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1.0 Introduction 

The current photometric requirements in Federal Motor Vehicle Safety Standard 

(FMVSS) 108 (1998) for certain signaling and marking lamps are based on the number of lighted 

sections that make up the lamps. Three classes of lamps are distinguished on that basis--those 

having one, two, and three or more sections. The intensity requirements, both minima and 

maxima, are somewhat greater for lamps with more sections (although the increases in the 

requirements are less than proportional to the number of sections). The lamps regulated in this 

way are the front and rear turn signals, the tail lamps, and the stop lamps (but not the centex high- 

mounted stop lamp, or CHMSL). 

For lamps of traditional construction, the meaning of "lighted section" is reasonably 

obvious: each lighted section is the light emitting surface illuminated by a single bulb. Because 

of the optical constraints of reflector cavities and lenses, and assuming that the bulbs involved all 

have about the same candle power, the lighted sections can all be expected to have about the 

same area. Knowing the number of lighted sections that make up a lamp therefore te:lls one 

something about its total area, and the number of lighted sections can be used as a proxy for total 

area. Adjusting the intensity requirements on the basis of the number of sections achieves some 

level of constraint on the overall average luminance (total intensity divided by total area.) of the 

lamp, There will also be some constraints on the shape of each section. The ratio of height to 

width (the aspect ratio) for a single lighted section will not normally be extremely high or low, 

given that the light must all come from a single location (a single bulb). 

However, for lamps that use various innovative light sources--or may use thern in the 

near future-the value of the number of sections as an indicator of area and shape breaks down. 

In the case of LEDs or miniature halogen bulbs, the candle power of each element is normally so 

much smaller than that of conventional signal-lamp bulbs that virtually all lamps will be 

composed of more than three lighted sections, even though many of those lamps may have small 

total areas. Because there are many elements, the overall shapes of the lamps are less 

constrained than those of lamps using only a few, more powerful sources. Neon tubes and 

various forms of distributive lighting (including fiber optics as well as other forms of light 

guides, all of which are less constrained than conventional cavities and lenses) complicate the 

situation further. In those cases, a single source may be relatively powerful, so that a la.mp with 

only one source (and therefore only one lighted section if number of sections is deternined by 
number of sources) may be very large and of virtually any shape. 

It seems likely that the use of sources other than conventional filament bulbs in signaling 

and marlung lamps will grow, and therefore the practice of specifying intensity requirements in 

terms of number of lighted sections needs to be reassessed. (Although, interestingly, thie largest 



use of innovatbe sources so far is the use of LEDs in CHMSLs, which are not regulated in terms 

of number of lighted sections.) The references to lighted sections in FMVSS 108, and in several 

documents of the Society of Automotive Engineers (SAE), are strongly tied to a specific type of 

light source (incandescent bulbs of a certain approximate candle power). However, given the 

current circumstances, the National Highway Traffic Safety Administration (NHTSA) has Inad no 

clear alternative to applying the concept of lighted sections to innovative sources in a 

straightforward way, such that a stop lamp using three or more LEDs would have to meet the 

intensity values for a three-section lamp even though it might have a smaller area than many 

conventional one-section lamps ("Notice of proposed rulemaking," 1994). 

There is a clear need for some way of specifying lamp characteristics that is more 

flexible-and more closely tied to the parameters that presumably really matter in determining 

the visual effectiveness of lamps; such as intensity, area, luminance, and shape. One way of 

adapting the 1.ighted-section concept to LEDs is incorporated into SAE 51889 (SAE, 1993). In 

that document, lamps are nominally assigned to one of the three lighted-section classifications 

based on their maximum linear dimensions, with no consideration of how many lighted sections 

(i.e., LEDs) they actually have. If the maximum linear dimension is less than or equal to 150 

mm, the lamp is considered to have one section; if it is from 151 to 300 mm, the lamp is 

considered to have two sections; and if it is 301 mm or more, the lamp is considered to have 

three sections. Various other proposals have been made for reinterpreting the lighted-section 

requirements to make them more broadly applicable, although none have been accorded as much 

formal status as SAE 51889. 

The purposes of this document are (1) to review the research that bears on the current 

lighted-section photometric requirements, as well as research related more generally to the roles 

of intensity, area, luminance, and shape in determining the visual effectiveness of lamps, (2) to 

present a new set of results that addresses a discrepancy in the previous results concerning lamp 

area, (3) to review the alternatives for adapting, or simply dispensing with, the lighted-section 

requirements (including SAE 51889), (4) to make tentative recommendations about the 

alternatives best supported by the evidence, and (5) to identify remaining issues that could be 

addressed by future research. 

A large number of sources of relevant evidence are available, ranging from studies that 

specifically addressed the issue of the number of lighted sections in automotive signal lamps, to 

more basic studies of the roles of stimulus luminance and intensity in visual performance. Our 

overall assessment is that, in spite of some uncertainties and some apparent discrepancies that we 

discuss and try to resolve, the available evidence is sufficient to support a practical solution to 

the question of how the lighted-section requirements should be changed to accommodate new 

signal-lamp source technologies. 



2.0 Previous Research 

There are several differences between conventional incandescent bulbs and various 

innovative light sources that may affect the visual appearance and effectiveness of signal :lamps. 

In this section we consider five of these differences and review the evidence from past studies of 

visual performance that bears on the issues that they raise. The first two of these differences 

raise questions with the current strategy of basing photometric requirements on the nurrlber of 

lighted sections, and therefore are most important for the question of how the current standards 

should be modified: 

1. Area, Intensity, and Luminance. The rough proportionality between number of :lighted 

sections and total area that can be expected with conventional incandescent bulbs no 

longer applies when a greater variety of sources is considered. For some sources, the unit 

that can reasonably be construed as a single lighted section may be very small (e.g., 

LEDs) whereas for others it may be very large (e.g., neon). Because the number of 

lighted sections can no longer serve as a proxy measure for total area, it is necessary to 

find an alternative. It is also an occasion to reexamine more generally the relative roles 

of intensity, area, and luminance in determining lamp effectiveness. 

2. Aspect Ratio. Lamp shape is less constrained with some of the new light sources. There 

are few limits to the variety of shapes that designers might consider for lamps based on 

LEDs, neon, or fiber optics. However, much of that variety may be capturled in a 

relatively manageable way by a simple shape parameter-the aspect ratio (height to 

width, or vice versa). Aspect ratio is a full description of shape only for rectangular 

lamps, but it may be that even many exotic shapes can be modeled satisfactorily by using 

the smallest rectangles that could enclose them. 

The oth.er three differences have no direct effects on the meaning or usefulness of the number of 

lighted sections, but we discuss them in this section because they are potentially important for a 

comprehensive understanding of the visual effectiveness of lamps that use innovative sources: 

3. Spectral Power Distribution. Some sources, even when they are matched with 
incandescent-bulb lamps in chromaticity, will be substantially different in spectral power 

distribution. Do such differences affect visual performance? 

4. Luminance Uniformity. The type of light source used may affect the distribution of 

luminance within the nominal face of a lamp. Many LED lamps appear as arrays of very 

bright dots against a dark background, neon lamps tend to have very even luminance 

distributions, and a typical lamp made with an incandescent bulb behind a lens is 

probably somewhere in between. Do these differences affect the appearance or 



performance of a lamp, or is average luminance (total intensity divided by total area) all 

that matters? 

5. Rise Time. Certain light sources are inherently faster than incandescent bulbs. 

Considering the strong practical importance of reaction time, at least for stop lamps, 

should this difference be taken into account in some way in determining photometric 

standards for signal lamps using such sources? 

2.1 Area, Intensity, and Luminance 

There has been a considerable amount of discussion of the roles of intensity, area, and 

luminance in determining the visual effectiveness of lamps (e.g., Henderson, Sivak, Olson, & 

Elliott 1983; Sivak, Flannagan, & Olson, 1987). Conventional thinking has been that, under 

most practical conditions for signal lamps, intensity is the most important of the three; but that 

either area or luminance should also be taken into account to a lesser extent. That view is 

consistent with the current U.S. regulations for signal lamps, which primarily control intensity 

but also make relatively minor adjustments in intensity based on area (using number of lighted 

sections as a proxy for area). As an example, the current U.S. photometric requirements for stop 

lamps (not including CHMSLs) are shown in Figure 1. 

Figure 1 is intended to summarize and illustrate how limits on intensity, area, and 

luminance are interrelated. Any lamp can be assigned to a point in Figure 1 based on its intensity 

and area. Because luminance is intensity (the y-axis variable) divided by area (the x-axis 

variable), the luminance of the lamp is then indicated by where it falls on a set of straight 

isoluminance lines radiating from the origin (lines having the form y/x = a constant). Figure 1 

thus illustrates that, although each of the three variables being discussed (intensity, area, and 

luminance) may be useful for some purposes, they do not refer to three independent aspects of 

signal lamps. They are three ways of describing a set of possible lamps that is in a more 

fundamental sense two dimensional. As soon as any two of the three variables are specified, the 

location of a lamp in a diagram like Figure 1 is determined, and the value of the third variable 

can be calculated. 

