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CHAPTER 1

INTRODUCTION

Monte Carlo simulations for particle transport calculations are often used to 

estimate integral quantities—scalar flux, total current, etc.—averaged over a volume or 

surface o f interest. In cases where a higher level o f detail is desired, such as the detailed 

angular or spatial distribution of the neutron flux in a region, Monte Carlo techniques 

face several challenges. The traditional approach for obtaining “detailed” solutions with 

Monte Carlo simulations has been to simply divide the phase space into bins and 

calculate an average over each bin, resulting in a histogram style distribution. This 

approach, however, can lead to large uncertainties in the estimated distribution if many 

bins are used in the histogram.

An alternative, less well-known, approach is to use a Monte Carlo simulation to 

estimate the functional expansion coefficients o f the true distribution with respect to 

some set o f (usually orthogonal) basis functions. The set of estimated expansion 

coefficients can then be used to construct a continuous functional approximation o f the 

distribution o f interest. This technique, referred to as the “functional expansion 

technique” or “functional expansion tally” (FET) offers several benefits over 

conventional histogram-style or mesh-style Monte Carlo tallies. The main advantage of 

this approach is that every score in the region contributes to every expansion coefficient

1
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in that region, yielding information regarding the shape of the phase space quantity as 

well as its average value that is obtained with simple binning.

This introductory chapter presents an introduction to the Monte Carlo method and 

various types of traditional tallies that have been developed for Monte Carlo simulations. 

In addition, a review of previous research in functional expansion tallies is presented 

along with a detailed overview of the present work.

1.1. The Monte Carlo Method

Monte Carlo simulations are fundamentally nothing more than a stochastic 

numerical experiment^. In order to solve a particular problem with Monte Carlo 

methods the user must set up and run a simulation o f the physical system under 

consideration. If the simulation accurately recreates the behavior o f the system, then the 

results of the simulation will be an estimate o f the expected outcome for the system. 

However, as with any experiment, a Monte Carlo simulation must be set up correctly to 

produce meaningful results. A simulation that neglects physical processes or collects 

insufficient data for statistical analysis will likely produce incorrect or even unphysical 

results.

One o f the greatest benefits o f Monte Carlo simulation as compared to other 

computational methods is the increased level of flexibility that it offers. Users have 

complete control over how the simulation is set up and ran, the level o f geometric detail 

to be included, and even the ability to include physical interactions that may be difficult 

(or impossible) to formulate analytically.

2
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For these reasons, Monte Carlo methods have become extremely popular for 

particle transport calculations, especially for reactor and shielding design work in the 

field of nuclear engineering. The ability to quickly create and analyze detailed models 

has particular appeal in design groups where engineers may wish to perform calculations 

on many different designs for scoping and comparative purposes. In these cases Monte 

Carlo methods have the potential to streamline the multi-step process required when 

deterministic codes are used.

1.1.1. Monte Carlo for Reactor Analysis and Design

Reactor analysis using deterministic solution methods typically require a series of 

calculations to be performed in sequence. A series o f pin-cell or assembly level transport 

calculations are necessary to produce group-collapsed homogenized cross sections that 

can then be input into a nodal diffusion code. Today, this process of generating and using 

homogenized cross sections is still as much an art form as an exact science. Many 

reactor analysis groups have even developed their own ad-hoc cross section correction 

factors to produce better results from the nodal diffusion code. Often these correction 

factors are not based on first principle derivations, but are rather empirical “fudge 

factors” . In addition to the burden o f cross section homogenization routines, 

deterministic particle transport methods typically require that any design under 

consideration must be “meshed”, or converted from the design drawings into a suitable 

solution grid for the method being employed. During the “meshing” process many small 

geometric details that cannot be well represented due to the restrictions o f the solution 

grid (e.g. modeling curved surfaces with a quadrilateral grid) are lost.

3
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Reactor analysis calculations using Monte Carlo methods are much more 

straightforward. First, the problem geometry is defined in the Monte Carlo code, using as 

much or as little detail as desired. Many design groups are working to combine their 

Monte Carlo geometry input routines with existing CAD systems so that Monte Carlo 

simulations can be run directly from the design drawings. After the geometry has been 

input into the code and an initial source distribution has been defined, the simulation is 

ready to run. There is no need to perform auxiliary calculations to collapse cross sections 

or calculate homogenization constants. Although Monte Carlo calculations generally 

require more computing time than similarly converged deterministic calculations, the 

reduced overhead costs for the Monte Carlo geometry input partly compensates for the 

extra run time. Furthermore, Monte Carlo simulations can be easily divided among 

multiple processors to expedite large runs. The suitability of Monte Carlo for parallel 

processing has become more important and relevant as more and more supercomputer 

facilities have moved towards massively parallel computer clusters rather than traditional 

vector supercomputers.

In light o f the popularity o f Monte Carlo among reactor and shielding designers, 

this thesis will approach Monte Carlo simulations from a particle transport point o f view. 

The applicability o f the methods presented, however, are not limited to particle transport 

and will apply equally well to other types of Monte Carlo simulations.

1.1.2. Particle Transport by Monte Carlo Simulation

The behavior o f particles moving freely in a region o f space is governed by the 

Boltzmann equation(2). Traditionally, particle distributions within a region o f interest

4
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have been obtained by numerically solving the linear Boltzmann equation subject to 

suitable boundary conditions. Most numerical schemes attempt to solve these equations 

by discretizing the phase space and creating a system o f algebraic equations that can be 

solved iteratively*3*.

Monte Carlo methods approach particle transport problems in a completely 

different way. Instead of writing down and numerically solving an equation for the 

particle density at all points in the phase space, forward Monte Carlo simulations attempt 

to recreate a physical system and transport particles through it. The result is a series of 

stochastic particle trajectories that could occur in the system. Once a statistically 

significant number o f tracks have been generated, it is possible to make inferences about 

the average number of particles passing through a given region o f phase space or the 

probability o f a particle undergoing a certain event. A solution from a Monte Carlo 

simulation is actually an estimate, based on a finite number of realizations, of the 

expected behavior for particles in the system. Because these estimates are made from a 

randomly selected set of particle tracks, their values will change whenever a different set 

of tracks are chosen. Thus the solutions from a Monte Carlo simulation are stochastic. 

This result is not surprising, considering that particle transport is itself a stochastic 

process.

Although Monte Carlo methods can be mathematically derived*-4-* from the integral 

or integro-differential forms o f the Boltzmann equation, such a tedious approach is not 

required. Monte Carlo methods can also be derived by treating each particle history as an 

independent Markov chain*5’6*. In a Markov process, the future behavior of a particle 

depends only on its present location in phase space*7*. This property greatly simplifies

5
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the computational effort required to track a particle during its random walk. At each 

simulated event, the exiting state o f the particle is determined by randomly sampling a 

probability density function that describes the relative likelihood of all possible outcomes 

from the event. After a particle’s exiting state has been determined, the distance to the 

next event is randomly sampled based on the material properties at the particle’s current 

position. The particle is then moved to the next event, and the process is repeated until 

the particle is absorbed or otherwise removed from the system. As long as each decision 

in a single history is made from an accurate distribution function, a realistic particle track 

will be generated.

The preceding discussion demonstrates that a particle history can be replicated by 

simulating the physics at each interaction, without even referring to the Boltzmann 

equation. Deriving a Monte Carlo algorithm without using the Boltzmann equation 

serves to illustrate an important point: Monte Carlo simulations are not a method for 

directly solving the Boltzmann equation. Monte Carlo methods seek to calculate the 

expected ensemble particle behavior by calculating averages based on finite sets of 

particle tracks. The Boltzmann equation, on the other hand, is an analytic description for 

the expected ensemble particle behavior. The two methods are very closely related (the 

Boltzmann equation can be derived from the forward Chapman-Kolmogorov equation, 

which is used in formulating Markov processes^6,7-*) and both will eventually converge to 

the same solution. In practice, however, the two methods give different types of results. 

A solution to the Boltzmann equation gives the expected particle density for every point 

in phase space, while Monte Carlo solutions typically give only the average or integral 

density over a volume o f phase space. However, in practice, numerical solutions to the

6
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Boltzmann equation produced with finite difference techniques give average flux values 

over some solution mesh. Only more advanced solution methods, such as the finite 

element method (FEM), are able to provide detailed flux resolution within a solution 

mesh element. In a sense, the motivation for developing the FET for Monte Carlo 

calculations closely parallels the motivation for developing the FEM for deterministic 

calculations.

While the Monte Carlo method differs significantly from deterministic methods, 

all Monte Carlo codes themselves look essentially the same. Monte Carlo transport codes 

contain three basic components: random sampling routines, particle tracking routines, and 

tally routines.

The random sampling routines form the basis for the entire Monte Carlo process. 

These routines are used for generating samples from a given probability distribution. 

Because particle transport is a complicated physical phenomenon, a typical Monte Carlo 

code may require the ability to sample from dozens of different probability distributions. 

For example, isotropic scattering events are represented by a uniform distribution in 

exiting angle, while the free flight distance for a particle is governed by an exponential 

distribution. Most random number generators produce samples taken from a uniform 

distribution on the range [0,1). A mathematical transformation is then required to convert 

the uniformly distributed samples into samples from the desired distribution. Many 

different techniques and transformations have been developed to sample from many types 

of distributions^.

The particle tracking routines govern the behavior o f individual particles during 

the simulation. For every event in a particle’s life these routines must: a) identify the

7
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current location in phase space, b) look up the material properties for that location, and c) 

determine the next action for the particle based on the material properties and geometry.

Representing the model geometry and determining a particle’s current (and 

future) location in that geometry is the largest part o f the particle tracking routines. Most 

Monte Carlo codes divide the full geometry into subregions called “cells”. Each cell is 

assigned a material composition and a density, and the properties of the cell are typically 

assumed to be constant throughout. Each time a particle moves in space during the 

simulation the Monte Carlo code must determine whether the particle will undergo a 

collision before it exits the current cell. If a model is divided into many small cells the 

Monte Carlo code will be forced to spend a lot o f extra time calculating the distances to 

cell boundaries. It is therefore preferable to create a model that uses the fewest number 

of cells possible. For user convenience, many Monte Carlo codes use combinatorial 

geometry techniques to represent their models*9*. In a combinatorial geometry 

representation any arbitrary shape is defined as the union or intersection o f basic 

geometric figures (e.g. cubes, spheres, cones). This representation allows curved surfaces 

to be modeled exactly and, in most cases, provides for simple and straight-forward 

geometry input.

In addition to the mechanics o f storing and accessing the problem geometry, the 

particle tracking routines must also simulate the behavior o f a particle as it interacts with 

its surroundings. Simulating each interaction is a multi-step process; the code must 

establish that an interaction has occurred, select which type of reaction occurred, and 

finally, determine the exiting state o f the particle following that reaction. Each o f these 

decisions is made by randomly sampling from a probability distribution function that

8
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characterizes the appropriate physical process. Some of these probability distributions 

can be derived from theory, but much of the data comes from experimental results 

collected at physics institutions around the world. Large data sets o f these empirical 

distributions for different types of reactions are widely available (e.g. ENDF/B, JEF). 

These data sets typically contain reaction probabilities evaluated for a wide range of 

energies (10'5eV -  20MeV for ENDF/B neutron data(2)). Data o f this type is usually 

referred to as “continuous-energy” data because it has not been collapsed or averaged 

over coarse energy bins. The ability o f Monte Carlo codes to use this raw continuous- 

energy data is often cited as a major advantage over deterministic codes.

In the purest form of Monte Carlo, analog simulation, individual particles are 

made to mimic true physical behavior as closely as possible. In fact, analog simulations 

are the closest realization to an actual numerical transport experiment. Unfortunately, in 

all but the very smallest problems, direct analog simulation is not feasible. It simply 

takes too much computer time to run enough particles to obtain good results. In order to 

achieve satisfactory results in a reasonable amount of computing time, many different 

non-analog simulation schemes have been developed. In non-analog simulations some 

non-physical particle behaviors are allowed in order to accelerate statistical convergence 

of the results. If these schemes are designed properly, then they will be unbiased, 

meaning that the final results o f  the non-analog simulation will converge to the same 

results as a corresponding analog simulation.

The most commonly used non-analog scheme is referred to as “implicit capture.” 

In a simulation using implicit capture each particle is assigned a weight of 1.0 at its birth. 

At each collision, the code forces the particle to scatter but reduces the particle’s weight

9
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by the probability that absorption would have occurred instead at that event. When the 

weight o f a particle drops below a preset threshold then the particle is removed from the 

system. The benefit o f implicit capture is that, by preventing absorption, particles survive 

longer in the simulation and are able to contribute more information to the tally results. 

However, the results of the simulation remain valid because the particle weight is 

adjusted at each collision, making implicit capture an unbiased scheme. Other common 

non-analog schemes include source biasing, scattering angle biasing, density biasing, 

Russian Roulette, adjoint biasing, delta scattering, and correlated sampling(i0).

The random sampling and particle transport routines in a Monte Carlo code deal 

with transporting individual particles through the model geometry. The tally routines, on 

the other hand, collect aggregate data from all o f the particle histories to estimate the 

expected particle behavior. Monte Carlo tallies are fundamentally nothing more than a 

counting experiment. Every time a particular event (e.g. collision, fission, crossing a 

surface, etc.) occurs during a particle history a “score” is recorded to a corresponding 

tally. After the simulation has finished, the probability o f each event type can be 

computed directly as the number o f event scores divided by the total number of particles 

run. Depending on the type o f particle event that results in a score, and the value o f each 

score, tallies can be used to estimate many different quantities o f interest in particle 

transport. Common estimators include average flux in a cell, current integrated over a 

surface, and energy deposition in a cell(9). Some o f these tallies are literally as 

straightforward as calculating an arithmetic mean, while others require considerable 

effort to demonstrate that they are an unbiased estimator for the quantity o f interest. A

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



detailed overview and derivation of the most common and useful types of tallies is 

presented in the next section.

Monte Carlo tallies are statistical estimators^1’12-*, meaning that each tally is a 

formula for making an estimate of an unknown quantity based on a random sample of 

particle tracks. Since tallies represent a statistical estimate o f the true answer, it is also 

possible to calculate the statistical variance or uncertainty o f the estimate. The ability to 

estimate the uncertainty o f a solution is another major benefit of Monte Carlo methods. 

As the number of particles run during a simulation is increased, the variance of the tallies 

in the problem will decrease, resulting in a more accurate solution. In the limit o f an 

infinite number o f particles, an unbiased estimator will converge to the true solution, 

which is the exact solution of the Boltzmann equation for the system.

The statistical nature of Monte Carlo tallies can also have drawbacks. 

Complicated systems often require large number of histories to reduce the solution 

uncertainty to acceptable levels. Furthermore, if  any regions o f a problem are under

sampled (i.e. not enough particles pass through the region), it is possible to produce 

biases in the results. As noted previously in this section, a variety of non-analog 

techniques have been developed to reduce the solution variance while minimizing the 

number of histories that need to be run.

1.2. Traditional Monte Carlo Tallies

Monte Carlo methods are often touted as being computationally simpler than 

deterministic methods for particle transport applications^. While it is undoubtedly 

simpler to simulate the physics o f individual particles rather than solve the Boltzmann

1 1
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equation directly, collecting the information from individual particle histories into useful 

and physically meaningful results can be a challenging task. The development of 

unbiased Monte Carlo estimators has been ongoing for the past 50 years. In their review 

of Monte Carlo methods, Carter and Cashwell(6) cite four basic types o f estimators: the 

collision estimator, the last-event estimator, the track length estimator, and the next-event 

(point-detector) estimator. These four basic types can be further condensed into two 

classes o f estimators: discrete event estimators and track length estimators.

Discrete event estimators, which include collision, last-event, and next-event 

estimators, only score when a particle undergoes a certain type o f event during its random 

walk. The track length estimator is different because it allows a particle to contribute to 

the estimator continuously while the particle is in the tally region. These two classes of 

estimators are related to each other. In 1966, Spanier(,3) proved that both collision and 

track length estimators are limiting forms o f a non-analog Monte Carlo technique referred 

to as delta-scattering.

In this section, a brief review of the mathematical underpinnings of Monte Carlo 

tallies is presented, along with derivations for several commonly used discrete event and 

track length estimators.

1.2.1. Notation and General Concepts

The foundations o f Monte Carlo methods are based on the theories of random 

variables and stochastic processes. These fields o f mathematics are far too broad to 

review in detail, so only a brief introduction will be given in this thesis. Specifically, this 

section will focus on techniques used to derive Monte Carlo tallies and analyze their

12
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mathematical properties. For further information on the general theory and applications

reference for the field.

When working with random processes or random variables, it is extremely 

important to have a consistent and well defined system o f notation. Although the 

underlying concepts are often not difficult, there are many subtleties that can lead to 

confusion if they are treated in a less-than-rigorous way. Unfortunately, there is no 

generally accepted notation in the field. In this work, a notation similar to that used by 

Hammersly and Handscomb^1̂  has been adopted. In this notation bold, non-italicized, 

characters (e.g. x )  are used to represent random variables. A random variable is a 

function that associates a real number (or a vector o f numbers(11)) to every unique 

outcome from a random experiment. Each time the random experiment is run, the 

random variable is “evaluated” and returns a number that describes the outcome. Each 

value produced in this way is referred to as a “realization” o f the random variable, and is 

represented by the random variable symbol in non-bold, italicized font with a hat symbol 

above it (e.g. x is a realization o f the random variable x ).

The probability that a single realization o f a random variable will take on a 

specific value (or fall between a range of values in the continuous case) is governed by 

the parent distribution o f the random variable, denoted p ( x ) for the random variable x . 

Since the random variable is directly related to a probability density function, it makes 

sense to talk about the expected value o f the random variable,

of random processes, the text by Papoulis,7') is widely considered to be the definitive

( 1 .1 )

13
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The expectation operator is usually expressed as E[  ] ,  but it is also written as angle 

brackets ( ) in chapter 3 where the E notation becomes too cumbersome. Applying the

expectation operator to a random variable yields a single number called the expected 

value. In this notation the expected value is denoted by the random variable symbol in 

non-bold, italicized font with a bar symbol above it (e.g. x is the expected value o f the 

random variable x ).

When dealing with Monte Carlo tallies it is especially important to distinguish 

between a random variable and a realization o f the random variable. A random variable 

describes a random experiment and all of its possible outcomes; while a realization is an 

outcome from one trial of that specific experiment. The expectation operator provides a 

bridge between the two concepts, as discussed later in this section. To help maintain 

clarity, the above notations for random variables will be used consistently throughout the 

work. Any other variables or symbols that are introduced into the text will be explained 

immediately following their first appearance.

With the general random variable notation established, it is possible to introduce 

some specific notation to describe a particle during its random walk. In this thesis 

individual particle histories are identified by the index i . Events (collision, absorption, 

cell boundary encounter, etc.) in a particle’s life are identified sequentially by the index 

c . Values of c can range from 0, the birth event for the particle, to C ,, the event that 

terminates history i . The phase location o f particle i during event c is given by the 

seven-dimensional vector gic = (x,y , z ,0, tp,E, t ) i c . The sequence o f events that occur 

during the life o f a single particle is a Markov chain*-7-1, denoted

14
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i — I .) -  <L2>

Every simulated particle history produces a Markov chain E, . Each of these chains is an 

independent realization o f the random variable %, which is governed by a parent 

distribution, p { g ) , that describes the relative likelihood o f all possible Markov chains^ 'l 

Monte Carlo tallies are functions that operate on a finite set o f Markov chain 

realizations, <£. > , and produce an estimate for some unknown parameter, t,  o f the

distribution p{E,). All Monte Carlo tallies can be written in the general form

t'.3)

where t is the estimate for t produced by the set of particle histories J , and st{ ) is

the “tally” or “scoring” function. The scoring function is responsible for extracting 

selected information from the collection of particle histories. The notion o f t being an 

estimate for some unspecified parameter t o f the distribution p(£)  is deliberately left 

vague. The distribution p(£)  theoretically describes all particle behaviors that are 

physically possible in the system. Because it contains all of the relevant information, it is 

hypothetically possible to express any quantity of interest as a parameter of p(E,') . The 

difficulty in developing new tallies lies in finding a suitable scoring function that gives an 

unbiased estimate for the parameter o f interest.

The value o f t in Eq. (1.3) depends on the specific set o f particle histories

IE. > used in the calculation. If  the simulation is rerun and a different set of
I '

independent histories are used then the value of i  will change. Since its value changes

15
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with every different set of realizations of the random variable t,, it is clear that t is itself

a realization of some random variable t . In conventional terminology*12* the random

variable t  is referred to as a statistic, and t (a single realization of the random variable)

is referred to as a point estimate o f the parameter t . The statistic t  is said to be an 

unbiased estimator*12* o f t if

Mathematically proving that an estimator is unbiased allows a user to have confidence in 

the results generated from a Monte Carlo code.

Equation (1.3) provides a general form that applies to all Monte Carlo tallies. 

Most estimators, however, are fundamentally based on the arithmetic mean. Each history 

contributes a score to the tally and, after all histories have been run, the total score is 

divided by the number o f independent histories to yield an average score per particle. 

Tallies that are based on an arithmetic mean taken over the sample of independent 

particle histories can be written in the form

where i  is the estimator, N  is the total number of particles run during the simulation,

unbiased estimator for a parameter t , the scoring function s- must itself be a point

estimate of the parameter t due to the random walk of particle i . To prove this, we take 

the expected value o f both sides o f Eq. (1.5),

t -  2?[t] = t . (1.4)

(1.5)

and s £ is the scoring function. From (1.5) it can be shown that in order for t to be an

N

( 1.6)
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Noting that the expected value of a single realization is the same as the expected value of

This straightforward result implies that for each independent random walk, the evaluated 

function s^(£) must be a realization o f the parameter t for the single particle i . As an

system. In this case, Eq. (1.8) implies that the term must be equal to the flux

generated by particle i during its random walk. This result greatly simplifies the process 

of deriving and computing tallies. As long as the histories are statistically independent, 

the scoring function is simply a point estimator for the parameter o f interest due to a 

single history.

In Eq. (1.5), the general form for a tally was written as the arithmetic mean o f a 

scoring function applied to the complete Markov chains that describe individual particle 

histories. However, for discrete event estimators the scoring function s- (Q  is often a

function of only the most recent particle event, and does not depend on any previous 

events in the chain. In these cases Eq. (1.5) can be written as

the associated random variable1'12̂  and using independence o f the histories, Eq. (1.6) can 

be simplified to yield

(1.7)

Applying the definition o f an unbiased estimator from Eq. (1.4) shows that

(1.8)

example, we consider a tally t that is an estimator for the expected average flux in the

(1.9)
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where the variable c is an index over the sequential events in a particle’s history. Note 

that the inner summation takes into account the fact that a particle can score multiple 

times to the same tally during its lifetime. Equation (1.9) does not apply to track length 

tallies or tallies that use cell, surface or source flagging (i.e. tallies that only score 

contributions from particles that were born in or passed through a predefined region of 

the problem(9)). These types of tallies all require information about the past behavior of 

the particle.

The purpose in showing these general forms for Monte Carlo estimators (Eqs. 

(1.3), (1.5), and (1.9)) is to provide some insight into the development of new tallies. 

Also, it is possible to prove many general properties of tallies based only on these 

abstract forms. These properties can then be applied directly to any tally that can be 

written in the general forms shown above. A few o f these general properties are derived 

in the following subsections.

1.2.2. Tally Variance and the Central Limit Theorem

All effective Monte Carlo tallies combine multiple observations to produce a 

single estimate for a parameter of interest. Since this estimate is produced from a finite 

set o f random samples, there will be some degree of statistical uncertainty in the results. 

This uncertainty means that an unbiased estimator t will not produce the true value of 

the parameter t based on a finite number of samples. The magnitude o f the statistical 

uncertainty in an estimate can be approximated by measuring the spread o f observed 

values about the expected result.

18
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The variance o f a random variable x , denoted the average square-distance

of all realizations x from the expected value x . Mathematically, the variance (in one 

dimension) is defined as

By using the definition for expected value in Eq. (1.1), the variance can also be expressed 

as an integral over the distribution p ( x ) ,

Equations (1.10) and (1.11) give the true variance for the random variable x , but they 

require knowledge of the distribution p ( x ) . Unfortunately, the distribution p(x)  is an 

unknown quantity in particle transport applications, and Eq. (1.11) cannot be applied 

directly to calculate the variance.

In order to estimate the variance o f x , an unbiased estimator is needed that can be 

calculated directly from a set o f independent random samples taken from x . This 

estimator, referred to as the sample variance, is denoted a \  and is given by the formula

The “double-hat” notation used in Eq. (1.12) and (1.13) is consistent with the notation 

scheme outlined in the previous section, but it requires some explanation for clarity. We 

recall that xt is a single realization from the random variable x . With this notation the

( 1.10)

( 1.12)

where x is the estimator for x ,

(1.13)
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quantity x is a single realization from a random variable i , which is defined by Eq.

(1.13). The properties of the random variable i  will be outlined in detail later. The

realizations x and x can be easily confused because both are unbiased estimators for x . 

In order to show that they are the same let N  - I  in Eq. (1.13). The difference between

the two realizations is that x is a better point estimate of x than x .

Returning to the derivation, it can be shown(12) that Eq. (1.12) is an unbiased 

estimator for er2, and therefore, as N  -» oo the estimator cr2 -> c r . The true variance

cr2 measures the spread of realizations of x about the expected value x . In Monte Carlo

applications, however, the real quantity of interest is the spread of estimates x around the 

true parameter x . This variance, denoted cr?, can be calculated from the true variance of 

the random variable x .

To demonstrate this, we consider two independent samples jq and x2 as 

estimators for the parameter x . It is intuitive that the average o f these two quantities, 

x = (x, +x2) / 2 , should be a better estimate o f x than either x, or x2 individually. If  the 

average is a better estimate, it should have a smaller variance than that for an individual 

realization ^cr2 < cr2). Furthermore, as additional samples are included in the average,

the variance of x will continue to decrease. Let us consider an estimator x that is the 

arithmetic mean o f N  independent samples from the random variable x ,
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The sum of independent, identically distributed (iid) random variables is itself a random

The sample variance a \  can be calculated by substituting Eq. (1.12) into Eq. (1.15),

We note the similarity between Eq. (1.14) and the general equation for a tally given in 

Eq. (1.5). It is trivial to apply Eq. (1.16) to this general form to show that the sample 

variance for a tally can be written,

Equation (1.17) is used to estimate the variance in most, if not all, Monte Carlo tallies.

Being able to accurately estimate the variance of Monte Carlo tallies is extremely 

important for several reasons. First, estimators are not unique. For any physical quantity 

there can be many scoring functions that give an unbiased estimate. The variance serves 

as a way to quantitatively compare two different scoring functions and determine which 

one is more efficient. For instance, the effectiveness of non-analog estimators are judged 

on their ability to reduce the tally variance, relative to analog estimators, based on a fixed 

number of particle histories.

The second use of variance in Monte Carlo calculations is determining confidence 

intervals for the tally results. For an unbiased estimator the confidence is expressed as

variable*-7,1̂ . Thus, in Eq. (1.14), the estimator x is actually a realization from a random 

variable x . By the properties of the Central Limit Theorem(1’4,I112) it can be shown that, 

as N  - » co, the distribution p ( x )  is normal with mean x and variance

X

,2 (1.15)

(1.16)

(1.17)
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Table 1.1. Probabilities that a norm ally-d istribu ted  estim ate falls w ithin a distance I c from the tru e  
solution. Confidence in tervals are given in terms of the standard deviation of the 
estimate.

Confidence In terval Jc t - t ) < / .

CTj 68.26%
2(7, 95.44%
3(7, 99.74%

the probability that the true parameter lies within a certain distance o f the estimate. As 

noted earlier, for large sample sizes (A > 3 0 )^ 12') realizations o f t will be normally

distributed about the true parameter t with variance er{2. The probability of a single

sample falling within a given distance from the mean is given in terms o f the square root 

of the variance, a i , referred to as the standard deviation. These confidence levels are

well known for the normal distribution and are shown in Table 1.1.

If the sample size is not large enough for the Central Limit Theorem to be valid, 

the weaker Chebychev’s inequality can be used to estimate the confidence. However, 

with modern computers it is extremely unusual to run any simulation with a sample size 

too small for the Central Limit Theorem to apply.

The single value reported as the variance (or standard deviation) o f a tally can 

often be hard to interpret without some standard o f comparison. To help with 

interpretation, many Monte Carlo codes report the accuracy o f the tally in terms of the 

relative standard deviation,

R = ^ - .  (1.18)
t

Some general guidelines for interpreting the relative standard deviation for a tally(9) are 

given in Table 1.2.
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Table 1.2. Guidelines for in te rp re tin g  the relative error R

Range o fR Quality o f the Tally
>0.5 Garbage

0.2 to 0.5 Factor o f a few
0.1 to 0.2 Questionable

<0.1 Generally reliable except for point detector
<0.05 Generally reliable for point detector

Source: Briesmeister, J.F. M CNP — A General M onte Carlo N-Particle Transport Code. Los Alamos 
National Laboratory, Report LA-13709-M, 2000.

1.2.3. Mean Value Theorem

In section 1.1.2 it was noted that Monte Carlo methods are well suited to 

estimating integral quantities. This property is a result o f the Mean Value Theorem(1,14), 

which relates the average value of a function over a domain to the integral o f the function 

over that domain. To derive this relationship, we consider a function y - f  (x) defined

over the domain \a,b\ . If  the domain is broken up into N  equally spaced partitions, the

average value of the function /  (x) can be written as the limit,

> = i ™ T 7 Z / C ) .  <L19>N-t-co JSJ1 v /=1

where x, is the midpoint o f partition i . Because the partitions are equal width they are 

related to the size of the domain by 

( b  — a )
Ax = i  (1.20)

N

Solving for N  and substituting into Eq. (1.19) yields

1 N
y = j 7 — (L21>

It follows directly, by the definition o f a definite in tegral14), that
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* = (4^ ) £ / w < f c - <L22)

This powerful result forms the basis for many Monte Carlo estimators.

1.2.4. Collision Estimator o f Flux

In nuclear engineering applications, the particle flux is defined as the total 

distance traveled (per unit time) by all particles o f energies dE  about E in a volume 

element dr about r at time t . The energy dependent flux has the units j^cm'2 • sec"1 J and

is written mathematically as

0 ( r , E , t )  = vNp ( r ,E, t ) ,  (1.23)

where Np (r,  E, f ) is the density of particles located at the spatial position dr about r

with energies dE about E at time t , and v is the velocity o f a particle with energy E . 

Particle flux is an important quantity because it can be used, in conjunction with 

macroscopic cross sections, to calculate reaction rate densities. As the name implies, a 

reaction rate density Rx (r ,E, t )dr  dE gives the rate ^reactions - sec"1 J at which reactions 

of type % occur in the volume dr about r  , at time t , due to incident particles of 

energies within dE o f E . The reaction rate can be computed as

R% (r ,E, t )  = 'Lx ( r , E , t ) 0 ( r , E , t ) , (1.24)

where Z is the macroscopic cross section for reaction x  ■ If  Eq. (1.24) is integrated 

over a phase volume o f time, space, and energy, one obtains

N x = l \ E \ E x {r,E,t)( l>(r,E,t)dtdEdr  , (1.25)
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which gives the total number of reactions that occur in the volume per particle. Note that, 

in Eq. (1.25), the flux 0( r , E, t )  has been normalized by the total number o f particles in

the system. This normalization is standard for most nuclear engineering applications and 

will always be assumed unless otherwise specified.

Calculating the average number of reactions in a finite volume is a simple 

counting experiment that is trivial to perform in a Monte Carlo simulation. It should be 

clear that, for N  independent particle histories, the quantity

is an unbiased estimator for N  .

With an estimator for the reaction rate established, attention can be turned 

towards deriving an estimator for the average flux in the tally volume. The derivation 

will be presented using two separate methods. The first method is a sketch o f the full 

proof that is valid only for homogenous, energy independent problems. This derivation is 

intended to provide insight into collision flux estimators and why they work. The second 

method is a more rigorous, general derivation that will be used throughout the thesis.

