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Abstract

Genetic influences on adolescent psychological development are likely to be mediated and 

moderated by pubertal hormones. Combining genetic analyses with advanced models of pubertal 

development, we extended work on the measurement and psychological significance of puberty. 

We examined how genetic and environmental influences on puberty vary by the way that 

development is described (logistic versus linear models versus traditional methods) and the 

different aspects of puberty (adrenarche vs. gonadarche), and how genes and environment 

contribute to the covariation between different descriptions and aspects of puberty, and between 

pubertal development and behavior problems (substance use, age at sexual initiation). We also 

considered how puberty moderated the heritability of psychological outcomes (internalizing and 

externalizing problems), and sex differences. Participants from the Colorado Longitudinal Twin 

Study (403 girls, 395 boys) reported their pubertal development annually from ages 9 through 15; 

they and their parents reported their behavior in mid-to-late adolescence. There was a large genetic 

contribution to pubertal timing for both sexes no matter how it was measured, but findings for 

pubertal tempo varied by method. Genetic covariation accounted for most of the phenotypic 

correlations among different indicators of pubertal timing, and between pubertal timing and 

psychological outcome. We consider the implications of our results for understanding how 

pubertal hormones mediate or moderate genetic and environmental influences on psychological 

development.
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 Introduction

Psychological development in adolescence is a prime example of the importance of gene-

hormone interplay.1 Pubertal hormones play a significant role in psychological change in 

adolescence: Extreme variations in the onset (timing) of pubertal development are linked to 

risks for depression and externalizing behavior problems (for reviews, see Ge and Natsuaki 

2009; Graber 2013; Negriff and Susman 2011); attainment of midpubertal status appears to 

increase normative changes in risky behavior and to trigger psychopathology in vulnerable 

individuals (e.g., Gunnar et al. 2009; Trotman et al. 2013). These changes are hypothesized 

to reflect effects of social responses to youths’ changing bodies, and sex hormones and 

social experiences acting on the developing brain and stress systems.

The physical changes of puberty reflect an integration of processes influenced by hormones 

(Styne and Grumbach 2011). Hormone levels (measured in saliva or blood) provide an 

incomplete picture; they reflect genetic variation and environmental exposures as well as 

pubertal maturation. The psychological and physiological effects of hormones are not simply 

related to circulating levels, but also depend on tissue sensitivity and hormone modulators 

(genetic, physiological, and environmental). Thus, the role of gene-hormone interplay in 

adolescent psychological development may profitably be studied by examining genetic 

influences on the physical changes of puberty and their links to behavior at that time.

It is clear that pubertal development itself is influenced by both genes and the environment. 

The KISS1 gene and its GPR54 receptor appear to play a role in the normal initiation of 

puberty (Navarro et al. 2007). Variations in the timing of pubertal onset are highly heritable 

(Eaves et al. 2004; Mustanski et al. 2004; van den Berg et al. 2006), although pubertal 

timing may be altered by environmental factors, both physical (such as endocrine-disrupting 

chemicals, Lee and Styne 2013) and social (such as father absence, Belsky et al. 1991; 

Webster et al. 2014).

Behavior genetic studies have begun to identify how genes and environment transact with 

pubertal hormones to produce psychological changes in adolescence. Such studies have 

shown that (a) puberty affects expression of genes involved in some behavior problems, such 

as disordered eating (Culbert et al. 2009; Klump et al. 2007); (b) early puberty increases risk 

for behavior problems through a variety of mechanisms, including shared environmental 

influences on the association between internalizing problems and early puberty in girls 

(Marceau et al. 2012), genetic and environmental influences on the link between dieting and 

early puberty in girls (with the source of variation depending on the index of puberty, 

1Our paper is intended for readers interested in behavior genetics or adolescent development who might not be familiar with concepts 
in the other field. Therefore, we clarify concepts that might otherwise be familiar to some readers. For example, we include discussion 
of aspects of pubertal development that will be familiar to those who study puberty but not necessarily to those who are behavior 
geneticists, and we provide details about our modeling results for readers who do not have much experience with interpreting behavior 
genetic analyses but will be unnecessary for typical readers of the journal.
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Harden et al. 2012), and gene-environment interactions accounting for the association 

between early puberty and delinquency in girls (Harden and Mendle 2012); (c) causes of 

behavior problems may depend on pubertal development; for example, risk for conduct 

disorder is mediated by environmental mechanisms for early maturers, but by genetic 

mechanisms for youth who develop on time (Burt et al. 2006).

But, many behavior genetic studies of puberty and behavior—and, indeed, many 

developmental studies in general—have not included clear conceptualization or 

measurement of puberty, or have conflated different aspects of puberty (Dorn and Biro 2010; 

Dorn et al. 2006; Mendle 2014). Puberty is not a single process but includes adrenarche 

(maturation of the adrenal glands), gonadarche (development of the hypothalamic–pituitary–

gonadal axis), and growth. The three systems do not develop together, and show a different 

pattern of sex differences: adrenarche occurs earlier than gonadarche, with adrenarche 

occurring close to the same age in both sexes, but gonadarche occurring earlier in girls than 

in boys. The hormones involved have differential effects on physical development; for 

example, body hair is influenced by adrenal hormones in both sexes, testes and voice 

changes by testosterone in boys, breast development and menarche by estrogens in girls, and 

height by sex steroids and growth hormone (reviewed in Styne and Grumbach 2011).

These multiple processes are rarely considered in psychological studies. Instead, most 

studies include a total summary score of pubertal development (typically measured by a self-

report questionnaire) or age at menarche in girls (a traditional measure often used to index a 

girl’s current pubertal development or the timing of her development in relation to others; 

see distinction below). But summary scores lose information about pubertal features that 

develop on different timetables (Tanner 1978), are differentially apparent to others (so have 

differential social signaling), and may have different psychological significance for the 

youth him/herself. For girls, breast development is typically the first sign of puberty and 

visible to others, whereas menarche occurs late in puberty and can be concealed; it is unclear 

which event has the most significance for the girl herself. For boys, testicular enlargement is 

typically the first sign of puberty and is generally not apparent to others, whereas the height 

spurt (visible to others) does not occur until midpuberty; again, it is unclear which event is 

most important. The focus on summary scores has begun to change, with some studies 

separating indices of adrenarche and gonadarche (e.g., Marceau et al. 2011), and calls to 

consider synchrony of development (relation among different pubertal features; Mendle 

2014). In a related vein, there have been renewed calls to differentiate objective and 

subjective (youth self-perceived) indicators of pubertal development, and to consider their 

different associations with behavior (Dorn et al. 2006; Harden et al. 2012; Mendle 2014).

Another issue that has complicated understanding of the psychological significance of 

puberty is the confounding of two key aspects of development in children who are not yet 

mature: pubertal timing, which reflects an individual’s development relative to peers, and 

pubertal status, which reflects the current stage of an individual’s development. Timing has 

significance during puberty; for example, girls who have started to develop earlier than their 

peers are more likely to have problems because of involvement with older peers (usually 

boys) (Caspi and Moffitt 1991; Ge et al. 1996). Timing also has long-term significance for 

some aspects of psychological function; for example, adult women who were early maturers 
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have higher rates of depression than women who matured on time (Copeland et al. 2010; 

Graber et al. 2004). Pubertal status is thought to have psychological significance by marking 

changing hormones and social roles. For example, the sex difference in depression that 

emerges in adolescence has been interpreted to reflect gender intensification (Hill and Lynch 

1983; Wichstrøm, 1999); pubertal onset (whenever it occurs) is hypothesized to trigger 

diverging trajectories in boys and girls, because the onset of sexual maturity and anticipation 

of adult roles leads to reactions from social agents and youth themselves that exaggerate 

gender-stereotypical behavior.

Individuals who have completed puberty all have the same pubertal status (attained adult 

development), but they differed in timing (relative to peers, some started early, some started 

the same, and some started late). Individuals who are in the midst of puberty differ in both 

timing and status; for example, a 10-year-old White girl who has moderate breast 

development is both midpubertal and an early maturer, whereas a similar age girl who has 

not started development is prepubertal and may mature on time or late (her timing cannot be 

known until she starts development). This means that a typical study of youth will 

necessarily confound pubertal timing and status for at least some of the sample, and fail to 

obtain useful information on others.

Finally, pubertal variations extend beyond current pubertal status and timing of pubertal 

onset (both of which may vary by feature) to include tempo of development (the rate at 

which youth proceed through the stages of puberty). Tempo has not been well-studied, in 

part because of the difficulty measuring it (see below). There is some suggestion that fast-

maturing boys are at greatest risk for adjustment problems (Mendle et al. 2010), but findings 

are not consistent (e.g., Marceau et al. 2011), and significant questions remain concerning 

sex differences in tempo and the ways that tempo is linked to timing and to behavior (Beltz 

et al. 2014; Mendle 2014).

Recent advances in methods for describing puberty have helped to clarify in several ways 

what is measured, and the different processes captured by different indices. The work has 

also raised questions that can profitably be studied from a behavior genetic perspective. 

