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CHAPTER I

INTRODUCTION

1.1 Initial M otivation for this Work

This work originated as an investigation of the effect of the transport of secondary 

radiation away from primary interaction sites on the inherent spatial resolution of 

radiation detectors used in medical imaging. It had previously been presumed that 

spatial resolution is hmited only by the finite size of the detector elements, and not 

by secondary radiation transport. Although investigations of the effects of photon 

transport on detection efficiency and energy resolution had been performed for var

ious detectors, [Ch76, Ch80, Ru83], systematic determinations of inherent spatial 

resolutions over the range of available detector materials for kilovolt energy photons 

have not been attempted.

Knowing the range of photons to be substantially greater than that of electrons 

of comparable energy in the same media, preliminary calculations were made assum

ing that the transport of electrons could be ignored, and tha t incident x-ray photon 

energy could be considered deposited at the exact site of transformation through 

any of the various photon collision processes into electron energy. Efforts to quantify 

detector resolution degradation concentrated on the investigation of the transport of 

secondary photons, which consist primarily of characteristic x-rays emitted follow
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ing photo-absorptions and incoherently scattered photons. Elementary calculations 

using a  Monte Carlo technique and the stated approximations indicated that pho

ton energy is deposited in a sharp, narrow peak (less than 10 microns wide) at the 

point of incidence, with a  long low level tail of energy deposition at greater distances 

[F183]. Thus it was concluded that while secondary photon transport is involved 

in spreading energy deposition throughout a  detector, it is not the primary factor 

responsible for the degraxiation of spatial resolution of point images.

At this point the approximation of ignoring the transport of electrons was re

examined. As implied above, most photon interactions generate secondary electrons. 

Often, these electrons are energetic enough to liberate additional electrons through 

collisions with atomic electrons, or to  produce photons either through bremsstrahlung 

interactions or through the de-excitation of the target atoms subsequent to inner shell 

electron ionization collisions (in high energy physics, this process of electrons and 

photons being continually produced from a single incident radiation is often called 

a cascade or shower). Since it had been shown tha t photon transport alone was not 

responsible for the lateral spread of energy deposition, examination of the coupled 

transport of photons and secondary electrons in the cascade process presented itself 

as the next phase in the investigation. As it was soon discovered that scattering 

and transport theory for electrons is much less well understood than for photons, 

especially in energy ranges typically expected for electrons produced in diagnostic 

radiographic procedures, the focus of the work shifted from the specific problem of 

detector spatial resolution prediction to a general investigation of kilovolt energy 

electron transport.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 Basic Electron Transport Processes

As they traverse media, electrons interact with atomic nuclei, tightly bound 

atomic electrons, loosely bound electrons, and, in condensed media, the weak plasma 

formed by the conduction electrons of the material. These interaction processes may 

result in the loss of energy, change of direction and/or the creation directly or indi

rectly of secondary particles. Generally, the processes are grouped in two categories, 

with nuclear scattering considered an elastic event, and all electron-electron scat

tering processes as well as large energy loss nuclear events (nuclear bremsstrahlung) 

considered inelastic events. For illustrative purposes, elastic nuclear scattering can 

be described as the billiard ball type scattering of a point charge electron as it passes 

near a  point charge nucleus. The inelastic processes have no such simple classical 

analog, and in general are greatly dependent on the structure of the target atom. The 

most prevalent inelastic interactions are those involving the loosely bound electrons, 

and these may result in the ejection of the target electron with substantial energy 

transfer (as the incident and atomic electron are of equal mass, aU of the incident 

energy may be transferred); the excitation of the atom to a  higher energy atomic 

electron configurations, with httle energy transfer; production of a  bremsstrahlung 

photon in the field of the target electrons, with potentially large energy transfer; 

and, in condensed media, the excitation of resonant vibrations of the conduction 

electron plasma. The most common inelastic process involving the inner, tightly 

bound atomic electrons is the ionization of the target atom, resulting in the ejection 

of the target electron and the creation of an inner shell vacancy which must somehow 

be filled by an electron from a lower energy shell, resulting in either Auger electron 

or characteristic x-ray emission. The final inelastic process, nuclear bremsstrahlung.
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is actually a  form of the same process as nuclear ‘elastic’ scattering. In all scattering 

processes involving the acceleration of an electron, a photon is emitted. In almost 

all situations, the energy of this photon is in the very low or infrared region and the 

collision approaches the idealized process [Mo64]. However, the emitted photon may 

sometimes carry a great deal of energy, in which case the collision is considered to 

be inelastic. Rather general and informative reviews of the interactions of electrons 

with media and some of the attem pts to describe the interactions are found in the 

articles by Bethe and Ashkin [Be58], Birkhoff [Bi59] and Zerby and Keller [Ze6 8 ].

Efforts to determine differential interaction cross sections for the individual in

teractions have been extensive but remain incomplete. Theoretical investigations of 

individual atomic events are complicated by the fact th a t an electron may interact 

with one or more atomic electrons from one or more atoms simultaneously, and treat

ments of individual nuclear collisions are hampered by incomplete descriptions of the 

varied effects of the screening of the nuclear charge by the atomic electrons, of the 

spin of both the incident electron and the target nucleus, and of the structure and 

finite size of the nucleus.

In addition, treatments of the cumulative effects of many collisions over a  given 

tracklength, through solution of the transport equation, have produced several energy 

loss and multiple elastic scattering descriptions. In modeling angular deflections, 

this involves the determination of the distribution of electrons traversing a given 

distance s, which emerge at an angle 0 within dO, given by f(s ,0 )d 6 . Methods 

for determining the aggregate effects of inelastic collisions take two tacks, the first 

analogous to the angular deflection case in tha t a distribution function for the losses 

A E ,  namely, f { s ,  A E )d A E , is determined, and the second involving the prediction 

of the instantaneous energy loss due to all possible processes per unit pathlength for
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dE
a particle of a given energy, -y-{E). Mathematical descriptions of these cumulativeax
effects generally require th a t energy loss and angular deflection be separable events 

over the given tracklength, leading to the contradictory assumptions th a t the effect 

of nuclear scattering can be ignored in determining energy loss and th a t energy loss 

can be neglected in determining aggregate deflection.

1.3 Application of the M onte Carlo Technique to Electron  
Transport Problems

All electron transport problems essentially reduce to the need to solve the trans

port equation,

~ ~  ^  ^  ^  • Vyn =  J dv 'v 'E (V -* v )n (V ,r , t ) -

u S ( v ) n ( v ,r , t ) +  5 (v ,r , t ) ,  (1 .1 )

where n(v , r , t )  is the phase space density of the particles, v  their velocity, r  their 

position, S ( v '—» v) the probability per pathlength that a  particle with initial velocity 

V  will have final velocity v  consequent to a collision, S(v) the probability per unit 

path of a particle with velocity v  undergoing any collision and S { v ,r ,t)  an external 

source term.

Because of the inherent mathematical difficulties in analytically solving this equa

tion except under severe approximation, the Monte Carlo method has been used ex

tensively for modeling the behavior of electrons in condensed media. In the Monte 

Carlo method, the particle phase space density at all velocities, positions and times 

is not calculated, but rather only estimated integral forms of the density at given 

velocities and positions of interest, such as the distribution in energy of particles 

leaving a volume through a given surface. In an analog Monte Carlo simulation, a 

large number of individual particles are ‘tracked’ by comparing known or approxi
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mated probability distribution functions for all possible events which the particles 

might undergo with random numbers so as to determine each particle’s phase space 

parameters after each event (inelastic or elastic scattering collision, bremsstrahlung 

collision, escape from the volume, etc.). Particles are tracked until they are absorbed, 

slow sufficiently so as to no longer be of interest, or escape the volume. The results of 

these individual ‘histories’ are tabulated, under the assumption tha t as the number 

of histories collected becomes large, the normalized tabulation of the results will ap

proach the actual normalized solution for n, if the distribution functions are derived 

from cross sections which accurately model the physical processes.

Many authors have written Monte Carlo electron transport codes, all of which 

can generally be classed into three types: pure single scattering algorithms; elastic 

single scattering algorithms; and condensed history methods. In the single scattering 

model, collisions are treated as distinct events giving rise to angular deflection, to 

energy loss, and possibly to secondary radiations. Every collision which an electron 

undergoes is examined, as in a  conventional Monte Carlo particle transport algo

rithm, based on the relevant cross sections differential in scattering angle and energy 

loss. Theoretically, if the cross sections for the individual events are well defined, the 

accuracy of the calculation wiU be determined by the statistics of the Monte Carlo 

technique. This type of calculation is advantageous in situations when the number of 

collisions is small (low initial energy or thin targets), when the single scattering cross 

sections are well known (high initial energy), and when the cumulative scattering dis

tributions are not well known (low initial energy, very thin or very thick targets). 

The disadvantages of single scattering calculations lie in excessive run times in cases 

when a great number of individual events occur for each particle tracked (high initial 

energy), and in uncertainty introduced when the descriptions of the single scattering
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Figure 1.1: Condensed Electron Path

cross sections are incomplete (low initial energy).

In the single elastic scattering model, energy loss is considered to  occur contin

uously between individual elastic collisions. This has the advantages over the pure 

single scattering model of reducing the total number of collisions which must be mod

eled (and hence the computation time) and alleviating the need for exact models of 

inelastic collision processes, but at the expense of knowingly subverting the perfect 

physical analogy and of introducing some computational problems.

The condensed history algorithm treats both energy loss and angular deflection 

over a specific pathlength as amalgamations of the effects of the many individual 

events over the given path, but usually treats secondary radiation production as 

discrete events. A particle is assumed to begin a short segment of its history traveling 

in a known direction with a  known energy. A suitable distance is assumed to be 

traversed, after which the electron is modeled as moving in a different direction and 

with a  lower energy, as shown in figure 1.1. The deflection is determined from an 

appropriate multiple elastic scattering distribution, and the energy loss from any of
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a number of energy loss models. A general requirement for the validity of such an 

algorithm is tha t the  amount of scattering should be small enough tha t the difference 

between the step size and the actual tracklength is small. At low energies this 

requirement becomes difficult to  fulfill, since single nuclear scattering is much less 

preferentially forward a t low energies than a t high energies and the total deflection 

in an interval long enough to be accurately modeled by multiple scattering theories 

can become quite large. An advantage of the condensed history method is tha t less 

computing time is required in tracking very high energy electrons, which suffer tens 

of thousands of individual collisions as they slow. The disadvantage is th a t errors 

and validity restrictions are introduced into the model through inaccuracies of the 

aggregate energy loss and scattering models, which are sometimes derived based on 

incompatible assumptions. Thus, at both low and high energies, all three methods 

have advantages and disadvantages.

Initial investigations for the present work centered on condensed history type 

calculations. It was found th a t the existing generation of “production” codes [Be6 8 , 

Fo78, Ne85], w ritten in efforts to describe transport of relatively high energy radi

ation, do not address all of the problems encountered in modeling the transport of 

kilovolt electrons. It has been generally assumed th a t the applicability of the first 

generation of high energy condensed history transport codes to a  given problem is 

related to  the difference between the energies of the electrons in the problem being 

considered and the atomic shell binding energies of the  given media [Ha85]. Binding 

energies increase rapidly with increasing atomic number (K shell binding energies for 

a few elements are given in table 1.1). Obviously, approximations which are valid 

for energies much larger than  the binding energies of the atomic electrons will not 

be valid for all shells for all elements. It can be seen from table 1.1 th a t in the low
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Element Atomic Number K Edge Energy (keV)

Helium 2 .0246

Neon 1 0 .8669

Aluminum 13 1.560

Argon 18 3.203

Copper 29 8.979

Krypton 36 14.33

Silver 47 25.51

Xenon 54 34.56

Gold 79 80.72

Uranium 92 1 1 0 .0

Table 1.1: K edge Energies of Various Elements

kilovolt energy range this applicability criteria is not met for heavier elements.

Given these problems, an examination was undertaken of single scattering meth

ods (encompassing both the direct analog and single elastic algorithms) proposed 

originally by workers investigating the effects of low energy electron transport on 

electron probe microanalysis measurements, and later extended to scanning electron 

microscopy, Mossbauer spectroscopy, and microlithography simulations. A gradual 

progression in the literature from calculations using simple cross sections of rather 

dubious validity to those using extremely complex modeling with computationally 

cumbersome cross sections was observed. Despite use of less approximate models, it 

is not obvious whether the inelastic cross sections employed even in some of the later 

efforts sufficiently describe the processes being modeled. Thus, two potential prob

lems are found with single scattering models, the first pertaining to the uncertain 

accuracy and the numerical difficulty in evaluation of expressions for single scatter
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ing cross sections at low energies, and the second to the prohibitive computational 

effort, due to the large number of collisions, required a t high energies.

Attempts to skirt problems associated with using one type of transport algorithm 

by employing one of the others are not always practical because the choice of tech

nique is often limited by the output information desired. For example, integrated 

dose calculations in tissue for kilovolt range x-ray beams do not require the type of 

energy resolution afforded by single scattering codes which treat individual plasma 

losses, which will be in the range of tens of electron volts. Conversely, microlithogra

phy energy deposition calculations using hundreds of angstrom cells in plastics can 

not use the hundreds of micron step sizes typical of condensed history techniques. 

Difficulties might also arise if detailed spatial resolution is required for relatively high 

energy electrons in a  high Z material. Condensed history codes might lack accuracy, 

and single scattering models would involve too many collisions per history.

1.4 Scope of this Work

The following observations and conclusions were reached concerning the status 

of Monte Carlo coupled photon and electron transport calculations in the kilovolt 

energy range:

1. The cumulative distributions used in condensed history codes do not always 

accurately model the phenomena to  which they are apphed at low energy. Fur

ther, few systematic efforts at determining the range of validity of the various 

models as a function of energy and atomic number have been undertaken.

2. The effects of inaccuracy in the basic multiple scattering models on overall 

kilovolt electron Monte Carlo calculations, although reported for various models 

for certain problems, is not clearly understood.
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3. The increased probability of large angle scattering at low energy jeopordizes the 

validity of the condensed history approach itself. Published work delineating 

the range of suitable application of this type of model is incomplete.

4. Simple cross section models used in some single scattering codes break down at 

low energies. Although the accuracy of individual cross sections with respect 

to experiment as a  function of energy has been much more extensively docu

mented than  the accuracy of the various scattering distributions, especially for 

more commonly used elastic scattering cross sections, the region of valid appli

cation of various widely used single scattering cross sections has not completely 

defined.

5. Because of the lack of complete evaluations of single scattering cross sections, 

optimal schemes for modeling physics processes for single scattering computa

tions have not been systematically identified.

6 . Accurate single scattering calculations may not be computationally viable at 

moderately high initial energies owing to the great number of collisions. Sys

tematic determinations of computing speed (and hence appficability) versus 

atomic number and energy have not been reported.

7. It appears that there is an energy region near the atomic binding levels of the 

various atoms for which condensed history codes (because of the limitations of 

the algorithm) and single scattering codes (because of inordinate run times) 

may be equally suitable or equally inappropriate. A systematic investigation 

of the best suited model in this energy region has not been reported.

In summary, for both condensed history and single scattering Monte Carlo calcu

lations, the accuracy of the basic physics models, the effect of individual model
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inaccuracy on overall calculations, and the inherent restrictions on the global algo

rithms have been examined in only a piecemeal fashion. Thus the optimal scheme 

for modeling electron transport in the kilovolt energy range is not known.

Based on these observations, a  fourfold focus of effort has developed for this work. 

First, a thorough examination of the applicability of the available single scattering 

cross sections based on accuracy in comparison to experiment (where possible) and 

on computational efficiency, with particular emphasis placed on their applicability 

in the kilovolt energy range, has been undertaken. Second, a  similar evaluation of 

the utility of various cumulative energy loss and angular deflection distributions has 

been performed. Where possible, modifications have been made to  existing theories 

in efforts to extend the range of validity to lower energies. Third, a  determination 

of the effects of the accuracy of individual models on overall calculations has been 

included and on this basis an optimal Monte Carlo scheme has been developed which 

balances accuracy in comparison to experiment with computational efficiency. This 

third facet of this work encompasses the effort to define the effective validity range 

of the three types of Monte Carlo algorithms. Lastly, because of the large number 

of collisions expected for single scattering simulations and the recent availability of 

pipeline vector supercomputers, the implementation of vectorized versions of the 

various transport algorithms has been performed.

It should be noted tha t some effects necessary for the description of electron 

transport in the range of energies near the atomic binding energies, such as the 

transport of photons and atomic de-excitation, have been included and so have been 

discussed for the sake of completeness in the description of the model, although in a 

cursory fashion, with the implied assumption tha t existing theories are reliable a t the 

energies in question. O ther potentially significant effects have been glossed over or
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even ignored altogether. Among these axe crystalline effects such as channeling and 

diffraction, surface effects, some chemical binding effects in compounds, and post 

colhsional interaction effects.

It is realized, on final note, that the theory sections contain a great deal of 

simple review which might be considered superfluous by anyone familiar with electron 

scattering theory. It is included for two reasons. First, as it is desired to compare 

predicted and experimentally determined ranges of validity, cursory review of the 

approximations made in the derivations of the various cross sections is instructive 

in determ ining the source of the predicted validity limits. Second, it is felt that 

most people interested in these results would come from engineering and not physics 

backgrounds, and so might find these brief reviews and explanations of principles 

most helpful.
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CHAPTER II

EVALUATION OF SINGLE SCATTERING  
CROSS SECTIONS

This chapter evaluates previous calculations of electron scattering cross sections, 

based on comparison to experiment and facility of implementation, in hopes of iden

tifying those most suitable for use in Monte Carlo electron transport simulations. 

Clearly, it would be impractical to identify and examine all known cross section for

mulations, devise numerical schemes to evaluate them, and then compare the results 

against all reported experimental results. Therefore, emphasis is placed on those for

mulations that have previously been used in Monte Carlo calculations and on others 

which have been derived under less severe approximation than those commonly used 

and which are expressed in an easily evaluated form for all atomic numbers and all 

energies between one and roughly several hundred kilovolts.

First, the single framework common to the derivations of most scattering cross 

sections is described. Then, cross sections describing three physical phenomena, elas

tic nuclear scattering, inelastic atomic scattering (including ionization, excitation, 

collective conduction electron excitation) and nuclear bremsstrahlung are investi

gated. Each of these examination sections begins with a cursory description of the 

process being modeled followed by an overview of basic analytical methods used in

15
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the derivation of differential cross sections for the given phenomenon, the premise 

being tha t some a priori information about the validity of given calculations can be 

culled from knowing the approximations employed in the derivations. The framework 

suitable for the evaluation of the various cross section versus relevant experiments 

for each particular phenomenon is briefly described, and the actual mathematical 

form of all cross sections tested is presented. Following a summary of cross sections 

used in previous Monte Carlo calculations and a review of experiments relevant to 

the evaluation of the particular physical process, a comparison of the results of the 

computations for each model with the experimental data is presented, thus defining 

ranges of validity. Results and computational aspects of obtaining numerical results 

for the various formulations are also discussed.

2.1 Basic Electron Scattering Calculation Formalisms

W ith the exception of a few special cases in inelastic scattering, almost all widely 

used electron scattering cross section are derived employing one of two formalisms 

(either tha t of Schrodinger or that of Dirac) to describe the quantum mechanics of the 

interaction and use one of two calculation techniques (either the Born approximation 

or the method of partial waves) to determine the interaction probabilities tha t define 

particular cross sections. It is instructive to summarize these two formalisms and two 

methods, since the applicability of cross sections derived under the various scenarios 

depends greatly upon both the formalism and solution method selected. The very 

rough outline of the highlights of the techniques presented here is based on the 

books by Mott and Massey [Mo49] and Reimer [Re85], although quantum mechanical 

scattering calculations are described in nearly every basic quantum mechanics text.
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2 .1 .1  F orm alism s

Schrôdinger’s description of electron quantum mechanics gives for the time de

pendent electron wave function $ (r , t),

-  y ( r ) $  =  (2 .1 )
Ztn ot

in which V  is the interaction potential. This expression is not invariant under a 

Lorentz transformation and is thus non-relativistic, and so calculations based on 

Schrôdinger’s equation are often described as non-relativistic treatments. Knowing 

the wave function provides pertinent information in scattering calculations in that 

the probability tha t an electron which is described by ^  can be found a t time t in a 

volume element dr is given by |$ (r , t)pdr.

Solutions for Ÿ(r, t) are usually sought in a separable form

$ (r , t) =  ■0 (r)e“ ‘̂ */^

which can be substituted into 2 .1 , leading to a time independent equation

V 2 ^ -H ^ [F -U (r ) ]V >  =  0. (2.2)

in which E  is the electron energy.

Dirac’s formalism requires tha t the electron be described by four wave functions 

'F>(r,t) which simultaneously satisfy

( P O  +  m c ) $ i  - I -  ( p i  -  Z > 2 ) ^ 4  +  P s ’3 ^ 3  =  0  

(po +  mc) $ 2  +  (Pi +  *>2 ) ^ 3  -  =  0

(po -  me) $ 3  -f (pi -  ip2 ) ^ 2  +  Ps'^i =  0 (2.3)

(po -  me) $ 4  -+ (pi 4- ip2) ^ i  -  P3^2 = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

in which
n d y(r)

and
% d  , eAi(r)

and in which A (r) is the magnetic vector potential and the subscripts 1, 2, and 3 on 

p and A  refer to x, y, and z  components. The probability of finding the electron in 

dr a t t  is now given by

Y ^\^x{r,t) \^d r.
A=1

It can easily be seen that a time independent expression in analogy to Schrôdinger’s 

can be derived and the expression for po replaced by

F  +  y (r )
po — c

Dirac’s equations, by taking into account the electron spin, were derived so as to 

be invariant under a Lorentz transformation and so his treatment is often referred 

to as a relativistic treatment. ‘Relativistic’ is a rather loose term, usually taken to 

mean that the particle velocity is on the same order as the speed of light. As the 

mass of an electron is small and the relation between kinetic energy E  and velocity 

V of any particle is given by

V yj E (E  +  2 mc^)
E  +  m c2  ’

it can be seen that as low as 10 keV, the electron velocity is 20% of the speed of light, 

and at 1 keV, it is still 6 % of c, and so despite the success of some non-relativistic 

treatments of electron scattering a t these energies, even in a  crude sense all kilovolt 

energy electrons are relativistic.
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The techniques used in determining cross sections in either description are similar 

for similar problems. In general, the wave function (or functions in the Dirac case) 

describing the incident electron is assumed to represented by a plane wave, and by 

the sum of a plane wave and a scattered wave after the collision. If the z  direction 

is taken as the incident direction, and the wave number h is given by mv/% then 

the amplitude of the incident plane wave is proportional to e**̂ . K we assume that 

the scattering potential V (r) falls off faster than 1 / r ,  the amplitude of the scattered 

wave at some point {r,9,<j)) will be given by r “^/(0)e**'’’. Thus we are searching for 

solutions of either Schrôdinger’s equation or Dirac’s equations which take the form

^  +  r - ^ e '^ /( n )  (2.4)

for large r . The scattered portion of the wave is given by the second term and so 

the number of electrons scattered through an area element r^dCl is given by

r^dÜ■e’*’- /(0 )' e '^ /(g ) '
r r

In the Schrôdinger’s formalism this yields a probability of scattering into solid angle 

dü  (i. e., the differential cross section) of

(T(n)dn = \f{ü)\^dÜ. (2.5)

In the Dirac case, four wave functions of the form of 2.4 must be sought,

", OAeik' +  (2 .6 )

and the number of scattered particles per solid angle per incident particle is given

by ^

a{ü)dü  = ^  dD. (2.7)

E I « a 1
A=1

2
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For the case of a plane wave, it can be shown that a^’s are not independent, and 

it can be argued that since a scattered wave can be thought of as consisting of a 

superposition of plane waves, the / \ ’s are not independent either. The expression 

for <7 can be written

The determination of the cross section involves solving for the wave function and 

comparing this with the asymptotic solution to get the / \ ’s. The explicit procedure 

which is followed is determined by assumptions about the potential, in other words, 

how the atom is to be described. The above expressions of the Schrodinger and Dirac 

formalisms can be used to determine wave functions describing a free electron, and 

so are strictly valid only when the motion of the atomic electrons is ignored. If the 

potential is assumed to be spherically symmetric, as, for example, unscreened and 

exponentially screened coulomb fields are, direct substitution of expressions for F (r) 

are allowed. For more explicit treatments of the atom, the wave function ^  must be a 

function of the positions of all of the electrons in the problem, i. e., 0 (r, r i , r 2 , . . . ,  r^) 

if the atom in question contains Z  electrons. The forms of the equations which 

define 0  and include descriptions of the atomic electrons are somewhat different 

from those given above for the case of ignoring the electrons, but the differences are 

typically removed by substitution in the solution procedure. Further, ^  can usually 

be expressed as the product of a wave function describing the incident electron 

and one describing the atomic electrons (^"), as

i/>(r, r i ,  F2, . . . ,  rz)  ~  ^ '(r)i/’" ( r ,r i ,  F2 , . . . , r^).

This often leads to expressions in which the potential is a function of the wave
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function describing the atom,

F (r)  =  y ( r ( r i , r 2, . . . , r ^ ) ) ,

and f \  a  function of such a potential and the scattered electron wave function. Only 

rarely are the equations solvable in closed analytical form, even for atoms with few 

electrons, such as hydrogen and helium.

2.1.2 Interaction Potentials

Two basic models for describing the Coulomb potentials in many electron atoms 

have gained widespread acceptance. One is due to Thomas and Fermi in which 

the atom is modeled statistically as a collection of electrons which can be localized 

within a  volume in which the potential is roughly uniform and so obey Fermi-Dirac 

statistics. In this case the electron density n (r) is related to the potential by

Since in this model the potential must also satisfy Poisson’s equation, subject to the 

boundary conditions tha t V’(r) —> —Z e^jr  as ;— >■ 0 and rV (r)  0  as r  ^  oo, a 

differential equation for U (r) can be derived. Using the common transformations

T/(r) =

and

with

r — hx

an expression is obtained

me^Z^!^

(2.9)
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subject to  X =  1 a t œ =  0 and x  =  0 as ® —> oo. Both the approximation of small local 

perturbations and the use of a statistical model can be shown to  be more appropriate 

at high Z .

Hartree [Ha28] devised a  scheme for determining wave functions using Schrôdinger’s 

equation to describe each electron. Assuming tha t the potential seen by a  given elec

tron can be described as a central field constituting the nuclear field and the field 

of each other electron, as complete set of simultaneous integro-differential equations 

for the electron wave functions can be obtained. The wave function ipi for the zth 

electron will be described by

2 m

Potentials determined by this method are often described as being self-consistent, 

because the equations for the individual V"» functions depend upon the resultant 

potential.

2.1.3 Solution Procedures

The two jumping off methods used in either formalism to  solve for ij’ are the 

first Born approximation, in which the scattered electron wave in the expression for 

fx  is assumed to be unperturbed and given by e’*”", and the partial wave expansion 

method, in which ij} is expanded in spherical harmonics. This leads to solutions for 

fx  in terms of infinte series of ‘partial waves’ dependent on the potential and the 

shift in phase of the partial waves of the expansion. Only for an unscreened coulomb 

field can the phase shifts be determined analytically, and approximation or numerical 

evaluation is necessary.

In summary, deriving cross sections generally involves solving for ^  based on the 

scattering center potential using various approximations, and finally comparing the
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result with the sought after asymptotic expression of equation 2.4 to determine the 

fx{Oys. Although general comments can be made about how the approximations 

effect the form of the cross sections, it is more convenient to discuss the inherent 

approximations when examining the specific cases of elastic and inelastic scattering.

2.2 Elastic Electron Nuclear Scattering

In elastic nuclear scattering, an incident electron interacts with an atom, resulting 

in the deflection of the electron through some angle. Since the atomic electron 

configuration is unchanged by the collision, the interaction is sometimes referred to 

as involving only the nucleus, although the atomic electrons actually play a large 

role in the elastic scattering of kilovolt electrons. Because the center of mass energy 

is small owing to the large mass difference between the nucleus and the electron, 

the resultant energy transfer from such a collision can usually be considered to he 

negligible. Although this may not be strictly true for extremely relativistic electrons 

and large scattering angles, such cases are not considered here. Additionally, it has 

been pointed out that all electron nuclear collisions result in the emission of photons 

as the electron is accelerated. Most emitted photons, however, have energies in the 

infrared range and so the electron energy loss can be ignored ([Sc49] as cited by 

[Mo64]). The effect on the the shape of the differential cross section a t low velocities 

is also small, as seen in figure 2.1 (taken from [Mo64]), which shows the effect of 

photon emission on the experimentally determined elastic scattering cross sections.

The case of elastic nuclear scattering is unique in that commonly used cross 

sections exist which have been exactly derived (for suitable forms of the potential) 

under both Schrodinger’s and Dirac’s descriptions, using the method of partial waves. 

In addition, many approximate models based on the first Born approximation are
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second term  (h ard ) is given by the  Kacah form ula (4.02) for 
drau /dO dT i a n d  b y  th e  M o tt-B o m  form ula ( 1A -101) for da/dQ .
I'or th e  energies larger than  10 MeV, these curves were evaluated 
from E q . (4.16).

Figure 2.1: Photon Emission Correction Factor

available. A thorough review of analytical techniques is given by Motz et al [Mo64].

This review is supplemented at lower energies by tha t of Walker [Wa70]. Walker’s

conclusion tha t relativistic (Dirac) treatments of scattering are necessary at energies 

in the tens of eV range (re-iterated by Sin Fai Lam and Bayhs [SiSl]) is especially 

noteworthy. A brief summary of the theory is presented here, encompassing both 

relativistic and non-relativistic treatments and emphasizing the validity conditions 

for the various cross sections.

2.2.1 First Born A pproxim ation in Schrodinger’s Equation

As shown in the previous section, solutions for the electron wave function after the 

collision derived under Schrodinger’s equation take the form ^  ~  -f r “^e‘*'’’/(0 ) 

and the differential scattering cross section is given by

(7{ü)dü  =  \ f{Ü)\^dn. (211)
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In almost all instances the scattering is isotropic in the azimuthal angle and

<r{ÇÏ)dÇl = a{9)2'KsmBdO, (2 .1 2 )

but it should be stressed tha t most of the calculations discussed here derive a{Vt)dÇl.

We start by rewriting Schrodinger’s equation, assuming tha t the energy E  can 

be expressed as so tha t 2mEJT^ can be taken as We then have for

Schrodinger’s equation for the electron wave function

-  ^ y ( r ) ] ^  =  0. (2.13)

If we assume that y ( r )  is spherically symmetric, it can be shown that ip must have

the form

tj; ^  f  e - '’‘̂ -^'V(r')iP(r') dr' (2.14)
47rr n J

where n  is a unit vector in the direction of r. The assumption of spherical symmetry 

of V (r) is usually valid, especially for many electron atoms since the nuclear Coulomb 

field, which is constant, is Z  times the potential due to any electron and since these 

fluctuating electron induced potentials vary slowly with distance [Sc6 8 ]. In the Born 

approximation, we assume tha t the outgoing wave is not much perturbed, so that 

we may replace ip{r') in the integral of 2.14 by e****. If we then compare 2.14 with 

2.4, drop the primes, convert to spherical co-ordinates, perform the integrals over 

the angles and use the identity

2  sin JlTr
I exp [iKr cos <j>] sin <j>d(f> ■= 

Jo K r  ’

the scattering amplitude can be expressed as

m  =  dr, (2.15)

in which K  =  2A:sin| =  2m usin |/i^ . It is obvious then that, under the First Born 

approximation using Schrodinger’s equation, every postulated atomic potential which
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is a  function of r  alone can be used to  generate a cross section, and a  great many 

exist in the  literature.

Additionally, since V(r) is an atomic field, it is often convenient to express 2.15 

as an integral involving the charge density of the atom. If ep{r) denotes the charge 

density everywhere in the atom  and the nucleus is considered to be a point charge, 

the interaction potential can be expressed as

=  +  (2.16)

Assuming tha t the charge density can be determined exclusively from the position 

probabilities (i.e., the wave functions) of the atomic electrons,

ep{r) =  c XI (2.17)
t = l

Once the charge density is known, the following expression can be derived for the 

scattering amplitude in the Born approximation,

m  =  (2.18)

where F{9), the atomic form factor is given by

F{0) =  47t j T  / ) ( r ) ^ ^ ^ r "  dr. (2.19)

The cross section in this case is given by

^(a)du =  1̂ -  ^  j  da. (2.20)

This method of using the charge density p has the advantage tha t its accuracy is lim

ited by the confidence in the wave function determination. Thus numerous authors 

have devised schemes to model potentials and calculate form factors. Therefore, the 

remainder of this subsection is thus devoted to descriptions of the commonly used 

potentials and charge distributions and their evaluation in 2.15 or 2.19, whether

numerical or analytical, and is restricted to the more commonly used models.
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U nscreened P oint N ucleus

In the simplest case, the atom is represented as an unscreened point nucleus of 

charge Ze, giving an interaction potential between the atom and the electron of 

V (r) =  Ze^/r. Substituting this into 2.15 and using 2.11 we obtain the classical 

result of Rutherford,

in which p  is the relativistic momentum, m v / v T — This is identical to the clas

sical derived coulomb scattering cross section of Rutherford [Rull], and so it and 

most cross sections of similar form, despite their quantum mechanical derivations, 

axe usually referred to as Rutherford cross sections. Note tha t this cross section for 

an unscreened potential has the rather unwieldy property of being infinite at 0  =  0 .

In essence, models using an unscreened potential ignore the presence of the atomic 

electrons, an approximation which is valid for the close collisions (small impact pa

rameters) which lead to large angle scattering events, and for collisions involving 

very fast electrons, in which the interaction time is small. The approximation works 

poorly for small angle collisions and for slow electrons. A general condition of validity 

is aZ^!^ -C hK  [Mo64] where a  is the fine structure constant.

E xponentially  Screened Point N ucleus

In a  slightly more complex model of the nucleus which does take into account the 

presence of the atomic electrons, the potential is given as

in which 6  ̂ is variable quantifying the decay of the potential with distance. In this 

model of V{r), the nucleus is seen as a  point charge which is “screened” by the
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atomic electrons at large distances, with the magnitude of screening assumed to be 

described by an exponential. Equation 2.15 can be solved analytically using this 

potential, resulting in a cross section with form quite similar to 2 .2 1  and generally 

referred to as the screened Rutherford cross section,

in which r}, is the screening parameter given by

A correction based on calculations employing the second Born approximation and 

involving the division of 6a by a constant has been given by Nigam et al. [Ni59]. Since 

Nigam’s constant must be determined for each element (either by detailed second

Born calculations or empirically), since tabulated values are not available, and since 

the values are typically around unity, this correction is not employed here.

The first reported use of this cross section is by Wentzel [We27], who used for 6a 

the Thomas-Fermi radius, rxF, given by

rTF = ■SS5aoZ-'^F (2.24)

in which cq is the Bohr radius, %^/me^. This yields for the Wentzel screening pa

rameter

Vsw = Vo (2.25)

1 1 
4 p^r^F 
1 1 - /3 '

“ 4 / 0 2

where a  is the fine structure constant

1 1 - / 3 2  ^ 2 /3  /  a  y z  

1.881
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1 Oi bi

1 0.10 6.0

2 0.55 1.2

3 0.35 0.3

Table 2.1: Parameters for Moliere’s fit to  Thomas-Fermi Potential

Thom as-Ferm i Potentials

Molière has approximated a Thomas-Fermi potential in the form

y (r) = (2.26)

with the values of the constants given in table 2.1. This form of the potential can 

be shown to lead to a cross section given by

r 3
a{9)dÇl =

a,-
dü (2.27)

( l - c o s 0  4- 2 % 6?)

Molière has devised an expression for interpolating a single value of tJs to conform 

with the cross sections as expressed in equation 2 .2 2 ,

Vs =  Vo 1.13 4-3 (2.28)

with 7/0 the Wentzel parameter given by equation 2.26. This model is subject to the 

general restrictions applying to the Thomas-Fermi model of the atoms, and hence is 

of suspect validity for low Z  materials and for very high and very small momentum 

transfers [Mo64].

In conjunction with a multiple elastic scattering theory (as discussed in Chap

ter III), Ford and Nelson [Fo78] have used Molière’s expression for the screening 

parameter with /3 =  1 in the right hand factor of 2.28 at all energies.
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H artree Potentials

Salvat and co-workers [Sa84b, Sa8 6 ] report paranaeterizations of atomic electron 

densities derived from relativistic Hartree potentials in the form

p{r) = £ -  (2.29)

in which A , a i and « 2  are Z  dependent constants. Such a formalism, when applied 

to  equation 2.19, yields an expression for the term  containing the form factors in 

2 .2 0  of the form

+ ' £ + h )  ■

Tables of forms factors evaluated in the first Born approximation formula of 

equation 2.19 have been published by HubbeU et al. [Hu75]. They use a  charge density 

p{r) given by a  Hartree potential, in their description of coherent photon scattering 

processes. Despite the ease of application of the tabulated values in conjunction with 

equation 2.20, no application of this data in Monte Carlo electron transport work 

has been reported.

Cross sections of these types are subject to the limitations of the Born approxi

mation, but should accurately describe the screening.

2.2.2 Partia l W ave Expansion Technique in Schrodinger’s Equation

In this method the solution for ip is expanded as the sum of an infinite series of 

terms consisting of radially dependent factors //( r) , expansion coefficients A/, and 

Legendre polynomials P/(cos0), and given by

iP = ~^A iP i{cose)fi{r), (2.31)
1=0
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with each term of the expansion (labeled ^/), being considered a  ‘partial wave’. 

In solving Schrodinger’s equation under such an expansion by use of separation of 

variables, it can be shown that the radial factors must be solutions to

(
Noting tha t we must have ip asymptotically approaching the expression 2.4, defining

r fi(r)  =  Gi(r),

and noting tha t the  last two terms of the previous expression vanish for large r, we 

expect solutions for the Gi’s to be of the form

Gi ~  Cl sin(kr — ^Itt +  Si). (2.33)

Here Si, the phase shifts, are constants dependent on k  and V (r) and are in fact 

defined by the expression for Gi and the equation 2.32. The constants Ai (and hence 

the C/’s) are determined by requiring tha t ip approach the expression 2.4, leading to 

the result

Ai =  (27 +  l)i 'e ’̂ '.

Thus we have

OO
Ip = X (27 +  l)i^e‘̂ '(fcr)~^ sin(fcr — +  Si)Pi{cos$). (2.34)

1=0

If we subtract from this expression for the final wave (initial plane wave plus scattered 

wave), the expanded form of an incident plane wave, we are left with an expression for 

the asymptotic scattered wave r~^e'*’' / ( 0 ) which leaves for the scattering amplitude

f W  =  5 s E ( 2 ' +  -  m ( c o s « ) .  (2.35)

Again, it is obvious then tha t every postulated atomic potential can be used to 

generate a  cross section, if phase shifts satisfying equation 2.32 can be determined.
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Normally, this must be done numerically. An approximate expression valid for small 

values of the phase shifts can be derived [Mo49],

,1/2
r^dr, (2.36)

but this can be shown to yield results equivalent to those determined under the Born 

approximation.

Salvat, Mayol and co-workers [Sa85, Sa87] have parameterized Z  dependent 

Hartree potentials of the form

T/(;2,r) == 3[;oi(2)e--*(2)r (2.37)
t=i

so as to be applied in determining approximate phase shifts from equation 2.36 

through numerical integration. However, no widely used cross sections are derived 

based on the partial wave expansion method in Schrodinger’s formalism, most likely

because the extensive numerical work involved in th  solution procedure can be per

formed in Dirac’s technique with greater faithfulness to the physics and at little 

additional cost in computational effort.