The first derivation begins by using the Mean Value Theorem to write the average 

flux in an arbitrary spatial volume V as

We assume that the total macroscopic cross section E, is constant for all locations, times, 

and energies in the volume V . We multiply and divide the right hand side o f Eq. (1.27) 

by E, to obtain

Total x  reactions in tally volume
(1.26)

(1.27)
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4 V I
\ l,<j>{r)dr  . (1.28)

We notice that the integral term in Eq. (1.28) is identical to Eq. (1.25). Substituting Eq. 

(1.25) into Eq. (1.28) gives

Applying the unbiased estimator for N, gives

? Total # o f reactions in tally volume
0  ---------  — ■ — — ,

VI ,  N

or, written in a more conventional tally format (using Eq. (1.9)),

where k is a sequential index of collision events for particle i , and w, k is the weight of

particle i prior to collision k . The weights are important only in cases where variance 

reduction techniques are used; if analog simulation is used then w is always equal to 1. 

The estimator given in Eq. (1.30) is referred to as a collision estimator because it scores 

every time a particle undergoes a collision during the simulation. Although the total 

cross section I,  was used in the preceding derivation, it can easily be replaced with any

other cross section without affecting the proof. One common alternate to the collision 

estimator is the absorption (or last event) estimator, in which the macroscopic absorption 

cross section I a is used and the tally is scored only when the particle is absorbed.

Absorption estimators are not commonly used because they accumulate little information 

(1 event per history) relative to a collision estimator, and therefore have a larger

N V I
(1.30)

(6)variance .
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A modified version of the collision estimator can also be used for variance 

reduction when tallying the reaction rates o f unlikely events. Multiplying both sides of 

Eq. (1.28) by the cross section for reaction x  and following the derivation gives

where hz $ is an estimate for the average number of reactions x  occurring throughout

volume V . Equation (1.31) tallies the probability that the reaction would have occurred 

at each collision site. For low probability reactions, this increases the number o f effective 

“events” that are allowed to score and lowers the variance o f the tally.

One final type of tally, related to the collision estimator, deserves mentioning: the 

next-event estimator (or point detector). These tallies are used to estimate the flux at a 

single point in the system. At every collision point a next-event estimator scores the 

probability that the incident particle will scatter towards the tally point and travel to that 

point uncollided. Next-event estimators are widely used, especially in shielding 

applications, but they can give unreliable and incorrect results if  they are not used 

correctly*-1,9'1.

The above derivation and discussion of collision estimators was predicated on the 

assumption that the cross sections in the tally volume are independent o f time, energy and 

space. Such an assumption is not physically realistic. For example, the energy 

dependence of cross sections is known to have an important role in particle transport. By 

inspection of Eq. (1.30) it seems reasonable to expect that energy and spatial dependence 

of the cross section must be taken into account by the estimator

N V Z
(1.31)
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where the value of E, is evaluated at the particle phase position £, for every collision. In

fact, the anticipated result in Eq. (1.32) is an unbiased estimator, but the traditional proof 

is less than straightforward(4). An outline of this proof, taken from a review by Dubi(1S) is 

presented here.

To begin the derivation o f the collision estimator, we recall from Eq. (1.5) that a 

tally for a parameter t can be written as the arithmetic mean over a sample o f N  

independent particle histories,

(1.33)
1 y i= \

It was also established that the scoring function s - j  must be a point estimate of the

parameter t due to the random walk of particle i . This was shown by taking the 

expected value of both sides o f Eq. (1.33) to yield

£ [ t]  = £ [ x - ( l0 ] .  (1.34)

In the general case o f a collision estimator, the goal is to find a scoring function s - ( ^ J  

such that

<135)

We begin by assuming a scoring function of the form

sj ( I ) = ^  ( l , i - • •, l , K, ) = ) • (1-36)
k = l
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Taking the expected value of this scoring function, with respect to all possible random 

chains gives,

co

E  I Si  ( ^ ) 1 =  £  [  . - . [  5  - ( I  ,  ■ ■ • ,  I .x  )  P  (  ,  • • - ,  I ' K  )  d l ' , • ■ • d l ' K
K=1

- E l -  ■ (L37>K=1 k=1

The probability of a specific chain occurring, K^d^n . . . d^  K, can be written

in terms of the conditional probability functions that govern the random walk, 

p( l , v - ->Zuc)d Z\ — d %K =
(1.38)

(Ps  (4 ,1  ( 4  ) P c  (1 .2  I 1 ,1  ) d i l - - - (l ( i , , K - l ) P c  ( t , K  I 1 , K - x) p ,

In Eq. (1.38) the factor p s ^  j d <f, is the probability that a source particle will be bom 

within d%x o f | j ; the quantity p c(%k | £k̂ d ^ k is the probability a particle will undergo 

its next collision within d%k of £,k given that the last collision occurred at %k_x; the 

quantity p t (£k) is the probability that a particle undergoing a collision at will be 

absorbed or otherwise terminated during that event; and q( ^k_ ^ —\ - p x ( i k-i) *s ^ e

probability that a particle undergoing a collision at £,k will not be terminated during the 

event. Substituting this definition for the random walk into Eq. (1.37) gives

r* — 00

- z i - i z / ( i . )
K=l k=l

( p s ( l i ) q ( I , ) p e ( l21 l i ) ■■ • • ? (lx -i) Pc ( 4  14 - i ) p, ( 4 ) )  ■ ■  - ■rf4
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Pc ( 4 14-i) ? (4) /  (4) Pc (4+i 14) • • • (1.39)

9 ( 4 - i ) Pc ( 4 1 4 - i ) e, ( 4 )  ̂ 4  • • 4 4  •

By expanding the summation over i f  and collecting terms, Eq. (1.39) can be written as

The factor inside the brackets in this expression has a physical interpretation related to 

the probability that a particle will undergo a given number of collisions during its random 

walk. I f  the series in brackets is truncated at some finite value o f K , then it gives the 

probability that a particle will undergo exactly K collisions before being terminated. 

However, because the series is infinite, it will always be equal to 1 because every particle 

must eventually be terminated in a realistic Monte Carlo simulation. This observation 

can be used to reduce Eq. (1.40) to yield a more manageable form

Now that the expected value of the scoring function has been calculated, all that remains 

is to show that it is equivalent to the right hand side o f Eq. (1.35). To demonstrate this, 

let us consider the integral form o f the non-multiplying transport equation for the

E [ si OO] = X  [  4 -  • • I  Ps ( 4 ) ?  (li )• • ■ ? (4-i ) p c ( 4 14-.) / (4 )44
k= \

[a (4)+ [ ^ ( l )  Pc (4+,14) a  (4+1) ̂ 4+. 
+ [ [ q { l ) p <  (4+i 14)2 (4+i) (1.40)

Pc (4+2 I 4+1) Pi (4 +2) ̂ 4+1 d L z

{ ^ ( 4 ) ^ ( 4 +, 14 ) - •• 
• • • 9 (4-i) Pc ( 4 14-i) a  (4)^4+. •••̂ 4+•••_•

= Z  i p , ( € i ) < i ( & ) — q(€k-i )Pc(€k  1 4 - i ) / ( 4 ) £/^ - - - c/^ - ( L41)

collision density N, (<f ) with source term <S,(^ )  and scattering kernel K ^ , ^ ,
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N, ( | )  = 5 ( | ) +  [ K ( H ' ) N t . (1.42)

It can be shown(4,15) that Eq. (1.42) can be expanded in a Neumann series to yield,

CO

Multiplying Eq. (1.43) by / ( ^ )  and integrating over <g gives

co

k=\

U ( s ) N \ s ) d i
00

(1.44)

&=1

For any random walk process that obeys the integral transport equation given in (1.42), 

the probability density functions that govern the random walk can be written in terms of 

parameters found in the transport equation itself. For a non-multiplying particle transport 

problem it can be shown^^ that the following equalities hold:

P s (^  ) = S  ( ^ ) , (Normalized Source Distribution) (1.45)

Pc { ik  I A -i) -  ——A  - . (Normalized Collision Kernel) (1.46)
9 ( 4 - 1)

Substituting these definitions into Eq. (1.44) gives

(1.47)

*=1
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By Inspection of Eqs. (1.47) and (1.41), It follows directly that

(1.48)

thus completing the proof that the scoring function

f = L / ( 4 . )  (1-49)
k=l

is an unbiased point estimator for the parameter

7 = [ / ( | ) i v , ( f ) j | .  (1.50)

If  N  independent particle histories are simulated, then Eq. (1.33) can be used to produce 

a lower-variance estimator for f , given by

/ = ) r Z i / ( f a ) -  C-5'),=i k=i

Equation (1.51) was derived by assuming an analog particle transport simulation in a 

non-multiplying medium. These assumptions were used only to simplify the preceding 

derivation and do not imply a limitation in the estimator itself. Spanier and Gelbard(4) 

reported a generalized proof that holds in all commonly encountered situations. This 

general proof can be used to derive the collision estimator for simulations using implicit 

capture variance reduction and shows that the estimator takes the form

/  = <L52)vv /=1 k=l

where wi k is the statistical “weight” of particle i following collision k . We notice that, 

in the case wjk =1, the estimator in Eq. (1.52) reduces to the analog estimator in Eq. 

(1.51), as expected.
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Until this point, the term /  (%) has been left as an arbitrary function. If /  (i;) is 

defined to take the form

it can be substituted into Eq. (1.50) to yield,

-  1 r -
f  ~~v 1 — T n  ^  ' <L54>

We note that the definition of /  (!;) is not valid if Z, ^7) = 0 for any |  e f .  This result

confirms the earlier statement that the collision estimator will not work in void regions of 

a problem. To continue the derivation, recall that the total collision density is defined as

N, ( | )  = ( f  ) * ( ! ) •  (1.55)

Substituting this result into Eq. (1.54) gives

7  = I j l  = (1.56)

Equation (1.51) can now be used to develop an unbiased estimator for Eq. (1.56),

Before continuing, it is important to note that the above derivation can be easily modified 

to produce estimators for “flux moments” o f the form

(1-58)
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where g t £ ) is an arbitrary function. These estimators can be derived by replacing Eq.

is an unbiased estimator of G . Equation (1.59) is very important for estimating integral 

reaction rates and developing Functional Expansion Tallies, which will be discussed in 

detail later.

The accuracy o f a collision estimator is directly related to the number o f collisions 

that occur in the tally region. In regions with very small cross sections, these estimators 

may give unreliable estimates. Also, collision estimators cannot be used to estimate the 

flux in a vacuum region. These limitations prompted the development of a completely 

different flux tally: the track length (or path length) estimator.

A heuristic derivation o f the track length estimator can be made by simply 

considering the definition of the scalar flux, given in Eq. (1.23). The speed factor has 

units [cm • sec'1 J , which physically corresponds to the distance traveled (or path

generated) by a single particle per unit time. The N factor is the particle density,

which gives the number o f particles per unit phase space at the phase location E, . When 

these two factors are multiplied together they give the scalar flux, which can be 

interpreted as the total path length traveled per unit time and unit phase volume by all

and repeating the derivation to show that

(1.59)

1.2.5. Track Length Estimator o f Flux
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particles passing through ^ ]6\  This interpretation o f scalar flux can be written 

mathematically as

= Rate at which particles generate path length in d f  about f . (1.60)

Equation (1.60) can be integrated over some arbitrary phase volume F to give

s  Total path length is generated by particles in F  . (1.61)

By dividing both sides by the spatial volume of r  and applying the Mean Value 

Theorem, Eq. (1.61) becomes

 ̂ _  1 path length is generated by particles in F  ^  ^

The right hand side of Eq. (1.62) is easily estimated in Monte Carlo simulations by 

simply adding the total distance traveled by each particle in the tally region multiplied by 

the weight of the particle and dividing by the volume of the tally region,

1 Jt, ̂  Total path length generated by particles in F
t , > O-63)N V  per starting particle

where di c r is the distance traveled by particle / in phase volume T as it moves between 

events c -1  and c . We notice that, as mentioned earlier, the score dicT is a function of 

both the present position of the particle ^  c and the previous position o f the particle ^  c_,.

The preceding derivation o f the track length estimator is based solely upon 

observations on the definition of scalar flux. Several sources give more rigorous and 

detailed proofs(4’lj' !;>> that Eq. (1.63) is an unbiased estimator o f Eq. (1.62), but these 

proofs do not add any new insight into the properties o f the track length estimator and 

will be omitted here.
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1.2.6. Surface Crossing Estimators

The final estimator that will be mentioned in this section is the surface crossing

estimator for the total particle current through a surface. This estimator is used for

calculating the expected number of particles that will pass through some arbitrary

surface, S , in the problem geometry. The traditional surface crossing estimator is based

on the definition

_,  _ Expected number of particles crossing surface S
s - j U ) d 4  = _ _ (1.64)

v '  within d£ o f phase position E,,

where s is the unit vector normal to the surface. The vector y is the angular current

density, a quantity that is related to the angular flux by the relationship

= (1.65)

where Q is a unit vector that specifies the direction o f the particle. If Eq. (1.64) is 

integrated over a phase volume F v defined along the surface S , the result becomes

£ |s ■ j  dE, = Total number o f particles crossing surface S in F s . (1.66)

We note that if  the absolute value in Eq. (1.66) is removed, the resulting integral gives 

the net number o f particles crossing S  in F v. By dividing both sides o f Eq. (1.66) by the 

area of surface S and applying the Mean Value Theorem it is easy to show that

— 1 r I- I Total number o f particles crossing S in F , ,,
-------------------------- j s------------------------------------<L67>

The right hand side of Eq. (1.67) is now in a form that can be easily tallied during a 

Monte Carlo simulation. It is straightforward to show that an unbiased estimator for 

(1.67) can be obtained by adding the total weight (number for analog Monte Carlo) of
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surface crossing events that occur within the boundaries of r s and dividing by the total 

surface area o f S and the total number of independent histories. This can be written 

concisely as

where w, k is the weight of particle i as it crosses surface S for the k>h time and Jt is the

total number of times particle i crosses surface S . The index k has been deliberately 

reused here to illustrate the similarities between Eq. (1.68), the surface crossing estimator 

for current, and Eq. (1.32), the collision estimator for flux. Both are discrete event 

estimators of the general form shown in Eq. (1.9).

A more formal and general derivation o f Eq. (1.68) is presented in a review by 

Dubi(15) and will be outlined here. This derivation of the surface crossing estimator 

begins by considering the integral

distance, Az, away from the original surface. The two surfaces S  and S' bound a small 

volume element, which will be referred to as Vs . For a sufficiently small Az between the 

two surfaces it is reasonable to approximate Eq. (1.69) by the volume integral

The volume integral given in Eq. (1.70) is in an ideal form for estimation by a track

( 1.68)

(1.69)

taken over a finite arbitrary surface S . Now define a parallel surface S' located a small

(1.70)

length estimator. This can be shown by writing / )  = / ( ^ ) + ^ [A z ] , where f {%s)  is
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the function /(< f)  evaluated at the phase location where the particle first crosses at the

surface S  . Substituting this result into Eq. (1.70) gives 

f  = f v + 0 [ A z ] = y  |  /  ( | s ( I )  d i  + 0 [ Az \ . (1.71)

The track length estimator derived in Eq. (1.63) can now be applied to give an unbiased 

estimator for f y

/ . = T 7 4 . « • / ( ! , . « ) •
N  * i = i  k = \

N A S 1S  M  /r= l

(1.72)

where the variable k has been used to index the number of times that a single particle i 

passes through the volume V . If  Az is chosen to be sufficiently small, no particle will 

suffer a collision within the volume V and the distance d  that a particle travels through 

V can be expressed using a simple trigonometric relationship

d , , k , V  = & Z \ S i y Q , J

1 - 1

(1.73)

Rearranging Eq. (1.73) and substituting into Eq. (1.72) yields

1 N J>
f v = N  A

(1.74)
■S i = \  k = 1

Multiplying by As and taking the limit as Az —» 0 for Eq. (1.71), we obtain

f  = 1™.I T + 0 1 'H ] = Hm f i / d M f y A 0 M

/ =  lim
4 r -» 0 Az
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/ U / t f i A K - (1.75)

Its estimator Eq. (1.74)

/  = lim A  fv -  lim
A s—>0 ‘ * A r-» 0

f  = 77 i  E  W-,K f  ) |?u  • I 1 >

1 -1

(1.76)

completes the derivation o f an unbiased estimator for Eq. (1.69).

The function f(£>) has been deliberately left as an arbitrary function until this

point because Eqs. (1.75) and (1.76) are in a very general form that can be used to derive 

several different estimators. To obtain an estimator for the total current through the

surface S , define / ( ^ ) :
Ls -Q

to yield,

and its associated estimator

(1.77)

N  J ,

j s = f  = a Z 2 > u  
W  i= \ k = l

(1.78)

It is worth mentioning that the surface crossing estimator can also be modified to 

tally particle flux on a surface. Unlike the collision and track length estimators, which 

estimate the average volumetric flux, the surface crossing flux tally gives an estimate for
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the average flux over the surface S . This can be shown by defining /  (%) = in Eqs. 

(1.75) and (1.76). Making this substitution gives

= 0.79)

with the estimator

1 N  J,

A = / = 7 r r S Z

1 N J> w
■ 0 .80 )

N A s t t t t

where // has been defined as the cosine of the angle between the particle direction Q 

and the surface normal s . One common concern with this type o f tally is that the 

estimator in Eq. (1.80) is unbounded, and therefore variance estimates may be unreliable. 

The score for a single particle event approaches infinity as the particle’s direction 

becomes tangent to the surface, |.? • q | = 0 . A variety of techniques have been developed

to ensure that the resulting estimate is bounded and accurate, except in pathologic 

cases'-1’̂ .

The usefulness o f the preceding derivation lies in the fact that Eq. (1.76) can also 

be used as an estimator for surface flux and current moments o f the forms

(1.81)

H =  j U ( | ) | s - 7 ( | ) | j | .  (1.82)

As noted earlier, these moments are important for the Functional Expansion Tally 

derivations that are to follow in subsequent chapters.
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1.3. The Functional Expansion Tally (FET)

While traditional Monte Carlo tallies work very well for estimating integral 

quantities, they are limited in their abilities to estimate the distributions of particle flux or 

current with respect to space, angle, energy or time. This limitation stems from the fact 

that Monte Carlo is essentially a stochastic numerical integration technique.

There are, however, many applications in which the shape o f the flux or current 

distributions is desired. For such cases, the typical Monte Carlo approach has been to 

approximate the true distribution by a histogram. These histogram approximations are 

created by partitioning phase space into “bins” and then using Monte Carlo to tally the 

integrated flux in each bin, as shown in Figure 1. When normalized by the bin width, the 

results from these tallies form a step approximation to the true distribution. The 

resolution and accuracy o f the histogram approximation can be increased by partitioning 

the phase space into finer bins. Flowever, this reduces the number o f particles that score 

in an individual tally bin, causing an increase in the variance o f the estimate in each bin. 

The tradeoff between resolution and increased variance means that very large numbers of 

histories are required to get detailed distributions that have reasonable statistics when 

histogram tallying is used.

An alternative approach is to use Monte Carlo to estimate moments o f the flux or 

current distributions with respect to some set of basis functions. We note that, because 

the moments are actually integral quantities, they are ideal for estimation by Monte Carlo 

methods. If  the basis functions form a complete set, it is possible to represent the shape 

of the unknown distribution as a series expansion involving the estimated moments. This 

technique, referred to as the functional expansion tally (FET), provides a continuous
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Standard Tally ± ct 5 Bin Histogram Tally  ± a

Figure 1.1. Illustration of the differences between a traditional tally and a histogram or “mesh” tally. 
Dashed lines indicate a hypothetical 1 standard deviation uncertainty band.

analytical representation of the unknown distribution that, in many cases, is a better 

representation than a comparable histogram approximation.

The concept of using series expansion to approximate the shape of unknown 

statistical distributions has been known for many years. A good example of an early 

application occurs in a 1945 paper by Rice(17). In this paper, the author demonstrates that 

the random noise current l ( t )  occurring over an interval o f T seconds in an electrical 

signal can be expressed as a Fourier series expansion,

/ ( 0 =Y +Z|  a«cos«=i

' 2 n n t  ̂ ' i nn t ' ] \
U ■+ bn sin

I  T j „
, T J/

(1.83)

In the case of truly random noise, the coefficients {a„}*=o and {bn}N„=x are 

independent random variables that follow a normal distribution about zero. We note that, 

in this circumstance, the noise current / ( f )  is actually just a realization o f a random

variable I . Although it may seem unusual to consider a function as a realization of a 

random variable, mathematically this presents no difficulties or ambiguities. 

Unfortunately, such functional realizations from a random variable can be difficult to 

write in a closed form or analyze. Often the set o f possible realizations will span a large
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class o f functions (e.g. all piecewise smooth functions). This generality can make it 

difficult to calculate statistics for the random variable analytically. Rice was among the 

first to show that these functional realizations could be expressed as a series expansion 

that includes the more common single-value realization random variables as the 

coefficients. This expansion makes it much easier to analyze the statistical properties o f 

the original random variable. Although the Monte Carlo method had yet to be 

mentioned, this paper laid the groundwork for a new class of continuous Monte Carlo 

estimators.

The earliest known reference to the functional expansion technique (FET) for 

Monte Carlo occurred in a 1975 paper by Chadsey, Wilson, and Pine^18'). This paper 

demonstrated that a Monte Carlo simulation can be used to estimate the spherical 

harmonics expansion coefficients of the angular distribution of x-ray photoemission. The 

authors noted that the use of a functional expansion representation of the angular 

distribution had several advantages over a traditional discrete histogram representation. 

First, the estimated solution was a continuous function, which can be more convenient to 

treat in post processing analysis. Additionally, the authors stated that “the statistical 

fluctuations inherent in Monte Carlo calculations can be properly damped out” by use of 

the FET, and that by selecting an appropriate set of basis functions for the expansion, the 

FET can offer “substantial variance reduction.” No formal proofs or substantive 

demonstrations for any of these assertions were presented in the paper.

In 1976, a follow up paper by Beers and Pine(19) generalized the FET for any 

Monte Carlo simulation. The 1976 paper also expanded the FET, and proposed a 

technique for estimating functional expansion coefficients as particles generate track
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length in a given region. The applicability o f these methods was demonstrated for 

electron transport problems using Legendre polynomials and spherical harmonics as basis 

sets. In this paper five specific advantages o f the FET method are cited:

1. “An analytical representation o f the data is given; such representations are 
convenient for the incorporation of the results in further physical 
calculations.”

2. “The problem may reduce to the calculation of only a very few
quantities.”

3. “Significant variance reduction may occur.”

4. “The continuous representation may be the “best possible” for a given
number o f histories.”

5. “Prohibitive multidimensional calculations may become practicable.”

The authors state that the examples given in the paper “show these features clearly,” 

although, again, no formal proofs or numerical demonstrations of these assertions were 

presented.

The first application of the FET for neutron transport Monte Carlo simulations 

was published by Noel and Wio in 1984(20). In this paper the FET was used to estimate 

the angular and spatial distributions o f the neutron flux in a 1-D slab shielding problem. 

The authors used Laguerre polynomials to expand the spatial distribution and Legendre 

polynomials to expand the angular distribution. This paper was the first to estimate the 

variance in the functional expansion, which is itself a functional expansion, over the 

entire expansion domain.

In 1999, Spanier<21) expanded the work o f Beers and Pine(19̂  by developing three 

types o f Monte Carlo estimators for tallying coefficients for a 1-D functional expansion 

in space: the terminal, collision, and track length estimators. Of these estimators the
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track length estimator is the most interesting because it allows a particle to contribute to 

the estimate o f the expansion coefficients over its entire path, not just at discrete points. 

Spanier’s work was primarily aimed at developing Monte Carlo variance reduction 

techniques that could achieve geometric error convergence rates. Similar research using 

Monte Carlo functional expansions was published by Booth(22) in 1999, and Lichtenstein 

and Favorite(2;>) in 2003.

Recently, several new papers have reported novel applications of the FET. In 

2004, Legrady and Hoogenboom presented two papers{24’25) on the use o f  a Legendre 

polynomial based FET method for calculating and visualizing the detector response in 

borehole logging applications. Also in 2004, Rearden(26) published an article on the use 

of perturbation based sensitivity analysis for reactor safety applications. This article 

outlines the use o f an FET-like methodology for calculating neutron flux moments and 

angular flux distributions. These distributions, in turn, are used to calculate the scattering 

terms of the sensitivity coefficients used in the perturbation analysis.

1.4. Description of Work

Although the general methodology and applicability of the FET for Monte Carlo 

simulations has been widely reported, there has been a lack o f work regarding the 

theoretical properties of the technique. In each paper reviewed in the previous section, 

the FET was developed and implemented for one specific application. Any general 

properties o f the method were inferred by simply considering empirical results. 

However, the FET can be more than an ad-hoc method for improving tally performance
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in specific instances. In fact, the method is a significant step towards overcoming one of 

the major limitations that remain in Monte Carlo methods: the lack of continuous tallies.

One of the most touted benefits of Monte Carlo methods has been their 

continuous nature. Monte Carlo codes can track through arbitrary geometries, and use 

continuous energy cross sections, whereas deterministic methods require that these 

variables be discretized before a solution can be obtained. Unfortunately, traditional 

Monte Carlo tallies give integral, not continuous, results. The FET provides an effective, 

and easily implemented, method for overcoming this limitation.

Recent work <27'30) has sought to broaden the theoretical understanding of the 

FET. This thesis will review and expand on previous work in an attempt to develop a 

theoretical basis for the mathematical properties o f the FET. Specifically, this work 

includes: new derivations for the FET estimators and their associated variances, formal 

proofs of the convergence properties o f the FET estimators, formal demonstration that the 

FET can provide a better approximation to the shape o f an unknown distribution than a 

comparable histogram approximation, and an overview o f other applications of the FET. 

All o f the theoretical results were experimentally verified by implementing and testing 

the FET in a production level Monte Carlo code. A further review o f results contained in 

this thesis will be broken down by chapter.

Chapter 2 contains updated derivations o f the discrete event FET estimators for 

average particle flux in a volume and average particle current through a surface. 

Estimators are also derived for the variance of individual expansion coefficients, the 

variance of the final functional approximation, and the truncation error present in the 

approximation. A series o f one-dimensional test problems are presented to demonstrate
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that results from the FET approximation agree with the benchmark histogram 

approximation to the true distribution.

Chapter 3 presents a detailed mathematical analysis o f the convergence properties 

of the discrete event FET for Monte Carlo calculations. The goal o f this chapter is to 

prove that the FET can provide a better approximation for the shape of an unknown 

distribution than a traditional histogram (or mesh) tally. To prove this, FET and 

histogram approximations were considered for the set o f all piecewise smooth 

distributions defined over the expansion domain. To quantify the accuracy o f each 

approximation, the 2-norm o f the residual between the approximation and the actual 

distribution was used. For both the FET and histogram tallies it was found that the 

accuracy of the final approximation depends on two sources o f error: truncation error and 

statistical error.

Truncation error in the FET arises from approximating a function with a finite 

series approximation. The magnitude of the truncation error depends only on the order of 

approximation used and is not affected by the number of histories used in the Monte 

Carlo simulation. The histogram tally also suffers from truncation error due to 

approximating a continuous function with a series o f flat line segments. Truncation error 

in a histogram approximation depends on the number o f histogram bins used.

Statistical error in both the FET and histogram tallies is due to the stochastic 

nature of the Monte Carlo simulation. Monte Carlo tallies provide a statistical estimate 

for the functional expansion coefficients. When these coefficients are used to reconstruct 

a functional approximation, the uncertainties in each “mode” combine and can cause 

significant contamination in the final result.
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Estimation of expansion coefficients in the FET relies on the Monte Carlo 

simulation to perform a numerical integration over the individual basis functions. For 

high order expansion coefficients, the corresponding basis functions can be difficult to 

integrate numerically, causing increased uncertainty in the estimate. The general trend 

for expansion coefficients is that statistical uncertainty increases with the order o f the 

coefficient.

Histogram style tallies use the Monte Carlo simulation to numerically evaluate the 

integral (zeroth moment) of the distribution over each bin. As the number of histogram 

bins increases, the width of each bin decreases and, as a result fewer histories score in 

each bin. The smaller number of histories contributing to each bin causes an increase in 

the variance of the estimates in the bins.

Both the FET and the histogram tallies involve a tradeoff between statistical and 

truncation errors. Increasing the order o f the approximation (or the number of bins, for 

the histogram) decreases the truncation error o f the approximation but increases the 

statistical uncertainty, and vice versa. In this thesis it is shown that, for a fixed number of 

histories run, an optimal approximation order exists that minimizes the residual error o f 

the approximation in the 2-norm. It is also shown that the 2-norm error due to the FET 

approximation is less than the error resulting from a histogram approximation. 

Numerical results are presented to support these conclusions.

Chapter 4 covers the derivation o f track length FET estimators for expansions of 

spatial flux distributions in 1, 2, and 3 dimensions. Several useful properties o f these 

estimators are also derived, which can help to speed up the calculation o f the tallies
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during the simulation. Results are shown for 1 and 2 dimensional benchmark problems 

to demonstrate convergence of the method.

Chapter 5 covers the application o f the FET for calculating response functions via 

Monte Carlo. These response functions, in turn, can be used in a response matrix 

algorithm to rapidly calculate flux distributions in reactor cores or radiation shields. The 

result is a hybrid Monte-Carlo/deterministic method that may be a useful tool for 

accelerating reactor analysis calculations. A simple algorithm for generating response 

functions with FET is implemented and tested on simple 1-D problems.

Finally, in chapter 6 the results contained in this dissertation are summarized. 

General conclusions about the development and application of the FET are presented, 

along with a brief discussion o f possible topics for future research.
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CHAPTER 2

DISCRETE EVENT FET ESTIMATORS

The first type o f FET estimators to be considered is the class of discrete event 

estimators. As their name implies, these estimators are scored when individual particles 

undergo certain events. The two most commonly used discrete event estimators are: the 

collision estimator for average particle flux in a volume, and the surface crossing 

estimator for average particle current through a surface. Both estimators, Eqs. (1.57) and

(1.78), look mathematically very similar, and they follow the general form for a Monte 

Carlo tally given in Chapter 1, Eq. (1.5). Because o f these mathematical similarities, the 

properties o f an FET estimator for one type o f tally can easily be generalized to the other 

tally. As such, this chapter will focus on a detailed derivation of a surface crossing FET 

estimator and the associated estimators for the variance. A series of computational 

results are included to provide verification o f the theoretical results. In the final sections, 

the surface crossing estimator results are extended to the collision estimator tally for flux 

in a volume.
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2.1. Derivation of the Surface Crossing Current FET Estimator

Before beginning the derivation, it is useful to consider some of the mathematical 

properties of the distribution to be approximated by the functional expansion technique.

The angular surface crossing current, j (£;)-s  , is directly related to the particle density 

function (and angular flux) and can be written:

| j ( # ) - l |  = |Q.?|vA^(|) -  | 6 - ^ ( | ) .  (2.1)

Physically, this function corresponds to the expected number of particles passing 

through an area dAs on the surface S  with energy E in d E , direction O in dQ. , during

time dt about time t As in the first chapter, the variable £ = (x ,y , z ,E,  has been

used as a general “phase location” variable in order to simplify the notation in the 

derivations that follow. It is possible to make some general observations and

assumptions about common mathematical properties of the function j ( f ) - s  , based on 

the physics that govern particle transport.

a) The function j ( ^ )  ■ s is piecewise smooth over its domain.

This implies that for any closed domain both the function and its first derivative are 

piecewise continuous. A function is piecewise continuous if, for any closed domain, 

there exist at most a finite number o f discontinuities in the function, and at each point of 

discontinuity both the left-hand and right-hand limits exist as the discontinuity is 

approached.

b) The function _/(£) ■ s has a finite domain and is square-integrable with some

weighting function over that domain.
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This implies that for any bounded domain F the following condition holds:

p { t ) d i « o .  (2.2)

With these properties of j (%)-s  established, it is now possible to consider an

expansion of the distribution in terms of a complete set o f basis functions. Before 

proceeding, however, it is important to introduce some concepts from approximation 

theory for dealing with sets o f functions.