Thus, longitudinal data on puberty (measured by physical exam or self report) have been 

used to model trajectories of development using both a simple linear model and a logistic 

model (discussed in Beltz et al. 2014). A linear model represents constant development, and 

a logistic model represents S-shaped development that is symmetric at midpuberty. A 

logistic model fits better than a linear one (Beltz et al. 2014; Marceau et al. 2011), but 

estimates of timing derived from linear and logistic models correlate highly with each other 

and similarly with psychological outcome assessed a few years later (Beltz et al. 2014). A 

behavior genetic approach can address questions about the value of the different methods, by 

identifying sources of variation in the different measures, and in the covariations among 

them and with behavior.

Statistical modeling has the benefit of providing a direct estimate of tempo. Such estimates 

have enabled researchers to ask about the psychological significance of tempo as well as 

timing (Castellanos-Ryan et al. 2013; Marceau et al. 2011; Mendle et al. 2010). But tempo is 

conceptualized and estimated differently in linear and logistic models: A linear model 
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represents uniform development across time, with tempo estimated as rate of change per 

year (in PDS or Tanner stages); a logistic model represents non-uniform development, 

starting slowly, increasing to maximum growth at the midpoint, and then decreasing in rate, 

with tempo estimated as instantaneous change at midpuberty, representing the maximum 

speed of development. Further, both linear and logistic estimates of tempo differ from 

traditional pediatric measures, which reflect the interval between two stages of puberty 

(usually time from the onset of breast development to menarche). Not surprisingly, linear, 

logistic, and traditional estimates of tempo do not correlate highly with each other, and are 

differently related to corresponding estimates of timing, and to psychological outcome; this 

is seen when studies using different methods are compared (Castellanos-Ryan et al. 2013; 

Marceau et al. 2011; Mendle et al. 2010), and when different methods are used with the 

same sample in a single study (Beltz et al. 2014). A behavior genetic approach can address 

questions about tempo, by identifying sources of variation in the different estimates, in the 

co-variation among them, and in the links between tempo and timing, and tempo and 

behavior.

Statistical modeling has also drawn renewed attention to the multiple processes of puberty, 

particularly the relative importance of adrenal versus gonadal hormones; this work has been 

facilitated by procedures for using ratings of physical features to measure separately 

adrenarche and gonadarche (Shirtcliff et al. 2009). But, data using physical features to 

estimate timing of adrenarche and gonadarche are at odds with endocrine data: physical 

features produce estimates of adrenarche occurring later than gonadarche (Beltz et al. 2014; 

Marceau et al. 2011; Paus et al. 2010; Shirtcliff et al. 2009), but adrenal hormones rise 

earlier than gonadal hormones (reviewed in Styne and Grumbach 2011). This suggests that 

physical features alone are insufficient to separate adrenarche from gonadarche, perhaps 

because adrenal hormone levels are insufficient to produce physical changes until 

gonadarche (Dorn et al. 2006; Wan et al. 2012). A behavior genetic approach can address 

questions about the link between adrenarche and gonadarche as measured by physical 

features, by identifying sources of variation in each and in the covariation among them, and 

with behavior.

Throughout all the work on puberty, there has been recognition of the importance of sex 

differences. Girls achieve gonadarche earlier than boys, but there is little sex difference in 

timing of adrenarche. Pubertal timing has different consequences for the two sexes: early-

maturing girls but both early- and late-maturing boys show increased depression or 

adjustment problems compared to on-time peers (Graber 2013; Mendle and Ferrero 2012). 

There is limited and inconsistent evidence regarding sex differences in pubertal tempo (e.g., 

Beltz et al. 2014; Marceau et al. 2011). Typical development is also likely influenced by 

different pubertal processes in the sexes. For example, risk taking is likely to be influenced 

by hormones that are higher in boys than in girls (e.g., testosterone) (Paus et al. 2010), 

whereas disordered eating and depression appear to depend on hormones that are higher in 

girls than boys (e.g., estradiol) (Angold et al. 1998; Klump et al. 2010); this means that 

midpubertal status should be associated with increased risk taking in boys and increased 

disordered eating and depression in girls. The lack of a simple measure of pubertal 

development in boys analogous to menarche in girls means that boys are studied less often 

than are girls. A behavior genetic approach combined with advanced modeling of pubertal 
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data can address questions about sex differences in influences on pubertal development and 

links to behavior.

We applied genetic analyses to longitudinal self-report data on pubertal development to 

answer questions about the nature and significance of pubertal development. We considered 

(a) how genetic and environmental influences on puberty vary by the way that development 

is described (logistic vs. linear models versus traditional method) and by aspects of puberty 

(adrenarche vs. gonadarche), (b) how genes and environment contribute to the covariation 

between different pubertal indicators, and between pubertal development and behavior 

problems, (c) how puberty moderates the heritability of behavior problems, and (d) how the 

answers to all three sets of questions vary by sex. These questions are central to 

understanding the interplay of genes and sex hormones on adolescent psychological 

development. Secondary sex characteristics reflect an integration of hormonal processes, 

whereas direct hormone assays have limitations (see “Discussion” section).

 Method

This study is an extension of work on modeling timing and tempo of pubertal development, 

and their links to behavior (Beltz et al. 2014). We focus here on genetic analyses to further 

address questions about the measurement and meaning of pubertal development.

 Participants

Participants were members of the Colorado Longitudinal Twin Study (LTS), a project 

examining genetic and environmental contributors to variations in cognition, personality, and 

behavior problems (Rhea et al. 2006). Of the original sample of 966 individuals from 483 

twin pairs recruited around age 1 year, 84 % provided sufficient data to enable calculation of 

trajectories of pubertal development (two assessments showing change); those who provided 

sufficient pubertal data were similar to those who did not on the outcome measures of 

interest. The current sample (total N = 808) included 222 monozygotic (MZ) and 181 

dizygotic (DZ) girls, 199 MZ and 204 DZ boys, and 2 boys of unknown zygosity. Most 

participants were White (92 %) and not Hispanic (91 %).

Participants (born between 1984 and 1990) were assessed on multiple occasions from 

infancy through young adulthood; we focused on assessments of puberty throughout 

adolescence and behavioral outcomes in mid-to-late adolescence (conducted between 1994 

and 2008). Puberty was assessed annually from the end of grade 3 [average age (SD in 

parentheses): 9.44 (.37) years, range 8.25–10.67) to the end of grade 9 (average age: 15.34 (.

31) years, range 14.25–16.17], with an in-person visit after grade 6, and telephone 

interviews at other ages. We considered two types of behavioral outcomes: (a) behavior 

measured during puberty to examine whether pubertal status moderated heritability of 

behaviors that change in adolescence; this included measures of internalizing and 

externalizing behavior problems; (b) behaviors measured later in adolescence to examine 

longer-term effects of pubertal timing; this included measures of substance use and age at 

sexual initiation assessed between ages 16 and 18. Other psychological and health data not 

reported here were also collected during interviews. Parents provided informed consent for 

Corley et al. Page 6

Behav Genet. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their child to participate in the study, and youth provided assent (under age 18) or informed 

consent (age 18 and older) for their participation in the study.

 Measures

 Pubertal development—Puberty was assessed by self report on the Pubertal 

Development Scale (PDS; Petersen et al. 1988). Each year, participants answered five 

questions about the development of secondary sexual characteristics: body hair, skin 

changes, and growth spurt in both sexes, facial hair and deepening voice in boys, and breast 

development and menarche in girls. All items except menarche were rated on a 4-point 

scale: 1 = “no development,” 2 = “yes, barely,” 3 = “yes, definitely,” 4 = “development 

completed.” Menarche was rated as absent (1) or completed (4); age at menarche was 

recorded for those who had reached it. Items were averaged to produce a summary PDS 

score at each age. PDS scores correlate about .70 with pubertal stage rated by health 

professionals (Schmitz et al. 2004; Shirtcliff et al. 2009), and from .20 to .60 with salivary 

hormone levels, similar to correlations between those hormones and physical exam ratings 

(Shirtcliff et al. 2009). The PDS is widely used and considered “most appropriate for broad 

estimates of development, or for use in longitudinal studies” (Coleman and Coleman, 2002), 

but still subject to debate (e.g., Dorn et al. 2006; Shirtcliff et al. 2009), a topic to which we 

return in the Discussion.

 Linear and logistic estimates of overall pubertal timing and tempo in both 
sexes—Pubertal timing and tempo were estimated from group trajectories of development, 

calculated separately by sex from the longitudinal PDS data (average PDS score at each of 

seven waves of assessment), allowing individual deviations (for details, see Beltz et al. 

2014). Development was represented and estimated separately by linear and logistic models. 

Pubertal timing was defined at the midpoint of puberty (PDS score of 2.5, corresponding to 

Tanner stage 3) for both models. Neither model permits independent estimation of pubertal 

onset (PDS 1.5) and midpuberty (PDS 2.5). Pubertal tempo was estimated as rate of change 

per year for the linear model, and as peak rate of change at midpuberty for the logistic 

model.

