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INTRODUCTION

1 . Statement of Main Problem*
This dissertation, as its title suggests, is concerned 

with the relation of formal logic to knowledge. Tradition­
ally viewed as a science embodying the principles of valid 
inference, arising out of the critical analysis of reflec­
tive thinking, logic is now regarded as "the science of 
pure form,..the general science of order" (Stebbing: A
Modern Introduction to Logic, p. 476); in particular, owing 
to the fact that logical principles were found to be expres­
sible in mathematical symbols, and that the formulae thus 
obtained could be handled like mathematical formulae for the 
solution of logical problems, the mathematization of logic 
has progressed to such an extent that pure mathematics is 
considered by many to be a branch of pure logic, and logic 
in its purest form is conceived as the science of abstract 
deductive systems.

A non-mathematician, already painfully aware of the 
difficulties attendant on the problem of knowledge and the 
many controversial issues connected with the relation be­
tween formal logic and truth, may well be pardoned for sup­
posing that these developments in logic merely add to his 
difficulties instead of solving them, and it is by no means 
reassuring to be told that formal logio has nothing to do 
with reality. Even a mathematician whose familiarity with 
postulational technique and the intricacies of abstract de-
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ductive systems enables him to grasp the signigicance of 
these reoent developments and even to carry them further 
may feel an occasional twinge of anxiety regarding the sta­
tus of logio: seeing that the more mathematical the sci­
ence of logio appears to be, the more does it appear to 
stand in need of the same kind of validation as is required 
for mathematics itself, and the more vitally does it seem 
to be affected by the current disputes about the founda­
tions of mathematics.

It is obvious that a reinvestigation of the problem of 
knowledge, to say nothing of the problem of the foundations 
of mathematics, cannot be attempted in a single disserta­
tion. The following pages represent a very modest endeavor 
to investigate some of the main principles involved in the 
construction of those abstract deductive systems which en­
gage the attention of modern formal logicians; and though 
we venture to hope thus to shed some light on Hthe bearing 
of exact methods upon the simple problems of logic," which 
is still "a more pressing matter, at the present junoture, 
than the mere manipulation of the mathematical machinery" 
just as it was when Professor Lewis wrote these words in 
1932 (Symbolic Logic, pp. 69-70), we may be pardoned for 
suggesting that the "business of assessing their precise 
significance for logic" is not so simple as his comment 
might lead one to suppose.

3. Method of Treatment.
The following discussion is deliberately conceived and 

carried on in the simplest terms at our disposal, with a 
minimum of technical language and on a basis of ordinary 
commonsense knowledge. This attempt to ensure clarity and



intelligibility has led to the avoidance of terminology with 
which a non-mathematician may be unfamiliar; but it has also 
entailed a somewhat freer use of certain words than a mathe­
matician would countenance. In particular, we must caution 
the reader that the word "system" is used in a non-mathemat- 
ical sense, and also (except in a few easily identifiable 
passages) the word "set". If the almost complete absence of 
explicit reference to the works of other writers seems aston­
ishing, it will appear less so in the light of the following 
observations: first, most of the matters selected for comment
are so generally accepted as a part of modern logic that they 
receive more or less detailed treatment in the standard manuals, 
and it seemed more advisable to confine ourselves to such an ac­
cepted body of doctrine than to discuss variant opinions of in­
dividual writers, especially since the business of keeping 
abreast of contemporary changes of viewpoint is practically im­
possible; second, if the reader has any doubt about the accuracy 
of certain comments, and if he finds on reflection that these 
still persist, let such inaccuracies be attributed to the pre­
sent writer rather than to any supposed source-material to 
which no reference has been given.

3. Bibliographical Note:
Below are listed the books which have been found most 

useful in connection with the preparation of this disser­
tation. Those marked with an asterisk were studied less 
carefully than the others, or not so extensively used.
Black; The Nature of Mathematics (1933)
Brunschvicg: Les Etapes de la philosophie mathematique

(1912)
Cohen and Nagel: An Introduction.to Logic and Scientific

Method (1934)



Ooffey; The Science of Logic (2 vols., 1912)
♦Cook Wilson: Statement and Inference (2 vols.)
Eaton: General Logic (1931)
Encyclopedia of the Philosophical Sciences, Vol, I, Logic

(1913)
Enriques: Historical Development of Logio (1929)
Johnson: Logic (3 vols., 1921-1924)
Jorgensen: A Treatise of Formal Logic (3 vols., 1931)
Joseph: An Introduction to Logic (1916)
Joyce: Principles of Logic (1908)
Keynes: Formal Logic (1894)
♦Lewis; Survey of Symbolic Logic (1918)
Lewis and Langford: Symbolic Logic (1932)
Meyerson: Du Cheminement de la Pensee (3 vols., 1931)
♦Moore: Philosophical Studies (1922)
Pesch-Frick: Institutiones logicae et ontologioae

(2 vols., 1914-1919)
Ramsey: Foundations of Mathematics
Reymond; Les Principes de la Logique et la critique 
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Principles of Mathematics (1903)
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CHAPTER ONE 

FORMAL LOGrlO AND ABSTRACT SYSTEMS

1. Uninterpreted Abstract 3y3tems.
The fact that formal logic is an abstract system has an 

important bearing, as will be seen, on its relations to epis- 
temology. Hence it will be well to examine in what sense it 
is said to be abstract, and how it is related to other abstract 
systems. A system may be described, quite generally, as a col­
lection or aggregate of elements arranged in a definite order; 
and since the notion of order entails the notion of relation, 
distinction is made between (a) the elements of a system and 
(b) the relations between these elements. Without attempting 
to analyze the notion of system more fully, we may remark that 
the above distinction always holds, even when the elements are 
themselves relations: as elements of a system, they are not
the same as the relations which connect them with other ele­
ments, i.e. with one another. In an abstract system, it is 
usually if not always the case that either the elements or the 
relations or both are in some sense abstract entities; but 
apart from any consideration of the components of such a sys­
tem, the word "abstract" in connection with it expresses a 
characteristic of the symbols employed to represent the sys­
tem. A symbol, or group of symbols, is more or less abstract 

in proportion as it is susceptible of less specific nr mnr<=>
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speoifio interpretation. Thus, the symbol M3 M, inasmuch as 
it is interpreted as the symbol for a single positive integer, 
is less abstraot than the algebraic symbol "a", which is in­
terpretable as symbolizing indeterminately any positive inte­
ger, not to mention a still wider range of possible interpre­
tations. Similarly, the symbol-group "a x b = c", as the ex­
pression of an algebraic equation, is more abstract than the 
symbol-group M2 x 3 « 6"; for the latter symbol-group, accor­
ding to its ordinary interpretation, represents only one of 
the many different though similar interpretations of the for­
mer.

Just as the word “abstraot” refers to symbols which are 
susceptible of different interpretations, so the phrase "ab­
stract system" often refers, in current usage, to such groups 
of symbols as, when variously interpreted, represent different 
systems. Since it is possible to consider, and even to con­
struct, an abstraot symbolic system without reference to any 
particular interpretation of the symbols employed in its con­
struction, attempts have been made to construct such a system 
without any reference whatever to its possible interpretations. 
Inasmuch as the most abstraot system would be the system which 
is susceptible of the greatest possible number of interpreta­
tions, those who aim at the construction of a completely ab­
stract system cannot entirely lose sight of the question of 
possible interpretations. In fact, it is precisely in order 
to ensure unlimited possibility of interpretation that they 
refuse to consider this question until the work of construc­
tion is finished, and meanwhile regard the symbols which they 
employ as meaningless but recognizable marks.



A system of this sort, which may be described quite 
nominally as an uninterpreted system, would presumably be 
constructed along lines suggested by the work of Oarnap and 
others. Certain specifiable collocations of recognizable 
marks* selected and arranged according to arbitrarily-for­
mulated "formation rules", would be known as "well-formed 
expressions", and only suoh expressions would be admitted 
into the system. Some of these would then be taken as "prim­
itive", and further "transformation rules" would specify the 
conditions under which, by various permutations, these ini­
tially-chosen well-formed expressions could give rise to 
others equally well-formed. The system as a whole would thus 
be made up of the initially-chosen well-formed expressions 
and of all other well-formed expressions derived from them in 
accordance with the transformation rules.

As we shall see, there are grave reasons for supposing 
that a completely uninterpreted system, in the above sense, 
cannot be constructed from entirely meaningless marks; and it 
would be unfair to suggest, on the basis of an occasional ref­
erence to "a system which has no interpretation", that even 
the most extreme formalists are directing their efforts to­
wards this ideal. We merely wish to note here certain con­
sequences which would follow if the ideal abstract system were 
to be regarded as a completely uninterpreted set of meaning­
less marks put together in the fashion suggested above.

The utility of such a system, supposing its construction 
possible, could not be questioned on the ground that no actual 
interpretation for it had as yet been discovered: we should
have to show that no interpretation could possibly be discov­
ered. Again, the validity of such a system cannot be settled
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toy the usual tests of oonsistenoy and coherence* That is, we 
could not say of any expression in the system that it was in­
compatible with or contradictory of any other expression, nor 
could we say of any two expressions that one did or did not 
follow from the other* On the purely syntactical level, the 
consistency of any expression would consist merely in its be­
ing well-formed, and the consistency of the system as a whole 
would consist in its being made up of none but well-formed ex­
pressions. Similarly, to say that suoh a system is coherent 
would merely mean that all expressions except those chosen as 
primitive were obtained from previous well-formed expressions 
by legitimate permutations. Hence any such system would be 
both consistent and coherent by the mere fact of having been 
constructed according to the arbitrary rules of formation and 
transformation governing its construction. Finally, we must 
notice that if formal logio be regarded as a completely unin­
terpreted system in this sense, the question of the validity 
of formal logic, or its “formal truth”, is an entirely mean­
ingless question; since, as we have seen, validity entails 
suoh considerations as mutual compatibility and strict deduc­
ibility, which cannot be settled on a basis of mere syntax or 
symbolism.

3. Analysis of the Notion of 3ystem.
If we are to inquire, then, into the validity of formal 

logic, it must be shown that formal logic cannot be regarded 
as a completely uninterpreted system such as we have des­
cribed. An analysis of the notion of system may bring to 
light certain facts which have a bearing on this problem,

and which may help to determine the precise sense in which



formal logic is an abstract system* The preliminary des­
cription of a system as a collection of elements arranged in 
a definite order gives rise, as we have noted, to the con­
clusion that a system is made up of two different kinds of 
entities: (a) mutually-related elements, and (b) relations
between these elements* Although, as was also noted, this 
distinction always holds in the case of any given system, it 
does not entail an absolute difference in kind between the 
entities involved* That is to say, not only may entities 
which are elements in one system be relations in another, but 
they may be the kind of entities which, apart from any sys­
temic function, belong to the category of relations* Abso­
lutely speaking, any kind of entities whatever may function 
as elements in a system; but not every kind of entities may 
function as relations.

What has been said so far of the notion of system is 
also applicable to the notion of class: for the members of
a class are distinct elements, mutually related because of 
some likeness between them. The elements of a system, how­
ever, as distinct from the elements or members of a class, 
must not merely be somehow alike, in virtue of some property 
possessed by the elements either individually or as a group; 
it is further required that they be somehow ordered* Hence 
the relation between elements of a system must be what is 
called an ordering relation* Now, it is plain that mere 
likeness between two or more entities cannot be a basis for 
ordering them: that is, for determining the position of each
element with respect to some other element* The fact that 
several entities are alike is no sufficient ground for deter­
mining which of them is before or after or next to anv n t b »-n
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in space or time or thought.

The somewhat loose usage of the word "order” in ordi­
nary speech, to mean ”any sort of arrangement or relative 
position of objects”, makes it advisable to insist that the 
order oharaoteristio of a system must be what is called 
"regular” order: that is, not only must eaoh element in a
system have a definite place, with respect to at least one 
another element, but the place of each element must be de­
termined by some fixed principle or rule. In other words, 
the ordering relation of the elements of a system must be a 
constant relation, because any variation in it will involve 
a change in the structure of the system as a whole. Such a 
change need not mean that the elements no longer form a sys­
tem, but it means that they form a different system.

The fact that a definite order of elements is essential 
to the notion of system may easily be lost sight of, for two 
reasons. First, as has just been remarked, elements may 
still form a system even though their order be changed. This 
consideration presents no serious difficulty if it be noted 
that their changed order is no less definite than their orig­
inal order. Second, in the case of certain systems, it is by 
no means obvious what the order of the elements is, and henoe 
we may readily suppose that they need not have a definite 
order at all. This is the case especially of complex organi­
zations which are called systems in virtue of the fact that 
their elements all function somehow as means to a common end; 
for example, the post office system, every element of which 
functions as a means of securing the delivery of mail; or a

railway system, each element of which contributes to a cer-
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tain kind of transportation; or the oirculatory system, in 
which each element plays a definite part in the circulation 
of the blood through the living organism# In systems suoh as 
these, possible variations in (for instance) the spatial order 
of the elements may not destroy the systematic character of the 
whole organization; but if the organization as a whole is really 
a system, not only must each element somehow be ordered as a 
means to the common end, but each must be definitely subordina­
ted to, or coordinated with, at least one other element of the 
system.

The fact that the elements of a system must be ordered in 
a definite way enables us to understand in what sense the no­
tion of determinism or necessity is essential to the notion of 
system. It cannot be maintained that some one particular or 
given order is necessary, in the sense that a group of elements 
cannot form a system unless they are ordered in this particular 
way and not possibly any other; this cannot be said in general, 
even though it might be true of some particular group or groups. 
Neither can we say, in general, that some one particular number 
of elements is necessary, in the sense that no new elements could 
be introduced into the system nor any taken away or replaced by 
others. But it must be maintained that the connection between 
the members of any group of elements which form a system is nec­
essary in this sense: each element in the group must be connec­
ted to at least one other element in the group by that relation 
which is the ordering relation of the system. Otherwise there 
would be no warrant for the assertion that the position of every 
element in a system is determined by at least one other element.

The above analysis oould hardly be carried farther without 
introducing characteristics which apply to systems of a definite
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kind rather than to the notion of system in general. At any 
rate, it will suffice to show that a system is not merely an 
aggregate of elements, hut an ordered aggregate, in which the 
ordering relation is so fixed and definite that the position of 
each element is determined, with a kind of necessity, by at 
least one other element.

4. The Notion of Abstraot System.
The phrase "abstraot system", as we have already remarked, 

is currently used to, mean not a system made up of abstract ele­
ments and abstract relations, but an ordered array of abstract 
symbols: the symbols being more or less abstract in proportion
as they are susceptible of more or fewer different interpreta­
tions. We must now attempt to state more precisely what this 
means.

The fact that a system is composed of a number of elements, 
each of which is definitely related to at least one other ele­
ment, i.e., is connected therewith in a definite way so that the 
group as a whole is regularly ordered, gives rise to the notion 
that a system as a whole has a definite form or shape or struc­
ture. Whenever we have to do with anything that has a definite 
structure, we can state more or less exactly what its structure 
is, by saying what are its component elements or parts, and how 
they are connected with one another, in such a way as to indi­
cate the relative position of each element with respect to at 
least one other element. But it is also possible to represent 
structure more directly, in a graphic or pictorial fashion, by 
means of a model or plan or map. The representative foroe of 
suoh devioes consists in this: that they themselves possess,

and hence directly symbolize, certain characteristics of some



other entity, whioh is at least numerically (or “individually") 
different from themselves. Their actual use as symbols is a 
matter of convention; but because of the characteristics which 
they possess, they are, as it were, "natural" symbols of what­
ever possesses those same characteristics. The most completely 
and directly representative symbol will accordingly be one which 
has all the characteristics of that whioh it symbolises, save 
only those characteristics which constitute individual or numeri­
cal difference. It is not easy to think of a Bymbol which exac­
tly fulfils this condition; but we can readily see that a map, 
for example, symbolizes all copies of itself which are made of 
the same material and have the same color, more directly and 
fully than it symbolizes copies of itself which are differently 
colored and made of different material. In the case of direct 
and completely representative symbols, a minimum of interpreta­
tion is required, because the connection between the symbols 
and what they symbolize depends on actual resemblance and hardly 
at all upon convention.

Whenever a directly representative symbol does not possess 
characteristics exactly similar to what it symbolizes, its sym­
bolic force is a matter of convention, and the question of in­
terpretation arises. It may even be that certain actual resem­
blances between that which is a symbol and that of whioh it is 
a symbol have no symbolic or representative significance, be­
cause of conventions governing the use of such objects as sym­
bols. Thus, for instance, if a map is represented or symbolized 
by another map of exactly the same size and shape and color, the 
fact that they are made of the same material may be irrelevant,

unless the material of one is being used symbolically: i.e. un­
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less it is intended to represent the material of the other*
In all cases of direct representation, therefore, at least 
this much interpretation is neoessary: (a) we must determine
what characteristics of the "symbol-object" are symbolic, or 
representative, or significant; and (b) we muBt notice what 
characteristics of the "symbolized objeot" are thus represen­
ted.

In the vast majority of oases where a system is directly 
represented or graphically symbolized, no attempt is made at 
complete representation: that is, we do not, and very often
cannot, effect such representation by constructing another 
system which would be an exact replica or instance of the ori­
ginal. The aim is rather to represent the structure of a sys­
tem, by means of an ordered array of objects, usually marks on 
paper, which has the same structure as the system in question. 
It is customary to speak of any ordered array of elements as 
"a system"; and in particular, an ordered array of symbolic 
marks is commonly called "a symbol-system", or "a system of 
symbols". To depart from this usage seems inadvisable, lest 
confusion arise: but it is far from clear that definite or­
der, which is a necessary condition for a system, iB also a 
sufficient condition. However this may be, it is clear that 
every ordered array has a definite structure; and hence there 
is no difficulty about representing the structure of a system 
by using, as a direct symbol thereof, an ordered array of ele­
ments which is similar in structure to the system which we 
wish to symbolize. For in such a case there is fulfilled that 
condition which we have noted as requisite for direct pictor­
ial representation: namely, the possession, by the symbol, of
the same characteristic as is possessed by what is symbolized.
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It must, of course, be remembered that the ordered array is a 
direct symbol of the structure of the system, rather than of 
the system itself.

A comparatively simple instance of direct though not com­
pletely direct symbolization is the symbolization of a country 
map drawn on a plane surface. Here we have a case of two con­
crete objects, one of which is used as a symbol of the other 
in the following way: certain physical features or character­
istics possessed by the one object, i.e. by the map, are inten­
ded to represent certain physical features of the other object, 
i.e. of the country. The map is a direct or "natural" symbol 
of all and only those characteristics of the oountry which it 
has itself: generally speaking, there will be only one such
characteristic, namely, shape; hence any other features of the 
map which are intended to represent certain features of the 
country have symbolic force only by convention. It is true 
that the relative spatial position of dots on the map may ac­
curately represent the relative spatial position of cities in 
the country; but it cannot be said that the dots and the cit­
ies possess the same spatial characteristics even relatively. 
Not only is the distance between one dot and another much less 
than that between the cities for which the dots stand, but the 
direction from one dot to another may be entirely different 
from the relative direction of the corresponding cities: for
instanoe, a dot to the right of another dot usually stands for 
a city east of another city. To be quite accurate, we should 
remark that the relative distance between two dots is actually 
the same as the relative distance between the corresponding 
cities; for even if the scale of the map be unknown, so that 
we cannot infer the actual distance between two cities from
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the actual distance between the two corresponding dots, we know 
that if the map is drawn to scale,—  as indeed it muBt be, in 
order to be an accurate map,—  the actual distance between any 
two points on the map is a fixed or definite, even though un­
known, fraction of the actual distance between the two corres­
ponding points of the country. The actual sameness here is one 
of proportion; hence it may be said that the distances between 
any two points on the map are proportionately the same as the 
distances between two corresponding points of the country.

The fact that direct or graphic representation is possible 
only if and because a symbol-object possesses the characteris­
tic which it symbolizes may easily be overlooked. For in the 
first place, even when physical features of a concrete symbol- 
obj ect are used to symbolize directly the physical features of 
a concrete symbolized objeot, the dissimilarities between the 
symbol-object and the object symbolized are much-more notice­
able than their similarities, since the former are more numer­
ous. Hence reflection and careful analysis is necessary in or­
der to recognize which features of the symbol-object are di­
rectly symbolic. It is obviously easier to recognize as sym­
bolic a feature which is naturally like to that feature which 
it symbolizes; thus, in the example given above, the shape of 
the map is naturally,—  i. e. , apart from any convention,—  the 
same as the shape of the country. The comparative ease of 
recognition here depends on the fact that the feature in ques­
tion, namely, shape, is readily perceptible in both cases, and 
hence their natural similarity is also readily perceptible.
But when a directly symbolic feature is less readily percep­
tible owing to its complexity, the likeness between it and what 
it directly represents is not so easy to recognize. In the
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second place, when a physical or concrete object is uBed as 
the direct symbol of a non-physical or abstract objeot, we may 
be inclined to say that the likeness between symbol and what 
is symbolized is metaphorical rather than real; for here the 
two objects are so very different that they do not obviously 
have any characteristic in common. The real state of affairs 
is somewhat obscured by inexact use of language, as when it is 
said that a series of dots represents a series of numbers. On 
reflection, however, it is not difficult to perceive that every 
characteristic whioh is direotly symbolized is actually posses­
sed by the concrete object that is used as a symbol-object. In 
the case just mentioned, the symbol objeot, i.e., the set of 
dots, possessed the same characteristic as the symbolized object, 
i.e., the set of numbers: namely, the characteristic of "being
arranged in such-and such a definite order"; and it is this 
characteristic which is directly symbolic. If we wish to be 
accurate in speaking of such symbolism, we should not say, for 
instance, that each dot direotly represents one and only one 
number, but rather that the relative position of each dot di­
reotly represents the relative position of one and only one 
number. Again, a dot in the series of dots can be a direct 
symbol of a number in the series of numbers, because eaoh dot 
and each number agree in having the characteristic of "being 
an element in a series".

The main points which we have been suggesting with regard 
to objects used as direot symbols are: (l) insofar as any ob­
ject, such as a mark or set of marks, possesses some definite 
oharacteristio, either physical or non-physical, it can be used
as a direct symbol of some other (i.e. at least numerically
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distinct) object whicb possesses that same characteristic.
(2) The actual use of such an object as a direct symbol is 
entirely a matter of convention. There is a third point, con­
cerning the abstractness of direct symbols, which may be noted 
in passing. Since the abstractness of any symbol consists in 
its capacity of symbolizing different objects, or of having 
many different interpretations, we see that a direct symbol 
can be abstract to this extent: it can symbolize an infinite
number of numerically distinct entities, i.e., all those which 
can be thought of as possessing the same characteristics as 
itself. For example, a series of dots, inasmuch as it has the 
characteristic of “being a set of elements arranged in a defi­
nite order", can be a direct symbol of anything whatever whioh 
has this same characteristic,—  including, be it noted, the 
same definite order of arrangement; and there is no logical 
limit to the number of numerically-diatinct objects which may 
have this characteristic.

It is hardly necessary to remark that not all symboliza­
tion is direotly representative or graphic, as above described. 
Very often, if not in most cases, ooncrete objects such as 
marks or noises are used as symbols of other objects which have 
little or nothing in common with them. In this way the words 
of a language or the letters of an alphabet are used as symbols 
of objeots which are neither words nor letters: thus, the word
"horse" is often used to symbolize, or represent, or stand for, 
an animal of a certain kind; and a letter such as "a" is often 
used to symbolize a positive integer. This sort of symboliza­
tion, being non-pictorial,—  i.e., not directly representative 
or graphic,—  is not subject to the restriction concerning pic­
torial symbolization: namely, that the symbol-object must it-
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self possess the characteristic or characteristics which it 
symbolizes. Non-pictorial symbols, therefore, can be much 
more abstraot than pictorial ones; they can stand not only 
for all those entities which, while differing at least numeri­
cally from themselves and from one another, can be thought of 
as possessing the same characteristics as they themselves pos­
sess, but also for all those entities which do not possess 
those characteristics. in actual usage, of course, any such 
symbol will be subject to more or less definite restrictions; 
but the point is that these are entirely a matter of conven­
tion, whereas the restriction laid down for directly-repre- 
sentative symbolization is imposed by the very nature of such 
symbolization; for as we have seen, it presents itself on 
analysis as a necessary condition of pictorial or direct rep­
resentation.

Now, when we come to consider any one of the various 
ordered arrays of recognizable marks which are actually used 
as abstract symbol-systems by formal logicians, it would seem 
at first sight as though the symbolization employed in these 
systems is not entirely direot or pictorial* The use of cer­
tain marks to stand for elements in the represented systems 
presents no difficulty; any mark which is an element in the 
ordered array can be used as a direct symbol of anything which 
possesses the same characteristic as itself, i.e., the charac­
teristic of ’'being an element in an ordered array". The dif­
ficulty is rather this; relations between the elements of the 
represented systems, Instead of being symbolized by relations 
between the marks of the ordered array, are symbolized by other 
marks in that same array; and since these marks, which stand 
for relations, have not the same characteristic which they ren-
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resent, i.e., the characteristic of "being a relation between 
elements", it would seem that the relations between the ele­
ments of represented systems are not direotly or piotorially 
Bymbolized.

On analysis, however, it becomes clear that the apparent 
force of this difficulty is due to a misunderstanding. Since 
none of the marks in any abstract system of symbols are them­
selves relations, we must indeed admit that no mark in suoh a 
system whioh is used to stand for a relation is a direct sym­
bol of the relation for which it stands. Nevertheless, it 
would be a mistake to conclude that because a mark has not 
the characteristic of "being a relation" and hence cannot di­
rectly symbolize a relation, it therefore does not possess 
and hence cannot directly symbolize any characteristic of a 
relation. As a matter of fact, every mark in an ordered ar­
ray of marks possesses the characteristic of "having a defi­
nite relative position", with respect to the other marks in 
the array; and since the same characteristic of "having a 
definite relative position" is possessed by every relation 
in a system,—  because a system is an ordered array of re­
lations as well as an ordered array of e l e m e n t s it is 
clear that the marks which are indirect symbols of rela­
tions can directly symbolize the relative position of the 
relations for which they stand, just as the marks which are 
direct symbols of elements can directly symbolize the rela­
tive position of the elements for which they stand.

The above considerations suggest a very important point 
in connection with the use of concrete objects as direct sym­
bols. It must be remembered that such objects as marks have 
two kinds of characteristics: those which thev n n aa a a a
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considered by themselves, i.e., as individual marks, and those 
which they possess when considered with reference to other ob­
jects, particularly suoh objects as are regarded to be only 
numerically distinct from, or other than, themselves, i.e., 
other individual marks. In order to avoid the many problems 
which are raised by the words "absolute" and "relative", we 
shall call the first of these kinds of characteristics "non­
relational", and the second kind "relational". Since both 
these kinds of characteristics can be directly symbolic, both 
must be taken into account in determining whether or not a 
mark is being used as a direot symbol.

This point enables us to explain how it is that a set of 
marks, such as an ordered array, can be directly symbolic of 
characteristics which the marks in the set, considered indi­
vidually, cannot clirectly symbolize. We have seen that each 
mark in an ordered array can directly symbolize the relative 
position of something else, inasmuch as it possesses the 
characteristic of "having a definite relative position". But 
no individual mark can directly symbolize a definite order, 
because it does not possess that characteristic,—  either in 
the sense of "having a definite order", or of "being a defi­
nite order". However, an ordered set or array of individual 
marks does possess this characteristic, and hence can di­
rectly symbolize a definite order,—  provided, of course, 
that the order thus symbolized is the same definite order.
It will be observed that "having a definite order" is a non­
relational characteristic of the set which possesses it, al­
though the definite order of any set is necessarily connected 
with a relational characteristic of each of itB elements: 
namely, the relative Dosition of each inriiwirinoi
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which is to Borne extent at least either the logical ground or 
the logical consequence of the order of the set as a whole.

We are now in a position to say more precisely what is 
meant by an abstract symbol-system. It is an ordered array 
of sensibly-peroeptible objects, usually marks on paper. It 
is called a system not only because the marks are arranged 
in a definite order, in the sense that each mark has a defi­
nite spatial position and therefore definite relational char­
acteristics of a spatial sort with reBpect to the other marks, 
but because some of the marks are arbitrarily considered as 
"relation-marks" and others are considered as "element-marks1*; 
hence the array is not only ordered, but is composed of ele­
ments and relations, after the manner of a system. When it 
is said that such an array is a symbol-system, or a system of 
symbols, this means that either the array as a whole, or its 
individual marks,—  either by themselves or in combination 
with other marks of the array,—  can be used symbolically, or 
used as a symbol. The alternatives here are not mutually ex­
clusive of one another. There is of course no reason why such 
an array, or any mark or set of marks within it, must be used 
to symbolize anything directly or pictorially, rather than in­
directly; but since the aim of those who construct such sys­
tems is primarily pictorial representation, the somewhat leng­
thy analysis which we have made of direct or piotorial symbol­
ization is especially relevant. Apart from a priori considera­
tions, these systems are constructed with the express intent of 
representing directly the structure of other systems which, 
notwithstanding their many mutual differences, agree with one 
another and with the symbol-system in having the same structure.

With regard to the abstractness of a symbol-system, we have



already noted that a system is more or less abstraot in pro­
portion as it has a greater or Bmaller number of different 
interpretations. We have also seen that a symbol or system 
of symbols which is indirectly symbolic has greater abstract­
ness than one which is directly symbolic. Instead of going 
further into the question of the abstractness and possible 
interpretations of symbol-systems in general, we shall con­
sider in some detail the special case of an abstract system 
which is used as a direct symbol of the struoture of at least 
one other system. Not only is this by far the most common 
sort of symbolization in formal logic, but also the principles 
governing abstractness and interpretation which reveal them­
selves as operative in this usage can easily be seen to hold 
in other cases of direct symbolization, either with no change 
at all or else with changes so slight and obvious as to need 
no comment here. Moreover, if our previous analysis is cor­
rect, the use of a symbol-system to symbolize directly the 
struoture of other systems depends on the possession, by the 
symbol-system, of the same structure as is possessed by the 
systems which it is used to symbolize. In consequence, much 
of what is said in the following discussion of this sort of 
symbolization will have a direct bearing on the very important 
question of similarity of structure, or isomorphism, in general.

5. Abstract Systems as Direot Symbols of Struoture.
In order to understand what iB meant by saying that two 

or more systems have the same structure, it will be well to 
begin by analyzing the notion of struoture. The struoture of 
a physical object,—  i.e., of an object which can be thought

of as part of the physical universe,—  is a complex character-



iBtio which may he described as ‘‘having a definite spatial con- 
figuration*'. Note that in order to be called "physical”, such 
an object need not actually exist. If I think of a house, for 
example, I am thinking of a physioal object, and the structure 
of the house of which I am thinking is the physical character­
istic of "having a definite spatial configuration". If the 
house of which I am thinking does not actually exist, then nei­
ther does that particular structure exist which the house would 
have if the house itself existed. Unless such objects as houses 
and such characteristics as "having a definite spatial configura 
tion," be called physical independently of whether they actually 
exist or not, we are apt to overlook the difference between 
those entities which can.—  under certain conditions,—  form 
part of the actual physical universe, and those which cannot 
do so under any conditions, e.g., the square root of minus one. 
Of course, we are not insisting that the word "physical" be used 
here to the exclusion of other possible words; the point is that 
some word is needed to cover this situation, and "physical" is 
perhaps less liable to be misunderstood in this sense.

Analogically, the word "structure" is used to mean a com­
plex characteristic of non-physical objects, which may be des­
cribed as "having a definite non-epatial configuration". The 
same sort of analogy is involved in the use of the word "con­
figuration" to mean something non-spatial; and in order to see 
exactly what this analogy is and on what it is based, we must 
analyze the notion of physical structure more fully. Before 
doing so, we may remark that when there is question of non­
physical objects or non-physical characteristics, the problem 
of their actual existence is quite different from the problem

of the actual existence of physical objects and physical char-
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aoteristios. In order to exist, non-physical entities need 
only to he thought of: for existence in thought is the only 
sort of existence which they can possibly have* It may be 
advisable also to notice that the word "structure", whether 
applied to physical or to non-physical objects, may mean 
either (a) something which has a struoture, or (b) something 
whioh is. a structure. Thus, a building such as a house is 
called "a structure"; and it is also said that a house has 
"structure", meaning that it has a definite structure. When­
ever we have to do with such words, reference to the context 
in which they are used will ordinarily enable us to decide 
which of these two possible meanings is intended in a given 
case* In the present discussion, it should be clear that the 
word "structure" means the characteristic which Ijs struoture, 
and not something which has structure* Strictly speaking, the 
description we gave of structure as "the characteristic of hav- 
ing a definite configuration" is not quite accurate; for struc­
ture is. a definite configuration,—  a characteristic which is 
had by something else, i.e. by something other than, or dis- 
tinot from, itself, at least numerically. Hence it should 
rather be said that structure is the characteristic of "being 
a definite configuration".

When we come to reflect upon the notion of physical struc­
ture, or definite spatial configuration, we observe that what­
ever has structure must have parts: for spatial configuration
is a matter of spatial arrangement of parts. Hence an object 
which has physical structure must be composite, not simple.
We see, moreover, that physical structure involves (a) exten­
sion, or extendedness in space, and (b) a definite shape. The
Shane f t f  f l n w  ftVi -i A / 1 4- 4 / . v  1--- —  — -1------- J ---- -- . _
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inite; when an object is said to be "shapeless" or "amorphous", 
this does not mean that it has no shape at all, or that it has 
not a definite shape, but merely that its shape is too irreg­
ular to be readily perceived and exactly defined* The shape 
of an object as a whole obviously depends upon the spatial 
characteristics of its parts; hence if an object has a defi­
nite spatial configuration, this means that each part occu­
pies a definite spatial position relative to the other parts, 
and that the parts, collectively considered, are arranged in 
a definite spatial order. What may be called the dimensional 
characteristics of the object, i.e., the distance and direc­
tion in which its parts extend, appears to affect structure 
only insofar as these characteristics affect the relative 
spatial position of the parts. In any case, two or more phy­
sical objeots may have the same structure or shape even though 
they differ in size.

When it is used to mean a non-physical characteristic, 
the word "structure" means "a definite non-spatial configura­
tion". In order that an object have structure in this sense, 
it must indeed have parts, but not spatially-extended parts; 
and it can be said to have a definite configuration only be­
cause of the following analogy. Just as definite spatial 
configuration depends upon the relative spatial position of 
each part and hence upon the spatial arrangement or order of 
all the parts collectively, so the words "definite configura­
tion" may be used to mean that non-spatial characteristic 
which arises from definite but non-spatial relative position 
of individual parts, and definite but non-spatial order of
the parts collectively considered. Once we realize that the 
character! n + . i  j j  A, ... _
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order can toe had toy entities which are incapable of existing 
in either space or time, we can readily understand in wlxat 
sense there is said to be a resemblance between physical 
structure and non-physical structure; and this resemblance is 
of course the basis of the analogical use of the word H struc­
ture” to mean a non-physical characteristic.

We are now in a position to make clear what is m e a h t  toy 
similarity of structure, with special reference to the ques­
tion of direct symbolism. It will be remembered that w e  have 
described non-physical structure as non-physical characteris­
tic, rather than as a characteristic of non-physical o b j eoto. 
The reason for this is that although a non-physical o b j ect 
cannot have any physical characteristics, a physical object 
oan have non-physical characteristics. What we have called 
"non-physical structure" might more accurately be spoke11 
as "a-physical structure"; and though we shall continue "to 
make use of the former expression if only to avoid needless 
introduction of new terminology, the prefix "non-" is t o  be 
taken as a mere negative, with no positive opposite connota­
tion. "Non-physical structure", then, means simply structure 
which does not depend upon physical (i.e. spatial) character­
istics, and no reference is ’intended to those other c h a r a c ­
teristics on which it does depend: i*e., to the pnfiitive
qualities of those characteristics, such as their being ‘tem­
poral rather than spatial. in other words, non-physical 
structure is not the contrary of physical structure, b u b  a 
more general kind of structure, which arises whenever we 
have the following conditions fulfilled: (a) a composite
object, either physical or non-physical (i.e. incapable of 
actual exist fin no in +>.« „ n  1 ------ \ /■. \ - 1 -*-



relative position of eaoh part, and hence a definite order of 
all the parts collectively, no matter whether this position and 
order be in space or in time or in thought. Thus, non-physical 
structure, notionally considered, is a generic notion, of which 
spatial structure and temporal structure and also struoture 
which is not spatial and structure which is not temporal are 
species,.

Although the above account of struoture may need to be 
somewhat modified if it is to be accepted as an accurate and 
adequate explanation of the notion of structure in general, 
it should suffice to show that there is a sense in which the 
word '’structure'1 may be applied in the same sense to a char­
acteristic of both physical and non-physical objeots,—  the 
latter being objects which cannot actually exist as part of 
the physical universe. In this sense, any object has a def­
inite structure if the parts of which it is composed eaoh 
occupy a definite position relative to the other parts, so 
that all the parts are arranged in a definite order. Two or 
more objects, such as systems, or ordered arrays, have the 
same structure if each of their parts occupies the same re­
lative position with reference t'O other parts of the system 
in question, and if the order of parts in one system is the 
same as the order of parts in the other system.

Similarity of structure, or isomorphism, between two 
systems, is usually defined in such terms as the following. 
Remembering that a system is an array of elements standing 
in a definite order, and that a system is made up of (a) 
elements and (b) the relations between those elements, we may 
say that any two systems are isomorphic if for every element
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in one system there is one and only one corresponding element 
in the other system, and if the relation which holds between 
any two elements in one system has the same formal properties 
as the relation which holds between the corresponding elements 
in the other system. Because isomorphism is so frequently 
made use of in formal logic as well as in mathematics, it will 
be worth while to see as clearly as possible what this notion 
involves.

In the first place, the one-to-one correspondence of ele­
ments in isomorphic systems means that such systems must have 
the same number of elements. Considering eaoh system as a 
olass of elements, without any reference to definite order, 
we may say that these two classes of elements have the same 
cardinal number, or are cardinally similar. Secondly, since 
the definite order of the systems depends upon the definite 
relative position of each element, we see that in isomorphic 
systems, corresponding elements must occupy the same relative 
position, each in its own system. Moreover, insofar as rela­
tions between elements can be regarded as something distinct 
from the elements between which they hold, it is to be noted 
that there is a one-to-one correspondence between the rela­
tions of isomorphic systems as well as between the elements 
of such systems; hence the relations, as classes, are cardi­
nally similar: and furthermore, corresponding relations must
occupy, eaohL in its own system, the same relative position.

