sum of $250, with an allowance of $50 for expenses.

Detroit Edison Company Fellowships in Highway Engineering.—Two fellowships are offered for the investigation of approved subjects relative to moderate-cost country roads. Each
The Ray Sand and Gravel Company Fellowship in Highway Engineering.—This fellowship is offered to provide for the investigation of advisable methods of sampling and testing sand and gravel for construction purposes. It pays the sum of $250, with an allowance of $50 for expenses.

The Reo Motor Car Company Fellowship in Highway Transport.—This fellowship is offered to provide for the investigation of the economic utilization and operation of motor busses. It pays the sum of $250, with an allowance of $50 for expenses.

The Detroit Edison Fellowship in Boiler Scale Prevention.—The Detroit Edison Company has maintained, since 1924, a fellowship for the study of the fundamental phenomena connected with the deposition of boiler scale. The holder of this fellowship receives $750 a year.

The Thomas Berry Memorial Fellowship for Investigation of Protective Coatings. The holder of this fellowship receives $750 a year.

The Michigan Gas Association Fellowship.—This fellowship has been maintained continuously since 1900 with the exception of interruptions during the war. The holder of the fellowship receives $750.

The American Petroleum Institute Fellowship.—This fellowship is maintained for the purpose of studying the physical properties of petroleum and petroleum products. The sum of $2,500 is annually available for payment of the fellowship and for special equipment.

The Association of Natural Gasoline Manufacturers maintains four fellowships for a study of the properties of natural gasoline. Holders of these fellowships receive $750.

The Detroit Edison Fellowship in Chemical Engineering.—By the generosity of the Detroit Edison Company, a fellowship in Chemical Engineering has been established with a stipend of $750.

The Detroit Edison Company Fellowship in Metallurgy.—In the fall of 1915, the Detroit Edison Company established at the University a fellowship in metallurgy, but this fellowship was discontinued during the war. In the fall of 1922, the Company resumed support of it. One thousand dollars is available annually. Of this amount $750 is paid to the appointee, the remainder being applied to expenses incident to the research or researches undertaken.
The fellowship is for study of problems in metallurgy relating to power plant construction and operation of the utilization of power.

Ordinance Fellowship.—A fellowship known as the Ordinance Fellowship was established in the fall of 1925, the funds being supplied from the United States Government Ordinance Research Fund which is at the disposal of the University. The fellowship carries a stipend of $750.

SCHOLARSHIPS AND PRIZES

45. Cornelius Donovan Scholarships.—These scholarships were established in 1922 by bequest of Cornelius Donovan of the class of 1872. At present about $3,500 yearly is available for award to meritorious students in engineering who are working their way through college.

American Bureau of Shipping Prize.—A prize of $100 is offered each year by the American Bureau of Shipping, to the student in Naval Architecture and Marine Engineering who shall obtain the highest average for the last two years of the course, in the regularly prescribed courses.

Robert Campbell Gemmell Memorial Scholarship.—This scholarship in memory of her brother, Robert Campbell Gemmell, B.S. (C.E.), '84, C.E., '95, Master of Engineering honorary, 1913, was founded by Mrs. Lillian Gemmell Boal (Mrs. S. H. Boal) of Oakland, California, by a gift of $10,000 to the University.

"This scholarship is to be available for freshman and sophomore students in the College of Engineering of general worthiness and deserving character." The income may be divided among several beneficiaries if the committee in charge so determines.

Minnie Hubbard Smith Revolving Fund, founded by George H. Knutson, '08E, by a gift of $500 and increased to $1,000 by Frank Hubbard Smith, '93, '95L.

This fund is for juniors and seniors in the Department of Civil Engineering, "who have continuously been in one of the engineering departments of the University of Michigan at least two and one-half years prior to date of gift, who are enrolled in the Department of Civil Engineering, and who have need of financial assistance in order that they may remain in college, complete their courses, with the end in view of graduating without interruptions in their college course. The placing and approval of the gifts are to be at the discretion of the Professor of the Department of Civil Engineering." It is anticipated that beneficiaries of this fund will desire to contribute to this fund when able, so that it may continue.
LOAN FUNDS

46. Students desiring loans from any of the loan funds should make application to the Dean of Students, Room 2, University Hall.

In addition to the loan funds listed below, a number of general loan funds are also available, information on which will be sent on request by the Dean of Students.

George H. Benzenberg Trust Fund.—In the fall of 1920 Mr. George H. Benzenberg gave in trust to the University $20,000, the interest of which is to be available to loan to engineering students in need of aid to complete their studies.

The Brosseau Foundation.—The Brosseau Foundation was established in 1927 by an initial gift of $23,000 from Mr. and Mrs. Alfred J. Brosseau, New York City. The fund is available for loans to needy and worthy students in the University, students of such schools in the State of Michigan as shall be considered by the University as preparatory to an education at the University, and students in state supported schools and colleges in the State of Michigan which furnish education in collateral fields not covered by the University. No student in courses in law, medicine, the ministry, or the fine arts is to be aided or assisted by this fund. The donors' nephews and nieces and their descendants are to receive preference in the selection of beneficiaries, provided they meet the requirements applicable to other beneficiaries. Should any yearly contribution be in excess of requirements for that year, such excess may be used for fellowships and scholarships, the promotion of research in the University, or in fields generally, for the advancement of practical and technical sciences, or for the maintenance of an employment bureau for graduates and students. Should such yearly excess be devoted to fellowships and scholarships, or research, the same general restrictions which apply to student loans as outlined above are to be operative.

Class Fund of 1914.—A fund of $400 was established by the Class of 1914 to be increased in the future by gifts from members of the class. Loans from this fund are limited to seniors in the College of Engineering. These loans are payable in two years without interest.

Class Fund of 1915.—A fund of $232 was contributed by the Class of 1915 to be used as a loan fund for senior or junior engineering students.

Class Fund of 1917.—The class of 1917 contributed $370 to be used as a loan fund for Engineering students.
The J. B. and Mary H. Davis Trust Fund.—In April, 1922, Mr. C. B. Davis, '01 Eng., presented to the Regents of the University $10,000 to establish the J. B. and Mary H. Davis Trust Fund, the income to be devoted to the aid of students of either sex in any class in the Department of Geodesy and Surveying.

The John Frank Dodge Loan Fund.—Seniors and juniors of the College of Engineering may borrow from this $10,000 fund to the amount of one hundred dollars for any one year when their records and needs warrant such a loan. All loans must be paid with five per cent interest two years after graduation, the interest being reckoned from date of graduation.

William James Olcott Scholarships.—In June, 1916, Mr. William J. Olcott of Duluth, Minnesota, gave to the University the sum of $5,000 for the establishment of a loan fund open to students in the College of Engineering. The amounts awarded, when repaid, shall accumulate towards the foundation of further scholarships.

Marian Sarah Parker Memorial Fund.—In April, 1923, Sarah Drake Parker gave to the University the sum of $500 as the nucleus of a fund to assist girl students in the Colleges of Engineering and Architecture, in memory of her daughter, Marian Sarah Parker, 1895E (Mrs. Albert E. Madgwick), who was the first woman graduated from the College of Engineering.

If the fund increases sufficiently, so that the income would warrant it the income may be used for the support of scholarships or fellowships or for prizes for excellence of scholarship or notable achievements by women in the field of engineering and architecture.

The Benjamin Sayre Tuthill Loan Fund.—The Benjamin Sayre Tuthill Fund was established in 1910, in memory of Benjamin Sayre Tuthill, of the Class of 1909 in Civil Engineering, who died at Albuquerque, New Mexico, May 30, 1910. This fund "is to consist of a sum of money, contributed by friends, which shall be available to students as a loan fund at a moderate rate of interest. When through the contributions added from time to time and the earnings of the loans, this fund shall have reached such proportions as will support a scholarship, it may be so used if advisable. It is the intent that the Memorial be used in the most practical way possible to aid struggling students."

Paul Wheeler Warriner Scholarship.—A loan fund of $300 given in memory of Paul Wheeler Warriner, a member of the Engineering class of 1920, who died in his freshman year.
BEQUESTS AND GIFTS

47. The University of Michigan has in recent years become more and more frequently the object of bequests and donations from public-spirited alumni and citizens of Michigan and other states who see in the state university a means of serving the present and the future. From one-quarter to one-third of the University's permanent assets, in funds, lands, buildings, and equipment have been contributed by such friends. Any correspondence on this subject may be addressed to the President of the University and all inquiries will receive prompt and candid replies.

For the benefit of those who may desire to make use of the same, a correct form of bequest is here given with the corporate title of the University:—

"I give, devise, and bequeath to the Regents of the University of Michigan...................(here insert the sum or the property bequeathed)................for the following purposes..................(here insert the purpose of the bequest)............................."

In the light of experience, even in so young a country as the United States of America, it is apparent that no one can unmistakably read the future. This fact has resulted in reducing almost to uselessness certain bequests made in earlier days to various institutions. With the idea of permitting most useful continuance of the benefaction in general accord with the purposes of the donor even if with the changes of the years the precise purpose of the gift should prove to be no longer a real need, it is suggested that all benefactions might wisely contain a clause similar in purpose to the following, which is quoted direct from an actual will:—

"In the event that the sums available hereunder for the purposes stated shall in the opinion of the said Regents at any time exceed the need therefor, then such excess income may be used by the Regents for the advancement of research and for educational purposes generally and for the needs of the University in such amount and in such manner as they may from time to time deem best."

DEGREES CONFERRED IN THE COLLEGE OF ENGINEERING

48. The University of Michigan confers on all graduates of the College of Engineering the Degree of Bachelor of Science in Engineering, the diploma designating the branch of engineering which the student has pursued.
DEGREES CONFERRED IN THE GRADUATE SCHOOL

49. Graduate courses are offered in the Graduate School leading to the Degree of Master of Science in Engineering and to the Degree of Civil Engineer, Mechanical Engineer, Electrical Engineer, Chemical Engineer, Naval Architect, Marine Engineer, Aeronautical Engineer, and Geodetic Engineer.

All students who have received a bachelor's degree from the College of Engineering of this University or from some other university or technical school of recognized standing may enroll in the Graduate School for the degree of Master of Science in Engineering and for other higher degrees. See special bulletin of the Graduate School, which may be had on application.

Students enrolled in the Graduate School must have a subject of specialization but studies may not be selected exclusively in the single department concerned with the subject. Cognate subjects should be selected in other departments. While it is expected that at least half of the work will be in a single department and also that the work will have unity, narrow specialization is discouraged. After a student has selected his department of specialization he should confer with the professors under whom he expects to study and with them arrange the details of his course.

REQUIREMENTS FOR GRADUATION

50. To secure a degree in the College of Engineering, a student must meet the following requirements:

(a) He must complete the required courses of his department.

(b) He must complete a sufficient number of group options or other courses of University grade approved by the head of his department to make a total of 140 credit hours with an average grade of 2 or above. See section 35. A credit hour represents as a rule one hour of recitation, preparation for which should require two hours of study; or in the case of laboratory work, the credit hours are one-half to one-third of the actual hours, the time required depending on the necessary home work.

A student may not, in general, offer as group options advanced credits earned in the preparatory school.

MODERN LANGUAGES AND CULTURAL ELECTIVES

51. All regular students in the College of Engineering are required to complete the equivalent of Course 4 in French, German, or Spanish, as given in the University, or Course 3 in Spanish if preceded by two years of Latin in the high school. Course
2 in Spanish if preceded by at least three units of Latin or Greek, will satisfy this modern language requirement.

Students in the College of Architecture are required to complete Course 3 in French or German.

Students whose language is other than English may substitute English for French, German or Spanish, the maximum amount of English being seventeen hours.

Students in aeronautical engineering are advised to elect French; in chemical engineering, German; and students in astronomy, mathematics, and physics are advised to elect both French and German.

After completing the foreign language requirement, students must elect courses from the following list, until they have sixteen hours of college credit in foreign languages and other cultural studies: Economics, English, Fine Arts, Foreign Language, History, Mathematics (Advanced), Military Science and Tactics (not to exceed 4 hours), Music, Philosophy, Political Science, Psychology, Sociology, and Speech.

Plane Trigonometry and Chemistry 3 will be included in this list when college credit is given in these studies. Advanced courses in Mathematics may be counted as cultural or technical electives, at the discretion of the head of the technical department concerned.

To secure credit in Music, courses must be chosen from those scheduled in the College of Literature, Science, and the Arts.
Part IV

WORK OF THE COLLEGE OF ENGINEERING

STUDIES OF THE FIRST YEAR

52. There is a common first year for all students entering without deficiencies or advanced credits. After the first year, each student indicates the branch of engineering he expects to follow and is then registered as a student in that branch.

In the second year there is some variation among the curricula for the different branches of engineering, though not so great as to make transfers difficult; but in the third and fourth years there are marked differences and a student transferring from one course to another does so with difficulty and with some loss of time.

The schedule of studies for first-year students is as follows:

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Modern Language</td>
<td>4</td>
<td>*Modern Language</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Chem. 5 or Shop 2 and Engl. 1 and 2</td>
<td>5 or 6</td>
<td>Gen. Chem. 5 or Shop 2 and Engl. 1 and 2</td>
<td>5 or 6</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
<td>Drawing 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16 or 17</td>
<td></td>
<td>16 or 17</td>
</tr>
</tbody>
</table>

Schedules of studies for later years will be found under the work of the various degree-conferring departments.

The above schedule assumes that the student has presented for admission the full requirement in algebra and geometry, and also trigonometry and chemistry of the alternative requirements described in section 10. Should the student have entered without trigonometry or chemistry, or both, the schedule will be modified by adding trigonometry and (or) Chemistry 3 followed by Chemistry 6 (in place of Chemistry 5).

*See section 51 for Modern Language requirement.
NON-PROFESSIONAL DEPARTMENTS

In case that the admission requirements have been fully met on entrance, trigonometry and Chemistry 3 will give credit toward graduation as cultural subjects. See section 51. Should the student have entrance deficiencies in advanced algebra, solid geometry, trigonometry, physics or chemistry, the deficiencies must be removed but without credit toward graduation.

A deficiency in foreign language introduces no irregularity in the schedule. See section 51.

The classifier in consultation with the student will arrange a schedule intended to adjust the irregularities as quickly as possible. Students are required to remove all deficiencies during this first year, unless granted an extension of time for their removal. See section 33.

NON-PROFESSIONAL DEPARTMENTS

53. In the following sections are listed courses given entirely, or primarily, for students in engineering or architecture, and in addition those courses which frequently are elected by them. For other courses see the Announcements of the College of Literature, Science, and the Arts, the School of Business Administration, and others.

A course in another college, listed in any engineering curriculum may be elected by our students without special formality; but the approval of the deans, readily obtained, may be required when the course is not intended for engineers. Lack of proper preparation for the course is sufficient reason for approval to be refused.

Besides the departments listed below, in which our students make frequent elections, there are many others which freely and hospitably receive our students. The Colleges of Engineering and Architecture in the same way receive students from other colleges.

54. BACTERIOLOGY AND WATER ANALYSIS

3E. Practical Bacteriology. This course is open only to students of Sanitary Engineering. Three afternoons each week during the second half of the first semester, beginning December 1. Associate Professor Hadley, Room 2562, East Medical Building.

5E. Water Analysis. Three afternoons weekly, M,W,F, during the first half of the first semester. This course is open to students of Sanitary Engineering and to others who are qualified. Assistant Professor Emerson, Room 1548, East Medical Building.
BUSINESS ADMINISTRATION

Professors Griffin and Paton; Associate Professors Masson and Blackett; Assistant Professors Elliott and Wolaver; Mr. Phelps, Mr. Waterman, and others.

The courses listed below are those which are deemed of special interest to engineering students. For the engineering student who plans to take only one course in the School of Business Administration, Course 92 (The Elements of Business Administration) is recommended. For the full list of courses in Business Administration, see the Announcement of the School.

92. Elements of Business Administration. This course is designed to meet the needs of those students, not enrolled in the School, who desire a general survey of the field of Business Administration. It includes a classification of the different kinds of business enterprise, an analysis of the activities involved in the management of the individual concern, study of the types of managerial organization, examination of the work of the major functional departments (finance, production, distribution, personnel, etc.), and some consideration of the problems of co-ordination and of policy determination which face the chief executive. Prerequisites: Ec. 51 and 52. Three hours credit. Second semester.

102. Principles of Organization, Production, and Personnel II. This course is a continuation of Bus. Ad. 101. Three hours credit. Second semester.

151. Marketing Principles I. This course, together with Course 152, deals with the transferring of goods and the ownership of goods from producer to consumer, with emphasis upon the business policies involved in these activities. Course 151 includes a consideration of the following subjects: (1) general principles of marketing; (2) the marketing of agricultural products including grading, the use of central markets, speculation, and the organized exchanges; (3) manufacturers’ buying problems; (4) manufacturers’ selling problems such as the choice of channels of distribution and of methods of sale, and the use of advertising. The course is conducted by the study of concrete business problems and supplementary readings. Three hours credit. First semester.

152. Marketing Principles II. This course is a continuation of Course 151 and has the same general aims. It specifically considers the following subjects: (1) price policies; (2) policies related to credit and finance; (3) standardization of product; (4) wholesalers’ activities; (5) storage and the physical distribution of products; (6) retailing; (7) the state and marketing, including a discussion of “unfair competition.” The method of instruction is the same as that in Course 151. Prerequisite: Bus. Ad. 151 or its equivalent. Three hours credit. Second semester.
161. Financial Principles I. This course undertakes an analysis of the financial principles underlying the organization and management of business enterprises. Attention is given to the means of securing permanent capital both in the initial stages of a business and in the expansion of a going concern. The various methods of obtaining working capital are studied with special emphasis upon the distinction between temporary and permanent borrowing. Consideration is also given to the policies to be followed with respect to the earnings of a business, and to various other problems of internal finance connected with the purchase, production, and sale of goods. Prerequisites: Ec. 171 and 172. Three hours credit. First semester.

162. Financial Principles II. This course is a study of the organization and financial administration of modern business corporations. The corporation is compared with other forms of business enterprise. The course deals with such subjects as corporate promotion, the nature and varieties of stocks and bonds, capitalization, the methods of corporate expansion, the sale of securities, the principles governing the administration of income, intercorporate relations, and the problems and procedure of reorganization. Prerequisite: Bus. Ad. 161. Three hours credit. Second semester.

282. Public Utility Management. This course deals with certain public utility problems from the standpoint of the utility management. Problems of finance, rate-making, valuation, public relations, etc., will be considered with a view to determining sound policy in these respects. Prerequisite: A course in elements of accounting and Bus. Ad. 161, or its equivalent. Three hours credit. Second semester.

Summer Session

Courses 92s, 101s, 102s, 111s, 151s, 152s, 161s, and 162s will be given during the Summer Session of 1929.

56. CHEMISTRY

Professors Gomberg, Bigelow, Willard, Smeaton, Bartell, Lichy, and Schoepfle; Assistant Professors Carney, Meloche, Ferguson, McAlpine, Hodges, Weatherill, and Anderson; M. Cole, Dr. Soule, Dr. Case, Dr. Halford, and Mr. Clarkson.

The aims of the fundamental course in general chemistry, required of all engineering students, are primarily the development of a scientific attitude, the acquisition of such chemical facts as form a part of the store of knowledge of any well-informed per-
son, and preparation for the succeeding required course in the chemistry of engineering materials. Further courses in analytical, organic, and physical chemistry are required of students in chemical engineering, and may be elected by other students having the requisite preparation. Students intending to specialize in chemistry are advised to obtain a reading knowledge of both French and German.

The chemistry building provides excellent facilities for the work in all the schools and colleges of the University. Lecture and classrooms, laboratories for class instruction and individual research, a fully equipped stock-room, and the chemical library are all located in the one building. The library contains about 8,000 volumes and is especially rich in complete sets of journals. Over 90 journals are currently received.

3. General and Inorganic Chemistry.* A study of the non-metallic elements and their compounds, with special emphasis upon the interpretation of chemical phenomena from the viewpoint of recent theory and investigation, accompanied by a systematically arranged course of laboratory experiments designed to illustrate the fundamental principles underlying the science. Two lectures, two recitations, and two two-hour laboratory periods. Four hours credit. Each semester.

5E. General and Inorganic Chemistry.* The fundamental principles of chemistry are developed in such a way as to illustrate the scientific method. The descriptive chemistry of some of the non-metallic elements and of all the more important metallic elements is studied as further illustration of the fundamental principles, special emphasis being placed on such facts as are of importance to the engineer. Two lectures, two recitations, and two three-hour laboratory periods. Open to students who have presented a unit of chemistry for entrance. An examination may be given to students enrolling in this course, and those whose preparation is shown to be inadequate will be transferred to Course 3, credit for which will be counted as a cultural elective. Five hours credit. Each semester.

6. General and Inorganic Chemistry.* A continuation of Course 3 dealing chiefly with the chemistry of the metallic elements. Lectures, recitations, and laboratory. Four hours credit. Second semester.

*Engineering students entering without Chemistry will elect Courses 3 and 6. The credit for Course 3 will be allowed as a cultural elective if the student presents full entrance requirements, but otherwise will be entered as an admission requirement. Students presenting an approved unit of Chemistry for entrance will take Course 5E, unless three or more years have elapsed since they studied Chemistry, in which case they are advised to elect Courses 3 and 6.
15. Qualitative Analysis. A study of the distinctive properties of some common substances in water solutions and the reactions used in the identification of such substances. Two recitations and two four-hour laboratory periods. Prerequisite: Course 5 or 6. Four hours credit. Each semester.

17. Qualitative Analysis. In this course the distinctive properties of some of the more common chemical compounds are studied, with special reference to their use in analysis. A considerable number of unknowns are analyzed, and the student is required to show an understanding of the theory of dilute solutions in discussing the reactions employed in the laboratory. Three recitations and two four-hour laboratory periods. Prerequisite: Course 5 or 6. Five hours credit. Each semester.

41. Elementary Theoretical and Physical Chemistry. In this course special attention will be paid to the study of chemical equilibrium, velocity of chemical reactions, and application of physico-chemical theory. Three lectures or recitations. Prerequisites: Course 17 or 53, Physics 36, and a knowledge of calculus. Three hours credit. First semester.

42. Elementary Theoretical and Physical Chemistry. This course is similar in content to Course 41 and may be elected as an alternative. Two lectures and two recitations. Prerequisite: Course 17 or 53. Four hours credit. Second semester.

43. Physico-Chemical Measurements. Methods for the determination of molecular weight, viscosity, surface tension, reaction rate, solubility, etc., optical measurements with polarimeter, refractometer, spectroscope. Laboratory work. Prerequisites: the student must have completed or must be taking Course 41 or 42, and 57. Three or four hours credit. Each semester.

53. Qualitative Analysis. A continuation of Course 15. The course includes the identification of a wider range of substances and the analysis of more difficult mixtures, including some alloys, slags, and phosphates, also studies in oxidation and reduction. Two recitations and two four-hour laboratory periods. Four hours credit. Each semester.

57. Quantitative Analysis. This course includes the study of gravimetric, volumetric, and electrolytic methods, and the analysis of simple mixtures. The solution of stoichiometric problems is emphasized. Two recitations and three four-hour laboratory periods. Prerequisite: Course 17 or 53. Five hours credit. Each semester.
67. Organic Chemistry. The properties and classification of carbon compounds. Two lectures, one recitation and two four-hour laboratory periods. Prerequisite: Course 17 or 53. Five hours credit. Each semester.

111. Electrochemistry. An elementary treatment of the fundamentals of the subject. Two lectures. Must be preceded or accompanied by Course 41 or 42. Two hours credit. First semester.

112. Applied Electrochemistry. Application of principles of electrochemistry to analytical and industrial processes. Two lectures. Prerequisite: Course 111. Two hours credit. Second semester.

113. Electrochemistry. Measurements of conductivity, resistance of primary and secondary cells, current by means of coulometers, single electrode potentials, overvoltage, transport numbers, electromotive force, including hydrogen electrode, and methods of electrochemical analysis. Laboratory work. Open to those who have completed or are taking Course 111. Two hours credit. First semester.

125. Chemistry of Colloids. In this course the student will be given the fundamental principles of colloid chemistry. Two lectures. Open only to those obtaining permission of the instructor. Two hours credit. First semester.

127. Chemistry of Colloids. An application in the laboratory of the principles of colloid chemistry. Laboratory work. Must be preceded or accompanied by Course 125. Two hours credit. First semester.

131. Physico-Chemical Measurements. A continuation of Course 43. The work includes electrical measurements such as conductivity, transport numbers, and electromotive force, work with the hydrogen electrode, experiments with colloids, and the determination of some of the more important physico-chemical constants. One to four hours credit. Each semester.

132. Advanced Theoretical and Physical Chemistry. A continuation of Course 41. Special attention is given to rate of
chemical reactions and chemical equilibria. The work includes a study of the principles of thermo-chemistry, applications of the phase rule, and a brief survey of recent advances in the field of physical chemistry. Two lectures. Two hours credit. Second semester.

145. Advanced Quantitative Analysis. Application is made of the principles laid down in Course 57 to the analysis of some technical products, including coal, iron, and other ores, a silicate rock, and ferrous and non-ferrous alloys. Lectures and quiz, twice a week; laboratory, two or three periods a week. Prerequisites: Course 57 and Physics 36. Four or five hours credit. Each semester.

147. Special Problems in Quantitative Analysis. A study of some of the more difficult and uncommon problems of quantitative analysis. The student is left largely to his own resources. Laboratory work. Prerequisite: five hours of Course 145. Five hours credit. Each semester.

163. Advanced Organic Chemistry and Ultimate Analysis. Laboratory work and reading. Prerequisites: Courses 67 and 69. Two to five hours credit. Each semester.

165. Advanced Organic Chemistry. Two lectures, and reading. Prerequisites: Courses 67 and 69. Two hours credit. First semester.

166. Advanced Organic Chemistry. Two lectures, and reading. Prerequisites: Courses 67 and 69. Two hours credit. Second semester.

242. Physico-Chemical Methods in Analytical Chemistry. Lectures and laboratory work. Prerequisites: Courses 41 and 145. Two hours credit. Second semester.

Summer Session

Courses 3, 6, 17, 34s, 41, 43, 57, 63, 65, 69, 103, 105, 111, 125, 127, 131, 145, 147, 153, 163, 166, as described for the regular session, will be given in the Summer Session of 1929.

57. ECONOMICS

Professors Sharfman, Paton and Remer; Associate Professor Goodrich; Assistant Professors May, Peterson, Watkins, Caverly, and others.
Courses 53 and 54 listed below are of particular interest to those students in the College of Engineering who wish to have a general survey of economics and do not expect to take any considerable program in the subject. In addition, there are enumerated a number of courses in economics which will prove of interest and value to such students of Engineering as are able to devote a larger amount of time to outside fields of study. For a more detailed announcement of these courses and for additional courses in the field of economics, consult the Annual Announcement of the College of Literature, Science, and the Arts.

Students who elect any course without first completing the necessary prerequisites will be denied credit in that course.

51. Principles of Economics I. This course and Course 52 constitute a general course in the principles of economics which usually precedes all other courses in economics except Courses 53, 54, 153, and 155. Courses 51 and 52 should be elected by all students expecting to take any considerable program in the field of economics. Three hours credit. Each semester.

52. Principles of Economics II. A continuation of Course 51, by which it must be preceded. Three hours credit. Each semester.

53. General Economics I. This course is designed to meet the needs of students, particularly in professional departments, whose work lies chiefly outside the field of economics, but who desire a general course in economic principles and problems. Opening with a brief description of present-day industrial organization, the course will consider the fundamental economic principles of production, exchange, and distribution. It will then examine the application of these principles to current problems of labor, money and banking, public utilities, trusts, and taxation. This course should be followed by Course 54. No student will receive credit for both this course and Course 51, or Course 153. Three hours credit. First semester.

101. Money and Credit I. This course undertakes an analysis of theories of money and credit, of bank operations and their relation to production and capital supply, and of the relationship between bank credit, money, and prices. Attention is given to monetary and banking history in the United States, and a preliminary study is made of the organization of the Federal Reserve System. This course should be followed by Course 102. Prerequisites: Courses 51 and 52, or 53 and 54. Three hours credit. First semester.
102. Money and Credit II. This course is a continuation of Course 101. It includes study of foreign exchange and outstanding foreign banking systems. More intensive study is made of the actual operation of the Federal Reserve System and the war and post-war problems of the Federal Reserve Board. *Prerequisite: Course 101.* Three hours credit. Second semester.

121. Labor. This course is intended as an approach to the understanding of the problems of the workers and of the problem of labor unrest. After an introductory account of the rise of permanent wage-earning groups, it will consider the conditions under which these workers live and work in terms of such problems as wages, monotony, and insecurity; and it will discuss the importance of turnover, canny, strikes, and the growth of the labor movement as indications of industrial unrest. In conclusion, it will point to the directions in which different groups are looking for the solution of these problems. Discussion and occasional lectures. *Prerequisites: Courses 51 and 52, or 53 and 54.* Not open to students who have had a previous course in labor. Three hours credit. First semester.

131. Industrial Combinations. This course is primarily concerned with the relationship of the state to the organization and functioning of commercial and industrial enterprises. After a brief consideration of the forms of business association, with special reference to the nature and significance of the corporate organization of industry, it traces the development of the combination movement in its various aspects, attempts to discover the basic causes and significant effects of concentration of control, examines the character and forms of "unfair competition," and subjects to detailed analysis the evolution of public policy toward combination, co-operation, and the plane of competitive conduct. *Prerequisites: Courses 51 and 52, or 53 and 54.* Three hours credit. Second semester.

133. Railroads. This course is designed to acquaint the student with the underlying principles of railroad economics and with the system of public control of railroads which has been developed in the United States. It considers the social and industrial significance of the transportation function, traces the course of American railroad development, examines the legal and economic characteristics of the railroad industry, analyzes the principal railroad problems which have emerged in the United States, and undertakes a detailed study of the character and development of government regulation. *Prerequisites: Courses 51 and 52, or 53 and 54.* Three hours credit. First semester.
153. **Elements of Economics.** For students having time for only one course in economics. The more significant laws and relationships of modern industrial society are explained and illustrated with the idea of furnishing the student a body of principles of use in interpreting current situations. The organization of production, monopoly, money and credit, banking, foreign trade and the tariff, distribution of wealth and income, government regulation of industry, and problems of labor, are among the subjects treated. Students planning to take an extended program in economics should take Courses 51 and 52. Three hours credit. Each semester.

171. **Principles of Accounting I.** This course consists primarily in a study of the fundamentals of the double-entry system and an examination of the principal technical devices of accounting in terms of typical business transactions and conditions. Special attention is given to periodic adjustments, to the construction of simple financial statements, and to the classification of accounts for managerial and other purposes. Three hours credit. First semester.

172. **Principles of Accounting II.** This is a continuation of Course 171. It includes practice in the construction of working sheets, a study of the principal types of income statements and balance sheets, a survey of the problems of valuation and income determination, a consideration of partnership accounting, and an introduction to corporation accounting. Three hours credit. Second semester.

173. **Elements of Accounting.** The subject matter of this course is a condensation of that offered in Courses 171 and 172. Unless special permission is granted it does not qualify for admission to any course in the Department of Economics or in the School of Business Administration for which Courses 171 and 172 are the regular prerequisite. *Primarily for seniors, graduates, and students in their last semester of residence, whose chief interest is in other departments but who wish to have some knowledge of accounting; and it may be elected by others only with the consent of the instructor.* Prerequisites: Any introductory course, or permission of instructor. Three hours credit. Each semester.

175. **Economic Statistics I.** This course and Course 176 are designed to cover the elements of statistical analysis as applied to economic data. The topics to which most attention is given in the first semester's work are frequency distributions, averages, dispersion, and correlation. Students who have had Mathematics 49 may take this course also for credit, but Mathematics 49 is not a prerequisite. Lectures, two hours per week,
ENGINEERING MECHANICS

and three hours of laboratory work. **Prerequisites:** Courses 51 and 52, or 53 and 54. Three hours credit. First semester.

176. Economic Statistics II. This course is a study chiefly of time series in economic data, with an analysis of the business cycle, and index numbers. Also some of the topics of the first semester's work will be reviewed and carried further. Students who have had Mathematics 50 may take this course, but it is not a prerequisite. Two hours a week of lecture and three hours of laboratory work. **Prerequisites:** Economics 175 or Mathematics 49. Three hours credit. Second semester.

177. Elements of Statistics. This is an attempt to present in one semester, for those who cannot give more time than that, the most important ideas and methods studied in Courses 175 and 176. For students who have had Mathematics 49 and can take only one semester's work in economic statistics, Course 176 is a better choice than Course 177. Two hours of lecture or quiz each week and two hours of laboratory work. **Prerequisites:** Courses 51 and 52, or 53 and 54. Three hours credit. Each semester.

181. Elements of Public Finance. This course consists of a brief survey of the entire field of public finance, including taxation. **Prerequisites:** Courses 51 and 52, or 53 and 54. Three hours credit. First semester.

182. Taxation. This course offers an opportunity for more intensive study of the field of taxation than is possible in Course 181. **It is open only to students who have completed Course 181 or its equivalent.** Three hours credit. Second semester.

Summer Session

Courses 51, 52, 101, 121, 131, 133, 134, 153, 173, 177, and 179 were offered during the Summer Session of 1928. Similar courses will be given during the Summer Session of 1929.

58. ENGINEERING MECHANICS

Professors Patterson, Menefee, Van den Broek, Timoshenko, and Stevens; Assistant Professors Swinton, Olmsted, Liddicoat, Dodge, Franklin, and Donnell.

Engineering Mechanics is the subject which, probably more than any other, tests the student's ability to use the technical training given him in preceding courses and at the same time prepares him for what is to follow.
No definition of engineering, from whatever angle given, is complete without some reference to forces. It is in mechanics that the student is given the engineer's conception and methods of handling forces. This is accomplished by

(a) A general required four-hour course in fundamentals, definitions, and conceptions of the ways in which mathematics, analytical and graphical, may be used with the laws of equilibrium, to solve problems dealing with the various phases of forces, followed by

(b) A required three-hour course on strength and elasticity of materials, supplemented by a one-hour elective course in the laboratory.

(c) A required two-hour course in dynamics, supplemented by a one-hour elective course in the laboratory.

(d) A required three-hour course in hydro-mechanics with a demonstration room for illustrating principles of stream line flow, channel and weirs, pipe flow, orifices, etc.

Library. The general engineering library has books for collateral reading and study in mechanics.

The Physical Testing Laboratory occupies two adjoining large rooms with entrance at Room 102, West Engineering Building. The equipment comprises a 50,000-pound, a 100,000-pound, and a 200,000-pound tension-compression machine, a 230,000-inch pound torsion machine with jaws for taking specimens 2\(\frac{1}{8}\) inches in diameter, an Olsen impact machine, an Upton Lewis endurance tester, an electrically driven bar bender for bars up to 2\(\frac{1}{8}\) inches diameter, a Brinell hardness tester, a wire tester, a transverse bending machine for cast iron arbitration bars and other short demonstration beams, a nine-foot transverse bending machine and a power saw and grinder, an electric furnace, a polishing table and wheel with photographic equipment, and cement testing equipment for all standard cement tests.

2. Strength and Elasticity of Materials. A study of the application of mathematics and principles of mechanics to solution of problems in stress and strain on engineering materials, including resistance to direct force, bending, torque, shear, eccentric
load, deflection of beams by area moment method and compounding of simple stresses. Recitations, lectures and problems. **Prerequisite:** Course 1. Three hours credit. Each semester.

2a. Laboratory in Strength of Materials. (Elective.) Experiments with beams, struts, shafts, and engineering materials, supplementing text work. Attendance at laboratory once each week. **Prerequisite:** Course 1. **Must be accompanied or preceded by Course 2.** One hour credit. Each semester.

3. Dynamics. All motions of a particle, dynamics of moving bodies, Newton’s Laws, simple harmonic motion, balancing, pendulums, impulse and momentum, gyroscopy and work and energy. Recitations, lectures, problems. **Prerequisite:** Course 1. Two hours credit. Each semester.

3a. Experimental Dynamics. Experiments with acceleration, vibration, balancing and gyroscopics. One hour laboratory period, with report, each week. **Must be preceded or accompanied by Course 3.** One hour credit. Each semester.

4. Hydromechanics. Pressures, centers of pressure, gages, effects of translation and rotation, Bernoulli’s Theorem, orifices, tubes, weirs, pipes, open channels, meters, dynamic action of jets and streams. Recitations, lectures in Hydraulic Demonstration Room, problems. **Prerequisite:** Course 1. Three hours credit. Each semester.

5. Materials Testing. (Required only of Architectural Engineers.) History of rapid development of the science; correlation with mechanics; study of testing machines, calibration, and particular function. Written reports, special emphasis on technique of report writing, and graphic presentation and interpretation of data. Laboratory work devoted to tests on steel, iron, wood, brick, and structural materials, including standard cement tests, water ratio theory, voids in sand and gravel, reinforced and unreinforced concrete beams, and granular metric analysis of sand. Lectures, laboratory, reports. **Prerequisite:** Course 2. Two hours credit. Each semester.

7. Research in Testing Materials. **Prerequisite:** Course 2. Credit to be arranged. Each semester.

8. Advanced Dynamics. Lectures, problems. **Prerequisite:** Course 3. Two hours credit. Each semester.

9. Advanced Strength of Materials. Lectures, problems. **Prerequisite:** Course 2, with a grade of B. Two hours credit. Each semester.

10b. Research in Theory of Structures. Special problems such as arches, arch dams, suspension bridges, elastic stability of columns and framed structures, impact effect and vibration of bridges. Credit to be arranged. Each semester.

11. Dynamics. Two hours of credit in this course applies for credit in Course 3; the remaining hour is credited as advanced studies and demonstrations. Prerequisite: Course 1. Three hours credit. Each semester.

12. Vibration Problems in Engineering. Vibration of systems with one degree of freedom. Balancing of rotating machines; calculation of critical speeds of rotating shafts; theory of vibration-recording instruments; springs of variable flexibility. Systems with several degrees of freedom, and elastic bodies. Vibration of cars; torsional and lateral vibration of shafts; vibration of beams; vibration of bridges, turbine blades, and turbine discs. Prerequisite: Courses 1, 2, and 3, Mathematics 105. Two hours credit. First semester.

14. Stress Analysis in Machine Parts. Prerequisite: Course 2. Two hours credit. Second semester.

15. Theory of Thin Bars, Thin Plates, and Slabs. With application to the solution of such problems as bending of beams on elastic foundation and track stresses; combined bending and tension or compression; buckling of solid, tubular, and built-up columns under various conditions; buckling of thin plates, such as flanges and webs of built-up sections, and the web of a plate girder; bending of slabs under various conditions, with application to highway and structural engineering. Two hours credit. Second semester.
ENGLISH 87

17. Library Research. Devoted to the history and development of modern engineering practices. Prerequisite: Course 1. One or two hours credit. Each semester.

Summer Session

Courses 1, 2, 2a, 3, 4, 5, 12, 13, and 15 will be given during the Summer Session of 1929.

59. ENGLISH

Professor Nelson; Associate Professor Schneider; Assistant Professors Thornton, Wenger, Egly, Walton, Brackett, and Dahlstrom; Mr. Burklund, Mr. Johnson, and Mr. Young.

The work in English is based on the assumption that the student of engineering and of architecture needs to be able to speak and to write effectively. It is further assumed that he needs, as a means of wholesome and sensible enjoyment, as well as a means of extending his fund of ideas, a real and intelligent interest in reading. The general courses have, therefore, naturally grouped themselves under two heads, those which aim to develop the student's ability to express himself (Courses 1, 2, 3, 4, and 7); and those which aim to deepen his natural interest in books, and to make him more discriminating and critical (Courses 14, 20, 21, 22, 23, 24, 25, 26, 27, 29, and 30).

There are, in addition to these general courses, two technical and special courses (Courses 5 and 6), which have been designed to meet the particular needs of the engineering student, and Courses 16 and 17, which have been planned to aid the foreign student in his special problem.

Facilities.—The English Department has a collection of about six hundred volumes at present located in an alcove in the Chemical Engineering Library on the third floor of the East Engineering Building. Originally intended for classes in English 14, the collection has been enlarged considerably to supplement the General Library where its resources were inadequate for the other reading courses offered by this department. Most of the books are for class assignment or reference, and a sufficient number of copies of the more expensive works has been provided to relieve the student of the burden of a heavy financial outlay in those courses requiring extensive reading in recent copyright books.
General Requirements.—All regular students in the Colleges of Engineering and Architecture are required to take six hours of English. In the College of Engineering this consists of Courses 1 and 2 and a two-hour writing course in the junior or senior year, which must be chosen from the following: Courses 5, 6, or 14. No other courses can be substituted.

In the College of Architecture the student may take in addition to Courses 1 and 2 any two-hour English course. This course may be taken at any time during the four years, unless the student elects one of the courses open to juniors and seniors only.

Special Requirement for Foreign Students.—All students whose native language is other than English shall, upon matriculation and enrollment in these colleges, be required to report at once to the Chairman of the Committee on English. Such students shall satisfy the Committee that they possess a sufficient knowledge of English to carry on work in these colleges before they may be classified. The rules further provide for the guidance of these foreign students until their knowledge of English is enough advanced for them to go on without further assistance.

All such students have laid out for them such a course in English, French, German, or Spanish as shall satisfy the modern language requirements for graduation. In the case of a foreign student, English may be substituted for another modern language, the maximum assignment being 17 hours, and it is understood that English shall be continued until the English faculty is satisfied that a good working knowledge of both written and spoken English is obtained.

The two special courses outlined for foreign students can be taken throughout the first year, the work being specially planned to meet the requirements of individual cases. If on completing any of these special courses the student can satisfy the English Department as to his pronunciation, his written idiom, and his ability to take dictation with reasonable accuracy, and if he is no longer hampered by his difficulties with English, he may be excused from the remaining special courses, provided that he take instead one of the regular composition courses offered for American students. This plan aims to economize the time and effort of the foreign student and to make sure that on graduation from an American university he may have a reasonable command of English.

Group I. Courses designed to assist the student to self-expression, and to prepare him for his special work:

1. Theme-Writing. Review of the fundamentals of composition; constant practice in writing, supplemented by study of
works of recognized literary quality. Weekly prepared themes, frequent impromptus. This course, which must be taken at the same time as Course 2, is a prerequisite for all courses in English, except Course 21. No foreign student may be classified in Course 1 without written permission from Professor Nelson. Three hours credit. Each semester.

2. Oral Exposition. Practice course in public speaking, which must be taken at the same time as Course 1. Two hours of class work. One hour credit. Each semester.

3. Public Speaking for Engineers. A study of the problems of organization, illustration, and effective presentation in public address, affording also frequent opportunity for practice and class criticism. Prerequisites: Courses 1 and 2. Two hours credit. Each semester.

4. Advanced Public Speaking. Twenty-minute speeches based on a careful study of specific problems; emphasis on organization of material and total speech effects. Prerequisite: Course 3. Two hours credit. Each semester.

5. Scientific and Technical Papers. The collection, organization, and presentation of scientific and technical material; emphasis upon methods of using illustrative devices and of interpreting technical subjects to non-technical readers and listeners. Prerequisites: Courses 1 and 2. Open only to juniors and seniors. Two hours credit. Each semester.

6. Report-Writing. The engineering report as a special type of exposition to which are applicable the fundamental principles of general exposition. Lectures, conferences, daily exercises, and two major assignments correlated as closely as possible with the technical work of the student. Prerequisites: Courses 1 and 2. Open only to seniors. Two hours credit. Each semester.