Trajectories were calculated previously, with participants from this LTS sample and from 

another sample, the Colorado Adoption Project (CAP) (for details, see Beltz et al. 2014). All 

analyses were performed with two separate replicates, with one member of a family in each; 

results were consistent across replicates. Results for LTS participants alone paralleled those 

reported for the full sample. Genetic analyses reported below are based only on the LTS 

sample.

 Logistic estimates of adrenarche and gonadarche timing and tempo in girls
—In addition to trajectories for “total” pubertal development (average PDS score at each 

age), separate trajectories were calculated for the processes of adrenarche and gonadarche, 

providing estimates of timing and tempo for both aspects of puberty. These analyses were 

restricted to logistic models, because a logistic model has been seen to fit both processes 

better than a linear model (Marceau et al. 2011), and to girls who were more likely than boys 

to have completed development over the course of assessment, and thus to show meaningful 
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variability in both processes. Pubertal development is typically described in terms of Tanner 

(1978) stages, so the procedures for separating gonadarche and adrenarche also involved 

converting PDS scores into Tanner scores. Longitudinal PDS scores were converted into 

Tanner scores for adrenarche and gonadarche using an algorithm developed by others in 

another sample from PDS scores, circulating hormone levels, and Tanner staging from 

physical exams (Shirtcliff et al. 2009); adrenarche was estimated from PDS ratings of skin 

changes and body hair, and gonadarche from PDS ratings of menarche, breast development, 

and growth spurt.

Procedures for modeling trajectories of adrenarche and gonadarche development using 

Tanner scores paralleled those outlined for modeling development using PDS scores (Beltz 

et al. 2014). Briefly, a logistic growth curve model is represented as:

where β0 is 1 (lower bound for Tanner scores); β1 is 5 (upper bound for Tanner scores); e is 

the exponential function; λi is the age at midpuberty (Tanner 3); αi is the slope of the 

function at the midpubertal age; rit is the normally-distributed residual for an individual i at 

assessment t. Longitudinal Tanner scores were entered into logistic models to calculate 

group trajectories of development and individual deviations from the group, that is, person-

specific estimates of pubertal timing (λi) and tempo (αi).

Models were compared using the Akaike Information Criterion (AIC). The models for 

gonadarche (AICs of 5178 and 5070 for replicates 1 and 2, respectively) fit better than those 

for adrenarche (AICs of 5278 and 5141, respectively). Group mean trajectories are displayed 

in Fig. 1. Note that (a) results for replicates 1 (black lines) and 2 (gray lines) were nearly 

identical, (b) mean age at Tanner 3 (midpoint of the curve) was greater for adrenarche 

(dashed lines) than gonadarche (solid lines), and (c) mean tempo (slope of the curve at 

Tanner 3) was greater for gonadarche than adrenarche.

 Linear and logistic estimates of pubertal status in both sexes—Pubertal status 

was estimated at each age as prepubertal or pubertal based on the logistic pubertal timing 

parameter (given previous results cited above that a logistic model describes development 

better than a linear model). For example, a child whose pubertal timing (age at midpuberty) 

was estimated to be 13.2 years would be prepubertal at all assessments before age 13.2, and 

pubertal at all subsequent assessments.

 Traditional measures of pubertal development in girls—Pubertal timing was 

measured by age at menarche (assessed close in time to the event). Pubertal tempo was 

measured by the difference between age at pubertal onset (PDS 1.5 estimated from linear 

models) and menarche. Note that tempo is conceptualized and represented differently by the 

models versus the traditional approach: model parameters reflect rate of change, whereas the 

traditional measure reflects time between pubertal events, making the measures inversely 

related. Pubertal status was measured by whether the girl had achieved menarche.
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 Behavior problems—The Child Behavior Checklist (CBCL; Achenbach 1991) was 

used to obtain parent reports of child behavior problems at all ages. We focused on 

unstandardized scores for higher-order scales of internalizing and externalizing problems; 

these are reliable and have been shown to relate to a variety of clinical conditions. We 

considered whether pubertal status moderated the heritability of these behavior problems, 

indexing pubertal status by menarche in girls and by estimates from logistic trajectory 

analyses in both sexes. We used CBCL assessments at age 13 in girls and age 15 in boys 

because these ages show the most variability in pubertal status and are close to the average 

ages of midpuberty in this sample (with boys later than girls), and thus are the best ages for 

examining the question.

 Substance use—The Composite International Diagnostic Interview-Substance Abuse 

Module (CIDI-SAM; Cottler and Keating 1990) was used at ages 16–18 to assess 

participants’ involvement with substances, including alcohol, cannabis, amphetamines, 

opiates, cocaine, sedatives, inhalants, PCP, and hallucinogens. Participants retrospectively 

recalled whether they had any of seven dependence symptoms for each substance. 

Psychometric properties are good, with discriminative and convergent validity (Crowley et 

al. 2001). We used the average lifetime number of symptoms experienced through 

adolescence across all substances, corrected for age at assessment (Button et al. 2010; 

Stallings et al. 2003). This measure was related to pubertal timing in the combined LTS/CAP 

sample (Beltz et al. 2014).

 Age at sexual initiation—At age 17, all participants provided information on the age 

of their first sexual experience if it had occurred (Bricker et al. 2006). Participants were first 

asked “Have you ever had sex (‘gone all the way’) with someone?” If they indicated they 

had, they were asked “How old were you the first time you had sex?” Repeated assessment 

of a sub-sample of participants in CAP showed very high test–retest reliability for reported 

age at first sexual experience (Bricker et al. 2006). Some participants had not yet had sex by 

this assessment, and the primary value of this measure is to capture early sexual activity, so 

we used a categorical measure to maximize the number of participants with data. The 

categorical score was based on actual age for participants who reported this information 

(<age 15, age 15 or 16) or the last age of assessment for those who did not (≥age 17). This 

measure was related to pubertal timing in the combined LTS/CAP sample (Beltz et al. 2014).

 Data analyses

We applied traditional behavior genetic analyses to address our questions (footnote 1). First, 

we conducted univariate genetic analyses to examine genetic (additive, A, and nonadditive, 

e.g., dominance, D) and environmental (common, C, and nonshared, E) sources of variation 

in pubertal timing and tempo, using estimates from linear and logistic modeling of the 

average PDS score at each age for both sexes, the traditional methods in girls, and logistic 

estimates of adrenarche and gonadarche in girls. Second, we conducted bivariate genetic 

analyses to examine sources of covariation between different estimates of the same aspect of 

puberty (e.g., linear and logistic timing) and between timing and tempo estimated from the 

same method. Third, we conducted bivariate genetic analyses to examine sources of 

covariation between pubertal timing and behavior; we focused on the logistic measure of 
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timing given that the logistic model best fit the data, and two behaviors that showed the 

strongest correlations with pubertal timing in the sample, substance use and age at sexual 

initiation (Beltz et al. 2014). We did not conduct genetic analyses of links between pubertal 

tempo and behavior because of difficulties in interpreting logistic tempo (see below and 

Beltz et al. 2014) and the high correlations between linear timing and tempo (Beltz et al. 

2014). Finally, we examined how puberty moderated the heritability of Internalizing and 

Externalizing Behavior Problems at age 13 for girls and age 15 for boys, defining pubertal 

status by estimates from logistic trajectory analyses in both sexes and by menarche in girls.

 Genetic models—Univariate and bivariate models were tested in classic Mx (version 

1.63 for Linux, Neale et al. 2002) with four groups: MZ and DZ male and female pairs. 

Mean sex differences were estimated, and tests for equality of means and variances across 

twins and groups were conducted prior to genetic modeling. We considered submodels to 

determine which parameters could be dropped. Alternate acceptable models were compared 

using the AIC to arrive at a final model, from which parameter estimates and confidence 

intervals were derived.

We examined sex differences by determining whether the acceptable and most parsimonious 

models were the same for the two sexes and whether the standardized model parameters 

(e.g., genetic and environmental correlations) had overlapping confidence intervals. We also 

conducted a more stringent test for sex differences: equating the A, C/D, and E covariance 

matrices across sex. If differences are trivial, moderation by sex can be ignored. Note that 

testing sex differences is complex because of sex differences in pubertal development.

 Missing data—Calculation of trajectories of pubertal development required that a 

participant have at least two different PDS scores; as noted above, 84 % of the original 

sample met this criterion. Approximately 20 % of girls did not have data on traditional 

measures, primarily because they had not yet reached menarche. (For additional information, 

see Beltz et al. 2014) The maximum-likelihood (ML) approach used in Mx with raw data 

provides unbiased estimates of parameters when the usual assumptions of ML are met and 

data are either missing at random conditional on an observed variable (e.g., cotwin scores or 

other nonmissing variables), or completely at random (Little and Rubin, 1987). This 

approach is thus superior to estimation procedures which require complete twin pairs and 

complete data for individuals.

