
Method For Naturalistic Measurement Of 
Lane-Kee~ing Behavior 

FINAL REPORT 

UMTRI-98-51 
Contract No.: DTFH-62-93-00017 

Gordon McQuade 
Robert D. Ervin 
Karl C. Kluge 

Prepared by: 
The University of Michigan 

Transportation Research Institute 
2901 Baxter Road, Ann Arbor, MI 48109-2150 

October 1998 





Technical Report Documentation Page 

I 

4. Title and Subtitle 

Method for Naturalistic Measurement of 
Lane-Keeping Behavior 

Federal Highway Administration, USDOT 
6300 Georgetown Pike, Office HSR-1D 
McClean, VA 22 10 1 

3. Recipient's Catalog No. 1. Report No. 

5. Report Date 

October 1998 
6. Performing Organization Code 

7. Author@) 

McQuade, G., Ervin, R., Kluge, K. 
9. Performing Organization Name and Address 

The University of Michigan 
Transportation Research Institute 
2901 Baxter Road, Ann Arbor, Michigan 48 109-2150 

12. Sponsoring Agency Name and Address 
ITS Research Center of Excellence 

14. Sponsoring Agency Code I 

7 
2. Government Accession No. 

8. Performing Organizatlon Report No. 

UMTRI-98-5 1 

10. Work Unit No. (TRAIS) 

11. Contract or Grant No. 
DTFH-62-93-000 17 

13. ~ y p e  of Report and Period Covered 

Final Report 

15. Supplementary Notes 

16. Abstract 

A measurement method was developed and applied for capturing the continuous 
lateral position of naturally prevailing motor vehicles as they are driven on highwiiys. 
This lane-keeping measurement technique employs a video-equipped vehicle which is 
used in simply following other road users, recording episodes of steady lane 
following. Video records are then processed off-line to quantify the continuous lateral 
displacement of the centroid of the license plate on the preceding vehicle relative to the 
lane center line. Data are processed for as long a time period as the preceding vehicle 
remains within an individual travel lane. Data of this type are thought to have distinct 
value in supporting the engineering development of various forms of driver-assistance 
products such as road-departure warning, adaptive cruise control (ACC) lane-change 
aids, and the like. 

Algorithms for processing the video data are discussed as are procedural details by 
which human observation assists in the data-processing sequence. Example data that 
were obtained during daylight travel on well-marked roadways are presented and 
discussed. Although the measurement method has been shown to be effective: in 
collecting the desired form of data, recommendations are made for improvements in 
both the efficiency and accuracy of the data-processing task. 

17. Key Words 

lane-keeping, lateral position, video 
processing, naturalistic driving behavior, 
on-highway measurements 

18. Distribution Statement 

Unrestricted 

19. Security Classif. (of this report) 

None 
20. Security Classif. (of this page) 

None 
21. No. of Pages 

97 
22. Pirice 





Table of Contents 1 

1.0 Introduction 

2.0 Measurement Concept 

3.0 Elements of the Measurement Method 

3.1 On-Board Data-Collection System 

3.2 Image File Creation 

3.3 Desktop Utility for Manual Interaction with Data Processing 

3.4 Manual Identification of Targeted Zones 

3.5 Lane-Finding Algorithm 

3.6 License-Plate-Tracking Algorithm 

3.7 Logging the Analysis Data 

4.0 Field Measurement Procedure 

5.0 Example Results 

6.0 Conclusions and Recommendations 

7.0 Reference 

Appendix A - Computer code underlying the methods of lane recognition 
Appendix B - Computer code underlying the methods of license-plate tracking 
Appendix C - Listing of the data channels produced from these measurements 
Appendix D - Larger sample of actual lane-keeping results, in the form of histograms 





Naturalistic Measurement of Lane-Keeping Behavior 

1.0 Introduction 

A project was undertaken to develop and apply an experimental method for obtaining 

naturalistic data that would quantify the lateral lane-keeping exhibited by passenger 

vehicles. The project was conducted by the University of Michigan Transportation 

Research Institute, under sponsorship by Toyota Motor Company and affiliated sponsors 

of the Intelligent Transportation Systems Research Center of Excellence at the University 

of Michigan. The project focussed upon a means to collect measurements of the lateral 

position of vehicles relative to lane-edge locations, using a video-imaging technique 

based upon an instrumented vehicle with which the experimenter simply follows normal 

road users for a limited period of driving on freeways. 

By way of background, it is apparent that the development of many types of dlriver- 

assistance systems, even some that address longitudinal-control functions and oblique or 

blind-spot forms of crash avoidance warning, would benefit from knowledge of the 

normal lane-keeping behavior of drivers. The probabilistic distribution of lateral 

proximity to the lane boundary, and its derivatives, curvature, and bandwidth, are seen as 

ultimately important to the support of engineering decisions. Further, it may be valuable 

to determine such characteristics as a function of forward speed, lane curvature and 

transition, and ambient traffic, at the least. Example applications of such data include: 

1) design of road-departure warning algorithms to account for the variations in road- 

edge approach that arise from the personal driving styles of individuals, so as to 

tune the system performance trade-offs of misses versus false alarms and to evaluate 

the need for driver-adaptive designs; 

2) design of adaptive cruise control (ACC) systems which must detect and respond by 

braking to avoid stopped objects in one's path ahead. This difficult requirement 

must eventually be satisfied with due cognizance to the variation that exists in 

normal path-following behavior. 

3) design of blind-spot warning devices will benefit from information showiing the 

distributions of vehicle lateral position both during lane-keeping and leading; up to 

lane-change maneuvers. 



4) an extension of the technique to measure the lane-change transient, itself, as an aid 

in the design of many driver-assistance systems that must accomodate lane change 

transitions in the context of their primary functionalities. 

Based upon the data needs implied by these possible applications, this project was 

undertaken to go as completely as possible "from A to Z" in the creation of a 

measurement method. The report covers the progress made in this pursuit. Namely, 

an operative concept was defined, as outlined briefly in Section 2, and it was 

developed into a working tool and applied in the field, as discussed in Sections 3 and 

4, respectively. Section 3 presents the design approach that was taken to determine the 

locations of both the highway lane and an effective centroid of the preceding vehicle 

from which a lateral displacement, or offset, variable could be obtained. Computer 

code underlying the methods of video image analysis are included in Appendices A 

and B. Section 4 summarizes the field measurement procedure that was implemented 

to collect and then process data, samples of which are presented and discussed in 

Section 5. A complete listing of the data channels produced from these measurements 

is presented in Appendix C and a larger sample of actual lane-keeping results, in the 

form of histograms, is attached as Appendix D. Section 6 presents conclusions and 

recommendations drawn from the study. 



2.0 Measurement Concept 

The basic concept for this project was that the lane-keeping behavior of ranclomly 

selected vehicles could be meaningfully sampled over modestly long driving episodles by 

means of video recording from a following vehicle, as sketched below. 

Features of the method concept are cited below, along with parenthetical comments 

indicating how the actual scope of work differed from the concept that has 'been 

envisioned for long-term development and application: 

a) the driver of the lead vehicle was assumed to behave naturalistically (altholugh, 

under sparse traffic conditions, it has become apparent that a lone driver may tend 

to become uncomfortable when the observer vehicle approaches and then retains a 

following position at relatively close range--e.g., at a headway time of 

approximately 1.5 seconds); 

b) the data collection vehicle is equipped with a video camera and with addit:ional 

instruments for measuring speed, yaw rate, and range to the vehicle ahead 

(measurements from yaw rate and range sensors were not taken during this initial 

stage of development); 



c) the data collection vehicled is further equipped with an ACC system for 

controlling the range at a regularized distance so as to simplify video processing 

of the preceding vehicle image (this technique was employed and was found to be 

a distinct help in securing a more or less constant framing of the image of the 

vehicle ahead); 

d) the image-based and numerical data are processed off-line, beginning with a 

software package that measures lateral position in the lane by detecting and 

tracking lane-edge lines (the provisions for image processing of lane-edge lines 

are discussed in Section 3.5) ; 

e) the center line of the preceding vehicle is defined by locating and tracking the 

imaged centroid of the license plate-the primary feature extracted from the 

image of the preceding vehicle (using an algorithm that is presented in Section 

3.6); 

f) the center line of the roadway is defined by the best fit function lying midway 

between the imaged lane-edge stripes; 

g) data would be collected in the field during steady-state following, at the ACC- 

established headway condition, for as long as a selected target vehicle sustained 

travel in a single lane (as discussed in Section 4.0). 

The remainder of the report documents the data collection and processing methods 
and also presents and discusses a small sampling of results. 



3.0 Elements of the Measurement Method 

The method whereby lateral-lane-position data are measured consists of two phases, 

collection and analysis. In this discussion, the raw data are simply recorded sequences of 

video images. Each sequence, or clip, of video is one episode of observation of a target 

vehicle as it proceeds immediately ahead of the observer vehicle. In the presentation 

which follows, the techniques for collecting and analyzing each video clip are described. 

3.1 On-Board Data-Collection System 

Headway distance, or range between observer and target vehicle is maintained by the 

UMTRI-developed ACC. Steering control and all other kinds of required intervention are 

provided by the human driver of the observer vehicle. Figure 1 shows a schematic 

representation of the raw data-acquisition system used to acquire data while driving 

behind a selected target vehicle. 

I Real-time video imagery 

Headway 
set-pornr Human driver keeps camera 

correctly positioned by 
controlling observer vehicle. 

ACC system provides 
stable following distance 

Video camera is rigidly mounted 
Headway to observer vehicle windshield. 

Video tape deck 
records camera view 

P Video monitor displays camera 
view as feedback to driver for use 
in optimizing observer position. 

Figure 1. The driving process within which video 
data a re  acquired. 



3.2 Image File Creation 

Once the observation episodes have been taped, the next step is the creation of video- 

clip computer disk files. These files are then available for processing by a desktop 

computer-hosted software tool which analyzes the computerized video and extracts the 

data of interest. An overview of the image file creation process is now presented. 

A videocassette on which has been recorded one or more observation episodes is 

mounted in a computer-controllable tape deck located near the computer. The tape is first 

manually positioned at the beginning of the clip of interest. Then a software utility is 

invoked to digitize and store on hard disk the clip of interest. Once the clip of interest 

resides on disk in digitized form the analysis tool can be used to extract the lateral lane- 

keeping data. 

Sran conrml 
Sire ~Jacquisirron 

Human supervisor 

Computer-hosted Slart/slop control 

acquisition utility 
Tape deck 

lnrrrare gmb 
rmnsper data 

Schen~r_Ol Frame grabber 

0 Computer RAM 

Figure 2. Video clip digitization process. 

The digitization process is carried out with the use of both a computer-controllable 

video tape deck and a low-cost frame-grabber device. The tape deck is located near the 

desktop computer while the frame grabber is actually hosted by the computer as an 

internal plug-in. Serial communications are established between the tape deck and the 

desktop computer via an external cable. The tape is manually positioned to the beginning 



of the episode of interest and the digitization utility is invoked with an argument 

specifying the number of video frames to acquire. The video sequence is acquired at the 

nominal rate of 30 hertz and stored on disk for subsequent computerized analysis. See 

figure 2 for an illustration of this process. 

3.3 Desktop Utility for Manual Interaction with Data Processing 

Once a clip has been digitized it is in a format compatible with automatic: data 

processing. The utility which accomplishes this processing is a customized tool designed 

specifically for this task by UMTRI staff. An overview of the main features of this tool 

and its operation are the subject of this section. 

The task of analyzing a sequence of digitized frames of a given video clip is 

fundamentally one of automatic image understanding. The desktop machine is capable of 

understanding a visual scene by computing the contextual relationships existing a.mong 

some set of objects present within the scene. For our purposes, that set of objects is 

composed of the right and left lane boundaries, the subject vehicle's license plate, and 

lastly, the shadow which the subject vehicle casts beneath itself. 

Once these objects have been initially located, the tool simply tracks them from frame 

to frame. This is possible because the narrow bandwidth of vehicle motion in the yaw 

plane yields relatively smooth motion from frame to frame. Large-amplitude bounc:ing of 

the observer vehicle due to bumpy freeway road surfaces does present a problem on 

rougher roads, but should be solvable in the future given auxiliary information siuch as 

accelerometer data. The present implementation kept things very simple: only smooth, 

relatively straight segments of highway were selected as the venue for initial observations 

of target vehicles. Video clips obtained under such conditions have been efficiently 

handled with minimum operator intervention. 

The machine requires relatively strong contrast gradients in order to determine the 

boundary of an object. Given the fluctuations in ambient lighting occurring during any 

given normal drive down a freeway, sometimes the machine will lose track of an object. 

A common example is when the subject vehicle passes under a bridge during conditions 

of very bright general ambient illumination. When this happens at highway speelds, the 

automatic shutter mechanism of the charge coupled device (CCD) camera does not have 

sufficient time to adjust to the new, much darker lighting conditions beneath the bridge, 

and the tracker will not be able to detect the subject vehicle's license plate boundary for 



several frames. Often this will cause the tracking algorithm to lose the subject vehicle. 

When such a loss of target occurs, the operator must intervene and reinitialize the tracker. 

3.4 Manual Identification of Targeted Zones 

The data-analysis system needs a human operator to establish initial conditions for its 

object recognition and tracking process to start up properly. These initial conditions are 

the initial search zones within the image frame. The system is configured to find the 

various objects it needs to recognize within these zones. The license plate recognizer 

requires an additional initial condition as well: an accurate estimate of the initial width of 

the license plate. The units of this value are in pixels. Experience with the tool has 

demonstrated that an operator can get pretty good at guessing closely the initial width. 

Given a modest degree of inaccuracy in the estimate of initial width, the license-plate- 

tracking routine will adapt to the correct width as the first several frames are analyzed. 

For purposes of estimating headway distance to the target vehicle, the target's cast 

shadow is also identified as an initial condition. The motivation for such an activity is 

based upon the observation that the lower edge of a shadow cast on the road surface by a 

vehicle falls consistently within a few inches either way of the plane containing the 

rearmost extremity of that vehicle. Hence the target's rear shadow is used to initially 

locate a scan line within the image frame which is taken to be at the same distance as the 

rear of the target vehicle. That scan line intersects both the right and left lane boundaries 

as they present themselves in the image in perspective view. Given knowledge that these 

lane-boundary markings are nominally at a separation of twelve feet, we now have the 

means of scaling our image pixels to the real world engineering units of inches, feet, or 

meters. Once the target vehicle's rear shadow has been initially located, it is not tracked. 

The reason is that once we have a scan line offset from the lower shadow boundary to the 

license plate centroid, we will be able to adjust the target's shadow location solely by 

using the ratio of the current license plate width to the initial license plate width. This 

situation is represented by the following relation 

where h is the current separation between license plate centroid and scan line containing 

rear of subject vehicle and w is current width of the license plate. The same terms 

subscripted represent their respective initial values. 



Lastly, the operator is required to select the best zone in which to locate and 

subsequently track the near-field lane-boundary markers. More will be said about the 

notion of a field zone in the next section. Figure 3 illustrates an initial video-clip frame 

with the regions selected. 

Figure 3. Setting initial conditions for the video clip analyzer: selecting the initial evaluation zones. 

3.5 Lane-Finding Algorithm 

The performance objective for this algorithm is to detect and track the lane 

boundaries of a relatively straight, smooth section of the rightmost lane of a limited- 

access high-speed roadway. These restrictions were considered acceptable :for an 

adequate result within the time frame and funding levels for this project. The sclftware 

package developed for this purpose of lane tracking does indeed adequately meet the 

stated performance objectives. 

Data from previous studies of roadway boundary markings [I] provided the basis for 

a reasonable expectation that the luminance, or brightness, of these markings on well 



maintained highways would generally be statistically significant in their contrast to the 

average brightness of the entire roadway surface. The success of the design has born this 

out in fact, though the actual level of significance is quite variable. The approach taken to 

cope with this somewhat random significance level was to implement an adaptive or soft 

thresholding method to detect either the presence or lack of a roadway boundary 

marking. Based on experience with the algorithm, it seems that for our tests roadway 

markings tend to have a luminance level which averages in the near field about 3.0 

standard deviations above the general luminance of the adjacent roadway. Far field 

thresholds tended to average about half that, around 1.8. See figure 4 for an illustration of 

this thresholding. 

Raw Intensity of Road Surface Single Scan Line StdDev 

10 ",/' 200 
Row Column 

Column 

Figure 4. On the left is a surface of the raw intensity of a patch of road, while on the right is the 
distribution of intensities of a single near-field scan line. 