7. Argumentation and Debate. Study of problems most commonly met by engineers in furthering their projects; emphasis on clear, logical thinking, and convincing argument; frequent opportunity for extemporaneous presentation of material. Prerequisite: Course 3. Two hours credit. Each semester.

14. The Engineer and His Reading. Readings in literature dealing with the problems and tendencies of modern society, which are the subject of the written work of the course. Lectures, discussions, frequent written reports. Prerequisites: Courses 1 and 2. Open to juniors and seniors. Two hours credit. Each semester.
Group II. Courses especially designed for foreign students:

16. English for Foreign Students. Correction of individual speech defects; dictation; drill on vocabulary and pronunciation; practice in conversation and in writing. Four hours of class work. Two hours credit. First semester.

17. English for Foreign Students. A continuation of English 16 for those foreign students whose knowledge of the language is still insufficient to enable them to enroll in Course 1; drill in phonetics, reading, writing of themes, and conversation. Four hours of class work. Two hours credit. Second semester.

Group III. Courses designed to interest the student in reading and to develop a standard of critical judgment:

20. Studies in Literary Masterpieces. Introduction to works of exceptional merit in the various literary types. Lectures, discussions, and reports. Prerequisites: Courses 1 and 2. Two hours credit. Each semester.

21. Readings in Contemporary Literature. Rapid reading of representative works by outstanding authors of America, England, and continental Europe; study of these works as the expression of the spirit and ideals of modern life. Lectures, reports, recitations. Two hours credit. Each semester.

23. The Contemporary Novel. A study of outstanding American and European novels of the present generation with emphasis upon their social significance, literary form, and stylistic qualities. Lectures, reports, discussions. Prerequisites: Courses 1 and 2. Two hours credit. Each semester.

24. The Short Story. Reading and analysis of a large number of short stories with a view to defining the literary genre, tracing its development, noting present tendencies, and formulating standards of judgment. Lectures and recitations. Prerequisites: Courses 1 and 2. Two hours credit. Each semester.

25. Studies in the Drama. Introduction to the drama as a type of literature; reading of representative Greek, French, German, and English plays. Prerequisites: Courses 1 and 2. Two hours credit. First semester.

26. The Contemporary Drama. Study of the modern drama since the plays of Ibsen; emphasis on the development of intelligent standards of judgment and their application to the criticism.
of the contemporary theater. Lectures, discussions, oral and written reports. **Prerequisites:** Courses 1 and 2. Two hours credit. Each semester.

27. **Scientific Reading.** The literature of pure science; review of the work of the great historic figures in the scientific field, and readings from more recent and contemporary scientists. **Prerequisites:** Courses 1 and 2. Two hours credit. Each semester.

29. **Studies in American Prose Literature.** A rapid reading of the works of representative American essayists, dramatists, and writers of fiction, with emphasis upon their literary form, historical associations, and portrayal of American life. Lectures, reports, discussions. **Prerequisites:** Courses 1 and 2. Two hours credit. Each semester.

30. **Studies in Shakespeare.** Rapid reading and study of eight of the principal plays with a view to awakening keen and intelligent enjoyment. **Prerequisites:** Courses 1 and 2. Two hours credit. Each semester.

Summer Session

Courses 1, 2, and 14 will be given during the Summer Session of 1929.

60. **FINE ARTS**

(History of Art)

Associate Professor DONALDSON; Miss ADAMS

The courses offered in this Department purpose to give the student a comprehensive survey of the origin and development of the fine arts. Chief emphasis is placed upon the evolution of architecture, sculpture, and painting from prehistoric times to the present. The approach to the subject matter is essentially historical.

Course 101 is the prerequisite for all advanced courses and covers the material up to the general period of the Renaissance.

Five courses are devoted to the Renaissance in Italy, France, and Spain, with one course covering Oriental art and one dealing with American art.

Students who elect these courses must report at Room B, A.M.H. between 10 and 12 or between 2 and 5 on registration days, for enrollment in class.

101. **General Introductory Course in the History of Art.** An investigation of the rise and development of the fine arts from prehistoric times to the Renaissance. A brief historical survey,
intended both as a general cultural course and as a background for the further study of particular periods or phases of art. Illustrated lectures, required reading, and written tests. Open to sophomores, juniors, and seniors only. Three hours credit. Each semester.

114. The Renaissance in France. The history of the fine arts in France from the fifteenth to the twentieth century. Illustrated lectures, required reading, and written tests. Open to juniors and seniors who have completed Course 101 with a grade of B or better. Two hours credit. First semester.

115. Italian Renaissance Architecture and Sculpture. The history of architecture and sculpture in Italy during the late fourteenth, the fifteenth, the sixteenth, and early seventeenth centuries. Illustrated lectures, required reading, and written tests. Open to sophomores, juniors, and seniors who have completed Course 101 with a grade of B or better. Three hours credit. Second semester.

117. The Renaissance in Spain. The history of the fine arts in Spain, from the fifteenth through the nineteenth century. Illustrated lectures, required reading, and written tests. Open to sophomores, juniors, and seniors who have completed Course 101 with a grade of B or better. Two hours credit. Second semester.

118. American Art. The history of architecture, sculpture, and painting in the United States from colonial times to the present. Illustrated lectures, required reading, and written tests. Open to juniors and seniors who have completed Courses 101 and 114, 115 or 117 (preferably 115) with a grade of B or better. Three hours credit. First semester.

130. Central Italian Renaissance Painting. A study of the development and character of painting in Central Italy from the Byzantine period to the nineteenth century, with special attention to the Florentine School of the fifteenth century. Illustrated lectures, required reading, and written tests. Open to juniors and seniors who have completed Course 101 with a grade of B or better. Two hours credit. First semester.

135. North Italian Renaissance Painting. A study of the development and character of painting in Northern Italy from the Byzantine period to the nineteenth century, with special attention to the Venetian School. Illustrated lectures, required reading, and written tests. Open to juniors and seniors who have completed Courses 101 and 130 with a grade of B or better. Two hours credit. Second semester.
150. Oriental Art. An introduction to the fine arts of the Near East and Far East. A historical review of architecture in Mohammedan countries and of architecture, sculpture, and painting in India, China, and Japan. Illustrated lectures, required reading, and written tests. *Open to juniors and seniors who have completed Course 101 and one course in the Renaissance with a grade of B or better.* Two hours credit. Second semester.

61. FORESTRY AND CONSERVATION

Professors Dana, Matthews, and Allen; Associate Professors Young, Graham, Kynoch, and Craig; Assistant Professors Jotter, Baxter, Whitney, Dearborn, and Wight.

All forestry courses are given in the Natural Science Building and in the Wood Utilization Laboratory.

31. Introduction to Forestry. Economic and social importance of forestry. History of forestry in the United States and abroad. Character, distribution, and utilization of our timber resources. Factors influencing tree growth. How the forest is reproduced and cared for. Influence of forests on climate, streamflow, and erosion. Forestry as a profession. Two lectures. *Open to all students except candidates for a degree in forestry.* Professor Young. Two hours credit. Each semester.

33. Identification of Trees and Commercial Woods. Identification of our native trees and of the woods in common use. One laboratory or field period and outside reading. *Open to all students except candidates for a degree in forestry.* Limited to two sections of fifteen students each; those desiring to take the course should consult the Recorder of the School of Forestry and Conservation as promptly as possible. Mr. Mc Ardle. Two hours credit. Each semester.

39. Conservation of Wild Life. This course considers wild animal life from the standpoint of a valuable natural resource, and discusses the principles and methods applicable to its preservation and use. Our native animals are shown to constitute an economic and social asset of great importance, both in intensively managed forests and in national and state parks and wilderness. Emphasis is laid on the extent of these resources, their intelligent administration, and their relation to the public. Two lectures. Assistant Professor Wight. Two hours credit. Each semester.

163. Wood-Using Industries of the United States. Wood-using industries of the United States; location and economic importance; kind, amount, and source of wood used by representative industries; methods and costs of manufacture; marketing and utilization of finished product. Three lectures. *Prerequisite:*
94

COLLEGE OF ENGINEERING

Forestry 162. Professor Craig. Three hours credit. First semester.

165. Structure and Properties of Wood. Structure of our native woods, with special reference to identification and properties; relation of properties to industrial utilization. Two lectures and two three-hour laboratory periods. Prerequisite: Physics 35, and preferably Botany 35. Professor Kynoch. Four hours credit. First semester.

167. Timber Mechanics. Study of the mechanical properties of woods and of the methods used in obtaining data on these properties; practical application of strength data. The laboratory work includes standard strength tests on native woods in a well-equipped timber-testing laboratory. One lecture and one laboratory period. Prerequisite: Forestry 165. Professor Kynoch. Two hours credit. First semester.

168. Chemical Utilization of Wood. Use of woods for the making of pulp and paper, artificial silk, and other cellulose products, and for distillation and miscellaneous products. Two lectures, with occasional one-hour laboratory period. Prerequisites: Forestry 165 and Chemistry 5 or 6. Professor Kynoch. Two hours credit. Second semester.

187. Plantation Management in the Tropics. Economic and administrative problems of plantation management in the tropics, with special attention to rubber production. Selection and administration of large land holdings in the various countries of the tropics; labor and other practical problems involved. Valuation of tropical land and timber properties. Two lectures. Open only to juniors, seniors, and graduate students. Professor Matthews. Two hours credit. First semester.

194. Conservation of Natural Resources. Natural resources of the United States in land, forests, minerals, and water; their contribution to the economic and social development of the country; importance and methods of conserving them; Application of the conservation philosophy to human resources, labor, industry, and commerce in general; its importance as the basis of permanent national prosperity. Three lectures. Prerequisite: Economics 51, 53, or 153. Professor Allen. Three hours credit. Second semester.
GEOLoGY

Professor Hobbs and others

The Department of Geology is located in the Natural Science Building, occupying the northern half of the eastern front and extending through the four floors of the building.

31. Physical Geology. A general course leading to an understanding of the principles of physical geology; required of students of Civil Engineering and Geodesy and Surveying, and open to others as an elective. Lectures M, F, at II and one-hour quiz, Tu, at 10 or II, W, at 10 or II, and Th, at II. Two hours of laboratory per week, M, Tu, or Th from 3 to 5. In the second semester the Tuesday period is omitted. Professor Hobbs and assistants. Three hours credit. Each semester.

For other courses in Geology to which students of Engineering are eligible, see the Announcement of the College of Literature, Science, and the Arts. It is suggested that Courses 32 (Historical Geology), 131 (Soil Geology), 133 and 134 (Economic Geology), are especially useful courses for Engineering students.

Summer Session

Courses 31S, 32S, 105S, 201, and 206 or similar courses will be given during the Summer Session of 1929.

LANDSCAPE DESIGN

Professor Tealdi, Assistant Professor Whittemore

These courses are not open to those below the rank of junior.

101. Introduction to the Study of Landscape Design. Lectures, collateral reading, and reports. Course 101 is designed to give a general knowledge of the variety of problems to be met with in the practice of landscape design. It is not intended as a technical course, such as a course in construction or design. The general problems are treated separately and special stress is laid upon the subject of good taste and common sense in all problems, from the simple arrangement of the city yard to the laying out of a country estate. The lectures are illustrated by the use of the stereopticon. Two hours credit. First semester.

102. City Planning and Civic Improvement. Course 102 is offered with the express purpose of stimulating civic spirit and a desire for further investigation among those who would like to keep abreast of the movement for civic improvement and who are interested in its sane development. Among the subjects treated are the following: city layout, streets, bridges, squares, public buildings, parks, trees, and other natural assets; city nuisances,
problems of wires and advertisements as they affect the appearance of the city; dirt, smoke, and noise as they affect life in the city. Special stress is laid upon the housing problem, particularly as it is affected by the Garden City movement. Two hours credit. Second semester.

111. Professional Introductory Course. Course 111 includes a more technical presentation of the subject, time being devoted to the study of plans, elementary design, field trips, reports, etc. Three hours credit. First semester.

112. City Planning and Civic Improvement. This course includes a more technical presentation of the subject, time being devoted to the study of plans and elementary design. Reports and quizzes. It may be considered a practical introduction to city planning. Three hours credit. Second semester.

Summer Session
Courses 101, 102, 105, and 106 will be given during the Summer Session of 1929.

64. MECHANISM AND ENGINEERING DRAWING

Professors Miller, Goulding, and Finch; Assistant Professors Palmer, Hansen, Potts, Morley, Bukovsky, Clark, Cole, and Eichelberger.

Drawing Courses 1, 2, 3, and 4 carry the student through the subjects of elementary mechanical and machine drawing, descriptive geometry, drafting-room practice, sketching, and mechanism. These four courses have been arranged for the first semesters of the four-year curriculum in order that they may form a continuous chain of instruction that will, first, fit those students who continue during the third and fourth years to take up with the least difficulty and proceed with the maximum efficiency in the courses in design, etc., and second, be of the maximum assistance to that large percentage of students who do not continue longer than from one to two years. Instruction is also given in statistical charting and advanced mechanism.

Courses in elementary mechanical drawing and sketching especially designed for dental and medical students are offered as Drawing 1d and 1m.

A long sought aim of the Department has been realized in the reduction of its classes to fifteen men or less. This gives the opportunity of that personal contact and acquaintance between the instructor and his students that is of so great value. The work is conducted in well-lighted and well-equipped drafting-rooms, and all necessary facilities essential to the proper teaching of the subjects named are available.
1. Mechanical and Machine Drawing. The principles of orthographic projection; practice in the making of working drawings; correct drafting-room practice in conventional representation; the use of instruments; practice in lettering, free-hand for dimensions and notes, and mechanical for titles; reading and checking of drawings; drill on geometric constructions; instruction on blue and brown printing; practice in tracing; original drawing on vellum. Three two-hour drafting-room periods, three hours home work a week. Three hours credit. Each semester.

1d. Dental Drawing. Use of instruments; practice in lettering; practice in the making of working drawings, particularly of dental appliances; outline sketching of subjects of dental anatomy; pencil shading of sketches. Four hours drafting-room a week. One hour credit. Each semester.

1m. Medical Drawing. Use of instruments; practice in lettering; outline sketching of subjects of human anatomy; pencil shading of sketches; practice in the making of working drawings, particularly of medical appliances. Four hours drafting-room a week. One hour credit. Each semester.

2. Descriptive Geometry. Exercises, instruction, and drill through the medium of 80 printed plates of problems comprising combinations of the point, line, and plane, intersections, developments, tangent planes, and warped surfaces. Three two-hour periods drafting-room, three hours home work a week. Prerequisite: Course 1. Three hours credit. Each semester.

3. Mechanism and Sketching. Sketching of die-cast models in orthographic, isometric, and oblique projection; practice in the making of working drawings from sketches; free-hand lettering; special practice in, and applications of drawing. Two two-hour drafting-room periods, two hours home work a week. Prerequisite: Course 2. Two hours credit. Each semester.

4. Mechanism. Principles of mechanism; purposes of variations of elementary mechanisms, gears, cams, bands, etc.; analysis of special machines, process and history of their development and their economic importance; systematic development of complicated machines to accomplish specified purposes. Two two-hour drafting-room periods, two hours of home work a week. Prerequisite: Course 3. Two hours credit. Each semester.

5. Advanced Mechanism. Further instruction and drill in the development of complicated machines to accomplish specified purposes; proper description of designs for patent applications; history of development of type machines. Three hours drafting-room a week. Prerequisite: Course 4. One hour credit. Each semester.
12. Statistical Charting. Analytical methods of charting; construction, use, and analysis of statistical charts, and applications to industrial, social, transportation, or other statistical problems. Three hours drafting-room a week. Two hours credit. Each semester.

Summer Session

Courses 1, 1d, 2 and 3 will be offered during the Summer Session of 1929.

65. MILITARY SCIENCE AND TACTICS

Professor MELBERG; Assistant Professors LORD, BRICKER, SCHLOSSBERG, and TURNER.

The student elects his Military Science courses at the same time and place as he elects his other University courses and receives academic credit therefor which counts toward graduation. He also enrolls at the Headquarters, Reserve Officers Training Corps, on the campus. Students electing Military Science are excused from the required gymnasium work.

Enrollments are for a period of four semesters; that is, for either a Basic Group or an Advanced Group in its entirety. The first four semesters constitute the Basic Group, and the second four semesters the Advanced Group. Once enrolled in either group the completion of that group becomes a prerequisite to graduation unless the student is discharged from this obligation upon the recommendation of the Professor of Military Science and Tactics.

A deposit of ten dollars to cover property responsibility is required of each student.

Infantry.—Theoretical and practical work which will enable a student to understand and make proper use of infantry weapons and handle a company of infantry according to modern tactical principles. Open to anyone.

Ordnance.—For the first two years the student may follow any basic course. The Infantry is recommended. During the last two years he gets special technical training in design and manufacture of ordnance and methods of supply and maintenance. In view of the fact that the Ordnance Department is a technical and manufacturing branch of the Army, a student during the advanced course takes certain technical subjects in his own college which tend to make him more of a specialist in his own line, and therefore, of more value to the Ordnance Department. Open to prospective mechanical and chemical engineers.
Signal Corps.—After the first year, the student receives such instruction as will tend to make him expert in communication work. Open to prospective electrical engineers.

Course 1 is common to all units.

Course 2 is common to all units except the Signal Corps who take Course 12 second semester.

Upon election of a particular branch of engineering, R. O. T. C. students previously enrolled in an inappropriate unit may transfer to the unit to which their Engineering Department election makes them eligible without loss of credit.

The courses in Military Science and Tactics are designed to give a thorough groundwork in military subjects considered necessary as a part of the education of a commissioned officer in the Reserve Corps of the Army of the United States. Courses are offered in Infantry, in Ordnance, and in Signal Corps training organized as units of the Reserve Officers Training Corps, in which membership is limited to male citizens of the United States who are physically fit for service in the field.

While taking work in Advanced Group members of the R. O. T. C. receive payment of commutation of subsistence from the government amounting to over $200.

Students who enroll late may double up their courses. Four semesters' time must be put in, however, before they become eligible for payment of commutation.

In the Advanced Group, there is a summer camp of six weeks' duration. Attendance at the Advanced Camp is a prerequisite to graduation for students in the Advanced Group. Equipment is furnished and expenses at the camps are paid by the Government.

Successful completion of the courses in any unit of the R. O. T. C. will lead to a recommendation for a commission in the corresponding branch of the Officers Reserve Corps.

Enrollment in an R. O. T. C. Group is not an enlistment in a component of the Army nor does it carry with it any obligation for service at any time.

The following courses are given within the various units:

Signal Corps

Basic Group

1. Elementary Infantry. Same as Course 1, Infantry. One hour credit. First semester.

12. Elementary Infantry and Telephony. A general course of lectures and practical work in fundamental infantry subjects, such as guard duty, military courtesy and discipline, infantry drill,
ceremonies, hygiene, and military telephony. One lecture, one conference, and one one-hour drill period. One hour credit. Second semester.

14. Field Radio Sets. Recitations, lectures, and laboratory work. Installation, operation, and care of radio sets, sending and receiving. One lecture, one recitation, and one drill period of one hour each a week. One hour credit. Second semester.

ADVANCED GROUP

15. Signal Corps Organization and Tactics; and Signal Communications. Lectures and laboratory work in organization and tactics of the Signal Corps and the combined arms, and signal communications. Two lectures of one hour each, one laboratory period of two hours, and one drill period a week. Two hours credit. First semester.

16. Military Law; Military History and Policy; Company Administration; Field Engineering. Elements of common law, military law, moot court-martial, rules of land warfare, military policy, company organization and administration, supply and transportation, staff organization and duties, and field engineering. Two lectures of one hour each, one laboratory period of two hours, and one drill period a week. Two hours credit. Second semester.

17. Communication Engineering. Course 165 in Physics (Vacuum Tubes in Radio Communication) satisfies the requirements of this course. Two hours credit. First semester.

18. Communication Engineering. Course 10 in Electrical Engineering (Advanced Theory of Electrical Circuits) satisfies the requirement of this course. Two hours credit. Second semester.

Infantry

BASIC GROUP

1. Elementary Infantry. Infantry drill regulations, marksmanship, and military policy. One lecture, one conference and one drill period of one hour each a week. One hour credit. First semester.

2. Elementary Infantry, Continued. Fundamental subjects in military training, to include infantry drill regulations, military hygiene and first aid, scouting and patrolling. One conference, one lecture, and one drill period of one hour each a week. One hour credit. Second semester.
23. **Automatic Rifle; Musketry; Infantry Drill Regulations.** Practical work in construction, operation, and use of the Browning automatic rifle. Lecture and practical work in the use of the combined fire of several rifles and the automatic rifle. One conference, one lecture, and one drill period of one hour each a week. One hour credit. First semester.

24. **Combat Principles; Scouting and Patrolling, Drill and Command.** Theoretical and practical instruction in handling men, infantry organizations; training in the methods of gaining information of the enemy prior to and during combat. One conference, one lecture, and one drill period of one hour each a week. One hour credit. Second semester.

Advanced Group

25. **Command and Leadership; Military Map Reading and Sketching; Combat Principles.** Theoretical and practical instruction in handling men; lectures and practical work in reading and making military maps. One lecture, one drill period of one hour each, one laboratory period of three hours a week. Two hours credit. First semester.

26. **Machine Guns; 37 mm Gun and 3" Mortar, Drill and Command.** Lecture and practical work in machine gun, 37 mm gun, 3" mortar, and in the exercise of command appropriate to all grades. One conference, one drill period of one hour each, one laboratory period of three hours a week. Two hours credit. Second semester.

27. **Minor Tactics; Field Engineering; Drill and Command.** Lecture and practical work in the offensive and defensive combat of small units, tactical employment of infantry weapons, sand-table exercises, map and terrain problems. Disposition of infantry weapons and units for defensive combat. One lecture, one conference, one drill period of one hour each, one laboratory period of two hours a week. Two hours credit. First semester.

28. **Military Law; Military History and Policy, Administration, Drill and Command.** Elements of common law, military law, moot court-martial, rules of land warfare, military policy, company organization and administration. Two lectures, one drill period of one hour each, one laboratory period of two hours a week. Two hours credit. Second semester.

Ordnance

Advanced Group

35. **Ammunition.** Ammunition and explosives, pressure and velocity determinations. Two lectures and one drill period a week. Two hours credit. First semester.
36. **Materiel.** Small arms, guns, carriages, recoil and special mechanisms, tanks, tractors, and self-propelled mounts. Two lectures, one two-hour laboratory, and one drill period a week. Two hours credit. Second semester.

37. **Organization and Functions of the Ordnance Department.** The organization of the Army and the Ordnance Department, a study of the functions of the Field Service and Maintenance Divisions, Current Ordnance Problems and problems in Ordnance Design. Two lectures and one two-hour laboratory period, and one drill period a week. Two hours credit. First semester.

38. **Administration.** Military Law and Officers Reserve Corps regulations; Military History and Policy, Company Administration and Supply, Property Accountability, and Industrial Mobilization. Two lectures and one two-hour laboratory period, and one drill period a week. Two hours credit. Second semester.

General

Infantry Drill with Each Course.—Company drill for one hour a week is a required part of each course.

Rifle and Pistol Practice.—All R. O. T. C. students may practice on the indoor and outdoor ranges whenever practicable during scheduled periods. Membership on the R. O. T. C. Rifle or Pistol Teams depends on both excellence in marksmanship and compliance with the rules governing attendance at practice and competitions. Hours of practice to be announced.

Summer Camps

Advanced

Attendance at an advanced camp is required and is a prerequisite to graduation. Transportation, equipment, quarters, rations, and medical attention are furnished by the Government. In addition the student draws pay for the seventh grade (70c a day in 1928). Ample time and facilities are allowed for recreation. All Camps are of six weeks duration and begin about June 20th.

- Signal Corps—Fort Sheridan, Ill.
- Infantry—Fort Sheridan, Ill.
- Ordnance—Aberdeen Proving Ground, Md.
NAVAL AVIATION

(Department of Aeronautical Engineering)

The Navy Department, in connection with the Naval Aviation Reserve, offers through the University of Michigan a ground school course in aviation open to male students in all schools and colleges of the University who are citizens of the United States and who are able to pass a satisfactory physical examination.

This course is open to juniors and seniors only.

Upon successful completion of this course a student is eligible for selection for actual flight training leading to a commission as ensign in the United States Naval Reserve and qualification as Naval Reserve Aviator.

Flight training will be given in two forty-five day periods during the following summer or in two successive summers.

A detailed description of the course will be found below, and must be elected at the same time and in the same manner as other elective courses in the University. Preference will be given students who have completed the Basic Course in the R. O. T. C.

The course in Naval Aviation comprises ground school instruction in the following subjects: Practical Flying, Aviation Indoctrination, Navigation, Aerology, Theory of Flight, Structure and Rigging of Airplanes, Scouting, Aviation Engines, Radio, Aircraft Communication, Instruments, and Regulations. It is to be given as a continuous course during two semesters, allowing two hours credit for each semester. Total credit is four hours. Those electing the course must follow through both semesters.

Instruction is given by members of the Faculty of the University and by officers of the United States Naval Reserve. During the school year it is intended that students be given an opportunity to take flights in airplanes of the U. S. Navy.

Elementary flight training is given during a forty-five day period, to be held during the summer following completion of the course. For this duty the student is sent to an active Naval Reserve Aviation Unit, expenses paid.

Advanced flight training, held the same or succeeding summer, is to be given at the U. S. Naval Air Station, Hampton Roads, Virginia. Upon completion of the advanced training, comprising qualification in more advanced types of airplanes, machine gunnery, bombing, photographing, and scouting, the successful candidate is commissioned and designated Naval Reserve Aviator.

To those who volunteer for the service, a year's active duty with the Aviation Squadrons of the Atlantic and Pacific Fleets is offered. Thursday evening, 7:15 to 9:15. Two hours credit. Each semester.
67. MINERALOGY AND PETROGRAPHY

Professors Kraus, and Hunt; Associate Professor Peck; Assistant Professor Ramsdell; Dr. Slawson.

The Mineralogical Laboratory comprises thirty-six rooms located in the northwest portion of the Natural Science Building. A suite of five rooms, designed especially for research, is located on the first floor. Three of these rooms have light-tight shutters, and are provided with piers equipped with water, gas, compressed air, and alternating and direct currents. The packing, store, and grinding rooms are also on this floor. The mineral collection, lecture room, model and apparatus rooms, and an office are on the second floor. The laboratories for the courses in general mineralogy, blowpipe methods, and mineral and rock analyses, several offices, and a stock room are on the third floor. On the fourth floor are laboratories of lithology, petrography, crystal measurements, and physical crystallography, a small lecture room, and offices for the staff and advanced students.

The laboratory is well equipped with crystal models, natural crystals, and lecture and working collections of minerals, rocks, and thin sections. There is an excellent equipment of goniometers, polarization microscopes, and other crystallographic-optical instruments necessary for the thorough study of minerals. These instruments are all of the most modern and approved types. The blowpipe and chemical laboratories possess every facility for the qualitative and quantitative determination of minerals and rocks. The equipment of the laboratory is such that special attention can be given to graduate work and special investigation in mineralogy and petrology.

31. Elements of Mineralogy. Includes the elements of crystallography, and the physical and chemical properties, occurrence, uses, and determination of the more common minerals. Two lectures and two hours laboratory a week. Prerequisite: A knowledge of elementary inorganic chemistry. Two hours credit. Each semester.

32. Gems and Gem Materials. Lectures and demonstrations. This course discusses the general properties, occurrence, determination, and history of the various minerals used as gems and gem materials. The various methods of distinction, especially from imitations and synthetic gems, will also be considered. No previous training in mineralogy or the sciences is required, although an elementary knowledge of chemistry and physics is highly desirable. Students who have completed Course 31 may elect Course 32 as Course 34 and receive one hour credit. Two lectures a week. Two hours credit. Second semester.
33. Determinative Mineralogy. Laboratory work. This course is intended for students who have finished Course 31 and wish to become more proficient in the determination of minerals. Five hours laboratory work a week. Two hours credit. Each semester.

35. Elementary Chemical and Optical Mineralogy. Designed primarily for students of pharmacy and chemistry. The first half of the course deals with the common crystal forms and the important commercial minerals. The second half is devoted to the application of the petrographic microscope to the identification of chemical compounds. Two lectures and two hours laboratory work a week. Two hours credit. Second semester.

104. Useful Minerals, Building and Decorative Stones. Designed especially for students of Architecture. Three lectures, and two hours laboratory work a week. The first half of the course is devoted to the physical and chemical properties, uses and determination of the common rock-forming minerals, and of those ores from which the metals commonly used for building purposes are obtained. The second half is devoted to a discussion of the origin, modes of occurrence, description, and uses of the common rocks, with special emphasis upon those used for structural and decorative purposes. Prerequisite: a knowledge of elementary inorganic chemistry. Three hours credit. Second semester.

105. Qualitative Blowpipe Methods. The use of blowpipe reactions upon charcoal and plaster tablets, as well as other chemical methods useful in the determination of minerals. Two lectures and two hours laboratory work a week. Two hours credit. First semester.

107. Lithology. The lectures include, aside from a review of the rock-forming minerals, a discussion of the classification, origin, and methods of determination of the more important rocks. In the laboratory the student is required to determine by means of the macro-physical properties a large number of rock specimens. Two lectures and two hours laboratory work a week. Prerequisite: Course 31. Two hours credit. Second semester.

151. Quantitative Blowpipe Methods. Reading and laboratory work. Practice in assaying by blowpipe methods various kinds of ores, especially gold, silver, copper, and lead. Six hours laboratory work a week. Prerequisite: Course 105. Two hours credit. First semester.

Summer Session

Courses 31, 33, 105, and 107 will be offered in 1929. For other courses, see Announcement of the Summer Session.
The study of a modern foreign language is considered of particular value to the student in the technical school as it serves to broaden his outlook on life by introducing him to a new literature and a new civilization. With such an asset of a cultural and social nature added to his practical training, the student should represent the ideal type of university man possessing a well-rounded and complete education, beneficial both to himself and to society.

The aim of the instruction in French, German, and Spanish is to help the student to a reading, writing, and speaking knowledge of those languages. The object of the courses of the first two years is to familiarize the student with the forms and the construction of the languages and to furnish him with practice in reading and speaking them.

The object of the courses of reading in scientific literature is to acquaint the student with the terminology and special vocabularies of the various sciences, and thus enable him to consult books and periodicals bearing on his professional work with facility and profit. Many students read, beside the work assigned for the classroom, scientific articles in the numerous foreign periodicals to be found in the Engineering Library. This is of value to the student in the pursuit of much of his advanced work. In some of the more important courses in the College of Engineering a reading knowledge, at least, of one of these languages is required.

Elective courses of two types are offered: (1) advanced courses in the language studied for those who wish to pursue work beyond actual requirements, (2) general courses in foreign literatures for cultural purposes.

For graduation requirements in foreign languages see section 51.

French

2. Elementary French Continued. Grammar, composition, dictation, conversation; reading of selections from modern authors. Four hours credit. Each semester.

3. Intermediate French. Reading of modern French prose (short story, novel, or drama); composition based on a thorough
review of grammar; dictation and conversation. Four hours credit. Each semester.

4. **Outline History of French Literature.** Survey of French literature from its origin to modern times; illustrative readings in outstanding works from the seventeenth century to the twentieth. Lectures, discussions, oral and written quizzes. Four hours credit. Each semester.

For advanced elective courses consult the Announcement of the College of Literature, Science, and the Arts.

Summer Session

1s. **Beginners' Course.** Six hours credit.

1. **Beginners' Course.** Four hours credit.

German

1. **Elementary German.** Grammar, composition, reading, dictation and conversation. Four hours credit. Each semester.

2. **Elementary German Continued.** Grammar, composition, dictation, conversation; reading of selections from modern authors. Four hours credit. Each semester.

3. **Intermediate German.** Reading of modern German prose (short story, novel, or drama); dictation and conversation; grammar review to suit the needs of the class. Four hours credit. Each semester.

4. **Intermediate German Continued.** Reading of scientific literature and masterpieces of classical and modern writers (drama, novel, story); discussion, conversation, interpretation. Four hours credit. Each semester.

For advanced elective courses consult the Announcement of the College of Literature, Science, and the Arts.

Summer Session

Courses 1s, 2s, and other courses will be offered during the Summer Session of 1929.

Spanish

1. **Elementary Spanish.** Grammar, composition, reading, dictation, conversation. Four hours credit. Each semester.
2. **Elementary Spanish Continued.** Grammar, composition, dictation, conversation; reading of selections from modern authors. Four hours credit. Each semester.

3. **Intermediate Spanish.** Reading of modern Spanish prose (short story, novel, or drama); composition based on a thorough review of grammar, dictation and conversation. Four hours credit. Each semester.

4. **Intermediate Spanish Continued.** Reading of modern prose; composition with special emphasis on commercial correspondence. Four hours credit. Each semester.

For advanced elective courses consult the Announcement of the College of Literature, Science, and the Arts.

Summer Session

Courses 1, 2, and other courses will be offered during the Summer Session of 1929.

NAVAL AVIATION

For full information about the courses in Naval Aviation, see section 66.

69. **PHILOSOPHY**

For full information about the courses in Philosophy and Psychology, see the Announcement of the College of Literature, Science, and the Arts.

70. **SHOP PRACTICE**

Professor Boston; Associate Professor Campbell; Assistant Professor Gwiazdowski; Mr. Telfer, Mr. Grennan, and Mr. Glitzenhirn.

The object of the courses in shop practice is to acquaint engineering students with fundamental principles, modern methods, and industrial applications. Each course consists of classroom periods in which texts, notes, lectures, lantern slides, etc., are used, and laboratory periods during which the application of principles and methods are demonstrated. As occasion permits, trips are made to industrial plants to observe the practice which is treated in these courses.

The Engineering Shop Laboratories occupy four floors in the south wing of the East Engineering Building. Classrooms and locker rooms are arranged adjacent to the laboratories. Special care has been taken in the selection and arrangement of equipment to facilitate instructional and research work. A chemical labora-
tory is provided to aid in the control of foundry operations. An electric freight elevator serves all floors. Electric power is used throughout the laboratories, furnishing good examples of group and individual drives.

The Machine Tool Laboratory, 60 by 130 feet, is on the first floor and has been carefully arranged to demonstrate the two types of machine shop methods, tool room and production. One part of the laboratory contains one or more of each of the principal types of machine tools, such as lathes, planers, grinders, shapers, drilling and milling machines, boring mills, and broaching machines, also many others of more special types, used in tool rooms. In another part of the laboratory, the machines are arranged to give the student a perspective of the machines, tools, and methods used in the manufacture of articles in production. Machine tools for this purpose are the turret lathe, screw machine, automatic screw machine, punch press, die casting machine, drill presses, and milling machines equipped with jigs and fixtures, automatic gear cutters, etc. A third part of the laboratory is occupied by a grinding room which contains grinding, polishing, and buffing machines and auxiliary equipment. This room is connected with an air cleaning system. Centrally located in the laboratory and under the supervision of an attendant is a well-organized tool crib, 25 by 36 feet, containing a comprehensive equipment of measuring instruments, gages, and small tools for machine and hand use. Adjoining this tool crib and under the same supervision is a production room where material for mass production is stored. The equipment of the laboratory offers favorable opportunity for research work on the subject of forming and cutting metals.

The Instrument Shop on the second floor is equipped for fine instrument work. In this shop, research apparatus for the various departments of the University is constructed and also general service work rendered in the repair of equipment. This work is handled by a permanent staff of machinists and is independent of instruction given to students.

The Woodworking Laboratory, 45 by 60 feet, is located on the second floor. The north side of the laboratory contains the work benches and portable power-tools needed for hand work, together with the tools necessary for pattern making. On the south side, are arranged a variety of woodworking machines, making the laboratory a very complete unit. Adjoining the laboratory on the west side is the pattern and wood storage room.

The Metal Working and Treating Laboratory, 60 by 100 feet, on the third floor, is equipped with forty forges, a power hammer, lathes, shapers, grinders, drilling machines, and work benches. For instruction in heat treating, one electric furnace and five gas-fired
furnaces with necessary accessories are installed. The welding equipment consists of an oxy-acetylene welding outfit, electric arc welding and electric resistance welding equipment, a thermit welding outfit, and two brazing tables. A universal testing machine of 50,000 pounds capacity, Shore scleroscope, Rockwell hardness and Brinell hardness testing instruments are provided for instructional and research purposes. Nickel-plating and Parkerizing equipment are available for demonstrations.

The Foundry Laboratory, 60 by 130 feet, on the fourth floor, is divided into the melting, molding, core-making, and cleaning divisions. The melting equipment consists of an electric arc furnace of 200 pounds capacity, a 32-inch cupola, a 12-inch cupola and a crucible furnace. Special equipment is available for making castings in metal molds. Six standard types of molding machines are available for general uses. Benches, racks, ovens, and miscellaneous equipment are provided for the making of cores. The cleaning equipment consists of a sand-blast machine, tumbling barrels, and grinding stands. A cyclone air cleaning system is attached to all of these machines. Materials are delivered to the cupola charging floor by an electrically operated elevator. A two-ton electric traveling crane serves the molding floor.

Courses in Shop Practice

1. Woodwork. Bench, lathe, and simple pattern work. The work in this course may be selected to suit individual requirements. Two three-hour laboratory periods a week. Two hours credit. Each semester.

1d. Shop Practice for Dental Students. This course is designed to develop manual dexterity. The work includes metal cutting and polishing; forming and hardening tools; and the preparation of molds. The resources of the whole department are available for this purpose. One four-hour laboratory period a week. Second semester.

2. Metal Working and Treating. A study of the principles and practice applied to the working and treating of wrought iron and steel. One recitation and one three-hour laboratory period a week. Two hours credit. Each semester.

2a. Advanced Metal Working and Treating. Further work on subjects scheduled in Course 2 may be elected by making arrangements with the instructor.

3. Foundry. A study of the principles and practice applied to cast metals including gray iron castings, malleable iron castings, steel castings, and various types of non-ferrous castings. Two recitations and two three-hour laboratory periods a week. Pre-requisite: Course 2. Four hours credit. Each semester.
3a. **Advanced Foundry.** For those students who are especially interested in the foundry branch of engineering, advanced foundry instruction is offered on special problems. Arrangements are to be made with the instructor.

4. **Machine Shop.** Studies are made of the following subjects: the cutting of metals—lathe work, milling, drilling, reaming, tapping, broaching, grinding, polishing, and buffing—also gear cutting, jigs, special tools, standards, measuring instruments, gages, manufacturing lay-outs, automatic machines, cutting fluids, die-casting, punch and die work, spinning, as well as associated subjects, such as, industrial organization, accounting, stock records, standardization, time study, and routings. Two recitations and two three-hour laboratory periods a week. *Prerequisite: Course 2.* Four hours credit. Each semester.

4a. **Advanced Machine Shop Practice.** This course may be elected to suit individual requirements. Special topics incidental to machine shop practice, such as technique of processes, research work, and advanced tool-room work are included. Arrangements are to be made with the instructor.

6. **Pattern Making.** Construction of wood or metal patterns from working drawings. Classroom and laboratory to be arranged. *Prerequisite: Course 1.* Two hours credit. Each semester.

7. **Jig and Fixture Design.** Consists of drawing periods supplemented by assignments which treat of the principles underlying the design, construction, and application of such accessories to manufacture. Drawing periods to be arranged. Two hours credit. Second semester.

8. **Foundry Costs and Organization.** A study of foundry cost methods, foundry records, and standard instructions for foundry operations. Lectures and assignments. *Prerequisite: Course 2.* Two hours credit. Second semester.

10. **Aircraft, Materials of Construction.** (Also Aeronautics 17.) Designed for aeronautical engineering students, to acquaint them with the treatment of fabrics; the forming, gluing, and jointing of wooden parts; and the cutting, punching, bending, riveting, welding, brazing, heat treatment, and testing of steel tubular and duralumin parts and structures. Two three-hour laboratory periods a week. *Prerequisite: Course 2.* Two hours credit. Second semester.

Summer Session

Courses 1s, 2s, 2as, 3s, 3as, 4s and 4as will be given during the Summer Session of 1929.
ENGINEERING RESEARCH

Professor A. E. White, Director; Professor Nelson, Editor of Publications; Mr. Hutchings, Special Representative; Investigator Pettyjohn; Investigator Sellew, Supervisor of Investigations; Investigator Jominy; Assistant Professor Good, Assistant to the Director; Assistant Professor Walton, Assistant to Editor of Publications; Mr. Haines, Director of Publicity; Mr. Small, Assistant to the Director; Assistant Investigators Schneidewind, Philipp, Abbott, Thomas, Wolfe, Vincent, Osterhoe, Zuck, Clark, Durbin, Rickett, Partridge; Messrs. Headrick, Swartz, Herzig, Sicha, Truettner, Research Assistants.

The Department of Engineering Research was established in October, 1920, to afford an official department through which the laboratory facilities of the University, when not being utilized for instructional purposes, could be made available to the civic and technical interests in the State and elsewhere.

The Department does not offer course work to students in the University, but with the research problems brought to the University through the medium of the Department, opportunity is in many cases afforded graduate students to work on special research problems under the technical supervision of members of the faculty or the staff of the Department. These problems are of more or less practical and immediate value to the industries.

Besides such problems several fellowships are administered through this Department, although the actual technical work is done in the various departments of the College. At present these fellowships are:
- Michigan Gas Association Fellowship
- American Gas Association Fellowships (two)
- Natural Gasoline Association of America (three)
- Swenson Evaporator Co., Fellowship in Chemical Engineering

The function of the Department is largely administrative, the actual technical direction of the researches in most cases being in the hands of members of the regular faculty.

The facilities available through the Department include the libraries of the University and the engineering and other technical laboratories. The work in the laboratories is conducted by members of the staff connected with those laboratories, thus insuring a maximum of efficiency in their utilization.
72. THE GROUP SYSTEM OF ELECTIVE STUDIES

In July, 1912, there went into effect a complete revision of all the programs in Engineering by which it was made possible for a student in his senior year to have a much wider range of elective work than formerly. The new system provides that of the 140 hours of credit required for graduation, 125 to 131 hours are prescribed and 9 to 15 hours may be elected. These elections may be made from announced groups of study or from other courses approved by the head of the department.

The group system allows the student to receive his instruction in the advanced subjects from a specialist. It also permits a student desiring to take up a fifth year of study to specialize in some particular branch of engineering. A student in any group will be allowed to elect work in the other departments of engineering or in the other colleges or schools of the University, subject to the approval of the head of his department. A student desiring to obtain special scientific knowledge or special business training by building on the fundamental subjects of engineering may be allowed to elect scientific courses or courses in economics or business administration under the direction and approval of the head of his department.

Information regarding the several professional departments of the College of Engineering, facilities for instruction, requirements for graduation, schedules of study, etc., will be found in the following pages.

73. AERONAUTICAL ENGINEERING

Professors Sadler, Pawlowski, and Kerber; Associate Professor Stalker.

The work in this Department has been arranged to cover all problems entering into the design and construction of machines that utilize the air as their means of support and transportation. In this connection the two main types are classified in the following groups:
Heavier-than-Air Craft, which comprises a study of the general question of aerodynamics, problems relating to the lift and drag of various types of wing sections, the determination of stresses and the general design of structure for all parts of an aircraft, and the design of propellers and propelling machinery.

Lighter-than-Air Craft, which includes all studies similar to those mentioned above, but with special reference to this type of structure; together with the principles involved in balloons and dirigibles, and their navigation.

The Courses offered by the Department are arranged to cover the essentials of aerodynamics necessary for the proper understanding of the action of wings, propellers and problems connected with stability and maneuvering; and form the basis for the application of such studies to the design, construction and analysis of performance of all types of aircraft.