We have already seen that the distinction, within a sys­
tem or an ordered array, between (a) elements and (b) rela­
tions is emphasized by a distinction, on the symbolic level, 
between (a) element-marks and (b) relation-marks. The fur­
ther stress laid upon this distinction in the above defini-
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nition of isomorphism, which contains an explicit reference to 
the formal properties of relations, may suggest that the dis­
tinction between elements and relations within a system is 
greater than it actually is. If our analysis of structure is 
correct, the struoture of a system depends upon the definite 
relative position of each element, and hence upon the definite 
order of all the elements collectively. This suggests that 
what are called "relations11 are rather relational characteris­
tics of the elements; relative position being a relational 
characteristic of each element individually, and order being 
a relational characteristic of the elements collectively, and 
hence of the system as a whole. The same suggestion emerges 
from a consideration of the so-called formal properties of re­
lations. It will be observed that every one of these is de­
fined with reference not merely to the relations which are 
said to have these properties, but also to the terms between 
which the relations hold, i.e., the referents and the relata, 
respectively, of the relations. To mention a few examples: 
a relation is said to be "one-many" because it has one refer­
ent and many relata; a relation is said to be "symmetrical" 
because if it holds between a given referent and a given re- 
latum, it also holds between that relatum and that referent; 
a relation is said to be "transitive" because if it holds 
between one term and another and between that other term and 
a third, it also holds between the first and the third of 
these terms. Thus it would seem that the formal properties 
of relations depend upon the relational characteristics of 
the terms between which these relations hold; that is, upon 
the relational characteristics of the elements of a system 
or ordered array. This view is quite compatible with the
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theory that not all relatione are internal; for even if it he 
granted that the relational oharaoteristics of elements are 
not all of them due to the nature of those elements, or to 
their non-relational characteristics, but are some of them due 
to the fact that an element, without undergoing any internal 
change, is brought into relation with some other element, it 
Beems true nevertheless that at least one non-relational char­
acteristic of such elements is presupposed: namely, an ele­
ment must be such that it can be brought into relation with 
other elements, and so acquire relational characteristics, 
even though these latter do not affect it internally.

The application of isomorphism to the question of direct 
symbolism may be explained as follows. To say that two sys­
tems are isomorphic is to say that they have the same struc­
ture; hence if one of these systems is a symbol-system, it 
can be used to symbolize directly the structure of the other 
Bystem, because it possesses the same characteristic that it 
symbolizes, namely, the same structure. The system ordinar­
ily employed as symbol-systerns are ordered arrays of marks 
on paper; each mark is a sensibly-perceptible (i.e. visible) 
objeot, and therefore a physical object, whose definite po­
sition relative to other marks is a spatial and therefore a 
physical characteristic; and the structure of the system as 
a whole is a physical characteristic, i.e. the definite spa­
tial arrangement of all the marks. Now, even when we take 
into account the convention whereby some of these marks are 
arbitrarily used to symbolize relations and not elements, 
we cannot at once conclude that any physical characteristic 
of these marks (e.g. their relative spatial position) is di­
rectly symbolic. Such a characteristic could be used as a
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direct symbol of the same physical characteristic, which might 
be had by another set of marks or of any other physical object; 
in this usage, the symbol-object would be a map of the object 
symbolized. But as a matter of fact, even when both the symbol 
system and the symbolized system are physical objects, and sim­
ilar in physical structure, it is their similarity of non-phy­
sical struoture which is symbolically important* And so we may 
sum up the situation thus: (a) The physical struoture of "the
set of marks, being a sensibly-perceptible characteristic, fur­
nishes the visibility needed for symbolic representation; (b) 
the significant characteristic, which is directly representa­
tive and which constitutes the directly symbolic foroe of the 
set of marks, is non-physical structure*

Because the abstractness of a system of symbols is greater 
in proportion as it can be used to symbolize direotly a greater 
number of (at least numerically) different systems, the use of 
the non-physical struoture rather than the physical structure 
of suoh systems, as their symbolic characteristic, manifestly 
increases their abstractness; for besides the apparent fact 
that the number of non-physical objects which have structure 
is greater than the number of physical objects, we have re­
marked that non-physical s tructure is a characteristic of both 
kinds of objects, physical andron-physleal. Any set of ele­
ments, each of which occupies a definite relative position 
with respect to the other elements, so that all the elements 
together have a definite order, may be isomorphic with a sys­
tem of symbols, no matter what be the nature of the elements 
or the nature of the relations between them: provided only

that the conditions laid down in the definition of isomor­
phism be fulfilled.
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A clearer understanding of what these conditions mean may­

be had from considering what changes in the elements and in the 
relations of a given system involve a change of struoture. We 
have insisted that the characteristic of structure is always a 
definite characteristic, even though we may not be able to say, 
in the case of something which we recognize as a system, exactly 
what its definite structure is. This merely means that “to be a 
system” entails ”to have a definite or particular structure”, 
i.e. some definite structure; it does not mean that ”to be a 
system” entails "to have this definite structure and not pos­
sibly any other”. When, as in the case of symbol-systerns, we 
are dealing with elements whose characteristics we can alter to 
some extent, and with systems whose characteristics largely de­
pend upon the way in which we decide to construct them, it is 
very important to know beforehand, if possible, what changes 
with respect to the elements and relations which constitute a 
given system will alter the structure of that system; i.e., 
will give rise to another system of different structure. The 
analysis which we have made of isomorphism provides a basis 
for settling this matter. In the first place, any change in 
the number of the elements will affect the structure of any 
system. Two systems which have not the same number of elements 
cannot be isomorphic, because there will not be a one-to-one 
correspondence between the elements of these two Bystems. It 
should be observed that two systems may have the same number 
of elements even when both of them have an infinite number of 
elements; and .in such a case, since there is no assignable 
limit to the number of elements in either system, we cannot 
say how many elements there are in each, for to do so would 
be to assign a limit to their number. (One case of this kind
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deserves special notice, since it is sometimes alleged as an 
exception to the traditional principle that "a whole is 
greater than any one of its parts". Consider the following 
two series: (a) the series of consecutive positive integers, 
—  1,2,3,4,5,... and (b) the series of consecutive positive 
odd integers,—  1,3.5.7.9,... Inasmuch as (a) and (b) are 
cardinally similar, they can be said to have the same number 
of elements; yet since (a) includes not only the odd numbers, 
i.e. all the elements of (b), but also all the even numbers, 
it is clear that the number of elements in (b) is only one- 
half as great as the number of elements in (a). Thus we seem 
to have a whole, (a), which is no greater than a part of it- 
self, (b). On reflection, it will be seen that the anomaly 
here arises from what may be called the use of a double stan­
dard. Series (a) is said to have the same number of elements 
as series (b) on the assumption that there is no assignable 
limit to the number of elements in either series; and on the 
other hand, series (b) is said to have a lesser number of 
elements than (a) on the assumption that there i_s an assign­
able limit to the number of elements in both series. Unless 
the number of elements in (b) has an assignable limit, it is 
plain that the omission of the even numbers,—  i.e. their 
absence from (b),—  need make no difference. And in general, 
when it is said that a whole is greater than any one of its 
parts, the notion of "part" involves the notion of "having 
assignable limits" at least in principle.) In the second 
place, any change in the order of the elements will mean a 
change in the structure of the system or ordered array. Here 
we must deal with a difficulty which arises from our previous

description of structure. We have analyzed structure (e.g.,
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mutually entail each other, we must take care that the char­
acteristic (e.g., y) which we examine to see whether it entails 
the other (e.g., x) is the same one (y) which we saw was en­
tailed by the other (x). If this principle be kept in mind, 
the absence of mutual entailment in such cases as the above is 
not surprising. Insofar as the order "a,b,c,d,e" is entailed 
by the characteristic “next to”, and not by any other relation­
al characteristic of eaoh element, there is absolutely no dif­
ference between this order and the order "e,d,c,b,a". (Note 
that “between" here means "next to" two elements.) The second 
order is actually different from the first: not because each
element is next to at least one other element, but because 
each element which was "to the left of" some other element in 
the first order is "to the right of" that same element in the 
second order. Secondly, it will be noticed that the relative 
position of any single element in the system or array cannot 
be uniquely defined, with respect to any other single element, 
merely in terms of being "next to", or "in immediate contiguity 
with"; for unless such an element is the first in the series,— 
i.e., unless its relative position is already partially defined 
in terms of "ordinal number",—  a unique definition of its re­
lative position involves a reference to two other elements, not 
just one element.

This point is of importance because it emphasizes the fact 
that "order", as a characteristic of a system or array of ele­
ments, involves a reference to the relative positing of the in­
dividual elements, as well as to their relative position. To 
put the matter in a somewhat clearer way: The definite order
of the elements in a system or ordered array involves a refer­
ence to the relative position of each element,—  i.e. to cer-
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pp.34-25, above) in terms of (a) a definite relative position-* 
of eaoh element with respect to at least one other element, 
and (b) a definite order or definite arrangement of all the 
elements collectively; and we remarked that there is a neces­
sary nexus between the definite order of the elements collec­
tively and the definite relative position of each element in­
dividually (p. 18, above). It is clear enough that a change 
in the relative position of any two elements involves a change 
in the order or arrangement of the array as a whole; but not 
every change in the order of elements as a whole involves a 
change in the relative position of even one individual ele­
ment. Consider, for example, the first five letters of the 
alphabet, arranged in the order Ma,b,c,d,e". We may describe 
this arrangement in terms of the relative position of each 
element, by saying that a is next to b, b is next to c, o is 
next to d, etc.; and that b is between a and o, c is between 
b and d, d is between c and e. Now if we consider the same 
five letters arranged thus: "e,d,c,b,aM, although the order
of the elements as a whole is different,—  because this latter 
order is the reverse of the former,—  we notice that no change 
takes place in the relative position of each element individu­
ally; it is still the case that a is next to b, etc., and that 
b is between a and c, etc. , as above said. On reflection, how­
ever, it will be seen that this and similar examples do not 
force us to conclude that a definite relative position of the 
individual elements merely entails but is not entailed by a 
definite order of the elements as a whole. For in the first 
place, the presence or absence of mutual entailment can be de­
termined only if we do not introduce a third characteristic;

that is, in order to determine whether two characteristics
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tain relational characteristics of each element. It is of 
prime importance that no two elements have the same relative 
position. If they did, they would not only be indistinguish­
able, but also, as far as this particular system is concerned, 
they would be only one element, and not two. For, no matter 
what characteristics they have apart from the system,—  i.e. 
no matter what be their individual '‘nature” and no matter what 
differences there are between them from other points of view,—  
all these characteristics are left out of account, and each of 
them is considered merely as “being an element in this (i.e. a 
given) system". Obviously, this characteristic is a character­
istic which they have in common with each other (and with every 
element in the system); therefore it oannot be a basis of dif­
ference between them. “Being an element in this system" en­
tails “having a definite relative position in this system"; and 
this latter may be described in terms of certain relational 
characteristics, as we have said: but however it be described,
"having a definite relative position in this system" oan dif­
ferentiate any element from any other only insofar as the defi­
nite relative position in eaoh case is a different relative po­
sition. To say that two elements in a given system have the 
same relative position is to say that there is no difference 
in the relational characteristics which each of them has in 
respect of the other elements in that system; hence, that they 
have exactly the same relational.characteristics in respect of 
those other elements. Since, as we have seen, all other char­
acteristics are left out of account, it becomes clear that "to 
have the same relational characteristics with respect to all

other elements in a given system" entails "to be the same ele­
ment in that given system"; and thus what appeared to be two
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elements is seen to be one and the same element.

The reason why such a relational charaoteristic as "next 
to" does not bv itself entail that the elements which have it 
individually possess collectively the characteristic of "a 
definite order" is therefore this: it does not entail that
any two terms which have it occupy a different relative posi­
tion; on the contrary, it does entail that those two terms 
have the same relative position, with respect to all other 
elements in the set or system. Since every term is next to 
some other term, it cannot be said of any term in the set 
that the relative position of this term is different from the 
relative position of every other term. But the very notion 
of "order" demands that each term have a definite relative po­
sition of its own,—  that is, that the relative position of 
each term be different from the relative position of every 
other term. If, then, some relational characteristic of the 
elements in a set is to be a basis for order, it must be such 
that each element which possesses it will, in consequence, 
have a definite position of its own relatively to the other 
elements,—  so that no two elements may occupy the same rela­
tive position with respect to the others.

Because a relational characteristic, or "relation", as 
it is usually called, such as "next to" does not fulfil this 
condition, it oannot serve to "generate an order", or cannot 
be "an ordering relation". Relations of this kind are said 
to be "symmetrical", inasmuch as they (so to speak) work both 
ways; they are unaffected by a change in the order of the 
terms between which they hold. Hence it is rightly maintained 
that only "asymmetrical" relations,—  i.e. those which no lon­
ger hold when the order of the terms is changed,—  can gener-
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ate an order*

In declaring that a change of struoture in any system 
can be effected only by a change in the number of elements 
or by a change in the order of the elements supposing their 
number is unchanged, we seem to be omitting all mention of 
the formal properties of relations, thuB ignoring the con­
dition laid down for isomorphism, that the relations between 
corresponding elements must have the same formal properties, 
or be similar. It would be easy enough to point out that any 
change in either the number or the order of elements entails 
a change in those formal properties. The reason why we have 
not given prominence to them is this: As has already been
noted (pp. 86-27, above), there seems no more ground for say­
ing that they are formal properties of relations than that 
they are formal properties of relational characteristics of 
elements. And in attempting an analysis of the notion of 
structure, we have found that certain characteristics of the 
elements of a system appear to be more fundamental than are 
any characteristics of the relations. Thus, a definite 
structure is seen, on analysis, to depend upon the number 
and the order of the elements of a system; and a definite 
order, which is a characteristic of all the elements collec­
tively, is analyzable in terms of the definite and unique 
relative position of each element individually. Without 
minimizing the importance of relations in connection with 
the study of order, we see no reason for obscuring the im­
portance of elements by emphasis upon relations exclusively. 
And if it be true that relations are really characteristics 
of elements, the importance of elements cannot be doubted.
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If we now apply the results of the above discussion of 

struoture and of isomorphism to the matter of abstract symbol- 
systems, the relevance of many details of our analysis will be 
more easily recognized. Any ordered array of recognizably-dis- 
tinct marks on paper can be regarded as a system having a defi­
nite structure. Its definite physical structure will depend 
upon (a) the number of the marks, which are its elements, and 
(b) the spatial order or arrangement of those marks,—  that iB, 
the definite relative position of each mark with respeot to at 
least one other mark, in space. Its non-physical structure 
will depend upon (a) the number of elements, aB before, and 
(b) the non-spatial order or arrangement of those elements.
Here it will be observed that because spatial characteristics 
are left out of account, the definite relative position of each 
element oannot, in all cases, be uniquely determined without 
reference to the relative succession of elements: as we have
seen, two elements which are "next to" each other will have the 
same relative position, if only their contiguity be considered. 
"Being next to in space" ensures a difference of relative posi­
tion, for it is understood that no two distinct elements can 
have the same position in space. ("Relative position" here, as 
always when we have been discussing the elements of a system, 
means, when used of two elements, not "position relatively to 
each other", but "position relatively to some other (i.e. third 
element".) when space i3 left out of account in such cases, we 
can ensure a difference of relative position for each element 
only by taking account of the sequence of adjacent elements,—  
i.e. by observing whioh of the two is before or after the other, 
in thought at least.

Any ordered array of marks can be used as a direct symbol
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other system of elements,—  no matter what sort of objects or 
entities those elements are,—  which has the same struoture; 
inasmuch as suoh an array fulfils the conditions governing di­
rect symbolism (see, e.g. pp. 13-14, above).

If an ordered array of marks were to be used in this way, 
it would directly and primarily symbolize the physical struo­
ture of all physioally-isomorphic systems, or else it would 
directly and analogically symbolize the non-physical structure 
of all non-physioally-isomorphio systems,—  its use in either 
case being a matter of convention. Because of the analogy be­
tween the physical struoture of any system and its non-physi­
cal structure (as explained on pp. 19-23, above), its physioal 
structure can serve as a picture, or sensibly-perceptible di­
rect symbol, of its own non-physical structure and of all oth­
er instances of that same non-physical structure in other sys­
tems.

When we consider the various sets of marks which are ac­
tually used as symbol-systems, it seems clear that their phy­
sioal structure is not directly symbolic. For (a) not every 
mark is intended to be the symbol of an element, and (b) even 
when we take account only of such marks as are intended to be 
symbols of elements, the spatial order of all suoh marks col­
lectively, which as we have seen is necessarily connected 
with the relative spatial position of each mark individually, 
is not intended as a symbol of a similar spatial order of 
elements. Not only do some of the marks stand for relations, 
but also the actual spatial relations between element-marks,

which are a matter of the spatial position of each element— 
mark relative to the other element-marks, have no symbolic



force. This, of course, is a matter of convention. If we 
refleot upon it, however, we oan see that the adoption of 
this convention does not involve a departure from the use of 
phyaical structure as a direct symbol. It only means that 
the actual spatial position of eaoh mark in such an array,
relatively to the other marks, is not what gives rise to the
actual physioal structure of the system. To understand this 
somewhat difficult point, we must understand that the use of 
relation-marks and other non-element marks, instead of rul­
ing out all reference to the spatial arrangement and order 
of the set of element-marks as a whole, merely means that 
this order is other than it appears to be; that is, the non-
element marks indicate that the elements between which such
marks stand have (in some cases at least) a different rela­
tive position-than that indicated by their actual spatial po­
sition.

The reason for this convention, and the basis of it, is 
as follows. Theoretically, since the actual structure of an 
ordered array of marks depends upon their number and upon 
the relative position of each mark with respect to the others, 
we could construct as many systems of different structure as 
there are different ways of spatially ordering any number of 
recognizably-different marks. We might even use marks which 
were all of the same size and shape, in which case the only 
recognizable difference between each would be its different 
spatial position. In practice, however, this would be ex­
tremely difficult and complicated. It would likewise be in­
convenient to represent all possible different relative po­
sitions by different spatial relative positions of the same 
marks, or the same number of marks. Consequently, having:
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agreed that marks which have certain recognisable resemblances 
are to stand for elements in a system, we take other marks, 
recognizably different from these, to stand for relations be­
tween elements* This makes it possible to indicate the rela­
tive position of elements without direct reference to the re­
lative spatial position of element-marks. But it should be 
noted that reference to spatial position is not entirely ruled 
out* One or two examples will serve to make this clear* In 
order to indicate that a given element, a, with reference to 
some other element, b, has the relational characteristic of 
•'being subsequent to", I may assign to a a spatial position to 
the right of b,— - or more accurately, to the right of the po­
sition occupied by b* In so doing, I am partially relying on 
the convention aocording to which a letter occurring to the 
right of another letter is understood to be after that letter. 
If I wish to indicate that same relational characteristic with­
out making use of relative spatial position in this way, I may 
write these letters in the reverse order, with some symbol be­
tween them to indicate this characteristic, thus: a ) b. This
symbol indicates that although a, is actually to the left of Id, 
in spatial position, it bears the same relation to a as though 
it had a spatial position to the right of a. Again, if I wish 
to indicate the possession by two or more elements of the same 
relational characteristics, instead of representing this di­
rectly by putting each in the same spatial position I may sym­
bolize this relation by inserting between them such a mark as 
=/

An examination of other non-element marks would reveal 
the fact that each of them symbolizes indirectly what could 
be symbolized by the spatial relational characteristics of
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the element-marlsb themselves. Henoe the introduction of such 
marks, instead of removing all reference to the physical 
structure of the system, is merely meant to show that its 
physical structure is not really what it would seem to be, 
judging from the actual spatial arrangement of the marks 
which are its elements.

Considering the way in which these non-element marks are 
actually employed by those who construct abstract symbol-sys- 
tems, and the way in which they are actually interpreted by 
anyone who comes upon them in such a system, we must admit 
that they are actually used and actually interpreted without 
explicit reference to spatial relations. Hence it would be 
simpler to say that when these marks are used as above de­
scribed, the spatial relations between the marks of the array 
in which they occur are without symbolic significance. This 
is true enough. But we have emphasized the idea that the 
non-spatial relational characteristics which these marks in­
directly symbolize are only such as could be directly sym­
bolized by a set composed exclusively of element-marks, which 
by suitable variations in their number and order,—  i.e. by 
variations in physioal structure,—  could directly represent 
all possible variations of non-physical structure; because 
it is important to notice that the use of these non-element 
marks is rather a matter of convenience than of logical ne­
cessity. In a word, the. introduction of these marks affects 
the way in which certain characteristics are symbolized; 
i.e. the characteristics which could otherwise be directly 
symbolized are now symbolized indirectly; but they are the

very same characteristics in spite of the difference in the 
method of symbolization.



41
6. Formal Logic as the Science of System-Struoture.

We are now in a position to make some preliminary obser­
vations concerning the status of formal logic as the scienoe 
of system-structure. From this point of view, its aim is to 
discover the various ways in which any number of entities, no 
matter what be their non-relational characteristics, can be 
regularly arranged or ordered, so as to form systems of dif­
ferent structure; and further, to determine the necessary and 
sufficient conditions for a given structure, with special ref­
erence to the relational characteristics of,—  i.e. to the re­
lations between,—  the elements in the system which has that 
particular structure. Since this inquiry is carried on empir­
ically, by actually ordering certain objects in various ways 
and seeing under, what conditions a given structure arises, the 
elements in such systems are generally marks, whioh can be 
most easily manipulated. For reasons of convenience, some of 
these marks are selected to stand for elements, while others 
are taken to stand for relations between elements, or to indi­
cate that a certain set of marks stands for a single element 
in the system. No reference is intended to the meaning of 
these marks, apart from the conventions governing their usage 
in the system as element-marks or non-element-marks respec­
tively. A study of these systems shows that the structure of 
a system depends on the number and the order of its elements, 
inasmuch as any change in either of these involves a change 
of structure; and the order depends on the formal properties 
of the relations between the elements, for the same reason: 
i.e. a change in these formal properties involves a change of
order. If, having constructed such a system, it is found that
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another set of objects which are not marks has the same struc­
ture, we can at once conclude that this set is a system which 
has the same number of elements, wherein the relations between 
the elements have the same formal properties. The significance 
of this conclusion will be more fully understood when we have 
discussed the way in which abstract systems are developed. Here 
we can only say in general that, if our previous analysis is 
correct, the structural properties of elements in isomorphic 
systems are the same. These symbol-sy stems, as we have tried 
to explain in our discussion of symbolization, are symbols of 
the structure of all other systems which are isomorphic with 
them. Considered as direct symbols, according to the view that 
the systems of formal logic are to be pictorially representative, 
they symbolize only the characteristics which they have; and this 
means, as we have seen, that they are symbols only of the struo­
ture of the systems which are isomorphic with them.

To what extent such abstract systems can be developed with­
out reference to the "meaning11 of the symbols whioh constitute 
them, and what is their relation to knowledge, may be more 
clearly seen by examining the actual methods according to which 
such a symbol-system is developed or derived. This we shall 
proceed to do, in the following chapter.
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CHAPTER TWO

DEVELOPMENT AND INTERPRETATION OF ABSTRACT SYSTEMS

1. Symbols. Meaning. Interpretation.
We have already referred to certain expressions used by 

writers on modern logic which, if taken literally, indicate 
that the marks employed as symbols in abstract symbol-systems 
are regarded as meaningless but recognizable marks, and that 
the set of marks which is an abstract system may have no ac­
tual interpretation. Precisely what is meant by such expres­
sions, it is the purpose of this chapter to make clear. We 
may begin with a few reflections on the notion of symbol, which 
are to some extent suggested by our previous discussion of 
symbolization.

To say that a sensibly-perceptible object, suoh as a re­
cognizable mark, is a symbol, is to say that it is used sig­
nificantly, i.e. used as a sign of something. The word "some­
thing" here means, "whatever can be thought, or thought of, asit
in any sense one; hence it includes whatever can be called 
"an entity", whether that entity be positive or negative, sim­
ple or composite, abstract or concrete, actual or possible.
In this sense, even an impossible "entity" is "something". 
Unless we wish to maintain that "to be understood" is in some 
cases compatible with "to have no meaning", we ought not to 
dismiss as meaningless such expressions as "square circle", 
though it may be difficult to say exactly what their meaning 
is. The phrase "square circle", for instance, symbolizes



"something" quite definite; the combination, in thought of 
the characteristics "being square" and "being a circle"; and 
the fact that such combinations are (to borrow a word from 
chemistry) too "unstable" to be more than instantaneous in 
duration should not lead us to overlook them entirely. At 
first sight, it would appear that to call a square circle 
"something" is contrary to the general meaning of "something" 
which we have defined; the characteristics "being square" and 
"being a circle", it will be said, do not answer to the de­
scription, "whatever can be thought as one", because they are 
obviously incompatible. On reflection, however, it seems olear 
that we recognize their incompatibility only by bringing them 
together in thought; henoe, unless they can be brought together 
in thought, or thought as one in some fashion, we have no ground 
for saying that they are incompatible* This paradox,—  that 
logical incompatibility presupposes compatibility,—  arises from 
our psychological limitations, and may therefore be regarded as 
irrelevant to logic. But anyone who attempts to discuss the re­
lation between logic and knowledge must take our psychological 
limitations into account to some extent, unless it be assumed 
that logic has nothing to do with the sort of knowledge which 
is conditioned by these limitations.

Much of the confusion which is notoriously attendant upon 
"the meaning of meaning" arises from a failure to distinguish 
between two quite different questions: (a) To what does a
given symbol refer? (b) What is that "something" to whioh a 
given symbol refers? The fundamental importance of this dis­
tinction will be better understood, and its precise signifi­
cance more fully realized, in connection with a problem to be
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dealt with later on: namely, the very similar distinction that
should be made between (a) the explicit content and (b) the im­
plicit content of a thought or an assertion. We mention this 
point at present merely to warn the reader that what is said 
here about the meaning of symbols is based to some extent on 
analyses of thought set forth in subsequent chapters, although 
we shall confine ourselves, as far as possible, to considera­
tions whioh do not anticipate the results of later analyses.

To understand a symbol is not so much a matter of knowing 
what the "something'' is, to which the symbol refers, but rather, 
of recognizing the symbol as a sign of that "something". The 
conditions under which certain marks are used as signs,—  that 
is, the conventions according to which they are employed in a 
given language,— - enable us not only to recognize these marks 
as signs, but also to recognize, more or less conjecturally, 
what they signify. Unless the user of a mark makes plain his 
intention of departing from these conventions, either by ex­
plicit declaration of this intention or by obvious departure 
from the conventions in his usage, we assume that these con­
ventions are being followed. Often a set of marks is dis­
missed as meaningless either because (a) it does not obviously 
accord with these conventions, or because (b) it is used in a 
way which obviously violates them. Whenever the words "mean­
ingless" or "nonsense" are applied to symbols, it is important 
to know on what ground they are so aoplied. An example or two 
will illustrate this point. We recognize certain marke as 
"letters", because they are accepted as linguistic units from 
which other units called "words" are constructed. The pos­
sible meanings of such marks are numerous; the English letter
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•'a", fox example, is a possible meaning of the mark "a”, but 
this oan also mean,-- to mention only a few other possibili­
ties,—  (l) the sound of the English letter "a», which again 
is something variable, (2) the word "a”, which grammarians 
call “the indefinite article", (3) what is meant by the word 
"a"; and this, as will be seen, includes more than one possi­
bility, Again, certain combinations of letters are not recog­
nizable as words: e.g., the combination "brif", which is not
ourrently accepted by English-speaking people. Each mark sym­
bolizes a letter, but the set of marks does not symbolize a 
word. Similarly, certain combinations of words are accepted 
as grammatical or syntactical units, called "phrases" or 
"clauses" or "sentences" according to their respective gram­
matical functions and properties; and a combinationcf words is 
often called meaningless because it cannot be recognized as 
having syntactical unity. Thus the combination "pink of not 
accordingly", though made up of recognizable words, cannot be 
understood as a unified phrase.

From what has been said about the possible meanings of a 
mark or set of marks used symbolically, two important conse- 
quenoes follow. First, when the "something" symbolized is it­
self an accepted symbol of something (as is the case in every 
meaning of the mark "a" above mentioned, except that numbered 
(3), we must ascertain from the context or from previous know­
ledge whether the initial symbol is used to refer to what is 
meant by this latter symbol. Second, when there is question 
of a set or sets of marks, its symbolic use as a grammatical 
or syntactical unit determines its meaning, and not the symbol­

ic use of individual marks, or combinations of marks, within



that set. Unless the combination as a whole is a recognizable 
grammatical unit (word, phrase, clause, or sentence), it will 
have no meaning as a whole, and therefore not be a symbol, un­
less explicit rules indicate how it is being used.

Since the actual meaning of a symbol is entirely a matter 
of convention (with the single exception already noted regard­
ing the use of direct or pictorial symbols, pp. 13-14, above), 
it would be much clearer to settle the question of whether a 
symbol is meaningless on a basis of mere convention. On this 
basis, a mark or set of marks would be dismissed as meaning­
less, if and only if (a) it were not the sign of an accepted 
linguistic unit when considered as a whole, and (b) no conven­
tions governing its usage were either explicitly laid down or 
discoverable from consideration of its usage. According to 
condition (a), a mark would be meaningless if it were not a 
recognized letter, (Since we are confining ourselves to the 
limits of a given language, we need not take account of sym­
bols such as numbers, which are common to many different lan­
guages). Similarly, a combination of letters would be mean­
ingless if it did not form a word; and a combination of words 
would have meaning only insofar as it formed a recognizable 
syntactical unit, such as a phrase or a sentence. If this 
suggestion were to be adopted, we should not be likely to 
overlook the difference between such completely unintelligible 
expressions as the examples given above (p. 46), on the one 
hand, and such intelligible sentences as "Blue is musical", or 
"Caesar is a prime number", or "paradoxes vote fox walls", on 
the other. These latter expressions are recognizably false, 
to the point of being absurd or nonsensical; but they do have
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meaning, whereas the former expressions do not. The latter 
symbolize a definite thought-complex, even though that complex 
is dismissed as impossible the moment we consider it atten­
tively; the former are not recognizable symbols, and can be 
called nonsensical not because they are false to the point of 
absurdity, but because they have no meaning whatever.

Although it is a matter of convention whether or not any 
mark or combination of marks be accepted as a recognized in­
strument for symbolizing ‘'something", and also a matter of 
convention whether the same mark or marks may be used to sym­
bolize different "somethings" in different usages (e.g., dif­
ferent contexts), it is misleading to assert that the same 
marks "must be oounted as belonging to different symbols".
Thus Black (pp. 27-28): "...the same mark, if used with dif­
ferent meanings (e.g. vice, a carpenter's tool, and vice, for 
which sinners are punished), is said to express different 
words...the copula in This is green is not the same symbol as 
that in Green is a colour, and both differ from the is in A 
man is not a woman" (italics his; see also Stebbing, p. 21), 
That such a view is likely to lead to confusion may be readily 
seen without discussing its implications in detail. Once a 
set of marks is accepted as a recognizable symbolic unit, we 
may say that this set of marks is the sign of a word, or that 
it expresses a word. But it is equally true to say that that 
same set of marks, as an accepted symbolic unit, is a sign of 
many different meanings: i.e., a sign of many different
"somethings" which are meant by words, but which are not them­
selves words. The view that the same set of marks belongs to 
different symbols, or expresses different words, when and be­
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cause it expresses different meanings is likely to suggest that 
no distinction ought to be made between (a) a word and (b) the 
meaning of a word. We have already noticed the convention ac­
cording to which any word (or indeed, any symbol whatever) oan 
be used to mean itself (pp. 45-47, above); and for this reason 
we can truly assert that every word is the meaning of a word: 
i.e., it is one of its own possible meanings. But the con­
verse is not true: i.e., we cannot truly assert that every 
possible meaning of a word is a word. Therefore, it must be 
maintained that some distinction is to be made between words 
and meanings, even though we are not yet in a position to say 
precisely what that distinction is. That it is not entirely 
a matter of convention seems fairly clear; for in order to be 
used as a symbol (verbal or non-verbal), an object must be 
sensibly perceptible, e.g., visible, and it is only in a fig­
urative sense that we are said to •'see" the meaning of a sym­
bol.

A more thorough discussion of "meaning" cannot be attemp­
ted here without anticipating what must be said later about 
classification and definition. It may be possible, however, 
to clarify at least in part some special points arising from 
the use of abstract symbols. We may say at once that the 
following comments are intended to cover only those cases 
wherein symbols are used to signify non-symbols, or "mean­
ings" in the strict sense. Hence no explicit reference is 
made to such uses as '^Horse1 is a word of five letters", or 
"‘Crow means a kind of bird"; although much of what is said 
might be applied to these uses also.

Since we shall have to say something later about inten-
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sion and extension, it will be advisable to explain abstract 
symbols and their meaning with reference to connotation and 
denotation; for these latter notions are very similar to the 
two former, as will be seen. It is commonly maintained that 
'•purely demonstrative" symbols, or "logically proper nameB", 
such as the word "this", have no connotation: i.e., they
merely denote, but do not signify any characteristic of the 
object denoted. And on the other hand, it is held that some 
"descriptive" symbols, or descriptive phrases, such as "the 
present King of France", merely signify characteristics, but 
do not denote anything: i.e. they have no denotation. With­
out attempting to discuss this twofold contention directly, 
we may observe that its truth is far from evident. The word 
"this", for example, not merely denotes something, but sig­
nifies explicitly "something characterized by *thisness'",—  
something thought of, or (from the reader's or hearer's point 
of view) to be thought of, as "being this". The fact that 
the characteristic signified is unanalyzed, and perhaps un- 
analyzable, does not indicate that no characteristic is sig­
nified. Again, such descriptions as the above have denota­
tion as well as connotation; for, as we have seen (p. 44, 
above), even the phrase "square circle" denotes "something", 
although what it denotes has merely "mental" existence of a 
very transient sort. It will be observed that the phrases 
used by way of example signify not merely characteristics in 
the strict sense, i.e. something to be thought of as an at­
tribute or predicate, but also something to be thought of as 
having» or as characterized by, these signified characteris­
tics. Lest it be supposed that only such phrases have deno-



51
tation, and that those whioh signify merely characteristics do 
not have denotation, we should notice that these latter have 
denotation also, though in a slightly different sense. Phrases 
like "square circularity", or "circular squareness", or "the 
present kingship of France", do not, like the former phrases, 
denote a combination of characteristics as belonging to some­
thing: but they do denote "something", i~re77~s combination of
characteristics to be thought of; without any reference what­
ever either to (a) the possibility that this combination might 
belong to something, or to (b) any possible "something" whereto 
it might belong.

At-^this point a difficulty suggests itself: How can these
latter phrases have any connotation? We have insisted that 
they signify nothing but characteristics; and by further in­
sisting that they denote these characteristics, we seem to 
have left nothing which they can possibly be said to connote. 
Heme arises the suspicion that we have simply used the word 
"denotation" to mean what is ordinarily meany by "connotation", 
and that our main contention, namely that every symbol has 
both connotation and denotation, is not entirely supported 
by facts. A somewhat closer consideration of this difficulty 
will, it is hoped, show that this suspicion is unfounded.

It is a well-known fact that in any well-developed lan­
guage such as English, certain linguistic forms are accepted 
and recognized as "concrete", and others as "abstract." we 
need not pause to discuss which forms are thus distinguished, 
nor the criteria according to whioh they are recognized as 
concrete or abstract, respectively. It is sufficient to note 
(a) that in the examples used above (pp. 50-51), the phrases
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•'square circle” and "the present king of France” are concrete, 
whereas "square circularity" and "the present kingship of 
France" are abstract; (b) that even when the ending of cer­
tain words (e.g. "~ity", "-ship") are recognizably abstract 
endings, and thus suggest that an individual word or the en­
tire phrase containing that word is abstract, we cannot rely 
entirely on the form of such words, but must consider the con­
text in which they are used before deciding whether a word or 
phrase is abstract and not concrete, or vice versa; (c) that 
this distinction is something more than a matter of linguis­
tic convention; for, as will be seen later, it has its roots 
in our mode of thought, and is not merely verbal. The same 
distinction could be applied to symbols which are not words, 
though of course the criteria would be different; but since 
the phrase "abstract symbol" is currently used with quite 
another significance, confusion might arise if we extended 
this distinction to symbols in general.

The difficulty which we are considering can be most eas­
ily clarified by making plain the difference between the mean­
ing of abstract words and the meaning of concrete words. What 
is said of words applies also to groups of words, as we shall 
see; not only to phrases but also to sentences; but these 
latter had best be treated when we come to speak of proposi­
tions. First let us confine our observations to those indi- 
vidually-intelligible words called "common nouns". When such 
words are used concretely, they signify, or present to thought, 
something as having some (more or less complex, and hence more 
or less analyzabLe) characteristic. Thus, the word "circle" 
signifies something having circularity. On the other hand,
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words which are used abstractly signify something as being some 
characteristic. Thus, the word "circularity" signifies some­
thing as being circularity. Notice that neither of these ex­
pressions, when used as words, signifies that something has 
some characteristic, or that something is some characteristic. 
If the context, in a given use, shows that they have this lat­
ter meaning, then they are not being used as words, but as 
signs of propositions. Since concrete words signify something 
as having some characteristic, it is natural to call attention 
to this twofold aspect of their significance by saying that 
they denote the "something" which they signify, and that they 
connote the characteristic whioh that "something" is signified 
as having. When we attempt to make a somewhat similar distinc­
tion in the case of abstract words, we may say t’hat they denote 
the "something" whidh they signify, and that they connote the 
characteristic whioh that "something" is signified as being.
It is of course quite possible to express this distinction in 
another way, which would suggest that it is more like the one 
applied to concrete words. We might maintain that abstract 
words, like concrete words, denote the "something" which they 
signify, and that they connote the characteristic which that 
"something" is signified as having; for it may be quite truly 
said that abstract words signify something as having some 
characteristic, inasmuch as their endings indicate (supposing 
that they are correctly used) that they signify a characteris­
tic; i.e. something as having the characteristic of "being a 
characteristic". On this view, of course, all abstract words 
would have the same connotation; all alike would be said to 
connote the same characteristic, that of "being a characteris­
tic." As we shall see, however, it is misleading to describe
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"being a characteristic" as a characteristic; hence we shall 
abide by the distinction as previously expressed, which con­
tains the following implicit admission: The only difference
between the denotation and the connotation of an abstract word 
is a difference, not in what is signified, but in the way in 
which that "something" is signified. In the case of concrete 
words, the denotation is never a characteristic, and the con­
notation always is a oharacteristio. (To avoid confusion, it 
must be noted that certain concrete words have an abstract 
usage: e.g. "color" is often used to mean "ooloredness". Hence 
our insistence on the need of taking usage into account before 
deciding whether a word is abstract or concrete.) But even in 
the case of concrete words, it is advisable to distinguish be­
tween denotation and connotation according to the way in which 
words signify, rather than according to a difference in what 
is signified by words. A full understanding of this last 
statement cannot be presumed without reference to later dis­
cussions; but we shall see at once, when extending the above 
considerations to groups of words, that the way in which 
"something" is signified is the decisive factor, regardless 
of what that "something" is, or what characteristics it has.