Since a basic requirement is that the roadway segments of interest would be relatively 

straight, we chose to detect the lane markings at three distinct points, near, mid, and far, 

relative to the observer. Since the test protocol was confined to operation on relatively 

straight roadways, boundary detection at these three points then provided for connection 

into continuous right- and left-line segments approximating the lane boundaries. These 

points are detected by processing individual sets of scan lines. Each set is chosen from 



one of the near, mid, or far fields. If we detect a valid threshold hit for enough scan lines 

in a given field, then it is decided that a valid lane-boundary marking hit for that field has 

occurred. All the hits for that field are combined by least squares regression, and the 

offset term becomes the horizontal coordinate of that particular boundary point. The 

vertical (row) coordinate is set equal to the mean of the vertical coordinates of the viuious 

component scan lines. The near-field vertical coordinate is set during initialization, the 

far-field vertical coordinate is set equal to the vertical coordinate that intersects the image 

row established by the subject vehicle's rear-shadow boundary, while the ~nicl-field 

vertical coordinate is set at the row intersections placed midway between the near and far 

fields. See Appendix A for a complete listing of the working code. 

3.6 License-Plate-Tracking Algorithm 

Designing a robust license-plate-tracking algorithm required a higher level of 

sophistication than in the lane tracker just described. An issue which became significant 

during this design was the unreliability of thresholding methods for this type of tracking 

task in general. It seems reasonable to suppose that the mapping of contrast graldients 

within an apertured evaluation region could be thresholded to detect a given object's 

boundaries. Although seemingly reasonable, in practice such approaches are not 

adequately robust. The basic difficulty with applying a thresholding method to this 

problem lies in the fact that there simply are not enough nonedge pixels to give good 

statistical significance to contrast edge levels. Clearly another approach was called :for. 

Accordingly, a robust adaptive template-based method of acquiring and subseq,uently 

tracking a subject vehicle's license plate was developed. Briefly, the method involves 

preprocessing the raw image by forming a velocity-transformed image of pixel-to-pixel 

luminosity changes. This secondary image will have the highest hills at locations which 

correspond precisely with the most strongly contrasted edges of objects in the raw image. 

An ideal license plate template is then moved around on the secondary-image cli.mbing 

hills. When the template is overlayed on the highest set of hills which match its outline, 

highest correlation possible is achieved between the template and the original imiage of 

the object represented by the idealized template, in this case a license plate. With this 

method no thresholding is necessary. 

Since the aspect ratio of a license plate is fixed at 2:1, twice as wide as it is high, an 
initial width condition is combined with the apriori knowledge of the plate's aspelct ratio 

to form the template. This template is exhaustively scanned throughout the apertured 

evaluation region and the location of the highest correlation value is remembereld. The 



template's width is shrunk by one pixel, and the region is rescanned. The highest 

correlation value for this pass is remembered as well. The template's width is now grown 

by one pixel and the process is repeated a third and final time. Whichever correlation 

value is the highest determines the new size of the template, thereby adapting to 

inevitable fluctuations in headway distance, and hence, to apparent target license plate 

size which will occur. As long as there are sufficiently high hills in the transformed 

image (edges of sufficient definition in the raw image), this method works very well. If 

the road gets too rough, the target plate will bounce out of the aperture zone and the 

tracker will lose its target. In this event, the operator is required to reinitialize the tracker. 

See figure 5 for an illustration of the template matching process. See Appendix B for a 

complete listing of the working code. 

Raw Wdeo Intensity Edge Detection Image Transform Template Correlation 

Row Column 

Figure 5. The process begins on the left with a surface showing image intensity. Two objects are present. One is a 
license plate while the other is something not quite a license plate. Edges are detected and correlation found 
between a license plate template and both edge-transformed objects. The nearer object is then identified as a 
license plate. 

3.7 Logging the Analysis Data 

The fundamental measurement of interest is the subject vehicle's lateral displacement 

from the local-lane center line, as a function of time. We track the subject vehicle's 

license plate and thereby derive our estimate of the centroid of the target's license plate. 

This license plate centroid becomes our surrogate for the centroid of the entire target 

vehicle. The center line of the subject vehicle's roadway lane is derived directly as the 

midpoint between the right and left far field lane boundary marker horizontal coordinates. 



These two basic measurements provide us with our fundamental datum for evaluating the 

lateral displacement variable, y, simply as an offset value, measuring negative to the: left, 

positive to the right. Timestamp values for each video frame are captured as well. 

There is a third fundamental data channel, the invalid flag. When true, its associated 

data table record is considered invalid. This flag is under the direct control of the human 

operator of the analysis utility. If the license plate tracker ever drifts off target, the 

operator can flag all records associated with the low contrast conditions (normally these 

are cast shadow transients) as invalid. Once the transient has dispersed, the operator can 

reinitialize the tracker and proceed with valid analysis logging. 

There are also some auxiliary data channels recorded. The most notable of thlese is 

our estimate of subject-vehicle headway. The other channels are internal software state 

information. 

These data channels are organized into records, one for each video frame ana:lyzed. 

These records are then organized into tables, indexed by their timestamp field in 

ascending order. The resultant data tables are organized into a data source structure 

within the Microsoft Access database environment. This database environment is fully 

ODBC compliant (Open Database Connectivity standard) and should be accessik)le by 

most current data-processing applications. See Appendix C for a complete listing of the 

data channels. 



4.0 Field Measurement Procedure 

Finding a straight, smooth, local, and adequately uninterrupted section of limited- 

access highway proved unexpectedly challenging. Ultimately a few suitable venues were 

located and a reasonable volume of subject observations was recorded on videotape. 

A typical recording session could only begin after the following conditions were all 

present simultaneously. First, it was necessary to be located on a relatively straight piece 

of roadway. Second, a suitable target vehicle was required to present itself. Researchers 

had absolutely no control over this factor, although certain hunting and lurking 

techniques on their part seemed to optimize the frequency of acquiring a suitable target 

vehicle. Visually, the ideal target vehicle would be a red colored passenger car carrying a 

white license plate. This evidently is related to the operation of our CCD camera. Next in 

preference would be any dark-colored car with a light-colored license plate. Although 

any of these ideal vehicles would be rendered unsuitable if their rear body geometry 

caused strong horizontal lines of glare. This type of glare pattern was commonly 

observed to be thrown by rear bumper contours and also curved rear trunk contours. 

When these glare patterns were present they became a problem for the license-plate- 

tracker by jamming the template correlation process. The horizontal glare signal is so 

bright that when it correlates with a single long edge of the license plate template a higher 

numerical correlation value results than for the template's. correlation with the actual 

license plate edge image. This was observed to occur rather frequently, in particular with 

late model cars of one of the American automakers. This shortcoming is likely fixable by 

specifically identifying and preventing these jamming events. 

Once a suitable target had been located on a suitable section of roadway, then the 

relative level of success of that observation would depend on the length of time the 

subject would remain located in the right lane at relatively steady speed in front of our 

observing vehicle. The duration of such a typical observation in this study turned out to 

be certainly less than a minute. The possibility that the subject was aware of being 

observed must be admitted. It seemed that an inordinate number of subjects would take 

an exit without signaling or would jump out in the passing lane after a very short 

observation period in the right lane. The observation camera being mounted on the inside 

center windshield is probably visible to some subjects via their rearview mirror. 



Because of the very unpredictable nature of the duration of an observational episode, 

the camera observations were taped continuously once the observer vehicle was cnrising 

for targets at the venue. The tapes were then returned to the office for processing. 



5.0 Example Results 

The observations presented in this section are intended to be representative of the 

entire data set at large. The six ensembles were selected on the basis of content 

illustrating significant features of both the method and the data itself. Figure 1 is 

comprised of six histograms. The format of each of these histograms is the same. 

Magnitude of lateral displacement from lane center (in feet) is shown on the horizontal 

axis while normalized frequency is on the vertical axis. Hence, these histograms estimate 

the probability density function of a particular observational ensemble. This format has 

become a standard way of studying the data collected during this experiment. 

...... ......................................... msan..r..:Q.lR 
sdev = 0.70 , 

(b) 

....... 
sdev = 0.92 I tSpan = 29 sec 1 

... msan.=..:n.na ........ ! ......................................... 
sdev = 1.21 j 

(8) 

tSpan = 137 sec / 
.......... 0.25 msan.a.0-M 

0.2 ........................................ 

Figure 1. A representative selection of observational ensembles. 

Fundamentally, all the distributions are more or less gaussian in nature although 

skewing is observed especially in data taken over rather brief time intervals. For example, 

ensemble (a) shows one lobe of response that is roughly centered about -1.75 ft, while 

another is centered roughly about 0. Ensemble (a) is typical of an observation during 

which the subject spent the majority of the time roughly centered in the lane, then moved 

to a position well left of lane center while approaching a slower moving vehicle from the 

rear in preparation for passing. The period of data gathering in this case would have 

ended at the time passing occurred. 



Histograms (b) and (c), while arguably gaussian, exhibit skewed tails to the right and 

left respectively. This tailing feature of the data is directly attributable to process noise 

introduced by insufficiencies of the lane-boundary-tracking algorithm. The algorithni had 

some measurable trouble locking on to the right-lane boundary in (b) while it had similar 

difficulty locking on to the left-lane boundary in (c). The effects of this type of prlocess 

noise were observed to be caused predominantly by the algorithm's relative weakness in 

locking on to the dashed-lane boundary, the left-lane boundary for observations in this 

study. Thus the left-handed tail shown in (c) is observed in the overall data set somewhat 

more often than is a right-handed tail. 

Histograms (d) and (e) illustrate good quality ensembles, uncontaminated by any 

observable process noise. Histogram (e) clearly is composed of three components, with 

the preponderance of the data centered in the lane. Histogram (f) is included as an 

example of an atypical observation. This driver had no clear preference for any lateral 

lane position. Some process-induced tailing to the right is evident as well. Please see 

appendix D for a complete compilation of histogrammed lane keeping ensembles. 

In terms of the quantitative content of the data in Appendix D, it is noted that the 

average duration of a measurement episode was 64.5 seconds and that the longest and 

shortest episodes captured in this data set were 168 seconds and 7.6 seconds, 

respectively. While many episodes that were shorter than 7.6 seconds simply were 

discarded, episodes lasting longer than 168 seconds occurred rather infrequently. The 

average of the mean values of lateral displacement over the 45 data samples was -0.012 

feet, indicating that an offset toward the left from the lane center was typically observed. 

Noting the generally gaussian nature of the lane-keeping data and an average value of 

the standard deviations at 0.774 feet this very limited sample of vehicles would portray a 

driving pattern that places the vehicle centroid within +I- 1.55 feet of the lane center, 

95% of the time (i.e., at 2-sigma). Of the 19 vehicles yielding episode lengths of a 

minute or longer, the average mean value was 0.0324 feet, and 95% of the driving 

remained with +I- 0.0649 feet of the lane center. 

Moreover, this very small initial batch of data has provided example profiles that help 

in planning refinements in the measurement method and for anticipating fonrns of 

analysis that may help in explaining driving styles and the lane-keeping performaince of 

individuals. 



6.0 Conclusions and Recommendations 

This work has developed and demonstrated an initial version of a system for 

measuring naturalistic lane-keeping motions in a highway environment. Having taken 

the original concept to the point of full-scale application, a number of observations are 

made, some of which support recommendations for extensions of the work. 

1) Good quality measurements of the lateral displacement variable can be made 

within a tolerance of approximately +I- 3 inches using mid-grade, off-the-shelf, video 

equipment. 

2) Although the measurement requirement for daytime illumination and well-marked 

roadways is an obvious constraint of the present work, the authors believe that the vast 

need for naturalistic data of this kind can be largely addressed within these conditions. 

(That is, it is believed that normal steering behavior can be broadly and meaningfullly 

sampled, even if measurements are restricted to daylight hours and well-marked roads.) 

3) Improvements are needed in the processing software for tracking both the lane 

markings and the license plate target on the subject vehicle. The objective of such 

improvements is primarily to increase the productivity of the method, whereby the 

frequency of manual intervention on the process is minimized. It is also noted that both 

the lane-tracking and license-tracking algorithm can occasionally lose track in a 

surreptitious manner, tending to corrupt the final data in ways not readily identified by 

the human processing monitor. In either case, the need is for improvements in 

robustness-the image-processing demand that invariably arises when video is taken in 

complex natural environments. 

4) Initial measurement activity was confined to a rather sparsely trafficked freeway 

and to a protocol in which sustained motion of the preceding vehicle was captured only 

while the travel remained confined to a single highway lane. Having observed that few 

drivers remain within an individual lane for a very long period of time, subsequent 

advancements in the measurement protocol should include the procedure of changing 

lanes so as to observe the transitional lane-keeping activity that is exhibited just-before 

and just-after making a lane change. Even if we put off, for now, the need to characterize 

the gross lateral transient appearing during the lane-change movement, itself, the lane- 

keeping manifestations on either end of this transition are thought to be important in the 

design of driver-assistance systems. 



5) Although it was straightforward to compile collected data into histograms, much 

additional development is needed to derive additional meaning and insight from lane- 

keeping data. While it is fair to observe that such further analysis is properly beyond the 

scope of lane-keeping measurement, per se, it is typical of such endeavors that efforts to 

penetrate naturalistic data often reveal additional requirements for the measurlement 

process. Accordingly, having brought forward a rudimentary system for measurement, it 

seems appropriate that complementary efforts proceed for addressing botln the 

measurement and analysis of this segment of the driving task. 



References 

1. Intelligent Vehicles '95 Symposium, Proceedings, New York, IEEE, 1995, p. 488- 

493 



Appendix A 





/ * 
* file : gmLaneDetector-1.h 
* date : 01/28/97 
* 
* 
* Analyse video stream for lane boundaries 
* 
* / 

class gmVideoStream ; 

#define gmFIELDBOUNDARY-LEFT-DEFAULT 0 
#define gmFIELDBOUNDARY-RIGHT DEFAULT 639 
#define  FIELDHE HEIGHT-DEFAULT- 15 
#define gmFARFIELD-BASELINE-DEFAULT ( gmFARFIELD-MIDLINE-DEFAULT - gmFIELDHEIGHT-DEFAULT / 2 ) 
#define gmMIDFIELD-BASELINE-DEFAULT ( gmMIDFIELD-MIDLINE-DEFAULT - gmFTELDHEIGHT-DEFAULT / 2 ) 
#define gmNEARFIELD-BASELINE-DEFAULT ( gmNEARFIELD-MIDLINE-DEFAULT - gmFIELDHEIGHT-DEFAULT / 2 ) 

#define THRESHOLD-STEPFACTOR-DEFAULT (double) 0.250 
#define MAXALLOWABLE-DETECTION-THRESHOLD (double)10.000 
#define MINALLOWABLE-DETECTION-THRESHOLD (double) (~.~~O+THRESHOLD~STEPFACTOR~DEFAULT) 
#define DETECTION-THRESHOLD-DEFAULT (double)5.000 

#define gmMINIMUM-TARGETSIZE-DEFAULT 3 / /  minimum width for a statistical target detection to be s 
ignificant 

Page 1 



gmlaneDetector-1-h.txt 
#define gmMINIMUM-BOUNDARYWIDTH-DEFAULT 3 / /  minimum width for a statistical target detection to be s 
ignificant 
#define gmMAXIMUM-BOUNDARYWIDTH-DEFAULT 20 / /  maximum width for a statistical target detection to be s 
ignificant 

TRUE 
FALSE 

TRUE 
FALSE 

//#define gmNEARFILED-FILTERFREQ-DEFAULT (double)3.500 
#define gmNEARFILED-FILTERFREQ-DEFAULT (double)2.000 
//#define gmMIDFILED-FILTERFREQ-DEFAULT (double)4.000 
#define gmMIDFILED-FILTERFREQ-DEFAULT (double)2.200 
//#define gmFARFILED-FILTERFREQ-DEFAULT (double) 5.500 
#define gmFARFILED-FILTERFREQ-DEFAULT (double) 3.500 

///#define gmLANELOC-TIMEOUT-DEFAULT (double) 0.100 
#define gmLANELOC-TIMEOUT-DEFAULT (double) 0.200 

typedef enum taggmFIELDTYPE 
I 
gmFT-NULL = Ox0000 , 
gmFT-NEARLEFT = 0x1000 , 
gmFT-NEARRIGHT = 0x1005 , 
gmFT-MIDLEFT = 0x1010 , 
gmFT-MIDRIGHT = 0x1015 , 
gmFT-FARLEFT = 0x1020 , 
gmFT-FARRIGHT = 0x1025 

} gmFIELDTYPE ; 

typedef struct taggmLANEBOUNDARY 
I 
gmBUFLOC Left ; / /  gmBUFLOC <==> ( row, col ) 
gmBUFLOC Right ; 
double LaneLocTimeOutVal ; 
double MostRecentLeftDetectionTime ; 
double MostRecentRightDetectionTime ; 