To begin, we denote the space o f real-valued square-integrable functions with 

positive weighting function p  on some finite domain F as F2(F ). The formal definition

of Z^(F) is given by

L2P(T) = ^ f - . [ \ f ( x f p ( x ) c K  < oo } . (2.3)

Note that, by assumption b) above, the function j ( ^ )  ■ x| is an element of L2p(T) . If the 

functions /  and g  are elements of I?p(T ), then the inner product o f /  and g  is:

{/><?)= l f ( x ) g ( x ) p ( x ) d x . (2.4)

Likewise, for any function /  in I? (T),  the L-2-norm of f  is:

\ f \ \ - [ [ f ( x f p ( x ) d x ^  , (2.5)

and the square o f the L-2 norm is therefore:

| | / f  = [ f ( x ) 2p( x ) dx .  (2.6)
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With these definitions it is possible to consider the expansion of an arbitrary function /  

with respect to a complete basis set for the space i^ ,(F ). To do this, let be a

complete orthogonal set with respect to the weighting function p  in L2p(T).  For any 

function /  e  Lp(F) , f  can be expanded in terms of {y/„}^ as

/  = 2 ,  II 1,7 V n (2-7)
"=° w„  1

For convenience, we define

an = = | J(x)Vn(x)P(.x)<& > (2-8)

and

*-s r V  (2-9)
w A

The factors an are commonly referred to as expansion coefficients, while kn is often 

called the orthonormalization constant. These definitions allow Eq. (2.7) to be written:

J  = Y ? . K v. (2.10)
n= 0

Another related result is Parseval’s equation, which relates the square of the 2-norm of 

the function /  to the sum of the squares of the expansion coefficients.

l l / l f =  <2.ii)
«=0 jĵ /zjj

Given these results, consider a functional expansion o f the angular current. Applying Eq. 

(2.8) to the surface crossing current yields

I  00

■ /(! )=  7 (1 )-*  (2.12)
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where

a,7/
(2 .1 3 )

Equation (2.12) gives a complete expansion of the surface crossing current with respect 

to the orthogonal basis {y/n}$ . If the expansion coefficients an are known, then a

functional form o f the surface crossing current can be calculated. Fortunately, the 

expression for evaluating the expansion coefficients is in a convenient integral form that 

is ideal for estimation by Monte Carlo. In fact, the right hand side of Eq. (2.13) is

identical to Eq. (1.81) with g^^j = y/’n^ ' j p ^ ' j .  This means that an unbiased estimator 

for an can be calculated directly from Eq. (1.76),

where wjkS is the weight of particle i as it crosses the surface S for the k,h time. We

the traditional surface crossing estimator given in Eq. (1.78). If  the basis set also has the

sets o f functions) then it is easy to show that the FET approximation to the angular 

current distribution will preserve the correct integral value o f the current. In these cases 

the FET is actually extracting higher-order information about the shape of the current 

distribution from the particle histories, while preserving the low order (integral) 

information.

(2.14)

notice that if a basis set is chosen such that y/0 = 1, then Eq. (2.14) reduces to

property that ^y/n{j; ^ = 0 for all n >  0 (a property that holds for orthogonal
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In the preceding derivations, we assumed that a basis set was chosen that spans 

the entire phase volume: % = {x,y,z,E,ju,<p,t} . There are, however, many situations 

where an expansion of the angular current distribution in only one or two phase variables 

is desired. In these cases, a basis set can be chosen that spans only the phase variables of 

interest and is independent of other phase variables. Once an appropriate basis set has 

been chosen, Eq. (2.14) can be used to estimate the functional expansion of the angular 

current in the phase variables o f interest, integrated over the remaining phase variables.

2.2. Uncertainty in the Surface Crossing Current FET Estimator

Since the Monte Carlo method is a stochastic technique, any parameter estimated 

by the method will have some statistical uncertainty associated with it. The FET 

expansion coefficients are no exception to this rule. In addition to each coefficient 

having statistical uncertainty, these coefficients are used together as terms in a series 

expansion, which has its own statistical uncertainty. Furthermore, the series expansion is 

only an approximation to the shape of the true distribution, implying that there can be 

additional uncertainty due to truncation error in the expansion itself. This section will 

cover these different types o f  uncertainty and error present in the FET and derive 

statistical estimators for each type.

2.2.1. Variance of Individual Coefficients

The derivation for the variance o f a single expansion coefficient an begins with 

the estimator an . For N  independent particle histories, the statistic
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is a random variable whose expected value is equal to the true expansion coefficient on

and whose variance is equal to • The definition of variance given in Eq. (1.11) can 

be used to write a]  in terms o f the probability distribution function p ( a n),

K  = P M dan • (2.16)

Unfortunately, nothing is known about the properties o f the function p(a„)  other than 

the fact that it integrates to 1 over the domain [ - 0 0 , 0 0 ]. This property can be used to

express Eq. (2.16) in terms o f quantities that can be easily estimated. To show this, we 

begin by expanding the integrand in Eq. (2.16)

^  = £  ("» ~ 2a>P" + “»2) P (a» ) dUn ' (2 ‘1 7)

Continuing on with algebraic simplification gives,

= \ i al p { an)dan - 2dn £ ° nP («» ) dctn + dn

K  = \ i al p { an)dan - 2dn^ a, P { an) dan 

By the definition o f expected value, Eq. (1.1),

<  = E [ * l ] - 2 dA a«] + dn2

■a„2 .

< = E [ ^ B\ - 2 a 2n + an2

= E \ _ K \ ~ al -  (2-18)
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To find an estimator for we recognize that each independent particle history

gives an estimate for the expansion coefficient an,

k=1

Taking the square o f Eq. (2.19) gives an estimate for i?[a* J ,

(2.19)

= l L w, ,k, sv„( i ,k)p( l ,k)
v*=I

When taken over N  independent histories, Eq. (2.20) becomes

(2 .20)

al w.,k,s v„ (I,,* )/?(#,.*)
t v  ,= t  I  k = l

(2 .21)
/

The estimator for the second term on the right hand side of Eq. (2.18), a / , can be easily

derived by taking the square o f the estimator an given in Eq. (2.15):

(  ] N j,
Y , Y Jw,,k,sy/ n { i , k ) p ( i , k ) (2 .22)

Substituting the results from Eqs. (2.21) and (2.22) into the variance given in Eq. (2.18) 

yields

< = j j i { j L wuc,sV,,(L)p{lk)

77 Z  Z  wKk,s W„ { l , k) p { l , k ) )  •tV /=i /(=] J

(2.23)

The estimator in Eq. (2.23) is biased because the same set of data was used to calculate 

the sample mean used in the variance estimator. This bias can be eliminated(12) by

multiplying the statistic by N/
N — \ to give
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CT = ----
N  - ;=1 V k=\

(2 .24)

The true variance for an estimate of an made with N  independent trials can now be

written as

1
<7- =  &l .

*. N  a"
(2.25)

Substituting Eq. (2.24) into (2.25) provides an unbiased estimator o f er? ,

d-?
N V J=1 k=I (2.26)

The estimator in Eq. (2.26) gives a measurement of the statistical uncertainty in each 

individual expansion coefficient.

2.2.2. Variance o f the Functional Expansion

It is also possible to derive a more powerful result that gives the pointwise 

variance o f the reconstructed functional estimate instead o f the individual coefficients. 

The derivation begins by considering a truncated functional expansion o f the current 

distribution in some orthogonal basis set o f functions,

(2.27)

Using the estimator for an given in Eq. (2.14), any set o f N  independently observed 

events can be used to estimate any or all members o f the set o f expansion
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coefficients {an}p . Even a single history i provides an estimate ani for every expansion 

coefficient in the set {ani} ^ , and therefore, by Eq. (2.27), an estimate for the function 

itself. It is useful at this point to define a new quantity, JM, ( g j ,  which represents 

an M"’ order estimate o f the function resulting from only the i ’h history,

M

• v , k >  L “ „ A r „ ( l ) .  <2-28)
77=0

Taking the average o f the JM ^  j over N  observations yields an intermediate result,

  . 1 N  ___   i  N  M  _
= . (2-29)

t= l ;=1 w=Q

which can be simplified to yield

M / (  1 'v ^
J M  (£) = Z  Kv*{z) T7 Z  = ll^nKWn^)- (2-30)

n= 0 \ - N  7=1 y  n = 0

Equation (2.30) gives an expected result, in which the mean functional expansion JM

for N  independent trials is equal to the functional expansion that uses the sample mean 

for each expansion coefficient individually. It is also straightforward to apply the sample

variance formula to

1 ( 7 2 ( 1 ) )  - N  J
; r--------------  (2.31)

■Mf) N ( N - 1)

Equation (2.31) can be algebraically manipulated to give the final result,

N  (  M  \ 2  (  M  V

X  -iV
* 2 i —1 V«=0 J  V 77=0(J —............... ..............

N ( N - l )
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N ( N - l )

N  (  M  M

Z  kn Vn (# ) ) (" * ,/  K  ¥ m ( I ) )
t=l l»=0ffl=0

f  MM
■N Z  Z  kn ¥„ ( I ) ) (« „  K  ¥ m ( I ))

V «=G n? = 0  y  y

0 w=0 iV t
( M M

N - 1

' “ t (  Z  Z  ( « A  )(*„ Vn { t ) ) { km ¥ m ( I ) )
Vw=0 w=0 y

Z Z ( * » ^ ) ) ( * » (fl) a* * ^W=0 /W = 0

- yryf Z Z (« A )M ^ ))  i k" y/^ ) )
W  ~ 1 V/»=o«=o

“ Z Z k ' v  -  «a ) ( ^ ^ ( ^ ) ) ( ^ ^ ( ^ ) )^  * »=0OT-0

^ ■ h ) = ]a t Z Z A , „  (*»^ ( £ ) ) ( * « ^ ( C » )  ’ (2.32)

where <rn a is, by definition, the sample covariance between estimates o f an and am ,

<x = a a -  a a . (2.33)atfam n,i m,i n m V ■'

Equation (2.32) gives the variance (as a function o f £ )  for the estimated 

functional expansion of the surface crossing current. Unfortunately, this equation 

requires the covariance between every combination o f expansion coefficients to be 

calculated. Computing the covariance matrix for a large number of expansion 

coefficients can increase the memory requirements and run time o f a Monte Carlo 

simulation. To prevent this burden on the code, it is useful to consider an estimate for the 

2-norm of the variance.
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2.2.3. Two-Norm Variance of the Functional Expansion

The derivation o f the 2-norm variance estimate begins with the sample variance 

for JM given in Eq. (2.31). By expanding, integrating both sides over T , and using

the orthogonal properties o f the basis set , Eq. (2.31) yields,

N ( N - l )

N  (  M  M

m  E  £ (« „ ,, k» v* ( ^ ) ) ( < /  k , Vn, ( I ) )  \p ( i )/=1 \«=0/»=0 J

r m \ ( M \
- N

\n~Q J U=o J
N ( N - 1)

1 v f 1 V  " U  1
( i v - i ) ^ ^ t r  ' J

1 ;t(< -

N - l

'  M  \

,o=0 )

which, upon use o f Eq. (2.12), yields the final result,

M

»=0
(2.34)

Equation (2.34) gives an estimate o f the statistical uncertainty in the entire functional 

expansion based only on the uncertainties in each o f the expansion coefficients and not 

on the covariance of the coefficients.

2.2.4. Truncation Error

In addition to statistical error present in each o f the expansion coefficients, the 

reconstructed functional approximation will also contain truncation error, which arises
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from approximating the true distribution with a truncated series expansion. Therefore,

series are included. Clearly, it is not possible to estimate an infinite number of expansion 

coefficients, and the functional approximation must be truncated at some finite number o f 

terms M :

The detailed convergence properties o f functional expansions are well known and widely 

reported in the literature(jI~33).

For the FET, it is desirable to have a measure of how much truncation error is 

present in a functional approximation o f a given order. Unfortunately, this information is 

not contained in the magnitude o f individual expansion coefficients, but rather is related 

to the rate at which the sequence of coefficients converges towards zero. One commonly 

used measure o f truncation error is the 2-norm. By ParsevaFs Theorem the 2-norm 

measure o f the truncation error in a finite series approximation is given by the 

relationship*32̂

the functional expansion for given in Eq. (2.12) is exact only if all terms in the

This truncation after M  terms introduces an error EM in the estimation of 

which is equal to the contributions from all expansion terms withw > M ,

(2.37)
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Therefore, as the truncation error goes to zero, the M'h partial sum of the expansion 

coefficients squared will approach a constant value. By examining the partial sum as a 

function o f M , it is possible to estimate the truncation error and the integral of

In the preceding sections both the statistical uncertainty and truncation error 

properties were derived for radiation current expansions only. Similar results can be 

derived in an analogous way for the flux expansion or any other FET based on a discrete 

event estimator.

In the FET, the truncation error and statistical error terms are inversely related. 

The low order expansion coefficients are the easiest to integrate stochastically and will 

have smaller statistical uncertainties. However, using too few expansion coefficients will 

result in a large truncation error and low resolution. Using a higher order series 

expansion will decrease the truncation error, but higher expansion coefficients will 

always have larger statistical uncertainties because the basis functions are more difficult 

to integrate. Keeping too many, or poorly converged, coefficients will result in statistical 

error “contamination” of the final approximation. To get the maximum effectiveness 

from the FET, an optimal balance must be found between these two terms that will 

minimize the total error in the approximation.

Examination o f Eqs. (2.34) and (2.37) indicates that for each additional 

coefficient an included in the series, the truncation error is reduced by a2n and the

2.2.5. Optimizing the FET Approximation
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statistical error is increased by ef? kn . Taking the ratio of the increase in statistical error 

to the decrease in truncation error,

gives a relative cost-to-benefit metric associated with adding the n,h term to the series. 

Note that looks similar to the relative standard deviation that is widely used for 

standard Monte Carlo tallies; the two metrics differ only by a factor o f .

The cost-to-benefit ratio provides a convenient test for determining how many 

expansion coefficients should be used from a given Monte Carlo simulation. Terms with 

values of RI » 1  should not be included in a functional approximation because they are 

not well converged and will not add any useful information to the result. Terms with 

values of « 1 ,  on the other hand should be included in the series approximation 

because they provide valuable information about the shape of the true function. Terms 

with «1 are near the break even point and should be carefully examined before

including any such term in a functional approximation. Some numerical results 

demonstrating the behavior of the cost-to-benefit ratio will be presented in section 3.3.3.

2.3. Implementation of the Surface Crossing FET Estimator

The previous sections in this chapter have focused on the theoretical and 

mathematical properties o f the surface crossing FET estimators. While these results 

provide important insights into the estimators, they do not provide any information on 

how to actually implement the FET into a Monte Carlo particle transport code. This
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section will cover many o f the important issues surrounding practical implementation of 

the FET.

2.3.1. Selecting a Set of Basis Functions

Until now, all derivations for the FET have been performed by using an arbitrary 

set o f basis functions that are both complete and orthogonal with respect to

some weighting function P (<%')■ When the method is actually implemented into a Monte

Carlo code, it is important to consider which set(s) of basis functions will produce the 

best functional approximations for the applications of interest. The “best” basis set for a 

given situation is one that can achieve an acceptably small truncation error with the 

fewest number of expansion terms (e.g. lowest expansion order).

If  any detailed information about the properties or shape o f a solution function is 

known a priori, then a basis set can be chosen to take advantage o f this information. 

Examples o f tailoring basis sets to specific applications include the use of Laguerre 

functions for distributions that are known to be exponential20*, the use of Fourier Sine 

expansions if symmetry and endpoint information is available, and the use of Bessel or 

Spherical Harmonics expansions if the distributions are known to have cylindrical or 

spherical symmetry, respectively. In general, incorporating any available information 

about the solution into the selection o f a basis set will result in a better and more efficient 

FET approximation.

Unfortunately, it is often the case that no a priori knowledge about the solution 

function is available, or the information is too weak to be o f any real value when
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selecting a basis set. The latter is true in the case of surface crossing particle current 

distributions, where piecewise smoothness is the only property that can be established for 

the distribution. In such cases it is a good idea to choose a very general set of basis 

functions, such as the Legendre Polynomials or Chebyshev Polynomials. These 

polynomial basis sets are widely used for many physics and engineering applications, and 

their series expansions are known to have fast algebraic convergence for functions that 

are “nearly” smooth (e.g. containing very few discontinuities in the first and higher 

derivatives). For functions that are analytically smooth, the performance of the 

orthogonal polynomial expansions improves, yielding exponential convergence rates.

The generality of these basis sets is itself an advantage. With a basis such as the 

Legendre polynomials, an FET estimator can be implemented in a code and used for 

many different purposes, such as expansions in space, time, energy and/or angle. If  a 

basis set were tailored to a specific application, such as an expansion in time, it is likely 

that the basis would not be well-suited for a different application, such as an expansion in 

angle.

The polynomial basis functions are very good for expanding analytically smooth 

distributions, but they can become less effective if  they are used to expand functions that 

contain discontinuities. There are, however, ways to improve the efficiency o f the 

polynomial basis even when they are applied to discontinuous functions. If  the locations 

o f discontinuities (i.e. material boundaries) in the function or its derivatives are known, it 

is then possible to use a piecewise expansion to accelerate the convergence o f the 

functional expansion. In a piecewise expansion, a single tally region with known 

discontinuities is divided into two or more smaller tallies that are expected to have
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continuous solutions. The smaller tallies will have a larger variance than the original 

because fewer particles score in each tally, but this drawback is usually offset by the 

benefits o f using the FET on a continuous distribution. In certain situations, the use of 

piecewise tallies can greatly increase the accuracy and efficiency of the FET.

In this dissertation, the discussion of basis sets for use with the FET has thus far 

been limited to orthogonal sets only. Strictly speaking, there are no theoretical reasons 

that non-orthogonal basis sets cannot be used with the FET. There are, however, several 

practical reasons that orthogonal basis sets are preferred. One major reason to choose 

sets of orthogonal basis functions is convenience. For an expansion in orthogonal 

functions, the expansion coefficients are equal to the moments of the function with 

respect to the individual basis elements. For a non-orthogonal basis set, the moments and 

expansion coefficients are not the same and a linear system must be solved to obtain 

expansion coefficients from the moments. Fortunately, this linear system needs to be 

solved only once, during the post-processing o f the Monte Carlo simulation, and does not 

slow down the random walk o f individual particles.

The real drawback to using non-orthogonal basis sets lies in the fact that most of 

the analysis techniques that have been used to estimate the truncation error and 

convergence rates for the FET are not applicable to non-orthogonal sets o f basis 

functions. In orthogonal sets, the order o f a basis function is directly related to its spatial 

resolution, with higher order functions providing fine spatial detail but being relatively 

unimportant to the gross shape of the distribution. This ordering makes it easy to 

estimate the truncation error that will result from terminating an expansion at a given 

order. This will be shown in Chapter 3. Such an ordering is not, in general, true for non-
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orthogonal sets (such as finite element basis sets). This result makes it difficult to 

estimate the accuracy of an FET with a non-orthogonal basis. Even with these 

drawbacks, the use of non-orthogonal sets, especially finite element basis sets, may be 

important for certain types of problems. This topic remains an area of interest and future 

research.

2.3.2. Scaling the Tally Domain

A basis set is said to be “complete” over a domain if any function defined on the 

domain can be written as a linear combination of the basis elements. Therefore, when 

considering different basis sets for use with the FET it is important to consider the 

expansion domain for the set. There are three general classes of expansion domains: 

finite, semi-infinite, and infinite. Expansions over finite domains are the most widely 

used for practical applications of the FET. Examples of 1-dimensional basis sets that are 

complete over a finite domain include Fourier series, Legendre polynomials, Chebyshev 

polynomials, Gegenbauer polynomials, and Jacobi polynomials*31*. Most o f these basis 

sets are defined such that the expansion domain lies in the interval [-1,1]. The semi-

infinite and infinite basis sets can be used in special cases of the FET, but special care 

must be taken to ensure that the numerical schemes used for evaluation work properly 

over the entire domain. Examples of 1-D semi-infinite (complete on the interval [0,oo))

and infinite (complete on the interval ( - 00, 00) )  basis sets include Bessel functions,

Laguerre polynomials (both semi-infinite) and Hermite polynomials (infinite/31*. Multi

dimensional basis sets can be obtained by taking the product of two (or more) 1-

dimensional basis sets. For instance, it can be shown the product set o f Legendre
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Polynomials {Pn (x)PM (y)}“m=0 is a complete orthogonal basis over the domain

{ ( x , y ) | x e [ - l , l ] , y e [ - l , l ] } .

It should be clear from the preceding discussion that the choice of a basis set is 

highly dependent on the size and shape of the tally region. However, it would be 

unreasonable to expect to find a basis whose expansion domain exactly matches a given 

tally region. In situations where the tally and expansion domains do not match exactly, a 

simple change in variables can be used to overcome the problem. Consider a finite 1- 

dimensional interval x = [*min,*max] that is to be approximated by a Legendre polynomial

expansion. In order to avoid trying to find a basis that fits [xmin,xmax] exactly, simply 

define a scaled variable

x = 2
f  \

V L ia x  Lnin J

- 1 ,  (2.39)

over the interval [—1,1]. When a particle undergoes a surface crossing (or collision)

event in the tally region at the position x , the tally will actually score the event at the 

scaled position x . The resulting FET coefficients are then for a functional expansion in 

the scaled domain.

After the simulation has finished, the expansion can be converted to the original 

tally domain by substituting Eq. (2.39) into the arguments o f the Legendre polynomials,

  M
J,t (x ) = an k n  P H (x) (Scaled Domain) (2.40)

11=0

j m (x) = T , p , k p„
n=0

2\ x Xmin [-1  
I X  —x ■y  \  max mm J  y

(Original Tally Domain) (2.41)
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We notice that in Eq. (2.41), the orthonormalization constant k'n has changed to a new

value. In the case of the Legendre polynomials it is easy to calculate the new constant 

directly from Eq. (2.9),

kl =
(  (  (  \  \  \

X *mm j - 1 1 c/jc
x  — X  )y  \  \  max mm J  J  J

. (2.42)

For multiple dimensions this transformation of variables can be performed independently 

for each variable.

The simple linear scaling transformation described above works well for 

Cartesian domains, but breaks down when applied to irregularly shaped domains. In these 

cases there are more complicated variable transformations available that will make the 

tally domain match the expansion domain for the basis sets. For discrete event 

estimators, conformal mapping can be used to expand distributions over irregular 

(especially curved) domains. However, conformal mapping transformations will not 

work for track length estimators because the particles do not move in straight lines in the 

transform space.

2.3.3. Calculation Efficiency

When compared against the entire random walk process, any overhead created 

from adding a simple 1-D FET estimator is usually fairly small. In fact, the only extra 

work that is required for an FET surface crossing estimator is the evaluation o f the 

weighting function and basis functions at each tally event. For an M'h order functional 

expansion, the FET estimators require that the first M  basis functions be evaluated at 

each discrete event (surface crossing) that occurs in the tally region. For small values of
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M , these calculations can be done quickly and efficiently by a direct evaluation of the 

function. However, higher order functions are often complicated and require many 

operations to evaluate directly. Fortunately, many basis sets have recursion relationships 

that allow higher order functions to be evaluated in terms o f several lower order 

functions. In the case of the Legendre polynomials the recursion relationship is given by 

i>0(x) = l

Pl {x) = x  (2.43)

P L-) _ (2 ”  ~ * P”-i (XH ” - ]) (X) .
n

Recursion relationships can be used to greatly increase the efficiency o f evaluating basis 

functions for the FET estimators, especially in high order or multidimensional 

expansions.

Another concern in the numerical evaluation o f the FET estimators is the 

weighting function p ( x ) .  While most of the weighting functions can be evaluated

efficiently, many have singularities that can cause problems for numerical schemes. One 

such example is the weighting function for the Chebyshev polynomials,

p ( x )  -  (l - x 2 j , which has singularities at the endpoints x = -1  and 1. The function

is integrable, but integration by Monte Carlo is not guaranteed to produce an accurate 

result. A random sample o f x taken too close to either endpoint can skew the estimate of 

the integral or result in a numerical overflow error. As a result, special care must be used 

when implementing a basis function whose weighting function has singularities. Due to 

this issue, the Legendre polynomials and Fourier series have been found to be especially 

convenient basis sets because their associated weighting function, p ( x )  - 1, contains no
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singularities. For these reasons the Legendre polynomials are a good choice for a generic 

FET implementation. Because of this, the Legendre polynomials will be used for the 

majority o f the derivations and results in this dissertation.

2.3.4. Numerical Implementation

Aside from the selection o f a basis set, the major consideration for implementing 

the FET in a Monte Carlo code is where and how the tally should fit into an existing code 

framework. In the case o f the surface crossing estimator the actual implementation is 

straight forward. For every event that an individual particle undergoes, the code must 

check whether a) the event is a surface crossing, and if so, b) did it occur within the 

predefined tally domain? If the answers to both of these questions are yes, then the work 

of scoring the tally can begin. The first step in determining the score for the event is to 

scale the event location in the tally domain to fit the expansion domain for the basis set, 

in this case the Legendre polynomials. This is accomplished by the change of variables 

defined in Eq. (2.39). The score for a single event is then taken to be the value o f the 

basis function at the scaled event location times the weight o f the particle following the 

event. Therefore, each basis function, up to the user defined truncation order M , must 

be evaluated at the scaled position. For the Legendre polynomials this evaluation can be 

done very efficiently using the recursion relationship given in Eq. (2.43). For a single 

history, the scores from each surface crossing event are added together to give a single

estimate for each expansion coefficient {«„,-} _0- After N  independent histories, these

single history estimates (and their square values) can be averaged together using Eqs.

(2.15) and (2.23) to yield a single set of estimated expansion coefficients and
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their associated variances |cr? |  ^ . These expansion coefficients can then be used in the

Legendre series expansion, Eq. (2.30), to give a functional approximation to the

distribution J  in the scaled domain. This approximation can then be converted to the

original domain by the transformation defined in Eqs. (2.41) and (2.42). A detailed 

overview of this implementation is presented in the flow chart shown in Figure 2.1. For 

testing purposes, an FET surface crossing estimator has been implemented in the 

TALLYX subroutine o f the production Monte Carlo code MCNP4c(9). This initial 

version uses Legendre polynomials to approximate current distributions over 

quadrilateral tally regions.
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F igure  2.1. Flow chart illustration  of su rface  crossing FET implementation.
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2.4. Numerical Results for the FET Surface Crossing Estimator

To verify the theoretical development of the surface crossing FET and its correct 

implementation in MCNP, the new method was tested against traditional histogram tallies 

on two benchmark problems. These benchmark results demonstrate that the new FET 

method agrees with the traditional histogram tally approach and qualitatively indicate that 

the FET may be more robust and accurate than the histogram. A formal theoretical 

analysis and quantitative comparison between the two methods will be presented in the 

next chapter.

The first benchmark problem involves the calculation o f the time-spectrum for 

thermalization o f 14 MeV neutrons in hydrogen. This simplified problem is 

representative o f the type of analysis that is required for the design and construction of 

slowing-down neutron spectrometers. For this benchmark, an MCNP model was created

2.4.1. Neutron Slowing Down in Hydrogen

I I '  : o  Ti l : v;
©

3

14 MeV
Neutron Source

Figure 2.2. MCNP model geometry for the neutron slowing down benchmark.
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F igure 2.3. Reference tim e spectrum for neutron slowing down benchmark problem. Reference 
solution is a 100 bin histogram approxim ation  generated from a 3-million history MCNP simulation. 
The small points represent a two standard deviation uncertainty band for each data point.

to represent a single neutron source located at the surface of a slab of pure Hydrogen with

density p =  1 gm/cc. The model geometry is shown in Figure 2.2. MCNP was run in

fixed source mode to simulate a 10jus pulse o f 14 MeV neutrons directed into the

hydrogen. Both histogram and FET tallies were set up to record the times at which

neutrons with energies o f 1 eV or less (e.g. thermalized neutrons) were emitted from the

hydrogen slab. The results provided both a histogram and a functional approximation to

the time-spectrum of emitted thermal neutrons.

For comparative purposes, a reference 100-bin histogram approximation was

generated using 3 million source particles. A plot o f this reference distribution is shown

in Figure 2.3. The resulting reference distribution shows a sharp rise in thermal neutron

current beginning at 0 ps and peaking at 10 ps. Following this peak, the neutron current

appears to fall off exponentially for the next 90 ps. We notice that, for the time scale
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selected, the peak in the neutron current is so sharp that it appears as a discontinuity in 

the first derivative. As noted in the previous section, any “sharp” feature such as this 

peak can be difficult to resolve with a low order Legendre expansion. In order to 

temporarily avoid this complication, the first comparison between the histogram and FET 

approximations was performed on the smooth part of the distribution from 20-100 ps. In 

this 80 ps interval the first 8 Legendre expansion coefficients for J ( t )  were estimated by

using the FET during a 3 million history simulation. The resulting expansion coefficients 

are given in Table 2.1 along with their relative uncertainties. We notice that the 

coefficients all appear to be statistically well converged, both in terms o f the relative 

uncertainty and the cost to benefit metric. We also note that the magnitudes of the 

coefficients monotonically decrease to 0 (for 4 decimal place precision). This indicates 

that there should not be a significant amount of truncation error present in the FET 

approximation. When these coefficients are used to reconstruct a functional 

approximation, J  ( / ) ,  the result (Figure 2.4) shows remarkable agreement with the

reference histogram solution.

In order to further compare the histogram and FET approximations, two 

additional simulations of 30,000 and 3,000 particle histories were run. The results of 

these simulations are plotted against the reference solution in Figure 2.5 and Figure 2.6, 

respectively. In the case o f the 30,000 history simulation, the FET approximation shows 

excellent agreement with the histogram benchmark solution. The 30,000 history 

histogram approximation shows a large amount o f variation about the reference result. In 

this case, the FET appears to give a better approximation to the true shape of the 

distribution than the corresponding histogram tally. For the 3,000 history simulation,
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T able 2.1. FET estimated Legendre expansion coefficients for thermal neutron current distribution 
in the interval 20-100 ps. The coefficients for a 7th order approxim ation are presen ted  along w ith the 
relative uncertainty and cost-to benefit ratio for each.

Order
n

Expansion Coefficient

k
Relative Standard Dev. 

R
Cost to Benefit 

Ratio

Rl
0 0.0146 0.003 -

1 -0.0082 0.004 2.40x10'5
2 0.0033 0.008 1.60x1 O'4
3 -0.0011 0.019 1.26x10'3
4 0.0003 0.055 1.36x1 O'2
5 -0.0001 0.202 2.24X10'1
6 0.0000* OO CO

7 0.0000* OO OO

Indicates a value less than the minimum precision reported in the table. Relative standard deviation and 
cost-to-benefit ratios cannot be calculated when the estimate is zero.
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Figure 2.4. Seventh order Legendre FET approximation to thermal neutron time spectrum from 20- 
100 ps. FET coefficients were generated using a 3-million history MCNP simulation. The dots 
represent the 3-million history reference histogram approximation.
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Figure 2.5. Comparison o f FET and histogram approximations produced from a 30,000 history 
MCNP simulation. The black dots represent the 3-million history reference histogram  
approximation.
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Figure 2.6. Comparison o f FET and histogram approximations produced from a 3,000 history 
MCNP simulation. The black dots represent the 3-m illion history reference histogram  
approximation.
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neither method is able to give an accurate approximation of the true distribution. In this 

simulation only 107 of the 3,000 initial particles were scored by the tallies. With only 

107 scoring particles, there is too little information available to make a statistically 

significant approximation using any method.