We have explained the sense in which every symbol, when 
used significantly, can be said to mean "something". The 
question "what does this symbol mean?" is one to which we 
cannot give an unequivocal and complete answer, as it stands; 
for it contains within itself three questions, each of which 
must be answered from a different point of view: (a) "How
many ‘somethings1 does this symbol mean,—  only one, or more 
than one?" (b) "Precisely which ‘something1, or ‘somethings1,
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does it mean?" (o) "What characteristic or characteristics 
does it signify, either as had by or as being this * something1, 
or these ‘somethings*"? (The "either...or" in this third ques­
tion is necessary because of what we have said about the dif­
ference between concrete words and abstract words, p. 53 above.) 
These three questions obviously cover the matter of denotation 
and connotationj for the first two ask "what does this symbol 
denote?", and the third asks, "what does this symbol connote?"

While insisting, as always, that a conclusive answer to 
any of these three questions cannot be given without reference 
to the context in which a symbol occurs, and to the way in 
which it is used, we wish to remark that in those word-groups 
known as "descriptions", or "descriptive phrases," the phrase 
as a whole is a symbolic unit; and within this unit, anyone 
sufficiently acquainted with the language in which the phrase 
oocurs can distinguish between (a) certain "modifying" words 
or phrases and (b) certain other words, or at least one word, 
"modified" thereby,— although words to be classed as either
(a) or (b) may have to be "understood" from the context, and 
the entire phrase may have to be re-worded if the oontext re­
quires it. Some of these modifiers, e.g., adjectives and ad­
jectival phrases, add to the connotation of the word which 
they modify; others, e.g., demonstrative pronouns, the defi­
nite and the indefinite article, and in general the words 
known as "quantifying words", indicate more or less determin- 
ately the denotation of the word they modify. Since the sym­
bolic funotioh of these modifying words, in such phrases, is 
to signify the denotation or connotation of some other word, 
they are not being used as complete symbols, and hence have 
no denotation or connotation of their own; though they might
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loosely be said to "connote" the denotationcr connotation of 
the word whioh they modify, inasmuch as they signify it in 
part. When so used, they have what may be called "incomplete" 
meaning, and therefore cannot be oalled meaningless symbols on 
the ground of not having denotation and connotation in the same 
way that complete symbols do.

In saying that the modifying words used in descriptive 
phrases are incomplete symbols, we are not suggesting that the 
modified words in these phrases are complete symbols, except 
in a very relative sense. It is the phrase as a whole whioh 
is being used as a complete symbol: and the modified words can
be called complete symbols only because (a) they would still 
have intelligible significance even if the modifying words were 
omitted,—  whereas the modified words would not, apart from 
what they modify,—  and (b) they are thus of greater importance 
in determining the significance of the whole phrase in which 
they occur. Again, in remarking that some of these modifying 
words are used to indicate the connotation of the words which 
they modify (and hence of the entire phrase), while others are 
used to indicate the denotation thereof, we are not attempting 
to divide modifiers into two mutually— exclusive classes, the 
one containing connotational modifiers (adjectival words and 
phrases) and the other containing denotational modifiers (de­
monstratives, articles, quantifying words). Just as the dis­
tinction between connotation and denotation, in general, de­
pends not so much on the fact that different "somethings" are 
signified, but rather on the fact that "somethings" are sig­
nified in a different way, so here, the distinction between 
connotational modifiers and denotational modifiers depends not 
so much on a difference in the kind of words used (e.g., ad-
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jectival words on the one hand, and quantifying words on the 
other), but rather on the way in whioh these words are used.
The second of the three questions concerning the meaning of a 
given symbol,-- "Precisely which * something', or 'somethings', 
does this symbol mean?" (marked (b) on pp. 54-55 above),—  is 
a question about the denotation of a symbol rather than about 
its connotation; yet it cannot be answered by considering de­
notations! modifiers alone and refusing to consider connota­
tional modifiers. Among denotational modifiers, the most pre­
cisely denotative is admittedly the word "this"; nevertheless, 
even in a given usage, such as its usage in the phrase "this 
man", the word "this" alone does not indicate precisely whioh 
man is meant by the phrase. And when we discover an answer 
to our question by referring to the context in which the phrase 
occurs, the answer involves not merely denotational modifiers, 
but some word or words signifying a uniquely-determining char­
acteristic: that is to say, some connotational modifier, as
well; e.g., "the man whom I have just mentioned", or "this man 
here and now present."

. We are not here relying on the fact that the word "this", 
by itself, does not denote precisely which man is meant; hence 
it might be supposed that "this" can, and does, connote pre­
cisely which: on the ground that "this" is a shorthand sub­
stitute for the phrase, supplied from the context, which sig­
nifies a uniquely-determining characteristic of the man re­
ferred to by "this man". However plausible such a view may 
seem, there can be no doubt that its adoption would give rise 
to more difficulties than it can solve: for it clearly in­
volves extending the notion of connotation so as to include 
not merely the characteristic, or characteristics, exniiciti v



58
signified by a symbol in a given usage, but also all charac­
teristics which a symbol implicitly signifies, either (a) by 
entailing them itself, apart from reference to the context, 
or (b) by entailing them in the light of a given context.
The full force and importance of the distinction here sugges­
ted, between what a symbol explicitly signifies and what a 
symbol implicitly signifies, or entails (either with or with­
out reference to its context), will be more easily appreciated, 
it is hoped, as a result of later discussions. At present we 
merely wish to point out its bearing in connection with the 
above example. Inasmuch as the word "this" explicitly signi­
fies "something having *thisness*", it explicitly connotes the 
characteristic meant by the word "thisneBs", as belonging to 
(or as had by) the "something" which it denotes. It does not 
explicitly connote either (a) the characteristic meant by the 
words "whom I have just mentioned", or (b) the characteristic 
meant by the words "here and now present"; but it does con­
note at least one of them implicitly. Whether it does so by 
itself, or only in relation to its context, makes no differ­
ence to the point at issues though we incline to suggest that 
in most cases, if not in all, reference to the context is in­
volved. However this may be, in the example under considera­
tion, it is easy to see that "this" does not explicitly con­
note either of the two characteristics marked "(a)" and "(b)", 
above. For neither of them is quite the same as the charac­
teristic meant by the word 11 thisness", which the word "this" 
explicitly connotes. Whatever be the ultimate analysis of the 
characteristic "thisness", it can be intelligibly described as 
"the characteristic of *being this individual "something"r",
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in contradistinction to "the characteristic of 'being that in­
dividual "something"r and the characteristic of "being this 
individual 'something111 is not quite the same as the character­
istic meant either by the words "whom I have just mentioned" 
or by the words "here and now present". It will be noticed 
that in order to establish the fact that the characteristics 
meant by these phrases are not really the same characteristic, 
we should have to show that, no matter how these phrases be 
analyzed, the characteristic meant by "thisness" is really a 
different characteristic from those marked "(a)" and "(b)"
(p. 58,above): for it is quite possible that what is meant
by these different expressions might be seen, on analysis, to 
be the very same characteristic. Instead of ruling out this 
possibility, and thus proving that the characteristics meant 
are really different characteristics, we merely wish to re­
mark that a clear distinction between the explicit connota­
tion of "this" (i.e. the characteristic meant by "thisness") 
and its implicit connotation (i.e. either (a) or (b) above, 
can be made without reference to whether the connoted char­
acteristics are really the same or really different. Even 
though analysis might show that the same characteristic is 
meant in both cases,—  i.e. that what is meant is really the 
same characteristic,—  there can be no doubt that "thisness", 
on the one hand, and both phrases "(a)" and "(b)", on the 
other, signify this same characteristic under a different 
connotation: i.e., symbolize it, or present it to thought,
as two different characteristics,—  or rather, as three dif­
ferent characteristics, since the explicit connotation of 
"(a)" is not the same as the explicit connotation of "(b)".

In thus calling the attention of the reader to a prob-
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lem which we at once dismiss as irrelevant, we are pointing 
out, by way of an example, the importance of a distinction 
already mentioned (pp. 44-45, above); the distinction be­
tween the two questions, "To what does a symbol refer?", and 
"What is that 'something* to which a symbol refers?" So long 
as one is discussing the first of these questions, he is talk­
ing about "what a symbol means", and this is a matter of both 
logic and language. But when one begins to discuss the sec­
ond question, he is talking about the "somethings" which are 
meant by symbols, and the discussion is no longer merely lo­
gical, still less is it merely a matter of linguistics or of 
logical syntax.

Before applying the results of this general discussion 
of the meaning of symbols to our initial question, "In what 
sense are abstract symbol-systems meaningless?", we must add 
a note or two on the notion of interpretation. For it will 
be necessary to inquire into the meaning, or meaninglessness, 
not only of systems which are said to have "no actual inter­
pretation", but also of systems in general, prior to their 
being actually interpreted; and this may well include sys­
tems which have an actual interpretation. Now, the word "in­
terpretation", as used in such phrases as "the interpretation 
of a symbol", may be understood in one of the following three 
senses. It may mean (a) the business of reoognizing what a 
symbol means, or how it is being used significantly in a giv­
en context. -The details of this apparently complex and at 
least partly "mental" process are of interest primarily to 
students of psychology; hence the word "interpretation", as 
used in works on logic, is not to be understood in this sense 
apart from explicit indications to the contrary. The other
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two senses of the word are these; (b) the meaning whioh a 
symbol has in a given context,-- that is, that one of its pos­
sible meanings (of. the example of "possible meanings" given 
on pp. 45-46 above) which attaches to it in this given context 
and (c) the "something" which is meant by a symbol in a given 
context. Although we have just had occasion to notice the ad­
visability, in general, of distinguishing between (b) and (c) 
when discussing the problem of meaning, we mention it here 
merely for the sake of completeness, and shall not insist upon 
it until we come to explain it more fully.

When it is said that an abstract symbol-system has, or 
may have, no actual interpretation, the word "interpretation" 
had best be understood in sense (c); for even those who seem 
not to distinguish this sense from (b), as we have done, 
clearly mean to say that there is not, or may possibly not be, 
anything corresponding to the "meaning" of such a symbol, if 
"meaning" be understood as in sense (b). In other words, 
their statement that an abstract symbol-system has no actual 
interpretation is equivalent to a statement that there is no­
thing which is meant by such a system.

In order to understand this quite clearly, we must re­
member that an abstract symbol-system, as has been explained 
in the preceding chapter, is used to symbolize directly the 
structure of any set of entities which is similar in struc­
ture to it. As soon as an abstract symbol-system is con­
structed, it will of course have a definite structure; and 
if exact copies of such a system be made, each of these will 
have the same structure as the original. But apart from such 
copies, which would presumably be called "trivial cases of 
isomorphism", it is quite possible that (a) no other set of
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entities, whether physical or non-physical (see pp. 19-21, 
above), is similar to the symbol-system in structure, or that
(b) we do not know whether there is such another set or not. 
Until such a "similarly-structured” set be either discovered 
or constructed, the symbol-system cannot be said to "have an 
actual interpretation"; although we should need further evi­
dence in order to assert that it cannot possibly have one, 
for such a set might be in existence without having as yet 
been discovered, or such a set might eventually be construc­
ted by someone.
2. Relation between Meaning and Interpretation of Abstract 
Symbol-Systems.

Having explained the sense in which an abstract symbol- 
system can be called "meaningless" if it has no actual in­
terpretation, we must now inquire whether such a system is 
meaningless on any other grounds: in other words, can it be
called "meaningless" in a wider sense than that of "having 
no actual interpretation"? One way to arrive at an answer 
to this question is, to consider what is involved in the 
actual interpretation of an abstract system; for in this way 
we may expect to discover whether or not such a system has 
"meaning" prior to its being aotually interpreted, and if so, 
in what sense.

A completely uninterpreted abstract system (of the kind 
mentioned on p. 3, above) is composed, it will be remembered, 
of recognizably-distinct marks selected and arranged accord­
ing to certain purely conventional rules. Some of these 
rules, called "rules of formation", indicate which marks are 
to be selected and how they are to be arranged so as to be 
"well—formed expressions" of the system. From certain ini—
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tial sets constructed according to the formation-rules, all 
subsequent sets are derived: either from the initial sets
alone, or from other sets derived from the initial ones; and 
this derivation proceeds according to "rules of transforma­
tion", so that all such derived sets are "well-formed ex­
pressions" of the system. In order to find an actual inter­
pretation of an abstract system, we need not discover or con­
struct an entire system which is similar to it in structure; 
we need only discover or construct a set of entities which 
will "satisfy" the initial well-formed expressions of the 
system. The necessary and sufficient condition for "satis­
faction" may be stated as follows. The elements of the set, 
and the relations between those elements, must be such that 
if the marks in the initial well-formed expressions be re­
placed by symbols for those elements and those relations, 
the set of symbols obtained by this "translation" of each in­
itial set will in every case express a true proposition about 
those elements and those relations. Once the initial sets are 
satisfied in this way, the consistency of the abstract system 
is assured; and we know that all subsequent well-formed ex­
pressions in the system, because they are derived according

4

to the transformation-rules, can be similarly translated by 
appropriate substitutions, into expressions of true proposi­
tions about these elements and their relations, without any 
need of subsequent verification.

It is of course quite possible that an abstract system 
may have an actual interpretation, even though no one has yet 
recognized (a) that it has an interpretation, or (b) what its 
interpretation is; and it is even possible that because of
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our psychological limitations, some at least of the actual 
interpretations of some abstract systems may never be recog­
nized, The fact that we are obliged to follow some such pro­
cedure as the one above described, in order to recognize any 
actual interpretation cf any abstract system, is doubtless a 
matter of those same psychological limitations. But the point 
to note is, that it has important consequenoes for logic.
Whenever we know that someone has verified a proposition, we
also know (a) that someone was able to verify it, and (b) that 
the proposition itself was verifiable. It is clear that in 
such propositions as we are discussing, the element of time 
may be ignored; for we are not speaking of propositions whose 
verifiability is conditioned by temporal factors. Their 
truth-value may change in time, but their verifiability does 
not change* Now, to say that a proposition is verifiable in­
volves saying that it has meaning, in some sense, no matter 
what criteria of verifiability be adopted. This will be ad­
mitted even by those who maintain that the meaning of a pro­
position is its verifiability, i.e. the conditions required 
for its verification. We are therefore justified in drawing 
the following conclusions. First, in the case of all ab­
stract systems which have been actually interpreted, the 
propositions obtained from the initial sets of such systems 
and verified, in the manner explained above, must have had 
some meaning prior to their verification, else they could 
not have been verified; and this meaning is not the same as 
the actual interpretation of such systems. Second, in the 
case of abstract systems for which no interpretation has as 
/et been found, we cannot use this argument to indicate that 
they have meaning, we do know, however, that if and when
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had some meaning can he established in the same way; hence un­
less other considerations suggest a different view of the mat­
ter, it seems advisable to say merely this; we do not know 
whether they have meaning or not, but it is likely that they 
have, in proportion as some actual interpretation appears more 
or less probable.

It will be observed that the above argument does not lead 
to the conclusion that abstract systems themselves have mean­
ing, independently of interpretation, but only that those ex­
pressions have meaning which are derived from the initial sets 
of such systems, by substituting for the marks therein element- 
symbols and relation-symbols in the manner outlined above (p.63). 
If these expressions have meaning, it follows that expressions 
derived from all subsequent sets of marks in the abstract sys­
tem which has those same initial sets will also have meaning; 
for they too, as we have seen (pp. 63-64, above) are expres­
sions of true propositions,— provided, of course, that they are 
derived by appropriate substitutions. Whether the initial sets 
themselves, and all derived sets of an abstract system, have 
meaning apart from, or prior to, such substitution, will be con­
sidered in the next section of this chapter. Here we wish to 
note that the expressions derived by substitution from the ini­
tial set of abstract systems, and shown by our previous argu­
ment to have some meaning, are of very great importance. For 
in this class of expressions are included the so-called postu­
lates of all postulational systems, or of all systems which 
can be developed according to the postulational method: in­
cluding such interesting isomorphs as Boolean algebra, linear 
associative algebra, and the various systems derived from the
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primitive propositions of Principia Mathematica or from some 
equivalent "reduction" thereof.

The conclusion that such expressions have some meaning 
immediately raises the further question, "What is this mean­
ing which they have?" It is doubtful whether an adequate 
answer to this question could be attempted within the limits 
of a single dissertation; and though much of what will be said 
later on may suggest the lines along which at least a partial 
answer could be worked out, or at any rate may indicate some 
of the problems involved in working out an answer, we must con­
fine ourselves at the moment to the following general comments. 
First, the meaning of these expressions will vary according to 
the kind of entities symbolized by the element-symbols and re- 
lation-symbols which are substituted for the marks in the ini­
tial set of the uninterpreted abstract system whence these ex­
pressions are derived. The elements may be any entities what­
ever, and the relations may be any relations whatever, provided 
only that these relations have the same formal properties: i.e. 
provided that the particular relations (e.g. "to the :right of", 
"is greater than") which hold between the particular entities 
(e.g., points on a line, positive integers) symbolized by the 
element-symbols according to some particular interpretation 
have the same formal properties as the particular relations 
holding between the particular elements symbolized in all other 
particular interpretations. Secondly, if we try to say quite 
generally what any such expression will mean, we find that each 
such expression is interpretable as a statement that "If cer­
tain elements stand in a certain relation to one another, then 
certain other elements stand in certain other relations, either 
to one another or to the former elements". It should be re-
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marked that this includes the special case in which two or moi 
elements, or sets of elements, are said to be somehow equiva­
lent: for a statement of equivalence between elements can al­
ways be reduced to the above form. Systemic or nominal defi­
nitions are not statements of equivalence between elements. 
but between symbols; hence they are merely transformation 
rules, or applications thereof, having no direct reference to 
either elements or relations between elements.

Lest what we have said about postulates be misunderstood, 
it should be added that in actual practice the postulates of 
various logica and various postulational systems of mathema­
tics have not been derived, by substitution, from the initial 
sets of marks of a previously-constructed abstract system. 
Rather, these sets of postulates have been constructed, for 
the most part, without reference to a "higher" or more ab­
stract system from which they might be derived. This is cleai 
from the fact that their symbols are not just meaningless 
marks, but are specifically used to symbolize (a) elements, 
or classes of elements, on the one hand, and (b) relations, 
or classes of relations, between these elements, on the oth­
er hand. The point we wish to make is simply this: they
are on the same level of abstraction, and have therefore the 
same sort of meaning, as is had by expressions derived, in 
the fashion we have explained, from the initial sets of a 
completely-uninterpreted abstract system.

3. Relation between Meaning and Development of Abstract 
Symbol-Systems.

We have thus far indicated a reason for the view that any 
abstract system which has actually been interpreted must have
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at the stage where the marks in the initial sets of such a 
system are replaced by element-symbols and relation-symbols, 
thus transforming each initial set into the expression of a 
postulate or primitive proposition. In asking the further 
question, “Are the initial sets themselves meaningless, prior 
to being thus transformed* or translated?" we should most 
probably find that a line of reasoning similar to the one just 
followed (pp. 63-65) would lead to a similar conclusion; i.e., 
that they could not have been translated into significant ex­
pressions unless they already had some meaning, however gener­
al, prior to translation. This is particularly likely in view 
of the fact that such translation is often a matter, not of 
replacing the original "meaningless" marks by other marks which 
are symbols (i.e. which have significance in some sense), but 
of interpreting, or simply "reading", the original marks them­
selves as symbols.— • element-symbols on the one hand, relation- 
symbols on the other. That is to say, the question whether a 
system is entirely abstract, in the sense of being a set of 
meaningless but recognizable marks, rather than a set of sym­
bols with some sort of general meaning or significance, is a 
question not of which marks are substituted for other given 
marks, but of interpretation; a question of what the given 
marks mean, or of how they are to be "read".

Since abstract systems are ordinarily constructed with a 
view to their possible interpretation, it is doubtful whether 
anything conclusive can be said about their meaning apart from 
a study of some actual interpretation. Eut we may here con­
sider whether certain features of their development suggest in 
what sense they can be called "meaningless" while they are
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still in the "completely-uninterpreted11 stage. In other words, 
does the construction of a system out of recognizable marks, 
and the study of the formal or structural properties of marks 
in connection with system-structure, involve reference to mean­
ing, and if so, in what sense?

A detailed commentary on the formalist view, and on the 
technique of the postulational or axiomatic method, would man­
ifestly be impossible here, even if these topics had not been 
thoroughly treated by other and more competent writers. It is 
hoped that the following reflections may help to show the sig­
nificance of this view and this method for epistemology, or at 
least to indicate certain epistemological problems connected 
therewith*

The general aim of the formalists, whether in mathematics 
or in logical syntax, is to investigate the formal or struc­
tural properties of signs, by selecting and ordering them in 
various ways; in other words, by constructing abstract systems; 
and from a study of these systems they hope to arrive at the 
general principles of system-structure. Moreover, by construct­
ing abstract systems which differ in structure from one another, 
they will provide means of representing, in pictorial fashion, 
the structure of the many systems whose elements are not signs, 
with which the various sciences are concerned. Insofar as these 
are interpretations of abstract systems, they will be isomorphic 
with these abstract systems, and their elements will have the 
same structural or formal properties as do the signs that are 
elements in the abstract systems*

It appears to be theoretically possible to construct ab­
stract systems, in the sense of "ordered sets of marks", with­
out devising any rules beforehand for the selecting and order-



70
ing of marks. If the material for such construction were lim­
ited, by a stipulation that a determined kind or a determined 
number of marks be exclusively employed, these marks could be 
jotted down at random, and at least Borne of them might possibly 
be recognized later as forming one or more ordered set. Since 
such sets would have structure, they could then be used as di­
rect symbols of any isomorphio set of any elements whatever.
But the ohances of obtaining abstract symbols of structure in 
this random fashion are so slight as to be negligible; and if 
no limit were placed on the number of the kind of marks which 
might be jotted down at random, the construction of even one 
ordered set becomes so highly improbable that its theoretical 
possibility may be questioned: at any rate, the ordinary laws
of probability could hardly find application in such a case.

If the above procedure were followed, the marks employed 
would be entirely meaningless, and no question about their 
meaning could be raised until certain sets of them, which might 
have been jotted down .so as to be ordered sets, would be selec­
ted as symbols. The procedure actually in vogue, however, is 
rather different, and hence we may expect to find that the 
marks may not be entirely without significance. We have al­
ready referred to the way in which abstract systems are con­
structed (pp. 3-4, above), according to previously-stated for- 
mation-rules which state the conditions under which a set of 
marks constitutes a well-formed expression, and the previously- 
stated transformation-rules which state how other well-formed 
expressions are to be derived from those already formed. Con­
sidering this procedure, and confining ourselves principally 
to the marks in the initial sets, it would seem that they have 
meaning even before the marks in these sets are replaced by
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element-symbols and relation-symbols (as described above, p. 63). 
In the first place, each of these initial sets, because it has 
been constructed according to the formation-rules, is a well- 
formed expression; and it is clear that all well-formed expres­
sions are elements in the system which is under construction. 
According to the transformation rules, any well-formed expres­
sion may be replaced, under certain conditions, by another well- 
formed expression; hence it is quite accurate to say that each 
of these initial sets signifies, or means, at least one charac­
teristic of at least one of the well-formed expressionsjwhich 
may replace it. In order to say more exactly, though still in 
a fashion sufficiently general to be.true, what that character­
istic is, we must note that when the initial sets are composite, 
as is usually the case, they are composed of two kinds of marks, 
distinguished by the formation-rules; (a) those which cannot by 
themselves be well-formed expressions, and (b) those which can 
be well-formed expressions by themselves. The number and the 
order of those marks, within a composite, which can by them­
selves be well-formed expressions, determine the form, or the 
structure, of the composite well-formed expression; i.e., they 
give the composite a definitely-recognizable form or structure.
If a well-formed expression is not composite, but a single mark, 
it too has form, in a sense; but its form is not significant in 
every case. According to the transformation-rules, well-formed 
expressions may be replaced by other well-formed expressions 
which are not of the same form. But the added condition, 
namely, that such replacement must be made in every place in 
which the original expression is found in a given set, indi­
cates clearly that the universally-significant characteristic 
of any well-formed expression is, the position which it occu-
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plea in a given set. As for those marks which, by themselves, 
cannot be well-formed expressions, their position in a given 
set is also significant; but it is understood that they cannot 
be replaced by any other mark of a different shape, unless the 
tranBformation-ruleB explicitly permit such replacement*

The suggestion we are making, with regard to the rules gov­
erning the construction of an abstract symbol-system, is not 
that these rules themselves have meaning; for it is sufficient­
ly clear that they must have meaning, in the sense of being in­
telligible and even preoise in reference* A consideration of 
these rules, which admittedly insure the consistency and ooher- 
enoe of the systems constructed according to them (although 
"consistency" and "coherence11, as we noted on p* 4 above, are 
here used in a peculiar sense), points to the further sugges­
tion that (a) the formation-rules ascribe meaning to the marks 
out of which initial sets are constructed, and (b) the trans­
format ion-rules take this meaning into account in the condi­
tions laid down by them for the derivation of subsequent sets* 
This statement will perhaps seem less strange if we reflect on 
each of these classes of rules in turn*

It is customary to speak of the marks selected by the for- 
mation-rules as "undefined symbols"* But a very little reflec­
tion suffices to show that the word "undefined" iB somewhat 
misleading. For according to the formation-rules, certain sin­
gle marks are definitely indicated, or "characterized as", 
well-formed expressions, whereas others are definitely charac­
terized as not well-formed expressions* Examples of the former 
kind are the marks "p,q,r*..", which are read as symbols of un— 
analyzed propositions according to the Prinoinia conventions*
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Examples of the latter hind axe the marks "+, x, and the 
marks used, as symbols for negation and material Implication, 
respectively: )"• In order to realise that these have
meaning In their most abstraot condition, we need only observe 
that there, is a perceptible difference between these marks by 
themselves and the same marks as referred to by the formation- 
rules of a Bystem. By itself, for instance, the mark "p" is 
a physical object with certain definite physical characteris­
tics, e.g., oolor, size, shape, spatial position. Anyone ac­
quainted with the alphabet of occidental languages will at 
onoe tend to interpret it as a symbol: as the letter "p";
but this is a matter of convention, due to its aoceptanoe as 
a linguistic unit. The formation-rules denote certain marks 
(usually letters) as possible "well-formed expressions of the 
system11; they also connote these same marks, although they do 
not do so explicitly. Instead of describing the characteris­
tics of the marks which they denote as "well-formed express­
ions", the formation-rules merely mention a more or less com­
plete list of such marks; on the assumption that the charac­
teristics of the marks, though not explicitly connoted by the 
rules, will be intuitively recognized; and thus both the con­
notation and the denotation of the words "well-formed express­
ion" will be sufficiently clear to anyone constructing or 
studying the system to which the rules apply. Now, the dif­
ference between any mark which is thus defined as "a member 
of the class of well-formed expressions", and that same mark 
considered apart from such classification, is not merely that 
the mark receives, in virtue of being thuB "defined" by the 
formation-rules, a characteristic which it did not have be­
fore,—  namely, the characteristic of "being a well-formed
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expression of a given system". The point to notice is that, 
because the system in question is a symbol-system, every suoh 
mark becomes a symbol, and so has a meaning of its own, which 
is part of the meaning of the symbol*-system as a whole. When 
incorporated into an abstract Bystem, as a well-formed express­
ion or element thereof, it acquires the characteristic of "oc­
cupying a definite position with respect to some other element 
of the system"; and this oharaoteristio is direotly symbolic 
of, or direotly signifies, or means, the position of any other 
well-formed expression which may replace it, according to the 
transformation-rules.

As they occur in the initial sets of an abstract system, 
those other marks which are defined by the formation-rules as 
not well-formed expressions also signify, by their position, 
the position of any other mark which may replace them, accord­
ing to the transformation-rules. But in addition to this sig­
nificance, their special function is to signify the form of 
'the composite well-formed expressions in which they occur.
The mark oocurring to the left of a well-formed express­
ion, is to be read in conjunction with that expression; and 
the oomposite signifies a well-formed expression which has a 
fixed relation to the original unmarked well—formed express­
ion. Other marks, suoh as + , ), x H, occurring between 
two well-formed expressions, signify that the two expressions 
between which they occur are to be regarded as one well—formed 
expression. Speaking in terms of denotation and connotation, 
we may say that suoh marks denote the well-formed expressions 
between which they occur, and that they connote them as one 
element of the system. For instance, whereas "p", "q", by



themselves, would each signify a well-formed expression, and 
hence would signify two well-formed expressions if set down 
side by side, the combinations "p + q", "p x q", Hp ( q", each 
signify one well-formed expression, and the difference in form 
is indicated by the different mark in each case. The combina­
tion Np » q N has this same significance, with t he further con- 
notation that the well-formed expressions between which the 
mark m*" oocurB are one and the same element, in the given sys­
tem.

These comments on the formation-rules will perhaps be suf­
ficient to show that they are really definitions of the marks 
to whioh they refer. Not only do they indicate that certain 
marks are to be regarded as well-formed expressions (either by 
themselves or in conjunction with certain other marks in a defi­
nite order), and that certain marks are not well-formed express­
ions, but they also provide that these marks may be used as sym­
bols. Any mark occurring in the initial sets oonstruoted ac­
cording to the formation-rules is therefore more than a "mean­
ingless mark”, recognizably distinct from all other marks be­
cause of its physical characteristics (e.g., shape, spatial po­
sition). It has meaning, by the very fact that at least some 
of its characteristics are accepted as significant, or symbolic, 
in the sense explained above.

Turning now to the transformation-rules, according to whioh 
other sets of marks are derived from the initial sets, we notice 
that the significant characteristics of the marks in the initial 
sets are constantly taken into account. The rules for altering 
an initial set, or for ntransforming" it into another set which 
shall be part of the system under construction, provide that
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are non-well-formed expressions must be left unaltered. More­
over, none but well-formed expressions may be used for suoh re­
placements; and if an expression in any initial set (or pre­
viously-transformed set) be replaced by another expression, that 
other expression must be substituted for the former in every 
place occupied by the former expression in the initial set. In 
consequence of this proviso, the well-formed expressions whioh 
are elements in the transformed set may be different from those 
whioh are elements in the original set; in fact, they must be 
somehow different, else the set would not really be transformed: 
but sinoe they oooupy the Bame position as the original elements, 
the transformed set will be isomorphic with the original set. 
There is an apparent exception to this rule of "substitution 
throughout", or replacement each time, in the case of any well- 
formed expression in an initial set whioh is separated from 
another well-formed expression in the same set only by the 
marks In such cases, either of these two expressions may
be replaced by the other in any set in which one of them oo- 
ourB, but the one need not be replaced by the other everywhere 
in that set. This exception does not destroy isomorphism be­
tween a set thus transformed and the original set, because, as 
we have remarked (P. 75) the mark connotes that the two 
expressions between whioh it ooours are not only each an ele­
ment of the system, but one and the same element of the system.

It seems fairly clear that the transformation-rules must 
be understood in a somewhat different Bense, if the system 
whose development they govern is to be useful for knowledge.
If they merely insure that from a set of well-formed express­
ions, taken as "initial strings",—  each string being composed
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of marks which are recognizably well-formed and non-well-formed 
expressions, so ordered that every part of well-formed express­
ions is separated by a non-well-formed expression,—  other sets 
of marks can be derived which are isomorphic with a given ini­
tial string, it would seem that the resulting "system" is merely 
a group of sets, Borne of which (the derived strings) are isomor­
phic with some others (the initial strings from which they have 
respectively been derived). Even if it be possible to regard 
such a group as a system, and to find some interpretation for 
it, it would hardly serve as a symbol for any known system of 
logio or of mathematios. For, as we have seen ( pp. 62-63 above) 
the whole point of oonstruoting symbol-systems is this: that
if the initial Btrings, when read as propositions about ele­
ments and relations, are found to be true of the elements and 
relations of some Bystem, then the subsequent strings, when 
read as propositions about the elements and relations of that 
same system, will also be true without need of further veri­
fication. Now, the transformation-rules, if they take no more 
account of meaning than has been suggested above fc. 76) do in­
deed guarantee that any set of symbols will be isomorphic with 
the initial set from which it is derived; but it does not 
therefore follow that the complex of elements and relations 
symbolized by the initial set will be isomorphic with the com­
plex symbolized by the derived set. This may be clearly seen 
from a single example. Let the initial set be "(p v p) .). p". 
It is permissible to replace the well-formed expression "p" by 
any other well—formed expression, e.g. "q x r", and so obtain 
the derived set, "((q x r) v (q x r)) .). (q x r)». Using "W" 
to indicate "well-formed expression", and using the marks whioh 
are non-well-formed expressions, we may show the form common to
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both these sets thus: H(W v W) . )• W". Having a common form,
both sets can be called isomorphic. But if these sets are read 
as symbols of the propositions! calculus, standing for proposi­
tions and relations between propositions, the initial set and 
the derived set no longer have the same form.

Even if, on such a reading, the sets in question did have 
the same form, it would not follow that the truth of the first 
set would entail the truth of the seoond set, supposing that 
each were interpreted as a proposition about elements and re­
lations. Thus, if "q" were substituted for np H in the initial 
set, we should have H(q v q) •)• q"; and this would be isomor­
phic with the initial set when both sets are read as symbols 
of the propositional calculus. The truth of the seoond is en­
tailed by the truth of the first, not because the two sets of 
symbols are isomorphic, but because the symbols have the same 
meaning in each set. In both sets, the symbols Mp", NqN, mean 
what is meant by the words "a proposition", and the marks "v" 
and n)H mean what is meant by the words "or" and "implies", 
respectively; with the further proviso that np tt and "qM re­
spectively mean the same proposition each time they occur in 
the same set.
4. Symbolio Force of a Completely Uninterpreted System.

Though the difficulties which we have emphasized s b ob­
stacles to the construction of an abstract symbol-system out 
of meaningless marks can hardly be ignored, it may seem that 
we are exaggerating their importance. Those wh#maintain 
that logic is system-struoture, and that the business of logio 
is to provide a series of maps which shall direotly represent 
the struoture of the various systems whioh we call sciences,
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may be inclined to dismiss these difficulties as irrelevant, on 
the ground that the meaning which the symbols have prior to 
their actual interpretation is entirely left out of account when 
we come to interpret the system as a whole. It is the form of 
the abstract system as a whole which is used, or to be used, as 
a symbol; and although this form depends on certain character­
istics of the individual symbols which together make up the ab­
stract system, it does not depend on their meaning.

The analogy between an abstract symbol-system and a map 
renders suoh a view as this extremely plausible. Of course, 
the word "form”, as applied to a symbol-system, will not refer 
to its spatial configuration or shape, as it does in the case 
of a map. But a symbol-system, considered as a set oi mean­
ingless marks arranged in a definite order, appears to have 
the sort of form or struoture which is had by a Bet of ele­
ments other than marks. If we agree that a set of elements 
can be called a system on condition that the elements be or­
dered in a regular way, not only oan a set of marks be such 
a system, quite apart from what they may mean, but they will 
have a definite form or struoture, which oan represent the 
structure of all similarly-ordered sets of any elements what­
ever, provided that there exists a one-to-one correspondence 
between the elements of eaoh suoh s et and the elements of the 
set of marks. The analysis whioh we have made of stihicture, 
and our discussion of direct representation of structure by 
means of symbol-sets which have the same structure as that 
whioh they symbolize (pp. 19-40 above) not only recognize 
the possibility of such diagrammatic symbolization, but in­
dicate the principles involved in it. Hence it may seem that 
the stress we have laid on the meaning of symbols is not only



80
excessive but inconsistent*

In order to clarify this matter, we must try to see exact­
ly what is the symbolic force of an ordered set of symbols, in 
whioh the elements are reoognizably-distinot marks having no 
meaning apart from the ordered set in whioh they occur* Set­
ting aside for the moment the question of whether suoh an or­
dered set oan be constructed, we may ask what would be invol­
ved in its use as a symbol. The first thing to notice is, 
that the set as a whole would have form, or struoture; it 
would consist of a number of elements arranged in a regular 
order. If the set as a whole be taken as a symbol, this 
means that its form is intended to signify something: i.e.,
to call attention to something, to present something to aware­
ness or consciousness. Inasmuch as the set is a direot symbol, 
it must have the structure which it signifies; what we wish to 
emphasize here is, that if it is used as a symbol, it signi­
fies the struoture which it has. when we regard the set merely 
as an ordered collocation of marks, we observe that it has 
structure, or is characterized by struoture; but when we regard 
this same ordered collocation of marks as a symbol, it not only 
has structure but also meanB structure. In other words, when­
ever we select some characteristic of an objeot as significant 
or symbolic, we are obliged to use that object itself as a sym­
bol: for even if we could effect some sort of separation be­
tween the object and the particular characteristic which we 
select as significant, the characteristic by itself would not 
have that concrete visible existence which a symbol must have* 
Thus it is that the object itself becomes a symbol of any char­
acteristic of its own which 1b selected as significant or sym­
bolic; and therefore the significant characteristic of the sym­
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by. It. There Is, in oonsequenoe, no ground for an absolute 
distinction between the structure of an abstract-symbol-set 
and its meaning; and any attempt to create a sharp distinc­
tion is bound to lead to confusion.

With regard to the individual marks in the ordered set, 
two things are to be noted: (a) they have no meaning in
isolation because, although they have oertain characteris­
tics apart from being elements in this ordered set, suoh 
characteristics are left out of consideration, i.e., not 
selected as significant; (b) considered as elements in this 
(or any given) ordered set, they have certain characteris­
tics which are significant: each has a definite position
in the set, and all collectively have a definite order. 
(Oharaoteristies of this kind are what we have oalled Mre­
lational characteristics"; ( PP- 16-17, above) Since 
the struoture of the set as a whole is determined by the sig­
nificant (relational) characteristics of the individual marks 
and since the struoture of the set is its meaning, each indi­
vidual mark contributes something to the meaning of the set, 
and each may therefore be Bald to have incomplete meaning, 
when considered as an element in a given set.