) gmLANEBOUNDARY ; 

typedef struct gmtagSLOPEINF0 
I 
BOOL Valid; 
double Value ; 

1 gmSLOPEINFO ; 



typedef struct taggmLANEINF0 
i 
gmSLOPEINFO LeftNearSlope ; 
gmSLOPEINFO LeftFarSlope ; 
gmSLOPEINFO RightNearSlope ; 
gmSLOPEINFO RightFarSlope ; 
gmLANEBOUNDARY Near ; 
gmLANEBOUNDARY Mid ; 
gmLANEBOUNDARY Far ; 
gmLANEBOUNDARY Shadow ; 

) grnLANEINF0 ; 

typedef struct gmTHRESHINFO 
( 
BOOL Modifiable ; 
double MinimumAllowable ; 
double MaximumAllowable ; 
double StepFactor ; 
double Level ; 

typedef struct taggrnFIELD 
i 
gmFIELDTYPE Tag 
unsigned BaseLine 
unsigned Height 
RECT Region 
gmTHRESHINF0 Threshold 
unsigned Totalscans 
unsigned Detections 
double HitRatio 
double LowPassFc 

) gmVIDEOFIELD ; 

typedef struct taggmVIDEOFIELDINF0 
I 
gmVIDEOFIELD NearLeft ; 
gmVIDEOFIELD NearRight ; 
gmVIDEOFIELD MidLeft ; 
grnVIDEOFIELD MidRight ; 
gmVIDEOFIELD FarLeft ; 
gmVIDEOFIELD FarRight ; 
gmVIDEOFIELD ShadowLeft ; 
gmVIDEOFIELD ShadowRight ; 

typedef struct taggmSYSTEM-STATE 
{ 
double NearFieldThreshold ; 
double MidFieldThreshold ; 
double FarFieldThreshold : 



double ShadowFieldThreshold ; 

double LeftNearSlope ; 
double LeftFarSlope ; 
double RightNearSlope ; 
double RightFarSlope ; 

typedef struct taggmSTATEINF0 
( 

unsigned HistoryDepth ; 
double VarianceSmoothingFreq ; 
gmSYSTEM-STATE RollAvg ; 
gmSYSTEM-STATE DerivativeHistoryVariance ; 
gmSySTEM-STATE SmoothedDerivativeHistoryVariance ; 
gmSYSTEM-STATE * * History ; 
grnSYSTEM-STATE * * DerivativeHistory ; 

typedef struct gmtagTIMEINF0 
i 

BOOL Initialized ; 
double InitialFrameStamp ; 
double CurrentFrameStamp ; 
double ThisDelta ; 
double Elapsed ; 

typedef struct taggrnSYSINF0 
I 
BOOL LaneLockedOn ; 
BOOL LaneAnchored ; 
BOOL NearLaneAcquired ; 
BOOL MidLaneAcquired ; 
BOOL FarLaneAcquired ; 
BOOL FarSlopesEnabled ; 

gmTIMEINF0 Time ; 

gmLANEINFO PreviousLane ; 
gmLANEINF0 CurrentLane ; 

gmVIDEOFIELDINF0 Field ; 
gmSTATEINF0 State ; 

typedef struct taggmSTATISTICS 
( 
double Sigma ; 
double Rrns I 

double Mean 
double Variance ; 



double StdDev ; 

class gmBuffer ; 
class gmViewPort ; 
class gmKlugeDetector ; 
class gmDataLogger ; 

class gmLaneDetector 

typedef struct taggmHITINF0 
t 
unsigned Center ; 
unsigned RowNo ; 

) gmHITINF0 ; 

typedef struct taggmHITSET 
( 
unsigned Size 
gmHITINF0 * Element ; 

) gmHITSET ; 

private : 

BOOL TestEnable ; 

BOOL DumpEnable ; 

unsigned LaneLockCount ; 

gmSYSINFO * SystemInfo ; 

gmVideoStream * Videostream ; 

gmViewPort * Viewport ; 

gmBuf fer * VideoFrameBuffer ; 
BYTE * VideoFrameImageBaseAdx ; 

gmBuf fer * RowImageBuf ; 
gmBuf f er * RowDistributionBuf ; 
BYTE * RowHitBuf ; 

unsigned 
unsigned 
DWORD 
unsigned 
unsigned 

unsigned 
unsigned 

unsigned 
gmHITSET 

unsigned 
unsigned 

Framewidth ; 
FrarneHeight ; 
FrameArea ; 
FrameVertCenter ; 
FrameHorizCenter ; 

unsigned Leftpointshots ; 
Page 5 



gnLaneDetector-1-h.txt 
unsigned Rightpointshots ; 

unsigned FarLaneBias ; 
unsigned FarLaneOffset ; 
unsigned FarLaneCenter ; 
unsigned FarLaneWidth ; 

void 
void 
void 

hBound ) ; 
void 
double 
unsigned 
double 
double 
void 
void 

SYSTEM-STATE 
void 
void 
void 
void 
void 

CreateDataLoggingTable 
ClearRowHitBuf 
FillValRowHitBuf 

InitSystemInfo 
SlopeCalc 
Pointshoot 
RollingAverage 
LowPassIIR 
StatCalc 
StateDerivativeCalc 

* Older ) ; 
UpdateTimeInfo 
UpdateStateInfo 
UpdateSystemInfo 
UpdateLaneTrackingStatus 
Adaptparameters 

0; 
( unsigned LeftSearchBound , unsigned RightSearchBound ) ; 
( BYTE Val , unsigned LeftSearchBound , unsigned RightSearc 

( unsigned Depth ) ; 
( gmBUFLOC * pO , gmBUFLOC * pl ) ; 
( gmBUFLOC * Ref , double Slope , unsigned Row ) ; 
( double * Data , unsigned n ) ; 
( double x , double yPrev , double CutOffFreqHz ) ; 
( gmSTATISTICS * Stats , double * Data , unsigned n ) ; 
( gmSYSTEM-STATE * Derivative , gmSYSTEM-STATE * Newer , gm 

public : 

gmLaneDetector ( gmVideoStream * Videostream , gmKlugeDetector * PiateDetector = NULL , BOOL ~ e i t ~ n  
b = FALSE ) ; 

-gmLaneDetector ( ) ; 

void SmoothNewLaneLocation ( double CutOffFreqHz ) ; 
gmBUFLOC RegressHitSet ( gmHITSET * HitSet ) ; 
gmBUFLOC RegressHitSet 0; 

void DisplayResult 0; 

unsigned ProcessRow ( gmVIDEOFIELD * Field , unsigned Offset ) ; 

unsigned ScanField ( gmVIDEOFIELD * Field ) ; 

void 
void 
void 
void 
void 

gmLANEINF0 * ProcessFrame ( BOOL DisplayResult , BOOL DebugEnb = gmDEBUG-DISB ) ; 
void Testprocess 0; 

unsigned 
unsigned 
unsigned 
unsigned 

unsigned 
unsigned 
unsigned 
unsigned 

unsigned 
unsigned 
unsigned 
unsigned 

unsigned 
unsigned 
unsigned 
unsigned 

GetFarLaneBias ( )  { return FarLaneBias ; ) ; 
GetFarLaneCenterO { return FarLaneCenter ; ) ; 
GetFarLaneOf fset ( )  ( return FarLaneOffset ; ) ; 
GetFarLaneWidth ( )  { return FarLaneWidth ; ) ; 

GetLeftNearRowO ( return SystemInfo->CurrentLane.Near.Left.Row ; 1 ; 
GetLeftNearCol ( )  { return SystemInfo->CurrentLane.Near.Left.Col ; 1 ; 
GetRightNearRow ( ) ( return SystemInfo->CurrentLane.Near.Right.Row ; ) ; 
GetRightNearColO ( return SystemInfo->CurrentLane.Near.Right.Col ; ) ; 

GetLeftMidRow ( )  ( return SystemInfo->CurrentLane.Mid.Left.Row ; ) ; 
GetLeftMidCol ( ) ( return SystemInfo->CurrentLane.Mid.Left.Col ; ) ; 
GetRightMidRow ( ) ( return SystemInfo->CurrentLane.Mid.Right.Row ; ) ; 
GetRightMidCol ( )  ( return SystemInfo->CurrentLane.Mid.Right.Col ; ) ; 

GetLeftFarRowi) ( return SystemInfo->CurrentLane.Far.Left.Row ; ) ; 
GetLeftFarCol ( )  { return SystemInfo->CurrentLane.Far.Left.Col ; ; 
GetRightFarRow ( ) ( return SystemInfo->CurrentLane.Far.Right.Row ; ) ; 
GetRightFarCol(1 { return SystemInfo->CurrentLane.Far.Right.Col ; ) ; 



Page 7 





gmLaneDetector-1-cpp.txt 
/ *  
* file : gmLaneDetector-l.cpp 
* date : 01/28/97 
* 
* 
* Analyse video frame for lane boundaries 
* 
* / 

static gmTIMEINF0 NullTimeInfo = [FALSE,O, O,O, 0); 

static gmSYSTEM-STATE NullSystemState = ~0,0,0,0,0,0,0~; 

static gmLANEBOUNDARY NullLaneBoundary = ilo,ol, ~ o , ~ ) , ~ , ~ , ~ ~ ;  

static gmTHRESHINF0 NullThreshInfo = (O,O,O,O} ; 

static gmVIDEOFIELD NullField = ~gmFT-NULL,O,O,(O,O,O,O),(O,O,O,O,O~,oro) ; 

static gmVIDEOFIELD InitialNearLeftField = (gmFT-NEARLEFT ,gmNEARFIELD-BASELINE-DEFAULT,gmFIELDH 
EIGHT-DEFAULT,(gmFIELDBOUNDARY-LEFT-DEFAULT,gmNEARFIELD-BASELINE~DEFAULT,gmMIDFRAME-COL-DEFAULT tgm 
NEARFIELD~BASELINE~DEFAULTtg~EIELDHEIGHTDEFAULT],(FALSE,MINALLOWABLEEDETECTIONCTHRESHOLD,mXALLOWABLE~DE 
TECTION THRESHOLD,THRESHOLD-STEPFACTOR-DEFAULT,DETECTION-THRESHOLD-DEFAULT),~,~,O,~~NEARFILED-FILTERFREQ- 
 DEFAULT^ ; 
static gmVIDEOFIELD InitialNearRightField = (gmFT-NEARRIGHT,gmNEARFIELD-BASELINE-DEFAULT,gmFIELDH 
EIGHT-DEFAULT,(gmMIDFRAME-COL-DEFAULT ,gmNEARFIELD-BASELINE-DEFAULT,gmFIELDBOUNDARY-RIGHT-DEFAULT,gm 
NEARFIELD-BASELINE-DEFAULTtgmEIELDHEIGHT-DEFAULT),{TRUE ,MINALLOWABLE-DETECTION-THRESHOLD,MA.XALLOWABLE-DE 
TECTION~THRESHOLD,THRESHOLD~STEPFACTOR~DEFAULT,DETECTION~THRESH~LD~DEFAULT},~,~,~,~~NEARF~L~D~FILTERFREQ~ 
DEFAULT) ; 
static gmVIDEOFIELD InitialMidLeftField = (gmFT-MIDLEFT ,gmMIDFIELD-BASELINE-DEFAULT ,gmFIELDH 
EIGHT DEFAULT,(gmFIELDBOUNDARY-L3FT-DEFAULT,gmMIDFIELD-BASELINE-DEFAULT ,gmMIDFRAME-COL-DEFAULT gm 
MIDFIELD-BASELINE-DEFAULT +gmF;ELDHEIGHT-DEFAULT )  , {FALSE, MINALLOWABLE-DETECTION-THRESHOLD, MAXALLOWABLE-DE 
TECTION~THRESHO;D,THRESHOLD~STEPFACTOR~DEFAULT,DETECTION~THRESHOLD~DEFAULT),~,~,O,~~MIDFILEEI~FILTERFREQ~D 
EFAULT ) ; 
static gmVIDEOFIELD InitialMidRightField = (gmFT MIDRIGHT ,gmMIDFIELD-BASELINE-DEFA,ULT ,gmFIELDH 
EIGHT-DEFAULT,(gmMIDFRAME-COL-DEFAULT ,  MIDFI FIELD-BASELINE-DEFAULT , gmFIELDBOUNDARY-RIEiHT-DEFAULT, gm 
MIDFIELD-BASELINE-DEFAULT tgmFIELDHEIGHT-DEFAULT),(TRUE ,MINALLOWABLE-DETECTION-THRESHOLD,MAXALLOWABLE-DE 
TECTION~THRESHOLD,THRESHOLD~STEPFACTOR~DEFAULT,DETECTION~THRESHOLD~DEFAULT),0,0,O,gmMIDFILE~~~FILTERFREQ~D 
EFAULT 1 ; 
static gmVIDEOFIELD InitialFarLeftField = {gmFT-FARLEFT ,gmFARFIELD-BASELINE-DEFA.ULT ,gmFIELDH 
EIGHT-DEFAULT,{gmFIELDBOUNDARY-LEFT-DEFAULT,gmFARFIELD-BASELINE-DEFAULT ,gmMIDFRAME-COL-DEFAULT I gm 
FARFIELD-BASELINE-DEFAULT tgmFIELDHEIGHT~DEFAULT},(FALSE,MINALLOWABLE~DETECTION~THRESHOLD,~.XALLOWABLE~DE 
TECTION~THRESHOLD,THRESHOLD~STEPFACTOR~DEFAULT,DETECTION~THRESHOLD~DEFAULT},~,~~~,~~FARFILEE~~FILTERFREQ~D 
EFAULT 1 ; 
static gmVIDEOFIELD InitialFarRightField = (gmFT FARRIGHT ,gmFARFIELD-BASELINE-DEFAULT ,gmFIELDH 
EIGHT DEFAULT,{gmMIDFRAME-COL-DEFAULT ,  FARFI FIELD-BASELINE-DEFAULT , gmFIELDBOUNDARY-RIGHT-DEFAULT, gm 
FARFIELD-BASELINE-DEFAULT tgmFIELDHEIGHT-DEFAULT) , ( FALSE, MINALLOWABLE-DETECTION-THRESHOLD, MAXALLOWABLE-DE 
TECTION~THRESHOLD,THRESHOLD~STEPFACTOR~DEFAULT,DETECTION~THRESHOLD~DEFAULT),0,0,O,gmFARFILED~FILTERFREQ~D 
EFAULT 1 ; 

static gmVIDEOFIELDINF0 NullFieldInfo = I 
IgmFT-NULL,O,O, tO,O,O,O), ~ ~ I ~ ~ ~ I ~ t ~ ~ r ~ ~ ~ ,  , 
(gmFT NULL,O,O, tO,O,O,O), (0,0,0,0,0),0,0,0,0~ , 
{~~FTINuLL,o,O, (0,0,0,01, (0,0,0,0,0),0,0,0,0] , 
[gmFT NULL,O,O, tO,O,O,O), (0,0,0,0,0)10,0,0,0} I 
( g m ~ ~ - ~ ~ ~ ~ , ~ , O ,  (0,0,0,0], ~O,O,O,O,O)IoIoIo,o~ , 
{ g m ~ ~ - ~ ~ ~ ~ , O , O ,  - tO,O,O,O], ~ ~ I o ~ ~ r ~ I ~ ~ I ~ I ~ l ~ , ~ ~  

I ;  



static gmVIDEOFIELDINF0 InitialFieldInfo = { 
{gmFT-NEARLEFT ,gmNEARFIELD-BASELINE-DEFAULT,gmFIEL 

DHEIGHT DEFAULT,(gmFIELDBOUNDARY-LEFT-DEFAULT,gmNEARFIELD-BASELINE-DEFAULT,gmMIDFRAME-COL-DEFAULT r 

g ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t g m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ F ~ ~ ~ ~ ) , { F A L S E , M I N A L L O W A B L E ~ D E T E C T I O N ~ T H R E S H O L D , M A X A L L O W A B L E ~  
DETECTION THRESHOLD,THRESHOLD~STEPFACTOR~DEFAULT,DETECTION~THRESHOLD~DEFAULT~,OfOfO,~~NEARFILED~FILTERFRE 
Q- DEFAULT^ , 

{gmFT NEARRIGHT,gmNEARFIELD-BASELINE-DEFAULT,gmFIEL 
DHEIGHT-DEFAULT,(gmMIDFRAME-COL-DEFAULT , g m ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ A ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ,  gmEIELDBOUNDARY-RIGHT-DEFAULT, 
gm~~~RFIELD-BASELINE-DEFAULTtgmFIELDHEIGHT-DEFAULT),{TRUE ,MINALLOWABLE-DETECTION-THRESHOLD,MAXALLOWABLE- 
DETECTION~THRESHOLD,THRESHOLD~STEPFACTOR~DEFAULT,DETECTION~THRESHOLD~DEFAULT),~,~,O,~~NEARFILED~FILTERFRE 