2.2.3 First Born Approxim ation in th e Dirac formalism

It was shown in the previous section that in Dirac’s formalism the cross section 

is dependent upon 4 wave functions of the form

The Dirac equation 2.4 for the four wave functions can be written in second order 

by applying an operator of the form

{E + y (r ))  + 13- i a - V
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(where a  and j3 represent appropriate 4 x 4  matrices operating on ip), by making 

use of commutation relations on a. and fi, and by assuming th a t the vector potential 

A (r) is zero. In the Born approximation, is assumed to be negligible and any 

wave functions in terms which involve the potential are assumed to be given by their 

unscattered component, leading to

V' l̂pX +  =
2EV{t)

[^ < T -V y (r )]a v e ‘"" (2.38)

in which is a 4 x 4 matrix, determined from 2.4, which relates the A’s to the 

A'’s. Using the typical method of comparing the calculated ^ ’s with the asymptotic 

solution, it can be shown that

h  =  {  [ 7  -  ^ ( 7  -  1)(1 -  c o s^ )j  03  +  ^(1 -  ŷ) sin^0 4 j  /(^ )  (2.39)

f i  =  | [ 7 - | ( 7 - l ) ( l - c o s 0 ) ] a 4 - i ( l - 7 ) s i n ^ a 3 j / ( ^ )

in which

/(« )  =  ^  y F ( r ') e « ( » .- » » '* ',

where no • n  =  cos^ and 7  =  v^l — /3̂ . This yields for the cross section

<T(n)dn = (240)

Since no is a unit vector in the direction of r  and so no • r  =  z, it is seen that 

the expression defining f(9 )  is equivalent to that for the scattering amplitude as 

determined from Schrodinger’s equation in the Born approximation (equation 2.15) 

and we so essentially have

<TDBiil)dÜ =   ̂ ~ ^ y ^ p ~  asB{^)dn,  (2.41)

in which the subscripts refer to the Dirac-Born and Schrodinger-Born cross sections. 

The two factors representing the differences both tend to unity as the velocity de

creases (and also for small angles), which is expected since the Schrodinger treatment
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is non-relativistic. Mott refers to the factor in the numerator as the spin correction 

and tha t in the denominator as a  relativistic correction, but the usefulness and ac

curacy of his designations are somewhat in dispute (see [Re85]). Applications of this 

cross section in Monte Carlo electron transport methods have not been observed.

2.2.4 Partial W ave Form ulations using D irac’s Formalism

In solving Dirac’s equation by the method of partial waves, we again need so

lutions only for ^ 3  and ^ 4 , and we again assume that the scattering potential is 

spherically symmetric and tha t the magnetic vector potential is zero. Now two so

lutions must be sought, one representing electrons with spin parallel and one with 

spin antiparallel to the direction of propagation. It can be shown th a t in order to 

satisfy the set of solutions tha t the wave functions must have the form

M ^ )  = X [ ( / +  4- i'P,(cos 0)
1=0
00

= X  -b G_/_i] i‘Pl{cos 0)e (̂f>
1=1

in which P /(cos^) is the associated Legendre polynomial of the first kind. Si and 

5_/_i are the phase shifts which are present in the asymptotic forms of Gi and G_/_i 

respectively,

Gi ~  r~^ sin(A;r — + Si),

G -i- i  ~  r~^ sin(A:r — 7̂% +

The G ’s are solutions to

(2.42)

f G n
dr^ + + n ( n - f l )  n a '

a p --------   1-------
r  a

G„ =  0 (2.43)

where n refers to either 7 or —7—1 and

E  — V(r) + m(? 
Tc ’

^ E  — V{r) —
Tc ’
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and the primes on a  refer to the first derivative with respect to r. For arbitrary 

initial spin directions, ips = Ae'^’‘,ip4 =  it can be shown that

/3 (0 ) =  (2.44)

A (0 ) =  Bfie)+Ag{ô)e''>’

where

f V )  = ^  Z  (C +  -  I) + -  1)| (2 45)

s W  =  5 | i E H “‘ +  »"‘- '- l-P ,‘ («>s«).

This gives for the differential cross section

(  _  4  4 -  A *  1
^ (n )d a  =  | | / P  +  | f | :  +  ( / f l - - g r )  ------ ) d a .  (2.46)

For unpolarized beams, which is always the case in this work, the cross terms are 

zero and

(T{Ü)dÇl =  (|/|=* +  b p )  dü. (2.47)

At this point we again turn  our attention to calculations which employ various 

models of the atomic potential.

U nscreened Coulom b Potential

In general the phase shifts can not be analytically determined, although Mott 

[Mo49] derived them  for the case of an unscreened point Coulomb potential for both 

nuclear elastic and free electron inelastic scattering. In his calculation, the cross 

section takes the form of

a{Ü)dÜ =  f  [ç2(l -  ^2 )|f |2  csc \e i2 )  +  \GŸ sec^(g/2)] dü. (2.48)
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in which P = P o + P i and G = G o+ G i with

Fq =  I  exp {ig  ln[sin^(g/2 )]}

^  X (- l)" [ tD &  +  ( t  +  l)D&+i]P*(cos6)
^ &=o

Go =  —iqcot'^(6j2)Fo

Gi =  ̂X (- l)* [%  -  (t + l)̂ D&+i]Pt(co8 6)

(2.49)

k=0

where T is the well known Gamma function and

e r(fe -  ig) e ''f* T{pk -  ig)
^ k  + iq T {k  + iq) pk +  iq T{pk +  iq) ’

with pk =  yfc^—(Z a)2 , a  =  e^/fic and ç =  Za//3.

This has been evaluated numerically by numerous authors [McK48, Fe52, Do56, 

Sh56] some of whom [Fe69, Va74b] give detailed prescriptions for the evaluation. The 

series of 2.49 are very slowly converging for small angles, and a  transformation due 

to Yennie et ai [Ye54] is often employed. This transformation, which can be applied 

to any Legendre series, f{d), which is given by

m  = '£A,Pi{cose),
1=0

is derived from recursion relations for Legendre polynomials and yields for the trans

formed series
OO

(1  -  œ s O r m  =
1=0

in which the “reduced” coefficients are given by

A ^ )  ^  Aj” -»  - ■ ’  -

Vande Putte  [Va74b] has evaluated the series of 2.49 for numerous elements with 

atomic numbers between 6  and 92 and for energies as low as 50 keV for angles from 

10° to 179° and reports that only transformations employing m = 2 and m =  3 in
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E (keV) Z =  4 Z =  13 Z =  29 Z =  47 Z =  79

1 6 .0 17.0 >  30.0 >  30 >  30

2 5.0 13.0 > 30.0 > 30 >  30

5 4.0 13.0 25.0 >  30 >  30

10 5.0 6 .0 14.0 > 30 >  30

2 0 5.0 5.0 9.0 >  30 27.0

50 4.0 4.0 4.0 15.0 2 1 .0

Table 2.2: Smallest Angle for Convergence of Mott Series for Transformation Order 
m  =  1

double precision assure convergence in all instances. Felder reports similar results, 

but suggests tha t m =  3 be used for elements with Z <  50 and m =  4 for Z >  50. 

Results for the present work are somewhat different. Tables 2.2 through 2.4 show 

the smallest angle for which both the F\ and Gi series converge (to .0 1 % using less 

than 500 terms) as a function of energy for different elements and for different values 

of m, the reduction transformation order. There was no convergence at angle less 

than 50° without transformation, and best convergence occurs using a second order 

transformation. It should be noted however tha t at small angles, where convergence 

is least likely, the constant terms are much greater than the series term, and so the 

error in the cross section due to the error in the series term  is often small at very 

small angles. However, in some of the tests run in this work, at high Z materials 

and angles around 20°, the 500th term in the unconverged series was as large as 1% 

of the cross section, and so such unconverged results must be considered unreliable.

Because of the exact nature of the the above derivation (in the context of the 

use of unscreened potential, of course), this cross section is often used in electron
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E (keV) Z =  4 Z =  13 Z =  29 Z =  47 Z =  79

1 7.0 6 .0 5.0 1 1 .0 16.0

2 6 .0 5.0 4.0 4.0 1 2 .0

5 5.0 5.0 6 .0 7.0 8 .0

1 0 5.0 7.0 5.0 5.0 5.0

2 0 5.0 5.0 5.0 5.0 5.0

50 5.0 5.0 5.0 5.0 5.0

Table 2.3: Smallest Angle for Convergence of Mott Series for Transformation Order 
m =  2

E (keV) Z =  4 Z =  13 Z =  29 Z =  47 Z =  79

1 17.0 16.0 19.0 26.0 >  30

2 15.0 16.0 13.0 2 0 .0 >  30

5 18.0 16.0 16.0 17.0 28.0

1 0 2 2 .0 17.0 15.0 15.0 14.0

2 0 15.0 15.0 17.0 18.0 16.0

50 2 0 .0 18.0 16.0 16.0 16.0

Table 2.4: Smallest Angle for Convergence of Mott Series for Transformation Order 
m =  3
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transport calculations. At large angles, when the screening effect is small, this cross 

section is expected to  be quite accurate. At small angles, Berger has proposed a 

refinement to  take screening into account. He multiples the unscreened exact Mott 

cross by a  screening factor, Fscr{^)i given by the ratio of the screened to unscreened 

Rutherford cross section,

= ( l - c o s «  + 2 ,.?

To take into account the infinite value of unscreened cross sections a t 0 =  0, Berger 

uses just the screened Rutherford cross section.

Several useful approximations may be employed in instances in which the un

screened exact cross section does not easily converge. Bartlett and Watson [Ba39] 

have devised an approximated expression for the solution for cr, applicable at small 

angles,

The ratios between the value of this expression and results of the evaluation of 2.48 

(using unconverged results as needed) were calculated and found to  be within 1 % 

of unity for all elements tested for angles as high as 30°, for energies less than 20 

keV. At higher energies (in the 50 keV range), the deviations from unity of these 

ratios reach a  few percent for all elements at angles greater than 20 degrees. In using 

this approximate cross section, the correction of 2.50 may be applied to account for 

screening.

M ethods E m ploying R ealistic  Potentials

The obvious numerical difficulties in evaluating the Dirac exact cross section using 

realistic potentials are going to lie in determining the phase shifts. Many methods
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have been tried, and they are summarized in early work of M ott and Massey [Mo49] 

supplemented by the excellent review of Walker [Wa70]. None of the techniques 

lead to closed form expressions for the cross section however, and typically only 

numerical results for particular elements a t energies of interest to  the various authors 

are presented in the literature, as in [Ya76] (using Thomas-Fermi potentials) and 

[Ak78a, Ko81a, Ko81b, Gu76, Ga79] (using Hartree potentials).

There does exist one accurate calculation of the elastic scattering cross section 

using a  partial wave technique (performed by Riley et al., [Ri75, Ri83]) which is 

universally applicable. They used a  numerical integration scheme employing static 

potentials determined from Hartree-Fock wave functions reported in the literature. 

Fitted data is presented in the form

/  7 ^ 2  \  2 4 6

a ( Z , E , e ) = { ^ )  ^ / L ( Z , E ) [ 1 - c o s 6 + 2 B (Z ,E)]—  -F 0)
\7 P  /  m=l 1=0

(2.52)

in which a  is the fine structure constant, 7  is the dimensionless total energy (1  -|- 

E/mc^), and the Pj’s are Legendre polynomials. The coefficients and B  are

tabulated at 9 energies between 1 and 256 keV for all elements with Z  from 1-100.

Approximations inherent in the use of the static potential include the neglect 

of exchange effects (estimated to be negligible below 1 keV) and the assumption of 

an unpolarized atom. The error introduced by this second approximation has been 

estimated to be as high as a factor of 3 or 4 for high Z  atoms at 1 keV and 0° 

scattering angle, but diminishing to a few percent at angles of around 10° [Be89].

2.2.5 Cross Sections U sed  by Previous Investigators

Many investigators have treated elastic scattering on an event by event basis. 

Table 2.5 summarizes the elastic scattering models used by various investigators.
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Elastic Scattering Treatment Monte Carlo Authors
(^Ruthi Wentzel screening Newbury et al. [Ne80]

Bishop [Bi67j 
Spalek [Sp82]
McDonald et al. [McD71] 
Proykova [Pr79]
Shimizu et al. [Sh75]
Newbury and Myklebust [Ne79a] 
Felsteiner [Fe83]
Shimizu et al. fSh76l

<̂Rvithi Wentzel/Nigam screening Murata et al. [Mu79, Mu80] 
Murata, Kyser and Ting [Mu81] 
Murata et al. [Mu71]
Sheldon and Ogilvie [SheSO] 
Matsukawa et al. [Ma73] 
Hawryluk et al. fHa74l

<̂ Ruthi Empirical Screening after Wen/Nig Hamm et al. [Ha79]
Shimizu [ShiSO]
Valkealahti and Nieminen [VaS3] 
Adesida et ai fAd78, Ad80]

First Bom, Int. of Approx. p{r), 
from DHFS potentials

Salvat et ai [Sa84b, Sa8 6]

OMott fMcK48l, Molière screening Mæhlum and Stadsnes fMæ67]
Molière screened [Be63] Terrisol and Patau [Ter78] 

Berger, Seltzer and Maeda fBe70l
PWEM, TFD Potentials [Ya76] Shimizu et ai [Sh77] 

Ichimura et ai [Ic80] 
Shimizu et ai  fSh79l

PWEM from Akkerman et al. [Ak78a], 
Potentials from Green fGr69]

Akkerman and Chernov [Ak80]

PWEM with fitted Hartree potentials Kotera et ai fKoSla]
PWEM with HF potentials, including 
crystalline effects, after Green fGr76]

Kotera et ai [Ko81b]

PWEM, after Gunnarson fGu76l Valkealahti and Nieminen fVa841
PWEM, Potentials from Smrckra [Sm70] Ganachaud and Cailler [Ga79]

Table 2.5: Single Elastic Scattering Treatments in Monte Carlo Electron Transport 
Codes
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2.2.6 Sum m ary o f Available Experim ents

A listing ordered alphabetically by author of the experiments suitable for the 

present evaluation process is given in table 2.6. It can not be assumed that every 

reported measurement has been surveyed. However, the recent paper by Herbâk 

[He85] claims th a t very little work has been done recently (from 1975 -  1985) above 

1 keV, Gupta and Rees [Gu75] claim to have a  complete list of experiments employing 

energies from 100 -  625 eV for Ne, and Bromberg [Br74] purports to have completely 

summarized all noble gas experiments around 1 keV up to 1974, so it may be assumed 

with a fair degree of confidence tha t no major studies have been missed.

Most experiments employ either very thin foils, vaporized metals or volumes of 

noble gases. In general, data  is scarce for lower energy electron incident on metal 

foils and higher energy electrons incident on gas samples.

2.2.7 Evaluations and Conclusions

Approximation for the various cross sections and there anticipated ranges of va

lidity have been discussed in the course of explaining their source. The logical con

clusion is tha t the partial wave cross sections developed through Dirac’s formalism 

are the most accurate in every situation. Thus, even though it suffers from in

accuracies in its inherent assumptions, because of its inclusiveness with respect to 

elements and energies covered, the parameterization of Riley appears to be the best

available source of accurate theoretical data. However, because screened Rutherford
. , ■

cross sections and First Born cross sections using Hartree potentials are used as 

well in standard kilovolt energy Monte Carlo electron transport calculations, both 

are evaluated here and compared to the screened partial wave results of Riley. The 

experiments of Kessler and Lindner and of Herbâk et al. were selected for compar-
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Authors Element Z Angles Energies (keV)

Bienlein et al. [Bi59a] 79 40-150 155

Bienlein et al. [Bi59b] 29,47,58,79 1 2 0 120,155,209

79 1 2 0 80-300

Chase and Cox [Ch40] 13 0-6, 30-120 50

Dougal [Do65] 79 20,30,45, 65 100-400

Herbâk et al. [He85] 2,10,18 50-130 1 , 2 , 3

Hughes et al. [Hu32] 2 15-150 .025-.70

Hughes and McMillian 1 0 7-150 .010-.80

[Hu33]

Jansen and de Heer [Ja76a] 36,54 5-55 .1 - 1

Jansen et al. [Ja76b] 2,7,10,18 5-55 .1 - 1

Keck [Ke62] 82 30-135 70

Kessler and Lindner [Ke65] 80 0-150 .2-4

Kessler and Weichert [Ke6 8 ] 80 45-135 46,79,100,204

Kinzinger [Ki53] 13,79 25-150 245

13,79 1 2 0 150-400

Langstroth [La33] 13 70-160 8 - 2 0

Motz et al. [Mo63] 29,50,79 2 0 - 1 1 0 50,100,200,400

Pettus et al. [Pe56] 79 70-150 2 0 0

Rester and Rainwater [Re65] 13 30-150 100-3000

Saegusa and Kikuchi [Sa37] 28,47,78,79 30-110 10,20,30

Saunderson et al. [Sa41] 13,29,47,79 0 ^ 5 230

Table 2.6: Single Elastic Scattering Experiments
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Figure 2.2: Elastic Scattering Cross Section Evaluation for Helium at 2 keV

ison with the calculations of Riley (screened Dirac partial wave), Berger (factored 

unscreened Dirac partial wave and Schrodinger first Born screening with Moliere’s 

Thomas-Fermi potentials), Hubbell (Schrodinger first Born screening with Hartree 

potentials), and Ford and Nelson (Schrodinger first Born screening with modified 

Molière Thomas-Fermi potentials). The results are shown in figures 2.2 through 2.4.

It is clear from the figures tha t for higher Z  materials, only the  partial wave 

results of Riley are adequate for all energies and angles. The problems in the Born 

approximation cross sections are exacerbated (by the use of the Born approximation 

for the Hubbell data and by inadequacies in the screening parameter determination
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Figure 2.3: Elastic Scattering Cross Section Evaluation for Argon a t 2 keV
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Figure 2.4: Elastic Scattering Cross Section Evaluation for Mercury a t 4 keV
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Figure 2.5: Elastic Scattering Cross Sections for Nickel a t 30 keV

for the other cross sections) at small angles, and low energies, and high atomic 

numbers, as can be seen in figures 2.5 through 2.7.

The shape of the  cross section (except at small angles) seems to be adequately 

modeled by all four of the  formalisms over most of the energy and atomic number 

range of interest, so tha t as long as small angle partial wave data  is available, more 

approximate cross sections can be used. Figure 2.8 shows the  rough line dividing en

ergy and atomic number into regions in which approximate cross sections adequately 

(to about 5%) determine the large angle scattering shape. The area below the curve 

represents regions requiring a  relativistic partial wave cross section at all angles, and 

tha t above represents the regime in which approximate methods will suffice a t large
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Figure 2.6; Elastic Scattering Cross Sections for Silver a t 50 keV
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Figure 2.7: Elastic Scattering Cross Sections for Gold a t 100 keV
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Figure 2.8: Region of Applicability of Approximate Cross Sections

angles.

2,3 Inelastic Scattering Cross Sections

The discussions in this section of this chapter concern inelastic collision processes, 

which have been grouped here as atomic excitations and ionizations, fast collisions 

with free electrons, and collective excitations of the conduction electron plasma. Be

cause of the complexity of the problem (the collisions involve interactions with an 

ensemble of bound electrons), quantum mechanical cross sections for inelastic scat

tering for multiple electron atoms can generally be derived only in Schrodinger’s for

malism using the Born approximation. Thus a wide range of alternative descriptions 

have been employed, including classical scattering theory, the  use of the Maxwell’s 

equations (the Complex Dielectric Constant Method, CDCM) and even wholly em

pirical formulations. Often, distinct descriptions of the various inelastic processes 

are taken from different sources and then somehow combined in attem pts to develop
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models which provide complete representations of inelastic scattering. This last set 

of methods, which has found some degree of success, will be reviewed here also. For

mulations describing interactions with bound (inner) electrons are presented first, 

followed by methods for describing collisions with free electrons.

2.3.1 Bound Electron Ionization and Excitation Cross Sections

In the excitation process, energy from an incident electron is transfer to the 

electrons of an atom permitting atomic electron rearrangement into one of numerous 

possible higher energy excited states. A perfect description of the process, suitable 

for a  true analog Monte Carlo calculation, which would employ doubly differential 

cross sections for all final states, and so would be computationally cumbersome in 

transport simulations. Fortunately, in almost all Monte Carlo simulations, the exact 

state of the atom after the excitation does not need to  be known, but rather only a 

weighted distribution of emergent energy {E') and angle (fl') of the scattered electron 

averaged over all excitation collisions needs to be determined, as in

<T(E,E',ü')dE'dn' = <r^{E,E',Çl')dE'dÜ' (2.53)
a ll  s t a t e s  n

This it sufficient because the de-excitation which occurs subsequent to a typical 

excitation collision, and which is extremely dependent on the atomic electron con

figuration (this is discussed in chapter IV), does not usually give rise to secondary 

particles with energy of any consequence, and so can be ignored.

In ionization collisions, it happens that enough energy is transferred during the 

collision to liberate completely one of the target atomic electrons. Often, the ejected 

atomic electron can carry enough energy tha t its progress needs to be tracked in a 

Monte Carlo simulation. Also, if the transport problem requires th a t high energy 

de-excitation process be modeled, it is also important to know the subshell from
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which the electron has been ejected, as vacancies in the inner shells of high Z  atoms 

contain enough energy to emit energetic particles. Thus our ideal model of ionization 

is a  cross section differential in scattering angle and energy loss for both the incident 

and ejected electrons for each subshell nl  as a  function of incident electron energy,

E i, ü'^)dE[dE'2dÜ\dÇï'^.

It is clear tha t ionization collisions are a  subset of excitation colhsions, those in whidh 

in its final state, the  atom  contains a  vacancy in one of its shells. We now examine 

the various attem pts which have been made at describing this process.

B ethe-B orn T heory

The only framework in which successful calculations of cross sections for inelastic 

scattering from multiple electron atoms have been made is given by Bethe [Be30] 

in his general theory of inelastic collisions. A fine review, the relevant highlights 

of which are presented here, was given by Inokuti [In6 8 ] and by Fano [Fa64]. The 

discussion begins by considering a  general inelastic collision as the perturbation of 

the ground state of an atom, whose wave function is given by

^o(ri, F2 , . . . ,

where the r ’s refer to the positions of the atomic electrons, leading to some quantifi

able final state labeled n, described by

1^2; • • • 5 F z ) '

In Schrodinger’s formalism, the description of the inelastic scattering of an electron 

by an atom is given by

j  y  é ^ -^ rn V i’odTdrr. . .  dû  (2.54)
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in which

i=i |r -  r,l r
Performing all the integrals over r  using

J | r - r j

yields

T  ( 2  55)

K (K )P  = J  e ' ^ ' ‘<l>odri . . . d r z

in which |e„(K)p is defined as

z
E
i=i

and is called the inelastic scattering form factor, directly analogous to the elastic 

form factor. Inokuti notes that under the usual assumptions often made at this 

point regarding spherical symmetry, degenerate states and others tha t e„ becomes a 

function of scalar K ,  and that dû  =  27T sin ̂ d^ =  ir/kk' d(K^), so tha t if the variable 

Q =  { h K y f2 m  is introduced, the expression for <r„ reduces to

(2.56)

Often, the contribution from aU states n are summed to yield 

which contains the common substitution

W  =  Z k ( / q i \  (2.58)
n

where S  is referred to as the inelastic scattering function. Thus it is seen that as in 

the case of elastic scattering, devising inelastic cross sections becomes a problem of 

evaluating a factor determined by the dynamics of the atom.
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One simple approach is to assume tha t the scattering function S  is simply related 

to the form factor F,  by

S{K ) = Z -  (2.59)
Z i

Schnatterly [Sc79] has proposed using the results derived for F  with a  Wentzel ex

ponential screened potential to yield an expression for the total cross section. Salvat 

and Parallada [Sa84a, Sa84b] have also used the above approximation.

Bethe introduced the concept of the generalized oscillator strength, fn{K),  given

by

/n  =  ^ M / O I %  (2.60)

where is the energy above the ground state energy of the state. We eventually 

arrive at

where /„  is the generalized oscillator strength for the state n, and these oscilla

tor strengths are constrained by the rule that their sum over all possible states is 

given by Z. In principle, if all states can be specified and all oscillator strengths 

determined, Bethe’s first Born theory would completely describe inelastic collisions. 

Tables of such quantities have recently been compiled for certain well studied atoms, 

but general tables are not yet available. Programs for calculating the oscillator are 

also available, but require substantial a priori knowledge of the most probable final 

state electron configurations. This definition of the cross section finds its greatest 

utility in serving as the basis for integrals for the total cross section and average 

energy loss, as will be seen it chapter III. One last note, Fano [Fa64] has has shown 

that the relativistic version of this formalism leads to as expression for <t„ of

<̂ adQ =  +  [Q(i+Q/2m'5)-(^-£;o)V2mc2]"} dQ. (2.62)
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in which the second term described the contribution to  the cross section due to 

virtual photon exchange. Like |e„(Jf)p, \^tGn{K)^  can be expressed as a  function 

of the generalized oscillator strength, and formalisms using this expression almost 

always involve the integration over Q, as discussed in the next chapter.

Io n iza tio n  C ross Sections in  th e  B o rn  A p p ro x im a tio n  Many authors have 

investigated the scaling of the total ionization cross section with Z  and E, first 

examined analytically by M ott and Massey [Mo49] who integrated the Bethe-Born 

cross section over all ionization energy transfers. Most of the later works, which 

have been summarized by Powell [Po76a, Po76b], yield semi-empirical expressions 

following the general form of the Mott and Massey result,

(2.a3)

in which the subscript s implies a  given subshell, I  is the binding energy of the 

shell. A, B ,  and C  are constants, Zs is the number of electrons in the subshell and 

E  the incident energy. Some of these formulations have been used in Monte Carlo 

calculations, with the most detailed study being tha t of Newbury and Myklebust 

[Ne79b].

Arthurs and Moiseiwitsch [Ar58] have used relativistic Born approximation wave 

functions to describe the incident and target electrons in their determination of 

total cross sections for the ionization of K shells. They expect their results to be 

applicable at low atomic numbers, since they use the approximation of Mpller (valid 

for outer, unbound electrons, as discussed later in this chapter), which assumes that 

the effective screened nuclear charge is small. They arrive at
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E / E k  2.5 5.0 7.5 1 0 .0  15.0 2 0 .0

S {E !E k ) 5.4 10.1 12.1 13.2 14.8 15.6

Table 2.7: Arthur and Moiseiwitsch S  Function Data

in which Oq is the  Bohr radius; a  the fine structure constant; 7  ̂ =  1/ (1— Z,  the 

effective nuclear charge, given by Z —0.3 for K shells; and S { E /E k ) is interpolated 

from the data  given in table 2.7.

Kolbenstvedt [Ko67] treats ionizations by dividing the cross section into large and 

small impact parameter sections, using a slight modification of M0 ller’s theory for 

the close collisions and for distant collisions a method suggested by Williams [Wi35] 

in which large impact parameter electron ionizations are assumed to emanate from 

virtual photon photo-ionizations, and so

<Tf= aj,^{k)N{k)dk, (2.65)
JEi

in which CTpe(k) is the photo-ionization cross section for a  photon of energy k, N{k)

is the virtual photon spectrum for the passing electron and ko the maximum virtual

photon energy. Using an expression for N{k)dk  from Jackson [Ja62], Kolbenstvedt 

obtains for the distant collision K  shell cross section

0.275 ( t2 + I f
Ti T2( t2 + 2 )

1.19r2(r2-b 2) 73(72  +  2) (2.66)

with <T in barns and t i  and T2 as before. In this work, Kolbenstvedt’s results are 

applied to shells outside the K shell by using the appropriate binding energy and 

scaling by the number electrons in the outer shells.

Seltzer [Se89] determines a  differential ionization cross section (given by the in

tegrand in equation 2.65) for distant collisions using this same technique, taking for
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N {K )  an expression from [Ja75] which is integrated over all impact parameters and 

given in terms of Bessel functions of the first kind of order 0 and 1 and the minimum 

and maximum impact parameters. He uses calculated values of the subshell orbital 

radii for the m inimum impact distances and semi-classical expression for the max

imum impact parameters values. Like Kolbenstvedt, he uses a modified version of 

Mpller’s free electron cross section to describe close collisions.

P a ra m e te r iz a tio n s  o f B o rn  A p p ro x im atio n  Io n iza tio n  C ross S ection  D a ta  

Scofield [Sc78] has published a parameterized fit for the total cross sections for the 

K and L-I through L-III subshells for several elements, using Hartree wave functions 

to describe the atomic electrons. His data is of the form

where W  is the electron total energy and the primes imply tha t the quantities are 

normalized by either mc^ or me, as appropriate. A  and 6i . . .  65 are the subshell and 

element dependent parameters, and B  is taken from

B  =  In(p')' -  /3".

This parameterization can be used in conjunction with interpolation and extrapola

tion to provide a  set of total cross section values for the inner shells of atoms.

Lotz [Lo70] has devised a parameterization for the ionization cross section of the 

subshells of the form

m { 1  -  6.exp[-c.(E /E .- -  1 )]} (2 .6 8 )

in which ç,- is the number of equivalent electrons in the subshell, Ei the binding 

energy, and a,-, 6,- and Ci subshell dependent constants.
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Pressa and Newell [Pr70] have re-evaluated Lotz’s constants and applied a rela

tivistic correction factor of the form

Frel = F {v )/f (v )  (2.69)

in which F(v) and f{ v )  represent relativistic and non-relativistic Coulomb velocity 

distributions describing the dynamics of the electron-electron collision and can be 

given by

^3/2

_________(1  +  Ta)^__________ (2.70)

and

in which t i  is the shell binding energy divided by the electron rest mass and Tg the 

incident electron energy divided by m<P. For the values of the constants in 2.68, 

Pressa and Newell give the values shown here in table 2.8.

E x c ita tio n  C ross Sections in  th e  B orn  A p p ro x im a tio n  Streitwolf [St59] 

has derived an expression for excitation energy losses in the first Born formalism. He 

arrives at

cr{AE = Efr)d{AE) =
'F

(2.72)

in which Ep  is the Fermi level energy. It is obvious tha t a discontinuity exists in this 

cross section a t energy transfers near the Fermi level. Shimizu [Sh76] has proposed a 

method to remove this anomaly. He assumes that the maximum is the cross section 

is found a t energy transfers equal to the Fermi level energy, and notes tha t at an
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bi Ci

0.75 0.50

0.50 0.60

0.92 0.19

0.30 0.60

0.60 0.40

0.00 0.00

0.96 0.13

0.50 0.50

0.94 0.15

0.97 0.11

Table 2.8: Pressa and Newell Parameters

Subshell Ci

(1 0 “ ^̂  cm'

K 4.0

Li 4.0

^2,3 2 .6

Ml 4.0

M 2,3 4.0

Nl 4.0

M4,5 1.4

N2,3 4.0

^4.5 2 .0

Ne,7 1 .0
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energy transfer of 2.715jE?f, the lower expression in 2.72 yields the same value for 

the differential cross section as the upper expression maximum, .ZAire*JE Ep. He 

therefore proposes tha t the cross section be assumed to be constant over the energy 

transfer range E p  <  A E  <  2.75Ep, yielding a total cross section for this distribution 

given by

Several authors have used this expression in Monte Carlo calculations, despite the 

fact tha t functionally it is little different from other, simpler expressions (as seen 

later) and tha t it has one major disadvantage in tha t the  cross section for energy 

transfers near the  Fermi energy is quite high, so that a lot of Monte Carlo time is 

spent processing low loss events [Sh76].

Classical B inary Encounter Theories

The treatm ent of excitations as a  classical two body collision between an incident 

electron and an atomic electron has been extremely successful. In a  series of articles 

subsequent to his initial broaching of the subject, Gryzinski [Gr65a, Gr65b, Gr65c] 

first derived general, exact expressions for differential cross sections in two body col

lisions, exact expressions for cross sections in two body Coulomb interactions, and 

finally approximate expressions for the application of inelastic scattering. Approx

imations are made in considering tha t other atomic electrons and nuclei have no 

effect on the collision, and tha t the exact distribution of atomic velocities are un

known. Starting with a ‘field’ particle (target) with initial velocity Vi and a ‘test’ 

particle (projectile) with velocity Vg, Gryzinski defines geometry variables 0,Q,(p 

and D  which describe the orientation of the initial trajectories and the line segment 

representing the distance of closest approach had there been no collision. Using the
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appropriate conservation laws he then derives expressions for the state change vari

ables of the projectile (AE, t?, <f>) and the target (AjE, in terms of the geometric 

variables and the center of mass system scattering angle, which contains all of the de

pendence on the scattering field. He then shows tha t the cross section for interaction 

can be expressed in terms of the geometric variables

o{e, 0 ,  y , D) =  f{0, y) d e d i p ^  2-KDdD (2.74)
IV2 I /TT

where f{6 , (p)d0d(p represents the probability that the components of the target par

ticle velocity will be described by 9 and <p. If we let u and fu{9,0 ,  y , D) repre

sent a state change variable and the function describing it, the expressions for the 

cross sections differential in u will be given the integral over the geometric vari

able space in those regions for which u =  /„(0,0,(/?,i?). Defining hu{9,Q,(p,D) =  

u — fu{6 ,0 ,ip ,D ),  Gryzinski arrives at the exact (for a  strictly two body collision), 

general expression

<y(«) = j j j ] ^)b[K {9,0 , p ,D )]d 9 d p ^2 7 rD d D  (2.75)

where u represents any of the dynamical variables. Although cross sections differen

tial in energy and angle can be derived form this expression, the quantity of most 

interest is the cross section differential in energy exchange. Gryzinski integrates 2.75 

over ip, 0  and D  (after a change of variables to the c.m. scattering angle) to  obtain 

for the case of electron - electron scattering

[’ - ' A - ' ' ]

where
„2 \  3/2

f  = ( ^ y (  H2 Y
^ VÜ2 /  \y i +  +  2 viü2 cos6J
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and the integration limits are determined from the kinematic relation between the 

orientation angle 0 and the energy transfer A E .  Note tha t Ei  represents the average 

kinetic energy of the target electron.

Approximations concerning the velocity distribution (both the speed and orienta

tion) of the atomic electron must now be introduced, and Gryzinski presents results 

for several cases. The simplest case is obviously the situation of targets at rest. For 

this Gryzinski derives

For the case of isotropically oriented field particles Gryzinski derives

"  iw(w) (5 ^ ^ )  “

{ A E y
(2.78)

Both of these results are commonly used in Monte Carlo calculations and are of 

the same rough 1/(AE^) form encountered in many scattering theories. At this 

point Gryzinski departs from analytically evaluating the exact expression 2.76 with 

unrealistic velocity distributions and instead reduces 2.76 using approximations for 

the dependencies of f v  on 6 and 6min and Omax on A E .  This yields the result

{A E )

,4 \ 2  /  „ 2  \  r A B ’ /  B’.  \  AT /

=  7 ^  (^ )  ( ; ^ )  (1  -  f  ) + 1] (1  -
(2.79)

The final stage in Gryzinski’s development of the classical theory toward realistic 

situations involves applying the above formulation to the case of field particles dis

tributed in velocity by noting that

to o

{ a { A E ) ) A V E =  / ( T { A E , v i ) f { v i ) d v i .  
Jo
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He derives

ire
{ K E f

which is the most widely used (in Monte Carlo calculations) form of his theory.

Gryzinski now determines the total cross section and stopping power, or average 

energy loss per unit path, given by

/
—AjE?max

<t{AE) d (A E)

and
dE  /—AEmoi
^  = a (A E )A E d (A E )
dx J-AEmia

respectively, were n , is the number density of atomic electrons, for each of the cross 

sections expressions which he has derived. For the case of target electrons at rest 

but bound in some configuration so tha t there is a minimum excitation energy U he 

finds

and

For the case of isotropically distributed field particle velocities, he derives 

-  =  if a  < ^  +  77

if E 2 ^  E \ "b U
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and

^  “ ’* '^ 0  [s(’+ è )0 " -  if  E 2 < U  +  E i

U ^ l  + { l - U lE 2 f l^ '

— TLq '

^ 2  1 - ( 1 - U / E 2)1/2

Tre'̂  f v i \ ^  [4 / i  U  \  _ Z7 , E2 — Ei
Ü
u  /4  Eg ^ 2 _ i + ( ^ j j E ^ \

E l  [ e J  ( 3 E 2- E 1 3  V e J  1 -  ( E i / E 2y / y _
(2 .8 4 )

For the case of distributed velocity field particles he derives

F<oi

and

+E - " - W  ©  (;©?) (' ■ ©  '"f
4 ( - 4 )K ” * (¥ ^ ) ' ' ' ) l© S “ "’ < «

Usually, Monte Carlo authors assume tha t the minimum excitation energy E and 

the average kinetic energy of the orbital electrons can be taken to be equivalent and 

given by the shell binding energy. Et. This, however, leads to numerically incorrect 

results at E 2 near Ej, in that the value of the total cross section section derived 

for 2.85 does not equal the value of a numerical integration from Ef, to E 2 of the 

differential cross section of 2.80. Differences between a numerical integration and 

2.85, which are dependent only upon the ratio of E 2/E 6, are shown in figure 2.9.

Physically, the approximation o fU  =  E& is equivalent to limiting the cross section 

to ionization collisions, and assuming E i =  E& is valid for large E 2 , so the cross 

section should be good for ionizations a t high incident energies. When this cross
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_ 2.00 

I
% 1.75
S
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1.50
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%•II

I
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1.0 2.0 3.0

E z / E b

Figure 2.9: Error in Gryzinski’s Total Cross Section near Et

section is used as an excitation cross section, E , the minimum loss is set equal to 

roughly the Fermi energy, regardless of the subshell [Ter78]. It appears as though this 

cross section has been often misapplied, either by the author assuming the ionization 

cross section suffices to describe all inelastic collisions [AdSO], or by the author using 

the minimum energy loss as the orbital electron average [Sh76j.

Pressa and Newell have suggested that their relativistic correction (equation 2.69) 

be applied to Gryzinski’s results, and along similar lines, Gryzinski has amended his 

own work by employing a  ‘free fall’ model of the atom [Gr8 6 ], with which he derives 

a  total cross section of the form

Tre 1
(Ti =

{ y /) j+ k  + i y

in which A ~  E/Eb  and k  =  W/Imin in which Imin is the minimum ionization 

potential and W  the average binding energy for a given shell, with a ‘shell’ defined
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as all occupancy levels with the same angular momentum quantum number. This 

result is not examined here, because of the lack of data for spin dependent subshell 

binding energies.

Angular deflections from collisions described by the classical model are almost 

always modeled in the binary collision approximation, and the distribution is taken 

from

sin^ B =  ■ . (2 .8 8 )
h i

Differential Inverse M ean IVee P ath  from  Com plex D ielectric  Constant 

M ethod

If a condensed material can be considered as a gas of electrons with a spatially 

dependent charge distribution, the differential inverse mean free path  (DIMFP) can 

be deduced from Maxwell’s equations as a  function of the complex dielectric constant. 

This technique is commonly called the complex dielectric constant method (CDCM). 

The DIMFP differs from a cross section conceptually in that it is derived for the 

medium as a whole and only in approximation is it reduced to a  cross section per 

atom, whereas a microscopic cross section is derived per atom, and only in the 

approximation of ignoring the effects of surrounding atoms can it be applied as 

an inverse mean free path for a  condensed media. This technique was pioneered 

by Ritchie, Tung, Ashley and co-workers [Ri59, As79, Tu79], who show that the 

differential mean free path t {1u o , E ) ,  which is a function of the electron Rw is given 

in the first Born approximation by

- 1 (2.89)
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in which Kk is the momentum transfer and Tw the energy transfer, e(&,w) the di

electric response of the media and the integration Hmits are given by

=  V 2 m (V Ë  ±  \Je  — Rw).

The main problem with this method arises in the selection of the proper form of 

the dielectric response function. The only extant calculations are those made for 

particular solids for particular applications, and require tha t atomic electron wave 

functions be determined. No simple, closed form expressions universally applicable 

are available in the literature, and so despite the success of this technique in predict

ing average energy losses for low energy electrons in certain media, its application 

was not pursued in this work.

Empirical Methods for Total Excitation Distributions

Several empirical models have been employed in attem pts to model single collision 

energy losses. The most obvious candidate model is one which is based on the leading 

1/(A E)^ term in the free electron scattering and the classical binary encounter, in 

which the energy loss is proportional to  1/A^, as in

The constant K  can be determined from the need to normalize /(A E ), and is given

by

K  = (2.91)
^^m ax  — ^Emin

The total mean free path for collisions described by such an energy loss density 

function is usually taken as

At =  A E
dE
dx

(2.92)
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in which A E  is the average energy loss per collision, easily seen to be given by

yy pi _ ^Effiax • AEfnin 2̂  ^Efnax
AEmax ^Emin AEmin

ÛË.
dx

model retains some consistency with the physics, in tha t the stopping power, given

and is energy loss per pathlength, discussed in the next chapter. Note tha t this

by

-  ^  S( A E) A E  d(A E) (2.93)
d x  J  AJEffntn

is preserved.

Another often used expression assumes an exponential distribution of losses.