 Results

 Pubertal development: phenotypic correlations

For completeness, we present (Table 1) the phenotypic correlations among the measures of 

pubertal development. They confirm that the pattern of results seen in the combined LTS and 

CAP sample (Beltz et al. 2014) was apparent in the LTS sample alone, and help to frame the 

genetic analyses. Measures of pubertal timing were highly correlated with each other, 

measures of pubertal tempo were generally not strongly associated with each other, and 

within-method links between timing and tempo varied across methods.
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 Pubertal timing and tempo: univariate genetic analyses

We conducted univariate genetic analyses of the linear and logistic estimates of timing and 

tempo for both sexes. For girls, we also examined the traditional measures of timing and 

tempo, and separate logistic estimates of timing and tempo for adrenarche and gonadarche. 

The results of univariate analyses for pubertal timing and tempo are shown in Tables 2 and 3, 

respectively; each table includes MZ and DZ twin correlations, a baseline model that 

describes the pattern of twin correlation differences, a reduced model with the statistics that 

support model simplification, and the standardized estimates for sources of variation under 

this best-fitting model. The model-fit statistics for alternative reduced models are shown in 

supplementary Table S.1. Results are shown separately for girls and boys, and for a direct 

sex comparison.

Results were consistent across the different measures of pubertal timing (as shown in Table 

2), but not across the measures of pubertal tempo (as shown in Table 3), as indicated by the 

best-fitting (most parsimonious) models. Variations in pubertal timing (Table 2) were largely 

attributable to genes in both sexes, no matter how timing was measured, as shown by the 

standardized estimates for additive genetic variance (A). This was the case for both linear 

and logistic estimates based on the total PDS score, and for the logistic estimates for 

adrenarche and gonadarche, although there was more nonshared environmental influence (E) 

on adrenarche than on gonadarche, as shown (in the last two columns in panel 2A) by the 

non-overlapping 95 % confidence intervals (CIs) for E. Note that the standardized variance 

estimates in the reduced models sum to 100 % (i.e., in AE models, variance not attributed to 

genes is attributed to nonshared environment), while the 95 % CIs indicate how precisely 

each source of variance is estimated within this sample.

 Sex comparisons for univariate genetic analyses of pubertal timing and tempo

We compared models for boys and girls, although the PDS trajectories are not derived from 

exactly the same indicators, and there are no opposite-sex twin pairs to test sex-limitation 

models. Sex differences were tested by determining whether: (a) a single, common reduced 

model adequately fits the data for both sexes (although the best-fitting model for each sex 

separately might differ from each other and from the common model, as shown in panel A 

for girls and in panel B for boys); (b) the standardized estimates for parameters have 

overlapping CIs; and (c) the unstandardized variance components can be equated.

Sex comparisons for univariate models of pubertal timing (estimated for PDS total scores 

using linear and logistic trajectories) are shown in panel 2C. For both linear and logistic 

estimates, a common model is acceptable for both boys and girls, and the standardized 

variance estimates have overlapping CIs. But, generally the raw variance components cannot 

be equated. In sum, results shown in Table 2 indicate that pubertal timing in both sexes, 

regardless of how it is measured, is consistently and primarily attributable to additive genetic 

effects.

Variations in pubertal tempo (Table 3), however, were attributable to different sources in 

boys and girls, and across methods of measurement. There were sex differences in the 

preferred reduced models. Different models were also preferred for the different estimates of 
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tempo; for example, among girls, genetic influences predominated for the linear estimate of 

tempo, but common environmental influences (C) predominated for the logistic estimate of 

tempo. The logistic estimate of tempo in girls is notable for showing no genetic influence, 

although there were genetic influences on logistic estimates of tempo measures for 

adrenarche and gonadarche; the discrepancy appears to reflect differing DZ correlations for 

logistic estimates based on total PDS scores versus subscores of adrenarche and gonadarche. 

Among both girls (panel 3A) and boys (panel 3B), nonshared environment, which includes 

measurement error, appears to play a larger role in the logistic estimate of tempo than in the 

linear estimate; this is seen in non-overlapping CIs. With respect to direct sex comparisons 

(panel 3C), the best-fitting model common to pubertal tempo in both girls and boys differs 

for the linear and logistic parameters. There are not simple correspondences between the 

best-fitting common models and those for each sex separately. This is likely due to sources 

of variation in the logistic estimates of tempo in girls, i.e., large shared environmental 

influence on the total PDS score (due to high DZ correlations), but large genetic influences 

on other measures. For the linear tempo measures, CIs overlap, although complete equality 

is not achievable. In contrast, for the logistic tempo measures, the CIs for parameters in girls 

and boys do not overlap, with a much higher estimate of the effect of the shared environment 

in girls. In sum, results shown in Table 3 indicate that, in contrast with timing, no single 

parsimonious model can adequately describe influences on tempo across both sexes and 

alternative measures.

 Covariations among pubertal indicators: bivariate genetic analyses

We next conducted bivariate genetic analyses to understand phenotypic correlations between 

descriptors of pubertal development. This included examining sources of phenotypic 

correlations across methods in estimates of timing (Table 4) and of tempo (Table S.3), and 

within method in estimates of timing and tempo (Table S.4) in both sexes; and of the 

correlations between adrenarche and gonadarche in girls. For all bivariate analyses, we show 

a baseline model, a best-fitting reduced model, the phenotypic correlation between measures 

from the baseline model, estimates for genetic (rA or rD), shared environmental (rC), and 

nonshared environmental (rE) correlations between measures based on the reduced model, 

and the proportion of the covariance between measures that can be attributed to genetic or 

shared environmental sources. Model fit statistics for alternative bivariate reduced models 

are shown in supplementary Table S.2 (Table S.6 for reduced models involving tempo in 

Tables S.3 and S.4).

 Pubertal timing across methods: bivariate genetic analyses—In accord with 

results of univariate analyses, results of bivariate analyses were more consistent for pubertal 

timing than for pubertal tempo. For pubertal timing (Table 4), phenotypic correlations 

among the different indicators were largely due to genes, as shown by the consistent AE 

reduced models, the high estimates for the genetic correlations between measures, and the 

proportion of the phenotypic covariance that is attributable to additive genetic influences 

acting on both measures. In addition, similar estimates of additive genetic correlations for 

linear and logistic timing measures are found in both sexes. The correlation between timing 

of adrenarche and gonadarche in girls was also attributable entirely to genetic covariation, 

although there was some unique genetic variance in each measure: rA = 0.64, and 95 % CIs 
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did not include 1.00. The nonshared environmental correlation between adrenarche and 

gonadarche timing could be set to zero, reflecting the different PDS features comprising the 

two measures. Moreover, pubertal timing in girls appears to reflect gonadarche more than 

adrenarche for both genetic and nonshared environmental reasons: timing of total PDS score 

has lower rE and rA with adrenarche than with gonadarche.

 Sex comparisons for bivariate genetic analyses of links among measures of 
pubertal timing—The overlap between the estimates of (total PDS) timing from linear and 

logistic models reflects effects of additive genes and nonshared environment for both sexes 

to a similar extent: a common AE model fits with high rA and rE. But, the CIs do not overlap 

for the standardized estimates, reflecting the higher phenotypic correlation in girls than in 

boys and, as might be expected from the inability to equate variation in the univariate 

models (panel 2C), it is not possible to equate the unstandardized covariance matrices. In 

sum, results shown in Table 4 again indicate the high degree of overlap of genetic and 

nonshared environmental influences across sexes and measures of pubertal timing.

 Pubertal tempo across methods: bivariate genetic analyses—Results of 

bivariate analyses of pubertal tempo (Table S.3) are similar to those for univariate analyses 

in showing few clear patterns. For girls, all logistic estimates of overall tempo (PDS total 

score measure) required a nongenetic (CE) model, but a genetic source of variation (AE or 

ACE model) for the other tempo measure (panel S.3A); thus, overlap between measures can 

only be attributed to environmental (C or E) covariance. For example, 55 % of the 

covariation between logistic PDS and gonadarche tempo estimates was due to common 

environmental influences, but covariation between logistic PDS and traditional measure 

estimates was only due to nonshared environmental influences. There were genetic 

influences, however, on covariation between adrenarche and gonadarche tempo estimates in 

girls and between logistic and linear PDS tempo estimates in boys. The covariation in boys 

was also partly attributable to the nonshared environment (panel S.3B). It is apparent that no 

single reduced model explains the shared covariation among tempo measures across sex.

 Sex comparisons for bivariate genetic analyses of links among measures of 
pubertal tempo—Direct comparison of boys and girls (panel S.3C) shows that the simple 

common models (AE, CE, DE) do not adequately describe the covariation between linear 

and logistic tempo parameters in either sex, but a complex model is acceptable: AE for the 

linear estimate of tempo, and CE for the logistic estimate of tempo. Thus, nonshared 

environment is the only common source of covariation between linear and logistic estimates 

of tempo, since familial influences are attributed to different sources for the different 

estimates (A for linear and C for logistic). The nonadditive genetic contribution to the 

covariation in tempo in boys (panel 5B) is not present in the common model across sex. In 

sum, results shown in Table S.3 again indicate the lack of consistency in influences on 

pubertal tempo across sex and alternative measures.