- 

Q-DEFAULT) , 
(gmFT-MIDLEFT ,gmMIDFIELD-BASELINE-DEFAULT ,gmFIEL 

DHEIGHT-DEFAULT,(gmFIELDBOUNDARY-LEFT-DEFAULT,gnMIDFIELD-BASELINE-DEFAULT ,gmMIDFRAME-COL-DEFAULT 
 IDFI FIELD-BASELINE-DEFAULT tgmFIELDHEIGHT~DEFAULT),(FALSE,MINALLOWABLE~DETECTIONUTHRESHOLD,V~XALLOWABLE 
DETECTION THRESHOLD, THRESHOLD-STEPFACTOR-DEFAULT, DETECTION-THRESHOLD-DEFAULT I,  0, 0, 0, ~~MIDFILED-FILTERFREQ 
DEFAULT T , - 

tgmFT-MIDRIGHT ,gmMIDFIELD-BASELINE-DEFAULT ,gmFIEL 
DHEIGHT-DEFAULT,(~~MIDFRAME-COL-DEFAULT  MIDFI FIELD-BASELINE-DEFAULT ,~~FIELDBOUNDARY-RIGHT-DEFAULT, 
gmMIDFIELD-BASELINE-DEFAULT +gmFIELDHEIGHT-DEFAULT),(TRUE ,MINALLOWABLE-DETECTION-THRESHOLD,MAXALLOWABLE 
DETECTION-THRESHOLD, THRESHOLD-STEPFACTOR-DEFAULT, DETECTION-THRESHOLD-DEFAULT) , 0, 0, 0, ~~MIDFILED-FILTERFREE 
- DEFAULT ) , 

(gmFT-FARLEFT ,gmFARFIELD-BASELINE-DEFAULT ,gmFIEL 
DHEIGHT-DEFAULT,{gmFIELDBOUNDARY-LEFT-DEFAULT,gmFARFIELD-BASELINE-DEFAULT ,gmMIDFRAME-COL-DEFAULT t 

gmFARFJELD-BASELINE-DEFAULT +gmFIELDHEIGHT~DEFAULT],{FALSE,MINALLOWABLE~DETECTION~THRESHOLD,MAXALLOWABLE~ 
DETECTION THRESHOLD,THRESHOLD-STEPFACTOR - DEFAULT,DETECTION~THRESHOLDPDEFAULT),o,o,~,~~FARFILED~FILTERFREQ 
- DEFAULT 7 , 

(gmFT-FARRIGHT ,gmFARFIELD-BASELINE-DEFAULT ,gmFIEL 
DHEIGHT-DEFAULT,(gmMIDFRAME-COL-DEFAULT ,gmFARFIELD-BASELINE-DEFAULT ,gmFIELDBOUNDARY-RIGHT-DEFAULT, 
gmFARFIELD-BASELINE-DEFAULT tgmFIELDHEIGHT~DEFAULT],{FALSE,MINALLOWABLE~DETECTIONUTHRESHOLD,MAXALLOWABLE~ 
DETECTION~THRESHOLD,THRESHOLD~STEPFACTOR~DEFAULT,DETECTION~THRESHOLD~DEFAULT),~,~,~,~~FARFILED~FILTEREREQ 

- DEFAULT 1 
1; 

static gmLANEINFO NullLaneInfo = {(o,o) , 
t0,OI , 

static gmLANEINF0 InitlalLaneInfo = 1(0,01, 
(0,O) , 
1:0,01 , 
(0,O) , 
{ {320,320),(320,320),gmLANELOC~TIMEOUT_DEFAULT,O,O) 

Following are this class's Private Methods 

void gmLaneDetector::ClearRowHitBuf ( unsigned LeftBound , unsigned RightBound ) 

1: 
 TRACE-MAC ( "grnLaneDetector::C1earRowHitBuf() : Entering\nl' ) ; 
unsigned n = RightBound - LeftBound + 1 ; 
memset( ( void * ) ( RowHitBuf + LeftBound ) , 0x00 , n ) ; 
gmTRACE-MAC ( "gmLaneDetector::C1earRowHitBufo : Entering\nt' ) ; 

I 

. . . . . . . . . . . . . . . . . . . . . . .  
* 

Page 2 



vold gmLaneDetector::FillValRowHitBuf ( BYTE Val , unsigned LeftSearchBound , unsigned RightSearchBound ) 

t 
gmTRACE-MAC ( "gmLaneDetector::Fi11ValRowHitBuf() : Entering\nf' ) ; 
unsigned n = RightSearchBound - LeftSearchBound t 1 ; 
memset( ( void * ) ( RowHitBuf t LeftSearchBound ) , Val , n ) ; 
gmTRACE-MAC ( "grnLaneDetector::FillValRowHitBuf() : Entering\nW ) ; 

i 

void gmLaneDetector::InitSystemInfo ( unsigned Depth ) 

( 
gmTRACE - MAC ( "gmLaneDetector::InitSystemInfo : Entering\nW ) ; 

unsigned i ; 

SystemInfo = new gmSYSINFO ; 

SystemInfo->LaneLockedOn = FALSE ; 
SystemInfo->LaneAnchored = FALSE ; 
SystemInfo->NearLaneAcquired = FALSE ; 
SystemInfo->MidLaneAcquired = FALSE ; 
SystemInfo->FarLaneAcquired = FALSE ; 
SystemInfo->FarSlopesEnabled = FALSE ; 

SystemInfo->PreviousLane = InitialLaneInfo ; 
SystemInfo->CurrentLane = InitialLaneInfo ; 

SystemInfo->State.History = new gmSYSTEM-STATE * [ Depth ] ; 
SystemInfo->State.DerivativeHistory = new  S SYSTEM-STATE * [ Depth ] ; 

for ( i = 0 ; i < Depth ; i tt ) 

SystemInfo->State.History[i] = new gmSYSTEM-STATE ; 
SystemInfo->State.DerivativeHistory[i] = new gmSYSTEM-STATE ; 

* SystemInfo->State.History[i] = NullSystemState ; 
* SystemInfo->State.DerivativeHistory[i] = NullSystemState ; 

SysternInfo->State.HistoryDepth = Depth ; 
systemlnfo->State.VarianceSmoothingFreq = gmVARIANCE~SMOOTHINGFREQ~INITIAL ; 

SystemInfo->State.RollAvg = Nullsystemstate ; 
SystemInfo->State.DerivativeHistoryVariance = Nullsystemstate ; 
SystemInfo->State.SmoothedDerivativeHistoryVariance = NullSystemState ; 

double gmLaneDetector::SlopeCalc ( gmBUFLOC * pO , gmBUFLOC * pl ) 

{ 
 TRACE - MAC ( "gmLaneDetector::CalcBoundrySlope : ~ntering\n" ) ; 

double Rise , Run , Slope ; 
Page 3 



Rise = ( double ) pl->ROW - PO->Row ; 
Run = ( double ) pl->Col - pO->Col ; 

if ( fabs ( Run ) < le-10 ) 
Slope = le10 ; 

else 
Slope = Rise / Run ; 

return Slope ; 

unsigned gmLaneDetector::PointShoot ( gmBUFLOC * Ref , double Slope , unsigned Row ) 

int Col = ( int ) ( ( ( ( double ) Row - ( double ) Ref->Row ) / Slope ) t Ref->Col ) ; 

if ( Col < 0 ) 
C0l = 0 ; 

return ( unsigned ) Col ; 

double gm~ane~etect0r::RollingAverage ( double * Data , unsigned n ) 

I 
gmTRACE-MAC ( "gmLaneDetector::RollingAverage~) : Entering\nl' ) ; 

double Sigma = 0 ; 
unsigned i ; 

i f ( ! n )  
return 0 ; 

for ( i = O ; i < n ; i + t )  
Sigma += Data[il ; 

return Sigma / ( (  double ) n ) ; 
I 

double gmLaneDetector::LowPassIIR ( double x , double yPrev , double CutOffFreqHz ) 

{ 
gmTRACE-MAC ( "gmLaneDetector:: : Entering\nl' ) ; 

double T = 6.283185 * CutOffFreqHz * SystemInfo->Tirne.ThisDelta ; 
double Alpha = T/(l.Oo+T) ; 

double y = Alpha * x t ( 1.00 - Alpha ) * yPrev ; 

return y ; 



void gmLaneDetector::StatCalc ( gmSTATISTICS * Stats , double * Data , unsigned n ) 

{ 
 TRACE-MAC ( "gmLaneDetector::StatCalc() : Entering\nTf ) ; 

double yo , yl ; 
unsigned i ; 

for ( i = 0 , yO=yl=O ; i < n ; i tt ) 

i 
yo += Data[i] ; 
yl t= Data[i] * Data[i] ; 

1 

Stats->Sigma = yo ; 
Stats->Rms = sqrt ( yl ) ; 
Stats->Mean = y O / n ;  
Stats->Variance = ( n * yl - yo * yo ) / ( n * ( n - 1 ) ) ; 
Stats->StdDev = sqrt ( Stats->Variance ) ; 

void gm~ane~etector::StateDerivativeCalc ( gmSYSTEM-STATE * ~erivative , gmSYSTEM-STATE * Newer , gmSYSTE 
M-STATE * Older ) 

{ 

double ThisDelta = SystemInfo->Time.ThisDelta ; 

Derivative->NearFieldThreshold = ( Newer->NearFieldThreshold - Older->KearFieldThreshold : / ThisDelta 

Derivative->MidFieldThreshold = ( Newer->MidFieldThreshold - Older->MidFieldThreshold ) / ThisDelta 

Derivative->FarFieldThreshold = ( Newer->FarFieldThreshold - Older->FarFieldThreshold I / ThisDelta 

Derivative->LeftNearSlope = ( Newer->LeftNearSlope - Older->LeftNearSlope ) / ThisDelta 

Derivative->LeftFarSlope = ( Newer->LeftFarSlope - Older->LeftFarSlope ) / ThisDelta 

Derivative->RightNearSlope = ( Newer->RightNearSlope - Older->RightNearSlope ) / ThisDelta 

Derivative->RightFarSlope = ( Newer->RightFarSlope - Older->RightFarSlope ) / ThisDelta 

void gmLaneDetector::UpdateTimeInfo ( ) 

i 
gmTRACE-MAC ( "gmLaneDetector::UpdateTimeInfo() : Entering\nW ) ; 

gmTIMEINF0 * p = & SystemInfo->Time ; 
double ThisTimeStamp = VideoFrameBuffer->GetTimeStamp() ; 

if ( ! p->Initialized ) 

Page 5 



gmLaneDetector-1-cpp.txt 
t 
p->InitialFrameStarnp = ThisTimeStamp ; 
p->CurrentFrameStamp = ThisTimeStamp ; 
p->Initialized = TRUE ; 

1 

p->ThisDelta = ThisTimeStarnp - p->CurrentFrameStarnp ; 
p->CurrenzFrameStarnp = ThisTirneStarnp ; 

if ( p->ThisDelta < 0.00 ) 

I 
printf ( " %  5d : Negative Time Step : %12.7f\nn , FrameNo , p->ThisDelta ) ; 
p->ThisDelta *= -1.00 ; 

i 

void gmLaneDetector::UpdateStateInfo ( ) 

static gmSTATISTICS ScratchStats ; 
static double ScratchArea [gmLD-SYSTEM-STATES] [gmLD-SYSTEM-HISTORYDEPTH] ; 

SystemInfo->CurrentLane.LeftNearSlope.Value = SlopeCalc ( & SystemInfo->CurrentLane.Mid.Left , & syst 
emInfo->CurrentLane.Near.Left ) ; 

SystemInfo->CurrentLane.RightNearSlope.Value = SlopeCalc ( & SystemInfo->CurrentLane.Mid.Right , & syst 
emInfo->CurrentLane.Near.Right ) ; 

( 
SystemInfo->FarSlopesEnabled = TRUE ; 
SysternInfo->CurrentLane.LeftFarSlope.Value = SlopeCalc ( & SystemInfo->CurrentLane.Far.Left , & Sy 

stemInfo->CurrentLane.Mid.Left ) ; 
SystemInfo->CurrentLane.RightFarSlope.Vale = SlopeCalc ( & SystemInfo->CurrentLane.Far.Right , & sy 

stemInfo->CurrentLane.Mid.Right ) ; 

f 

gmSYSTEM-STATE * * P = SystemInf0->State.Histo~y , * q ; 
gmSYSTEM-STATE * * pl = SystemInfo->State.DerivativeHistory , * ql ; 
unsigned i ; 

/ / 
/ /  here we push the history stacks 
/ /  down one position . 
/ / 

for ( i = grnLD-SYSTEM-HISTORYDEPTH - 1 ; i ; i -- ) 

/ / 
/ /  here we push the current state vector 
/ /  into the top location of the history 



gmLaneDetector-1-cpp.txt 
/ /  stack . 
/ / 

/ / 
/ /  now , if we've got a time delta , 
/ /  ( sometimes we won't , like on the 
/ /  first frame , and probably other times 
/ /  too , if Murphy still lives in this 
/ /  universe . . .  ) we calculate dx/dtls . 
/ / 

else 
* p1[01 = * pl[ll ; 

/ / 
/ /  now , if we don't have a full queue 
/ /  of history data , then , don't waste 
/ /  any more time here . 
/ / 

if ( FramesProcessed < gmLD-SYSTEM-HISTORYDEPTH ) 
return ; 

/ / 
/ /  once we've got complete trajectory information 
/ /  let's summarize it in our statistical state 
/ /  vectors . 
/ / 
/ /  here we load up the scratch area with the 
/ /  state history information 
/ / 

for ( i = 0 ; i < gmLD-SYSTEM-HISTORYDEPTH ; i ++ ) 
I 
ScratchArea[O][il = p[il->NearFieldThreshold ; 
ScratchArea[ll [il = p[il->MidFieldThreshold ; 
ScratchArea[2][i] = p[il->FarFieldThreshold ; 
ScratchArea [3] [i] = p [i] ->LeftNearSlope ; 
ScratchArea[$] [i] = p[il->LeftFarSlope ; 
ScratchArea[5][i] = p[il->RightNear~lope ; 
ScratchArea[G] [il = p [i] ->RightFarSlope ; 

1 

/ / 
/ /  1st-order statistical state history summary 
/ / 

SystemInfo->State.RollAvg.NearFieldThreshold = RollingAverage ( ScratchArealOl , gmLD-SYS'FEM-HISTORYDEP 
TH 1 ; 

system~nfo->State.RollAvg.Mi.dFieldThreshold = RollingAverage ( ScratchArea[l] , gmLD-SYSTEM-HISTORYDEP 
TH 1 ; 
~ystem~nfo->State.RollAvg.FarFieldThreshold = RollingAverage ( ScratchArea[21 , gmLD-SYS'TEM-HISTORYDEP 

TH ; 
SystemInfo->State.RollAvg.LeftNearSlope = RollingAverage ( ScratchAreaL31 , grnLD-SYS'TEM-HISTORYDEP 

TH ) ; 
SystemInfo->State.Ro11Avg.LeftFarSlope = RollingAverage ( ScratchArea[41 , gmLD-SYSTEM-HISTORYDEP 

TH ) ; 
SystemInfo->State.RollAvg.RightNearSlope = RollingAverage ( ScratchArea[51 , gmLD-SYS'TEM-HISTORYDEP 

TH ) ; 



/ / 
/ /  now load up the scratch area with 
/ /  the derivative history information 
/ / 

for ( i = 0 ; i < gmLD-SYSTEM-HISTORYDEPTH ; i tt ) 

t 
ScratchArea[O] [il = pl[il->NearFieldThreshold ; 
ScratchArea[l] [il = pl [il ->MidFieldThreshold ; 
ScratchArea[2][i] = pl[l]->FarFieldThreshold ; 
ScratchArea[3][i] = pl[i]->LeftNearSlope ; 
ScratchArea[4] [i] = pl[i]->LeftFarSlope ; 
ScratchArea[S] [il = plril->RightNearSlope ; 
ScratchArea[6][i] = pl[il->RightFarSlope ; 

1 

/ / 
/ /  2dn-order statistical state derivative summary 
/ / 

StatCalc ( & ScratchStats , ScratchArea[O] , gmLD-SYSTEM-HISTORYDEPTH ) ; 
SystemInfo->State.DerivativeHistoryVariance.NearFieldThre~hold = ScratchStats.Variance ; 

StatCalc ( & ScratchStats , ScratchArea[l] , gmLD-SYSTEM-HISTORYDEPTH ) ; 
SystemInfo->State.DerivativeHistoryVariance.MidFieldThre~hold = ScratchStats.Variance ; 