The Department of Aeronautical Engineering from its inception, has always realized that in the utilization of the air as a means of transportation, the problems confronting the designer and the future development in this field, must rely upon a thorough foundation of aerodynamic theory. As a preparation for this, and for design purposes, beside the usual mathematics, courses in theory of structures, mechanical engineering, including gas engine design and hydromechanics, also are essential. In the design of aircraft, the student is given a chance to apply such studies, so as to obtain the best solution to any given set of conditions.

The wind tunnel offers facilities for experimental work in all problems relating to this subject, and is available for research work for advanced students.

The Department is in constant touch with the Government and industrial concerns which demand well-trained men in this field. The development of this newest element in which a large part of high speed transportation must inevitably be carried on in the future, will continue to call for numbers of properly trained engineers, both in the design and research fields.

Aeronautics Laboratory.—The aeronautics laboratory proper comprises a large wind tunnel of the open throat type with double ducts for the return of the air flow. The cross section of the tunnel is an octagon and its minor diameter may be varied from eight feet to five feet. With the large diameter the wind velocity is one hundred miles per hour and models of 50 inches span can be tested. The laboratory is at present equipped with a wire balance, and another balance incorporating a rigid model support is under development. Facilities for instruction in the testing of model propellers are now provided and a dynamometer is being constructed to test propellers of as large a diameter as six feet.
Students taking Aeronautical Engineering regularly take work in the electrical, mechanical, strength of materials, and automotive laboratories. Work may also be elected in other special laboratories such as the naval tank.

Combined Courses have been arranged with Albion, Battle Creek and Olivet Colleges and the College of the City of Detroit. For detailed information see section 3.

Advice to Students of other colleges and universities, with regard to planning their courses before coming to the University, is to be found in section 14.

Military Science.—The attention of prospective students in aeronautical engineering is called to the Reserve Officers Training Corps. Students in aeronautical engineering are particularly well qualified to take the work offered in preparation for air service. Those who consider taking Military Science are urged to enroll at the beginning of their course. For further details see section 65.

CURRICULUM IN AERONAUTICAL ENGINEERING AND REQUIREMENTS FOR GRADUATION

Candidates for the degree of Bachelor of Science in Engineering, Aeronautical Engineering, are required to complete the curriculum detailed below. For the definition of an hour of credit see section 50.

a) Preparatory Courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1, and choice of English 5, 6, or 14</td>
<td>6</td>
</tr>
<tr>
<td>Modern Language and Cultural Electives</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 1, 2, 3, 4</td>
<td>18</td>
</tr>
<tr>
<td>Physics 45, 46</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 5</td>
<td>5</td>
</tr>
<tr>
<td>Drawing 1, 2, 3</td>
<td>8</td>
</tr>
<tr>
<td>Shop 2, Metal Working</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
</tr>
</tbody>
</table>

b) Secondary Courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shop 4, Machine Shop</td>
<td>4</td>
</tr>
<tr>
<td>Surveying 4, Use of Instruments</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Mechanics 1, Statics</td>
<td>4</td>
</tr>
<tr>
<td>E. M. 2, Strength and Elasticity</td>
<td>3</td>
</tr>
<tr>
<td>E. M. 3, Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>E. M. 4, Hydrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>C. E. 2, Theory of Structures</td>
<td>3</td>
</tr>
<tr>
<td>M. E. 2, Elements of Machine Design</td>
<td>3</td>
</tr>
</tbody>
</table>
M. E. 3, Heat Engines ... 4 hours
M. E. 5, Thermodynamics ... 3 hours
M. E. 6, Theory of Machine Design 4 hours
M. E. 7, Mechanical Laboratory 2 hours
M. E. 15, Internal Combustion Engines 3 hours
M. E. 32, Mechanical Laboratory 2 hours
E. E. 2, Elec. Apparatus and Circuits 4 hours
Ch. E. 1, Engineering Materials 3 hours

Total .. 49 hours
c) Technical Courses and Electives.
Aero. 1, General Aeronautics 2 hours
Aero. 2, Theory of Aviation 2 hours
Aero. 3, Theory of Design and Propellers 3 hours
Aero. 4, 4a, Aeroplane Design 4 hours
Aero. 5, Aeronautical Laboratory 1 hour
Aero. 6, Design of Aeronautical Motors 2 hours
Electives .. 12 hours

Total .. 26 hours

Summary:
Preparatory Courses .. 65 hours
Secondary Courses .. 49 hours
Technical Courses and Electives 26 hours

Total .. 140 hours

First Year

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>or Shop 2</td>
<td></td>
</tr>
<tr>
<td>and Engl. 1, 2</td>
<td>6</td>
</tr>
<tr>
<td>Math. 1</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>or Shop 2</td>
<td></td>
</tr>
<tr>
<td>and Engl. 1, 2</td>
<td>6</td>
</tr>
<tr>
<td>Math. 2</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 2</td>
<td>3</td>
</tr>
</tbody>
</table>

Total

16 or 17

16 or 17

†See sections 3 and 4.
*For the Modern Language requirement see section 51.
Courses in Aeronautical Engineering

1. General Aeronautics. Lectures and recitations. An introductory course giving the essential principles of aeronautics (balloons, dirigibles, ornithopters, helicopters, aeroplanes, helicopters, and kites), history of flight and description of modern aircraft. Open to all students. Two hours credit. Each semester.

For the Modern Language requirement see section 51.
2. **Theory of Aviation.** Lectures and recitations. The course deals with the following: general discussion of modern aerodynamical theories of lift and drag; the results of wind tunnel and flight experiments, and the performance of airplanes, including stability and balance studies. **Prerequisites:** Courses E. M. 1 and E. M. 3. Two hours credit. Each semester.

3. **Theory and Design of Propellers.** Lectures, recitations, and drawing. Theory of propellers and analysis of propeller performance on the Drzewiecki system; Eiffel's method of propeller analysis and graphical method of determining propellers for specified conditions; analytical and graphical methods of investigating the strength of propellers and influence of gyrostatic moments in quick turns. The student will design a propeller and analyze the distribution of stresses in the blades. **Must be preceded or accompanied by Course 2.** Three hours credit. First semester.

4. **Aeroplane Design.** Lectures and recitations. This course includes the investigation of the design of the aeroplane from the aeronautical and strength standpoints. The strength and design of all the details are discussed and a completed design prepared. **Must be preceded or accompanied by Course 3, and preceded by M. E. 6 and C. E. 2.** Two hours credit. First semester.

4a. **Aeroplane Design.** Continuation of preceding course. Drawing only. Two hours credit. Second semester.

5. **Aerodynamic Laboratory.** An elementary course covering use of instruments, investigation of aerodynamical properties of the various combinations of bodies and aerofoils used in aeroplanes and airships, test of propellers. **Must be preceded or accompanied by Courses 2 and 3, and preceded by M. E. 7.** One hour credit. Second semester.

6. **Design of Aeronautical Motors.** Lectures and drawing. Complementary course to M. E. 15 or M. E. 30, dealing with special features of the aeronautical motors, a more refined method of cam design, analysis of vibration and balancing of motors, critical study of various types of motors, and complete general plans of a motor of a certain type are prepared. **Prerequisite:** M. E. 15 or M. E. 30. Two hours credit. Second semester.

7, 8. **Lighter-than-Air Craft.** Lectures and recitations. This course is concerned with the following: aerostatics, and major aerodynamic and structural design problems of non-rigid, semi-rigid and rigid aircraft. Two hours credit. Second semester.

10. **Design of Aerodromes and Hangars.** Lectures, recitations, and drawing. Planning and equipment of aerodromes and aero-ports; study of construction of transportable and stationary
hangars. General plans of an airdrome are prepared. Prerequisites: Courses 2 and 7. Two hours credit. First or second semester if required.

11. Advanced Stability. Lectures and recitations. Advanced study of more complicated phenomena of stability according to Bryan with Bairstow's applications of experimentally determined resistance derivatives and rotary coefficients. Prerequisites: Course 2 and Math. 4b (Differential Equations). Two hours credit. First semester.

12. Seminary. Reading and reports on selected aerodynamical and aeronautical problems. Open only to graduates and seniors who receive special permission. A reading knowledge of French and German is most desirable. Credit to be arranged.

13. Advanced Design. Continuation of Course 4a, taking up some of the more complex or special problems. Open primarily to graduates. Credit to be arranged.

14. Research. Continuation of Course 5, offering an opportunity for students to pursue advanced experimental and analytical investigations of any problems in connection with aeronautics. The work of the course consists of investigations for securing data on the more difficult problems of aeronautics and mathematical interpretation of the results. Must be preceded by Math. 57 and 58. Open primarily to graduates. A reading knowledge of French and German is desirable. Credit to be arranged.

For information on flying, see Military Science and Tactics, and Naval Aviation.
74. ASTRONOMY

Professor CURTISS; Associate Professor ROSSITER*; Assistant Professors RUFS and McLAUGHLIN; Dr. MAXWELL, Mr. WILLIAMS, and Dr. LOSH.

The University Observatory is situated at the corner of Ann and Observatory Streets.

Its equipment includes a 37½-inch equatorial reflecting telescope, which is used for stellar spectrographic work; a 12½-inch equatorial refractor; a 6-inch meridian circle; a comet seeker; mean and sidereal clocks and chronometers, chronograph, theodolites, sextants, seismographs, computing machines, and measuring engines.

The Observatory Library contains about 3,000 volumes, devoted mainly to technical astronomy. It includes the more important works on theoretical and practical astronomy, many star catalogues, files of the leading astronomical periodicals, and the publications of the more important observatories.

The astronomical laboratory is located on the fifth floor and the roof of Angell Hall. The present equipment of this laboratory includes a 10-inch refractor, a 3-inch astronomical transit, 3 portable refractors, a planetarium, celestial globes and other smaller instruments. A 15-inch reflector, a horizontal solar telescope, and a second astronomical transit are to be added to this equipment in the future.

The Observatory maintains, through the generosity of Mr. Robert P. Lamont, 91E., a branch observing station, called the Lamont-Hussey Observatory, in Bloemfontein, South Africa. The equipment includes a 27-inch refractor and a six-inch visual and photographic telescope. The three observers at Bloemfontein are devoting their time to research in the field of visual double stars.

CURRICULUM IN ASTRONOMY

The first two years' work in any department of engineering constitutes good preparation for a curriculum looking toward the profession of Astronomy.

Candidates for the degree of Bachelor of Science in Engineering (Astronomy) are required to complete the following program of studies:

*Professor Rossiter is on duty as chief astronomer, Lamont-Hussey Observatory of the University of Michigan, Bloemfontein, Orange Free State, South Africa.
a) Preparatory Courses.

- English 1 and 2, and 5, 6, or 14: 6 hours
- Modern Language and Cultural Electives: 16 hours
- Mathematics 1, 2, 3, 4: 18 hours
- Physics 45, 46: 10 hours
- Chemistry 5: 5 hours
- Drawing 1, 2, 3: 8 hours
- Shop 2: 2 hours

Total: 65 hours

b) Secondary and Technical Courses.

- Engineering Mechanics 1, 3: 7 hours
- C. E. 2 or Drawing 4: 3 hours
- Geology 31: 3 hours
- Surveying 1, 2: 7 hours
- Surveying 5 or Astronomy 154: 2 hours
- Astronomy 31, 32, 33, 101, 151, 152, 201: 18 hours
- Geodesy 1: 3 hours
- Mathematics 105, 107 or 145, 146: 6 hours
- Physics 181, 186: 8 hours
- Psychology 31: 3 hours

Total: 60 hours

Summary:

- Preparatory Courses: 65 hours
- Secondary and Technical Courses: 60 hours
- Electives: 15 hours

Total: 140 hours

COURSES IN ASTRONOMY

Courses 31, 32, 33, 103, and 104 are recommended to those who wish to obtain a general knowledge of modern astronomy without entering far into its mathematical details. Courses 35, 101, 102, 154, and 201 are recommended to those who wish to obtain a knowledge of practical astronomy in its applications to engineering and geodesy.

Courses in addition to those mentioned below are listed in the Announcement of the College of Literature, Science, and the Arts. These include advanced work in theoretical astronomy, practical astronomy, and astrophysics. The larger instruments of the Ob-

*Students in this curriculum may satisfy the modern language and cultural requirement in the College of Engineering in the usual way, or they may elect twelve hours each of French and German.
servatory are intended primarily for research, and are available to that end to such students as have assigned problems requiring their use.

31. **General Astronomy. The Solar System.** A descriptive course, including the fundamental principles of astronomy, and a presentation of the leading facts concerning the sun, moon, planets, and comets. Three lectures or recitations, and one Observatory exercise. Three hours credit. Each semester.

32. **General Astronomy. Stars and Nebulae.** A descriptive course, devoted mainly to stars and nebulae, including the study of the sun as a typical star. Three lectures or recitations, and one Observatory exercise. Three hours credit. Each semester.

33. **Elementary Observational Astronomy.** Constellation studies and telescopic examinations of the heavenly bodies. Selected problems with the celestial globe and equatorial telescope. Laboratory period of three hours. *Open to those who have had or are taking Course 31, 32, or 35.* One hour credit. Each semester.

35. **Practical Astronomy.** The elements of spherical and geodetical astronomy, with practical applications. Theory of the determination of time, latitude, longitude, and azimuth. This course is intended primarily for students in Engineering. Recitations and problems. *Open to those who have had trigonometry and analytical geometry.* Two hours credit. Each semester.

101. **Practical Astronomy.** Studies in spherical astronomy. Theory of the meridian circle and equatorial and their use in observational work. This course includes observational work with instruments and the reduction of measurements. Recitations, practical problems. *Open to those who have had trigonometry and analytical geometry.* Three hours credit. Each semester.

102. **Navigation.** The principles of pilotage, dead reckoning, and nautical astronomy. Lectures based on Bowditch's *American Practical Navigator*, supplemented by practical problems, chart exercises, and sextant observations. *Open to those who have had plane trigonometry.* Three hours credit. Second semester.

154. **Least Squares.** Theory of the error curve and of the combination of observational data according to the Method of Least Squares. Recitations, problems. *Prerequisite: calculus.* Two hours credit. Second semester.

201. **Theoretical Astronomy.** The elements of celestial mechanics, and the determination of parabolic and elliptic orbits.
of comets and planets. *Prerequisite: calculus.* Three hours credit. First semester.

Summer Session

Courses 31s, 32s, 33s, 101, 103, 151, 152, and 207 will be given during the Summer Session of 1929.

75. CHEMICAL ENGINEERING

Professors A. H. WHITE, A. E. WHITE, BADGER, BRIER, UPTHEGROVE, WOOD, and BROWN; Assistant Professors BAKER, McCabe, and PETTYJOHN; Instructors CARR and SELHEIMER.

The chemical engineer finds his primary work in the design or operation of plants in which materials undergo chemical as well as physical changes. In our complex industries there must be specialization, and some chemical engineers become experts in design of equipment, some in the operation of particular manufacturing processes, and some in the development of processes from the laboratory to the manufacturing scale. The chemical engineer's work must be based on a thorough knowledge of chemistry but he is not a laboratory chemist. His relation to the chemist is very similar to that which the electrical engineer bears to the physicist. As is the case with all engineers, the mature chemical engineer may become a business executive, utilizing his scientific knowledge and manufacturing experience in directing industrial enterprises.

The activities of the chemical engineer do cover a broad field. He finds his work, not only in those industries usually thought of as purely chemical, such as the manufacture of acids, alkalis, and salts; but in such industries as the manufacture of sugar, paper, leather, rubber, soap, fuels, petroleum products, paints and varnishes, cement, plaster, glue, food products, dyes, textiles, and many others. The metallurgist and the ceramist are chemical engineers with specific training for their particular work.

The work of the chemical engineer is often thought of in connection with what are usually called "unit operations." These are such operations as heating, evaporating, filtering, distilling, crushing, extracting, drying, etc., as carried out on the commercial scale. Any manufacturing process with which the chemical engineer deals is made up of a sequence of such operations. It is in his knowledge of these that his distinction from the chemist is most marked; and his knowledge of processes differentiates the chemical engineer from the mechanical engineer.

The field is so broad that more or less definite subdivisions have arisen. Some of these are: metallurgical engineering, industrial engineering, and general chemical engineering.
Metallurgical Engineering embraces the extraction of metals from their ores, the melting, refining, alloying and casting, fabrication and heat treatment of metals, and their utilization in the various industries. The metallurgical engineer finds his field of endeavor not only in the industries involved directly in the production of metals and metal products but to an ever-increasing extent in the industries utilizing and dependent for their existence on metals and metal products. No better example is to be found than that offered by the automotive industry, where he is concerned primarily with the heat treatment and use of metals, and where he is recognized as an important member of the organization. In the metallurgical industries proper he is concerned with the quality and general improvement of both product and process. Constantly diminishing natural resources and the ever-increasing demand for new alloys of superior qualities offer unlimited opportunities for research in both extractive metallurgy and the development of new products.

Industrial Engineering in the chemical field relates particularly to the economic side of processes, cost accounting and control, administration of manufacturing organizations, and direction of sales effort in the field of chemical engineering equipment.

General Chemical Engineering may be subdivided into many other special branches of engineering and such terms as Gas and Combustion Engineering, Ceramic Engineering, Petroleum Engineering, Electro-chemical Engineering, and others are not unfamiliar.

At the University of Michigan, pronounced distinction is not made in the various fields of Chemical Engineering and all instruction is given under the administration of the Department of Chemical Engineering. The first two years of undergraduate work are devoted largely to acquisition of fundamental subjects as tools required for an understanding of the more specialized subjects. In these years the student should become familiar with mechanical drawing, mathematics, physics, and chemistry, and begin his work in chemical engineering. He also should acquire some proficiency in the use of the English language, and it is advisable that he obtain a reading knowledge of German, so that there will be available to him valuable publications appearing in the German chemical literature.

In the last two years, attention is divided between studies in Chemical Engineering, advanced work in Chemistry, and the fundamentals of other pertinent engineering subjects, such as engineering mechanics, machine design, heat engines, and electrical machines and circuits. An introductory knowledge of economics is obtained and elective subjects provide opportunity for a limited
amount of study in such subjects as history, philosophy, and political science.

The work in Chemical Engineering subjects is designed to give the student as broad a foundation as possible, avoiding marked specialization and yet carrying his training in one direction sufficiently far so that upon graduation he may be immediately useful to some organization. Our chemical engineers, even on graduation from a four-year course, often accept positions where they become the sole chemical or metallurgical engineer in the organization, and these men must consequently be fitted to accept and carry creditably such responsibility.

The required work in Chemical Engineering includes courses in engineering materials, fuels and combustion, heat treatment and properties of metals, inorganic and organic chemical technology, theory of Chemical Engineering, and an introduction to research work. This research work may be in any field chosen by the student, and, taken with other elective work, offers opportunity for moderate specialization.

GRADUATE WORK

The mere fact that the chemical engineer must have considerable attainments in the important fields of chemistry, physics, and mathematics, as well as in Chemical Engineering, indicates the need of a course of more than four years. The formative state of Chemical Engineering and its rapid development, which is certain to continue for many years, makes it important that a young man entering the profession be equipped not only to keep abreast of its progress, but also to do his part in advancing his chosen subject during his active professional life. This is definitely recognized by many of the larger corporations, who prefer men with a master's degree to one with a bachelor's degree on the ground that the man with post-graduate training advances faster and farther than an equally able man without it. They recognize this, not only by being more willing to employ men with advanced degrees; but by paying higher salaries to such men. Some of the larger corporations are now demanding a doctor's degree or its equivalent for men for their more important research positions.

The laboratories completed in 1923 provide unsurpassed facilities for the study of processes and apparatus. Generous provision in the way of private laboratories has been made to meet the needs of the advanced student.

Forty-one graduate students are making Chemical Engineering their major subject in 1928-1929. Twenty-three of them are candidates for the doctorate.
FACILITIES FOR INSTRUCTION

Excellent facilities are available for theoretical and laboratory studies of the various branches of chemical engineering.

The Chemical Engineering Library is shelved with the other departmental libraries on the third floor of the East Engineering Building. The library is 33 by 60 feet and has shelves for 15,000 books and seats for 80 readers. There is a rich collection of journals dealing with industrial chemistry, chemical engineering, and chemistry. The total number of journals currently taken by the Department of Chemical Engineering is 106, and most of them are represented by complete sets. In addition to 6,000 books dealing distinctively with Chemical Engineering, there are many others dealing with more general engineering lines.

The General Chemical Engineering Laboratory is devoted primarily to equipment for studying the fundamental elements of Chemical Engineering and has facilities for the following unit processes.

Evaporation.—The evaporator laboratory occupies a space 26 by 69 feet extending from the basement through the first floor. The principal equipment is a set of evaporators and accessories which are the gift of the Swenson Evaporator Company of Harvey, Illinois. It is the most complete and extensive equipment of its kind in the country. The evaporators include a standard vertical tube unit, a standard horizontal tube unit, a forced circulation unit, and a special Yaryan evaporator fitted with glass tubes. Each of the three evaporators first mentioned has a maximum evaporation capacity of 4,000 pounds of water per hour. Each is completely equipped with accessories for weighing and controlling feed, removing crystal, and measuring condensate; and each has the greatest possible flexibility to permit adaptation to process development. Other special evaporators for research purposes are available or are constructed as needed.

Distillation.—Facilities for the study of batch and continuous distillation, and of dephlegmation, are available. The equipment includes a 250 gallon electrically heated still provided with a 20-foot 10-inch packed column, and a bubbler-cap column of the same size. Either column may be operated continuously or as an apparatus of batch type. Suitable condensing, metering, and instrument equipment is available. A 4-inch column and 30 gallon still fitted for continuous distillation and several smaller stills and columns complete the equipment of this division of the laboratory. All of the apparatus is designed with a view to studying the fundamental principles of fractional distillation and fractional condensation.
GAS ABSORPTION.—There is an absorption column which can be filled with various types of tower packing.

FILTRATION.—The present equipment consists of a 24-inch washing plate-and-frame press, with an assortment of special frames. There is also a deLaval centrifugal clarifier and filter; and a 10-inch Weston centrifuge.

CRYSTALLIZATION.—For this work there is a special 30-foot single deck Swenson-Walker continuous crystallizer with dewatering attachment, a vacuum crystallizer with a jet ejector for high vacuums, a special vertical batch crystallizer, and a smaller continuous unit made of glass.

STIRRING AND MIXING.—One of the laboratory's tanks is equipped with paddle stirrers and with devices for studying agitation. Facilities are also available for the study of propeller stirrers.

GENERAL.—In addition to special equipment of the types enumerated the laboratory is well equipped with storage, reaction, and weighing tanks, pumps, blowers, motors, scales, condensers, digestors, autoclaves, and all necessary accessories. Soft water may be obtained from two Zeolite water softeners and a supply of condensed water nearly as pure as distilled water is also on hand. Additions will be made to the equipment of the laboratory as these become necessary or desirable. The aim at all times will be to provide facilities for fundamental investigations rather than to equip a museum of chemical machinery.

Gas, Fuel and Combustion Laboratories.—In this group are included laboratories for general class work in the analysis and calorimetry of industrial gases and fuels, and special testing and research laboratories for petroleum products, motor fuels, combustion, furnaces and gas manufacture.

The subject of gas manufacture and utilization has been given special attention in the department for over twenty years. No prescribed curriculum has ever been required and it is not felt that a special degree need be given. The undergraduate program in Chemical Engineering gives the necessary fundamental courses and the options in the senior year provide room for some special courses. Those desiring to specialize in Gas Engineering should, preferably, continue as graduate students, and choose subjects in other engineering branches as well as Chemical Engineering.

It is worthy of mention that the American Gas Association has delegated an important portion of its research program to the University, and that the Michigan Gas Association has greatly extended its research program and employed Mr. E. S. Pettyjohn.
as an investigator to make his headquarters at the University and carry on his research at that location or in various plants as the need arises. Students in Gas Engineering have unusual opportunities to assist in plant tests.

The Gas and Fuel Laboratories occupy three large rooms on the fourth floor of the north wing. They contain apparatus for the analysis of flue and fuel gases; calorimeters for gas, liquid and solid fuels; and equipment for testing boiler water, lubricants and fuels.

The Petroleum Laboratory has facilities for study of motor fuels and other petroleum products. These are supplemented by the equipment available in the general chemical engineering laboratory, the fuel research laboratory, and in the automobile engineering laboratory.

The Fuel Research Laboratory is especially equipped to study the various factors involved in the utilization of motor fuel. Two electric absorption dynamometers and typical automobile engines are available for making engine performance tests, and a special high compressing engine for making anti-knock tests. The laboratory is also supplied with ammonia refrigeration for conducting tests at low temperatures. Special columns for fractional distillation of fuels and special equipment for measuring volatility are available in addition to the standard equipment.

The Combustion Laboratories have special facilities for research and testing in the field of gaseous explosions, particularly the explosion of hydrocarbon air mixtures in a closed vessel as occurs in internal combustion engines. These are supplemented by equipment in the fuel research and automotive laboratories.

The Furnace Laboratory contains furnaces equipped for making heat balances, and for determining the properties of furnace materials and the laws of heat transfer and gas flow as applied to furnaces.

The Gas Engineering Laboratory contains furnaces for manufacture of gas on a small scale and for measuring and testing the finished products. This laboratory is largely devoted to the research work of the Michigan Gas Association.

Metallurgical Laboratories.—The metallurgical laboratories are located on the fourth floor of the East Engineering Building, adjacent to the Foundry and Metal Working and Treating Laboratory of the Department of Engineering Shops, and the Gas and Fuel Laboratories of the Department of Chemical Engineering, so that these facilities are also available. Equipment for heat treat-
ing and melting is provided in a large furnace room equipped with standard electric and gas furnaces. Facilities are provided for electro-metallurgical work and experimental electric furnace work in this room. Power is furnished through three 50 k. w. transformers.

For instruction in metallography facilities are provided in the way of a large grinding and polishing room, a microscope and camera room, and well equipped dark rooms. A smaller room fully equipped with polishing and microscopic equipment, and special camera and dark rooms, are available for graduate students.

For testing physical properties of metals a 60,000 lb. Olsen testing machine is equipped for studies at elevated temperatures. Special instruments such as the Brinell Hardness machine, Shore Scleroscope, Rockwell Hardness Tester, Lewis Upton Toughness machine, Izod Impact and others are available. General physical testing equipment is available in the Engineering Mechanics Laboratory.

In the Pyrometry Laboratory unusual facilities are provided. The equipment includes several types of millivoltmeters, indicating and recording potentiometers, a transformation point apparatus, optical and radiation pyrometers, various types of thermocouples, and ample facilities for calibrating and checking pyrometric apparatus. The arrangement and equipment of the laboratory are all aimed to supply the student with information which will enable him to take charge of the installation and control of commercial pyrometric and temperature control systems.

The Technology Laboratories.—This group consists of a number of small laboratories, each equipped with facilities especially adaptable for study and research on the problems arising in the respective industries.

The Cement Laboratory is equipped with a small rotary kiln and accessory apparatus for burning Portland cement under controlled conditions and for testing the properties of cements.

The Ceramics Laboratories consist of a kiln room, preparation room and laboratory. The kiln room is equipped with oil and gas fired recuperative kilns for pottery, high temperature work, and for testing the burning properties of clays and refractory products. The preparation room includes a dry pan for fine grinding of shales and hard clays, two mixers, a pug mill and extruding machine, glass topped tables, and other equipment used in preparing clays for burning. The laboratory is supplied with a Fairbanks testing machine, a volumeter, and means for analyzing and testing the raw and burned clay, and foundry sands.

The Electrochemical Laboratory provides research facilities for electrochemical work. Equipment for the study of electro-
thermal and high temperature electrolytic processes are also available as part of the facilities of the metallurgical laboratories.

The Paint and Varnish Laboratory provides facilities for the study of the manufacture and application of paints, varnishes, nitrocellulose lacquers, enamels and other finishing materials. In addition to regular laboratory facilities the equipment includes grinding apparatus, washed air drying kiln, oven for baking japans and varnishes at high temperatures, as well as spray gun equipment for the application of all kinds of finishing materials. A quartz mercury vapor lamp furnishes ultra-violet light which is used as an accelerated weathering test for paint, varnish, and lacquer films. Additional facilities are also available in the general Chemical Engineering laboratories.

General Laboratories.—Undergraduates whose work does not place them in one of the special laboratories have space assigned to them in one of two large laboratories which are equipped with the usual facilities of laboratory tables, water, compressed air, direct, alternating and storage battery current, analytical balances, and tables for study and computation of results.

Graduate students working on special problems have assigned to them individual graduate laboratories which are equipped with general laboratory facilities.

Visits of Inspection.—The educational value of visits of inspection is well recognized and inspection trips are regularly made in connection with the various courses in chemical engineering. The wonderful industrial development of the neighboring cities of Detroit and Toledo as well as other points in Michigan within easy reach of Ann Arbor allows a varied range of industries to be visited at small expense. Week-end trips are frequent. The opportunities are so abundant that the list varies from year to year.

Summer Employment

Each student is urged to obtain employment in a factory for at least one summer, in order that he may acquire the viewpoint of the worker in an industrial organization. If he may also acquire professional knowledge, so much the better. The manufacturers of Michigan co-operate in this movement, and, except in time of severe business depression, positions are usually available. At least one summer's work in an approved plant is required in the five-year program in Chemical and Industrial Engineering.

Combined Courses have been arranged with Albion, Battle Creek, and Olivet Colleges and the College of the City of Detroit. For detailed information see section 3.

Advice to Students of other colleges and universities, with regard to planning their courses before coming to the University,
is to be found in section 14. Prospective students of Chemical Engineering are strongly urged to select German as the language to be studied, and to avoid specialization along the lines of Chemistry and Chemical Engineering in their preparatory work. Students in doubt of elections to be made in the first three years’ work are cordially invited to correspond with the Department of Chemical Engineering.

Military Science.—The attention of prospective students in Chemical Engineering is called to the Reserve Officers Training Corps. Students in Chemical Engineering are particularly well qualified to take the work offered in the Ordnance Unit. Those who consider taking Military Science are urged to enroll at the beginning of their course. For further details see section 65.

CURRICULUM IN CHEMICAL ENGINEERING AND REQUIREMENTS FOR GRADUATION

Candidates for the degree of Bachelor of Science in Engineering, Chemical Engineering, are required to complete the curriculum detailed below. For the definition of an hour of credit see section 50.

Programs, embodying certain required courses, have been established for the four-year course in Chemical Engineering and the five-year course in Chemical and Industrial Engineering. Both of these programs provide some elective courses. The only limitation placed on these elections is that these courses shall be so chosen as to make a logically arranged curriculum.

Outline of Required Courses.

(1) **Preparatory Courses.**

- English 1 and 2, and choice of English 5, 6, or 14 6 hours
- Modern Language and Cultural Electives................ 16 hours
- Mathematics 1, 2, 3, 4a.. 16 hours
- Physics 45, 46... 10 hours
- Chemistry 5, 17.. 10 hours
- Drawing 1, 2, 3.. 8 hours
- Shop 2, Metal Working and Treating...................... 2 hours

Total ... 68 hours

(2) **Secondary and Technical Courses.**

- Chemistry 41, Theoretical Chemistry......................... 3 hours
- Chemistry 57, Quantitative Analysis......................... 5 hours
- Chemistry 67, Organic Chemistry............................ 5 hours
- Chemistry 69, Organic Chemistry............................ 5 hours
- Economics .. 3 hours
COLLEGE OF ENGINEERING

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Mech. 1, Statics</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 2, Strength and Elasticity. or</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 6, Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>Mech. Eng. 3, Heat Engines</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 2a, Elec. App. and Circ.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. Eng. 1, Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>Chem. Eng. 2, Technology of Fuels</td>
<td>3</td>
</tr>
<tr>
<td>Chem. Eng. 3, Metallurgy</td>
<td>3</td>
</tr>
<tr>
<td>Chem. Eng. 4, Organic Technology</td>
<td>2</td>
</tr>
<tr>
<td>Chem. Eng. 5, Organic Technology</td>
<td>4</td>
</tr>
<tr>
<td>Chem. Eng. 9, Unit Processes</td>
<td>3</td>
</tr>
<tr>
<td>Chem. Eng. 12, Special Problems</td>
<td>5</td>
</tr>
<tr>
<td>Chem. Eng. 29, Unit Processes Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
</tr>
</tbody>
</table>

Summary:

- Preparatory Courses 68 hours
- Secondary and Technical Courses 64 hours
- Electives 8 hours

Total required for the B.S. degree... 140 hours

First Year†

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5 or Shop 2 and Engl. 1</td>
<td>5</td>
</tr>
<tr>
<td>Math. 1</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5 or Shop 2 and Engl. 1</td>
<td>5</td>
</tr>
<tr>
<td>Math. 2</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 2</td>
<td>3</td>
</tr>
</tbody>
</table>

17 or 16

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Math. 3</td>
<td>5</td>
</tr>
<tr>
<td>Physics 45</td>
<td>5</td>
</tr>
<tr>
<td>Chem. 17</td>
<td>5</td>
</tr>
</tbody>
</table>

Students taking Chemical Engineering are urged to elect German. For the Modern Language requirement see section 51.

†See sections 3 and 4.
Summer Session

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 41</td>
<td>3</td>
</tr>
<tr>
<td>Chem. Eng. 2</td>
<td>3</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 67</td>
<td>5</td>
</tr>
<tr>
<td>Chem. Eng. 9</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 1</td>
<td>4</td>
</tr>
<tr>
<td>Mech. Eng. 3</td>
<td>4</td>
</tr>
<tr>
<td>Chem. Eng. 3</td>
<td>3</td>
</tr>
<tr>
<td>Chem. 69</td>
<td>5</td>
</tr>
<tr>
<td>Eng. Mech. 2</td>
<td>3</td>
</tr>
<tr>
<td>or Eng. Mech. 6</td>
<td></td>
</tr>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. Eng. 4</td>
<td>2</td>
</tr>
<tr>
<td>Engl. 5, 6, or 14</td>
<td>2</td>
</tr>
<tr>
<td>Chem. Eng. 29</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. Eng. 5</td>
<td>4</td>
</tr>
<tr>
<td>Chem. Eng. 12</td>
<td>5</td>
</tr>
<tr>
<td>Mech. Eng. 2</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total required for degree of Bachelor of Science in Chemical and Industrial Engineering</td>
<td>176</td>
</tr>
</tbody>
</table>

*Students taking Chemical Engineering are urged to elect German.

†Options for students in Metallurgy who substitute Chem. 63 for Chem. 67, and Chem. Eng. 6 or 7, Shop 3, and Eng. Mech. 2a for Chem. 69.
First Year

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>or Shop 2 and Engl. 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>Math. 1</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17 or 18</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Shop 2 and Engl. 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>Math. 2</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 2</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17 or 18</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 3</td>
<td>5</td>
</tr>
<tr>
<td>Physics 45</td>
<td>5</td>
</tr>
<tr>
<td>Chem. 17</td>
<td>5</td>
</tr>
<tr>
<td>Economics 53</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 57</td>
<td>5</td>
</tr>
<tr>
<td>or Chem. Eng. 1 and Chem. Eng. 2</td>
<td>6</td>
</tr>
<tr>
<td>Mech. Eng. 3</td>
<td>4</td>
</tr>
<tr>
<td>Economics 121</td>
<td>3</td>
</tr>
<tr>
<td>Bus. Ad. 11</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15 or 16</td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. Eng. 3</td>
<td>3</td>
</tr>
<tr>
<td>Chem. 41</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

†See sections 3 and 4.

*Options for students in metallurgy who substitute Chem. 63 for Chem. 67, and Chem. Eng. 6 or 7, Shop 3, and Eng. Mech. 2a for Chem. 69.
COURSES IN CHEMICAL ENGINEERING

1. **Engineering Materials.** An elementary study of the manufacture and properties of the ferrous and non-ferrous alloys, cements, clay products, protective coatings, fuels and water softening. Two lectures and two recitations. *Prerequisites: Chem. 5 and Shop 2 (except for Architects).* Three hours credit. Each semester.

2. **Fuels and Furnaces.** A study of the preparation, combustion, and utilization of fuels; including temperature measurement, analysis of gases and fuels, determination of heating values, and furnace efficiencies, the computation of heat balances, maximum temperatures, and relative costs of heating. Three lectures

Options for students in metallurgy who substitute Chem. 63 for Chem. 67; and Chem. Eng. 6 or 7, Shop 3 and Eng. Mech. 2a for Chem. 69.
and recitations and one laboratory period. **Prerequisites**: Ch.E. 1 and Phys. 46. Three hours credit. Each semester.

3. **Structure and Properties of Metals.** A microscopic study of the structure of metals as affected by composition and by thermal and mechanical treatment; the relation of these to the physical properties of metals; consideration of the factors that determine or limit the uses of metals and common alloys. Two lectures, one recitation and one laboratory period. **Prerequisites**: Ch.E. 1 and Phys. 46. Three hours credit. Each semester.

4. **Chemical Technology of the Inorganic Industries.** A descriptive study of the processes and manufacturing methods used in the more important industries based on inorganic chemical technology. Three lectures or recitations. **Prerequisites**: Ch.E. 2 and 9, Chem. 41 or 42, and Phys. 46. Two hours credit. Each semester.

5. **Chemical Technology of the Organic Industries.** A descriptive study of the processes and manufacturing methods used in the more important industries based on organic chemical technology. Three lectures and two recitations. **Prerequisites**: Ch.E. 2 and 9, Chem. 41 or 42, and 67; preceded or accompanied by Chem. 69. Four hours credit. Each semester.

6. **Iron and Steel.** A critical study of the metallurgy of the ferrous metals; raw materials, the production of pig iron; the manufacture of steel, wrought iron, cast iron and malleable iron. Two lectures and one recitation. **Prerequisites**: Ch.E. 2 and 3, or Ch.E. 1 and M.E. 3. Two hours credit. Each semester.

7. **Non-Ferrous Metallurgy.** A course in the metallurgy of copper, zinc, lead, tin, nickel, and aluminum, covering extractive processes, fabrication, production and properties of alloys. Two lectures and one recitation. **Prerequisites**: Ch.E. 2 and 3, or Ch.E. 1 and M.E. 3. Two hours credit. Second semester.

8. **Physical Metallurgy.** An advanced study of the thermal, mechanical and magnetic properties and the macroscopic and microscopic structures of metals. One lecture, one laboratory period, reports and discussions. **Prerequisites**: Ch.E. 3, Chem. 41 or 42. Two hours credit. First semester.

9. **Unit Processes.** An elementary discussion of the theory of the unit processes of Chemical Engineering and of typical equipment for carrying out these processes. Two lectures and two recitations. **Prerequisites**: Ch.E. 1 and Phys. 46; preceded or accompanied by Chem. 41. Three hours credit. Each semester.
10. The Utilization of Fuels. A course designed especially for Mechanical Engineering students covering in a limited way the material offered in Ch.E. 2. Laboratory work. Prerequisites: Ch.E. 1 and Phys. 45; accompanied by M.E. 7. Not open to students in Chemical Engineering. One hour credit. Each semester.

11. Chemical Engineering Thermodynamics. A study of the application of the principles of the three fundamental laws of energy to Chemical Engineering processes. Two lectures and two recitations. Prerequisites: Ch.E. 2, Chem. 41 or 42, and Math. 4 or 4a. Three hours credit. First semester.

12. Special Problems. The purpose of this course is to train the student in methods of independent research. Each student is, after consultation, assigned a subject connected with some manufacturing process which he is to study intensively both in the library and laboratory. Wide latitude is allowed in the choice of a subject, and the student is, so far as possible, urged to select one that interests him most. Laboratory. Prerequisites: Ch.E. 4 and such other courses as are essential to a knowledge of the subject selected. Three to eight hours credit. Each semester.

14. Crushing, Classification, Calcination and Conveying. An advanced study of the fundamental theory of these processes and of the equipment for their operation. Lectures and recitations. Prerequisites: Ch.E. 3 and 9. Two hours credit. Second semester.

15. Drying, Distillation, Extraction, and Gas Absorption. An advanced study of the fundamental theory of these processes and of the equipment for their operation. Lectures and recitations. Prerequisites: Ch.E. 4 and 9. Two hours credit. Second semester.

17. Furnace Design and Construction. A study and application of the principles of furnace design, the properties of refractory materials, and their use in furnace construction. One lecture, one recitation and one laboratory period. Prerequisites: Ch.E. 2 and 9, or M.E. 5. Three hours credit. Second semester.
18. Metallography of the Non-Ferrous Metals. An advanced study of the microscopic structure of the common non-ferrous metals and alloys, and of the effect of heat treatment, mechanical work, and composition on their structure and properties. One lecture and one laboratory period. Prerequisites: Ch.E. 3 and Chem. 41 or 42. Two hours credit. Second semester.

19. Pyrometry and Furnace Control. A study of the theory, construction, calibration, and use of commercial pyrometers, their application and limitations. One lecture and one laboratory period. Prerequisites: Ch.E. 2, Phys. 46. Two hours credit. Second semester.

20. Summer Work in Factories. Credit is given for a report on some phase of work in a factory. Application must be made for registration in this course and the nature of the problem must be approved before entering upon the work. One hour credit.

21. Special Problems. A continuation of Course 12. Laboratory. Open to graduates, and to seniors who receive special permission. Three to eight hours credit. Each semester.

23. Design of Chemical Plants. A simple chemical process is selected, and the student proceeds to plan the steps in the process and select the type of apparatus for each. Conferences. Prerequisites: Ch.E. 13; and preceded or accompanied by Ch.E. 14 and 15, and a course in Machine Design. Three hours credit. Second semester.

26. Advanced Ferrous Metallurgy. A study of the constitution of irons and steels and the effect on their properties of composition, heat treatment, and mechanical work. Lectures and recitations. Prerequisite: Ch.E. 3. Two hours credit. Second semester.

27. Design of Chemical Machinery. The student selects some piece of chemical machinery and makes a complete set of drawings that would be required for its actual construction. Conferences and drafting. Prerequisites: Ch.E. 9 and a course in Machine Design. Two hours credit. Each semester.

29. Chemical Engineering Laboratory. A laboratory study of the unit processes of chemical engineering comprising a series of performance tests on various types of chemical engineering equipment. One recitation and one laboratory period. *Preceded or accompanied by* Ch.E. 9. Two hours credit. Each semester.

30. Seminar in Metallurgy. Reading and reports on metallurgical subjects. *Open to graduates and to seniors who receive special permission.* Two hours credit. Each semester.

32. Explosives and Pyrotechnics. A study of the processes used in the manufacture of commercial and military explosives and pyrotechnic materials, as well as their properties and uses. Lectures and recitations. *Prerequisite:* Ch.E. 5. Four hours credit. Second semester.

33. Seminar in Heat Transfer. Conferences and problems in heat transfer. *Open to graduates, and to seniors who receive special permission.* Two hours credit. Second semester.

35. Motor Fuel Utilization Seminar. A discussion of engine performance as dependent upon motor fuel characteristics. *Open to graduate students who have completed Course II or are actively engaged in research in this field.* Two hours credit. Each semester.

36. Advanced Chemical Engineering Calculations. A problem course illustrating the application of chemical engineering theory to industrial calculations. Problems involving economic balance in engineering design will be emphasized. Conferences and group calculations. *Prerequisites:* Ch.E. 11, 13, and 15. Three hours credit. Second semester.