 Pubertal timing–tempo links: bivariate genetic analyses—Bivariate analyses of 

links between timing and tempo within method (Table S.4) showed that genes were a major 

source of covariation for most indicators, as seen in the AE best-fitting reduced models. 
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Exceptions concerned the logistic estimates: For girls, the positive covariation between 

timing and tempo was attributed primarily (77 %) to shared environmental influences; for 

boys, the modest negative correlation (−.26) between timing and tempo was partially 

attributed to nonadditive genes. Although phenotypic correlations between timing and tempo 

differed between related measures (e.g., in girls, for adrenarche, r = −.39, for gonadarche, r 
= .50), genetic and environmental influences acted similarly within measure (as indicated by 

the identical signs of rA and rE).

 Sex comparisons for bivariate genetic analyses of pubertal timing–tempo 
links—Comparison of boys and girls (panel S.4C) showed a common AE model for the 

linear timing–tempo link (although covariances cannot be equated; see supplementary Table 

S.6), but no common model for the logistic timing–tempo link. The latter finding is 

consistent with the sex difference in the direction of the phenotypic correlations between 

logistic timing and tempo (positive in girls, negative in boys). Other aspects of the modeling 

confirm the distinctness of the logistic estimate of tempo in girls (e.g., contrasting signs for 

parameter estimates, lack of overlap of CIs). In sum, results shown in Table S.4 indicate that 

bivariate relationships involving tempo cannot be described simply; sources of covariation 

differ across sex and measures.

 Puberty-behavior associations: bivariate genetic analyses

Phenotypic correlations between puberty and behavioral outcomes in this sample combined 

with CAP reported previously (Beltz et al. 2014) are consistent with others in showing small 

associations between early pubertal timing and behavior problems, especially early age at 

sexual initiation and substance use (as noted above, analyses were restricted to the logistic 

estimate of timing, because the logistic model fit the data better than a linear model). 

Correlations were similar in the LTS sample alone: Pubertal timing (logistic estimate of the 

trajectory for the total PDS score) correlated with age at sexual initiation (using the 3-

category measure) .14 in girls and .15 in boys, and with substance use .18 in girls and .08 in 

boys; all correlations except the last were significantly greater than 0.

The results of bivariate genetic analyses examining sources of the phenotypic correlations 

between pubertal timing and behavior are shown in Table 5. Pubertal timing was linked for 

additive genetic reasons with age at sexual initiation and substance use in girls, and for 

nonadditive (dominance) genetic reasons with age at sexual initiation in boys; there was no 

evidence of shared or nonshared environmental influences (see results of alternative models 

in Table S.2). Comparisons of boys and girls (panel 5C) show that reduced AE models with 

rE set to zero are acceptable for both sexes for both behavioral measures. Results shown in 

Table 5 between pubertal timing and behavioral outcomes assessed several years later 

contrast with those across and within pubertal indicators (shown in Tables 4, S.3, and S.4) by 

their lack of a significant nonshared environmental contribution to the phenotypic 

correlations.

 Moderated heritability

Finally, we considered the extent to which pubertal processes might change the expression 

of genes important for behavior, by examining whether pubertal status predicted the 
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magnitude of genetic and environmental influences on outcomes. Pubertal status was 

defined as the age at midpuberty estimated from the logistic model in both sexes, and as the 

age at menarche in girls. The behaviors likely to be relevant here are those that increase in 

incidence or level during puberty. LTS was not designed to address this question, so the 

measures available to explore the question were limited to parent-reported CBCL 

Internalizing and Externalizing Behavior Problems collected at yearly intervals during 

adolescence.

We used a twin moderation model (Klump et al. 2007; Purcell 2002) to test whether the 

estimates for genetic and environmental influences on the CBCL measures varied linearly 

with age of midpuberty in both sexes or with age at menarche in girls (our sample size 

prevented testing for nonlinear effects). We examined CBCL scores collected at the age 

closest to the average midpoint of pubertal development, which was age 13 for girls and age 

15 for boys, and used log-transformed standardized scores to reduce skewness.

There was no compelling evidence that genetic influences on CBCL Internalizing or 

Externalizing Behavior Problems varied with pubertal status. As shown in Table S.5, there 

was only one outcome for which puberty (logistic timing) moderated estimates of genetic 

and environmental influences, and this effect is opposite to expectation. For Internalizing 

Problems in girls, early pubertal status (or delayed development relative to peers) was 

associated with increased genetic influences and decreased nonshared environmental 

influences (which includes measurement error). No significant moderation was detected for 

internalizing problems in boys, or externalizing problems in either sex. Furthermore, mean 

transformed CBCL scores did not differ significantly from 0, and the means did not vary 

with pubertal status. Analyses using age at menarche (not shown) also failed to show 

evidence of pubertal moderation of genetic and environmental influences on behavior 

problems.

 Discussion

We combined behavior genetic methods with advanced modeling of puberty to clarify the 

measurement and psychological significance of pubertal development. Specifically, we 

considered: (a) genetic and environmental influences on pubertal development described in 

different ways; (b) genetic and environmental influences on the covariation between 

different pubertal indicators, and between pubertal development and behavior problems; (c) 

changing heritability of behavior problems with pubertal development; and (d) sex 

differences in each of those three topics.

 Variations in pubertal development

Variations in pubertal timing were found to be largely genetic in both boys and girls. There 

was more nonshared environmental influence on pubertal timing in boys than in girls, and on 

timing of adrenarche than on gonadarche, likely due to measurement, that is, better 

measurement of gonadarche than adrenarche, and better measurement of gonadarche in girls 

than in boys (Dorn et al. 2006; Dorn and Biro 2010). Results were similar across methods 

for describing timing (logistic estimate, linear estimate, menarche in girls). Furthermore, 

bivariate analyses revealed large genetic overlap among the measures of pubertal timing. 
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These findings confirm results concerning large genetic and some nonshared environmental 

contributions to puberty (Eaves et al. 2004; Mustanski et al. 2004; van den Berg et al. 2006) 

and extend them to other methods; they also extend other findings from this sample that 

different measures of timing correlate highly with each other and in similar ways with 

behavioral outcome (Beltz et al. 2014).

Variations in pubertal tempo, however, were not consistently attributed to genetic or 

environmental sources; estimates varied across methods. This is the first genetic analysis of 

variations in pubertal tempo. But, the results are not surprising in light of other reports about 

tempo, particularly inconsistent links with behavior, partly due to variations in definition and 

measurement across studies (Castellanos-Ryan et al. 2013; Marceau et al. 2011; Mendle et 

al. 2010).

 How best to measure pubertal development?

Our results with self reports of pubertal development provide little evidence to prefer one 

index of pubertal timing over another, and confirm the difficulties of measuring tempo. All 

indexes of overall pubertal timing are highly heritable and reflect highly similar genetic 

processes, as shown in the large genetic contribution to the (high) phenotypic correlations 

among logistic and linear timing, and menarche. The different indexes of pubertal tempo, 

however, are differently influenced by genes and do not appear to share genetic variation; 

this is consistent with other information about the measures, that is, at the phenotypic level, 

tempo measures are not highly correlated with each other, and not consistently correlated 

with timing or with behavior (Beltz et al. 2014). It is notable that the logistic estimate of 

tempo is probably the least meaningful from both genetic and endocrine perspectives. It is 

conceptualized in an unusual way, as the instantaneous speed of development at the 

midpoint of puberty. This likely explains why it shows little genetic influence or genetic 

overlap with logistic timing, and why it is correlated with timing in a way that is inconsistent 

with other methods.

Our results also suggest little value in separately examining timing of adrenarche, at least 

when it is measured by self-reported physical features. Using the logistic model in girls, 

timing of adrenarche showed large (but not complete) genetic overlap with timing of 

gonadarche. The larger nonshared environmental contribution to adrenarche than to 

gonadarche likely reflects measurement error associated with the relatively greater difficulty 

in rating body hair than genital development. The difficulty of estimating adrenarche 

separately from gonadarche extends beyond self reports: In several studies measuring 

puberty with physical features (self report or exams by health professionals), adrenarche was 

seen to occur later than go-nadarche (Beltz et al. 2014; Marceau et al. 2011; Paus et al. 2010; 

Shirtcliff et al. 2009), but adrenal hormones rise earlier than gonadal hormones (reviewed in 

Styne and Grumbach, 2011); adrenal hormone levels may be insufficient to produce physical 

changes until gonadarche (Dorn et al. 2006; Wan et al. 2012).

 Puberty-behavior associations

We focused on the link of pubertal timing to substance use and age at sexual initiation, given 

that these are the strongest phenotypic correlations found in both sexes in our study and are 
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consistently found in other studies (e.g., Ge and Natsuaki, 2009; Graber 2013). Results 

suggest that covariations reflect additive genetic factors in girls, but are not as clear in boys. 