StatCalc ( & ScratchStats , ScratchArea[Z] , gmLD-SYSTEM-HISTORYDEPTH ) ; 
SystemInfo->State.Deri~ati~eHistoryVariance.FarFieldThre~hold = ScratchStats.Variance ; 

StatCalc ( & ScratchStats , ScratchArea[3] , gmLD-SYSTEM-HISTORYDEPTH ) ; 
SystemInfo->State.DerivativeHistoryVariance.LeftNearSlope = ScratchStats.Variance ; 

StatCalc ( & ScratchStats , ScratchArea[4] , gmLD-SYSTEM-HISTORYDEPTH ) ; 
SystemInfo->State.DerivativeHistoryVariance.LeftFarSlope = ScratchStats.Variance ; 

StatCalc ( & ScratchStats , ScratchArea[5] , gmLD-SYSTEM-HISTORYDEPTH ) ; 
SystemInfo->State.DerivativeHistoryVariance.RightNearSlope = ScratchStats.Variance ; 

StatCalc ( & ScratchStats , ScratchArea[G] , gmLD-SYSTEM-HISTORYDEPTH ) ; 
SystemInfo->State.DerivativeHistoryVariance.RightFarSlope = ScratchStats.Variance ; 

/ / 
/ /  now we produce the current smoothed value 
/ / 

gmSYSTEM-STATE * r = & Systeminfo->State.DerivativeHistoryVariance ; 
gmSYSTEM-STATE * s = & SystemInfo->State.SmoothedDerivativeHistoryVariance ; 
double SmoothingFc = Systeminfo->State.VarianceSmoothingFreq ; 

s->NearFieldThreshold = LowPassIIR ( r->NearFieldThreshold , s->NearFieldThreshold , SmoothingFc ) ; 
s->MidFieldThreshold = LowPassIIR ( r->MidFieldThreshold , s->MidFieldThreshold , SmoothingFc ) ; 
s->FarFieldThreshold = LowPassIIR ( r->FarFieldThreshold , s->FarFieldThreshold , SmoothingFc ) ; 
s->LeftNearSlope = LowPassIIR ( r->LeftNearSlope , s->LeftNearSlope , SmoothingFc ) ; 
s->LeftFarSlope = LowPassIIR ( r->LeftFarSlope , s->Leftparslope , SmoothingFc ) ; 
s->RightNearSlope = LowPassIIR ( r->RightNearSlope , s->RightNearSlope , SmoothingFc ) ; 
s->RightFarSlope = LowPassIIR ( r->RightFarSlope , s->RightFarSlope , SmoothingFc ) ; 

I 
Page 8 



void gmLaneDetector::UpdateLaneTrackingStatus ( ) 

i 
gmTRACE-MAC ( "grnLaneDetector::UpdateLaneTrackingStatus( : Entering\nT' ) ; 

if ( ! ( FramesProcessed > gmLD-SYSTEM-HISTORYDEPTH ) 1 
return ; 

SystemInfo->CurrentLane.RightNearSlope.Valid = FALSE ; 
SystemInfo->CurrentLane.LeftNearSlope.Vad = FALSE ; 
SystemInfo->CurrentLane.RightFarSlope.Valid = FALSE ; 
SystemInfo->CurrentLane.LeftFarSlope.Valid = FALSE ; 

SystemInfo->LaneLockedOn = FALSE ; 
SystemInfo->NearLaneAcquired = FALSE ; 
SystemInfo->MidLaneAcquired = FALSE ; 
SystemInfo->FarLaneAcquired = FALSE ; 

if ( SystemInfo->State.SmoothedDerivativeHistoryVariance.RightNearSlope < gmVALIDSLOPE-THRZSHOLD-DEFAUL 
T )  

SystemInfo->CurrentLane.RightNearSlope.Vald = TRUE ; 

SystemInfo->CurrentLane.LeftNearSlope.Vaid = TRUE ; 

if ( SystemInfo->CurrentLane.RightNearSlope.Valid & &  SystemInfo->CurrentLane.LeftNearSlope.Valid ) 
SystemInfo->NearLaneAcquired = TRUE ; 

if ( Systemlnfo->CurrentLane.RlghtNearSlope.Vaid & &  SystemInfo->CurrentLane.LeftNearSlope.Valid ) 
SystemInfo->MidLaneAcquired = TRUE ; 

if ( ! SystemInfo->FarSlopesEnabled ) 
return ; 

if ( SystemInfo->State.SmoothedDerivativeHistoryVariance.RightFarSlope < gmVALIDSLOPE-THRESHOLD-DEFAULT 
) 

SystemInfo->CurrentLane.RightFarSlope.Valid = TRUE ; 

if ( SystemInfo->State.SmoothedDerivativeHistoryVariance.LeftFarSlope < gmVALIDSLOPE-THRESHOLD-DEFAULT 

System~nfo->CurrentLane.LeftFarSlope.Valid = TRUE ; 

if ( SystemInfo->CurrentLane.RightFarSlope.Valid & &  SystemInfo->CurrentLane.LeftFarSlope.Valid ) 
SystemInfo->FarLaneAcquired = TRUE ; 

if ( SystemInfo->NearLaneAcquired & &  SystemInfo->FarLaneAcquired ) 
SystemInfo->LaneLockedOn = TRUE ; 

Page 9 



void gmLaneDetector::UpdateSystemInfo ( ) 

i 
gmTRACE-MAC ( 'gmLaneDetector::UpdateSystemInfo() : Entering\nl' ) ; 

void gmLaneDetector::AdaptParameters ( ) 

( 
grnTRACE-MAC ( I1gmLaneDetector: :Adaptparameters ( ) : Entering\n" ) ; 

gmTRACE - MAC ( "grnLaneDetector::AdaptParameters() : Exiting\nl' ) ; 

1 

void gmLaneDetector:: ( ) 

I 
gmTRACE-MAC ( "gmLaneDetector:: : Entering\n" ) ; 

Following are this class's Public Methods 

gmLaneDetector::gmLaneDetector ( gmvideostream * Videostream , gmKlugeDetector * PlateDetector , BOOL Te 
stEnable ) 
( 
gmTRACE-MAC ( "gmLaneDetector::gmLaneDetector() : Entering\nl' ) ; 

DumpEnable = FALSE ; 

Viewport = Videostream->Getviewport() ; 

LicencePlateDetector = PlateDetector ; 

VideoFrameBuffer = Videostream->GetFrameImageBuf() ; 
Framewidth = VideoFrameBuffer->GetColsO ; 
FrameHeight = VideoFrameBuffer->GetRows() ; 
FrameArea = Framewidth * FrameHeight ; 
FrameVertCenter = Framewidth >> 1 ; 
~rameHorizCenter = FrameHeight >> 1 ; 

Page 10 



gmLaneDetector-1-cpp.txt 
VideoFrameImageBaseAdx = ( BYTE * ) VideoFrameBuffer->GetImageBaseAdx() ; 

RowImageBuf = new gmBuffer ( 1 , Framewidth , gmDT-BYTE ) ; 
~owDistributionBuf = new gmBuffer ( 1 , Framewidth , gmDISTRIBUTION-DATATYPE-DEFAULT 1 ; 
RowHitBuf = new BYTE [ Framewidth I ; 

Hitsetcapacity = gmLD-HITSETSIZE ; 
HitSet.Element = new gmHITINFO [ gmLD-HITSETSIZE I ; 

FramesProcessed = O ;  

FarLaneBias = O ;  
FarLaneOffset = 0 ;  
FarLaneCenter = O ;  
FarLaneWidth = O ;  

/ / 
/ /  here we initialize the 
/ /  near field baseline value 
/ / 

printf ( * *  Select left-side near Evaluation Region :" ) ; 

while ( ! Viewport->SelectionReady ( ) ) 
Sleep ( 50 ) ; 

RECT InitialNearLeftEvaluationRegion = Viewport->GetSelectedRegion ( ) ; 

printf ( "\n" 1 ; 

/ / 
/ /  07/14/98 
/ /  we've got to make sure our licence plate 
/ /  detector is not NULL . later we can add some 
/ /  more logic for the NULL case . but for now 
/ /  the problem is a fatal error . 
/ / - gm 
/ / 

if ( ! LicencePlateDetector ) 
 ERROR-MAC ( " gmLaneDetector::gmLaneDetector() : LicencePlateDetector is NULL : Cannot proceed " ) 

/ /  
/ /  here we now adapt our working video fields 
/ /  to the currently selected regions . 
/ / 

1nitialNearLeftField.BaseLine = 1nitialNearRightField.BaseLine = InitialNearLeftEvaluationRegion 
.top ; 

1nitialNearLeftField.Region.top = 1nitialNearRightField.Region.top = InitialNearLeftEvaluationRegion 
.top ; 
1nitialNearLeftField.Region.bottom = 1nitialNearRightField.Region.bottom = Ini t ia lNearLef ' tEvaluat ionReg 

ion.top t gmFIELDHEIGHT-DEFAULT ; 

1nitialFarLeftField.BaseLine = 1nitialFarRightField.BaseLine = ( unsigned ) LicencePlateDetecto 
r->GetCurrentRearShadowRow ( ) - 2 ; 

1nitialFarLeftField.Region.top = 1nitialFarRightField.Region.top = 1nitialFarRightField.BaseLine ; 

1nitialMidLeftField.BaseLine = 1nitialMidRightField.BaseLine = ( 1nitialFarLeftField.BaseLine t 
1nitialNearLeftField.BaseLine ) >> 1 ; 
1nitialMidLeftField.Region.top = 1nitialMidRightField.Region.top = 1nitialMidLeftField.BaseLine ; 

Page 11 



delete RowIrnageBuf ; 
delete RowDistributionBuf ; 
delete [ I  RowHitBuf ; 

delete [ ]  (HitSet.Element) ; 

unsigned i ; 
for ( i = 0 ; i < gmLD-SYSTEM-HISTORYDEPTH ; i t+ ) 
delete SystemInfo->State.DerivativeHistory[i] ; 

delete [I  (SystemInfo->State.DerivativeHistory) ; 
delete SystemInfo ; 

void gmLaneDetector::SmoothNewLaneLocation ( double CutOffFreqHz ) 

i 
grnTRACE - MAC ( "gmLaneDetector::SmoothNewLaneLocation : Entering\nl' ) ; 

if ( ! FramesProcessed ) 
return ; 

p->Near.Left.Row = ( unsigned ) LowPassIIR ( ( double ) p->Near.Left.Row , ( double ) q->Near.Left.Ro 
w , r->NearLeft.LowPassFC ) ; 
p->Near.Left.Col = ( unsigned ) LowPassIIR ( ( double ) p->Near.Left.Col , ( double ) q->Near.Left.Co 

1 , r->NearLeft.LowPassFc ) ; 
p->Mid.Left.Row = ( unsigned ) LowPassIIR ( ( double ) p->Mid.Left.Row , ( double ) q->Mid.~eft.~ow 
, r->MidLeft.LowPassFc ) ; 

Page 12 



gmLaneDetector-1-cpp.txt 
p->Mid.Left.Col = ( unsigned ) LowPassIIR ( ( double ) p->Mid.Left.Col , ( double ) q->Mid.Left.Col 
, r->MidLeft.LowPaSsFC ) ; 

p->Far.~eft.Row = ( unsigned ) LowPassIIR ( ( double ) p->Far.Left.Row , ( double ) q->Far.Left.Row 
, r->FarLeft.LowPaSSFC ) ; 

p->~ar.~eft.Col = ( unsigned ) LowPassIIR ( ( double ) p->Far.Left.Col , ( double ) q->Far.Left.Col 
, r->FarLeft. LOWPaSSFC ) ; 

p->Near.Right.Row = ( unsigned ) LowPassIIR ( ( double ) p->Near.Right.Row , ( double ) q->Near.Right.R 
ow , r->NearRight.LowPassFc ) ; 
p->Near.Right.Col = ( unsigned 1 LowPassIIR ( ( double ) p->Near.Right.Col , ( double ) q->Near.Right.C 

01 , r->NearRight.LowPassFc ) ; 
p->Mid.Right.Row = ( unsigned ) LowPassIIR ( ( double ) p->Mid.Right.Row , ( double ) q->Mid.Right.Ro 

w , r->MidRight.LowPassFc ) ; 
p->Mid.Right.Col = ( unsigned ) LowPassIIR ( ( double ) p->Mid.Right.Col , ( double ) q->Mid.Right.Co 

1 , r->MidRight.LowPassFc ) ; 
p->Far.Right.Row = ( unsigned ) LowPassIIR ( ( double ) p->Far.Right.Row , ( doable ) q->Far.Right.Ro 

w , r->FarRight.LowPassFc ) ; 
p->Far.Right.Col = ( unsigned ) LowPassIIR ( ( double ) p->Far.Right.Col , ( double ) q->Far.Right.Co 

1 , r->FarRight.LowPassFc ) ; 

if ( ! SysternInfo->FarSlopesEnabled ) 
return ; 

/ /  if ( ! FarLaneBias ) 
/ /  Far~aneBias = p->Far.Right.Col ; 

FarLaneOffset = p->Far.Right.Col - FarLaneBias ; 
FarLaneCenter = ( p->Far.Right.Col + p->Far.Left.Col ) >> 1 ; 
FarLaneWidth = p->Far.Right.Col - p->Far.Left.Col + 1 ; 

gmHITINF0 * p = Hitset->Element ; 
gmBUFLOC LocBestFit ; 
double w , x , y , z ; 
double m , b , xMean , Denorn ; 

unsigned i ; 

for ( i = 0 ; i < HitSet->Size ; i t+ ) 

{ 
w += ( double ) p[i] .Center * ( double 1 p[i] .RowNo ; 
x += ( double ) p[il.Center ; 

y += ( double ) p[il .RowNo 
z += ( double ) p[iI.Center * ( double ) p[i].Center ; 

1 

xMean = x / Hitset->Size ; 

LocBestFit.Co1 = ( unsigned ) xMean ; 

Page 13 



if ( Denom ) 

( 
m = ( HitSet->Size * w - x * y ) / Denom ; 
b = ( y - m * x ) / HitSet->Size ; 

LocBestFit.Row = ( unsigned ) ( m * xxean t b ) ; 

1 

else 
~ocBestFit.ROw = p->RowNo ; 

return LocBestFit ; 

return RegressHitSet ( & HitSet ) ; 

gmTmCE - MAC ( "gmLaneDetector::RegressHitSet : Exiting\n" j ; 

1 

void gmLaneDetector::DisplayResult ( ) 

if ( ! FarLaneBias ) 
if ( LaneLockCount ) 

FarLaneBias = SystemInfo->CurrentLane.Far.Right.Col ; 



LaneLockCount tt ; 

else 
Viewport->ResetLiineLockedOn ( ) ; 

unsigned gmLaneDetec.tor::ProcessRow ( gmVIDEOFIELD * Field , unsigned Offset 1 

gmTmCE-MAC ( "gmLaneDetector: : ProcessRow : Entering\nT' ) ; 

unsigned i , j , k ; 
unsigned Retries , TargetSizeIncrement = 1 , Max~etries = 5 ; 
unsigned Hits , Detections , Detectioncenter ; 

if ( Field->Thresh3ld.Modifiable 1 
MaxRetries = 5 ; 

else 
MaxRetries = 0 ; 

double Threshold = Field->Threshold.Level ; 
unsigned LeftSearchBound = Field->Region.left ; 
unsigned RightSearchBound = Field->Region.right ; 
unsigned RowNo = Field->Regionstop t Offset ; 

if ( RowImage3uf->GetIdxO !=  RowNo ) 

t 
* RowImageBuf = VideoErameBuffer->GetRowPartial ( RowNo , LeftSearchBound , RightSearchBound ) ; 
RowImageBuf->CalcStats ( ) ; 
* RowDistributionBuf = RowImageBuf->Distribute ( ) ; 

if ( DumpEnable ) 
( 
printf ( " * *  FrameNo : %d\nV' , FrameNo ) ; 
printf ( " RowNo : %d\nV , RowNo ) ; 
printf ( " LeftBound : %d\nV , LeftSearchBound ) ; 
printf ( " RightBound : %d\n" , RightSearchBound ) ; 
urintf ( V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ) ; 

DumpByteBuf ( ( BYTE * ) RowImageBuf->GetImageBaseAdx() , RowImageBuf->GetElementsO - 1 1 ; 
DumpFloatBuf ( ( float * ) RowDistributionBuf-XetImageBaseAdxO , RowDistributionBuf-,>GetElements( 

) - I ) ;  
exit ( 1 ) ; 

1 

const float * RowCistributionImage = ( const float * ) RowDistributionBuf->GetImageBaseAd}: ( ) ; 
unsigned n = RowIrrageBuf->GetElements() ; 

Detections = 0 ; 
Retries = 0 ; 

while ( ! ( Retries > MaxRetries ) ) 
I 
ClearRowHitBuf ( 0 , n - 1 ) ; 

Page 15 



DetectionCenter = 0 ; 

Hits = 0 ; 

for ( i = O ; i < = n ; i t t )  
I 

if ( RowDistributionImage[i] >= Threshold ) 

I 
RowHitBuf [i] = Oxff ; 
Hits ++ ; 

1 

if ( Hits >= MinimumDetectionWidth ) 

I 

for ( i = O ; i < = n ; i + t )  

f o r ( j = i ;  j < = n ;  j t t )  
if ( ! RowHitBuf[j] ) 
break ; 

if ( k >= MinimumDetectionWidth ) 
if ( k <= MaximumDetectionWidth ) 

I 
Detections tt ; 

Detectioncenter = LeftSearchBound t i t k / 2 ; 

if ( Detections > 1 ) 
break ; 

/ / 
/ /  if we've found multiples , raise threshold 
/ / 
if ( Detections > 1 1 
Threshold *= ( 1.00 + Field->Threshold.StepFactor ) ; 

/ / 
/ /  if we've found only one , then we're done 
/ / 
else if ( Detections == 1 ) 
break ; 

/ / 
/ /  if we've found none , then 1owe.r threshold 
/ / 
else if ( Threshold > Field->Threshold.MinimurnAllowable ) 
Threshold *= ( 1.00 - Field->Threshold.StepFactor ) ; 

/ / 
/ /  if SoftThreshold is already at minimum 
/ /  allowable , then there's nothing detectible 
/ /  in this data : go home . 