Again, the total cross section and the norrnzdization constants are taken

so that the mean energy loss per unit pathlength is consistent with experimental

values. If I  is the average ionization potential (discussed in the next chapter) then

the normalized density function is given by

1

and the average energy loss is given by

(AE„»-„ +  J)e-^^"»"/^ -  {AEmax +
  (2-95)

The upper energy loss limit is usually taken to be AEmax =  E , and the lower 

limit some energy near the Fermi level. Liljequist [Li78a, Li78b] suggests 7 eV. These 

expressions have the drawback tha t they provide no information about the shell with 

which the collision took place, and so can not be used to predict vacancies in inner 

shells or the energy of ejected electrons.

2.3.2 Cross Sections for Free and Valence Electron Scattering

In many electron atoms, the outer electrons can be so loosely bound that they 

are considered isolated for their parent atom. Several types of scattering descriptions
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can be applied in such a  case.

Scattering from  Free E lectrons

If an electron scattering interaction occurs primarily with a loosely bound outer 

shell electron (such tha t the initial energy of the incident electron is much greater 

than the binding energy of the target electron), the target electron-atom system 

can be consider to be comprised of just a  free electron. The process can then be 

described by the  quantum mechanics of the electron-electron system. This is an 

important process because interactions with the outer electrons are likely to give rise 

to high energy secondary electrons, usually called delta-rays or knock-on electrons.

Mott [Mo30] first explored the scattering of electrons from free electrons at rest, 

and Mpller [M032] derived under Dirac’s formulation in the first Born approximation 

an expression for the cross section per electron describing such an interaction as

E ' y  
H' + l J

d{AE)

a {A E )d (A E )  = J L  + _____ 1

2 E ' 4 - 1  1

( E '-1-1)2 a E ( E - A E )  

in which the primes imply quantities normalized by the electron rest mass. In this

description, the incident and target electrons are indistinguishable subsequent to the

collision, the cross section is derived assuming a maximum transfer of 1 /2E  and so

the incident particle is arbitrarily assumed to have the higher energy.

The primary restriction on the use this cross section arises from the assumption of 

a  free, unbound target, but it has been used in Monte Carlo calculations to describe 

all inelastic processes [Pr79]. As noted earlier, it has also been used to describe the 

ionization of inner shells due to close collisions by introducing the electron binding 

energies into the expression [Ko67, Se89]. Modifying 2.96 to take into account binding 

effects by applying a classical binary encounter correction has also proposed [Se89].
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Together, these two modifications necessitate three numerical corrections. First, the 

two 1 / ( E  — A E )  terms in 2.96 are replaced by 1 /(E  — A E + E f,), where Et is the 

binding energy. Next, a term G  is added inside the brackets given by

1
+ (2.97)

(AE)3 ( E - A E  + Eb)^

in which y =  (A E  +  E(,)/Ei and E i is the average kinetic energy of the electron in 

the subshell. Lastly a  multiplicative factor, P , given by

is applied.

Plasm on Excitation Cross Sections

A mode of energy loss not modeled by the Bethe theory or classical theory is the 

excitation of collective electron gas formed by the atomic conduction electrons. If 

the conduction electrons are assumes to form a  weak plasma in the media, vibrations 

at a classically determined frequency may be excited. Although interest and effort in 

this area was initiated by Pines and Bohm [Pi52] most of the detailed investigation 

into this phenomenon has been carried out by Ritchie and co-workers a t Oak Ridge 

National Laboratory. Ritchie [Ri57] essentially restricted the work on the Complex 

Dielectric Constant Method (in which all electron scattering collisions are treated 

as the response of the media to perturbations in the electric field caused by the 

impinging electron) to only those collisions resulting the excitation of the conduction 

electron plasma. The basics of the techniques are essentially equivalent, and so will 

not be presented here. All plasmon excitations result in the incident electron losing 

energy equivalent to a characteristic plasmon energy, which is usually approximated
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(somewhat crudely) by %Wp where Wp is the medium’s plasma frequency given by

in which n , is the number density of the conduction electrons. The most widely

used expression for the mean free path for such an interaction is th a t given by Quinn

[Qu62],   ^

=  (2.100) 
^ Rw. V - J r -  j'̂ •p y \ / Ë  — yjE  — RWp 

where oq is the Bohr radius. A simpler expression due to Ashley and Ritchie [As70]

has also been used [Ter78].

The angular deflections resulting from plasmon excitations, because they are 

small (Shimizu [Sh76] states that they are less that 6  mrad) are sometimes ignored, 

but are most often taken from

in which 0e  =  %Wp/2 E.

2.3.3 Transport M odels U sed by Previous Investigators

The use of specific inelastic scattering cross sections in Monte Carlo transport 

simulations has been briefly reported above. More complete summaries of previous 

Monte Carlo treatments of inner ionization are given in table 2.9, of previous exci

tation processes (including plasmon excitation) are given in table 2 .1 0 , and of delta 

ray production cross sections in table 2 .1 1 .

In the remainder of this section, some common complete descriptions of inelastic 

scattering, comprised of a combination of components drawn from the available pool 

of single scattering cross sections for the various processes, are summarized.
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Ionization Treatment Monte Carlo Authors
Gryzinski Binary Encounter [Gr59] Reimer and Krefting [Re76] 

ETRAN (SANDYL) [Co74] 
Terrisol and Patau [Ter78] 
Akkerman and Chernov [AkSO] 
Adesida et al. [Ad78, AdSO] 
Ichimura et al. [IcSO]
Shimizu et al. [Sh79]
Shimizu [ShiSO]
Valkealahti et al. [VaS3, VaS4] 
Ganachaud and Cailler [Ga79] 
Sheldon and Ogilvie [SheSO]

Bethe-Mott-Massey (total) Henoc and Maurice [He76] 
Myklebust et al. [My76]
Green [Gr63]
Murata.ef al. [Mu71]
Newbury et al. [Ne79a, Ne79bj

Kolbenstvedt Total Cross Section [Ko67] ETRAN fBe6 8 ]
First-Born, Num. Int over fn  after fMa72] Green and Leckey fGr76]
First-Born by Tung et al. fTu76] Hamm et al. fHa79]
Adjusted (TMoiier, cacb shell Seltzer fSe89l
First-Born Inner Shell Ion. (Ar only) 
[Eg75]

Unnikrishnan and Prasad [Un79]

Table 2.9: Single Scattering Ionization Treatments in Monte Carlo Electron Trans
port Codes
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Excitation Treatment Monte Carlo Authors
Streitwolf Total Outer Shell Ex. [St59] Sheldon and Oglvie [She80] 

Shimizu [ShiSO]
Shimizu et al. fSh76l

Classical Total Inner Shell Ex. [Gr65c] 
Modified Classical for Excitations

Shimizu et al. [Sh76] 
Valkealahti et aL [Va83, Va84] 
Adesida et al. [Ad78, Ad80] 
Terrisol and Patau fTer78l

Classical Inner Ionization [Ga69] Akkerman and Chernov fAk78b]
EgRarter Total Excite. fEgTSl ( Ar only) Unnikrishnan and Prasad [Un79]
^Af o ile r  Î each shell Proykova [Pr79]
Schnatterly First Bom for (T in ,to t  [Sc79] Felsteiner [Fe83]

Salvat and Parallada [Sa84a, Sa84b]
CDCM fTu76l Hamm et al. [Ha79l
Outer Shell Excitations by CDCM Ganachaud and Cailler fGa79]
Outer Shell Excitations by CDCM fAk78al Akkerman and Chernov [Ak80]
CDCM, with Click and Ferrell [G160] 
pair-distribution function correction

Green and Leckey [Gr76]

Semi-empirical Outer Shell Ex. [Re76] Shimizu et al. fSh79l
Semi-empirical Outer Shell Ex. [Sh78] Shimizu [Sh78]

Adesida et al. [Ad78, Ad80]
Empirical: fex i^E )  = e-A^/4 Newbury et al. [Ne80]

Murata, Kotera and Nagami [Mu80] 
Spalek [Sp82]
Shimizu et al. [Sh75]

Empirical; /^ (A E ) = C I{A E f Salvat and Parallada [Sa84a, Sa84b] 
Liljequist [Li78a]
Liljequist et al. [Li78b]
Spalek JSp82]

Ashley and Ritchie Plasmon Ex. [As70] Terrisol and Patau [Ter78] 
Hamm et al. fHa79]

Ritchie Plasmon Excitation [Ri59] Green and Leckey fGr76]
Aiyama Plasmon Excitation fAi74] Sheldon and Ogilvie fShe80]
Quinn Plasmon Excitation [Qu62] Shimizu et al. [Sh76] 

Shimizu [Shi80]
Plasmon Excitation by CDCM Ganachaud and Cailler fGa79]
Pines Surface Plasmon Excitation [Pi63] Sheldon and Ogilvie [She80]

Table 2.10: Treatments of Atomic Excitation in Monte Carlo Electron Transport 
Codes
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Free Electron Cross Section Monte Carlo Authors
M0 ller cross section Terrisol and Patau [Ter78] 

Murata, Kyser and Ting [Mu81] 
Berger [Be63]
ETRAN [Be68]
ETRAN (SANDYL) [Co74] 
Vande Putte [Va74a]
EGS [Fo78, Ne85]
Mæhlum and Stadsnes [Mæ67]

Table 2.11: Free Electron Collision Cross Sections Used in Monte Carlo Electron 
Transport Codes

One common technique uses accurate cross sections for different components of 

the atomic structure (such as inner shell ionization) which are important to the 

calculation (primarily this would include inner shell ionizations if the decay products 

are of interest and delta-ray production if knock-on secondaries are important) and 

switches to empirical or approximated models for other, less important components 

within the same model. The overall result is then adjusted to agree with experiment 

in some way, most commonly by forcing agreement of the model’s stopping power 

with the semi-empirical Bethe stopping power. For instance, Gryzinski’s cross section 

may be used to model inner shell ionizations, MpUer’s cross section for scattering from 

the free electrons, and one of the empirical models, with the stopping power term 

reduced so as to reflect the losses due to the explicitly treated scattering types, as in

-  y  A E  [<rc(AE) 4- aA/( AE)] d(A E) (2.103)
dE dE
dx red dx exp

Several such adjustments have previously been reported. The first involves using 

the Gryzinski excitation model for the inner shells and then lumping of all outer 

collisions into a single subshell with an empirical binding energy E[ [Sh76, Ad78,
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Ad80] which is determined so tha t

(TG{AE)AEd{AE) = ~  -  T  rC  I  (TG{AE)AEd{AE).
e.r> inneftheiu "/

(2.104)

Other models use one of the empirical distributions discussed earlier to model excita

tions. Some models simply define a stopping power equal to the left side of equation 

2.104, which they apply in a non-single scattering mode [Ic80, Re76], as explained 

in chapter V.

Models which do not rely on the experimental stopping power values range from 

the simple, modeling only ionization processes for all shells, to the complex, using one 

or another of the ionization models, DIMFP calculations for the valence excitation 

description, and including plasmon scattering [Ak80, Ga79, Gr76, Ha79], and have 

met with varying degrees of success. As stated earlier, because of the unavailability 

of a closed formed technique for determining differential inverse mean free paths from 

dielectric constant data, this more complex technique was not modeled in this work.

2.3.4 E xperim ents U sed in Evaluating Single Inelastic Scattering Cross 

Sections

A great body of literature has arisen in attempts to define the cross sections for 

every conceivable transition for every atom. Thus, although it would theoretically 

be possible to collect all published experiments and compare results for each possi

ble interaction, it would not in any sense be practical for a single investigator. The 

alternative of collecting all experimental data, summing over the losses due to all 

transitions and comparing this with excitation distribution functions also seems im

practical. Thus, identifiable errors in the excitation loss distribution functions are be 

expected to show up only in macroscopic experiments, such as energy distributions
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Authors Element Z Energies (keV)

Davis et al. [Da72] 47,79 20 -  140

Jessenberger and Hink [Je75] 28 E k  — 50

Platten et a l [P185] 14 4 - 1 0

Table 2.12: Single Ionization Experiments

of transm itted or backscattered electrons. And so for the case of excitations, what 

can actually be evaluated are not individual cross sections by comparison with single 

scattering experiments, but complete models of inelastic scattering, by comparison 

with macroscopic data. Therefore, the evaluation here is limited to ionization cross 

sections, for which a large volume of single scattering data is available, and complete 

inelastic scattering models, which are evaluated based on the conclusions about kilo

volt energy range stopping power discussed in the next chapter.

Ionization experiments in the kilovolt energy range have been summarized re

cently (for K shells) by Casnati et al. [Ca82], and that summary is not repeated 

here. The experiments selected for the comparison in this section are given in table 

2.12.

2.3.5 E v a lua tions and  C onclusions

The modified Mpfier, Scofield, Pressa and Newell, Kolbenstvedt, Arthurs and 

Moiseiwitsch, Gryzinski and relativistically corrected Gryzinski cross sections were 

used for the ionization cross section comparison. Preliminary results showed that 

the Arthurs and Moiseiwitsch cross section, because of the limited data available for 

evaluating their S  function, would not be applicable over a wide enough range of
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energies to be useful. The Scofield formalism presents a similar problem, but only at 

energies very near the thresholds, and since the results are generally good at higher 

energies, they are included in the evaluation. The Mpller cross section, because it 

describes only close collisions, was found inappropriate for modeling inner ionization 

cross sections in most applications, but was included for reference. Also, it was 

noted that as the theoretical cross sections typically underestimated experimental 

data, and since the relativistic correction to the Gryzinski cross section was found 

to increase tha t cross section in the range of 5 to 20%, this corrected form of the 

Gryzinski evaluation was applied throughout the analysis.

Thus, results of the evaluations of the Kolbenstvedt, Pressa and Newell, Mpller, 

Scofield and relativity corrected Gryzinski cross sections are plotted in figures 2.10 

through 2.13.

It is seen tha t a t energies much greater than the binding energy, all of the four 

cross sections provide roughly equivalent and quite reasonable results, throughout 

the range of atomic numbers and into the L shell. At energies near the threshold, 

the Kolbenstvedt cross section over estimates the cross section for all Z, and the 

Gryzinski cross section, even with the relativistic correction, greatly underestimates 

the cross section. The paxameterizations of Pressa and Newell and of Scofield provide 

similar data, except for the Gold L  shell case, in which instance the Scofield data more 

closely models the experimental data. Results from other calculations not modeled 

against experiment suggest a general relation between the two paxameterizations 

in which the Pressa and Newell data is slightly greater than Scofield’s results near 

K  shell thresholds (by roughly the same fraction for all elements), less than the 

Scofield data neax L  shell thresholds (more pronouncedly so for higher Z  elements), 

and roughly equivalent to  the Scofield numbers for all shells and elements a t energies
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much greater than the thresholds.

Since no discrete transition excitation cross sections are examined here, the exci

tation models employed in this work can be evaluated to a  limited extent, and then 

only based on comparison of the energy loss per pathlength tha t they predict as 

(parts of complete models of inelastic scattering) with experimentally derived stop

ping power data. These evaluations are discussed in Chapter VI, in which complete 

single inelastic scattering models are constructed and evaluated.

2.4 Brem sstrahlung Cross Sections

According to  classical electrodynamics, a  charged particle which is somehow ac

celerated must emit radiation. As the deflections resulting from all electron scatter

ing collisions constitute accelerations, a bremsstrahlung photon is emitted with unit 

probabihty in all electron collisions [Ja75]. W hat shall be used here to  distinguish 

bremsstrahlung collisions from ‘ordinary’ colhsions is the energy of the emitted pho

ton. In most instances, the photon carries an experimentally undetectable amount of 

energy, and the effects of the bremsstrahlung process may be ignored. However, it is 

possible for a  scattered electron to a generate photon with as much as the complete 

energy of the incident electron. These ‘hard’ collisions will be treated separately as 

bremsstrahlung interactions. Interactions with both nuclei and atomic electrons give 

rise to brem sstrahlung photons, although electron-electron interactions are far less 

likely to produce such energetic photons.

Recently, Seltzer and Berger summarized the available cross sections with an 

emphasis on their application in Monte Carlo electron transport calculations [Se85]. 

Therefore, a  detailed comparison of theoretical and experimental results similar to 

tha t presented in the previous sections in this chapter will not be given here, but
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instead the conclusions of Seltzer and Berger will be cited. A cursory review of 

the applicable cross section formulations will be presented, however, with emphasis 

on the analytically determined validity conditions and the computational aspects of 

evaluating those formulations typically used in Monte Carlo transport calculations. 

A list of pertinent experiments, most of which were used in the evaluation by Seltzer 

and Berger, is included for completeness.

2.4.1 Sum m ary of Current Theories

Two review articles form the basis of this brief survey. The first is a general 

survey of early efforts in this area, categorized according to  the approximations em

ployed [Ko59], and the second, Seltzer and Berger’s grouping based on applicability 

at various energies ranging from 1 keV to  10 GeV [SeS5]. As with the case of elastic 

scattering, in the energy range of interest here, the two main classifications of electron 

bremsstrahlung cross section formulations are those employing the first Born approx

imation and those using partial wave expansion methods. A third, smaller, group 

of analytically ponderous derivations based on an unscreened, non-relativistic dipole 

approximation with Coulombic wave functions has been found useful in deriving non- 

relativistic corrections to the Born cross sections [So31, E139]. Other applications 

of the dipole approximation method are restricted to the extreme relativistic range, 

and are not cited here.

Unlike the other differential scattering cross sections examined in this chapter, 

the bremsstrahlung cross section is most easily calculated in the matrix formulation 

of quantum mechanics, in which cross section is given in terms of a particular matrix 

element which is dependent on the incoming and outgoing wave functions of the
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electron and the direction of the photon polarization. This yields

a(Z , E , k, fie, fip)dWfiedfip =  f e ! ^ o P i | ^ | 2  (2.105)
{^Trp E l

in which E  is the electron energy and p its momentum with the subscripts 0 and 1 

referring to before and after the collision, k is the photon energy, f i g  the electron and 

f ip  the photon final direction, and M  the bremsstrahlung matrix element, given by

M  = J V»i*€Ae-‘*"^odr. (2.106)

In 2.106, 0  is the standard 4 element Dirac electron wave function and €\ a  unit 

vector in the direction of the photon polarization. Obviously, solving for the cross 

section consists of evaluating the matrix element, which, in turn, primarily involves 

solving for the initial and final wave functions describing the incident electron. As 

with all previously examined cross section derivations, two solution methods predom

inate. Indeed, Seltzer and Berger Hmit their discussion to first Bom approximation 

calculations mainly attributable to Bethe and Heitler [Be34] and to  recent partial 

wave calculations of P ratt and co-workers [Ts71].

Bethe and Heitler [Be34] solved 2.106 in the Born approximation to yield a so

lution for the triply differential cross section. Obviously then, their results will be 

limited by the same conditions as other Born cross sections, typically olZ / ^  1.

Their results (and the results of others using similar approximations) have been well 

summarized by Koch and Motz [Ko59], who use a system for classifying cross sec

tions based on the degree of integration over the totally differential cross section, 

with the number 1 signifying triply differential, 2  meaning integrated over electron 

angle, 3 integrated over electron and photon angle and 4 integrated over all variables, 

the total cross section; the letter B to signify that the Born approximation has been 

employed; and a  letter N or S denoting whether or not screening was included (S
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for screening, N for no screening). The formulae most widely cited for use in Monte 

Carlo codes are those labeled 3BS and 3BN by Koch and Motz. The expression 3BS 

was derived in the extreme relativistic limit, and so should be of limited utility for 

the present application, although it have been widely used in Monte Carlo electron 

transport codes [Fo78, Co74] at low energies. Its form is given by

<r,Bs(k)dk =  | | l  +  ( ^ )  -  J

3W i V 4

in which W  represents the total energy, E  +  mc^.

(2.107)

4 i ( . S )  =  4 j f '(5 -  S f ( l  -  F ( q ) f ^  +  4 + 1 In Z, (2.109)

and

<S>2{.̂ ) ~  ^  Jg ~  ^  — 46^^ (1  — F { q ) y +  —  +  — In Z (2 .1 1 0 )

in which F{q) is the  atomic form factor defined in equation 2.19 of section 2 of this 

chapter. Nelson et al. [Ne85] have used Thomas-Fermi form factors which lead to 

approximate forms of the functions <f>i and given by

(i>i{8') = 20.867 -  3.2426' +  0.625(6')^ if 6 ' <  1,

=  21.12 — 4.184 In (6 ' +  0.952) otherwise.
(2 .111)

and

(2.112)
(i>2{8') =  20.029 -  1.9306'+ 0.086(6')^ if 6 ' <  1,

=  21.12 — 4.184 In (6 ' +  0.952) otherwise, 

in which 8' =  1.36 8. An empirical correction factor, based on interpolation of various

plots from Koch and Motz of cr^xplasorn-, is included to enhance accuracy at energies 

below 50 MeV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

The other widely cited Born expression (Koch and Motz 3BN), which does not 

include a screening correction, is given by

6l€o . r \ s w i W i  . (A')"((W2 )^(W ir +  (p{,) V ) " )

Cl

PaPi 1.3 p'op[ (Po)®(pi)®

k ' ( W 'W j + ip '^f W 'W j + {p [ f 
»oPi V (Po)® (pi)®

' o W i y J l i

2poPi

(Po
(2.113)

where
'W 'W j + p ' ,p [ - l

i  =  2 1 n Cn
- - m yk'

and the primes imply energy quantities in units of mc^ and momentum variables in 

terms of me. This cross section is used in all but the latest versions of ETRAN and 

its descendants in conjunction with several energy dependent empirical corrections 

to improve its accuracy. As in the case of elastic scattering, the lack of inclusion of 

screening restricts the validity (in theory) of this unscreened cross section to cases 

in which >• [W oW ijkm c^) holds.

In practice, this cross section (3BN) must be corrected to account for screening, 

and both 3BN and 3BS must be corrected for low energy discrepancies caused by the 

lessening validity of the Born approximation a t low energies. A screening correction 

derived by comparing results of the 3BS formula with and without form factors has 

been used previously at higher energies [Se89]. Corrections for the Born approxima

tion are typically called ‘Coulomb corrections’, with the most widely cited being a 

multiplicative correction due to Elwert [E139], valid at non-relativistic energies. This 

factor is based on a comparison of non-relativistic Born approximation results with
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non-relativistic Sonunerfeld results [So31] derived for interactions in the Coulomb 

field of the nucleus and is given by

f  A) [1 ~  exp{-2TrZalA))] fo lu 't
“  A  [1 -  e x p ( - 2 7 r Z a / A ) ]   ̂ ^

where again the subscripts 0  and 1 refer to the initial and final electron states and a  is 

the fine structure constant. This correction is most applicable in the region o fk -^ E o  

(the ‘tip’ region). Even with screening and Coulomb correction terms, empirical 

correction factors are usually used with these cross sections at lower energies [Co74].

Tseng, P ra tt and co-workers, in a  series of papers (including particularly [Ts71, 

Ts74, Pr77, Ts79, Ki81, Pr81a, Pr81b, Ki83] ) have reported the results of their 

investigation of the problem of nuclear bremsstrahlung using partial wave expansion 

series for the electron wave functions, which they obtain by numerical integration of 

the radial Dirac equation, using a relativistic Hartree potential. Errors are conser

vatively expected to be in the range of 5 to 10 %, but possibly higher a t energies 

around 1 keV for very low Z materials [Se85].

The singly differential cross section data [Pr77, Pr81b] consists of tables of the 

scaled cross section,

k cr(Z, E , k)dk

as a  function of the initial electron energy E  at 20 points between 1 keV and 2  

MeV, and the output photon fractional energy k jE  at 12 points ranging between 

0 and 1 for elements with atomic numbers 2 <  Z <  92. The actual calculations 

were performed only for elements of atomic number 2, 8 , 13, 47, 79, and 92, and 

interpolative techniques then employed to fill the tables. For the current work, tables 

were constructed extending through all 12 k jE  values employed by P ra tt et a l, but 

only through 12 of their energy points (those lying between 1 and 500 keV) and at
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atomic numbers 3, 13, 24, 47, 79 and 92. These were chosen to incorporate P ra tt’s 

data at a  few materials of interest to certain medical physics applications. Cross 

sections for other materials are interpolated or extrapolated as needed. P ratt et al. 

have also published tabulated data of ‘shape functions’ S (Z ,E ,k ,9 k )  [Ts79, Ki83], 

which they define as

=  (2.U5)

They have parameterized their results in the form

S ( Z , E , k M d S l k  =  p B , ( , Z , E , k ) P , { c c ^ e ) ,  (2.116)

and they present data for the coefficients A  and Bi for elements 2, 8 , 13, 47, and 

92 at electron energies of 1,5, 10, 50, 100 and 500 keV, and at fractional photon 

energies ( k /E )  values of 0.0, 0.6, 0.8, and 0.95. In the present work, cross sections 

for other elements are determined by interpolating or extrapolating the expanded 

shape function values (as opposed to  the coefficients) as needed.

2.4.2 Cross Sections U sed by Previous Investigators

At energies being considered here, bremsstrahlung scattering is a  low probabil

ity occurence. Nevertheless, in certain applications it is of paramount importance, 

and so has been treated by several authors. A table summarizing the treatment of 

bremsstrahlung by previous Monte Carlo investigators is given in table 2.13.

The citations listed in table 2.13 use expressions only for the cross section which 

are differential only in photon energy, a{k)dk. Models for the angular dependence 

of the photons are given in table 2.14. Only one model has gained widespread, 

and it assumes that all photons are emitted with a constant angle. This is a poor 

approximation in the kilovolt energy range, as seen from figure 2.14, taken from
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Bremsstrahlung Cross Section Monte Carlo Authors
Bethe-Heitler (Koch 3BN) [Ko59] 
w/ Elwert Correction

ETRAN et aL [Co74, Se89] 
Kulkarni and Supe [Ku84] 
Sundararaman et al. [Su73]

Bethe-Heitler (Koch 3BS) [Ko59] 
and Thomas-Fermi Form Factors

EGS [Fo78, Ne85] 
GEANT fBr87l

Pratt [PrSlb] ETRAN [Se89]

Table 2.13: Bremsstrahlung Cross Sections Used in Monte Carlo Electron Transport 
Codes
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Figure 2.14: Angular Distribution of Emitted Bremsstrahlung Photons

[Ts79]. Typically, electrons are assumed to not be deflected, an assumption which is 

valid only at relativistic energies.

2.4.3 E lectron-Electron Brem sstrahlung

Electrons scattering from atomic electrons may also give rise to bremsstrahlung 

photons. At very high energies, the singly differential cross section is of nearly the 

same shape as that for nuclear bremsstrahlung for unscreened point charges (and
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Photon Angular Dependence Monte Carlo Authors
0 — m<?l{Eo + mc^) ETRAN et al. [Co74, SeS9] 

GEANT [Br87]
EGS [Fo78, NeS5]

Table 2.14: Models of Bremsstrahlung Photon Angular Dependence Used in Monte 
Carlo Electron Transport Codes

thus having a  difference given by a  ratio of 1 /Z  for Z  >  1 ). At low energies, several 

effects combine to cause the electron-electron bremsstrahlung cross section to deviate 

significantly from the nuclear cross section. First, the maximum energy of the emitted 

photon, which is limited for electron scattering by kinematics, deviates significantly 

from its maximum value (Eo, for f i —*oo) and approaches its minimum value, Eo/2 

for /? —> 0. Second, the binding energy of the atomic electron becomes significant 

compared to the incident electron energy. Collisions with bound electrons have been 

examined by Haug and Keppler [Ha84] who have shown tha t for a  given energy 

loss by the incident electron, colhsions with the inner, more tightly bound electrons 

produce broader and less sharply peaked spectra than collisions with less tightly 

bound electrons. Their results are restricted to transfers to the target electron which 

are much greater than the binding energy, however. Third, the cross section vanishes 

at very low energy because of the lack of a dipole moment in the electron-electron 

system. Lastly, the effects of nuclear screening and electron screening differ more 

greater at lower energies.

The theory of Haug [Ha75] is almost universally used in Monte Carlo simula

tions to describe electron-electron bremsstrahlung. His first Born approximation 

calculation is derived to describe the scattering from free electrons, and thus ignores 

both binding and screening effects. Haug has analytically integrated over his Born
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expression for the fully differential cross section

PuP'i, fiei, fie' )dkdpidp[dfitdfig,dfi^/

(here the primes refer to the target electron and momentum and energy variables are 

expressed in m e a t m<? units, respectively), yielding for the doubly differential cross 

section

<T(k,ek)dkdek =  ^  —  \ / 4 ^ -  f A d ü ,,d kd ü . (2.117)IT ( J j p  ur — 4: T J

In this expression, the term  A  is function of the momenta of the three particles [Ha75] 

and p and w are defined by

w" =  2 (poPo +  l )  (2-118)

/  =  2 (piP i +  l )

=  2  [poPo “  k{po +  Po) +  1 ]•

Haug has evaluated 1 /tt /A  dfig^, but the expression he gives for this term  is lengthy

and is not repeated here (it can be found in the appendix of Hang’s article). The

singly differential cross section can be obtained by numerical integration of 2.117.

A non-relativistic cross section has been reported by Fedyushin [Fed52] and 

Garibyan [Ga53] in the form

=  (2.119)

in which the function F  is defined by 

F{x) = 1 7 -
/------ 1 2 ( 2  -  x Y  -  l x \ 2  -  x f  -  3 x \  1 + y / r ^

 (2 3 1 ) 3 -----------------

(2 .120)

and in which energy and momentum quantities are given in terms of the m<? and m e 

respectively. Haug notes tha t evaluation of this expression yields results identical to 

his for electron energies up to 20 keV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

Seltzer [Se89] reports a  method in which screening is taken into account by means 

similar to  th a t used for the nuclear screening correction. In this case, incoherent 

scattering functions, S(Z ,  v), are used to describe the electron screening, based on the 

theory of Wheeler and Lamb [Wh39]. These functions have the effect of decreasing 

the cross section except for high Z materials and high momentum transfers.

Ratios of the electron to nuclear bremsstrahlung cross sections are given in figures 

2.15 through 2.17, in which electron bremsstrahlung is described by the theory of 

Haug (without the incoherent scattering functions, which would decrease the cross 

section anyway) and the nuclear process by the result of Tseng et al. The electron 

cross section results presented in the figure have been multiplied by Z  to reflect the 

presence of the atomic electrons. It is seen that the bremsstrahlung cross section 

for the production of energetic photons is less than 1 % of the nuclear cross section 

for almost all energies and atomic numbers below 100 keV. The only exception is 

for low atomic numbers, high projectile electron energies, and relatively low photon 

energies, in which case the ratio approaches 3% or so. On the basis of these results, 

electron-electron scattering is not treated in the present work.

2.4.4 Experim ental D ata Base

A fist of relevant experiments (those conducted in the energy range from 1 to 100 

keV) is presented in table 2.15.

2.4.5 M odels U sed in th e Current Work

Clearly, the calculations and tabulations of P ra tt and co-workers are the most ap

propriate for use in the current work for describing electron-nuclear bremsstrahlung, 

and so are exclusively employed here. Additionally, the angular distribution of
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Figure 2.15: Ratio of Electron to Nuclear Bremsstrahlung for Aluminum
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Figure 2.16: Ratio of Electron to Nuclear Bremsstrahlung for Copper
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Figure 2.17; Ratio of Electron to Nuclear Bremsstrahlung for Tungsten

Elements Energy (keV) Author

6 -7 9 25, 34 Amrehn [Am56]

6 -9 2 50, 75, 100 Ambrose et al. [Am87]

36, 54 6 , 8 , 10 Aydinol et al. [Ay80]

2 -9 2 2.5, 10 Hippier et al. [Hi81]

13 34 Kerscher et al. [Ke55]

13, 79 50 Motz and Placious [Mo58]

13, 29, 47, 79 50, 100 Quarles and Heroy [Qu81]

10, 18, 36, 54 6  - 1 0 Semaan and Quarles [Se81]

1 0 -8 0 6 , 6.5 Semaan and Quarles [Se82]

Table 2.15: Experiments used in Evaluating Bremsstrahlung Cross Sections
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bremsstrahlung photons, which is clearly not a  delta function in this energy regime, 

is modeled by employing the doubly differential cross section section, through use 

of the shape functions of Kissel. Finally, the angular distribution of the incident 

electrons is assumed to  be given by the elastic scattering cross section, regardless 

of the energy of the emitted photon. This assumption is based on the fact tha t 

as the photon energy approaches zero, the shape of the electron angular scattering 

distribution does in fact equal the elastic scattering shape [Ts79].
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CH APTER III

EVALUATION OF CUMULATIVE  
SCATTERING DESCRIPTIONS

This chapter evaluates cumulative scattering descriptions pertaining to predic

tion of the energy loss and angular deflection of electrons passing through a finite 

thickness of a  given material. The goal is to make statements about the range of 

validity of the various formalisms with respect to incident electron energy, target 

atomic number and electron tracklength. The methodology of the evaluations in the 

sections of this chapter are laid out analogously to those in the preceding chapter on 

the evaluation of single scattering cross sections. First, the relevant analytical and 

numerical techniques for determining cumulative scattering distributions are exam

ined, and an attem pt is made to predict the various ranges of validity based on the 

physical and numerical assumptions underlying the derivations. Previous investiga

tors’ use of cumulative scattering descriptions are then surveyed. Next, experiments 

to be used in evaluating the numerical results of the various theories are hsted, 

and finally the results of the comparison of numerical and experimental results are 

presented, thus predicting the the ranges of validity of the various distributions.

105
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3.1 Energy Loss Using the Continuous Slowing Down Ap
proximation

The most widely used method for describing the energy loss of an electron as it

traverses a given track length is by use of the continuous slowing down approximation.

In this technique energy loss is considered to occur continuously along the electron

path, at a rate dependent on the nature of the medium and the electron energy.

Such a treatm ent seems reasonable since the distance between individual colhsions

resulting in some energy loss is small compared with the typical material thickness
dE

being investigated. If the rate  of energy loss is given by — t hen the total energy 

loss in traversing a given material thickness s is then given by

dE
A E =  f 'd s '  

Jo dx
(3.1)

d E  .
Note tha t since the electron loses energy as it moves, the derivative is negative.

The stopping power of the medium is defined in units of energy loss per tracklength,
dEand so is a positive quantity given by — Several formulations of the stopping
dx

power are examined here.

3.1.1 The Bethe Formula for Collisional Losses

If a{E\ Q) is the cross section for electrons with initial energy E  which lose energy 

Q in a single collision, then the stopping power is given by

~ ^ =  r  Na(E-,Q )Q dQ . (3.2)
dx */o

Bethe [Be32] has evaluated this expression by dividing the integral into high and low 

energy transfer regions, delimited by some energy transfer Qo yielding

_ d E ^  ^  ^  Q  (3  3 )
dx Jo JQo
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Qo is chosen large enough such tha t the target electrons can be considered to be free 

for the purposes of modeling energy transfers greater Qo. This allows substitution of 

the M0 ller cross section for cr(E; Q) in the high transfer regions to give for the high 

energy transfer portion

J^^dQ N a(E ]Q )Q  =  d Q Q [ ^  + ê - q)‘̂ +  (t+i)2 q(e - q) +  (g+lc^):]

Note tha t because the M0 ller cross section was derived under the assumption that

the two ejected electrons are indistinguishable tha t the maximum energy transfer is

E[2, and tha t t  is given by E/nK?. For the low energy transfer portion, Bethe uses

the fact th a t energy transferred to the atom must coincide with excitation of discrete

electron energy levels to rewrite the the first integral of 3.3 as

f E  . f Q o

n = 0  J Q m i n

where cr„(F; Q) represents the differential cross section for an incoming electron of 

energy E  losing energy Q and exciting the atom to state n. As seen in chapter II, 

the differential cross section is often written as

where F„ is the inelastic form factor and q represents the momentum transfer when 

a free electron at rest which absorbs energy transfer Q. In a correct relativistic 

treatment, the expression for dcr„ should be [Fa64]

<^ndQ =  {q2(1+Q/2Lc2)2 +  lQ(l+Q/2j^)-{En-Bo)^/2m<?f }

where the second term in this expression represents a contribution due to the emission 

and reabsorption of virtual photons, and Pt is proportional to the component of the

r d Q  Na{E-, Q )Q  =  <r„(E; Q)dQ.  (3.5)
jQo  • 'Q m in
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incident electron velocity vector perpendicular to the momentum transfer direction. 

In evaluating this cross section under the condition of low Q, the inelastic form factor 

can be approximated by

K ( , ) l "  =  (3 7)

and the virtual photon exchange term  as

IAO„(4)f = (3 8)

where /„  is the dipole oscillator strength. The dipole oscillator strength, /„ , is closely 

related to the generalized oscillator strength fn{K ) discussed in chapter II, and is 

in fact the hmit of fn{K )  as > 0. For the sake of convenience, throughout this 

chapter the dipole oscillator strength has been normalized so that

OO
=  1-

n = 0

The cross section can finally be expressed as 

2t N b̂ Z  /„
mv^ -  Eo 

where cos^ ^  is defined as

(3.9)

and where the minimum energy transfer Qmin is given by {En—Eo)/2mv^. The angle 

rp is the angle between the incident electron and the momentum transfer. Equation

3.5 can be evaluated to yield

Na{E; Q )Q  = in _  ^2 _  2  £  ln(F„ -  Eo). (3.11)
JQo  m v ^  I -

Bethe now defines a quantity 7, the mean ionization potential, as

OO

l n 7 = ^ / n l n ( E „ - E o ) .  (3.12)
71=0
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Combining 3.4, 3.11, and 3.12, Bethe arrives at

“  ^  +7 -  "= 3 + i  ( 7 ^ -  (313)

In evaluating this expression, the parameter I  is taken from fits to experimental data. 

For this work, values are talcen from the compilation supplied by Berger and Seltzer 

[Be82].

Because of the interaction between the atomic electrons of the constituent atoms 

in compounds, simple weighting by the mass fraction (usually referred to as Bragg 

additivity) is not always accurate. In this work, a prescription devised by Berger 

and Seltzer [Be82] in which the constituent mean ionization potentials are multiplied 

by 1.13 before weighting is used. Berger also suggests the use of a  separate set of 

ionization potentials when certain elemental gases are found in gaseous compounds 

and yet another set when these elements are found in condensed media, but this 

approach is not used here.

Often in Monte Carlo calculations it is desirable to know the stopping power for 

collisions resulting in energy transfers less than a given value which Hes between 

E /2  and Qq. In order to  calculate this quantity, called the restricted stopping power, 

is substituted as the upper limit in the integral over the MpUer cross 

section. If we define =  Q r/E , we have for the restricted stopping power

2 i r N e ^ Z ,  E m v ^  , o 2 , T= ^  ,

ln (l — tr) +  ln[4cr(l — Cr)] +  - (3'14)
(r-F 1)2  ̂  ̂  ̂ i 1 -  e

T he D en sity  Effect

As first shown and quantified by Fermi [Fe40], the cross sections used above in the 

derivation of the formula for the stopping power assume incorrectly th a t the polarized
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electric field of a  condensed media target does not perturb the field of the impingent 

particle. In some cases this perturbation (called the density effect) is found to cause 

a  significant decrease in the stopping power of the medium. Stemheimer [St52, St56, 

St6 6 ] has developed a model based on a quantum electro-dynamical model of the 

projectile-target system which is in general use. In Sternheimer’s formulation the 

change in the stopping power is given by

 ̂dE 2irNe^Z
(3.15)

dx mv^

In this expression /,• is the oscillator strength of the ith  transition and /,• is defined

as
1/2

(3.16)h =  p ?  +  g /i

where i7,- is frequency i/« associated with the ith  transition divided by the plasma 

frequency of the media, i/p, which is defined aa in chapter II as (neC^/Trm)^/^. The

final component of 3.15 is a frequency I which is the solution to

=  (3.H)

In evaluating these expression, the energies hu, corresponding to the frequencies i/,- 

are given in a first approximation by the binding energies of the atomic subshells 

and the oscillator strengths /,• by the occupation numbers divided by the number of 

electrons. A correction for this crude approximation is provided by recalling that 

according to  Bethe’s definition of the mean ionization potential I ,  we should find

l n /= :^ / . ln / i i /p / i .  (3.18)
i

We introduce a  correction to the P,-,

f/i =  fist—  (3.19)
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such that if this new expression for P.- is used in th  e definition of then 3.18 holds. 

Compounds are treated by considering all atomic subshells of all constituents as 

being part of a  single system.

A parameterization of calculated values of the density effect correction has been 

presented by Stemheimer and Peierls [St 71] and Stemheimer, Berger and Seltzer 

[St84], but has been found to be somewhat inaccurate, and so throughout this work 

values for S, the term in the brackets of equation 3.15, are calculated by the method 

described above. Treated are shells K  through O in their entirety, and subshells P —I  

through P —V  and Q—I  through Q—I I .  The values of the binding energies are taken 

from [Ca75] and the occupancy of the shells is assumed to be regular, except for 17 

elements whose shells are considered to be filled according to the prescription found 

in [Le59].