In Figure 1, pure limits on intensity can be illustrated as horizontal boundaries, pure 

limits on area can be illustrated as vertical boundaries, and pure limits on luminance can be 

illustrated as diagonal boundaries radiating from the origin. As shown in the figure, the current 

actual limits are not any one of these pure types, but something of a mixture. The intensity limits 
in Figure 1 are all from FMVSS 108, but only the lowest of the area limits (50 cm2) is explicitly 

in the standard. FMVSS 108 is written in terms of number of lighted sections, and the areas in 



Figure 1 are translations from those terms to implicit areas, based on SAE J1889. That document 

suggests that a maximum horizontal or vertical linear dimension of " 150 rnm per lighted slection 

represents a typical large lighted section in present incandescent lighting device designs" (SAE, 

1993, rationale section 4.1.5.1). (Note that the claim made in SAE 51889 is that 150 mm 

represents a "typical large" lamp rather than a lamp that is typical or average in general, as is 

probably appropriate for establishing a maximum limit.) The areas used in Figure 1 are the 

square of that value (225 cm2) for the maximum area of a single lighted section, and twice that 

area (450 cm2) for the maximum area of two sections. The intensity values from FMVSS 108 

that are used to define the upper and lower boundaries of the shaded areas in Figure 1 are (for 

one, two, and three or more lighted sections, respectively) 80 to 300,95 to 360, and 110 to 420 

cd. 



Area (cm2) 

Figure 1. An illustration of the current intensity and area limits in FMVSS 108 for stop lamps 
(not including CHMSLs). The shaded areas represent the range of legal lamps with one, two, or 
three or more lighted sections. The higher area limits (225 and 450 cm2) are not explicitly in 
FMVSS 108, and are based on SAE 51889 (see text for details). The intensity limits are (for one, 
two, and three or more lighted sections, respectively) 80 to 300, 95 to 360, and 110 to 420 cd. 
The diagonal lines radiating from the origin are isoluminance lines of several common stimuli 
that are near the approximate luminance limits implicit in FMVSS 108. 



2.1.1 Basic Research. 

A number of formal studies, specifically oriented to signal lamps, have been done to 

investigate the effects of area, intensity, and luminance. However, before turning to those 

applied studies we will summarize some useful results from more basic work on the effects of 

those stimulus variables on human vision. Although the basic research results cannot easily be 

extended to give specific answers about the effectiveness of real lamps under practical 

conditions, they may be useful in suggesting the general form of the results that can be expected. 

The basic work suggests that, for the conditions that are of practical importance for signal 

lighting, no one of the three variables alone (area, intensity, or luminance) is likely to be 

sufficient to predict signal effectiveness. As we discuss below, the basic vision work suggests 

that the critical value is the product of area raised to a variable power (ranging from 0 to 1 for 

various conditions) and luminance. This will turn out to be consistent with most of the applied 

work discussed below as well. 

A considerable amount of basic work has been concerned with the extent to which area 

and luminance trade off in determining the threshold for detecting a visual stimulus (e.g., Brown 

& Mueller, 1965; Thomas, 1975). Although threshold detection is not directly relevant to signal- 
lamp effectiveness (practical lamps presumably have to be well above threshold to be effective), 

there is evidence that similar relationships hold above threshold, for example in determining 

minimal reaction time to visual stimuli (Ueno, 1979). When stimuli are relatively small there is 

a complete tradeoff between area and luminance, such that the visual threshold is determined 

simply by their product. This is often referred to as Ricco's law, which states that at threshold 

the product of area, A, and luminance, L, is a constant: 

Note that area can be canceled out of the expression AL (because luminance is intensity divided 

by area) and Ricco's law therefore implies that visual performance is constant for constant 

intensity. This suggests that visual performance is based on complete spatial summation of light 

energy over the area in question, and in that sense the stimulus can be considered a point source. 

It is not possible to specify a single value for the maximum area at which Ricco's law 

applies because the value depends on other circumstances-including background luminance, 

location in the visual field, and stimulus duration. However, an approximate limit for a broad 

range of conditions is 10 minutes of arc (Geldard, 1972). Although this value cannot be applied 

with certainty to make inferences about lamp performance, note that this would be the angle 

subtended by a lamp 15 cm in diameter viewed at a distance of 52 m. If the approximation of 10 



minutes is accurate, and if threshold detection is the performance measure of concern (probably 

some form of conspicuity is of more practical importance for signal lamps), then such a lamp can 

only be considered a point source if it is more than about 50 m away. 

For somewhat larger stimuli, the relationship changes such that differences in area are 

less effective in compensating for differences in luminance, as characterized by the formulation 

known as Piper's law: 

And as stimuli become even larger, differences in area no longer matter and the threshold is 

eventually determined solely by luminance: 

Note that these relationships are special cases of a more general formulation in which the 

exponent on area is a variable, n: 

This general formulation offers a way to describe a range of outcomes for the roles of area and 

luminance in determining visual threshold. Note that if viewing distance is constant, so that area 

can be measured in terms of absolute size rather than in terms of subtended angle, then when 

n = 1 performance is determined purely by intensity (absolute area times luminance), and when 

n = 0 performance is determined purely by luminance. Often the value of n will not be 1 or 0 

but somewhere in between (for example, when Piper's law holds, n = 0.5). Thus, only in certain 

limiting circumstances will performance be determined purely by intensity or luminance. 

Figure 2 shows functions based on various values of the exponent. All of the functions 

originate at a point corresponding to a lamp with an intensity of 80 cd and an area of 50 cm2 

(currently the minimum intensity and area for a stop lamp in the U.S.). Each of the functiions is a 

candidate isoperformance curve, joining points representing lamps that would have performance 

equal to each other if each of the various values of the exponent were valid. The horizo:ntal line 

(triangles) corresponds to Ricco's law and an exponent of 1.0. If Ricco's law applies, then each 

point along that line represents a lamp that should be equal in performance to the 80-cd, 50-cm2 

lamp. Because Ricco's law states that area times luminance (i.e., intensity) is a constant at visual 

threshold, then intensity is all that matters in determining performance. Likewise, the uppermost 



function (squares) corresponds to constant luminance and an exponent of 0.0. 'The next-to- 

highest function (open circles) corresponds to Piper's law. 

The function with filled circles is meant to represent, in an approximate way, the lower 

limits of the region permitted by current regulations. We derived it by fitting the general form of 

the area/luminance law to the one-, two-, and three-section lamps with the minimum intensities 

and areas (80 cd and 50 cm2, 95 cd and 225 cm2, 110 cd and 450 cm2). We used linear 

regression of log intensity on log area to fit the three points, yielding a value of 0.86 for the 

exponent n. This value provides one way to compare the limits implicit in FMVSS 108 to the 

equal-luminance (n = 0.0) and equal-intensity (n = 1.0) limits. Both graphically, and in terms of 

values of n ,  the current limits are much more similar to the equal-intensity limit. There are 

several aspects of this curve fitting that could be done differently. Perhaps most prominently, the 

area limits between one and two sections (225 cm2) and between two and three sections 

(450 cm2) could be lowered. But even if each section is considered to be 50 cm2, so that the 

upper area limits are 100 and 150 cm2, the resulting value of n is lowered only to 0.71, still 

much closer to equal intensity than equal luminance. 
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Figure 2. The best fitting function for the lower limits of the intensity and area regions currently 
permitted by FMVSS 108 for stop lamps. See text for details. Also, for comparison, illustrations 
of isoperformance curves passing through 80 cd and 50 cm2 (minimum intensity and area for a 
stop lamp) based on Rcco's law, Piper's law, and constant luminance. 



2.1.2 Applied Research 

We now turn to information that bears directly on signal-lamp effectiveness. We will 

concentrate the discussion on studies that were concerned with the minimum intensities for stop 

lamps. There are two reasons for this. First, it is the issue that has motivated by far the most 

work, and, second, it is the issue of most practical importance for current purposes concerning 

use of LEDs in stop lamps. The studies to be reviewed have come to different conclusions on the 

crucial question of whether intensity values should be adjusted for lamps of different area. We 

will review first the studies that concluded that there should be some adjustment, and then the 

ones that concluded that intensity alone was sufficient to determine performance. Interestingly, 

the two groups differ markedly in their methods. The studies in the latter group were all based 

on reaction time methods, while those in the former group primarily used subjective methods, 

such as expert judgment. 

These two broad classes of methods should probably be considered complementary, and 

it is not simple to resolve a discrepancy between them. Subjective methods may capture more 

aspects of lamp performance that are important for real world functioning, but they rnay be 

subject to various prejudices. Reaction time methods are free from such prejudices, but they may 

not capture all aspects of lamp performance that are important in actual traffic. Speed of 

response is not the only criterion for true effectiveness. A quality that might be described as 

salience, or the ability to get a distracted driver's attention, is probably also an important part of a 
lamp's overall effectiveness. If reaction time is measured in the proper context-perhaps with 

multiple possible lamp locations, or a concurrent loading task similar to driving-it may be 

possible to capture that aspect of lamp performance, but it is difficult in any experimental setting 

to match the cognitive and perceptual task loads that may be typical in critical traffic situations. 