Page 16 



l /  
else 
t 
Retries = MaxRetries t 1 ; 
break ; 

\ 

/ / 
/ /  make sure we count this try 
/ / 

Retries tt ; 

/ / 
/ /  if we've arrived here with 
/ /  less than MaxRetries , we've 
/ /  detected a target which meets 
/ /  our entry criteria . 
/ / 

if ( ! ( Retries > MaxRetries ) ) 

t 
if ( Field->Threshold.Modifiable ) 
Field->Threshold.Level = Threshold ; 

I 

else 
DetectionCenter = gmTARGET-NOTFOUND ; 

return DetectionCenter ; 

unsigned gmLaneDetector::ScanField ( gmVIDEOFIELD * Field ) 

I 

g m ~ m C E  - MAC ( "gmLaneDetector::ScanField : Entering\n1' ) ; 

unsigned i , ~etectioncenter ; 

for ( i = p->Size = 0 ; ( ( i < Field->Height ) & &  ( p->Size < Hitsetcapacity ) ) ; i tt ) 

i 

DetectionCenter = ProcessRow ( Field , i ) ; 

if ( Detectioncenter ) 

t 
p->~lement[p->Size].Center = DetectionCenter ; 
p->Element[p->Sizel.RowNo = Field->Region.top + i ; 
p->Size t+ ; 

1 

gmTRACE-MAC ( "gmLaneDetector::ScanField : Exiting\nU ) ; 
Page 17 



return HitSet.Size ; 
\ 

void gmLaneDetector::ProcessFarField ( ) 

I 
gmTRACE-MAC ( "gmLaneDetectoz::ProcessFarF~eld : Entering\nl' ) ; 

int i ; 

unsigned LeftLirnitFarField = gmINITIAL-FARFIELD-LEFTLIMIT ; 
unsigned RightLimitFarField = gmINITIAL-FARFIELD-RIGHTLIMIT ; 

FarLeftField->Threshold.Level = FarRightField->Threshold.Level ; 
~ar~eft~leld->Threshold.Modifiable = FALSE ; 
~ar~i~ht~ield->Threshold.Modifiable = TRUE ; 

/ /  here is where we adapt our mid and far field 
/ /  parameters to the current location of the 
/ /  target vehicle's rear shadow . 
/ / 

FarLeftField->BaseLine = FarRightField->BaseLine = ( unsigned ) LicencePlateDetector->GetCurr 
entRearShadowRow ( ) - 2  ; 

FarLeftField->Region.top = FarRightField->Region.top = FarRightField->BaseLine ; 

double TimeSinceMostRecentLeftDetection = SystemInfo->Time.Elapsed - SystemInfo->CurrentLane.Far.Mos 
tRecentLeftDetectionTime ; 

double TirneSinceMostRecentRightDetection = SystemInfo->Time.Elapsed - SystemInfo->CurrentLane.Far.Mos 
tRecentRightDetectionTime ; 

double LaneLocTimeOutVal = SystemInfo->CurrentLane.Far.LaneLocTimeOutVal ; 

unsigned FarLeftColEstimate , FarRightColEstimate ; 

if ( ( TirneSinceMostRecentRightDetection < LaneLocTimeOutVal ) & &  SystemInfo->CurrentLane.RightFarS 
1ope.Valid ) 

I 
I 

FarRightField->Region.left = SystemInfo->CurrentLane.Far.Right.Col - 20 ; 
Page 18 



else if ( ( SystemInfo->CurrentLane.RightNearSlope.Valid ) & &  ( TimeSinceMostRecentRig!~tDetection < 
3 * LaneLocTimeOutVal ) 1 

I 
Rightpointshots ++ ; 
FarRightColEstimate = PointShoot ( & SystemInfo->CurrentLane.Mid.Right , SystemInfo->State.RollAvg. 

RightNearSlope , FarRightField->BaseLine ) ; 
FarRightField->Region.left = FarRightColEstimate - 20 ; 
FarRightField->Region.right = FarRightColEstimate + 20 ; 

if ( ( unsigned ) FarRightField->Region.right > SystemInfo->CurrentLane.Mid.Right.Col ) 

I 
~arRightField->Region.right = SystemInfo->CurrentLane.Mid.Right.Col ; 
FarRightField->Region.left = FarRightField->Region.right - 40 ; 

else 
t 

* FarRightField = InitialFarRightField; 
/ / /  FarRightField->Region.right = SystemInfo->Field.MidRight.Region.right ; 

FarRightField->Region.right = SystemInfo->CurrentLane.Mid.Right.Col ; 
FarRightField->Threshold.Modifiable = TRUE ; 

if ( ( TimeSinceMostRecentLeftDetection < 5 * LaneLocTimeOutVal ) & &  SystemInfo->CurrentLane.LeftFa 
rSlope.Valid ) 

else if ( ( SystemInfo->CurrentLane.LeftNearSlope.Val ) & &  ( TimeSinceMostRecentLeftDetection < 5 
* LaneLocTimeOutVal ) ) 

t 
Leftpointshots ++ ; 
FarLeftColEstimate = PointShoot ( & SystemInfo->CurrentLane.Mid.Left , SystemInfo->State.RollAvg.Le 

ftNearSlope , FarLeftField->BaseLine ) ; 
FarLeftField->Region.left = FarLeftColEstimate - 20 ; 
FarLeftField->Region.right = FarLeftColEstimate + 20 ; 

if ( ( unsigned ) FarLeftField->Region.left < SystemInfo->CurrentLane.Mid.Left.Col ) 

t 
FarLeftField->Regicn.left = SystemInfo->CurrentLane.Mid.Left.Col ; 
FarLeftField->Regicn.right = FarLeftField->Region.left + 40 ; 

1 

else if ( FarLeftField->Region.left >= FarRightField->Region.right ) 

else 

* FarLeftField = InitialFarLeftField; 
/ / / FarLeftField->Region.left = SystemInfo->Field.MidLeft.Region.left ; 

FarLeftField->Region.left = SystemInfo->CurrentLane.Mid.Left.Col ; 
FarLeftField->Threshold.Modifiable = TRUE ; 

if ( ScanField ( FarRightField ) ) 

t 



gmLaneDetector-1-cpp.txt 
if ( ScanField ( FarLeftField ) ) 

( 
SystemInfo->CurrentLane.Far.left = RegressHitSet ( ) ; 
SystemInfo-~CurrentLane.Far.MostRecentLeftDetectionTime = SystemInfo->Time.Elapsed ; 

1 

void gmLaneDetector::ProcessMidField ( ) 
( 
gmTmcE-MAC ( "gmLaneDetector::ProcessMidField : Entering\nl' ) ; 

const unsigned FieldWidth = 120 ; 
unsigned i = 0 , HalfFieldWidth = FieldWidth >> 1 ; 

system~nfo->Field.MidLeft.Threshold.Level = SystemInfo->Field.MidRight.Threshold.Level ; 
Mid~eftField->Threshold.Modifiable = FALSE ; 
Mid~ightField->Threshold.Modifiable = TRUE ; 

double TimeSinceMostRecentLeftDetection = SystemInfo->Time.Elapsed - SysternInfo->CurrentLane.Mid.Mos 
t~ecent~eft~etectionTime ; 

double TimeSinceMostRecentRightDetection = SystemInfo->Time.Elapsed - SystemInfo->CurrentLane.Mid.Mos 
tRecentRightDetectionTime ; 

double LaneLocTimeOutVal = SystemInfo->CurrentLane.Mid.LaneLocTimeOutVal ; 

if ( TimeSinceMostRecentRightDetection < LaneLocTimeOutVal ) 

1 
if ( SystemInfo->CurrentLane.Mid.Right.Col > ( 639 - HalfFieldWidth ) ) 
MidRightField->Regionaright = 639  ; 

else 
MidRightField->Region.right = SystemInfo->CurrentLane.Near.Right.Col ; 

~id~ight~ield->Region.left = MidRightField->Region.right - FieldWidth ; 

else 
1 
SystemInfo->Field.MidRight = InitialMldRightField; 
SystemInfo->MidLaneAcquired = FALSE ; 

1 

if ( TimeSinceMostRecentLeftDetection < 2.5 * LaneLocTimeOutVal ) 

1: 

if ( SystemInfo->CurrentLane.Mid.Left.Col <= HalfFieldWidth ) 
MidLeftField->Region.left = 0 ; 

else 
Page 20 



Nid~eftField->Region.right = MidLeftField->Regicn.left t FieldWidth ; 

else 
( 
system~nfo->Field.MidLeft = InitialMidLeftField; 
MidLeftField->Threshold.Modifiable = TRUE ; 

if ( ScanField ( & SystemInfo->Field.MidRight ) 1 
( 
SystemInfo->CurrentLane.Mid.Right = RegressHitSet ( ) ; 

if ( ScanField ( & SystemInfo->Field.MidLeft ) ) 

i 
SystemInfo->CurrentLane.Mid.left = RegressHitSet ( ) ; 

void gmLaneDetector::ProcessNearField ( ) 
I 

const unsigned FieldWidth = 120 ; 
unsigned i = 0 , HalfFieldWidth = FieldWidth >> 1 ; 

if ( FramesProcessed == 104 ) 
, , 
1 = 1 ;  

Systeminfo->Field.NearLeft.Threshold.Level = SystemInfo->Field.NearRight.Threshold.Level ; 
NearLeftField->Threshold.Modifiable = FALSE ; 
NearRightField->Threshold.Modifiable = TRUE ; 

double TimeSinceMostRecentLeftDetection = SystemInfo->Time.Elapsed - SystemInfo->Currentl;ane.Near.Most 
RecentLeftDetectionTime ; 
double TimeSinceMostRecentRightDetection = SystemInfo->Time.Elapsed - SystemInfo->Currentl;ane.Near.Most 

RecentRight~etectionTime ; 
double LaneLocTimeOutVal = SystemInfo->CurrentLane.Near.LaneLocTimeOutVal ; 

if ( FramesProcessed > 3 * gmLD-SYSTEM-HISTORYDEPTH ) 

I 



gmLaneDetector-1-cpp.txt 
if ( TimeSinceMostRecentRightDetection < LaneLocTimeOutVal ) 
{ 

if ( SystemInfo->CurrentLane.Near.Right.Col > ( 639 - HalfFieldWidth ) ) 
NearRightField->Region.right = 639 ; 

else 
~ear~i~htField->Region.right = SystemInfo->CurrentLane.Near.Right.Col t HalfFieldWidth ; 

NearRightField->Region.left = NearRightField->Region.right - FieldWidth ; 

else 
( 
SystemInfo->Field.NearRight = InitialNearRightField; 

i 

if ( TimeSinceMostRecentLeftDetection < 2.5 * LaneLocTimeOutVal ) 

i 
if ( SystemInfo->CurrentLane.Near.Left.Col <= HalfFieldWidth ) 
NearLeftField->Region.left = 0 ; 

else 
NearLeftField->Region.left = SystemInfo->CurrentLane.Near.Left.Col - HalfFieldWidth ; 

NearLeftField->Region.right = NearLeftField->Region.left t FieldWidth ; 

else 
i 
SystemInfo->Field.NearLeft = InitialNearLeftField; 
NearLeftField->Threshold.Modifiable = TRUE ; 

I 

if ( ScanField ( & SystemInfo->Field.NearRight ) ) 

I 

SystemInfo->LaneAnchored = TRUE ; 
SystemInfo->CurrentLane.Near.Right = RegressHitSet ( ) ; 
SystemInfo->CurrentLane.Near.MostRecentRightDetectionTme = SystemInfo->Time.Elapsed ; 

if ( ScanField ( & SystemInfo->Eield.NearLeft ) ) 

( 
SystemInfo->CurrentLane.Near.Left = RegressHitSet ( ) ; 
SystemInfo->CurrentLane.Near.MostRecentLeftDetectonTme = SystemInfo->Time.Elapsed ; 

1 

else 
t 
SystemInfo->LaneAnchored = FALSE ; 
SystemInfo-zField.NearLeft = InitialNearLeftField; 
SystemInfo->Field.NearRight = InitialNearRightField; 

I 

void gm~aneDetector::ProcessFields ( ) 

gmTRACE-MAC ( "gmLaneDetector: :ProcessFields ( )  : Entering\nl' ) ; 

Page 22 



gmLANEINFO * gmLaneDetector::ProcessFrame ( BOOL DisplayResultEnb , BOOL DebugEnb ) 

I 
gmTRACE-MAC ( "gmLaneDetector::LaneDetect : Entering\nl' ) ; 

if ( TestEnable ) 
 ERROR-MAC ( " gmLaneDetector::ProcessFrame() : Cannot Process normal frame when Test  nabl led" ) 

FrameNo = VideoFrameBuffer->GetIdx() ; 
UpdateTimeInfo ( ) ; 

if ( DebugEnb ) 
printf ( " ( 88.6f , %8.6f , 88.6f )\n" , SystemInfo->Field.NearRight.Threshold.Level , SystemInfo->F 

ield.MidRight.Threshold.Leve1 , SystemInfo->Field.FarRight.Threshold.Level ) ; 

UpdateSystemInfo ( ) ; 

Adaptparameters ( ) ; 

FramesProcessed ++ ; 

return & SystemInfo->CurrentLane ; 

void gmLaneDetector::TestProcess ( ) 

( 
gmTRACE MAC ( "gmLaneDetector::TestProcess : Entering\nl' ) ; - 

if ( ! TestEnable 
gmERROR-MAC ( " gmLaneDetector::ProcessFrame() : Cannot execute Test Process when test not enabled" 

) 

FrameNo = VideoFrameBuffer->GetIdx() ; 
UpdateTimeInfo ( ) ; 
FramesProcessed ++ ; 



void gmLaneDetector:: ( ) 

t 
gmTRACE-MAC ( "gmLaneDetector:: : Entering\nl' ) ; 



Appendix B 





/ * 
* file : gmK1ugeDetector.h 
* date : 05/19/97 
* 
* / 

#ifndef GMKLUGEDETECTOR-INCLUDED 
#define GMKLUGEDETECTOR-INCLUDED 

class gmBuffer 
class gmVideoStream ; 
class gmViewPort 
class gmDataLogger 

/ *  Defined symbolic constants * /  

#define IM-UNSIGNED 0 
#define IM-SIGNED 1 
#define IM-FLOAT 2 

#define IM-CHAR 0 
#define IM-INT 1 
/ *  IM-FLOAT defined as above * /  
#define IM-LONG 3 
#define IM-SHORT 4 

class gmKlugeDetector 
I 

private : 

char * VideoStreamSourceFileName ; 

BOOL DataLoggingTestEnable ; 

BOOL Firstpass , ReInit ; 

char * ExecutionTraceDataDumpPath ; 

RECT InitialSelectedRegion ; 

RECT 
RECT 

gmViewPort * Viewport ; 
gmBuf f er * ImageBuf ; 

BOOL LockedOn ; 