There is relatively little other behavior genetic work examining sources of covariation 

between pubertal development and these behaviors, especially in boys. Findings regarding 

other characteristics have not produced a consistent picture on the ways that genes and 

environment mediate associations between pubertal timing and behavior, and there is a need 

for more work on the topic, with particular attention to the conceptualization and 

measurement of puberty (see also Harden et al. 2012). We did not examine sources of 

phenotypic correlations between tempo and behavioral outcome given the genetic results for 

tempo, and that links between tempo and behavior are largely overlapping with timing 

(Beltz et al. 2014).

 Do genetic influences on behavior change at puberty?

In light of suggestions that pubertal hormones regulate the expression of genes underlying 

behavior, and thus account for psychological changes at puberty (e.g., Klump et al. 2003, 

2007), we studied whether puberty moderates genetic influences on some behavior 

problems. We aimed to examine whether sex hormones contribute to the increased incidence 

of behavior problems by modulating gene expression. We were limited by the LTS design to 

using CBCL measures of internalizing and externalizing at age 13 for girls, and age 15 for 

boys, ages which show expected variability in pubertal status and represent midpuberty in 

this sample. We examined whether pubertal status affected estimates of genetic and 

environmental influences on outcomes, indexing pubertal status with age at midpuberty 

estimated from the logistic model in both sexes and with age at menarche in girls.

We found no evidence that advancing puberty was associated with increased genetic 

influences for either internalizing or externalizing problems in girls or boys, but our study 

was not designed to provide a strong test of such effects. The lack of significant moderation 

should be considered in light of the relatively small sample size and the limited set of 

behavioral outcomes available; the lack of significant change in mean CBCL scores with 

advancing puberty suggests that these measures are probably not strong candidates for 

moderation effects.

The optimal approach to studying moderated heritability should involve measures chosen to 

test hypothesized mechanisms accounting for behavioral changes at puberty, e.g., the 

importance of estradiol for triggering disordered eating and depression in girls, and 

testosterone in facilitating risk taking (and associated externalizing problems) in boys. 

Unfortunately, LTS was conducted before such focus on adolescent change so we were 

limited to examining this issue with CBCL scores. Further limiting our ability to test our 

hypotheses, these behavior problems did not increase at midpuberty in this sample. 

Nevertheless, we presented these results to illustrate how trajectory analyses might be used 

to study gene-hormone interplay.

 Study strengths and limitations

This study is an example of gene-hormone interplay on behavior, and how combining a 

behavior genetic perspective and advanced modeling of pubertal development can help to 
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understand behavioral effects of hormones, using self-reported physical development as a 

proxy for hormonal changes. We extended work (ours and others) regarding methods for 

estimating pubertal timing and tempo, and their links to behavior.

There are several new findings that should guide studies of pubertal development. First, 

there is little evidence for the superiority of one estimate of pubertal timing over others. 

Although a logistic model may describe development better than a linear model (Beltz et al. 

2014; Marceau et al. 2011), it is not clear that there are advantages of logistic estimates. The 

different estimates of pubertal timing—linear, logistic, and traditional—are correlated with 

each other and relate to behavior in similar ways—for genetic reasons. Second, pubertal 

tempo is difficult to capture and is estimated idiosyncratically across method (Beltz et al. 

2014; Marceau et al. 2011; Mendle et al. 2010)—with genetic analyses confirming that 

different constructs are measured by each method. Thus, calls for studies of the 

psychological significance of pubertal tempo (Mendle 2014) may be premature given the 

need for more data on the reliability and validity of different measures. Third, there appears 

to be little value to studying adrenarche alone, at least with the PDS and perhaps with 

physical features generally. Fourth, consistency of findings across sex strengthens our 

conclusions, and encourages the use of trajectories to study the psychological significance of 

puberty in boys as well as girls. Fifth, our results highlight the importance of separating 

pubertal status and timing, and methods for doing so.

Several factors should be considered in interpreting the results. First, we used physical 

indicators of puberty as a proxy for hormones, but this is not necessarily a limitation. 

Physical development reflects an integrated picture of the effect of adrenal and gonadal 

hormones. Direct assays of hormones, particularly at a single point in time, may not provide 

more accurate assessment of pubertal processes than do measures of physical features (even 

by self report; Shirtcliff et al. 2009). Hormone levels reflect more than pubertal 

development, including variations due to genes (Harris et al. 1998), circadian, monthly, and 

seasonal rhythms, environmental factors (e.g., diet, exercise), and behavior itself (Carré 

2009; Stanton et al. 2011); responses to hormones also depend on other hormones that are 

present, and sensitivity of hormone receptors (Styne and Grumbach 2011). Furthermore, 

hormone assays are not straightforward (Handelsman and Wartofsky 2013; van Anders 

2010).

Second, there is concern about the value of self report, including imperfect correspondence 

with physical exam by a health professional (e.g., Huang et al. 2012). But, self report has 

been shown to correlate with hormone levels as well as physical exam does (Shirtcliff et al. 

2009), and will continue to be the preferred method of many investigators because it is easy 

and inexpensive to use, and is nonintrusive, so will enable data collection from 

representative samples. And, as we showed, self reports of pubertal development can readily 

be used to model trajectories of development in boys and girls and produce meaningful 

results. Trajectories also overcome one of the limitations of repeated self-report assessments: 

some youth report lower development from one time to the next.

Third, although sample size was sufficient for most analyses, it was not large enough for 

robust analyses of moderated heritability. We retained these analyses, however, to 
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demonstrate the value of the trajectories for studying the role of pubertal status as well as 

timing and tempo.

Fourth, formal testing of sex-limitation models was not possible because PDS total scores 

were not identical in girls and boys and there were no opposite-sex DZ twins in LTS. But 

several sex comparisons were done, allowing us to determine whether sex-moderation could 

be ignored. Future work should examine different ways in which genetic models can 

incorporate the sex difference in pubertal timing.

Finally, there are some limitations to our behavioral measures, although all are widely-used 

and psychometrically sound. Particular concerns relate to insensitivity to problem behaviors 

in this sample, potentially reducing the size of links between pubertal timing and later 

behavior, and to limited measurement of problems likely to increase in adolescence, 

constraining our ability to examine pubertal status as a moderator of heritability of 

problems.

 Conclusions and future directions

Applying a behavior genetic perspective to advanced models, we showed the value and 

limitations of different approaches to measuring pubertal development, and provided 

evidence to guide future studies linking hormones to behavior. Our data confirm and extend 

others in showing the value of youth self report of pubertal development, the importance of 

genetic influences on pubertal timing no matter how it is measured, and the limitations of 

current measures of pubertal tempo. Use of trajectories should also facilitate research on the 

psychological significance of puberty in boys as well as girls.

We took a systems-level approach to understanding gene-hormone interplay at adolescence: 

the physical changes of puberty reflect the integration of the developing adrenal glands and 

hypothalamic–pituitary–gonadal axis. Thus, our study provides information on the interplay 

between genes and the integrated effects of hormones. It also offers a road map to other 

researchers in terms of methodology (how to maximize the value of data on physical 

indicators) and conceptual framework (how to investigate understudied aspects of gene-

hormone interplay in adolescence, and recognize the value of studying physical 

development).

Future work could profitably focus on a number of interesting questions regarding gene-

puberty interplay in psychological development. One set of questions, amenable to study in 

several existing behavior genetic projects, concerns genetic and environmental contributors 

to links between variations in pubertal development and behavior problems. The phenotypic 

association between early puberty and behavioral risk is well-established in girls, but the 

sources of the covariation have received surprisingly little attention, and both the nature and 

causes of phenotypic associations in boys have not been well studied, in part because of 

concerns about measurement of puberty (especially by self report) in boys. Our results 

suggest that these questions can be addressed with measures that are already available, or 

easily computed, in many typical developmental behavior genetic studies. Another set of 

questions requires improvements in conceptualization and measurement of puberty. This 
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includes refinement of measures of tempo, differentiation of aspects and processes of 

puberty (e.g., importance of development of pubic hair versus genitalia versus menarche in 

girls) and the synchrony of their development, and ability to measure the different pubertal 

stages (e.g., onset versus midpuberty). Puberty is an important developmental period that 

exemplifies gene-hormone interplay and thus represents an important research opportunity 

for behavior geneticists.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

 Acknowledgments

The research reported here was supported by Grants from the National Institutes of Health, HD010333, HD036773, 
and DA011015. We thank Sally-Ann Rhea for overseeing the data collection and management, Brett Haberstick for 
assistance with genetic analyses, and Michael Stallings and Josh Bricker for input on assessment of psychological 
outcomes.

References

Achenbach, TM. Manual for the child behavior checklist: 4–18 and 1991 profile. University of 
Vermont Department of Psychiatry; Burlington: 1991. 