Even when an experiment is performed in actual traffic, the subjects are probably more attentive 

than actual drivers in routine driving, simply because they know their performance is being 

monitored in some way. 

The idea that lamp intensity should be adjusted for area is an old one in automotive 

lighting. Mortimer (1970, p. 232) suggests that, even prior to the explicit distinctions among 

lamps with different numbers of lighted sections, which were introduced in SAE J575d (SAE, 

1967), concern for area was implicit in the treatment of class A and B turn signals in SAE J575c 

(SAE, 1966). In that older document, the limits for class A signals, which were meant to be used 
on larger vehicles such as heavy trucks, included a minimum area of 12 in2 (77.4 cm2), and a 

minimum intensity of 80 cd. In contrast, the corresponding minimum requirements for class B 

signals, which were meant to be used on smaller vehicles such as passenger cars, were only 

3.5 in2 (22.6 cm2) and 40 cd. The increase in minimum area between class B and class A, a 



factor of 3.4, is less than the increase in intensity, a factor of 2. Because of this, the luminance 

corresponding to these minima is lower for class A signals (10,300 cdlm2) than for class B 

signals (17,700 cdIm2). This is illustrated in Figure 3. As was shown in Figure 1, isoluminance 

lines in such a figure are straight lines passing through the origin. A line from the origin to the 

lower point in Figure 3 derived from SAE J575c (corresponding to the class-B minima) would 

have a higher slope (indicating a higher luminance) than a line from the origin to the upper point 

(corresponding to the class-A minima). It can therefore be argued that the thinking behin.d SAE 

J575c was that intensity limits alone were not adequate to insure signal performance, that 

intensity should be adjusted for area, and that the change in intensity should be less than 

proportional to the change in area. 

Intensity requirements that were adjusted for the number of lighted sections in a lamp 

were introduced by a change in Table 2 of SAE J575 between versions J575c (SAE, 1966) and 

J575d (SAE, 1967). The section-based intensity requirements applied to tail lamps, stop lamps, 

and class B turn signals (those used on smaller vehicles). For example, the minimum intensities 

for stop lamps at HV (on the optic axis) were 40, 70, and 100 cd for one-, two-, and three-,section 

lamps, respectively. Previously, in SAE J575c, the required value at HV was 40 cd, with no 

reference to number of lighted sections. The section-based requirements introduced in 1967 

were not applied to class A turn signals (those used on larger vehicles), a fact that is coinsistent 

with a general pattern in SAE documents over the years of applying the section-based 

requirements only for smaller vehicles. This was also the case, for example, when separate 

standards for stop lamps on smaller vehicles (SAE, 1984) and larger vehicles (SAE, 1985) were 

established. Presumably this is because of the large difference in styling concerns between 

smaller vehicles such as passenger cars and larger, typically more utilitarian vehicles such as 

trucks. Because of styling concerns, the signal lamps used on passenger cars are much more 

varied in size and shape than those used on trucks. With the relatively uniform sizes of lamps 

used on trucks, luminance and intensity are highly correlated, and it is less important to consider 

whether they might have separate effects. 
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Figure 3. Summary of results on required minimum intensity as a function of area for stop lamps 
(not including CHMSLs), from several sources using a variety of subjective-rating methods. The 
shaded area is a representation of the combinations of area and intensity currently allowed by 
FMVSS 108 (see the caption for Figure 1 and the text for explanation of the higher area limits). 
Each group of points joined by a line represents a set of lamps that can be claimed to have equal 
effectiveness (see text for details). 

Formal research on the joint effects of intensity and area on lamp effectiveness can be 

traced at least as far back as a series of demonstrations involving multiple-section lamps, 

performed in the 1960s under the auspices of the Vehicle Lighting Committee of the Automobile 

Manufacturers Association (AMA; currently the American Automobile Manufacturers 

Association, AAMA), and the Lighting Committee of the SAE. The documentation for these 

studies is minimal (AMA vehicle lighting tests, n.d.), but the methods involved can apparently 

all be characterized as subjective judgments by expert juries, primarily lighting engineers with 

substantial experience in automotive lighting. Typically, a group of experts would assemble at 



an outdoor test site, view a formally prepared series of lamps at realistic distances, and 

systematically record their subjective judgments about the visual effectiveness of the lamps. In 

the documentation of the demonstrations, the ambient lighting conditions are typically described 
as day or night, without further detail. The age, sex, and visual characteristics of th.e jury 

members are not described, but it is likely that they were neither very young nor very old 

(probably few, if any, above 65), and primarily male. The task of the jury members was to make 

ratings of each of the various lamps presented, usually using straightforward terms such as 

"acceptable" and "unacceptable," or "too bright" and "acceptable bright." The tests covered 

minima and maxima for several types of lamps. For example, a study conducted in Anderson, 

Indiana, on November 10 and 11, 1964, resulted in the following maximum intensities, at night, 

for tail lamps with one, two, or three lighted sections, respectively: 19, 25, 30 cd (i.e., 19, 12.5, 

or 10 cd per section) (AMA vehicle lighting tests, n.d., pp. 55-55A). Note that the increases in 

intensity are less than proportional to the increases in area, so that luminance decreases with 

increasing area. (These values were averaged over three sets of results for different section sizes; 

but, within each set, area was simply proportional to number of sections. The effect of area was 

about the same whether area was varied by changing the size of a single section or by combining 

sections of the same unit size.) A study conducted at General Motors Desert Proving Ground in 

Mesa, Arizona from April 6-10, 1964 provided the following minimum intensities, in the 

daytime, for stop lamps with one, two, or three sections, respectively: 100, 120, 150 cd (i.e., 

100, 60, or 50 cd per section) (AMA vehicle lighting tests, n.d., pp. 61-61A). Note that, as 

above, the increases in intensity are less than proportional to the increases in area (each section 

was rectangular, 2 by 4 inches [5 by 10 cm]), so that luminance decreases with increasing area. 

The results for stop lamp minima are shown in Figure 3, for comparison with the values from 

SAE J575c (SAE, 1966) and with additional results to be discussed below. 

In the late 1960s, Mortimer (1970) performed an extensive series of studies on rear 

signaling for the U.S. Department of Transportation. The roles of intensity, area, and lu~ninance 

were among the many issues covered by that work. Mortimer's methods were considerably more 

formal than the demonstrations reviewed above; in some ways they were complementary to those 

demonstrations, but in other ways they were probably more valid. He used typical drivers as 

subjects rather than lighting experts. Although lighting experts may have insights from their 

technical knowledge of lighting, and simply from having paid more careful attention to lighting 

than most people, they may also have prejudices that-right or wrong-are of uncertain validity. 
For that reason, it is important to investigate the opinions and performance of typical drivers. 

Mortimer ran subjects individually rather than in groups, allowing for more careful photometry. 

The documentation of Mortimer's work is more complete than that of the demonstrations. 



The results of most importance for current purposes are in his Figure 2.6 (Mortimer, 

1970, p. 84). That figure shows desirable maximum and minimum intensity levels for red lamps 

as a function of their area, both during the day and at night. The minimum intensities for both 

day and night are reproduced here in Figure 3. Intensity values are higher for larger areas, but 

differences in intensity are less than proportional to differences in area, especially :for the 

nighttime values. The values are primarily based on a study in which subjects viewed lamps of 

different area in a static field setup. The lamps were varied in intensity, and subjects made 

judgments about when the light levels were high enough to "certainly attract your attention" or so 

uncomfortable to view that they were "definitely too bright." As reflected in the recommended 

values reproduced in Figure 3, the findings were that the intensity limits depended on area. 

Forbes (1966) undertook an analysis of the effects of intensity, area, and luminance that 

involved basic modeling of human vision and some new data collection with actual lamps. 

Although he was not explicit about how it was derived, a key element in his discussion of 

desirable lamp photometrics was the daytime threshold for lamp luminance as a function of area, 

shown in his Figure 6 (p. 14). That function is reproduced here in Figure 3 (translated into 

intensity, rather than luminance, as a function of area). Recommended intensity increases with 

area. The recommended changes in intensity are almost-but not quite-proportional to area, as 

indicated by the fact that a straight line fit to the data would intersect the y axis above zero (at 18 

cd) . 
Schmidt-Clausen (1985) collected data concerning the intensity, area, and luminance of 

rear signal lamps from European drivers. He used a field setup with both fully static (lamps and 

subjects static) and semidynamic (lamps static, subjects in a moving vehicle) conditions. 

Subjects viewed lamps that varied in area and intensity, and rated each lamp on a scale from "too 

dark" through "optimal" to "too bright." A key set of results for present purposes are from his 

Table 5 (p. 223), which shows optimal light intensities, for both day and night, for lamps with 

areas of 20 and 200 cm2. Those results are reproduced here in Figure 3. As with the previously 

reviewed studies, recommended intensity increases with area. The differences in intensity are 

slightly less than proportional to the changes in area. Interestingly, Schmidt-Clausen finds a 

smaller difference in desired intensity values for day and night conditions than was seen in 

Mortimer's results. 