41. Advanced Ferrous Metallurgy. Research work on the structure and properties of iron and steel. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

42. Hydraulic Cements. Research work on the properties of hydraulic cements as influenced by chemical composition and temperature of burning; also studies of constancy of volume and permanence of concrete structures. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.
43. **Evaporation.** Research work on the design of evaporators and on problems connected with handling of liquids on the commercial scale. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

44. **Gas.** Research relating to the manufacture, properties, and uses of coal gas, water gas, oil gas, and producer gas. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

45. **Paint and Varnish.** Research work on problems connected with the manufacture, properties, and uses of paints, varnish and pyroxylin lacquers. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

46. **Advanced Electrochemistry.** Research relating to electrodeposition and electrochemical processes. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

47. **Advanced Non-Ferrous Metallurgy.** Research work on structures and properties of non-ferrous metals and alloys. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

48. **Petroleum and Motor Fuels.** Research work on problems connected with the production and utilization of petroleum products. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

50. **Distillation.** Research work on the theory, design, and performance of distillation equipment. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

52. **Refractories and Furnace Design.** Research work on the thermal and physical properties of refractory materials, combustion, and heat transfer at high temperatures. Laboratory work and conferences. *Prerequisite: Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

53. **Crystallization.** Research work on the theory and practice of industrial crystallization. Laboratory work and conferences. *Open to graduates, and to seniors who receive special permission.* Five to eight hours credit. Each semester.

61. **Research Seminar.** Discussion of research of staff and graduate students. *No credit.* Each semester.
Summer Session

Courses 1, 3, 4, and 12 will be given during the Summer Session of 1929, and several of the more advanced courses will be offered if there is a sufficient demand for them.

76. CIVIL ENGINEERING

Professors *Riggs, Gram, King, Hoad, Decker, Worley, Cissell, Morrison, Wisler, Sherlock, and Emmons; Assistant Professors Swinton, Alt, and Sadler; Mr. Housel, Mr. Maugh, and Mr. Jakkula.

Civil Engineering is divided into groups which correspond to the specialties of practicing civil engineers. Since these divisions have come about gradually through the requirements of actual practice, it is inevitable that there should be considerable overlapping of the various fields. The competent civil engineer must have a broad understanding of the scientific principles underlying all of the groups, as well as a high degree of skill in applying these principles to the specialized problems of his own group.

While the training of the civil engineer is essentially technical, it is not always as a technician that he achieves his greatest usefulness. It has come to be quite generally recognized that the habits of thought developed by the practicing civil engineer fit him admirably for administrative and executive positions. This is especially true in the constantly expanding transportation field, in municipal and public affairs, and in many industrial and commercial fields, where a background of technical training, and experience in planning and executing important work, is a valuable aid to the administrator. Many graduate civil engineers are successfully engaged in highway, railroad, municipal, or building contracting.

The main divisions of Civil Engineering are as follows:

Structural Engineering, which deals with the theory, design and construction of structures such as bridges, buildings, dams, retaining walls, etc., involving the use of steel, masonry (including reinforced concrete), and timber.

Hydraulic Engineering, which takes up the problems of irrigation, drainage, water power development, navigable rivers and harbors, and deals with the measurement of water and the design and construction of dams, locks, wharves, irrigation works and all other forms of hydraulic construction.

Transportation Engineering, which deals with railroads, highways, waterways, and other forms of transportation; location, design and construction, maintenance, operation and also

*Absent on leave.
the history and economics of transportation systems. The administration, organization and financing of highway improvements and the management, methods and regulation of highway transport.

Sanitary Engineering, which deals with the design and construction of waterworks, sewers, water purification and sewage disposal works and with all matters related to public sanitation. It offers many opportunities for advanced work and research along the line of prevention of disease by the proper construction and operation of engineering structures.

Municipal Engineering, which deals with the design, construction, and maintenance of paving, sewers, sidewalks, street drainage, waterworks, and other municipal public works, the laws controlling their construction and operation, the proper design and laying out of cities and villages, and the construction and regulation of street railways and other utilities.

The Courses offered the student are designed to give him a knowledge of the principles underlying the general field as outlined above. The system of "group options," described later, is designed to give the student more thorough training in one of the above groups.

The Department of Civil Engineering tries to anticipate the future requirements of society by seeking the advice of successful graduates, men of affairs in industry, commerce, and public life, and friends of the University generally, so that the graduate may be enabled to render the maximum of service to his community, not only in a technical way, but in social and political ways as well.

The student is required to elect such courses in mathematics and the general sciences as are necessary to a proper understanding of the technical and cultural courses which follow. He is also required to elect courses in Mechanical, Electrical, and Chemical Engineering, as well as in Civil Engineering, since too narrow specialization by undergraduates is discouraged. In addition, he is required to elect not less than three hours of a technical subject allied to, but not included in, the field of Civil Engineering. It is felt that with this background, the graduate can augment his technical knowledge as circumstances require it, either by graduate work in the University or by independent study while in practice.

As a part of his cultural work, the student is required to elect a certain minimum number of hours in English and Modern Language. In addition, he is given a group of electives in which a very wide latitude of choice is permitted, covering subjects in Economics, Political Science, Fine Arts, Psychology, Public
Speaking, etc. The Department desires to give every possible encouragement to the development of individual capacities.

The Department does not guarantee employment to graduates, but the demand from employers usually exceeds the supply, so that graduates have little trouble in finding lucrative positions in which to obtain their early years of experience.

Graduate Work leading to advanced degrees is offered to graduates whose records indicate that they can pursue it profitably. Conditions under which such work may be undertaken are described in the General Announcement of the Graduate School of the University.

Fellowships

Fellowships of interest to students in Civil Engineering are described in section 44.

Facilities

Transportation Library.—The Transportation Library contains 50,000 books and pamphlets dealing with every phase of transportation. It is housed in the East Engineering Building. In this library are many rare books and pamphlets relating to the origin, history and development of our various transportation systems. It also contains very complete files of the various technical engineering associations; the modern and current periodicals dealing with railways, highways, waterways and other engineering subjects; state and national, public utility, highway and special commission reports; annual reports of railways and other transportation companies; proceedings of various transportation associations and the latest books on the technical and economic phases of transportation. All of these pamphlets, books and periodicals are grouped in alcoves pertaining to particular subjects. Adjacent to each alcove are tables convenient for the use of students and others engaged in transportation research.

Highway Laboratories.—Through a co-operative arrangement between the University and the State Highway Department, all of the testing of materials for the State Trunk Line and Federal Aid roads, and all County roads which receive State aid, is done at the University. The work of the State is done in rooms immediately adjoining those used for the student work, so that the students secure the benefits to be derived from observing the work of full time trained employees of the State, as well as from their own work.

The Highway Laboratory, which has 11,000 square feet of floor space, is located in the basement of the north wing of the East Engineering Building. There are special laboratories for the testing of the following materials: cement, concrete, sand, gravel, broken stone and similar materials; rock and paving brick; asphalt, cements, tars and oils; bituminous mixtures; calcium chloride, metals and paints; and culvert pipe. The laboratories also con-
tain rooms for equipment, balances, concrete curing, storage samples, lockers and showers.

The Laboratory is equipped with all the necessary apparatus for the testing of all kinds of non-bituminous and bituminous materials. Among the more important pieces of apparatus and equipment are a four-cylinder Deval abrasion machine, standard brick rattlers, ball mills, a briquette molding machine, Page impact machines, a Dorry hardness machine, diamond core drills, a 200,000 pound compression testing machine, a concrete wear testing machine, tensile testing machines, apparatus for testing cement, moist closets, Per Se and Ro-Tap sieve shakers, microscopes, Dulin Rotarex extraction machines, standard penetrometers, ductility machines, viscosimeters, constant temperature baths, Fraes and other types of electric ovens, analytical, chainomatic and torsion balances, field testing apparatus, and a freezing room.

Sanitary Experiment Station.—A small sanitary laboratory, with equipment for experimental work, is available for the study of problems related to public sanitation, especially those involved in the purification of water, the treatment of city sewage and industrial wastes, and the protection of streams from pollution.

Hydraulic Experimental Equipment.—Facilities for experimental work in the measurement of flowing water for discharges up to 250 cubic feet per second are afforded by a flume 138 feet long, 6.5 feet wide, and 8 feet deep. The flume with accompanying equipment is located just below the Argo Dam on the Huron River.

A flume in the West Engineering Building provides for inside laboratory experiments on the measurement of flowing water in quantities up to 12 cubic feet per second. The flume is 50 feet long, 2 feet wide, and 4 feet deep. Water is supplied by a 16-inch centrifugal pump driven by a 100-horsepower motor. Accurate measurement of discharge is provided by scales and weighing tanks with a total capacity of 100,000 pounds. A 90° V-notch weir calibrated by means of the weighing tanks is also available for measurement of flow.

Combined Courses have been arranged with Albion, Battle Creek and Olivet Colleges and the College of the City of Detroit. For detailed information see section 3.

Advice to Students of other colleges and universities with regard to planning their courses before coming to the University, is to be found in section 14.

Military Science.—The attention of prospective students in Civil Engineering is called to the Reserve Officers Training Corps. Students in Civil Engineering are particularly well qualified to take the work offered in the Coast Artillery group. Those who consider taking Military Science are urged to enroll at the beginning of their course. For further details see section 65.
CIVIL ENGINEERING

CURRICULUM IN CIVIL ENGINEERING AND REQUIREMENTS FOR GRADUATION

Candidates for the degree of Bachelor of Science in Engineering, Civil Engineering, are required to complete the curriculum detailed below. For the definition of an hour of credit see section 50.

a) Preparatory Courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1 and 2 and English 6</td>
<td>6</td>
</tr>
<tr>
<td>Modern Language or Cultural Electives</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 1, 2, 3, 4</td>
<td>18</td>
</tr>
<tr>
<td>Physics 45, 46</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 5</td>
<td>5</td>
</tr>
<tr>
<td>Drawing 1, 2, 3</td>
<td>8</td>
</tr>
<tr>
<td>Geology 31</td>
<td>3</td>
</tr>
<tr>
<td>Shop Work 2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 68 hours

b) Secondary and Technical Courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. Eng. 1, Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>Surveying 1, 2</td>
<td>7</td>
</tr>
<tr>
<td>Eng. Mech. 1, Statics</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Mech. 2, Strength and Elasticity</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 3, Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Mech. 4, Hydromechanics</td>
<td>3</td>
</tr>
<tr>
<td>Civil Eng. 2, Theory of Structures</td>
<td>3</td>
</tr>
<tr>
<td>Civil Eng. 20, Elementary Design of Structures</td>
<td>3</td>
</tr>
<tr>
<td>Civil Eng. 3, Masonry</td>
<td>4</td>
</tr>
<tr>
<td>Civil Eng. 10, Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>Civil Eng. 26, Spec. and Contracts</td>
<td>2</td>
</tr>
<tr>
<td>Civil Eng. 30, Water Works</td>
<td>3</td>
</tr>
<tr>
<td>Civil Eng. 32, Sewerage</td>
<td>2</td>
</tr>
<tr>
<td>Civil Eng. 40, Highway Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Civil Eng. 50, Railroad Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Mech. Eng. 3, Heat Engines</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 20, Electrical Apparatus</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 54 hours

Summary:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Courses</td>
<td>68</td>
</tr>
<tr>
<td>Secondary and Technical Courses</td>
<td>54</td>
</tr>
<tr>
<td>Group Option</td>
<td>7</td>
</tr>
<tr>
<td>Electives</td>
<td>11</td>
</tr>
</tbody>
</table>

Total: 140 hours
<table>
<thead>
<tr>
<th>First Year†</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td>SECOND SEMESTER</td>
</tr>
<tr>
<td>Hours</td>
<td>Hours</td>
</tr>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>or Shop 2 and</td>
<td></td>
</tr>
<tr>
<td>Engl. 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>Math. 1</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
</tr>
<tr>
<td>17 or 16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

*Mod. Lang.	4
Math. 3	5
Physics 45	5
Surveying 1	3
17	

Summer Session

Electives, or required work, or a combination of electives and required work, to a total of 8 hours.

Third Year

Electives	2
Physics 46	5
Civil Eng. 40	2
Eng. Mech. 2	3
Mech. Eng. 3	4
Drawing 3	2
18	

Fourth Year

Elective or Group Option	Elec. Eng. 2a
Civil Eng. 3	4
Civil Eng. 10	3
Civil Eng. 30	3
Civil Eng. 32	2
Civil Eng. 50	2
16	14

†See sections 3 and 4.
For Modern Language requirement see section 51.
Electives for Civil Engineering Curriculum

Electives from the following list to a total of at least 11 hours are to be chosen by the student, including not less than 3 hours in each of the two Groups 1 and 2.

Group 1

Advanced courses in Modern Language.
Economics: Courses 51, 52, 53, 54, 121, 122, 123, 131, 133, 173, 175, and 181.
English (Engineering College): Courses 3, 5, 14, 23, 24, 26, 27, 28, and 29.
English (Literary College): Courses 31, 32, 40, 45, 143, 147, 148, 180, 183, and 184.
Fine Arts: Courses 101, and 128.
History: Courses 3, 4, 5, 6, 43, 44, 45, 46, 92, 145, and 146.
Philosophy: Courses 31, 38, and 139.
Political Science: Courses 31, 32, 141, 142.
Psychology: Courses 31 and 122.
Speech: Courses 31, 42, and 144.

Group 2

Astronomy: Courses 31, 32, 33 35, 103, and 104.
Bacteriology: Courses 3E and 5E.
Botany: Courses 1, 32, 33, 35, 36, and 158.
Chemistry: Courses 15, 39, 42, 53, 57, and 67.
Engineering Mechanics: Courses 2a, 5, 6, and 9.
Forestry: Courses 2, 31, 32, 33, 34, 102, 107, and 108.
Geology: Courses 32, 105, 122, 123, 124, 131, 132, 133, and 134.
Hygiene and Public Health: Course 1.
Mineralogy: Courses 31, 101, 104, and 107.
Physics: Courses 105, 171, 175, and 181.
Surveying: Courses 3, 5, 7, 9, 21, and 22.
Zoology: Courses 1, 31, 32, and 42.
Cooperative Courses 93, 193, 295, 393, 493, and 593.

Note.—Military Science, after the freshman year, is classified as Group 2.

Students wishing to take electives not listed in Groups 1 and 2 may do so if they have the endorsement of the Professor of Civil Engineering.

Group Options

Each student in Civil Engineering must choose one of the following Group Options, and elect 7 hours work from the courses listed in that Option. Two of the courses elected must be a design course and its accompanying theory.
A. STRUCTURAL ENGINEERING.

Civil Eng. 4, Advanced Theory of Structures 2 hours
Civil Eng. 5, Design of Structures 3 hours
Civil Eng. 6, Foundations and Resistance of Soils. 2 hours
Civil Eng. 7, Advanced Design of Structures
 a. Bridge Design 3 hours
 b. Reinforced Concrete 3 hours
 c. Arches 2 hours
 d. Timber Construction 1 hour
Civil Eng. 8, Construction Methods and Equipment 2 hours
Civil Eng. 9, Cost Analysis and Estimating 2 hours
Civil Eng. 27, Public Utility Problems 2 hours
Civil Eng. 65, Structural Engineering Research...
Mech. Eng. 20, Mechanical Handling of Materials.. 2 hours
Chem. Eng. 6, Iron and Steel 2 hours
Chem. Eng. 8, Metallography 2 hours

Students electing Group A are required to elect Design Course 5 and Course 4, the accompanying theory course.

B. HYDRAULIC ENGINEERING.

Civil Eng. 11, Hydraulics 2 hours
Civil Eng. 12, Development of Water Power 3 hours
Civil Eng. 13, Administration of Water Resources. 2 hours
Civil Eng. 14, Irrigation and Drainage 2 hours
Civil Eng. 16, Design of Hydraulic Structures .. 3 hours
Civil Eng. 18, Rivers and Harbors 1 hour
Civil Eng. 27, Public Utility Problems 2 hours
Civil Eng. 61, Irrigation and Drainage, Advanced. 2 hours
Civil Eng. 62, Hydraulic Design, Advanced 2 hours
Civil Eng. 64, Hydraulic Engineering Research ...
Mech. Eng. 4, Hydraulic Machinery 3 hours
Mech. Eng. 16, Water Turbines 3 hours
Mech. Eng. 20, Mechanical Handling of Materials.. 2 hours
Elec. Eng. 30, Alternating Current Apparatus ... 4 hours
Elec. Eng. 11, Power Plants, Transmission and Distr. 5 hours
Elec. Eng. 33, Industrial Electrical Engineering ... 2 hours
Elec. Eng. 30, Rates and Cost Analysis 2 hours

Students electing Group B are required to elect Design Course 16 and Course 12, the accompanying theory course.

C. TRANSPORTATION ENGINEERING.

Civil Eng. 18, Rivers and Harbors 1 hour
Civil Eng. 27, Public Utility Problems 2 hours
Civil Eng. 30, Municipal Engineering 2 hours
Civil Eng. 41, Highway Engineering, Theory and
 Economics 2 hours
Civil Eng. 42a, Highway Materials Laboratory ... 2 hours
Civil Eng. 42b, Bituminous Materials Laboratory.... 2 hours
CIVIL ENGINEERING

Civil Eng. 44, Highway Transport 2 hours
Civil Eng. 45, Highway Traffic Control 2 hours
Civil Eng. 46, Highway Administration 2 hours
Civil Eng. 51, Railroad Location 2 hours
Civil Eng. 52, Railroad Maintenance 2 hours
Civil Eng. 52d, Heavy Excavation and Tunnel Work 2 hours
Civil Eng. 53, Terminal Design 3 hours
Civil Eng. 54, Railway and Highway Location Design 3 hours
Civil Eng. 55, Transportation 2 hours
Civil Eng. 55a, Transportation 2 hours
Civil Eng. 58, Inland Waterway Transportation ... 2 hours
Civil Eng. 63, Civil Engineering Research
Civil Eng. 66, Highway Engineering and Highway Transport Research
Civil Eng. 67, Railroad Engineering
Mech. Eng. 20, Automobiles and Motor Trucks 3 hours
Elec. Eng. 8, Electric Railways 2 hours
Elec. Eng. 11, Power Plants, Transmission and Distribution 5 hours

Students electing Group C are required to elect a Design Course of this group.

D. SANITARY AND MUNICIPAL ENGINEERING.

Civil Eng. 7a, Concrete and Steel Highway Bridge Design 3 hours
Civil Eng. 11, Hydraulics 2 hours
Civil Eng. 27, Public Utility Problems 2 hours
Civil Eng. 31, Water Purification 2 hours
Civil Eng. 33, Sewage Disposal 2 hours
Civil Eng. 34, Municipal and Industrial Sanitation 2 hours
Civil Eng. 35, Sanitary Engineering Design 3 hours
Civil Eng. 36, Municipal Engineering 2 hours
Civil Eng. 41, Highway Engineering Theory and Economics 2 hours
Civil Eng. 42, Highway Engineering Laboratory ... 2 hours
Mech. Eng. 20, Mechanical Handling of Materials .. 2 hours
Mech. Eng. 25, Heating and Ventilation 2 hours

Students electing Group D are required to elect Design Course 35 and Courses 31, 33, or 34.

E. GENERAL ENGINEERING SCIENCE.

Physics
Chemistry
Astronomy
Mathematics
Mechanics
Mineralogy
Geology
This group is arranged to permit students of high scholastic standing to take advanced work in any of the above subjects. Courses elected in this group must be in advance of the last required course in the subject chosen. Students electing seven hours work in any one of the subjects will not be required to elect a design course.

Any student electing this group shall indicate the fact not later than the beginning of his junior year and all elections in the chosen science shall be with the approval of the Head of the Science Department, or a committee chosen by him.

Co-operative Courses with Industry. Courses 9S, 19S, 29S, 39S, 49S, and 59S are offered to students in Civil Engineering. The work under these courses consists of employment by an approved company engaged in work in which Civil Engineering students are interested, during the summer vacation, June to October, or during a semester. While employed, the student will be paid standard wages for work done. Work under these courses when completed carries a minimum of five hours credit for ten months of work and an additional hour for each additional two months of work up to a total of sixteen months. These courses must be elected during the freshman and sophomore years. The work is done in accordance with a prearranged plan and schedule and under close supervision of some member of the Civil Engineering staff. Credit for this work comes under Group 2, Electives for Civil Engineering.

Graduate Students in Civil Engineering may specialize in any of the above groups. Such students will ordinarily be required to complete at least eight hours in one of these groups. Additional work sufficient to complete the requirements for the M.S. degree may be selected from cognate subjects, which must be approved by the Dean of the Graduate School.

It is recommended that fourth year students who are expecting to enter the Graduate School take at least six hours of economics before graduation. Graduate students will usually be required to elect from three to six hours of approved work in either the College of Literature, Science, and the Arts or in the School of Business Administration.

COURSES IN CIVIL ENGINEERING

The courses described below are identified by letters and course numbers. Thus, Civil Engineering, Course 2, is identified as C.E. 2. Also C.E. 65, etc., etc.

Structural Group, C.E. 1 to C.E. 9.
Hydraulic Group, C.E. 10 to C.E. 19.
Transportation Group, C.E. 40 to C.E. 58.
Sanitary and Municipal Group, C.E. 30 to C.E. 39.
Graduate Group, C.E. 60 to C.E. 67.

2a. Elementary Design of Structures. Design work, covering theory of beams and plate girders, mill buildings, and elements of design of simple structures. Computations, drawing work. Prerequisites: Drawing 3, and preceded or accompanied by C.E. 2. Required of all Civil Engineering students. Three hours credit. Each semester.

3. Masonry Construction. Properties of materials; analysis of stresses in plain and reinforced concrete structures; foundations for engineering structures; theory and design of concrete mixtures; laboratory work on cement and aggregates. Three recitations and one three-hour laboratory period. Prerequisite: E.M. 2. Required of all Civil Engineering students. Four hours credit. Each semester.

4. Advanced Theory of Structures. Analysis of stresses and deflection in special types of structures, cantilever trusses, draw spans, and arches. This is a continuation of C.E. 2. Lectures, text, problems. Prerequisite: C. E. 2. Two hours credit. Each semester.

6. Foundations and Resistance of Soils. A study of the theory and design of foundations with special reference to soil as an engineering material; physical characteristics of soils; determination of bearing capacity; plastic flow; pressure distribution; standard practice; recent developments in soil research. Lectures and references. Prerequisite: C.E. 3. Two hours credit. Each semester.
7. Advanced Design of Structures. A group of optional specialized courses as listed below for students desiring advanced and specialized instruction in the design of various classes of structures. Students may elect these courses simultaneously. C.E. 7 group is open to graduate students and to qualified seniors by special permission. Each semester.

7a. Bridge Design. Studies of waterway determination and bridge live loads; design of bridge foundations and superstructures. Computations, drawing work. Prerequisite: C.E. 4 and C.E. 5. Three hours credit. Second semester.

7c. Arches. Analysis of stresses and design of arches, especially reinforced concrete arches. Lectures, drawing work. Prerequisite: C.E. 5. Two hours credit. Second semester.

7d. Timber Construction. Physical characteristics of structural woods; selection of timber; grading rules; commercial practice; design of typical structures. Lectures, drawing work. Prerequisite: C.E. 2a. One hour credit. Each semester.

8. Construction Methods and Equipment. Deals with contractors' organizations, laws of management, plant selection and layout; catalogue studies of various types of equipment, their operating characteristics and care. Lectures, class discussion. Open to seniors and graduate students. Two hours credit. Each semester.

10. Hydrology. A study of natural streams; measurement of stream discharge; continuous discharge records; factors affecting precipitation; evaporation from land and water surface; relation of precipitation to stream flow; estimating stream flow; storage of water; floods. Two recitations and one three-hour laboratory period. Prerequisite: E.M. 4. Open to seniors and graduate students. Three hours credit. Each semester.

11. Hydraulics. Fundamental considerations; application of experimental data to hydraulic problems; orifices, weirs, pipes
CIVIL ENGINEERING

and open channels; analysis of empirical formulas; transportation of sediment. Lectures, problems. Prerequisite: E.M. 4. Two hours credit. Each semester.

12. Water Power. History of science; hydraulic and hydrological studies; power output of streams; hydraulics of turbines; selection of turbines, power plant layout and equipment; general study of dams; economic considerations; engineering reports on water power developments. Lectures, recitations, problems. Prerequisite: E.M. 4. Open only to seniors and graduate students. Three hours credit. Second semester.

13. Administration of Water Resources. Progress made by India, Egypt, Italy, France and Spain; development of common law doctrines relating to waters and their introduction into the United States; a few leading decisions; the abrogation of the common law rule in the Arid Region; an engineering administration, based on principles, contrasted with court government under the common law doctrine; examples of water administrations in western states. Lectures, assigned reading, reports. Prerequisite: E.M. 4. Open only to seniors and graduate students. Two hours credit. Second semester.

14. Irrigation and Drainage. History of the development of both sciences; demand for them in the United States; principles underlying the use of water from streams; laws relating to irrigation and drainage; engineering principles; water supply; water available and required; diversion works; conveyance system; distribution systems; structures; maintenance; economic considerations. Lectures, assigned reading. Prerequisite: E.M. 4. Open only to seniors and graduate students. Two hours credit. Second semester.

16. Hydraulic Engineering Design. Description of hydraulic structures; hydraulic and structural computations; design of two or more hydraulic structures; water conveyance structures; dams; power houses; head gates; wasteways; regulating works. Lectures, computations, design. Prerequisite: C.E. 3, and preceded or accompanied by C.E. 12. Three hours credit. Second semester.

18. Rivers and Harbors. Classification and description of harbors; wave action and littoral drift; design and construction of artificial harbors; entrance to harbors; breakwaters; wharves; quays; dredging; description of various American and foreign harbors; maintenance of river channels. Lectures, assigned reading, reports. Prerequisite: E.M. 4. One hour credit. Second semester.
26. Specifications, Contracts, and Engineering Relations. Engineering relations; ethics; the engineer as a witness; contracts; bids and bidders; public lettings; methods of payment for contract and extra work; specifications. Lectures, reading, discussion. Open to junior, senior, and graduate students in Engineering and in Business Administration. Required of all Civil Engineering students. Two hours credit. Each semester.

27. Public Utility Problems. Relation of public service corporations to the public; organization; ownership; valuation; depreciation; accounting; regulation; taxation; rates; problems of different utilities. Lectures, library reading. Open to fourth and fifth year students. Two hours credit. Each semester.

30. Water Works. A general study of municipal water supply. Quantity required and quality necessary for various purposes; public health relationships; sources of supply; impounding reservoirs; wells, intakes; aqueducts and pipe lines; purification works; distribution; fire protection. Lectures, problems. Prerequisite: E.M. 4. Open to seniors and graduates. Three hours credit. Each semester.

31. Water Purification. Relates to engineering methods and devices for improving the sanitary quality and economic value of municipal water supplies; processes of sedimentation; use of coagulants; filtration; softening; iron removal; sterilization; devices and structures for accomplishing these. Lectures, library reading, and visits to municipal water purification plants. Prerequisite: C.E. 30. Open to seniors and graduates. Two hours credit. Second semester.

32. Sewerage and Drainage. Functions and purposes of sewerage and drainage systems; health relationships; principles of design of sanitary, storm water and combined sewers; trunk sewers, intercepting sewers, inverted siphons, and other special structures; groundwater infiltration and its effects; sewer assessments; proper treatment and final disposal of sewage. Lectures, problems. Prerequisite: E.M. 4. Open to seniors and graduates. Two hours credit. Each semester.

33. Sewage Disposal. A broad survey of the engineering, public health, legal and economic problems involved in the disposal of city sewage and industrial wastes. Sewage treatment processes and devices; adaptation to climatic and other natural conditions; operation and maintenance; costs. Lectures, library reading, and visits to near-by disposal plants. Prerequisite: C.E. 32. Open to seniors and graduates. Two hours credit. Second semester.

34. Municipal and Industrial Sanitation. The scientific foundations of public sanitation; the prevention of typhoid fever,
malaria, and other diseases, through water purification, sewerage and drainage, and other major sanitary improvements involving community control of the environment; the collection, utilization, and disposal of garbage and other city wastes; street cleaning methods, organization, and management; and industrial sanitation. Lectures, library reading. Open to seniors and graduates. Three hours credit. Each semester.

35. Sanitary Engineering Design. Computations and drawing board design of pipe lines, large conduits, typical structures in reinforced concrete related to water supply, water purification, sewerage and sewage disposal. Drawing room and visits to plants and work under construction. Prerequisite: C.E. 3, and accompanied or preceded by either C.E. 31, C.E. 33, or C.E. 34. Required in election of Group D. Three hours credit. Each semester.

40. Highway Engineering. Historical development; economics, administration and legislation; preliminary investigations; design of road and street systems and the individual highway; drainage and foundations; highway materials; construction and maintenance of roads and pavements; street cleaning and snow removal; highway structures. Lectures, text. Required of all Civil Engineering students. Open to juniors, seniors and graduate students, but not restricted to engineering students. Two hours credit. Each semester.

41. Highway Engineering Theory and Economics. Theory and economics of design of road and street systems, the individual highway and its component parts, drainage systems, comparison of roads and pavements; highway transport surveys; traffic classification, census and investigations; estimating future traffic. Lectures, text. Prerequisite or accompanying courses: C.E. 40 and E.M. 1. Open to juniors, seniors and graduate students. Two hours credit. First semester.

42. Civil Engineering Laboratory. A group of optional laboratory courses, as listed below, for students desiring to study the physical properties of materials used in civil engineering construction.

42a. Highway Materials Laboratory. Physical properties of highway materials; testing of sand, gravel, rock, slag, cement, aggregates, cement-concrete, brick, wood block, stone block, and bituminous materials; proper method of reporting and interpreting results of tests. Lectures, text, laboratory. Prerequisite or accompanying course: C.E. 40. Open to juniors, seniors and graduate students. Two hours credit. Each semester.
42b. **Bituminous Materials Laboratory.** Properties of bituminous materials; testing of oils, asphalts and tars; theory and design of bituminous paving mixtures; interpretation of results of tests; specifications. Lectures, text, laboratory. **Prerequisite:** C.E. 40. *Open to juniors, seniors and graduate students.* Two hours credit. Each semester.

42c. **Concrete Mixtures.** Theory and design of concrete mixtures; analysis of aggregate grading; bulking due to moisture; strength, permeability, durability, yield, and economy. Discussions, problems, laboratory. *Open to seniors.* This class meets with the laboratory section of C.E. 3. The course is offered to permit election of the work by seniors outside the Civil Engineering Department. One hour credit. Each semester.

44. **Highway Transport.** History of highway transport development; economics and fundamentals of different methods of transportation of passengers and commodities over highways; utilization of highway transport by railroads; legislation pertaining to operation of motor trucks, trailers, and motor busses as private and common carriers; traffic regulations; management of transportation companies; cost of operation of motor vehicles. *Open to seniors and graduate students, but not restricted to engineering students.* Two hours credit. Second semester.

45. **Highway Traffic Control.** Street traffic surveys; causes of congestion; causes of accidents; physical changes to increase street capacity; regulation of moving traffic; regulation of parking; regulation of pedestrians; traffic signs and signals; municipal traffic codes; traffic bureaus; treatment of offenders. Lectures, text, field work, library reading. *Open to seniors and graduate students, but not restricted to engineering students.* Two hours credit. Second semester.

46. **Highway Administration.** Development of highway administration and highway systems, local, county, state and national; methods of financing roads and streets; functions and organization of highway departments. Lectures, text, library reading. *Open to seniors and graduate students, but not restricted to engineering students.* Two hours credit. First semester.

50. **Railroad Engineering.** A general study of the railroad problem. Includes a consideration of surveys, alignment, earthwork, trestles, structures, tunnels, ballast, ties, rails, rolling stock, train resistance, block signals, train control, yards and terminals, operating expenses and organization. Lectures, text, problems. *Required of all Civil Engineering students.* *Open to juniors and seniors, but not restricted to engineering students.* Two hours credit. Each semester.
51. **Railroad Location.** Economics of reconnaissance, preliminary and location surveys, analysis of curve, grade and train resistance. Ruling grades; maximum curvature; rise and fall; and virtual profile. Study of line changes, grade reductions and elimination of grade crossings. Lectures, text, problems. *Open to junior, senior, and graduate students.* Two hours credit. Each semester.

52. **Railroad Maintenance.** Maintenance of roadway, track, track appliances, switches and frogs, bridges, structures, culverts and drainage, signals and interlocking plants. Lectures, text, problems. *Open to junior, senior, and graduate students.* Two hours credit. First semester.

52a. **Heavy Excavation and Tunnel Work.** Study of the methods and machinery applicable to all types of heavy excavation. Location, design, and construction of all types of tunnels. Lectures, text, problems. *Open to junior, senior, and graduate students.* Two hours credit. Second semester.

53. **Terminal Design.** Design of freight and passenger railroad, highway and waterway terminals, joint terminals, layout of the various types of yards and traffic facilities. Occasional field inspections take the place of design periods. Text, problems, drawing room. *Open to junior, senior, and graduate students.* Three hours credit. Second semester.

54. **Railway and Highway Location Design.** Field and office practice of location and construction. Text, field work, and drawing room. *Open to junior, senior, and graduate students.* Three hours credit. First semester.

55. **Transportation.** History of transportation; relation of highway, waterway, railway and airway transportation. Lectures, library research, seminar. *Open to junior, senior, and graduate students but not restricted to engineering students.* Two hours credit. First semester.

55a. **Transportation.** The relation of transportation to the political and economical development of the nation. Lectures, library research, seminar. *Open to junior, senior, and graduate students but not restricted to engineering students.* Two hours credit. Second semester.

58. **Inland Waterway Transportation.** Engineering and economic problems involved in the development of American inland waterway transportation. Lectures, library reading, recitations. *Open to junior, senior, and graduate students, but not restricted to engineering students.* Two hours credit. First semester.
60. **Sanitary Engineering Research.** Assigned work upon some definite problem related to public sanitation; a wide range in both subject matter and method is available, covering field investigations, experimentation in the laboratory, searches in the library and among public records, and drafting room designing. By appointment. *Open to graduate students only.* Credit to be arranged.

61. **Irrigation and Drainage.** Special advanced assigned work. Reading, research. *Prerequisite: C.E. 14. Open only to graduate students.* Credit to be arranged. Each semester.

63. **Civil Engineering Research.** Assigned work in the fields of transportation, public utilities, or engineering relations and ethics. Exact nature of work to be determined by needs of individual students. To obtain credit a thesis must be prepared which would be acceptable for publication. *Open only to graduate students.* Credit to be arranged. Each semester.

64. **Hydraulic Engineering Research.** Assigned work in hydraulic research; investigation of some problem or subject in hydraulics approved by the Professor of Hydraulic Engineering; a wide range of matter and method permissible. Reading, experiments, thesis. *Prerequisite: C.E. 12. Open only to graduate students.* Credit to be arranged. Each semester.

65. **Structural Engineering Research.** Assigned work on some approved problem in Structural Engineering, preferably experimental work with discussion of derived data. Laboratory, library research. *Open to graduate students and fifth year students who have elected Group Option A in Structural Engineering.* Credit to be arranged.

66. **Highway Engineering and Highway Transport Research.** Assigned work in the fields of highway engineering, highway transport or highway traffic control. Exact nature of work to be determined by needs of individual students. To obtain credit a thesis must be prepared which would be acceptable for publication. *Open only to graduate students.* Credit to be arranged. Each semester.

67. **Railroad Engineering Research.** Assigned work in the field of railroad engineering or highway traffic control. Exact nature of work to be determined by needs of individual students. To obtain credit a thesis must be prepared which would be acceptable for publication. *Open only to graduate students.* Credit to be arranged. Each semester.
Summer Session

Courses 2, 3, 7c, 45, 46, 65, and 66 will be given during the Summer Session of 1929.

77.

ELECTRICAL ENGINEERING

Professors Bailey, Higbie, Lovell, and Cannon; Assistant Professors Moore, Attwood, and Stout; Mr. Bull, Mr. Gault, Mr. Holland, and Mr. Dow.

Electrical engineers practice in a field of great breadth; any true subdivision of it is very difficult. The four main divisions of practice, and work offered by the Department in relation thereto, are as follows:

Electrical Power Engineering has to do with the theoretical and practical phases of power generation, distribution and utilization, together with the design and construction of the apparatus involved; among other specific applications it relates to electric railways, lighting, power plants, transmission, distribution, generators, motors, and the service of the public. The almost phenomenal growth of the electric public utilities and the corresponding use of electricity indicate the opportunities existing in this branch.

In Courses 11, 19, and 20, fundamental economic principles are applied to the selection and location of standard apparatus; the financial phases of design are stressed; analytic engineering judgment is cultivated through the study of the operative functions of generating and transmitting devices. Course 8 covers the main problems of electric traction; Course 33, industrial electrical engineering; and Course 36, rate and cost analysis.

Electrical Communication covers several very large fields of application of electricity to the service of man. The transmission of signals, speech, music, and the more recent transmission of pictures, involve the practice of telephony, telegraphy, electric signalling, and radio. The radio business has been doubling every year, it being already one of the country's largest industries.

Courses 10, 13, and 22 in communication apply the principles developed in previous courses to new apparatus and circuits. The work prepares the student for opportunities in the communication industry, or strengthens him for work in other fields, by virtue of his broadened perspective.

Illumination Engineering is now an electrical activity because of the fact that nearly all light sources are electrical. The illumination engineer deals with the many and varied special problems arising in relation to the production and utilization of light, economically and in accordance with correct principles of physics, physiology, psychology, art and architecture.
The purpose of the work available to the undergraduate is to indicate the scope, present and prospective importance, and attractiveness of illumination as a field of professional activity, and to establish firmly by thorough drill the principles upon which progress must be founded. Courses 7 and 7a are primarily for undergraduates; Courses 15 and 71 are for graduates and competent undergraduates. Much advanced work in illumination is pursued in Courses 9 and 18.

Electrical Engineering Design.—Inasmuch as every article ever produced must first be designed, design practice comes into most phases of electrical engineering. Design involves the use of fundamental theory as modified by practical considerations of cost and the properties of materials. The successful designer is generally found to be a man with pronounced and special aptitudes; such men have a wide choice of opportunities.

Courses 5, 6, and 51 are not intended to turn out finished designers. Their purpose is to clarify the student's knowledge of apparatus by means of extended calculations on machines; and by imposing some of the limitations encountered in practical work, to insure that the student will think as an engineer rather than as a physicist.

The Courses offered by the Department are therefore designed to give every electrical student some training in each of the above classes of work; and in his selection of technical electives he may, if desired, take more advanced work in any of the groups of studies mentioned. In addition to this specific group of subjects, other courses are offered, some preparatory, some advanced.

Course 1 serves as an introduction to the engineering viewpoint of electricity and magnetism.

Courses 2, 3, and 4 form a close-knit preparatory group devoted to the principles of the more usual circuits and machines

Course 17, of a mathematical nature, develops electromechanics.

Courses 9 and 18 are open to more able students by permission, and give opportunity for study of any worthwhile problems not excluded by the limitations of physical equipment.

The Staff of the Department of Electrical Engineering, by constant study and revision of course content and teaching method, aims to offer such work as will react to the ultimate benefit of the student rather than to his immediate gain. Throughout, the teaching of theory and its modifications by practice, the development of analytic judgment, and the acquiring of a fundamental scientific background, are emphasized. The acquisition of specific factual knowledge is left, except where necessary to sound pedagogy, to the training in actual experience through which every electrical graduate must go during his first years out of school.
Close contact is maintained with the employing industries both to enable the instructional staff to keep in touch with a fast-growing art, and to facilitate the finding of employment for the graduates.

In cooperation with the School of Business Administration a five-year course leading to the degree of B.S. in Engineering (Electrical and Industrial Engineering) is offered.

A five-year cooperative program in Electrical Engineering and Industry is offered in cooperation with certain leading electrical industries. The student spends in all four semesters or sixteen months in one chosen industry. In this program the required university work is the same as that for students choosing the regular program in Electrical Engineering. However, successful completion of the industrial part of the program entitles the student to nine credit hours which may be counted as nine hours of elective studies. The time spent in the University will be made up of those semester and summer session periods during which the student is not connected with the industry. The work in industry will be closely supervised by an officer of the University.

Graduate work is urged for every student who would benefit by taking more advanced work. The graduate courses offered are being built up from year to year. The mathematical and physical nature of advanced electricity makes it profitable for some gifted students to spend much time in mathematics and physics; for the better students every encouragement is offered.

The individual initiative of exceptional seniors is encouraged by seminar, research, and special problem courses offered for the purpose.

FACILITIES

The Electrical Engineering Laboratories include a dynamo laboratory, communication laboratories, and a photometric laboratory.

The Dynamo Laboratory is fully equipped with direct and alternating current apparatus of various types and sizes, representative of the leading American and foreign manufacturers.

In all of the electrical laboratory work, special emphasis is laid upon the development of the student's ability to analyze the phenomena which he observes in the operation of electrical machinery. To this end, and with the aim of developing the personal initiative of the student, a large number of moderate-sized machines have been provided in order to give each student intimate contact with the apparatus.

The laboratory is fully equipped with meters and instruments of various ranges, types, and makes. For calibration work
there are standard resistances, standard cells, potentiometers, and meters of the precision type. The equipment includes a research oscillograph with all accessories and a portable oscillograph for projecting oscillograms in classrooms for group discussions.

Distribution of power in the laboratories is controlled through a plug and socket system. The system gives great flexibility and requires that all connections be made by the student himself, but provides the means by which these operations may be quickly and easily performed.

The laboratory has on exhibit electrical apparatus of very early type which is of historic interest.

The Communication Laboratories are unusually well equipped for both practical and theoretical experimental study of communication by electrical means.

Oscillators covering both the audio and radio frequency ranges, vacuum tube voltmeters and ammeters, and impedance bridges are provided for accurate measurements. Standards of inductance, capacity and resistance are available.

For telephone work an artificial open wire line, a loaded cable, and standard cable may be used for the study of the propagation of medium frequency voltages and currents. A supply of telephone instruments, sensitive meters, transformers, telegraph instruments including repeaters, and models of manual and automatic exchanges are provided for study.

The radio laboratory is well equipped with vacuum tubes for both receiving and transmitting purposes, high voltage generators for power supply, standard wavemeters and capacities, thermo ammeters and the usual types of auxiliary apparatus. A cathode ray oscillograph is provided for the study of high frequency currents.

The Photometric Laboratory is equipped with four precision bars provided with the most accurate photometer heads of equality, contrast, and flicker types, and complete accessories for standardization and investigation; eight portable photometers for making surveys of illumination; a single-mirror selector for making measurements on large light sources; a 30-inch integrating sphere for small light sources together with a Macbeth illuminometer; a part-sphere for measuring the reflection coefficient of surfaces in place, and a most convenient form of spectrophotometer. The equipment includes, besides standard lamps, a complete and modern collection of lamps and accessories including mercury, magnetite, and carbon arcs, refractors, reflectors of all varieties in glass and metal, and head-light and flood-light projectors. Special equipment has been developed for study of surface sources of light, by means of which noteworthy investigations have been made.
The University has a medium sized steam power plant of its own which is available for instructional purposes; also the University is well situated with regard to both hydraulic and steam power plants of the Detroit Edison Company. Technical inspections of these plants are made in conjunction with the classroom work in appropriate courses.

Visits of Inspection.—See section 42.

Combined Courses have been arranged with Albion, Battle Creek and Olivet Colleges and the College of the City of Detroit. For detailed information see section 3.

Advice to Students of other colleges and universities with regard to planning their courses before coming to the University is to be found in section 14.