In declaring that there is no ground for an absolute dis 
tinotion between the structure of an abstract symbol-set and 
its meaning (par.l, above) we do not mean to suggest that no 
distinction whatever should be made between them. The struo­
ture of such a set, considered as a characteristic of the set 
is a complex of actually-existing properties, no less real 
than the set* to which it belongs; henoe it is something con­
crete and physical. Considered as something meant by the set
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whioh has it, that same complex of aotually-existing proper­
ties is thought of in the abstract: i.e., we leave out of ao- 
count any peculiarities it might have aB a oharaoteristic of 
this particular set, and consider it as a possible character­
istic of any set whatever, including this one. As a charac­
teristic of this particular set, for example, it is subject 
to spatio-temporal limitations of the set to whioh it belongs; 
hence we leave these limitations out of account, and think of 
it as possibly belonging to some other set at some other time 
and in some other place. A fuller discussion of this point 
will be necessary in connection with the question of univer­
sale; but attention to it here enables us to make plain the 
difference between (a) a characteristic and (b) a significant 
characteristic; i.e., between a characteristic as such, and 
a characteristic aB significant. A characteristic as such, 
i.e., as it actually iB. has no concrete existence in isola­
tion from the objeot to which it belongs. When we think of 
a characteristic in isolation, we recognize it as an abstrac­
tion: and even though we may call it "an object", or refer to 
it as "something", we should admit that these words are'being 
used ambiguously: that it is not "something" in exactly the
same sense as the object which has it is "something". So 
long as we are thinking of a characteristic in isolation from 
any and all objects in which it actually exists, the fact that 
it is an abstraction can be readily appreciated on reflection. 
But when we think of a characteristic of a given object as be­
longing to another given object, we are apt to overlook the 
fact that we are dealing with abstractions.

These general considerations have a direct bearing op the
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as follows* The struoture of a given ordered set, as found 
in, or existing in, that set, is something quite as concrete 
as the set to which it belongs. ThiB is true of any given 
set* In the case of two or more isomorphio sets, we should 
not say without reservation that one of these sets jiB another 
set; and it would be inaccurate to say that the structure of 
any one of these sets is. 'bhe struoture of any other set, if 
this means that they all have one and the same concrete char­
acteristic* We can and do say that all these sets have the 
same struoture; but this is correct only inasmuch as eaoh set 
possesses a different ooncrete instance of the universal 
"structure" which is common to them all* This universal 
structure is an abstraction, a product of our thinking. It 
is verified in, and has ooncrete existence in, the individual 
sets which possess it. But it is not in all respects identi­
cal with any concrete instance of itself. Applying this to 
the question of direct symbolization, we may say: (1) Any
ordered set of marks has a given structure; (2) this given 
structure, thought of as an abstraction, can signify, and 
hence be a symbol of, all concrete instances of itself, where 
ever it may exist; (3) therefore a given ordered set can be 
used as a symbol of any concrete instanoe of struoture whioh 
is the same as, or similar to, its own concrete structure;
(4) it can also, less directly, be a symbol of any objeot, 
other than itself, which has another concrete instanoe of 
that same abstract structure, whereof its own concrete struo­
ture is an instance* The matter may be put more briefly, in 
terms of connotation and denotation, thus: A given ordered
set, because it has concrete struoture, connotes that same
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structure in the abBtraot, or as an abstraction; and it de­
notes (a) direotly, all ooncrete instances of that same ab­
stract struoture, as well as (b) indireotly, all objects whioh 
severally possess suoh instances.

What we have said about the distinction between struo­
ture as a characteristic and struoture as a significant char­
acteristic applies also to the individual symbols whioh make 
up a given ordered set, as well as to the set as a whole. 
Without working this out in detail, we can readily see that 
just as the characteristic "structure" which belongs to the 
set is anaiyzable into the structural or formal characteris­
tics whioh belong to the elements and the relations of that 
set, so the meaning of the set, which is "structure" regard­
ed as a significant characteristic, depends on those same 
structural or formal characteristics regarded as significant 
or meaningful. Hence, although the individual marks have no 
meaning in Isolation, they each have meaning as members of a 
given set; the meaning of eaoh is part of the meaning of the 
8et as a whole. Having explained the symbolic force of an 
abstract Bymbol-system whose structure is taken as symbolic 
or significant, in order to show how an object whioh has 
struoture also means the structure whioh it has, we must 
examine more closely this characteristic of "structure": 
for its precise significance, as a direct symbol, will de­
pend upon what it is. The standard definition of isomorph­
ism, according to whioh two ordered sets or systems are 
isomorphic if and only if there exists a one-to-one corres­
pondence between the elements of these sets, and if the re­
lations between the elements of one set have the same form-
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al properties as the relations between the corresponding ele­
ments of the other set, oalls attention to certain conditions 
which must be fulfilled in order that two structures be recog­
nized as somehow the same, or similar. But it does not tell 
us precisely what struoture is. We have already analyzed the 
notion of structure (pp. 1S-40 above) with special reference 
to this definition; and if our analysis is oorreot, the struo­
ture of an abstract system depends upon the number and the or­
der of its elements* Since the formal properties of relations 
involve a referenoe to the number and the order of the ele­
ments between whioh they hold (p. 35 above)and since the re­
lations themselves may be regarded as relational characteris­
tics of their elements, the number and the order of elements 
appear to be fundamental. In the light of this analysis, we 
may be able to see whether the view that an abstraot symbol- 
system is a map of the struoture of the systems whioh it sym­
bolizes applies to such abstraot systems as those of logic 
and mathematics, and whether such map-like symbolization is 
adequate for the purpose of logic.
5. Struoture and System-Struoture.

As was noted in the analysis of structure already re­
ferred to, spatial struoture, or shape, depends upon the num­
ber and spatial arrangement of the elements whereof an object 
whioh has structure is composed ( p. 22 above). Eaoh element 
must occupy a definite spatial position relatively to at 
least one other element: that iB, only such changes in the
distance and direotion from one element to another are per­
mitted as will not alter the shape of the whole configuration. 
In non-spatial struoture, the arrangement of the elements is 
not a matter of the relative spatial position of each with re-
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of aooount, and the arrangement of the elements beoomes a mat­
ter of their order in thought. No matter what meaning be at­
tached to the words "order" and "arrangement", it is evident 
that in any ordered set of elements, each element will have a 
definite relative position with respeot to at least one other 
element of the set, and further, that no two elements in such 
a set will have one and the same position. (This point has 
already been discussed at some length on pp. 32-34.

It seems fairly olear that every system is an ordered 
set of elements; henoe every system will have struoture, in 
the same sense as every ordered set is said to have structure. 
It is not so olear that every ordered set is a system, in 
spite of the use of the word "system" to describe, or to refer 
to, any set of elements arranged in a recognizable order. 
Without attempting to disouss this question further, we may 
note that all those systems which are called "deductive sys­
tems" are not merely sets of elements arranged in a given or­
der. They are called "deductive" because the order which 
their elements manifest is not simply an order of sequence 
but an order of consequence. Each element in a deductive sys­
tem occupies a definite position, with respect to at least one 
other element; hence the elements of such a system are an or­
dered set of elements. What distinguishes them from all non- 
deduotive ordered sets is this: the definite position of each
element in the system, and in fact its status as an element in 
a given deductive system, depends on its being a consequence 
of at least one other element.

Since a deductive system is an ordered set, it will not 
only have structure in the same sense as an ordered set has
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structure, but may also have the same struoture aB a given or­
dered set. If we grant that a set of marks can be arranged so 
as to form an ordered set without any reference to their mean­
ing, such a set may be isomorphic with some deductive system 
or other, and so may be used to symbolise the structure of . that 
system. But we cannot say of suoh a set (as we said on p. 83, 
above) that it also, though indirectly, symbolizes a deductive 
system. The structure which it directly symbolizes belongs to 
the deductive system in question, but it belongs to it, or 
characterizes it, as an ordered set, not as a deductive ordered 
set.

6. Main Problem Raised by Extreme Formalist View of Logic.
The current disagreement about the nature of mathematics 

and the relations between mathematics and formal logic has 
thus far led to no dispute regarding the accepted view that 
both formal logic and mathematics are deduotive systems. If, 
as the extreme formalists maintain, the various systems of 
logical syntax and formal logic and mathematics are abstract 
symbol-systems which are constructed without reference to the 
meaning of the markB of which they are composed, and which 
have no meaning apart from their actual interpretation, the 
least that can be expected is, that these systems should be 
deduotive systems. As a matter of fact, they are said to be 
deductive systems; but it is not clear that they are really 
deduotive; i.e., it is not clear that (a) any element-mark 
is a oonsequenoe of any other element-mark, or (b) that any 
one of the subsequent sets of marks is a consequence of any 
initial set of marks, even when it has been derived from a 
given initial set according to the transformation-rules.
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For this derivation is supposed to be a mere matter of re­
placing some mark or set of marks,—  arbitrarily chOBen as a 
"well-formed expression",—  by some other mark or set of 
marks seleoted from the olaBS of well-formed expressions, 
without reference to the meaning of the mark or marks in 
question. As we have seen, there is reason to suppose that 
Borne reference to meaning is always involved in the actual 
process of derivation. But we are here assuming that, as 
the formalists maintain, an abstract system oan be construc­
ted without any reference to the meaning of the marks of 
whioh it is composed; hence the question to be disoussed is, 
whether a syBtem so constructed is really a deductive system. 
An answer to this question should enable us to arrive at some 
definite conclusion about the relation between formal logic 
and abstract symbol-systerns, and help us to decide the grounds 
on which the validity of formal logio ought to be settled.
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CHAPTER THREE

ABSTRACT 3YMB0L-9Y3TEM3 AND DEDUCTIVE SYSTEMS

1, Derivation from Qompletely-Uninterpreted Sets,
In order to ascertain whether and in what senBe an ab­

stract symbol-system is a deduotive system, it will be well 
to consider a particular group of Initial sets of symbols, 
and to notice what iB involved in deriving other sets from 
each of these. The particular group chosen is quite similar 
to one of Huntington's sets of postulates for Boolean alge­
bra (see Mind. 1933, pp. 203 ff.), but it will be observed 
that certain alterations have been made not only in his no­
tation but in the method of presenting them. First we shall 
present this group as a group of completely-uninterpreted 
initial sets, each Bet being made up of a "meaningless but 
recognizable" collocation of symbols, using Roman numerals 
to number the sets for convenience of reference.
I. a,b 41 ab
II. a ® a'
III. ab - ba
IV. (ab)c » a(bo)
V. -(a'b').-(a'b) * a
VI. (a + b) « -(a»b»)
Two remarks need to be made about this Beries of sets, in ex­
planation of the symbolism. First, wherever two letters oc-
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our together, as do the letters ab, this is an abbreviation 
for a.b; thus, a*b* Is a mere abbreviation for a ^ b * ,  and 
(ab)c is an abbreviation for (a.b).o. Second, the mark — to 
the left of any letter, or any letters enclosed by the marks 
(), is merely a substitute for the mark ' to the right of 
that letter or enclosed letters; thus, for a r in set II we 
might have written -a, and in set V -(a*b*) oould have been 
written (a^b*)1*

Without assigning any meaning to any one of these sets as 
a whole, or to any mark in any one of these sets, we may now 
formulate the following rules whereby any set may be trans­
formed:
Rule A. Any set may be transformed by substituting, for one 
or more than one of the single letters it contains (e.g., a, 
b, o in sets I to VI) some other single letter of the English 
alphabet, subject to the following conditions:

1. Every letter so replaced must be replaced each time it
oocurs in the original set, by some one and the same single
letter#

2* All non-literal symbols must be retained, without any 
change of relative position.
Rule B. In any set containing the mark °, any collocation of 
symbols to the right of the mark ° may be used for purposes 
of replacement according to Rule A, exactly as if it were a 
single letter.
Rule 0. Rule 5 applies also to any set containing the mark *•
Rule D. In any set containing the mark «, a collocation of
Bymbols to the left of the mark ■* may replace, or be replaced 
by, the collocation of symbols to the right of that same mark;
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and suoh replacement may be made in any other aet whatever 
wherein one of these collooations occurs, without observing 
condition 1 of Rule A*

By applying these rules to set V alone, we oan transform 
that set into the following:
Tl. aa ~a
And by applying these rules to this new set, as also to sets 
I to V, we oan transform V, successively, into eaoh of the 
following;
T2. -(a*) » a
T3. aaf * bb' (It is convenient to use the symbol 0 for a a 1.)

If we next apply the above transformation-rules to all
the sets which we have thus far been considering, we oan de­
rive another group of sets whose resemblance to those which 
we already have may be seen from the following table:
I. a,b ° ab la. a,b ° a + b
II. a * a* Ila. same as II.
III. ab « ba Ilia, a + b » b + a
IV. (ab)o * a(bc) IVa. (a + b) + o « a + (b + o)
V. -(a'b*).-(a*b) = a Va. -(a1 + b*)+-(al + b) * a
VI. (a + b) * -(a*b») Via. ab * -(a* + b»)
Tl. aa »a Tla. a + a * a
T3. -(a*) = a T3a. same as T2.
T3. aa* m  b b 1 T3a. a + a* * b + b*
Vb • ab + ab* » a Vbl. (a + b).(a + b*) * a
Note that Vbl iB derived from V by means of sets I to T3a*
Vb is derived by means of these and also of Vbl.

On comparing any set in either of these two groups with
the set direotly opposite it in the other group, we observe
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that the only difference between any two suoh sets is this: 
where one set has the mark +, the other has a dot, and vioe 
versa (although the dot is often omitted, as we have said, 
and is to be supplied according to the convention stated on 
p. 90, above). Since this resemblance appears to be the re­
sult of having begun with certain definite symbol-sets and of 
having transformed these according to certain definite rules, 
it is reasonable to conclude that if we adhere to these same 
rules of transformation and apply them to no other symbol-sets 
but the above sets and others derived from them according to 
the rules above mentioned (A to 0, pp.90-9Latove) a similar re­
semblance will hold between pairs of subsequent sets. Accept­
ing this conclusion as a general rule of derivation, we may 
state it as follows: From any symbol-set containing no sym­
bols but those above indicated, another set may be derived con­
taining the same symbols in the same order, except that every 
dot in the first set must be replaoed by the mark + in the sec­
ond set, and every + mark in the first must be replaoed by a 
dot in the seoond. Here, it will be observed, we have the 
well-known "principle of duality" stated as a transformation- 
rule.

The proviso that no symbols may be employed except those 
already indicated does not rule out the introduction of mere 
"shorthand substitutes" for unwieldy collocations of those same 
symbols, we have already noted that the mark 0 is used to 
stand for aa*; similarly, the mark 1 stands for a + a 1, and 
the combination a ( b stands for the combination ab » a. Never­
theless, as we shall see later, it would be a mistake to treat 
suoh shorthand substitutes as though they were subject to the 
same transformation-rules as are the expressions whioh they re-
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place.

To mention only two of the uses which have been made of 
these sets, we may observe in the first place that .from them 
alone and their derivatives according to rules A to D, it is 
possible to derive all the sets employed in the olass-calou- 
lus of Boolean algebra; and secondly, if we add one other set,—  
namely, -a * (a = aa1), whence is obtainable the derivative 
set, a * (a =(a + a'),—  it is possible to derive all the sets 
of the so-called "two valued" algebra, which differs from the 
calculus of elementary propositions in PrinoiPla Mathematics 
only because the letters p,q,r,.. are used instead of the let­
ters a,b,o..,, and because the mark ( between two letters is 
replaoed by the mark ); thus, instead of the combination a ( 
b, we have the combination p ) q« It would be superfluous to 
mention these two well-known uses, except by way of oalling 
attention to a point of some importance: namely, the reason
why our transformation-rules A to D do not include any form 
of the familiar "principle of inference".

In view of the fact that derivatives of the above sets 
can be interpreted as theorems of the calculus of elementary 
propositions, the mark ( may be expeoted to occur in such de­
rivatives just as frequently as the mark ) occurs in the ele­
mentary propositional calculus of Prinoinia, Sets containing 
the mark ( will therefore be very numerous, and it may seem 
advisable to have a transformation-rule which refers to them 
explicitly. This rule could be stated quite abstractly as 
follows.

Whenever the mark ( appears in any set of the system, in 
such wise that the collocation of marks to the left thereof, 
when considered in isolation, is reoogniaable as an initial
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or previously derived set, then the collocation of marks to 
the right of the mark ( may he used by itself as a set of the 
system.

It would undoubtedly be convenient to formulate suoh a 
transformation rule governing sets containing the mark (, just
as it is convenient to employ the principle of duality as a
transformation rule governing sets containing the dot or the 
mark +. But the transformation rules A to 0, already given, 
suffice by themselves for the derivation of all sets used in 
the two valued algebra, provided we apply them to the set 
a 1 « (a Baa1) and its derivatives, as well as to the other 
sets above mentioned and derivatives thereof. Before proceed-* 
ing to establish this latter contention, we must observe that 
the initial a 1 in the set a* ■ (a = aa>) is introduced as a
mere Bhorthand substitute for the bracketed expression to the
right of the subsequent mark »• When we speak of the set 
a » (a * a + a*) aB a derivative of the above, we do not mean 
that the initial a in this latter set appears in virtue of 
applying.rules A to D to the above a r; for as has been noted, 
suoh shorthand substitutes are not subject to these transfor­
mation rules direotly. In the cases previously cited, e.g., 
the use of 0 for aa<, confusion is not likely to arise, be­
cause the substitute sign is not the same as any previously- 
admitted sign of the system. Here, however, the introduced 
substitutes a 1 and a are indistinguishable from the signs a* 
and a which occur in sets I to VI and their derivatives ac­
cording to rules A to 0. In spite of this resemblance, we 
have no right to say that they come under these transformation- 
rules, unless it can be shown that each of them, respectively,
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may anywhere replaoe some one and the same single letter (or 
collocation which may be regarded as a single letter) that does 
come under the rules in question. Instead of saying, then, that 
the set a ■ (a * a + a*) is a derivative of the set a* « (a * 
aa'),—  thus suggesting that the initial signs a* and a are sub­
ject to rules A to D, which in fact they are not,—  we should 
rather say that if a' be used as a substitute for the Bet (a * 
aa*), the use of a as a substitute for the set (a * a + a») en­
ables us to develop a system in which these new signs can be 
manipulated according to rules A to O. In order to show that 
this latter statement is true, we must anticipate a point to 
be mentioned later; namely, that the mark « is to be read as 
Mis anywhere interchangeable with"; hence we are no longer re­
garding the mark * as meaningless. If we begin with the ini­
tial set VI, and substitute a* for b, and then apply T2 and III 
to the result, we get; T4. a + a' = -(aa*). Next, according 
to T2, -(a1) = a. Now if we agree to use a' as a substitute 
for "a is anywhere interchangeable with aa*", we shall be fol­
lowing the rules suggested by the above two sets if we use 
a,—  i.e. -(a*),—  as a substitute for "a is anywhere inter­
changeable with a + a',—  i.e., -(aa*)". The new signs are thus 
brought under our original rules of transformation; but it must 
be remembered that they are so only on condition that every a 
for which a* is a substitute be everywhere interchangeable with 
aa*, and similarly, that every a for which a is a substitute be 
everywhere interchangeable with a + a*. It is of course ques­
tionable whether we can introduce into the system, as it stands, 
both (l) an a everywhere interchangeable with aa*, and (2) an a 
everywhere interchangeable with a + a 1, so that a' and a may



themselves be used as substitutes, respectively, for the for­
mer and for the latter. The difficulty is that by T2, -(a*)
= a; and by T4 (p. 95, above), a + a* « -(aa1): hence If we
Introduce both (l) and (2) above mentioned, either T2 or T4
will have to be dropped from the system. This difficulty can­
not be solved so long as we regard our symbols as meaningless 
but recognizable marks. In fact, it would hardly have arisen 
at all if we had not already allowed the mark = to have some 
meaning: to mean what is meant by the words "is everywhere
interchangeable with". What we wish to point out at present 
is that if we can and do introduoe both the set a * a + a 1, 
for which a is to be a substitute, and the set a = aa', for
which a 1 is to be a substitute, it will then be possible to
derive all the sets used as theorems in the two-valued algebra 
merely by using rules A to 0, without having to employ some 
form of the principle of inferenoe as a transformation-rule.
We have already suggested how such a transformation-rule might 
be worded (93-S4, above) its effect would be, that if we have 
a set a (b, then if that same a, by itself, is a set of the 
system, b may be used by itself as a set of the system. The 
contention here is that such a transformation-rule 1b not 
strictly necessary, because if the a in question is merely a 
substitute for an a which is everywhere interchangeable with 
a + a 1, our rules A to D, when applied to the sets a and a(b, 
will produce the very same result as would such a transforma- 
tion-rule. For, once we have introduced the set a » a + a*, 
we may, according to rule A, substitute b for a therein and 
so obtain the set b * b + b 1. Since, by T3a, a + a' * b + b 1, 
the application of rule D gives us the set a « b. (It may be
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noted, incidentally, that if we had not already introduoed 
the set a(b, we should now be in a position to derive it: 
for a(b is merely shorthand for ab = a; and given a » b, we 
oan obtain the set ab m  a from Tl, aa « a, by substituting 
b for the second a according to rule D.) Now, the set a « b 
means that a and b are everywhere interchangeable within the 
system. Under the above conditions, then, given a(b, if a 
occurs by itself as a set, then b may be used by Itself as a 
set. Therefore we do not need any form of the principle of 
inference among our transformation-rules, since the same re­
sult oan be obtained without it. It is hardly necessary to 
show, by a similar line of reasoning, that the appearance 
within the system of the two sets a* and a*(b*, warrants the 
use of b* as a separate set; for this conclusion is easily 
arrived at if it be recalled (as was noted on pp. 94-95, above) 
that a 1 is merely a shorthand substitute for the set a = aa*, 
and if reference is then made to T3 instead of to T3a.

3. Logical Significance of Purely Formalist Derivation.
It is generally admitted that, as we have said above 

(p. 93) all the sets used as theorems in Boolean algebra 
and (provided suitable changes in notation be adopted) in 
the elementary calculus of the Principle oan be derived from 
sets I to VI according to rules A to D; and further, that such 
derivation can be effected by a kind of mechanical application 
of these rules to these sets, without reference to the logioal 
significance of the operations thus performed* Once certain 
derived sets have actually been selected as theorems, to the

exclusion of an indefinite number of other sets (which, though 
similarly derived, have been set aside as mere steps in the



process), the matter of recognizing any given derived set as a 
theorem is a mere matter of observing similarity of physical 
charaoteristios, which of course involves no referenoe to log­
ical significance. But since we wish to inquire what is meant 
by the statement, "These initial sets and the theorems derived 
from them according to the above rules constitute a deductive 
system1* and sinoe we are further interested in the reasons why 
this statement is true (or alternatively, the reasons why it 
is false), an investigation of the logical significance of the 
operations above described assumes importance. If the words 
"deductive system" be taken in their ordinary Bense, these ini­
tial sets and derivatives thereof will constitute a deductive 
system only on oondition that the derived sets are consequences 
of the initial sets. In view of the fact that derivatives are 
obtained from initial sets by performing the operations per­
mitted by the rules, a oloBer study of these rules, and of their 
effects when applied, may show us more clearly the relation be­
tween any set and its derivatives.

If we consider sets I and II, together with rules A, B 
and 0, the following points come to light. First, by means 
of these sets and these rules, certain marks are specified as 
usable in this system. Secondly, among the marks so specified, 
a twofold division is indicated: (a) marks which may be re­
placed by other marks, and (b) marks which may not thus be re­
placed. Thirdly, in the light of the rules, sets I and II are 
readable as propositions. A closer study of these three points 
will contribute to an understanding of the logical significance 
of the operations under discussion. In what follows, for con­
venience of reference, the phrase "well-formed expression" will
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be used as an abbreviation of "any single letter, or any ool- 
looation cf marks which may be substituted for a single letter 
acoording to rules A,B,0."

To begin with the third of the above points: anyone who
understands the meaning of rules A to 0 will recognize that 
set I may be read as follows, "Any two well-formed express­
ions, a,b, mav be .joined by a dot and taken together as a sin­
gle well-formed expression, (a.b)." Similarly, set II may be 
read: "Any well-formed expression, a, may be followed bv the
mark * and taken aB a marked well-formed expression, a 1."
(As was noted on p. 90 above, the dot iB often omitted; hence 
any two well-formed expressions between which no mark appears 
are understood to be joined by a dot* As will be seen later, 
the omission of brackets causes no confusion; and finally, it 
will be recalled that a bracketed expression, if marked, is 
preceded by the mark - instead of being followed by the mark 1 
merely because this notation seems dearer)*

The reading of these sets as propositions foouses atten­
tion on the other two points under disoussion. The marks us­
able in this system are thus far seen to include letters of 
the alphabet, and the non-literal marks *, and the
dot. Any letter may be replaced by (a) a single letter, or 
(b) any collocation of letters and non-literal marks whioh 
appear to the right of the marks *,°, in sets 1 and II, or 
which will appear there as a result of substitution according 
to the rules A,B,0* The non-literal marks are not subject to 
replacement* Of these latter, the first two mean what is meant 
by the words whioh are underlined, in the reading of their re­
spective sets, namely: (a) the operation of "joining together

••
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by a dot and taking together as a unit (or single express­
ion)"; (b) the operation of "marking, and taking as a marked 
expression". The others, in conjunction with the letters ac­
companying them on the right hand side of sets I and II, sig­
nify the results obtained by performing these operations upon 
these same letters whioh, as will be observed, appear on the 
left hand side of sets I and II respectively* Note further 
that the various collocations whioh ooeur in sets III, IV and 
V on either side of the mark « are each obtainable from sets 
I and II. For instance, the complex expression -(a'b*).-(a'b), 
in V, oan be thus obtained; take a' as in II, and make in order 
the following substitutions; b for a in II; a (,br, for a,b, in 
I; (a*br) for a in II; a 1 for a in I; (a*b) for a in II; -(a*b*), 
-(a'b) for a,b in I. Since each complex expression obtainable 
in this fashion from set I or set II or both is (according to 
rules B and 0) a well-formed expression, we may take it as suf­
ficiently clear, without need of further examples, that the 
class of well-formed expressions includes not only single let­
ters, both marked and unmarked, but also "dot-complexes" of the 
same (i.e., two or more successive letters each joined by a dot 
to its immediate successor may be bracketed together and taken 
as a unit), and the latter may be marked or unmarked. It is of 
course understood that there is no upper limit either to the 
number of single letters which may be taken together as a dot- 
complex, or to the number cf marks which may follow a given 
letter or complex. The reason for this is that both marked and 
complex expressions which are obtained from sets I and II may 
themselves be substituted for a,b, and a* in those sets to pro­
duce indefinitely many expressions of increasing complexity.
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In order that the logical significance of this seemingly 

mechanical procedure may he realized, we must observe that 
rules A, B and 0, in addition to having a olear meaning of 
their own, render setB X and XI just as clearly meaningful as 
they themselves are. we have already indicated in a general 
way that this is so, by showing how these two sets may be read 
as propositions. It will be worth while to examine in fuller 
detail the precise meaning given by these same rules to every 
mark in the two sets. What the marks 0 and * mean has been 
verbally stated above (p. 99) besides looking into their 
meaning more closely, we must compare this with the meaning of 
the other literal and non-literal marks which appear in these 
sets,—  the so-called variable symbols and constant symbols 
whioh are well—formed expressions of this system.

3. Truth and Meaning of the Formation Rules.
Since a detailed analysis of the meaning of the formation 

rules is likely to involve us sooner or later in a discussion 
of their truth, it will be well to point out at once in what 
sense, if any, they can be called true, and why they can be so 
called. As has been suggested (p. 99, above), both set I and 
set II are readable as statements to the effect that certain 
specified operations may be performed upon any well—formed ex­
pressions, or any pair of such expressions* On this reading, 
the only significance of these sets is what may be called 
"permissive". they inform us that certain operations are per­
missible on any well—formed expression; and hence they are rath­
er rules of procedure than statements whose truth or falsity 
can be questioned. Nevertheless, as mere rules of procedure, 
they rest on certain assumptions whose truth can be directly
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investigated. It would be pointless, for instance, to frame 
rules permitting certain operations upon certain specified 
entities, unless the operations were such, and unless the en­
tities were suoh, that these operations oould be performed 
upon these entities. We are justified in concluding, there­
fore, that these sets, which explicitly contain and expressly 
state a mere permission to perform certain operations upon 
certain entities, alBO contain implicitly,—  that is, entail,—  
the following statements whose truth can be tested: (1) These
operations are Buch that they can be performed upon these enti­
ties. (3) These entities are such that they can be subjected 
to these operations. The truth of these statements becomes 
manifest when we observe that the entities referred to are all 
marks, and that the entities operations involved are such op­
erations as "separating by a dot","bracketing together in a 
given order", and "placing a given mark to the right of".

Besides explicitly permitting the performance of certain 
operations upon certain marks, and implicitly asserting the 
possibility of these operations, sets I and II should be recog­
nized as explicitly asserting that there is a necessary connec­
tion between the actual performance of the operations in ques­
tion and the results of these same operations* Set I asserts 
a proposition (or expresses a proposition) which may be worded 
as follows: "If any two well-formed expressions, taken in a
given order, are joined by a dot and braoketed together, the 
result will be a composite well-formed expression, enclosed in 
brackets, consisting of one of these same well-formed express­
ions joined by a dot to the other in that same order." And 
set II; "If any well-formed expression is followed by the mark 
1 and braoketed with it, the result will be a marked well-formed
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expression consisting of the originally-selected well-formed 
expression and that same mark.H

The truth of these propositions is so manifest that one 
may be inclined to dismiss them as trivial. But their blatant 
obviousness need not prevent us from inquiring why they are 
true. It is tempting to suppose that they are mere tautolog­
ies, whose "truth" is entirely a matter of verbal or symbolic 
(i.e. purely nominal) definition, and has nothing to do with 
"what is the case". For we see, in the first place, that these 
particular marks and these particular operations have been quite 
arbitrarily selected and specified as "usable in this system", 
out of an indefinite number of differently-shaped marks and an 
indefinite number of different operations. And there are other 
systems which have been constructed by selecting different 
marks and performing different operations upon them; e.g., the 
8troke-ay8tem of Nicod and Sheffer. In the second place, the 
meaning of the phrase "a well-formed expression of this system" 
appears to be a matter of nominal and hence of arbitrary defi­
nition, inasmuch as anyone who wishes to construct a particular 
system can quite arbitrarily stipulate, beforehand, the condi­
tions which any expression whatever must fulfil if it is to be 
regarded as well-formed, in this system. With reference to 
the particular system whioh we have selected for discussion, 
such a stipulation is contained in the nominal definition of 
"well—formed expression" stated above (p. S9) • "Any single
letter, or any collocation of marks which oan be substituted 
therefor aocording to rules A,B,G, in sets I and II, or in sets 
III to VI, or in any derivative set."

On closer consideration, however, we find that the truth
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of sets I and II, even when they are read as abstractly as pos­
sible,— that is, as statements about marks and about operations 
performable upon marks,—  oannot be fully accounted for on a ba­
sis of arbitrary decision or nominal definition. After due 
allowance has been made for the arbitrary factors just mentioned, 
it yet remains undeniable that the very possibility of obtaining 
these results by performing these operations upon these marks 
fundamentally depends to some extent on the nature of the marks 
selected and of the operations specified as performable upon 
them. Unless the marks selected are marks of a given kind (here, 
letters of the alphabet), and unless the permitted operations 
are precisely those mentioned above, the collocations of marks 
which appear on the right side of sets I and II above, simply 
oannot be obtained. Hence the statement that these results not 
only will be obtained, but inevitably must be obtained, through 
the performance of these operations upon these marks is funda­
mentally a statement whose truth depends, at least in some meas­
ure, on “the way things are", and not entirely on our arbitrary 
arrangements and decisions. In other words, the truth of these 
statements iB not a mere matter of nominal definition.

4. Significance of Substitution in Sets I and II..
We have already pointed out (p. 99 above ) that the oollo- 

cations of marks which appear as well-formed expressions in 
sets III to V are obtained from sets I and II by substitutions 
in these latter sets according to rules A,B,C. It is further­
more apparent, from a consideration of these three rules, that 
any collocation o f marks appearing on the right-hand side of 
any such derived set whatever will be a well—formed expression 
usable in this system. We now wish to inquire whether every
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set derived from either I or II by substitution according to 
the rules is aotually a consequence of the set from which it 
is so derived. If this question happens to be answered in the 
affirmative we shall be led to the conclusion that there is a 
necessary connection between suoh derivatives and the original, 
in each case, and that the truth of each derivative 1b guaran­
teed by the truth of the original: for we have already indi­
cated that the original sets in question are both true, by 
analysis of their terms. From this it will follow that the 
statement, "Any collocation of markB appearing on the right- 
hand side of suoh derivatives iB a well—formed expression" must 
also be true. If, on the other hand, our inquiry should re­
sult in a negative answer to the question proposed, we may at 
least see more clearly how this kind of substitution is rela­
ted to ordinary deductive reasoning.

Since ordinary deductive reasoning is carried on by tak­
ing account of the meaning of words and of sentences, it will
be useful to ask whether the substitution-process whereby de­
rivatives are obtained effects a difference of meaning in the 
derived set as compared with the original set. In order to 
answer this question as simply as possible, we must state more 
definitely the meaning of each symbol in sets I and II; and 
the easiest method of doing this seems to be as follows. Re­
membering that the meaning of set I is thus expressed in words: 
"If any pair of well-formed expressions of whatever form is 
selected in any order and joined by a dot and bracketed to­
gether, the result will be a well-formed expression composed 
of one of these two expressions joined by a dot to the other
in that same order and braoketed with that other", we observe
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that the task of conveying this Bame meaning is performed by 
non-verbal symbolB in the following fashion, (l) The symbols 
a,b mean what is meant by "any pair of well—formed expressions 
of whatever form selected in a given order". (2) The opera- 
tion-mark 0 means what is meant by "joined by a dot and brack­
eted together", (3) The oollocation (a.b), symbolizing the 
result of these operations on these two selected expressions) 
means what is meant by "a well-formed expression composed of 
one* *. that other" (as above stated). Similarly, with regard to 
set II* (l) The symbol a means what is meant by the words "any 
well-formed expression of whatever form", (2) The operation- 
mark * means what is meant by the words "followed by the mark ( 
and bracketed therewith". (3) The resultant collocation of sym­
bols, (a*), means what is meant by "a well-formed expression 
made up of that same well-formed expression bracketed together 
with the mark 1 to the right of itself". It is important to 
observe that we are here confronted with those two very dif­
ferent methods of symbolization whioh we discussed at consider­
able length in an earlier chapter; director pictorial symbol­
ization, and non-pictorial symbolization (see pp. 8-19, above)
All the verbal symbols used to express the meaning of sets I and 
II, whether individual words or significant groups of words, are 
non—pictorial symbols. They do not direotly picture that for 
which they stand} this is plain from the fact that they do not 
themselves possess the characteristics which they signify; thus, 
for example, the phrase "well—formed expression" is not a well- 
formed expression, for although it is an.expression (as indeed 
every signifioant word is), it has not the characteristics summed 
up in the phrase "well-formed for use in this system". What has 
juBt been said of all verbal symbols is equally true of those
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non-verbal symbols which we have called operation—marks; these, 
as is evident, are simply abbreviations, arbitrarily chosen, 
forthe- group of words we have used to indicate their meaning.
On the other hand, all other symbols, both literal and non-lit­
eral, are direct or piotorial symbols. The non-literal symbols, 
whioh appear together with literal ones in the oollocations on 
the right-hand side of the operation-marks, directly picture 
what they Btand for: namely, a mark of certain shape occupy­
ing a definite position with respect to some well-formed ex­
pression as a result of an operation on this same expression.
The literal symbols, whioh are the same on both sideB of the 
operation-marks, likewise directly picture what they Btand 
for: each is, and each directly represents, a letter of a
definite shape occupying a definite position with respect to 
some other letter or mark. Now, in all derivatives of I and 
II, the marks which appear on the right-hand side as a result 
of the operation signified by the operation-mark are the same 
as in the original set; or, to be quite preolBe: although they
are entitatively or individually other than the marks in the 
original, each is a mere instance of the original mark whioh it 
replaces, differing from the original not at all in physioal 
characteristics such as shape, size, and relative position. In­
asmuch as each suoh mark has the same characteristics as the 
mark whioh it replaces, it will have the same pictorial symbolic 
force as its original, apart from some explicit statement to the 
contrary; for as we have seen, any change in the meaning of a 
piotorial symbol involves a change in the characteristics of 
such a symbol (see pp, 9-1 0 ,above ), No matter what these non­
literal markB mean in the original, therefore, they will have
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the same meaning in all derivatives; in a word, their meaning 
is as unaffected by the process of substitution as they them­
selves are. With regard to the literal symbols, we observe 
that’ these are not the same in derivative sets as in the orig­
inal set; for the process of substitution consists in replac­
ing a given literal symbol by a different one. If, for in­
stance, we wish to obtain a derivative of set I, we must sub­
stitute some other letter for a or for b or for both; this 
holds true even when, as a result of substitution, we obtain 
the same pair of letters in reverse order. It appears, then, 
that if the substitution-process effects a difference of mean­
ing in any derived set as compared with an original set, such 
difference will be found in the meaning of the literal symbols. 
In any event, the meaning of the literal symbols is worth exam­
ining more closely; for it naturally involves a discussion of 
the phrase "well-formed expression", and leads to a suggested 
distinction between the content and the form of suoh express­
ions, as well as to some further observations about the mean­
ing of non-literal Bymbols, all of which have to do with the 
analysis of the substitution-prooess in sets I and II which we 
are now attempting to make explicit.

We have seen (p. 105, above ) that the literal symbols, 
a,b, in set I, mean what is meant by the words "any pair of 
well—formed expressions selected in a given order, of whatever 
form". While it is true that the order in which a,b occur fur­
nishes a piotorialrepresentation of the "given order" here men­
tioned, there can be no doubt that the pair a,b do not pictor— 
ially symbolize "any pair of well-formed expressions of what­
ever form". For they are just one definite pair, i.e. the pair



109
made up of the letters a,b; and each of these letters has just 
one definite form of its own. At this point, however, a diffi­
culty presents itself. The word HformH, as applied to well- 
formed expressions, is manifestly ambiguous; for it may be said 
on the one hand that the form of a differs from the form of b, 
inasmuch as the actual shape of these marks is different, and 
on the other hand we may truly say that a and b are of the same 
form, inasmuch as eaoh is a single letter. The removal of this 
ambiguity is very necessary if we wish to understand fully the 
meaning of any well-formed expression whioh is a direct or pio­
torial symbol. All suoh symbols must possess the form which 
they directly signify; hence unless we know precisely what form 
suoh a symbol has, we oannot begin to find out precisely what 
form it means. Besides attempting to make more preoise the no­
tion of form by removing the above ambiguity, we must also fur­
ther clarify it by considering its relations to the cognate no­
tions of content and of structure.