The results shown above demonstrate that the FET can be used to create an 

accurate functional approximation for smooth, “well-behaved,” distributions. However, 

the effectiveness of the FET for distributions that are not well-behaved remains to be 

shown. To address this issue, the neutron slowing down benchmark was repeated; this 

time using the FET to approximate the entire time spectrum from 0-100 ps. The full- 

range expansion coefficients were generated during a single 3-million history MCNP 

simulation, and are given in Table 2.2. Again the coefficients all appear to be statistically 

well converged, with relative uncertainties and cost-to-benefit ratios well within 

acceptable limits. We notice, however, that the magnitudes o f the coefficients do not 

monotonically decrease to 0. The coefficients as,a6, a 7 all have magnitudes that are

relatively large (5-10% of the magnitude o f a0). The large magnitudes of these

coefficients indicate that the Legendre series is not near convergence and that a 7th order 

expansion may contain significant truncation error. A comparison between the 7th order 

FET approximation and the reference histogram approximation (Figure 2.7) confirms this 

fact. The FET approximation does not accurately represent the sharp peak in neutron 

current that occurs at about 10 ps. It is important to restate that this inaccuracy is due to 

truncation error caused by not estimating enough expansion coefficients. It is not a result 

of statistical error, and, therefore, the accuracy o f the approximation can not be improved
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T able 2.2. FET estimated Legendre expansion coefficients for thermal neutron cu rren t distribution 
in the interval 0-100 ps. The coefficients for a 7th order approximation a re  presented along with the 
relative uncertainty and cost-to benefit ratio for each.

Order
n

Expansion Coefficient
an

Relative Standard Dev. 
R

Cost to Benefit 
Ratio

Rl

0 0.0398 0.002 -

1 -0.0238 0.003 1.35xl0'5
2 0.0082 0.006 9.00xl0 '5
3 0.0005 0.073 1.87x10‘2
4 -0.0037 0.008 2.88xl0 '4
5 0.0040 0.007 2.70x10'4
6 -0.0031 0.009 5.27X10-4
7 0.0019 0.014 1.47x l 0 '3
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Figure 2.7. Seventh order Legendre FET approximation to thermal neutron time spectrum from 0- 
100 ps. FET coefficients were generated using a 3-million history MCNP simulation. The dots 
represent the 3-m illion history reference histogram approximation.
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by running more particle histories during the simulation. The relationship between 

truncation error and statistical error in the FET will be examined in detail in the next 

chapter.

Another method for improving the accuracy of the FET approximation in this case 

is the use of a piecewise tally. In a piecewise tally, the entire tally domain is broken into 

several smaller tallies, in an effort to eliminate singularities that may be present in the 

solution function. For the neutron slowing-down benchmark problem, a two region 

piecewise tally could produce significant improvement. If the tally domain were divided 

at t=10 us, then the true distribution in each piecewise tally bin would be well 

approximated by a low order Legendre expansion. Even if  the true location o f the 

neutron current peak is not known exactly, a piecewise tally can be used to stretch and 

smooth the distribution in this vicinity, possibly resulting in better resolution of the peak.

2.4.2. Active Neutron Interrogation o f Subterranean Water

As a second benchmark, the modified version o f MCNP was tested on a fixed- 

source neutron interrogation problem that mimics a search for subterranean water. The 

problem is modeled as a uniformly distributed 14 MeV neutron source located 5 cm 

above a 20 cm * 20 cm area o f the ground surface. The ground consists of sand (SiCL) at 

a density o f 1.55 g/cc with a 11 cm x 13 cm x 1.2 cm pocket o f water located 15 cm 

below the surface. A diagram of the model geometry is given in Figure 2.8. All source 

neutrons are started at time zero with an initial direction normal to the surface. A surface 

crossing estimator located at the ground surface is used to tally thermalized neutrons that
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(a) (b)

Figure 2.8. MCNP Model geom etry for the active neutron interrogation benchmark problem. A 
uniformly distributed source of 14 MeV neutrons is directed into sandy soil containing a pocket o f  
water located 15 cm below the surface (a). Neutrons entering the water pocket are themalized and 
reflected back towards the ground surface (b).

exit the soil. The time spectrum of these reflected thermal neutrons can be used to 

diagnose the presence of subsurface water.

For a reference solution, the time domain from 0-25 ps was divided into 100 bins, 

and a 100-million history fixed source MCNP calculation was used to tally the exiting 

thermal neutron current in each bin. This results in a histogram approximation to the true 

thermal neutron time spectrum. The same problem was then run using the surface 

crossing FET to estimate the first 20 Legendre expansion coefficients o f the time 

spectrum between t=0 and 25 ps. The expansion coefficients, along with their relative 

cost-to-benefit ratios are given in Table 2.3. Inspection o f the results shows that all but 

one of the expansion coefficients have an Rn value of less than one, indicating that they 

are statistically well converged and should be included in the series expansion. Table 2.3 

also includes the partial sums of the a2n terms. These sums can be used to verify that the
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Table 2.3. The first 20 Legendre expansion coefficients for active neutron interrogation 
benchm ark  problem . All coefficients were produced from a 100-million history M CNP simulation.

Order
M

Expansion Coefficient

%

Cost-to-Benefit Ratio

R i

M

/7—0

0 7.55 lx lO '4 2.281x10'*°
1 -1 -876x 10*4 7.206x1 O'5 2.703x10'*°
2 -2.204x1 O'5 4.108x1 O'3 2.713x10'*°
3 6.921xl0‘5 3.974x10"4 2.847x10'*°
4 -6.167xl0‘5 5.654xl0 '4 2.984x10'*°
5 4.596x1 O'5 1.126xl0‘3 3.077x10'*°
6 -2.808xl0 '5 3.053xl0 '3 3.118x10'*°
7 8.538x1 O'6 3.202x1 O'2 3.122x10'*°
8 6.704x1 O'6 4.979x1 O'2 3.125x10'*°
9 -1.577x10‘5 8.852xl0 '3 3.144x10'*°
10 1.610X1Q'5 8.594x10’3 3.166x10'*°
11 -1.264x1 O'5 1.412xl0'2 3.181x10'*°
12 7.310x1 O'6 4.321x1 O'2 3.186x10'*°
13 -2.413xl0 '6 3.964x10'* 3.187x10'*°
14 -5.742xl0 '7 6.916 3.187x10'*°
15 3.702xl0 '6 1.653x10'* 3.189x10'*°
16 -5.042x10‘6 8.850xl0’2 3.192x10'*°
17 5.156xl0 '6 8.43 lx lO '2 3.196x10'*°
18 -3.888x 10'6 1.503x10'* 3.198x10'*°
19 2.663x1 O'6 3.223x10'* 3.199x10'*°

truncation error in the approximation is acceptably small. Inspection of the partial sums 

(Figure 2.10) shows convergence to a constant value as predicted by Parseval’s theorem.

These results also demonstrate that, for this problem, an expansion with as few as 

7-10 terms may be a suitable approximation. In addition to the expansion coefficients, 

the MCNP simulation also provided sample estimates for the covariance between every 

combination of coefficients. These covariance results were then used in Eq. (2.32) to 

produce an estimate for the uncertainty in the functional expansion.

The previous benchmark problem focused on examining the behavior of a fixed 

order FET approximation as the numbers of particle histories were varied. For this
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Figure 2.9. Reference time spectrum for the active neutron interrogation benchmark problem. 
Reference solution is a 100 bin histogram approximation generated from a 100-million history 
MCNP simulation.
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Figure 2.10. Partial sums of the Legendre expansion coefficients squared for the active neutron  
interrogation benchmark. By P arsev a l’s theorem these sums should converge to the tw o-norm  o f the 
true distribution as the truncation error goes to zero. The dashed line shows an estimate of the 2- 
norm calculated from the reference histogram distribution.
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Figure 2.11. Zeroth order Legendre approximation to thermal neutron time distribution from 0-25 
ps. FET coefficients were generated using a 100-million history MCNP simulation. The dashed lines 
represent a two standard deviation uncertainty band around the functional approximation.
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Figure 2.12. Fourth order Legendre approximation to thermal neutron time distribution from 0-25 
ps. FET coefficients were generated using a 100-million history MCNP simulation. The dashed lines 
represent a two standard deviation uncertainty band around the functional approximation.
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Figure 2.13. Eighth order Legendre approximation to thermal neutron time distribution from 0-2S 
ps. FET coefficients were generated using a 100-million history MCNP simulation. The dashed lines 
represent a two standard deviation uncertainty band around the functional approximation.
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Figure 2.14. Ninteenth order Legendre approximation to thermal neutron tim e distribution from 0- 
25 ps. FET coefficients w ere generated using a 100-million history MCNP simulation. The dashed 
lines represen t a two standard deviation uncertainty band around the functional approximation.
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benchmark the number o f  particle histories will remain fixed at 100-million, while the 

expansion order of the FET will be varied. These tests will provide additional insight 

into the role o f truncation error in the FET. Using the expansion coefficients given in 

Table 2.3, four separate Legendre approximations (with truncation orders o f 0, 4, 8, and 

19) were constructed. These Legendre approximations are shown plotted against the 

reference solution in Figure 2.11 through Figure 2.14.

The 0th order expansion (Figure 2.11) is equivalent to a single bin histogram taken 

over the tally domain. This approximation gives the average current over the domain, 

and preserves the integral o f the distribution (as do all o f the higher order 

approximations). Notice that the statistical uncertainty (dashed lines) for the functional 

expansion is very small, but the approximation is unable to resolve any temporal features 

of the true distribution.

The 4th order expansion (Figure 2.12) adds some gross temporal resolution to the 

approximation but is not able to resolve important features of the distribution correctly. 

This low-order approximation correctly describes the asymmetry o f the distribution but 

fails to correctly reconstruct the sharp rise and peak in neutron current or the exponential 

decay that follows.

The 8th order expansion (Figure 2.13) does a much better job at resolving the 

sharp rise in neutron current and the location o f the peak, but it still underpredicts the 

height of the peak. Furthermore, this approximation shows an unphysical negative 

current for the first microsecond of the problem.

Finally, the 19th order expansion, shown in Figure 2.14, demonstrates excellent 

agreement with the reference histogram solution. The majority of histogram data points

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fali within one ensemble standard deviation of the 19th order Legendre approximation, 

indicating agreement within the limits o f statistical uncertainty. The functional 

approximation is able to accurately model the important features of the spectrum, 

including the occurrence of the leading edge at ~1 ps, the sharp rise to the peak of the 

spectrum at ~3 ps, and the subsequent exponential decay following the peak. The 

functional approximation does not do well in the short period (0-1 ps) before the first 

thermal neutrons are observed exiting from the surface of the ground. During this time 

the functional approximation again shows a non-physical negative total current. This 

arises due to the discontinuity in the derivative o f the current distribution that occurs at 

the leading edge. This problem is inherent to functional expansions near discontinuities 

in the function or its derivatives. It is important to note, however, that the problem is 

localized near the discontinuity and does not have a significant effect on the rest of the 

approximation.

Another noticeable feature of the 19th order approximation occurs near the right 

endpoint, at t=25 ps. Here, the standard deviation o f the functional approximation shows 

a sudden increase, indicating more statistical uncertainty at the endpoint. Close 

examination o f the raw data used to produce Figure 2.14 reveals that there is also a sharp 

increase in the standard deviation o f the functional approximation near the left endpoint, 

as well. These sudden increases in the standard deviation are a consequence o f using the 

Legendre polynomials as the basis set for the expansion. All Legendre polynomials are 

normalized so that their endpoints evaluate to ±1. Away from the endpoints, however, 

high-order Legendre polynomials have values close to zero. Therefore, high-order 

Legendre terms contribute the most near the two endpoints o f an expansion. Because the
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Figure 2.15. Histogram and Legendre approximations to the surface distribution of thermal 
neutrons exiting soil surface. The red indicates a high intensity of reflected thermal neutrons directly 
above the water pocket (dashed line) located 15 cm below the ground surface.

highest order terms also have the most statistical uncertainty, it follows that the resulting 

functional expansion will have a greater variance near the endpoints.

As a final component of this benchmark, the FET was used to produce a 2-D 

approximation for the spatial distribution (in the X-Y plane) of thermal neutrons reflected 

back through the soil surface. In practice, measurements like this could be used to 

estimate the location and shape of underground water deposits. A 2-D product set of 

Legendre polynomials, Pmn (x ,y )  = Pm (x)Pn ( y) ,  was used for the expansion basis. A

100-million history MCNP simulation was run to estimate 36 expansion coefficients (a 

6x6 expansion) with respect to this basis set. An additional 100-million history 

simulation was run to produce a 20x20 bin histogram solution. The results o f these 

simulations, shown in Figure 2.15, demonstrate that both methods produce results that
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Figure 2.16. Reference histogram solution for the surface distribution of thermal neutrons exiting 
the soil surface. The red indicates a high intensity of reflected thermal neutrons directly above the 
water pocket located 15 cm below the ground surface. The reference solution was generated by a 1- 
billion history fixed source calculation in MCNP4c. Each bin in the solution has a relative standard 
deviation less than 2%.

clearly show the location of the underground water pocket (dashed line). The two results 

appear qualitatively very similar, indicating agreement between the two. The FET 

approximation, however, produces a much smoother solution than the histogram.

In order to quantitatively compare these two results, a 1-billion history simulation 

was run to provide a reference 20x20 bin histogram solution. The relative statistical 

uncertainty for every bin of this reference histogram solution was estimated to be has less 

than 2%. A plot o f the reference solution is shown in Figure 2.16. A direct comparison 

between the 100-million history and 1-billion history histogram approximations was 

made by calculating the relative difference between the individual bins o f the two 

approximations. This comparison (Figure 2.17a) shows reasonable agreement between
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Figure 2.17. Approximation errors for the 100-million history histogram (a) and FET (b) 
approximations for the spatial distribution of thermal neutrons reflected through the soil surface. 
Errors shown are relative to the 1-billion history reference solution. The histogram approximation 
has a maximum single-bin error o f 17.68%, and an average error (over all bins) o f 4.48%. The FET 
approximation has a maximum single-bin error of 9.74%, and an average error o f  2.07%.

the two approximations, with a maximum bin difference of 17.68%, and an average 

difference of 4.48%, when taken over all 400 bins.

A direct comparison of the FET and reference histogram approximations is more 

difficult. The FET approximation is a continuous function over the entire expansion 

domain, while the histogram approximation is an array o f current values, each averaged 

over a small tally area. In order to obtain a fair comparison between these two results, 

the FET approximation was converted into a histogram. This was done by integrating the 

functional expansion over small segments o f the surface that correspond with individual 

bins in the histogram approximation. A more thorough explanation of this FET-to- 

histogram technique is provided in section 4.5.1. After the FET solution was converted
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Figure 2.18. Relative accuracy comparison of the FET and histogram approximations for the 2D 
spatial surface current benchmark problem. The maximum single-bin and average bin errors 
(relative to a 1-billion history reference histogram) for both approximations are shown as a function 
of computer run-time for each simulation.

into a histogram, it could be compared with the reference solution by calculating the 

relative difference between the individual bins of the two approximations. This 

comparison (Figure 2.17b) shows that the FET solution is actually a closer approximation 

to the reference histogram than the 100-million history histogram, with a maximum bin 

difference of 9.74%, and an average difference o f 2.07%, when taken over all 400 bins. 

However, this increased accuracy comes with a computational cost. On average, the FET 

simulations were found to run -6-8%  longer than simulations with histogram tallies. 

This extra run time is due to the fact that the code must evaluate a series o f Legendre 

polynomials each time a particle scores the tally.

In order to assess the relative benefit o f the FET, a series o f fixed run-time 

simulations were run using the 2D spatial surface crossing current benchmark problem. 

In each trial, two identical simulations were run for a fixed amount o f computer time on a
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Dell Precision 520 workstation with two 1.70 GHz Intel Xeon processors and 2 gigabytes 

of RAM. One simulation used FET to estimate 20 functional expansion coefficients, 

while the other simulation used a 20*20 bin histogram tally. After the simulations 

finished, the two approximations were compared against the 1-billion history reference 

result, using the methodology described above. The relative errors o f the fixed-time 

approximations for each trial were computed and plotted against run time, as shown in 

Figure 2.18. For the same amount of work, the results show that the FET is able to 

produce a more accurate approximation than the histogram tally. This increase in 

accuracy is especially pronounced for shorter run-times (30 minutes- 2 hours).

2.5. FET Collision Estimators for Particle Flux

The derivations and numerical examples presented so far in this chapter have 

dealt only with surface crossing FET estimators. All of these results, however, are 

actually much more general and apply to any discrete event FET estimator. One such 

estimator of particular interest is the collision estimator, used to tally flux in a volume. 

The collision estimator is so widely used in Monte Carlo simulations that some 

comments on the application o f the FET to this estimator are required for the sake of 

completeness.

2.5.1. Derivation o f the FET Collision Estimators and their Variance

The derivation o f the FET collision estimators for approximating volumetric flux 

distributions mimics the derivation for the surface crossing current distributions
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presented in section 2.1. Following the same line of logic, the volumetric flux 

distribution can be written as a series expansion in an arbitrary set o f basis functions

V,n that are orthogonal with respect to a weighting function

(2-44)
/7—0

Expressions for the expansion coefficients hn can be derived immediately from the

orthogonality property o f the basis functions,

b„ = . (2.45)

The expression for bn is in an integral form that can be easily evaluated by Monte Carlo. 

By taking = in Eq. (1.59), it follows that

(2.46)

is an unbiased estimator for the expansion coefficient bn . It can also be shown (using the 

derivations outlined earlier in the chapter) that the statistic

=1 k=1
V

/
(2.47)

N - 1

N  J ,

is an unbiased estimator for the variance o f an individual expansion coefficient, <x| . All

of the other results shown in sections 2.1 and 2.2 (e.g. variance of the functional
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expansion, two-norm of the functional expansion variance, truncation error estimates, and 

cost-to-benefit ratio) are identical for the collision estimator.

2.5.2. Implementation of the FET Collision Estimator

Most of the issues surrounding the numerical implementation of an FET collision 

estimator are identical to those for a surface crossing estimator, which were covered in 

section 2.3. In fact, the only difference between the implementations of the two methods 

is when a given particle scores. For the surface crossing estimator, a particle scores when 

it crosses the tally surface within the specified domain. For the collision estimator, a 

particle scores when it undergoes a collision within the tally domain. This difference is 

reflected on the implementation flow chart shown in Figure 2.19.
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Figure 2.19. Flow chart illustration of FET collision estim ator implementation.
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CHAPTER 3

FET CONVERGENCE PROPERTIES

In two o f the earliest papers on the FET(!g;19), claims were made that the method 

can offer “substantial variance reduction” over traditional tallies. These statements were 

based on the insight of the authors coupled with a few supporting examples. Indeed, the 

conclusion of variance reduction seems both reasonable and plausible. Even the results 

in the previous chapter seem to indicate that a well-converged, properly executed FET 

expansion can provide a more accurate approximation than a histogram produced from 

the same data. However, all of these conclusions are based on individual experiments. 

No quantitative comparison between the two approximation techniques has ever been 

reported in the literature.

In this chapter a detailed theoretical analysis of the convergence properties o f the 

FET and histogram approximations is presented. These convergence properties can then 

be used to directly compare the two methods and establish under what conditions the FET 

can offer variance reduction.
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3.1. Comparison of Generic FET and Histogram Estimators

The analysis begins by considering an accurate Monte Carlo algorithm that 

produces independent realizations of a random variable x. It is assumed that the 

probability density function P(x ) associated with this random variable is not known a

realizations produced by a Monte Carlo simulation. The traditional approach to obtaining 

such information is to divide the domain o f the random variable into “bins”, 

b -  { 1 , 2 , and then count the number o f events that occur in each bin, Nb, during

the simulation. The total score in a bin, N b, divided by the number of independent trials, 

N  , is an unbiased estimator for the probability that a given realization will fall within the 

bin, or

where xb_} and xh denote the bounds of bin b . When this process is repeated for all of 

the bins the result is a histogram approximation to the actual probability density function,

priori and that the end-user wishes to infer the shape o f P(x)  from a set of independent

N
E  i t

(3-1)

(3.2)

where

= P{xb_x < x < x b)
(3.3)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Axb is the width of bin b , and P^sh (x) is the true value of the histogram in bin b . As

the number of bins, M , is increased the truncation error decreases and the histogram 

approximation converges to the continuous distribution.

In the FET, the unknown pdf P(x) is represented as a series expansion in a 

complete set o f basis functions, and the set o f independent samples is used to estimate the 

expansion coefficients for the expansion. If  is a complete orthogonal set with

respect to the weighting function p  inX^(T), the space of all square integrable functions

over some bounded domain F , then any P(x) e L2 (T) can be written as

P(x) = £ a „ k ;,«//„(x). (3.4)
n~0

In Eq. (3.4) an is the true n'h expansion coefficient defined by the inner-product,

an = Jr ip„(x)p(x)P(x)dx  , (3-5)

and kn is the normalization constant for the n‘h basis function (32\

* L  (3.6)
ihlf

In order to calculate a functional approximation to P ( x ) , the expansion coefficients an

must be determined. Fortunately, Eq. (3.5) can be easily estimated by Monte Carlo by 

using the sample statistic

’ ( 3 - 7 )
^  7=1

which is an unbiased estimator for the true expansion coefficient an. We notice that Eq. 

(3.7) is very similar to the discrete event FET estimators given in Eq. (2.14) and (2.46).
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In fact, Eq. (3.7) is a simplified version of the estimators derived in the previous chapter. 

In this simplified formulation, only one independent sample is taken from the distribution 

per history, as opposed to the series o f correlated samples that result from a true random 

walk. Still, Eq. (3.7) captures the essence of the FET, and the analysis of the 

convergence properties becomes much easier without having to worry about the 

statistical dependence between samples. Furthermore, even though the results and 

analysis presented in this chapter are given for a simplified version o f the FET, they can 

be easily extended to apply to any of the specific FET estimators.

By comparing Eq. (3.5) with the definition for an expected value (Eq. (1.1)), it 

becomes clear that the true expansion coefficient an is actually the expected value of the

function an (x) = y/n (x )/? (x ) over the random variable x ,

= E\y/„ (x )/? (x )] = £  y n ( x ) p { x ) P ( x ) d x  . (3.8)

From Eq. (3.8), it is straightforward to calculate the variance of an (x ),

L J (3-9)
= I  (w„ (x )p (x ) )2 P ( x )  d x - a 2.

The variance for an estimate o f the mean dn made with N  independent trials can now be 

written in terms o f the true variance given in Eq. (3.9):

< ri=  — a 2 . (3.10)
a„ ]SJ "

Equations (3.9) and (3.10) give an analytic form for the true variance o f expansion 

coefficients estimated by the Monte Carlo calculation. The sample variance o f Eq. (3.10) 

provides an unbiased estimator o f crj and can be calculated in the usual way,
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(X? — —-----------------------...̂ .-S/-1----------------- 2 - .  (3 11)
i V ( i V - l )  1 j

Equation (3.11) gives a measurement of the statistical uncertainty in each individual 

expansion coefficient. We notice that the result is similar to the variance for the discrete 

event FET estimators derived in section 2.2.1. In fact, the same methodology that was 

used in section 2.2.2 can be applied in this case to derive the sample variance for the 

functional expansion,

N M M
GYMO N - \  

and its 2-norm,

X X {K Vn (*)) {K  Yn, (^)) > (3 •1 2)

[(7 2f \ x ) p { x ) d x ^ Y j a 2.nkn. (3.13)
n=Q

In Eqs. (3.12) and (3.13) the notation PM (x) has been used to represent the M'h order 

functional approximation to the true function P (x )  .

3.2. Theoretical Convergence Properties of the FET

Having established that Monte Carlo can be used to calculate a functional 

approximation to an unknown probability distribution, we now examine the accuracy o f 

such an approach.
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3.2.1. Truncation Error in the FET

The functional expansion for P(x ) given in Eq. (3.4) is exact only if all terms in 

the series are included. Clearly, it is not possible with Monte Carlo to estimate an infinite 

number of expansion coefficients, and the functional approximation must be truncated at 

some finite number of terms M ,

M
P{ x) ^PM{ x ) ^ a nkn¥n{x).  (3-14)

n~Q

This truncation introduces an error EM(x) in the estimation of P(x) , which is equal to 

the contributions from all expansion terms w ithn >  M ,

Em (x) = \P(x) - P m (x)\ = Z  anknVXx)
n=M+1

(3.15)

The theory behind calculating (or estimating) the truncation error in a finite series 

approximation o f a general function has been an important area of research in 

mathematics for over a century. Many books devoted to the subject have been written, 

and the collected volume of the work is much too large to be presented in detail here. 

While a full review is not warranted, the derivation of several relevant results will help to 

provide insight into the FET. In particular, the derivations included here will focus 

specifically on the Legendre, Chebyshev, and Fourier basis sets. Further information on 

the convergence properties o f series expansions in arbitrary sets o f basis functions is 

widely available in many textbooks(31‘3j).

The truncation error for a given expansion depends largely on the properties of 

the function being approximated. Unfortunately, in the FET very little (if any) 

information concerning the shape of the true distribution is available a priori. However,
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even without any detailed information it is possible to derive an upper bound for the 

truncation error that will hold for most (non-pathological) functions. The derivation of 

this bound begins with the definition of truncation error given in Eq. (2.36), and uses only 

weak inequality relationships;

Em (x ) = |P(x)  -  Pu  (x)| -  X  " A  Vn(x)
n = M + l

OO

^  X  \ ® n Kv A X)\
n=M+1

cO

-  X  l«A |M ox[|^(x)|].
n = M + l

If the basis functions are normalized such that Max | y/n (x)|J = 1, which is true for the

Legendre, Chebyshev, and Fourier basis sets, then the following relationship will hold for 

any function P ( x ) ,

Em (*) ^  X  H, K\ -  (3-16)
n=M+]

Equation (3.16) demonstrates that it is possible to put an upper limit on the truncation 

error by considering only the magnitudes o f the neglected expansion coefficients and 

normalization constants. Now the focus must shift to finding an analytical estimate for 

the rate at which the sequence of expansion coefficients converges as n -> oo.

One technique for determining the convergence rate for the expansion coefficients 

is to use integration by parts. To demonstrate this technique, consider the expansion of 

an arbitrary function f  (x) in Legendre polynomials. The expansion coefficients can be 

written exactly as

an = i xf { x)Pn{x) d x - (3-17)
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Using integration by parts it is possible to rewrite Eq. (3.17) as 

a„ = f if ( x ) P tl(x)dx
> , v (3-18)

= f ( x )  £  p„ ( x )  dx -  £  f i x )  £  Pn (XT) dx' dx.

To evaluate the first term on the right hand side o f Eq. (3.18), we recall the following 

identities for the Legendre polynomials

If « = 0 f  P0(x)dx = 2
, (3-19)

If n *  0 £ t „  ( x )  dx = 0,

along with the trivial integral identity,

[ f ( x ) d x = : 0  V / ( x ) .  (3.20)

Evaluating Eq. (3.18) for n *  0 using the identities in Eq. (3.19) and (3.20) gives

o„ = £ / ' (x)  £  Pn(x')dx'dx.  (3.21)

The inner integral in Eq. (3.21) can be simplified by using a recurrence relationship o f the 

Legendre polynomials to derive the following integral relationship

f  P, (*)<&■= [rM {b)-P„, (a)-  (i) + (a)] - (3.22)

This result will be formally derived in section 4.2. Equation (3.22) can be applied 

directly to Eq. (3.21) to yield

s. = I  W -C . W +r~ , (->)]*• (3-23)

The Legendre polynomials are all normalized with the condition Pn (1) = 1. In addition, it 

is easy to show that Pn (x) is an even function o f x for n even, and an odd function of x 

for n odd. These results imply the following:

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P„(x) = P„(-x) => = = 1 for n even

PJx) = - P„(~x) => P„(-l) = ~ P„(l) = - I  far n odd.

(3.24)

Because Pn+1(x) must have the same parity as P„(x) it follows from Eq. (3.24) that

Pn- f - f  = P„+l( - f  => ^ - . ( - i ) - ^ +,(-i)-o.

This result allows Eq. (3.23) to be simplified as

(3.25)

=
(2w + 1)L-^1

f ( x )Pn+1 ( x ) d x -  £  f ,(x)PH_l (x)dx (3.26)

An upper bound on can be obtained by using a weak inequality to rewrite Eq. (3.26)

as

(2« + l) I £, / '  (*) p n+1 (*) ̂ 1 +1 £  / '  (*) (*) (3.27)

For any integral of two functions the general inequality

| j t f { x ) g ( x ) d x  < ^ f ( x ) \ \ g ( x ) \ d x  < ( b - a ) Max[ \ f ( x ) \ ^Max \ \ g ( x ) \ ~ \  (3.28)

holds. Applying this inequality to Eq. (3.27) and recalling that Max\^ |Pn (x)| J = 1 yields 

4 M o r [ [ / '( x ) |]
fl. <

(2n + l)
(3.29)

The term 4Max\^ j/'(x )J J is constant with respect to n , and thus it has been shown that 

the upper bound on the convergence rate of dn is at least

\aA~0
n

(3.30)
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Also, we recognize that Eq. (3.26) is in a form where it may be possible to integrate by 

parts again. If  possible, integrating Eq. (3.26) by parts would yield

Applying the inequalities in Eq. (3.27) and (3.28) gives a tighter upper bound on an

The new result, after two applications o f integration by parts, shows that the coefficients 

converge at least as fast as

Obviously this process can continue until further integration by parts is no longer 

possible. In order to estimate an upper bound convergence rate, it is, therefore, necessary 

to understand what conditions prevent further integration by parts.

The first limiting condition that would prevent an equation o f the form in Eq. 

(3.17) from being further integrated by parts occurs when any o f the functions / ( x ) ,

/ ' ( x ) ,  or Pn (x ) are not integrable. By definition, the functions Pn (x) are always

integrable, but this condition does not hold for the arbitrary function / ( x ) . For each

successive application of integration by parts, the function /  (x) is replaced by the next

higher derivative o f the function: / ' ( x )  . Thus, to apply integration by parts k  times to

an arbitrary function, /  ( x ) , requires that the k "' derivative o f the function f {K} (x) must

a,
"  (2« + j) [ (2 n  + 3)

I  I  f { x ) P n{x)dx
(3.31)

(2^ - 1 ) [ - t  f ( x ) P „ ( x ) d x -  £  f"(x)P„„2(x)dx

4 Max [  | f "  (x)| ]  4 Max [ | / " ( x ) | ]
(3.32)

(3.33)
n
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be integrable. In his text, Boydf3!) provides the following condition for the integrability 

of f (K) ( x ) :

“The integrability o f  f {K) (x )  requires that / ( x ) , / (1) (x ) , . . . , f (K~2){x) must all 

be c o n tin u o u s

Another condition that can prevent further integration by parts occurs when the boundary 

term [ / ( * ) & ( * ) ] | does not vanish. Equation (3.19) demonstrates that the boundary 

term will go to zero if  n  ^  0 . Inspection of Eq. (3.31) shows that integrating by parts k  

times introduces the Legendre polynomial Pn_K (x ) into the equation. Therefore, for an 

arbitrary f  (x) it is possible to integrate by parts k  times before obtaining a P0 (x) term 

that will result in a nonzero boundary term on the next integration. Notice, however, that 

this is not an issue if  the function / ( x )  is periodic over the expansion domain \a,b\

and f  ( a )  =  f  { b ) . In this case the boundary term will always vanish, as can be seen from

evaluating Eq. (3.18) with a periodic function for any n .

The result o f this derivation is an integration by parts coefficient bound for 

Legendre polynomials that states:

For a functional expansion o f an arbitrary function f  (x) in Legendre 

polynomials the upper bounds o f  the expansion coefficients an are given by 

|5~ | < F (]T ‘ c, nJj '  f or some sufficiently large F  and constants } if  the

f o l l o w i n g  c o n d i t io n s  h o ld :  ( i) f {K)(yx ) i s  in te g r a b le  a n d  ( i i)  K  <  n  u n le s s  th e  f u n c t io n  is  

p e r i o d i c  o v e r  [-1,1] ( i.e .  / ( - l )  =  / ( l )  ) .  (3.34)

The same procedure can be used to produce analogous results for any o f the 

standard sets of basis functions (Fourier series, Chebyshev polynomials, Hermite
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functions, spherical harmonics, etc). By applying this methodology, it is easy to show 

that the convergence rate (and conditions) for a generalized Fourier series is given by^31):

For a functional expansion o f an arbitrary function f  (x) in a generalized 

Four ier series the upper bounds o f  the expansion coefficients dn (Cosine) and bn (Sine) 

are given by |aK| < F n~K and |z>n| < F n~K for some sufficiently large F  if  the following 

conditions hold: (i) / (v) (x) is integrable and (ii) the function and its first k - 2  derivatives 

are periodic over [-?r,7r]

(i.e. f ( - n )  = f(7T), f l\ -7T)  = f w ( 7 t \ . . . , f {K~2\ - n )  = f {K~2\ n )  ). (3.35)

The text by Boyd(31) also notes that the Chebyshev series coefficients converge at 

the same rate as the Fourier series coefficients, except that convergence of the Chebyshev 

coefficients do not require the function to be periodic over the expansion domain^31). 