Military Science.—The attention of prospective students in Electrical Engineering is called to the Reserve Officers Training Corps. Work offered in the Signal Corps group is of special interest to students in Electrical Engineering, as they are well qualified for it. Those who consider taking Military Science are urged to enroll at the beginning of their course. For further details see section 65.

CURRICULUM IN ELECTRICAL ENGINEERING AND REQUIREMENTS FOR GRADUATION

Candidates for the degree of Bachelor of Science in Engineering, Electrical Engineering, are required to complete the curriculum detailed below. For the definition of an hour of credit see section 50.

a) Preparatory Courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1 and 2, and choice of English 5, 6, or 14</td>
<td>6</td>
</tr>
<tr>
<td>Modern Language and Cultural Electives</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 1, 2, 3, 4</td>
<td>18</td>
</tr>
<tr>
<td>Physics 45, 46</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 5</td>
<td>5</td>
</tr>
<tr>
<td>Drawing 1, 2, 3</td>
<td>8</td>
</tr>
<tr>
<td>Shop 2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total .. 65 hours

b) Secondary and Technical Courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 147, Electrical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>Surveying 4, Use of Instruments</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Mech. 1, Statics</td>
<td>4</td>
</tr>
</tbody>
</table>
Eng. Mech. 2, Strength and Elasticity.................... 3 hours
Eng. Mech. 3, Dynamics 2 hours
Eng. Mech. 4, Hydromechanics............................... 3 hours
Civil Eng. 2, Theory of Structures........................ 3 hours
Mech. Eng. 2a, Elements of Machine Design............... 3 hours
Mech. Eng. 3, Heat Engines................................ 4 hours
Elec. Eng. 1, Prin. of Electricity and Magnetism......... 4 hours
Elec. Eng. 2, D.C. App. and Circ........................... 4 hours
Elec. Eng. 3, A.C. Circuits................................ 4 hours
Elec. Eng. 4, A.C. Apparatus............................... 4 hours
Elec. Eng. 5, Design of Electrical Machinery............. 4 hours
Elec. Eng. 7, Illumination and Photometry............... 2 hours
Elec. Eng. 11, Power Plants, Transmission and Distribution 5 hours
Elec. Eng. 17, Electro-mechanics............................ 4 hours
Chem. Eng. 1.. 3 hours

Total ... 62 hours

Summary:
Preparatory Courses 65 hours
Secondary and Technical Courses 62 hours
Electives .. 13 hours

Total .. 140 hours

First Year†

FIRST SEMESTER SECOND SEMESTER

Hours Hours

*Mod. Lang. 4 *Mod. Lang. 4
Chem. 5 5 Chem. 5 5
or Shop 2 and Engl. 1 and 2 6 or Shop 2 and Engl. 1 and 2 6
Math. 1 4 Math. 2 4
Drawing 1 3 Drawing 2 3

16 or 17 16 or 17

†See sections 3 and 4.
*For Modern Language requirement see section 51.
<table>
<thead>
<tr>
<th></th>
<th>First Semester</th>
<th></th>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours</td>
<td></td>
<td>Hours</td>
<td></td>
</tr>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Math. 3</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Physics 45</td>
<td>5</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Drawing 3</td>
<td>2</td>
<td></td>
<td>Eng. Mech. 1</td>
<td>4</td>
</tr>
<tr>
<td>Surveying 4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. Eng. 3</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Mech. 2</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 4</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 3</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 4</td>
<td>4</td>
</tr>
<tr>
<td>Chem. Eng. 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Eng. 2</td>
<td>3</td>
</tr>
<tr>
<td>Physics 147</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 5</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

FIVE-YEAR COURSE IN ELECTRICAL AND INDUSTRIAL ENGINEERING

The five-year course given in co-operation with the School of Business Administration leading to the degree of Bachelor of Science in Electrical and Industrial Engineering is planned as follows:

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>6</td>
</tr>
<tr>
<td>Modern Language or Cultural Electives</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics</td>
<td>18</td>
</tr>
</tbody>
</table>
Physics .. 14
Chemistry .. 5
Drawing ... 8
Shop Work 2
Engineering Mechanics 12
Mechanical Engineering 7
Chemical Engineering 3
Electrical Engineering 34
Economics and Business Administration 36
Civil Engineering 3
Surveying .. 2
Electives .. 10

Total required for degree of Bachelor of Science in Electrical and Industrial Engineering 176

The schedule of work is as follows:

First Year†

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>SECOND SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>Hours</td>
</tr>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Chem. (Chem. 5) or 5</td>
<td>5</td>
</tr>
<tr>
<td>Shop 2 and Engl. 1 and 2 6</td>
<td>or Chem. 5</td>
</tr>
<tr>
<td>Math. 1</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16 or 17</td>
</tr>
</tbody>
</table>

Second Year

Math. 3	5	Math. 4	5
Physics 45	5	Physics 46	5
Drawing 3	2	Eng. Mech. 1	4
Economics 53	3	Economics 54	3
Surveying 4	2		
	17		17

Summer Session

Mech. Eng. 3	4
Elec. Eng. 2	4
	8

†See sections 3 and 4.
For Modern Language requirement see section 51.
ELECTRICAL ENGINEERING

Third Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Mech. 2</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 3</td>
<td>2</td>
</tr>
<tr>
<td>Elec. Eng. 1</td>
<td>4</td>
</tr>
<tr>
<td>Elec. Eng. 3</td>
<td>4</td>
</tr>
<tr>
<td>Econ. 171</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Eng. 2</td>
<td>3</td>
</tr>
<tr>
<td>Chem. Eng. 1</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Mech. 4</td>
<td>3</td>
</tr>
<tr>
<td>Elec. Eng. 4</td>
<td>4</td>
</tr>
<tr>
<td>Econ. 172</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
</tr>
</thead>
</table>

Physics 147	4
Elect. Eng. 11	5
Engl. 5, 6, or 14	2
Bus. Ad. 175	3
Bus. Ad. 131	3
Mech. Eng. 2a	3
Elec. Eng. 17	4
Bus. Ad. 102	3
Bus. Ad. 114	3
Elec. Eng. 7	2
Elective	2

Fifth Year

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
</tr>
</thead>
</table>

Elec. Eng. 33	2
Bus. Ad. 101 (Finan. Princ.)	3
Bus. Ad. 205 (Law)	3
Bus. Ad. 217 (P. U. Acct'g)	3
Elective	7

COOPERATIVE COURSE IN ELECTRICAL ENGINEERING AND INDUSTRY (FIVE YEARS)

The time required is five years, divided tentatively as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>First Semester</th>
<th>Second Semester</th>
<th>Summer Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University</td>
<td>University</td>
<td>Free</td>
</tr>
<tr>
<td>2</td>
<td>University</td>
<td>Industry</td>
<td>University</td>
</tr>
<tr>
<td>3</td>
<td>University</td>
<td>Industry</td>
<td>University</td>
</tr>
<tr>
<td>4</td>
<td>University</td>
<td>Industry</td>
<td>University</td>
</tr>
<tr>
<td>5</td>
<td>University</td>
<td>Industry</td>
<td></td>
</tr>
</tbody>
</table>

The periods spent in industry, during the second-to fifth years inclusive, may be taken in the first, instead of the second, semester.
Credit for the course will be as follows:

Required university work.............127 hours
Elective university work............. 4 hours
Credit for completing the industrial work 9 hours

Total140 hours

No credit will be given for industrial work except as arranged under the coöperative plan.

It is contemplated that the student will spend all four outside periods with one industrial concern. This, if mutually agreeable, may lead to permanent employment. During his employment the student will work in various departments of the industry and will receive pay.

The coöperative plan will be arranged only with those companies which can provide a program of value to the student.

CHOICE OF ELECTIVE WORK

The Department of Electrical Engineering has no list of group options. The case of each individual student is considered and he is expected to make his elections only after consultation with the senior classifiers.

The aim of the Department is to develop well-rounded engineers rather than narrow technicians.

Without the ability to write and speak good English an engineer rarely progresses to the higher positions in the profession. Students feeling the lack of sufficient facility in the use of English are strongly urged to elect advanced courses in English.

Economic considerations enter into every phase of engineering work. Every student is therefore urged to take at least one course in economics.

In the senior year the student should in general have some idea of the branch of electrical engineering which he intends to pursue. It is expected that he will take at least one advanced course in the line of work in which he intends to specialize.

With the object of rounding out his education the student is urged to elect some courses in liberal arts and pure science. Unless he is a liberally educated man in addition to being an engineer he cannot expect to reach the positions of highest importance.

The strong student who can profit by the instruction is urgently advised to consider the desirability of at least one year of graduate work leading to the master's degree. In such a year he will have opportunity to take advanced work along the lines in which he expects to specialize. Such work is usually impracticable in the undergraduate years due to lack of time and adequate preparation.
COURSES IN ELECTRICAL ENGINEERING

1. Principles of Electricity and Magnetism. Mathematical and physical treatment of force actions and energy relations in electrostatic and electromagnetic fields; capacitance and inductance of systems of conductors; development of systems of electric and magnetic units; illustrations of the universality of the laws of physics, as they occur in the fields of electricity, magnetism, gravitation, heat, light, etc. Three lectures and one four-hour computing period. Prerequisites: Math. 4 and Physics 46. Four hours credit. Each semester.

2. Direct Current Apparatus and Circuits. Torque, current, flux, e.m.f. and speed relations in self-regulation and control of motors and generators; electric and magnetic circuit calculations; power losses and efficiency of machines; commutation and armature reaction; parallel operation of generators; mechanical and electrical coupling of motors. Three lectures and one four-hour laboratory period. Prerequisites: Physics 45 and 46, E.M. 1. Four hours credit. Each semester.

2a. Direct and Alternating Current Apparatus and Circuits. Characteristics of direct and alternating current motors and generators; problem work on these and on electric circuits. A general course for non-electrical students. Three lectures and one four-hour laboratory period. Not open to electrical engineering students. Required of all other students in Engineering. Four hours credit. Each semester.

3. Alternating Current Circuits. Wave form of e.m.f.; work on simple harmonic e.m.f.’s and currents; phase differences; active, reactive and apparent power, power factor and reactive factor; resistance, inductance, and capacitance, singly and in any combination; polyphase circuits, balanced and unbalanced; power in polyphase systems; e.m.f.’s of armature windings—vector representation and calculation; transformers—construction, theory, operation; transformers—simple and complete vector diagrams, losses and constants, efficiency and regulation; instrument transformers; voltage regulators; constant current transformers. Three lectures and one four-hour laboratory period. Prerequisites: E. E. 2, and preceded or accompanied by E. E. 1. Four hours credit. Each semester.

4. Alternating Current Machinery. Principles of the synchronous machine, the induction machine, the rotary converter, and the various types of single-phase motors. Two lectures, one four-hour computing period, and one four-hour laboratory period. Prerequisite: E. E. 3. Four hours credit. Each semester.
5. Design of Electrical Machinery and Appliances. Design problems on direct current coils, windings, motors; work in heat storage, heat transfer, and heat dissipation by radiation and convection; extensive treatment of magnetic field mapping and calculation, armature reaction, air gap design, and commutation. Two lectures and two four-hour computing periods. **Prerequisites:** M. E. 2a, E. E. 1, and E. E. 3. Four hours credit. Each semester.

7. Illumination and Photometry. Concepts, quantities, units, and relations employed in this science, such as the lumen, candle-power, foot-candle, lambert; theory and use of typical measuring devices—precision photometer and accessories portable photometers, integrating spheres, reflectometers calculation of illumination from point, line and surface sources of light exhibiting typical distributions of light; light output of any source having symmetrical distribution; calculations regarding light in an enclosure; utilization factor, and flux-of-light method for designing illumination of an interior; laws of vision in correct illumination; characteristics of lamps, reflectors, enclosing globes; glare and shadow; industrial and residence lighting. Two lectures and one three-hour laboratory period. **Prerequisite:** E.E. 1. Two hours credit. Each semester.

7a. Building Illumination. Illustrations of causes of and means to avoid glare, improper shadows, poor distribution, unsteady light and other faults; means for providing proper illumination for typical interiors such as schools, offices, and residences. This course is designed to acquaint students of public health, factory administration, and architecture with criteria for determining whether the lighting is good or harmful to the eyes. One lecture. **Not open to electrical engineering students.** One hour credit. Second semester.

9. Directed Research Problems. Special problems are selected for laboratory or library investigation with the intent of developing initiative and resourcefulness. To a large degree the student’s own desires will control the subjects investigated. The work differs from that offered in Course 18 in that the instructor is in close touch with the work of the student. Course 9 may
be elected by seniors who have suitable preparation. Course 18 is for graduates. **Prerequisite**: E. E. 3. Credit by arrangement. Each semester.

10. **Advanced Theory of Electrical Circuits.** Mathematical analysis of theoretical and practical problems; electrical filters; transmission of electric waves on lines having distributed capacitance, inductance, resistance, and leakage; mechanism of reflection at terminals; electromagnetic waves in space; Maxwell's equations. The course material is fundamental to further work in telephone, telegraph and radio circuits. Lectures. **Prerequisites**: E. E. 3, and preceded or accompanied by E. E. 17. Three hours credit. Each semester.

11. **Power Plants and Transmission Systems—Economics of Design.** Elementary principles of corporate finance, study of economic decay and tests for obsolescence; power plant load curves as a basis for design; economic load division between units and plants, economic conductor section and distribution systems; study of plant location; selection of oil circuit breakers; economic use of power limiting reactors, relays, synchronous condensers for power factor control and phase modification; constant voltage transmission lines. Lectures, problems. **Prerequisite**: E.E. 3, or E. E. 2a. Five hours credit. Each semester.

12. **Fundamentals of Engineering Electronics.** An engineering analysis of the fundamentals of electronic phenomena, with special emphasis on quantitative relationships; ionization, recombination, diffusion, and radiation in conducting gases; photoelectric and thermionic emission. The course is intended to be basic to an understanding of the operation of circuit breakers, high voltage fuses, cables, and lightning arresters, arc welding processes; lightning; glow, corona, and spark discharges. These applications are studied as such as well as being used illustratively throughout. Lectures and discussions. **Prerequisites**: E.E. 1 and E.E. 2. Two hours credit. Second semester.

13. **Principles of Electrical Communication.** Principles and applications of wire telegraph and telephone systems. Production and reception of speech and signal currents and their propagation over open wire and cable lines. Use of repeaters in telegraph and telephone work. Laboratory work includes transmission measurements on open wire lines, loaded and unloaded cables. Lectures, recitations and laboratory. **Must be preceded or accompanied by E. E. 17.** Four hours credit. Second semester.

15. **Advanced Lighting.** Selection of a topic, with instructor's approval, for continued and intensive study, which is pursued either until all sources of information in English are exhausted,
or the time of the course is ended; short oral reports by each student to the class each week; written report and bibliography presented to instructor at end of course. Seminar. Prerequisites: E. E. 7, and preceded or accompanied by E. E. 3. Two hours credit. Second semester.

16. Electrical Rectification. A study of the basic action in alternating current rectification by various types of rectifiers; gaseous ionization and electronic action as applied to rectifiers; wave form analysis of rectifiers under various load conditions; operating conditions and applications. Class library and laboratory study. Individual problems, involving use and study of the oscillograph. Prerequisite: To be preceded or accompanied by E.E. 17. Two hours credit. Second semester.

17. Electromechanics. Analysis of complex alternating current waves; average and effective values; meaning of power factor; the method of the complex variable in a-c problems; the application of differential equations to solutions of simple transients and oscillatory circuits; use of hyperbolic functions in solving the general equation of a circuit containing distributed inductance, capacitance, resistance and leakage. Lectures and problems. Prerequisite: E. E. 3. Four hours credit. Each semester.

18. Research Work in Electrical Engineering. Students electing the course, while working under the general supervision of a member of the Staff, are expected to plan and carry out the work themselves, and to make a report in the form of a thesis. Research. Elected by permission of Head of Department. Credit by arrangement. Each semester.

19. Study of Design—Power Plants. Studies of modern typical generating and sub-stations; inspection of steam and hydraulic plants; outline of complete plant design, with detailed design of the bus system, switchboard, relay and exciter plant, etc. Lectures, problems. Prerequisite: E. E. 11. Two hours credit. Second semester.

21. Thermionic Vacuum Tubes in Engineering. Study of vacuum tube characteristics and the various factors affecting these characteristics; series, parallel and coupled circuits; resonance; rectification and detection; oscillators; theory and design of ampli-
fiers; dynatron action; special vacuum circuits. Engineering applications will be stressed throughout the course. Lectures and laboratory. Prerequisite: Preceded or accompanied by E.E. 17. Three hours credit. First semester.

22. Radio Engineering. Advanced work in resonant, coupled, and oscillatory circuits, based on work done in E.E. 21. Application of these circuits to radio problems. Audio and radio frequency amplification; transmitting and receiving circuits with especial attention to the use of vacuum tubes; antennas and principles of electromagnetic radiation; field measurement; frequency control. Lectures and laboratory. Prerequisites: E.E. 21 only; or, Physics 165 and preceded or accompanied by E.E. 17. Four hours credit. Second semester.

25. Advanced Principles of Electricity and Magnetism. Advanced theory and problems in electric and magnetic fields, using elementary vector methods which are introduced as required. This work amounts to a broader and continued treatment of the subject matter considered in E.E. 1, leading to Maxwell's Equations and the radiation of energy from electric circuits. In addition, a brief historical sketch of electricity and magnetism is given, followed by a discussion of the influence of the later physical experiments and theories. Prerequisites: E.E. 1, E.E. 3, and permission of the instructor. Credit by arrangement, though ordinarily for three hours. Each semester.

26. Heaviside Operators. Advanced theory of electrical engineering, as developed by the application of Heaviside operators to electric circuits. Lectures and discussions. Elected by permission of the instructor. Two hours credit. Each semester.

33. Industrial Electrical Engineering. Individual and group drive by electric motors; selection of motors; power requirements of various kinds of machinery; electric hoists; electric welding; electric furnaces and temperature regulation; electric braking; and other industrial problems. Lectures. Must be preceded or accompanied by E. E. 4. Two hours credit. First semester.

36. Rates and Cost Analysis. Capitalization; fair return on investment; analysis of costs and value of electrical energy; customer charge, demand charges, energy charges; investigations of practical systems used in charging for electrical energy. Lectures. Prerequisites: E. E. 11; open to seniors only. One hour credit. Second semester.

51. Advanced Problems in Electrical Machine Design. Problems are chosen from material as follows: study of magnetic circuits of rotating machinery; commutation of the d-c ma-
chine and the synchronous converter; losses, heating, heat transfer and heat dissipation in machines; study and design of the watt-hour meter; reactance in the induction motor. General conduct of course: reading of assigned papers, working of problems, and discussion with the instructor. Prerequisites: E. E. 5; elected by permission of instructor. Two to four hours, by arrangement. Each semester.

71. Interior Illumination, Study of Design. Advanced work in illumination design for graduate students, or for specially qualified and interested seniors. Lecture and laboratory. Elected by permission of the instructor. Two hours credit. First semester.

72. Natural Lighting of Buildings. Methods for prediction of daylight illumination of interiors from windows, and for designing the fenestration of buildings. A complete survey is made of all published and much unpublished information regarding factors which affect daylighting, such as glass in windows, window shades and blinds, color and finish of interior and exterior surfaces of buildings. The course being designed formerly for architects and other than electrical engineers, the essential knowledge about fundamental principles of lighting is treated briefly within the course, for which there are no prerequisites except an ability to work accurately with simple algebra and plane trigonometry. Two hours credit.

73. Photo-electric Cell Photometry. Study of operating characteristics of photo-electric cells and their application to photometry. Design of photo-electric photometers. Lectures and laboratory work. Prerequisite: Elected by permission of instructor. Two hours credit. First semester.

Summer Session

Courses 2, 20s, 3, 4, 18 will be offered for the Summer Session of 1929. Courses 7, 11, 17, 26, 72 may be given if there is sufficient demand. Those wishing to elect any of these should, if possible, communicate with the instructor in charge of the particular course some time before the opening of the Summer School.

Meter School

The Electrical Engineering Department, with the cooperation of the public utilities of the state and of the manufacturers, holds a one-week school for electric metermen during the Spring Recess. Information will be furnished upon application to the Department. This work carries no University credit.
Geodesy and Surveying, broadly speaking, are the sciences which have to do with the making, recording, and reduction of observations and measurements for determining the relative positions of points on or near the earth's surface. Geodetic theory is applied when the work is influenced by the size and shape of the earth. The practice of plane surveying is confined to small areas.

Geodesy is employed in locating the natural and artificial features of large areas of the earth's surface both on land and at sea. Field data are obtained by a combination of astronomical and terrestrial measurements. These involve precise triangulation systems, level circuits and topographic studies. The physical and mathematical sciences are relied upon, both in the making of observations and in the interpretation of data. Some of the data thus obtained are recorded in condensed form as maps, which are of great practical value in connection with military and commercial operations. While the main lines of geodetic work are in progress, much information from related fields of science is obtained. Geodetic measurements were made to determine the shape and size of the earth as early as 276 B.C. The science, as we know it today, owes much to Newton, Laplace, Legendre, Gauss and other investigators of the past few centuries. The field is now sufficiently definite and stable to offer attractive opportunities to well-trained men.

Topographic Surveying.—Extensive topographic work is performed by the United States Coast and Geodetic Survey, the United States Geological Survey, and the Corps of Engineers of the Army. Modern city plans are preceded by topographic studies which often include large areas lying beyond the existing municipal limits. Geodetic principles are often applied here.

Boundary Surveying.—The location of boundaries, the placing of monuments, and the filing of permanent records, including notes, computations, maps, etc., is probably the most universal branch of surveying. Every property owner and every political division of the nation has a direct interest in the location of property lines. With the increase in population and in land values, this phase of surveying is becoming more important. The solution of many problems in this field requires a knowledge of geodesy and land law.

Legal and Administrative.—Many problems with which the surveyor is confronted make it necessary that he concern himself
with the legal and administrative principles relating to boundary
surveying, the registration of land titles, land laws and riparian
boundaries.

The Courses offered by the Department aim to give the
student of Geodesy and Surveying a fundamental training that will
enable him to enter any branch outlined above. In order that the
Department may keep in touch with practice and aid graduates
in securing employment, it maintains contact with organizations
which specialize in surveying work.

The Diploma Department of Geodesy and Surveying was
created by the Board of Regents at the request of the Faculty
of the College of Engineering, to provide such training in pure
and applied science as may be necessary to interest students in
goedetic work, higher surveying, astronomy, and mathematics. The
Department is convinced that only by the mastery of fundamentals
may students develop that proficiency which ultimately stimulates
love of work. This new Department, representing one of the oldest
fields of science, accepts this basic idea as its guiding rule. The
aim is to help the individual acquire a foundation upon which he
can continue to build in the future, rather than to develop an
immediately marketable efficiency. Students of Geodesy and Sur-
veying are therefore urged to choose their elections in such a man-
ner as to broaden and strengthen their foundations in science, pure
and applied. They are also encouraged to become interested in
the humanistic sciences and philosophy. Even those of the highest
scientific attainment are obliged to deal with others, and they
should always appreciate their responsibilities to society. The
aid of the Department is always available to those students who
are in doubt as to electives which would be most helpful to them.

Equipment for Surveying.—The equipment for surveying in-
cludes transits, levels, rods, tapes, etc., in sufficient number to sup-
ply 200 students. Special equipment is provided for triangulation
work. A launch and sounding apparatus is provided for the work
in the summer camp. Current meters, barometers, hand levels,
sextants, cameras for surveying and engineering photography,
plane tables for topographic work, and numerous other small engi-
neering and surveying instruments are provided.

Camp Davis.—In 1908 the Regents of the University came
into possession of about 1,600 acres of land, lying between Burt
and Douglas Lakes, Cheboygan County, Michigan. Nearly half
of this area came as a gift from Colonel Charles Bogardus and
his wife, Hannah W. Bogardus. In recognition of their kindly
interest, the entire area now owned by the University in this
locality,—increased by purchase since 1908 to 3,300 acres,—is
called the Bogardus Tract.
The camp of the Department of Geodesy and Surveying is called “Camp Davis,” in memory of the late Professor Joseph Baker Davis, C.E., of the Class of 1868, who established it in 1874 and conducted it for over thirty years. Until 1909 the camp moved from place to place as Professor Davis found land he could use. Permanent improvements were impossible during its early migratory years.

Camp Davis is situated on the south shore of South Fishtail Bay, Douglas Lake, 6 miles east of Pellston on the Pennsylvania Railway, 13 miles west and slightly south of Cheboygan and 8 miles northwest of Topinabee. Douglas Lake is about 4½ miles long, east and west, and from a mile to two miles wide, north and south. Burt Lake lies 134 miles south of, 118 feet below the level of, Douglas Lake.

The camp consists chiefly of 50 residence buildings of galvanized sheet steel, 14 feet square, with concrete floors, arranged in a double row running parallel with the lake shore. The street, 70 feet wide between the buildings, has been improved by the application of gravel in 1916 and 1918. Concrete sidewalks, 4 feet wide, have been laid through the entire length of the camp. In addition to the residence buildings, the camp boasts of the following improvements: a concrete building used for storing supplies, erected in 1912; a harbor excavated in 1912 and remodeled with harbor building in 1921; a kitchen; dining rooms; complete sanitary system with septic tank, built in 1915; a combined ice house and refrigerator, a cube of 17 feet, erected in 1922; a water system with concrete reservoir built in 1912; an instrument room, 14 x 28 feet, erected in 1917; 2 steel office buildings erected in 1921 and 1922; a dark room, 14 x 14 feet, completed in 1923; a club house, 30 x 50 feet, for the use of students, erected in 1923. A keeper’s house, and a work shop were constructed in 1924. A new well was completed and the water supply rearranged the same year.

While the camp has had since 1914 an independent power plant to operate pumps and a small generator, this is not used at the present time except when power is interrupted from the high-tension line of the Cheboygan Electric Light and Power Company, connected with the camp circuit in 1921.

For transportation facilities the camp has a tractor and lumber wagon, a small truck and a light touring car. A shelter for automobiles was built in June, 1922. A camp garage was erected during the summer of 1926.

The Bogardus Tract has a varied topography. It is an excellent laboratory for the study of problems in surveying. While most of the valuable timber was removed prior to 1908, a second growth has since sprung up. The tract has been, under University management, well protected from fire.
A small store has been maintained at the camp for some years. This includes a telephone booth, a post office, a local bank, and headquarters for the mess accountant.

Students have laid out an athletic field and horseshoe links. They maintain a diving tower and other facilities for bathing and swimming.

A physician from the University Health Service is in attendance each year.

The camp is generally reached by way of Cheboygan, which is also the address for mail (Camp Davis, Route No. 1), freight and express.

The approximate cost per student is as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Session Fee</td>
<td>$31.00</td>
</tr>
<tr>
<td>Camp Fee</td>
<td>10.00</td>
</tr>
<tr>
<td>Traveling expenses (Ann Arbor to camp and return)</td>
<td>25.00</td>
</tr>
<tr>
<td>Board (deposited at the beginning of camp)</td>
<td>60.00*</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>$131.00</td>
</tr>
</tbody>
</table>

Combined Courses have been arranged with Albion, Battle Creek, and Olivet Colleges and the College of the City of Detroit. For detailed information see section 3.

Advice to Students of other colleges and universities with regard to planning their courses before coming to the University, is to be found in section 14.

Military Science.—The attention of prospective students in Geodesy and Surveying is called to the Reserve Officers Training Corps. Those who consider taking Military Science are urged to enroll at the beginning of their course. For further details see section 65.

CURRICULUM IN GEODESY AND SURVEYING AND REQUIREMENTS FOR GRADUATION

Candidates for the degree of Bachelor of Science in Engineering, Geodesy and Surveying, are required to complete the curriculum detailed below. For the definition of an hour of credit see section 50.

*This is the deposit. A rebate running from $8 to $18 is returned at the close of the session.
GIODESY AND SURVEYING

a) Preparatory Courses.
 English 1 and 2, and 5, 6, or 14 6 hours
 Language and Cultural Electives 16 hours
 Mathematics 1, 2, 3, 4 18 hours
 Physics 45, 46 10 hours
 Chemistry 5 5 hours
 Drawing 1, 2, 3 8 hours
 Shop 2, Metal Working 2 hours

 Total ... 68 hours

b) Secondary and Technical Courses.
 Engineering Mechanics 1, 2, 3, 4 12 hours
 Chemical Engineering 1 3 hours
 Astronomy 31, 35 5 hours
 Geology 31 3 hours
 Electrical Engineering 2a 4 hours
 Mechanical Engineering 3 4 hours
 Civil Engineering 2, 2a, 10 8 hours
 Forestry 34 2 hours
 Surveying 1, 2, 3, 5, 21 19 hours
 Geodesy 1 3 hours

 Total ... 63 hours

Summary:
Preparatory Courses 68 hours
Secondary and Technical Courses 63 hours
Electives .. 12 hours

 Total ... 140 hours

First Year†

FIRST SEMESTER SECOND SEMESTER

<table>
<thead>
<tr>
<th>Hours</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>or Shop 2</td>
<td>6</td>
</tr>
<tr>
<td>and Engl. 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>Math. 1</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
</tr>
</tbody>
</table>

17 or 16 16 or 17

†See sections 3 and 4.
*For Modern Language requirement see section 51.
COURSES IN GEODESY AND SURVEYING

Surveying

1. **Surveying.** Fundamental theory and practice; note keeping; verniers; linear measurements; angle reading; traverse surveying; computing areas; straight line; circular curves; differential levelling; continuous levelling; profile; grade stakes; vertical curve. Lectures, text assignments, recitations, three four-hour periods of field practice. Required for students of Geodesy and Surveying, Civil Engineering and Landscape Design. **Prerequisite:** Mathematics 2. Three hours credit. Each semester.

For Modern Language requirement see section 51.
2. Surveying. Topographic field work; stadia; plane table; mapping from transit and plane table notes; theory of cross-sectioning and earthwork calculation; triangulation; adjustment, design, and care of instruments. Lectures, text assignments, recitations, field practice, drawing. Two recitations and two four-hour field or drawing periods. Required for students of Geodesy and Surveying, Civil Engineering, and Landscape Design. Prerequisite: Surveying 1. Four hours credit. Each semester.

4. Surveying. Elementary theory and practice; use of instruments; reading verniers and angles; running straight lines; traverse survey; computing areas; levelling; profile; grade stakes; note keeping. Lectures, text assignments, one recitation and one four-hour field period. Required of all engineering students except Geodesy and Surveying, Civil and Chemical Engineering. Prerequisite: Mathematics 2. Two hours credit. Each semester and Summer Session.

5. Least Squares. Theory of least squares; adjustment and comparison of data; computation of triangulation systems; determination of empirical formulae. Lectures, text, problems, recitations. Prerequisite: Mathematics 4. Two hours credit. Each semester.

7. Municipal Surveying. Surveys for street location, fixing grades, paving, sewers, property lines; subdivision planning and laying out; state laws relating to municipal surveys. Lectures, text, drawing, one recitation and one four-hour field period. Prerequisite: Surveying 3. Two hours credit. Each semester.

12. Surveying. Similar to Surveying 1 with drawing work added. Designed for Forestry students. Lectures, text, recitations, field. Three four-hour field periods, and one one-hour drawing period. Prerequisite: Math. 2. Four hours credit. First semester.

13. Surveying. Similar to Surveying 2. Designed for Forestry students. Lectures, text, two recitations, and two four-hour field or drawing periods. Prerequisite: Surveying 12. Four hours credit. Second semester.

21. Photography and Camera Surveying. History of photography; testing camera and lenses; exposure of plates; development of negatives; printing, enlarging, and reducing; lantern slides; color work; mapping and field sketching. Lectures, refer-
ence work, one recitation and one four-hour field and laboratory period. Prerequisites: Surveying 3, Physics 36, and an elementary course in chemistry. Two hours credit. Each semester.

22. Advanced Topographic Surveying. History of the development of topographic methods and practice of foreign countries; status of such surveys in this country; purpose of topographic surveys; use of topographic maps. Lectures, reference work, recitations, problems. Prerequisite: Surveying 3. Open to fourth and fifth year students only. Four hours credit. First semester.

23. Map Projections and Sketching. Map projections with special reference to the polyconic system; exercises in topographic mapping and sketching. Lectures, reference work, recitations, problems. Prerequisite: Surveying 3. Open to fourth and fifth year students only. Three hours credit. First semester.

31. History of Administrative Departments. History and organization of national and state departments which conduct extensive surveys. Lectures, reference work. Prerequisite: Surveying 3. Open to fourth and fifth year students only. Two hours credit. First semester.

32. Land Law. Legislation relating to registration of land titles and estates; acquiring of title to property; essential elements of deeds; application. Lectures, reference work. Prerequisite: Surveying 3. Open to fourth and fifth year students only. Three hours credit. First semester.

33. Land Law. Law of boundaries; adverse possession; prescription and prescriptive rights; easements and rights of way. Lectures, reference work. Prerequisite: Surveying 32. Open to fourth and fifth year students only. Three hours credit. Second semester.

34. Registration of Land Titles. Legislation relating to the registration of land titles; Torrens Act of Australia and modifications as adapted to conditions of other countries. Lectures, reference work. Prerequisite: Surveying 3. Open to fourth and fifth year students only. Three hours credit. Second semester.

35. Boundary Surveys. Boundary surveys from a legal standpoint; boundary surveys in this country and abroad; problems relating to the establishment of boundaries uncertain, due to obliteration of monuments, errors in surveys, inaccurate descriptions in deeds or to other causes. Lectures, reference work. Prerequisite: Surveying 3. Open to fourth and fifth year students only. Three hours credit. Second semester.
36. Riparian Boundaries. Uncertainty of riparian boundaries as now defined by court decision under the Common Law; method of definite determination of riparian boundaries. Lectures, reference work. Prerequisite: Surveying 3. Open to fourth and fifth year students only. Three hours credit. Second semester.

Geodesy

1. Geodesy. Introductory course; history; elements of modern practice and its application to several branches of surveying. Lectures, text, recitations. Prerequisite: Surveying 3. Open to fourth and fifth year students only. Three hours credit. Second semester.

2. Geodesy. Methods employed and field covered by the United States Coast and Geodetic Survey. Lectures, reference work. Prerequisite: Geodesy 1. Open to fourth and fifth year students only. Two hours credit. Second semester.

Summer Session

3. Surveying. Plane table, stadia, railroad, highway, hydrographic and land surveys; triangulation; azimuth; cross-sectioning; computation of field data; making of maps and diagrams; preparation of permanent records of work performed; camp construction and maintenance and many things which relate to the welfare of those who live in the open. Field problems, office work, five and one-half days a week. Prerequisites: Surveying 1 and 2, or 12 and 13; Astronomy 35. See page 178 (relating to fees). Eight hours credit. Summer camp.

4s. Surveying. Use of instruments, same as Surveying 4; given at Ann Arbor. Lectures, text, one recitation and one four-hour field period. Prerequisite: Mathematics 2. Two hours credit. Summer Session.

79. MATHEMATICS

Professors Field, Running, Hildebrandt, Love, Hopkins, and Poor; Assistant Professors Rouse, Denton, and Shohat; Mr. Kazarinoff, Mr. Coates, Mr. Churchill, Mr. Dushnik, Mr. Fisk, and Mr. Corliss.

The object of the work of this department is not only to impart to the student the mathematical knowledge requisite for the study of the various branches of engineering, but also to train his mind in the methods of precise reasoning and accustom him to the proper application of general principles to particular cases.
Much time is devoted to the solution of problems in order to combine a fair knowledge of the elementary principles of higher mathematics with the necessary facility in applying these principles to concrete cases. The classes are divided into sections as small as practicable, so as to make it possible for the instructor to give his individual attention to the students.

For students who desire to pursue their mathematical studies beyond the required work, a considerable number of advanced elective courses are offered. Following are the courses offered in the College of Engineering for the year 1929-1930. Additional courses offered in the College of Literature, Science, and the Arts will be found in the Announcement of that College, or in the Announcement of the Graduate School.

The required work is the same for all students of engineering, except students of chemical engineering, and extends throughout the first two years. The first year is devoted to advanced algebra, and plane and solid analytic geometry; the second, to differential and integral calculus, including an introduction to the solution of differential equations. Students who do not have credit in trigonometry are required to complete this subject as early as possible.

There is an increasing demand in the engineering industries and in the faculties of technical schools for graduates who have taken considerably more mathematics and mechanics than is required in the other engineering curricula. To meet this demand, the following program has been provided:

CURRICULUM IN MATHEMATICS AND REQUIREMENTS FOR GRADUATION

Candidates for the degree of Bachelor of Science in Engineering, Mathematics, are required to complete the following program of studies:

a) Preparatory Courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1 and 2, and 5, 6, or 14</td>
<td>6 hours</td>
</tr>
<tr>
<td>*Modern Language and Cultural Electives</td>
<td>16 hours</td>
</tr>
<tr>
<td>Mathematics 1, 2, 3, 4</td>
<td>18 hours</td>
</tr>
<tr>
<td>Physics 45, 46</td>
<td>10 hours</td>
</tr>
<tr>
<td>Chemistry 5</td>
<td>5 hours</td>
</tr>
<tr>
<td>Drawing 1, 2, 3</td>
<td>8 hours</td>
</tr>
<tr>
<td>Shop 2</td>
<td>2 hours</td>
</tr>
<tr>
<td>Total</td>
<td>65 hours</td>
</tr>
</tbody>
</table>

*Students in this curriculum may satisfy the modern language and cultural requirement in the College of Engineering in the usual way, or they may elect twelve hours each of French and German.
b) †Secondary Courses.

Astronomy 35 2 hours
Surveying 1 3 hours
Engineering Mechanics 1, 2, 3, 4 12 hours
Chemical Engineering 1 3 hours
Electrical Engineering 2a 4 hours
Civil Engineering 2 3 hours
Mechanical Engineering 3 4 hours

Total 31 hours

c) Advanced Courses.

Technical Group, in some specified technical engineering department including an advanced design course or advanced courses in technical mechanics (Approx.) 15 hours
Mathematics Group (Approx.) 12 hours
*Electives 8 hours
Group Options in Engineering Mechanics, Astronomy, Physics, Mathematics, or Technical Engineering 9 hours

Total 140 hours

COURSES IN MATHEMATICS

†1. Algebra and Analytic Geometry. Review of exponents, radicals, quadratic equations, systems of equations involving quadratics; theory of equations including Horner's method; determinants; complex numbers; curve tracing and locus problems in Cartesian and polar co-ordinates; straight line; circle. Four hours credit. Each semester.

†1a. Trigonometry. Radian measure; co-ordinate system; trigonometric ratios; trigonometric identities and equations; inverse functions; graphs; reduction and addition formulas; laws of sines, cosines, and tangents; theory and use of logarithms; orthogonal projection; solution of triangles. Two hours credit. Each semester.

†Students in Chemical Engineering who wish to become candidates also in Mathematics are permitted to substitute for Astronomy 35, Eng. Mech. 3 and 4, Surveying 1 and Civil Eng. 2, such other courses as may be approved by the Department of Mathematics.
*See footnote on page 184.
†Students entering with credit in trigonometry will take Course 1. Students entering without trigonometry will take Course 1b, except that those whose high school records show unusual proficiency in Mathematics may take Courses 1 and 1a instead. Permission to do this must be obtained from the Department of Mathematics at the time of classification.
186 COLLEGE OF ENGINEERING

‡1b. Algebra and Trigonometry. Review of elementary operations; factoring, fractions; linear equations in one unknown; simultaneous linear equations; exponents; radicals; quadratic equations; systems of equations involving quadratics; progressions; binomial theorem; trigonometry, the same as in Course 1a. Four hours for two hours credit. Each semester.

2. Plane and Solid Analytic Geometry. Conic sections; change of axes; properties of conics involving tangents, diameters, asymptotes, parametric equations; surface tracing and locus problems in space; direction cosines; plane; straight line; quadric surfaces; space curves. Four hours credit. Each semester.

2a. Solid Analytic Geometry. Surface tracing and locus problems in space; direction cosines; plane; straight line; quadric surfaces; space curves. Two hours credit. First semester.

3. Calculus. Functions; limits; continuity; derivative; differential; differentiation and integration of the elementary functions, with applications to curve tracing, maxima and minima, time rates, curvature, plane motion; indeterminate forms; definite and improper integrals. Five hours credit. Each semester.

4. Calculus and Differential Equations. Topics the same as in Courses 4a and 4b combined. Five hours credit. Each semester.

4a. Calculus. Definite integral as the limit of a sum; applications to geometry, centroids, moments of inertia, fluid pressure; infinite series, including Taylor's series; partial and total differentiation, multiple integrals. Three hours credit. Each semester.

4b. Differential Equations. Simple types of ordinary equations of the first and second order; linear equations with constant co-efficients; applications to geometry and mechanics. Two hours credit. Each semester.

107. Advanced Calculus. Review of the fundamental theory of elementary calculus. Taylor's theorem. Explicit and

‡See footnote on page 185.
implicit functions. Simple, multiple, and improper integrals. Functions defined by integrals and other selected topics. Three hours credit. Each semester.

109. Differential Equations for Chemical Engineers. Solutions of equations arising from first order, second order, and simultaneous processes; determination of velocity constants. Graphical methods are stressed. Three hours credit. First semester.

137. Projective Geometry for Engineers. The elements of projective geometry, with particular attention to its application to problems of engineering. Three hours credit. First semester.

143, 144. Elements of Mechanics. Kinematics; rectilinear and curvilinear motion of a point, velocities and accelerations in the rigid body. Statics, mass, momentum, force, energy; statics of the particle and the rigid body, theory of attractive forces. Kinetics: free and restrained motion of a particle; motion of a rigid body. Two hours credit each. Throughout the year.

146. Celestial Mechanics. Problems of three and \(n \) bodies; geometric introduction to the lunar theory; general perturbations; introduction to periodic orbits. Three hours credit. Second semester.

169. Graphical Methods. Graphical representation of functions; construction of graphical charts; graphical solution of equations; a study of the principles of differential and integral calculus by graphical methods applied to the solution of differential equations. Two hours credit. First semester.

170. Empirical Formulas. Curve fitting; graphical determination of constants in empirical formulas; application of the method of least squares; interpolation; numerical integration. Two hours credit. Second semester.

201, 202. Theory of Functions of a Complex Variable. Properties and manipulation of complex numbers; functions of a complex variable, their differentiation and integration and related theorems; developments in power series; properties of analytic functions; singularities; and similar topics; applications to mathematical physics and to other branches of mathematics. Three hours credit each. Throughout the year.

210. Fourier’s Series and Harmonic Analysis. The development of Fourier’s series, Legendre’s coefficients, and Bessel’s functions and their applications to certain problems in mathematical physics. Three hours credit. First semester.

211, 212. Selected Topics in Analysis: Definite Integrals. Existence and fundamental properties of Riemann’s integral; various methods of evaluating definite integrals; differentiation and integration under the integral sign; differentiation and integration of infinite series; improper integrals; Euler’s integrals; Fourier’s series; existence and fundamental properties of Lebesgue and Stieltjes integrals; mechanical quadratures; asymptotic expressions for certain classes of definite integrals. Two hours credit each. Throughout the year.

215, 216. General Theory and Application of Tchebycheff Polynomials. Existence of Tchebycheff polynomials; fundamental properties; relation to continued fractions; trigonometric polynomials, polynomials of Legendre, Jacobi, Laguerre, Hermite; their difference— and differential equations; asymptotic and minimum properties of Tchebycheff polynomials; the closure equation; application to the general theory of polynomials, to mechanical quadratures, etc.; development of arbitrary functions in series of Tchebycheff polynomials, relation to orthogonal functions in general. Three hours credit each. Throughout the year.