For the case of conducting materials (in the present work, all (and only) solid, 

single element materials are considered conductors) the conduction electrons must be 

treated specially [St56]. The conduction electrons are assumed to be completely un

bound but to be responsible for energy loss through plasmon excitation, as described 

in chapter 2. If j  represents the total number of oscillators (including the plasmon) 

then the transition frequency for the plasma oscillator, t/j is taken to  be zero and 

the strength /y, given by the number of conduction electrons divided by the total 

number of electrons, is taken to be simply the normal valence number (divided by 

Z)  for the element as given in [We85]. Additionally, the factor 2/3 in Ij is replaced 

by unity. Thus for conducting materials the correction factor pat is given by the 

solution of

r 9 1 ̂ /2 /
In /  =  ^  /.• In [ifiaihuif + + f j  (3.20)

This equation is solved numerically by the régula falsi technique. Stemheimer claims
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Figure 3.1: Fractional Density Effect Correction vs. Energy

that the correction can be described physically as taking into account excitations 

(ionizations) of bound electrons into continuum states involving energies greater than 

the absorption edge energies (the kvis). For insulators (in which Vj ^  0) it is seen 

that there is no non-zero solution for I in equation 3.17 a t velocities less than 

given by

A  =
1 /2

(3.21)

and so S is taken to be zero a t all energies such tha t v /c <  /%.

Values of ( A ^ ) / ^  calculated from this method are given as a  function of energy 

in figure 3.1 for several elements. It is seen that the correction decreases a t low 

velocities, due to the fact th a t the use of experimentally determined values of I  in 

the stopping power formula already accounts for the density effect at low energies, 

so that a t all energies pertinent to this work, the effect is negligible.
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F lynn’s C orrection at Low Energy

It is apparent from equation 3.13 tha t in the limit of /? —» 0 the stopping power 

wiU become negative as E  becomes less than roughly For high Z materials,

this cutoff occurs a t energies in the range of a few keV. As this is in conflict with 

experiment and theory, some correction must be made in order to apply 3.13 in 

the present work. Rather than appearing as corrections to derivation of the Bethe 

formula, most low energy treatm ents of stopping power are based on either empirical 

formulations or the complex dielectric constant method. One work, however, a  semi- 

empirical correction due to Flynn [F176], is applied as a correction to the ionization 

potential. Flynn rewrites the expression for the ionization potential 3.12 as

f 2 f n H ^ n - E o )

In I f  =  ^ ------------- (3.22)

Z A
n = 0

where n' presents the highest kinematically allow excited state and notes tha t for 

high velocities n ' —» oo. He then rewrites this expression as an integral and assumes 

an oscillator strength of the form

f{ E )  = (3.23)

and takes the integral from 0  to Qmax- k  order to generalize the expression for all 

elements, Flynn assumes the form of / /  proposed by Bloch, I f  = Zip in the expression

for f (E ) .  After substituting this into 3.22 and integrating and then examining the

result at high incident velocities, Flynn shows that his expression for I f  reduces to

In / /  =  In Zip  -f 1 — 7  =  In /  (3.24)
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where 7  is Euler’s constant and I  is the experimentally determined ionization poten

tial. This gives an expression for the low velocity ionization potential of

l n / /  =  l n / - | - 7 —1-f f ( x )  (3.25)

where x = Qmax {Zip  and

A 4  =  (3.26)

in which Ei{x)  is the exponential integral function. The function f{ x )  is the exact 

form of the integral of 3.22, and reduces to 1—7  a t high velocity. At this point three 

semi-empirical corrections are added. First, as the binding energy of the electrons 

will reduce the value of Qmaxi it is arbitrarily reduced by a  factor of so tha t 

X =  Qmaxllo- Second, as the actual value of Qmax wiU fluctuate because of the 

distribution of atomic electron velocities, a term g{x) is added to the expression for 

In I f  of the form g{x) =  Ae"®. It can be shown that in order to maintain consistency 

at low velocities tha t A = 3/2 — 7 . Finally, Qmax is adjusted in order tha t the 

stopping power be zero a t zero velocity. We depart here somewhat from Flynn and 

note tha t this assumption requires

=  (3.27)

dEin order tha t — —  as given by 3.13 approach zero at zero velocity. We are finally 
dx

left with a correction to the ionization potential of

In /y =  In /  +  7  -  1 +  ( |  -  7 )a -Q "-/"  +  K Q ^Â U l)-  (3.28)

Even though Flynn claims tha t his derivation has at its foundation the idea that 

the stopping power should be zero a t zero energy, it is actually performed under the 

assumption tha t the argument of the log term in the stopping power should approach
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Figure 3.2; Flynn’s Correction to Low Energy Stopping Power

unity. Numerically, this leads to  a situation in which the log term  approaches zero 

roughly at the same rate as the term  in the denominator of 3.13. Thus, the 

corrected stopping power of Flynn tends not to zero but to a constant value at zero 

energy. This effect does not manifest itself however until E  becomes less than a few 

eV.

Values of as a function of energy and atomic number are given in figure

3.2. It is seen tha t for high Z  materials, the Flynn correction starts to become 

appreciable around 3 keV. It is interesting to note that its magnitude is greater than 

100% for lower energies, and th a t it corrects the defect in the Bethe theory which 

predicts negative stopping power (positive at very low velocities.

3.1.2 E m p irica l S to p p in g  P ow er F orm ula tions a t Low E nerg ies

Several investigators have devised empirical formulations of the stopping power at 

low energies, and two often used examples are given here. Love, Cox and Scott [Lo77]
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used in a Monte Carlo investigation the following formula, which they attribute to 

Rao-Sahib and W ittry [Ra74], for electrons with energy less than 6.338 times the 

ionization potential:
dE  6.236 x 1 0 V  

A (£ J) '/Ï-  •

This formula is based on a simple, parabolic extrapolation of the Bethe formula so 

that the inverse of the stopping power becomes infinite a t zero energy. Note that 

this is somewhat at odds to the usual assumption tha t the stopping power tends to 

zero at zero energy.

The second widely cited empirical formulation of low energy stopping power is 

given by Kanaya and Okayama [Ka72]. From an empirically based derivation of the 

energy transfer cross section, they determine a stopping power given by

dE  , 3x2®/37raW °/3pJV„Z
-  &  =  m  T -

in which Ag is an empirically determined constant. No. is Avagodro’s number and a is 

the effective screened radius of the atom, .8853ogZ"^/^, with an  the Bohr radius of 

the hydrogen atom. From range data, Kanaya and Okayama have determined A, to 

be 0.182. It is noted again tha t in this approximation, the stopping power becomes 

infinite at small energies.

3.1.3 Stopping Power by C om plex D ielectric C onstant Technique

Stopping powers may be calculated in a way analogous to that used to determine 

the differential inverse mean free path as seen in Chapter II, using the complex 

dielectric constant. Following the derivation for the differential inverse mean free 

path by use of the complex dielectric constant, an expression for the stopping power
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can be written as
dE rE—Ep

— —  =  I d(hu>)hLiJT{E,U(jj) (3.31)
u»C */o

where t{ E , Ju v )  is the differential inverse mean free path of an electron for energy E  in 

the medium in question and is determined from the complex dielectric constant. As 

in chapter II, despite the success of this formulation in modeling low energy stopping 

powers, because of the absence of a suitable, universally applicable formalism, this 

technique was not pursued in this work.

3.1.4 M odels U sed  by Previous Investigators

Models of continuous energy loss or restricted continuously loss used by previous 

investigators working in the kilovolt energy region are given in table 3.1. Not surpris

ingly, the Bethe theory is the most widely used technique, because of the simplicity 

of its mathematical expression and its accuracy except at quite low energies and at 

high atomic number. Those investigators working at high Z  and/or low energy have 

been forced (or should have been forced) to employ other techniques. Techniques 

listed here which have not been examined generally involve empiricisms peculiar to 

an individual material.

3.1.5 S topping Pow er Experim ents a t Low Energies

Although quite a number of investigations of the scattering of transm itted beams 

of mono-energetic electron have been performed, in very few instances are the results 

reported in terms of the stopping power, since corrections for several important 

experimental effects must be made. Typically, electrons are passed through a thin 

foil and their emergent energies are measured and the average loss determined. The
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Continuous Energy Loss Treatment Monte Carlo Authors
Bethe theory Love, Cox and Scott [Lo77]

Murata, Kyser and Ting [MuSl] 
Reimer and Krefting [Re76]
Sidei et al. [Si57]
Ichimura et al. [IcSO]
Vande Putte [Va74]
Berger [Be63]
ETRAN [Be68]
EGS [Fo78, NeS5]
Henoc and Maurice [He76]
Green [Gr63]
Bishop [Bi67]
Murata et al. [Mu71]
Mæhlum and Stadsnes [Mæ67] 
Mukoyama and Watanabe [Mu77] 
Leiss, Fenner and Robinson [Le57] 
Hawryluk,Hawryluk and Smith 
[Ha74]
Shinoda, Murata and Shimizu [Sh68] 
Myklebust et al. [My76].
Kulkarni and Supe [Ku84]
Reimer [Re68]
Shimizu and Murata [ShTl] 
McDonald, Lamki and Delaney 
[McD71]
Matsukawa et al. [Ma73]

Bethe Theory with Plasma losses Gorelik and Rozin [Go72]
Rao-Saiiib and Wittry empirical [Ra74] Love, Cox and Scott [Lo77]

Kotera, Murata and Nagami [Ko81b] 
Murata et al. [Mu79a]

Kanaya and Okayama empirical [Ka72] Kotera et al. [Ko81a, Ko81b] 
Murata et al. [Mu79a]

Green and Peterson Empirical fGr68 ] Berger, Seltzer and Maeda [Be70]
Spencer-Fano Theory [Br69] Murata et al. [Mu79b]

Table 3.1: Continuous Collisional Energy Loss Treatments Used in Monte Carlo Elec
tron Transport Codes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

approximation th a t the foil is thin enough such that

d E   (A.E)ave
dx Sx

is then used to determine the stopping power. Obviously, many approximations 

have been made. First, a multiple scattering adjustment correcting for the actual 

electron tracklength (as opposed to the foil thickness) must be made. This correction 

is often as large as the measurement itself [A183]. Second, for low energies or large 

foil thicknesses, the electron slows appreciably as it passes through the target foil, 

and so the measured energy loss is actually the average loss over the initial and final 

energies, and not the instantaneous loss rate of the initial energy applied uniformly 

through the foil. Table 3.2 lists those experiments in which the results have been 

suitably corrected to  allow direct comparison with calculated values of the stopping 

power, for initial electron energies less than 100 keV.

3.1.6 Evaluations and Conclusions

The experiments of Al-Ahmad and W att were chosen for comparison with the

oretical calculations. It is hard to predict validity ranges strictly on the basis of 

approximations made in the derivations (the first Born approximation cross section 

is not expected to be accurate at low energies) because of the use of the empirical 

ionization potential.

Results of runs using the Bethe theory both with and without Flynn’s correction, 

as well as some CDCM results of Ashley are shown in figures 3.3 through 3.5. The 

semi-empirical expressions of Rao-Sahib and W ittry and of Kanaya and Okayama, 

because of their defect of predicting infinite stopping power at zero velocity, were 

not included.
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Authors Material (Z) Initial Energy (keV)

Al-Ahmad and Watt [A183] A1(13) 1 - 1 0

Ni (28) 2 - 1 0

Cu (29) 2 - 1 0

Ag (47) 3-10

Au (79) 4-10

Fittig [Fi74] A l(13) .8-4

Garber [Ga65] A l(13) .58-1.045

Hubbell and Birkhoff [Hu82] Al(13) 11-127 ■

Cu (29) 11-127

Ishigure et al. [Is78] Al (13) 2-10.9

Pugachev and Valkov [Pu79] A l(13) 40, 50, 60

Ag (47) 40, 50, 60

Au (79) 40, 50, 60

Table 3.2: Stopping Power Experiments in the Kilovolt Energy Range
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Figure 3.4: Comparison of Stopping Power Formulations with Experiment for Silver
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Figure 3.5: Comparison of Stopping Power Formulations with Experiment for Gold

It is seen tha t except for high Z  materials, the Bethe theory is sufficient, without 

correction, to describe the stopping power of electrons down to  1 keV. A problem 

is seen in the evaluation for gold. The experimental results appear to  agree quite 

well with the uncorrected Bethe theory. This is particularly worrisome because it 

comes after the maximum in the theory, at which point the theory is assumed by 

most authors to be incorrect. Scrutinization of the Al-Ahamad data shows tha t the 

same foil thicknesses were used for the high energy and low energy experiments, and 

that the multiple scatter correction is an order of magnitude greater than the foil 

thickness for the low energy cases. Therefore, this very low energy data  is suspect 

and so is here discounted, and the Flynn correction, because of its agreement with the 

detailed stopping power calculation of Ashley, is used for all energies and elements 

studied in this work.
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3.1.7 TYeatment of R adiation Losses

Even though the fraction of energy lost by kilovolt electrons as they pass through 

m atter is small, it is not negligible and the production of bremsstrahlung photons 

is an important effect to model in some applications. Like coUisional ionization and 

excitation losses, losses due to bremsstrahlung can be treated in the continuous slow

ing down approximation. The stopping power due to radiation losses is determined 

again by integration of the energy loss times the differential cross section, this time 

for bremsstrahlung, as

” ( S )  = [ d Q N < T B { m ) Q -  (3.32)

Recently, Seltzer and Berger have reviewed differential cross sections for energy 

loss due to bremsstrahlung and have devised bremsstrahlung stopping power for

mulations in the energy range from 1 keV to 10 GeV for elements 1 to 100, using 

the most accurate available formulations in each of several energy regions [Se82]. 

As their method employs the the best available data and extends fully through the 

energy range of interest, their results are used exclusively throughout this work, and 

a review of other available formulations is not undertaken. Additionally, a  litera

ture survey has found tha t only higher energy production codes such as EGS and 

the ETRAN derivatives typically treat bremsstrahlung losses, and so a summary of 

previously used models is not included.

Seltzer gives the total stopping power as

-  (E  +  m e') Z)  (3.33)

in which a  is the fine structure constant, the classical electron radius, and <j>{E, Z)
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Figure 3.6: Fraction of Energy Loss Due to Radiative Collisions 

is given by a fit of the form

4,{E,Z) = dx(Z) 4

I
»=1

(3.34)

The values of the constants given by Seltzer include the losses due to electron-electron 

bremsstrahlung. For the case of compounds, stopping powers are summed in pro

portion to the weight fractions of the constituents, as in

f d E \  ^  f d E \ (3.35)

Plots of the magnitude of this effect, given in terms of the fraction of energy loss due 

to radiative colUsions as a function of energy for various elements are given in figure 

3.6.

As with the stopping power due to coUisional losses, it is sometimes desirable to
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use the restricted radiative stopping power,

“ V ^ j  I  <̂Q<̂b{E:Q)Q. (3.36)

Indeed, for the case of bremsstraJhlung losses, the energy loss due to  relatively high 

energy collisions represents a  large part of the total radiative losses. A fitted expres

sion for the restricted stopping power losses based on the cross sections recommended 

by Seltzer and Berger has been developed by Urban [Br87] as part of the GEANT 

high energy physics Monte Carlo code. He gives

f d E \ " '  Z ( Z  +  ( ) ( E  +  m ^ ) ^ \ Q r C M Ÿ  ,

In the above expression Cm  is the Midgal correction factor given by

where Ng is the number density of the electrons in the medium, and is the reduced 

Compton wavelength of the electron, fijmc. The factor Eel  in equation 3.37 is the 

parameterization given by

Eel =  Sr{X, Y )  + Z% (X , Y)  (3.39)

in which X  =  ln((E  4- mc^)/mc^) and Y  =  \n{Qrlv{E + mc^)) and the functions 

5'i(A’,y )  and S2 { X ,Y )  are given by

S i ( X , Y )  =  E E C , j X T '  (3.40)
i=0 j=0

S2 (A ',y) =  E E A j A ' y ' .  (3 .4 1 )
«■=0 j=0

The constants /3,^ and v are given as .99, 2.51 and 0.00004, respectively, and the 

coefficients in the polynomial expansions for Si and S 2 are provided in the GEANT
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source code. The fit given by Urban is limited to  energies greater than  10 keV, 

and professes accuracy within 10%. For the present work, the Seltzer expression 

is used for the total stopping power and Urban’s formula only when a restricted 

bremsstrahlung loss treatm ent is needed. For restricted stopping powers below 10 

keV, a simple constant extrapolation is used. The validity of this extrapolation is 

examined in figures 3.7, which compares this extrapolation of 3.37 (using Qr = E  

to get the total stopping power at 10 keV) with the accurate calculations of 3.33. It 

is seen that a t 10 keV,the two formalisms yield almost identical results, and that at 

lower energies the assumption of a constant stopping power is not too bad for low Z, 

but not good for heavier elements. The effect of this should be small however, since 

the fraction of losses due to bremsstrahlung is very small in this regime.
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Figure 3.8, which shows the effect of the extrapolation on the trends of the reduced 

stopping power a t Qr = 1 keV. Again, the effects of errors should be small because 

of the low probability of bremsstrahlung.
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Figure 3.8: Reduced Radiative Stopping Power Using Extrapolation
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3.2 Energy Loss Distributions

An obvions drawback to the continuous loss approach is th a t for a  given thickness 

of material traversed, a  single energy loss is predicted for every electron traversing 

the same thickness of material, as given by the integral 3.1. In reality, a  distribution 

of energy losses is seen, the result of the stochastic nature of the loss process. Ex

pressions describing the relative frequency of the fluctuating losses can be derived, 

starting with the appropriate form of the transport equation,

=  j y Q f { E + Q , x ) < r i E - i - Q - ^ E )  -  f ( E , x ) < r ( E - ^ E - Q )

where f { E ,  x )dE  is the distribution of electrons at x  with energies between E  and 

E + d E  and cr(Ei —>■ E 2 ) is the probabihty that an electron with energy Ei  which 

undergo a collision from which it will emerge with energy E 2 . The integration limit 

Q m a x { E )  represents the maximum kinematically allowed energy which an electron 

with energy E  can transfer in a  single collision, and b the maximum transfer which 

can produce an electron with energy E.  It is usually more convenient to describe 

the loss phenomena using the variable A, which represents the energy loss, Eq — E,  

{Eq is the initial energy). Further, it is commonly assumed that Eo A and so 

a{E-\-Q —*E)  =  <t{E—* E —Q) =  a-{Eo',Q) = a(Q) and the integration limit becomes 

Q m a x { E o )  for the second integral and h  is given by A if A <  Q m a x ( E o )  and Q m a x ( E o )  

otherwise. Thus we have

d Q /( A - g ,x ) a ( Q )  -  / (A ,x ) ( r (g )  (3.43)
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3.2.1 Landau’s Derivation

The first proposed solution to 3.43 has been developed by Landau [La44]. Landau 

argues that the integration limits can both be taken to be oo, since in the first integral, 

/ ( A —g , x) is by definition zero for g  >  A and in the second integral, cr{Q) tends to 

zero for large Q. Thus the contributions of the large Q section of the integrals are 

small and we can write

=  J “ dQ cr{Q) [ f ( A - Q ,  x) -  / ( A. x)) (3.44)

This can be solved by a Laplace transform method, yielding

/(A , ^  Gxp [pA -  X dQ ct{Q) ( l - e " ^ ) j  (3.45)

where o is an arbitrary constant. Equation 3.45 may now be solved by making an 

assumption about the form of the cross section <r(g). Typically, if J  is defined as 

the integral over Q, J  can be split into a high transfer and low transfer part, as in 

Bethe’s derivation of stopping power. In the low transfer integral it can be assumed 

that 1 — erPQ can be approximated as pQ yielding

J  = p f ^ ' d Q  Q a(Q) + r d Q .  a(Q)  ( l - e ' ^ )  (3.46)
Jo JQi

The low transfer integral is seen to be identical to p times equation 3.5 and so can

be evaluated as

(3.47)2iTNe^Z 
J l o w  — P ' mv^

In -  + \ n Q r - 13^-6
P{1 -  )S2)

In evaluating the high transfer portion, Jhigh Landau assumes tha t the cross section 

can be taken to be
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This form of the cross section is related to the Mdller cross section used in Bethe’s 

evaluation of the contribution of high transfer collisions to the stopping power, but 

neglects several terms. In this case, Jhigh can be evaluated by direct integration to 

be

Jhigh —
2irN e^Z

mv^
o-vQi

+ pEi{pQi) (3.49)
.Qx Qi

where E i(x )  is the exponential integral function. Again using the idea that pQ i  is 

small, Landau expands each of the last two terms above in a Taylor series to obtain

2irN e*Z
Jhigh — mv^

- p ( l  -  7 - l n p g i ) (3.50)

in which 7  is Euler’s constant. If we define ^ as x — ^— we have for / (A , x)
mv^

I
(3.51)

Landau defines a single parameter A^, given by

Ax, =  - A -  ^(1 -  7 +  In -  6) (3.52)
P {1 -  )02)

This allows the formulation of a universal function 4>{\l ) in which the single pa

rameter A completely describes both the electron and the target, and (f> is given

by

<f>M =  7 ^ .  (3.53)ZTTZ Jc îoo

and / (A , x)  is taken from

/(A ,x )  =

=  ^<A(Ax,). (3.54)

The function (j) must be evaluated numerically, and has been tabulated for values of 

A from -4 to ICO by Borsch-Supan [B0 6 I], and this tabulation is used in the current
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work for evaluation of / (A , x). Compounds are accounted for by taking the properly 

weighted values of ^ and / ,  as in the case of the evaluation of the coUisional stopping 

power.

3.2.2 V avilov’s D erivation

Vavilov [Va57] has shown that regardless of the value of b in 3.43, (6 =  A or 

6 =  Qmax{Eo) ) the same Laplace transform technique can be used to obtain an 

analogous form of 3.45 in which the upper limit in the integral over Q can be taken 

as Qmax rather than  as oo. In this treatment, the integral J  is rewritten in the form

J  =  pA +  X a{Q) ( l  -  -  Qp) (3.55)

where
  fQmax
A =  X /  dQQa{Q)

Jo

is the average energy loss over the pathlength (note th a t this assumes tha t the energy 

is constant over the pathlength). Vavilov then assumes a  cross section of the form

1 1 - f  1 (3.56)
2m P Q

The integral J  can now be evaluated (without the Taylor expansions used by Landau) 

to yield

'y) rc + to o  ^ r V 1 Y
f {Xv ,  x) =  --TT:----  /  du exp {uAy +  k [(u +  y(3 )(ln u -  £',(u)) -  e"“] }

• 'c - to o  '•

(3.57)

where k = HQmax and Ay, which is related to Landau’s Ax, parameter, is given by

= (3.58)
Vmoa:
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The complex integral can be shown by a  branch cut technique to reduce to a  real 

integral

/ (A y ,  x)  =  — f  dy cos[pAy +  «/^(y)] (3.59)

where

/ i  =  /?^lny -  C i(y ) -c o s y  -  t/Si(y)

/ 2  =  y In y -  Ci(y) -  sin y -  /3̂  Si(y)

where Ci and Si are the cosine and sine integral functions respectively.

The finite limit, Qmaxi on the integral in equation 3.43 allows the determination 

of a restricted energy loss distribution, analogous to the restricted stopping power, 

for use in Monte Carlo transport calculations. This is significant since such a result 

can not be derived in Landau’s formalism.

Throughout this work 3.59 is evaluated by numerical integration. The integrand 

is an oscillating, damped function of y, and is integrated by sununing the partial 

integrals between the zeros of the integrand until the partial integrals become less 

than .01% of the total. It has been found tha t if each partial integral is broken into 

roughly 10 steps, Simpson’s rule is adequate to describe the integral accurate to an 

absolute magnitude of roughly 10~®. Schorr [Sc74] gives a  prescription for evaluating 

3.59 as Fourier series, accurate to three decimal points, but his method is not used 

here. He also proves th a t the Vavilov distribution reduces to the Landau distribution 

for g  max  ’  •

3.2.3 Blunck and Leisegang’s Correction to  Landau

Blunck and Leisegang [B150] have included the quadratic term in the Taylor 

expansion used by Landau in evaluating the integral J.  The expression for ^(A^)
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u c„ \ v  7„

1 0.174 0.0 1.8

2 0.058 3.0 2.0

3 0.019 6.5 3.0

4 0.007 11.0 5.0

Table 3.3: Parameters for Blundc-Leisegang fit to Landau’s

under this approximation can be shown to be given by

k  f c + io o  - ,

M X l ) = (3.60)
y  2 i r t  J c —ioo

Q^x
where <f)L is Landau’s <̂ (Ax,) and 6̂  =  —— with

g 2 = / % g g V ( Q ) .  (3.61)
Jo

Blunck and Westphal [B151] give an approximate expression for as'

(3.62)

in which A is the average energy loss over the path and g is a constant given as 

roughly 20 eV. In order to carry out the integral of 3.60, Blunck and Leisegang 

approximate Landau’s universal function <j>i by a sum of 4 Gaussians,

l/=l
(3.63)

Values of the constants c„, A„ and 'y„ are given in table 3.3.

Findlay and Dusautoy [Fi80] have shown that values of the constants given by 

Blunck and Leisegang do not faithfully approximate Landau’s result, and have pro

posed a 9 Gaussian sum of identical form. The constants used in this fit are given 

in table 3.4. This more accurate fit is used throughout the present work. Using the
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V C y Xv 7»/

1 0.0386 -1.48 .737

2 0.0843 -0.738 .947

3 0.0882 0.170 1.23

4 0.0647 1.33 1.68

5 0.0359 2.95 2.40

6 0.0164 5.39 3.68

7 0.0064 9.40 6.18

8 0.0021 16.8 12.3

9 0.0006 30.8 39.7

Table 3.4: Parameters for Findlay-Dusautoy fit to  Landau’s ^ { \ t )

sum of Gaussians form for <f>£, in 3.60 allows analytical integration, yielding

( A - A , r

y / l î  +  6̂

3.2.4 Shulek’s Correction to  Vavilov

exp (3.64)

Shulek et ai  [Sh67] have extended Vavilov’s work in a  similar fashion. Recalling 

that Vavilov expressed the integral J  as

rQv
J  =  X " “ d g  a{Q) (l -  e-QP -  g p  +  - Q p ) (3.65)

and then used the definition of stopping power to replace the integral over the positive 

Qp term by A, Shulek added and subtracted a  quadratic term  — and used a 

definition of Q^ given by Livingston and Bethe [Li37], to remove the contribution of 

the positive quadratic term, and integrated. The expression for Q"̂  used by Shulek

IS

(3.66)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

Distributed Energy Loss Treatment Monte Carlo Authors
Landau Berger [Be63]

Hebbard and Wilson [He55] 
Henoc and Maurice [He76] 
Perkins [Pe62]
Vande Putte [Va74] 
Sundararaman et ai  fSu73]

Modified Landau for Ionization losses Leiss et al. fLe57l
Blunck and Leisegang ETRAN et al. [Be68]

Berger [Be63]
Vande Putte [Va74]
Mukoyama and Watanabe [Mu77]

Table 3.5: Energy Loss Distribution Functions Used in Monte Carlo Electron Trans
port Codes

where the sums are taken over only those subshells for which the ionization energy, 

Is is less than the incident electron energy, and / ,  represents the fraction of electrons 

in the given subshells. Shulek shows tha t the expression for /(A ,x ) becomes

/(A y, x) =  — -̂----e«(i+/3*7) f°dy e«(A(v)-^5sF) [yAy +  K/z(y)]
•/oo

( 3 . 6 7 )

where f i { y ) , f 2 {y) and Ay have the same definition as in Vavilov’s derivation and Ag 

is given by

A c  =  - K - f ) - %
( 3 . 6 8 )

The expression 3 . 6 7  for / ( A y ,  A g ,  x) must be evaluated numerically.

3.2.5 Models Used by Previous Investigators

Models of energy loss distribution functions used by previous investigators are 

given in table 3 . 5 .
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3.2 .6  E nergy Loss Experim ents at Low Energies

Although quite a  number of investigations of the scattering of transm itted beams 

of mono-energetic electron have been performed, in very few instances are the results 

reported in terms of the distribution in energy of the emergent particles, i. e., as plots 

of f { E )  or f { A E )  versus E  or A E .  Table 3.6 lists those experiments in which the 

results are given in a  form suitable for direct comparison with energy loss distribution 

theories.

3.2 .7  Evaluations and Conclusions

The experiments of Cosslett and Thomas, Fittig, and Vyatskin and Khramov 

have been chosen for comparison with the various theories. Since it is impossible to 

compare restricted loss distributions, the calculations of the Vavilov distribution use 

as the maximum modeled loss the full incident energy. Table 3.7 compares the foil 

thickness from the experiments used in the analysis with typical condensed history 

Monte Carlo step sizes, which generally allow for a  4.25% energy loss.

It is seen tha t none of the experiments used foils as thin as the pathlengths 

seen in condensed history Monte Carlo runs. Most were several score thicker than 

a single Monte Carlo step. The greatest difference is seen in the silicon experiment, 

in which the foil was 100 times thicker than a typical step, and the smallest in two 

gold experiments, which used foils roughly 25 thicker than  a usual Monte Carlo step. 

Thus, any conclusions about the effectiveness of the various distribution functions 

at modeling energy loss must be tempered when selecting models for Monte Carlo 

appHcations.

Results of runs modehng the chosen experiments are given in figures 3.9 through 

3.14.
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Authors Material (Z) Initial Energy 

(keV)

Thickness 

(xlO “® cm)

Cosslett and Thomas [Co64c] Al (13) 18.0 44.5-180.

Au (79) 18.0 6.21-34.9

Fittig [Fi74] A l(13) 0.8-4.0 2 .2 0

Fittig [Fi75] Be (4) 1.5-4.0 8 .0

Ge (32) 2.0-4.0 8 .0

Ishigure et al* [Is78] Al (13) 3.0 2 .

Kwei [Kw84] C ( 6 ) 0 .6 , 1 .0 0 .8

Lanteri et al. [La80] A l(13) 1.0-3.0 1.5

Reimer et al. [Re78] A l(13) 2 0 .2 44.5-167.

Au (79) 20.5 12.8-33.6

Shimizu et al. [Sh75] Al (13) 15.0 10.-104.

Cu (29) 2 0 .0 17.40

Shulman et al. [Sh64] Al (13) 3.0, 4.0 5.5, 10.

Vyatskin and Khramov [Vy74] Si (13) 3.5 10.7

Au (79) 3.5 .785

Young [Yo57] AI2 O3 (8,13) 3.0-10.0 6.05

angularly dependent data

Table 3.6: Energy Loss Distribution Experiments in the Kilovolt Energy Range
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Experiment Experimental Thickness (cm) Typical Monte Carlo Step

Beryllium a t 4 keV 8.00 X  10-® .17 X  10-®

Aluminum at 18 keV 88.9 X  10-® 1.81 X  10-®

Silicon at 3.5 keV 10.7 X  10-® .102 X  10-®

Germanium a t 4 keV 5.70 X  10-® .107 X  10-®

Gold a t 3.5 keV .785 X  10-® .032 X  10-®

Gold a t 18 keV 12.4 X  10-® .468 X  10-®

Table 3.7: Comparison of Condensed History Step Sizes and Experimental Foil 
Thicknesses

W
w
K
1

Vavilov
Expt 
Landau 
Blunck - Leis

3

2

1

0 1.00.80.60.40.2Ü.0
Fractional Tranmitted EuCTgy

Figure 3.9: Comparison of Energy Loss Distribution Formulations with Experiment 
for Aluminum a t 18 keV
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Vavilov
Expt
Blunck-Leis 
Landau

3

2
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O '-
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Figure 3.10: Comparison of Energy Loss Distribution Formulations with Experiment 
for Gold at 18 keV
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Figure 3.11: Comparison of Energy Loss Distribution Formulations with Experiment 
for Beryllium at 4 keV
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Figure 3.12: Comparison of Energy Loss Distribution Formulations with Experiment 
for Germanium at 4 keV
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Figure 3.13: Comparison of Energy Loss Distribution Formulations with Experiment 
for Silicon a t 3.5 keV
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Figure 3.14: Comparison of Energy Loss Distribution Formulations with Experiment 
for Gold at 3.5 keV

It is seen from the figures tha t the Landau and Vavilov distributions model the 

position of the peak quite well in all instances a t low energies, but only the Landau 

predicts this accurately a t higher energies. The Blunck and Leisegang calculation 

does well only for the aluminum experiment at 18 keV. It most instances, the broad

ening that it adds to the model is over done, and the peak hard to discern. In no 

case was the tail of the distribution, represented by the large energy loss electrons, 

well modeled, even by Blunck and Leisegang. Finally, the Vavilov distribution at 

lower energies in general predicts a slightly wider peak with a gentler slope on the 

large loss side an a more rapid decline on the loss energy loss side than the Landau, 

which is a somewhat better approximation to the experimental data.

Additionally, calculations of the average energy loss predicted by the distribution 

functions, determined by numerically integrating A E f ( A E ) d A E  and given in table 

3.8, show that the Vavilov distribution did a  remarkable job in predicting the average
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Experiment Blunck-Leis Landau Vavilov CSDA

Beryllium at 4 keV 0.625 0.617 0.594 0.595

Aluminum at 18 keV 2.828 2.792 2.721 2.721

Silicon at 3.5 keV 1.100 0.986 0.997 0.998

Germanium at 4 keV 1.165 0.800 0.743 0.743

Gold at 3.5 keV 0.886 0.347 0.262 0.228

Gold at 18 keV 2.848 1.651 1.479 1.479

Table 3.8: Average Energy Losses (in keV) Predicted from Theories

energy loss which would otherwise be found by integrating the inverse stopping power 

over the foil size. While average loss values from distribution functions are not 

be expected to agree with experimentally determined values because of multiple 

scattering in the foil, they are expected agree with integrated stopping power losses, 

as they have as their underpinnings the same cross section shape and the assume the 

same track length.

3.3 M ultiple Elastic Scattering Distributions

The differential equation defining the distribution of electrons f{9,  s) which travel 

through a material a distance s and scatter into dd about Ô is given by

d f—  = - N f { e , s )  j d x a { x )  s \nx  + N  j d x f { 6 - x , s ) ( r { x )  sinx (3.69)

in which a(x ) sin % is the probability of a single scattering at an angle x into 

dx- Note that the dependencies of /  and tr on energy are implied by the explicit 

dependencies on the pathlength. Two methods are generally used to attack this 

problem, the first employing the small angle approximation [Mo48] on the above
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equation and the second using a heuristic approach to cast the problem in a  different 

formalism [Go48a, Pe83].

3.3.1 Moliere’s Method - Small Angle Approximation

Molière [Mo48] solved 3.69 for electron nuclear scattering in the small angle ap

proximation (assuming sinx  ~  x), by a  Bessel transform technique. Very lucid 

descriptions detailing the assumptions, approximations and range of applicability of 

Moliere’s technique are given by Bethe [Be53], and by Scott [Sc63], who also de

scribes Fano’s [Fa54] extension of theory to include the ejffect of scattering from the 

atomic electrons and the treatment of amorphous compounds. By assuming that 

<t(x) is independent of s, which is equivalent to assuming no energy loss over the 

path, Molière arrives at

f { e , s )  = J^ dT]T]Jo{r]e)expl^-NsJ^ dxxo '(x )[l- 'A ,(?x)]}  (3.70)

where t] is the transformation variable. At this point assumptions must be made 

about the form of the scattering cross section. Molière (as amended by Scott) takes 

the inelastic plus elastic differential scattering cross section, o(x) x  dx iii a form very 

similar to  tha t of the Rutherford cross section, given by

Z  1
N s< 7(x )xdx  = 2Xc----------- (3.71)

Z+ 1  X"

where q{x) represents the deviation of the true elastic scattering cross section from 

the Rutherford cross section and S{x)  the inelastic form factor, in effect the deviation 

of the shape of the differential inelastic cross section from th a t of the Rutherford cross 

section. In the above expression, x l  is given by

(3.72)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

or, in the case of compounds,

^  .  ^ 4 x e ^ M y . + l )  (3 .7 3 )
i P  ^

To eliminate the dependence on ç(%), Molière now defines a characteristic screening 

angle Xa which is a  function of only the faetor g(%). In an analogous fashion, Fano has 

defined an inelastic characteristic angle, Xtrn which is a function of only the inelastic 

scattering factor. These can be combined to form a composite characteristic angle 

Xo given (for compounds) by

(3.74)

where the summation is over the number of elements in the compound. The only 

property of q{x)  assumed through the rest of the derivation is th a t ç —»• 0  for small 

angles and q —* \  for large x- This permits splitting the integral in the exponent of 

3.70 into a low x  region in which an expansion can be used for the Bessel function 

and a  high x  region which can be evaluated analytically, and allows substitution of 

the expression for x \  into 3.70. A parameter h is defined as

6 =  ln(X oÆ ) +  l - 2 7  (3.75)

in which 7  is Euler’s constant. Upon substitution into 3.70, this yields

f{0)6d9 =  XdX dy y Jo{Xy) exp ^ y ^ ( - 6  +  hi (3.76)

in which y = XcV and X = 9/xc- This equation can be evaluated by defining a second 

parameter

B - l n B  = b (3.77)

and transforming into a  new variable 9 = 9/{xc'\/S) =  XJy/B  to yield

00 1
m O d 9  = 9 d 9 Y . — f ^ - \ 9 )  (3.78)

n = 0  ^
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where

/(«)(,?) =  1  £ ° du u Jq{9u) exp In |«* ] "}  (3.79)

in which u = yy/B.  The n  =  0 term  is simply 2e“*̂, and typically only up to the 

n =  2 term is required for satisfactory evaluation of 3.78. Bethe has evaluated 

and tabulated and for 29 values of 9. In the present work, the value of B  is 

determined from 3.77 by the régula falsi technique, which has been found to converge 

to better than .1% in less than 10 and typically only 2 or 3 iterations. The values of 

and are interpolated from Bethe’s tables.

The energy dependence of the cross section may be taken into account by defining 

Xc by

x^ = Jo

= dE'
JE{a'=0)

dE
dx

- 1

(3.80)

and similarly Xa by

1 rE(s'=s) dE
dx

-1

where the sum over constituents for compounds is implied and

power.

 ̂ .
—  IS the stopping
dx

Bethe [Be53] has derived a large angle correction factor of the form {O/ sin ^)^/^, 

which should be multiplied by the distribution function in 3.78 to extend the validity 

to large angles.

Definition o f th e  C haracteristic A ngles Xa, and x«n,

Moliere’s original expression of the characteristic angle shows tha t it is given by

- I n x a  = k—*oo l y M  + l - i n k (3.82)
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which depends only of the definition of g(%). Not surprisingly, Molière chose to 

use Xa from his own approximate numerical evaluation of 3.82 in which he used a 

fitted Thomas-Fermi potential and the first Born approximation, which is of suspect 

validity for low atomic number elements and low energies, as discussed in chapter II.

It was stated earlier tha t for the purposes of the derivation of f{0),  the only 

restriction on q{x) and hence on Xa k  that g 0 for small angles and g —> 1 for 

large %. The appealing aspects of this ‘definition’ of q{x) by Molière are that the 

above criteria are satisfied in the Born approximation by any potential which assumes 

exponential screening (F (r)  ~  ( l/r )e ~ ’‘/“) and tha t we obtain Xo =  Xo exactly, since 

we have (in the small angle approximation),

where Xo~ iî a is the effective screened radius of the atom, and X is the electron 

wavelength divided by 27t. It is instructive to recall that this simple expression for 

g(x) leads to  the screened Rutherford cross section in which the screening param

eter î]s is simply related to xo, as explained in chapter II. This suggests a method 

for determining an accurate Xa> somewhat along the lines of Molière’s suggestion as 

related by Scott, that any value could be substituted for xo in 3.83 and called Xa- 

Since accurate data for the single scattering cross section is available, it is proposed 

here th a t Xa be determined from reliable (partial wave) cross section data by requir

ing tha t Xa be set so as to correspond to the screening parameter which would be 

determined either if the first Born cross section is set equal to a partial wave cross 

section at ^ =  0 degrees, or if the total Born cross section is set equal to the total 

partial wave cross section. In other words, we set x l  =  4?/̂  where rjs is determined
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either from

or from

1
p2„2 —COSÔ - 2j7s)2

27T^2g4
—  =2ir f crpwiO) sin 6d6. 