5. Form and Content of Well-Formed Expressions.
It will be obvious to anyone who realizes what a variety 

of meanings have been given to the words "form" and "content" 
by past and present philosophers that we cannot here embark 
upon a full discussion of these various meanings. Henoe, how­
ever interesting and fruitful might be the attempt to establish 
some general principle according to whioh the seemingly diver­
gent meanings of these words could be coordinated and unified, 
we must limit ourselves to a study of their meaning when used 
of well—formed expressions. We have noted that the two well- 
formed expressions a and b can truly be said to be of the same

form, and with equal truth, from a different point of view,
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oan toe said to toe of different forms; and the situation is 
still further complicated when we recall (as was indicated on 
pp. 77-78, above) that from still another point of view any 
two collocations, each of whioh may toe regarded aB a unit and 
is also a well-formed expression, may toe described as isomor­
phic with each other: thus it may be Baid that a and (b.o.d)
are of the same form, on the ground that each is a single 
well^formed expression. These different viewpoints are easy 
enough to identify; the question is, what is their basis, and 
what difference, if any, do they bring about in the meaning of 
"form" as applied to well-formed expressions. An answer to 
this question appears necessary before we can see whether, and 
why, a change in the form of a well-formed expression involves 
a change in the meaning of that expression.

To begin with the simplest and clearest kind of case: it
is true to say that a and a are well-formed expressions of the 
same form. Here we may be inclined to say that they are of the 
same form because they are instances of the same letter; but on 
reflection this reason is seen not to toe fundamental. For it 
must be admitted that many instances of the letter a are very 
different from a in form. To say nothing of the various forms 
used in different languages, nor of the difference within the 
same language between capital letters and small letters, it is 
plain that many instances of the letter a have not the same 
form as a: consider, for example, the various forms of a avail­
able to the modern printer, even when we take no account of the 
use of italics, or of script. The ultimate factual basis for 
the statement that a is of the same form as a Beems rather to 
be this: that a and a are instances of the same mark, without
reivinff nnduiv on linficuistio considerations, we may note that
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in ordinary usage the words "mark" and "sign" express muoh the 
sane idea. A physical object is called a mark inasmuch as it 
is a sign of some other objeot: that is to say, onoe a given
physical objeot is known, and once we peroeive a connection 
between it and some other object, it is for us a means where­
by that other objeot is presented to thought. In all cases 
of direct symbolism, as we have seen, the connection between 
symbol and referend depends on the faot that they have in com­
mon some characteristic, notably shape, (form, outline); and 
it may be said quite generally that, apart from any convention 
or understanding, whether private or public, any physical ob­
ject whatever is naturally suoh that it directly pictures or 
represents all instances of itself, that is, all other objects 
whioh have the same characteristics as itself. On the other 
hand, in all cases of non-piotorialxsymbolism the connection 
between symbol and referend is either entirely a matter of 
convention and hence entirely arbitrary, or at any rate is 
entirely independent of physical similarity. In particular, 
the connection between the physical object a and the linguis­
tic unit a of whioh that objeot is the accepted mark or sign 
or symbol is entirely a matter of convention; and the same is 
true of all other letters. That is why, although the shape 
of marks oan be perceived, letters have to be learned. This 
faot, as also the faot that such conventional connections 
must be known before any object or mark can be actually re­
cognised as the symbol of a letter, is of interest to the 
psychologist rather than to the logician. What we are em­
phasizing here is, that this kind of connection simply does

not exist. apart from arbitrary convention, and hence it is
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entirely independent of any characteristic of the "symbol-ob- 
jeot", or mark, itself.

To insist on saying "the mark a is a symbol of the letter 
a (or, "symbolizes the letter a"), instead of "the mark a in 
the letter a", would in most contexts be mere pedantry; par­
ticularly because the letter a, as an accepted linguistic unit, 
is itself a symbol, with meaning of its own, whether by itself 
or as part of those oollocations of letters which are accepted 
words of some language. But anything like a careful analysis 
foroes us to recognize that the latter of these two descrip­
tions is less accurate than the former: that a letter is not
precisely and adequately desoribable as "a mark of a given 
shape", but rather as "a linguistic unit, whioh is a single in­
tegral part of those larger linguistic units called 'words', 
and of whioh a mark of a given shape is the accepted symbol".

Two very interesting oonsequences follow from this view.
If by "letter" we mean always and only a single integral part 
of a word, then suoh an isolated mark as "a" in such a collo­
cation as "a dog" does not symbolize a letter; instead, it is 
the symbol of a word, namely, of the part of speech known as 
"the indefinite article". We are thus led to the general ob­
servation that a single mark may symbolize either a letter or 
a word; and as regards oollocations of marks, it should be 
noted that these do not always symbolize words even when each 
individual mark is the accepted symbol of a letter. A word 
is not merely a group of letters arranged in a definite order; 
it is a definitely-ordered group of letters accepted as a lin­
guistic unit, that is, accepted for use as a symbolic unit in 
a given language. A letter in isolation is something that can



be part of a word} but it is not, and will not be, actually 
part of a word until and unless it occupies a definite posi­
tion in some group of letters which, as a whole, is conven­
tionally accepted as a wox*d in a given language*

The second consequence which we wish to point out is as 
follows. Strictly speaking, the marks a,b,c..., specified as 
usable in this system, do not symbolize letters of the Eng­
lish alphabet when used in this system; for according to the 
rules of the system, no collocation of these marks can ever
symbolize an English word, and therefore no individual mark
can stand for something that can be part of such a word. Tak 
ing both these consequences together, we may say: (a) A sin­
gle mark may be used to symbolize either a letter or a word,
of a given language. (b) A collocation of marks may be used 
to symbolize either a part of a word, e.g., a diphthong, or a 
word, provided that each mark in the collocation is the accep 
ted symbol for a letter of that same language.

Perhaps the most exact way of stating what ought to be 
meant by "mark", "letter", and "word", in order to have a 
clear and consistent view of the interrelation of these enti­
ties with reference to symbolic usage, is as follows. First, 
a symbol is a sensibly-perceptible objeot (and therefore an 
existing, material objeot), used as a sign of something. Any 
sensibly—perceptible object, inasmuch as it has certain per­
ceptible physical characteristics, is a natural sign of any 
other object whioh has those same physical characteristics.
In particular, a mark is a natural sign of all other marks 
which have the same non-relational physical characteristics
as itself; i.e., of all "instances" of itself. Not to de-
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part unnecessarily from the ordinary way of speaking about 
words and letters} we may say that a mark of a given shape is 
a letter, if and only if it is accepted, by convention, as one 
of the basic objects which serve as signs in one of thoBe com­
plex Bymbol-structure9 called "written languages". Further, a 
collocation of letters is a word, if and only if it is accep­
ted, by convention, as one of those linguistic symbols called 
"parts of speech", the precise functions of whioh, in those 
larger symbolic units oalled "sentences", are defined by the 
grammatical rules of the language. Finally, by way of clari­
fying what is meant by speaking of a mark as a letter if it is 
accepted as a "basic" part of a language, we may note that a 
mark is not considered as a letter unless it can form part of a 
word.

The preceding considerations suggest that the ambiguities 
attaching to the words "form" and "content" as applied to well- 
formed expressions may be at least partially removed by atten­
ding to the different points of view from which a well-formed 
expression may be regarded. Considered as a physical entity, 
a well-formed expression is either a single mark, or else a 
collocation of marks. Two single marks, such as a and a, are 
said to be "instances of the same mark" if they are of the same 
form, i.e. of the same shape. The different content of eaoh 
mark, which makes each a different instance, does not affect 
their sameness of form; though it would if the component parts 
of each mark were differently shaped or differently arranged, 
with reference to corresponding component parts of the other. 
Thus, for example, the difference of form between the marks p 
and b, d and q, is a ’mere matter of different arrangement of
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the same component parts, i.e. of similarly-shaped component 
parts. So long as we have to do with individual markB, dif­
ference of content is ignored, unless it be so shaped and or­
dered as to make the marks not only individually different but 
specifically different, i.e. different in form or shape, eo 
that we no longer have two instances of the same kind of mark, 
but two instances, each of which is an instance of a different 
kind of mark, nvhen we wish to consider merely as physical enti­
ties those well-formed expressions whioh are collocations of in­
dividual marks, the distinction between form and oontent is more 
olear-out, and oontent Itself provides a basis of difference in 
kind. Two collocations of marks will be of the same form if 
they are composed of the same number of component parts, i.e. 
of individual marks, arranged in the same order. If the cor­
responding parts of two such collocations are marks which dif­
fer in kind from each other, the collocations will differ in 
oontent, and in that case they can not be called "instances of 
the same collocation11 even though both collocations are of the 
same form. In order to be instances of the same collocation, 
both must have not only the same form but also the same oontent, 
i.e. be made up of the same component parts, the same number of 
individual marks of the same kind.

It will be seen that the statement which we have just been 
examining, namely, "a is of the same form as a H, holds true of 
a and a considered as marks. If we look at the statement "a is 
of the same form as b«, the viewpoint from which this is Been 
to be true is slightly different. The marks a and b are ob­
viously not of the same form; hence if this statement is true,
a and b must be viewed not as mere marks, but as well-formed
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expressions, that is, as marks more or less arbitrarily selec­
ted for use as the basic element-symbols of a definite symbol- 
system. Quite apart from any reference to interpretation, or 
to any system of entities tfhich the symbol—system may symbolize, 
the basic or elementary well-formed expressions, a,b,c..«are 
element-symbols inasmuch as each is a member of that arbitra­
rily speoified class of marks whioh oan become well-formed ex­
pressions of this system merely by selection. They are, ac­
cordingly, the least complex of all the well-formed expressions 
of the system, and may be called "simple" or elementary well- 
formed expressions; out of them the more complex well-formed 
expressions are constructed, by subjecting them to the opera­
tions permitted by the formation-rules of the system. Such 
simple well-formed expressions as a,b,o... are all of the same 
form precisely because each is simple: a mere element-symbol
selected for use in this system, and not operated upon in any 
way. They cannot, however, be regarded as well-formed express­
ions of the same content, unless they are not only of the same 
form but also instances of the same mark. To Bay truly that a 
and b are of the same content, or that they have the same con­
tent, one would have to mean either (a) that each is made up 
of the same number of elementary well— formed expressions, viz. 
one, or (b) that a and b are identical in reference, or have 
the same range of values. In the former sense, the statement 
appears to be trivial, and in the latter sense it is a state­
ment not about the well—formed expressions themselves, but 
about the meaning of these expressions. Hence it seems more 
advisable to say that a and b are of the same form but not the

same in content.
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A discussion Of the third statement, "a is of the same 

form as (a.b.c.d) ”, will enable us to show how the form and 
the content of well—formed expressions are affeoted by the 
operations permitted acoording to sets I and II, and also how 
one well-formed expression may be used as a variable, to sym­
bolize other well-formed expressions, we cannot say, as 
above, that these two expressions are of the same form be­
cause they are marks of the same shape, nor yet because each 
is a simply or elementary well-formed expression; for ob- 
viouBly neither of these reasons holds good here. Consid­
ered as well-formed expressions of this system, these two 
expressions have two features in common: each is a single
well-formed expression, and each is unmarked. This latter 
point of resemblance evidently arises from the fact that, 
neither has been subjected to the operation of marking, per­
mitted by set II. It is, however, a point of less impor­
tance than the former, since even a marked expression might 
be said to be of the same form as a, on the gound that it, 
like a, is a single well-formed expression: thus, a and (b')
are of the same form, in this sense.

We oan now see the basis of the connection that exists 
between a simple well-formed expression such as a, when a is 
used as a variable, and all those well-formed expressions 
which are indeterminately symbolized by a, and are called 
"values of a". Some of these values, namely, all other in­
stances of the mark a, will be strictly the same as a both 
in form and in content, and the symbolization in all such 
oases will be most direct, independent of convention. Other 
values, namely, all other elementary or simple well-formed
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Qxpressioasy will be of the sane form as a, because indepen­
dently of any systematic considerations, each is a single 
letter; but each will differ from a in content because each 
is a different letter from a* The variable a will in such 
oases directly symbolize the form of all these values of it­
self; independently of any systematic considerations, it has 
the form whioh it symbolizes, that of being a single letter. 
All other well-formed expressions not included in the two 
above-mentioned classes will really differ from a not only in 
content but also in form; and such expressions can be said to 
be of the same form as a only because of the systematic con­
ventions whereby each of them is regardable as a single well- 
formed expression of this system. The variable a, in suoh 
cases, does not and cannot directly symbolize the form of its 
values, precisely because they are not really of the same 
form as a; but it can direotly symbolize the relative posi­
tion of these values in a set or in a more complex express­
ion, because each of these values must oocupy the same posi­
tion as a oocupies, when any one of them is substituted for 
a in any set or expression.

It has already been remarked (pp, 100, 104, above ) that 
the well-formed expressions appearing in sets III to V. are 
all derivatives of sets I and II, Before passing on to con­
sider the special problems presented by these other sets, and 
the somewhat different problem connected with set VI, there 
is one further point of particular interest to be mentioned 
as regards I and II, namely: the operations permitted by
these two sets affect only the form, but not the content, of 
all well-formed expressions derived from them by rules A,B,0.
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That is to say, if we take a given number of instances of the 
same or of different initial well-formed expressions (i.e. 
letters, a,b,o«..) and subject them to the operations permit­
ted by sets I, II, and by rules A,B,0. the form of the result­
ant well-formed expressions will vary according to the order 
and number of operations to which the initially-selected ex­
pressions are subjected in each case; but the content of the 
resultant expressions will be the same: each will contain
all and only those letters which were initially selected for 
operation upon, no matter what be the order or the number of 
times of the operations performed on each, once they have 
been selected. For example, take the five letters a, b, a, 
c, b as those to be operated upon, and subject them to two 
series of operations, as follows. Series A: (l) Combine a,
b, by I, into (a.b); (3) Mark this, acoording to II, -(a.b);
(3) Mark a,c separately, by II, and combine the results, by 
I, into (a*.o'); (4) Combine the remaining b with (a.b) above, 
by I, into ((b).(a.b)); (5) Mark this, by II, and (6) Combine 
the result, by I, with (a*.o*) above, so as to get (-((b).
(a.b)). (a*. o* ) ). Series Bs (l) Combine a,a, by I, into 
(a.a); (3) Mark b, by II, b 1; (3) Combine the remaining b,c, 
by I, into (b.c); (4) Mark (a.a) above, by II, -(a.a); (5) 
Combine b* and (b.c) above, by I, into ((b* )• (b. c)); (6) Mark 
thiB last, by II, and (7) Combine the result with -(a.a) above, 
so as to get (-((b*).(b.c)).-(a.a) ). Although the letters 
initially chosen to be operated upon, and also the operations 
performed upon them, were selected at random, it may be unsafe 
to generalize from this single example. Nevertheless, we have 
here some ground for the general statements already made (p. 118 
above); (a) that the form of well-formed expressions in this
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system is determined by the number and order of operations I 
and II performed on a given number of instances of initial 
letters; and (b) that the content of the resultant express­
ions, i.e. the number and kind of initial letters which ap­
pear in the resultant expressions, remains the same, no mat­
ter how many times, or in what order, these operations are 
performed on a given number of instances of initial letters.

6. Significance of Sets III to V.
Sets I and II and their derivatives, together with rules 

A, B and C, may be said to define the class of well—formed ex­
pressions usable in this system, inasmuch as they provide for 
the construction of composite expressions out of simple ones, 
and indicate the marks to be used as simple expressions. Sets 
III to V and their derivatives, as well as all subsequent sets 
of the system together with the derivatives thereof, contain 
only such expressions as appear in sets I and II or are deriv­
able therefrom according to the rules; but they differ from the 
first two sets in the following important respect; each con­
tains the conventional sign of equality, which is one of the 
marks indicated as a non-well-formed expression of this system.

A consideration of the significance of these sets, when 
they are read as abstractly as possible without reference to 
any of the possible interpretations of the system whereof they 
form a part, must accordingly include some discussion of the 
significance of this sign of equality. We may begin by noting 
that sets III and IV eaoh contain, on either side of this sign, 
two well—formed expressions which differ in form but consist 
of the same elementary or simple components: a,b in set III
and a,b,o in set IV. Hence they are the same in content, tak-
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ing "content" to mean "number of instances of the same simple 
expressions (i.e. letters) included in each". This is not 
true of the two well-formed expressions which occur in set V 
on either Bide of the sign of equality; for obviouBly the ex­
pression a differs both in content and in form from the ex­
pression

As has already been suggested (p. 95, above) , the sign 
of equality, insofar as it has any meaning at all,—  and it 
must have meaning if we are to apply Rule D in the develop­
ment of this abstract system,—  means at least what is meant 
by the words "is everywhere interchangeable with". On this 
minimal interpretation (using the word "interpretation" in a 
wide Bense), all sets containing the sign of equality have the
same kind of permissive significance which we mentioned as at­
taching to sets I and II, and especially to the operation-marks 
in those sets. Taken in conjunction with rule O, all these 
sets declare that the two expressions which appear on either 
side of the "equals" sign are everywhere interchangeable with­
in this system. Thus interpreted, they are mere rules for the 
development of the system by means of substitution. But the 
point we wish to stress is that they, like the sets we have 
already discussed, rest upon certain assumptions whose truth 
is taken for granted; and unless these assumptions are true, 
these Bets are useless even as rules of procedure.

It must always be borne in mind that what we are here con­
sidering is not a mere jumble of marks set down more or less at 
random, but an abstract symbol—system intended for use as a di­
rect or pictorial representation. Henoe the utility of this 
system will depend on its conforming to the primary requirement
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of direct symbolism; namely, that the objects (here, the 
marks) chosen as direct symbols of this system be so chosen 
and so arranged as to have the characteristics which they 
are intended to symbolize. If an expression is to be a di­
rect symbol of content, it must have the content which it 
is meant to symbolize; and the same holds true of form and 
of structure. From what has already been said about the 
meaning of the words "form" and "content" as applied to well- 
formed expressions of this system, similarity of structure be­
tween any two such expressions consists in this; that eaoh 
of the two must be made up of the same number of simple well- 
formed expressions, and that corresponding simple constitu­
ents occupy, in their respective expressions, the same rela­
tive position with respect to the other constituents of the 
expression in whioh they occur. The kind of substitution 
permitted by Rule A (p. 90, above) insures the preservation 
of the structure of all expressions in which such substitution 
takes place; for although the content of an expression is al­
tered by the substitution of one kind of Bimple constituent 
(e.g. a) for another kind of simple constituent (e.g. b), this 
alteration of content is determined beforehand by the proviso 
that whenever a simple constituent is replaced, it must be re­
placed by the same substitute throughout the expression in 
which it occurs; and consequently the respective position of 
substitute and original constituents remains entirely unal­
tered. The modified expression as a whole will thus be iso­
morphic with the original expression, and can therefore be 
used to symbolize directly the structure possessed by and sym— 
bolizable by the original. But when we extend Rule A, so as
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to permit not merely the replacement of simple constituents by 
simple constituents (i.e. single letters by single letters), 
but "each time" substitution, for any well—formed expression, 
of any other well—formed expression of whatever structure, it 
is evident that such substitute expressions as differ in struc­
ture from the originals whose position they occupy can not di­
rectly symbolize the structure possessed by and symbolized by 
the originals.

It may indeed bjB objected that there is a sense in which 
every substitute expression can be regarded as isomorphic with 
any original expression which it replaoes: namely, that each
is a single well— formed expression of this system. The fact 
remains, however, that there is a real difference in structure 
between those well—formed expressions which are simple, and 
those which are formed by operating upon simple expressions ac­
cording to sets I and II, as well as between any two well-formed 
expressions whose simple constituents have been subjected to the 
above operations in a different order or a different number of 
times. The singleness or oneness attributable to non-simple 
expressions is purely systemic, whereas the singleness of sim­
ple expressions is extra—systemic, based on the faot that sim­
ple expressions are single letters, and hence have a oneness 
that is independent of their status as expressions in this sys­
tem. We may, it ia true, agree to treat all marked or composite 
expressions as though they were simple expressions; but if we 
do, we are agreeing to ignore their structural differences, and 
hence not to make use of them as direct symbols of structure; 
for as has been said, the only structure which they can directly
symbolize is the structure which they have, and when we ignore
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this structure we cannot consistently make use of it for pur­
poses of direct symbolism. If we wiBh to maintain that 
(a.b.c.d) and a are both single expressions and can therefore 
be regarded as isomorphic, consistency obliges us to maintain 
this position when using these two expressions as direct sym­
bols of structure, and therefore not to employ as directly 
symbolic the actual structural features of the composite ex­
pression (a.b.c.d). To employ these actual structural fea­
tures entails, on the other hand, an admission that (a.b.c.d) 
is not isomorphic with a.

Rule D, it will be observed, permits even greater lati­
tude in the matter of substitution than does the above-men­
tioned extension of Rule A, for according to Rule D, two ex­
pressions occurring on either side of the sign of equality 
are everywhere interchangeable, and this means that when one 
is substituted for the other, such substitution need not be 
made each time, throughout the whole expression in which that 
other occurs. To understand the implications of this rule, we 
shall examine in detail the sets in which the sign of equality 
first makes its appearance.

Set III, if written in full, would be as follows:
(a.b) * (b.a). Taking the bracketed expressions as mere re­
sultants of an operation permitted within this system, namely, 
the operation signified by set I, we may read set III thus:
"The expression obtained by operating on the letters a,b ac­
cording to set I is everywhere interchangeable with the express­
ion obtained by similarly operating on the letters b,a." If 
set III be regarded as a mere rule of procedure, the above state-
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ment is simply an arbitrary declaration, or permission to 
the effect that these two expressions may replace each other 
anywhere within this system* And the same may be said when 
the set is given a general interpretation, by taking a,b and 
b, a as variables meaning any pair of well-formed expressions 
in a given order, and that same pair of well—formed express­
ions in reverse order* If the sets of this system were indeed 
meaningless marks, or if the symbolio foroe of the marks oc­
curring in this system were to be settled entirely by conven­
tion, there would be little point in raising further questions* 
But as a matter of faot, the very readability of these sets as 
sentences shows that they have at least as much meaning as sen­
tences have; and because they are to be used as direct symbols 
of structure, all rules of procedure touching their development 
must oonform to the requirements of direot symbolism already 
noted* It is therefore important to examine the implications 
of these rules of procedure from an extra-systemic point of 
view, and to see what other statements there are, if any, which 
must at least be assumed as true in order that such rules of 
procedure may be useful for the development of a directly sym­
bolic system of abstract symbols*

Since (a.b) and (b.a) differ in the order of their compon­
ent parts, set III would be false if read as a statement that 
these two expressions were exactly the same, i*e* mere different 
instances of the same expression, such as a and a are. Clear­
ly* Hs joined by a dot to b and bracketed together with b as 
a single expression'1 is not exactly the same as Mb joined by 
a dot to a and bracketed together with a as a single expression*"
This observation applies no less clearly when a and b are taken
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as variables, standing for "any pair of well—formed express­
ions in a given order". Hence we see that if this set is read 
as a statement about marks of a given kind, or about the re­
sults of an operation upon marks (i.e. the operation of join­
ing by a dot in a given order, and bracketing together), it 
would be a false statement were we to read the sign of equali­
ty as meaning "is identical with". The difficulty is apparent­
ly solved if we read this sign as above, meaning "is everywhere 
interchangeable with"; but only apparently: for this last im­
plies "for purposes of direct symbolism within this system," 
and as we have seen, such interchangeable expressions must be 
identical at least in structure. Though (a.b) and (b.a) can 
be regarded as identioal in structure in Bpite of the different 
order of their components, no such identity is attributable to 
the many other expressions obtainable by substituting various 
values of a and b when these latter are taken as variables. 
Henoe another solution of the difficulty must be sought for.

The simplest solution would seem to be this. Take a,b 
as meaning two distinct elements, or individual members, of 
an aggregate, and take the dot as meaning a relation which 
holds between theBe two elements in consequence of some opera­
tion whereby the two are combined without losing their individ­
ual distinctness; finally, let the brackets mean the unity 
whioh attaches to the combination of these elements so rela­
ted. Set III may then be read as follows: VAny pair of ele­
ments bound together into a composite unit in a given order. 
by some relation or other is, when considered as a unit, iden­
tioal with that same pair of elements bound together into a

composite unit in the reverse order by that same relation,
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when this differently—ordered pair is oonsidered as a unit. M 
Lest the word "same" in the above statement be misleading, it 
should perhaps be remarked that it is mere shorthand for "a 
pair of instances of the same elements" (i.e. "another pair..") 
and "another instance of the same relation". For in strict 
accuracy, two things which are individually distinct cannot be 
called "identical with" each other; though they may be identi­
cal in kind: i.e. they may be two different instances of the
same kind of thing.

Whether the above statement is true or false, it is at 
least not evidently self-contradiotory, and cannot be dis­
missed as meaningless nonsense. Moreover, it will be a true 
statement if the following condition is fulfilled: if there
already exist at least one class of elements and at least one 
relation, Buch that if this relation holds between any pair of 
elements in a given order, it will also hold between that same 
pair of elements in reverse order. We need not pause at thiB 
point to inquire whether such a class of elements and such a 
relation does in fact exist, nor attempt to say anything fur­
ther about the nature of these entities if they do exist. It 
is enough to note here that the existence of such entities is 
at least possible, for we can conceive of them as existing, 
either as actual entities in the physical universe (under 
clearly definable conditions), or as mental constructs whose 
existence is a mere matter of their being thought. We may re­
mark, further, that the letters a,b,c... themselves constitute 
just such a class of elements; but the relation signified by 
the dots and brackets cannot be the relation which holds be­
tween a,b as a result of placing a dot between these two let­
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ters in a given order and bracketing them as a single express­
ion* For although the pair a,b has the same components as the 
pair b,a, it oannot be the case that "a joined by a dot to b in 
this order and bracketed together" is the same as ®b joined by 
a dot to a in this order and bracketed together"* The reason 
is, obviously, that as a result of the first operation we have 
"a to the left of b", and as a result of the second operation 
we have "a to the right of b". If, however, the relation sig­
nified by the dot is the relation signified by the words "next 
to", set III can be read as a statement about the letters a,b, 
o*.., or any well-formed expression construotible therefrom ac­
cording to the rules of this system, and the truth of this 
statement will be evident on reflection* For no matter what 
letters or well-formed expressions the marks a,b stand for,—it 
iB undeniable that "a next to b" and "b next to a" are every­
where interchangeable.

A very similar line of thought suggests itself in connec­
tion with Set IV, which if written in full would be as follows: 
((a.b).o)«(a. (b.o)). In the two well-formed expressions here 
indicated as everywhere interchangeable, we do not find, as 
above, the same pair of simple expressions dotted and bracketed 
together in two different orders, one the reverse of the other. 
Each expression is indeed made up of the same simple components 
a,b,c; but the manner in which these have been operated on ac­
cording to the operations mentioned in set I is in each case 
different. In the first, the pair a,b has been dotted and 
bracketed together in that order, and the composite expression 
thus formed has been dotted and bracketed together with c in

that order. In the second, the pair b,c has similarly been
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dotted and bracketed together, and then a has been dotted and 
bracketed together with this composite expression* If, as in 
the case of set III, we take a, b,o as standing for what they 
are, i*e. instances of letters,— ** whether of the same or of 
different letters does not matter, though actually they are in­
stances of different letters,—  set IV may be read as a sig­
nificant statement to the effeot that certain operations per­
formed upon the same three instances of letters yield the Bame 
results; but the operations signified cannot be those of dott­
ing and bracketing together, or else the statement will not be 
true. On the face of it, the performance of these operations 
on these three letters in the two different fashions above de­
scribed yields results which are different in each oase; hence 
to say that these results are the same would be to make a false 
statement. To take the dot as standing for the relation meant 
by the words "next to" does not give us an obviously true 
statement as it did in the oase of set III, for it is not easy 
to see what ought to be meant by the brackets here. The sim­
plest reading of this set would seem to be a statement to the 
effect that the operations of dotting and bracketing together, 
performed in the two different manners above mentioned on the 
same three well—formed expressions will not change the express­
ions thus operated upon. Such a statement is no doubt trivial; 
but it has the advantage of being analytically true, apart from 
any conventions, and it is a statement about well—formed ex­
pressions of this system, b o that the problem of existence does
not arise.

This suggests a way of avoiding the problem of existence 

which was raised by the reading of set III previously suggested
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(p. 124, above). We may read set III as a statement about 
well-formed expressions of this system, to the effect that 
the relation brought about by the operation of dotting and 
combining any pair of suoh expressions remains the same, no 
matter in what order these expressions are subjected to these 
operations; and further, that the expressions thus operated 
upon undergo no change in consequence of the operations to 
which they are subjected. This, again, however trivial, is 
a statement which is analytically true, apart from any con­
ventional considerations.

Finally, sets III and IV may be read conjointly as a 
statement about the results of subjecting two or more well- 
formed expressions to the operations permitted by set I: a
statement, namely, that the results of performing these opera­
tions on any number of well-formed expressions will be the 
same, no matter in what order these expressions are combined, 
nor how many of them are braoketed together, provided the same 
number of instances of the same expressions be subjected to 
these two operations.

If we content ourselves with remarking that the sameness 
of these resultants is merely a sameness of content in the 
sense of !'consisting of the same simple well-formed express­
ions", sets III and IV add nothing to the information already 
contained in sets I and II regarding the effeot of operations 
on simple well-formed expressions of this system; for we have 
already noted that if the same number of instanoes of the same 
simple expressions be subjected, in any order, and any number 
of times, to the operations permitted by sets I and II, the

content of the resultant expressions will be the same, although
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their form will be different according to the different number 
of time8 each has been subjected to the same, or to different, 
operations. From this point of view, for instance, the express— 
ions-(a.b) and (a*,b») are the same in content though different 
in form. Yet we cannot assume that these two are interchange­
able merely because (a.b).o and a.(b.c) are interchangeable.
In brief, it seems that interohangeability within this system 
presupposes something more than Bameness of content, where 
content means only "same number of instances of same lettersH.

7. Significance of Set V.
When we come to examine the fifth of our initial sets of 

marks, the implications of interchangeability are seen to be 
more far-reaching than we have thus far had reason to believe, 
and it is no longer possible to maintain that the initial sets 
can be read as analytically true statements about the results 
of subjecting well-formed expressions to the operations of 
joining by a dot and bracketing together and placing the mark * 
to the right of. Set v, it will be recalled, is as follows: 
-(ar.br).-(a*.b) ■ a. Here, as is evident, the well-formed 
expressions on either side of the sign of equality differ not 
only in form but also in content: on the left hand side we
have two instances of the mark a and two of the mark b, while 
on the right hand side there is but a single instance of the 
mark a and no instance of b. And it is certainly not true to 
say that if two instances of a and two instances of b are sub­
jected to the operations of dotting and bracketing together 
and marking, in the manner indicated by the expression to the

left of the sign of equality, this resultant is somehow the 
same as a single instance of a not operated upon at all. Fur—
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thermore, it is very difficult, if not impossible, to imagine 
what other operations, which, like those of dotting and brack­
eting and marking, are operations performable upon letters, 
could effect any kind of sameness between -(a*.b*).-(a*.b) on 
the one hand and a on the other* The conclusion therefore 
seems justified that this set cannot be read as a true state­
ment about the results of subjecting letters, or well—formed 
expressions, to any operations on letters which might be sym­
bolized indirectly by the marks . and () and *.

Such a conclusion, it may be said, suggests that any 
attempt to read these sets as true statements about anything 
whatever ought to be abandoned: that they should be taken
merely as statements about the way certain marks are going to 
be used within this system, and hence that the question of 
their implications is entirely irrelevant* Thus Set V merely 
says that the two expressions -(ar.b1).-(a*b) and a may be 
used interchangeably throughout the present system, one being 
a permissible substitute for the other wherever that other 
occurs* This way of looking at the matter is not very satis­
factory, however, for it merely evades, without settling, the 
main problem which we have been considering. Every expression 
in this system is intended for uBe as a direct symbol of struc­
ture, to symbolize the structure of any entities in any exist­
ing or construotible system which happen to be isomorphic with 
expressions in this system. Hence if two expressions in thiB 
system are to be designated as everywhere interchangeable, they 
must either have the same structure or else have some one and 
the same characteristic in common, so that they may thus be 
both equally susceptible of use as a direct symbol of the same
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entity. Now, taking a and -<a*.b').-<a*.b) simply as possibly 
interchangeable well-formed expressions, it is plain that the 
only charaoteristio they have in common is that each is a sin­
gle well-formed expression of this system. They are not iso­
morphic with each other, unless we wish to remove all defi­
niteness from the notion of isomorphism by insisting that any 
two or more single well—formed expressions of thiB system are 
similar in structure.

The problem of significance becomes more acute when we 
realize the capital importance of this particular Set 7 in 
the present system. Upon it, as we have noted (p. 91, above) 
depend the three sets designated as Tl, T2, and TS, whereby 
the following interchanges of expression are permitted any­
where in the system; aa for a, -(a1) for a, aa* for b b l; and 
vice versa, in each case. Without these three sets, this sys­
tem could not well be used, as it is in fact used, to symbol­
ize the structure of logically-related classes, propositions, 
and relations; and therefore any discussion of the validity 
of this system must include an examination of the basic set, 
i.e. set V, from which these three sets are derived.

Having thus far arrived at the negative conclusion that 
this set cannot be read as a true statement about the results 
of operations on well—formed expressions, because, as has been 
said, a and (a*.b').-(a'.b) are certainly not everywhere in­
terchangeable as direct symbols of the same structure, so long 
as the literal symbols are taken to stand for well-formed ex­
pressions and the non—literal symbols are taken to stand for 
relations or modifications brought about by operations on 
well—formed expressions, we must see whether some positive
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position oan be taken, at least tentatively, regarding the 
reading of this set as a true proposition. A suggestion pre­
viously made seems to be of some help in this oonneotion. The 
literal symbols may be taken as signifying, not symbols or let­
ters, but some non-symbolic entities which are sufficiently 
homogeneous to be regarded as elements of some aggregate\ and 
the non—literal symbols may be taken as signifying relations 
between these elements, or modifications of them, whioh are 
the result of performing specified operations on these ele­
ments. This view entails two important limitations. Not only 
must the elements be sufficiently homogeneous to be regardable 
as elements of some one and the same aggregate,—  which means 
that they must all have at least one characteristic in common,-- 
but they must be such, and also the relations or modifications 
referred to must be such, that any element b o  modified or so 
related remains an element of that same aggregate in spite of 
the relations or modifications it thus acquires.

Considering these two conditions, it becomes necessary 
to alter a statement oontained in the beginning of the pre­
ceding paragraph. We need not insist that the literal sym­
bols be taken to mean non—symbolic entities* because such 
symbolic entities as letters and well—formed expressions, 
constructed out of marks according to a definite pattern, are 
sufficiently homogeneous to be regarded as elements of one and 
the same aggregate. But we must insist that the non—literal 
symbols be taken to stand for some other modifications of well- 
formed expressions, or some other relations between them, than 
is indicated directly by these symbols themselves. That is, 
the dot and brackets must mean something other than Hthe re—
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suit of dotting and bracketing together", and the mark * 
must mean something other than "the result of placing the 
mark » to the right of«. For if the non-literal symbols in 
these sets are taken to stand for the results of these op­
erations upon literal symbols or well—formed expressions, 
the setB will, when read in this sense as propositions, be 
manifestly false.

The fundamental reason why the dot and the brackets and 
the mark 1 cannot be read as meaning the results of the op­
erations of dotting and bracketing in a given order and of 
placing the mark 1 to the right of, seems to be this: these
operations do not actually effect modifications of well- 
formed expressions, nor do they bring about relations be­
tween them. If a pair of simple expressions, such as a,b, 
are subjeoted to the dot-operation, we may indeed read the 
bracketed result as "a joined by a dot to b"; but it is no 
less true that the result is "a separated by a dot from b". 
And the result of bracketing is not to bring a and b together 
into unity, but merely to leave the mark ( at the left of a 
and the mark ) at the right of b. The brackets can indeed 
serve as a sign of the togetherness of a and b as a composite 
unit; but in that event, the operation whose result they sym­
bolize is not the operation of enclosing in brackets, but the 
mental operation of "thinking a and b together”, or of "re— 
garding a,b as a unit consisting of two expressions mutually 
related”. Finally, a* does not mean simply "a with the mark 
* to its right", beoause the mark r is taken together with a, 
even when no enclosing brackets are used to indioate this to­
getherness: for a* is to be regarded as a single well-formed
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expression in this system. The modification signified by 
"the mark I to the right of" oannot be one which actually 
effects a change in a itBelf; otherwise it would not be ap­
propriately symbolized by "the mark * to the right of", which 
obviously leaves a unaltered. Henoe we may say that it must 
stand either for some mental operation,—  or rather, for the 
result of some mental operation,—  or else for the result of 
some physical operation whereby a*, as a whole, is rendered 
different from a although a itself undergoes no change.
Even in the latter oase, the brackets whioh visibly enclose 
a 1, or are "understood" to enclose a 1 even if omitted, must 
be taken to stand for the result of the mental operation of 
"taking together with"; for the marked letter is a single 
well-formed expression, a symbolic unit, though composite 
and not simple.