Page 1 



RECT 
RECT 
gmBUFLOC 

RECT 
RECT 

int 
int 

int 
int 
int 
int 

gmKlugeDetector-h.txt 
PlateEvaluationRegion ; 
PlateBoundary ; 
PlateCentroid ; 

int CurrentRearShadowRow , PrevRearShadowRow ; 

int 
int 

int 
int 
int 
int 
int 

CurrentPlateWidth ; 
CurrentPlateHeight ; 
CurrentPlateULrow ; 
CurrentPlateULcol ; 
PrevPlateWidth ; 

kkIMAGE * * PrewRes ; 

int FrameIdx ; 

void CreateDataLoggingTable ( ) ;  
double Square ( double x I ;  
double Spike ( double Scale , double x ) ;  
void DumpKlugeImage2M ( char * FileName , kkIMAGE * Image , int ImageHeight , int Imagewidth ) ;  
void SetSubImage ( kkIMAGE * Image , RECT & SubImageRegion ) ;  
int CloseKKimage ( kkIMAGE * img ) ;  
kkIMAGE * OpenKKimage ( int pixtype , int pixbits , int SubImageHeight , int SubImageWidth ) ;  
kkIMAGE * * Prewitt ( kkIMAGE * RawImage , int RawImageWidth , int RawImageHeight ) ;  
double Findplate ( int Platewidth , int * BestULrow , int * BestULcol ) ;  
int FindRearShadow ( ) ; 
void Updateplateparameters ( ) ; 

public : 

void ReInitialize ( ) ; 

int AdaptiveFindPlate ( BOOL DebugEnb = FALSE ) ; 

int AdaptiveFindRearShadow ( BOOL DebugEnb = FALSE ) ; 

void ProcessFrame ( int Idx , BOOL DebugEnb = FALSE ) ; 

int GetCurrentRearShadowRow() { return CurrentRearShadowRow ; ) ; 
gmBUFLOC ~et~lateCentroid() I return Platecentroid ; ) ; 
int GetPlateWidth ( )  { return Currentplatewidth ; } ; 

Page 2 



/ *  
* file : gmKluge3etector.cpp 
* date : 05/19/97 
* 

static char LoggerDataFieldsGLB[l = "F~ameNo,FrameTimeStamp,ElapsedTime,"\ 
"CentroidRow,CentroidCol,CentroidVariancel' ; 

static char LoggerDataTypesGLB[] = "integer,double,double,"\ 
"integer,integer,double" ; 

static char LoggerTestDataFieldsGLB[] = "FrameNo,FrameTimeStamp,ElapsedTime" ; 
static char LoggerTestDataTypesGLB [ I  = "integer,double,double" ; 

void gmK1ugeDetector::CreateDataLoggingTable ( ) 

char * BaseDataLoggingTableName ; 

unsigned n = strlen ( VideoStreamSourceFileName ) ; 

if ( DataLogglngTestEnable ) 
( 

Base~ataLoggingTableNarne = new char [ strlen ( "lpd-" ) + n + strlen ( "-TestM ) + 1 ] ; 
strcpy ( ~aseDataLoggingTableName , "lpd-" ) ; 
strcat ( BaseDataLoggingTableName , VideoStreamSourceFileName ) ; 
strcat ( SaseDataLoggingTableName , "-Testu ) ; 
DataLogTableInfo = DataLogger-XreateTable ( BaseDataLoggingTableName , LoggerTestDataFieldsGLB , Log 

gerTestDataTypesGLB ) ; 
1 

else 
i 

B a s e ~ a t a ~ o g g i n g ~ a b l e N a r n e  = new char [ strlen ( "lpd-" ) t n t 1 1 ; 
strcpy ( BaseDataLoggingTableName , "lpd-" ) ; 
strcat ( BaseDataLoggingTableName , VideoStreamSourceFileName ) ; 
DataLogTableInfo = DataLOgger-XreateTable ( BaseDataLoggingTableName , LoggerDataFieldsGLB , LoggerD 

ataTypesGLB ) ; 
1 

double gmK1ugeDetector::Square ( double x ) 



gmKlugeDetector-cpp.txt 
gmTRACE-MAC ( "gmKlugeDetector::Square() : Entering\nW ) ; 
double y = x * x ; 
 TRACE-MAC ( "gmKlugeDetector: :Square ( )  : Exiting\nl' ) ; 
return y ; 

1 

double gmK1ugeDetector::Spike ( double Scale , double x ) 

{ 
gmTRACE-MAC ( "gmKlugeDetector::Spike() : Entering\nV ) ; 
double y = 1.0 / ( 1.0 t ( Scale * x * x ) ) ; 
gmTRACE-MAC ( "gmKlugeDetector::Spike() : Exiting\nU ) ; 
return y ; 

1 

void gmKlugeDetector::DumpKlugeImage2M ( char * FileName , kkIMAGE * Image , int ImageHeight , int Imagew 
idth ) 

FILE * p ; 
float * q ; 
i n t i ,  j , k ;  
char Filespec [2561 ; 

if ( Image->pixtype ! =  IM-FLOAT ) 
( 
printf("~GordoDumpKlugeImageASCII>: unsupported kkIMAGE pixel type\nN); 
exit (0) ; 

\ 

sprintf ( FileSpec , "%S.mn , FileName ) ; 

p = fopen ( Filespec , "w"  ) ; 
q = ( float * ) Image->img ; 
k = O ;  

fprintf ( p , " % s = [  . . .\nn , FileName ) ; 

for ( i = 0 ; i < ImageHeight ; i +t ) 

I 

for ( j = 0 ; j < Imagewidth ; j tt ) 
fprintf ( p , "%12.6f " , q[kt+J ) ; 

fprintf ( p , "\n" ) ; 

fseek ( p , - 1 , SEEK-CUR ) ; 

fprintf ( p , "I ;\n" ) ; 

fclose ( p ) ; 

Page 2 



void gmK1ugeDetector::SetSubImage ( kkIMAGE * Image , RECT & SubImageRegion ) 

int gmK1ugeDetector::CloseKKirnage ( kkIMAGE * img ) 

( 
gmTRACE - MAC ( "gmKlugeDetector::CloseKKimage() : Entering\nW ) ; 

INT Status = 0 ; 

if ( ! img ) 
[ 
Status = 1 ; 
goto EXIT ; 

I 

delete [limg->img ; 
delete img ; 

EXIT : 

return Status ; 

kkIMAGE * gmK1ugeDetector::OpenKKimage ( int pixtype , int pixbits , int SubImageHeight , ir~t SubImageWid 
th ) 

kkIMAGE * p = new ( kkIMAGE ) ; 

i f ( ! p )  
I 
printf("<OpenKKimage>: failure allocating new kkIMAGE\nl'); 
exit (0) ; 

1 

p->bounds.rs = 0 ; 
p->bounds.cs = 0 ; 
p->bounds.re = SubImageHeight - 1 ; 
p->bounds.ce = SubImageWidth - 1 ; 

p->pixtype = pixtype; 

if (pixtype == IM-FLOAT) 
pixbits = 8 * siZeof(fl0at); 

else if (pixtype == IM-SIGNED) 
pixbits = 8 * sizeof(int); 

else if (pixtype == IM-UNSIGNED) 
pixbits = 8; 

Page 3 



gmKlugeDetector-cpp.txt 
else 
( 
printf("<OpenKKimage>: unsupported kkIMAGE pixel type\nW); 
exit (0) ; 

1 

p->pixbits = pixbits; 
p->pixtype = pixtype; 
p-zimg = new unsigned char [ SubImageHeight * SubImageWidth * ( pixbits / 8 ) ] ; 

i 
printf("<OpenKKimage>: failure allocating new kkIMAGE pixel buffer\nl'); 
exit (0); 

1 

return ( p ) ; 

/ / 
/ /  05/14/98 
/ /  Gordo's version of Kluge's Routine to 
/ /  perform Prewitt image gradient computation 
/ / 

 IMAGE * * gmK1ugeDetector::Prewitt ( kkIMAGE * RawImage , int RawImageWidth , int RawImageHeight ) 

 TRACE-MAC ( "gmKlugeDetector: : Prewitt ( )  : Entering\nt' ) ; 

/ *  static * /  kkIMAGE * * P ;  
int i ,  j , k ;  
int SubImageHeight , SubImageWidth , SubImageVolume , Subimageoffset ; 
unsigned char * PrevRow , * ThisRow , * NextRow ; 
float * mbuf , * dbuf , * SO , * s90 ; 
double dx , dy ; 

/ / 
/ /  what gets passed in here is a raw image structure 
/ /  which contains the full extent of the raw image . 
/ /  the kkSUBIMAGE structure defines the boundary of 
/ /  the region of interest within the overall image . 
/ / 
/ /  hence , all local transform image allocations only 
/ /  need to contain the volume of this sub-image . 
/ / 

SubImageHeight = RawImage->bounds.re - RawImage->bounds.rs + 1 ; 
SubImageWidth = RawImage->bounds.ce - RawImage->bounds.cs t 1 ; 
SubImageVolume = SubImageHeight * SubImageWidth ; 

SubImageOffset = RawImage->bounds.rs * RawImageWidth t RawImage->bounds.cs ; 

/ / 
/ /  we begin by allocate kkIMAGE structures for 
/ /  holding the magnitude and direction 
/ /  transforms of the raw image region bounded 
/ /  by the kkSUBIMAGE parameters. 
/ / 

p = new kkIMAGE * [ 4 1  ; 
p[O] = OpenKKimage i IM-FLOAT , 32 , SubImageHeight , SubImageWidth ) ; / /  Prewitt magnitude 

image 
p[ll = OpenKKimage ( IM-FLOAT , 32  , SubImageHeight , SubImageWidth ) ; / /  Prewitt gradient direction 

Page 4 



image 
p[2] = OpenKKimage ( IM-FLOAT , 32 , SubImageHeight , SubImageWidth ) ; / /  Prewitt 0-degree spiked 

image 
p[31 = OpenKKimage ( IM-FLOAT , 32 , SubImageHeight , SubImageWidth ) ; / /  Prewitt 90-degree spiked 

image 

/ /  
/ /  here we get pointers to the 
/ /  base adx of the image buffer 
/ /  for each of the transform images 
/ / 

mbuf = ( float * ) p[Ol->img ; 
dbuf = ( float * ) p[ll->img ; 
SO = ( float * ) p[2]->img ; 
s90 = ( float * ) p[3]->img ; 

/ / 
/ /  Fill top transform rows with zeros 
/ / 

for ( k = 0 ; k < SubImageWidth ; k tt ) 

mbuf[k] = ( float ) 0.0 ; 
dbuf[k] = ( float ) 0.0 ; 
SO [k] = ( float ) 0.0 ; 
s90 [k] = ( float ) 0.0 ; 

/ / 
/ /  Fill bottom transform rows with zeros 
/ / 

for ( k = SubImageVolume - SubImageWidth ; k < SubImageVolume ; k ++ ) 

I 
mbuf[k] = ( float ) 0.0 ; 
dbuf[k] = ( float ) 0.0 ; 
SO [k] = ( float ) 0.0 ; 
s90 [k] = ( float ) 0.0 ; 

1 

/ / 
/ /  here we perform the Prewitt 
/ /  transform on the raw sub-image 
/ /  producing both a Prewitt gradient magnitude 
/ /  transform image and an image of the 
/ /  Prewitt gradient direction . 
/ / 

ThisRow = ( unsigned char * ) ( & RawImage->img [ SubIrnageOffset ] ) ; 
NextRow = ThisRow t RawImageWidth ; 
k = SubImageWidth ; 

for ( i = 1 ; i < SubImageHeight - 1 ; i tt ) 

t 

/ / 
/ /  we begin by pointing to the raw image 
/ /  row set currently being processed 
/ / 

PrevRow = ThisRow ; 
ThisRow = NextRow ; 
NextRow t= RawImageWidth ; 

/ / 
/ /  set first element of current 
/ /  transform row to zero , 
/ /  bump transform idx 
/ / 

mbuf[k] = 0.00 ; 
dbuf[k] = 0.00 ; 
SO [k] = 0 . 0 0 ;  

Page 5 



s90 [kl = 0.00 ; 

/ / 
/ /  Now transform the current raw sub-image row 
/ /  into magnitude and direction images 
/ /  by scanning from left to right 
/ / 

dx = ( double ) ( - ( ( int ) PrevRow[j-l] t ( int ) ThisRow[j-11 t ( int ) NextRow[j-l] ) 
+ ( ( int ) PrevRow[jtl] + ( int ) ThisRow[jtl] + ( int ) NextRow[j+l] ) ) ; 

dy = ( double ) ( ( ( int 1 PrevRow[j-11 + ( int ) PrevRow [jl + ( int ) ~rev~ow[j+l] ) 
- ( ( int ) NextRow[j-11 + ( int ) NextRow [jl + ( int ) NextRow[j+ll ) ) ; 

if ( mbuf [kl < 0.00001 
dbuf[k] = 0.0 ; 

/ /  
/ /  Normally the following line would be 
/ /  else * dbuf = atan2((double) dy , (double) dx) ; 
/ /  but for the license plate tracking application the following 
/ /  normalization of the angle was needed. 
/ / 

else 
dbuf[kl = ( float ) ( gmRAD2DEG * acos ( fabs ( cos ( atan2 ( dy , dx ) ) ) ) ) ; 

/ / 
/ /  now develop both orthogonal 
/ /  'Spike Enhanced' gradient images 
/ / 

sO[k] = ( float ) Spike ( 0.001 , ( double ) dbuf[kl ) ; 
s90[kl = ( float ) Spike ( 0.001 , ( double ) ( 90.00 - dbuf[kl ) 1 ; 

/ / 
/ /  set last element of current 
/ /  transform row to zero , 
/ /  bump transform idx 
/ / 

mbuf[kl = 0.00 ; 
dbuf[kl = 0.00 ; 
SO [kl = 0.00 ; 
s90 [k] = 0.00 ; 

gmTRACE - MAC ( "gmKlugeDetector : : Prewitt ( )  : Exiting\nr' ) ; 

return ( p ) ; 

Page 6 



gmKlugeDetector-cpp.txt 
double gmK1ugeDetector::FindPlate ( int PlateWidth , int * BestPlateULrow , int * BestPlateU:dcol ) 

I 

int PrewittWidth , PrewittHeight , PrewittVolume , Templateoffset ; 
int i , j , r , c , BestRow , BestCol , PlateHeight ; 
double BestVal , CorVal ; 
float * mbuf , * dbuf , "Obuf , * s90buf ; 

1 / 
/ /  the following order in PrewRes 
/ /  is required : 
/ / 
/ PrewRes[Ol : Prewitt magnitude 
/ /  PrewRes[ll : Prewitt gradient direction 
/ PrewRes[2] : Prewitt 0-degree spiked gradient direction 
/ /  PrewRes[31 : Prewitt 90-degree spiked gradlent direction 
/ / 

PrewittWidth = PrewRes[Ol->bounds.ce - PrewRes[O]->bounds.cs + 1 ; 
PrewittHeight = PrewRes[Ol->bounds.re - PrewRes[O]->bounds.rs + 1 ; 
PrewittVolume = PrewittWidth * PrewittHeight ; 

I*  
* here we move a licence plate template 
* around on the transform image looking 
* for a best fit . 
* 
* the current template dimensions are 
* what we believe the current licence plate 
* dimensions to be 
* 
* we don't want to scan either the first 
* or last row of the the transform images 
* since they are all zero . this is also 
* true for the first and and last position 
* of each transform image row . 
* / 

BestVal = - 1 ; 
PlateHeight = ( PlateWidth >> 1 ) + ( PlateWidth & &  0x0001 ) ; 

for ( i = 1 ; i < PrewittHeight - PlateHeight - 1 ; i++ ) 

I 
for ( j = 1 ; j < PrewittWidth - PlateWidth - 1 ; j ++ ) 

t 
for ( r - 0 , CorVal = 0.00 ; r < PlateHeight ; r ++ ) 

Templateoffset = ( ( i + r ) * PrewittWidth + j ) * sizeof ( float ) ; 

mbuf = ( float * ) ( & PrewRes[O]->img[TemplateOffset] 1 ; 
dbuf = ( float * ) ( & PrewRes[ll->img[TemplateOffset] ) ; 
sObuf = ( float * ) ( & PrewRes(21->img[TemplateOffset] 1 ; 
s90buf = ( float * 1 ( & PrewRes[3]->img[TemplateOffset] 1 ; 

/ * 
* If processing rows other than the first and last row of the 
* plate, look at the left and right edge columns only 
* / 

if ( ( r !=  0 ) & &  ( r !=  ( PlateHeight - 1 ) ) ) 
I 
CorVal += ( double ) ( mbuf [O] * s0buf [O] ) ; 
CorVal += ( double ) ( mbuf [PlateWidth - 11 * sObuf[PlateWidth - 11 ) ; 

1 

/ * 
* Otherwise, if looking at the top or bottom row, 
* look at the entire width of the plate 
* / 