Jo

(3.84)

(3.85)
2 7 3 (1  +  Vs)P^^

The first method insures that the approximated and actual cross sections are roughly 

equal a t small angles at which the majority of the collisions occur, and the second 

tha t the large angle collisions, which may be the most important, are accounted for.

Fano defined the inelastic characteristic angle, Xtn? in analogy with Moliere’s 

definition of Xa,

-  Inxtn =  lim«—►CO % * X  2
(3.86)

Here the variable v, given by

v =  j Z - ’7 ^ ( ^ ) I 2 ( 1 - cosx) P ,

is used for convenience, with gq the Bohr radius. Applying the small angle approxi

mation to the previous expression and changing variables, Fano deduces

InxL  =  «in - 2  In (3.87)

where

Uin  =  limV—►OO f d u S ( e x p ^ u ) + 1 — U . (3.88)
J—oo 2

The Z dependent values of u,„ can be numerically evaluated from scattering function 

data. In this work values published by Vande Pu tte  [Va74] have been used.

Sum m ary o f M oliere’s A pproxim ations

Approximations used here can be classified into two categories, those incurred in 

order to analytically evaluate the expression for /  and those caused by inconsistent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

modeling of the physics, although the effects often overlap. Both kinds of approx

imations are expected to be more burdensome in the energy range treated in this 

work than at higher energies for which Molière’s method has been generally been 

successfully applied. The physics approximation are summarized here:

1. The use of a exponentially screened first Born cross section to describe the 

both the elastic and inelastic scattering laws. It was shown is chapter II that 

at low energies and high atomic numbers in particular, elastic scattering is not 

well defined by first Born scattering laws, and particularly when used in con

junction with the screening parameters typically used in evaluating Molière’s 

distribution.

2. The pathlength equals thickness assumption. As has been maintained through

out this work, at low energies and especially at high atomic numbers, the in

crease in large angle scattering makes the average tracklength of an electron 

traversing a material much larger that the foil thickness. This effect will be 

investigated in detail in a later chapter.

The major mathematical approximations in the derivation are best summarized 

by Bethe [Be53] and include the following:

1. The use of the small angle approximation. At the energies treated here, large 

angle scattering is significant and the assumption of sin 9 6 leads to under

estimation of the large angle scattering. It has been observed tha t an exact 

expansion (see the next section) will lead to Molière’s result in the small angle 

approximation if a substitution is made of a Bessel function for a  Legendre 

polynomial, Pi{9) =  Jq[{1 -f \)9]. Bethe notes tha t Molière has shown that 

a more most accurate substitution would be Pi{9) =  {Oj sin(^)^/^ Jo[(^ +  ^)^],
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and therefore suggests that a  correction factor of {9f sin be multiplied by 

Molière’s distribution, as noted above.

2. Splitting the integral into q{x) —» 0 and g(x)  1 parts. Bethe has shown that 

this approximation leads spuriously to increasing integrands in 3.76 above a 

given value of y, and asserts that the the expression for f (0 ,  s) will be valid only 

if it is clear tha t the there would be little contribution to the total integral of 

the (accurate) partial integral past this minimum, i. e. if the integrand is very 

small here. The value of the integrand a t the inflection is given by exp(—e**"̂ ), 

which is ~  where fio is the number of collisions over the path and is given

by roughly (Xc/xl)^- Bethe suggests tha t Q be roughly 20 or greater (e“ °̂/® <  

1%) to  insure th a t 3.76 is accurate. Because of the typically requirement in 

condensed history Monte Carlo electron transport models tha t the transport 

step size be short to keep the average deflection small, the number of collisions 

in low energy transport steps is often small and the condition fio >  20 is 

not always met. Noting that in typical condensed history simulation a typical 

multiple scattering distribution will be calculated for a step corresponding to a 

4.24% energy loss, (corresponding to a 50% loss in 16 steps), plots of flo (using 

Xa determined by 3.84 to conform with a partial wave cross section at 9 =  0) 

are given for pathlengths corresponding to a 4.24% fractional energy losses at 

several initial energies and for several elements in figure 3.15. It is seen in the 

figures th a t the threshold for satisfying the number of collisions condition is 

falls from roughly 8 keV for aluminum to 3 keV for gold. It must be noted that 

a  4% energy loss over a single step for a  3 keV electron traveling in gold may 

violate the small deflection transport assumption, and so smaller energy loss 

steps are likely to be required by this constraint, contrary to the 20 collision
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Figure 3.15: Number of Elastic Collisions over a 4.24% Energy Loss Step 

condition.

Other approximations, as discussed by Bethe and Scott, are expected to be small.

3.3.2 G oudsm it and Saunderson’s M ethod - Legendre E xpansion

Goudsmit and Saunderson [Go48a] have derived an expression in which the mul

tiple scattering distribution is given in terms of a Legendre polynomial expansion.

fGs(s ,«)  = Y , ( ‘ + b O i{ s )P , (c c s6 )  
I ^

(3.89)

where the expansion coefficients are given by

G/(s) =  exp 27ri\T J  ds' j  smO'd6'a{s',6') (1 — P;(cos^'))j

=  exp ĵ—2jriV J  (3.90)

with (obviously)

gi(s') =  r  sin 0'd0'a(s', 0') (1 -  F,(cos 0') ) . (3.91)
Jo
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It can be easily seen from the derivation (especially as related by Peterson, [Pe83]) 

tha t the only requirements for this expansion to retain exactness are tha t the scatter

ing law not change from one collision to the next (equivalent to requiring either small 

sensitivity of a  with respect to energy or little change in energy over the transport 

step) and that distribution in the number of collisions undergone by particles travel

ing a distance s be given by a Poisson distribution. Both conditions are well met in 

nearly all typically encountered circumstances, and, unlike the Molière distribution, 

the accuracy of this distribution improves for transport steps which encompass very 

few collisions. Since the faithfulness of the accordance with the second condition is 

dependent upon the relationship between the pathlength and the transport thick

ness, the distribution requires small steps a t low initial energies. Additionally, the 

accuracy of this distribution function is usually dependent on the accuracy of the 

single scattering cross section used in determining the coefficients, gi{s').

Numerically, the gi{s') coefficients are difficult to evaluate. Spencer [Sp55] has 

developed recursion functions which can be used in conjunction with expansions for 

the cross section <r{9') which are in terms of integer and and half integer powers of 

(1 — cos 6' + 2t]s) and/or in terms of Legendre polynomials to quickly evaluate the 

inner integral term, gi(s'). Taking g = cos$', Spencer defines a recursion function 

P m , I  as

P m ,I  =  (1 -  /̂  +  2%)"(1 -  Pi{g)) (3.92)

in which m is any integer or half integer. Note that P m ,o  = 0 for all I. A  recursion 

relation between P m + i , i  and the P m , i ’s  can be derived as

P m + l , l  =  (1 +  27j)pm,l +  P m , l  ~  jPm,J+X "" gj (3.93)

In order to apply this, a  relation for the P m , l + i  term which is lowest order in m in
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terms of the prior I terms for the same m is needed. This can be shown to be

=  ( 1  — l + n * ) P m , r - i  +  ( l + 2 » / s ) ( 2 / + l ) p m , / —

(27+1)2% £ ^ d g  ( l - g  +  2%)" (3.94)

The lowest order I terms needed to  start the recursion can be found by direct ana

lytical integration of 3.92.

For a  given 0 the Pm/s  are severely dependent functions of %, as can be seen 

from their definitions. Values of % are typically on the order of 10~® or less, re

sulting numerically in the  use of the sums and differences of very small numbers 

and very similar numbers, and as much as one significant digit can be lost per / in 

the march through the recursion in some situations. Thus, even though it would 

seem impractical to perform numerical integration over the the entire angle range 

and over the pathlength for each /, Berger and Wang [Be89] have recently reported 

results in which a quadrature technique was used in order to subvert the roundoff 

problem encountered in using the recursion functions. They report that convergence 

could be obtained in less than 999 terms for thicknesses as low as 20 mean free paths 

in gold and copper for initial energies of about 1 MeV, and at as few as 6 mean 

free paths for “lower” energies. Direct integration of 3.91 has been briefly inves

tigated in the current work. A 3 point Gaussian quadrature routine was used for 

the integration, working with tabulated values of the Riley elastic scattering cross 

section. It was found th a t the computation time required to evaluate 500 coeffi

cients rose from roughly 400 milliseconds using Spencer’s recursions to 15.5 minutes 

using direct integration, independent of the electron initial energy, material or path

length. It was also found that the round off problems encountered in evaluating the 

coefficients in low energy and short pathlength regimes were not alleviated by this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



153

simple scheme, although they were not worsened either (results comparing distribu

tion functions calculated with directly integrated values of Gi and those using the 

recursively determined G \s  agreed to <  1,5 % in all instances in which convergence 

was achieved). A more accurate integration technique employing a  packaged integra

tion program (still a  Gauss quadrature but with more elaborate error checking) and 

not using pre-calculated cross section values, was explored but was not implemented, 

as the additional increase (above the increase already encountered) in computation 

time was felt to render the calculation impractical for the current problem. Thus, 

Spencer’s recursion technique is employed throughout this work.

A pplicable Cross Sections

Cross sections of form suitable for use with Spencer’s recursion functions must 

be in the form

a ( s ,g) = Y .A iP i{g )  +  - P  + (3 95)
« i

in which A,-, B j  and are usually functions of energy and hence functions of s. When 

such an expansion is substituted for cr{g) in the integral for gi{s) in 3.90 we find

f+X
/

+!
 ̂ dg

(3.96)

Given tha t
f+i

the first summation in this expression can be written as
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The terms in the second summation are obviously of the form of the Pm/s and we 

have

gi{s) =  2Ao — Y  (3.97)

Three types of cross sections expansions are applicable to this methodology. Ob

viously, the screened first Born cross section,

47re^Z^
“  p2u2(i_^+2% )2’

has the desired form, with the  all the A,’s being zero and only one B j  term  {rrij =  —2 ) 

present. In this case we have for the gi’s

p2^2 P -2.iv (3.98)

As noted earlier, the recursion relation for lowest order m  terms must be evaluated 

using 3.94, giving in this case it is required for m =  —2, giving

P -2 ./+ 1  =  -  ( l + 2 % ) p _ 2 , f  -  (3  99 )

with p_2,i evaluated from 3.92 to be ^(l+T/J'^) — (1-^%)"^

Recognizing that this form of the cross section is inaccurate at large angles, 

Berger has used an exact cross section from Mott (o-M,uns) corrected for screening 

by multiplying by the ratio of a  screened first Born cross section using the Molière’s 

screening parameter (<Tfi,«cr) and the unscreened cross section (cR^una), as described 

in chapter II. In order to employ this cross section in 3.97 it is rewritten as

^M,uns<r{s,g) =  cth,,scr
^R,wn.a

=  <̂R,a 1 +  ^ ^ C 0 S 7 (1 -^ + 2 % )^ /^  +  A(/z) (3.100)

in which cos 7  is defined as in the expression for M ott’s cross section and h{g) is 

given by

h{g) =  —MiHH — 1  cos7 ( l —/r+2%)^/^. (3.101)
(̂ R,uns V 2^
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Such a definition is useful because h{g) can be expanded to a  high degree of accuracy 

as

K p ) =  E  ̂ ,(1 -P + 2V s)B \ (3.102)
3

(Colbert has suggested that only non-negative, even values of j  need be used [Co74], 

but this seems to be of small consequence.) Noting that there is a  (1  —/x+2%)“  ̂

factor in a-R̂ acr, it is easily seen that (r{s,g) fits the form of 3.95 with no sum over 

the i terms and with rrij =  (j — 4)/2, and the B j  coefficients given by

%  =

B , =
47re^Z^ / TrZa , \

f t  =  (3.103)

_  47re^Z^
Bj -  ^j-

The coefficients hj can be determined by a  least squares fit to values of h{g) calculated 

from 3.101. Typically only 30 or so angles and the j  =  1 . . .  5 coefficients are sufficient 

to model the expanded cross section to within .1 % of the actual value at all angles. 

Tests over a  wide range of energies and atomic numbers confirmed this.

In this expansion, using j  = 1 . . .  5, we need two low order m recursions, since 

both integer and half integer values of m are present. The lowest order integer term 

has mo =  —2 and so equation 3.99 can be used, and for the lowest order half integer 

term, m i ~  —3/2, we have

P-3/2,l+l =  VaP-3l2,l +  P-3/2./-1 (3.104)

in which 77' =  1-277(^1 +  1 /%  —1 ). The starting term p - 3/2,1 is given by

2(277;)=/2(l+77:)'-\
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A third candidate cross section is th a t given by Riley et al., who parameter

ized their exact, screened calculations precisely in the form of 3.95, specifically 

for implementation in the Goudsmit-Saunderson distribution, with i = 0 . . .  6 and 

J =  —4 . . . —1, with n ij =  j .  For this case, the recursion relation for p -4,1+1 is given

by

p . 4,1+1 =  -  ( 7^ )  P -4 ./-1  +  {j y ) -  (j y ) [
Vs 1

12(l+% )3 12%2J

(3.105)

We see th a t in addition to the starting 7 =  1 term, we will also need to exphcitly 

evaluate the 7 =  3 term, since there are an 7—2 expressions in the  denominators of 

several of the terms. For convenience, we can derive all of the first 3 terms, which 

are given by

1+3%
P -4,1 =  

P-4,2 =

P-4,3 =  %ln

24?7|(1+%)3
3(1+%)

24t/|(1+% )3
5 , / l + % \  , 6%-12%^- 1 1 0 ? f - 150%^-60?

(3.106)

+2 '  V Vs 247/3(1+%)3

The next step in the evaluation of fGs{s,0) is the determination of the integral 

of the gi's over the pathlength. Two methods have been examined here. In the 

first, the integrals are done as were similar integrals over path in the evaluation of 

Molière’s distribution, using the inverse stopping power and employing the trapezoid 

rule. This should be a  reasonable approximation when the cross section and hence 

the p(’s are insensitive to the energy loss. We have

G/(s) =  exp
rE{s'= s)

- 2 ttN  /  dE' 
Je (s'=0)

dE
dx

- 1

(3.107)

As an alternative method, Spencer has shown that gi{s) can be approximated by

(3.108)
gi{s' =  0)
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and that can be approximated as

=  t ( s 'M s ')  +  %)

where t  is defined by

t{s') =  —------ (3.110)
ro

in which tq is the total residual range. The constants ci and Cg are evaluated from 

flfi(l) (f =  1 at s ' =  0) and ^i(t(s)), and are given by

*  =

Cl =  (1 +  C2)gl(l).

Equation 3.109 can be substituted into 3.90 which can then be evaluated analytically 

to yield

'  +  1 (3.112)
.<(1 +  C2).

This method will allow faster evaluation of G/(s) as only the 1 = 1 term  in the gi{s) 

series needs to be evaluated. Tables 3.9 through 3.11 show values of the average scat

tering cosines of distributions calculated by numerical integration (equation 3.107) 

and by Spencer’s transformation, (3.112). for various values of s ,Z ,E  and /. It 

is seen that fittle variation is found throughout the entire range of energies, path

lengths, and atomic numbers examined, except at very thick paths tha t are much 

longer than typical condensed history steps, and even then the variation is only a 

few percent. W hat is interesting to note is the large amount of scattering for high Z  

materials.

The last step in the evaluation of fa s i^ j  ̂ ) is the summation of the series itself. 

In general, /g s(5 ,^ ) converges very slowly, with the problems becoming worse at 

low energies, short tracklengths and low atomic numbers. It has been proposed by
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Fraction of Total 

Range Traversed

200 keV 60 keV 5 keV

Num. Int. Spenc. Num. Int. Spenc. Num. Int. Spenc.

.005 .9905 .9905 .9896 .9896 - -

.050 .9036 .9037 .8982 .8982 .8880 .8878

.200 .6411 .6427 .6244 .6260 .5873 .5890

Table 3.9: Variation of <  cos 6 > for Aluminum at Various Energies and Thicknesses

Fraction of Total 

Range Traversed

200 keV 60keV 5 keV

Num. Int. Spenc. Num. Int. Spenc. Num. Int. Spenc.

.005 .9628 .9628 .9630 .9630 - -

.050 .6756 .6757 .6748 .6749 .7114 .7115

.200 .1800 .1815 .1798 .1814 .2274 .2292

Table 3.10: Variation of <  cos 6 > for Silver at Various Energies and Thicknesses

Fraction of Total 

Range Traversed

200 keV 60 keV 5 keV

Num. Int. Spenc. Num. Int. Spenc. Num. Int. Spenc.

.005 .9331 .9331 .9391 .9391 - -

.050 .4926 .4927 .5197 .5197 .6169 .6169

.200 .0458 .0465 .0583 .0591 .1232 .1246

Table 3.11: Variation of <  cos ^ >  for Gold at Various Energies and Thicknesses
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Felder [Fe69] tha t the transformation of Yennie et al. [Ye54] be applied to speed the 

convergence of this series, as in the evaluation of the exact Mott cross section series. 

In general, the transformation greatly speeded convergence of the series, especially at 

large angels. However, it was found th a t in some instances th a t the transformation 

did not speed but rather slowed and sometimes even inhibited the convergence for 

small angles. In no instances did the application of the the transform at low angles 

provide a  vehicle for the convergence of series which would not converge without 

the transform. Therefore, only for angles less than 10 degrees is this transformation 

applied. Plots of the number of terms which must be summed before the succeeding 

terms are less than .01% of the total sum are given in figures 3.16 through 3.21 for 

various values of s ,Z ,E  and m, where m is the order of the transformation. The 

maximum number of terms used was limited by the number of non-decreasing fl'/(s)’s, 

with a  maximum of 500 terms, and the minimum was limited to  20, which is necessary 

to trap  false convergence in few terms at scattering angles of 90 degrees. It is seen 

tha t a transform order of 3 allows convergence in a  few instances when the second 

order transform does not, so for all cases inr this work a third order transformation 

is used. W hat is striking about the results is that no convergence is achieved for 

reasonably large energy loss steps at low energy.

A further numerical trick to speed convergence (at the penalty of introducing 

error which must later be accounted for) has been devised by Berger and Seltzer. 

They note that the expansion of equation 3.89 is valid in theory even for the case of 

no collisions (or zero thickness), for which the result should be a delta function at 

9 = 0. Indeed, in this instance all of the G/’s are equivalent (and equal to Go, which
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Figure 3.16; Number of Terms for Convergence of fGs{s,6) for Aluminum, m =  2, 
vs. Energy, Path
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Figure 3.17: Number of Terms for Convergence of / gs(s,^) for Aluminum, m =  3, 
vs. Energy, Path
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is =  1), and it can be shown that

Go£ ( /  +  5 W )  =  W ,
/=0 ^

although an infinite number of terms is required for this result. At small but non

zero number of collisions (short paths), a  similar situation occurs, as the difference 

between successive coefficients becomes numerically indeterminate as I increases, 

owing to  machine precision. K i  is the last numerically correct coefficient, it is 

argued tha t the distribution can be approximated by

oo 1
=  D '  +  i)Gi(s)-R(«)

f=0 ^

=  E C  +  5 ) ia ( s )  -  Gt(s)]P,(«) +  £ ( '  +  b P 'W
1=0 ^  1=0 ^

~  ' t ( . i + h i a i ( s ) - G U s ) ] p ,m  + a u s ) s m .  (3,113)
1=0 ^

Since numerically Gi = Gl  for all I > L, the first term  sum need be taken only out 

to L. The second term  is the no-scatter delta function, which can be taken into 

account by ignoring it in the determination of fa s is , 0) and instead determining a 

no-scattering probability (given by Pns{s) — at 0 =  0 and invoking multiple

scattering in Monte Carlo runs only when appropriate. In practice, Berger and 

Seltzer employ the above technique to calculate the distribution in all instances 

in the ITS code series. They use an empirical expression based on the screening 

parameter, rather than  a comparison of the last few G/’s, to estimate the number of 

terms required, and they further artificially constrain L  to be between 51 and 242. 

The series terms always ‘converges,’ since the last coefficient, given by Gl  — Gu, is 

always equal to zero. In practice, there is often still significant deviation between 

Gl and G^+i, which somewhat invalidates the approximation of truncating the first 

term in equation 3.113 aX I = L. Test runs were made to examine the effect of
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this approximation on the accuracy of the distribution function. Truncation was 

performed when the first decreasing gi (and hence increasing Gi coefficient) was 

reached. It was found that in aU cases in which convergence was achieved for the 

full series, the truncated results were identical. This was to be expected since full 

series results converge only for long pathlengths, when the no scatter probability is 

small. Further comparisons, between unconverged fuU series and truncated series 

results revealed that the truncated and unconverged fuU series results are roughly 

equivalent (within a few percent in the worst cases) a t large angles, but that at 

small angles the truncated series results significantly underestimate the scattering. 

(‘Unconverged’ results are those tha t did not converge at every angle.) In most 

instances, the unconverged series converged for all but a few angles, with those 

usually limited to within a  few degrees of ^ =  0 Thus, the difference between the 

truncated and unconverged sums approximates, but does not equal, a  delta function, 

because of the errors in approximations of equation 3.113, as described above. An 

example of the difference in a truncated and a non-truncated but unconverged series 

is shown in figure 3.22. It is clear from the figure th a t the majority of the error is at 

the small angles, and so could be modeled by adding a no scatter component. The 

magnitude of no scatter probabilities are shown in figures 3.23 and 3.24 for several 

elements and various pathlengths a t low energies. It is seen in the figures that 

throughout the range of elements the no scattering probability at low initial energies 

can sometimes be quite large, but only for paths as thick as those encountered in 

high energy condensed history simulations. It is noted, however, that successful low 

energy condensed history simulations will require the short paths over which the no 

scatter probability is large. Despite the theoretical hand waving involved, since full 

series do not converge at short paths and low energy, the approximation of adding
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Figure 3.22: Truncated vs. Unconverged Series of fG s(s,0) for Aluminum at 4.24 % 
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Figure 3.23: No Scatter Probability for Aluminum vs Energy Loss
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Figure 3.24: No Scatter Probability for Gold vs Energy Loss

a no scatter probability to multiple scattering distribution function seems to  be the 

best way to model scattering at the small steps.

3.3.3 M odels U sed by Previous Investigators'

A list of multiple scattering distributions used by previous investigators is given in 

table 3.12. Because of the numerical difficulties encountered in calculating the various 

distribution functions, there are unique features to almost every implementation 

listed. It is instructive to comment on some special characteristics of one of the two 

most widely used formats, the Molière formalism of EGS. In the  form employed 

by EGS, the characteristic angle Xa and parameter B  are calculated each time the 

distribution is sampled, and a cumulative form of the expansion functions

is numerically inverted. Additionally, the approximation tha t /3—> 1 is employed 

in the calculation of Xa- This is clearly not true at low energies, although in practice 

it results in a  much less worse approximation of Xa than would a  strict adherence to
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Molière’s original formula for Xa, as will be seen in the next section.

3.3.4 M ultip le E lastic Scattering Experim ents at Low Energies

Although quite a number of investigations of the scattering of transm itted beams 

of mono-energetic electron have been performed, in very few instances are the results 

reported in terms of multiple scattering distribution functions (as plots of f{6)d6 

versus 6). Most often, results showing the dependence of the average and most 

probable scattering angles on thickness, energy and/or atomic number are presented. 

Table 3.13 lists those experiments in which the results are given in a form suitable 

for direct comparison with multiple scattering theories.

3.3.5 Evaluations and Conclusions

For the purpose of comparison, two versions of the Molière distribution and two 

of the Goudsmit-Saunderson are examined, as listed in table 3.14.

The experiments from table 3.13 which are modeled are those of Cosslett and 

Thomas [Co64a], and Inada [In71]. Results are presented in figures 3.25 through 

3.28. The Cosslett and Thomas experiments are of particular interest because they 

focused on the ‘plural scattering’ region, in which the number of collisions is small. 

The average energy loss over the foils for these experiments can be calculated to be 

1.89% for the aluminum experiment, 1.56% for the copper run and 0.65 % for the gold 

experiment. All of these represent smaller loss than typically encountered in Monte 

Carlo simulations, for For the As expected, in this regime not all of the different types 

of distribution functions converged at aU angles. In fact, the Goudsmit-Saunderson 

distribution with the Berger/M ott/ Molière cross section did not produce reliable 

results, and the Molière using Molière’s screening parameter never yielded consistent
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Multiple Scattering Formalism Monte Carlo Authors
Molière Hebbard and Wilson [He55]

Sidei et al. [Si57]
Perkins [Pe62]
Berger [Be63]
Mukoyama and Watanabe [Mu77] 
Vande Putte [Va74]
EGS fFo78, Ne85l

Goudsmit and Saunderson with <TRuth and 
Molière screening

ETRAN [Be68]
Vande Putte [Va74] 
Gorelik and Rozin [Go72] 
Berger fBe63]

Goudsmit and Saunderson with CMott and 
Molière screening

Berger [Be63]
ETRAN [Be68] 
Sundararaman et al. [Su73] 
Kulkarni and Supe [Ku84] 
Vande Putte [Va74]

Goudsmit and Saunderson with and 
Wentzel screening

Henoc and Maurice [He76] 
Bishop fBi67l

Gaussian distribution after Rossi Leiss et al. fLe57]
Goudsmit and Saunderson with (XRuth and 
Nigam Screening

Shinoda, Murata and Shimizu [Sh68] 
Shimizu and Murata fSh71]

Goudsmit and Saunderson with (TRUey ITS (Berger and Seltzer) [Ha84]
Bothe [Bo27] for 0 <ir/2, 
empirical for 0 > tt/2

Green [Gr63]

Unscreened Rutherford, empirically adjusted, 
randomly sampled impact parameters [Cu71]

Love,Cox and Scott [Lo77] 
Myklebust et al. [My76] 
Newbury et al. [Ne80]

Rossi and Greisen fRo41] Hebbard and Wilson [He55]
Fixed Angle Methods [Li77, Li78a] Liljequist [Li77, Li78a] 

Liljequist et al. [Li78b]
Lewis multiple scattering model, 0 < 10°, 
Sin^e scattering [Re71] 0 > 10°

Reimer and Krefting [Re76]

Table 3.12: Multiple Scattering Distributions Used in Monte Carlo Electron Trans
port Codes
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Authors Material (Z) Energy

(keV)

Thickness 

(xlO “® cm)

Angles

(deg)

Cosslett and Thomas [Co64a] A l(13) 20 6.07-35.6 .45 -  45

Cu (29) 20 2.15-8.99 .45 -  45

Au (79) 20 .64-4.1 .45 -  45

Cosslett and Thomas [Co64b] Cu (29) 20 2.15-19.2 0 -  180

Haefer [Ha60] C (6) 40,80 6.25-87.5 .79-3.87

Inada et al. [In71] A1 (13) 5,10,15,30 7.95-13.7 .05-35

Polyst. (1,6,8) 15 10.7-19.6 .05-35

Kamiya [Ka58] C (6) 47 3.5-44. .57-6.88

Klemperer et al. [K160] A1,03 (8,13) .81-6.0 2.08 9-17.83

Lanteri et al. [La80] A1 (13) 1.0-3.0 1.5-7.85 0-180

Leisegang [Le52] A1 (13) 20,40,68 2.7 0-7

Ag (47) 20,40,68 1.2-4.5 0-15

Au (79) 40,68 1.5 0-13

Table 3.13: Multiple Elastic Scattering Experiments in the Kilovolt Energy Range

1. Molière distribution with Molière screening parameter

2. Molière distribution with EGS/Molière screening parameter

3. Goudsmit-Saunderson distribution with Berger/Mott/Molière cross section

4. Goudsmit-Saunderson distribution with Riley cross section

Table 3.14: Multiple Scattering Distributions Tested In this Work
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Figure 3.25: Comparison of Multiple Scattering Distributions with Experiment for 
Aluminum at 20 keV

results, and in fact most often was faced with a  regime in which the b param eter was 

indeterminate. It is seen that only the the Goudsmit-Saunderson distribution using 

the Riley cross section gives results tha t approach the experimental data  in these 

short steps which must be used in low energy condensed history simulations. Also 

seen is a significant amount of scattering at very small angles not modeled by the 

theory, as expected.
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Figure 3.26: Comparison of Multiple Scattering Distributions with Experiment for 
Copper at 20 keV
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Figure 3.27: Comparison of Multiple Scattering Distributions with Experiment for 
Gold a t 20 keV
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Figure 3.28: Comparison of Multiple Scattering Distributions with Experiment for 
Aluminum at 10 keV
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CH APTER IV  

MODELS FOR PHOTON PHENOM ENA

Because the photons which are generated in various electron scattering interac

tions can give rise to other energetic electrons and because they have a  greater range 

than electrons of comparable energy and so possess capacity to transport radiation 

great distances, photon scattering phenomena must be treated in electron transport 

simulations. In general, the theoretical models and the relevant experimental data 

bases describing photon scattering are complete and accepted with a high degree of 

confidence, and so photon scattering and atomic relaxation, although included in 

this work, have not been examined and evaluated in the rigorous sense in which the 

differential electron scattering cross sections and cumulative scattering distributions 

have been. For completeness, a brief description of the processes and the source and 

substance of formalisms as employed in the current work are presented.

4.1 Photon Scattering

Three types of photon scattering interactions are important in the energy ranges 

considered here, photoelectric absorption, incoherent (Compton) scattering and co

herent (Rayleigh) scattering. Each of the processes is described briefly below, the 

source of the data and expressions for the pertinent differential cross sections used in
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the current work are acknowledged, and any special manipulations are also described.

4.1.1 P h otoelectr ic  A bsorption

In the photoelectric absorption process an incident photon interacts with an 

atomic electron, ejecting the electron and resulting in the absorption of the full 

energy of the  incident photon and the creation of a  vacancy in the target atom ’s 

electron configuration. The cross section for this reaction rises precipitously with 

energy in the vicinity of the shell energy, and drops to zero a t energies less than 

th a t of the shell. The general trend among all atomic species is for the maximums 

in the cross sections (found a t the absorption edges) for the various shells to be 

larger for the outer shells, and to be roughly equal for subshells within a single shell. 

Photoelectric cross sections vary radically with atomic number, increasing roughly 

proportional to  or Z^.

D ata for the photoelectric cross section as used here is taken from the expanded 

parameterization of Biggs and Lighthill [Bi71]. The Biggs parameterization repre

sents the to tal cross section data  in the form of

cT,.(Z,E) = Y ^ A i{ Z ,E ) lE \  (4.1)
t=i

where there is a  different set of A,’s between almost all of the levels and between 

selected other energy points, beginning a t .01 keV. In this expression Cpe{Z,E) is 

the sum of the photoelectric cross sections for each subshell which has an energy 

level below E . An alternate data set is tha t of McMaster et al. [McM70]. Their 

parameterization is of the form

Ne
ln[(Tp,(Z,F)] =  Z M Z , E )  ■ (InE )', (4.2)

t= 0
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where N e  is 2,3, or 4, depending on the energy. This data is not used because it 

extends down only to the M-I energy level, which is greater than 1 keV for quite a 

few elements.

Carter and Cashwell [Ca75] have suggested that the total photoelectric cross 

section can be resolved into individual subshell cross sections by assuming that the 

ratio between the cross sections for the and +1 levels is constant at all energies 

greater than  jE„ and is given by their ratio at Thus if we have a problem in 

which the applicable energy range is between Emin and Emax and a material in this 

problem with N  different cross sections (and so — 1 levels; the level must be 

at Ejsr < Emin ) we would have

(Tn {E) = ( T g ( E )  Emin < E  < E jV -1

^ " -2  < E  < E n -Z

where refers to the Biggs cross section data  in energy region n  and <r„ refers to 

the cross section for ionizing the level.

Photoelectrons are ejected with energies given by the incoming photon energy 

minus the binding energy of the shell of the interaction, and a t angles roughly given
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by a sin^ distribution,

/(fi)dfi = ^]l-^p{E)P2(cose)^sin9d9d<t>

=  ^  sin= 6 sin $d9d(f> (4.3)

where P(E) is the “asymmetry parameter” which ranges from —1 to  +2, and is heav

ily dependent on the ratio of the energies of the particular subshell and the incoming 

photon and is somewhat dependent on the target atomic number [Ma72]. In the 

cases treated here, it can be assumed that all electrons of interest are fathered by 

photons of energies at least 1 keV above the shell energy, and so both dependencies 

are minimized. For this case, the most widely used expression for the angular de

pendence of electrons in the low kilovolt energy range is tha t of Fisdier [Co74] and 

is given as

(4.4)

in which h is defined as

with E  the initial photon energy and here ^  given by v /c  for the ejected electron. 

Equations 4.3 and 4.4 are identical for low velocity electrons, in which /3(E)—>2 and 

b—*0, and are given exactly by a  sin^ distribution,

f{e )  sin 6de =  I  sin® OdO. (4.6)

An alternative method sometimes employed for the extreme ease of its implementa

tion is to assume that the distribution is isotropic.

4.1.2 Compton (Incoherent) Scattering

Compton scattering involves the collision of a photon with an atomic electron. 

The photon loses an amount of energy which is converted into kinetic energy of the
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target electron. The well known Klein-Nishina formula,

<tk n{Eo, Ex, e) sin Ode =  irrl ^  +  cos^ 0 -  l )  sin 0d$ (4.7)

gives the differential cross section for the scattering of a  photon from a free electron 

at rest, (here tq is the classical electron radius). From kinematics, a relation between 

the scattered photon angle and the photon energy loss can be derived,

-  =

where p  is the cosine of the scattering angle and the o:’s axe energies divided by the 

electron rest mass.

Since Klein-Nishina applies only to a  scattering from a single free electron a t rest, 

some modification must be made to take into account the population of electrons in 

the atom and the probability that the electron wiU be ejected after having absorbed 

the photon momentum. This can be done by multiplying (ten  by the incoherent 

scattering function discussed in chapter II, S{Z,q) where again q is related to  the 

momentum transfer and is given by

27t sin(0/2) ç _  -

if ^ is the reduced photon wavelength. We thus have for the differential Compton 

cross section

(T,»c(E, E ') =  (Tk n {E, E ')S{Z, q). (4.9)

The scattering functions used in this work in this instance are taken from tables 

produced by Hubbell et al [Hu75] and interpolated as needed. We note tha t at at 

low values of q, S{Z, q) is very close to zero, while at high q, S (Z , q) —» Z , and so the 

effect of S(Z ,q )  is to decrease the scattering in the forward directions as the energy 

decreases or the atomic number increases.
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4.1 .3  C oherent Scattering

The rather general term  “coherent scattering” is meant in the present sense to 

include only elastic scattering from the bound atomic electrons, sometimes referred 

to  as Rayleigh scattering. Because the electrons are considered bound, their target 

mass is essentially the mass of the atom, and little energy is available for transfer in 

this type of colUsion. The scattering is coherent since the electrons are essentially 

indistinguishable and reflected photons can interfere constructively. The cross section 

for Rayleigh scattering is given as the classically derived Thomson formula for the 

elastic scattering of a photon by a particle a t rest,

-  cos® 6) (4.10)

times the square of the atomic form factor F{Z , q) (again, as defined in chapter II) 

so tha t we have

<Tcoh{E,e)^<TT{e)[F(z,q)f. (4.11)

Note tha t the Thomson formula is independent of the photon energy, and is in fact 

valid for the scattering cross section at non relativistic velocities. The form factors 

used in this work, like the scattering functions, are taken from tabulated data  of 

Hubbell et al. [Hu75]. F {Z ,q)  is 0 a t ç =  0 and as q~^oo, F{Z ,q) —» 0, so th a t the 

effect is to decrease the cross section a t large angles, high energy and low atomic 

number.

Recent work [Br89] has shown tha t in the low keV range, the effect of molecular 

binding on the coherent cross section can be large, and simple additivity assuming 

free atoms, as in done throughout this work, may not be valid for compounds. The 

importance of this effect is not investigated.
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4.1.4 O ther Scattering M echanism s

A technique for classifying all the possible scattering mechanisms is given by Fano 

[Fa53] and an excellent description of the processes and their relative importances is 

given in [Ev55]. Among the other processes which are significant for certain problems 

but are not treated in the current work are pair production, nuclear photo-absorption 

and coherent nuclear scattering. Although pair production, in which a  photon in

teracts with the field of the either the nucleus or the atomic electrons (a less likely 

occurrence) to produce a positron-electron pair, is the dominant stopping mecha

nism at very high energies, the threshold for the reaction is twice the rest mass of 

the electron, and so it does not occur at energies considered here. Nuclear Thomson 

scattering is also possible, but negligible except a t very high energies. Similarly, nu

clear photo-absorptions, which can lead either to fission or the emission of energetic 

neutrons, is a small effect and appreciable only in the MeV range.

4.2 Atom ic Relaxation (De-Excitation)

Recalling that in many of the interactions modeled in electron transport an elec

tron is expelled from a shell of a target atom and that the target subsequently 

rearranges its electrons into a  lower energy state and emits radiation in some form or 

another, an important phenomenon to  consider in coupled electron photon transport 

is this relaxation or de-excitation. Two types of rearrangement phenomena are pos

sible, both of which begin with a vacancy in an inner shell being filled by an electron 

from a outer shell. In the first situation, a photon may be emitted with energy given 

by the difference in the energy of the levels of the initial hole and the subshell provid

ing the filling electron. The second case also begins with the transition of an outer 

electron into an inner shell, but in this instance it is followed by the ejection of a
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second outer electron, leaving two outer shell vacancies. This process is called Auger 

emission and the ejected electron referred to as an Auger electron. If the ejected 

electron came from the same shell as the one which filled the initial vacancy, the 

transition is called a Coster-Kronig transition. In general, the smaller the difference 

in energy level, the more probable that a subshell will sacrifice its electron. Thus L 

to K transitions are more prevalent tha t N to K transitions.

The data presented by Halbleib and Morel [Ha78] and used in the P-codes (ex

tended relaxation) of the ITS series has been used here. This data is tabulated in a 

form for easy manipulation by a  conventional, history based Monte Carlo program 

and required extensive manipulation in order to produce a full set of decay mode 

probabilities for use in the present work. The raw data is listed in table 4.1.

From this data probabilities for various decay channels can be determined for 

vacancies in the K, L-I, L-II, L-III and average M subshells, and are listed in tables

4.2 through 4.6.

Several assumptions have been made in compiling these relaxation modes. First, 

because data is not available, transitions involving electrons outside the N shell must 

be ignored, regardless of the shell of the original vacancy. This is, however, consistent 

for the most part with the general lower energy limit of 1 keV placed on this work, 

as only in the range of Z ~  90 are N shell energies above 1 keV, and any transitions 

involving these shells would produce daughters with energy below the 1 keV cutoff 

anyway. A second assumption is that the relative frequency of K-MM, K-MN, and K- 

NN Auger decays may be taken for all elements to be .91, .045, and .045, respectively, 

as suggested by Halbleib. Third, the source of the second electron in all L-II to L-I 

Coster-Kronig transitions is assumed to be the N shell, in L-III to L-I transitions 

the M shell, and in L-III to L-II transitions the N shell. And lastly, because of some
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Total probability of K fluorescence
Relative fraction of K fluorescence from L-II, L-III, and M average transitions
Fraction of K Augers involving two L transitions
Relative fraction of K LL Augers for various L subshell combinations
Fraction of K Augers involving one L and one outer transition
Relative fraction of K L-Outer Augers involving M shells
Relative fraction of K LM Augers for various L subshells
Relative fraction of K LN Augers for various L subshells
Total probability of L-I fluorescence
Fraction of L-I fluorescence from M average transitions
Fraction of L-I Augers involving an L (Coster-Kronig) transitions
Relative fraction of L-I L Augers involving L-II and L-III
Relative fraction of L-I Augers involving MM and MN average transitions
Total probability of L-II fluorescence
Fraction of L-II fluorescence from M average transitions
Fraction of L-II Augers involving an L-III (Coster-Kronig) transitions
Relative fraction of L-II Augers involving MM and MN average transitions
Total probability of L-III fluorescence
Fraction of L-III fluorescence from M average transitions
Relative fraction of L-III Augers involving MM and MN average transitions
Total probability of Average M fluorescence

Table 4.1: ITS P-Code Relaxation Data
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K to L-II fluorescence 
K to L-III fluorescence 
K to M-Average fluorescence 
K to N-Average fluorescence 
K to L-I L-I Auger emission 
K to L-I L-II Auger emission 
K to L-I L-III Auger emission 
K to L-II L-II Auger emission 
K to L-II L-III Auger emission 
K to L-III L-III Auger emission 
K to L-I M-Average Auger emission 
K to L-I N-Average Auger emission 
K to L-II M-Average Auger emission 
K to L-II N-Average Auger emission 
K to L-III M-Average Auger emission 
K to L-III M-Average Auger emission 
K to M-Average M-Average Auger emission 
K to M-Average N-Average Auger emission 
K to N-Average N-Average Auger emission

Table 4.2: K Shell Decay Channels Treated

L-I to M-Average fluorescence
L-I to N-Average fluorescence
L-I to L-II N-Average Auger emission
L-I to L-III M-Average Auger emission
L-I to M-Average M-Average Auger emission
L-I to M-Average N-Average Auger emission
L-I to N-Average N-Average Auger emission

Table 4.3: L-I Shell Decay Channels Treated
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L-II to M-Average fluorescence
L-II to N-Average fluorescence
L-II to L-III N-Average Auger emission
L-II to M-Average M-Average Auger emission
L-II to M-Average N-Average Auger emission
L-II to N-Average N-Average Auger emission

Table 4.4: L-II Shell Decay Channels Treated

L-III to M-Average fluorescence
L-III to N-Average fluorescence
L-III to M-Average M-Average Auger emission
L-III to M-Average N-Average Auger emission
L-III to N-Average N-Average Auger emission

Table 4.5: L-III Shell Decay Channels Treated

M-Average to N-Average fluorescence 
M-Average to N-Average N-Average Auger emission

Table 4.6: Average M Shell Decay Channels Treated
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errors in the tabulation, in several instance for elements from Z ~  15 to  Z  ~  30 the 

partial probabilities of the L decay modes add up to more than unity. When this 

occurs, they are simply renormalized.