7. Comparison between Sets I and II. and Sets III to V.
By way of summarizing what has been said about the sig­

nificance of all the sets of marks whioh we have thus far 
considered, it will he useful to compare the first two with 
the last three. The first two, as we have seen, taken in con­
junction with Rules A,B,C, specify the material out of which 
all well-formed expressions of this system are to be con­
structed, and provide fixed rules for the construction of 
complex expressions out of simple ones. The reading of these 
sets (pp. 102, 105-106, above ) indicates that they are not 
only significant statements, but analytically true statements 
about the marks specified as well—formed expressions and about 
the results of subjecting these marks to certain operations 
(joining by a dot in a given order, placing the mark 1 to the
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right of" 9 and bracketing together, which we shall hereafter 
refer t a  aa a,b,o, respectively). The symbolic force of the 
marks ua iri these sets is as follows. The non-literal 
marks, *^one of whioh are usable as well—formed expressions, 
are of "t^-wo kinds: first, the operation-marks ° and ♦, which
indirectxy symbolize, respectively the operations a, and _o 
(set I) and b and o (set II); second, the dot and braokets, 
and the mark * and brackets, which directly symbolize (i.e. 
pictured , respectively, the results of these operations. The 
literal symbols a,b,c..., considered in the light of Rules A, 
B,0, ar^ seen to be variable symbols: that is, each is re­
placeably «  by, and therefore represents or stands for, any 
well-foi>jaaed expression of whatever form. Each directly sym­
bolizes -the content and the form of every instance of itself; 
likewise, eaoh directly symbolizes the structure, that is, 
the oner^ess and non-complexity, of all simple well-formed ex­
pressions; and finally, each directly symbolizes the position, 
but not -the structure, of all complex well-formed expressions, 
as well a,s the oneness of such complexes. With regard to all 
derivatives of sets I and II, a study of the process of sub­
stitution whereby derivatives are obtained indicates that 
every si^.oh derivative is a consequence of the set from whioh 
it is d O x i v a b l e  and derived; and this without altering the 
ordinary meaning of the phrase "is a consequence of". The 
line of -thought whioh leads to this conclusion may be sketched 
as follows; I f  the performance of operations a and £, or of 
operations b and o t produces a given effect upon a, or upon 
a,b, t h O n  the performance of these Bame operations will pro— 
duoe t h o  same effeot upon any value of a, or upon any values



138
of a,b. Now, the collooation of marks to the right of the 
operation sign in sets I and II makes clear the fact that a 
given effect is produced, and also shows what that effect 
is; namely, (a.b), and (aT). Hence the above condition is 
fulfilled. The necessary connection between this antecedent 
and its consequent is based on the fact that all values of a, 
or of a,b, are fundamentally of the same kind as a; that is, 
either simple marks or collocations of simple marks: the
collocations being operated on as a unit, just as though they 
were themselves simple and single. Since sets I and II are 
analytically true, and since all derivatives of these sets 
are consequences of their originals, it follows that all de­
rivative sets are likewise true, even if owing to their com­
plexity their truth may not be at once intuitively evident.

Finally, two points are to be noted regarding the truth 
of these sets and their derivatives, and regarding the refer­
ential force of the symbols employed. First, insofar as truth 
depends on the existence of the well-formed expressions and of 
the operations thereon and of the results or effects of these 
operations,—  all of which the sets and their derivatives are 
"statements about",—  no difficulty arises in this connection. 
For the existence of the operations and of their results is 
guaranteed by actual experience, and we acquire knowledge of 
their existence by easy and direct reflection. The existence 
of Bimple well-formed expressions is assured, because they are 
all instances of marks in actual use as letters of the English 
alphabet; and complex well-formed expressions are merely collo­
cations of these marks, together with other specified marks, 
whereof the order and method of arrangement is clearly pre-
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may indeed find it difficult to know whether this oollocation 
is a well-formed expression; but suoh knowledge is in any 
event unnecessary, since no such collooation will be actually 
substituted for the variables in sets I or II until we know 
that it is a value ot the variable in each case: that is, un­
til we know that ii is a well-formed expression. Second, it 
is of the utmost importance to notioe that when these sets or 
their derivatives 0-re read as statements, in the manner al­
ready desoribed at length, such statements are always about 
what the marks in the sets mean, that is, about the entities 
meant by these marXs, rather than about the marks themselves. 
In other words, we must never lose sight of the difference 
between a sensibly-P®106?151-151© object (suoh as a mark) used 
as a symbol, on the one hand, and on the other hand the enti­
ty referred to or meant by such a symbol-object. A symbol is 
always a significant mark (supposing, of course, that the ob- 
jeot used as a symbol is a mark and not some other sensibly- 
perceptible object); and in all cases, even when the symbol 
refers to itself, OT to some characteristic of itself as found 
in some other object, or to another instance of the same kind 
of thing as itself* —  as happens in direct symbolism,—  what 
the symbol refers to must be recognized as somehow distinct 
from the symbol so that we may compare the symbol with
its referend and thus peroeive whether symbol and referend are 
in fact identical. A full discussion of the implications of 
this distinction cannot be attempted here; but we may suggest 
in passing that anyone who considers it carefully will see 
that it has something to do with the theory of types, insofar
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as this theory is more than a mere systemic device. Only by 
ignoring this distinction, it would seem, can the suggestion 
arise that a function might be one of its own values, or that 
a proposition might be about itself. The point to note here, 
in connection with the sets we are studying, is that these 
sets are about the values of the symbols contained in them 
rather than about the symbols which they contain, in spite of 
the faot that some of these values are themselves symbols.

Our study of the three latter sets, III, IV and V, made 
olear the necessity of reading them somewhat differently from 
the first two sets. Taken in conjunction with Rule D as mere 
rule8 of procedure, they give rise to further possible trans­
formations of well-formed expressions than are provided for 
by the "each time" substitutions allowed by Rules A,B,0, in­
asmuch as they permit unrestricted interchangeability of the 
well-formed expressions which appear in them on either side 
of the sign of equality. If these sets are to be read as 
permitting the interchange of the two well-formed expressions 
which they contain, then it must be the case that each of the 
two expressions has the same symbolic force; and because 
there is question here of direct or pictorial symbolism, the 
two expressions specified as everywhere interchangeable must 
be in some sense the same; for if they are to have the same 
directly symbolic foroe, they must have in common at least 
one characteristic which oan be used as a directly symbolic 
characteristic in the case of each. Since the well-formed 
expressions of this system are intended for use as direct 
symbols of structure, it ought to be the case that express­
ions specified as everywhere interchangeable have the same



structure; for only on that condition can they be used to sym­
bolize directly the same structure* Set III does indeed ful­
fil thiB requirement; and even set 17 can be regarded as con­
taining two isomorphic expressions; but if the two expressions 
in set V be considered isomorphic with each other, the meaning 
of isomorphism is practioally lost, since in this case any two 
expressions of whatever form can be oalled isomorphic with each 
other provided each can be regarded as a single well-formed ex­
pression. Having thus concluded that the two expressions in 
each of these sets have not the same symbolic force, we fur­
ther conclude that their permitted interohangeability should 
not be taken to entail the oontrary-to-fact proposition that 
they do have it; and this in turn warrants the further conclu­
sion that there must be some other ground for the interchange­
ability here allowed, or that there is something else which 
these sets do entail. In spite of the fact that these express­
ions have not the same symbolic force as direct symbols of 
structure, their status as elements in a symbol-system indi­
cates that they are intended to be somehow used as symbols; 
and there appears to be no other basis for permitting unre­
stricted interchangeability except that they can Bomehow be 
identical in reference, in a pictorial fashion. The only way 
in which two interchangeable expressions of different form can 
be regarded as identical in reference would seem to be this; 
Take each as picturing the result of certain operations upon 
certain elements, so that by these operations the elements are 
modified, or are related to one another, or both; and regard 
two interchangeable expressions as picturing some sort of 
sameness between the two resultants, in spite of the pictured
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differences of their structure. Hence it is suggested that 
these sets are to be read as follows: III. (a.b) = (b.a):
MAny pair of elements, joined together in a given order by 
some relation or other so as to form a single complex ele­
ment, is identical with that same pair of elements joined 
together in reverse order by that same relation so as to form 
a single oomplex element.” IV, ((a.b).c) - (a.(b.c)); "A 
single complex element made up of any pair of elements joined 
together in a given order by some relation or other and then 
joined as a unit to a third element in a given order by that 
same relation is identical with a single complex element made 
up of the same three basic component elements, the first of 
which is joined, in that same order and by that same relation, 
to the second and third joined together as a unit in the same 
order as before and by the same relation." V. (-(a'.b1). 
-(a'.b)) = a: "A single complex element made up of two pairs
of elements, each pair being modified in the same given way 
and both joined together in a given order by some relation or 
other: the first pair consisting of two elements, both modi­
fied in the way above referred to and joined together in a 
given order by the same relation as above; the Becond pair 
consisting of the same two elements, of which the first alone 
is modified, and both of which are joined together in the 
same order and by the same relation as before, is identical 
with the unmodified first element of each pair."

We must now go on to inquire into the implications of 
the above statements, which can be so much more shortly ex­
pressed in symbols than in words by the simple device of us­
ing the same letter to stand for the same basic element and
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letting the dots and brackets stand for the same relation and 
as a sign of unity, and by letting the marks - and ' represent 
a modification of the braoketed elements or the single element 
next to these marks. But it must b e  remarked that the dot and 
the brackets and the marks do not stand, as they did in sets I 
and II, fox the results of the operations a,b,£. Hence in or­
der to have the same reading f o r  sets I and II as for sets III 
to 7, we must take these marks to stand for the results of 
some other operations; namely, the same relation and the same 
modifications which they symbolize in sets III to V. On this 
principle, set I should be reeui as follows; “Any pair of ele­
ments whatever may be joined -together by some relation or 
other, and the result will be a oomplex element consisting of 
those same two elements joined together by that same relation 
in a given order.” And set I I  should be read; 11 Any element 
whatever may be subjected to sl certain modification, and the 
result will be that same element modified in that same way."

8 . Consequences of a Uniform Reading of these Five Sets.
The above translation of sets I to V into words shows

that each can be read as a general proposition about elements 
of some class or other, and a"toout the results of subjecting 
these elements to certain operations whereby they are modified 
or joined together as a unit Toy some relation. All these sets
are alike, inasmuch as all of them contain, at least in part, 
instances of the same symbolic marks; but this surface resem­
blance would not suffice to establish a real connection be­
tween them unless the same marks had the same significance in 
every set in which they occur,. Letters enclosed in brackets 
signify elements regarded as sl single unit; an element fol-
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mark, and the whole expression signifies a modified form of 
the unmarked element represented by the letter whioh the mark 
follows; moreover, the mark ' stands for the Bame kind of mod­
ification, wherever it ocours; and what is said of this mark 
applies also to the mark — preceding a bracketed expression. 
Finally, the dot between two letters or two bracketed ex­
pressions signifies one and the same relation, wherever it 
appears. With regard to the marks 0 and * in Bets I and II, 
whioh we have called "operation-marks", they must stand for 
operations whiah, if performed upon elements, will give rise 
respectively to the relation signified by the dot and to the 
modification signified by the mark 1; and both of them must 
stand for the operation of "joining together into unity in a 
given order", the resultant unity being indicated by the 
brackets.

The reading initially suggested for sets I and II, ac­
cording to vfaich the operation-marks and relation-marks and 
modification-marks and brackets were taken at their face value 
as meaning the operations a,b,c_ and the results thereof, had 
to be abandoned because these same marks could not be given 
this meaning in sets III to V. The question whether the lit­
eral symbols, either individually or when bracketed together 
as a unit, could be taken at their face value in all five 
sets, as meaning "a well-formed expression of a given form", 
was left open; the suggestion being made that it is answer- 
able affirmatively if the non-literal symbols can be taken to 
stand for such relations between, or such modifications of, 
well-formed expressions (i.e. letters or collocations of let-
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ters permissible in this system) as will satisfy the require­
ments of direct symbolism regarding those expressions whioh 
are allowed by Sets III to V to be everywhere interchanged.
In any event, the literal symbols and bracketed collocations 
must stand for elements of some one and the same class, whether 
or not this class could be the class of well-formed expressions 
itself; and this imposes a very definite restriction on the pos­
sible meanings of the operation-marks and other non-literal sym­
bols. We saw that the truth of the statements obtained by read­
ing sets I and II at their face value is due at least in part 
to the nature of the entities which these statements are about: 
i.e. to their being marks or collocations of marks, and opera­
tions performable on marks (see pp. 101-104, above ), Mani­
festly, no change is made in the marks initially selected as 
well-formed expressions by the operations performable on them; 
they themselves are not altered by being joined by a dot to 
some other mark in a given order, or by being followed by the 
mark 1, or by being enclosed in brackets. Hence there is a 
factual basis for the seemingly quite arbitrary statements:
"If a,b are well-formed expressions of this system, (a.b) 
will also be a well-formed expression", and "If a is a well- 
formed expression of this system, a r will also be a well- 
formed expression". In like manner, when these -five sets are 
read as statements about elements of some class, and about 
the results of operations performable on these elements, the 
operations must be such that elements which are subjected to 
them remain fundamentally unaltered, so as to be still ele­
ments of that same class in spite of receiving new character­
istics. It ought to be true that "if a,b are elements of a
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given class, then (a.b) will be an element of that same class, 
no matter what values be assigned to a,bM. Clearly, this will 
not be a true statement unless (l) the relation meant by the 
dot is such that it oan hold between a and b without effecting 
a fundamental change in either a or b, and (2 ) the combination 
"a joined to b by this relation in a given order" is so like 
to a,b in isolation that it can be regarded as a complex ele­
ment of the same olass whereof a,b are simple elements. Simi­
larly, it ought to be true that "if a is an element of a given 
class, then a* will be an element of that same class, no mat­
ter what value be assigned to a.« And thiB will not be a 
true statement unless (l) the modification signified by the 
mark * is such as to effect no fundamental change in a itself, 
and consequently (2 ) the modified element a 1 can be regarded 
as of the same class as a in spite of this modification.

If all five sets are to be read as connected statements, 
the above restrictions concerning the meaning of the symbols 
they contain must apply to the last three as well as to the 
first two. But sets III to V impose further restrictions, 
which affect the symbols of all the sets. The well-formed ex­
pressions occurring on either side of the mark =» in sets con­
taining this mark must be identical in reference, because, as 
we have seen, they are everywhere interchangeable and are in­
tended to have the same directly symbolic force. The precise 
restriction imposed by each set can be gathered from a con­
sideration of each in turn. It must be remembered that the 
literal symbols a,b,c... are each identical in reference 
throughout, whether they occur in the same set or in different 
sets, and also that the marks - and • and ., as well as the
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braokets, hare the eane significance in every set and in any 
given set.

Set III, in permitting the unrestricted interchangeabil­
ity of (a.b) and (b.a), not only limits the reference of a,b 
to such elements or members of an aggregate as can be com­
bined into complex unity without alteration of themselves and 
in such wise that the resultant complex is the same kind of 
entity as a,b individually, but also limits the referenoe of 
the dot, so that it can mean only such a relation as will 
hold between two elements in reverse order if it holds be*- 
tween them in a given order. So, too, set 17 imposes the 
further condition that the relation meant by the dot must be 
associative: i.e. if it holds between three elements, it
will hold between any two sucoessive elements taken together, 
of the three, and the third of the three. Taking this condi­
tion in conjunction with the one laid down in set III, we 
find that the word "successive11 may be omitted from the pre­
ceding sentence. Finally, the conditions imposed by set V, 
which permits unrestricted interchange of the elements meant 
by a and (-(a*.b*).-(a*.b)), respectively, limit the refer­
ence of the mark » and its defined equivalent mark -. This 
mark, it will be remembered, stands for the modification 
effeoted in any element by performing upon it the operation 
signified by the mark * in set II; it being understood that 
this modification leaves unaltered the element thus operated 
on. From the reading already given of set V (p. 142, above) 
it is plain that this set not only limits the meaning of the 
mark * but also the meaning of the dot; for the complex ele­
ment which is declared interchangeable with any single ele-
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ment a is obtained by suooessively applying to two instances 
of this element and two instances of another element the op­
erations whereby the modification meant by the mark and the 
relation meant by the dot and brackets are produced.. Exact­
ly what are the limitations thus imposed could be p ut into 
words only with great difficulty; but the rules already laid 
down enable us to deduce from this set, with the h e l p  of the 
preceding ones, two other sets which make these limitations 
clearer. The first set thus derivable, already g i v e n  as 
Tl. (a.a) « o.t informs us that any element joined t o  another 
instance of itself by the dot—relation so as to f o r m  a sin­
gle oomplex element is identical with that initial element.
And the second set, already given as T2*-(a‘) = a, informs 
us that if any element is twice subjeoted to the operation 
mentioned in set II, the modifications thus effected cancel 
out, so that the result is the same as the original element 
unoperated on. The dot-relation, then, must be s u c h  that 
when it holds between two instances of the same element, the 
complex element thus formed is really the same as a  single 
instance of the initial element; and the modification meant 
by the mark f, or -, must be such that if it iB effected twice 
in succession on any given element, the result will be really 
the same aB though this modification had never b een effected.

Another limitation of the meaning of the dot and mark is 
implicit in set V and the preceding sets; for from these sets 
is derivable the set given earlier as T3. (a.a1) «= (b.br); 
and if these two complex expressions are to be used inter­
changeably, the meaning of the dot and mark must b e  such that 
if any element whatever is joined by the dot— relation to a
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modified instance of itself, the complex element thus formed 
will be really one and the same element, no matter what be 
the element whereof two instances are thus operated on.

9. Perivability and Deducibility.
Iflhen speaking of derivatives of setB I and II (pp. 137-138, 

above) we indicated why derivatives of these sets were to 
be regarded as actual consequences of their originals, in the 
sense of being strictly deduoible from them. Having estab­
lished this, we cannot at once conclude, on the same basis, 
that a derivative of any set whatever is a consequence of the 
set wherefrom it is derivable according to the transformation 
rules of this system. For, in the first place, the conclusion 
arrived at regarding derivatives of sets I and II relied part­
ly on the faot that these derivatives are obtained by rules A, 
B,C, and not by rule D; hence their derivation is a matter of 
"each time" substitution, or of substitution throughout a giv­
en expression. In obtaining derivatives of all subsequent 
sets, however, the above limitation is removed; and derivation 
may involve the use of rule D, with its permission of unre­
stricted interchangeability. In the second place, the conten­
tion that derivatives of sets I and II are actually consequen­
ces of their originals was based in part on the possibility 
of reading these sets s b statements about well—formed express­
ions and about the results of operations performable on well- 
formed expressions considered as marks or collocations of
marks. Now that we have shown that sets III to V cannot be 
read as statements about these same operations and their re- 
suite, and now that we have, In consequence, suggested a dif­
ferent reading of sets I and II in order to be able to attach 
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the same meaning to the non-literal symbols in all five setB, 
we must see whether this difference affects the assertion 
that derivatives of I and II are consequences of their orig­
inals*

With regard to sets I and II, the conclusion that deri- 
vability is the same as deducibility except for the difference 
of method employed, and that therefore this mechanical method 
is as valid as ordinary deduction, is fairly easy to estab­
lish. The single point which needs to be proved iB this: if
these sets are readable as true statements, then their deri­
vatives are readable as true statements, and (whioh is the 
crux of the whole matter) the truth of the latter is entailed 
by the truth of the former. We have already seen how sets I 
and II and their derivatives can be read as statements whose 
truth is at least conceivable. What needs to be made clear, 
if the above conclusion is to be established, is that their 
actual truth guarantees the aotual truth of their derivatives. 
Aocording to set I, any pair of elements, a,b, may be operated 
on in such wise as to form a combination of these same two 
elements connected by a certain relation in a given order; 
and this combination, or complex, taken as a unit, is itBelf 
regardable as an element of the same kind as a,b: that is
to say, it possesses the same fundamental characteristics as 
a,b, in spite of having other characteristics of its own.
Very little reflection is needed to see that if this state­
ment is true, all derivatives of set I will therefore be 
true; for what is true of any pair of elements must be true 
of a given pair, and derivatives are obtained by replacing 
the variable symbols a,b in set I by symbols for some given
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pair of elements, it being understood that the variables be 
replaced by the same symbol throughout, in the oase of any 
single derivative set* According to set II, any element, a, 
may be operated on in such wise as to form another element, 
(a*), which is but a modified form of the original element 
and is of the same kind as the original, in the sense just 
explained. And it is easy to Bee how the oomment made above 
regarding derivatives of set I applies to derivatives of 
this set also.

The derivatives of sets III to V are evidently divisi­
ble into two groups; (l) those obtained by each time sub­
stitution according to rules A,B,0, and (3) those obtained 
by the unrestricted interchangeability permitted according 
to Rule D. Derivatives belonging to the first group present 
no special difficulty. The identity of reference entailed 
as regards the symbols oocurring on either side of the mark 
= is safeguarded by the rules governing the formation of 
derivatives from originals (or in other words, the transfor­
mation of originals into derivatives). For none of the ori­
ginal relation-marks or modification-marks are altered in 
any derivative of this first group, and the only change is 
the replacement of one or more element-marks of the original 
Py symbols for an element of e<jual or of greater complexity. 
Seeing that all elements are basically of the same kind, and 
since furthermore every element-mark thus replaced is re­
placed by some one and the same symbol wherever it occurs in 
the original set, any identity existing between referends of 
the original symbols must also exist between referends of 
the substituted symbols. All this does not apply, however,
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to derivatives belonging to the second group above mentioned, 
which involve the use of Rule O* In many oases, Bets derived 
by the use of this rule have nothing in common with the ori­
ginal sets, except that every derivative, like every original, 
will contain on either side of the sign of equality some col­
location of marks whioh is a single well—formed expression* 
However, since all sets in this system which contain the sign 
of equality have in common juBt this same characteristic, it 
will hardly serve as a means of determining whether a given 
set is a derivative of any other given set.

Perhaps the simplest way of showing how derivatives ob­
tained by the use of Rule D are really consequences of the
sets, or formulae, from which tbê y are derived, is to begin

. f
with two observations already made. The first of these ob­
servations is as follows: Although sets containing the mark
= explicitly declare that two well-formed expressions are 
everywhere interchangeable within this system, and hence suoh 
sets may be read as permissive statements regarding the use 
of well-formed expressions, they nevertheless entail some­
thing further, not about the well-formed expressions which 
they contain, but about the referends of those expressions: 
that is, about the elements of the system or systems of en­
tities which the well-formed expressions themselves are in­
tended to symbolize pictorially. And the second observation 
is that the referends of well—formed expressions, about which 
something is entailed, must either be some other kind of en­
tities than well-formed expressions, or else the dot and the 
brackets and the mark * cannot be taken as direct symbolsj 
that is, they cannot be taken quite literally, as meaning
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"joined by a dot to, and bracketed with, in a given order", 
and "followed by the mark respectively.

To make clear the force of these two observations, it 
must be remarked that every set containing the mark =* en­
tails a statement to the effect that the referends of the 
"everywhere interchangeable" well-formed expressions on ei­
ther side of this mark are actually the same: hence, that
they are either two different instances of the same element, 
or else actually one and the same individual element thought 
of and symbolized in two different ways. This latter dis­
tinction appears to be called for in order to cover all pos­
sibilities. In any system of related entities, the elements 
will be either concrete particulars, or else abstractions, 
i.e. logical constructions or purely mental entities. If 
they are concrete particulars, then what is referred to by 
two different but everywhere interchangeable well—formed ex­
pressions of a directly-symbolic symbol system will be actu­
ally one and the same individual element, denoted under two 
different connotations, or (which comes to the same thing) 
described by two different descriptions. And if they are 
abstractions, what is referred to will be two different in­
stances of the same element. Without insisting further on 
this point, which obviously has to do with the problem of 
universalb , we may note that whenever two well—formed ex­
pressions are declared to be everywhere interchangeable with­
in a symbol system, the entailed sameness of reference a- 
mounts at least to this, that the performance of certain 
specified operations on certain specified instances of ele­
ments is said to lead to the same results. If the specified
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instances of elements are the same, as in set III where we 
have on each side of the mark * one instanoe of a and one 
instance of b, and if the operations performed are the same, 
performed the same number of times on each instance, as is 
also the oase in set III, then at least the order in which 
the same instances are subjected to the same operations will 
be different. In most cases, however, the difference indi­
cated by two everywhere interchangeable well-formed express­
ions is greater than this, even when only one of the two per­
missible operations (i.e. dotting and bracketing, or marking 
and bracketing) is involved. Thus, in set IV, where we have 
on either side of the mark = the results of subjecting in­
stances of the same three elements a,b,c to the operation of 
dotting and bracketing, this operation is performed a dif­
ferent number of times on the instances on the one side and 
on the other. In ((a.(b.c)), b and c are dotted and brack­
eted with each other and again with a, while a is dotted and 
bracketed only once; whereas on the other side, in ((a.b).c)), 
a and b are dotted and bracketed twice, and o only once. In 
set V, evidently, two further differences are manifest in the 
permissibly interchangeable well—formed expressions; not on­
ly does the expression -(a*.b*).-(a‘.b) differ from the ex­
pression a in the number of operations indicated, but also in 
the number of elements indicated on each side of the mark =• 
The information entailed by this Bet is very compactly con­
veyed to us in a brief formula, because the formula is to be 
understood in the light of the four preceding sets and the 
rules A to D which make their significance intelligible. If 
put into words, it would be something like the following;
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Select an instance of the element referred to by a, and sub­
ject it to the operation allowed by set II; do the same with 
an instance of the element referred to by b; subject the re— 
sultant pair of modified elements, a*,b*, to the operation 
allowed by set I, and operate on this result according to 
set II. Then take another instance of a, operate on it by 
II, and subject this modified element a* along with another 
instance of b to operation I, operating on the resultant 
(a'.b) according to II. Finally, combine this result with 
the result obtained by operating as above described on the 
first instances of a and b, according to the operation al­
lowed by set I. The result, -(a*.b*).-(a*.b), will be the 
same as a single instance of a, not operated on at all.

Taking into account the total information similarly en­
tailed by sets I to IV, we Bee that these five sets convey 
some very definite information about something other than the 
marks which they contain. They give us some definite charac­
teristics which collectively serve as a description, though 
not necessarily a complete description, of the operations for 
which the operation-marks in sets I and II may be taken to 
stand; and since they convey this information in terms of the 
results obtained by performing these operations on members of 
a class of definitely-specified elements, they give us indi­
rectly some of the characteristics which all members of this 
class of elements must possess. We know, for instance, that 
the operation permitted by set I must be an operation of com­
bining two elements into one; further, that it must be such, 
and the elements to be combined must be such, that the com­
plex element formed by combining two or more simple elements,



or two or more complex elements, is basically of the same kind 
as the simple elements themselves, and that moreover the com­
ponent elements thus combined into unity remain the same as 
before being combined, save that each acquires a new relation 
with respeot to all other components. The nature of this re­
lation is not fully defined; but two of its properties, namely, 
symmetry and associativity, are entailed by seta III and IV.
Set V is our only source of information regarding the operation 
permitted by set II; but from it we can derive the formula 
-(a1) * a, which tells us, in effeot, that two successive per­
formances of this operation on any element leave that element 
entirely unaltered; or in other words,that the modification, 
or additional characteristic, conferred on an element by the 
performance of this operation is entirely removed by another 
performance of the same operation on the element thus modi­
fied. Availing ourselves of this information, we can derive 
from set V another formula, (a.a) « a, which tells us that if 
two instances of the same element are subjected to operation 
I, the result will be the same as if we merely seleoted but 
did not operate on one single instance of that element; or in 
other words, that if a pair of instanoes of the same element 
are subjected to operation I, one member of the pair will be 
entirely removed or eliminated. These two latter pieces of 
information, obtained from derivatives of set V, can be called 
consequences of the information conveyed by set V itself, on­
ly if the derivation—process is a valid kind of deduction, or 
a valid substitute therefor. After what has been said, we 
are perhaps in a position to show that this condition is ful­
filled, and to explain how the semi-mechanical device of sym-
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bol-eubstitution yields results no less reliable than those 
of ordinary deductive reasoning.

Whenever any other set is derived from a set or formula 
containing the sign of equality, such derivation is managed 
by substitution of different symbols in the place of certain 
symbols occurring in the original set. Now, whether such 
substitution is made "throughout”, according to rules A,B,C, 
or whether it is made quite unrestrictedly, according to rule 
D, two things are always observed: the only symbols subject
to replacement are element-symbols, and all replaceable or 
variable element-symbols are symbols of unoperated-on elements, 
that is, of simple elements, not complex, and not modified.
If our analysis of the entailments of sets containing the sign 
of equality is oorreot, each such set conveys the information 
that the results of subjecting a given number of instances of 
elements to a given number of permissible operations are the 
same, in spite of certain specified differences in the number 
of instances chosen, or the kind of elements chosen, or the 
number and order of the operations performed. The simple ele­
ment-symbols occurring in such sets can be, and are, regarded 
as variables,—  that is, they can and do stand for any ele­
ment whatever, whether simple, or complex, Or modified, or 
both complex and modified,—  and may be replaced by any sym­
bol of any element whatever, for the simple reason that the 
result of performing one or both of the permitted operations 
of this system is entirely the same, no matter what be the 
element subjected to the operation or operations in question. 
That is to say, the relation signified by the dot, and the 
modification signified by the mark *, is always precisely the
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same, no matter what be the element subjected to the opera­
tion whereby this relation or this modification (as the case 
may be) is produced. Henoe, with respect to the results ef­
fected by the performance upon them of a given number of 
these operations in a given order, all elements of this sys­
tem are on the same footing, and what is true of a given sim­
ple element, a, is true of any element whatever. This being 
so, it is easy to see that any stated equivalence regarding 
the results of a given number of operations on a given number 
of elements will hold good when the element-symbols of the 
original are replaced by symbols for quite different elements: 
provided that every replaced symbol of the original be re­
placed throughout by the symbol for some one and the same ele­
ment, and that the marks indicating the results of the per­
formed operations be retained, exactly as they appeared in the 
original set or formula. When the above restriction about 
"replacement throughout" is removed, as happens by the use of 
rule D, the stated equivalence of the original formula is not 
disturbed thereby; for as our analysis indicates, the element 
symbolized by one of two everywhere interchangeable express­
ions is actually the same as the element symbolized by the 
other expression, and hence the unrestricted interchange of 
symbols permitted aocording to rule D does not entail a dif­
ference in what is symbolized. If, then, the statement en­
tailed by the original set is true, the statement entailed 
by the derived set will also be true, in consequence of the 
fact that any expression in the derived set which replaces 
an expression in the original according to rule D is identi­

cal in reference with the original expression which it thus
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replaces.

The preceding considerations appear to afford sufficient 
warrant for the conclusion that the substitution process where­
by other sets or formulae are derived from these first five 
sets according to the transformation rules of the system is 
equivalently a kind of deduction, depending for its validity 
on the same sort of principles as ordinary deduction; and fur­
ther, that the information conveyed by all derivatives is a 
logical consequence of the information oonveyed by the sets 
from whioh these are derived. It is important to remember 
that the information here spoken of is more than a series of 
statements about how a given set of marks are to be used as 
symbols of a given system; it is also, and especially, a se­
ries of statements about the results obtained by the perfor­
mance of given operations on an aggregate of simple elements; 
and in particular, it is a series of statements to the effect 
that a given number of elements, combined and modified by the 
performance of a given number of operations, is the same as a 
given number of different elements, or of the same elements, 
combined and modified in a given way by the same operations. 
From such statements and from their consequences we learn, 
more or less directly, something about the nature of the op­
erations symbolizable by the operation-marks of the symbol 
system, and also the nature of the results effected by these 
operations upon the elements symbolizable by the simple or 
complex element-symbols, these results being characteristics 
of the elements, either relations (i.e. relational character­
istics) or non-relational modifications; and finally, though 
less directly, we learn something about the nature of the
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elements themselves, which the element-symbols can directly 
represent by way of picturing their form, or their structure.

The detailed Btudy which we have made of the first five 
sets of the abstract system under discussion makes it posssi— 
ble to attempt an answer to the question raised at the begin­
ning of the present chapter: whether, and in what sense, an
abstract system of this kind is a deductive system. We say, 
then, first of all, that the collocations of marks which con­
stitute the sets of an abstract symbol-system do not them­
selves make up a deductive system; for the sets derived from 
the initial sets of an abstract system by means of the trans­
formation rules are not logical consequenoes of the sets from 
which they are thus derived, but are rather effects or re­
sults produced by applying the transformation rules to the 
initial sets. Secondly, as we have seen, derivatives may be 
regarded as logical consequences of original sets, if we con­
sider not simply the collocations of marks whereof both ori­
ginals and derivatives are composed, but the meaning of these 
collocations, according to whioh originals and derivatives 
alike are readable as propositions, stating equivalence be­
tween the results of given operations performed upon given 
elements. From this point of view, the propositions symbol­
ized by derivatives are seen to be strict consequenoes of 
the propositions symbolized by originals, and the process of 
substitution permitted by the transformation ruleB is seen 
to conform to the ordinary principles of deduction.

The conclusion thus arrived at might have been reached 
more simply and directly, without examining the way in which 
an abstract symbol-syBtem is constructed according to the
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aocepted postulational method. For strictly speaking, no 
system ought to be oalled a deductive system unless (a) the 
related elements which make up the system are all of them 
propositions, and (b) the relation between these elements is 
a relation of deducibility, in every instance. The reason 
for this second condition beoomes clear merely by reflecting 
on the words "deductive« and deducibility. And the reason 
for the first condition is this: propositions are the only
known kinds of entities between which a relation of deduci­
bility can hold. On the other hand, the elements of abstract 
symbol-systems are not propositions; therefore such Bystems 
cannot possibly be deductive systems. It is by no means a 
waste of time, however, to have arrived at this conclusion by 
a detailed study of the initial sets of a given abstract sys­
tem and the connection between them and their derivatives; 
for the analysis we have been making of an abstraot system of 
symbols will enable us to understand better how this sort of 
symbol-system is related to those deductive systems which it 
symbolis o b . Before taking up this latter problem, we must 
round out the present discussion by examining the sixth of
the initial sets listed at the beginning of this chapter (pp.
88-91, above).

10. Set VI and the Principle of Duality.
The importance of set VI, as we have already noted, con­

sists in this: that by means of it we can derive from the
first five sets and from set VI itself, as well as from the 
sets marked Tl, T3, T3, another series of sets, each of which 
is exactly like one of those in our original series, except 
that all sets in the derived series will contain the mark +
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wherever the mark • ooours in the corresponding original set 
(see table, p. 91 above). Since the use of set VI enables 
us to derive a similarly corresponding set (that is, one con­
taining the mark + wherever the mark • occurs in the original), 
not only from each set in our original series, but from all 
sets derived from those in this series according to rules A 
to D, we are hereby provided with a time-saving transforma­
tion rule applicable to any set in the system containing on­
ly the marks . and * and (), and the operation-marks ° and *, 
as well as the literal symbols a,b,c... (This rule has al­
ready been stated on p. 92, above.) We now wish to inquire in­
to the significance of this transformation rule, and the sig­
nificance of set VI which makes the rule possible.

Set VI, it will be recalled, reads as follows;
VI. (a + b) « -(a’.b1)* Here again, as in the case of sets III 
to V, we must ask what is entailed by the permission, conveyed 
by the sign of equality, to employ the two expressions (a + b) 
and - ( a ^ b 1) interchangeably in this system. The fact that 
this set is often introduced as a definition might give rise 
to the notion that the expressions on either side of the sign 
of equality are merely intended as interchangeable symbols; 
that the marks (a + b) are here set down merely as a more con­
venient way of writing the marks —(a*.b*)» as the marks 0 and 
1 are introduced as a convenient alternative symbol instead 
of aa* and a + a*, respectively. Considering the use made of 
this set, however, we see that it is intended not merely to 
introduce a more convenient symbolic equivalent of the ex­
pression -(a*.b»), but especially to introduce and to define

a new relatlon-mark, +. It therefore serves as a partial
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description of the relation meant by the mark +; or rather, 
of all the possible relations for which the mark + may stand, 
since this mark, like the dot, may represent any relation 
whatever which has the properties stated in the propositions 
signified by the sets in which this mark occurs* From sets 
la, it would appear that the relation meant by + is, like the 
dot— relation, one which holds between any pair of elements, 
a,b, when these are combined together by a given operation, 
the effect whereof is to produce a complex element (a + b); 
this latter, as the symbols indicate, being composed of that 
same pair of elements in the order of selection, with the re­
lation meant by + holding between them* Sets Ilia and IVa 
similarly inform us that this relation, like the dot-relation, 
is symmetrical and associative; but from set VI itself we see 
that this relation is not the same as the dot-relation, in 
spite of having the above properties in common therewith* The 
same line of thought which guided us to the significance of 
sets III to V leads to the conclusion that because the complex 
expressions (a + b) and — (a,*bl) are everywhere interchange­
able within this system, they must therefore be identical in 
reference; that is to say, the complex elements to whioh they 
refer must be really the same* Now, each of these two com­
plex elements is manifestly made up of the same simple ele­
ments; each contains one instance of the element meant by 
a, and one instance of the element meant by b. We know that 
the complex element - ( a ^ b 1) is the result of the following 
operations: Perform operation II on one instance of a, and
also on one instance of b, to get the pair of a*, b'; then

combine tbis pair aocording to operation I, to get (a'.b')j
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and finally subject this combination to operation II, If thi3 
ie indeed equivalent to the element meant by (a + b), it must 
be the oase that the single operation whioh results in the com­
plex (a + b) has the same effeot on a pair of simple elements 
a,b, as is produced by the series of operations whereby the 
complex element -(at,br) is formed out of another pair of in­
stances of the same elements a,b. Taking + and . to stand for 
some unspecified pair of relations, we see that the relation 
meant by + is much more complicated than the relation meant 
by •, or at any rate is by no means the same as the latter re­
lation, though the two have in common the formal properties 
already spoken of. Since these two relations are different, 
the operations which give rise to them should, for the sake 
of clearness, be represented by a different operation-mark; 
hence it would be better to employ, in set la, a mark other 
than the mark 0 which occurs in set I, We have used the same 
mark in both these setB merely because when the sets are read 
as propositions about elements, this mark is translated by 
the same words in each case. Set I informs us that any pair 
of simple elements, a,b, may be combined to form a complex 
element (a.b); and similarly, set la informs us that any pair 
of simple elements, a,b, may be combined to form a complex 
element (a + b). If it be remembered that the operations 
whereby these different elements are formed are different in 
each case, as has been already explained, no confusion will
arise.

A consideration of set 71 in connection with the Prin­
ciple of Duality enables us to emphasize from a slightly 
different point of view the necessity of attaching a meaning
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to all Initial and derived seta of such an abstract system 
as the one under disoussion; the necessity, that is, of 
being able to read all these formulae as propositions, apart 
from any specific interpretation. Set VI, as is well known, 
appears in the classical cuius as one form of De Morgan's the­
orem; and by means of some of the preceding sets, we can de­
rive from it according to the transformation rules of the 
present system a series of derivative sets, such as:
-{a + b) « (a'.b1), +(a.b) * (ar + b r), and also set Via it­
self, (a.b) as -(a* + b 1), as well as the important sets 
(a.a* = -(a + a*), already mentioned ion p. 95̂  above) as
T4, and the converse of this, -(a.a*) = (a + a*). These last 
two are important in the light of sets T3 and T3at whereby we 
are informed that the elements symbolized by (a.a1) and by 
(a + a*), respectively, are unique elements of the system sym­
bolized by this abstract system; and as has been remarked, 
they are often represented by the shorthand symbols 0 and 1« 
Now, in order to obtain these derivatives of set VI, it is 
necessary merely to transform set VI according to the rules 
of substitution, without regard to any possible meaning, or 
any reading of the set as a proposition. But if this set 
and its derivatives is to give us any information regarding 
the operations, or the relations, or the elements, which the 
symbols may possibly stand for, it is necessary to regard each 
of these sets as a statement to the effect that two different 
complexes, constructed out of the same pair of simple elements, 
are actually the same element: i.e., that the collocation of
symbols on one side of the mark * is identical in reference 
with the collocation on the other side. Regarding set VI and
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its derivatives from this point of view, and thus getting all 
the information to be had from all forms of De Morgan's the­
orem, we find ourselves in possession of the following data 
regarding any system symbolizable by the abstract symbol-sys— 
tern in which set VI and its derivatives occur. The elements
symbolizable by this system are such, and the modifications 

*and relations produced by operations permissible upon them 
are such, that (1) for e v e r y  complex element formed by com­
bining any two elements whatever according to operation la, 
there is a corresponding complex element made up of two other 
instances of the same elements, but in such fashion that the 
whole complex has the modification resulting from operation 
II, and each component has that same modification, and the 
relation between the components thus modified is the relation 
resulting from operation I; (3) for every complex element 
formed in exactly the same way according to operation I, there 
is a corresponding element which fulfills all the above con­
ditions, save that the relation between the components is the 
relation resulting from operation la; (3) the two complex 
elements referred to in each of the above statements are ac­
tually two instances of one and the same element, in spite 
of the indicated differences in their modifications and in 
the relations and modifications of their component parts.