Angold A, Costello EJ, Worthman CM. Puberty and depression: the roles of age, pubertal status and 
pubertal timing. Psychol Med. 1998; 28(1):51–61. DOI: 10.1017/s003329179700593x [PubMed: 
9483683] 

Belsky J, Steinberg L, Draper P. Childhood experience, interpersonal development, and reproductive 
strategy: an evolutionary theory of socialization. Child Dev. 1991; 62:647–670. [PubMed: 1935336] 

Beltz AM, Corley RP, Wadsworth SJ, Bricker JB, Berenbaum SA. Modeling pubertal timing and 
tempo and examining links to behavior problems. Dev Psychol. 2014; 50(12):2715–2726. DOI: 
10.1037/a0038096 [PubMed: 25437757] 

Bricker JB, Stallings MC, Corley RP, Wadsworth SJ, Bryan A, Timberlake DS, DeFries JC. Genetic 
and environmental influences on age at sexual initiation in the Colorado Adoption Project. Behav 
Genet. 2006; 36(6):820–832. DOI: 10.1007/s10519-006-9079-2 [PubMed: 16710776] 

Burt SA, McGue M, DeMarte JA, Krueger RF, Iacono WG. Timing of menarche and the origins of 
conduct disorder. Arch Gen Psychiatry. 2006; 63:890–896. [PubMed: 16894065] 

Button TMM, Hewitt JK, Rhee SH, Corley RP, Stallings MC. The moderating effect of religiosity on 
the genetic variance of problem alcohol use. Alcohol Clin Exp Res. 2010; 34(9):1619–1624. DOI: 
10.1111/j.1530-0277.2010.01247.x [PubMed: 20569244] 

Carré JM. No place like home: testosterone responses to victory depend on game location. Am Jof 
Human Biol. 2009; 21(3):392–394. DOI: 10.1002/ajhb.20867

Caspi A, Moffitt TE. Individual differences are accentuated during periods of social change: the 
sample case of girls at puberty. J Pers Soc Psychol. 1991; 61:157–168. [PubMed: 1890586] 

Castellanos-Ryan N, Parent S, Vitaro F, Tremblay RE, Seguin JR. Pubertal development, personality, 
and substance use: a 10-year longitudinal study from childhood to adolescence. J Abnormal 
Psychology. 2013; 122(3):782–796. DOI: 10.1037/a0033133

Coleman L, Coleman J. The measurement of puberty: a review. J Adolesc. 2002; 25:535–550. DOI: 
10.1006/jado.2002.0494 [PubMed: 12234559] 

Copeland W, Shanahan L, Miller S, Costello EJ, Angold A. Outcomes of early pubertal timing in 
young women: a prospective population-based study. Am J Psychiatry. 2010; 167(10):1218–1225. 
DOI: 10.1176/appi.ajp.2010.09081190 [PubMed: 20478880] 

Cottler LB, Keating SK. Operationalization of alcohol and drug dependence criteria by means of a 
structured interview. Recent Dev Alcohol. 1990; 8:69–83. [PubMed: 2333396] 

Corley et al. Page 20

Behav Genet. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Crowley TJ, Mikulich SK, Ehlers KM, Whitmore EA, MacDonald MJ. Validity of structured clinical 
evaluations in adolescents with conduct and substance problems. J Am Acad Child Adolesc 
Psychiatry. 2001; 40(3):265–273. DOI: 10.1097/00004583-200103000-00005 [PubMed: 
11288767] 

Culbert KM, Burt SA, McGue M, Iacono WG, Klump KL. Puberty and the genetic diathesis of 
disordered eating attitudes and behaviors. J Abnorm Psychol. 2009; 118(4):788–796. DOI: 
10.1037/a0017207 [PubMed: 19899848] 

Dorn LD, Biro F. Puberty and its measurement: a decade in review. J Res Adolesc. 2010; 21:180–195.

Dorn LD, Dahl RE, Biro F. Defining the boundaries of early adolescence: a user’s guide to assessing 
pubertal status and pubertal timing in research with adolescents. Appl Dev Sci. 2006; 10(1):30–56. 
DOI: 10.1207/s1532480xads1001_3

Eaves L, Silberg J, Foley D, Bulik C, Maes H, Erkanli A, Worthman CM. Genetic and environmental 
influences on the relative timing of pubertal change. Twin Res. 2004; 7(5):471–481. DOI: 
10.1375/twin.7.5.471 [PubMed: 15527663] 

Ge X, Natsuaki MN. In search of explanations for early pubertal timing effects on developmental 
psychopathology. Curr Dir Psychol Sci. 2009; 18(6):327–331. DOI: 10.1111/j.
1467-8721.2009.01661.x

Ge X, Conger RD, Elder GH. Coming of age too early: pubertal influences on girls’ vulnerability to 
psychological distress. Child Dev. 1996; 67:386–400. DOI: 10.2307/1131784

Graber JA. Pubertal timing and the development of psychopathology in adolescence and beyond. Horm 
Behav. 2013; 64(2):262–269. DOI: 10.1016/j.yhbeh.2013.04.003 [PubMed: 23998670] 

Graber JA, Seeley JR, Brooks-Gunn J, Lewinsohn PM. Is pubertal timing associated with 
psychopathology in young adulthood? J Am Acad Child Adolesc Psychiatry. 2004; 43(6):718–
726. [PubMed: 15167088] 

Gunnar MR, Wewerka S, Frenn K, Long JD, Griggs C. Developmental changes in hypothalamus-
pituitary-adrenal activity over the transition to adolescence: normative changes and associations 
with puberty. Dev Psychopathol. 2009; 21(1):69–85. DOI: 10.1017/s0954579409000054 
[PubMed: 19144223] 

Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steroid assays in the. J Clin 
Endocrinol Metab. 2013; 98(10):3971–3973. DOI: 10.1210/jc.2013-3375 [PubMed: 24098015] 

Harden KP, Mendle J. Gene-environment interplay in the association between pubertal timing and 
delinquency in adolescent girls. J Abnorm Psychol. 2012; 121:73–87. [PubMed: 21668078] 

Harden KP, Mendle J, Kretsch N. Environmental and genetic pathways between early pubertal timing 
and dieting in adolescence: distinguishing between objective and subjective timing. Psychol Med. 
2012; 42:183–193. [PubMed: 21676282] 

Harris JA, Vernon PA, Boomsma DI. The heritability of testosterone: a study of Dutch adolescent 
twins and their parents. Behav Genet. 1998; 28(3):165–171. DOI: 10.1023/a:1021466929053 
[PubMed: 9670592] 

Hill, JP.; Lynch, ME. The intensification of gender-related role expectations during early adolescence. 
In: Brooks-Gunn, J.; Petersen, AC., editors. Girls at puberty: biological and psychosocial 
perspectives. Plenum; New York: 1983. p. 201-228.

Huang B, Hillman J, Biro FM, Ding L, Dorn LD, Susman EJ. Correspondence between gonadal 
steroid hormone concentrations and secondary sexual characteristics assessed by clinicians, 
adolescents, and parents. J Res Adolesc. 2012; 22(2):381–391. DOI: 10.1111/j.
1532-7795.2011.00773.x [PubMed: 23204809] 

Klump KL, McGue M, Iacono WG. Differential heritability of eating attitudes and behaviors in 
prepubertal versus pubertal twins. Int J Eat Disord. 2003; 33(3):287–292. DOI: 10.1002/eat.10151 
[PubMed: 12655625] 

Klump KL, Perkins PS, Burt SA, McGue M, Iacono WG. Puberty moderates genetic influences on 
disordered eating. Psychol Med. 2007; 37:627–634. [PubMed: 17335640] 

Klump KL, Keel PK, Sisk C, Burt SA. Preliminary evidence that estradiol moderates genetic 
influences on disordered eating attitudes and behaviors during puberty. Psychol Med. 2010; 
40(10):1745–1753. DOI: 10.1017/s0033291709992236 [PubMed: 20059800] 

Corley et al. Page 21

Behav Genet. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lee Y, Styne D. Influences on the onset and tempo of puberty in human beings and implications for 
adolescent psychological development. Horm Behav. 2013; 64:250–261. [PubMed: 23998669] 

Little, RJA.; Rubin, DB. Statistical Analysis With Missing Data. Wiley; New York: 1987. 

Marceau K, Ram N, Houts RM, Grimm KJ, Susman EJ. Individual differences in boys’ and girls’ 
timing and tempo of puberty: modeling development with nonlinear growth models. Dev Psychol. 
2011; 47(5):1389–1409. DOI: 10.1037/a0023838 [PubMed: 21639623] 

Marceau K, Neiderhiser JM, Lichenstein P, Reiss D. Genetic and environmental influences on the 
association between pubertal maturation and internalizing symptoms. J Youth Adolesc. 2012; 
41:1111–1126. [PubMed: 22476728] 

Mendle J. Beyond pubertal timing: new directions for studying individual differences in development. 
Curr Dir Psychol Sci. 2014; 23:215–219.