The data summarized in Figure 3 consistently show an increase in required intensity with 

increasing area. The results are also consistent in suggesting that the increases in required 
intensity are at least somewhat less than proportional to the corresponding changes in area. 

Comparison to the boundaries of the current U.S. stop lamp limits suggests that the consensus of 

the results shown in Figure 3 is that intensity should be increased by more than the values 

currently specified for one-, two-, and three-section lamps (for the minima, currently 80,95, and 



110 cd). However, it could be argued that the area values used to define the boundaries between 

one and two sections (225 cm2), and between two and three sections (225 cm2) are too large. If 

smaller values were used, the current requirements would be closer to the consensus of the data 

in Figure 3. However, those data are not the whole story. We now turn to a set of studies that 

provided evidence for a different conclusion-that intensity alone is sufficient to determine the 

visual effectiveness of signal lamps, and that intensity therefore does not need to be adjusted for 

lamps with different areas. These studies were all based on a relatively objective measure- 

reaction time. 

The first of these studies was part of a comprehensive study of motor vehicle signal 

lamps (Cole, Dain, & Fisher, 1977). Citing results from a previous study of reaction time to 

stimuli that varied in area and intensity (Cole & Brown, 1968), Cole and his colleagues 

suggested limits for both area and intensity of signal lamps. Their recommendations for stop 

lamps are shown in their Figure 5.1 1 (Cole et al., 1977), and are partly reproduced in Figu.re 4 of 

the present report. They recommended minimum intensities of 100 cd at night and 200 ccl in the 

day, with no adjustment for area up to a maximum area of 177 cm2. 

Sivak and colleagues performed a series of studies on stop lamp photometric 

requirements for the U.S. National Highway Traffic Safety Administration (NHTSA) in the mid 

1980s (Sivak, Flannagan, Olson, Bender, & Conn, 1986). As part of that work they measured 

subjects' reaction times to red stop lamps that varied in area (78, 83, and 157 cm2) and intensity 

(40, 60, 80, and 100 cd). The 12 stimuli resulting from the combination of the 3 area!; and 4 

intensities are represented by the open circles in Figure 4 of the present report. Only intensity 

had an effect on reaction time. Reaction times to the lamps at each level of intensity, but 

differing in area, were the same. In Figure 4 we have therefore joined the points for each of the 

four intensities, indicating that the lamps within those groups can be considered equally e:ffective 

by the reaction time criterion. 

Sayer, Flannagan, and Sivak (1995) also used reaction time to evaluate the effectiveness 

of lamps with areas of 50 and 150 cm2, and intensities of 35 and 150 cd. The four stimuli 

resulting from the combination of these areas and intensities are represented by the fillecl circles 

in Figure 4 of the present report. Once again, only intensity affected subjects' reaction times, and 

we have joined the points for each of the intensities in Figure 4, just as for the results from Sivak 

et al. (1986). 



Area (cm2) 

Figure 4. Summary of results on required minimum intensity as a function of area for stop lamps 
(not including CHMSLs), from several sources using reaction time as the primary criterion. The 
shaded area is a representation of the combinations of area and intensity currently allolwed by 
FMVSS 108 (see the caption for Figure 1 and the text for explanation of the higher area limits). 
Each group of points joined by a line represents a set of lamps that yielded equal reaction times, 
and on that basis can be claimed to have equal effectiveness. 

All of the results in Figure 4 indicate that, at least for the ranges of area investigated, 

intensity alone determines reaction time, and therefore-it can be argued-determines overall 

visual effectiveness. Comparison of Figures 3 and 4 thus reveals a consistent discrepancy 

between the studies that used reaction time and those that used alternative methods (primarily 

subjective judgments of lamp effectiveness, either by lighting experts or by typical drivers). It is 

not immediately obvious how to resolve this discrepancy. As we argued earlier, neither method 

can simply be rejected as invalid. 



In spite of the fact that both experts and typical drivers consistently indicate that, in. order 

to be equally effective, lamps with larger areas should be somewhat more intense, the reaction 

time studies fail to indicate this. Is there some aspect of lamp effectiveness that expert judgment 

captures, but reaction time does not? Certainly that is possible. But at least one obvious 

possibility-some sort of salience or ability to attract attention-may not be a very good 

candidate. In all three reaction time studies (Cole & Brown, 1968; Sayer et al, 1995; Sivak: et al., 

1986) subjects were required to perform a tracking task concurrently with reacting to the lamp 

onsets. The tracking tasks were meant to at least approximate the perceptual demands of driving, 

and therefore there should have been at least some opportunity to observe effects of any special 

attention-getting properties of the lamps. On the other hand, it could be argued-as we 

suggested earlier-that subjects in an experiment are always substantially more alert than the 

average driver on the road. 

Given that two sets of data, both of which have a reasonable amount of face validity, 

seem to give different answers about the roles of intensity, area, and luminance in determining 

signal-lamp effectiveness, it is difficult to argue for a change in the status quo. By this 

reasoning, the default approach to the practical question of how to set photometric limits for 

signal lamps would be to continue the spirit of the current requirements, simply adopting a more 

broadly meaningful definition of area than the current reference to number of lighted sections. 

The new alternative would still put primary emphasis on intensity, but continue to make 

relatively minor (far less than proportional) adjustments in intensity on the basis of area. 

Given the current state of knowledge, what new data-if any-would help to resolve the 

situation? Because it is the reaction time data that seem to challenge the status quo (by 

suggesting that intensity limits alone are sufficient) we reasoned that it would be useful to see 

how strong a case could be made from reaction time data. In Section 3 of this report we describe 

an experiment in which we used a particularly strong manipulation of lamp area. If even a very 

strong manipulation of area fails to cause a difference in reaction time, it might be worth more 

seriously considering the possibility of regulating only intensity (rather than just primarily 

intensity, with some consideration of area, as is presently the case). On the other hand, if area 

can be shown to have an effect, and if the effect is relatively large, then the status quo is even 

more strongly supported. 



2.2 Aspect Ratio 

The various new technologies that are becoming available for signal lamps allow more 

flexibility in lamp shape than has been possible previously. In this section we summarize the 

information available concerning how lamp performance is affected by lamp shape-specifically 

aspect ratio, the ratio of height to width or vice versa. Aspect ratio does not capture all of the 

differences in lamp shape that may be contemplated. For example, consider a lamp with a 

lighted area that is 1 cm wide and curved to form a circle 20 cm in diameter at the outer edge, so 

that it appears as a thin ring of light around a large, dark center. Such a lamp would have a 

lighted area of about 60 cm2. Would it have the same effectiveness as a more conventional 

round lamp of the same area (which would appear as a filled circle of light about 9 cm in 

diameter)? Present research results cannot be extended to answer questions about such relatively 

exotic shapes with much confidence. However, a number of results are available for the effect of 

aspect ratio, and, to the extent that many shapes may be adequately approximated by the smallest 

rectangle that can enclose them, these results may be extendible to the great majority of piractical 

lamps. 

The basic vision research that is most relevant to the issue of aspect ratio is that of Lamar, 

Hecht, Hendley, and Shlaer (1948; Lamar, Hecht, Shlaer, & Hendley, 1947). Their work was 

concerned with the effects of area and aspect ratio on the luminance threshold for detecting a 

visual stimulus. As we mentioned earlier, simple detection may not be the best criterion for 

effectiveness of a signal lamp. Nevertheless, work on basic detection may reveal fundamental 

aspects of how the visual system operates-specifically, how it integrates over space-that may 

help in understanding signal effectiveness. Lamar and his colleagues measured visual threshold 

for a range of stimulus sizes (defined in terns of square minutes of angle subtended at the eye of 

the observer) and aspect ratios. Their findings suggest that for larger stimulus sizes (above about 

100 square minutes--equivalent to a 150-cm2 lamp viewed at about 42 m or closer) aspect ratio 

makes little difference in detectability. (If anything, their findings suggest that for areas above 

100 square minutes stimuli with higher aspect ratios may be somewhat more detectable than 

square stimuli--opposite what is probably the most common expectation, that lamps with high 

aspect ratios may be less effective.) For stimulus sizes smaller than about 100 square minutes, 

higher aspect ratios are less detectable, but only for ratios above about 7: 1. Thus, their data 

suggest that relatively high aspect ratios may reduce the detectability (and perhaps the general 

effectiveness) of signal lamps that are small or viewed at a long distance. Given the gaps that 

drivers typically allow in traffic, rear signal lamps will often be larger in angular size from the 

point of view of a following driver than the 100-square-minute level that Lamar and his 



colleagues identified as the maximum size at which larger aspect ratios seemed to have negative 

effects on detection. 

Several relatively applied studies, specifically concerned with motor vehicle signal ].amps, 

have examined the possible effects of aspect ratio. Olson (1987) investigated a set of signal 

lamps that included two LED lamps, one that was square (i.e., with an aspect ratio of 1:l) and 

one that was an elongated rectangle with an aspect ratio of about 100:l. The lamps; were 

matched in total area and in intensity; they, in fact, had the same number of LEDs, simply 

arranged differently. Olson had a set of typical drivers observe the lamps in a road test and then 

make subjective evaluations of the visibility and overall effectiveness of the lamps. The high- 

aspect-ratio lamp was consistently ranked as less effective than the square lamp. Ho-wever, 

Olson also measured reaction time to the lamps and found no difference between the two lamps. 