This powerful result is a reason why Chebyshev polynomials are so widely used.

For the three basis sets considered, Eqs. (3.34) and (3.35) indicate that the 

dominant rate of convergence is:

1
n

(3-36)

where k  is the largest derivative of /  (x) that is still integrable. When the expansion

coefficients converge according to Eq. (3.34), the constant k  is referred to as the 

algebraic index o f convergence.

It is also important to note that there are very large classes of functions that have 

an unlimited number o f integrable derivatives and/or are periodic with a period equal to 

the expansion domain. For these functions, the integration by parts technique can be 

repeated indefinitely, suggesting that k  —» co (i.e the coefficients are converging faster 

than any finite power o f n ). In these cases it is possible to show that the coefficients are 

converging exponentially with the form
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The rate of exponential convergence s  cannot be estimated by the integration by parts 

technique, but various other methods exist for bounding this quantity.

While the convergence results shown in Eqs. (3.36) and (3.37) are very general, 

they still require that the index of convergence for the function being approximated be 

known. Fortunately, the index of convergence for a class o f functions can be deduced 

from very general information about the class. It was asserted in Chapter 2 that the

angular current distribution in particle transport problems, j ( £ ) - s  , is typically

piecewise smooth over its domain, meaning that both the distribution and its first 

derivative are at least piecewise continuous. By using the same reasoning applied in

section 2.1, it can be asserted that the particle density distribution Np is also

piecewise smooth for most problems o f interest. If the particle density is piecewise 

smooth, then it follows that functions o f the particle density (e.g. flux, current, reaction 

rates) will also be piecewise smooth. For a class o f functions f  (x) that are piecewise 

smooth it holds by definition (see section 2.1) that / ( x ) ,  / '( x )  and f i x )  are all 

integrable. Thus, the algebraic index o f  convergence for these functions is at least k  = 2 . 

Therefore, by Eq. (3.36), expansion coefficients in either the Legendre or Chebyshev 

polynomials will converge at least as fast as

a„ ~ O
1

«2
(3.38)
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The resulting coefficient convergence behavior given in Eq. (3.38) can now be 

used to complete the derivation for an upper bound on the truncation error. We recall 

from Eq. (3.16) that the truncation error of the expansion is bounded by the inequality

CO CO

Em ( x ) ^  X  l « A | =  X  K I N -  (3-16)
n - M + i  n ~ M + l

Substituting Eq. (3.38) into (3.16) gives, for some sufficiently large C,

M * )  < X  (339)
n - M +1 n

For the case of Legendre Polynomials,

_  (2n + 1)
"  ~  2 '

Substituting this factor into Eq. (3.39) gives

(3-40)

Eu {x) * ± ~  + £ t - (3-4D
n=M +\ n  2 /7

The harmonic series in Eq. (3.41) does not converge. This means that, for the Legendre 

polynomials, it is not possible to put an upper bound on the truncation error in the infinity 

norm.

It is, however, possible to develop a bound for a basis set that has a constant 

normalization factor kn , such as the Chebyshev polynomials. To show this, begin with 

Eq. (3.39) evaluated with the normalization factor for the Chebyshev 

polynomials, kn - n  12,

^  X  7 T -  (3.42)
„=m+ i 2 n 

It has been shown^341, for M  » 1,

1 1 1
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Using approximation (3.43), Eq. (3.42) can be simplified to yield

Equation (3.44) gives an upper bound on the convergence rate o f the truncation error for 

an M'h order expansion. However, this result only holds for basis sets that have a 

constant orthonormalization factor. Equation (3.44) can be rewritten (using Eq. (3.38)) to 

give a common rule o f thumb for estimating the magnitude of the truncation error,

where aM is the last expansion coefficient retained before truncation. Thus, for

Chebyshev polynomials, it is easy to estimate the truncation error based on the magnitude 

of the last expansion coefficient estimated.

Having now established the upper bound (or lack, thereof) o f the truncation error 

for a large class o f piecewise smooth functions that are found in solutions to the particle 

transport equations, let us consider how the upper bound o f the truncation error will 

behave if the function being expanded is analytical and has an arbitrary number of 

integrable derivatives. In this case (for Chebyshev polynomials), Eq. (3.39) becomes

for Chebyshev polynomials (3.45)

00
£ „ ( x ) <  Y ,  C e - " \ k , (3.46)

n = M  + l

Using the general result,

(3-47)

Eq. (3.46) becomes
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e ( M + 1) (3-48)

Applying Eq. (3.37) allows this to be written, to leading order, as

(3.49)

for analytically smooth /  ( x ) .

The results in this section have demonstrated key properties about the upper 

bound of the truncation error in the infinity norm that result from approximating a 

function f ( x ) by a finite expansion in an orthogonal set o f basis functions. These 

results, while providing some methods for bounding truncation error for a given case, are 

still too weak to allow a comparison o f the Monte Carlo FET to conventional histogram 

tallies. In order to make this comparison it is necessary to consider the bounding 

properties of the truncation error in the 2-norm.

The previous section sought to establish an upper bound (in the infinity norm) on 

the truncation error due to approximating a piecewise smooth distribution J°(x) with a

finite series expansion in an orthogonal set of functions {i//n (^)}“ . For the Chebyshev

polynomials, we showed that the magnitude o f the truncation error is bounded by the 

magnitude o f the last retained expansion coefficient. Unfortunately, this result does not 

hold for all basis sets (in particular the Legendre polynomials), and so a more general 

condition on the truncation error is sought.

The 2-norm o f the truncation error is defined as

3.2.2. 2-Norm Truncation Error in the FET
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= ( f  (p  w  -  p«  (x))‘ p(x) ̂ f 2 •

where P(x)  is the true function and PM (x) is the M ,h order functional expansion 

approximation to P ( x ) . By expanding Eq. (3.50), it is easy to show

E" \2 = l ( P { x ) - P M{x))2 p ( x ) dx

(3.50)

- t ( p ( 4

fh( (  " \ ( M \  ( M
= J p {x ) -  2 & A ^ ( X)a ~ - y V»=oV'!=0

2\
p[ x ) dx

o

+ r

, » /  co 'NA/ '’N
= f P ( x ) 2 / ? ( x ) r A - 2 |  Y.^K¥„{X) /?(*)<&

v»=0 /

= ||p  (x) f  -  2 1  atK + Z  al k»
w=0

«n “ I-p w II - X « „ V
H=0

Using Parseval’s theorem(31’32’33),

I k w i  = i x  K ’

n = 0

allows Eq. (3.51) to be simplified,

K f  = t  ° l k -
n - M + l

(3.51)

(3.52)

(3.53)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Substituting the approximation for the expansion coefficients given in Eq. (3.36) gives an 

upper bound on the truncation error in the 2-norm 

Ck
E« f 5 £ 1

(3.54)

Again, the upper bound depends on the basis set chosen, and in particular the 

orthonormalization constants kn for each term. In the previous section, reliable upper 

convergence bounds in the infinity norm could not be made for expansions in the set of 

Legendre polynomials because kn ~ 0[n ]. In the 2-norm, the upper bound can be 

estimated, even for basis sets that have linearly increasing normalization constants in n . 

For the case of the Legendre polynomials (i.e. kn ~ 0[n\) ,  Eq. (3.53) becomes

I K K  I
C

(3.55)
n = M + l  1

Approximation (3.43) can now be used to evaluate Eq. (3.55) and to show the final result

1
I K  II ~ 0 M

(3.56)

At last, Eq. (3.56) gives an upper bound for the truncation error in the 2-norm for an 

expansion in Legendre polynomials. It is then trivial to show that the analogous result to 

Eq. (3.56) for the Chebyshev polynomials is

K 1  ~ °
i

.M'
(3.57)

Now that an upper bound for truncation error has been established, it is possible to 

directly compare histogram and FET approximations.
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3.2.3. Statistical Error in the FET

Another source of error in the FET arises from statistical uncertainty in the 

expansion coefficients. The 2-norm can be used to measure the total error between the 

stochastic FET approximation and the true function,

= P( x) -PMJ X) (3.58)

where PM N(x) is the Monte Carlo estimate o f the M'h order functional expansion 

approximation to P(x)  calculated using N  independent particle histories. Equation 

(3.58) can be rewritten as

(  oo M  \

^  U  Wn (* )  “ Z  K  ^ »(*) P ( X) dX
\  n- 0 w=0 )

= U Z K a*Vn{x)+Y*k„{an- a n) y n(x) p(x)  d x . 

The right hand side o f Eq. (3.59) can be expanded to yield

(3.59)

QO oo

= 1  I  I  K K  arPm Vn(x) Y S x) \p(x)dx
\ n = M + l m = M + 1 J

f M M  X
+ U  Z Z ^ A  {an- a n)(dm- a m) ip„(x)ipm(x) p(x)  dx (3.60)

/  co M

jr 2 Z  Z  k n K  °n (« m - a m) V n ( X) V m (X)
Kn = M + l  m = 0

p(x)dx.

Using the orthogonality property o f the basis functions, the integrals in Eq. (3.60) can be 

reduced to

Z  a n K  ] + [ Z ( « „ - ^ ) 2£«
r̂r=M+l )  \  7i=0

(3.61)
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By inspection (see Eq. (3.53)), the first term under the radical in Eq. (3.61) is the 

truncation error due to approximating a continuous function with a finite series 

expansion. The second term gives the contribution to the total error due to statistical 

uncertainty in the expansion coefficients.

Equation (3.61) demonstrates that the FET contains sources o f both statistical 

error and truncation error. The presence of statistical uncertainty in Eq. (3.61) means that

is itself a random variable. Therefore, in order to analyze the convergence

behavior o f the FET we should consider the root-mean-square (RMS) error for 

simulations using N  independent histories. The RMS error can be calculated directly 

from Eq. (3.61),

FM

2 \

E m

H
Z  an K  + ( Z  ( a » - aS k » ) ’ (3 -62)

V n = A ^ + l  /  \ / 7 = 0  /

where angle brackets { ) have been used to denote the expected value o f a statistical 

quantity.

The first task is to evaluate the statistical uncertainty term. Algebraically 

expanding and applying the expectation operator to each term in the summation yields

' M \ f  M
(3.63)

By the definition o f the variance of an ,

=  <3 - 6 4 >

Substituting Eq. (3.64) into Eq. (3.63) shows that the statistical error in the functional 

approximation is related to the sum of the variances o f the individual expansion 

coefficients,
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Z  (a» -  &» )2 M  = Z  • (3-65)
\tt=0 / «=0

Using Eq. (3.9) and (3.65) the statistical uncertainty term can be written as

& (« »  = X t7  ( I  «„2) ’ (3-66)
\n-0 / n - 0 '  '

and so

I  M  \  M  t.  [  s

y L f a s Y , ~ [ M̂ x ^P{x) p ixi\) Jr ¥l(.x)p(x) d x - a * y  (3.67)

It should be noted that Eq. (3.67) is only valid if  the function \p(x)P(x)\  is finite over 

the domain F . In cases where \p(x)P(x)  | is unbounded, special attention must be paid

to ensure that the approximation is converging as expected.

Using the definition of kn from Eq. (3.6) in Eq.(3.67) yields

/  M   ̂ \ 1 M  r-
Max(\p(x)P(x)\)-a„2kn ,

W o  /  -/v „=0 L 1 j

and so

t E f r - V X )  -  W  M?x (|/>(*) p (x)|) -  W I X "  kn • (3.68)
Wo /  ̂ »=o

Further inspection o f Eq. (3.68) reveals that the second term on the right hand side is 

always negative and can therefore be omitted without affecting the inequality. With this 

simplification, Eq. (3.68) can be written

\Y { a„  - a „ f k \ <  —  Max(\p(x)P(x)\) ■ (expected statistical e r r o r )  (3.69)
W o /  7 / r

Next, the truncation error term from Eq. (3.61) is evaluated using the convergence 

rate o f the expansion coefficients given in Eq. (3.38),
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n■
(truncation error) (3.70)

Finally, the results from Eq. (3.69) and (3.70) can then be used to rewrite Eq. (3.61) as

The detailed convergence behavior o f Eq. (3.71) depends on both k  for the function 

P(x)  and the behavior o f the series {kn} .

The expression for the total (statistical + truncation) error can be written, to 

leading orders, as,

Equation (3.72) demonstrates that the rate o f convergence is determined not only by the 

smoothness o f the function P(x ) ,  but also by the ratio of the expansion order M  to the 

number o f histories run N . This divergent term indicates that, for a fixed number of 

histories N , the total error in the approximation will eventually begin to grow as more 

expansion orders are added.

In order to verify the theoretical convergence rates derived in the previous 

section, a series of numerical experiments were conducted. In these experiments, Monte 

Carlo simulations were used to estimate Legendre functional approximations for a 

reference distribution P(x) .  The 2-norm o f the residual error between the functional 

approximation and the exact distribution o f P(x)  was then calculated for different

M ax(|/> (x)?(x)|)+  £  0 (3.71)

(3.72)

3.3. Numerical Verification of FET Convergence
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Figure 3.1. Plot of reference distribution of P(x) used for num erical verification o f theoretical 
convergence results for the FET.

expansion orders and numbers o f histories. The same reference distribution for P(x)  was 

used in each numerical experiment,

P(x) =
1

1.51985

cos(x)e2x+1 x e [ - l ,  - 1 /2 ]

cos(x) x e  [ - 1 /2 ,1 /2 ] .

cos(x)e“'r/2+1/4 x e  [1 /2 ,1 ]

(3.73)

The distribution in Eq. (3.73) was specifically chosen to simulate many features 

of distributions encountered during Monte Carlo particle transport simulations. The 

distribution is continuous over the domain (-1,1) and piecewise smooth with 

discontinuities in the first derivative o f the distribution occurring atx  = ± l /2  . Because 

P(x)  is piecewise smooth it has two integrable derivatives and, therefore, an algebraic 

index of convergence k  = 2. A plot o f the reference distribution is shown in Figure 3.1.
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Figure 3.2. Exact Legendre expansion coefficients for P(x) plotted against Legendre expansion order. 
A 1/n25 trend line is shown for comparative purposes, indicating the convergence rate of the 
expansion coefficients.

3.3.1. Analytical FET Approximation Results

For testing purposes, functional approximations of P(x) in the set of Legendre

polynomials were considered. The Legendre polynomials are a complete set o f basis

functions that are orthogonal over the range [-1,1] with respect to the weighting

function p(x)  = 1. The normalization constants for the Legendre polynomials are

7 2 «  +  l , ,
• (3.74)

For comparative purposes the exact Legendre expansion coefficients for P(x)  were 

calculated using Eq. (3.5). A plot o f the absolute values o f the first 50 exact expansion 

coefficients is shown in Figure 3.2. In the derivation of the convergence properties o f the

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FET, it was established in Eq. (3.38) that the expansion coefficients should converge 

algebraically with an asymptotic bound of 0[n~K~\. Numerical results, shown in Figure

3.2, indicate that the index of convergence for P(x)  is k  « 2.5 , slightly faster than the 

k -  2 bound for a piecewise smooth function.

It was also established that the truncation error for a finite Legendre series 

approximation will converge as the expansion coefficients tend to zero. Using the result 

given in Eq. (3.70), the truncation error can be written concisely as

For the reference distribution o f P(x)  in the set of Legendre polynomials, Eq. (3.75) 

predicts that the truncation error should converge at least as fast as

To demonstrate this convergence behavior, the exact Legendre expansion 

coefficients were used to construct functional approximations to P(x ) for values o f M  

ranging from 0 to 49. For each order o f exact functional approximation, the 2-norm 

truncation error was calculated directly by

as expected. These results verify that a Legendre expansion o f the reference distribution 

has the convergence properties predicted by the classical results for such expansions and 

provides a measured value for the algebraic index o f convergence k  .

(3.75)

(3.76)

(3.77)

The results, Figure 3.3, show that the truncation error converges at the rate O 114 m * ,
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Figure 3.3. Two norm measure of truncation error for a Legendre expansion approximation o f P(x) 
plotted against Legendre truncation order. A l/M 3 2 trend line is shown for comparative purposes, 
indicating the approximate convergence rate.

3.3.2. Stochastic FET Approximation Results

Additional studies were conducted to study the convergence properties of a 

Legendre approximation to P(x)  that uses stochastically estimated expansion 

coefficients. For these studies, random samples were taken (via rejection sampling) from 

the distribution P ( x ) . These samples were then used in Eq. (3.7) to estimate the 

Legendre expansion coefficients fo rP (x ). In the previous section it was shown, Eq. 

(3.64), that the expected statistical error in a Monte Carlo estimate of an expansion 

coefficient is proportional to the true variance of an, or

{ h ~ a n|) ( K ( x) P( x ) f  p (x) d x - a n2^. (3.78)
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Equation (3.78) can be further simplified by using Eq. (3.67) to yield

i\a n ~ a \ ) <
Max(\p(x)P(x)\)

— E ----------------■------------------------------------------ a , ~ (3.79)

For the trial distribution o f P(x)  and the basis set o f Legendre polynomials, Eq. (3.79)

can be evaluated directly,

.. 1(1.3159 _ 2a„ ~ a \ )  < — ------------a„
N \ 2 n  + \

(3.80)

For a fixed sample size N  and large values of n , Eq. (3.80) behaves, to leading order, as

a - a \ ) < 0
1

2n + \
(3.81)

It was previously established in Eq. (3.36) that the true expansion coefficients \an\ will

converge with order O 2.5 Thus, for large n , the true expansion coefficients an

will be very close to zero, and statistical error will dominate the convergence rate of the 

stochastically estimated expansion coefficients. Substituting the approximation an -  0

(for large n)  into Eq. (3.81) gives

a \ ) < 0
2n +1

(3.82)

as the convergence rate for stochastically estimated coefficients. To test this convergence 

rate the first 1,000 expansion coefficients for P(x)  were estimated in a 10,000 history 

Monte Carlo simulation. The results, given in Figure 3.4, show that the absolute value of 

the statistical error in the expansion coefficients converges as O 1 / 7 2 n + ] This

agrees with the predicted behavior given in Eq. (3.82).
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Figure 3.4. Monte Carlo estimated Legendre expansion coefficients for P(x) plotted against Legendre 
expansion order. Each expansion coefficient was estimated using the same 10,000 history random  
walk process. A  l/(2 n + l) lfl trend line is shown for comparative purposes, indicating the theoretical 
convergence rate.

Theoretical results also predict that the total error in a stochastic FET 

approximation to P(x) will behave as the sum of two independent terms: the truncation 

error, which will converge as the expansion order increases; and the statistical error, 

which is divergent with increasing expansion order for a constant sample size. The 

general form for the 2-norm measure o f residual error was given in Eq. (3.72). For the 

trial distribution o f P(x ) ,  the expected convergence rate can be evaluated using Eq.

In order to verify this convergence behavior, a 10,000 history Monte Carlo 

simulation was used to estimate the first 1,000 Legendre expansion coefficients. These 

expansion coefficients were then used to construct functional approximations with orders

(3.76)

(3.83)

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



H

Z- 0 . 0 5  
$P

o  0 . 07

0 . 1 5

0 . 0 2

0 . 0 3

0.2 °

5 10 50 100

Max. Legendre Order (M)
500  1000

Figure 3.5. Two norm measure o f total error for a stochastic Legendre expansion approximation to 
plotted P(x) against Legendre truncation order. Each expansion coefficient was estimated using the 
same N=10,000 history random walk process.

0-1000. For each order approximation the exact 2-norm error was calculated directly 

from Eq. (3.77).

The results, given in Figure 3.5, show that there is an optimal expansion order that 

minimizes the residual error o f the approximation. This optimal order, which is about 10 

for this test problem, is the point where the statistical uncertainty in the expansion 

coefficients begins to contaminate the approximation. Below this optimal order, each 

added expansion term improves the functional approximation by reducing the truncation 

error of the series expansion. Above the optimal expansion order, the residual error 

begins to diverge at the 0 [ M /A ]  rate predicted by Eq. (3.83) (or the equivalent Eq.

(3.72)). The optimal expansion order also depends on the number of histories used in the 

Monte Carlo simulation. As more histories are used, the uncertainty associated with all
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Figure 3.6. Two norm measure o f approximation error for stochastic Legendre expansion 
approximations to P(x) plotted for different sample sizes N. The N=oo results give the error for the 
exact M th order Legendre expansion. As the number of histories increases, higher order coefficients 
can be included in the functional approximation without contaminating the approximation with 
statistical error.

of the coefficients is reduced, allowing more terms to be included in an expansion 

without contaminating the overall solution.

Thus, as the number of histories in the simulation is increased, the optimal value 

will begin to shift towards larger values, and the minimum total error will decrease. This 

behavior is illustrated in Figure 3.6.

The results shown in Figure 3.6 demonstrate that for every simulation there exists 

an optimal order FET expansion that gives the highest accuracy (in the 2-norm) 

approximation. In the benchmark problem considered it is easy to identify this minimum 

by calculating the exact error for different order expansions and then finding the

3.3.3. Estimating the Optimal Expansion Order
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minimum. In a practical application, however, such an approach is obviously not 

possible. What is needed is a metric that would allow the user to decide which 

coefficients should be used in an expansion and which should be discarded. Such a 

metric was derived in section 2.2.5. This metric, referred to as the cost to benefit ratio 

R2, is defined to be the statistical error “cost” divided by the truncation error “benefit”

due to a single coefficient. This provides a computationally simple method to assess 

whether a given coefficient will provide an increase in accuracy if it is included in the 

functional expansion.

Theoretically, any coefficient with R2 < 1 should be included in an expansion,

while those with R2 » 1  should be excluded. For the benchmark problem described

above, the cost to benefit ratio was calculated for each expansion coefficient. The results 

are shown in Figure 3.7. We notice that many o f the expansion coefficients with order < 

9 have values o f R2n <10, while the higher order coefficients have ratios > 10.

Unfortunately, because the cost to benefit ratio involves stochastic quantities, it cannot be 

used to exactly identify the optimal expansion order, but it does provide valuable 

information about the optimal order. One possible use o f the cost to benefit ratio is to use 

it as a filter to automatically select which coefficients will be included in the final 

approximation. This could be implemented by defining an R2 threshold value in the

Monte Carlo code. During post-processing any coefficients that had a value o f R2 

greater than the threshold would then be discarded.
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Figure 3.7. Cost to Benefit Ratio for estimated Legendre expansion coefficients for P(x) plotted 
against coefficient order. Each expansion coefficient was estimated using the same 10,000 history 
random walk process.

To test this approach a filtering algorithm was implemented in the test version of 

MCNP4c and used to produce a filtered FET approximation for the benchmark problem. 

The resulting approximation (generated with an threshold o f 2.0) does a very good

job of minimizing the total 2-norm error, as shown in Figure 3.8. Notice, however, that 

the filtered approximation is truncated at 6th order, where the “best” approximation 

should be 9th order, according to Figure 3.5. Still, the filtered approximation comes 

within 0.002 o f the minimum error for the unfiltered approximation. This is an 

outstanding result, considering that no prior knowledge o f the true solution shape is 

required. In practice, the FET can be configured to always estimate a large number of 

coefficients, and then filtering can be used to ensure a good approximation for the 

number of histories run. Conversely, an expansion order can be specified by the user and
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Figure 3.8. Total approximation error for filtered and unfiltered Legendre approximations plotted 
against truncation order. Filtered Legendre approximation was produced by discarding all 
expansion coefficients with R„2 >2.

then the simulation can be left to run until all coefficients below that order meet the R2 

threshold. While the results o f filtering can be adjusted slightly by changing the R2n

threshold value, the method appears to be relatively insensitive to values below 10. 

Repeated trials have shown that threshold values between 1 and 3 usually produce the 

best results.

3.4. Theoretical Convergence of the Histogram Approximation

3.4.1. Truncation Error in the Histogram

With the convergence properties of the FET established, it is time to examine the 

convergence o f the traditional histogram approximation. With conventional Monte
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Carlo, if one wants more information regarding the shape of the unknown distribution, 

the variable o f interest is divided into bins and the random walk process is used to 

estimate the quantity integrated over each bin. This process results in an estimate of the 

histogram-style approximation to the function P(x)  that has the piecewise form (in 1- 

dimension)

P ? ( x )  = -----  P  V x e  [xĥ x b]. (3.84)v,

In Eq. (3.84), the set {xa,xv, . . . ,xM̂ ,xM} represents the bin boundaries for an M  bin

histogram, assuming 1-D for convenience. In order to simplify the following analysis, 

we assume that each bin o f the histogram is o f equal width Ax . The 2-norm measure of 

the residual error between the true function and the best-fit histogram approximation can 

be written

I -rphist I
F m = P { x ) - P ^ ‘{x) = J [ ' ( P ( x ) - P v ' ( x ) f  p(x)dx  . (3.85)

Because the histogram approximation is constant over each bin, it is convenient to write 

the integral on the right hand side of Eq. (3.85) as

where P™h is the value o f the b" histogram bin. By Taylor expanding P(x)  about the 

midpoint o f each bin and simplifying, Eq. (3.86) yields, to leading order,

/ M
\Em \ ^  J X O l A x 3]-  (3-87)
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Equation (3.87) gives the truncation error of the approximation as a function of the bin 

width instead of the total number of bins. For a bounded interval of length L divided 

into M equal bins, Ax is inversely proportional to the number o f bins,

L
Ax

M
(3.88)

With this assumption, Eq. (3.87) can be rewritten in terms o f the number of histogram 

bins used,

M
II T ? h )sl ||
Aw E °

I 6=1

1
M 3

(3.89)

Since there are M bins, each with error 0^1 / M 3 J it follows immediately that the total

truncation error is

1 = o ' 1"
W \ \_m \ (truncation error) (3.90)

A comparison o f the FET and histogram truncation error convergence rates, Eq. (3.70) 

and (3.90), demonstrates that the FET will asymptotically converge to the correct 

distribution faster than a histogram approximation in cases where

Z «
n**M+1

k < o '  1 '

[m J (3.91)

Evaluating the infinite series in the first term for M »  1 shows that Eq. (3.91) will hold 

as long as

k„
2 K < O

n
(3.92)

The terms kn and k  in Eq. (3.91) and (3.92) illustrate that the convergence properties of 

the FET depend on both the smoothness o f the function P(x)  as well as the set o f basis
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functions chosen for the expansion. For the case o f a Legendre polynomial expansion of 

a probability distribution with k  = 2.5,  such as the example shown in section 3.3, Eq. 

(3.92) gives

" 1k„ 2n +1 1 1
= —r + — r < o,2 2n rf In' n3

(3.93)

Equation (3.93) shows that the FET approximation should converge to the true 

distribution faster than a histogram approximation. This implies that a functional 

expansion tally o f order M  may provide a more accurate estimate of the true distribution 

than a histogram approximation with M  bins.

It is important to note that Eq. (3.92) applies only to the asymptotic truncation 

error convergence rates for the FET and histogram approximations. Convergence 

properties at low approximation orders do not necessarily follow these asymptotic limits. 

Therefore, Eq. (3.92) should only be used as a rough guide for selecting a tally method, to 

be used when only a minimal amount o f a priori information, such as continuity or 

smoothness, is available for the unknown distribution. If more detailed information about 

the distribution is known, then it may be possible to tailor an optimal tally, by either 

selecting a more suitable set of orthogonal basis functions, in the case o f the FET, or 

choosing a non-uniform set of bin widths in the histogram method. Obviously the best 

possible result is to choose a basis set that fits the unknown distribution exactly with the 

minimum number o f terms.
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3.4.2. Statistical Error in the Histogram

When a histogram is created from a Monte Carlo calculation, each estimated bin 

height has some degree of statistical uncertainty. The variance of each bin estimate is 

directly related to the number of histories that score in that particular bin. This 

uncertainty can be accounted for in the analysis by including a random noise term s  in 

each bin of the histogram definition, Eq. (3.84),

error in the estimate o f P^' ix)  . Although the notation is slightly different, this analysis 

of statistical error is identical to that used for the FET. A Taylor expansion o f P(x) 

about the midpoint xb_V2 of a bin in Eq. (3.94) yields

The total error for the histogram approximation, including statistical uncertainty, can be 

written

f 4 P(x)dx  + s t
'W-1

The s  term is a zero-mean random variable(7) that describes the distribution o f statistical

(3.95)

(3.96)

Substituting Eq. (3.95) into Eq. (3.96) gives

(3.97)

Expanding Eq. (3.97) and integrating,
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-phis!
M

Z s > +
p'(xh_l/2y  Ax3

+ 0 [ Ax5] . (3.98)
6=1

Equation (3.98) gives the 2-norm o f the residual error in terms o f s h, the statistical

uncertainty in the estimate o fP J^ '. According to the Central Limit Theorem, this random 

variable will be normally distributed with mean zero and variance cr2 — . As with the

FET analysis, the presence of statistical uncertainty in Eq. (3.98) means that £) is a

random variable. To proceed, we consider the RMS expected value of Tphut
M

-1M - J z ( £ " ) A x +
P'(xM n f  Ax3

+ 0 [  Ax5]. (3.99)
b = l

Using the definition of cr~— for a random variable with a mean o f zero, it is possible to
Pi l  .4

express the expected value of the statistical error squared as

el )  -  a 2- (3.100)

Using Eq. (3.100) in Eq. (3.99) yields an intermediate form for the expected 2-norm error 

o f the histogram approximation, which contains the bin variance cr2 ~  instead of a
h

random noise term s.

-»hisl
= \ Z cr2^ Ax+

P'(xh„l/2f  Ax3 + 0[Ax5] (3.101)
6=1

The bin variance can be derived by recognizing that the estimator for P '̂b is simply the 

number of histories that score in bin b , denoted N h . For such a case it is easy to show 

that the relative uncertainty in each bin obeys traditional counting statistics,
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The expected number o f counts in each bin is equal to the ratio o f the integral over the 

bin to the integral over all bins,

f 6 P{x)dx
(«»} = - * — - N -

| P(x)dx
*X,s

(3.103)

Using Eq. (3.102) and (3.103) to solve for ( c r _  } yields

a
p h i  s i

M  ,bn x ) d x

N  I** P(x)dx J n  p  P{x)dx
(3.104)

which simplifies by using Eq. (3.84),

<T
p h i s t

M , b

aj Ax N
(3.105)

Finally, Eq. (3.88) can be used to write the standard deviation in terms o f the total 

number of histogram bins,

IMP, h is t
M,h

N

Equation (3.106) and (3.84) can be used to simplify Eq. (3.101) as

(3.106)

IM 
N  h=1

M  „  M  p> (  \ 2

h = i *=i 3 M M
(3.107)

The summation over all bins in the first term under the radical produces an integral over 

the entire distribution and evaluates to 1,
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rfhist IM & P'(xb_l/2)2
N  h  3 M 3 M 5

(3.108)

Equation (3.108) can then be written to leading order as

2\ M l
+ o

1 1T p h is t

M

- N . _ M \
(3.109)

Comparing Eq. (3.109) and (3.72) shows that statistical uncertainty has the same effect 

on both the FET and the histogram tally, causing the 2-norm o f the total error to diverge

as order yjM / N  for large values of M . This important result indicates that both 

methods behave qualitatively in a similar way with respect to M . For any number of 

histories, N , there is an optimal value of M  that allows the most information about the 

functional shape to be obtained. Using a value of M  that is larger than the optimal value 

will result in the functional approximation becoming contaminated by modes (or bins) 

that are not well converged.

The preceding derivations have assumed that all of the bins in the histogram 

approximation have equal width. With this equal width assumption, the 2-norm 

convergence for truncation error in the histogram tally is 1 /M  for functions with a 

nonzero first derivative.