In modeling the filling of vacancies through the transitions described above, new 

vacancies are often produced in outer (yet still important) subshells. These vacancies 

must then be relaxed until all new vacancies lie in untreated channels, either those 

with energy less less than the cut-off or those lying outside the M shell. Once this 

stage is reached a certain amount of de-excitation energy is still available to the 

atom, and throughout this work it considered to be deposited locally.

The use of average M shell quantities to treat M shell vacancies, as required by 

the limited data  set, presents somewhat of a  problem. Because of the extensive 

photoelectric and electron ionization cross section data which is available, scattering 

models may be sometimes be defined in which vacancies are excited in explicit M 

subshells. It would be desirable to model the relaxations exactly, but only average M 

transition data  is available, and this causes the following potential problem. Because 

the 5 M subsheUs can be separated by up to 2 keV for high Z materials, it usually 

happens tha t the average relaxation energy, — is not given by the energy 

of the explicitly excited shell (Em, ) minus the average N binding energy. Using the 

average transition numbers destroys the energy balance, and so in the present work 

a certain residual error energy, given by Ejtj^—Em,- is introduced when modeling the 

relaxation. Whenever a  specific M subshell is excited, the residual energy (which 

can be negative) is deposited locally, the vacancy is treated as being in the average 

M shell, and the only allowed transition is with the average N electron. This feature 

is invoked for only materials which have M shell energies greater than 1 keV, which 

starts a t roughly Z ~  50.
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CHAPTER V

CURRENT MONTE CARLO CODE, SKEPTIC

The third aspect of this work involves the examination of the accuracy and com

putational efficiency of Monte Carlo simulations of electron transport problems using 

various single scattering cross sections and multiple scattering distribution functions. 

The development of a  set of programs suitable to this task and labeled the SKEPTIC 

(Simulated Kilovolt Electron and Photon Transport In Condensed media) package 

is described in this chapter.

Given the many fine references already cited, it would seem inappropriate to 

present here a  detailed examination of either the Monte Carlo method or its specific 

application to the simulation of electron and photon transport. However, understand

ing the justification for certain techniques which have been employed in SKEPTIC 

in order to simultaneously create a general algorithm and improve computational 

alacrity requires a basic knowledge of the principles of the Monte Carlo technique. 

Thus, those fundamental concepts cited in the course of describing the methods used 

in this work are reviewed in some detail. Additionally, a general knowledge of the 

basic Monte Carlo particle transport simulation algorithm is essential in comprehend

ing the differences in the classes of electron transport algorithms, described briefly 

in the first chapter. Thus a  review of the fundamental particle transport simulation
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algorithm is presented, along with a new scheme for classifying the variations from 

the basic algorithm for the case of electron transport. Thirdly, as efficient use of 

the available vector œ m putation facilities mandates alteration of the basic transport 

algorithm, a  review of vector im p u ta tio n  concepts is presented in effort to elucidate 

the logic underlying the final SKEPTIC program flow.

5.1 Basic Elements o f the M onte Carlo Technique

As noted in chapter one, the premise of Monte Carlo transport simulation is the 

generation and compilation of enough statistically determined case histories so tha t 

the average result of the many individual particle simulations approximates the so

lution to the problem at hand. The underlying procedure in history generation is 

the simulation of every event outcx»me by using random numbers to  ‘sample’ from 

probability distribution functions appropriately describing the events. It is instruc

tive to examine basic Monte Carlo sampling schemes in order to appreciate how the 

SKEPTIC package has come to be fashioned around general sampling techniques.

Three main types of sampling schemes are examined here, with special focus on 

the subsets of the third method. While the first two techniques are meant to give 

exact results, the third method, except in special cases for which it is actually a 

subset of the first technique, involves some error introducing approximations which 

are examined here and quantified in a loose analytical fashion as well as by numerical 

example.

For the sake of clarity, some definitions should be set forth at the outset. These 

definitions are not meant to adhere to rigorous mathematical convention, but rather 

to provide a  foundation for the current discussion. Thus, a probability density or 

distribution function is defined as the function describing the probability of occur
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rence of a  given outcome x  of an event and designated p[x). An example of a density 

function would be an scattering cross section differential in angle. The ‘event’ is 

scattering at some angle and the outcomes are all possible angles 9 in the interval 

from 0 to T radians.

A cumulative probability density or distribution function P (x) for an event is 

defined as

P (x ) =  f  dx' p{x'). (5.1)
•'3?nxin

We note tha t the normalized distribution, defined by P{x)/Pmax ,where

f X m a i

P m a x  —  I  d x  p \ X )  

is monotonically increasing on the interval [0,1].

5.1.1 D irect Sam pling

The basic technique involved in determining the outcome of a given event is 

the equating of a  number chosen a t random from a uniform distribution on the 

interval [0,1], and the normalized probability distribution function of the possible 

outcomes of the event. The distribution function is then inverted to determine at 

which outcome the normalized distribution function is equal to the random number, 

as

X =  P -^ (0  (5.2)

where P~^ represents the inverted function such that

^ =  P(x).

Theoretically, if enough events are sampled, the normalized frequency with which the 

specific outcomes are chosen will match the normalized density function from which
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the distribution function is derived. A common application of this technique is the 

determination of the distance to collision for a particle in free flight. The possible 

outcomes are distances s traversed prior to the collision for which the density function 

is given by

p(s) =  Se-=“

where S  is the to tal cross section. The cumulative distribution is given by

P{s) =  1 -  e -^ ' 

and so if ^ is a  random number the outcome chosen would be

Note th a t (1 — is uniformly distributed over (0,1], and so just ^ is commonly used 

as the argument of the log term.

While inversion sampling reproduces the density function exactly for an infinite 

number of samples, a  crippling disadvantage of this technique arises when the dis

tribution function is not invertible in closed analytical form. Thus, this technique is 

not universally apphcable and other methods must sometimes be employed.

5.1.2 R ejection Sam pling

A second method, called the rejection technique, involves the comparison of a 

random number with the density function normalized to have maximum value of one 

(as opposed to integral value of one) and evaluated a t a possible outcome determined 

by a preceding random number. If the second random number is less than the density 

function at the given point, then the point is chosen as the outcome. If not, it is 

rejected,fnd a different, possible outcome chosen using a third random number and
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tested by comparing the normalized density at that point with a  fourth random 

number and so on. In theory, all possible outcomes will be initially tested uniformly 

but chosen as successful outcomes in proportion to their relative probability. The 

angle of Compton scattering is usually sampled in this manner in conventional Monte 

Carlo photon transport codes. Although this technique is applicable to all situations, 

its efficiency, defined as the fraction of successful samplings, will be low when the 

density function deviates significantly from uniformity. This is clear from figure 5.1, 

if we note tha t the efficiency is equal to the fractional area under the normalized 

density function. For the top figure, a  rather uniform density, potential outcomes 

are rarely rejected and the technique is efficient. For the bottom, sharply peaked 

density curve, the potential outcome will most likely be rejected unless it lies in the 

narrow band under the peak, and so sampling will be inefficient and time consuming. 

Consequently, a good deal of effort goes into determining variable transformations 

under which the density functions can be sampled efficiently (see for example, [Ka56] 

or [Fo78]). The difficulty in developing such transformations has a large impact 

on the SKEPTIC package. Because the purpose of the work is cross section and 

distribution function comparison, and since very few distribution functions can be 

inverted, retaining exactness in sampling would require tha t rejection techniques be 

used. Since most of the cross sections and distributions tested have not been widely 

(if a t all) used in prior Monte Carlo calculations, efficient rejection schemes are not 

available, and would have to be developed for each cross section or distribution used. 

The effort involved in such an undertaking would be substantial, and the Monte Carlo 

transport simulation portion of the package would be different for each case tested. 

As a universally applicable sampling scheme is sought, a third type of sampling must 

be examined.
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Figure 5.1: Sample Functions in the Rejection Technique
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5.1.3 Discrete Sampling Schemes

A third scheme arises in two situations, the first for the case in  which the number 

of possible outcomes is finite and the second in the case for which a continuous set 

of outcomes is approximated by a discretization of the outcomes arid the density 

function defining them. In the first instance, the technique is actually a subset of 

the direct inversion sampling scheme, and in the second, a combination of rejec

tion sampling with unit efficiency employing specially processed densities and an 

approximation using direct inversion.

Sampling Techniques for Densities with Discrete Outcomes

A common application of the first instance is in determining which type of in

teraction has occurred a t a scattering point from the set of all possible scattering 

interactions. If ct,- represents the microscopic cross section for interaction type i, 

the normalized (by integral value of one) density function p(x») (or simply p,) for 

outcome x,- is given by cTil<̂ tot and the cumulative density is defined by

P(x.) = Pi = '^ P j .  (5.3)
i=i

In determining an outcome, a random number ^ is compared with the distribution 

function and outcome x, is chosen for

Pi-1 < ( <  Pi. (5.4)

Two methods of deternrining x, from a table of P{ and a random number are avail

able, the first involving a  simple table search and the second sampling from an 

artificially created uniform distribution, as proposed by Walker [Wa77] (in which the 

technique was called alias sampling) and extended to Monte Carlo particle transport
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simulations by Brown [Br82]. In this work, schemes which use alias sampling to per

mit arbitrarily spaced bins will be refered to either as arbitrary schemes or Brown 

schemes. The table search involves sifting through the outcomes (usually using a bi

nary search technique) until the appropriate outcome is found. This can be very slow 

when a large number of outcomes are possible, requiring two tests and three index 

assignments at each step for logglV* steps, where Nt is the number of elements in the 

table. Alias sampling consists of the construction of a  uniform distribution function 

with an accompanying dual index list and binary probability function. Essentially 

all points in a  discrete probability density function are normalized to  the mean by 

considering them to be comprised of portions of two components of the density. Thus 

a density function with N  points and average value p will be represented by a uni

form distribution of N  points Xi and density p, and each Xt will have a corresponding 

dual index list li and Jj, where the index lists point to two points Xk and xi of the 

original distribution, and a probability p, which equals the fractional contribution 

of the point /,• to the distribution average. The set-up algorithm involves finding 

the mean and then using the point with the smallest density, x, and the point with 

the largest density x/. Thus I i = 3 and Ji = I and pi =  p ,/p . For the next pass, 

Xg is removed from the list of possible outcomes and the density of x/ is reduced to 

p/ — (p — Pa). The average of the updated density is still p and the number of points 

is A  — 1. It is clear than N  sets of points will be generated after N  passes. It can

be seen th a t for all occurrences of a given point Xj in the index lists I  and J
N

Y lS { x j - x i . ) p p i  -I- < 5(x j-x j..)p (l-p ,) =  Pj
i= l

where pj is the original probability density function. The main advantage of this 

method is the computational savings in sample time. Sampling is a two step opera

tion, with the first index to be used determined by i = -t-1 and the actual index
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Ii used for p.- <  r} and J,- otherwise, where ^ and t] are random numbers. In practice, 

the amount of stored information can be reduced from three to one full word array 

by ordering the z’s so th a t /,• =  i and by storing p,- and J,- as their floating point sum. 

Pi =  Ji + Pi = J i.p i . The additional preprocessing required in generating the pseudo 

uniform distribution is not great, and the method will be faster than a table search 

whenever there are more than a  few possible outcomes. Because of the increase in 

computing speed gained by employing this method, it is always employed for sam

pling initially discrete distributions in SKEPTIC. Note tha t for the case of initially 

discrete densities, both the table search and alias sampling methods are exact for an 

infinite number of trials.

Discretely Sampling Densities with Continuous Outcomes

The second case in which discrete sampling might be employed is that for which 

a continuous distribution is discretized. An example would be assuming that only 

certain values of scattering angles are allowed, for example, every one degree from 0 to 

180. In the discretization approximation some sort of numerical integration scheme 

is necessary in determining the discrete function from the continuous density. Noting 

that we are determining probabilities for finite intervals or bins rather than individual 

points, if we define the endpoints of bin m  as Xm and X m +i and the probability of 

choosing the bin as 11^, we obtain

/X m + l
Ilm =  / dxp{x). (5.5)

Jxm

If we normalize the I I^ ’s by Ilm =  Ilm/Hfot where Iltot is given by

M

Ufot = Ilm, 
m =l
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we chose a bin by

Urn—1 ^  Ilm

as in the true discrete case. Obviously, the table search method (applied to cu

mulative densities of course) and alias sampling are applicable for determining the 

outcome bin from the discrete set of bin probabilities, and clearly the table search 

method will be much slower than alias sampling for every realistic application. In 

addition to alias sampling, a  fast sampling scheme which uses preprocessing to select 

the endpoints Xm so tha t all 11^ axe equal may be employed. In this technique, 

if f i s  a random number to be used in selecting the bin, the bin index is given by 

m  — M i  -f-1 where an integer multiplication is assumed. This has the advantage over 

alias sampling in tha t is requires less data storage per bin (a set of the bin endpoints 

versus a set of endpoints and a set of probabilities) and requires only one sampling 

step instead of two, but has some disadvantages in th a t more bins are required to 

accurately describe the distribution, especially if it has a  long tail. The storage per 

bin and run time efficiency versus accuracy and preprocessing time loss trade-offs 

between the two methods will be explored in depth later in this chapter. Note that 

the equally probable bin method is not applicable to the true discrete case because 

in that case the bin probabilities are fixed a priori.

In addition to the two schemes described above for discrete sampling, three meth

ods, two of which reintroduce continuity of the outcomes, have been used here to 

determine an outcome from inside the sampled bin. The first involves simply choos

ing the midpoint value of the bin as the sampled point. The second assumes that all 

points within the bin are equally probable (constant density), and sampling is done 

accordingly. The third assumes that the points are distributed with linear probability 

through the bin.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



202

In general, the probability of sampling a point x ' which lies in bin m is given by 

Em • where ir^(x) represents the density of the outcomes in bin m and the

superscript s  refers to one of the three interbin interpolation schemes. In all three 

interbin sampling schemes the densities are later normalized so tha t

=  1. (5.6)
JXm

In the  first two cases only the shape of the density survives normalization, so no 

additional constants need be assigned. In the third case, the slope and intercepts 

must be determined before normalization. We require th a t the values of at the 

bin endpoints be set such that

^  P{Xm+l)
PiXm)

and the slope of the linear density, pm, be determined so tha t the integral of 

over the bin is equal to the integral of the actual density function over.the bin. Thus 

we have

2 Em p(Xto+i ) ____
7Tm(Xm +l) _  ^ m )  (p (X m + l)  +  P (X m ))

:Tm(Xm) =  7r„t(Xm+l) (5.7)

  ^m(Xm+l) ‘̂ m(Xm)
Pm

X m +l — Xm

Note tha t the requirement of maintaining consistent bin integrals may also be im

posed for the first two interbin sampling techniques, but the constants are trivially 

factored out in normalization. Normalized expressions for the 7t®’s  are given in table

5.1 and expressions for determining an outcome from a sampled bin given a random 

number f  for a  given scheme are given in table 5.2. Although the inversion scheme 

for the linear case of table 5.2 is correct, a  scheme which skirts the use of square roots
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Interpolation Scheme C ( x )

Mid point (be -

Constant
1

X m +l — Xm

Linear P m iX  X m ) "b ^ m (X m )

■jl^mCXm+l) "b ^ m (X m )](X m + l X m ) .

Table 5.1: Interbin Interpolation Probability Densities

Interpolation Scheme %(f)

Mid point (X m + l "b Xm)/2

Constant Xm +  (Xm+1 — X m ) ' t

Linear Xm +  (y ^ (7 T (X m + l)^  “  ’r(X m )^ ) ~  îr (X m ))  f  Pm

Table 5.2: Inverted Interbin Interpolation Probability Distributions
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and reduces the necessary amount of data may be used instead. In this scheme, a 

point is chosen from a linear density on the interval -1 to  +1 according to the formula

x' =  1 -  2 • 16 -  61

The final answer is given by

_  Xm+l +  Xm , Xm+l ~  Xm /
^ 2 2 X

with the positive term containing x ' chosen for |(Xm+i — Xm) * 7Tm(Xm+i) >  6  and 

negative otherwise. (In this example, 6 , 6  and 6  axe random numbers.) Although 

this scheme is marginally slower than the previous oiie using square roots, it reduces 

the data requirements for hneax sampling from three to one item per bin, and so has 

been employed exclusively throughout this work.

For all sampling schemes, as the interbin densities have all been normalized, if 

we have M constructed bins, we have consistency in that

jfX M + l /‘X m + l f X m a x
' <^X7t(x) =  XI ^m /  < ^ x < ( x ) = /  dxp{x). (5.8)
Xl  771=1 * '^ m in

Note that 7r(%) may be discontinuous at mesh endpoints, but this has no bearing on 

the accuracy of sampling.

D isc re tiza tio n  of C ontinuous Functions The determination of the specific 

points in a  continuous set of outcomes at which to define discrete bins requires 

some scheme relying on minimizing the error created in using the discrete rather 

than continuous distribution. Two subroutines for splitting distribution functions 

into bins, each using the same error estimation logic, have been written. The error 

prediction algorithm devised here relies on calculation of the relative root mean 

square difference between the input function and the approximating function. The
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input function is a  finely meshed set of points which will be interpolated as necessary. 

Some a priori knowledge of the function behavior, particularly of local maximums 

and minimums, is necessary when selecting the finely spaced input base points. In 

most cases, such knowledge is available and base points can be set in an almost 

arbitrary manner and still not skew the calculation. It should be noted that there is 

no way to circumvent the use of base points, and it is impossible to  assure tha t no 

local maximums or minimums will be wholly contained within a  set of adjacent base 

points for an arbitrary continuous function. Thus we assume th a t the input function 

consists of a tabulated set of N  points x „  and values of the density p (® n ) =  Pn- The 

root mean square (rms) error in approximating the density function within a given 

bin is determined as follows. As the interbin schemes are developed assuming that 

the input density is exact, that 11^ comes from integrating the density itself, and 

th a t the created densities are normalized so that they have the same area as the exact 

density over the input base points, no error is incurred in sampling for the proper bin, 

and so all of the sampling error arises in selecting an outcome once the bin has been 

identified. The run time sampled density function will be equal to  the constructed 

function (given enough histories), so that the runtime probability of choosing point 

X from bin m using interpolation scheme s is given by 11^ • 7r^(x), while the actual 

probability is given by p(%) (interpolated from the input fine mesh) and therefore 

the total square error introduced by discretization in bin m for interpolation scheme 

s is given by

(% )L  = r * ' d x  (Kx) -  n „ < (x ))" . (5.9)
JXm

Related quantities are the relative square error,

(^ :)L  = £ '* 'd x  , (510)
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the relative root mean square error,

P'Tel,rma —

/ ( X M + l -  X l)

^  / ( x m + 1  — Xi)j

1/2

(5.11)

and the root mean square relative error.

E,'rms,re/ —

M

E ( % ) L
m = l_________

(XAf+1 — X l)

1/2

(5.12)

There is some question conœming whether the relative rms error (equation 5.11) 

or the rms relative error (equation 5.12) is a better indicator of the error in the 

constructed density. The relative rms error represents the root of the to tal square 

error relative to the average square value of the function, while the  rms relative error 

represents the root of the average relative error in the function a t each point. Thus 

relative rms is a measure of mean relative total error and rms relative Is a measure of 

mean instantaneous relative error. It is clear tha t using instantaneous relative error 

will predict large error a t small function values and small error a t large function 

values, even though the actual difference in the densities may be comparable or even 

reversed relative to this prediction. Using instantaneous relative error as a  basis 

for bin determination will predict very closely spaced bins with small absolute error 

when the density is small and widely spaced bins with large absolute error where the 

density is large. In the worst case of applying this method, actual densities with a 

zero would exhibit infinite error unless the constructed densities also had zero value 

at tha t point. An illustrative example of the differences resulting from application of 

the two definitions of error is the case of screened Rutherford scattering discretized 

into linear bins. Using rms relative error, the distribution would be broken into many
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smaller bins than in the case of keying on relative rms error. It can be concluded in 

general tha t for equal number of bins, using relative rms error gives a closer overall fit 

at all outcomes, while using the rms relative error would ensure better accuracy at the 

small probability events. For situations in which the low probability outcomes have 

enormous effect on final results, defining error as the rms relative deviation may be 

superior. Unfortunately, it is usually not known beforehand when the low probability 

events are so im portant as to justify a technique resulting in poorer absolute error 

in the high probability cases. Thus, throughout this work, relative rms deviation 

(equation 5.11) has been adopted as the figure of merit for determining accuracy. 

Note th a t no m atter how the error is defined, using the midpoint interpolation scheme 

leads analytically to infinite error. However, if the final Monte Carlo simulation tally 

bins are more coarsely spaced than the input discrete distribution bins, using the 

midpoint interpolation scheme may actually produce quite good results. When the 

midpoint sampfing technique is to be applied, the bin end points are determined by 

minimizing the error predicted for one of the other schemes.

Using the above formalism for quantifying error, two routines for discretization 

of continuous functions have been written and tested. Both use LaGrangian interpo

lation of a  user specified order nord to determine various necessary function values 

from the tabulated input, and both use a {nord+ l)l2  point Gaussian quadrature 

scheme (exact for evaluating the integrals of nord degree polynomials) to perform 

integrals of both the bin probability and rms error.

Subroutine EQCHOP constructs equal probability bins from the input distribution. 

Options exist to request either a specified number of bins regardless of the error, or 

a code determined number of bins, depending on the selected inter-bin interpolation 

scheme and the input maximum allowable total rms error between the constructed
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distribution and the input distribution. The subprogram in EQCHOP which performs 

the actual calculation, NEQUAL, computes equal probability bin endpoints given tha t 

the distribution is broken into a preset number of bins. Its algorithm begins by 

integrating over the input base points until the preset equal bin probability, deter

mined by dividing the integral of the input density by the number of bins to use, is 

exceeded. This determines which input base point interval contains the next output 

bin endpoint. An iteration scheme based on the régula falsi technique determines the 

bin endpoint by successively integrating over portions of the base point interval until 

a point is found which yields the desired bin probability. The régula falsi procedure 

usually takes no more than 2 or 3 iterations. For cases in which the codé is requested 

to determine the minimum number of bins for a given error, an initial guess of the 

number of bins is made, the bin spacing for this guess determined by NEQUAL and the 

error calculated. An outer iteration scheme based on halving the interval from the 

previous guess to the minimum or maximum allowed number of bins is followed until 

the fewest number of bins (plus or minus an input number tolerance) for the given 

error is found. This entire technique relies on the assumption that the error always 

decreases as the number of bins increases. This is not strictly true, but is a reason

able assumption for smooth functions and has been found to hold for all distribution 

functions treated in this work. Obviously, there are some free parameters in addition 

to the given error tolerance, which effect the results. The order of the integration 

and interpolation schemes have some bearing on the final results, and the number 

of bins initially guessed greatly effects the computation time. In order to test the 

dependency of the results on these parameters tests were run on 5 example functions: 

a constant function, a  linear function, a  sine function, an exponential function and 

a sawtooth function with equivalently shaped teeth. The routine always correctly
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selected one bin for use in sampling the constant function with constant interpola

tion and for sampling the linear function with linear interpolation, regardless of the 

error tolerance. For the more variant functions, the routine always predicted more 

bins for constant rather than linear interpolation for the same allowed error, and 

more bins for smaller tolerated error using the same interpolation scheme. For the 

same tolerated error, the number of bins and their spacing was found to be some

what dependent, and the execution time to be greatly dependent, on the order of 

interpolation and integration schemes, especially at lower orders. In general it was 

found tha t a  5*̂  order scheme for both cases produced roughly the same results as 

higher order schemes, with a  substantial saving in computation time. An interesting 

problem presented itself for the case of the input sawtooth shaped density, which is 

an example of a function for which increasing the number of bins may not lower the 

error. For instance, if the initial guess on the number of bins happens by chance to 

be an integral multiple of the number of teeth, the code will correctly predict that 

the error is zero. If it then tries a  smaller number of bins which is not an integral 

multiple, the error will increase, and so the code will end up converging on the initial 

guess, which is not the true minimum. In addition, as only the tooth end points 

were input as base points, any scheme requiring more than two base points for the 

interpolation caused program abort due to calculation of negative probabilities. This 

problem was caused by the program trying to fit smooth polynomial functions to the 

sawtooth end points and needing negatively valued functions for the fit. No realistic 

density function will be this poorly determined however.

Subroutine CHOP constructs bins of arbitrary probability for use in alias sampling 

and in constructing tables of cumulative densities. Input options allow the user 

to specify either the bin endpoints or the maximum rms error allowed in a  single
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bin. In the case of code determined bin endpoints, the algorithm searches the input 

base points until it locates the interval containing the point which, when included in 

the bin, will exceed the allowed error for that bin. A régula falsi technique is then 

employed to determine the exact endpoint. This scheme again assumes tha t the 

larger the bin the greater the error, which is again a reasonable approximation for 

most functions. It should be noted tha t as this scheme calculates error for individual 

bins rather than  the entire distribution, and since the bins all have the maximum 

allowed relative error and the squares of the bin errors add, the total error is given 

by the allowed error in a single bin times the square root of the number of bins. 

Using the test functions it was again found that tha t 5*̂  order interpolation and 

integration produce the same results as higher order schemes with great savings in 

computation time. In this instance, if asked to use a first order interpolation scheme, 

the routine always accurately predicted that the sawtooth function should be cut at 

the tooth end points. The same problems which arose in the equal probability case 

were evident here when higher order interpolation schemes were used for the sawtooth 

test problem.

A pplica tion  o f D isc re tiz a tio n  Schem es to  P ra c tic a l C ases The discretiza

tion procedure will clearly have an impact on the speed, accuracy, and da ta  storage 

requirements of the calculation. Data storage is a concern because of main mem

ory limitations involved in using the Cray X-MP/48, as explained in a  later section. 

The problem however must be addressed here as some bin schemes are potentially 

space limited. Speed and accuracy are obviously interdependent, as the more accu

rate sampling schemes (such as linear interbin interpolation) are slower. Speed for 

accuracy trade-offs are also influenced on the data limitations, as faster schemes re
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quire more data  for the same modeling accuracy. Thus the effect of discretization on 

accuracy, sampling speed and data handling for the binning schemes and the three 

interpolation methods should be examined.

The sampling tim e per outcome and the size of data structure required for a  given 

accuracy for each of the discretization and interbin interpolation sub-cases can how

ever be examined, and results compared with similar computations using both direct 

sampling cases and table search schemes. As it is assumed that discretization will be 

desirable in instances for which determination of a  single point in a  differential cross 

section by inversion or by rejection is time consuming, it is instructive to examine for 

the sake of comparison cross sections with varying complexity in analytical form. Ad

ditionally, as indications are sought of the difficulty of discretization (manifested by 

the required number of bins), cross sections with of varying degrees of non-uniformity 

should be examined. The examples chosen here are the Rutherford elastic scattering 

cross section, because it may also be sampled by direct inversion and is.quite smooth, 

even though varying over several orders of magnitude; the Compton photon scatter

ing distribution, because it has been widely studied and well documented rejection 

sampling schemes are available; the Riley cross section for elastic scattering a t high 

Z and low energy, because it exhibits non-uniformity of shape and so should prove a  

hardy test to any discretization scheme and because it must be sampled using a table 

search of the cumulative density. The cross sections are sampled for initial particle 

energy of 10 keV in gold, and graphical representations of the density functions for 

the three cases are presented in figures 5.2, 5.3, and 5.4.

The distributions to be sampled were processed by the discretization routines 

using various input error tolerances. Results showing the number of bins generated 

as a  function of input error for all three cross sections for both equally and
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Figure 5.2: Screened Rutherford Cross Section in Gold a t 10 keV.
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Figure 5.3: Compton Scattering Cross Section in Gold at 10 keV.
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Figure 5.4; Riley Elastic Cross Section in Gold at 10 keV.

arbitrarily probable bins and both constant and linear interbin sampling schemes 

are plotted in figures 5.5, 5.6, 5.7 and 5.8. The same results grouped by cross section 

thus comparing the number of bins between the sample schemes are shown in figures 

5.9, 5.10 and 5.11.

As expected from the experience with the test functions, for lower error tolerance, 

more bins are needed, and linear interpolation requires fewer bins than constant for 

a  given error in all cases. Somewhat surprisingly, the results show that constant 

interpolation schemes appear unsuitable for required error tolerances of less than 5% 

or so in all cases, owing to the extremely large number of bins required. On the 

opposite extreme, relatively few bins give quite good accuracy for either bin scheme 

using linear interpolation, with one exception described later. Also consistent with 

earlier experience is tha t the number of bins required to fashion equally probable 

bins is much larger than for the arbitrary probability case. The number is so much 

larger tha t the total data storage required for the equally probable case exceeds that
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Figure 5.5: Number of Bins versus Error, Equally Probable Bins, Constant Interbin 
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Figure 5.6: Number of Bins versus Error, Equally Probable Bins, Linear Ihterbin 
Interpolation
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Figure 5.7: Number of Bins versus Error, Arbitrarily Probable Bins, Constant In
terbin Interpolation
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Figure 5.8: Number of Bins versus Error, Arbitrarily Probable Bins, Linear Interbin 
Interpolation
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Figure 5.9: Number of Bins versus Error, Rutherford Scattering Cross Section, All 
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Figure 5.11: Number of Bins versus Error, Riley Elastic Scattering Cross Section, 
All Sampling Schemes

of the arbitrary case, even though the arbitrarily probable bin case requires twice as 

much data per bin. The inherent data storage requirements for the various schemes 

are given in table 5.3 and the specific results for the three test distributions (in terms 

of number of full words) are given in table 5.4.

It is seen from these results that for both bin schemes, the extra data storage 

required for linear interbin interpolation is more than oifset by the saving in the 

number of bins, producing a net decrease in total space required for a linear interbin 

scheme versus a  constant scheme a t the same input accuracy. One other interest

ing fact revealed through these simple test cases is the unsuitability of the equally 

probable bin case for discretizing the Compton scattering distribution. The large 

number of bins results because of the large error involved in modeling the first bin, 

as a{9) sin 6d6 is very small and very non-linear for small 9. The first bin must be 

kept short in order to satisfy the error requirement, and so has low probability. Since
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Scheme Data Elements Required

Table Search H to5 Xm

Uniform Distribution Xm

Arbitrary Probability Distribution Xm->Pm

Midpoint Interpolation (Xm+1 +  Xm)/2

Constant Interpolation Xm

Linear Interpolation X m 5^m (X m + l)

Table 5.3: D ata Requirements for Bin Schemes and Interbin Sample Schemes

Scheme Input Error Compton Riley Rutherford

Table Search (Linear) 1% 20 52 30

Uniform, Const. Interp 6% 62 310 103

Arbitrary, Const. Interp 6% 30 156 68

Uniform, Linear Interp 1% 288 98 78

Arbitrary Linear Interp 1% 30 78 45

Table 5.4: Number of Full Words of Data Storage Required for Example Distribu
tions
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Sample Scheme Interp. Scheme
Input
Error

Computation Mode

Apollo Cray Scalar Cray Vector

Inversion - - 68.72 1.924 - 0.190

Table Search - 1% 355.7 11.48 1.719

Equal Prob. Midpoint - 42.83 1.996 0.254

Constant 6% 63.34 2.149 0.308

Linear 1% 159.4 4.463 0.556

Arb. Prob. Midpoint - 76.00 2.723 0.367

Constant 6% 108.3 3.789 0.490

Linear 1% 194.7 5.869 0.702

Table 5.5: Sample Time per Outcome (/itsec) for Sampling from the Rutherford Scat
tering Distribution at 10 keV in Gold

all other bins must have the same probability, a great number are required.

The discretized bin results at a  given error tolerance of roughly 1% total rms 

error for the sample cross sections discussed above were then used in sampling 3500 

values using vectorized algorithms which include all the necessary sampling overhead 

(both the details of the vectorization and the source of the overhead are explained 

later in this chapter) on an Apollo DN-4000 and a  Cray X-MP/48 in both scalar and 

vector mode. Results showing the average sample time per outcome as a function of 

sampling scheme are presented for all three cross sections in all three computation 

modes in tables 5.5, 5.6, 5.7.

As expected, both the equally probable bin method and alias sampling method 

yielded faster sample times than the table searches and the rejection cases. Likewise,
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Sample Scheme Interp. Scheme
Input
Error

Computation Mode

Apollo Cray Scalar Cray Vector

Rejection - - 3942. 102.2 17.84

Table Search - 1% 313.7 9.943 1.488

Equal Prob. Midpoint - 40.86 2.041 0.255

Constant 6% 63.22 2.192 0.288

Linear 1% 157.7 4.585 0.524

Arb. Prob. Midpoint - 88.93 2.668 0.375

Constant 1% 108.7 3.867 0.478

Linear 1% 193.5 6.038 0.664

Table 5.6: Sample Time per Outcome (//sec) for Sampling from the Compton Scatter
ing Distribution a t 10 keV in Gold
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Sample Scheme Interp. Scheme
Input
Error

Computation Mode

Apollo Cray Scalar Cray Vector

Fine Search - - 688.8 8.890 2.010

Table Search - 1% 369.0 11.81 1.747

Equal Prob. Midpoint - 41.18 2.009 0.262

Constant 6% 63.58 2.236 0.291

Linear 1% 150.2 4.574 0.535

Arb. Prob. Midpoint - 76.52 2.679 0.361

Constant 6% 109.2 3.859 0.458

Linear 1% 194.8 6.026 0.668

Table 5.7: Sample Time per Outcome (^sec) for Sampling from the Riley Elastic Scat
tering Distribution at 10 keV in Gold
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the equally probable bin scheme proved faster for all interpolation schemes than the 

arbitrary case. Surprisingly, equally probable sampling was comparable in speed to 

the simple direct inversion involved in sampling the Rutherford cross section.

The conclusions drawn from the results of applying discrete sampling schemes to 

continuous functions can be summarized as follows:

1. Constant and midpoint interpolation schemes require excessive amounts of stor

age space for error tolerances less than 5%.

2. Even though the arbitrary probability method requires more data  elements per 

bin than the equal probability technique, the to tal data  needed for the same 

error tolerance is actually smaller. In certain instances, the equal probability 

method requires unsuitable amounts of data storage, even when employing 

linear interpolation.

3. The number of bins required for a  given error tolerance and a given scheme is 

highly dependent on the cross section.

4. The sampling speed for the various discrete schemes is roughly independent of 

the number of bins.

5. Sampling with a discrete method is 2 - 8 times faster than a table look up for 

scalar computations, and 2 - 7  times faster for vector computations. It appears 

to be faster than all but the simplest schemes for direct sampling.

6. Sampling from equally probable distributions is 30 to 50% faster than from 

arbitrary probability bins.

7. The maximum allowed error which results in sufficiently accurate transport 

simulations must be determined from simulations. If it is found th a t large errors
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may be allowed, equally probable schemes may be preferred because of their 

speed. If high degrees of accuracy must be maintained in the discretization, 

then arbitrary probability schemes may be necessary to  reduce data storage 

requirements.

D isc re tiz a tio n  in  E n erg y  Once the decision is made to use tabulated density 

functions for energy loss or angular deflection, some scheme must be concocted for 

handling the variation in the densities with respect to  energy. The most obvious 

scheme involves another layer of discretization. Distribution functions are tabulated 

at given energies throughout the applicable range and the density for an event in

volving a  particle with a given energy sampled from the density tabulated at the 

nearest energy. In the interest of saving main memory space, the energy binning 

scheme should minimize the number of base points for a  desired level of accuracy. 

Several timing considerations impact the energy bin (or ladder) scheme. First, it 

is desirable to  have uniform spacing (typically either logarithmic or linear) so that 

the bin index of the nearest base point can be calculated directly rather than deter

mined from a  table search. Second, it would save computations if each cross section 

or distribution function had the same energy ladder, and so the proper bin need be 

determined just once per particle per track. Of these two considerations, the first 

is far more important. The use of non-uniform ladders would require a  table search 

to determine a distribution energy index at each sampling, and would be very time 

consuming. Non-uniform ladders with the same spacing for each distribution would 

require only one such table search per particle per event, but would require that the 

all distributions be tabulated at as many points as the least accurate one and hence 

would impose a  data space penalty. This same storage penalty would be imposed
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in the  case of using a single, uniformly spaced ladder for all of the distributions, 

but this implementation would save some computations in tha t the energy index 

could be calculated instead of determined from a search. This option is employed 

in a  production code, the SANDYL derivative of ETRAN, in which the base points 

are fixed in a  uniform course mesh at every 8.30% energy loss (corresponding to a 

reduction to  half energy every 8 base points) and, a t the user’s discretion, possibly 

at more widely spaced base points [Co74]. The final alternative is the use of uniform, 

distribution dependent ladders.

The attem pt to  optimize ladder spacing for an individual distribution function 

begins with an examination of the error induced by. ladder schemes. The sampling 

error introduced can be measured by equations 5.9 and 5.11 with p(%) equal to 

the cLctual density and 11^ 7r^(x) the tabulated density a t the nearest energy. The 

magnitude of the error depends on the sampling scheme, the difference in energy 

between the actual energy and the energy for which the tabulation is made and on 

the tabulation’s energy base point itself, if the derivative of the density varies with 

energy. Families of curves denoting the relative rms error as a  function of particle 

energy using different base points for the tabulation for several sampling schemes for 

each of the three test densities are given in figures 5.12 through 5.20. The energy 

base points a t which the densities are tabulated are 100, 50, and 10 keV for several 

values of initial error tolerance.

The following observations about the error introduced by using functions tabu

lated at energies differing from the actual particle energy can be drawn from these 

figures:

1. The error introduced by energy laddering increases with the change in energy, 

as expected.
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Figure 5.12: Discretization Error vs. Energy for Rutherford Elastic Scattering Cross 
Section a t 10 keV
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Figure 5.13: Discretization Error vs. Energy for Rutherford Elastic Scattering Cross 
Section a t 50 keV
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Figure 5.14: Discretization Error vs. Energy for Rutherford Elastic Scattering Cross 
Section a t 100 keV
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Figure 5.15: Discretization Error vs. Energy for Compton Cross Section a t 10 keV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



227

I
I

.01 :
EQCON 
EQLIN 
ARB CON 
ARB LINC/3

s

.001
30 40 706050

Energy (keV)

Figure 5.16: Discretization Error vs. Energy for Compton Cross Section a t 50 keV
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Figure 5.17: Discretization Error vs. Energy for Compton Cross Section a t 100 keV
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Figure 5.18: Discretization Error vs. Energy for Riley Elastic Scattering Cross Sec
tion a t 10 keV
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Figure 5.19: Discretization Error vs. Energy for Riley Elastic Scattering Cross Sec
tion a t 50 keV
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Figure 5.20: Discretization Error vs. Energy for Riley Elastic Scattering Cross Sec
tion at 100 keV

2. The error is extremely cross section dependent. This imphes tha t if memory 

availability is the most critical modeling criteria, each distribution should have 

an independent set of energy base points.