In two studies in which they measured reaction time to simulated stop lamps, Sayer and 

colleagues (Sayer et al., 1995; Sayer, Mefford, Flannagan, & Sivak, 1996) found that aspect ratio 

had little effect on reaction time unless aspect ratio was relatively high (greater than about 6:l) 

and lamp intensity was relatively low (less than about 25 cd)-values that might be encountered 

in a CHMSL, but not in other stop lamps, which must have minimum intensities of 80 cd. 

A demonstration designed to explore the effect of aspect ratio on the perceived 

effectiveness of LED and neon signal lamps was performed at a meeting of the SAE Lighting 

Committee in September of 1996 (Bhise, Jack, & O'Day, 1997). The observers were members of 

the Lighting Committee and can be regarded as vehicle lighting experts, but they may not be 

typical of the driving public. Of the sample of 53 observers, only one was older than 65 and only 

one was female. During the study, the observers were shown red signal lamps with either LED 

or neon light sources, and aspect ratios of 2: 1,8: 1, or 32: 1. They were asked to make a variety of 

subjective evaluations about the "attention getting" qualities of the lamps. Aspect ratio was 

found to have an effect on those ratings that was very consistent across subjects. For example, 

when asked to indicate which of a set of 100-cd LED lamps was most attention getting, 72% of 

the observers chose the lamp with an aspect ratio of 2: 1,22% chose the lamp with an aspect ratio 

of 8: 1, and only 6% chose the lamp with an aspect ratio of 32: 1. However, although the effect 

was consistent across subjects, the data cannot be used to estimate how strong the difference in 

perceived effectiveness was in terms of how much of a change in intensity might compensate for 

the perceived differences. 

Interestingly, the results that are available concerning the effect of aspect ratio on signal 

effectiveness are similar to the results on the effect of area in that studies that collected subjective 
ratings of effectiveness suggest that the variable in question does change signal effectiveness, 

whereas the studies that used reaction time suggest that it does not. In the case of the Olson 

(1987) results, this contrast exists within the same study. As before, it is difficult to resolve this 



discrepancy. However, in this case, the evidence in favor of an effect is weaker in the sense that 

neither the subjective ratings reported by Olson (1987) or Bhise et al. (1997) were collected in a 

way that allows estimation of how big an adjustment in intensity would be needed to compensate 

for the differences in aspect ratio. Therefore, even accepting the subjective data as definitive, the 

differences among aspect ratios, in terms of intensity adjustments, have not been shown to be 

substantial. 

2.3 Spectral Power Distribution 

The colors of signal lamps must meet limits defined in terms of the 1931 CIE 

chromaticity coordinates (SAE, 1995). However, lamps that are similar or even identical in 

terms of those coordinates may have substantially different spectral power distributions. For 

example, LEDs typically have narrow bands of power concentrated at their peak wavelength, 

whereas filtered incandescent bulbs typically have relatively broad bands. These differences 

raise the possibility that human visual responses to such lamps may be different. Several studies 

of signal lamps have addressed this possibility. 

A demonstration of red signal lamps, made with filtered incandescent bulbs and LEDs, 

was conducted by the SAE Lighting Committee in September 1986 (McKinney, 1986). A group 

of vehicle lighting experts were shown a series of pairs of lamps, each with one incandescent 

lamp and one LED lamp, and asked to judge the relative "conspicuity" or "attention getting 

quality" of the pair. Across pairs, the incandescent lamps were at constant intensity while the 

LED lamps varied. This allowed an estimate to be made of the relative photometric intensities of 

the lamps at which they were perceived to be equally conspicuous. The incandescent and LED 

lamps were not significantly different, suggesting that lamps that are matched in chromaticity 

will not differ in visual effectiveness, even if their spectral power distributions are different. 

Although many subjects in Olson's (1987) study reported that an LED lamp looked 

brighter than a photometrically matched incandescent lamp, when he formally investigated these 

reports by having subjects adjust the lamps to be subjectively equal in brightness, there was no 

difference between the light sources. 

Sivak, Flannagan, Sato, Traube, and Aoki (1994) investigated reaction time to red lamps 

with incandescent, LED, and neon sources. The main focus of that study was differences in 

reaction time that could be attributed to differences in the rise times of the various lamps, but the 

results can also be used to make inferences about the possible effects of the difference in spectral 

power distribution between the LED and neon lamps. Those two lamps did not differ 
substantially in rise time, but they did differ in spectral power distribution. Reaction times to the 



lamps were not significantly different, indicating that the differences in the spectral power 

distributions of the two lamps had no consequences for human reaction time. 

Existing research therefore has not found that differences in spectral power distribution 

among filtered incandescent bulbs, LEDs, and neon sources have important consequences for 

signal-lamp effectiveness. The studies cited above all described the stimuli in terms of 

photometry based on photopic (daytime) visual efficiency, suggesting that photopic photometry 

is adequate to predict the visual effectiveness of the various red signal lamps that were involved. 

2.4 Luminance Unifomity 

In many lamps made up of LEDs, the individual LEDs appear as discrete bright dots 

against a dark background. The luminance across the face of the lamp is thus much less uniform 

than for neon lamps, which tend to have very evenly spread luminance, and for incandescent 

lamps, which vary in how even they appear depending on optical design. Although there has 

been speculation about how these differences might affect signal-lamp performance, there has 

been little research on the issue. Sivak et al. (1986) had subjects match the subjective brightness 

of actual red signal lamps (which used incandescent bulbs and varied in luminance uniformity) 

and variable stimuli that had the same area and shape as the actual lamps, but which had very 

uniform luminance. When the lamps were equally bright subjectively, the luminances of the 

uniform stimuli were consistently higher than the average luminances of the corresponding actual 

lamps. These results suggest that observers respond to the local luminance of the relatively 

bright parts of the lamps, rather than to the true average luminance of the entire face of the lamp, 

including the darker parts. As would be expected, this effect was weaker when the viewing 

distance was greater, as if the lamps were closer to being point sources at greater distance. 

Although this experiment does not clearly define how differences in the distribution of 

luminance affect lamp performance, it does indicate that average luminance (total intensity 

divided by total area) is not enough to capture all that matters for lamp effectiveness. 

However, even if differences among lamps in uniformity of luminance were 

demonstrated to have substantial effects on lamp performance, it would probably not be a good 

idea to assume that the type of source used in a lamp (incandescent, LED, neon) reliably 

determines the degree of uniformity on the face of the lamp. For example, as individual LEDs 

become more powerful the optics that are used with them may become more similar ,to those 

used with incandescent bulbs, so that the face of a lamp made with LEDs would not necessarily 

show the discrete spots of light that are now often regarded as typical of LED lamps. If 
uniformity does emerge as a significant issue, it may be necessary to decide on a way of 

quantifying uniformity itself, independent of references to source type. 



2.5 Rise Time 

Several light sources-including LEDs, neon, and fast-rise incandescent bulbs (Sivak et 

al. 1994)-are inherently faster than conventional incandescent sources. Lamps using these 

sources may provide substantial savings in reaction time (Olson, 1987; Sivak et al., 1994). 

However, benefits in reaction time may or may not indicate benefits in conspicuity. 

Reductions in reaction time are clearly good, but reaction time is not the only quallty that 

is important for an effective signal. Reaction time is used in some studies as the main dependent 

variable to evaluate lamps, but it is not normally interpreted as simply a measure of response 

time. It is used to make inferences about more general properties of the stimuli, like conspicuity 

or the ability to attract attention. The differences in reaction time between fast-rise sources and 

standard incandescent bulbs should not necessarily be interpreted as demonstrating greater 

salience or greater general effectiveness of the fast-rise sources. For that comparison, the 

difference in reaction time should perhaps be interpreted more simply-as if the stimuli just 

appeared sooner rather than with greater conspicuity. If the reaction time advantage for fast-rise 

stimuli indicates simply earlier effective stimulus onset, rather than greater general stimulus 

effectiveness, then it is not clear how to trade off this benefit with other stimulus qualities. 

For example, should LED lamps be held to lower photometric standards because they 

produce faster responses? This might be reasonable, but it would have to be based on a rather 

complex assessment of overall system effectiveness. Thus, two signal lamps-one based on 

LEDs and one based on incandescent bulbs-might be considered equivalent when the LED 

lamp had lower intensity. Under many circumstances the LED lamp would produce faster 

reactions, but under some circumstances (e.g., a following driver who is not paying attention, fog 

dense enough to make detection distance critical) the greater intensity of the incandescent lamp 

might make it more effective. However the effects of such tradeoffs on overall safety are not 

easy to quantify. Without a definitive solution to that issue, the improved response time to LEDs 

(or other fast-rise sources) should be viewed as a real benefit, but a benefit that is indepe:ndent of 

other photometric aspects of the lamps. 