Mendle J, Ferrero J. Detrimental psychological outcomes associated with pubertal timing in adolescent 
boys. Dev Rev. 2012; 32(1):49–66. DOI: 10.1016/j.dr.2011.11.001

Mendle J, Harden KP, Brooks-Gunn J, Graber JA. Development’s tortoise and hare: pubertal timing, 
pubertal tempo, and depressive symptoms in boys and girls. Dev Psychol. 2010; 46(5):1341–1353. 
DOI: 10.1037/a0020205 [PubMed: 20822243] 

Mustanski BS, Viken RJ, Kaprio J, Pulkkinen L, Rose RJ. Genetic and environmental influences on 
pubertal development: longitudinal data from Finnish twins at ages 11 and 14. Dev Psychobiol. 
2004; 40:1188–1198.

Navarro VM, Castellano JM, García-Galiano D, Tena-Sempere M. Neuroendocrine factors in the 
initiation of puberty: the emergent role of kisspeptin. Rev Endocrine Metab Disord. 2007; 8:11–
20. [PubMed: 17340172] 

Neale, MC.; Boker, SM.; Xie, G.; Maes, HH. Mx: Statistical Modeling. Richmond, VA: Department of 
Psychiatry, VCU Box 900126; 2002. 

Negriff S, Susman EJ. Pubertal timing, depression, and externalizing problems: a framework, review, 
and examination of gender differences. J Res Adolesc. 2011; 21(3):717–746. DOI: 10.1111/j.
1532-7795.2010.00708.x

Paus T, Nawaz-Khan I, Leonard G, Perron M, Pike GB, Pitiot A, Pausova Z. Sexual dimorphism in the 
adolescent brain: role of testosterone and androgen receptor in global and local volumes of grey 
and white matter. Horm Behav. 2010; 57(1):63–75. DOI: 10.1016/j.yhbeh.2009.08.004 [PubMed: 
19703457] 

Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: reliability, 
validity, and initial norms. J Youth Adolesc. 1988; 17:117–133. DOI: 10.1007/BF01537962 
[PubMed: 24277579] 

Purcell S. Variance components models for gene-environment interaction in twin analysis. Twin Res. 
2002; 5:554–571. http://dx.doi.org/10.1375/twin.5.6.554. [PubMed: 12573187] 

Rhea SA, Gross AA, Haberstick BC, Corley RP. Colorado Twin Registry. Twin Res Human Genet. 
2006; 9(6):941–949. DOI: 10.1375/183242706779462895 [PubMed: 17254434] 

Schmitz KE, Hovell MF, Nichols JF, Irvin VL, Keating K, Simon GM, Jones KL. A validation study of 
early adolescents’ pubertal self-assessments. J Early Adolesc. 2004; 24(4):357–384. DOI: 
10.1177/0272431604268531

Shirtcliff EA, Dahl RE, Pollak SD. Pubertal development: correspondence between hormonal and 
physical development. Child Dev. 2009; 80(2):327–337. DOI: 10.1111/j.1467-8624.2009.01263.x 
[PubMed: 19466995] 

Stallings MC, Corley RP, Hewitt JK, Krauter KS, Lessem JM, Mikulich SK, Crowley TJ. A genome-
wide search for quantitative trait loci influencing substance dependence vulnerability in 
adolescence. Drug Alcohol Depend. 2003; 70(3):295–307. DOI: 10.1016/s0376-8716(03)00031-0 
[PubMed: 12757967] 

Stanton SJ, Mullette-Gillman ODA, Huettel SA. Seasonal variation of salivary testosterone in men, 
normally cycling women, and women using hormonal contraceptives. Physiol Behav. 2011; 
104(5):804–808. DOI: 10.1016/j.physbeh.2011.07.009 [PubMed: 21802437] 

Styne, DM.; Grumbach, MM. Puberty: Ontogeny, neuroendocrinology, physiology, and disorders. In: 
Kronenberg, HM.; Shlomo, M.; Polonsky, KS.; Larsen, PR., editors. Williams textbook of 
endocrinology. 12th. Saunders Elsevier; Philadelphia: 2011. 

Corley et al. Page 22

Behav Genet. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1375/twin.5.6.554


Tanner, JM. Foetus into man: Physical growth from conception to maturity. Harvard University Press; 
Cambridge: 1978. 

Trotman HD, Holtzman CW, Ryan AT, Shapiro DI, MacDonald AN, Goulding SM, Walker EF. The 
development of psychotic disorders in adolescence: a potential role for hormones. Horm Behav. 
2013; 64:411–419. DOI: 10.1016/j.yhbeh.2013.02.018 [PubMed: 23998682] 

van Anders SM. Chewing gum has large effects on salivary testosterone, estradiol, and secretory 
immunoglobulin A assays in women and men. Psychoneuroendocrinology. 2010; 35(2):305–309. 
DOI: 10.1016/j.psyneuen.2009.06.009 [PubMed: 19615825] 

van den Berg SM, Setiawan A, Bartels M, Polderman TJ, van der Vaart AW, Boomsma DI. Individual 
differences in puberty onset in girls: bayesian estimation of heritabilities and genetic correlations. 
Behav Genet. 2006; 36:261–270. [PubMed: 16408250] 

Wan W, Deng X, Archer KJ, Sun SS. Pubertal pathways and the relationship to anthropometric 
changes in childhood: the Fels longitudinal study. Open J Pediatr. 2012; 2:118–126. DOI: 10.4236/
ojped.2012.22020

Webster GD, Graber JA, Gesselman AN, Crosier BS, Schember TO. A life history theory of father 
absence and menarche: a meta-analysis. Evol Psychol. 2014; 12:273–294. [PubMed: 25299880] 

Wichstrøm L. The emergence of gender difference in depressed mood during adolescence: the role of 
intensified gender socialization. Dev Psychol. 1999; 35:232–245. [PubMed: 9923478] 

Corley et al. Page 23

Behav Genet. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Mean development trajectories for girls for different aspects of puberty. Dashed lines are 

adrenarche trajectories. Solid lines are gonadarche trajectories. Black lines are results for the 

first half of the sample (replicate 1). Gray lines are results from the independent second half 

of the sample (replicate 2)
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Table 5

Bivariate analyses of logistic measure of pubertal timing and behavior

(A) Girls Logistic PDS timing and age at first sex Logistic PDS timing and substance use

Baseline modela ADE ADE

−2LL (d.f.) for baseline model 1605.292 (785) 1446.764 (745)

Change in −2LL (d.f.) for reduced model 0.686 (4) 0.402 (4)

Best-fitting reduced modela AE, no E covariance AE, no E covariance

Baseline phenotypic correlation (95 % CIs) .17 (.06, .28) −.17 (−.29, −.06)

Reduced model A correlation (rA) (95 % CIs) .21 (.07, .35) −.24 (−.39, −.08)

Reduced model D correlation (rD) .00 .00

Reduced model E correlation (rE) .00 .00

Proportion of covariance that is genetic (A) 100 % 100 %

(B) Boys Logistic PDS timing and age at first sex Logistic PDS timing and substance use

Baseline modela ADE ADE

−2LL (d.f.) for baseline model 1765.676 (762) 1528.350 (711)

Change in −2LL (d.f.) for reduced model 1.621 (4) 2.490 (4)

Best-fitting reduced modela DE, no E covariance AE, no E covariance

Baseline phenotypic correlation (95 % CIs) .15 (.04, .26) −.08 (−.20, .04)

Reduced model A correlation (rA) (95 % CIs) .00 −.12 (−.29, .06)

Reduced model D correlation (rD) (95 % CIs) .25 (.07, .43) .00

Reduced model E correlation (rE) .00 .00

Proportion of covariance that is genetic (A or D) 100 % 100 %

(C) Girls versus boys Linear PDS timing and age at first sex Logistic PDS timing and substance use

Girls Boys Girls Boys

Baseline Modelsa ADE ADE ADE ADE

−2LL (d.f.) for baseline models 3370.967 (1547) 2975.114 (1456)

Change in −2LL (d.f.) for reduced common model 2.978 (8) 2.892 (8)

Best-fitting reduced common model1 AE, no E covariance AE, no E covariance

Can unstandardized genetic variances be equated? Yes No (boys > girls: substance use)

Can unstandardized non-shared environmental 
variances be equated?

No (boys > girls: both measures) No (boys > girls: both measures)

Baseline phenotypic correlation (95 % CIs) .17 (.06, .28) .15 (.04, .26) −.17 (−.29,−.06) −.08 (−.20, .04)

Reduced model A correlation (rA) (95 % CIs) .21 (.07, .35) .27 (.08, .46) −.24 (−.39,−.08) −.12 (−.29, .06)

Reduced model D correlation (rD) .00 .00 .00 .00

Reduced model E correlation (rE) .00 .00 .00 .00

Proportion of phenotypic covariance that is genetic (A) 100 % 100 % 100 % 100 %

Bold indicates this was the best-fitting model within the group of model-fit comparisons shown in supplemental tables S.2

Estimates shown as .00 without CIs are fixed in the reduced model

a
Terms included in models
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A additive genetic variance, D non-additive genetic variance, C common environmental variance, E non-shared environmental variance
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