3. The laddering error is slightly less pronounced a t lower initial energies for the 

same fractional change in energy. This implies that the optimal mesh scheme 

lies somewhere between logarithmically spaced base points (the optimal spacing 

when error change is completely independent of energy for the same fractional 

change) and linear spacing.

4. The rate of error change is much steeper for smaller initial errors. This im

plies tha t more widely spaced points are suitable for larger tolerance cases, as 

expected. The extent to which this was found to hold is somewhat surprising.

5. The error change appears to be bin scheme independent. For the same scheme
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and the same tolerance, the error incurred in using a  discrete scheme calculated 

at a different energy is driven by the actual differences in the densities and not 

inaccuracies in discretization.

6. The error change is for the most part symmetric with respect to negative and 

positive energy differences. If it were skewed, the approximation of using the 

density function tabulated a t the nearest base point would have to be adjusted 

to take into account the asymmetry.

7. A highly accurate discretization at the energy base points is not much more 

effective than a low accuracy scheme at small incremental energies away from 

the base point for a  moderate allowed error (~  6%). This imphes that unless 

extremely high accuracy in the inter-energy distributions is required, crude base 

point distributions will perform almost as well as fine ones with a significant 

savings in data storage.

8. High accuracy will require an extremely fine mesh of energy base points.

The last two points imply that it may be worth the loss in computing speed to 

gain accuracy with respect to the faithfulness of the distribution approximations by 

interpolating between energies. This would involve samphng both the upper and 

lower energy density using the same random number and then performing a hn- 

eax interpolation. This technique is unnecessary for direct sampling schemes and is 

incompatible with alias sampling (the alias results a t different energies are not cor

related), but can be used for both table searches and equally probable bin sampling, 

with midpoint, constant and linear interbin interpolation. Timing runs similar to 

those performed for presentation in tables 5.5 through 5.7 were repeated and the re

sultant slow down due to inter-energy interpolation computed. Since the slow down.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



231

Sample Scheme Interp. Scheme
Computation Mode

Apollo Cray Scalar Cray Vector

Table Search - 616.8 (2.0) 18.92 (1.9) 2.855 (1.9)

Equal Prob. Midpoint 69.47 (1.7) 2.292 (1.1) 0.365 (1.4)

Constant 114.9 (1.8) 2.909 (1.3) 0.475 (1.6)

Linear 288.3 (1.8) 8.538 (1.9) 0.938 (1.8)

Table 5.8: Sample Time per Outcome (/rsec) and Slowdown Factor for Sampling from 
the Compton Distribution a t 10 keV in Gold using Inter-energy Interpo
lation

like the sampling speed, was found to be independent of the cross section, only the 

results for the Compton scattering tests are presented here, in table 5.8. The actual 

sample times as well as the slowdown (given by the increase in computation time) 

are given. The input error tolerances for the discretizations are equivalent to those 

for the non-interpolated case. As expected, it is seen from these results that the 

usual trade-offs of run time for space saving and accuracy are present. One interest

ing point to note is that the expected slowdown of a steady factor of 2 is not seen 

for the Cray X-MP for sample schemes requiring only a  small amount of arithmetic 

operations. In these instances, much of the computing time is involved in pipeline 

startup and in processing the vectors according to index (the third section in this 

chapter examines this in detail), and so loops containing twice the arithmetic (which 

is always present) do not require twice the run time. As the computation becomes 

more involved (for the more detailed interpolation schemes) the startup and vector 

processing operations take up less of the total computation time and the slow down
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does approach a factor of 2.

Based on the conclusions drawn from these preliminary tests and the results 

described above, several schemes for determining the number and spacing of the 

energy points were examined. As noted earlier, the optimal scheme will lie between 

linear spacing, for which the energy base point is given by

Ei = E i  + ( l - l ) -  A E  (5.13)

and logarithmic spacing, for which

El =  ■ El .  (5.14)

We assume th a t E{ and Ej ,  the smallest and largest energies, are known, and that 

E l  = Ei and E n  ̂ =  E f ,  if Nb is the number of base points. For the above formalisms, 

the current energy index I for a  particle of energy E  is given by

l = { E - E i ) I A E - ^ l  . (5.15)

in the linear case and

/ =  ln(F /E x)/ln fc  +  l  (5.16)

for the logarithmic case.

Since previous results have shown tha t the absolute energy change required to 

maintain constant error decreases dramatically as the energy decreases for most in

stances, the spacing constants A E  for the linear case is determined by the maximum 

allowed difference between Ei  and E 2 , and is given by

A E  = E i -  El  (5.17)

and so the number of base points is given by

Nb = {E n , -  E i ) / A E  + 1. (5.18)
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Since the fractional (as opposed to absolute) allowed spacing increases as the energy 

decreases, in the logarithmic case the constant will be determined by the fractional 

difference between the the last two base points,

k = EN,fEN,-i  (5.19)

and the number of points given by

iV6 =  l n [ ^ ]  /ln fc  +  1. (5.20)

A simple algorithm for determining the spacing constants in these two cases has 

been devised. For the linear case, it is necessary to determine only F7g, and for the 

logarithmic case, En,-i-  To do this, an input density function is first discretized 

using the allowed base point error at either E{ or E j  for the linear and logarithmic 

spacing cases respectively. Relative average root mean square differences between 

this discrete density and actual densities calculated at several nearby energies are 

then determined. Assuming that the error incurred.in using a discrete density to 

model densities a t other energies increases with the energy difference, the energy at 

which the maximum allowed rms inter-energy error is reached can be interpolated 

from data giving errors as a function of energy. Since earlier results have shown 

tha t the error is relatively symmetric with respect to energy change, the initially 

determined point is taken as the midpoint of the bin. Hence the nearest energy base 

point {E2 or E n ,- i )  can be assumed to be located at an energy difference from the 

base point which is twice the absolute difference between the determined midpoint 

and the initial base point. Either constant or linear interbin interpolation may be 

employed when no inter-energy interpolation is assumed, in which case densities are 

treated as if they were piecewise constant with respect to energy.

For the case of employing inter-energy interpolation, the algorithm is very similar.
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Discretizations are performed a t several energies near the initial one, and rms errors 

in linearly interpolated discrete densities are calculated at energies midway between 

the test energies and the initial base point energy. The energy base point for which 

linear inter-energy interpolation a t the midpoint (assumed to  be the least well mod

eled) produces the maximum desired error can be determined from the test data. As 

noted earlier, for arbitrarily spaced densities inter-energy interpolation is not possi

ble using alias sampling. It is however, possible to  use inter-energy interpolation in 

conjunction with a  table search technique for sampling.

As stated above, it is assumed that the error increases as the e n e r ^  bin spacing 

gets larger, and this has been found to  hold or nearly hold for all instances. It 

sometimes fails when the errors found a t large energy deviations are large and vary 

little from one another, which can be assumed to be a  numerical artifact. In such 

instances, the data at small energy deviations, for which the calculated errors are 

close to the maximum desired error, is used in determining the energy base points.

Some initial calculations were made to determine the number of energy points 

required as a function of the maximum allowed error a t the  base point energies and 

the maximum deviation a t the energy midpoints, using both linear and logarithmic 

spacing for equally and arbitrarily probable bin schemes using both constant and 

linear interpolation, but without interpolation in the energy dimension. In all in

stances, the tests were performed on the Compton, Rutherford and Riley scattering 

cross sections, assuming an initial energy of 100 keV and a final energy of 1 kev. 

Results of the number of energy bins required under the conditions of 5% base point 

and 7.5% interbin error for constant interpolation and of 1% and 2.5% errors for 

linearly interpolated distributions for are given in table 5.9.

The most important conclusion ascertained from these initial tests is that poten-
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Sample Scheme

Rutherford Compton Riley

Lin. Log. Lin. Log. Lin. Log.

Equal. Prob, Const. Interp. 417 84 < 248^ < 111 1152 575%

Equal. Prob, Linear Interp. 958 188 < 248^ 23 3537 511

Arb. Prob, Const. Interp. 410 79 < 2481 < 111 1077 164

Arb. Prob, Linear Interp. 958 188 < 2481 23 3090 523

 ̂ Larger fractional energy differences not tested

 ̂ Basepoint Error =  6.8% (5% error required <  500 discrete angle bins)

Table 5.9: Number of Energy Base Points for Different Bin Schemes

tial memory limitation problems will be driven not by the number of bins necessary 

to discretize a distribution at a given energy (except of course for constant interbin 

interpolation schemes with small errors), but by the number of energy base points 

required to support high accuracy. The use of hnearly spaced base points results in 

unnecessarily fine energy bins at the high energies, and logarithmic spacing produces 

too much detail at the lower energies. In fact, the linear energy bin scheme is almost 

precluded from use because of inordinate number of base points required, except in 

the Compton scattering case. It could be argued that the linear base point spacing 

A E  for the requested accuracy be determined from that necessary at a higher energy 

{A E  would be larger, thus reducing the number of energy points) and because the 

particles are nearly stopped a t the lower energies, the large errors introduced by the 

wide relative spacing at the lower energies may not have a severe effect on overall
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Sample Scheme
Rutherford Compton Riley

Bins e Bins € Bins e

Equal. Prob, Const. Interp. 29 18.14 % < 6̂ > 5.71 % 1192 8.47 %

Equal. Prob, Linear Interp. 67 7.31 % < 10̂ > 3.25 % 248 3.46 %

Arb. Prob, Const. Interp. 27 19.73 % < 6̂ > 5.14 % 78 11.28 %

Arb. Prob, Linear Interp. 67 7.30 % < IQi > 3.25 % 248 3.45 %

1 Larger fractional energy differences not tested

* Basepoint Error =  6.8% (5% error required <  500 discrete angle bins)

Table 5.10: Number of Linearly Spaced Energy Base Points and Resultant Error at 
10 keV using 50 keV for A E

results. If we apply this reasoning to the three distributions above by taking the 

A E  from the spacing required a t 50 keV for the error tolerances requested, we find 

that although the number of required energy points is greatly reduced, the number 

is still prohibitively large for the Riley elastic scattering cross section, and the errors 

at energies as high as 10 keV have already grown quite large for the Rutherford case 

(recall, the desired input tolerance was 7.5 % for the constant interpolative schemes 

and 2.5 % for the linear ones) and are certain to be larger a t the lower energies. 

Thus it is assumed that hnear spacing of energy basepoints is not practical. The 

data supporting these findings is summarized in table 5.10.

It is therefore proposed th a t a  third base-point scheme be tried, using quadratic 

spacing. In this case, the energy bins are defined by

(5.21)
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For this case, the current energy index I for a particle of energy E  is given by

+ (5.22)
2 O2

The constants Ci and C2 , and the number of bins Nb can be deterinined in such a  

way tha t the energy spacing a t Ei and E j  is optimal with respect to the input error 

tolerances. We find

Nb =  -------------------~   +  1
{^Nb ~  ^Nb-l)  +  (^2 — El)

^  (En, -  ENb-i) + {E2 -  E l)  . .
-  ---------------------------------2(Â T ^2) ---------------------------------

Cl = (E 2 — E l)  — Cg.

There is one drawback to this scheme, however, in tha t the first several bins after 

the first one are wider on a fractional basis than the first bin, leading to a  slight 

increase in deviations of the midpoint distributions from the base-point discrete 

densities, above the original inter-energy error tolerance. This is clearly not an 

artifact of using quadratic spacing, but rather is due to the way in which the constants 

are chosen, and can be alleviated (at the expense of adding more bins) by requiring 

a slightly smaller input inter-energy error tolerance.

W ith this in mind, a routine ENCHOP was written to determine the energy bin 

spacing as a function of the base point error tolerance, the inter-energy error tol

erance, the discretization scheme, the interbin interpolation scheme and the inter- 

energy interpolation scheme. Additionally, features were added to this routine which 

print warnings and adjust the input base-point error tolerance if a  preset maximum 

number of allowed bins in the discretized densities is exceeded, and which adjust 

the inter-energy error if an allowed maximum number of energy base points would 

be exceeded. Test runs were performed which calculated the total number of bins
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required and the error at energy midpoints as a  function of the error tolerances and 

sample schemes. The maximum number of bins for these tests was set to the prac

tical limits of 100 energy points (note th a t none of the examples in the previous 

test cases met this limit) and 200 secondary ladder points. The input base point 

error tolerances tested were 2.5% and 5% for discretization schemes using constant 

interpolation and .5% and 1% for those employing linear interpolation. Maximum 

requested inter-energy error was set to be 1.2,1.5 and 2.0 times the base point error 

for the constant interpolation cases and 1.5, 2.5 and 5.0 times the base point error 

for the linear interbin interpolation case. These error limits were the same for the 

schemes using inter-energy interpolation between the base point data and those sim

ply using the nearest base point data, and all three of the test case cross sections 

were used, making a  to tal of 84 test runs (6 error schemes and 2 energy base point 

spacing methods for ezich of 4 constant and 3 linearly interpolated inter-energy sam

ple scheme) for each of the three test cross sections. These tests were designed to 

explore the validity of the following assumptions:

1. Smaller requested errors a t energy midpoints will require closer spacing of the 

energy base points.

2. The use of inter-energy interpolation will decrease the number of energy base 

points required.

3. The use of quadratically spaced base points will decrease the number of energy 

base points required.

. 4. Spacing constants can be calculated using data a t only one set of energy points 

because the error at the energy midpoints monotonicaUy decreases with energy 

for a given spacing scheme.
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Because of the limitations placed on the total number of energy points and the 

to tal number of bins a t each point, not all of tests were completed within the re

quested input error. In all cases however, the ENCHOP program determined a bin 

scheme within the preset size limitations with either the requested error or a “mini

mum” possible error, as described above.

As expected, the total number of base points required decreases as the midpoint 

error tolerance decreases. Figures 5.21 through 5.23 present results for the three test 

case scattering cross section in gold, modeling stopping from 100 to 1 keV. Only 

the inter-energy interpolation test results are shown, for all possible sampling types 

and for quadratically spaced base points. Results are similar when the “nearest 

base point” method and/or logarithmically spaced base points are used, but more 

numerical artifacts are present because the size limitation feature of the program 

was invoked more often. The leveling off at high errors seen in the figures is caused 

by a  limitation of algorithm in tha t no energy differences of greater tha t 50% were 

tested, implying a minimum of 4 base points. One interesting feature evident from 

the figures is tha t for the same error, the number of energy base points required 

is independent of the sample scheme. Therefore, the sampling scheme requiring 

the minimum storage will be determined solely from the number of bins needed in 

modeling the distribution a t the base points.

As noted above, requested error tolerances (.5% at the base points and .75% at 

the midpoint for the linear interpolation schemes and 2.5% and 3.0% for the con

stant interpolation schemes) were not always attainable. The “best” errors for the 3 

cross sections with and without inter-energy interpolation for the permitted sample 

schemes with logarithmic spacing is given in table 5.11. Note tha t the linear inter

polation scheme with arbitrarily spaced bins can be used only with table searches.
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Figure 5.21: Number of Basepoints vs. Midpoint Error, Rutherford Cross Section, 
Slowing in Gold from 100 to 1 keV.
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Figure 5.22: Number of Basepoints vs. Midpoint Error, Compton Cross Section, 
Slowing in Cold from 100 to 1 keV.
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Figure 5.23: Number of Basepoints vs. Midpoint Error, Riley Cross Section, Slowing 
in Gold from 100 to 1 keV.

and not alias sampling methods.

The results show tha t in several cases when the non-inter-energy interpolative 

scheme was to be used, the requested midpoint error could not be obtained using the 

100 energy point limit, but it could be obtained if interpolation were used. As could 

be expected from previous tests, results show that arbitrarily probable discretizations 

can more easily meet stringent space requirements, in both the interpolation and 

nearest basepoint cases. One artifact of the CHOP algorithm is evidenced by table 

5.11, that being th a t since the error is calculated for the arbitrary spacing case bin 

by bin, the final to tal error can not be known in advance. One iteration is performed, 

using a guess of the individual bin error needed to produce the desired to tal error, 

based on the initial to ta l error and the first cut number of bins. As this procedure is 

not always accurate, the result shown in the table which seems to indicate tha t for 

constant interbin interpolation, equally probable bins lead to higher accuracy for the
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Sample Scheme

Rutherford Compton Riley

^Base ^Inter ^Baae ^Inter ^Base Înter

W ithout Inter-energy Interpolation:

Eq Prob, Const Interp 6 .5 5 5  % 7 .8 6 6  % 2 .5 0 1  % 3 .0 0 1  % 1 3 .8 7  % 1 6 .6 4  %

Eq Prob, Linear Interp 0 .4 9 6  % 1 .9 3 9  % 0 .7 7 9  % 1 .1 6 8  % 1 .5 2 8  % 4 .4 7 6  %

Arb Prob, Const Interp 3 .6 7 2  % 4 .4 0 7  % 3 .1 9 4  % 3 .8 3 3  % 3 .9 3 6  % 5 .9 0 4  %

Arb Prob, Linear Interp 0 .5 1 5  % 1 .8 8 7  % 0 .4 9 9  % 0 .7 4 9  % 0 .5 5 1  % 4 .2 0 4  %

W ith Inter-energy Interpolation:

Eq Prob, Const Interp 6 .5 5 5  % 7 .8 6 6  % 2 .5 0 1  % 3 .0 0 1  % 1 3 .8 7  % 1 6 .6 4  %

Eq Prob, Linear Interp 0 .4 9 6  % 0 .7 4 5  % 0 .7 7 9  % 1 .1 6 8  % 1 .5 2 8  % 2 .7 7 3  %

Arb Prob, Linear Interp 0 .5 1 5  % 0 .7 7 3  % 0 .4 9 9  % 0 .7 4 9  % 0 .5 5 1  % 2 .7 7 5  %

Table 5.11: Requested or Resultant Errors Within Maximum 100 Energy Points and 
200 Bins per Point
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Figure 5.24: Number of Basepoints vs. Midpoint Error, with and without Inter- 
Energy Interpolation, Rutherford Cross Section, Slowing in Gold from 
100 to  1 keV.

Compton cross section is not true. In this case the error after one iteration, although 

requested to be 2.50 %, was 3.19 %, It is certain tha t lower error could be found for 

this case with this scheme, if more iterations were employed.

A related consequence of the use of inter-energy interpolation is tha t the required 

number of energy base points is smaller, as expected. This is illustrated in figures 

5.24 through 5.26 which plot a  pair of curves for each sampling scheme, representing 

the number of base points versus interbin error for both the interpolative and nearest 

base point methods. The data presented is restricted to the larger base point error 

case and quadratic spacing, although again the results are similar for logarithmic 

spacing. The magnitude of the effect is quite dramatic.

Figures 5.27 through 5.29 show that quadratic spacing does indeed reduce the 

number of base points needed, and by a  considerable amount. Results are present 

for the test cases using the nearest base point method. Note the roughly uniform
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Figure 5.25: Number of Basepoints vs. Midpoint Error, with and without Inter- 
Energy Interpolation, Compton Cross Section, Slowing in Gold from 
100 to 1 keV.
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Figure 5.26: Number of Basepoints vs. Midpoint Error, with and without Inter- 
Energy Interpolation, Riley Cross Section, Slowing in Gold from 100 
to 1 keV.
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Figure 5.27: Number of Basepoints vs. Midpoint Error for Quadratic and Logarith
mic Spacing, Rutherford Cross Section, Slowing in Gold from 100 to 1 
keV.

factor of two difference in the number of basepoints, independent of the error or the 

cross section.

Recall th a t it is assumed that in determining the energy spacing schemes, the 

error at the energy midpoints decreases with energy for the same fractional energy 

difference between the base points. Several examples of the change in midpoint error 

are shown in figures 5.30 through 5.32, and the expected behavior is for the most 

part evident. Note the artifacts at low energy for the quadratic cases caused by the 

large bin sizes. In instances when very few numbers of base points are predicted, the 

algorithm clearly fails, as unacceptably large errors occur a t the midpoints of other 

than the first and last bins. And even in instances in which more than a few (20 or 

so) energy points are chosen, the errors at the low energy midpoints are still higher 

than the input tolerance. Note also tha t because of the close energy point spacing in 

the logarithmic cases, the midpoint errors are very close to the basepoint errors at low
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Figure 5.28: Number of Basepoints vs. Midpoint Error for Quadratic and Logarith
mic Spacing, Compton Cross Section, Slowing in Gold from 100 to 1 
keV.
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Figure 5.29: Number of Basepoints vs. Midpoint Error for Quadratic and Logarith
mic Spacing, Riley Cross Section, Slowing in Gold from 100 to 1 keV.
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Figure 5.30: Discretization Error a t Midpoint versus Energy, Rutherford Cross Sec
tion, Slowing in Gold from 100 to 1 keV.

energies. The trade-off between logarithmic and quadratic spacing schemes is thus 

assured accuracy a t lower energies for a  factor of two savings in the data  set size. In 

light of this, the energy chopping algorithm has been modified so that if the number 

of energy basepoints in less than 20 for the quadratic case, logarithmic spacing will be 

substituted. If the number is greater than twenty and bin minimization is required, 

quadratic spacing will be used and the somewhat larger than input errors will be 

tolerated at the low energies.

To illustrate the dramatic effect tha t the spacing, sampling and inter-energy 

interpolation scheme can have on the total storage requirement, the to tal number of 

bins (summed over all energies) required for similar error tolerances are presented in 

table 5.12 for several different combinations of sample scheme, energy interpolation 

technique and base point spacing algorithm.

In interpreting all of the above results is is important to note that the arbitrarily
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Scheme

Rutherford Compton Riley

^Bate Winter Bins ^Bate Winter Bins ^Bate Winter Bins

Equally Probable Bin Schemes:

Con Near Quad 6.555 7.886 5201 2.501 3.001 3184 13.685 16.638 4665

Con Near Log 6.555 7.886 10016 2.501 3.001 6567 13.685 16.638 8958

Con Int Quad 6.555 7.886 839 2.501 3.001 796 13.685 16.638 608

Con Int Log 6.555 7.886 1385 2.501 3.001 2587 13.685 16.638 1465

Lin Near Quad 0.496 1.931 8300 0.779 1.168 4815 1.528 4.202 5761

Lin Near Log 0.496 1.931 70621 0.779 1.168 11025 1.528 4.202 63191

Lin Int Quad 0.496 0.745 1348 0.779 1.168 932 1.528 2.773 1216

Lin Int Log 0.496 0.745 2522 0.779 1.168 2467 1.528 2.773 63191

Arbitrarily Probable Bin Schemes:

Con Near Quad 3.672 4.407 3925 3.194 3.833 249 3.936 5.904 .9278

Con Near Log 3.672 4.407 44041 3.194 3.833 503 3.936 5.904 89461

Lin Near Quad 0.515 1.886 2231 0.499 0.749 532 0.551 4.177 3659

Lin Near Log 0.515 1.886 20161 0.499 0.749 1207 0.551 4.177 35911

Lin Int Quad 0.515 0.773 353 0.449 0.749 87 0.551 2.755 709

Lin Int Log 0.515 0.773 699 0.449 0.749 164 0.551 2.755 1566

 ̂ Did not meet 100 energy point limit

Table 5.12; Total Bins Needed to Meet Same Error Requirement
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probable case is included in the inter-energy interpolation case only because it can 

be used to model distribution functions sampled by table searches. It can not be 

used in conjunction with alias sampling. Inter energy interpolation is seen to be 

so effective th a t the reduction in the number of energy basepoints lowers the total 

required number of bins for the equally probable case to  the point where fewer 

words of storage are required than for alias sampling using the nearest energy point, 

for some of the distributions. W hat was initially seen as a  trade-off of sacrificing 

50% speed for space in going to arbitrarily probable bins has reversed itself. Alias 

sampling using the nearest energy point is 50% faster than using equally probable 

bins with interpolation, but in some instances requires more storage.

The 200 bin per basepoint and 100 basepoint limits should have allowed 20000 

total bins, but because some distributions can be easily modeled (few bins) a t base 

points, this limit was never reaehed. Therefore, if bin minimization is the goal, 

ENCHOP should allow a floating number of basepoints to be used given by the 

maximum number of bins allowed divided by the average number of bins per base 

point, rather than fixing the number of energy points.

The following conclusions are drawn regarding the data  set size as a function of 

cross section type, sample scheme, interbin sampling scheme, inter energy samphng 

treatm ent, energy base point spacing scheme, base point error tolerance and energy 

midpoint error tolerance.

1. The number of energy base points required for a given discretization error is 

strongly effected by the distribution type.

2. Substantial savings in data can be made through the use of inter-energy inter

polation, a t a cost in computation time.
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3. Outstanding savings can be attained by use of quadratic energy base point 

spacing, a t the expense of decreased accuracy in several of the lowest energy 

bins.

4. Small errors both in the base point and midpoint densities are not obtainable 

for some sample schemes and some densities for a  manageable (20,000 bin) 

data set size.

So far in this chapter, seven variables have been identified as having effect on 

data  storage and computation time, as well as being possible sources of numerical 

error in transport calculations. The effects of the ladder spacing scheme, cross section 

type, sampling scheme, interbin sampling scheme, inter energy sampling scheme, base 

point error tolerance, and midpoint error tolerance on data set size and execution 

time within sampling loops themselves have been well quantified in this section. The 

overall effect on the speed and accuracy of transport calculations are presented in 

chapter 6.

5.2 M onte Carlo Electron Transport Simulation Algorithms

In chapter I the two main Monte Carlo electron transport algorithms, based on 

the single scattering and condensed history models, were described briefly. Here 

they are examined more fully and in the context of their relationship to the basic 

algorithm for simulating the transport of particles by the Monte Carlo method.

Although special considerations arise in the modeling of electron transport, the 

underlying scheme varies only slightly from the basic particle transport algorithm 

shown in figure 5.33. (The format for presenting algorithms throughout this section 

is borrowed from Brown [Br82].) The algorithm starts with data reading, geometry 

set up, and tally initialization before entering a double outer loop (the first over
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the number of batches, and the second over the number of particles per batch) 

over the total desired number of input events. The main components of the loop 

over particles involve sampling from a  source distribution to get the initial particle 

parameters such as energy, position, and direction of propagation, tracing the particle 

and its daughters by looping over a  tracking algorithm until the particle is absorbed, 

escapes or is stopped, and tallying the results before moving on to the next input 

particle. The first part of the tracking loop involves determining the distances to the 

nearest cell boundary and to the next potential collision. It is then assumed that the 

particle collided if the distance to collision is smaller and crossed the boundary if tha t 

distance is smaller. If a  crossed cell boundary is one which demarks different materials 

(and hence different cross sections), the particle material index must be updated for 

the next tracking pass. Particle parameters (position, direction, energy, etc. ) are 

updated after eaeh collision or boundary crossing, the appropriate tallies performed, 

and the status of secondary particles determined. When secondary particles are 

produced, their state parameters, along with those of the primary particle, are stored 

in ordered arrays called ‘stacks.’ Stacks are typically emptied by tracking the lowest 

energy particle in the stack first. This prevents rapid buildup and potential overflow 

of the stacks, since low energy particles can produce only lower energy secondaries 

and thus will produce fewer progeny than higher energy particles. However, for 

particles in the energy range of interest here, this is usually not a concern as the 

probability of producing secondary particles is small. Particles are removed from the 

stacks when they are absorbed, slow to energies below a preset cutoff energy or escape 

from the volume. When the stacks are empty, the next source particle parameters 

are retrieved. The problem is finished when the stacks have emptied subsequent to 

the final initiating source event, and final tallying and output have been produced.
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•  r e a d  collision  d a ta

•  re a d  a n d  p re p a re  g eo m etry

•  in itia lize  b a tc h  tallies

•  loop  over des ired  n u m b e r  o f ba tch es

V  in itia lize  c u r re n t ta llies

V  lo o p  over d es ired  n u m b e r  o f  source p artic le s

*  lo a d  new  source  p a r t id e  p a ram e te rs  o n to  to p  o f stacks

*  p ro cess a  single trad e
0  d e te rm in e  d is tan c e  to  n e a re s t b o u n d ary  

0  d e te rm in e  d is tan c e  to  collision 
0  d e te rm in e  i f  crossing  o r  collision 

0  u p d a te  p o sitio n  
0  i f  collision:

U d e te rm in e  collision ty p e  
U sa m p le  coU idon p a ra m e te rs  

U a b so rb e d  o r  slow ed below  cutoff?  
o n o  -  u p d a te  p a ra m e te rs  
o  yes -  d e le te  from  s ta d rs  

N a d d  a n y  secondaries to  s tack s 
jj ta lly
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0  r e tu rn  to  g e t n e x t trad e  (if an y  p a r tid e s )
*  r e tu rn  to  g e t n e x t sou rce  p a r t id e

V  ta lly  b a tc h  re su lts

V  r e tu rn  to  g e t n e x t  b a tc h

•  do  f in a l ta llies

•  o u tp u t

•  s top

Figure 5.33: Generalized Monte Carlo Tracking Algorithm
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Class I: Condensed history technique with no single scattering

A. Base energy loss and angular deflection distributions on preset tracklength values
(this allows energy straggling and transverse displacement)

B. Base tracklength and angular deflection distributions on preset energy loss values
(this allows traeklength straggling and transverse displacement^

Class II: Condensed history technique with single scattering for large energy loss events 
and reduced loss distributions.

Figure 5.34: Berger’s Classification of Electron Transport Algorithms

Obviously, many details have been omitted from this schematic. In particular, 

no mention has been made of variance and run time reduction techniques which are 

commonly used but which do not significantly alter the algorithm.

Berger [Be63] presented the earliest attem pt to systematically classify electron 

transport algorithms during his original work on the condensed history algorithm. 

Two main classifications were given, with sub-classes for the first group, as given in 

figure 5.34 but with the current terminology applied. .

To these two classifications, which can be combined in the single category of 

condensed history algorithms, two types of single scattering classes must be added. 

The first involves situations in which inelastic scattering events are treated as dis

crete collisions with finite total cross section, even though the energy loss function 

and mean free path may be determined empirically. The second new class includes 

the scheme in which inelastic collisions are treated as continuously occurring events 

between elastic and ‘special interest’ inelastic collisions. The three schemes are now 

listed in figure 5.35 in order of decreasing adherence to the true analog simulation 

algorithm.

The top level portions of the transport simulation algorithm of figure 5.33 (input.
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Class I: Single scattering elastic and inelastic collision technique

Class II: Stochastically determined step size using total elastic plus partial inelastic scat
tering cross sections, with continuous energy loss between collisions

Class III: Condensed history technique, with or without single scattering for large energy 
loss events and reduced loss distributions.

Figure 5.35: Current Classification of Electron Transport Algorithms

output, batching and sourcing) are applicable to all three classes. The inner loop over 

individual tracklengths (demaxked by O’s) is dependent on the class of algorithm, 

and is directly applicable to  class I schemes only. It should be noted that the Monte 

Carlo simulation of photon transport is almost performed using a  class' I scheme. 

The other classes are only to charged particle transport simulations.

The algorithm for class II schemes differs from the pure single scattering method 

of class I schemes in several respects. First, as the particle is assumed to be losing 

energy continuously while in ‘free’ flight, it loses energy in traveUng to boundary 

crossing events, and therefore its state  parameters must be updated even when there 

is no collision. The deflection due to the inelastic collisions which take place between 

elastic events must be neglected, but it is usually small and should not effect the 

results dramatically. More importantly, as the total scattering cross section is energy 

dependent, it is not constant over the simulated flight distance. If this variation is 

ignored, the average distance to  a  collision, given by

X =  d r e - ^ ( ') '2 ( z ) z  (5.24)
Jo

will be over-estimated somewhat, since S  increases with x  a t low energies. The mag

nitude of this deviation is investigated here. When the energy dependence of S(x) 

is ignored, the (over-estimated) average distance to a collision is given by l/S (ro ) ,
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Figure 5.36: EiFect of Ignoring Energy Dependency on Elastic Scattering Mean Free 
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if 2(zo) is the cross section a t the starting point. The actual values of x  can be 

determined by numerical integration of equation 5.24, after the appropriate trans

formation to energy variables, as the distance dependence of E is in fact due to an 

energy dependence which is pathlength determined. The results of this calculation 

are shown in figure 5.36 for several elements a t various initial energies. The figure 

shows that the discrepancy is greatest (~  4 %) at low Z  and low energy, and rapidly 

becomes negligible with increasing energy and atomic number. At high energy this 

diminution in the error results from the small relative energy loss after travel through 

a large number of mean free paths, and the accompanying small absolute change in 

the cross section. At lower energy, the stopping power is larger so that travel through 

the same number of mean free paths yields a  large relative energy loss, which, when 

coupled with the higher variation in the  cross section with energy in this region, 

produces the slight over-estimation of the average collision distance. At high atomic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



257

numbers, the cross section is so great tha t travel through a large number of mean 

free paths is a very small distance and the energy loss is small, as the stopping power 

does not increase as rapidly with Z  as the cross section (roughly a  Z  vs. de

pendence). Hence the cross section does not change with distance as rapidly and 

the over-estimation of the mean free path is smaller than a t low atomic numbers. It 

can be concluded that the effect of ignoring the energy variation of the elastic cross 

section in model II electron transport algorithms may be of significance only for low 

initial energies and low Z  materials.

The energy dependence of the cross section can be taken into account by using 

a method employing ‘fictitious’ cross sections. In this scheme, an energy-dependent 

cross section S/,c«(a;) is constructed such that S '(x), defined by

, S '(x) =  Er=w(a;) +  (5.25)

is constant over the range of the particle, with value S '. The distance to a collision 

is sampled in the standard way by s =  — ln(^)/S '. and the type of collision, real or 

fictitious, is then determined based on the ratio of Sreai(x) and S/,-ci(x) at s. If a 

fictitious collision is determined to have occurred, the particle is simply transported 

the predicted distance and returned to the stack for the next pass, with no other 

action. Real collisions are processed normally.

In order for this method to give exact results, the value of the constant S ' must be 

determined by the maximum in the cross section over the applicable range of energy. 

The number of fictitious colHsions encountered will have some bearing on the run 

time since actual transport steps will be taken for particles seeing false collisions, 

and a new distance to a real collision determined in the next step. The fraction of
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real encounters, freah is given by

freal =  JJ" dx S ' 6"^'“ (5.26)

For the trivial case of constant cross sections. S ' =  S^eo/ and freal will be equal 

to one, as no particles undergo fictitious collisions. For the case in which the cross 

section decreases as the energy decreases (and hence with distance, since the particles 

lose energy with distance), the real collision fraction wiU be high since the ratio of 

Zreaf/S' is large at the short distances most likely to be sampled. In the case of cross 

sections whidi increase with energy loss, the real collision fraction will be low since 

Sreaf/S' will be Small a t the distances most hkely to be tested.

A formal theory of this technique has been developed by Carter, et al. [Ca72]. In 

that work, fictitious collision are rejected and real collision determined a t a  distance 

greater than that of the fictitious one. Additionally, in an effort to increase the sam

pling efficiency for the case of increasing cross sections by setting what is equivalent 

to the constant value of S ' to a small number. Carter’s scheme sometimes involves 

assigning negative weights to particles. A negatively weighted collision increases the 

variance in the result, but if S ' is chosen correctly the time gained by more effi

cient sampling will offset the time lost in forcing extra real collisions in order to 

make up for the increased variance. Rather than employing fictitious cross sections. 

Carter’s method involves introducing a modifying function C(x) which is defined so 

that the cross section is constant as in S(o:)C(a:) =  S '. Fictitious collisions are not 

treated as events, but rather new distances are inamediately sampled (at a greater 

distance) based on the ratios of S ', C(z) and S(z). This method reduces to the 

simple technique described when there are no negative collisions and when fictitious 

collisions are accepted as simple translation events rather than rejected. Assuring 

that no negative collisions occur requires tha t C(x)  >  1 everywhere, in other words
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setting S ' equal to  the maximum value of the cross section and then of course using 

C{x) =  S '/S (x ). The number of rejections increases with the value of C{x) a t the 

initial point, C ( x q ) .  For the case of decreasing cross sections we have C ( x q )  =  1, and 

the number of rejections is small. In the case of electron elastic scattering (for which 

the cross section increases with distance), since there is a  small but finite probability 

tha t an electron would slow to the problem cutoff energy without undergoing any 

elastic scatters, the maximum cross section would be tha t at the cutoff energy, and 

so we would have S ' =  ’S(x(Ecut)) and C(xo) =  S(®(Ecut))/S(xo)- This may make 

C { x q ) on the order of several powers of ten (even at low initial energies), producing 

unacceptably low sampling efficiencies.

A simple scheme is presented which retains exactness, insures a  high fraction 

of real colhsions and avoids the computational complexities introduced by negative 

weighting. The scheme proposed here forces good sampling efficiency by defining 

a maximum distance to which particles may be transported during the current 

step. The best value of 2 ' is obviously 2(C), which amounts in C arter’s method to 

defining, C{xo) as 2(C)/2(xo)- If C is not too large, C{xo) is close to 1 and the real 

collision fraction will be high. There is a trade off however in that any colhsion which 

would have occurred at a distance greater than C is ignored until the next pass, and 

so extra transport steps are required.

A prescription for choosing C is described here. The fraction of all possible events 

which are modeled as real collisions is determined by

freal = 2(x) (5.27)

Here all particles predicted to travel beyond C instead are assumed to undergo ficti

tious collisions a t The values of (  should be chosen such that the average distance
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traveled by particles undergoing their first real collisions, given by

x ^ i  = J ^ d x  E(æ) X (5.28)

is maximized. A maximum in Xreat(C) is expected because a t small C the most likely

event is transport to  without any collision, so Xreai(C) will be small, and at very 

large the number of fictitious encounters at small x  will be great because of the

large difference between S(C) and E(zo), and so again Xreai(C) will be small. Figure

5.37 shows predicted values of (  (in terms of number of initial mean free paths) for

several Z over a wide range of energies.

Particularly interesting inelastic collision processes, such as bremsstrahlung or

inner shell ionization may be included along with elastic scattering as individual

events, so long as their contribution to the total stopping power is removed from

the calculation of 4 ^ , as described in the presentation of restricted stopping power 
dx

in chapter III. Since this cross section decreases with decreasing energy, inclusion of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



261

determine distance to boundary 

^  determine distance to collision using Tf 

0  determine if crossing or collision 

0  update position

0  update energy from continuous loss 

0  if collision:

H determine if real collision or not 
I if real collision:

o deternune collision type 
o sample collision parameters 
o update energy 
o slowed below cutoff ?

•  no - update angle parameters 
« yes - delete from stack 

o add any secondaries to stack 
o tally

0  if cell boundary crossing:

D escaped active volume?

o no - update cell number 
o yes - delete from stack

I tally

0  load parameters of current particle (if any) onto top of stacks 

^  return to get next track (if any particles)

Figure 5.38: Tracking algorithm for Class II schemes

explicit inelastic events tends to lessen the over-estimation of the mean free path. 

The final tracking algorithm (inner loop) for Class II algorithms takes the form shown 

in figure 5.38.

Because the effect of ignoring the over-estimation of the mean free path is small 

except for low E  and Z,  and because in all important applications of alogithms of this 

class, especially interesting inelastic scattering events are included, thus lessening the 

over-estimation effect, the techinques described above have not been implemented.
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Class III schemes, which most of the widely used Monte Carlo electron transport 

programs employ, use the condensed history algorithm discussed in Chapter I, but 

also allow distinct collisions to be treated independently. Again, the collisions of 

special interest are inelastic collisions resulting in energy transfer above a  certain 

cutoff, and so restricted stopping power or distribution functions, as described in 

chapter III, must be used in determining energy loss. Three im portant new aspects 

of simulation technique arise in this class of calculation, the most significant being 

that a  step may conclude not only with a collision or boundary crossing but also 

with movement through a preset distance, as defined by limits on the length of a  

track for which multiple scattering distributions are valid. Since energy loss and 

angular deflection are then sampled almost as if a collision had occurred (but from 

cumulative rather than single scattering distributions), these events are referred to 

here as ‘pseudo’ collisions. The second added dimension arises in tha t an angular 

deflection must be determined at every transport step, at boundary'crossings and 

prior to analysis of major inelastic events. Finally, pathlength straggling may be 

modeled for this class of algorithms.

There seems to be two conflicting methods of implementation of this scheme, 

the first found in ETRAN [Be63, Co74, Se89] and its descendants, and the second 

found in EGS [Fo78, Ne85] and GEANT [Br87]. In the first case, data  for cumu

lative scattering distributions is tabulated into equally probable bins assuming that 

preset distance have been traversed, and then these discrete distributions are sam

pled. This introduces a  problem with boundary crossing events as discussed below. 