2.6 Summary 

Previous research suggests the following concerning the five issues introduced at the 

beginning of this section: 

1. Area, Intensity, and Luminance. The evidence is inconsistent. Reaction time studies 

indicate that intensity alone may be sufficient to ensure adequate signal quality, but other 

studies, using more subjective data, suggest that some adjustments in intensity need to be 

made for lamps with different areas. (Although even much of the subjective evidence 

indicates that performance is more closely related to intensity than luminance.) Given 

that the evidence is equivocal, it is difficult to recommend a change from the status quo, 

in which the primary emphasis is on intensity, but in which the influence of area is 

recognized by increasing intensity levels (less than proportionately) as area increases. In 

the next section of this report we present a new experiment, using reaction time, to try to 

provide a somewhat better resolution for this situation. 

2. Aspect Ratio. The evidence about the importance of aspect ratio is mixed as well: 

subjective evidence indicates that there is an effect of aspect ratio, but reaction time 

evidence is more negative. If there is a substantial effect of aspect ratio, it is probably 

that relatively high aspect ratios make lamps somewhat less effective when the lamps are 

relatively low intensity. Following the same logic used above-that equivocal evidence 

should not be used to recommend a change from the status quo-and considering that 

aspect ratio has not previously been used to modify intensity requirements, the con.clusion 

would be to continue not to recognize aspect ratio. However, it may be worth examining 

the issue more thoroughly, at least in the case of low intensity lamps (e.g., tail lamps). 

3. Spectral Power Distribution. The evidence that exists on differences in spectral power 

distribution (at least among red lamps) does not seem to show much of an effect. 

4. Luminance Unijormity. Luminance uniformity has not been thoroughly studied. It may 

have a slight effect, but in any case it should probably not be assumed to be linked to 

source types. If it does emerge as an important issue, a way of defining and quantifying 

luminance uniformity independent of references to sources would be useful. 

5.  Rise Time. h s e  time shows big advantages for certain sources, but it isn't clear how this 

time advantage should be traded off against other qualities that are part of the general 

performance of signal lamps, such as conspicuity or maximum detection distance. 

Although it is tangential to the purposes of this report, it is worth noting the differences 

concerning desirable photometry for signal lamps in the day and at night that appear in se:veral of 

the reviewed sources. In Figures 3 and 4, the results from Mortimer (1970), Schmidt-Clausen 



(1985), and Cole et al. (1977) all suggest that stop lamps should be more intense in the da.y than 

at night. In the case of Mortimer's study, the difference is particularly strong. Schmidt-Clausen's 

optimal intensities are relatively low (probably at least partly due to the fact that the study 

involved European drivers who were accustomed to less intense signal lamps than those used in 

the U.S.) but the ratios between night and day are still substantial. The possible practical benefits 

of different day and night intensity levels deserve further consideration. 



3.0 Reaction Time with Large-Area Lamps 

The purpose of this experiment was to make a particularly strong manipulation of the area 

of signal lamps and see whether reaction time would be affected. The evidence concerning the 

effects of area reviewed in the previous section was equivocal. Reaction time studies 

consistently led to the conclusion that area had no effect, and that intensity limits alone were 

adequate to insure lamp effectiveness. In contrast, studies using more subjective methods 

generally suggested that differences in area did matter, and that greater area had to be 

compensated for with at least somewhat greater intensity. (However, none of the results support 

limits strictly in terms of luminance.) What are the consequences of these results for the question 

of how standards that refer to "lighted sections" of signal lamps should be changed? This mixed 

set of results cannot be used to argue convincingly for a clear change from the status quo, such as 

simply dropping all reference to lighted sections (or area) and setting standards in terms of 

intensity alone. The logical consequence would seem to be that the spirit of the existing 

standards should be preserved (i.e., continue to recognize area, simply in a more generally 

applicable way than by reference to lighted sections). Our reasoning in devising the present new 

experiment was that it was the only type of study that might yield evidence for a more substantial 

change in standards, specifically, strong evidence that area was not of importance. If even a 

strong manipulation of area shows no effect, then there would be reason to change from current 

practice. Alternatively, if a strong manipulation of area results in an effect on reaction time then 

at least there would be one study using the relatively objective method of reaction time that 

supports the recognition of area in devising standards. 

We measured reaction time to red signal lamps of different areas that were matched in 

intensity. The difference in area was strengthened in several ways. First, we used a larger 

difference in nominal area than had been used in previous studies: 50 cm2 versus 500 cm2. 

Second, we were careful to make sure that the luminance on the faces of the lamps was uniform. 

It could be argued that nonuniformity makes the effective size of a lamp smaller than its nominal 

size, and the effective luminance higher than the average luminance over the entire nominal face 

of the lamp. For example, when an observer looks at the face of a lamp made with an 

incandescent bulb, there is typically a bright spot near the center of the lamp. If the observer is 

sensitive to that area of high luminance, he or she will be responding, in effect, to a smaller, 

higher-luminance lamp than that represented by the total intensity and area of the lamp. Third, 

we used a relatively short observation distance (15 m). The angle subtended by lamps 
presumably has an influence on whether or not the area matters. At extreme distances, that angle 

would be very small and the lamp would be a point source for all purposes, so that area could not 

have an effect on any aspect of how the observer perceives it. 



3.1 Method 

Participants. Twelve paid subjects participated in this study. There were six younger 

subjects (ranging from 19 to 33 years old, with an average age of 25.7), and six older subjects 

(ranging from 64 to 77 years old, with an average age of 71.5). Each age group had three males 

and three females. All subjects were licensed drivers. 

Experimental setup. The experiment was conducted outdoors, in the daytime. Figure 5 

shows the field setup used. The subject was seated in a car, facing directly north. The lamps 

were 15 m from the subject's eyes, to the left and right of a table that held power supplies and 

other equipment. The center table was hidden from the subject by a large white board that also 

had a visual fixation mark on it. The centers of the lamps were 1.31 m to either side of the 

fixation mark (so that, from the subject's point of view, they were 5 degrees of visual angle from 

the mark). Figure 6 shows the subject's view of the lamps. There were two lamps on either side 

of the fixation mark, one large and one small, one above the other. The visual fixation m.ark, as 

well as the midpoint of the vertical line between the centers of the two lamps on each side, were 

at the approximate seated eye height of the subject (1.1 m). 
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Figure 5. An overhead view of the field setup. The subject's vehicle faced directly north. The 
lamps were 15 m from the subject's eyes. 



Figure 6. The subject's view of the stimuli. The white rectangle in the middle of the setup was a 
board that served to hide power supplies and various other pieces of equipment. The small black 
dot on that rectangle was the visual fixation point. In this view the large lamps are m.ounted 
above the small lamps. Half of the subjects saw these vertical positions reversed (small above 
large). 

Experimental lamps. Four round lamps were constructed for the experiment. The face of 

each lamp consisted of a round, red lens centered in a square frame that was 30 cm on each side 

and flat black in color. Two of the lamps had large lenses (500 cm2) and two had small lenses 

(50 cm2), as detailed in Table 1. The lamps were designed to have relatively constant luminance 

within their illuminated areas. The construction of one of the 500-cm2 lamps is shown 

schematically in Figure 7. Each lamp consisted of a large, nonreflective enclosure, at one end of 

which was a round aperture, a collimating Fresnel lens, and a red spreading lens consisting of an 

array of square elements. The enclosures were sealed, but relatively large (54,000 cm3) so as not 

to concentrate heat. (During the experiment each lamp was on only intermittently, for periods of 

3 seconds or less, at average intervals of about 50 seconds.) The source for each lamp was a 

single 100 W, 12.8 V tungsten-halogen bulb, located at the focal point of the Fresnel lens. No 

reflectors were used within the lamps. In order to make the illumination of the lamp face 

relatively uniform from the center to the edge, the Fresnel lenses were selected to have relatively 

long focal lengths (7 cm for the 50-cm2 lamp and 20 cm2 for the 500-cm2 lamp). The square 

elements in the spreading lens were 6.35 rnm on each side. The faces of the lamps thus a.ppeared 

as arrays of bright images evenly spaced, 6.35 mrn apart vertically and horizontally. Because the 

subjects viewed the lamps at 15 m, the spacing between the bright images was only 1.45 minutes 

of visual angle and the individual images were difficult to resolve. From the subject's position, 

the lighting of the faces of the lamps appeared virtually continuous. 



Table 1 
Dimensions of the experimental lamps. There were two large lamps and two small lamps. The 

visual angles subtended by the diameters of the lamps are given for the distance at which the 
subjects observed them during the experiment (15 m). 

I 

*\ Tungsten-halogen bulb 

I 

Round aperture 

Fresnel lens 

Spreading lens 

Nominal size 

Small 

Large 

Figure 7. A schematic diagram of the construction of one of the 500-cm2 lamps. The 50-cm2 
lamps were the same except that the round apertures were smaller and the bulbs were located 
closer to the Fresnel lenses (because of their shorter focal length). 