3.5. Numerical Results for Histogram Convergence

Using the test distribution for P(x ) given in Eq. (3.73), verification studies o f the 

theoretical histogram tally convergence rates were conducted. These studies examined 

the convergence rate o f the 2-norm residual error for histogram approximations using 

exact bin heights and different numbers of bins. For each histogram bin, values were
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Figure 3.9. Two norm measure of residual error for a histogram approximation to P(x) plotted 
against the number of histogram bins. A 1/M trend line is shown for comparative purposes, 
indicating the convergence rate.

calculated with Eq. (3.84) and the residual errors were calculated with Eq. (3.86). The 

result of this study, shown in Figure 3.9, demonstrate that for M  > 2 , the residual error in 

the histogram approximation converges as O f l/M ] , the exact rate predicted in Eq. 

(3.90).

The effects o f statistical uncertainty on the convergence rate of the histogram 

approximation were then included in the study. Instead o f calculating bin values directly, 

random samples were taken from the test distribution o f P(x)  and tallied in the 

appropriate histogram bin. Bin values were then estimated by dividing the number of 

samples scoring in each bin by the total number o f samples times the bin width. The 

residual error between the Monte Carlo histogram approximation and true distribution 

was calculated directly with Eq. (3.86).
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Figure 3.10. Two norm measure of residual error for a stochastic histogram approximation to P(x) 
plotted against the number of histogram bins used. Each histogram approximation was created 
using the same N=10,000 samples from P(x).

The results, shown in Figure 3.10, demonstrate that the convergence behavior of 

the truncation error behaves qualitatively as predicted in Eq. (3.109). Like the FET, for 

fixed N , the histogram has an optimal number of bins that will minimize the total 

residual error o f the approximation. The optimal number o f bins is approximately 20 for 

the test distribution considered. For a histogram approximation using more than the 

optimal number of bins, the residual error begins to increase as more bins are used.

3.6. Discussion and Comparison of Results

This chapter has sought to demonstrate, theoretically and numerically, that the 

FET and histogram approximations converge to the true distribution in qualitatively the 

same way as the approximation order is increased. To compare the FET and histogram
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Figure 3.11. Comparison o f residual errors due to the stochastic histogram and FET approximations 
to P (x ) . Each approximation was created using the same 10,000 samples from P(x).

residual errors, Figure 3.5 and Figure 3.10 are shown plotted together in Figure 3.11; this 

figure demonstrates that the FET and histogram approximations have roughly the same 

convergence behavior with respect to the approximation order M . Both methods show a 

reduction in residual error with increasing order before reaching the optimal value of M  

as M  -»  oo . Below the optimal value, the convergence is dominated by the truncation 

error inherent in each of the approximations. For approximation orders greater than the 

optimal value, the residual error begins to increase due to statistical noise in the system. 

The FET error is always less than the histogram error as M  —» oo .

Figure 3.11 illustrates that, for the trial distribution o f P(x)  selected, the FET is 

superior to the histogram tally. The FET can achieve a smaller residual error, for a 

10,000 history calculation, than a histogram for any order o f approximation. 

Furthermore, the results show that a 4th or 5th order Legendre approximation to P(x)
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outperforms even the optimal histogram approximation, in this case, the FET can clearly 

extract more information about the distribution P(x)  than a histogram tally.

Although the FET is superior to the histogram tally for this specific example, it is 

not possible to claim that this will hold in general because the accuracy of the final fit 

depends on the approximation technique that best matches the shape and properties o f the 

unknown function. The best approach for a given distribution is the one that has the 

fastest truncation error convergence rate. For example, the histogram approximation is 

best suited for discontinuous distributions or those with very sharp gradients.

On the other hand, estimating higher moments within these histogram bins may 

yield substantial improvement in the results, allowing piecewise FET to do very well in 

situations where the analyst has prior knowledge regarding the location of discontinuities, 

such as at material boundaries^27-1. For homogeneous systems, or any case where 

smoothly varying distributions are expected, a Legendre or Chebyshev FET 

approximation will most likely show large improvements over a histogram tally.
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CHAPTER 4

TRACK LENGTH FET ESTIMATORS

Chapters 2 and 3 covered the derivation o f the FET for discrete event estimators. 

The derivation and implementation o f the FET in this class of estimators proved to be 

relatively straightforward, requiring only a minor modification to the original scoring 

functions. While discrete event estimators are still used for tallying surface crossing 

quantities, most modem Monte Carlo codes rely on track length estimators for tallying 

volumetric fluxes. This is due to the fact that a track length estimator will, in most cases, 

give a lower variance for flux estimates than a collision estimator. Furthermore, track 

length estimators give reliable estimates even in void regions where collision estimators 

fail. Given the importance o f track length estimators in particle transport Monte Carlo 

codes, it would clearly be beneficial to develop a version of the FET for track length 

estimators. This chapter offers detailed derivations for the track length FET estimators in 

both 1 and 3 dimensions. Additionally, some thoughts and comments on the numerical 

implementation of these estimators are provided, along with numerical results to 

demonstrate the effectiveness o f the tally.
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4.1. Derivation of the 1-D Track Length FET Estimator

In order to estimate the spatial flux distribution over the 1 -dimensional region 

x e  [xmm,xmaJ , the flux in this region is assumed to be expandable in terms of a complete

set of basis functions that are orthogonal with respect to the weighting function

p { x )  ■ The spatial distribution o f the scalar flux can now be expanded in terms o f the 

basis functions by the series expansion

(4 j )
?r~0

Using the orthogonal property o f the basis functions allows the expansion coefficients to 

be evaluated as

dn = F “ <f>(x)y/n (x ) p ( x ) d x  . (4.2)
■*mn

Now, by partitioning the tally region into P equally spaced slices, Eq. (4.2) can be 

written as

= X  f P+' </> (x ) Wn (x) p (x) d* (4 -3)
/>=i *'

If the width of each partition Axp is small, the value of the function <//n (x )p (x )  within j 

partition can be approximated by its value at the midpoint o f the partition

Vn i x) P(x)  (xP+xn)p(xp+vz) + 0 (kxp) for x e [x p,x,j+|] . (4.4)

Using this approximation, Eq. (4.3) gives

=E {VV»(x/>+i/2)/7(̂ +i/2)+0(Axp))̂ Ŵ
p = \
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=  l (  f "  Wn ( ^ „ +1/2 )  P { ^ ^ , l ) K X)  A  +
/! = A  If ? ''

"» = Z  f ^ ( ^ +l/2) / ?(V l /2 ) IVV ( X) rfX+0(AXp)l- (4-5)

We notice that the last term in Eq. (4.5) is the integrated flux over the p lh partition in the 

x-direction. This quantity can also be interpreted as the total amount of track length, D , 

generated by all neutrons passing through the partition(16),

[ r*1 tj>(x)dx = Dp . (4.6)
P

Using Eq. (1.63), it is easy to show that the statistic

t ' - j r p * .  < « >

where N  is the total number o f particles started and dj p is the path length generated in

partition p  by particle i during its life, is an unbiased estimator for Eq. (4.6).

In order to develop an expression for the total amount of track length generated by 

a particle in the p th partition, consider an arbitrary particle i as it travels through the 

system. During the random walk process, the particle will travel in a straight line 

between events. At each event the particle may change direction (i.e. scatter) or continue 

along the path it was on. The path length generated by a single particle over its life can 

therefore be written as the sum of the distances traveled between events

<4-8)
c - l  p - \  C = 1
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Figure 4.1. Illustration of a  particle t r a v e l i n g  between consecutive events c and c+1. The total 
distance traveled by t h e  particle is dijC, and the starting and ending positions o f the particle are given 
by the points xc and xc+1, respectively. Using simple trigonometry it is easy to show that the particle 
travels a distance (diiCAxp)/(xc - x c+i )  in each interior cell.

where dlk p is the path length generated by particle i in partition p  as it travels from 

event c to event c + 1 . Furthermore, let the locations o f the c,h and (c + l)^ events be 

denoted as xc and xc+l, respectively. The path of a particle between two consecutive 

events is illustrated in Figure 4.1. Because a particle travels in a straight line between 

events, simple trigonometry can be used to determine the total path length generated in 

each partition. Inspection of the particle flight path shown in Figure 4.1 shows that the 

particle travels a distance

in partitions p - 2  through p  + 3 . Equation (4.9) is not exact in the partitions where the 

particle begins or ends its free-flight (partitions p - 1 and p  + 4,  respectively). In these 

partitions, Eq. (4.9) overestimates the path traveled in the partition, but is still accurate to

d
' p

(4.9)
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0 ( Axp~j. Therefore, for a generalized 1-D path o f a particle beginning in partition p' 

and ending in partition p " , the total distance traveled in each partition is given by

d -  =
i.c .P

7 — ~- xKc)

d,

V p e ( p ' , p " )

7V :" - t A xp - 0 ( A x p) p  = p' or p  = p"
\ X/,c+l X j c )

otherwise.

(4.10)

Equations (4.8) can now be used to rewrite Eq. (4.7) as

1 N  C ,

D  = —  t t w  d
P  -KJ Z - l L - i  n . c . p

- I *  , = 1  C = I

(4.11)

Substituting Eq. (4.11) into Eq. (4.5) gives

P  (  (  l  N  C ,

a
p=\

« = Z  V*(xp+\n)p{xP«n)\I iV is:i C=1V

+ 0 ( Axp (4.12)

which is an unbiased estimator for an . Rearranging the order o f summation and applying 

the definition o f d, c given in Eq. (4.10) gives

/
|  N  (-i p  -1

Z  y/n{xp+V2) p ( x p, U2)
i = l c ~ l  p ~ p '+ l  i

r d  Ax A/,c p

(Xi.c+l-X.s)
+ ° K )

/

+ ip„ ( xp'+[/2 ) p ( Xp.+l/2 )

+ ¥n(x p̂ n ) p ( x p'+m)

d i ’ c A X p  0 (A x „)1 +  O ( A x l )

( x,,c+i - x^c) 

d, „ Ax„l , C p

(x,,c+l ~ \ c)
0 { A x p )  + 0 ( A x l )
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|  N  p  - 1

«n = T 7 Z Z wv  Z  V n ( x p+in ) p { x p+v2)
I V  j=l c - l  p - p ' + l  \

z < ^ x p '
+

° { ^ l )

+ r . ( x, ; m ) p { x , ’. u , ) 0 { f c r ) + r , ( x , . t >„)p(xr.t „ ) 0 ( A X ' )  (4.13)

+ 0 (A x ;).

Expanding the terms inside of the partition summation gives

|  jV ' ( ' i ' P  - I  I

5»=7rZ2X Z W w M vi/z )
i y  7 * 1  C —1 P = P ' + 1 \

d , Ax

( X/,c+l ~ X , , c )

+ 0 ( A x 2)
(4.14)

+  ( k ( x p + v 2 ) p (  X p '+ l / 2  )  W n  ( Xp '+ l/2  )  P { X p ’+ H 2  ) )  +  ^ ( ^ p ) ’

Finally, taking the limit as P —> oo (or Ax —> 0 ) yields

_  1 y - ' - y 1 w i , c

~ N  t t h  (x,,+l- x . c)
W„(x) p { x ) d x . (4.15)

Note that Eq. (4.15) is singular if xc -  xc+l, which physically corresponds to a particle

moving perpendicular to the x-axis. In this special case, a separate form of the estimator 

must be derived to handle the singularity. Starting with Eq. (4.15), the fundamental 

theorem of calculus can be used to evaluate the definite integral in terms o f the 

antiderivatives (x) o f the integrand y/n ( x ) p ( x ) ,

a , . (4.16)

Taking the limit o f Eq. (4.16) as x„ C+1 —» xn c gives

1 N c<
-  —  V  V  w dj lim 

N t t t t {Xi,c+1 ~ X,,c)
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J N  C,

(4.17)

Equations (4.15) and (4.17) together form the 1-D track length FET estimator,

|  N  C,

(4.18)

W,.c d ,,c Vn ( X„,c )  P  ( Xn,c )  i f  Xi.c =  X,^X ■

4.2. Implementation of 1-D Track Length FET Estimators

The numerical implementation o f the 1 -D track length estimator poses many of 

the same challenges as the implementation o f the discrete event estimator (section 2.3). 

In addition to the previously discussed issues o f basis selection and variable scaling, the 

track length estimator presents a new computational challenge. While the discrete event 

FET estimators required that each basis function be evaluated at a series of discrete 

points, the track length estimator requires an integral o f each basis function to be 

evaluated. The calculation of this integral for each particle flight can potentially become 

a major source of computational overhead in the code. A variety o f numerical schemes, 

such as Gaussian quadrature, can be used to evaluate the integral relatively efficiently. 

For the basis set o f Legendre polynomials it is actually possible to derive a recursion 

relationship for the integral in Eq. (4.18).
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The derivation of this Legendre integral recursion relationship begins with the 

Rodrigues representation for a Legendre polynomial^3,36-1

Taking the derivative o f Eq. (4.19) with respect to x gives

1 d n+1

(4.19)

n ( * ) ■ L - T -Tn' .dx ’"

Equation (4.20) can now be used to show the following relationship

(4.20)

c w - i t , w =
i j n +  2

„ n +22n+l(n + \ ) \d x n

2n~l ( n - \ ) \ d x nK > '

Algebraic manipulation o f the right hand side of Eq. (4.21) gives

(4.21)

■C (X) - C .  (* )=-
1 d n + 2

*/?+!

d*
(n + l)! dxn

1 d n

n + 2 L - > ) '
4 d n

dx b 1-*)
4 d n /  -> \ « - l

- ( x  - l )« V /

2”+1 n\(n + \) dxn

4 d
2n+i (« — l ) ! dx'

( n - l ) l  dx

4«(«  + l ) x 2 (x2 — l) + 2(« + l ) (x 2- i j

- ( x 2 - l )n V /
\ f j —1

/ ' - - I

" 1 d ”
4«x2(x2 - i r ‘ + 2 ( x 2- l ) - ]  4" rf” (x '  i r ' l

n ! dx” V / V / J n l d x nK }

2n+i n\
" d ”

2 ( x 2 - 1  ) ”
d n

“h .... 4nx2(x2- \ T l -4n(x2- \ r
[ dx" V / j dx" \ J \ )
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2 " +1 n\

1

d ” / ? \n d n ( -> \ / -y \ fl~
2 ( x  - 1 ) + ..... . 4n(x  -1  )f j r  -1 )

dxn \ / dx \  A  /

2H+1 n! dx"
2(x2- l ) " + 4 n ( x 2- l ) "

2n+ln\\ dx‘
- ( 4 h + 2 )(x2-1 )

fL i (x ) ~ P i  i ( * ) :
( 2 «  +  l )

T n \ £ r ( S - V

Using Eq. (4.19), this relationship can be written as

c , w - c , w = ( 2 ” + i ) n w -

Rearranging Eq. (4.23) to solve for Pn (x),  

and integrating over x gives

r  w  * = [  r  ■c ,  w  ■ * - 1 c ,  w  *

By the Fundamental Theorem o f Calculus, Eq. (4.25) becomes

f p» W = (*) ~ (fl) - ̂  (*)+p-i («)] •

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
(2« + l ) ‘

Equation (4.26) shows that a definite integral of a Legendre polynomial can be easily 

calculated by simply evaluating the higher and lower order polynomials at the endpoints 

of the integral. In fact, with this relationship, evaluating the 1-D track length FET 

estimator is just as efficient as evaluating a discrete event FET estimator. The only 

difference is that the Monte Carlo code must store both the current event location as well
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as the location of the previous event. Aside from the evaluation o f the path length 

integral, the implementation of the track length FET estimator is virtually identical to the 

implementation for the discrete event estimators.

4.3. Numerical Results for 1-D Track Length FET

4.3.1. Pressurized Water Reactor (Single Pin) Benchmark Problem

The track length FET estimator given in Eq. (4.18) was implemented in a 

modified version o f MCNP4c to tally spatial flux distributions in one dimension. The 

modified code was then tested on eigenvalue calculations for infinite lattices o f low- 

enriched (< 2%) UO2 fuel pins. The fuel pins were loosely modeled on actual fuel rods 

used in a Westinghouse design pressurized water reactor (PWR). Each fuel pin has a 

diameter of lcm, 0.04 cm air gap, 0.04 cm clad thickness, and a square pitch of 2 cm. 

The 1-D pins are infinite in the y- and z-directions. An illustration o f the reference fuel 

pin is shown in Figure 4.2.

For a reference solution, the pin cell was subdivided into 50 sub-cells in the x- 

direction and a standard track length tally was taken for thermal neutrons in each cell 

during a continuous-energy k-code calculation using 120 cycles (20 inactive) and 1000 

histories per cycle. The results o f this reference calculation are shown in Figure 4.3. The 

relative standard deviation for the benchmark flux estimate in each cell ranged from 

0.0035-0.0044. Notice in this reference solution that the flux distribution appears to have 

“kinks,” or discontinuities in the first derivative, near the positions x = 0.5 cm and 1.5 

cm. These discontinuities occur at each o f the material interfaces.
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Figure 4.2. One-dimensional representation o f a PW R fuel pin used for benchmark testing. The pin 
contains a zirconium clad slab of 1% enriched U 0 2 surrounded by w ate r at standard temperature 
and pressure. Reflecting boundary conditions were applied to all sides of the cell in order to simulate 
a repeating lattice o f infinitely long fuel pins. The calculated eigenvalue for th is infinite lattice was
1.05.

4 . 8

s  4 - 6

X 4 . 4  
J3
tti
7  4 . 2

"3
°  4

3 . 8 

3 . 6

1 . 0 1 . 5 2 . 0

x-position (cm)

Figure 4.3. Reference 50-bin histogram approximation of the thermal flux distribution across the 1- 
D PWR fuel pin. This data was collected from a single 100,000 history eigenvalue calculation run in 
MCNP4c. Note the “kinks” in the flux distribution that occur near x =  0.5 and x = 1.5. These kinks 
are due to the water/clad/gap/fuel material interfaces located in these regions.
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Following the reference calculation, the benchmark problem was then run twice 

using the modified track length tally to estimate the first 10 Legendre expansion 

coefficients. In the first trial, a total of 2,000 active neutron histories were run to produce 

estimates for the expansion coefficients. In the second trial, the number of active neutron 

histories was increased to 100,000. The resulting functional approximations from the two 

trials are shown in Figure 4.4 and Figure 4.5, respectively.

Both FET approximations agree, within statistical uncertainty, with the reference 

solution over most of the tally domain. The results in Figure 4.4 indicate that the 9th 

order Legendre approximation produced using 2,000 active neutron histories contains a 

large amount o f statistical uncertainty. However, even with this uncertainty, the 

approximation is able to capture the gross shape o f the distribution and is accurate to 

within 2 standard deviations of the reference solution. The 100,000 history Legendre 

approximation does a much better job o f resolving the true flux distribution. 

Correspondingly, the statistical uncertainty in this approximation is much lower than the

2,000 history approximation. Even with this reduced statistical uncertainty, the 100,000 

history FET approximation still appears to have difficulties resolving the flux shape near 

material interfaces in the problem. The FET approximation appears to smooth-over the 

kinks in the flux that occur at these interfaces. We recall from Chapter 3 that the FET is 

most effective when approximating distributions that are analytically smooth. If there are 

any discontinuities in the distribution or its higher derivatives, then the FET will 

converge more slowly near those discontinuities. As noted earlier, the material interfaces 

in this problem create discontinuities in the first derivative o f the flux.
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Figure 4.4. Results from the 2,000 history simulation showing the ninth order Legendre FET 
approximation to the thermal flux distribution across a 1-D PW R fuel pin. The black dots represent 
the benchmark histogram solution. Each histogram point lies within the two standard deviation 
uncertainty band (dashed curves) o f the FET solution. The different material regions in the unit cell 
are shown superimposed on top of the plot to illustrate the locations of material interfaces.
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Figure 4.5. Results from the 100,000 history simulation showing the ninth order Legendre FET 
approximation to the thermal flux distribution across a 1-D PW R fuel pin. The FET shows excellent 
agreement with the reference histogram  solution for all points except near the material interfaces. 
The relatively sm all two-sigma uncertainty band (dashed lines) indicates that the FET approximation 
is statistically well converged.
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Therefore, while a low order Legendre approximation works well for the smooth 

parts of the flux distribution, it cannot resolve the distribution near the material 

interfaces. Resolving the flux in these regions would require either a higher order 

approximation or a piecewise approximation. An example of a piecewise approximation 

is given in the next benchmark problem.

4.3.2. Pressurized Water Reactor (Lattice) Benchmark Problem

The previous benchmark demonstrated the effectiveness o f the FET for 

approximating the spatial distribution o f thermal flux within a single fuel pin in an 

infinite lattice. Realistic problems, however, do not resemble an infinite lattice of fuel 

pins. A standard reactor design will contain poison rods, instrumentation tubes, water 

channels, and structural elements, all interspersed with the fuel pins. The resulting flux 

distribution in a single fuel pin depends heavily on the location o f any non-fuel elements 

nearby. In order to test the effectiveness o f the FET in realistic reactor problems, a 

second 1 -D benchmark problem was developed consisting of six low-enriched fuel pins 

and one poison pin arranged in a repeating lattice. The problem geometry is illustrated in 

Figure 4.6. The poison pin contains boron-10, a strong thermal neutron absorber, at a 

density of 0.022 g/cc. The presence o f this poison element results in a sharp drop in 

thermal neutron flux near the boron rod. Correctly predicting the shape o f this flux 

depression near strong absorbers has long been a challenge for neutron transport 

codes<37), both deterministic and stochastic.
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Figure 4.6. One-dim ensional representation o f a PWR fuel lattice containing a boron control pin. 
Each fuel pin contains a slab of 1.95% enriched U 0 2 surrounded by water at standard temperature 
and pressure. The center cell contains a  zirconium clad boron-10 poison pin. Reflecting boundary 
conditions were applied to all sides of the geometry in order to simulate a repeating lattice of  
infinitely long pins. The measured eigenvalue for this infinite system was 0.96218.

In the benchmark model, the pin cladding and air gap were modeled explicitly 

only for the poison pin. For the fuel pins, the cladding and air gap were simply 

homogenized into the fuel region. Even with this simplification, the model still contains 

eighteen material boundaries. Given the performance of the FET in the previous 

benchmark problem, it is unreasonable to expect that a global low-order functional 

expansion will produce a good approximation across all of those material boundaries. 

Instead, a series of piecewise FET approximations were used instead of a single global 

solution. Since the locations of the material boundaries are known from the problem 

geometry, a separate tally region was created for each homogeneous region. During each 

simulation, the 1-D track length FET estimator was used to produce an estimate for the 

first 10 Legendre coefficients in each homogeneous region.

In the first test, a 100,000 history simulation was used to produce both a 50-bin 

histogram approximation and a three region piecewise FET approximation (9th order) to 

the thermal flux distribution across the boron pin. A comparison of the results, Figure

4.7, shows that the piecewise FET approximation agrees very well with the histogram 

solution. With the piecewise approach, the low order FET approximation is even able to 

resolve the kinks in the scalar flux that occur at the material boundaries. This results in a
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Figure 4.7. Results from a 100,000 history simulation showing a three region piecewise Legendre 
FET approximation to the thermal flux distribution across a 1-D boron pin. The black dots 
represent a 50-bin reference histogram solution produced from the same simulation. The dashed 
lines located near x = 0.5 cm and x=1.5 cm show the domain boundaries for the piecewise tallies. The 
results show that the piecewise FET is able to accurately approximate the kinks that occur in the flux 
near the material boundaries.

more accurate approximation than would be possible with a single, global, expansion. 

There is, however, a drawback to using piecewise FET.

Although the piecewise FET approximation shown in Figure 4.7 appears to be 

continuous, it is not. Closer examination reveals that there are discontinuities in the 

functional approximations at both of the tally boundaries. These discontinuities arise 

because the piecewise approach produces a completely independent functional 

approximation for each tally region. There has, to date, been no attempt to impose any 

boundary or continuity conditions on the independent tallies. Even though the 

independent tallies are mathematically discontinuous at the tally edges, for well 

converged FET approximations the tallies often “appear” to be continuous, as in Figure
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4.7. This “natural” continuity arises because each tally gives a good approximation to the 

true flux distribution in each tally region. Because the true flux is continuous across tally 

bins, it follows that the functional approximations should nearly match at the boundaries. 

This line o f reasoning, however, only holds if the FET approximations in each tally 

region are accurate (i.e. small statistical and truncation errors). I f  the individual 

functional approximations are poorly converged, then the resulting piecewise 

approximation will appear noisy and discontinuous. This fact can be used as a rough 

gage of the quality and accuracy of a piecewise fit. Any approximation that appears 

continuous at the tally boundaries is probably well-converged, while those that are 

noticeably discontinuous require more particle histories, a higher expansion order, or 

both.

In order to demonstrate this informal test for convergence, piecewise Legendre 

approximations for the thermal flux distribution over the entire lattice were generated 

using Monte Carlo k-code simulations o f 2,000 and 100,000 neutron histories. The 

resulting approximations are shown in Figure 4.8 and Figure 4.9, respectively. For the

100,000 history simulation, Figure 4.9, the resulting approximation appears to be 

continuous across all o f the tally boundaries. This approximation appears to be an 

accurate estimate of the flux across the lattice, a fact confirmed in the boron pin by 

Figure 4.7. The piecewise approximation from the 2,000 history simulation (Figure 4.8), 

on the other hand, does not appear to be continuous across tally boundaries. While the 

approximation gets the general shape o f the flux correct, there appears to be a significant 

amount of statistical noise. In this case it is clear that more particles are needed to 

produce an accurate estimate o f the true flux distribution.
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Figure 4.8. Results from a  2,000 history simulation showing a  nine region piecewise Legendre FET 
approximation to the thermal flux distribution across a 1-D fuel/poison lattice. The vertical dashed 
lines show the domain boundaries for the piecewise tallies. The unphysical, higher-mode oscillations 
in each tally region indicate significant statistical error in the final solution. The FET approximation 
also exhibits obvious discontinuities near some o f the tally boundaries.
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Figure 4.9. Results from a 100,000 history simulation showing a nine region piecewise Legendre FET 
approximation to the thermal flux distribution across a 1-D fuel/poison lattice. The vertical dashed 
lines show the domain boundaries for the piecewise tallies. In this case the piecewise FET 
approximations appear nearly continuous across tally boundaries, indicating that the result is 
statistically well converged.
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4.4. Derivation of 2-D and 3-D Track Length FET Estimators

The derivations for the two- and three-dimensional track length FET estimators 

are similar to the derivation for the 1-D estimator. In fact, the one-, two-, and three- 

dimensional estimators all look very similar. Unfortunately, the higher dimension 

estimators require significantly more work than the 1-D estimator. This added work 

stems from the fact that multi-dimensional expansions contain many more expansion 

coefficients, and each o f these coefficients becomes computationally more expensive to 

estimate in higher dimensions.

4.4.1. Multi-Dimension Orthogonal Basis Sets

As always, the derivation o f the FET estimators begins with the selection of an 

orthogonal set of basis functions that are complete over the phase volume of the tally. 

Most multi-dimensional sets o f orthogonal basis functions are created by taking product 

sets o f 1-D orthogonal basis functions. The use of product basis sets simplifies the 

derivation and implementation o f the multi-dimensional FET estimators by allowing 

theoretical results and algorithms developed for 1-D basis functions to be reused.

Consider three sets o f orthogonal functions, {VO (*)},_„, ( t )}w_0 > ar*d

\y/n (z)J ^ , that are complete over the x , y , and z spatial dimensions, respectively. It

follows that the product set, \y/, (x)y/m (y)<yn (z)}/ , is complete over M3 and that

each member is orthogonal to all o f the other functions in the set. Since this set is
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complete over MJ, it is possible to expand any function /  (x,_y,z) in this space in terms 

of a series expansion,

"'■».» *'.».» w > ( * ) M  y /» (z) • (4-27)/=0 «=0

As in 1-D, the orthogonality of the functions can be used to solve for the expansion 

coefficients,

«/,»,» = {. {. I  f { x, y ’z )'F,{x)Wm ( t ) y/„{z)dxdydz .  (4.28)

In order to simplify the notation, we have assumed that the functions in each basis set are 

orthogonal with respect to the weighting function /?(-) = 1. All o f the results that follow

can be generalized to hold for basis sets that are orthogonal with respect to an arbitrary 

weighting function, but this generalization clutters the derivations without adding any 

useful information.

By far, the largest challenge in implementing and using multidimensional FET is 

calculating and storing the large number of terms required for each tally region. The 

amount o f information that must be stored becomes large in higher dimensions because 

the number of expansion coefficients (for a given order expansion) grows exponentially 

with the dimensionality o f the problem. It has previously been shown that, in 1-D, a 9th 

order Legendre expansion is usually sufficient to produce an accurate approximation. 

The 9th order approximation itself requires the calculation o f 10 expansion coefficients, 

while a functional variance estimate requires the calculation o f an additional 100 

covariance terms. While keeping track o f 110 terms per tally region is manageable, the 

number of terms increases to 10,100 terms in two-dimensions, and 10,010,000 terms for a 

full 3-D expansion. Fortunately, these numbers can be reduced considerably if the 2-
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norm measure o f the variance (Eq. (2.34)) is used instead of the full functional variance 

(20 terms for 1-D, 200 terms for 2-D, and 2000 terms for 3-D). The 2-norm o f the 

variance provides an accurate measure of the aggregate amount of statistical uncertainty 

in an FET approximation, but it does not provide any information about the uncertainty at 

a single point within the tally region. Even if the 2-norm variance estimate is used, a 

fully coupled 3-D functional approximation will still require about 2000 terms to be 

stored for each tally region. This is still a lot o f information to store per tally, but there is 

no way to reduce the number o f stored terms further without risking a potential loss in 

accuracy.

4.4.2. Separable FET Expansions in 2-and 3-D

Before considering the fully coupled FET estimators, it is worth mentioning that 

there are certain classes of 2- and 3-dimensional problems that do not require a fully 

coupled, multi-dimensional expansion. In cases where the solution function </>(x,y,z) is 

separable,

<j>{x,y,z) = f ( x ) g ( y ) h ( z ) ,  (4.29)

a functional approximation can be constructed from three separate 1-D approximations 

rather than a single, fully coupled 3-D approximation. The advantage of this separable 

FET method is a significant reduction in the number o f expansion coefficients required 

per tally (—30 coefficients for the separable FET versus 1,000 for the fully coupled). 

While there are some problems in particle transport that have a separable spatial flux 

distribution (e.g. certain purely absorbing problems), most realistic problems do not have 

separable solutions. However, numerical experiments have shown that the separable FET
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appears to give a rough approximation for non-separable distributions, and does so for a 

fraction of the computational cost of the fully coupled solution. It is therefore likely that 

the separable FET has some merit, so a short derivation and explanation o f the method 

will be included here.

The derivation begins by considering a two-dimensional flux distribution defined

over a tally region {(x ,y)| x e [x0,x ,], y  e  [To’Ti]} • Furthermore, we assume that the 

flux distribution is separable and can be written as

From Eq. (4.27) it follows that the flux distribution can be approximated by a finite 

expansion in a suitable set of orthogonal basis functions,

Now, define two additional functions F ( x )  and G ( y )  as the transverse integrated one

dimensional fluxes

Because the functions E (x )  and G ( y )  are continuous, well-behaved, functions they can 

also be expanded in terms of the orthogonal basis functions,

M

<j){x,y) = f ( x ) g ( y ) . (4.30)

M  AT

(4-31)

F (x) = £ ' ^ (x, y ) dy = /  (x) £  g  (y ) dy 

g  ( y )  = (*, y ) dx = g  (y ) £  /  (*) <&■
(4.32)

(4.33)

G ( y )  = ^ aynk„ v„ (y ) .
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The coefficients axm and avn can be estimated using the 1-D track length estimator 

given in Eq. (4.18). In order to relate the transverse integrated flux expansions (Eq.