This information may be summed up by saying that De Mor­
gan's theorem defines operation I, or the relation resulting 
therefrom, in terms of the results of successively performing 
operations II, la, and II upon the same pair of initially- 
chosen elements; also, that it defines the relation resulting 
from operation la in terms of the results of successively per-
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forming operations II, I, and II upon the same pair of ele­
ments. This kind of definition, it should be noted, can 
hardly serve as an adequate account of the two entities in­
volved: i.e., of the result of the single operation I (or la)
and the result of the series of operations II, la (or I), and 
II. Hence in strict accuracy it ought to be said that we 
have here only a description, or partial definition, of the 
operations in question, and of the relations or modifications 
arising from them.

Whereas De Morgan's theorem thus informs us that two com­
plex elements, formed by different operations on two instances 
of the same pair of elements, are really the same in spite of 
the different modifications and relations of their components, 
the Principle of Duality informs us about a relation, not be­
tween complex elements, but between statements about elements. 
It tells u s , in effect, that for every stated equivalence be­
tween two elements, at least one of which is a complex ele­
ment formed by operation I or la, there is also an equival­
ence between two other elements which have the same compon­
ents, respectively, as the first pair, but a different rela­
tion between these components, so that wherever a + relation 
occurs in the first of these equivalences, a dot-relation is 
to be found in the other, and vice versa; and moreover, that 
the second of these equivalences is deducible from the first, 
and the first is deducible from the second. We may, of 
course, consider this principle merely as a transformation 
rule, just as we may regard as transformation rules every 
form of De Morgan's theorem, or indeed any formula in the 
system which, because it contains the mark =, permits the
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unrestricted. Interchange of the two well-formed expressions 
between which this mark occurs* From this point of view, 
the Principle of Duality is seen to be merely a general 
statement about common characteristics of sets which can be 
derived from other given sets by using all forms of De Mor­
gan's theorem as transformation rules; that is, by using, 
as everywhere interchangeable, the pair of expressions on 
either side of the mark « in the various forms of this the­
orem. By confining ourselves to this viewpoint, however, 
we ^aight fail to notice this very important fact: that the
abstract symbol-system into which various forms of De Mor­
gan's theorem, and therefore also the Principle of Duality, 
are introduced as transformation rules, oan symbolize only 
those existing or constructible systems whose elements, with 
their modifications and relations, fulfill the conditions 
laid down in the readings already given of this principle 
( p. 167, above) and of De Morgan's theorem ( pp. 166-167).

11. Results of Inquiry into Nature of Abstract Symbol-Systerns,.
In the light of the analysis which we made in the first 

two chapters, of such notions as '‘system" and "structure" 
and "similarity of structure", and also the study which we 
attempted of the principles involved in symbolism, we came 
to the conclusion at the end of Chapter Two ( pp. 85-87, above) 
that an abstract symbol-system is fundamentally a collocation 
of definitely-specified marks, some of which are initially 
chosen and so ordered as to form initial sets of a recogniz­
able pattern; these initial sets being subject, according to 
rule, to certain transformations, whereby other ordered sets 
can be derived from them. Some of these marks, either by
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themselves or in specified combination with other marks, are 
indicated as “well-formed expressions"; all other marks or 
combinations are understood to be "non-well-formed exprees- 
ions". The formation rules specify which marks by themselves 
8hall be simple well—formed expressions, and indicate how 
these can be arranged in conjunction with other marks to con­
stitute complex well—formed expressions. The formation rules 
also indicate how, by means of suitably juxtaposed non-well- 
formed expressions, any given well-formed expression can re­
ceive an external modification by itself, or else acquire a 
relational characteristic whereby it is combined with another 
well-formed expression so that the two constitute a single 
but complex well-formed expression. In the particular ab­
stract symbol system studied in the present chapter, the for­
mation rules are summarily expressed by sets I, II, and la.
These sets, when read as statements about the marks they con­
tain and about operations performable on those marks and also 
about the results of those operations ( see on pp. 101-103, above) 
and when read in the light of the transformation rules A,B,C 
which permit substitution of other specified marks for the 
marks they contain (as explained on pp. 98 ff., above) 
serve to define in general all well-formed expressions of 
this system, by Indicating how any well-formed expression is
to be constructed.

The other initial sets, which are not formation rules, 
contain two well-formed expressions separated by a non-well- 
formed expression. At first sight (as was suggested on 
above) we might be inclined to regard each such set as simply 
a complex well-formed expression, seeing that there are many



170
complex well-formed expressions made up of two well-formed

's. ,

expressions separated by a non-well-formed expression. But 
two considerations militate against this view. First, the 
formation-rules nowhere provide for the use of this partic­
ular non—well—formed expression as a medium of combination 
for well-formed expressions; and second, no matter how 
"meaninglessM or uninterpreted all other marks usable in 
this system may be, this particular mark must have meaning ; 
for it is understood that any two well-formed expressions be­
tween which it occurs are thereby indicated as everywhere in­
terchangeable within this system, rather than being joined to 
each other as components of a more complex well-formed express­
ion. From this it follows that every set wherein the mark in 
question occurs as above described is, in effect, a transfor­
mation rule of the system; inasmuch as each such set provided 
for the transformation of any other set containing one of the 
expressions which it contains itself, into a set containing 
the other of the two expressions which it contains. In the 
abstract symbol-system chosen for detailed examination in 
this chapter, the mark in question is the mark *, the sign 
of equality; and it is to be found in every initial set other 
than the formation-rule sets. Other systems which apparently 
dispense with the use of this mark will, it is true, contain 
sets in which this mark does not appear; but such sets either 
contain another mark which has precisely the same meaning, or 
else are translatable exactly into a set containing such a 
mark.

We are therefore justified in concluding that every ini­
tial set in an abstract symbol-system, apart from the sets

------- — — I—
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readable as formation rules, is not just a complex well- 
formed expression, serving as an element of the system, but 
an intelligible statement to the effect that two well—formed 
expressions are everywhere interchangeable. The formation- 
ruleB, namely, the first two sets and the rules A,B,C which 
provide for transformations of these sets, afford an indef­
inite number of well-formed expressions usable as elements 
of this system; and, once certain expressions have been used 
in the other initial sets, the transformation rules A and D 
provide for the formation of other sets which are each re­
cognizable as derivatives, i.e. as transformations, of some 
initial Bet; there being no limit to the number of such de­
rivatives, since the operations permitted by the transfor­
mation rules may be repeated any number of times. Which of 
the many possible derivatives of initial sets will actually 
be used as theorems in the system, there is no rule to de­
termine; but on grounds of ordinary common sense we may ex­
pect to find only those derivatives used as theorems which 
are (a) considerably unlike the sets from which they are de­
rived, and (b) likely to give rise to a large number of 
markedly different derivatives. When it comes to settling 
what well—formed expressions will be chosen for use in the,, 
initial sets, not only are we left without any rule to guide 
us, but also we find little help from such common sense con­
siderations as the above. The second of the two mentioned 
above is hardly helpful, except in a general way, and the 
first is obviously not to the point at all.

We have tried to show in the present chapter that the 
sets employed as formation rules are readable as analytio
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(i.e. intuitively true) propositions about the marks they 
contain, and that derivatives of these sets obtained by ap­
plying rules A,B,C thereto are likewise readable in a simi­
lar fashion, and are recognizably consequences of the ori­
ginal propositions. To this extent, that is, so far as the 
existence and status of well-formed expressions are con­
cerned, reliance is placed on ordinary deductive prooedure 
in the development of this system, and the apparently me­
chanical transformation rules are seen to depend on ordinary 
deductive principles and to produce results which are intel­
ligible in the light of ordinary logic. Striotly speaking, 
no derivative of these sets is a consequence of the original 
set whence it was derived; but the proposition meant by any 
derivative is a consequenoe of the proposition meant by its 
original set, and we oan see why this must be the case when 
derivatives are formed according to the transformation Tules 
referred to. The same observation may be made regarding de­
rivatives obtained by applying rule A to initial sets which 
are not formation rules; and thus the mechanical process of 
"substitution throughout" is seen to be valid as a substi­
tute for ordinary inferential thinking. Be we can not read 
any of these other initial sets, nor in consequence any de­
rivative thereof, as analytically true propositions about 
the well-formed expressions which they contain; and there­
fore we have no guarantee of their truth so long as they are 
taken to express equivalence between these well-formed ex­
pressions. In fact, on this reading they seem to be posi­
tively false propositions. Thus their validity as transfor­
mation rules, in connection with rule D, is seriously called

into Question.
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A way out of this difficulty was suggested, by explain­

ing at some length how sets containing the mark « are read­
able as statements to the effect that the symbols which oc­
cur as well-formed expressions on either side of this mark 
are identical in reference. We have yet to inquire by what 
means, if any, the truth of such statements can be ascer­
tained; but it is clear that the validity of these sets, as 
transformation rules, depends on their being readable as 
true statements, for otherwise the element-Bymbols which 
they indicate as everywhere interchangeable may not be iden­
tical in reference, and thus confusion will arise in the fi­
nal interpretation of the system.

With regard to the symbolic force of an abstract symbol- 
system, a distinction must be made between its use as a di­
rect symbol, and its indirect symbolic force. As a direct 
symbol, any well-formed expression of such a system can rep­
resent the struoture of some element in any system which the 
abstract symbol-system symbolizes, provided that the symbol- 
element has the same structure as the symbolized element.
This means, as we have explained at considerable length in 
the first two chapters, that the symbol-element must contain 
the same number of components as the element whose structure 

- it pictures, and that corresponding components must ocoupy 
the same relative position in symbol-element and symbolized 
element, respectively. Non-well-formed expressions, which 
serve as symbols of non-relational or else relational char­
acteristics (always excepting the mark =, which has the 
special significance stated above on p. 170 directly sym­
bolize, in virtue of their juxtaposition to some well-formed
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expression, the possession by the element corresponding to that 
expression, of the characteristic which they signify. If an ab­
stract symbol-system is to be taken as a direct or pictorial 
symbol in this way, the isomorphism, or similarity of struc­
ture, which obtains between its element-symbols and the ele­
ments of another such ordered set, is basically a matter of 
one-to-one correspondence of component elements, and of same­
ness in order of these component elements. All that an ab­
stract symbol-system can picture in this direct fashion is 
therefore the number and order of elements in any system iso­
morphic with it.

In actual practice, however, more is involved in the use 
of an abstract symbol-system than this purely pictorial repre­
sentation of structure. Besides the direct symbolic force of 
the number and order of its component element-marks and rela- 
tion-marks or modification-marks, a certain amount of indi­
rect symbolism enters in; that is to say, the various sets of 
the system are readable as propositions about the elements 
whioh their element-marks can symbolize* The elements and re­
lations and modifications symbolizable by a given abstract 
symbol-system must be such that when the symbols of any set 
in the system are read as referring to them, the set in ques­
tion is a true proposition about the elements and relations 
and modifications to which the symbols of the set refer. If 
every set in the abstract symbol-system can be read in this 
way as a true proposition about the elements of some existing 
or conatruotible system or systems of entities together with 
their relations and modifications, then that system, or those
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systems, are said to be isomorphic with the abstract symbol- 
system and with each other, we have not attempted to justify 
this seemingly odd extension of the notion of isomorphism; 
but it is not at all obvious that some justification for this 
use of the term might not be worked out; by showing, for in­
stance, that any elements which, together with their rela­
tions and modifications, happen to satisfy the various sym­
bol—sets of a given abstract symbol-system can on this ground 
be said to have the same structural or formal properties as 
any other similarly "satisfying” class of elements with their 
relations and modifications. If this could be done, it would 
show merely that the systems of elements representable by the 
sets of the abstract symbol-system in question were isomor­
phic with eaoh other, but it would not indicate that they 
were any of them isomorphic with the symbol-system which thus 
indirectly symbolized eaoh of them. For the elements of this 
symbol-system are the symbol8 which occur as well—formed ex­
pressions in the various sets; and we have given reason for 
the statement that these sets cannot be read as true proposi­
tions about the well-formed expressions which they contain; 
whence it follows that the class of well-formed expressions 
of this system is not one of the classes of elements which 
satisfies the sets of the system itself. There is, accord­
ingly, no obvious objection to the view that all systems syra- 
bolizable by a given abstract symbol-system in this fashion 
are isomorphic with each other; but it is very difficult to 
see how any of these systems can be called, in the same sense, 
isomorphic with the symbol-system itself. The only kind of 
isomorphism present in this latter oase seems to be the kind



described in our detailed analysis of this notion: whereby 
the elements of the symbol—By stem, insofar as they are simi­
lar in number and order of components to the elements of some 
other system, can and do pictorially represent the structure 
which is possessed by themselves and those other elements.

From what has been said in the present chapter (especial­
ly on pages 160-161, above)it should be clear that an ab­
stract symbol-system is not a deductive system, in the ordi­
nary sense of the word: that the sets obtainable by trans­
forming initial sets according to rule are not logical con­
sequences of the setB from which, respectively, they are thus 
derived. At the same time, we have tried to show in some de­
tail that the general propositions meant by these initial 
sets do striotly entail the general propositions meant by 
their respective derivative sets, and hence that this body 
of propositions does constitute a deductive system. Before 
proceeding to examine, in our next and final chapter, what 
happens when such an abstract symbol-system as we have been 
studying is interpreted aB a syBtem of formal logic, we 
must briefly discuss a question raised by our inquiry into 
the nature of an abstract symbol-system; the question 
(mentioned on p. 173, above) whether it is possible, and if 
so, by what means, to settle the truth of the statements 
obtainable by reading aB propositions those sets which con­
tain the mark = and which serve as transformation rules of 
this system.

13. Validity of Transformation-Rule Sets.
We have already noted (e.g., pp. 100-101, above) that 

the well— formed expressions in all sets containing the mark
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■ are either borrowed from or derived from the formation-rule 
sets. The formation—rule sets, as we have seen, can be read 
as intuitively—true statements about the well—formed express­
ions which they contain; but when the attempt to read any 
other sets in this same fashion proved abortive, we noticed 
that the formation-rule sets and all other sets are readable 
as statements about the elements and modifications and rela­
tions for which their well-formed and non-well-formed express­
ions may perhaps stand* At first sight, it would seem that 
these so-called statements can hardly be called statements 
at all; and sinoe they are in fact spolcen of as proposition- 
al functions rather than as propositions, it appears prema­
ture to raise any question of their truth or falsity. The 
point we wish to make, however, is that these sets, when read 
as previously suggested, serve to convey some information, 
however vague and general this may be, about some entities, 
however difficult may be the task of identifying them. Ini­
tially, in the case of any set containing well-formed and 
non-well-formed expressions, all we may be able to do is to 
discriminate between element-marks and relation-marks and 
modification—marks; and when we inquire what these marks can 
possibly refer to, the only clue to an answer may seem to be 
such phrases as "some element or other", "some relation or 
other", "some non-relational modification ox other". If we 
consider each set more closely, however, the problem of 
reading these sets intelligibly is seen to be somewhat less 
insoluble* Whatever the individual marks may mean, we may 
take for granted that each of them will mean the same thing 
on every occasion of its occurrence, whether in the same set
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or in different sets. Assuming that the marks specified as 
simple well-formed expressions refer to a class of homogenous 
elements, and without supposing that different well-formed 
expressions necessarily refer to different members of this 
class,—— since we have no reason to make any assumptions a— 
bout the number of members thereof,—  we learn from the for- 
mation-rules some further characteristics of these elements. 
What these further characteristics are may be gathered from 
previous pages of the present chapter (notably pp. 143, 146 
above) but it is advantageous to list them here in per­
haps a clearer way. The formation-rule sets are those marked 
I, la, and II, in the list at the beginning of this chapter 
(p. 91, above) ; and the information each conveys is as fol­
lows;
I. For every pair of elements in this class, whether simple 
or complex, modified or unmodified, there is a complex ele­
ment made up of this same pair of elements in a given order, 
these components being joined together by some relation, aB 
yet undefined, so as to form a single element which is it­
self a member of the same class as the original pair.
II. For every single element in this class, whether simple 
or complex, modified or unmodified, there is a modified ele­
ment which is in all respects the same as this single ele­
ment, save that it possesses an as yet undefined character­
istic or modification not possessed by the single element 

itself.
Ia. For every pair of elements...(etc., as in I above)... 
by some relation, as yet undefined, but not the same in all
respects as the relation mentioned in I , so as to form...
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(etc., as in I above).

Evidently, the above statements are not categorical 
assertions. They do not purport to tell us that there ex­
ists a class of homogeneous elements, the members of which 
possess the properties here mentioned. They do not tell us 
that such a class, even if it existed, would contain a pair 
of elements; and, even supposing such a pair of elements to 
exist, or supposing a single element to exist, they do not 
tell us that there is in existence a complex element made 
up of that pair, or a modified element corresponding to that 
single element. They do tell us categorically that if such 
a pair of elements exists, any such pair can be combined in 
the fashion described; and that if such a single element ex­
ists, a corresponding modified* element is constructible: 
hence, any existing pair must be such as to be oombinable, 
and any existing element must be such as to be modifiable, 
in a way that fulfills the conditions above stated. What is 
being presented to us by these sets is a kind of cumulative 
description of the class of elements symbolizable by this 
system; a statement of the characteristics which such a 
class of elements must possess if it is to satisfy the re­
quirements of this symbol-system.

These characteristics, at first thus indefinitely stated, 
are progressively made more definite in the light of similar 
descriptive details added by subsequent initial Bets. Set III 
informs us that whatever else be said about the undefined re­
lation mentioned in I, it must be such that if it holds be­
tween any pair of elements in a given order, it will also 
hold between that same pair in reverse order; and set IV adds
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the further stipulation that this same relation must be asso­
ciative. Taking these two items of information together, 
they tell us that if this relation holds between every pair 
of components of a complex element, it will continue to hold 
within a complex element made up of those same components, 
no matter in what order they are taken and no matter which 
consecutive components are taken as a single unit. Set V 
states an equivalence between any single element and a com­
plex element made up of two pairs, both pairs being modified 
as described in II above: the first consisting of the modi­
fied element corresponding to the original single element, 
and some (other) modified element, between which holds the 
relation mentioned in I; the second pair having the same com­
ponents similarly interrelated, save that the second component 
is unmodified; both these pairB being each taken as a single 
complex element and joined together into unity by the rela­
tion mentioned in I. From the information thus given, we 
can arrive at the information conveyed by the set marked Tl, 
-(a») = a, whioh tells us that the modification mentioned in 
II must be such as to be removed by two consecutive applica­
tions of itself to the same element (i.e. to any given ele­
ment); and this bit of data added to the previous informa­
tion enables us to infer what is stated in T2, a.a = a, a— 
bout the relation mentioned in I; that when thiB relation 
holds between two instances of the same element, the appar­
ent complex thus formed is actually the same as one instance 
of that element. It is easy to see that both set V and T2 
also serve to define the elements meant by the simple well- 
formed expressions they contain. No class of elements will
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be symbolizable by this system, in virtue of set V, unless, 
when two modified instances of one element and one modified 
and one unmodified instance of another element are related 
and modified and related according to the process whoBe re­
sult is pictured in V, all instances of element disappear 
together with their modifications and relations, exoept a 
Bingle unmodified instance of the first element selected.
And in virtue of T3, the elements of any claBS symbolizable 
by this system must be such that when two instances of the 
same element are joined by the relation mentioned in I, one 
of these instances disappears.

Admittedly, the information thus far given is not suf­
ficient to serve as an adequate description of the elements 
or relations or modifications symbolizable by the marks of 
this system; but its implications may well be more far-reach­
ing than one might think. For instance, the reference just 
made to a disappearance of instances of elements as a result 
of certain successively-performed operations, and the cognate 
notion that an element joined to another instance of itself 
by the relation mentioned in I, seems to necessitate the con­
clusion that no class whose elements are concretely-existing 
physical objects can possibly be symbolized by thiB abstract 
system. For it is difficult to see by what conceivable re­
lation two such objects might be combined as a unit, in such 
wise that this combination of the two objects should be iden­
tical with only one of the two in question. If such a rela­
tion between physically-existing objects is indeed incon­
ceivable, this particular symbol-system can symbolize only 
abstractions and other mental entities. We mention this in—
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stance in passing, as an illustration of the importance of 
attending to the information oonveyed by the symbol sets of 
an abstract system apart from any specific interpretation 
of that system.

Set VI, by means of the formula a + b = -(a*.b‘), de­
scribes the relation mentioned in la by making clear its 
connection with the relation mentioned in I and the modifi­
cation mentioned in II. We are here succinctly informed 
that a complex element consisting of any pair of elements 
joined by the relation mentioned in la is actually the same 
as a modified complex element consisting of the pair of 
modified elements which corresponds to that same pair, joined 
by the relation mentioned in I. The importance of this in­
formation, as has been seen, oonsists in the fact that be- 
oause of it we can arrive at the information conveyed by Set 
la and all the other sets marked with the letters a or b 
(p • 90, above). In this way we are assured, for instance, 
that any class of elements whose members fulfill the condi­
tions stated by sets I to VI must therefore fulfill the con­
ditions stated by Sets la to Via, including Vb and all de­
rivatives of all these sets. The set marked T3 is of special
interest because of the information it gives concerning all 
complex elements which consist of any element whatever and 
the modified element corresponding thereto joined together by 
the relation mentioned in I. All such complex elements, we
are told, are actually one and the same element, irrespective 
of the different components which are found in each complex.
A similar piece of information is conveyed by set T3a regard­
ing a complex composed in like manner with the relation men-
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ttoned in la joining its components; and from T4 (p . 95, above) 
which reads (a + a') * -(a.a*), together with another pre­
viously-unmentioned set derivable from this, (a.a») = -(a + a*), 
we learn that any complex element of this sort which contains 
the relation mentioned in la is actually the same as the mod­
ified element corresponding to a similarly—constructed com­
plex containing the relation mentioned in I; and conversely. 
Knowing this, we are in a position to say with certainty that 
if we can find a relation which fulfills the conditions laid 
down for either of the two mentioned in I and la, we shall 
find a relation which fulfills the conditions laid down for 
the other, without having to institute an independent inquiry 
into the existence of that other.

We have already attempted to show (especially on pp. 157- 
160, above) how the mechanical process of substitution where­
by derivatives are obtained from initial sets affords a guar­
antee that the propositions, or statements, obtained by read­
ing these derivatives are logical consequences of the state­
ments obtained by reading the originals. Insofar as this 
attempt may have been successful, it is true to Bay that the 
information conveyed by the original sets entails the infor­
mation conveyed by their derivatives, even when the connec­
tion between any two such pieces of information is very dif­
ficult to see because of the complexities involved in think­
ing about verbally—expressed propositions. If this is indeed 
true, we should find that once we have grasped the information 
conveyed by the initial sets and their main derivatives,—  
meaning by "main derivatives" those which add to our store of 
information items not easily perceptible as consequences of
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previously-acquired data,—  we have a sufficiently complete 
list of those characteristics which must be possessed, or of 
those conditions whioh must be fulfilled, by the members of 
any olaBs of elements whioh our abstract symbol-system can 
symbolize* we have as yet, however, no positive reason for 
asserting that even one such class of elements exists; and 
of course, if no such class exists, our store of information 
will be a description which describes nothing, and the state­
ments obtained from our initial sets, as well as the conse­
quences obtained from the derivatives of these sets, will in 
fact be false. If, on the other hand, only one such class 
exists, the information in hand will in fact be a unique de­
scription, and the symbol-system will hardly deserve to be 
called abstract, in spite of the apparent generality of its 
symbols and the truth of the seemingly general statements 
obtained from its sets of symbols.

We have suggested (p. 181, above) that the particular 
abstract symbol-system here selected for study will most 
likely not serve as a symbol for any class of concretely-ex­
isting objects in the physical universe, for some of the con­
ditions above mentioned appear unfuifillable by any such 
class. If this be so, we need not expect to find an inter­
pretation of our system in the world of physical existents.
We might accordingly attempt to conceive, i.e. to construct, 
one or more class of abstract elements which would fulfill 
these conditions, knowing that a successful attempt in this 
direction would furnish us with at least one interpretation 
of the system and thuB verify the statements obtained from 
its sets. As a matter of fact, the various classes of ele­
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ments which this particular system is used, to symbolize are 
classes of abstract elements, as will be seen in the next 
chapter, wherein we shall touch upon a few of the problems 
arising from interpreting this system as a system of formal 
logic* The question now under consideration is, what, if 
anything, can be said about'the truth or falsity of those 
statements derived by reading the initial sets in the gene­
ral fashion aboVe described, apart from finding or con­
structing any specific interpretation of the system.

It seems clear enough that we cannot know these state­
ments to be actually true prior to finding a specific inter­
pretation for them. This consideration, coupled with the 
relatively general character of the information conveyed by 
the sets,—  especially when we consider only initial sets 
without working out their derivatives,—  may incline us to 
accept the view that it is premature to raise any question 
of truth or falBity until a specific interpretation has been 
found, or until failure to find one makes the existence of 
one extremely improbable. In actual practice, it may be ad­
visable to postpone the question of truth or falsity until 
we have obtained as muoh information from the initial sets 
as we can, by working out their main derivatives and reading 
them as above described. Yet it is even more advisable to 
keep in mind from the very beginning of our inquiry into an 
abstract symbol-system the conditions which it must fulfill 
in order to be at least possibly true, or possibly interpret 
able. And there are certain negative criteria which can be 
applied, in this connection, as soon as we are in possession 
of the information conveyed by the initial sets, without ref
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erence to the further informal!on obtainable from their de­
rivatives. we know, for instance, that if a statement ob­
tained by reading any set is self—oontradictory, as would be 
the case if it imposed, as a condition, the possession by 
some one and the same element of characteristics that were 
mutually incompatible, such a statement could not possibly 
be true, and no entity fitting such a description could ever 
be discovered or constructed. Similarly, if any two state­
ments obtained by reading any two sets are mutually contra­
dictory, the abstract-symbol-Bystem in which both these sets 
occur is certainly uninterpretable, since no entity could be 
found which would simultaneously fulfill two oontradictory 
conditions* This means, of course, that the initial sets of 
any abstract symbol-system must be such that the statements 
obtained by reading these sets are each free from inner con­
tradiction and that no one statement is the contradictory of 
any other.

A positive criterion also is at hand, as a guarantee of 
the possibility of interpretation, or of the possible truth 
of these statements; but it can be applied only when
the statements convey such information as amounts to a fairly 
adequate description of the elements and relations and modi­
fications to which they apparently refer. In such a case, we 
can sometimes see, not merely that no inner contradiction or 
mutual contradiction is present, but also that the statements 
in question are each self-consistent and consistent with one 
another. Whenever this is so, we can say at once that any 
statements entailed by these initial ones, individually or
collectively, will likewise be self-consistent and consistent
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with one another.

The negative criteria are evidently based on the prin­
ciple of contradiction, in the sense that they have no value 
whatever unless this principle is true. That is one reason 
why this principle must be regarded as fundamental, in spite 
of the fact that no symbolic expression of it is to be found 
among the primitive propositions of such systems of logic as 
Principia Mathematioa. though some form of it appears as a 
theorem, or derivative of the primitive propositions. The 
positive criterion, besides relying on the same principle, 
depends for its value on the truth of another principle, 
whioh may be stated as follows; Whatever is entailed by a 
self-conBistent proposition must be self-consistent, and all 
propositions entailed by mutually consistent propositions 
must be consistent with one another. A direct demonstration 
of the truth of this latter principle would be rather an ex- 
plicitation of its terms than a strict demonstration, and 
the analysis involved would very likely raise more philosophic 
problems than could be discussed with profit in the space of 
a single dissertation. Suffice is to say here that the prin­
ciple is evidently analogous to the somewhat clearer prin­
ciple, MA proposition which is entailed by a true proposition 
cannot be false"; and further, that from a denial of the 
princinle above mentioned, it would follow that all know­
ledge obtained by inference is worthless apart from separate 
verification of every conclusion arrived at.

The distinction here made between positive and negative 
criteria for testing the possible truth of statements obtain­
able from the initial sets of an abstract symbol-system is



one whioh must be made if we wish to avoid confusion* It is 
true to say about each of these statements, and indeed about 
any statement whatever, that it must be either self-consist­
ent or not; or about any series of statements collectively 
considered, that they must be mutually consistent or else mu­
tually contradictory* But unless we have some assurance that 
a statement is self-consistent, or that two statements are mu­
tually consistent, we cannot arrive at this conclusion 3imply 
on the ground that we see no inconsistency in a statement or 
between two statements. For the information we obtain from 
such statements may be so very vague and indefinite as to con­
tain, at least implicitly, a contradiction which we do not 
see; though such a contradiction, if implicitly contained in 
the statements, will presumably manifest itself on further 
reflection and analysis.

The considerations just presented, it will be observed, 
merely indicate that we can, within certain limits, assure 
ourselves that the statements obtainable from reading the 
initial sets are themselves both individually and mutually 
consistent, and will therefore not lead to any contradic­
tory consequences. The importance of this fact becomes 
clear when we reflect that many of the interpretations which 
fit abstract symbol-systerns are themselves abstract systems: 
i.e., systems in which the elements are abstractions. If 
attention is paid, along the lines we have been suggesting, 
to the. information conveyed by initial sets and derivatives 
of a symbol—syBtern, it may well be that this information 
will contain such a complete description of the elements 
symbolizable by this system that we can at once conceive or
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construct such elements mentally; and once this stage has 
been reached., their actual existence becomes a mere matter 
of whether or not we take the trouble to conceive or con­
struct them. For this reason the information conveyed by 
sets and derivatives of an abstract symbol-system iB well 
worth taking into account. By attending to it, we will 
surely notice obvious self-contradictions and obvious mutual 
inconsistencies, the presence of which will assure us that 
no interpretation of a symbol-system can be found unless 
these are removed; and it is not unlikely that we may obtain 
sufficient data to assure ourselves of the constructibility 
of an abstract interpretation, if we do not actually obtain 
a complete set of rules for its construction.

Finally, once we construct or discover an interpreta­
tion which satisfies the initial sets, i.e. which fulfills 
the conditions therein laid down concerning what character­
istics any elements must possess in order to be symbolizable 
by this system, we are thus assured not only of the actual 
truth of the initial sets, but also of the actual truth of 
statements obtainable from their derivatives. At any rate, 
this last assertion is true of all abstract interpretations 
of the system. For if the initial statements are true, all 
their consequences must be true; and though we might have 
room for doubt if there were question of concretely-existent 
particulars, which might conceivably possess the properties 
stated in the initial sets and yet happen somehow not to 
possess all the properties theoretically entailed by these, 
no such doubt can arise regarding abstract elements, whose 
existence depends on their constructibility.
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Further consequences of finding an interpretation for 

an abstract symbol-system will be examined in what follows.
For we shall now attempt to make more concrete the discussion 
of the relations between abstract symbol-systems and formal 
logic, by considering one or two of the main problems raised 
when the particular system we chose for comment is interpreted 
as a system of formal logic.



CHAPTER FOUR

AN ABSTRACT SYMBOL-SYSTEM INTERPRETED A3 A SYSTEM OF LOGIC

I. Main Problem Connected with Interpretation.
Thus far, by studying an abstract symbol-system inde­

pendently of any specific interpretation, we have attempted 
to discover and explain the principles involved in its for­
mation and development, as well as those governing its uti­
lity as a symbol of structure. We have suggested how the 
sets of such a system are readable aa general propositions, 
and how on this reading they purport to convey information, 
not about the symbolic marks which they contain, but about 
the possible entities,—  whether elements or modificationB 
of elements or relations between elements,—  for which 
these marks may stand, supposing such entities to be con- 
structible or discoverable. From this point of view, an 
abstract symbol-system is seen to be a kind of descriptive 
and cumulative definition: each set states a condition
which must be fulfilled by any entities in terms of which 
the system is interpretable, and the condition thus laid 
down by any derived set is guaranteed to be a consequence 
of the conditions laid down by the previous set or sets 
whence the set in question is derived, inasmuch as the pro­
cess of substitution whereby such derivation is effected
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appears on analysis to rely on ordinary principles of deduc­
tion.

It might be supposed that once we have discovered or 
constructed an interpretation, or even several different in­
terpretations, of a symbol-system devised with such meticu­
lous accuracy, no further problems would remain to be solved. 
For we are now in a position to read each set as a true prop­
osition about the entities which constitute the system we 
have found, and it would seem that we may at once proceed to 
avail ourselves of the information thus placed at our dispos­
al about these entities without the slightest hesitation. As 
a matter of fact, however, one very important question re­
mains to be settled. Granted that the information afforded 
us by this system about these entities is reliable so far as 
it goes, we must now ascertain precisely how far it goes; and 
the question is, does this system provide us with an adequate 
description of the entities to which its symbols refer?

It is easy to dismiss this question with a negative an­
swer. For, apart from the fact that no abstract symbol-sys­
tem which has as yet been devised lays any claim to being 
representative of every existent or constructible system of 
entities, the very abstractness of each extant symbol-system 
makes each in principle, as many are in practice, suscept­
ible of more than one interpretation; and since each can 
thus represent several systems, the constituent elements of 
any one of which have (at least presumably) some character­
istics not possessed by the constituent elements of every 
other, it seems clear that no system of entities which serves 
as one interpretation of an abstract-symbol-system can be ad­
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equately described thereby, in the sense that all the char­
acteristics of these entities are thus made manifest. Never­
theless, it is far from clear that the question we have raised 
is an idle one; and in this concluding chapter, which might 
well be expanded into a dissertation, we shall try to say in 
general why it is important, and consider in detail one or 
two of the problems with which it is conneoted.

The importance of this question may be seen in general 
by reflecting on one of the dangers inseparable from the con­
struction and development and use of abstract symbol-systems. 
Initially, the marks specified as usable in such systems are 
taken as standing for quite undefined entities, whose char­
acteristics are then set forth in a series of recursive de­
finitions; or rather, in a series of statements which col­
lectively serve as a recursive definition. The consequences 
of these primitive propositions are next made explicit, until 
we have a description of these entities which is sufficient 
for the purposes of this system. When we find an interpreta­
tion of any such system, by discovering entities which fulfill 
these conditions, or answer to this description, it will of 
course be the case that all the statements obtainable by read­
ing the various sets of the system in terms of these entities 
will be true propositions about those same entities. The 
danger is, at this point, that the accuracy and purity of 
the method employed in arriving at these true propositions 
may give rise to the idea that they collectively affoTd a 
real definition of the entities to which they refer. To speak 
of such an idea as a danger is apparently to under-estimate 
the mental acumen of those who make it their business to
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study abstract methods. For the fallacy to which attention 
is here being called is one which the veriest tyro in logic 
would recognize and avoid almost immediately; the fallaoy 
of supposing that because the statements made by a given 
system all apply to a particular system of entities, these 
statements afford a complete description of these entities.
A little reflection on the situation we are considering, 
however, will show that this fallacy may very easily intrude 
itself without being detected so readily; not for lack of 
mental acumen, or because of carelessness, but because those 
who are most concerned with abstract symbol-systerns are en­
tirely immune from this fallacy, and realize that it has no 
occasion of arising. If a mathematician, for example, hav­
ing developed an abstract symbol-system, fails to find an 
interpretation for his system among the familiar entities of 
his science, he may easily manage to invent an interpreta­
tion, by constructing unfamiliar but clearly conceivable and 
describable abstractions. These, being constructed specific­
ally to fit his system, will accordingly have all those char­
acteristics stated or entailed by the propositions obtainable 
from the reading of the system's formulae. If they have any 
other characteristics,—  and in some cases at least it is 
difficult to see how they could have any others,—  he has no 
reason whatever to be concerned with those, seeing that they 
do not follow from his initial postulates. The postulates, 
in other words, state and entail conditions which are not on­
ly necessary but also sufficient, regarding the characteris­
tics to be possessed by any entities in terms of which the 
system is interpretable. Even when the mathematician finds
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an interpretation for his system among concretely existing 
objects in the physical universe, or among such relatively 
familiar abstractions as points on a line and areas in a 
plane and ordinary integers, he need not raise the question 
whether these entities have any other characteristics than 
those stated and entailed by the postulates of his system.
But when an abstract symbol—system is interpreted as a sys­
tem of formal logic, the situation is rather different. If 
the initial and derivative sets of such a system are to be 
read as propositions about classes and propositions and re­
lations, describing (whether piotorially or non-pictorially) 
the structural properties of these entities and of the rela­
tions between them, the question whether the description 
thus given is not only true but also complete is by no means un­
important. In particular, one would like to be sure that the 
definitions and descriptions thus "systemically" formulated 
include not merely some of the characteristics possessed by 
these logical entities, nor yet just those which afford a 
uniquely-desoriptive account of these same entities individ­
ually, but also and especially those characteristics which 
are most fundamental quite apart from such systemic considera­
tions as their order of derivation.

Unlike the extreme formalists, who maintain that the for- 
mation-rules and transformation-rules of an abstract symbol- 
system are merely rules for the manipulation of symbols, and 
hence involve no analysis of the entities symbolizable by 
these symbols, the so-called logistic school of mathematical 
philosophers and logicians insist upon the necessity of such 
analysis. Though they may introduce primitive ideas as unde-
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fined, and subscribe to the general view that definitions 
are always of symbols, many would agree that analysis of sym­
bols entails analysis of concepts; and in practice the latter 
kind of analysis is understood as at least a useful prelimi­
nary to the construction of a system by the logistic method. 
The work done by Russell and others in this field is too well 
known to leave room for doubt about the painstaking aoouracy 
and thoroughness with which such analysis has been carried 
out, and it would indeed be unfortunate if the suggestion 
that much remains to be done were construed as an unfavor­
able comment on what has already been achieved. Even more 
unfortunate, however, both for philosophy and for mathema­
tics itself, would be the consequences of taking for granted 
that the concepts thus carefully analyzed are actually the 
concepts which they seem to be, particularly when the words 
used to express them are the same as those of ordinary dis­
course.