Page 7 



else 
for ( c = 0 ; c < Platewidth ; c t+ ) 

CorVal += ( double ) ( mbuf[cl * s90buf[c] ) ; 

/ * 
* If a previous location was passed in, weight the result so that 
* points near the previous location are prefered. Have a bigger 
* bias against motion up/down in the image than against motion 
* left/right in the image. 
* / 

if ( PrevPlateULrow > 0 ) 
CorVal *= (1.000 / (1.000 + 0.001 * Square ( ( double ) ( j - PrevPlateULcol ) + 0.003 * Square 

( ( double ) ( i - PrevPlateULrow ) ) ) ) ; 

/ *  
* if we've got a higher correlation 
* than our previous best fit value 
* then save the upper left pixel coord 
* of the current template location . 
* / 

if (CorVal > BestVal) 
( 
BestVal = CorVal ; 
BestRow = i ; 
BestCol = j ; 

1 

* BestPlateULrow = BestRow ; 
* BestPlateULcol = BestCol ; 

return ( BestVal ) ; 

int gmKlugeDetector::FindRearShadow ( ) 

( 

int i , j , PrewittWidth , PrewittHeight , PrewittVolume , Templateoffset ; 
int * BestRowList , BestRowListSize , BestRowListIdx , BestRowListSum , BestRow ; 
double HighestMagVal ; 
float * mbuf ; 

/ /  
/ /  the following order in PrewRes 
/ /  is required : 
/ / 
/ /  PrewRes[O] : Prewitt magnitude 
/ /  PrewRes[l] : Prewitt gradient direction 
/ /  PrewRes[2] : Prewitt 0-degree spiked gradient direction 
/ /  PrewRes[3] : Prewitt 90-degree spiked gradient direction 
/ / 

PrewittWidth = PrewRes[O]->bounds.ce - PrewRes[O]->bounds.cs + 1 ; 
PrewittHeight = PrewRes[Ol->boundsere - PrewRes[O]->bounds.rs + 1 ; 
PrewittVolume = PrewittWidth * PrewittHeight ; 

Page 8 



/ * 
* here we allocate the array which will hold 
* the row of maximum prewitt magnitude for each 
* column evaluated . 
* / 

BestRowListSize = PrewittWidth >> 1 ; 
BestRowList = new int [ BestRowListSize ] ; 
BestRowListIdx = 0 ; 

/ * 
* the way this recognizer works is different from 
* the template locator which finds the best location 
* for the current licence plate . 
* 
* the way we find the current best location for the 
* rear vehicle shadow is conceptually a little simpler 
* 
* we just scan from top to bottom across every other 
* column in the evaluation region looking for the 
* maximum raw prewitt intensity . based on our assumption 
* that the evaluation region has been appropriately 
* initialized by the operator ( sic . . .  ) , we will always 
* find the correct single maximum which will be the 
* vehicle's lower rear shadow edge . 
* 
* all the row values are averaged , and the result is 
* returned as the best fit for the current shadow location 
* 
* once this best value is returned , we don't explicity 
* find the rear shadow for subsequent frames . we'll just 
* get a relative offset to the licence plate centroid and 
* track the rear vehicle shadow relative to that , since 
* we are tracking the licence plate anyway . 
* 
* / 
for ( j = 1 ; j < PrewittWidth - 1 ; 1 += 2 
I 

HighestMagVal = 0.00 ; 

for ( i = 1 ; i < P~ewitt~Ieight - 1 ; i ++ ) 

Templateoffset = ( ( i * PrewittWidth ) + j ) * sizeof ( float ) ; 

mbuf = ( float * ) ( & PrewRes[O]->img[TemplateOffset] ) ; 

if ( * mbuf > HighestMagVal ) 

( 
BestRowList[BestRowListIdx] = i ; 
HighestMagVal = * mbuf ; 

) 

BestRowListIdx ++ ; 

/ * 
* now , the Nest fit row of the 
* vehicle's rear shadow loer edge 
* will be the mean of the all 
* the rows which made it into our 
* list of best rows 
* / 

for ( i = 0 ; i < BestRowListIdx ; i ++ ) 

Page 9 



i 
BestRowListSum += BestRowList[i] ; 

BestRow = BestRowListSum / BestRowListSize ; 

/ * 
* we're done 
* / 

delete [ I  BestRowList ; 

return ( BestRow ) ; 

void gmK1ugeDetector::UpdateElateParameters ( ) 

int MaxAllowableVertMotion = 2 ; 
int MaxAllowableXorzMotion = 2 ; 

CurrentPlateHeight = ( CurrentPlateWidth >> 1 ) t ( CurrentPlateWidth & &  0x0001 ) ; 

/ / 
/ /  if first time thru this code , then 
/ /  we need to initialize the the previous 
/ /  licence plate upper left corner location . 
/ /  we do so by simply setting it equal to 
/ /  the current location . 
/ / 
/ /  CurrentPlateULrow and CurrentPlateULcol are relative 
/ /  to the UL corner of the EvaluationRegion . 
/ / 

if ( FirstPass ) 
PlateInitialWidth = CurrentPlateWidth ; 

if ( FirstPass I I  Remit ) 

I 
OldPlateULrow = PlateEvaluationRegion.top + CurrentPlateULrow ; 
OldPlateULcol = PlateEvaluationRegion.1eft + CurrentPlateULcol ; 
ReInit = FALSE ; 

1 

NewplateULrow = PlateEvaluationRegion.top t CurrentPlateULrow ; 
NewPlateULcol = PlateEvaluationRegion.left + CurrentPlateULcol ; 

/ / 
/ /  we will allow the UL coordinate to change 
/ /  no more than one row and/or one column per 
/ /  frame . 
/ / 

DeltaPlateULrow = NewPlateULrow - OldElateULrow ; 
DeltaPlateULcol = NewPlateULcol - OldPlateULcol ; 

if ( abs ( DeltaPlateULrow ) > MaxAllowableVertMot~on ) 

if ( DeltaPlateULrow < 0 ) 
NewPlateULrow = OldPlateULrow - MaxAllowableVertMotion ; 

else 
NewPlateULrow = OldPlateULrow + MaxAllowableVertMotion ; 



else 
NewPlateULrow = OldPlateULrow + DeltaPlateULrow ; 

if ( abs ( DeltaPlateULcol ) > MaxAllowableHorzMotion ) 

if ( DeltaPlateULcol < 0 ) 
NewPlateULcol = OldPlateULcol - MaxAllowableHorzMotion ; 

else 
NewPlateULcol = OldPlateULcol t MaxAllowableHorzMotion ; 

else 
NewPlateULcoL = OldPlateULcol + DeltaPlateULcol ; 

PlateBoundary.top = NewPlateULrow; 
PlateBoundary.left = NewPlateULcol ; 

P1ateBoundary.bottom = PlateBoundary.top + CurrentPlateHeight ; 
PlateBoundary.right = PlateBoundary.left + Currentplatewidth ; 

PlateEvaluat ionBoundaryMargin = CurrentPlateHeight ; 

PlateEvaluationRegion.top = PlateBoundary.top - PlateEvaluationBoundaryMargin ; 
PlateEvaluationRegion.left = PlateBoundary.left - PlateEvaluat ionBoundaryMargin  ; 

PlateEvaluationRegion.bottom = P1ateBoundary.bottom + PlateEvaluationBoundaryMargin ; 
PlateEva1uationRegion.right = PlateBoundary.right + PlateEvaluationBoundaryMargin ; 

CurrentPlateULrow = PlateEvaluationBoundaryMargin ; 
CurrentPlateULcol = PlateEvaluat ionBoundaryMargin ; 

PlateCentroid.Row = ( ( PlateBoundary.top + P1ateBoundary.bottom ) >> 1 ) t ( ( PlateBound.ary.top t Pla 
teBoundary.bottom ) & 0x0001 ) ; 
PlateCentroid.Co1 = ( ( PlateBoundary.left + PlateBoundary.right 1 >> 1 ) + ( ( PlateBouno.ary.left + P1 

ateBoundary.right ) & 0x0001 ) ; 

OldPlateULrow = NewPlateULrow ; 
OldPlateULcol = NewPlateULcol ; 

void gmKlugeDetector:: 
( 
gmTRACE-MAC ( "gmKlugeDetector: : ( ) : Entering\nl' ) ; 

Following are this class's Public Methods 

gmKlugeDetector::gmKlugeDetector ( gmVideoStream * Videostream ) 

( 
Page 11 



Viewport = Videostream->Getviewport() ; 
VideoFrameBuf = Videostream->GetFrameImageBuf() ; 

kkRawImage = VideoFrameBuf->Export2KlugeIMAGE ( NULL ) ; 

/ / 
/ /  here we initialize the licence 
/ /  plate tracking region 
/ / 

print£ ( " * *  Select Initial Licence Plate Evaluation Region : "  ) ; 

while ( ! Viewport->SelectionReady ( ) ) 
Sleep ( 50 ) ; 

printf ( "\nu ) ; 

/ / 
/ /  here we initialize the rear 
/ /  shadow edge tracking region 
/ / 

printf ( " * *  Select Initial Rear Shadow Evaluation Region : "  ) ; 

while ( ! Viewport->SelectionReady ( ) ) 
Sleep ( 50 1 ; 

printf ( "\nn ) ; 

printf ( " * *  Enter Initial Licence Plate Width : " ) ; 
scanf ( "%dW , & CurrentPlateWidth ) ; 
printf ( "\n" ) ; 

PrevPlateWidth = CurrentPlateWidth ; 
PrevPlateULrow = - 1 ; 
PrevPlateULcol = - 1 ; 

FirstPass = TRUE ; 

AdaptiveFindPlate ( ) ; 
Updateplateparameters ( ) ; 
AdaptiveFindRearShadow ( ) ; 

FirstPass = FALSE ; 

void gmK1ugeDetector::ReInitialize ( ) 

I 
  TRACE-MAC ( "grnKlugeDetector::ReInitialize() : Entering\n1' ) ; 

/ / 
Page 12 



gmKlugeDetector-cpp.txt 
/ /  here we re-initialize the licence 
/ /  plate tracking parameters 
/ / 

printf ( " * *  Select New Licence Plate Evaluation Region : "  ) ; 

while ( ! Viewport->SelectionReady ( ) ) 
Sleep ( 50 1 ; 

PlateEvaluationRegion = Viewport->GetSelectedRegion ( ) ; 

printf ( "\nu ) ; 
printf ( " * *  Enter New Licence Plate Width : " ) ; 
scanf ( "%d" , & CurrentPla'teWidth ) ; 
printf ( "\nu ) ; 

CurrentPlateULrow = - 1 ; 
CurrentPlateULcol = - 1 ; 

PrevPlateWidth = Currentplatewidth ; 
PrevPlateULrow = - 1 ; 
PrevPlateULcol = - 1 ; 

ReInit = TRUE ; 

int gmK1ugeDetector::AdaptiveFindPlate ( BOOL DebugEnb ) 

i 

gmTRACE - MAC ( "gmKlugeDetector : :AdaptiveFindPlate ( ) : Entering\n1' ) ; 

int WidthDelta, br, bc, bi, i, r, c; 
double BestVal, CorVal; 

SetSubImage ( kkRawImage , PlateEvaluationRegion ) ; 

PrewRes = Prewitt ( kkRawImage , 640 , 4 8 0  ) ; 

BestVal = Findplate ( PrevPlateWidth , & CurrentPlateULrow , & CurrentPlateULcol ) ; 

if ( DebugEnb ) 
printf ("Img %5d: best UL corner ( % 3 d ,  %3d)  val = %8.2f, width = %2d\nT', FrameIdx, CurrentPlateULrow , 

CurrentPlateULcol , BestVal, PrevPlateWidth); 

PrevPlateULrow = CurrentPlateULrow ; 
PrevPlateULcol = CurrentPlateULcol ; 

WidthDelta = 1; 

/ * 
* Only reduce the width if the total perimeter energy goes up 
* / 

br = CurrentPlateULrow ; 
bc = CurrentPlateULcol; 

Page 13 



gmKlugeDetector-cpp.txt 
for (i = PrevPlateWidth - WidthDelta , bi = PrevPlateWidth ; i < PrevPlateWidth ; i tt ) 

I 
CorVal = FindPlate ( i , & r , & c ) ; 

if ( DebugEnb ) 
printf ( " Refine: (%d, %d), val = %f, width = %d\nW , r , c , CorVal , i ) ; 

if (CorVal > BestVal) 
i 
BestVal = CorVal ; 
b i = i ;  
b r = r ;  
b c = c ;  

1 

CurrentPlateWidth = bi ; 
CurrentPlateULrow = br ; 
CurrentPlateULcol = bc ; 

/ * 
* Only increase the width if the average perimeter energy goes up 
* / 

BestVal /= ( 2 * ( CurrentPlateWidth + ( ( CurrentPlateWidth >> 1 ) t ( CurrentPlateWidth & &  0x0001 ) ) 

- 1 )  I ;  

for ( i = CurrentPlateWidth , bi = CurrentPlateWidth ; i <= ( CurrentPlateWidth t WidthDelta ) ; i t+ ) 

CorVal = FindPlate ( i , & r , & c ) ; 

CorVal /=  ( 2 * ( i + ( ( i >> 1 ) t ( i & &  0x0001 ) ) - 1 ) 1 ; 

if ( DebugEnb ) 
printf ( "  Refine: (%d, %d) , val = %f, width = %d\nt' , r , c , CorVal , i ) ; 

if ( CorVal > BestVal ) 

i 
BestVal = CorVal; 
b i = i ;  
b r = r ;  
b c = c ;  

CurrentPlateWidth = bi ; 
CurrentPlateULrow = br ; 
CurrentPlateULcol = bc ; 

PrevPlateWidth = CurrentPlateWidth ; 

CloseKKimage ( PrewRes[Ol 1 ;  
CloseKKimage ( PrewRes 111 ) ; 
CloseKKimage ( PrewRes[2] ) ;  
CloseKKirnage ( PrewRes[3] ) ;  
delete ( PrewRes ) ;  

return 0 ; 

Page 14 



int gmKlugeDetector::AdaptiveFindRearShadow ( BOOL DebugEnb ) 

i 

if ( ErameIdx == 0 ) 
FrameIdx = FrameIdx ; 

if ( Firstpass ) 

t 
SetSubImage ( kkRawImage , RearShadowEvaluationRegion ) ; 
PrewRes = Prewitt ( kkRawImage , 640 , 480 ) ; 
CurrentRearShadowRow = FindRearShadow ( ) + RearShadowEva1uationRegion.top ; 

RearShadowInitialOffset = CurrentRearShadowRow - PlateCentroid.Row ; 

PrevRearShadowRow = CurrentRearShadowRow ; 

CloseKKimage ( PrewRes [GI ) ; 
CloseKKimage ( PrewRes [l] ) ; 
CloseKKimage ( PrewRes[Z] ) ;  
CloseKKimage ( PrewRes [ 3 ]  ) ; 
delete ( PrewRes ) ;  

goto MAIN-EXIT ; 
i 

/ * 
* we arrive here only when the system is 
* running smoothly and not on a first video 
* frame . we're just going to update the 
* shadow coordinate parameters based on 
* a linear scaling of the initial values . 
* / 

CurrentRearShadowRow = PlateCentroid.Row + ( int ) ( ( ( ( double ) RearShadowInitialOffset ) * ( ( dou 
ble ) CurrentPlateWidth ) / ( ( double ) PlateInitialWidth ) ) + 0.500 ) ; 

PrevRearShadowRow = CurrentRearShadowRow ; 

MAIN-EXIT : 

RearShadowEvaluationRegion.top = CurrentRearShadowRow ; 
~earShadowEvaluationRegion.left = PlateCentroid.Co1 - 15 ; 
~earShadowEvaluationRegion.bottom = CurrentRearShadowRow + 1 ; 
~ear~hadowEvaluationRegion.right = PlateCentroid.Co1 + 15 ; 

if ( DebugEnb ) 
printf("1mg 55d: best fit row : %3d\nV, FrameIdx , CurrentRearShadowRow ) ; 

return 0 ; 

void grnKlugeDetector::ProcessFrame ( int Idx , BOOL DebugEnb ) 

( 
gm?RACE-MAC ( "gmKlugeDetector:: ( )  : Entering\nW ) ; 

Page 15 



FrameIdx = Idx ; 

AdaptiveFindPlate ( DebugEnb ) ; 
Updateplateparameters ( ) ; 

AdaptiveFindRearShadow ( DebugEnb ) ; 
VlewPort->PaintRectangle ( RearShadowEvaluationRegion ) ; 

ReInit = FALSE ; 

void gmKlugeDetector:: 
I 



Appendix C 









Appendix D 