Diameter (cm) 

8.0 

25.2 

Area (cm2) 

50 

500 

A Photo Research 1980A Pritchard Photometer was used to measure the luminance at 

various points within the faces of the lamps (the center, the outer edge, and halfway between the 

center and the outer edge) from the subject's point of view. The field of view for the photometer 

was set at 20 minutes of angle for the 500-cm2 lamps and 6 minutes of angle for the 50-cm2 

lamps. Several meridians across the faces of the lamps were measured. The results are shown in 

Figure 8. (Figure 8 also shows the falloff in brightness that would be expected from the cosines 

of the incident angles for rays from the bulbs to the centers and edges of the illuminated lamp 

faces. The falloff is roughly consistent with that expectation, with some further 1osse:s due to 

other mechanisms.) 

Visual angle at 15 m 

(degrees) 

0.30 

0.96 



I Large (actual) 

Small (cosine prediction) 

I 

Center 
I 

Halfway 
I 

Edge 

Location on Face of Lamp 

Figure 8. Falloff in luminance with distance from the centers of the faces of the lamps. 
Locations are at the center, halfway from the center to the edge, and at the edge. See text for 
details concerning the predicted and actual values. 

Because perceived brightness is a nonlinear function of luminance, corresponding 

approximately to the log of luminance, the perceived falloff in brightness is even more subtle 

than suggested by Figure 8. To casual inspection, the faces of the lamps appeared to be evenly 

bright, an observation consistent with the fact that the falloffs in luminance from the center to the 

edge (18% for the large lamps and 21% for the small lamps) were less than the 25% criterion that 

Huey, Dekker, and Lyons (1994) found to be a reasonable estimate of the minimum detectable 

difference in intensity between signal lamps that are viewed simultaneously. 

In order to produce a range of intensities with the same lamps, neutral density filters were 

used. These filters, which could be quickly attached or detached from the fronts of the lamps, 

had densities of 0.15 and 0.30. The lamps had varying numbers of lower-density neutral filters 

permanently attached to adjust the intensities of each of the lamps to 130 cd when no detachable 
neutral density filters were in place. The three intensities produced by the lamps are shown in 

Table 2. The CIE 193 1 chromaticity values for all combinations of lamps and filters were x = 
.66 and y = .33. 



Table 2. 
The three intensities produced by each of the lamps alone, or in combination with the detachable 

neutral density filters. 

The power supply for the lamps was set at 12.8 V and had a continuous current capacity 

of 36 A. The same power supply was used for all of the lamps (switched so that only one lamp 

was ever used at one time). The rise time for the 100-W bulbs was 375 ms from when they were 

energized to 90% of asymptotic intensity, The rise time was the same for all four :lamps. 

(Because of the high wattage bulbs, this is somewhat slower than for a typical stop lamp. For 

example, the brake filament of an 1157 bulb operated at 12.8 V takes 250 ms to reach 90% of its 

asymptotic intensity.) 

Filter 

None 

0.15 ND 

0.30 ND 

Ambient light. All sessions were run on two days, between the hours of 10:OO A.M and 

4:00 PM. The sky was virtually cloudless throughout the periods of data collection, but there 

was usually a light, high haze. Over the course of each day, the position of the sun (from the 

point of view of the lamps) varied from 47 degrees left (east) to 53 degrees right (west), and from 

22 to 38 degrees up. Vertical and horizontal lux measurements were taken before and after the 

data collection for each subject. The vertical measurement was made at the visual fixation point, 

between the two sets of lamps; the horizontal measurement was made at ground level, halfway 

between the subject's location and the visual fixation point. The means and standard deviations 

of those values are given in Table 3. 

Intensity (cd) 

130 

92 

65 

Table 3. 
Ambient illuminance measured before and after data collection for each subject. 

Orientation 

Vertical 

Horizontal 

Illuminance (lx) 

Mean 

64,500 

5 1,000 

Standard Deviation 

20,900 

14,100 



Procedure. Subjects were run individually. Data collection for each subject took about 

30 minutes, and each session took about an hour altogether, including instructions and 

debriefing. The presentation of stimuli and collection of responses was controlled by a 

computer. The subject was seated in a car throughout the experiment (see Figure 5). He or she 

was instructed to look at the fixation point between the right and left lamp positions (see Figure 

6). Their compliance with this instruction was not closely monitored, but because the potential 

stimuli were symmetrically arrayed around the fixation point it is not likely that there woulld be a 

net advantage in looking anywhere but at the fixation point. The subjects' task was to respond as 

quickly as possible whenever any of the four lamps came on. They responded by pressing one of 

two buttons on a small box that they held in their hands. If either of the two lamps on the left 

came on they were to push the left button, and if either of the two lamps on the right came on 

they were to push the right button. 

For each subject, 6 blocks of 16 trials were run. The filters that controlled the intensity of 

the lamps were changed between blocks. The same filter density was used for all four lamps 

within each block. The order of the filters was balanced across subjects. The 16 trials within 

each block corresponded to combinations of the 4 lamps and 4 intertrial intervals (the period 

from a response to the onset of the next stimulus). The intertrial intervals were 5, 10, 15, and 20 

seconds. The order of the 16 trials within each block was randomized. 

Reaction time for each trial was measured from the onset of voltage to the lamp u.ntil the 

subject pressed one of the two buttons. The lamp was turned off when the subject pushed a 

button. If the subject pressed the wrong button the trial was coded as an error. If a sub-ject did 

not respond within three seconds of the onset of voltage, the lamp was turned off and tihe trial 

was considered a miss. Any missed trials and error trials were repeated, randomly mixed with 

the remaining trials in a block. 



3.2 Results and Discussion 

The rate of trails without a correct response (misses and errors combined) was acceptably 

low at 2.75%. The range across subjects was 1% to 6%; the average for older subjects was 2.7% 

and the average for younger subjects was 2.8%. 

We performed an analysis of variance on reaction times for correct trials. (For this 

analysis, intensity was used as a three-level categorical variable, rather than a continuous 

variable.) There was a significant effect of age, with younger subjects responding faster overall 

(5 18 ms) than older subjects (63 1 ms), F(1,lO) = 1 1.19, p = .0074. The effects of sex, side (left 

or right), and vertical position (top or bottom) were not significant. Area had a significant effect, 

F(1,lO) = 114 .91 ,~  < .0001, with reaction times to the large lamps being longer (601 ms) than to 

the small lamps (547 ms). The main effect of intensity as a categorical variable was not 

significant, F(2,20) = 0.63, p = .54, but the interaction of area and intensity was highly 

significant, F(2,20) = 6.40, p = ,0082, using the Greenhouse-Geisser correction. That interaction 

is shown in Figure 9. The nature of the interaction appears to be that intensity variation within 

this range has little or no effect on reaction time to the small lamps, but that increasing intensity 

causes faster reactions to the large lamps. 

The data in Figure 9 can be used to generate a prediction about the intensity that the large 

lamps would have to have to yield reaction times as low as the small lamps. Assume that the 

reaction times for the three intensities of the small lamps are actually equal at the mean reaction 

time for small lamps, 547 ms. (The data in Figure 9 for the small lamps actually show a slight 

increase in reaction time for higher intensities, but it is statistically nonsignificant and not 

theoretically plausible.) Then fit a regression line to the reaction time data for the large lamps 

and extrapolate that line to higher intensities (rightward in Figure 9) until it reaches 547 ms. The 

equation of the regression line for large area is 

Setting y = 547 ms: 

Thus, a simple linear model for reaction time as a function of intensity for the largle lamps 

suggests that one of the large lamps would have to have an intensity of 208 cd to yield reaction 



times as short as one of the small lamps with any of the intensities used (from 65 to 130 cd). 

Using a linear extrapolation is likely to underestimate the intensity required, because the function 

relating reaction time to intensity for large lamps is Iikely to flatten out at higher intensities. 

Therefore 208 should be considered a minimum estimate of the intensity required to equate 

performance for the large and small lamps. This result is shown in Figure 10, in the same format 

as used earlier in this report to summarize the results of previous studies (Figures 3 and 4). In 

Figure 10 the small lamp is assumed to have an intensity of 80 cd (the legal minimum, and 

within the experimental range of 65 to 130 in which reaction time to the small lamp appears 

constant). 

---C-- Small 

- m 

I I I I I I 1 I 1 

50 60 70 80 90 100 110 120 130 140 150 

Intensity (cd) 

Figure 9. Reaction time as a function of intensity for the large and small lamps. 



Area (cm2) 

Figure 10. Results derived from the new reaction time data, shown in the same format as the 
previous results displayed in Figures 3 and 4. The new data suggest that reaction time would be 
the same for a lamp with minimum area and intensity (50-cm2 and 80 cd) and a 500-cm2 lamp 
with an intensity of 208 cd. See text for details. 