234. Vector Analysis. A study of the formal processes of vector analysis, followed by applications to problems in mechanics and geometry. Three hours credit. Second semester.

235, 236. Elements of Elasticity and Hydrodynamics. In this course the classical theory of elasticity will be treated with hydrodynamics as the important special case. Modern developments in hydrodynamics and their applications to aeronautics will be considered as time permits. Two hours credit each. Throughout the year.

238. Advanced Stability. Advanced study of more complicated phenomena of stability according to Bryan, with Nairston's applications of experimentally determined resistance derivatives and rotary coefficients. Must be preceded by Course 4b. Two hours credit. Second semester.

245, 246. Advanced Celestial Mechanics. Studies in continuation of Course 146 will be arranged for those qualified to take them, analytic differential equations with applications to periodic orbits, cosmogony and stellar dynamics, lunar theory, and research in mathematical astronomy. Two hours credit each. Throughout the year.

Summer Session

The following courses will be offered in the Summer Session of 1929: 1, 2, 3, 4, 141s, 160s, 170s, 201s, 234s, 241 (Applied Mathematics to Engineering Problems), (xx) Partial Differential Equations, 145s (Celestial Mechanics), and 239 (Aeronautics).
Mechanical Engineering is that branch of engineering which broadly speaking covers the fields of heat, power, design of machinery, industrial management, and manufacturing problems. Mechanical Engineering may be divided into the following branches:

Steam Power Engineering deals with the theory, design, construction, and operation of the various forms of prime movers using steam as the motive power, and their applications in the modern power house. The problems of combustion of fuels, the application of power and steam in industrial plants, determination of power costs, and similar subjects, may be included under this heading. This branch is so closely allied with Electric Power Engineering that a knowledge of both is essential to the practicing engineer in this field.

Internal Combustion Engineering covers the design, construction and operation of the various types of engines using gas, oil, or gasoline, to generate the motive power; the different types of gas producers and the application of this form of engine to the generation of power for many purposes. Because of the present day use of the automobile, the increased cost of coal, and the development of the oil industry, the field has become very important in recent years.

Hydro-Mechanical Engineering deals with the theory, design, construction, installation, testing, and operation of water wheels, water turbines, centrifugal and reciprocating pumps. This is one of the oldest branches of Mechanical Engineering and one of the most important.

Heating, Ventilating, and Refrigerating Engineering are included under one general heading because of the similarity in the type of problem involved. Broadly speaking, this group includes the theory, design, installation and operation of heating, ventilating, and refrigerating plants. Among the specific applications would be the heating and ventilating requirements of buildings for various uses. Problems relating to compressed air are also considered in this group.
Automobile Engineering.—The University of Michigan has a strategic location at the center of the automobile industry in this country, and particular attention has been directed toward the development of courses in this branch of engineering. Work in this field covers the general principles of operation, theory and design of the automobile engine and other chassis units, laboratory and road tests of the various component parts of the automobile or of the complete automobile itself.

Industrial Engineering deals largely with industrial plant operation and management, efficiency methods, production, and the business side of manufacturing. This branch of engineering, while old in principle, has not been generally recognized until recent years, but now commands an important place in the engineering field.

Machine Design.—While design is included in practically all branches of Mechanical Engineering, and is therefore a necessary adjunct to those branches, there is also the general field for the man who wishes to follow machine design either as technical designer or as manufacturer of general machinery. The very general application of automatic machinery to manufacturing methods has established a definite need for good designers.

The Department of Mechanical Engineering of this University endeavors to give the student a thorough training in the fundamental principles of the basic Mechanical Engineering subjects. Most of the time of the first two years, and a part of the third year, is spent in a study of the foundation courses such as Mathematics, English, Physics, Chemistry, Drawing, and Mechanics. In the third and fourth years, required courses in Heat Engines, Machine Design, Mechanical Laboratory, Thermodynamics, Hydraulics and Power Plants supplement the foundation courses. The Department recognizes the fact that no student can properly expect to specialize in any branch of Engineering in four years of college work. The fourth year, however, allows some opportunity, if desired, for selection of special courses in one or more of the Mechanical Engineering branches. Graduate work is encouraged, and a number of advanced courses are offered for those who plan to spend more than four years, or for graduate students from this and from other universities. It has been the policy of this Department to keep in close touch with the actual needs of the graduate student, and as far as possible to give him the training that will fit him for the immediate future. Most of our graduates are absorbed immediately by the industries and a friendly relation of mutual benefit is always maintained with these industries. Many students come to us with advanced credit, and these are urged to
elect courses in several departments of the Engineering College, and also in the College of Literature, Science, and the Arts. Graduate mechanical engineers very rapidly rise to positions of responsibility in the industries, and a broad general course as well as a technical course is of great value to them in their advancement.

Facilities for Instruction

It is recognized by this Department that the principal benefits to be derived from a college training are dependent more upon the character of the instruction than upon physical equipment. The importance of certain apparatus for purposes of illustration, demonstration and testing is however apparent in some lines of work, and the Department aims to include a sufficient amount of laboratory instruction to supplement properly the work of the classroom.

The Mechanical Engineering Laboratory is located in the West Engineering Building and has a floor space of approximately 13,000 square feet. It is devoted to experimental work in connection with the testing of engines, boilers, pumps, fans, air compressors, hydraulic machinery, and automobile engines. The very complete and modern Washington Street plant (for description see page 61) of the University is available for use, and a test of this plant constitutes a regular part of the second course in Mechanical Laboratory. Occasionally tests are made of outside plants in the vicinity of Ann Arbor.

The laboratory, as a whole, comprises all the equipment utilized for illustration of the theory involved in Mechanical Engineering and for experimental work of both standard and research nature. Separate laboratory instruction is given along the lines of hydraulic machinery and automobiles, and those parts of the equipment applying especially to these divisions are segregated as far as possible to form the Hydro-Mechanical Laboratory and the Automobile Laboratory. The general laboratory is well equipped with power machines of all kinds, which furnish the means of instruction in the principles of testing.

The Hydro-Mechanical Laboratory is equipped with a pair of 600-cubic-foot tanks on scales, a large Duplex pump, a Francis turbine, a Doble tangential water wheel, two Rees Roturbo pumps, two three-inch single-stage centrifugal pumps, one 50-h.p. Sprague electric dynamometer arranged for direct connection to centrifugal pumps, and all necessary accessories for testing.

The Automobile Laboratory consists of an engine testing section, a dynamometer room, and a section for the display and
demonstration of automobiles, motor trucks, and their component parts. The engine testing section contains a complete equipment of engines, selected with a view to affording the student experience with various typical successful types. This section is equipped with prony brakes, water dynamometers, and one fan dynamometer. The dynamometer room contains a complete Diehl electric dynamometer and a 100-h.p. Sprague electric dynamometer, together with special fuel measuring devices, tachometers, air meters, pyrometers, gas analysis apparatus, manograph, and complete accessories necessary for instructional testing and advance research work. In the display and demonstration section are gathered together complete operating and cut-out chassis, various types of engines, cut-out transmissions, rear axles, differentials, clutches, carburetors, ignition systems, and other automobile parts and equipment. This apparatus is especially mounted to show its operation and design, and is used as demonstration study and test equipment for the regular automobile courses. It further serves as a permanent educational exhibit open to the public.

Combined Courses have been arranged with Albion, Battle Creek, and Olivet Colleges, and the College of the City of Detroit. For detailed information see section 3.

Advice to Students of other colleges and universities with regard to planning their courses before coming to the University, is to be found in section 14.

Military Science and Tactics.—Students who plan to take courses in Military Science are urged to enroll in the beginning of the freshman year, and in doing so should consult with the officer in charge of this department, and also with the head of the department in which he proposes to take his degree. For information regarding the work in Military Science and Tactics see section 65.

CURRICULUM IN MECHANICAL ENGINEERING AND REQUIREMENTS FOR GRADUATION

Candidates for the degree of Bachelor of Science in Engineering, Mechanical Engineering, are required to complete the four-year curriculum detailed on page 195.

Candidates for the degree of Bachelor of Science in Engineering, Mechanical and Industrial Engineering, are required to complete the five-year curriculum detailed on page 197.

For the definition of an hour of credit see section 59.
Outline of Required Courses, Four-year Curriculum.

(1) Preparatory Courses.

- **English 1 and 2, and choice of English 5, 6, or 14**: 6 hours
- **Modern Languages or Cultural Electives**: 16 hours
- **Mathematics 1, 2, 3, 4**: 18 hours
- **Physics 45, 46**: 10 hours
- **Chemistry 5**: 5 hours
- **Drawing and Descriptive Geometry 1, 2, 3**: 8 hours
- **Shop 2, Metal Working and Treating**: 2 hours
- **Shop 3, Foundry**: 4 hours
- **Shop 4, Machine Shop**: 4 hours

Total: 73 hours

(2) Secondary and Technical Courses.

- **Surveying 4, Use of Instruments**: 2 hours
- **Eng. Mech. 1, Statics**: 4 hours
- **Eng. Mech. 2, Strength and Elasticity**: 3 hours
- **Eng. Mech. 3, Dynamics**: 2 hours
- **Eng. Mech. 4, Hydromechanics**: 3 hours
- **Mech. Eng. 2, Elements of Machine Design**: 3 hours
- **Mech. Eng. 3, Heat Engines**: 4 hours
- **Mech. Eng. 4, Hydraulic Machinery**: 3 hours
- **Mech. Eng. 5, Thermodynamics**: 3 hours
- **Mech. Eng. 6, Machine Design**: 4 hours
- **Mech. Eng. 7, Mechanical Laboratory, First Course**: 2 hours
- **Mech. Eng. 8, Mechanical Lab., Second Course**: 3 hours
- **Mech. Eng. 9, Power Plants**: 3 hours
- **Mech. Eng. 10, Theory of Machine Movements**: 2 hours
- **Civil Eng. 2, Theory of Structures**: 3 hours
- **Elec. Eng. 2a, D.C. App. and Cir**: 4 hours
- **Chem. Eng. 1, Engineering Materials**: 3 hours
- **Chem. Eng. 10, Tech. Exam. of Gas and Fuel**: 1 hour

Total: 52 hours

Summary:

- **Preparatory Courses**: 73 hours
- **Secondary and Technical Courses**: 52 hours
- **Electives**: 15 hours

Total: 140 hours

b) Selection of Elective Courses.

The 15 hours of elective work is to be filled partly by "Restricted Electives" and partly by "Free Electives."
(1) Restricted Electives.

The student must elect one 3-hour design course from the following list: M.E. 9a, 11a, 12a, 15a, 16a, 17a, 20a, 25a, 30a, 31a. Course 15a must be preceded or accompanied by 15. Courses 30a and 31a must be preceded by the corresponding classroom course and by M.E. 29.

Students electing design courses other than M.E. 15a, 30a, or 31a, must also offer credit for graduation in some additional mechanical engineering course from the following list:

M.E. 11, 12, 13, 15, 16, 17, 19, 20, 25, 30, 31, 35.

(2) Free Electives.

The remaining elective hours may be filled by courses offered by any department in the Engineering College or by any College or School in the University to which the student is eligible, subject to the approval of the Head of the Mechanical Engineering Department.

In the selection of his elective hours the student is urged to broaden his training by making elections in other departments of work, and in so doing should consult freely with the members of the Mechanical Engineering staff.

PROGRAM IN MECHANICAL ENGINEERING

First Year†

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>SECOND SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>Hours</td>
</tr>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>or Shop 2</td>
<td>6</td>
</tr>
<tr>
<td>and Engl. 1 and 2</td>
<td>4</td>
</tr>
<tr>
<td>Math. 1</td>
<td>3</td>
</tr>
<tr>
<td>Drawing 1</td>
<td></td>
</tr>
<tr>
<td>16 or 17</td>
<td></td>
</tr>
</tbody>
</table>

†See sections 3 and 4.
*For Modern Language requirements see section 51.
<table>
<thead>
<tr>
<th></th>
<th>FIRST SEMESTER</th>
<th>SECOND SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>Hours</td>
<td></td>
</tr>
<tr>
<td>Mod. Lang.</td>
<td>4</td>
<td>Mod. Lang.</td>
</tr>
<tr>
<td>Math. 3</td>
<td>5</td>
<td>Math. 4</td>
</tr>
<tr>
<td>Physics 45</td>
<td>5</td>
<td>Physics 46</td>
</tr>
<tr>
<td>Chem. Eng. 1</td>
<td>3</td>
<td>Eng. Mech. 1</td>
</tr>
<tr>
<td>Drawing 3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Summer Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elec. Eng. 2a</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Shop 3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. Mech. 2</td>
<td>3</td>
<td>Shop 4</td>
</tr>
<tr>
<td>Eng. Mech. 3</td>
<td>2</td>
<td>Eng. Mech. 4</td>
</tr>
<tr>
<td>Mech. Eng. 3</td>
<td>4</td>
<td>Mech. Eng. 6</td>
</tr>
<tr>
<td>Mech. Eng. 7</td>
<td></td>
<td>or</td>
</tr>
<tr>
<td>and</td>
<td></td>
<td>Mech. Eng. 4, 8</td>
</tr>
<tr>
<td>Mech. Eng. 10</td>
<td>2</td>
<td>and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem. Eng. 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mech. Eng. 10</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18 or 19</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. Eng. 4, 8</td>
<td>6</td>
<td>Mech. Eng. 9</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>Mech. Eng. 9a, 11a,</td>
</tr>
<tr>
<td>Mech. Eng. 6</td>
<td>4</td>
<td>12a, 15a, 16a, 17a,</td>
</tr>
<tr>
<td>Surveying 4</td>
<td>2</td>
<td>20a, 21a</td>
</tr>
<tr>
<td>Mech. Eng. 11, 12, 13,</td>
<td>16, 17, 19, 20, 25,</td>
<td></td>
</tr>
<tr>
<td>15, 16, 17, 19, 20, 25,</td>
<td>32 or 35</td>
<td></td>
</tr>
<tr>
<td>30, 31</td>
<td>2 or 3</td>
<td></td>
</tr>
<tr>
<td>Engl. 5, 6, or 14</td>
<td>2</td>
<td>Other electives</td>
</tr>
<tr>
<td>Civil Eng. 2</td>
<td>3</td>
<td>8 or 7</td>
</tr>
<tr>
<td>Other electives</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16, 17, or 18</td>
<td>13 or 14</td>
</tr>
</tbody>
</table>

*For Modern Language requirement see section 51.
FIVE-YEAR CURRICULUM IN MECHANICAL AND INDUSTRIAL ENGINEERING

The five-year course in co-operation with the School of Business Administration leading to the degree of Bachelor of Science in Engineering, Mechanical and Industrial Engineering, is planned as follows:

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>10</td>
</tr>
<tr>
<td>Modern Languages (or Cultural Electives)</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics</td>
<td>18</td>
</tr>
<tr>
<td>Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>Drawing and Descriptive Geometry</td>
<td>8</td>
</tr>
<tr>
<td>Shop Work</td>
<td>10</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>24</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Economics and Business Administration</td>
<td>30</td>
</tr>
<tr>
<td>Factory Management and Transportation</td>
<td>15</td>
</tr>
<tr>
<td>Electives</td>
<td>11</td>
</tr>
</tbody>
</table>

Total hours: 176

The schedule of work is as follows:

First Year‡

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
<td>Engl. 1, 2, and Shop 2</td>
<td>6</td>
</tr>
<tr>
<td>or Engl. 1, 2, and Shop 2</td>
<td>6</td>
<td>or Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>Math. 1</td>
<td>4</td>
<td>Math. 2</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
<td>Drawing 2</td>
<td>3</td>
</tr>
</tbody>
</table>

16 or 17

16 or 17

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Math. 3</td>
<td>5</td>
<td>Math. 4</td>
<td>5</td>
</tr>
<tr>
<td>Chem. Eng. 1</td>
<td>3</td>
<td>Physics 45</td>
<td>5</td>
</tr>
<tr>
<td>Drawing 3</td>
<td>2</td>
<td>Economics 54</td>
<td>3</td>
</tr>
<tr>
<td>Economics 53</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

‡See sections 3 and 4.

*For Modern Language requirement see section 51.
Summer Session

<table>
<thead>
<tr>
<th>Shop 3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shop 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Third Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. M. 1</td>
<td>4</td>
</tr>
<tr>
<td>Physics 46</td>
<td>5</td>
</tr>
<tr>
<td>Economics 121</td>
<td>3</td>
</tr>
<tr>
<td>Economics 171</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. M. 2</td>
<td>3</td>
</tr>
<tr>
<td>M. E. 3</td>
<td>4</td>
</tr>
<tr>
<td>Economics 172</td>
<td>3</td>
</tr>
<tr>
<td>Economics 177</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. M. 3</td>
<td>2</td>
</tr>
<tr>
<td>M. E. 2</td>
<td>3</td>
</tr>
<tr>
<td>M. E. 7</td>
<td>2</td>
</tr>
<tr>
<td>Chem. Eng. 10</td>
<td>1</td>
</tr>
<tr>
<td>M. E. 35</td>
<td>3</td>
</tr>
<tr>
<td>E. M. 4</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. E. 6</td>
<td>4</td>
</tr>
<tr>
<td>M. E. 5</td>
<td>3</td>
</tr>
<tr>
<td>M. E. 8</td>
<td>3</td>
</tr>
<tr>
<td>Bus. Ad. 114</td>
<td>3</td>
</tr>
<tr>
<td>M. E. 36</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. E. 10</td>
<td>2</td>
</tr>
<tr>
<td>M. E. 9</td>
<td>3</td>
</tr>
<tr>
<td>E. E. 2a</td>
<td>4</td>
</tr>
<tr>
<td>Bus. Ad. 161</td>
<td>3</td>
</tr>
<tr>
<td>M. E. 40</td>
<td>3</td>
</tr>
<tr>
<td>C. E. 2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. E. 42</td>
<td>3</td>
</tr>
<tr>
<td>Engl.</td>
<td>2</td>
</tr>
<tr>
<td>Bus. Ad. 202</td>
<td>3</td>
</tr>
<tr>
<td>Bus. Ad. 162</td>
<td>3</td>
</tr>
<tr>
<td>M. E. 43</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>
MECHANICAL ENGINEERING

COURSES IN MECHANICAL ENGINEERING

2. Elements of Machine Design. Practical application of theory to elementary machine design including riveted joints, keys and cotters, screw fastenings, power screws, shafts, permanent couplings, journals and bearings, and spur gearing. Two recitations, and one three-hour drawing period a week. Prerequisites: Drawing 3, and preceded or accompanied by E.M. 2. Three hours credit. Each semester.

2a. Elements of Machine Design. Same as Course 2; includes in addition, belts, ropes, chains, brakes and clutches. Two recitations, and one three-hour drawing period a week. Prerequisites: Drawing 3 and E.M. 2. Not open to Mechanical Engineering students. Three hours credit. Each semester.

3. Heat Engines. General principles involved in the action of the various forms of heat engines, including the steam engine and boiler, the steam turbine, and the internal combustion engine with special attention given to the different types in use; the general problem of a modern power plant is considered for the benefit of those who do not devote further time to the subject. Required of all engineering students. Lectures, recitations. Prerequisites: Physics 45 and 46, and Math. 3. Four hours credit. Each semester.

6. Theory of Machine Design. Continuation of Course 2; more advanced in character; analysis of loads and forces; design of parts, considering wear, dynamic and static forces including critical speeds, application of the theory of elasticity. Two recitations, and two three-hour drawing periods a week. Prerequisites: M.E. 2, and preceded or accompanied by M.E. 10. Four hours credit. Each semester.

7. Mechanical Laboratory. First Course. Elementary tests of a steam engine, steam turbine, gas or oil engine, power pump, and steam boiler; use and calibration of instruments used in mechanical engineering work exemplified in connection with these tests and in the calculation of the results. Laboratory, computa-
tions, reports; two periods of four and one-half hours each a week. Prerequisites: E.M. 1, preceded or accompanied by M.E. 3, and accompanied by Ch.E. 10. Two hours credit. Each semester.

8. Mechanical Laboratory. Second Course. Experimental study of a steam turbo-generator, oil engine, fan, steam injector, air compressor, refrigerating machine, steam power plant, and several forms of hydraulic machinery. Laboratory, computations, reports; two periods of four and one-half hours each a week. Prerequisites: M.E. 7 and preceded or accompanied by M.E. 5. Three hours credit. Each semester.

9. Power Plants. Design, operation, and economics of power plants. Lectures, recitations and problems. Prerequisites: M.E. 3, and preceded or accompanied by E.M. 4. Open only to seniors and graduates. Three hours credit. Each semester.

9a. Design of Power Plants. Student is given usual data furnished the engineer; selects the proper machinery to meet the needs of a power house; makes the general design of the power house, including setting and piping plans for all the principal machines to be installed. Computations and drawing; two four-hour periods a week. Prerequisites: M.E. 9 and E.M. 4. Three hours credit. Second semester.

11. Steam Boilers. Commercial types of boilers, stokers and superheaters; principles of boiler economy and operation; combustion of fuels; theory of heat transference; purchase of coal by specifications; storage of coal; feed water treatment; problems of design. Lectures, recitations, problems. Prerequisite: M.E. 3. Three hours credit. First semester.

11a. Design of Steam Boilers. Complete design of boilers of different types, including calculations and drawing of important details. Drawing, problems; two four-hour periods a week. Prerequisite: M.E. 6. Three hours credit. Second semester.

12. Steam Reciprocating Engines. A study of the general theory and thermodynamics of the steam engine; the various commercial types, and problems on design. Lectures, recitations, problems. Prerequisite: M.E. 5. Two hours credit. Second semester.
12a. Design of Reciprocating Steam Engines. Complete design of a steam engine; including the calculation and drawing of important details. Drawing, problems; two four-hour periods a week. Prerequisite: M.E. 6. Three hours credit. Second semester.

13. Steam Turbines. Advanced study of the flow of fluids, kinetic effects, thermodynamics; steam turbine used as a concrete example; field of application; influence of vacuum, pressure, superheat, preheating, stage heating of feed water and condensing operation. Lectures, recitations, problems. Prerequisite: M.E. 5. Three hours credit. Each semester.

15. Internal Combustion Engines. Underlying theory; thermodynamics; fuels and combustion; different commercial types; carburetion; ignition; injection; cooling; regulating devices; testing; computations for principal dimensions; details of construction. Lectures, recitations, problems. Prerequisites. M.E. 5 and preceded or accompanied by M.E. 6. Three hours credit. Each semester.

15a. Design of Internal Combustion Engines. Complete layout of standard types of internal combustion engines, calculation and design of important details. Drawing, problems; two four-hour periods a week. Prerequisites: M.E. 6 and preceded or accompanied by M.E. 15. Three hours credit. Second semester.

16. Water Turbines. Hydrodynamic theory of the operation of the various types; computation of important dimensions; considerable portion devoted to analysis of test data and selection of turbines for various operating conditions. Lectures, recitations, problems. Prerequisite: preceded or accompanied by M.E. 4. Three hours credit. First semester.

16a. Design of Water Turbines. General problem of turbine design. Calculations and drawings made for runners, guide vanes, draft tubes, etc., with special attention given to the layout of runners. Two four-hour periods a week. Prerequisite: M.E. 6. Three hours credit. Second semester.

17. Pumping Machinery. Advanced course covering the theory and operation of reciprocating and centrifugal pumps; application of pumps to definite pumping problems; economic considerations; graphical methods. Lectures, recitations, problems. Prerequisite: M.E. 4. Three hours credit. Second semester.

17a. Design of Pumping Machinery. Complete design including calculations and drawings made for a centrifugal or reciprocating pump with special attention to runners, casings and valves. Two four-hour periods a week. Prerequisites: M.E. 4 and M.E. 6. Preferably accompanied by M.E. 17. Three hours credit. Second semester.
18. Heating and Ventilation. Elementary theory; design and construction of hot air, direct and indirect steam, hot water and fan heating systems. Lectures, recitations. For Architects only. Two hours credit. First semester.

20. Mechanical Handling of Materials. A study of cranes and derricks, hand and electric travelers, inclined and vertical hoisting, haulage systems, aerial and surface cableways, and conveyors of all classes and their application to various classes of plants, processes, and materials. Lectures, recitations, problems, reports, and inspection of systems in use. Prerequisites: M.E. 2 and E.M. 2. Two hours credit. Each semester.

21a. Design of Machine Tools. Complete layout of a modern machine tool; magnitude and direction of forces acting on cutting tools calculated, and all parts of machine proportioned to resist these forces. Investigations of special metal-working processes and machinery may be undertaken. Drawing, problems. Two four-hour periods a week. Prerequisite: M.E. 6. Three hours credit. Second semester.

22. Research in the Mechanical Laboratory. Opportunity for advanced experimental study along any line of work in which student may be specializing; consists of investigations for securing data on more difficult problems of mechanical engineering; student left largely to own resources in planning and carrying out work. Laboratory. Prerequisite: M.E. 8. Two or three hours credit. Each semester.

23. Hydraulic Machinery. Opportunity for advanced experimental study along any line of work in which student may be specializing; consists of investigations for securing data on more difficult problems of hydro-mechanical engineering; student left largely to own resources in planning and carrying out work. Laboratory. Prerequisite: M.E. 4. Two or three hours credit. Each semester.

25. Heating and Ventilation. Theory, design and installation of hot air, direct and indirect steam, hot water, and fan heating systems; central heating; air conditioning. Lectures, recitations. Prerequisite: M.E. 3. Two hours credit. Second semester.
25a. Design of Heating and Ventilating Systems. Student given the usual data furnished the heating and ventilating engineer; expected to select system to meet requirements; makes layout of piping, ducts, auxiliary apparatus and computations for size of principal parts. Two four-hour periods a week. Prerequisite: M.E. 3. Three hours credit. Second semester.

29. Automobile and Motor Trucks. Fundamental principles of construction, operation; application in current practice; engine cycle, details of construction, cooling, lubrication, carburetion, electrical systems, clutch, transmission, axle, differential, steering, springs, brakes; engine and car testing, performance curves, operation and control. Lectures, recitations, laboratory demonstrations. Not open to freshmen. Three hours credit. Each semester.

30. Automobile and Truck Engines. Student selects type of car or truck; makes expectancy curves for engine performance; then computes and sketches principal parts. Lectures, problems, drawing. Two four-hour periods a week. Prerequisites: M.E. 6 and 29. Three hours credit. First semester.

31. Design of Automobile and Motor Truck Chassis. Student selects type of engine for assumed conditions, then computes and sketches the principal parts of the chassis. Lectures, problems, drawing. Prerequisites: M.E. 6 and 29. Three hours credit. First semester.

32. Automobile and Motor Truck Testing. Experimental study of engine construction, horsepower, fuel economy, thermal efficiency, mechanical efficiency, heat balance, indicator cards, carburetion and electrical systems. Road tests of car performance includes speed range, acceleration, braking and fuel mileage. Laboratory, reports. Two periods of four and one-half hours each a week. Prerequisites: M.E. 7 and M.E. 29. Two hours credit. Each semester.

33. Advanced Automobile Testing and Research. Opportunity for advanced experimental and research work; students left largely to own resources in planning apparatus and in carrying out work. Laboratory, reports. Prerequisite: M.E. 32. Two or three hours credit. Each semester.
34. Advanced Automobile Design and Research. Special problems in the design of some automobile or truck unit. Drawing. Prerequisites: M.E. 30 and 31. Credit and hours to be arranged. Each semester.

35. Factory Management. A study of the application of the scientific method to the operation of the shop and other departments of a factory; including organization methods and problems, job analysis, wages, production control, personnel, costs, inventory control, etc. Lectures, recitations, reports, field trips. Not open to freshmen or sophomores. Three hours credit. Each semester.

36. Factory Management—Factory Internal Transportation. This course is developed primarily to meet the needs of students enrolled in the five-year program in Mechanical and Industrial Engineering. Some attention will be devoted to routing, shop layouts, and personnel. Various systems of factory transportation will be studied, including initial operating and upkeep costs for different types of handling equipment, and detailed studies of typical installations. Prerequisite: M.E. 35. Three hours credit. Second semester.

37. Special Topics on the Internal Combustion Engine. Course designed to bring students in touch with latest developments in theory, design and construction. Reading, reports. Prerequisite: M.E. 15. Two hours credit. Each semester.

38. Internal Combustion Engineering. Research work on internal combustion engines. Laboratory. Prerequisites: M.E. 8 and 15. Credit and hours to be arranged. Each semester.

39. Internal Combustion Engineering. Research design of parts or units requiring special study. Drawing. Prerequisite: M.E. 15a. Credit and hours to be arranged. Each semester.

40. Factory Management. Field Work. Lectures and problems presented by prominent men in industrial field; topics include storeroom and tool room operation, factory buildings, costs, planning and routing; field trips give opportunity of observing how these various ideas are worked out in the factory. Lectures, problems, field trips. Prerequisite: M.E. 35. Two hours credit. First semester.

41. Automobile Engineering Seminar. Student prepares a paper on current topics of the automobile industry and one covering an investigation of some special subject; class discussion of papers. Reading, preparation of papers. One hour credit. Each semester.
42. **Factory Management—Advanced.** Special problems for study and investigation. Problems, reports. *Prerequisite: M.E. 35.* Two or three hours credit. Second semester.

43. **Factory Management—Purchasing and Traffic.** Treats of the principles of purchasing material and the relation of this function to other functions in a business. A study is made of the economic aspects of freight transportation, including rates, privileges, and claims. *Prerequisite: M.E. 35.* Three hours credit. Second semester.

44. **Automotive Electrical Equipment.** Storage batteries, ignition, starting and lighting equipment for gasoline automobiles; storage battery equipment, charging apparatus, motors and control equipment for electrically propelled vehicles. Lectures, recitations, laboratory. *Prerequisites: Physics 46 and M.E. 29.* Three hours credit. Each semester.

45. **Studies in Natural Ventilation.** Theory of air movement through buildings by wind and temperature difference. Deductions from test data at hand. Some experimental work of an illustrative nature, and possibly something of a research nature. *Prerequisite: M.E. 8.* Two hours credit. Second semester.

50. **Gyroscopic Action and Critical Speeds.** Fundamental principles and applications of gyroscopic action; synchronous action in general; mathematical study of critical speeds; empirical treatment of complex cases. Lectures, recitations. *Prerequisite: E.M. 3.* Two hours credit. Each semester.

Summer Session
Courses 2, 3, 4, 6, 7, 8, and 17s, or similar courses will be given during the Summer Session of 1929.

81. **NAVAL ARCHITECTURE AND MARINE ENGINEERING**

Professors Sadler, and Bragg; Associate Professor Lindblad; Assistant Professor Adams.

The work in this Department has for its object the training of men in connection with the design and construction of ships and their machinery, and also of those who may wish to enter the field of water transportation. The three main divisions are as follows:

Naval Architecture, which embraces all questions relating to the design and construction of ships, and includes such topics as the displacement and buoyancy, strength, resistance, propulsion and stability; and methods of solving the general problem of ship design.
Marine Engineering, which includes those subjects which deal more particularly with the design and construction of the various types of machinery, such as steam reciprocating, turbine and oil engines, boilers of different types, and auxiliaries.

Water Transportation, which deals more specifically with those problems which enter into the selection of types of vessels suitable for various trades and conditions of operation, and which in addition to a general knowledge of the design and construction of vessels, also includes certain studies in economics, finance and trade.

The Courses offered in the Department are therefore designed to give a student a thorough training in the fundamental problems relating to the marine field, with certain of them open to elective work which may give him a more specific training in the particular line of work which he may wish to follow, in any group.

The Department of Marine Engineering in planning out its course of study has had in mind the fact that the basic work is similar to that in Mechanical Engineering, with the slight differentiation largely in the fourth year. As a ship represents a floating power plant, fundamental courses in Civil, Electrical and Chemical Engineering are also included. While recognizing the fact that, in the shipbuilding and shipping industry, men are eventually segregated into the above groups, it has been thought advisable to devote more time to the essentials of the subject, rather than to undue specialization in any one, and to give the student as broad a background as possible. If, however, further specialization is desired, it is recommended that the student return for a fifth year and enter the Graduate School. Facilities for research work are provided in the Naval Tank, or Marine Laboratory, which is unique in this institution.

The Department is in constant touch with all the shipbuilding and shipping establishments, not only in this district, but throughout the country, so as to enable its graduates to obtain positions in the various lines mentioned above.

Marine Engineering Laboratory.—On the first floor of the West Engineering Building the east wing contains the experimental tank. This tank is 300 feet long, 22 feet wide, with a depth of water of 10 feet. At the south end is a model room and work shop for the purpose of making models of vessels.

The models used in the tank for testing purposes are from 10 to 12 feet, and are made of paraffin wax. A clay mould is first made approximately to the shape desired, and a core inserted. The paraffin is then poured into the mould, and, after cooling, the rough model is taken to the model cutting machine. This machine consists essentially of two moving tables or platforms, upon one of which is placed the model and upon the other the
drawing which it is desired to reproduce. The model moves under a pair of rotating cutters, which are made to follow the lines of the drawing. After cutting, it is brought to its final shape by hand, then carefully weighed, and sufficient ballast added to bring it to any desired draft and displacement.

The tank is spanned by a traveling truck which is driven by a motor and can be run at any desired speed. Upon this truck are mounted the dynamometers for measuring the resistance of the models of various forms at different speeds.

Combined Courses have been arranged with Albion, Battle Creek, and Olivet Colleges and the College of the City of Detroit. For detailed information see section 3.

Advice to Students of other colleges and universities with regard to planning their courses before coming to the University, is to be found in section 14.

Military Science.—The attention of prospective students in Naval Architecture and Marine Engineering is called to the Reserve Officers Training Corps. Those who consider taking Military Science are urged to enroll at the beginning of their course. For further details see section 65.

CURRICULUM IN NAVAL ARCHITECTURE AND MARINE ENGINEERING AND REQUIREMENTS FOR GRADUATION

Candidates for the degree of Bachelor of Science in Engineering, Naval Architecture and Marine Engineering, are required to complete the curriculum detailed below. For the definition of an hour of credit see section 50.

a) **Outline of Required Courses.**

(1) **Preparatory Courses.**

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1 and 2, and choice of English 5, 6, or 14</td>
<td>6</td>
</tr>
<tr>
<td>Modern Language and Cultural Electives</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 1, 2, 3, 4</td>
<td>18</td>
</tr>
<tr>
<td>Physics 45, 46</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 5</td>
<td>5</td>
</tr>
<tr>
<td>Drawing 1, 2, 3</td>
<td>8</td>
</tr>
<tr>
<td>Shop 2, Metal Working and Treating</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 65 hours

(2) **Secondary and Technical Courses.**

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveying 4, Use of Instruments</td>
<td>2</td>
</tr>
<tr>
<td>E. M. 1, Statics</td>
<td>4</td>
</tr>
<tr>
<td>E. M. 2, Strength and Elasticity</td>
<td>3</td>
</tr>
<tr>
<td>E. M. 3, Dynamics</td>
<td>2</td>
</tr>
</tbody>
</table>
E. M. 4, Hydromechanics..................... 3 hours
M. E. 2, Elements of Machine Design........... 3 hours
M. E. 3, Heat Engines......................... 4 hours
M. E. 4, Hydraulic Machinery............... 3 hours
M. E. 6, Machine Design....................... 4 hours
M. E. 7, Mechanical Laboratory.............. 2 hours
M. E. 8, Mechanical Laboratory.............. 3 hours
Elec. Eng. 2a, Elec. App. and Circ........... 4 hours
Chem, Eng. 1, Engineering Materials.......... 3 hours
N. A. 1, Structural Design.................... 1 hour
N. A. 2, Ship Calculations.................... 3 hours
N. A. 4, Resistance and Propulsion of Ships... 3 hours
N. A. 5, Structural Drawing................... 2 hours
Mar. Eng. 8, Marine Boilers.................. 1 hour
Mar. Eng. 9, Marine Engines.................. 2 hours
*Mar. Eng. 10, Marine Boiler Design.......... 3 hours
*C. E. 2, Theory of Structures................ 3 hours

Total 58 hours

Summary:
Preparatory Courses.......................... 65 hours
Secondary and Technical Courses............... 58 hours
Group Options.................................... 17 hours

Total .. 140 hours

Group Options.—Three groups of studies may be followed in this department, viz.:

Group A, which is arranged for those who wish to devote the principal part of their studies to the design and construction of ships; and,

Group B, for those who wish to specialize more in the design of propelling machinery and other machinery connected with ships.

Group C, for those who wish to fit themselves for water transportation work.

A. NAVAL ARCHITECTURE.
N. A. 3, Stability, etc.......................... 3 hours
N. A. 6, Ship Drawing and Design.............. 3 hours
N. A. 7, Ship Drawing and Design.............. 3 hours
N. A. 12, Experimental Tank Work............. 2 hours
N. A. 13, Ship and Engine Specifications...... 1 hour
Electives.................................. 5 hours

Total .. 17 hours

*Students electing Group C, Water Transportation, for their group options, will substitute Economics 51 and 52 in place of Mar. Eng. 10 and C.E. 2.
NAVAL ARCHITECTURE

B. MARINE ENGINEERING.

- M. E. 5, Thermodynamics .. 3 hours
- M. E. 13, Steam Turbines .. 3 hours
- M. E. 15, Gas Engines ... 3 hours
- Mar. Eng. 11, Marine Engine Design 3 hours
- Electives .. 5 hours

Total ... 17 hours

C. WATER TRANSPORTATION.

- Ec. 133, Transportation ... 3 hours
- Ec. 173, Accounting .. 3 hours
- N. A. 13, Specifications ... 1 hour
- C. E. 22, Transportation ... 2 hours
- Electives .. 8 hours

Total ... 17 hours

In this group students will substitute Ec. 51 and 52 for Mar. Eng. 10 and C. E. 2 in the regular schedule.

PROGRAM

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>or Shop 2</td>
<td></td>
</tr>
<tr>
<td>and Engl. 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>Math. 1</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16 or 17</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 5</td>
<td>5</td>
</tr>
<tr>
<td>or Shop 2</td>
<td></td>
</tr>
<tr>
<td>and Engl. 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>Math. 2</td>
<td>4</td>
</tr>
<tr>
<td>Drawing 2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16 or 17</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Mod. Lang.</td>
<td>4</td>
</tr>
<tr>
<td>Math. 3</td>
<td>5</td>
</tr>
<tr>
<td>Physics 45</td>
<td>5</td>
</tr>
<tr>
<td>Surveying 4</td>
<td>2</td>
</tr>
<tr>
<td>Drawing 3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

†See sections 3 and 4.

*For Modern Language requirements see section 51.
COURSES IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

1. Structural Design. This course comprises a discussion of the principal features of construction of all types of ships; classification societies’ rules; preparation of working plans. Lectures and recitations. One hour credit. First semester.

2. Ship Calculations. The following are the topics discussed: methods of determining areas, volumes, centers of gravity of ship-shaped bodies, displacement, centers of buoyancy, metacenters, and trim; free board and tonnage; launching; calculation of bending moments and stresses in vessels under various conditions. Lectures and recitations. Three hours credit. Second semester.
3. Stability of Ships and Preliminary Design. This course includes investigations of the stability of vessels and means of determining the same; discussion upon the rolling and seagoing qualities of ships; and methods of reducing rolling. The latter part of the course is devoted to estimates and calculations involved in the design of ships. **Prerequisite:** Course 2. Three hours credit. First semester.

4. Resistance and Propulsion. In this course all items affecting the resistance and propulsion of various ships' forms; investigation of the theory and practice involved in the design of propellers; methods of conducting trial trips, etc., are discussed. **Prerequisite:** Course 2. Three hours credit. Second semester.

5. Structural Drawing. This course includes the laying out of a vessel and the preparation of the principal working structural plans, such as midship section, deck plating, bulkheads, and stern frame. Two hours credit. Each semester.

6. Ship Drawing and Design. I. The lines of a vessel of an average type are drawn and all the calculations are made which are necessary for plotting curves of form, launching curves, and strength curves. Three hours credit. Each semester.

7. Ship Drawing and Design. II. In this course the student is given the general features of a vessel and prepares a complete design of the same, including all the general plans and calculations. Three hours credit. Each semester.

9. Marine Engines. This course includes the questions relating to the design, construction, and balancing of triple and quadruple expansion engines. Condensers, air pumps, turning and reversing engines are also discussed. Each student makes all of the preliminary calculations for the design of a marine engine. Lectures, recitations. **Prerequisites:** M. E. 3 and E. M. 1. Two hours credit. First semester.

10. Marine Boiler Drawing and Design. In this course a Scotch marine boiler of general type is designed. Three hours credit. Each semester.

11. Marine Engine Drawing and Design. The complete general plans of a triple or quadruple expansion engine are prepared, together with all calculations for the same. Three hours credit. Each semester.
12. **Naval Architecture.** Laboratory Work in Experimental Tank. Two three-hour laboratory periods. Two hours credit. Each semester.

14. **Naval Architecture.** Shipyard Plants. Credit to be arranged.

15. **Naval Architecture.** Advanced Reading and Seminary. Credit to be arranged.

16. **Naval Architecture.** Advanced Drawing and Design. Credit to be arranged.

17. **Marine Engineering.** Advanced Reading and Seminary. Credit to be arranged.

18. **Marine Engineering.** Advanced Drawing and Design. Credit to be arranged.

PHYSICS

Professors RandalI, Williams, Colby, Smith, Rich, Lindsay, Barker, Sawyer, and Goudsmit; Assistant Professors Meyer, Duffendack, Sleator, Cork, Ullennbeck, and Dennison; Mr. Wolfe, Mr. Young, Mr. Donal, and Mr. Kiebout.

The instruction in general physics covers a thorough course with the use of trigonometry and extends throughout an entire year. The first semester is devoted to mechanics, sound, and heat; the second to electricity and light. The subjects are amply illustrated with appropriate experiments accompanying the lectures. One period a week is devoted to laboratory work. The numerous courses, both experimental and theoretical, which the department offers are open to students wishing additional work in physics.

West Physics Building.—The elementary work in general physics is carried on in the West Physics Building. The first floor contains the laboratories for electricity and light, a recitation room, the storage battery room, and the instrument shop. On the second floor are the large lecture room for demonstrations in general physics, a smaller lecture room, one laboratory for mechanics, consultation rooms, and apparatus rooms. The third floor contains two general laboratories and four recitation rooms.

East Physics Building.—Advanced work and research in physics have been removed to the first unit of the East Physics Building just completed, the second unit of which, when built, will contain the large lecture rooms, laboratories, class, and
consultation rooms for the elementary courses. The new laboratory has two wings 144 feet and 132 feet in length and each 60 feet wide. It is of reinforced concrete construction with specially deadened floors. There are 4 stories, a basement, and a first and second sub-basement, all 7 floors connected by an elevator.

Laboratories are provided for heat and high temperature measurements, sound, light and applied optics, radio activity, electrical measurements, and vacuum tubes, all supplied with adjacent apparatus, research, and consultation rooms. Sound has a two-story structure extending through the basement and first sub-basement entirely disconnected from the walls of the surrounding building. X-ray research has ample quarters in the basement and first sub-basement. The high potential generators are housed in a two-story room which permits ready distribution of power to a number of adjacent research rooms. Spectroscopy both in the photographic and infra-red regions has a series of laboratories. In addition, there are single and multiple unit research rooms available for any purpose. All rooms are provided with numerous storage battery connections and both the 110 v. A.C. and 220 v. D.C., as well as water, gas and compressed air. Three storage batteries contain altogether 640 cells, and switchboards make possible a universal distribution of power. In addition, there are 2 instrument shops, a wood shop, a glass blowing room, and general apparatus rooms. The building also contains necessary offices, four rooms for lectures and classes in advanced courses, a library, and a faculty room.