(4.33)) to the 2-dimensional expansion (Eq. (4.31)), we start by multiplying F(x)  and

G (y )  together

F ( x ) G ( y )  = | / ( x )  ̂  g ( y ) d y ^ g ( y )  £ / ( x ) c & J .  (4.34)

By the definition of the flux distribution, Eq. (4.30), it follows that 

F ( x ) G ( y ) =  / ( x ) g ( y ) (  £  g { y ) d y ^ £  / ( * )

= ^ t ) ( £  \ * / { x ) g { y ) dy dx\  (4 -35>

Rearranging Eq. (4.35) to solve for 0(x,  y )  gives

t ( x , y ) « - (4 .36)
£  l / ( y s ( y ) d y d x

If the basis sets are normalized such that y/0 (x) = y/0 (y ) = 1, then Eq. (4.36) can simplify

further to yield

. . F ( x ) G ( y )
f ( x , y ) *  (4.37)

«0,0

Substituting the series expansions (Eqs. (4.33)) in for F (x )  and G (y )  gives

(  M  M '  >

Z  Km K v m (x) Z K» K v n (y)
0(x,y ) ! Kin=0 /  \ n = Q

M M'
Z  Z  CF m  a ? , n  K  K  W m  ( X ) V n  ( f )

</>(x,y)*^ ^ ............... z ....... .............— (4. 38)

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By inspection o f Eqs. (4.38) and (4.31) it is trivial to see that

k,
(4.39)

in the original expansion. It was established previously that the coefficients axm and a n

can be estimated by the 1-D track length estimators, denoted axm and avn. Substituting

these estimated coefficients directly into Eq. (4.39) gives the separable FET estimator for 

the expansion coefficients

Notice that by assuming separability in the solution function, only M  + M'  terms need to 

be estimated during the simulation, as compared to the M  x M '  terms required for the 

fully coupled two-dimensional expansion.

To be completely thorough, it must be noted that the coefficient estimator given in 

Eq. (4.40) will be unbiased only if  the estimates axm and a are statistically

independent. If  these estimates are produced from a single simulation, then they are not 

statistically independent and the correlation between the estimates must be taken into 

account. In this case the “corrected” separable FET coefficient estimators are given by

where <r- - is the sample covariance between the estimates ar „„ and a,. „.
v iy? i ' ~  y'

Unfortunately, this correction requires the estimation o f the covariance for each pair of

k
(4.40)
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estimated coefficients. Evaluating this covariance matrix would require the calculation 

and storage of an additional M x M '  terms; exactly the number o f terms that the 

separable FET method was seeking to eliminate. Therefore, for distributions that are 

known to be non-separable, a fully coupled FET approximation should be used instead of 

attempting to correct the separable FET for statistical correlation.

4.4.3. Coupled FET Expansions in Multiple Dimensions

In cases where a separable FET approximation is not sufficient, a fully coupled 

multi-dimensional FET approximation is required. In order to derive the coupled FET 

estimators, we begin by considering a three-dimensional tally volume defined over the 

space

{ (x ,y , z )  | x e  [x0,x ,], y  e  [y0,y ,] , z  e  [z0, z,]}. (4.42)

It follows from Eqs. (4.27) and (4.28) that any function defined over this space (in this 

case the scalar flux) can be expanded in terms of an orthogonal set of basis functions

CO CO CO

^ ( * ’ T ’ Z )  =  Z  Z  Z  k i , m , n  W i  { x ) w m  { y ) v n  ( * ) ,  ( 4 . 4 3 )
/”0 m=0 »=0

where the expansion coefficients are given by

[ ^ { x, y ^ )y / , {x ) y /m(y)if/n( z )d x d y d z .  ( 4 . 4 4 )

To proceed, we conceptually divide the tally domain into P , Q,  and R equally spaced 

partitions in the x , y , and z directions, respectively. With these partitions, Eq. (4.44) 

can then be written

=z r+i z r+' z r  * & ^ ^
p =1 Xp  9=1 r=1 >r
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\ m,n= z £ z  r "  r  r  ^ ^ z) y/> w  ^  (z) ^  • (4 -45>
-= 1  17 =  1 7  =  1 X f  y ‘> > r

If the widths of the partitions, Ax^, Ay  , and Az r are small, then it is reasonable to

approximate the value of each basis function in a partition by the value o f the function 

evaluated at the midpoint o f the cell,

y/,(x) = ip,(xp+i/2) + 0 ( A x p) for x e [xp,xp+l] .  (4 -46)

Substituting Eq. (4.46) into Eq. (4.45) gives

P  Q  R

a i .m ,n  ~  £ £ £ | _ ^ , / ( X/,+1/2) ^ m ( ^ + 1/ 2 ) ^ "  ( Z ^ n )  
p - 1 q - 1 r - \

x f f  p +‘ ^ (x ,y,  z) c/g dxdz (4.47)
x p  z >-

+ 0 [A x 2p  ̂+ O^Ay2  ̂+ O^Az2  ̂+ ...

The higher order terms in Eq. (4.47) can all be omitted, because they will all become zero 

when the limits Axp , Ay , and Azr —> 0 are applied,

P Q R

a i , m , n  ~  £ £ £ [ ^ /  (-*>+1/2 W n  ( Z r+l/2 )
/?=1 q~\ r~l

x j - | >,+1 | <f>(x,y,z)dydxdz

The last term in Eq. (4.48) is the integrated scalar flux taken over the (p,q, r)  partition 

volume. By Eq. (1.61), this quantity can also be interpreted as the total amount o f track 

length generated by all particles passing through this small volume element, D ,

Dp<jr = fV ' r r </> {x ,y , z )  d y d x d z . (4.49)
x p  -VV

It was shown previously (Eq. (1.63)) that an unbiased estimator for Dpqr exists and is 

given by the statistic
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where N  is the total number of particles started, C,. is the total number of events

(collision, surface crossing, etc) where the i‘h particle can change direction, wt c is the

weight o f the particle and d l c p q r  is the path length traveled in element (p , q , r ) by

particle i as it travels between events c and c + 1. Substituting Eq. (4.50) into (4.47) 

yields an estimator for the coefficient at m n,

=  £  £  £  [ ^  ( X />+l/2 )  ¥ m ( y q,M2 )  Yn  ( W  )
1 qss 1 r—1

1 V V ^
X v r £  £  ’ , £ , p , q , r  w i ,cW ;=1 C=1

(4.51)

Equation (4.51) can be rearranged to yield

= T ~ - £ £ w-,c£ £ £ [ ^ /  (xP+ui)¥m (yq+xn)v„ { z r + m ) d i , c , P ,q , r \  ( 4 -a  i m „ —----/ ,  / ,  /  . / ,  / ,  |
/=! t-1  p ~ \  q - 1 r-1

Taking the limit o f the right hand side o f Eq. (4.52) as A x , Ayq and Azr —» 0 gives

|  N  C,

.52)

^ I m n »  4 :  Vi (x)^m {y )¥„  { z ) d s , (4.53)A M t.=1 ‘it

where the integral term is a line integral taken along the path St c taken by particle i as it 

moves between events c and c + 1. The variable s in the integral, therefore, can have 

values where dtc is the total distance between events c to c + 1. The path

integral in Eq. (4.53) can be evaluated by parameterizing x , y , and z in terms of the 

variable s ,
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1 N

/=! c-\

X y /, { y ( s ) ) vn {z(s)):
d x )2 (  dy 'f  (  dz+ i ^

(4.54)

1 y + U '  *■d s )  \ d s  y

Because a particle can only change direction at an event c,  the path a particle 

follows between events c and c + 1 is a straight line between the points

(*/,t >y , ^ ^ ) = (*(0),f'(O),2(0)) and (x,c+l, y , c.+1, z , c+}) = (x(dic) ,y (d lc) ,z(ditC)) .  As the

particle travels, it has direction QJC = where /uic , <plc, and p jc are the

directional cosines in the x , y , and z  directions, respectively.

Because the particle path between events is linear, it is possible to further 

parameterize two of the spatial variables in terms o f the third. For example, the variables 

y  and z can both be written as a function o f x :

<Pu' i, c  (  \
7  =  -------- ( x - X , . c )  +  J ,

Mi,c

dy — dx,
A.e

(4-55)

and

<P,,c (  X

dz -  dx.
P.,c

Using this parameterization, Eq. (4.54) can be rewritten as

N / = !  c = l

/

1 S  i  w -,c f "  V '  - ( * ( * ) -  X. c) + y t c
I Pi,

(4.56)

X(// —  {x{s)-x,'L)  + zKC 
P i.c

dx
ds
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yP,,c ds j vA,c dS/
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Equation (4.57) now depends only on x,  and following a change in the limits o f 

integration can be simplified to yield

f  \ 2
P i*

n

+
(  V 

Pl.C

(4.58)

x r w' w )+^
\ P i .C

W n ^ ( x - x lc) + z ,(
V

dx.

While it is possible to evaluate Eq. (4.58) directly, it is convenient to simplify the radical 

factor in front of the integral through some algebraic manipulations. These 

simplifications begin by multiplying and dividing the factor by the constant

/
1 +

\ 2 /  V2
<Pt,c+
P iV

ddPL^!iidLJjiA
dn,k(XnM l - Xn.k)\

1 +
/  V2 

Pi*
f  V 

P i,c

\  Pt.c J

~ * , . c  )Y  f  (* ,,+1 -  * , .c  ) 9 i .c  T  f  ( x i.c+ l ~  X i,c )  P i ,c

d.
+

P i .c

+
P i .c

(4.59)

From basic trigonometry it is easy to show

M, .. =
( X,.c+l ~ X<,c) (4.60)
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Substituting Eq. (4.60) into Eq. (4.59) yields

( n  >
2 r  \

9 i ,c
+

<Pi,c

K P ’ .C J\ P > , C  )

{  V f  \ 2 
+  ‘ 'c1 +

\  J

( X i.c+l ~ X , c )

(x,,e+1 ~ x,.c)

t / ( A , ) 2+ ( ^ ) 2 + ( a c ) 2 .

Pd>

1+
<P,,c

P i.c

+
f  \ 2

fc.C

V y P i ,c

(4.61)
( * , , c + l - * , . c  )

Finally:, substituting Eq. (4.61) into Eq. (4.58) gives a final result for the 2-D track length 

FET estimator

i y~̂  W',c ^i,c

" ^  , (4.62)
N  ( * , ,c +l ~ X, , c )

f
X J ^ 1 W l  ( x )  y / m  —  ( x  -  x , c. )  +  y ^ c 

\M ; ,c
¥„

A,c
+ Z; dx.

This estimator was derived by parameterizing both the y  and z directions. There are 

two other possible parameterizations that could have been used in place o f Eqs. (4.55) 

and (4.56). If the path length is parameterized in terms o f y  or z , the corresponding 

estimators are given by

I,nun

1 (- * w f]

J /V ; — ( y - y , . c) +x>.' ¥ m{y)v„ — { y - y , s ) +z >.c 
** \<Pi,c J \P t,c

(4-63)

d y ,

and
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respectively. Any of these estimators will produce an unbiased estimate for the 

expansion coefficient. As a general rule of thumb, it is useful to select a parameterization 

based on the dominant direction of particle motion for each path in the particle’s lifetime. 

For example, if a particle moving between two successive events travels further in the y  

direction than in either the x or z directions, then it is best to choose Eq. (4.63) as the 

estimator for that path length. This rule o f thumb prevents the denominator in the 

estimator from ever becoming zero as long as d -1 is non zero.

The 3-D estimators derived above can also be used for one- and two-dimensional 

functional expansions as well. In order to obtain the two-dimensional estimators, we

simply recognize that a 2-D basis set \ y ,  (x)tym (>’)]• _o can be written in terms o f an 

incomplete 3-D basis set,

Substituting y/n (z) = y/Q (z) into Eq. (4.62) gives the two-dimensional estimator

When the coefficients calculated with Eq. (4.66) are used in a series expansion, the result 

is a 2-D functional approximation for the transverse integrated scalar flux,

(4.65)

( t , c + 1 - \ c ) (4.66)
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M  M '

h x>y) = L h x^y^z)dz = kKm v,(x)wm(y)-
1=0 m=0

(4.67)

If this process is repeated for another dimension by letting iym (y ) = y/0 ( y ) , the result is a

1 -D estimator,

a. (4.68)

which is identical to the result derived in section 4.1. For convenience all o f the 

different track length estimators for one-, two-, and three-dimensions have been listed in 

Table 4.1, along with some guidelines on when each estimator should be applied.

4.4.4. Implementing the Multidimensional Track Length FET Estimators

By far, the most difficult aspect of implementing the multidimensional track 

length FET is evaluating the path integrals for the scoring functions. Although these 

integrals are one-dimensional, they are not in a form that is convenient for numerical 

evaluation. The integrands found in the scoring functions are usually high order 

polynomials that are highly-oscillatory, making numerical evaluation o f the definite 

integral impractical. In the case o f the 1-D track length estimator a recursion relationship 

was derived that provided an extremely efficient method for evaluating the integral. 

Unfortunately, despite repeated attempts, no such recursion relationship was found for 

the integrals in the multidimensional estimators. The only remaining solution is to use a 

numerical integration technique to solve the integrals along each path length. The 

drawback to this approach is that numerical integration schemes are generally 

computationally expensive, and numerically evaluating an integral each time a particle
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Table 4.1. Track Length FET scoring functions for one- two- and three-dimensions. Also included 
are ru les for selecting the appropriate scoring function based on the current direction of a scoring 
particle. The variables p, p, and <p represent the directional cosines of particle motion in the x-, y-, 
and z-directions, respectively.

Track Length FET Estimator
|  ^  ̂ i

a i,m,n =  T 7 Z  X  (A ,c  ’ d i,c > X c > A +l » X  » X +P Zc > A +1 )
7 = 1 c = i

Scoring Functions

(X ,c>  d ,,c > X  » X +I . X - > X +1» X  > A +1) =

When to
Use

Three Dimensional Approximation

w i , c  d j _ c  ,  X f  9 i , c  t  \  ,

Tx - 7  \ 1 .  ' " A K  7 r ’vJC_Jt' . . ) + ->’.
V'Yc+l A i , c /  V A .c

Vn
A . c

( x - ^ c) + z,_c d  A , c > ,

A ,  c  ^  A .

A .C  ^ / .C  A ,C  /  \  /  \  A ,C  /  \ dy

w, . d.

( X c + > ~  A c )
f '" V /  )+ x .c — ( z - a c) + x ,c

A,,V A ,

<P,,c >  A  c

^ / . C  ^  A , C

A ,c >  A ,c  

A . c  >

7Wo Dimensional Approximation

w. , d.A , c  A ,c  f v - +> /  \  A ,c  (  \  ,

 7 7 1 1 , V  (--v x“ > ' y '\ A , c + i  x i,c )  V. A . c
dx

(x ,c+i- x , , ) Jv ^

a,c 4,c V, ix)vm (y)

£"V; — (j'-x.cJ+x.c ¥m{y)dy
A

A .c  ^  ^ ,c  >  0

ft.e > A ., > 0

A . c -  =  <Pi,c =  0

Dimensional Approximation

(x.c+! - \ c)

A . c  < , c  A  ( * )

A . a >  0

A ,*  =  0
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moves between events can significantly increase the run time for a transport simulation. 

However, unless a recursion relationship for the integral is found, it appears that 

numerical evaluation is the only option.

After research into several types of numerical integration schemes, integration by 

Gaussian quadrature appears to be the most efficient and reliable technique available. 

Evaluation by Gaussian quadrature has several benefits when used with the FET scoring 

function. First, Gaussian quadrature can be used to give exact results for the integration 

of polynomials, which are commonly used as basis functions in the FET. In fact, specific 

quadrature sets can be derived easily from many of the commonly used basis sets (e.g. 

Legendre, Chebyshev, Hermite, Laguerre). The size o f the quadrature set can be 

specifically tailored to the FET expansion order to ensure that the integrals are evaluated 

with the fewest number o f calculations possible. Also, the Gaussian quadrature scheme, 

when coupled with recursion relationships for evaluating basis functions, has proven to 

be extremely fast when implemented.

The fundamental principle of Gaussian quadrature is that the integral o f a function 

over some domain is equal to a weighted sum of the function evaluated at specific 

abscissa points within that domain. The Gauss quadrature formula is usually written

where wi are the weights and x: are the abscissa points. The locations o f the abscissa

points and the corresponding weights are referred to as a quadrature set. The limits of 

integration in Eq. (4.69) are shown to be -1 and 1, the standard values. The formula can

as, ( 10)

(4.69)

be generalized to any limits o f integration by using the transformation*10)
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As noted previously, Gaussian quadrature is most effective when used to evaluate 

integrals over polynomials. An 1 point quadrature set will give the exact integral for any 

polynomial of order 21 or less. Examination of Eqs. (4.66) and (4.62) reveals that the 2- 

and 3-D estimators contain integrals over polynomials o f order M  + M ',  and 

M  +  M '  +  M " , respectively. Assuming M , M ' , and M" are all taken to be 10 (a 

reasonable value for most applications), this gives a polynomial order of 20 for 2-D and 

30 for 3-D. These orders of approximation would therefore require a 10 and 15 point 

quadrature set, respectively. In the three dimensional case, this means that each basis 

polynomial must be evaluated at 15 different locations along every flight path that a 

particle takes. Although this seems like a large number of calculations, testing has shown 

that the run times for simulations using the FET with Gaussian quadrature are 

comparable to those using traditional mesh tallies.

4.5. Numerical Results for the Multidimensional Track Length FET

In order to verify the multidimensional track length FET estimators, a version of 

the 2-D estimators were implemented in MCNP4c using Legendre polynomials as the 

expansion basis set. Because the Legendre polynomials are defined only on the domain 

[-1,1], the code was designed to scale the spatial expansion domain to fit the Legendre 

domain. The scalar flux distribution over the scaled 2-D region can then be expanded in 

terms o f Legendre polynomials,
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where x and y  are the scaled spatial variables. Once the expansion domain has been 

appropriately scaled, expansion coefficients can be estimated by scoring the 2-D 

estimators (given in Table 4.1) during the random walk simulation. The Monte Carlo 

code evaluates the function S/ k, m n after every particle transport operation and stores the

cumulative sum over all histories. After the simulation has finished, this sum is

normalized by the number o f starting particles to give the final estimate. A 10 point

Gauss-Legendre quadrature set was used to evaluate the integral in the function S. This 

order quadrature allows the code to estimate expansion coefficients up to, and including, 

a9 9. The benchmark problem used was a two-dimensional infinite lattice o f simulated

PWR fuel pins. Each pin cell (Figure 4.10) was modeled as a 1.5% enriched 0.603 cm 

radius UO2  pellet surrounded by water. The pin cells were modeled as infinitely long and

arranged in a square lattice with a pitch of 1.875cm.

For testing purposes the track length FET estimators were used to create both 

separable and coupled 2-D functional approximations to the steady-state thermal flux 

distribution across the face o f a pin. For comparison, a 2 million history MCNP5 

benchmark eigenvalue calculation was performed using 400 mesh tally regions (20 in the 

x-direction, 20 in the y-direction) to obtain a direct estimate o f the thermal flux 

distribution over the x-y plane o f the pin cell. The results o f  this simulation are shown in 

Figure 4.11.
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^      It»
Cell Pitch = 1.875cm

Figure 4.10. Tw o-dim ensional representation of a PWR fuel pin used for benchmark testing. The 
pin contains a zirconium clad cylinder of 1.5% enriched U 0 2 surrounded by w ater at standard 
temperature and pressure. Reflecting boundary conditions w ere applied to all sides o f the cell in 
order to simulate a repeating  lattice of infinitely long fuel pins. The calculated eigenvalue for this 
infinite lattice was 1.026.

Figure 4.11. Benchmark two-dimensional thermal flux distribution across the face of a PW R fuel 
pin. Results were generated during a two-million history eigenvalue simulation in MCNP5. A 20x20  
bin mesh tally was used to ta lly  the data.
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4.5.1. Separable FET Approximation for Thermal Flux Across a PWR Fuel Pin

The first benchmark test used one-dimensional track length estimators to produce 

ten flux expansion coefficients in the x and y  directions during a 2-million history 

simulation. These 19 one-dimensional coefficients were then used in Eq. (4.40) to 

produce a complete set of two-dimensional expansion coefficients. These two- 

dimensional coefficients, in turn, were then used to construct a functional approximation 

to the thermal flux distribution. The resulting functional approximation is shown in 

Figure 4.12, along with a mathematically smoothed version o f the mesh tally reference 

distribution. The separable FET approximation is surprisingly good, considering that the 

flux distribution is not a separable function, and the effect o f cross-correlation between 

the coefficient estimates was neglected. Although the separable expansion captures the 

general shape of the distribution, there are clearly differences between the FET and 

reference distributions. The FET approximation overestimates the flux at the comers of 

the cell and underestimates the flux in the centers o f the cell faces. While these 

qualitative differences are illustrative, a quantitative measure was required in order to 

directly compare the two methods. However, a direct comparison is difficult because the 

reference distribution contains discrete data points (histogram approximation), while the 

FET approximation is a continuous function. In order to obtain a meaningful and 

qualitative comparison between them, the continuous FET approximation was converted 

into a histogram by superimposing the MCNP mesh tally grid and then averaging the 

functional approximation over each mesh tally cell. The results of this FET-to-histogram 

process are illustrated in Figure 4.14.
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3' 3 \
2.8

- 0 . 5

(a) (b)

Figure 4.12. Comparison between mesh tally (a) and separable FET (b) approximations to 2-D  
thermal flux distribution across the face o f a PWR fuel pin. The separable FET approximation uses 
1-D, 9th order, Legendre expansions in the x- and y- directions to approximate the full 2-D  
distribution. All 19 FET expansion coefficients were produced in a single 2-million history Monte 
Carlo simulation. Note that the mesh tally approximation in (a) has been smoothed to allow for a 
better visual comparison with the continuous FET approximation.

Once the FET approximation was converted into a histogram a direct comparison 

can be made by calculating the relative difference between cells in the reference and FET 

solutions. The results of this comparison are shown in Figure 4.14. As the initial 

observations had indicated, the FET approximation overestimates the flux in the cell 

comers by nearly 4% and underestimates the flux at in the cell faces by nearly 3%. All of 

the mesh regions show a relative error of less than 4%, with an average error of 1.62%. 

The average error was calculated by computing the absolute value o f the relative error in 

each mesh region, and then taking the mean over all 400 regions. These results are 

surprisingly good for a separable approximation. However, Figure 4.14 shows that there 

is definitely a structure to the relative error across the pin face. This error indicates that 

the separable solution is not providing accurate approximations for some of the cross

term expansion coefficients. In order to correct these errors, a coupled FET 

approximation will be required.
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(a) (b)

Figure 4.13. Comparison of the 9x9 Legendre FET approximation as a continuous function (a) and 
after being converted into a histogram. After being converted to a histogram the FET 
approximation can be directly compared with the reference mesh tally flux distribution shown in 
Figure 4.11.
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Figure 4.14. Density plot o f the error between the separable FET and the reference mesh tally 
approximations to the spatial flux across the pin face. The average magnitude o f error over all o f the 
mesh regions was calculated to be 1.62%. The largest magnitude error is 3.77% and occurs near the 
center of a  water channel.
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4.5.2. Coupled FET Approximation for Thermal Flux Across a PWR Fuel Pin

In this test the modified version of MCNP4c was used during a 200-million history

fhsimulation to estimate all 100 of the coupled Legendre moments required for a 9x9 

order functional expansion across the PWR fuel pin face. These coefficients were then 

used to construct the fully coupled functional expansion o f the thermal flux in the pin 

cell, shown in Figure 4.15. Once again, by averaging the functional expansion over each 

o f the mesh tally regions defined in the MCNP5 reference solution, a quantitative 

comparison of the two methods was obtained. Figure 4.16 shows a density plot of the 

relative difference between the FET and mesh tally approximations across the x - y  plane 

of the fuel pin. These results show that the coupled FET produces a much more accurate 

solution than the separable approximation. The fully coupled approximation agrees well 

with the reference solution in the centers o f both the fuel region and the coolant channels. 

The only noticeable error present in this approximation is the slight ~1% disagreement in 

the behavior of the flux near the fuel-water material interface. This disagreement is due 

to truncation error, which results from approximating a piecewise smooth function by a 

finite series Legendre expansion. This is the same behavior that was seen in the 1-D 

approximations in Figure 4.5. In the one-dimensional case, the solution for overcoming 

this truncation error was to use a separate piecewise tally in each o f the material regions. 

Unfortunately, due to the shapes o f the material regions in this 2-D problem (a circular 

fuel cell surrounded by a square water cell) it is very difficult to imagine finding a 

complete set of basis functions for either material.
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Figure 4.15. C om parison between mesh ta lly  (a) and coupled FET (b) approximations to 2-D 
thermal flux distribution across the face of a PWR fuel pin. The FET approximation uses coupled 2- 
D, 9x9 order, Legendre expansions in the x-y plane. All 100 FET expansion coefficients w ere 
produced in a single 2-million history Monte Carlo simulation. Note that the mesh tally 
approximation in (a) has been smoothed to allow for a better visual comparison with the continuous 
FET approximation.
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Figure 4.16. Density plot of the error between the coupled FET and the reference mesh tally 
approximations to the spatial flux across the pin face. The average magnitude o f error over all o f the 
mesh regions was calculated to be 0.23% .
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Figure 4.17. Density plots of the error between the coupled FET and the reference mesh tally 
approxim ations for different Legendre expansion orders. These results show the convergence of the 
FET approximation to the reference solution as the expansion order is increased.
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A verage  Error in 2-D  FET Therm al Flux Approxim ation
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Figure 4.18. Average error in a Legendre FET approxim ation to the spa tia l flux distribution across 
the face of a 2-D PW R fuel pin. Results are shown for th ree  Monte Carlo simulations, each run with 
a different number o f particle histories.

To order to better assess the effect of truncation error on the track length FET, a 

series of tests was run to measure the average relative error o f the FET (as compared to 

the MCNP5 benchmark solution) as a function of both Legendre expansion order and 

number of starting particles. The results of these tests, shown in Figure 4.17 and Figure 

4.18, demonstrate that the functional expansion of the flux converges towards the 

benchmark solution as the number of histories and the number o f terms in the Legendre 

expansion becomes larger. The observed convergence with increasing Legendre order 

for a fixed number o f histories again confirms that both statistical and truncation errors 

need to be considered with any Monte Carlo functional expansion technique. Simply 

increasing the number o f histories used in a simulation will only reduce the statistical 

error associated with the estimation o f each expansion coefficient. In order to obtain an 

accurate pointwise scalar flux estimate over the entire spatial domain, it is necessary to
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T able 4.2. Comparison of run times between a 9th order coupled Legendre FET an d  an MCNP5 
20x20 mesh tally for estimating the 2-D spatial distribution of thermal flux over a P W R  fuel pin.

Particle Histories

Run Time Com parison (minutes) 

M CNP4c Coupled FET M CNP5 M esh Tally

20,000 0.77 0.87

200,000 6.53 8.23

2,000,000 64.83 75.84

increase the number of terms in the Legendre expansion and thereby reduce the 

truncation error associated with approximating a function by a finite series of 

polynomials. Finally, a comparison o f run times between the 2-D coupled FET and the 

MCNP5 mesh tally approximation methods for a 200-million history simulation is given 

in Table 4.2. These results show that estimating a functional expansion o f the flux is 

slightly faster than using a mesh tally approach. Mesh tally algorithms require the 

addition of extra tally surfaces to the problem geometry. Tracking particles through these 

extra surfaces can add a significant amount of run-time to the simulation. While the 

coupled 2-D estimators also require additional calculations during particle transport, the 

results indicate that these calculations are more efficient than those associated with the 

mesh tally.

4.5.3. PWR Quarter Assembly Benchmark Problem

In order to provide a more challenging test of the capabilities of the 2-D track 

length FET, a benchmark problem was developed to simulate a realistic PWR fuel 

assembly. A fuel assembly is a square bundle o f fuel and poison rods surrounded by
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Figure 4.19. Two-dimensional representation o f a PWR fuel assembly used for benchmark testing. 
The assembly contains three types of elements. Fuel pins contain 1.5% enriched U 0 2. Burnable 
absorber pins and control rods both contain boron-10 at a density o f 0.03 g/cc. All pins are 
surrounded by water at standard temperature and pressure. Reflecting boundary conditions were 
applied to all sides of the cell in order to simulate a repeating lattice of assemblies. The dashed lines 
show the quarter symmetry planes for the assembly.

structural material. A typical PWR assembly contains anywhere from a 14x14 to a

18x18 array o f rods, usually with quarter- or eighth-assembly symmetry. A two-

dimensional representation o f one-fourth o f a hypothetical 16x16 assembly is shown in

Figure 4.19. This assembly is loosely based on assemblies designed for the

Westinghouse AP600 reactor, but it is not intended to be an exact replica o f any

particular design.

The fuel assembly shown in Figure 4.19 contains two types o f neutron poison

elements. The burnable absorber rods, shown in dark grey, contain pure boron-10 with a

density of 0.03 g/cc. These rods are fixed in place and are always present in the
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assembly. The control rods, shown in black, have the same composition as the burnable 

absorber rods, but they are moveable. These control rods can be either withdrawn from 

the assembly or inserted into the assembly to control the reactivity of the assembly. The 

movement o f these rods has a dramatic effect on the flux distribution within an assembly.

The quarter assembly illustrated in Figure 4.19 contains 64 individual fuel and 

poison elements. With this many elements, it should be expected that a global FET 

approximation over the entire problem will not produce acceptable results. Instead, a 

piecewise FET approximation should be used to increase the approximation accuracy. 

For this test, the quarter assembly was divided into 64 tally regions; one over each 

individual pin cell. The track length FET was then used to estimate a 9*9 set o f 

Legendre expansion coefficients in each cell during a Monte Carlo eigenvalue 

calculation. Two simulations o f 10-million histories each were run in order to simulate 

the assembly with control rods inserted and withdrawn. The FET flux approximations 

from these simulations are shown in Figure 4.20 and Figure 4.21. These results clearly 

illustrate the change in flux distribution that occurs when the control rod positions are 

changed. In Figure 4.20 the control rods are withdrawn and the guide channels are filled 

with water. These large concentrations o f water allow for increased neutron 

thermalization, and a resulting peak in the thermal flux within each water-filled tube. 

When the control rods are inserted, Figure 4.21, the added neutron poisons eliminate the 

thermal neutrons nearby causing sharp flux depressions. The added effect of these 

poisons pushes the thermal flux peak to the lower right corner o f the assembly, as far 

away from the poison elements as possible. In both cases, the FET produces a consistent
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physically intuitive approximation for the flux distribution. Both approximations appear 

nearly continuous across all of the tally boundaries, indicating a well-converged solution.
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Figure 4.20. Two-dimensional density plot of the thermal flux across the face o f  the fuel assembly 
w ith control rods withdrawn. Each pin cell was approximated by a separate 9><9 order Legendre 
expansion. All expansion coefficients were produced using coupled track length FET estimators 
during a 2-million history Monte Carlo eigenvalue calculation. The resulting scalar flux values have 
been normalized by the number of particle histories run. The eigenvalue for the infinite system with 
control rods withdrawn was calculated to be 1.1630.
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Figure 4.21. Two-dimensional density plot of the thermal flux across the face of the fuel assembly 
with control rods inserted. Each pin cell was approximated by a separate 9x9 order Legendre 
expansion. All expansion coefficients were produced using coupled track length FET estimators 
during a 2-million history M onte Carlo eigenvalue calculation. The resulting scalar flux values have 
been normalized by the nu m b er of particle histories run. The eigenvalue for the infinite system with 
control rods inserted w as calculated to be 0.93287.
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CHAPTER 5

APPLICATIONS TO RESPONSE MATRIX METHODS

The previous chapters in this dissertation have focused on presenting a very 

general derivation o f the functional expansion technique (FET) and its mathematical 

properties. As a consequence, many o f the numerical results presented have been limited 

to simply visualizing solutions from Monte Carlo simulations. It is important, however, 

to stress that the FET is not limited to data visualization alone. In fact, one o f the most 

important properties o f the FET is its ability to serve as a link between Monte Carlo and 

deterministic transport codes. One formalism for linking Monte Carlo and deterministic 

codes is the response matrix method (RMM).