Precisely because the logistic analysis of concepts is 
so thoroughgoing and symbolized with such exactness, one is 
apt to regard it as much more reliable than any other; and 
the very idea that it may be open to question seems quite 
incompatible with a knowledge of the advances in science 
made possible by the results of this analysis. For this rea­
son the question we have raised may well seem pointless with­
out some specific evidence of its relevance and importance.

The question of determining precisely what is meant by 
interpreted symbols, whether verbal or non-verbal, is one 
which arises within the science of mathematics itself. To

cite but one example, the word "number", as applied to trans-
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finite numbers, refers to entities whose properties are so 
different from those of the so-called natural numbers that 
the same word takes on a very different meaning. No confu­
sion can arise in the mind of anyone who knows the accurate­
ly defined properties whereby these two kinds of numbers are 
respectively described and clearly differentiated from each 
other. But when a mathematician attempts to define the no­
tion of number in general by saying that it is a class of 
cardinally similar classes, it is well to make sure that no 
analogous use of these words is intended, before taking them 
literally. The notion of cardinal number, as defined by the 
well-known Frege-Russell definition, may be sufficient for 
purposes of mathematics and for formal logic; it may be the 
case that this definition applies to what is meant by the 
words "cardinal number" apart from exclusively mathematical 
uses and independently of systemic considerations; but it 
is at least arguable that this definition not only leaves 
out of account the property which differentiates numbers 
from other entities which are not numbers, but that it tends 
to ignore a distinction which is important for philosophy 
but not likely to arise within mathematics; the distinction 
between "having a number" and "being a number". We are not 
here concerned to argue this point, nor to disouss such cog­
nate problems as the difference between a class and a char­
acteristic, and why this difference raises no special prob­
lem for the mathematician. We merely call attention, by way 
of this single example, to the fact that an analysis satis­
factory from a mathematical point of view may well prove un­
satisfactory and even quite misleading when transferred to a
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non-mathematioal context.

The same question, of the adequacy of logistic analysis 
when its results are applied outside mathematics, is brought 
to the fore in connection with the relation of implication. 
Anyone acquainted with the literature of modern logic will 
remember how much insistence was placed on the view that ma­
terial implication is that relation between propositions in 
virtue of which one is deducible from the other. The late 
Mr. W. E. Johnson, In particular, wrote a lengthy exposition 
of the so-called paradoxes of material implication, by way 
of pointing out that this relation iB really fundamental to 
all inference, though the inferences based on it are not al­
ways useful. The point to notice is that when this mathe­
matical kind of analysis leads to results seemingly at vari­
ance with the principles and methods of ordinary reflective 
thinking, there is a tendency to revise these latter, or at 
least to judge them in the light of mathematically-obtained 
results which are themselves assumed to be more reliable.
The subsequent work of Professor 0. I. Lewis has made mani­
fest the inadequacy of material implication, and indeed of 
any truth—implication appearing in any truth—value system 
whatever, to be the relation in virtue of which valid infer­
ence is possible; but it is far from clear that his "relation 
of Strict Implication" is a completely acceptable substitute. 
It would be unfair to suggest that he himself attempts to 
prove that it is; for instead of maintaining that Strict Im­
plication is, as we have said above, the relation in virtue 
of which valid inference is possible, he is content to speak 
of it (as, e.g., on p. 347 of Lewis and Langford's Symbolic
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Logi_c) as "that relation which holds when valid deduotion is 
possible, and fails to hold when valid deduction is not pos­
sible"; that is to say, he holds that it is a necessary con­
dition for valid inference, but not that it is a necessary 
and sufficient condition, still less a cause or ground of in­
ference, as our phrase "in virtue of which" suggests. Never­
theless, it is somewhat disturbing to note that he too seems 
inclined to give systemic considerations precedence over non- 
systemic ones, taking for granted the accuracy of that pre­
vious analysis which gave rise to his initial definitions and 
postulates. For although he avoids the paradoxes of material 
implication, and makes it clear that they arise because this 
relation fails to fulfill the conditions laid down for Strict 
Implication (see end of p. 247, op. pit. ). he adopts much the 
same attitude towards the corresponding paradoxes to which 
Striot Implication gives rise as was adopted towards the par­
adoxes of material implication by Johnson. Instead of re­
examining the postulates which served as premisses whence 
these paradoxes follow, he gives a formal proof, based on his 
own definitions and postulates and developed by the ordinary 
substitution—process used within his system, in support of 
these paradoxical conslusions, by way of showing that they 
"are paradoxical only in the sense of expressing logical 
truths which are easily overlooked" (p. 248, op. cit._; see
also pp. 249-251).

A detailed discussion of the many issues involved in 
the two instances we have mentioned, of this tendency to re­
ly unduly upon systemic considerations, can hardly be attemp­
ted within the limits of a single dissertation. To deal in
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anything like an adequate fashion with the latter alone, we 
should have to inquire into the nature of Lewis's system of 
Strict Implication, by way of discovering whether it is more 
than technically different from the truth-value systems which, 
like itself, are developed according to the logistic method. 
Instead of pursuing these topics further, we may well bring 
the present dissertation to a close by investigating a prob­
lem more directly connected with the validity of any abstract 
symbol-system interpreted as a system of formal logic.

3. Truth-funotions as a Guarantee of Validity of Formal Logic.
In the concluding chapter of his comprehensive three-vol­

ume Treatise of Formal Logio, under the title, "The Ideal Pre­
suppositions of Formal Logic", the Danish Logician Jurgen Jor­
gensen deals with the problem of validity in a way that is 
particularly interesting. In selecting for comment some of 
the points developed in the chapter referred to (Chapter XV, 
pp. 376-393 of Volume III), we are not directly concerned 
with passing judgment on the merits of his proposed solution, 
nor even on the adequacy of his statement of the problem.
Our main purpose Is to emphasize certain features of his at­
tempt to use truth-functions as a basis for the validity of 
formal logic, in order that we may thus give a concrete il­
lustration of the importance of some of the main points we 
have been stressing in preceding pages.

His statement of the problem may be summarized as fol­
lows. There is a"n important difference, in principle, be­
tween a deductive system of formal logic and all other de­

ductive systems, such as for instance those of mathematics; 
the latter need only be formally true (i.e. composed of the-



301
orems which are validly deduced from consistent postulates), 
whereas formal logic must he materially true (i.e. its theo­
rems must be validly deduced from postulates which are not 
merely consistent but also true in the ordinary sense of the 
word "true"). The exaot significance of the phrase "mate­
rial truth" as he uses it (p. 276; "By material truth is 
understood a relation between an objective and the fact to 
which it refers") may seem to demand further elucidation: 
for although by "objective" he clearly means "propositions" 
(cf. Sheffer's use of the word "ascript"), many would object 
to using "fact" with reference to what is meant by a general 
proposition; hence we suggest that by material truth he means 
truth in the ordinary sense, and whatever the ordinary sense 
of the word may be, it admittedly involves more than mere ab­
sence of contradiction, or consistency. The reason for this 
difference between formal logic and all other deductive sys­
tems is that formal logic is not simply a deductive science, 
but also a deductive science of deduction; hence in it the 
principles of deduction, according to which the theorems of 
any deductive system are validly deduced, must be formulated 
as premisses, not tacitly assumed and employed as principles. 
In any deductive system whatever, "the principles on which 
the theorems are deduced from the primitive propositions must 
be materially true, for otherwise the deduction would be in­
valid" (p. 278, 0£. cit.). Since these very principles form 
the subject-matter of the science of deduction, i.e., of for­
mal logic, they- must appear as premisses in that science; 
and if the science of deduction is developed and presented 
as a deduotive eoience, or deductive system of propositions,
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the basic principles of deduction must of course appear as 
primitive propositions in this system. The problem of the 
validity of formal logic is thus seen to be a problem of 
finding some guarantee for the material truth of the proposi­
tions employed as primitive propositions in a system of for­
mal logic.

Jorgensen's solution of the problem thus stated is based 
on the second of two considerations (mentioned by him on pp. 
278-879). Relying on "the fact that the primitive proposi­
tions of formal logic can themselves be employed as princi­
ples of deduction", he observes that for this reason (l) "the 
material truth of the theorems is guaranteed by the fact that 
the primitive propositions are materially true, and that the 
theorems are deduced in a manner formally valid from the prim­
itive propositions, solely by means of the primitive proposi­
tions themselves," and (s) "that the primitive propositions 
are materially true is guaranteed by the fact that they deal 
solely with relations between the truth values of objectives 
and especially with such relations as subsist irrespective 
of whether their constituents are true or false objectives, 
whence it follows that the falsity of the primitive proposi­
tions is altogether inconceivable."

In support of this second contention, he proceeds to ex­
plain (following Nicod) what is meant by "truth value rela­
tions", remarking that such relations are expressed in what 
Russell and Whitehead call "truth functions", and referring 
to Wittgenstein's table of the sixteen possible truth func­
tions which together express all the truth value relations 
that can exist between two elementary (i.e. unanalyzed) pro­
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positions, p,q. Special attention is then directed (p. 388) 
to those truth functions whose truth is independent of the 
truth values of their constituents, e.g., p ) p, p.q.).p, p .
)• p v q, "which are true regardless of whether p is true or 
false or q is true or false". Every logical principle, he 
maintains, is a truth function of this kind; and in particular, 
such are the propositions in "the elementary theory of deduc­
tion in the Principia...all generalized propositions which in 
reality do not contain real hut only apparent variables".

Since the elementary propositional calculus of the Prin­
cipia is, supposing suitable symbolic changes, one of the in­
terpretations of the abstract symbol-system whose initial 
sets we have been discussing, an examination of the ideas un­
derlying Jorgensen's views as above indicated will enable us 
to stress an important point or two regarding the interpreta­
tion of this system as a system of formal logic. Granting 
the force of his argument as above outlined, and assuming 
that a system of formal logic has been constructed with such 
primitive propositions as he desoribes, we wish to inquire 
whether the material truth of such propositions is indeed 
"guaranteed by the fact that they deal solely with relations 
between the truth values of objectives...such relations as 
subsist irrespective of whether their constituents are true
or false objectives".

At first sight there appears no reason for taking this 
statement as a topic of investigation. For if we observe 
that these propositions are asserted as primitive proposi­
tions in a tTuth-value system, and agree with Professor 
Lewis's statement, "Nothing is ever asserted in a truth-
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value system unless it is a tautology" (Symbolic Logic, p.
240), the obviously tautological character of these same 
propositions would seem to afford a guarantee of their truth. 
There still remains, however, the vital question, "In what 
sense are these propositions tautologies?" The foroe of this 
question will be appreciated if we notice the difference be­
tween statements which are tautological in virtue of contain­
ing symbol-complexes arbitrarily defined as identical in ref­
erence, and those which are tautological because the symbol- 
complexes they contain are really identical in reference: 
that is to say, because their terms are in fact different 
descriptions of the same thing. As an instance of the first 
kind, it may be said that the expression "p ) q .=. pp v q» 
is a tautology because the two symbol-complexes on either 
side of the mark = are defined equivalents; or that the sen­
tence "Triangles are three—sided plane figures" is a tauto­
logy because the word "triangle" is chosen as a more conven­
ient symbol in place of the more cumbersome expression "three- 
sided plane figure". This same sentence, however, would ex­
press a tautology of the second kind (which in pre—Kantian 
philosophy was spoken of as an analytic proposition), if we 
understood it to mean that the description conveyed by the 
word "triangle" and the description conveyed by the phrase 
"three-sided plane figure" apply to the same object; with 
the implication that this identity of reference will be man­
ifest to anyone who compares the meaning of this word with
the meaning of this phrase.

Special care is needed if we wish to avoid confusing
these two different kinds of tautologies, when we are deal-
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ing with any interpretation of an abstract symbol—system 
which is itself an abstract system. For in order to discover 
whether a given symbol-complex expresses a nominal tautology 
or a strictly analytic proposition, we must make sure that 
the relation stated by the symbol-complex is a relation not 
merely between the symbols but also between the entities 
meant by the symbols. The task thus incumbent upon us be­
comes doubly difficult when we have to do with a logistic- 
ally-developed system based on ititially-undefined concepts: 
since it may be necessary to investigate whether, once the 
systemic definition of a given concept has been ascertained, 
such a systemic definition does full justice to that same 
concept as it occurs outside the system.

So in the case of these generalized propositions, or 
truth-function a , which we are discussing, it will be worth 
while to make sure of their exact meaning, if possible; and 
in any event, the effort to discover precisely what informa­
tion they purport to convey will illustrate the importance 
of our previous cautionary remarks about the interpretation 
of an abstract syrabol-system.

To begin with, a consideration of the way in which any 
of these truth-functions is constructed is sufficient to 
raise some doubt about "the fact that they deal solely with 
relations between the truth-values of objectives"; or at any 
rate, supposing this to be indeed a fact, it is very diffi­
cult to be sure that such literal symbols as occur in the 
expressions of these functions mean what is meant by the 
words "any proposition". We have been taking for granted, 
by the way, that "objective" as used by Jorgensen is synony-



206
mous with "proposition11 as used in modern logio generally.
It would be more accurate to say that by "objective" he means 
"unasserted proposition"; and in this event some would insist 
than an objective has no truth-value. To adopt this view,

-.L

however, would be to risk obscuring the difference between a 
concept and a proposition. Whether a given proposition is in 
fact either asserted or denied by anyone, it would not be a 
proposition at all, but merely a concept, unless it were such 
that it could be significantly asserted or denied by someone, 
at least mentally. This being so, even an unasserted propo­
sition has truth-value; it is in fact determinately true, or 
in fact determinately false, though we may not know which of 
these two txuth-values it possesses. If now we were to ask, 
with regard to any two given propositions p,q, what relation 
could exist between them in respect of their truth-values, 
we should incline to say at once that there are only two re­
lations possible: the truth—value of p would either be the
same as the truth-value of q, or else different from (i.e. 
the opposite of) the truth-value of q. Inasmuch as any pro­
position may be more or less false, degrees of difference 
might be indicated according to some agreed standard; but an 
exact standard would hardly be applicable in every case, 
even among those relatively few cases (i.e. propositions 
about measurable characteristics which can be quantitatively 
determined) where such a standard is available. Some such 
procedure as this may well have been involved in the tradi­
tional account of truth-value relations subsisting between 
objectives in virtue of their form, which is epitomized in 
the familiar square of opposition, and the rules accompany—
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ing this diagram; according to which, as is well known, the 
truth, or alternatively the falsity, of a given proposition 
is determinable by the truth, or in some cases by the falsi­
ty, of another proposition which is formally related to it 
as contradictory, contrary, subcontrary, or subaltern. At 
any rate, whatever may be thought of the inadequacies of 
this earlier treatment of truth-value relations, it must be 
admitted that the relation described in each of these caseB 
is a recognizable truth-value relation, and even those who 
find difficulty with the doctrine because of considerations 
connected with the problem of existence will agree that all 
these relations afford a basis for valid inference once the 
existence of the subjects of the various propositions is 
assumed.

The truth-value relations symbolized by Wittgenstein's 
truth-functions (and other symbolically different but sig­
nificantly equivalent expressions) seem, however, to be much 
more complex. They are all based on the fact that in the 
case of any two given propositions, p, q, there are four 
possible combinations of these which differ from one another 
according as the truth-value of the propositions themselves 
varies, respectively, in each case: that is, (l) we may have 
p true and q true, or (3) p true and q false, or (3) p false 
and q true, or (4) p false and q false. As our previous re­
marks about truth-value relations suggest, it is difficult 
to see how, in the case of any given pair of propositions, 
the relation between their respective truth-values in case
(l) differs from that in case (4), and the same applies to

cases (2) and (3); though the truth-value relation in the two



208
latter oases is clearly not the same as that in the two for­
mer. However this may be, it is manifest that with referenoe 
to any given pair of propositions, these four possibilities 
are such that no two of them can be simultaneously fulfilled; 
that is to say, if (l), then not (2) nor (3) nor (4); if (2), 
then not (l) nor (3) nor (4); if (3), then. ..etc. In other 
words, if the symbols p,q each mean what is meant by the 
words 11 some proposition or other", we seem forced to conclude 
from the above considerations that there is not, and that 
there cannot be, any values whatever of p,q such that the 
same pair of values would satisfy any two of these four cases; 
unless, of course, some one and the same pair, or one member 
thereof, somehow underwent a change in its truth-value.

A symbolic expression of any one of these four oases, how' 
ever, would not be said to express, or to be an instance of, 
a truth-function. The possible truth-functions of p,q are 
not four but sixteen in number; "according as", in Jorgen­
sen's words (on. cit. . Vol. Ill, p. 286), "all four combina­
tions or only three of them or only two of them or only one 
of them or none of them exist...Each of these 16 possibili­
ties", he goes on to say (p. 287), "expresses a definite 
value relation between p and q, and taken all together, they 
represent all possible value relations between p and q. The 
objectives which assert that one or another of these value 
relations subsists between p and q are truth functions, their 
truth or falsity depending solely on the truth values of p 
and q. " The truth function "p ) q", for instance (mentioned 
as number 5 in the table quoted from Wittgenstein on p. 287),

expresses the truth value relation known as material impli-
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cation; this relation is defined as holding in the first, 
second and fourth of our original cases, and failing to hold 
only in the third; or as Jorgensen puts it (p. 386); "If we 
know for instance, that the combinations I, II, and IV exist, 
while III is out of the question, then we shall have the re­
lation known as material implication between the truth valueB 
of p and q. " (It will be seen that his III is our (2) above).

How a statement to the effect that none, or that more 
than one, of these four possible truth value combinations ex­
ist for a given p,q can be a true statement if p,q are a 
pair of propositions, we have seen reason to wonder. And 
how such a statement can be said to "express a definite val­
ue relation between p and q", in any ordinary sense of the 
word "relation", is almost as difficult to understand as the 
matter of saying precisely what that "definite" relation is 
appears difficult to accomplish. Jorgensen himself leaves 
room for doubt whether these value relations are relations 
between p and q (as stated on p. 287), or between the truth 
values of p and q (as is said of material implication on 
p . 28 6) •

It may be objected that the difficulties above mentioned 
with regard to the significance of these truth functions all 
arise from ignoring the fact that they are intended to be in­
terpreted as extensional functions. Every relation, as is 
evident, requires two or more terms in order to exist. Remem­
bering that any two terms between which a relation holds are 
called, respectively, the referent and the relatum of that 
relation, and that the totality of all possible referents 
(i.e. the domain of the relation) together with the totality
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of all possible relatums (the converse domain of the relation) 
make up a totality of terms which are the field of the rela­
tion in question, we may consider any given relation as some­
thing having a definite field, or range of terms between which 
it may hold. From this point of view, the field or extension 
of a relation is taken to be the totality of all possible 
terms which can serve either as referents or as relata for 
that relation; and if any symbol-complex consisting of a sym­
bol for some relation and on either side thereof a variable 
symbol be interpreted as an extensional symbol, the first va­
riable symbol will refer indeterminately to the totality of 
possible referents, and the second variable to the totality 
of possible relatums, of the relation in question. Such an 
extensional interpretation of the expression "p ) q", for in­
stance, would indicate that the symbols p,q do not mean, re­
spectively, what is meant by the words "some proposition or 
other"; rather, p means what is meant by the words "the first 
of any pair of propositions whereof the first member is true 
and the second true, or else the first of any pair whereof 
the first member is false and the second true, or else the 
first of any pair whereof both members are false"; and what 
q means could be described in the same way verbally, as "the 
seoond of any pair which fulfills one of the above condi­
tions. " Seeing that p,q thus represent indeterminately any 
pair of propositions which fulfill the conditions just given 
regarding the truth value of their members, we must try to 
see in what sense the fulfillment of these conditions, in 
the case of a given pair, can be said to give rise to a re­

lation between the two members of that pair, or perhaps be-
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'tween the truth—values of each of the two members. Other­
wise the assertion that there is a relation between such 
pairs, or rather between the members of such pairs as ful­
fill these conditions remains open to question.

To approach this problem as extensionally as possible, 
we shall endeavor to speak in terms of totalities, or exten­
sions. Consider first the totality of elementary or unana­
lyzed propositions (or in fact any other totality recognizable 
as legitimate according to the theory of types). Since every 
member of this totality has either the character ''true'1 or 
the character "false", or at any rate is such that it can 
have one. and only one of these two characteristics, the to­
tality will be composed of two different kinds of proposi­
tions, those which are true and those which are false. Thus 
we have two mutually— exclusive totalities within the totality 
of propositions under consideration. We might use the sym­
bols P,Q,R...to denote any member of the original totality; 
the symbols p,q,r...to denote a member of the totality of 
true propositions; and the symbols —p,— q,-r.. . to denote a 
member of the totality of false propositions. Next consider 
the totality of pairs of propositions; this totality will 
consist of all such pairs as P and Q, P and R, Q and R. .. 
etc. If regard is had to the truth value of the members 
of each such pair, it will be seen that the totality of 
pairs of propositions contains four mutually-exclusive sub­
totalities: (l) all such pairs as p and q, q and r...etc.;
(2) all such pairs as -p and q, -q and r...etc.; (3) all
such pairs as p and — q, q and —r...etc.; (4) all such pairs 
as -p and -q, ~q and -r,...etc. The symbolism made use of
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is clearly such that by means of it we can uni vocally refer 
to any one of these sub-totalities* Now suppose that we 
wish to refer to more than one of them, indeterminately; and. 
in particular, wish to indioate that the range of values of 
P and <4 includes the range of values of p and q, -p and q,
— p and —q , but does not include any of the range of values 
of p and - q , such an indication might be given by using the 
symbol— complex P ) Q. We have, by so doing, provided our­
selves with a means of referring to a new sub-totality con­
tained in the totality of all pairs of propositions; this 
new one consists of all those pairs of propositions which 
are values of p and q, all those which are values of -p and 
q, as well as all those which are values of -p and -q, but 
it excludes all pairs of propositions which are values of p 
and -q. Thus the range of values of P,Q in the expression 
P ) is made sufficiently definite. At this stage it may 
seem safe to maintain that there is a relation of some kind 
between the two members of any pair of propositions within 
the totality of values of P and Q, thus specified; we seem 
to have no difficulty in determining certain properties of 
this relation, noting that it has a definite direction 
(from P to Q ) , that it is transitive, and that it is not 
symmetrical. The fact that we cannot so easily say pre­
cisely what this relation is may not raise any doubts about 
whether or not it exists, especially since a fuller account 
of its nature appears unnecessary for practical purposes*
And because the members of all these pairs of propositions 
have been classified and subdivided according to their truth

value, respectively, in every pair, we may feel no hesitation
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in. declaring that this relation between every pair of values 
of P and Q is a truth-value relation.

It is hardly necessary to remark that this relation is
not such as to give rise to a uniquely-determined value of 
Q corresponding to a determinate value of P, when it holds 
between some pair of values of P and Q. And it certainly 
cannot be said that whenever this relation holds between any 
such pair of values, the truth value of the second member of 
such a pair is -uniquely determined by the truth-value of the 
first member of that same pair. The preceding statement is 
true only when the values of P and <4 between which it holds 
contain as their first member some propositions which is 
also a value of p (and therefore not a value of -p). It is 
only in such cases that the truth-value of every satisfac­
tory value of Q is determined; for only in such cases are
these values of Q definitely specified as being also values 
of q, but not also values of -q. Here, be it noted, we are 
calling attention to something which (according to the ter­
minology in vogue since Mr. Johnson*s time) is not simply 
an epistemic condition of inference, but a truly constitu­
tive condition thereof; hence it bears directly upon the 
relation of implication itself, rather than upon one*s know­
ledge of that relation.

Enough has been said, perhaps, to show that if the mark 
) in the expression P ) Q does really stand for a relation, 
the entity meant by the word "relation" in this context is 
something much more complex than, or at any rate something 
very different from, what is meant by the word "relation"

in ordinary philosophical usage. We may add that its exis-
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tence appears to depend on something more than the respective 
truth value of the members of those pairs of propositions which 
satisfy the expression P ) Q. At least, if we compare the to­
tality of pairs of propositions within which the relation does 
not hold with the other totalities within which it does hold, 
the following statements appear to be true. (a) This rela­
tion holds between all pairs of propositions whose members, 
taken pair by pair, have the same truth value. (b) It does 
not hold between all pairs whose members, pair by pair, dif­
fer from each other in truth value; with regard to such pairs, 
it holdB only if the first member is false and the second mem­
ber true, but not if the first member is true and the second 
member false. Thus the existence of this relation, and there­
fore the truth of any proposition asserting its existence be­
tween the members of any given pair of propositions, depends 
not merely on the sameness or the difference of the truth 
value possessed by the members respectively, but also on the 
order in which the members stand, in any given pair.

As was noted at the beginning of this section ( p. 300, 
above ), we are not here concerned with the correctness of 
Jorgensen's solution of the problem of validity; and in com­
menting on his statement that the truth of the primitive 
propositions of a system of formal logic is guaranteed by 
the twofold fact mentioned by him,—  namely, (a) that these 
propositions deal solely with relations between truth values 
of objectives, and (b) that the relations in question sub­
sist irrespective of whether the constituents of these pro­
positions are true or false,—  our main concern is not to 
insist that his statement is false. What has been said thus
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far may serve to oast doubt on the first of his two facts; 
but the main point we wish to make is, that both these facts 
must be verified by extra-systemic considerations, if they 
are to guarantee the truth of the primitive propositions 
which presumably express them. Hence we have suggested that 
the nature of the entities whose existence these propositions 
assert must be settled by other means than by merely systemic 
definition; and in particular, that the truth-value relations 
referred to by these propositions should be recognizable as 
such outside this system; for otherwise we oannot be sure 
what they are, nor whether statements about them have refer­
ence to anything outside the system in which these statements 
occur. And in that case, we cannot say that they are tauto­
logies in the sense of statements expressing analytic propos­
itions.

Just as it is important to know something, extra-aystem- 
ically, about the nature of the relations symbolized by the 
constant symbols occurring in the expression of these primi­
tive propositions if we wiBh to discover whether they are 
analytically true, so it is no less important to know some­
thing about the nature of the entities which are values of 
their variable symbols, for the same reason. The special 
difficulty in this connection is one to which Professor 
Langford has called attention in his treatment of the logi­
cal paradoxes: the word "value", he observes (Symbolic
Logic, p. 444), has a twofold sense, owing to the two very 
different kinds of substitution by the use whereof a sym­
bolic expression may be transformed. The example employed 

by him to illustrate this point is particularly appropriate
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to our present discussion, for it is not only one of those 
tautological truth-functions mentioned by Jorgensen, but is 
admitted to be the simplest of all tautologies; and moreover, 
as Professor Lewis has clearly shown (op. cit.. pp. 249-350), 
every tautology is expressible as a general proposition of 
this form. The form in question is (p). p v -p. Professor 
Langford notes the difference between two derivatives obtain­
able therefrom by substitution: (l) (q,r). (q v r) v -(q v r),
where we replace "the generic expression p by the more spe­
cific expression a v r"; this he calls "a case of 'genus-spe- 
cies* substitution", valid because "the original expression 
implies the derived one", and the ground of validity is "that 
whatever is true of all propositions of the form p must be 
true of all of the form q v r"; (3) "Men of either do or do 
not exist", where we replace p by "one of its values... one 
of the propositions which it denotes" (i.e. "Men exist"); 
and this he calls "a case of ‘genus-instance1 substitution", 
valid on the ground that whatever holds for all values of 
-p v p holds for this particular one."

Although we have referred to the above-quoted account 
in order to show that the word "value" is ambiguouB, and 
hence that caution must be exercised in interpreting state­
ments containing variables, there are one or two points 
which may be worth noting in this passage, apart from this 
principal one. We have here a clue to the way in which a 
generalized truth—function should be read as a general pro­
position. The original formula given by way of example 
has a meaning which can be stated thus; "For all values of
p, the statement -p v p is true". This statement can be
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read: "Either not -p is true or p is true". It thus appears
as an assertion about any proposition of whatever form, to 
the effect that, as regards any given proposition, either the 
negative of that proposition is true or"else the proposition 
itself is true. The assumption underlying this last reading 
is, of course, that the symbol p, considered in conjunction 
with the prefix (p) of the original formula, means what is 
meant by the words "any member of the class of propositions"j 
and the sameness of the symbol p on both occasions of its 
occurrence indicates that reference is made both times to one 
and the same given member of this class, although this may be 
any member whatever. The actual expression obtained from the 
original formula by rgenus-instance* substitution is obtained, 
evidently, by replacing the symbol p, each time, by a sentence 
whioh expresses some one and the same proposition.

Another method of reading the original formula is as fol­
lows; "Any compound proposition whatever, consisting of a 
pair of instances of one and the same proposition, the first 
of the pair being the negative form of the other and both 
members being united by the relation signified by 'or1, is 
always true, no matter what be the form or the truth-value 
or the meaning of the proposition whereof these instances 
are instances." The truth of this lengthy assertion, which 
can be recognized as an analytic proposition by anyone who 
understands the meaning of its terms, is a guarantee of the 
truth of all propositions obtainable by 'genus-instanoe' 
substitution in the original formula.

With regard to 'genus—speciesr substitution, two points 
may be worth noting. It would seem clearer to differentiate



213
thiB from the former kind on the ground of a more fundamental 
difference than is suggested by the contrast between Tgenus- 
speciesT and fgenus-instance1. Quite apart from any question 
of terminology, the really important difference between them 
appears to be this: When p is replaced by some other express-
ion such as q v r, it is clear that one symbol is being re­
placed by another (more complex) symbol. This means that in 
such oases we are merely replacing one kind of symbol by 
another kind of symbol; and that when a replaceable symbol 
is viewed in relation to such other symbols as may replace 
it, it is not fundamentally different from any of these Hre- 
placement-valuee" in spite of possibly differing from them 
in form. The symbol p, in any expression, can refer inde­
terminately to any of its "replacement-values"; but the ques­
tion which must be answered before we can say what those val­
ues are is the question whether p is a direct symbol of the 
form of those replacement-values, or merely a direct symbol 
of the position they must occupy. The symbol p is not a di­
rect symbol of the form of such expressions as q v r; hence 
it seems that the replacement-values of p may be of any form 
whatever. In the case of 'genus—instance1 substitution, al­
though the substitution itself is a mere replacement of one 
symbol by another symbol or set of symbols, the change in­
volves a complete alteration of viewpoint. Once we have in­
troduced verbal symbols, reference is made to the meanings 
of the words, and thus to the content of the propositions 
expressed in these words. Such symbols as p, or such sym­
bols as q v r, on the other hand, refer not to propositions,
but to forme of propositions; thus p may symbolize directly
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the form of a non-compound proposition, and indirectly it 
may symbolize the form of any proposition. It is for this 
latter reason that p is more generic than the expression 
q v r.

We may say, then, that such symbols as p, or any re- 
placement-values of p in a given system, symbolize forms of 
propositions, and hence bear a relation to all those propo­
sitions whose forms they symbolize. If it be admitted that 
the notion of meaning is a more useful criterion than the 
notion of form, in distinguishing one proposition from ano­
ther, and that, if we regard both meaning and form as char­
acteristics of propositions, meaning is somehow more funda­
mental than form, then it may also be granted that a symbol 
of form is not so closely related to a proposition as is a 
symbol of meaning. The question thus raised is, with regard 
to all such symbols as p, or q v r, "Are the values of these 
symbols propositions, or are they rather forms of proposi­
tions?” Form may be a mere matter of syntactic arrangement: 
a question not of logic but of language. In genus-species 
substitution, if it be true that the replacement-values agree 
with one another and with the original symbol in being all 
symbols of form, no fundamental change in reference will be 
entailed by such substitution. In genus-instance substitu­
tion, on the other hand, inasmuch as symbols of form are re­
placed by symbols of content (i.e. symbols of meaning), 
there seems to be a more marked change of reference involved. 
We cannot pursue this topic further at present; but it may 
well be that along this line of thought a clearer insight 
could be obtained into the nature of the logical paradoxes;
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for, as -Professor Langford remarks, these paradoxes never 
arise in oases of 1genus-species* substitution, but only in 
cases where the *genus-instance1 kind of substitution oc-

-i

curs.
The status of the primitive propositions obtained by 

generalizing truth functions which yield true propositions 
irrespective of the truth value of their constituents, and 
in particular the question whether they are analytic propo­
sitions, is likely to remain doubtful until we have ascer­
tained whether the entities to which their variables refer 
are propositions, or merely forms of propositions. And as 
we have said, their truth must be settled by extra-systemic 
considerations. One further comment suggests itself, in 
connection with the statement that these primitive proposi­
tions are not only premisses from which the theorems of
logic are derived, but also principles of inference accord­
ing to which they are derived. Even supposing that their 
truth as premisses can be guaranteed in some such fashion 
as we have suggested, so that they can be understood as ana­
lytic propositions; they might then be regarded as princi­
ples of inference, in the sense of being true statements 
about the relations between propositions which, when they
hold, make inference valid, but it would not at once follow
that they are used as principles of inference in the develop­
ment of a given system of logic. In other words, because 
such development proceeds by way of substitution, it would 
have to be shown (as we have actually tried to show in the 
preceding chapter) that the method of substitution whereby 
sets of symbols are derived from other sets involves a ref-
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erence to th09e principles of inference whereby propositions 
are deduced from other propositions.

Although we have touched upon only a few of the problems 
connected with the interpretation of an abstract symbol-sys- 
tem as a system of formal logic, enough has been said to show 
that the adequacy of any such system depends upon the care 
and completeness with which its basic notions have been ana­
lyzed, and the extent to which the results of such analyses 
can stand the test of extra-systemic criteria. In conclusion, 
we shall try to sum up the main points of the present study, 
and to suggest a few tentative conclusions based thereon.



822

CONCLUSION

In the course of the preceding pages, we have been spe­
cially concerned, with emphasizing the following general con­
siderations:

First, a sharp distinction must be made between those 
different systems which have been constructed as systems of 
logic, on the one hand, and the different abstract symbol- 
systems which have been devised to symbolize systems of log­
ic, on the other hand.

Second, if formal logic itself be looked upon as the 
science of system-structure, having as its main concern the 
investigation of the so-called structural properties of sym­
bols and the uses to which these properties can be put in 
constructing systems of symbols whereby the structure of oth­
er systems of entities can be directly represented or pic­
tured, certain definite limitations impose themselves upon 
such a science if it is to constitute a contribution to hu­
man knowledge or even provide a means of putting in order 
such knowledge as one already possesses. In particular;

(a) If symbol-systems are to be really constructed,—  

that is, if the marks whereof they are composed are to be 
so arranged as to constitute an orderly array, the order 
of which is not simply an accidental result of their being 
selected and set down at random,—  account must be taken
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throughout, not merely of the aotual characteristics of the 
individual marks and collocations of marks, but of the pos­
sible significance of these characteristics: that is, the
possible meanings of the system*

(b) Even supposing it were possible to construct an ab­
stract symbol— system out of marks without such reference to 
meaning as the above statement mentions, and supposing such 
a system to be used as a map—like symbol of the structure of 
deductive systems (e.g. of mathematics or of logic), no hint 
of the specifically deductive character of these latter sys­
tems could be conveyed by such representation; the order, or 
sequence, of their elements might indeed be shown, but not 
the dependence of one element on any other, and hence not 
any necessary connection, or relation of consequence, such 
as serves to distinguish deductive systems from all non-de- 
ductive systems whose elements have a definite sequence or­
der.

By way of giving point to the analysis attempted, es­
pecially in the first two chapters, of such general notions 
as system, and structure, and isomorphism, and the meaning 
of symbols, and interpretation, and pictorial representa­
tion of structure, an attempt was next made to apply some 
of the general principles previously considered to an in­
vestigation of a given abstract symbol-system. Taking a 
variation of Huntington's postulates, and regarding them in 
the most completely abstract fashion, a concrete study of the 
method of derivation of theorems from abstract postulates 
led us to conclude that this method involved reliance on the

ordinary principles of deduction. Assuming that the system
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derived, from these postulates was intended to be more than a 
map-like representation of the structure of systems isomorphic 
with it, we endeavored to point out:

(a) That the strings of marks which made up the sets, or 
formulae, of the system can be read as propositions, apart 
from any specific interpretation.

(b) That from this point of view they convey information 
not about the symbols they contain, but about any entities 
whatever which may be meant by these symbols.

(c) That they thus afford, collectively, a description 
of those entities, which sets quite clear, though not narrow, 
limits to the possible interpretations of the system.

(d) That the individual sets, thus read as propositions, 
can be tested for consistency, if not for actual truth, on ex­
tra-systemic grounds, by analysis of their terms.

(e) That when read in this way, the theorems are seen to 
be consequences of the postulates and of previously-derived 
theorems.

In our closing chapter, we have outlined some reasons for 
being very cautious in accepting any conclusions about the na­
ture of logic or the status of such logical entities as propo­
sitions, when these conclusions rest upon systemic analyses of 
logical concepts or upon results that seem to emerge when some 
abstract symbol—system is presented as a Bystem of logic. If 
what we have said in connection with the particular abstract 
symbol-system whose development we studied is reliable, the 
semi-mechanical method of symbol substitution gives rise to 
conclusions no less valid than ordinary methods of deductive 
thinking; but such thought-saving procedures will surely breed
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confusion in the realm of thought unless the symbols which 
express their conclusions be rightly interpreted, and their 
referenda identified by extra—Bystemic oriteria.

Thus, in an indirect way, we have tried to suggest cer­
tain limitations which appear to be inseparable from a for­
malist approach to logic, and also the necessity of validat­
ing any system of logic on extra-systemic grounds, as well 
as the lines along which such validation might be worked out. 
To accept any syBtem of mathematical logic as a thoroughly 
reliable description of logical entities, to say nothing of 
accepting it as a substitute for epistemology, will perhaps 
not seem advisable to anyone who refleots upon the following 
fact. Every one of the postulates and theorems which appear 
in the familiar two-valued algebra as statements about propo­
sitions and the relations between them with respect to their 
truth or falsity can be read as true statements about numbers 
and the relations between them with respect to their being 
even or odd. This seems to suggest that the postulates and 
theorems of any mathematically-developed system have to do 
only with such properties of whatever entities their variable 
symbols can represent, as are possessed by mathematical en­
tities, or are analogous to specifically mathematical proper­
ties. At any rate, it would seem unsafe to subscribe to the 
view that pure mathematics is a branch of pure logic until 
one has ascertained by careful analysis of both mathematical 
and logical concepts that the "pure logic" referred to is 
not merely an abstract mathematical system expressing proper­
ties which logical and mathematical entities happen to pos­

sess in common.