The inclusion of a degree in physics among other degrees offered by this College, has its justification in the rapid introduction of the findings of physics and the methods of physical research into industry. The demand for physicists far exceeds the supply, and is continually increasing. Anyone finding the subject attractive may become an industrial physicist, confident that his profession is one of great usefulness and ever expanding possibilities.

The schedule of courses leading to the degree of Bachelor of Science in Physics is to be considered as illustrative rather than as fixed. The Department will be glad to consult with all students interested, both as to the possibilities of the new profession and the particular work best suited to each individual.
Candidates for the degree of Bachelor of Science in Engineering, Physics, are required to complete the following program of studies:

a) Preparatory Courses.
 English 1 and 2, and 5, 6, or 14.......................6 hours
 *Modern Language and Cultural Electives............18 hours
 Mathematics 1, 2, 3, 4.............................18 hours
 Physics 45, 46..4 hours
 Chemistry 5 and 17...............................10 hours
 Drawing 1, 2, 3......................................8 hours
 Shop 2..2 hours
 __...70 hours

b) Secondary and Technical Courses.
 Eng. Mech. 1, Statics4 hours
 Eng. Mech. 2, Strength and Elasticity.............3 hours
 Eng. Mech. 3, Dynamics3 hours
 Eng. Mech. 4, Hydromechanics3 hours
 Mech. Eng. 3, Heat Engines........................4 hours
 Chem. Eng. 1, Engineering Materials..............3 hours
 Elec. Eng. 1, Principles of Electricity and
 Magnetism ..4 hours
 Elec. Eng. 2, Direct Current Apparatus and Circuits 4 hours
 Elec. Eng. 3, Alternating Current Circuits.........4 hours
 Physics 105, Modern Physics......................2 hours
 Physics 147, Electrical Measurements..............4 hours
 Physics 165, Vacuum Tubes..........................2 hours
 Physics 186, Light4 hours
 __...43 hours

c) Group Options and Electives.
 Group Options in Physics and Mathematics to
 meet the particular needs of the individual
 student ..12 hours
 General Electives15 hours
 __...27 hours

Summary:

Preparatory Courses70 hours
Secondary and Technical Courses43 hours
Group Options and Electives27 hours
__...140 hours

*Students in this curriculum may satisfy the modern language and cultural requirement in the College of Engineering in the usual way, or they may elect twelve hours each of French and German.
COURSES IN PHYSICS

Description of Courses.—For all courses beyond 100, except Course 130 which requires 45 only, Physics 45 and 46 are prerequisites. The individual courses may have particular prerequisites besides. Courses 45 and 46 (formerly 1E and 2E) are required of all engineering students. Calculus is a prerequisite for courses numbered above 130.

5. Physics for Admission.—This course is intended for students who have not presented the required unit of entrance Physics. This course or its equivalent is required for admission to Course 45. M, W, Th, and F, at 5. No credit will be allowed for this course. First semester.

41. General Physics—Mechanics, Sound, and Heat. This course is the regular one for students in Architecture 1 and 2. At least half the semester is devoted to elementary mechanics, the remainder to sound and heat, all with experimental illustrations in the lectures. Two lectures, and three recitations of which one is for problems, a week. A knowledge of plane trigonometry is indispensable. No student is admitted to the class who has not had a preparatory course in Physics. Four hours credit. First semester.

45. Mechanics, Sound, and Heat. At least half the semester is devoted to elementary mechanics; the remainder of the time to sound and heat; all with experimental illustrations. Two lectures, three recitations, and one two-hour laboratory period a week. No student is admitted to the class who has not had a preparatory course in Physics. A knowledge of plane trigonometry is indispensable. Five hours credit. Each semester.

46. Electricity and Light. A continuation of Course 45. It takes up the fundamental phenomena and laws of electricity and light with ample class illustrations. Courses 45 and 46 are required of all engineering students. Students transferring their credits from the College of Literature, Science, and the Arts will be required to offer Courses 35, 36, 37, and 38 as equivalents of Courses 45 and 46. Must be preceded by Course 45 and by Course 5E in Chemistry, or an equivalent. Two lectures, three recitations, and one two-hour laboratory period a week. Five hours credit. Each semester.

105. Modern Physics. This course treats of radioactivity, X-rays, the vacuum tube, and other electron and allied phenomena which lead to the theory of matter. It undertakes to meet the needs of those students who desire accurate information about recent work for the purpose of general culture and of those
specializing in other sciences in which the newer physics has an increasing importance. Students specializing in Physics will also find it suitable introduction to advanced courses. Two lectures a week, with discussions and demonstrations. The course will be non-mathematical, requiring as prerequisites Courses 35 and 36 or 45 and 46. Two hours credit. First semester.

120. X-ray Equipment and Apparatus. This course is intended primarily for students not specializing in physics. The work is partly experimental and will be conducted in the Department of Physics and in the Department of Roentgenology in the University Hospital. It will consist of the study of the underlying electrical principles and the electrical apparatus necessary; various types of tubes and their characteristics; the production and fundamental principles of X-rays, including demonstration of present day measuring instruments, their use, and the practical dosage of X-rays in therapy. Prerequisite: Course 36 or Course 46. One lecture and one two-hour laboratory period a week. Two hours credit. Second semester.

130. Architectural Acoustics. Lectures with illustrative problems on sound transmission, distribution, and absorption, and an experimental study of the acoustic properties of certain rooms. Prerequisite: Course 45 (or 35). Two hours credit. Second semester.

145. Electrical Measurements. This course is not intended for electrical engineers. In the class work the principles of electrical behavior are critically studied and discussed. The laboratory exercises are designed to illustrate and emphasize these principles, and to give the student some personal experience in the careful use of electrical measuring instruments. The course includes the modern methods of measuring current, resistance, electromotive force, and power, and the calibration of the instruments employed. Three lectures and one four-hour laboratory period a week. Four hours credit. First semester.

147. Electrical Measurements. The course includes the modern methods of measuring current, resistance, electromotive force, capacity, inductance, and hysteresis of iron, and the calibration of the instruments employed. This course (formerly 5E) is the regular one for electrical engineering students. Prerequisites: Course 46 and E.E. 3. Three lectures and one four-hour laboratory period a week. Four hours credit. Each semester.

154. Electrical Measurements. This is a continuation of Course 145 and includes measurements of capacitance, self and mutual inductance, and the fundamental measurements with alternating currents. Especial attention is given to the theory of the
PHYSICS

magnetic circuit and the determination of the magnetization and hysteresis curves of iron and steel. Three lectures and one four-hour laboratory period a week. Four hours credit. Second semester.

156. Electron Theory and Radioactivity. Among the topics considered in this course are the radioactive disintegration of atoms, the nature and properties of alpha, beta, and gamma rays, the determination of the electronic charge, the arrangements of electrons and protons to form atoms, electrical mass, positive rays, isotopes, thermionic currents, and metallic conduction. Two hours credit. Second semester.

158. Radioactivity. The laboratory work is largely with radioactive substances. The distinguishing characteristics of alpha rays, beta rays, and gamma rays are studied, and the half life periods of several substances are determined by each student. One two-hour laboratory period a week. Must be preceded or accompanied by Course 156. One hour credit. Second semester.

165. Vacuum Tubes in Radio Communication. The theory of the transmission of electricity through gases and through vacua is treated in this course together with a study of the different types of tubes used in radio work. The experimental work deals with the characteristics of tubes, the different types of detector action, the determination of amplifying factors, and the operation of power tubes. Electrical circuits for the use of tubes in connection with high frequency phenomena are treated in detail. One lecture and one three-hour laboratory period a week. Prerequisite: Course 147. Two hours credit. First semester.

166. High Frequency Electrical Measurements. A laboratory course consisting of selected problems. Open to a limited number of students who have had adequate preparation. Two three-hour laboratory periods a week. Prerequisite: Course 165. Two hours credit. Second semester.

171. Mechanics. The mechanics of solids, liquids, and gases. The various types of motion, statics, dynamics, elasticity, friction, viscosity, capillarity, and an introduction to the mechanics of the atom. Elementary operations with vectors are employed in certain problems. Three hours credit. First semester.

175. Sound. The class work is based on Barton's Text Book on Sound with lectures and reference reading. Two lectures or recitations and two two-hour laboratory periods a week. Four hours credit. First semester.
181. Heat. The classroom work covers the fundamental principles of heat phenomena. It includes such subjects as expansion, specific heats and temperature, change of state and Van der Waals’ equation, elementary kinetic theory, and the absolute scale of temperature. In the laboratory special emphasis is placed on modern accurate methods of measuring various heat quantities, the need of the determination of which often rises in the course of scientific experimentation and research. The student is made familiar with the gas thermometer, thermopile, interferometer measurement of thermal expansion, measurement of specific heats, heats of fusion and of vaporization, thermal conductivities, etc. Three lectures and one four-hour laboratory period a week. Four hours credit. First semester.

182. Measurements of High Temperature. An experimental course accompanied by lectures covering the present methods of high temperature measurements. It includes the calibration and use of the resistance thermometer, the resistance thermometer bridge, the thermocouple, the thermocouple potentiometer, the various technical types of indicators and recorders, the total radiation and optical pyrometers, and laboratory methods of producing high temperatures. The subject matter is taken up from both a practical and a theoretical standpoint. One lecture and one four-hour laboratory period a week. Two hours credit. Second semester.

186. Light. This is an intermediate theoretical and experimental course. Two lectures and two two-hour laboratory periods a week. Four hours credit. Second semester.

187. Geometrical Optics. A course in the fundamental methods and principles of geometrical optics and the design of optical instruments. Thick lens optics, the ideal optical instrument, the aberration theory of Abbé, a study of the characteristics of optical instruments and exercises in the design of simple instruments, and discussions of the various types of optical glass. Three lectures or recitations a week and occasional laboratory exercises. Three hours credit. First semester.

204. Molecular Physics. A continuation of Course 203 introducing (1) the quantum hypothesis, with a discussion of the modifications which it requires in the treatment of several of the problems previously presented; (2) spectroscopy considered as a tool for the study of the structure and properties of matter. Three hours credit. Second semester.
205, 206. Electricity and Magnetism. These courses are devoted to a mathematical as distinguished from an experimental study of electrical phenomena. A fundamental treatment of the Maxwell Electromagnetic Theory. Prerequisite: Course 154 or its equivalent. Two hours credit. Each semester.

250. X-rays. The fundamental facts and theories connected with the production and properties of X-rays, together with a study of the development of the subject and its bearing on modern ideas of the structure of matter. Considerable emphasis is placed on spectroscopy, and opportunity is afforded to do some experimental work. Three hours credit. Second semester.

285. German Reading. In this course the subject of Physics is studied in German to acquaint the student with the technical terms used in modern German physics. This course may be taken only by such students as convince the instructor of their satisfactory preparation. One hour credit. First semester.

Summer Session

Course 5, intended for students preparing for entrance to the College of Engineering, and Courses 35, 36, 37, 38, 39, 40, 45, 46, 105, 130, 145, 154, 156, 158, 160, 165, 171, 186, 205s, 210s, 215s, 220s, 231, 250s, 262, 265s, 280, and 281 described for the regular session, will be offered in the Summer Session of 1929.
Part VI

COLLEGE OF ARCHITECTURE*

GENERAL STATEMENT

83. The College of Architecture aims to give the student a thorough training in the fundamentals of modern architectural practice.

The following is an effort to reply in a general way to the questions which prospective students and their parents ask regarding the profession of architecture and the courses in architecture. Once the services rendered by the architect are understood, there is a ready appreciation of the significance and value of the courses and subjects which make up the programs of study.

THE NATURE OF ARCHITECTURE

84. Architecture, the oldest of the constructive sciences, and since ancient times also ranked as a fine art, deals principally with the design of buildings, their accessories and surroundings, their construction, decoration, and equipment.

Architecture is born of the necessity for buildings and the desire to have them appropriate and pleasing in plan and design, as well as sound in construction. By its very nature, therefore, architecture is much more circumscribed as a medium of expression by utilitarian and technical conditions than is any other of the fine arts; unlike its sister arts of painting and sculpture, it must function at once practically and artistically, and misses its aim in failing in either.

*For admission requirements, etc., see section 10. For courses other than those on Architecture, see Parts IV and V.
SERVICES RENDERED BY THE ARCHITECT

85. The duties of the architect consist for the most part in conferences with clients and builders, in the preparation of drawings and documents required for the erection of buildings, and in the supervision of building operations. The drawings consist of several kinds: "Preliminary studies," in which the general arrangement and design of the building are fixed upon, many schemes often being made in order to reach the one most advantageous in point of arrangement, appearance, and economy.

"Working or scale drawings" are prepared after a scheme has been approved by the owner. These are larger drawings which accurately define the proportions of the design, the disposition and dimensions of all the parts, such as the walls, openings, and heights of stories, and show the distribution of the structural, enclosing, and decorative materials. In connection with these drawings all calculations are made to determine the required strength of constructive parts, such as the foundation, columns, beams, and trusses, the capacity and character of the equipment for heating, ventilation, sanitation, and illumination. The working drawings are accompanied by "specifications," which define the kind and quality of materials to be used throughout the fabric; they describe the apparatus and fixtures to be installed, the grade of workmanship that is expected, and define just what is expected of all parties concerned.

After bids have been received and the builders selected, contracts are drawn by the architect which define the obligations of the builders and owner. The larger "detail drawings" are then made for structural and decorative features, while the architect supervises the progress of the actual building operations to see that the terms of the contract are fairly carried out by the builder, his agents, and the owner.

OTHER ACTIVITIES OF ARCHITECTS

86. Architects also occasionally take part in competitions for which, if properly conducted, a carefully prepared program is given all competitors and an expert jury is retained to select the best solution presented. In such competitions the drawings are
confined to the preliminary study stage. Owing to the delay, expense, and uncertainties of this method of selecting an architect, it is employed for but a small proportion of the building undertakings of this country, and then primarily for important public projects. Most architects gain their opportunities through demonstrated fitness and integrity. Architects also help determine and often design the decorative features of interiors, for larger work co-operating with decorators, painters, and sculptors; they often design the grounds and approaches of buildings, and have taken an active part in the planning of cities, independently and in association with landscape designers and engineers, for, after all, buildings must form the most permanent and salient decorative features of the city.

The architect, then, is expected to meet alone or with the aid of his assistants and experts the varied artistic and practical problems related to all classes of buildings. In doing the above he must deal with public and private interests, with an exceptionally wide range of activities and human endeavor, extending from those of the laborer and artisan to those of artists and technical specialists as well as with the products of numberless industries.

87. Those who are to exercise in so nearly equal degree the functions of an executive, an artist, and a constructor must needs receive a comprehensive training, one which will develop the kind of mental and moral fibre required for doing effective artistic and technical work and for meeting and dealing with men and affairs.

The old apprenticeship system which preceded the organization of architectural schools is rapidly disappearing, and is being replaced by the modern apprenticeship, which consists in working in an architect’s office during vacations and after graduation from college, since progress is thus far more rapid, sure, and remunerative. The technically trained architect having “made good,” it is now expected, most fortunately, that in addition to professional training he, like other educated men, have an insight into the larger questions underlying the affairs of the world.
Success in the architectural field depends largely on the same general conditions and personal qualities as are demanded in other professions. Those who expect to follow architecture as a profession should be imbued with an interest in building, in beautiful things, and in drawing. To a certain extent skill in design, construction, and drawing may be attained by all those who persist and have a real interest in the work. Artistic and constructive talent is valuable only if developed by serious work and supported by knowledge, while the mere assimilation of knowledge and acquirement of skilled draftsmanship are insufficient. Unremitting self-discipline and enthusiastic effort are required to attain the creative power and the ability to use knowledge effectively which mark the productive worker.

Until recently it was considered that graduation from a good high school, followed by four years in an architectural school and several years' experience in architects' offices should be the minimum preparation for independent practice, while a longer period of collegiate training, along with travel in this country and study and travel abroad, now actually forms the more extended preparation of many.

The American Institute of Architects and the Association of Collegiate Schools of Architecture now recommend that students devote at least five years to collegiate study as preparation for the baccalaureate degree in Architecture, dividing the additional year between technical and non-technical subjects with a view to attaining greater breadth and thoroughness.

In the three four-year programs in Architecture now offered at this University fully one-third of the time, approximately three semesters, is given to non-technical subjects, such as English, foreign language, economics, physics, mathematics, geology or mineralogy, fine arts and electives. By apportioning a fifth year between cultural and technical courses the student will spend approximately two full years on fundamental and general subjects and three full years on semi-professional and professional subjects. Since it is desirable to begin drawing and creative work immediately upon entering the Architectural School, the general and cultural courses should be distributed over the entire time the student is in residence rather than completed before the technical subjects.
The training requisite for the architect may be stated under three principal heads:

a. General education.

b. Technical or professional education.

c. Experience in actual architectural work and business affairs.

a. General Education

The purpose of the first of these is to provide the essentials of a liberal education, that which tends to make the educated man and citizen, and helps give an understanding of the larger questions of life and thought and of the interests of others. Undoubtedly, university life and associations stimulate interest in the above.

The student should therefore while in the University receive those fundamentals of a general education which cannot be studied systematically later when he is absorbed in the exacting routine of the practical field. These studies will help him keep from becoming merely a narrowly specialized tool to be used by men of broader caliber. Moreover, the economic and social forces which shape his very opportunities must be understood if he is to interpret them with sympathy, intelligence, and artistic judgment. To this end, literature, science, business administration, economics, philosophy, and kindred subjects are invaluable and should receive attention throughout the collegiate period, since they require as great thoroughness of preparation and maturity of mind as the most advanced technical subjects.

b. Professional or Technical Education

Technical education, the second division, provides the special knowledge expected of the architect, trains him in fundamental principles, and develops his taste and skill in solving the problems peculiar to the architectural field. A full statement regarding technical courses will be found under the "Work of the College" in this announcement.

c. Experience

General and technical education prepare for the third division, in which the graduate, preliminary to independent practice, gains experience in an architect's office in the application of technical
knowledge and in the conduct of an office and actual building operations. This period brings home a fuller realization of the need of thorough training and of personal force to carry to completion building projects, and to cope with all the attendant conditions. The time required for this practical experience will vary according to the ability and opportunity of the individual.

HIGHER DEMANDS ON PROFESSIONAL MEN

88. Higher demands than ever before are being made today upon professional men. Hence, professional education is characterized by demand for at once higher specific training and additional general education. This is shown by the tendency to require more or less collegiate cultural preparation—indeed, in some cases the bachelor's degree—for admission to schools of medicine and law.

In some professional fields, specialization may or should come on the basis of a groundwork of general collegiate training alone; but in architecture training in drawing and design should begin with the first year of college, since development of the power of expression and creative design is facilitated by being continued over a long period rather than concentrated in a short one. This is particularly true in a country where the lack of artistic environment and of adequate preliminary training in drawing seriously handicaps architectural education, making it necessary to give, for the majority of students, all or most of the preliminary and subsequent technical training, as well as the elements of a general education, in four years.

SPECIALIZATION IN ARCHITECTURE

89. While ideally desirable that the architect be expert in all allied fields, it is manifest that such omniscience is denied to men at the end of a four-year course or an infinitely longer one. Indeed, the impossibility today of mastery in all fields of architecture by even the most accomplished practitioner has led to specialization within the architectural field. There are now, as a result, many architects who specialize in the design and construction of single classes of buildings, such as hospitals, theaters, schools, churches, office buildings, residential work, or city planning, and who in doing this work employ a corps of trained assistants.
Parallel with the increased demands made on the profession, education in architecture has developed to such an extent that four or more years may be devoted solely to technical subjects. If, however, students were permitted to pursue such an over-professionalized course without preliminary or parallel cultural training they would find, when too late, that they had lost one of the primary opportunities of their college course.

If specialization is desired within the field of architectural education it must be either in the direction of architectural design or construction. Hence, at the University of Michigan there exist three four-year programs in architecture the first of which is a general professional course, while the second and third emphasize, respectively, design and construction, in all of them a fair allowance being made for cultural studies. There is, in addition, a four-year program in decorative design.

Those who desire more advanced training are urged to plan their work in such a manner that it will include not less than five years, spreading the technical and cultural requirements over the entire period.

OUTLOOK FOR THE ARCHITECT

90. At no time in the history of the United States has there been so much interest in good architecture. Never before has there been so excellent an outlook for the trained architect. Classes of buildings which formerly were hardly considered from an artistic point of view, such as factories, warehouses, and the like, are now designed by architects. Our great corporations have come to a realization of the value of buildings which are at once adequate, attractive, and interesting. Cities, everywhere, by means of general improvement plans, are recognizing the need of good design in everything, and in this city planning development the architect is playing a most important part; even in primarily utilitarian projects our municipalities will no longer permit the erection of structures which are merely adequate, but are employing architects to assure the creation of something that will be permanently pleasing as well as useful.

The art development, of which architecture forms but a part, has barely begun in this country. So long as this country con-
continues its marvelous growth highly trained men will be needed to give form to building projects of the most varied character. The prospect is therefore full of promise for the architect and hence for the architectural school.

FOUR-YEAR PROGRAMS OF STUDY

91. Four four-year programs are offered, Programs I and II in Architecture, Program III in Architectural Engineering, and the Program in Decorative Design, each requiring four years of study. These should be supplemented on the part of architectural students by work with an architect during the vacation periods. Students in decorative design should spend the same time in the employ of an interior decorator. In each program provision is made for the study of theory, history, and practice of architecture, for training in language, mathematics, science, construction, design, building equipment, drawing, and electives.

The first year being practically identical in the three architectural programs, such students can, if advisable, at the end of that period change from one program to another without loss of credit. The courses in drawing, most of those in architectural design, practical building construction, and working drawings, sanitation and architectural history are common to the three architectural programs. General Physics is required in Programs I and II; Engineering Physics in Program III.

Programs I and II aim to prepare the student for general architectural practice. They differ only in that solid analytic geometry and a course in calculus is required in Program I, in place of which six hours of design and a course in landscape design are required in Program II. The advanced construction is taught on the basis of two special courses in mechanics given by the College of Architecture.

Program III, Architectural Engineering, or Construction, meets the needs of those who, in association with architects or others will specialize in building construction and equipment. Hence, in addition to architectural design and practical building construction, which together prepare for intelligent and sympathetic collaboration with architects and builders, these students pursue engineering courses in structural design, heating and venti-
FOUR-YEAR PROGRAMS OF STUDY

lation, heat engines and some work in testing materials, surveying, and the chemistry of engineering materials. In this program the architectural studies may be completed in two and one-half years. Hence, students who have completed the first year of an engineering course and wish to take up architectural engineering may yet graduate at the end of four years.

During the senior year architectural design forms the chief study in Programs I and II, while in Program III framed structures, structural design, and other engineering subjects take up most of the year.

The above programs may be completed in four years by well prepared and conscientious students; those who have difficulty with a subject can either extend their period of study or make up deficiencies in the Summer Session.

A four-year program is provided for students in decorative design. For the present the emphasis is placed on interior decoration, but all of the fundamental courses are offered for those expecting later to specialize in the art associated with advertising, commonly designated "commercial art." Interior decoration requires a considerable knowledge of the surface qualities of architecture rather than the organic view of the architect in which plan, construction, and artistic form must all be considered. The architect designs and builds the building; the decorator may take a portion of the interior and give it added emphasis or interest through surface treatment and furnishing. He collaborates with the architect in carrying out the spirit of the building as a whole; he must have a good general knowledge of design, be resourceful in the use of color and pattern and in the production and use of textiles, furniture and fixtures, and he must also be well versed in the materials of which decorative equipment is made.

The training of the decorative design student comprises considerable freehand drawing and modeling, some mechanical drawing, perspective, the elementary courses in architectural design, those in architectural history and fine arts, with a liberal provision for the history of art and non-technical courses. The major requirement is in decorative design leading from introductory courses in decorative composition and color finally to a working out of entire interiors of various types.
DEGREES CONFERRED IN THE COLLEGE OF ARCHITECTURE

92. The degree conferred in Programs I, II, and III of the College is Bachelor of Science in Architecture, the diploma specifying the program which the student has completed. The Program in Decorative Design leads to the degree of Bachelor of Science in Design.

GRADUATE STUDY AND DEGREE

93. Students who are able to attend an additional year for graduate work will find the time well spent. Graduate work may be done in design, construction, the history of architecture, and in general studies. Such work shall be of an advanced character, a thesis on the design and construction of a building being required in the second semester.

For graduate courses leading to the degree of Master of Science in Architecture, the student must register in the Graduate School, but will pursue his work under the supervision of the Faculty of the College of Architecture. For particulars, see the Annual Announcement of the Graduate School.

OTHER CLASSES OF STUDENTS

94. Candidates for both the Bachelor of Arts and Bachelor of Architecture degrees, in order to graduate in Architecture in two years after obtaining the Arts degree, should complete at least the first two years in the architectural courses, while candidates for the first degree. Students wishing to carry on some general college work parallel with or before beginning the work in Architecture, should consult as soon as possible with the Professor of Architecture in order to plan their work in the most advantageous manner. In general, work in drawing and design should be begun early and extend over a long period rather than be concentrated into one or two years.

Graduates of colleges with the Arts degree are able to earn the professional degree in from two to three years, according to the program pursued and the kind of preparation brought by them.
Those who expect to enter from other colleges or to transfer from other departments of this University should aim to bring as much credit as possible in free-hand drawing, as well as credits in descriptive geometry (the equivalent of Architecture 2 and Architecture 3) and the mathematics and physics of the program they intend to follow.

Students registered in other colleges may elect the courses in history of architecture, elements of design, allied arts and decorative design, and other courses for which they are qualified.

TWO-YEAR PROGRAM FOR SPECIAL STUDENTS

95. A two-year course is provided for special students in Architecture upon the completion of which there is awarded a certificate of proficiency.

Owing to the difference in the preparation of such students but part of the work is prescribed, the remainder being elective, to be arranged in consultation with the head of the College.

Special students may specialize in either design or construction.

Design, history of architecture, and free-hand drawing are studied throughout the two-year program; one year is devoted to construction, another year to building equipment.

In design such students are placed in the class indicated by their preparation. Very often the preparation of such students is sufficient to enable them to enter as regular students. It is then to their advantage to elect as much as possible of one of the four-year programs, returning later to complete the requirements of a regular program.

Special students who enter with enough preparation in mathematics can go on with Mathematics 1, then Architectural Mechanics 19 and 20, finally structural design, Architecture 22, 23, 26, and 27, thus completing part of the advanced building construction within two years of residence.
96. Design.—While design, owing to its comprehensive character, is of the greatest importance to the architect, it should be, and is, carried on parallel with the courses in construction, the history of architecture, science, and general studies which actually increase efficiency in design and make for breadth of view and greater ultimate success in the field of independent practice.

The aim throughout these courses is to develop the imagination, creative power, ability to work out the organism of a building, and skill in the clear and artistic presentation of the drawings.

The policy in teaching design, while insisting on fundamental principles, is to encourage freedom of expression, to make possible, where permitted by the character of the problem and the requirements of the program, a wide range of interpretation, thus to bring into relief the relative value of the various solutions of which each problem is capable. While the larger aspects of the composition are of chief importance, careful consideration is given to the character of the form as related to the constructive scheme and the material. Occasionally a special problem is assigned to emphasize this further. In allied arts design most of the problems deal with small objects in various materials, involving a consideration of good craftsmanship, which the architect must appreciate if he is to expect it from artisans.

The history of architecture is also of importance in this connection, for the architect must know the experience and inspiration of the past, its successes and failures, that he may better live, think, and build in terms of the present.

Emphasis is placed on modeling and perspective as a corrective and supplement of design in elevation, to develop appreciation of the third dimension and is a means of presentation in itself.

In design, as in all other drawing courses, the right is reserved to keep drawings that may be of help for purposes of illustration or instruction.

97. Architectural Design.—In the courses in architectural design the students work out in the drafting room, designs for a great variety of buildings, ranging from a small structure to large public buildings and groups of buildings. Lectures are given from time to time bearing on the type of building then being designed.

The problems vary from year to year, with the various classes, in order to cover as many as possible of the types of structures which make up architectural practice. Among these are the school, railroad station, library, hospital, church, theatre and auditorium, and such other public structures as the postoffice, museum, the monument, and the bridge, as well as the various kinds of busi-
ness, manufacturing, and residential buildings. Under "Housing" the entire street plan of a city is worked out: the disposition of the various sections for commercial, industrial, residential, and recreational purposes, and the actual design of typical buildings of all kinds needed in an entire city.

Problems are occasionally assigned in architectural design which must be completed the same day; usually, however, the problems require from three to five weeks for their completion. A preliminary sketch or study is made by the student without criticism from the instructor or reference to documents; then a general criticism of all these sketches is given before the class, after which the sketches are returned to the students to have the essential features developed in the drafting room under the direction and criticism of instructors. After the drawings have been completed they are hung up and a general criticism is given. Thus, while the character of the instruction is of necessity largely individual, each student may profit by the progress of the others.

The preliminary sketch, usually executed in three or four consecutive hours, compels concentration on essentials and promotes accuracy and facility. The necessity of retaining in the final design the principal characteristics of the first sketch develops a sense of responsibility and individuality, and comparison of the different solutions by members of the class demonstrates the varied possibilities of a given problem. All the designs for a given problem must be handed in at a fixed time. They are then carefully examined by the instructors and graded according to degree of excellence.

Test or examination problems, some without criticism, form a part of the requirement in each course.

In the last design course required of students in Architectural Engineering problems of a special character for such students are given.

98. Advancement in Design.—Promotion in design is individual, and takes place at any time during the year whenever a student has earned the number of points required in a course. This enables students to progress in proportion to their ability, application, and actual attainment, puts a premium on good work, and stimulates helpful emulation.

While the average student is able to complete the requirements in design in the normal time allowed, students of unusual ability or those who can devote more time to the subject may complete the requirements earlier and then elect additional cultural or technical courses.

99. Allied Arts of Design.—The course in Allied Arts of Design consists of a study of the elements of decorative design; designs are made for a piece of furniture, decorative glass, metal,
and mosaic, and of other objects or features commonly used in connection with architecture.

100. Construction.—The courses in mathematics and physics are preparatory to those in structural mechanics, the strength and resistance of materials, advanced construction, or structural design, the testing of materials, and the courses in heating and ventilation, and building sanitation. The study of construction continues through two or three years, according to the program of study pursued, and is conducted by means of lectures, textbooks, conferences, visits to buildings, and the preparation of working drawings. The work is at once practical and scientific, analytical and graphical methods being employed, and most of it is completed before the advanced work in architectural design is begun. The character of building materials, their structural and artistic possibilities, and the methods of building practice are studied and problems assigned which train the student in the fundamentals of sound construction.

The drawing work of the course in construction begins with the making of working drawings of a small building. This includes the framing plans of the floors, walls, and roofs, and full-size details of some of the finished portions. This is followed by working drawings for a larger building of heavy construction, and involves soils, foundations, walls, piers, columns, floors, roofs, and details. Steel and reinforced concrete construction are next studied in the course of which girders, columns, trusses, and other structural work of fire-proof buildings are designed. There is a course in the chemistry of engineering materials and one in the testing of materials for students in Program III. The subject of specifications is taken up in connection with the work of construction and a special course is given in building details.

In these courses, which may most conveniently be grouped under Building Equipment (Heating and Ventilation, and Sanitation), the principles and applications are studied which govern the design of the apparatus, the installation of which forms a part of the architect's work.

101. History of Architecture.—Architecture, "the mother art," is an art of great and inspiring traditions, and these can be justly appreciated only through careful study of the monuments of the past, both remote and recent, in relation to the other arts and civilization of their time. Owing to the wealth of material and the possibility of illustration, the history of architecture is one of the richest and most valuable subjects in the architectural curriculum. It is at once cultural and technical in character; it helps inculcate an understanding of the true character of architecture, develops the critical power and taste of the student, and demonstrates how we may best profit by the experience and example of the past.
THE WORK OF THE COLLEGE

The development of the art of building is traced from the earliest times to the present day. The causes and influences which moulded the various modes of building or styles are analyzed and, where possible, demonstrated by means of the stereopticon. Many of the important buildings of the world are fully illustrated and critically studied, the student thus gaining a knowledge of the finest achievements of the art. Not only are the buildings studied in their larger aspects, but also in many of their details of plan, construction and form. The principles of design, the effect of construction and material on form, the value of sculpture, painting, the crafts, and landscape design in relation to architecture are discussed. Decorative sculpture, color, and ornament are considered along with the particular architecture of which they form a part, thus preserving for the student the unity of each style.

In addition to the above, all architectural students registered in Programs I and II elect one or more courses in the history of art, in order to acquaint themselves with the development and masterpieces of painting and sculpture, these courses being more intensive studies in the sculpture, painting, and decorative art of the period.

102. Drawing.—Thorough instruction is provided in descriptive geometry, shades and shadows, perspective and stereotomy. Special classes are provided for architectural students in these subjects. Here the student receives an exacting drill in projections and intersections, accurate and neat instrumental drawing, and learns those methods which are essential to skilled draftsmanship. Many of the problems assigned as illustrations are architectural in character, and thus the student, while learning principles, works out applications directly connected with his chosen field.

103. Free-Hand Drawing.—Because of the need of facility in this field considerable attention is paid to free-hand drawing. The students begin drawing from simple geometrical solids involving the accurate representation of form in line and light and shade; simple decorative, natural, and architectural forms are next drawn, after which proportions of the figure, the hand, foot, etc., are drawn from the living model. Outdoor sketching is also encouraged, and is especially recommended for the summer months, when such instruction is given in the Summer Session.

Throughout this discipline, in the observation and artistic representation of line, form, proportion, light and shade, the aim is to develop in the student the power of free artistic expression. The student is advanced as rapidly as his progress warrants. Pencil and charcoal are principally used.

104. Water Color and Rendering.—Instruction is given in painting from still life. Almost from the very beginning color is employed in rendering. The continued use of color in render-
ing is insisted on in order to cultivate as much as possible the ability to produce good color relations when dealing with the various materials used in exterior and interior design.

105. **Pen and Ink.**—Rendering in pen and ink is taught for advanced students.

106. **General Studies.**—A fair quota of general studies is provided in the four-year program, the following forming a part of the regular work: English, German, or French, the history of art, business administration, and elective hours, which permit courses in economics and philosophy, or additional courses in language.

Mathematics, physics and geology have considerable importance as liberal studies, as well as being necessary to an understanding of materials, structural mechanics, heating and ventilation, and other technical subjects. Moreover, the study of architecture has a high cultural value in addition to constituting an exacting intellectual discipline.

107. **Summer Work.**—In order to encourage practical experience in architects' offices during the summer vacations, four hours credit is given towards graduation for four months of such work. To the majority of students who enter college without such experience this kind of summer employment, while at first but moderately remunerative, brings home a keen realization of some of the demands of the professional field and results in more serious and better college work. It also enables students upon graduation to adapt themselves more readily to the demands of architectural office routine.

Letters should be brought from architects stating what kind of work was done by the student and how long he was employed.

108. **Summer Session.**—The courses offered for Architectural students and others during the summer of 1929 will include architectural design and outdoor sketching and painting.

The Summer Session will begin June 24.

A Special Announcement of the Summer Session can be had by addressing the Secretary of the University.

109. **Facilities and Equipment.**—The College of Architecture is housed in large and commodious quarters in its own building. The drafting rooms are well lighted, provided with drafting tables of special design, and hung with valuable original competition and measured drawings. The free-hand drawing rooms are situated on the top floor at the north side of the building. They have an area of about 5400 square feet, are lighted by means of large north windows, and are fully equipped for the instruction in
free-hand drawing, pen and ink, water color, and drawing from life. There is also a room for modeling. A comprehensive collection of plaster casts, of sculpture, of decorative and architectural form, pottery and textiles for painting from still life, and a number of original drawings in pencil, color and pencil, pen and ink, form part of the equipment.

In addition to the above, there are in the Alumni Memorial building a number of casts from the antique, among which are the Victory of Samothrace, the Hermes of Praxiteles, and some of the remarkable decorative figure sculpture from the Arch of Trajan at Beneventum. Here are also a number of paintings and other objects of artistic and archaeological value.

110. Exhibitions.—Each year a number of art exhibitions are held under the auspices of the Ann Arbor Art Association in the main gallery of the Alumni Memorial Hall and also in the Architectural Building.

Exhibitions of student work are held from time to time in the corridor and in classrooms. Work by students of the school was shown at the First International Congress on Architectural Education in London, at a number of English architectural schools and at the exhibitions of the Detroit and Chicago Architectural clubs.

Many lectures are given each year under the auspices of the University, its colleges and schools, and local organizations, and among these are always a number of special interest to architectural students.

111. The Library.—No private and few public collections can be as complete as the library of a well-equipped architectural school. These books record the world's experience and achievements in architectural and allied fields and give an opportunity to study critically the finest work of all periods. The architect must have a fair knowledge of the literature bearing on his art, and since he may never possess many of these valuable works, and perhaps rarely again see them, the library forms a valued privilege during the student period.

The Architecture Library is conveniently housed in a room 40 x 90 feet on the second floor. It comprises 5,000 bound volumes and folios of plates, including, besides the standard books of reference, many important early works and an unusual number of recent publications, many photographs, and about 15,000 lantern slides. With the works available in the General Library, it constitutes an exceptional collection for the study of construction, architectural design, decorative design, and architectural history. It is especially strong in works on modern architecture and on the allied arts of ceramics, glass, metal work, textiles, and furniture. The leading American and foreign architectural journals are received, and bound volumes are kept on file.
Among the notable works available a few items which call for special mention are, in ancient literature, the Newton and Marino edition of Vitruvius, Palladio's Fabbriche Antiche, the works of Stuart and Revett, Desgodetz, Cresy and Taylor, Koldeweij and Puchstein, the Restaurations des Monuments Antiques, D'Espouy's Monuments Antiques and Fragments d'Architecture Antique and monographs on a number of Greek and Roman sites and buildings; in mediæval architecture, the works of Dehio and von Bezold, Britton, Pugin, Viollet-le-Duc, the Archives de la Commission des Monuments Historiques; in Renaissance architecture, the works of Geymüller, Raschdorff, Cicognara, Blondel, Gotch, Belcher and McCartney, and a very full collection of special works on the buildings of the Renaissance in France.

Every reasonable facility is accorded the student. A librarian is always in attendance, the library being open until ten o'clock at night.

The General Library also contains an excellent collection of reference material on painting, sculpture, and archaeology, a large number of photographs of Greek and Roman sculpture, and a collection of nearly five thousand prints, mostly art subject materials.

112. Materials.—The College supplies drawing tables and lockers. The student provides himself with all other materials. A good set of instruments and small drawing boards must be purchased. Water colors should not be purchased until after arrival here, when a list of required colors may be had.

113. State Examinations for the Registration of Architects. Students who are planning to enter the architectural profession should bear in mind that twenty-six states of the Union now have laws prescribing qualifications for architectural practice and require the passing of examinations given by a state board. In a very few years the remaining states will probably have such laws, a number of laws now being under consideration. These examinations comprise tests in the planning, design, construction, and equipment of buildings. Three or four days are usually required for such examination, distributed about as follows: planning and design, one day; reinforced concrete and steel construction, one day; building equipment and specifications, one-half day; architectural history and truss design, one-half day. Candidates may, by passing a somewhat more difficult examination, given under the National Council of Architectural Registration Boards, qualify for interstate practice.

Architects' Juries.—Again, as during the past few years, visiting architects have been invited to assist in grading the design problems.
FELLOWSHIPS, SCHOLARSHIPS, AND HONORS

Association of Collegiate Schools of Architecture.—The College is a charter member of this organization.

114. FELLOWSHIPS, SCHOLARSHIPS, AND HONORS

The George G. Booth Traveling Fellowship in Architecture.—The fellowship will be awarded annually, the stipend for the year being $1200. To be eligible the candidate shall be a graduate of the College of Architecture of the University of Michigan or shall have substantially completed the last two years of the four-year course. The award will be made on the basis of the student’s general record and a competition in design.

For further information regarding this fellowship candidates should write the College of Architecture.

Sculpture Prize.—For the coming year, through a friend of the College of Architecture, a prize of $50 is offered to the student submitting the best work in the course in clay modeling.

Award in Drawing and Painting.—There will also be available annually $100 for awards in the classes in drawing and painting of the College of Architecture. The donor is Dr. S. Eisenstaedt of Chicago.

Scholarship of the Detroit Chapter of the American Institute of Architects.—This organization from time to time offers a scholarship varying in amount open to experienced architectural draftsmen and to those who show decided artistic ability, primarily to encourage graduate study. Application should be made to the Professor of Architecture.

American Academy in Rome.—Graduates in Architecture are admitted to the annual competition for the fellowship in Architecture of the American Academy in Rome. This fellowship entitles the successful candidate to three years’ study abroad with a stipend of $1,000 per annum.

American Institute of Architecture.—Graduates in Architecture of the University of Michigan are received as candidates by the American Institute of Architects without examination, after they have had a certain amount of training. The Institute has also established a Junior membership, open upon graduation from this and other recognized schools of the Institute.

Medal of the American Institute of Architects.—The Institute annually awards a medal to that member of the graduating class having the highest standing during the four-year period of study in Architecture.
115. **CREDIT HOURS REQUIRED IN THE THREE FOUR-YEAR PROGRAMS, THE TWO-YEAR PROGRAM FOR SPECIAL STUDENTS, AND THE COURSES IN DECORATIVE DESIGN**

One hour credit represents ordinarily about three hours of actual work during each week of one semester.