5.1. The Response Matrix Method

The response matrix method (RMM) is a general technique that is used for 

simplifying and solving large linear transport or propagation problems. The method has 

historically been used to analyze transmission lines, wave guides, nuclear scattering, 

elementary particles, crystal lattice dynamics, and acoustics, along with many other 

physics and engineering applications^. The RMM operates using a “black box” 

approach, in which the detailed physics in large regions of the problem are condensed
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into individual response matrices. Each response matrix relates the distribution and 

magnitude of particles or energy entering the region to the distribution and magnitude 

that exit the region. The RMM effectively converts linear transport problems into coarse- 

mesh nodal problems, in which the coupling is provided by the response matrix in each 

node. After the response matrices have been generated, then the global transport 

calculation can be extremely fast. Unfortunately, calculating the response matrices is not 

a simple task. For all but the most trivial problems, there exist no analytical techniques 

for calculating response matrices. In particle transport applications, many different 

numerical techniques have been tested, including diffusion theory, collision probability, 

and Monte Carlo methods.

5.1.1. Development of the Response Matrix Method

The response matrix method for reactor physics calculations originated with 

invariant imbedding, a widely-used analysis technique in physics. Invariant imbedding is 

a “black box” technique in which complicated physical interactions within a specified 

volume are replaced by a set o f (typically nonlinear) response functions that relate the 

input conditions on the surface o f the volume to the output conditions on the surface. 

Invariant imbedding was originally used to study the reflection and transmission of 

radiation through materials of varying thickness(39). In this context, the goal o f invariant 

imbedding is to find response equations that give the reflected and transmitted radiation 

fluxes due to an initial source as a function o f the material thickness. The resulting 

response functions can be expressed either as second-order, non-linear, integro- 

differential equations (the invariant imbedding equations), or as functional equations that
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Figure 5.1. Illustration of transmission and reflection response functions for a one-dimensional slab 
geometry.

relate the response functions of a composite piece of material to the response functions o f 

its constituent parts^40). It was recognized in the 1950’s that this second representation 

could be applicable to reactor physics calculations. Most reactor designs use a limited 

number o f different fuel and poison types arranged in a repeating lattice. These different 

types of fuel and poison elements are the constituent parts that make up the composite 

reactor core. Determining the response functions for each type o f fuel and poison 

element makes it possible to determine the response function for the entire core through 

the use o f the adding relations. The article by Pfeiffer(40) gives a good review o f the 

development o f invariant imbedding in physics and the early applications to reactor 

physics. Unfortunately, the invariant imbedding approach is best suited for one

dimensional problems, and extending the method to higher dimensions causes difficulty.

To derive the response functions in 1-D, we begin with a slab o f fixed width X  

and an incident angular flux on the left surface, as shown in Figure 5.1. The incident 

angular flux ^+(0 ,O ) induces a reflected angular flux <jf (0, O ') and a transmitted

angular flux <j>+ (X , O ') . These reflected and transmitted flux distributions can be written

194

Transmitted Flux

(p+(x, 0 ’)=t(x, o, o ’) cp+(o, o)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as a product of a response function times the initial source distribution and the slab 

thickness

The response functions r and t are referred to as reflection and transmission function, 

respectively. These functions depend on the initial incident flux distribution as well as 

the slab thickness X . We notice that the transmission and reflection functions are also 

the Green’s functions for reflected and transmitted angular flux due to the initial flux 

distribution at x = 0 .

The response due to an arbitrary angular flux distribution can be written as the 

superposition of response functions for individual neutron angles and energies. These 

Green’s functions can also be calculated for any normalized incident distribution and in 

practice are computed using elements from a set of angular basis functions. Letting

where <f>x n is the n'  expansion coefficient for the angular flux at position x . The series

expansion shown in Eq. (5.2) can also be written as a scalar product between a vector 

containing the expansion coefficients and a vector containing the basis functions,

f  (0, Q ') = r ( X , Q , Q ' ) f ( 0 , a ) ,  

f  (X , a )  = t (X , Q, O ') f  (0, Q ) .
(5.1)

represent a complete basis for the angular domain, it is possible to express

any flux distribution as a series expansion,

ao

(5.2)

(5.3)

where
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fix {fix,0’ fix,\’ fix,2T ■■)

V = (*0 ( Q  E ) , kx y/, {Q.,E),k2y/2(Q.,E) , . . ) .
(5.4)

Notice that, for a given set of basis functions, any flux distribution can be uniquely 

defined by its vector of expansion coefficients. Given this fact, it is possible to rewrite 

Eq. (5.1) in terms of and <j>x , the exiting flux vectors at x = 0 and x - X ,

respectively,

fix ”  — fio ’

where p  and r  are response operators. These operators have the form

i t t*00 *10 *2Q

(5.5)

r  = *01 Ml

02 22

(5.6)

Each element, tm n, o f this transmission response matrix gives the number o f particles that 

cross the surface at x -  X  with angular distribution kn y/n (Q ) , due to particles entering 

the system at x = 0 with angular distribution k0 y/0 ( Q ) . It is important to note that each

response matrix is uniquely determined by the material properties and thickness o f an 

individual region in the problem. Any changes that occur within the region require the 

response matrix to be recalculated. The only exception occurs in 1-D, where certain 

doubling, halving and adding relationships can be used to generalize a response matrix 

for a region of arbitrary thickness(41). In two or three dimensions, a separate response 

matrix is required for each face o f the node. Thus, a two-dimensional node with 4 sides 

would require a total o f 16 response matrices to couple each incident surface to every
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exiting surface. Fortunately, if  the node is symmetric the number of unique response 

matrices is less than the total number o f permutations. In the case of a two-dimensional, 

square, homogeneous node there are only 3 unique response matrices. These three 

matrices account for reflection, transmission across the node, and transmission to an 

adjacent surface. The use o f node symmetry can greatly accelerate the calculation of 

response matrices. In addition to using symmetry to reduce the number o f response 

matrices per node, the efficiency of the RMM also depends on the number o f nodes in the 

system. The RMM works best on systems that can be partitioned into large nodes of 

equal geometrical form.

Response matrix methods are not restricted to handling only the angular 

distribution of flux. The method can also be used to account for spatial, energy, and even 

temporal(42"45) flux distribution across a node boundary. However, each additional phase 

variable increases the dimensionality of the response matrices used in the method. 

Calculating all of the response functions required for a six- or seven-dimensional 

response matrix would be prohibitively expensive. In practice, most RMM studies have 

been limited to a 3rd order series expansion in angle and a 1st order expansion in space. 

The resulting response matrices can be calculated quite efficiently, and they have been 

found to provide reasonable accuracy.

A variety o f different basis sets have been studied for handling expansions in 

angle. In 1966, Aronson and Yarmush(38) used a half-range Legendre polynomial 

expansion in angle and a multigroup representation in energy. The half-range (or double) 

Legendre expansion was found to be particularly useful for expanding the angular 

component o f partial flux or current distributions at node boundaries. In fact, the double
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Legendre (DPn) expansion became the standard angular expansion for many of the RMM 

studies that followed. Although the DPn expansion became a popular and effective 

choice for the angular basis set, other angular representations have been tried, such as 

discrete ordinates(46), piecewise isotropic(40), and discrete Legendre polynomials^7-1. All 

o f the RMM work that treated particle energy explicitly used a multigroup representation. 

The multigroup treatment is favored because energy spectra containing resonance peaks 

are very difficult to resolve with a standard set of basis functions.

Most o f the RMM studies presented in the literature have focused on the angular 

variation o f particle flux or current at node boundaries. These studies typically assume 

that the spatial variation along a boundary is constant. In 1981, Nakata developed a 

response matrix method that accounts for this spatial variation(48,49). However, instead of 

using a traditional orthogonal series expansion for the spatial dependence o f the current, 

the RMM developed by Nakata was based on a finite element expansion. This work 

represents the first application of the finite element method in a response matrix 

framework.

The response matrices are used for local calculations within a small region o f the 

overall problem geometry. In order to obtain the global solution for the problem, these 

independent regions must be linked together. This linkage is accomplished by enforcing 

a continuity boundary condition at the region interfaces. This condition is implemented 

quite easily by exchanging flux moments directly between adjacent regions. The 

outgoing flux expansion from one node is set equal to the incident flux distribution for 

the neighboring node. The actual computation is very similar to a discrete ordinates (S n ) 

sweep. The algorithm starts at one side o f the problem with a prescribed source and

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



calculates the transmission of that source through successive nodes in one direction. 

After the code has swept through all of the nodes in one direction, it sweeps in the 

opposite direction to account for the reflected particles. These sweeps continue until the 

flux solutions at each node boundary remain unchanged between iterations. Because the 

global calculation only involves matrix multiplications at each node, the global 

calculation is extremely fast. Unfortunately, the standard sweeping algorithm can 

encounter severe problems due to error propagation. Response matrices can produce a 

very good approximation to the exiting particle distribution, but the approximation will 

not be exact due to truncation error. As a consequence, the source term for the next node 

may be in error by a small amount. As the global sweep proceeds, these small errors will 

generally accumulate and amplify. This problem, often referred to as lateral flux 

spreading or refraction, was first studied by Filippone in 1973 and 1977(41’50'). The effect 

of this flux spreading error becomes more pronounced as the number of nodes is 

increased. One possible solution proposed by Mosher and Rahnema is to reorder the 

sweeping pattern, in order to limit the error propagation(47).

The speed and efficiency o f the global RMM calculation is offset by the need to 

precalculate a large number of response functions. Each response function calculation 

involves a fixed source transport calculation in the node of interest. A variety of different 

analytical and numerical schemes have been used to calculate response functions. Some 

of the very earliest work focused on the use of analytic transport*38’40’50"5̂  and diffusion 

theory*-56"6^ for calculating response functions. In 1972, Weiss was able to derive a set of 

response matrix equations (RME) for a 1-D slab directly from diffusion theory and prove 

that the RME are equivalent to the standard three-point difference equations(5I). By 1975,
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however, Weiss and Lindhal concluded that analytical transport derivations o f response 

functions had met with insurmountable difficulties*58*. Instead, Weiss and Lindhal use 

variational principles to derive response matrix equations based on the weak form o f the 

diffusion equation*58,62*. For several years afterwards, work focused on this variational 

formulation of the RMM*63,64*. In the end, however, advancements in nodal diffusion 

theory*65* reduced interest in the RMM. The use o f  advanced homogenization techniques 

and discontinuity factors proved simpler and faster than diffusion based RMM.

After diffusion theory was largely abandoned for calculating response functions, 

many researchers considered using collision probability or Sn methods instead166'71*. 

Many of these attempts proved highly successful for treating large commercial reactor 

problems*69'71*. Over time, these collision probability based response matrix methods 

evolved into the Green’s function methods*72* and interface current methods*73"82*. In his 

review article, Mohanakrishnan gives a good overview o f both the response matrix and 

interface current methods and the relationship between the two*77*.

Finally, it is most important to note that there have been a series of studies that 

have used Monte Carlo simulations to calculate response functions. These studies are the 

most relevant to the application o f the FET and will be considered in detail in the next 

section.
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5.2. Calculating Response Functions with Monte Carlo

5.2.1. Previous Work

The concept of interfacing Monte Carlo and deterministic codes by exchanging 

flux and/or current moments has existed for many years. As early as 1975, McDaniel 

suggested a hybrid method for calculating flux distributions in a reactor pin cell(69). The 

method employed a collision probability calculation in the fuel/clad/gap regions o f the 

problem, and a Monte Carlo calculation for the coolant region. The solutions from the 

two methods were then linked by a continuous flux boundary condition applied at the 

clad/water interface. In order to make this method work, McDaniel also assumed that the 

flux along both sides of this interface was distributed uniformly in space and isotropically 

in angle. By using these approximations, only the zeroth moments o f the flux and current 

distributions needed to be exchanged between the two regions. The zeroth moments of 

flux and current are both easily obtainable using traditional Monte Carlo estimators. 

Unfortunately, the isotropic/spatially uniform assumptions are not valid in many 

situations, especially near pins that are strong neutron absorbers(76>8j).

Also in 1975, Bernnat et. al. published a description o f a hybrid method(84) similar 

to that of McDaniel. The method developed was specifically designed to account for 

neutron streaming across a central void region in German design high-temperature 

pebble-bed gas reactors. The method used diffusion theory to calculate the flux 

distribution in the annular shaped fuel region and a Monte Carlo simulation to estimate 

streaming across the central cavity. In order to interface the diffusive and streaming
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regions, the method assumes that the flux is isotropically and uniformly distributed along 

the interface, just like the method by McDaniel.

In 1988, Filippone and Alcouffe developed an Sn / Monte Carlo hybrid method 

that did not require an isotropic flux assumption(46). In this method, a problem was 

partitioned into regions that could be solved by either Monte Carlo simulation or an Sn 

calculation. The independent calculations in the regions were then connected by 

enforcing continuity of flux across the region interfaces. The method was designed to 

iterate between the Sn and Monte Carlo calculations. In the initial step, a discrete 

ordinates calculation was performed in all of the Sn regions. This calculation produced a 

set of angle-dependent fluxes along each o f the region boundaries. These discrete- 

ordinate flux distributions were then used as the source definition in the Monte Carlo 

simulation. The initial directions of particles in the Monte Carlo simulation were 

sampled from the discrete ordinate directions defined in the Sn set, according to the 

relative flux distribution. Upon exiting the Monte Carlo region, a particle’s flux 

contribution was scored to the nearest angular ordinate and the particle was terminated. 

The results from the Monte Carlo simulation were then used as a source for the next Sn 

calculation, and this cycle iterated until a satisfactory result is achieved.

The first, and perhaps only, effort to create a RMM based completely on Monte 

Carlo simulation was reported in 1988 by Wan and Martin1-8̂ . Their Monte Carlo 

Response Matrix Method (MCRMM) used Monte Carlo simulations to perform the 

global calculation as well as to precalculate the response matrices. Instead o f traditional 

response matrices, the MCRMM calculated response probability density functions and 

response track length tables for particles entering a node. During the global solution, this
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data was used to sample the exiting position as well as the path length generated by a 

particle entering the node. This eliminated the need to track the detailed random walk 

through the node, and greatly accelerated the global calculation. The method was applied 

successfully to a variety of different reactor lattice problems.

In 1999, Moriwaki et. al published a new method for calculating response 

matrices using Monte Carlo simulation(86). The method involved the calculation o f 4 sub

response matrices for each node. Instead o f only treating the surface-to-surface response 

for particles entering a cell, the sub-response matrices were developed to take into 

account the surface-to-volume, volume-to-volume, and volume-to-surface responses of 

particles. By including information about the volumetric source o f particles in a node, 

the method could be easily extended to handle eigenvalue calculations.

Most o f these previous studies that have used Monte Carlo methods to generate 

response matrices have assumed fixed “cosine current” distributions for the angular flux 

at region boundaries^69,70,84,86'’. While this approximation is valid for boundaries located 

in highly scattering regions, it has been shown that this approximation breaks down near 

absorptive regions, such as near a control blade in a boiling water reactor (BWR) 

core(76,77>.

5.2.2. Application o f the FET for Calculating Response Functions

When using Monte Carlo methods to calculate response functions for a node, a 

separate simulation is required for each incident flux (or current) moment distribution on 

each face of the node. This means that a response matrix for a six sided node, where each 

incident angular distribution is approximated by a 3rd order polynomial, will require 18
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independent Monte Carlo simulations. Each o f these independent Monte Carlo 

simulations samples the initial angular direction of incident particles from a probability 

density function that represents one o f the polynomial basis functions. These particles 

are then tracked through the node geometry until they are absorbed or leak out. A series 

of tallies are defined on all o f the node faces to record the angular moments o f the 

particles that leak out o f the node. Thus, the Monte Carlo simulation is able to estimate 

the response from each incident angular particle state. Notice that, with this technique, 

there is no need to modify any o f the particle tracking routines. The Monte Carlo 

simulations only need to be configured to sample from and tally the angular moments of 

surface crossing flux and/or current distributions.

The surface crossing FET developed in chapter 2 is ideal for tallying the angular 

moments o f the particles leaking out o f the node. In fact, the estimators derived in 

section 2.1 can be applied directly without additional comment. Sampling the incident 

angular distribution o f particles from distributions that correspond to polynomial basis 

functions presents a more difficult problem. Most of the commonly-used polynomial 

basis sets are defined such that all polynomials of order greater than zero are negative 

over half o f their domain. To sample directly from these functions would require the use 

of negative weighted particles.

As an alternative to negative weights, which can be extremely inefficient, the 

source distributions are instead sampled from linear combinations o f basis functions that 

are positive over the entire domain. Because these linear combinations are strictly 

positive they can be sampled directly, usually by rejection sampling techniques.
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Figure 5.2. Linear combinations o f Legendre polynomial basis functions used as probability density 
functions for sampling the angular direction o f incident particles.

By linear superposition, the response due to a linear combination o f basis 

functions is the same as the linear combination o f responses due to the individual basis 

functions. If  a linear combination is created by adding a distribution with an unknown 

response to a distribution known response, it is possible to infer the response due to the 

original distribution. The key is to find combinations o f basis functions that are strictly 

positive. A simple algorithm can be used to construct positive combinations for basis 

sets that have only one element whose integral is nonzero, such as the Legendre 

polynomials.
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Any Legendre (n > 0) basis function can be made non-negative by adding some 

multiple (e.g. a  ) o f the zeroth order function. To ensure the distribution is non-negative 

over the entire domain the value of a  must satisfy the relationship

a  > |m in[/^  (a )]| . (5.7)

The linear combination Pn + aP0 is strictly positive over its domain. However, this linear 

combination is not a pd f because the integral o f Pn +aP0 is equal to a  instead o f 1. In 

order to convert the combination to a true pdf it must be normalized by a  . The resulting 

normalized pdf is given by a~lPn + P0.

An illustration o f several linear-combination source distributions generated with 

this algorithm is presented in Figure 5.2. The response to a Pn source can be calculated

as a  times the response due to a a~xPn + P0 source minus the response to a P0 source 

alone. Conversion from non-negative a~lPn + P0 source response function to a 

response function can be done as post-processing of the simulation output.

5.3. Numerical Results

Using the surface crossing FET estimators and the sampling strategy discussed 

above, a modified version o f MCNP4c was created to estimate transmission response 

functions for angular current distributions in 1 -D slab geometry problems. This code was 

used to calculate response matrices for two benchmark problems.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.3. One-dimensional representation o f a PW R fuel pin used for benchmark testing o f the FET 
based Monte Carlo method for calculating response functions. The node contains a slab o f 2% enriched 
U 0 2 surrounded by water at standard temperature and pressure.

5.3.1. 1-D UQ2 Fuel Pin with Coolant Channels

The first benchmark problem considered was a one-dimensional planar geometry 

representation o f a 2% enriched UO2 fuel pin and adjacent coolant channels, shown in 

Figure 5.3. Using the modified version of MCNP, a set o f 12 transmission response 

functions was generated for this problem. The resulting response matrix, given in Table 

5.1, couples 3 incident angular current moments to 4 exiting angular current moments. 

All response functions were generated in 1-million history simulations, assuming a 

uniform distribution o f incident neutron energies between 100 and 500 keV.

To test the effectiveness and robustness of the response matrix for calculating 

exiting angular current distributions, a forward-peaked incident angular source shape was 

chosen that cannot be expressed exactly by a finite number o f Legendre terms,

1.317x !0 1<3 eif>
(5-8)
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T able 5.1. Transmission response matrix for 1-D PW R fuel pin with coolant channels. The response 
matrix relates the first 3 angular moments of the incident current distribution to the first 4 angular 
moments o f the exiting current distribution on the opposite face of the fuel pin. All response functions 
w ere produced with 1-million history Monte Carlo simulations. The values in parentheses give the 
relative standard deviation for each response matrix element.

Iriciienf

Po(fO Pi(|i) P2(fi)

PoGO 0.5187 (0.10%) 0.245 8 (0.86%) -0.0354 (5.10%)

P i( f i ) 0.2027 (0.18%) 0.1585 (1.00%) 0.0845 (1.56%)

P 2(p) 0.00 5 7 (5.69%) 0.0672 (2.15%) 0.1287 (0.91%)

P 3(P ) -0.0081 (3.36%) 0.01281 (9.54%) -0.0682 (1.45%)

Ml

The shape of this source and its P2 approximation are shown in Figure 5.4. The Li norm 

of the difference between the exact source and its P2 approximation is 0.0564.

Multiplying the P2 source approximation by the response matrix for the unit cell

yields a P 3  approximation to the exiting current. A 100 bin reference histogram

distribution was calculated with a 1-million history analog MCNP simulation that used 

the exact incident current distribution specified in Eq. (5.8). A comparison between the 

response matrix approximation and the reference distribution, Figure 5.5, shows 

remarkable agreement between the two solutions. The comparison indicates that the 

response matrix approximation for exiting current distribution is nearly indistinguishable 

from the result obtained from a Monte Carlo transport simulation.
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Figure 5.5. Comparison between response matrix and reference Monte Carlo solutions for the angular 
distribution of exiting neutron current for the PW R fuel pin benchmark problem. Both the 100-bin 
histogram and 3rd order Legendre reference distributions w ere calculated with a 1-million history 
M onte Carlo simulation using the exact incident source distribution. The results indicate that the 
response m atrix  solution has comparable accuracy to an actual transport calculation in the node.
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Figure 5.6. One-dimensional representation o f a 2% enriched bare U 0 2 slab used for benchmark 
testing  of the FET based Monte Carlo method for calculating response functions.

5.3.2. 1-D Bare UO? Fuel Slab

The second benchmark test used a one-dimensional slab representation of a bare 

2% enriched fuel pin, shown in Figure 5.6. The simulation conducted with this geometry 

was designed to test the robustness of the response functions generated with Monte Carlo. 

As with the first benchmark problem, a set o f 12 transmission response functions were 

generated (3 incident moments, 4 exiting moments) with the modified version o f MCNP. 

These response functions were estimated using 1-million history simulations, and 

assuming a uniform distribution o f neutron energies between 100 and 500 keV. The 

response matrix for the bare fuel pin is given in Table 5.2.

For the first numerical test o f this geometry, a highly forward-peaked angular 

distribution was chosen for the incident neutrons,

------------ 1 .4 6 1 3 3 * 1 0 " ^ -----------  (59 )

(4.01172x1010 +1.82 1 32x106 e10")
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Table 5.2. T ransm ission response matrix for 1-D bare fuel slab. The response matrix relates the first 
3 angular moments of the incident current distribution to the first 4 angular moments o f the exiting 
current distribution on the opposite face o f the fuel pin. All response functions w ere produced with 
1-million history Monte Carlo simulations. The values in parentheses give the relative standard 
deviation for each response matrix element.

Incident
Po(fi) Pi(fi) P 2(P )

P o (F ) 0.5116 (0.10%) 0.2233 (0.93%) -0.0388 (4.60%)

P i t o 0.1823 (0.20%) 0.1661 (0.95%) 0.1208 (1.11%)

P 2(f0 -0.0060 (5.33%) 0.0807 (1.76%) 0.1759 (0.66%)

P 3(|i) -0.0066 (4.06%) 0.0103 (11.58%) 0.0867 (1.13%)

The shape of this source and its P2 approximation are shown in Figure 5.7. Notice that 

the P2 expansion is a poor representation of the actual distribution. In fact, the P2 

approximation goes negative near /.i = 0.3, which is an unphysical characteristic for an 

incident current distribution. The Li norm of the difference between the exact source and 

its P2 approximation is 0.2780, a relatively large value.

Again, the 2nd order source approximation was multiplied by the response matrix 

to produce a 3rd order approximation for the angular distribution o f the exiting current. A 

comparison between the response matrix approximation and a 100-million history 

reference distribution, Figure 5.8, shows remarkable agreement between the two 

solutions. The Li norm between the reference solution and response matrix solution was 

calculated to be 0.0734. By comparison, the Lj norm between the reference solution and 

its exact P3 approximation was found to be 0.0392. These results are especially

encouraging, given the extremely poor source approximation used for the response matrix 

solution.
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Both of these benchmark tests demonstrate that the FET based method for 

estimating response functions is highly effective. The response functions produced by 

the new algorithm are able to accurately predict the magnitude and angular distribution of 

neutrons exiting a pin-cell for a given source distribution entering the cell. Given the 

general nature of the FET and the proposed sampling algorithm there is no reason to 

expect that these simple 1 -D angular results could not be extended to produce response 

functions in space, energy, and/or time.
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CHAPTER 6

SUMMARY & CONCLUSIONS

In this dissertation, a set of continuous Monte Carlo tallies, collectively known as 

functional expansion tallies, have been developed and tested for particle transport 

applications. This new technique uses modified versions o f traditional Monte Carlo 

tallies to estimate the expansion coefficients of particle flux or current distributions with 

respect to a set of orthogonal basis functions. These estimated coefficients can then be 

used to reconstruct a series expansion approximation of the true distribution. In this 

work, new derivations for two types (discrete event and track length) of FET estimators 

are presented, along with detailed new analyses of the mathematical and statistical 

properties o f these estimators. In addition, numerical results are presented that 

demonstrate the effectiveness of the FET for several applications o f interest.

Where traditional Monte Carlo tallies can only be used to estimate integral 

quantities taken over a flux or current distribution, the FET produces a continuous 

functional approximation to the actual distribution itself. Furthermore, because the FET 

estimators are based on traditional Monte Carlo estimators, they require little effort to 

implement in existing Monte Carlo codes. Therefore, upgrading current Monte Carlo 

codes to include FET can quickly provide a dramatic increase in the amount o f tally

2 1 4
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information produced during a Monte Carlo simulation without extensive code 

development work.

For the discrete-event FET, a set o f estimators for approximating the surface 

crossing current distribution, and its variance, were developed and implemented in a test 

version of MCNP. For verification and testing, this modified version o f MCNP was used 

to estimate the time spectrum of detectable thermal neutrons in a neutron interrogation 

benchmark problem. The resulting functional approximations were found to agree within 

the limits of statistical uncertainty with a 100-bin histogram reference approximation to 

the true spectrum.

The results indicate that the FET is affected by two sources o f error: statistical 

uncertainty and truncation error. The magnitudes o f these errors are inversely 

proportional to one another and depend on the number o f histories used in the simulation 

and the number o f terms used in the functional expansion. Estimators have been 

developed to measure the amount o f each type of error that is present in a given 

approximation. These estimators can also be combined to yield a cost-to-benefit metric 

that can determine which expansion coefficients should be included in the functional 

approximation. This provides a convenient method for minimizing both statistical and 

truncation error, thus resulting in the best possible estimate for the unknown distribution.

The properties of these two error terms were further studied by a theoretical 

examination of the convergence properties o f the FET. A detailed analysis was 

performed to determine the rate at which a functional expansion converges to the true 

distribution as the expansion order was increased. Theoretical results demonstrate that
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the convergence behavior depends primarily on the smoothness of the true distribution, 

but can also depend on the set of basis functions chosen for the expansion.

The initial convergence rate o f the FET for a non-analytic function was shown to 

be algebraic, with order determined by the algebraic index of convergence of the 

function. For analytic functions, the initial convergence rate o f the FET is exponential. 

Unfortunately, these convergence rates are contaminated by statistical uncertainty with

, due to the stochastic nature of the Monte Carlo random walk process.order o

For large values o f the ratio > the statistical uncertainty begins to dominate and

diminish the accuracy o f the highest order expansion coefficients. Due to these

competing sources of error in the FET the analysis shows that, for a given number of 

histories run, there is an optimal expansion order that minimizes the sum of the truncation 

error and statistical error in the final approximation. This optimal expansion order is a 

function of the number o f particle histories used in the Monte Carlo calculation. The 

convergence of the FET with respect to the number of particle histories remains

1/O
V F

with fixed expansion order.

For comparative purposes, a similar convergence analysis was performed for a 

traditional histogram tally. With increasing numbers o f bins, the convergence behavior 

o f the histogram approximation was shown to converge at a fixed rate o f 0[M ~X] , where 

M  is the number o f bins. As with the FET, statistical error in the histogram tally 

increases with order o , and, consequently, there exists an optimum number of

histogram bins that minimizes the residual error of the approximation.
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Although the FET and histogram tallies converge qualitatively in the same way, 

there are cases where one method can clearly outperform the other. For distributions that 

are at least piecewise smooth, the faster initial convergence rate o f the FET can provide a 

better fit than a histogram approximation of the same order. However, for distributions 

that are only piecewise continuous (or contain very steep gradients) the histogram 

approximation will provide a better fit than the FET if bin boundaries can be located at or 

near the functional discontinuities. However, in this case, a piecewise FET 

approximation can outperform both a histogram tally and a global FET approximation. 

The judicious choice of one o f these methods based on any prior knowledge o f the 

unknown distribution can ensure that the maximum amount o f information is obtained 

from the Monte Carlo simulation.

Numerical verification o f the theoretical convergence results was conducted with 

a sample distribution. The empirical results agreed with the theory and demonstrated, for 

the sample distribution chosen, that the FET provided a better approximation to the shape 

of the distribution than the histogram tally.

A set of one- and two-, and three dimensional track length FET estimators was 

also developed for approximating the spatial expansion coefficients for flux distributions. 

This new technique can be used to estimate either a single global function over the entire 

tally region or a series o f piecewise functions that, together, span the region of interest. 

These estimators were implemented into a modified version o f MCNP4c and 

benchmarked against a lattice o f realistic PWR type pin cells. The results o f the 

benchmark tests show that, for all cases studied, the method provides accurate functional
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estimates o f the spatial flux distribution when compared to reference solutions obtained 

from a conventional Monte Carlo mesh tally method.

Finally, a new Monte-Carlo FET based method for calculating angular response 

functions for 1-D slab geometries was developed and tested on a simplified model of a 

PWR fuel pin. The new method can accurately predict the magnitude and angular 

distribution of neutrons exiting the pin-cell for a given source distribution entering the 

cell. Current research focuses on extending this method to multi-dimensional geometries 

as well as extending the concept to the sampling/tallying of shape functions in space, 

energy and time.

Although the concepts of functional expansion tallies were published as early as 

1975, each previous implementation o f the method was uniquely tailored for a specific 

application. This thesis demonstrates that the FET is a powerful technique that may have 

far more applications than previously realized. The FET is more than a data visualization 

tool. The technique is actually able to extract more information from Monte Carlo 

simulations than was previously possible with conventional tallies.

The work in this thesis presents the FET as an application-independent set o f tools 

that can be used in conjunction with any type o f Monte Carlo simulation. The estimators 

were generalized to apply to expansions in any combination(s) of phase variables, and in 

any number o f dimensions. Consideration was also given to the practical implementation 

of the method. This included outlining many o f the issues surrounding implementation in 

an existing code, as well as developing numerical schemes that can increase the 

computational efficiency of the method itself.

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Although the FET offers many benefits, it is not without limitations. End-users of 

the method must always bear in mind that the technique produces a truncated 

approximation to the true solution. Therefore, using an expansion with too few terms 

may produce an approximation that cannot resolve important features o f the distribution. 

Furthermore, for the basis sets considered, there is no guarantee that a functional 

approximation will be positive everywhere, even though physics requires the true 

transport solution to be positive. While many critics stress these issues, it must be noted 

that even deterministic methods based on series expansions are not guaranteed to be 

positive everywhere. Furthermore, the results in this thesis have shown the FET to be 

extremely robust. Even in cases where the functional approximation becomes negative, 

these errors are localized and do not appear to significantly degrade the overall 

approximation. Nevertheless, in order to address these concerns about the FET, several 

informal metrics and rules o f thumb were developed to help ensure appropriate and 

consistent application of the technique. These metrics were specifically developed to 

help end-users optimize the method without having to devote a large amount of time to 

learning the details o f approximation theory.

While this dissertation provides both a practical and theoretical development of 

the FET, there are many applications and generalizations o f the method that remain to be 

studied. For example, all of the numerical examples and convergence derivations in this 

work assumed the use o f polynomial basis sets. There are, however, many applications 

where finite element or rational basis sets may provide better approximations. Research 

is also currently underway into the use o f the FET for Monte Carlo eigenvalue 

calculations. Traditional methods mimic source iteration by using a “fission bank” to

2 1 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



store neutron birth sites between generations. It is thought that storing a functional 

approximation of the fission source distribution rather than individual event locations 

may help to accelerate the source convergence. Perhaps the biggest opportunity for the 

FET, however, is in the development of future hybrid Monte Carlo/deterministic 

methods. The FET provides a perfect method for interfacing with Pn, Sn, or possibly sub

grid methods by exchanging flux or current moments.
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