3.3 Summary 

These results indicate that area does affect reaction time, at least when the manipulation 

of area is strong enough. Although the manipulation of area used here was very strong, it was 

not entirely beyond plausible limits for real signal lamps. Also, the effect obtained here was 

surprisingly large, given the consistent negative findings in past studies. (In this study the large 

lamp would have to have an intensity of 208 cd to match the small lamp at an intensity as low as 

65 cd.) It is not clear how to explain the discrepancy between these reaction time results. There 

is a large gap between the areas for which there are results from previous reaction time studies 

(see Figure 4) and the large area used here (500 cm2). It also may be important that the stimuli 

here had unusually uniform luminance, so that the light was spread as evenly as possible across 

the entire nominal area of the lamps. If some lamps with nominally large areas in previous 

studies had local bright spots, they may have functioned as smaller, higher-luminance lamps. 

The results of this experiment do not fully resolve the inconsistencies in experimental 

effects of intensity, area, and luminance that were described in Section 2 of this report, but they 

add weight to the argument that standards should in some way continue to recognize the role of 

area in determining the effectiveness of lamps. 



4.0 Conclusions 

In light of what is known from previous studies and from the new data reported here, how 

should the photometric requirements that are currently based on number of lighted sections be 

updated to be compatible with new light sources? In this section we consider a number of 

alternatives and make a tentative recommendation. 

4.1 Alternatives for Photometry 

Lighted sections. The current use of lighted sections in SAE documents and in FMVSS 

108 was decided upon at a time when the only light sources being used for signal lamps were 

incandescent bulbs of a certain range of candlepower. It cannot be applied to the variety of light 

sources that may be used in signal lamps in the future in a way that is meaningful for the visual 

appearance of the lamps. For example, a lamp made with a large number of LEDs may have the 

same visual appearance as a lamp made with a single incandescent bulb, but currently the 

incandescent lamp would be considered to have a single lighted section whereas the LED lamp 

would be considered to have "three or more" lighted sections. 

Point source (intensity alone). Intensity is clearly the most important single characteristic 

of signal lamps, and the idea of setting standards in terms of intensity alone has great appeal. It 

would be simple and flexible. However, a variety of results from previous studies, as well as the 

new reaction time data reported here, suggest that intensity alone is not enough to determine 

signal-lamp performance. It seems likely that some control of area, or some adjustment of 

intensity requirements for different areas, is needed. 

Spacing. Lighted sections could be defined in terms of spacing of more basic units, with 

spacing defined either as separation between the centers of light sources or between the adjacent 

edges of light-emitting surfaces. Without regard to how many light sources are involved, a lamp 

could be considered to consist of only one lighted section if the spacing between all of its 

adjacent elements was within some limit (e.g., 2 cm between the centers of light sources). The 

main problem with such a proposal is that it would allow lamps with very large areas to be 

considered one-section lamps. And, as mentioned above, the available evidence suggests that 

area does affect the perception of signal lamps to some extent. 

Luminous flux. Because each lighted section was expected to have a single incandescent 
bulb, the old lighted-section limits could be made more flexible by translating them into 

luminous flux limits that correspond approximately to single bulbs. Suppose that each. lighted 

section is expected to have a single bulb with a luminous flux of about 400 lumens. Lamps with 

total source flux of up to 400 lumens would be considered one-section lamps; lamps with total 



flux of 410 to 800 would be considered two-section lamps; and lamps with total flux over 800 

lumens would be considered three-section lamps. Thus, a lamp might have a large number of 

LEDs, but if their total flux was within the 400 lumens considered typical of a single bulb, the 

lamp would only have to meet the intensity requirements for a one-section lamp. One technical 

issue that this raises is that the important value is not total flux from the source itself, but the 

light that would be expected to pass through a colored filter. In order to be functionally 

equivalent, the flux value for LEDs would have to be adjusted downward because they do not 

necessarily have to be filtered to produce a colored signal. In addition to this difference in what 

might be called intentional light loss due to filtering, there might be characteristic differences 

between sources in unintentional losses within the lamp. The amount of light that can be 

usefully directed to the eyes of an observer, given reasonable assumptions about lamp optics, is 

the critical value for vision; therefore it would make sense to adjust the flux values for any 

characteristic differences between sources in the proportion of the total flux that is likely to 

contribute to useful signal light. These issues could be dealt with, but perhaps the main 

argument against the use of total luminous flux to substitute for the older reference to lighted 

sections is that luminous flux is not directly connected to human visual considerations. 

Maximum linear extent. SAE 51 889 currently applies the lighted-section requirements to 

LED signal lamps by assigning to such lamps an equivalent number of lighted sections in terms 

of their maximum horizontal or vertical linear extent. If that value is less than or equal to 150 

mm the lamp is considered to have one lighted section, if it is from 151 to 300 mm it is 

considered to have two lighted sections, and if it is 301 mm or more the lamp is considlered to 

have three lighted sections. The rationale for this is that " 150 rnrn per lighted section represents 

a typical large lighted section in present incandescent lighting device designs" (SAE,, 1993, 

rationale section 4.1.5.1). Although it is not explicit in the rationale, the use of a maximum 

linear extent-rather than an equivalent area-means that some limitation is placed on aspect 

ratio as well as area. A very long, thin lamp might not exceed an area limit chosen to correspond 

to a single lighted section even if its maximum linear dimension was much greater t,han the 

150 mm maximum linear dimension. However, the existing evidence does not seem to justify 

limits on aspect ratio, at least for higher intensity lamps such as stop lamps. Also, the use of 

maximum linear dimension does not directly address area, which seems to be more innportant 

than aspect ratio. For example, a square lamp 29 cm on each side would have an area of 841 

cm2, but would be considered only a two-section lamp. Alternatively, a long, thin lamp 31 cm 
wide and 1.6 cm high would have an area of only 50 cm2, but would be considered a three- 

section lamp. 

Area. References to lighted sections could be translated into equivalent areas by adopting 
an area corresponding to a single lighted section. Such a solution would recognize the role of 



area in signal effectiveness, but could be applied to any source technology. It would not limit 

aspect ratio, but current evidence indicates that, within broad limits, aspect ratio is not a major 

influence on lamp performance. 

4.2 Recommendations 

We suggest that the current references to lighted sections in specifying photometric limits 

for signal lamps be translated to area-based limits by adopting an area that  correspond.^ to a 

single lighted section. Several ways of selecting such an area could be proposed. We would 

argue that the value should be somewhere toward the high end of the range of areas for single 

sections, since it is meant to represent the border between one and two sections rather than a 

typical or average value for one section. One candidate is the square of the value adopted in 

SAE 51889 for the maximum linear extent of a single section: 15 cm squared, or 225 cm2. In 

SAE 51889 15 cm is claimed to represent the maximum linear extent of a "typical large lighted 

section." However, it could be argued that it is not appropriate to square 15 cm, since that value 

is meant to represent the maximum horizontal or vertical dimension of a lamp that is not 

necessarily square. For most lamps, it could be argued, the other dimension would be 

substantially less than 15 cm. However, squaring 15 cm is in keeping with the philosophy of 

adopting a limit toward the high end of the one-section range. Additionally, some support for 

using an area of 225 cm2 comes from a survey of 40 stop lamps (Sivak et al., 1986). That study 

found that the average area of single sections was 137 cm2, with a standard deviation of '73 cm2. 

As shown in Table 4, 225 cm2 falls between the 85th and 90th percentiles of that distribution. 

Although any exact choice of percentile would be somewhat arbitrary, this is at least in a 

reasonable range. The Sivak et al. sample is not necessarily definitive. It covered passenger cars 

from model years 1974 to 1984, and may not be representative of more recent vehicles. 

However, it could be argued that in order to best preserve the intent of the existing lighted- 

section requirements, a representative area should be based on vehicles that were typical at the 

time those requirements were developed (the 1960s), and that the Sivak et al. sample is at least 

close to that era. 

Whatever value might be selected to represent the area of a single lighted sect;ion, the 

existing research suggests that it should be used to simply translate the existing lighted-section- 

based photometric limits. Thus (assuming the 225 cm2 value), a signal lamp with an area of 

225 cm2 or less would be considered a one-section lamp, a lamp with an area of 226 to 450 cm2 

would be considered a two-section lamp, and a lamp with an area of 45 1 cm2 or greater would be 

considered a three-section lamp. 



Table 4 
Areas corresponding to various percentiles of the distribution of stop lamp single sections in the 

study by Sivak et al. (1986). 

I Percentile I Area (cm2) I 

Several related topics are deserving of further research. There is some evidence that high 

aspect ratios may decrease the effectiveness of low-intensity signals, such as tail lamps. 

Although the current evidence is not strong enough to recommend adjusting intensity levels on 

the basis of aspect ratio, it suggests that the situation should be evaluated further. 

The nominal area of a lamp may often be larger than the true effective area of the lamp if 

the luminance across the face of the lamp is markedly uneven. This discrepancy is one possible 

explanation for the difference between the new findings described in this report concerning the 

effects of area on reaction time and previous reaction time findings. Further research should be 

done to clarify the importance of luminance uniformity. 

Several of the studies reported here have suggested that it might be beneficial to use 

different signal-lamp intensities for day and night (Mortimer, 1970; Schmidt-Clausen, 1985; 

Cole et al., 1977). Considering the innovative light sources that are becoming available for 

signal lamps, this may be a good time to reexamine the feasibility and possible benefits of this 

relatively old proposal. 
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