ARCHITECTURE:

<table>
<thead>
<tr>
<th>Course</th>
<th>AI</th>
<th>AII</th>
<th>AIII</th>
<th>Sp.</th>
<th>Dec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of design</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Architectural design</td>
<td>31</td>
<td>37</td>
<td>17</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>Allied arts design</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of architecture</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Office work</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

CONSTRUCTION:

<table>
<thead>
<tr>
<th>Course</th>
<th>AI</th>
<th>AII</th>
<th>AIII</th>
<th>Sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural mechanics</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Roofs, girders, and framed structures</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Construction (elementary)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Advanced structural design (steel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masonry and reinforced concrete</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Testing materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry of materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveying</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUILDING EQUIPMENT:

<table>
<thead>
<tr>
<th>Course</th>
<th>AI</th>
<th>AII</th>
<th>AIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building sanitation</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Heating and ventilation</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Heat engines</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

DRAWING:

<table>
<thead>
<tr>
<th>Course</th>
<th>AI</th>
<th>AII</th>
<th>AIII</th>
<th>Sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free-hand drawing</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Water color painting</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Descriptive geometry and shades and shadows</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Perspective and stereotomy</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical drawing</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

SCIENCE:

<table>
<thead>
<tr>
<th>Course</th>
<th>AI</th>
<th>AII</th>
<th>AIII</th>
<th>Sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>13</td>
<td>4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Acoustics</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Geology or Mineralogy</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Botany</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
PROGRAMS IN ARCHITECTURE

Language:
- English 6 6 6 .. 9
- French or German 12 12 12 .. 12

General:
- Business administration 3 3 .. 3
- History of art 3 3 .. 3 8
- Landscape design or city planning 3
- Cultural and free electives 8 8 10 16 21

116. PROGRAM I. ARCHITECTURE

First Year†

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1 and 2</td>
<td>4</td>
</tr>
<tr>
<td>Alg., Anal. Geom. (Math. 1)</td>
<td>4</td>
</tr>
<tr>
<td>Desc. Geom. (A. 2)</td>
<td>3</td>
</tr>
<tr>
<td>Free-hand Drawing (Dr. 21)</td>
<td>2</td>
</tr>
<tr>
<td>Elements of Architecture (A. 1)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Modern Language</td>
<td>4</td>
</tr>
<tr>
<td>Analytic Geom. (Math. 2)</td>
<td>4</td>
</tr>
<tr>
<td>Free-hand Drawing (Dr. 22)</td>
<td>2</td>
</tr>
<tr>
<td>Arch. Design (A. 4)</td>
<td>3</td>
</tr>
<tr>
<td>Bldg. Construction (A. 21)</td>
<td>2</td>
</tr>
<tr>
<td>Ancient, Med. Arch. (A. 12)</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus (Math. 3)</td>
<td>5</td>
</tr>
<tr>
<td>Mechanics, Sound and Heat (Phys. 41)</td>
<td>4</td>
</tr>
<tr>
<td>Perspective, Stereotomy (A. 3)</td>
<td>2</td>
</tr>
<tr>
<td>Arch. Design (A. 5)</td>
<td>4</td>
</tr>
<tr>
<td>Gothic, Ren., Modern Arch. (A. 13)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>2</td>
</tr>
<tr>
<td>Free-hand Drawing (Dr. 23)</td>
<td>2</td>
</tr>
<tr>
<td>Mechanics (A. 19)</td>
<td>3</td>
</tr>
<tr>
<td>Arch. Design (A. 6)</td>
<td>4</td>
</tr>
<tr>
<td>Allied Arts (D.D. 2)</td>
<td>3</td>
</tr>
<tr>
<td>Min. 104 or Geol. 31</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Modern Language</td>
<td>4</td>
</tr>
<tr>
<td>Mechanics (A. 20)</td>
<td>3</td>
</tr>
<tr>
<td>Arch. Design (A. 7)</td>
<td>6</td>
</tr>
<tr>
<td>Arch. Hist. Research (A. 14)</td>
<td>2</td>
</tr>
<tr>
<td>Water Color (Dr. 24)</td>
<td>2</td>
</tr>
<tr>
<td>Bldg. Sanitation (A. 24)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Modern Language</td>
<td>4</td>
</tr>
<tr>
<td>Free-hand Drawing (Dr. 25)</td>
<td>2</td>
</tr>
<tr>
<td>Steel Construction (A. 22)</td>
<td>3</td>
</tr>
<tr>
<td>Structural Design (A. 23)</td>
<td>2</td>
</tr>
<tr>
<td>Arch. Design (A. 8)</td>
<td>6</td>
</tr>
</tbody>
</table>

†See section 4.

For Modern Language requirements see section 51.
<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>SECOND SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>Hours</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>Reinforced Concrete (A. 26)</td>
<td>2</td>
</tr>
<tr>
<td>Structural Design (A. 27)</td>
<td>2</td>
</tr>
<tr>
<td>Heating and Ventilation (M.E. 18)</td>
<td>2</td>
</tr>
<tr>
<td>Life Drawing (Dr. 27)</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>117. PROGRAM II. ARCHITECTURAL DESIGN</td>
</tr>
<tr>
<td>First Year†</td>
</tr>
<tr>
<td>*Modern Language</td>
</tr>
<tr>
<td>English 1 and 2</td>
</tr>
<tr>
<td>Descriptive Geometry (A. 2)</td>
</tr>
<tr>
<td>Free-hand Drawing (Dr. 21)</td>
</tr>
<tr>
<td>Elements of Architecture (A. 1)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Modern Language</td>
</tr>
<tr>
<td>Mechanics, Sound and Heat (Phys. 41)</td>
</tr>
<tr>
<td>Perspective, Stereotomy (A. 3)</td>
</tr>
<tr>
<td>Arch. Design (A. 5)</td>
</tr>
<tr>
<td>Gothic, Ren., Modern Arch. (A. 13)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics (A. 20)</td>
</tr>
<tr>
<td>Water Color (Dr. 24)</td>
</tr>
<tr>
<td>Arch. Design (A. 7)</td>
</tr>
<tr>
<td>Arch. Hist. Research (A. 14)</td>
</tr>
<tr>
<td>Bldg. Sanitation (A. 24)</td>
</tr>
<tr>
<td>Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

†See section 4.
*For Modern Language requirements see section 51.
PROGRAMS IN ARCHITECTURE

Fourth Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat., Vent. (M.E. 18)</td>
<td>2</td>
<td>Life Drawing (Dr. 27)</td>
<td>2</td>
</tr>
<tr>
<td>Arch. Design (A. 9)</td>
<td>6</td>
<td>Arch. Design (A. 10)</td>
<td>8</td>
</tr>
<tr>
<td>Reinforced Concrete (A. 26)</td>
<td>2</td>
<td>Acoustics (Phys. 130)</td>
<td>2</td>
</tr>
<tr>
<td>Structural Design (A. 27)</td>
<td>2</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Landscape Design</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City Planning</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus. Ad.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

118. PROGRAM III. ARCHITECTURAL ENGINEERING

First Year

- English 1 and 2 | 4
- Alg., Anal. Geom. (Math. 1) | 4
- Descriptive Geom. (A. 2) | 3
- Free-hand Drawing (Dr. 21) | 2
- Elements of Architecture (A. 1) | 3

Second Year

- Calculus (Math. 3) | 5
- Physics 45 | 5
- Perspective, Stereotomy (A. 3) | 2
- Arch. Design (A. 5) | 4
- Gothic, Ren., Modern Arch. (A. 13) | 3

Third Year

- *Modern Language* | 4
- Calculus (Math. 4b) | 2
- Eng. Mechanics 2 | 3
- Chemistry 5 | 5
- Arch. Design (A. 7a) | 4

- *Modern Language* | 4
- Steel Construction (A. 22a) | 3
- Structural Des. (A. 23a) | 2
- Min. 104 or Geol. 31 | 3
- Chem. Eng. 1 | 3
- English | 2

| | 18 | | 17 |

†See section 4.

For Modern Language requirements see section 51.
19. TWO-YEAR PROGRAM FOR SPECIAL STUDENTS IN ARCHITECTURE

Special students have such varied preparation that a program of courses must practically be planned to meet the needs of each student.

Experienced draftsmen can, in two years, accomplish much in design; they cannot, however, advance far in construction without Mechanics,—Graphic Statics (A. 19) and Strength of Materials (A. 20). They are, therefore, advised to bring preparation in high school algebra and trigonometry, taking Mathematics 1E at the University, then going on with Mechanics,—Architecture 19 and 20. With this training they can elect steel and reinforced concrete construction. Those who desire to specialize in design can substitute other courses for those in mathematics, mechanics, and structural design.

The following is suggested as an outline for special students desiring a well-balanced training when but two years are available:

First Year†

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shades and Shadows (A. 2)</td>
<td>1</td>
</tr>
<tr>
<td>Free-hand Draw. (Dr. 22 or 23)</td>
<td>2</td>
</tr>
<tr>
<td>Arch. Design (A. 4)</td>
<td>3</td>
</tr>
<tr>
<td>Arch. Design (A. 5)</td>
<td>4</td>
</tr>
<tr>
<td>Alg., Anal. Geom. (Math. 1) or Elective</td>
<td>4</td>
</tr>
<tr>
<td>Perspective, Stereotomy (A. 3)</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

†See section 4.
120. PROGRAMS IN DECORATIVE DESIGN*

Four programs are outlined in Decorative Design, differentiation in the various programs occurring in the fourth year. The purpose of these courses is to teach the theory and practice of the graphic and decorative arts, the arts and crafts, and interior decoration. For the practice of design, a general education is essential, and proficiency in drawing, color, and modeling is necessary for developing and expressing ideas and presenting them to others.

Instruction in design for technical students begins with Course 2 (Decorative Design 2). Simple problems illustrating fundamental principles are worked out before studying design in specific materials and fields such as wood, clay, metals, textiles, and glass; and for furniture, decorative painting and sculpture, costume design and stage craft. Surveys will also be given of the historical development.

The programs in Decorative Design are tentative and are subject to adjustments to meet the needs of students.

First Year†

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1 and 2</td>
<td>4</td>
</tr>
<tr>
<td>Mod. Language</td>
<td>4</td>
</tr>
<tr>
<td>Free-hand Drawing (Draw. 21)</td>
<td>2</td>
</tr>
<tr>
<td>Mech. Drawing (Arch. 2d)</td>
<td>4</td>
</tr>
<tr>
<td>Clay Modeling (Draw. 33)</td>
<td>2</td>
</tr>
<tr>
<td>Mod. Language</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 3 or Elective</td>
<td>4</td>
</tr>
<tr>
<td>Free-hand Drawing (Draw. 22)</td>
<td>2</td>
</tr>
<tr>
<td>Elements of Arch. (Arch. 1)</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>Perspective (Arch. 3d)</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

†A. 26, Masonry and Reinforced Concrete, may be substituted for A. 23.

*Note.—In addition to the courses listed for this program, students will be required to earn 4 hours credit in practical or other approved work.

†See section 4.
Second Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>2</td>
</tr>
<tr>
<td>Botany</td>
<td>4</td>
</tr>
<tr>
<td>Free-hand Drawing (Draw. 23)</td>
<td>2</td>
</tr>
<tr>
<td>Arch. Design (Arch. 4)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Design (D.D. 2)</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>4</td>
</tr>
<tr>
<td>Theory of Color (D.D. 4)</td>
<td>3</td>
</tr>
<tr>
<td>Water Color (Draw. 24)</td>
<td>2</td>
</tr>
<tr>
<td>Building Construction (Arch. 21)</td>
<td>2</td>
</tr>
<tr>
<td>Ancient, Med. Arch. (Arch. 12)</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free-hand Drawing (Draw. 25)</td>
<td>2</td>
</tr>
<tr>
<td>Nature and Design (D.D. 6)</td>
<td>3</td>
</tr>
<tr>
<td>Geometric Relations (D.D. 8)</td>
<td>3</td>
</tr>
<tr>
<td>Gothic, Renaissance, Modern Arch. (Arch. 13)</td>
<td>3</td>
</tr>
<tr>
<td>Hist. Painting and Sculpture (Draw. 40)</td>
<td>3</td>
</tr>
<tr>
<td>Pictorial Composition (D.D. 8)</td>
<td>1</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Year

Program I

Major in Interior Decoration

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Color (D.D. 31)</td>
<td>4</td>
</tr>
<tr>
<td>Arch. and Interior Decoration (D.D. 33)</td>
<td>4</td>
</tr>
<tr>
<td>Museum Study or Research (Arch. 14)</td>
<td>2</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
</tr>
<tr>
<td>Sketch Class (Dr. 38)</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of Interiors (D.D. 37)</td>
<td>8</td>
</tr>
<tr>
<td>History of Interiors (D.D. 35)</td>
<td>1</td>
</tr>
<tr>
<td>Free-hand Drawing (Dr. 28)</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>
PROGRAM II

Major in Stage and Costume Design

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th></th>
<th>SECOND SEMESTER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td></td>
<td>Hours</td>
<td></td>
</tr>
<tr>
<td>Advanced Color (D.D. 31)</td>
<td>4</td>
<td>Costume Design (D.D. 41)</td>
<td>4</td>
</tr>
<tr>
<td>Architecture and Interior Decoration (D.D. 33)</td>
<td>4</td>
<td>Stage Craft (D.D. 43)</td>
<td>3</td>
</tr>
<tr>
<td>Museum Research (Arch. 14)</td>
<td>2</td>
<td>Color Lighting (D.D. 45)</td>
<td>2</td>
</tr>
<tr>
<td>Sketch Class (Dr. 38)</td>
<td>1</td>
<td>Free-hand Drawing (Dr. 28)</td>
<td>2</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
<td>Elective</td>
<td>5</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

PROGRAM III

Major in Decorative Composition

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td></td>
<td>Hours</td>
</tr>
<tr>
<td>Advanced Color (D.D. 31)</td>
<td>4</td>
<td>Illustration (D.D. 53)</td>
</tr>
<tr>
<td>Costume Design (D.D. 41)</td>
<td>4</td>
<td>I. Black and White II. Color</td>
</tr>
<tr>
<td>Museum Research (Arch. 14)</td>
<td>2</td>
<td>Pictorial Advertising (D.D. 57)</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
<td>Free-hand Drawing (Dr. 28)</td>
</tr>
<tr>
<td>Sketch Class (Dr. 38)</td>
<td>1</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>Total</td>
</tr>
</tbody>
</table>

PROGRAM IV

Major in Decorative Art

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td></td>
<td>Hours</td>
</tr>
<tr>
<td>Advanced Color (D.D. 31)</td>
<td>4</td>
<td>Design in Crafts (D.D. 65)</td>
</tr>
<tr>
<td>Furniture Design (D.D. 61)</td>
<td>4</td>
<td>Ceramics</td>
</tr>
<tr>
<td>Museum Research (Arch. 14)</td>
<td>2</td>
<td>Metal Work</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
<td>Jewelry</td>
</tr>
<tr>
<td>Sketch Class (Dr. 38)</td>
<td>1</td>
<td>Textiles</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>Leather</td>
</tr>
<tr>
<td>Free-hand Drawing (Dr. 28)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>Total</td>
</tr>
</tbody>
</table>
121. DESCRIPTION OF COURSES IN ARCHITECTURE

Professors LORCH, ROUSSEAU, WILBY, TITCOMB, McCONKEY, and BENNETT; Assistant Professors NEWMAN, MARSHALL, CHAMBERLAIN, SLUSSER, and FOWLER; Mr. O’DELL, Mr. MATTHEWS, Mr. CHAPIN, Mr. VALERIO, Dr. ONDERDONK, Mr. ALDRICH, Mr. BARNUM, Mr. GAMBLE, Mr. SLOCUM, Mr. HOWE, Mrs. JOHNSON, Mrs. CRANE, Mr. TANNER, Mr. WOOD, Mr. BITTINGER, and Mr. BATES.

ARCHITECTURE

1. Elements of Architecture. An introductory course to the field of artistic design, decorative and architectural. Principles of design and the possibilities in design of line, color, and form. Methods of indication, rendering, lettering. Drawing exercises, modeling and lectures. This course or its equivalent must precede all architectural design courses. It should be accompanied or preceded by Architecture 2 and Free-hand Drawing 21. Three hours credit. Each semester.

2. Architectural Drawing. Descriptive geometry; shades and shadows; use of instruments, simple projections and their application to plans, sections and elevations, roof intersections. Three hours credit. Each semester.

2d. Mechanical Drawing. Use of instruments. Simple projections and their application to plans, sections and elevations. For students in Decorative Design. Four hours credit. Each semester.

3. Architectural Drawing. Advanced projections and stereotomy; application to arch and vaulting problems; architectural, isometric and perspective drawing, and modeling. Two hours credit. First semester.

3d. Perspective Drawing for Students in Decorative Design. Prerequisite: Architecture 2d. One hour credit. Second semester.

ARCHITECTURAL DESIGN

In the following courses in Architectural Design problems are assigned to be worked out in the drafting room. Lectures are given from time to time bearing on the type of building then being designed. Study of the requirements of various classes of buildings and of the artistic possibilities of building materials, training of the student in composition in plan, section, elevation, and perspective, in accurate draftsmanship and rendering in line, black-and-white, and color.
Courses 4 to 10, inclusive, constitute a progressive series of problems in architectural planning and design, advancing from the small building to the more important classes of buildings and to the group problems. The courses must be taken in the order given.

7a. Architectural Design. For students in Program III. Four hours credit. Each semester.

11. Architectural Design. Housing problems. The design of various types of residential units, single and multiple, and their relation to the city plan and public health. Lectures, reading, and drawing. Prerequisite: Architecture 6. Credit to be arranged.

TECHNICAL AND HISTORICAL DEVELOPMENT OF ARCHITECTURE AND DESIGN

For students in Architecture, Courses 12, 13, and 14 assume some knowledge of history, drawing, and design; they should be elected in the order given. The purpose of these courses is to
study the historical conditions, building materials and methods, planning and design, as well as the sculptured and painted decoration and ornament of the more important and significant works of architecture. The courses are carried on by means of illustrated lectures, conferences, drawing exercises, research, and required visits to buildings in neighboring cities.

15. General Course in the History of Architecture. The aim of this course is to give students seeking a liberal culture a survey of the development of the art of building. The temples, cathedrals, palaces, and other characteristic monuments of the ancient, medieval, renaissance, and modern styles, their design, sculpture, and painted decorations will be studied by means of lectures illustrated by the stereopticon, and collateral reading. This course is open to all students in the University, but cannot be counted towards graduation in Architecture. For students of art and archaeology desiring a more intensive study of the technical and historical development of architecture, Courses 12, 13, and 14 are recommended. Two hours credit.

BUILDING CONSTRUCTION AND EQUIPMENT

21. **Wood Construction.** Lectures, conferences, drawing, and visits to buildings. Building materials and processes; working drawings; specifications and estimates of cost. **Prerequisites:** Architecture 1 and 2. Two hours credit. Second semester.

22. **Steel and Fireproof Construction.** Lectures, problems, notes, and assigned reading on building materials, and methods of construction, with particular reference to steel and enclosing and protection materials against fire and other destructive elements. Design of columns, beams, plate girders, and trusses; specifications and estimates. **Prerequisites:** Architecture 19 and 20. Three hours credit. Each semester.

22a. **Structural Theory.** Recitations, problems, text, and occasional lectures. This course is devoted to a study of the laws of statics, moving and stationary loads, influence lines, reactions, shears, and moments in their relation to structures of various kinds. The practical design of beams and girders is given considerable attention. **Prerequisites:** E. M. 1 and E. M. 2. Three hours credit. Each semester.

23. **Structural Design: Steel.** Working drawings and details of structures. **Must be preceded or accompanied by Architecture 22.** Two hours credit. Each semester.

23a. **Structural Design.** Lectures and drafting accompanying Architecture 22a. A course in which are considered fundamental principles underlying structural design and their relationship to structural theory. Its main object is to give the student the power to analyze such problems as arise in practice. Elementary forms in wood, cast iron, and steel are considered through the preparation of design and working drawings. Emphasis is laid on the cultivation of careful, systematic, and practical habits in computation. **Must be preceded or accompanied by Architecture 22a.** Two hours credit. Each semester.

26. **Masonry and Reinforced Concrete.** Lectures, problems, text, and assigned reading on building materials and methods of construction, with particular reference to reinforced concrete. Brick, stone, terra cotta, cements, and waterproofing are also considered; specifications and estimates. **Prerequisites:** Architecture 19 and 20. Two hours credit. Each semester.

27. **Structural Design: Masonry.** The design of foundations, columns, slabs, beams, and girders of various types, as used
in buildings. Must be preceded or accompanied by Architecture 26. Two hours credit. Each semester.

35a. Structural Theory (Advanced). Recitations, problems, text, and lectures. This is an extended course in continuation of Architecture 22a. Part I, nine weeks, treats of the computation and design of structures of wood, metal, and masonry by algebraic and graphical methods. Subjects considered are the theory of columns, trusses of various kinds, mill building bents, and portals, earth pressure, buttresses and retaining walls. Part II, six weeks, treats of the theory of least work, and higher framed structures. The object is to further train the student in the application of the principles of mechanics to the design of structures with special reference to building work. Prerequisites: Architecture 22a and a course in reinforced concrete. Four hours credit. Second semester.

35b. Structural Design (Advanced). Lectures, occasional problems, and drafting. A course in which are prepared complete designs and working drawings of a structural frame building of steel and concrete. Great importance is placed upon the study of the details of the design. Special attention is devoted to types and methods of constructing foundations for buildings, materials of construction, and protection materials against fire and other destructive agencies. Must be preceded by Architecture 23a, and preceded or accompanied by Architecture 35a. Two hours credit. Second semester.

36. Concrete Theory. Recitations, problems, text, and lectures covering theory and design of masonry structures, with particular reference to reinforced concrete. Foundations and flat slab construction are studied. Must be preceded by E. M. 1 and E. M. 2 and preceded or accompanied by Architecture 22a. Three hours credit. Each semester.

Primarily for Graduates

33. Architectural History. A thesis on the architectural work of a period or on a particular monument. Prerequisite: the equivalent of Architecture 12, 13, and 14.

38. Structural Design. Special problems in building construction. Prerequisite: the equivalent of Architecture 35a. Credit to be arranged.
DESIGN OF COURSES

DECORATIVE DESIGN

2. Principles of Design. An introductory study of the theory of design. Lectures and short problems in design. (Formerly Arch. 17.) *Prerequisites: Drawing 21 and 22. Architectural students should have completed Arch. 5, and 12 or 13. Three hours credit. Each semester.

4. Theory of Color. A systematic and intensive study of color and its application in design. Lectures and problems in color and design worked out in the drafting room. (Formerly Arch. 17a.) Three hours credit. Each semester.

8. Geometric Relations. A study in the use of various geometric systems in design. (Formerly Arch. 17c.) *Prerequisites: Decorative Design 2 and 4. Three hours credit. First semester.

9. Pattern Design. The making of patterns appropriate to various purposes and materials. Lectures, drawing and research. (Formerly Arch. 17d.) *Prerequisites: Decorative Design 2 and 4. Three hours credit. Second semester.

15. Color Composition. Batik; decorative panels and murals. (Formerly Arch. 17e.) *Prerequisites: Decorative Design 2 and 4. Two hours credit. Second semester.

31. Advanced Color. Color as applied to various phases of interior problems. (Formerly Arch. 17f.) *Prerequisite: Decorative Design 4. Four hours credit.

33. Architecture and Interior Decoration. Lectures and drafting room problems. (Formerly Arch. 6d.) Four hours credit.

35. History of Interiors. Lectures and library study on the historical development of the design of interiors. One hour credit.

37. Design of Interiors. Lectures, drafting room problems, and research dealing with the interior design of important rooms. Eight hours credit.
41. **Costume Design.** History of costume periods. Practical problems in designing costumes. The use of materials; dyeing, painting and stencil in costume. Four hours credit.

43. **Stage Craft.** The design of stage sets. Rendering in models; scenery, costumes, lighting, and properties. Three hours credit.

45. **Color Lighting.** Theory of color and light. Psychology of color. Practical problems in lighting. Two hours credit.

53. **Illustration.** Illustration in black and white and in color. Six hours credit.

57. **Pictorial Advertising.** Poster work. Newspaper, magazine and booklet advertising. Printing processes; layout problems. Three hours credit.

61. **Furniture Design.** The design of furniture; its construction, carving, and finish. Four hours credit.

65. **Design in Crafts.** Practical work in ceramics, metal work, jewelry design, textiles, and leather. Nine hours credit.

FREE-HAND DRAWING, PAINTING, AND MODELING

The following courses are open to others as well as Architectural students. The courses are to be elected as Free-hand Drawing 21, 22, etc., and in the order given.

All of the courses are offered both semesters and instruction is given in Courses 21 to 26, inclusive, every morning and every afternoon with the exception of Saturday afternoon only.

Drawing in charcoal, pencil, and wash, largely from casts and from the living model. This work may be varied somewhat to permit some sketching out-of-doors. Pen and ink should not be elected until after the student has mastered the fundamentals of representation.

For the general student Courses 21, 22, and 24 will give an elementary training in drawing and painting. Course 30 provides more advanced work in painting; Courses 25, 26, and 27 more advanced training in drawing. Course 23 is a special course in the drawing of ornament for students of architecture and decoration, while Course 35 is primarily for Architectural students, although open to others. Outdoor sketching and painting can best be studied during the Summer Session.

At present there are no classes in portrait painting, but such instruction can, under certain conditions, be arranged for groups of students who have advanced preparation. Still life painting in water color or oil cannot be studied profitably without some pre-
liminary training in free-hand drawing (Drawing 21 and 22). For drawing from the living model some preliminary training is required from the antique (Drawing 25 and 26).

Advancement in all these courses is individual, depending on the progress made by the student and determined largely by work done without criticism. Advanced standing may be had as in other subjects on the basis of satisfactory work done elsewhere. Drawings should be brought to help determine the student's standing, also letters or certificates from the institution attended.

21. **Free-Hand Drawing.** Introductory Course. Drawing from simple forms in line, and light and shade. Free-hand perspective. Two hours credit.

22. **Free-Hand Drawing.** Drawing from simple architectural ornament in charcoal. *Prerequisite: Free-hand Drawing 21.* Two hours credit.

23. **Free-Hand Drawing.** Drawing from architectural ornament in pencil. *Prerequisite: Free-hand Drawing 22.* Two hours credit.

24. **Water-Color Painting.** Painting from still life. *Prerequisites: Free-hand Drawing 21 and 22.* Two hours credit.

25. **Free-Hand Drawing.** Drawing from antique casts of heads. Two hours credit.

26. **Free-Hand Drawing.** Drawing from antique casts of full figure. Two hours credit.

27 and 28. **Free-Hand Drawing.** Drawing from life in various media. Admission to these courses is limited to those who have satisfactorily completed the preceding courses or their equivalent. Two hours credit each.

31. **Pastel Drawing and Painting.** Drawing and painting from still life in pastel. *Prerequisite: Free-hand Drawing 21 or equivalent.* Two hours credit.

32. **Painting in Oil.** Painting from still life in oil. *Prerequisite: Free-hand Drawing 24.* Two hours credit.

33. **Clay Modeling.** Two hours credit.

35. **Pen and Ink Drawing.** Elective. For regular students of Architecture this course must be preceded by Courses 21, 22,
and 23 in Drawing, and Architecture 2 and 5. Students not registered in Architecture should have the equivalent of six credit hours in free-hand drawing before electing this course. One or two hours credit.

36. Pencil Sketching. Pencil technique, from architecture and landscape. One or two hours credit.

38. Costume Sketch. Drawing from the costumed model in various media. One hour credit.

38a. Advanced Costume Sketch. One hour credit.

40. Pictorial Composition. The principles of design as applied to illustration, painting, and mural decoration, in black-and-white and in color. One hour credit.

SUMMER SESSION

Architectural Design. Problems to be worked out in the drafting room. Study of the requirements of various classes of buildings and of the artistic possibilities of building materials; training of the student in composition in plan, section, elevation, and perspective, in accurate draftsmanship and rendering in line, black-and-white, and color. The following courses in Architectural Design will be offered:

5 and 6. Elementary Architectural Design. A continuation of Course 4; introductory problems in architectural design. Four hours credit.

7 and 8. Intermediate Architectural Design. Credit to be arranged.

9 and 10. Advanced Architectural Design. Plan problems. Credit to be arranged.

Free-Hand Drawing. B. Outdoor Drawing and Painting. Drawing and painting in charcoal, pencil, pastel, water color or oil from landscape and architectural subjects. An effort is made to meet the needs of the individual student so far as possible. Special attention is given to the medium, and to the principles of pictorial composition. Architects may substitute this course for Free-hand Drawing 24. Prerequisite: Free-hand Drawing 21 or equivalent. Two hours credit.
SUMMARY OF STUDENTS

1927-1928

COLLEGE OF ENGINEERING

<table>
<thead>
<tr>
<th></th>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
<th>Specials</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering</td>
<td>54</td>
<td>92</td>
<td>82</td>
<td>4</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>64</td>
<td>88</td>
<td>84</td>
<td>7</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>83</td>
<td>84</td>
<td>71</td>
<td>2</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>41</td>
<td>46</td>
<td>37</td>
<td>1</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Marine Engineering</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Aeronautical Engineering</td>
<td>52</td>
<td>43</td>
<td>31</td>
<td>1</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Geodesy and Surveying</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Unclassified, first year</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Part-time, unclassified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
<th>Specials</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>276</td>
<td>304</td>
<td>357</td>
<td>312</td>
<td>19</td>
<td>1269</td>
</tr>
</tbody>
</table>

COLLEGE OF ARCHITECTURE

<table>
<thead>
<tr>
<th></th>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
<th>Specials</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture I</td>
<td>22</td>
<td>29</td>
<td>18</td>
<td>24</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Architecture II</td>
<td>35</td>
<td>57</td>
<td>43</td>
<td>25</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Architecture III (Arch. Engr.)</td>
<td>19</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Decorative Design</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Special students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Part-time students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

| | 86 | 109 | 86 | 64 | 17 | 362 |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>1269</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduates, College of Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1269</td>
</tr>
<tr>
<td>Undergraduates, College of Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>362</td>
</tr>
<tr>
<td>Students in Colleges of Engineering and Architecture enrolled in the Summer Session 1927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>343</td>
</tr>
<tr>
<td>Students in Engineering registered in the Graduate School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Students in Architecture registered in the Graduate School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Number of Students (not counted twice in Engineering and Architecture)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1796</td>
</tr>
</tbody>
</table>
INDEX

Absence:
excuses for, 52
leave of, 56

Academic year, 28

Administrative officers, 7

Admission, 29
to advanced standing, 36-38
advanced credits, adjustment of, 39
on certificate, 34-35
in combined programs, 38
on credits from another College, 36-38
deficiencies, 53
by examination, 36
as a graduate student, 39
requirements, 30-34
as a special student, 40-41

Advanced standing:
admission to, 36-38
adjustment of credits, 39

Aeronautical engineering:
courses offered, 117-119
degrees conferred, 60, 70
description of work, 113-115
laboratory, 114-115
program, 115-117
requirements for graduation, 70, 115-116

Agriculture, 34

Aircraft, 114

Albion College, 28, 38

Announcements, 4

Annual fee, 41

Architectural construction, 234, 250-252

Architectural design, 232, 233, 242, 248-250, 252, 256

Architectural engineering, 243-244

Architecture:
courses offered, 248-256
degrees conferred, 230
description of work, 221-239
facilities and equipment, 236-238
fellowships, scholarships, and honors, 239
four-year programs of study, 228-229
graduate work, 230
library, 237-238
programs of study, 241-248
requirements for graduation, 240-241
special students, 231, 240, 244
state examinations, 238

Assembly, the, 50

Assistants, student, 20-23

Astronomy, 120-123

Automobile engineering, 191, 203, 204

Average grade, 54

Bacteriology, 73

Battle Creek College, 28, 38

Bequests, 69

Board of Regents, 7

Boundary surveying, 175, 182

Building construction and equipment, 250-252

Buildings and other equipment, 59-62

Business administration:
combined programs with, 27
courses in, 74-75

Calendar, 4

Camp Davis, 176-178

Camps, summer, 102, 176

Certificates from approved and other schools, 34-35

Chemical engineering:
courses in, 135-141
description of work, 123-125
four-year program, 131-133
five-year program, 133-135
graduate work, 125
laboratories, 126-130
library, 126
requirements for graduation, 70, 131-135
summer employment, 130

Chemistry:
courses offered, 75-79

Civil authorities, relation of students to, 45

Civil engineering:
co-operative courses with industry, 150
courses offered, 150-159
description of work, 141-143
electives, 147
graduate work, 143, 150
group options, 147-150
laboratories, 143-144
program, 146
requirements for graduation, 70, 145-146

Clements Library, 60

College of City of Detroit, 28, 38

Combined programs with other institutions, 28

Combustion laboratories, 127-128

Commencement, date of, 4

Commercial branches, 33-34

Committees, 23

Communication laboratories, 162

Courses:
in non-professional departments, 72-112
in professional departments, 113-256

Credit for advanced standing, 36-38, 39
INDEX

Credit hour, 70
Cultural electives, 70-71
Curricula in professional departments:
 aeronautical engineering, 115
 astronomy, 120
 chemical engineering, 131
 civil engineering, 145
 combined, with business administration, 27
 combined with certain colleges, 38
 electrical engineering, 163
 geodesy and surveying, 178
 marine engineering, 207
 mathematics, 184
 mechanical engineering, 193
 naval architecture, 207
 physics, 214
Decorative design, 240, 245-247, 253-254
Deficiencies, removal of, 53
Degrees conferred, 69, 70
Dental clinics, 47
Departments of instruction, general description of:
 non-professional, 73-112
 professional, 113-256
Design, decorative:
 courses, 253-254
 program, 245-247
 requirements for graduation, 240
Detroit, College of City of, 28, 38
Diploma, department of geodesy and surveying, 176
Directions and suggestions, 29
Dismissal, honorable, 56
Dispensary, 47
Drawing:
 allowed for admission, 32-33
 description of work, 96-97, 235, 248
 free-hand, 235, 254-256
 mechanism and engineering, 97
Dynamics, 85
Dynamo laboratory, 161-162
Economics, 79-83
Election of studies, rules, governing, 51-53
Electives:
 cultural, 70-71
 group system of, 113
Electrical communication, 159, 162, 171
Electrical engineering:
 co-operative course with industry, 167-168
 courses offered, 169-174
 description of work, 159-161
 elective work, 168
 four-year program, 163-165
 five-year program with industrial engineering, 165-167
 laboratories, 161-163
 meter school, 174
 requirements for graduation, 70, 163-168
Electrical engineering design, 160
Electrical power engineering, 159
Emeritus professors, 8
Employment of students, 44-45
Engineering defined, 57
Engineering camp, 176-178
Engineering Library, 60
Engineering mechanics:
 courses offered, 84-87
 description of work, 83-84
Engineering research, 112
Engineering Shops, 108-109
Engineering Society, 62-63
English:
 courses offered, 88-91
 facilities, 87
 for foreign students, 88
 general requirement, 88
 library, 60, 87
Enrollment, 257
Entrance, see Admission
Examinations:
 admission, 36
 fee for special, 42-43
 rules governing, 53
 semester, 4
Excuses for absence, 52
Exhibitions, 237
Expenses, 41-44
Experimental flume, 144
Experimental tank, 206-207
Faculty, 8-23
Fees, 41-44
Fellowships, 45, 64-66, 239
Fine arts, 91-93
First-year studies, 72-73
Five-year programs with business administration, 27
Foreign students, 30, 88, 90
Forestry and Conservation, 93-94
Foundry laboratory, 110
Free-hand drawing, 235, 254, 255, 256
French:
 courses offered, 106-107
 description of work, 106
 for graduation, 70-71
 Freshman program, 72-73
Gas, fuel, and combustion laboratories, 127-128
General engineering science, 149-150
Geodesy and surveying:
 Camp Davis, 176-178
 courses offered, 180-183
 description of work, 175-176
 program, 178-180
 requirements for graduation, 70, 178-180
INDEX

Geology, 95
German: courses offered, 107

description of work, 106
for graduation, 70-71
Gifts, 69
Grade average, 54
Graduate work, 39, 70, 125, 143
Graduation fee, 43
Graduation, general requirements for, 70
Group electives, 113
Gymnasiaums, 48-50
Health Service, 47
Heating, ventilating, and refrigerating engineering, 190, 202, 203
Highway engineering, 141, 148-149, 155, 156, 157, 158
Highway laboratories, 143-144
Highway transport and traffic engineering, 27, 156, 157, 158
Historical information, 25-27
Honor system, 50-51
Honorable dismissal, 56
Hospital, 47
Hour of credit, 70
Hydraulic engineering, 141, 148, 152, 153, 158
Hydraulic experimental equipment, 144
Hydro-mechanical engineering, 190
Hydro-mechanical laboratory, 192
Illumination engineering, 159, 170, 174
Industrial engineering:
definition of, 124, 191
five-year programs in, 133-135, 165-167, 197-198
Infantry, 98, 100-101
Infirmary, 47
Inspection, visits of, 61-62
Instruction, departments of, non-professional, 73-112
professional, 113-256
Instrument shop, 109
Internal combustion engineering, 190, 201, 204
Laboratories:
aeronautical engineering, 114
automobile, 192-193
chemical engineering, 126-127
civil engineering, 143-144
communication, 162
dynamo, 161-162
electrical engineering, 161-163
engineering shops, 108-109
foundry, 110

gas, fuel, and combustion, 127-128
highway, 143-144
hydro-mechanical, 192
instrument shop, 109
machine tool, 109
marine engineering, 206-207
mechanical engineering, 192
metal working and treating, 109-110
metallurgical, 128-129
mineralogical, 104
photometric, 162
physical testing, 84
physics, 212-213
power plant, 61
technology, 129-130
woodworking, 109
Laboratory fees, 43
Landscape design, 95-96
Language requirements, 70-71
Late registration, 42
Leave of absence, 56
Libraries:
architecture, 237-238
chemical engineering, 126
Clements, 60
civil engineering, 60
transportation, 143
University, 60
Loan funds, 67-68
Machine design, 191, 199
Machine tool laboratory, 109
Manual training, 33
Marine engineering:
courses offered, 210-212
description of work, 205-207
group options, 208-209
laboratory, 206-207
program, 209-210
requirements for graduation, 70, 207-208
Marking system, 53-54
Mathematics:
courses in, 185-189
description of work, 183-184
requirements for graduation, 70, 184-185
Matriculation fee, 41
Mechanical engineering:
courses offered, 199-205
description of work, 190-192
four-year course, 195-196
five-year course, 197-198
laboratories, 192-193
requirements for graduation, 70, 193-195
Mechanical engineering laboratory, 192
Mechanism and engineering drawing, 96-98
Medical treatment, 47
Mentor system, 47
INDEX

Metal working and treating laboratory, 109-110
Metallurgical engineering, 124, 136, 138, 139, 140
Metallurgical laboratories, 128-129
Meter school, 174
Michigan Union, 46
Military science and tactics, 98-102
Mineralogical laboratory, 104
Mineralogy and petrography, 104-105
Modeling, 254, 255
Modern languages and cultural electives, 70-71
Modern languages: courses offered, 106-108
description of work, 106
requirements for graduation, 70-71
Motor vehicles, rules governing operation of, 55
Municipal engineering, 142, 149, 154
Naval architecture:
courses offered, 210-212
description of work, 205-207
group options, 208-209
program, 209-210
requirements for graduation, 70-208
Naval aviation, 103
Non-professional departments, 73-112

Officers, administrative, 7
Olivet College, 28, 38
Ordnance, 98, 101-102
Organizations, 62-64

Painting, 254, 255
Part-time fees, 42
Pen and ink drawing, 236, 254, 255
Philosophy, 108
Photometric laboratory, 162
Physical education, facilities for, 48-50
Physical testing laboratory, 84
Physics:
courses offered, 215-219
description of work, 212-213
laboratories, 212-213
requirements for graduation, 70, 214
Political economy, see Economics
Power plant, 61
Prizes, 66
Programs of study, see Curricula
Railway engineering, 141-142, 148-149
Refrigerating engineering, 190, 202
Refunding of fees, 44
Regents, Board of, 7
Registration, late, 42
Relation of students to civil authorities, 45
Requirements for admission, see Admission
Requirements for graduation, 70
Research, Department of Engineering, 112
Rules:
governing election of studies, 51-52
relating to examinations and entrance deficiencies, 53
governing grades and scholarships, 54-55
governing operation of motor vehicles, 55
Sanitary engineering, 142, 149, 154, 155, 158
Sanitary experiment station, 144
Scholarship, unsatisfactory, 54-55
Scholarships, 45, 66, 239
Self-supporting students, 44-45
Shop practice:
courses offered, 110-111
description of work, 108-110
laboratories, 108-110
Shops, 108-109
Signal corps, 99-100
Societies, 62-64
Spanish:
courses offered, 107-108
description of work, 106
for graduation, 70-71
Special students, 40-41
Standing committee, 23
Steam power engineering, 190, 199, 200, 201
Structural engineering, 141, 148, 151-152
Student assistants, 20-23
Student employment, 44-45
Students enrolled, 257
Suggestions and directions, 29
Summary of students, 257
Summer camps, 102, 176
Summer Session, 28
Summer Session courses:
(Listed under the various departments)
Surveying:
Camp Davis, 176-178
courses offered, 180-183
description of work, 175-176
equipment, 176
program, 179-180
requirements for graduation, 70, 178-179
Tank, experimental, 206-207
Teaching assistants, 20
Technology laboratories, 129-130
Topographic surveying, 175, 181, 182
Transportation engineering, 141-142, 148-149, 155, 156, 157, 158
Tuition, 41 44
Union, Michigan, 46
Units for admission, 30-34
University College, 27
Unsatisfactory scholarship, 54-55
Upperclassmen, 52-53
Ventilating engineering, 190, 202, 203
Visits of inspection, 61-62
Vocational units, 32-34
Water analysis, 73
Water color, 235, 254, 255
Water transportation, 206, 209
Withdrawal from the colleges, 56
Women students, 51
Woodworking laboratory, 109
Work for students, 44-45
Yost Field House, 49
UNIVERSITY OF MICHIGAN
(Continued from inside page of front cover.)

College of Pharmacy, Edward H. Kraus, Dean.
(Admission officers: Professor Clifford C. Glover, for advanced standing; Registrar Ira M. Smith, for freshmen.)
Three- and four-year curricula. Fully equipped laboratories. Pharmacy experience in Health Service and hospitals. Training for prescription service, manufacturing pharmacy, food and drug inspection, analysis, laboratory and clinical technology, pharmaceutical administration. Combined curriculum in pharmacy and medicine.

School of Education, J. B. Edmonson, Dean.
(Admission officers: The Dean, for two-year curricula; Registrar Ira M. Smith, for four-year curricula.)
Two-year curricula (following two years of prerequisite collegiate preparation) leading to Bachelor of Arts (or Science) in Education, with Lile Certificate. Four-year curricula in vocational and in physical education, athletics, and school health, and a four-year and one-year program in public health nursing.

School of Business Administration, Clare E. Griffin, Acting Dean.
(Admission officer: The Acting Dean.)
Three years of collegiate preparation required. Two-year professional curriculum leading to the degree of Master of Business Administration (M.B.A.). Comprehensive programs in all important phases of management. Emphasis upon case work and business research. Combined curriculum with letters, and with forestry.

School of Forestry and Conservation, S. T. Dana, Dean.
(Admission officer: The Dean.)
Two years of collegiate preparation required. Three-year curriculum leading to the degree of Master of Science in Forestry, with the degree of Bachelor of Science in Forestry, at the end of two years of satisfactory work. Ample opportunity for specialization and research leading to higher degrees.

University School of Music.
(Admission officers: Professor Earl V. Moore, for advanced standing; Registrar Ira M. Smith, for freshmen.)
Four years of high school preparation required. Four-year curricula leading to the degree of Bachelor of Music or Bachelor of Music in Education, with teacher's life certificate. Other four-year curricula leading to diplomas in applied music.

Graduate School, G. Carl Huber, Dean.
(Admission officer: The Dean.)
Graduate courses in all departments of study. Special curricula leading to higher degrees in professional subjects.

Summer Session, Edward H. Kraus, Dean.
More than five hundred courses in the various Schools and Colleges, leading to all degrees. Special opportunities for advanced and graduate study. Biological Station on Douglas Lake, Northern Michigan; field station for geology and geography in Southern Kentucky; and camp for students of Forestry and Conservation in the Upper Peninsula of Michigan.

For Bulletin of General Information and Announcements, address Mr. Ira M. Smith, Registrar of the University.

For general information concerning the University, address Mr. Shirley W. Smith, Secretary and Business Manager of the University, Ann Arbor, Michigan.
The University of Michigan Official Publication is the title given to the series of administrative bulletins published by the University. This series includes the following:

FOR PROSPECTIVE STUDENTS

The prospective student should have, in addition to a copy of the Bulletin of General Information, a copy of one or more of the announcements or bulletins listed under this head. These will be sent, without charge, on request to the Registrar of the University.

Bulletin of General Information

Announcements:
- College of Literature, Science, and the Arts
- Colleges of Engineering and Architecture
- Medical School
- Law School
- School of Dentistry
- College of Pharmacy
- School of Education
- School of Business Administration
- School of Forestry and Conservation
- University Hospital School of Nursing
- University School of Music
- Graduate School
- Summer Session
- Extension Division

Bulletins describing the work of various departments and curricula.

OTHER BULLETINS

The President's Report
The Register
Reports and communications of University officers