Additionally, ETRAN does not model collision distances nor analyze the collisional 

effects on the incident particle in explicit and completely consistent manners. Sec

ondary particle parameters are typically determined using rejection schemes, but
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primary parameters only sometimes updated consistently [Se89]. EGS and GEANT, 

in contrast, always use rejection schemes to determine multiple scattering angles and 

to analyze collisions, and so always conserve momentum in inelastic events. The 

tradeoff is speed (ETRAN method) for accuracy (EGS and GEANT method). The 

implementation of this work is a  hybrid of these two, employing the pre-calculated 

cumulative scattering distributions found in ETRAN and the explicit single scatter

ing collision analysis (but with interpolative sampling of tabulated data rather than 

rejection sampling) found in EGS and GEANT.

As mentioned above, boundary crossings (and discrete collisions) present prob

lems for this method because the multiple scattering and energy loss fluctuation 

distributions must be pre calculated using preset tracklengths and are not valid for 

the shorter than anticipated distances traversed prior to these events. In determining 

the energy loss, the stopping power, with simple numerical integration, can be used 

in place of energy loss fluctuations, as in class II schemes. For the angular deflection, 

two simple methods may be employed, the first involving ignoring the deflection al

together if the distance to the boundary is less than half of the preset tracklength for 

multiple scattering and using the full tracklength distribution otherwise; and the sec

ond involving a  semi-direct inversion sampling from a Gaussian distribution [Ev83]. 

The implications of the use of these two approximations are examined in chapter VI.

Class III schemes are the first for which pathlength straggling may be a  neces

sary procedure. The method for straggling adopted here is based on th a t presented 

by Berger [Be63]. Formulae valid for small values of the scattering angle 0 given 

azimuthal scattering angle ^  is given by

Ay =  ^  As ^sin 6 cos <l> -f — 2cos 9^ ' (5.29)
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A z =  ^ A s  ^sin 9 sin -f t/jv\/2 — 2cos 9^

. . 1 +  cos 6
A® =  A s  -----

2

where A s is the  preset tracklength and arid yjv are taken from a normal distri

bution with mean zero and variance unity and cos 9 is the average scattering angle 

over the current step. Straggling presents a  problem in tha t if a particle is traveling 

near a boundary, it may be transported across the cell division by straggling. This 

may lead to deposition of energy in incorrect regions, if the majority of the  track was 

determined to have taken place in the crossed into region. Several methods are rou

tinely employed to account for this, but often it is ignored. An outstanding analysis 

of this effect is given by Bielajew and Rogers [Bi86].

Thus the class III algorithm for tracking electrons is described by figure 5.39.

5.3 Impact o f Vector Supercomputer Facilities

The large number of collisions and the resultant lengthy computations involved 

in single scattering Monte Carlo electron transport simulations demand the use of 

fast computers in order to achieve tolerable variances in the results in reasonable real 

time. An obvious candidate machine for such a problem is a  vector supercomputer. 

In addition to the impressive speed inherent to such machines because of their fast 

clocks, it has been shown by Brown [Br82] and others tha t the Monte Carlo algorithm 

can be adapted to take advantage of vector processing facilities and further enhance 

the speed of calculations. For example, Martin, Nowak and Rathkopf [Ma86] have 

reported vectorization speedup factors of 4 to 5 for photon transport calculations, 

and more recently Miura [Mi87] has extended vectorization to electron transport, 

using the EGS4 code and reports a factor of 8 increase in computing speed. Thus 

vector supercomputing resources were sought and ultimately made available for this
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0 d e te rm in e  if  co llision , crossing  o r  p seu d o  collision 

^  u p d a te  p o sitio n  

0 i f  re a l collision:

U u p d a te  en erg y  
U u p d a te  d ire c tio n  
W stra g g le  p o sitio n
It check  fo r  b o u n d a ry  crossing  d u e  to  s trag g lin g  

y d e te rm in e  collision  ty p e  

y sa m p le  collision  p a ra m e te rs  
y slow ed below  c u to if  ?

o n o  -  u p d a te  ang le  p a ra m e te rs  
o yes -  d e le te  fro m  s ta ck  

y a d d  an y  secondaries to  s ta d c  

y ta lly

^  if  cell b o u n d a ry  crossing;

y e s c ^ e d  ac tiv e  volum e? 
y u p d a te  energy  

y u p d a te  d ire c tio n  
y s tra g g le  p o sitio n
y c h ed r fo r  b o u n d a ry  crossing  d u e  to  stragg ling  

o yes -  g e t cell n u m b er, m a te r ia l (if new ) 

y ta lly  

q  i f  p seu d o  collision: 

y u p d a te  energy  
y u p d a te  d ire c tio n  

y s tra g g le  p o sitio n
y check fo r b o u n d a ry  crossing  d u e  to  stragg ling  

y ta lly

0 lo a d  p a ra m e te rs  o f c u rre n t p a r tic le  (if any ) o n to  to p  o f sta ck s  

0 r e tu rn  to  g e t n e x t  tra c k  (if an y  p a rtic le s)

Figure 5.39: Tracking Algorithm for Class III schemes
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project by the San Diego Supercomputer Center, which operated a  Cray XMP/48 

vector supercomputer until January 1990, and now runs a  eight processor Cray YMP. 

Both machines were used over the course of this project.

Although the primary need for this resource arises because of the timing consid

erations involved in the class I and II schemes, since this resource was available, and 

since the techniques involved in implementing vectorized class III schemes parallel 

those inherent to the single scattering algorithms (particularly given the use of the 

discretization schemes discussed earlier in this chapter), all three schemes have been 

implemented in vectorized mode.

Taking advantage of the vector facility requires that several changes be made to 

the basic particle transport simulation algorithm, as discussed by Brown [Br82]. In 

addition, the choice of the vectorized sampling algorithm, which greatly influences 

the speed of the computation, also effects the fundamental vector transport algo

rithm. Thus before the the vectorized algorithm can be finalized, optimization of 

the sampling implementation must be performed. In order to explore the differences 

between various implementations, some basic vector computation concepts must be 

examined.

5.3.1 Introductory Vector Computation Concepts

A vector processor improves computing speed by performing the same operation 

on long streams of data in a  pipeline procedure. Individual operations (such as 

addition or multiplication) are broken down at the hardware level into independent 

components which perform only a portion of the operation. Thus while component 

n of an procedure which has been broken into N  components is operating on data 

article i, component n —m  will be processing datum i+m. Obviously there is an initial
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startup overhead, after which results emerge produced from the end of the pipeline at 

every single clock cyde. As the length of data stream approaches infinity, the startup 

overhead becomes negligible and the time to process M  data articles decreases from 

N ' M  to M  clock cycles. Since vector machines typically break operations into more 

components than scalar machines, an opposite, slowdown effect is evidenced ais the 

data stream approaches length 1. Clearly there is a break even point in the data 

stream length below which the vectorization is inefficient and above which speedup 

occurs. On the Cray XM P/48 this number is roughly 6 to 10, depending on the 

operation.

Vector pipelines perform the same operation on a  continuous stream of data. 

Because it is desired to perform an operation on a  long stream  and then branch to 

various other operations pending the outcome of the first procedure, it is necessary 

to have some facility for breaking a  single stream into component streams for further 

processing, and for merging the partial streams which have been manipulated by 

different procedures. The splitting process is conunonly called a ‘gather’ operation, 

in which elements are collected from a longer stream into a  shorter one according 

to an index list which defines which elements to take. The complimentary merging 

operation, called a ‘scatter’, selectively places elements of the short stream into 

specific slots in the long array, again according to an index list. Gather and scatter 

may be coded as distinct steps or inferred by indirect addressing, in which pipeline 

operations are performed only on specific elements of a stream  in the pipeline as 

specified by an index list. As an example of the two techniques, consider a vector V 

of length N and an index list IND of length M containing the indices of those M elements 

of V on which the next operation is to be performed, for instance, updating the energy 

(stored in V) of only those particles which underwent collisions (indexed by IND). For
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the explicit method, we would require first that all of the elements on which the 

operation is to be performed be collected (into array W, let’s say), the calculation be 

done on the elements of W, and the answers re-inserted into their proper positions in 

the original V array. This requires the following fortran coding:

CALL GATHER(V,W,N,IND,M)

Now do the calculation to get the elements in W

CALL SCATTER(W,V,N,IND,M)

For the case of indirect addressing with implicit gather and scatter, we have simply

DO 10 1=1,M 

10 V(IND(I)) = required operation

The use of standardized discrete sampling schemes has introduced one level of 

generality to the SKEPTIC package in tha t the sampling schemes are independent 

of the exact formulation of the distributions being used. Complete use of indirect 

indexing, in addition to maximizing vector lengths, would introduce another layer 

of generality in tha t the fundamental algorithm for each class of techniques would 

be independent of the particular transport model, where the term  ‘transport model’ 

is taken to mean the number of cross sections, the characteristics of the individual 

cross sections (whether they produce secondary particles, cause energy loss, angular 

deflection etc.) and so on. For the gather/scatter implementation, the particular 

sampling scheme would be implemented in a  subroutine which would perform the 

actual sampling operation. For the indirect indexing scheme, all distributions sam

pled using the same scheme would be flagged, and after the type of events determined 

the particles would be indexed according to  the form of the sampling scheme and all
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particles undergoing events whose results are determined similarly sampled in the 

same vector loop using indirect indexing to  hit the appropriate distribution functions. 

Instead of requiring a unique set of subroutines designed specifically to  sample for a 

given parameter using a  set technique for each model, the general code would contain 

internally a  set of the allowed sampling loops and would require a set of input flags 

characterizing each cross section or distribution function in order to  fully describe 

the model.

It is clear tha t the use of complete indirect indexing is desirable from the stand 

points of code generality and the ease of implementation of a variety of models, criti

cal concerns for this work. It is not clear whether this will slow the calculation down 

or speed it up. Features tending toward speed up are the increased vector lengths 

gained in collecting particles to  be similarly sampled and the reduced number of soft

ware gather, scatter and index list compress calls. Potential slow down arguments 

are th a t the total number of the gathers and scatters, although implemented in hard

ware through indirect indexing, is actually larger, and tha t the required deep nesting 

of indices may slow the vector loop. Further, speed up or slow down may be model 

dependent, influenced by the number of cross sections, the number of different types 

of sampling schemes, even the shape of the sampled functions (it has been suggested 

tha t sharply peaked densities, which produce many hits on the same element of an 

array, slow down sampling with indirect indexing on some processors.) Clearly the 

speed advantage gained (if any) in complete indirect indexing would be minimized 

when a large number of cross sections each with a  unique sampling scheme comprised 

the model. However, given the advantages of generality and the uncertain nature of 

the effect on computation speed, it was decided th a t the indirect indexing technique 

would be used unless it caused unreasonable slow down as determined in some simple
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tests.

Because the use of either scheme greatly effects the overall implementation, timing 

tests must be done not on single loops but on a sizable portion of the algorithm. 

For the  sample tests conducted here, processing begins at that point for which a 

stack of particles with known energy and energy ladder index are to be tested to 

determine which collide and which cross boundaries. The colliding particles are to 

be assigned one of the allowed scattering types and then processed, with the updated 

energy of all of the particles determined as the desired final result. A representative 

scattering model consisting of 4 possible collision types was chosen, and a  class I 

(single scattering) scheme implemented. The gather/scatter based algorithm for this 

problem is given in figure 5.40. The implementation using full indirect indexing 

is shown in figure 5.41. Note that one level of indirect indexing must be used in 

the gather/scatter case, as in determining the energy loss it is necessary to use the 

distribution corresponding to the initial energy. In theory this could.be eliminated 

by gathering according to initial energy before sampling, but in practice this would 

make it extremely difficult to keep track of the distributions. One effect of the 

implementation of these schemes on the structure of the code is tha t it defines the 

data and I/O  structure. The data structure necessary to support the first scheme 

is listed in table 5.13, and tha t required in the indirect indexing case given in table 

5.14.

Note tha t even though more stack variables are required for the gather/scatter 

algorithm, the same number of data bank distribution variables (which take up the 

majority of the memory) are required for both algorithms.

Two initial energy distributions were tested, the first assuming all particles to 

have the same energy (50 kilovolts) and the second using a randomly determined
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loop over all particles in stack

* determine energy ladder index

* determine total cross section
* determine distance to collision

* determine distance to boundary

* create index list of which particles collide

* update position of all particles 

gather indices of particles which have collided 

loop over all colliding particles

*  determine which type of collision has occurred

* index collision type identifier 

loop over the collision types

*  create sub-list of colliders undergoing current collision

* gather index list of particles undergoing collision of current type
*  gather energies of particles undergoing collision of current type

*  gather energy ladder indices of particles undergoing collision of current 
type

* call subroutine to get results of collision of current type

o loop over all particles undergoing collision of current type 
o load energy ladder index 
o determine index of energy loss 
o determine energy loss 
o determine new energy 
o determine index of deflection 
o determine deflection 
o determine new direction

* scatter updated energy for particles undergoing collision of current type

* scatter updated directions for particles undergoing collision of current type

Figure 5.40: Gather/Scatter Sampling Algorithm
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loop over all particles in stack

* determine energy ladder index
* determine total cross section

*  determine distance to collision

* determine distance to boundary

* create index list of which particles collide

* update positions of all particles

loop over all colliding particles

*  determine which type of collision has occurred
* index collision type identifier

*  index energy sampling scheme identifier

*  index deflection sampling scheme identifier

loop over deflection and energy

* loop over all possible sampling schemes
o create index list of particles using current sampling scheme 
o create index list of collision type identifiers 
o loop over all particles using current sample scheme 

o load particle index 
o load collision type index 
o load energy ladder index 
o get distribution index from collision type index 
o determine index of energy loss/deflection 
o determine energy loss/deflection 
o determine new energy/direction

Figure 5.41: Indirect Indexing Sampling Algorithm
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Main Particle Stack:

N Number of particles in the stack
NELAD Number of energy ladder points
E(1:N) Energy of particles 1 - N
1ELAD(1:N) Energy ladder index number of particles 1 - N
Secondary Particle Stack:

-

NCRASH Number of particles which collide
ICRASH(1:NCRASH) Index list of colliding particles
FC0LL(1:NCRASH) Pointer to collision type

Tertiary Particle Stack:

NSAMP No. particles undergoing current collision type
ISAHP(1:NSAMP) Index list of colliding particles
ESAMP(1:NSAHP) Energy of colliding particles
lELADSCl:NSAMP) Energy ladder index of colliding particles

Collision Data Bank:

NEDISKCl:NELAD) No. loss points at each energy for collision type k
EDISK(1:NELAD,1:NEDISK) Energy loss values for collision type k
NADISKd: NELAD) No. deflection points, each energy, collision type k
ADISK(1:NELAD,1:NADISK) Deflection values for collision type k

etc., one pair for each possible collision

Table 5.13: D ata Structure Necessary for G ather/Scatter Sampling Algorithm
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Main Particle Stack: 

N
NELAD
E(1:N)
IELAD(1:N)

Number of particles in the stack
Number of energy ladder points
Energy of particles 1 - N
Energy ladder index number of particles 1 - N

Secondary Particle Stack:

NCRASH
ICRASHCl:NCRASH) 
FCOLLCl:NCRASH) 
lATYPECl:NCRASH) 
IETYPE(1:NCRASH)

Number of particles which collide 
Index list of colliding particles 
Collision index of colliding particles 
Deflection sampling scheme index of colliders 
Energy loss sampling scheme index of colliders

Tertiary Particle Stack:

NSAMP
ISAMPd: NSAMP)

Number of particles using current sample scheme 
Indices of particles using current sample scheme

Collision Data Bank:

NCROSS Number of collision types
FSCHME ( 1 : NCROSS) Energy loss sample scheme flag for collision type
FSCHMA ( 1 : NCROSS) Deflection sample scheme flag for collision type
FADISd:NCROSS) Pointer to deflection distribution for collision types
FEDISd:NCROSS) Pointer to energy loss distribution for collision types
NEDIS(1:NCROSS,1:NELAD)

No. loss points at each energy for each collision 
EDISd : NCROSS, 1 : NELAD, 1 : NEDIS)

Energy loss values for each collision, each energy 
NADIS(1:NCROSS,1:NELAD)

No. deflection points at eaoh energy for each collision 
ADIS(1 :NCROSS,1:NELAD,1:NADIS)

Deflection values for each collision, each energy_____

Table 5.14: Data Structure Necessary for Indirect Indexing Sampling Algorithm
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Figure 5.42: Run Time per Particle vs. Initial Number of Particles for Indirect In
dexing and G ather/Scatter Sampling Schemes

uniform distribution over the range of 1 to 50 kilovolts with ladder steps in 1 kilovolt 

increments.

Each input energy distribution was tested for both the indirect indexing and 

gather/scatter models using a  variety of different initial stack sizes. The results 

comparing average run time per particle as a function of number of initial particles 

are given in figure 5.42 for both input cases and both schemes, and average result 

sample time per collision versus number of collisions in figure 5.43. Since the random 

number generator was reset for each test case and because each technique uses the 

same method for determining the number and type of collisions, these results will 

be identical and the timing calculation will not be skewed by different numbers and 

types of collisions.

The figures clearly show that although sample time is increased by use of the 

heavily nested indirect addressing technique, the overhead saved in eliminating the
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Figure 5.43: Sample Time per Collision vs. Number of Collisions for Indirect Index
ing and G ather/Scatter Sampling Schemes

software gather and scatter operations required to circumvent the nesting yields a 

slight net enhancement of program performance. Thus, hardware gather by indirect 

addressing of particles undergoing similarly sampled collisions has been universally 

adopted in SKEPTIC.

AH other vectorization schemes employed are standard optimized procedures 

culled from the suggestions contained in the documentation for the Cray XMP/48. 

These include the use of the Conditional Vector MerGe (CVMG) functions inside 

vectorized do loops instead of structured block ifs, use of the WHEN functions to 

produce index lists from conditions, and so on.

5.3.2 V ectorized M onte Carlo Transport Sim ulation A lgorithm

A standard vectorized version (similar to the gather/scatter test algorithm of 

figure 5.40) of the basic particle transport simulation algorithm described in the
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previous section is given in figure 5.44. The main difference due to  vectorization 

arises in tha t as the operations are done on the entire particle stack a t once, implicit 

loops over particles exist a t eadi step inside the 0  and o loops and the main ★ loop 

over source particles is replaced by a  loop over batches of particles.. In the scalar 

case, secondary particles are inunediately added to the stacks and processed as soon 

as the  primary is deleted. In the vector situation, secondaries are stored in banks and 

added only after a sufficient number of holes in the primary stack exist. Similarly, new 

source particles in the same batch (the number of particles per batch may be longer 

than the stack length) are added as positions open in the main stack. Re-sourcing, 

which encompasses the adding of secondaries, is done in SKEPTIC whenever 10% 

or more of the main stack is free, or, if all source particles have been added, if 

the number of queued secondaries is more than half the number of active particles. 

Another difference between the vector and scalar algorithms is tha t gather operations 

are required once the event type (collision or boundary crossing) is determined and 

when the specific type of collision is determined. Branching to different routines to 

do the collision sampling is then implemented. The operations denoted as occurring 

inside vector loops may often be done inside the same loop as consequent procedures. 

Note that as with the scalar algorithm, particle type distinctions need be made only 

when determining the to tal cross section and in assigning the proper colhsion type.

As shown previously, the general discretization schemes used in SKEPTIC alter 

the tracking loop by gathering particles according to the sampling scheme used to 

determine the collision parameters rather than by collision type. Additionally, the 

gathers and scatters are done by indirect indexing, rather than explicit software oper

ations. Thus the general inner tracking algorithm (inside the 0  loops) of SKEPTIC 

is quite different that of the general vector tracking algorithm as seen in figure 5.45.
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vector loop - initialize tallies 

read collision data 

read and prepare geometry data 

loop over desired number of batches

V  initialize current tallies

V loop over desired number of source particles
*  vector loop - load secondary particles parameters if any
* vector loop - load batch source particle parameters if any
* loop over tracks until re-source condition met

0  vector loop - determine distances to boundaries 
0  vector loop - determine distances to collisions 
^  vector loop - chose boundary crossings or collisions 
^  vector loop - update positions 
^  gather colliding particle parameters

H vector loop - determine collision types 
Jt gather by collision type 
H branch to appropriate collision routines 

o  vector loop - sample collision parameters 
o  vector loop - update parameters 
o  vector loop - remove escaped, absorbed, 

stopped particles 
o  vector loop - get secondaries and parame

ters 
o tally

^  scatter all collision stack parameters into main stack 
0  tally
^  return to get next tracks

* return to add more source/secondary particles

V  tally batch results

V return to get next batch 

do final tallies

output

stop

Figure 5.44: Generalized Vectorized Monte Carlo Tracking Algorithm
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*  loop over tracks until re-source condition met

^  vector loop - determine distances to boundaries
^  vector loop - determine distances to collisions

^  vector loop - chose boundary crossings or collisions 

^  vector loop - update positions

0  vector loop - index colliding particles

0  loop over colliding particles

I vector loop - determine collision types 
I vector loop - index by collision type 
jt vector loop - index by deflection sampling scheme 
I vector loop - index by energy loss sampling scheme 
It vector loop - index by secondary production scheme 

0  loop over each energy loss sampling scheme

tt vector loop - get distribution index if needed 
tt vector loop - sample fractional energy loss 

^  loop over each deflection sampling scheme
tt vector loop - get distribution index if needed 
tt vector loop - sample deflection 

^  loop over each secondary production scheme 

tt vector loop - get secondary particles 
tt vector loop - index secondaries by energy scheme 
tt vector loop - index secondaries by deflection scheme 

^  loop over each secondary energy scheme

tt vector loop - get secondary particle energies 
tt vector loop - remove particles created below cutoff 
tt index viable secondaries 

^  loop over each secondary angle scheme

tt vector loop - get secondary particle angles 

^  vector loop - rotate secondary direction to reference system 

^  vector loop - update primary particle parameters 
^  vector loop - remove escaped, absorbed, stopped particles 

^  tally

* return for next set of tracks

Figure 5.45: Generalized SKEPTIC Tracking Algorithm (Class I schemes)
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The vectorized tracking schemes for each of the three classes of Monte Carlo 

electron transport simulation algorithms are now very similar to  the general SKEP

TIC algorithm, and in fact the scheme for class I models is identical to  the general 

algorithm. In th a t no change is made in the part of the algorithm .which models 

secondary particle production, the representations of class II and III schemes, shown 

in figures 5.46 through 5.47, include only the primary particle model. As with the 

scalar class II and III schemes, the particle type distinction becomes explicit in these 

classes.

5.4 Current Code Features

This section details the major features of SKEPTIC. The program’s capabilities 

are described, the data structure is detailed, the implemented variance reduction 

techniques are listed, and a summary is given of the pre-processing model building 

code.

5.4.1 C ap a b liti tie s

SKEPTIC is designed to allow the solution of roughly 20 different classes of prob

lems using several different source options. The problem to be solved is specified by 

the user and typically effects only the tallying and output portions of the programs. 

Source and problem output options are described below.

S ource O p tio n s

The types of sources which can be modeled are summarized in table 5.15. Either 

photon or electron sources can be specified, and provisions exist to  model both 

simultaneously. The user is able to specify an angle of incidence for oblique beam
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*  loop until re-source condition met

^  vector loop - determine distances to boundaries 

^  vector loop - determine distances to collisions 

0  vector loop - chose boundary crossings or collisions 

0  vector loop - update positions 

0  index electrons 

0  loop over all electrons
jt vector loop - update energy from continuous loss 

0  vector loop - index colliding particles 
^  loop over colliding particles

It vector loop - determine collision types 
tt vector loop - index by collision type 
ft vector loop - index by deflection sampling scheme 
tt vector loop - index by energy loss sampling scheme 
tt vector loop - index by secondary production scheme 

0  loop over each energy loss sampling scheme

tt vector loop - get distribution index if needed 
It vector loop - sample fractional energy loss 

0  loop over each deflection sampling scheme

tt vector loop - get distribution index if needed 
I vector loop - sample deflection 

^  process secondaries, as before 

^  loop - tally

* return for next set of tracks

Figure 5.46: SKEPTIC Vectorized Tracking Algorithm for Class II schemes

Pencil beam, normal incidence, monoenergetic 
Pencil beam, normal incidence, distributed energy 
Pencil beam, oblique incidence, monoenergetic 
Pencil beam, oblique incidence, distributed energy 
Point source, isotropic, monoenergetic 
Point source, isotropic, distributed energy 
Distributed source, isotropic, monoenergetic 
Distributed source, isotropic, distributed energy

Table 5.15: Source Options
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*  loop  u n til  re -so u rce  c o n d itio n  m e t

0  v e c to r  lo o p  - d e te rm in e  d is tan c es  to  bou n d aries  

0  v e c to r  lo o p  - d e te rm in e  d istan c es to  collisions 

O  v e c to r  lo o p  - chose b o u n d a ry  crossings o r collisions 

0  v e c to r  lo o p  -  u p d a te  p o sitio n s  

0  in d e x  e lec tro n s  

^  lo o p  o v e r a ll e lec trons

H v e c to r  lo o p  -  d e te rm in e  m ax im u m  d istances
U v e c to r  lo o p  -  choose re a l co llision /crossing  o r m u ltip le  s c a t te r  lim it 

U in d e x  co llid in g /c ro ssin g  e lec trons 
U lo o p  over a l l  co llid in g /c ro ssin g  electrons

o  v ec to r  lo o p  -  u p d a te  energy  fro m  con tinuous loss 

o  v e c to r  lo o p  -  u p d a te  deflection  fro m  skew ed d is tr ib u tio n  

U in d e x  m u ltip le  s c a t te r  e lec trons 

M lo o p  over a ll  m u ltip le  s c a t te r  electrons

o v ec to r  lo o p  -  u p d a te  energy  from  con tinuous loss o r  d is tr ib u tio n  
o v ec to r  lo o p  - u p d a te  deflection  from  m ultip le  sc a tte r  d is tr ib u tio n  
o  v ec to r  lo o p  -  s trag g le  p a th s  
o  v ec to r  lo o p  -  check  fo r b o u n d a ry  crossing  

^  v e c to r  lo o p  -  index  co llid ing  p artic le s  

0  lo o p  o v e r a ll co llid ing  p artic le s

U v e c to r  lo o p  - d e te rm in e  collision  types 
U v e c to r  lo o p  - in d ex  b y  collision  ty p e

U v e c to r  loop  - in d ex  b y  deflection  sam pling  schem e

It v e c to r  lo o p  - in d ex  b y  energy loss sam pling  schem e
y v e c to r  loop  - in d ex  b y  secondary  p ro d u c tio n  schem e

0  lo o p  o ver each  en erg y  loss sa m p lin g  schem e

y v e c to r  lo o p  - g e t  d is tr ib u tio n  index  if  needed  
y v e c to r  lo o p  - sa m p le  frac tio n a l energy  loss 

0  lo o p  o v e r each  deflec tion  sa m p lin g  schem e

y v e c to r  loop  - g e t d is tr ib u tio n  index  if  needed  

y v e c to r  lo o p  - sa m p le  deflection  

0  p ro cess secondaries, a s  before 

0  lo o p  -  ta l ly

*  r e tu rn  fo r n e x t  se t  o f  track s

Figure 5.47: SKEPTIC Vectorized Tracking Algorithm for Class III schemes
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Determine spatial distribution of energy deposition 
Determine transmission fraction from an electron source 
Determine energy distribution of transmitted electrons 
Determine angular distribution of transmitted electrons 
Determine energy and angular distribution of transmitted electrons 
Determine the backscattering fraction for an electron source 
Determine energy distribution of backscattered electrons 
Determine angular distribution of backscattered electrons 
Determine energy and angular distribution of backscattered electrons 
Determine transmission fraction from a photon source 
Determine energy distribution of transmitted photons 
Determine angular distribution of transmitted photons 
Determine energy and angular distribution of transmitted photons 
Determine the backscattering fraction for a photon source 
Determine energy distribution of backscattered photons 
Determine angular distribution of backscattered photons 
Determine energy and angular distribution of backscattered photons

Table 5.16: Problem Options

sources, the energy of monoenergetic source and the distribution in energy of non- 

monoenergetic sources. Distributed sources axe assumed to be uniformly spread 

throughout the entire problem volume.

P ro b lem  O p tions

Problems which can be solved are listed in table 5.16. Any number of problems 

can be specified for a single run. When energy distribution functions are desired, 

the user must input the major angle of the cone in which the particles are to be 

collected. In all cases, the tally bins are regularly spaced, and the user may input 

only the total number of bins.
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The number and energy of source particles 
The number and energy of secondary particles produced 
The number and relative frequency of the different collisions 
The number of boundary crossings

Table 5.17: Physics Statistical Output 

P hysics Specifications

Some information about the physics modeling of all problems, listed in table 5.17, 

is automatically tallied and output by SKEPTIC.

5.4.2 Data Structure

The program data structure can be divided into four main components: geometry, 

collision data, particle stacks, and auxiliary stacks. Each of these is examined here, 

with note taken of the typical amount of memory required by each section. Much of 

the structure is derived as a  direct result of either the Cray memory limitations or 

the indirect addressing technique used to maintain long vector lengths.

G eo m etry

The first category of data  is that required to describe the geometry. Since the 

main function of SKEPTIC is the evaluation of models and algorithms, the geometry 

has been kept trivial, limited to boxes of the same size, although not necessarily 

cubes. Different regions and materials can be specified, but they must align within 

the basic structure. (Implementing a more sophisticated geometry algorithm would 

not be difficult, however, since SKEPTIC requires from a geometry package only 

the distance to the nearest boundary and the cell number on the other side.) If a
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Subscript Function

t  Particle type
i  Material index
j  Distribution index
k Cross section index
1 Primary energy ladder index
m Secondary ladder (energy or angle) index
n Particle index

Table 5.18: Subscript Convention

total of NCELL cells is allowed, and for each cell only the material index, the region 

index, and the coordinates of the 6 planes delineating the cell must be known, then 

a total of just 8-NCELL words are used. Typical runs performed here used roughly 

10 X 10 X 10 arrays of cells, NCELL =  1000.

Collision Data

By far, the most complicated data structure in SKEPTIC is tha t which holds 

the collision and distribution data. The data is broken into several components, 

including total cross section data, two banks of cross section flags, distribution flags 

and distribution data, which are described below. A subscript convention described 

in table 5.18 is used throughout.

The total cross section data  set includes the elements listed in table 5.19.

As described earher, the alias probabilities contain the index of the cross section 

embedded in their values. If a  particle undergoes a collision, a collision index between 

1 and NSIG(t,m) is determined, and a final index is set by adding NSECTX(t,m). This 

way all cross section flags and pointers can be stored in one dimensional contiguous 

arrays, and need not be indexed by both particle type and material. The flags
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XC(t,m) The total cross section ladder spacing parameter
SIGT(t,m,l) The total cross section
NSIG(t,m) The number of cross sections
NSECTX(t,m) The number of cross sections in previously assigned material 
P(t,m,l,k) Alias probabilities for the various collision types. '

Table 5.19: Total Cross Section D ata Structure

describing how the collision is to be analyzed are split into two categories, with one set 

describing how the primary particle is affected by the collision and one set pertaining 

to the  secondaries. These flags and their available options, which encompass all 

possible ways in which particle interactions are modeled, are described in tables 5.20 

and 5.21 below. It should be noted th a t the ‘fictitious’ collisions described in section 

2 of this chapter are modeled simply by setting both the deflection and energy loss 

flags corresponding to the fictitious cross section to indicate no change.

The indices pointing from a cross section to its companion distribution and the 

flags describing the distribution functions are listed in table 5.22.

The actual data  describing the distributions is stored as shown in table 5.23. 

Because distributions require differing numbers of energy points and bins, it would 

be a waste of aUocatable space to dimension the data arrays NJ x NLMAX x NMMAX. 

Therefore, the da ta  is stored in contiguous arrays with pointers indicating where the 

data for particular distributions at particular energies begin.

Additional storage is required to model doubly differential bremsstrahlung cross 

sections. A complete distribution function of scattering angles is required for each 

possible photon energy at each electron energy. In order to prevent machine storage 

overflow, an artificial limit of 10 primary electron energy ladders and 10-possible 

photon energies and 10 angle sets is imposed. Fortunately, the differential cross sec-
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Flag Function and Options

FANG(k) Angular Deflection
0 —» No change
1 — Tabl e sample
2 —» Table search with energy interpolation
3 —» Disert, equal prob, midpoint interp
4 —> Disert, equal prob, midpoint interp, w /ener^-in terp
5 Disert, equal prob, constant interp
6 Disert, equal prob, constant interp, w/energy interp
7 —> Disert, equal prob, linear interp
8 Disert, equal prob, linear interp, w/energy interp
9 —> Disert, arb prob, midpoint interp
10 —> Disert, arb prob, constant interp
11 —> Disert, arb prob, linear interp
12 —> Isotropic distribution
13 —*■ Binary collision distribution
14 Compton scattering, base energy on angle

FEWER (k) Energy Loss
0 No change
1 — 11 —» Look up table, same scheme as angular
12 —> Lose all energy

13 Lose fixed amount of energy

Table 5.20: Primary Cross Section Flags
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Flag

FSEC(k)

FSECA(k)

FSECE(k)

0
1
2

1
2
3
4
5
6

1
2
3

BINDE(k)

XRESID(k)

FRELAX(k)

ISECR(k)

Function and Options

Number of Secondaries 
No secondaries 
1 electron given off 
1 photon given off

Secondary Scattering Angle 
Same as parent initial direction 
Same as parent final direction 
Isotropic 
Elastic kinematic
Sampled from doubly diff brems dist 
Constant angle bremsstrahlung

E s e c  —  AE,
Secondary Energy

•pri

0
1

-> Etec = AEpri - binding energy 
Esec sampled from diff brems dist

Binding energy

Extra M Shell Binding Energy, if any

Excitation Flag 
-* No excitation 

Excitation

Index of Relaxation Scheme

Table 5.21: Secondary Cross Section Flags

lADIST(k) Pointer to the angular distribution
lEDIST(k) Pointer to the energy loss distribution
FDELAD (j ) Flag signalling linear or quadratic ladder spacing
ELADCCj ,2) Ladder spacing constants

Table 5.22: Distribution Function Pointers and Flags
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NTABLECj ,1 ) The number of points
XSTART(j ,1) The starting position of the end points
XTABLE(m) The endpoints of the potential answer bins
PSTART ( j ,1) The starting position of the PDF points
PTABLE(m) The cumulative distribution of the bins
SSTART(j ,1) The starting position of the formatted ‘slopes’
STABLE (m) The specially formatted slopes of the distribution bins

Table 5.23: Distribution Function Data 

tion and the shape functions for bremsstrahlung are smooth and well behaved, and 

generally fewer than 10 bins are required for 1% accuracy in modeling. In order 

to conform to  the general SKEPTIC algorithm, a special storage scheme has been 

devised. Doubly differential bremsstrahlung cross sections have their energy sam

pling flag FEWER set to indicate midpoint interpolation with arbitrarily spaced bins. 

The midpoint answers which are sampled are not the fractional energy losses, but 

pointers to positions in the bremsstrahlung data structure of the form jl-fm  /lO, 

where j l  points to a  combination of the bremsstrahlung distribution number and 

the energy position, and m points to the sampled photon energy answer bin. In 

the secondary particle processing section of SKEPTIC, the actual value of the frac

tional energy loss is assigned and the photon angle is sampled from the appropriate 

distribution as indicated by j l  and m. The data structure containing the doubly 

differential bremsstrahlung data is given in table 5.24. Since there will be only one 

bremsstrahlung cross section per material, with less than 20 or so primary energy 

endpoints, and since the number of secondary angles and energies is set to be less 

than 10, the to tal amount of data is held below about 2000 words per material.

The total amount of collision data involved in describing a  problem is clearly 

going to be determined by the size of the distribution function data set. A problem
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BENER(jl,m) Fractional energy loss bin endpoints
BESLP(jl,m) Formatted slopes for energy loss bins
NBA(jl,m) Number of angle bins a t given loss bin
BANGS ( j  1 , m, m2) Angle bin endpoints 
BASLP(jl,m,m2) Formatted slopes for the angle bins •

Table 5.24: Doubly Differential Bremsstrahlung Function Data

involving NM materials with NC constituent elements and NK possible scattering mech

anisms, each using a tabulated discrete distribution function to determine collision 

parameters for angular deflection as well as energy loss at NL e n e r ^  steps could 

consume 2 • NM • NC • NK • NL discrete sets of probability, endpoint and formatted 

slope vectors. A typical problem with a  high Z material uses about 20 distributions 

per constituent, requiring on average about 40 bins with roughly 30 ladder points 

to model accurately, for a to tal of 24 kilowords per constituent per material, plus 2 

kilowords per material for the bremsstrahlung data.

Particle Stacks

Three sets of particle parameter stacks are employed: primary, secondary and 

split particle storage arrays. The basic stack structure is given in table 5.25. The 

secondary stack and the split particle storage stack contain all of the same elements 

as the primary stack except the index vector, which is not required because these 

stacks are always contiguous, and the material index, which is not a fundamental 

parameter (it is uniquely determined from the cell number), but is included in the 

stack because of the frequent reference to it. Thus if NP is the length of the primary 

stack, NSP the size of the secondary particle stack and NSPLIT the length of the 

split particle storage bank, the number of words of stack variables is given by 12- NS
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INDEX (n) List of the currently occupied positions in the stack
ALIVE (n) Flag describing the particle type
E(n) Energy of the particle
IMAT(n) Index of the material in which the particle is traveling
CELL(n) Current cell number
DIR(n,3) Array of the 3 direction cosines
P0S(n,3) Array of the 3 Cartesian coordinates
HEIGHT (n) Particle weight (for variance reduction)

Table 5.25: Primary Stack Variables

+10-(NSP +  NSPLIT). Typically, values for the stack lengths would be in the vicinity 

of 10,000 particles, and so a total of about 320 kilowords must be allocated to stack 

variables.

A uxiliary Particle Stacks

As the collision analysis proceeds, auxiliary quantities such as change of state 

variables, lists of particles undergoing certain types of processes and so on must be 

generated and sometimes stored. All the routines of SKEPTIC are supplied with 

a 12 element scratch bank, each vector being NP elements long for local particle 

processing. In addition, roughly 16 additional vectors must be maintained for global 

access. These include energy loss, collision index, parent particle index, lists of 

boundary crossing and colliding particles and so on. So roughly 28NP additional 

words of memory must be allocated.

The total data requirement then can be summarized as follows:
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Structure Words per Unit Typical Total
Geometry 8 NCELL 80,000
Physics Data 24,000 (NM-NM) 100,000
Bremsstrahlung Data 10,000 NM 20,000
Main Stacks 32 NP 320,000
Auxiliary Staeks 28 NP 280,000

5.4.3 Variance and R un-T im e R eduction Techniques

Variances in Tabulated Q uantities

Monte Carlo programs determine quantities which must be thought of in terms 

of the average effect per input particle. If there are N  input particles and U describes 

the contribution to event T  of input particle i, then the Monte Carlo calculation of 

T  is given by

T =  1  S i , .  (5.30)
t= l

and the “variance” between the Monte Carlo estimate and the actual value of T  is 

given by the well known formula

1S \T )  = (5.31)
N - 1

It is impractical to tally the contribution <,• of each particle to each of the out

put quantities being tabulated. For example, when a single particle gives rise to 

secondaries each of which deposit energy, the deposited secondary energy must be 

attributed to the primary particle. In vector computations, in addition to requir

ing additional storage space for a  complete set of tallying stacks, the bookkeeping 

overhead in keeping track of which particle parented which secondary would be sub

stantial. So instead of storing the <,’s, Monte Carlo programs can be run in batches, 

and the variance in batch average quantities used to determine statistical uncertainty. 

Thus if the quantity of interest T  is the number of secondary electrons produced per
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incoming particle, rather than keep track of the number of secondaries produced by 

each of the N  particles, the variance can be calculated simply by dividing the N  in

coming particle into iVj batches of N/Ni, particles each and determining the variance 

from
_  1 f / i  /  1

(5.32)S \ T )  =  ^«-.[(si'")-(As*)
where Ti is the value of T  for the batch.

The most commonly determined types of quantities calculated in SKEPTIC are 

normalized distribution functions, such as the distribution in energy of transmitted 

electrons or the fraction of deposited energy deposited in a  certain geometry node. 

In this instance, the quantity of interest Fj (the fraction of T  taken by the tally 

bin) is given by

■‘■tot

and the variance given from

(W -  + (ISP , ‘ '
where S^{Tj) and S^{Ttot) are determined according to 5.32.

Splitting and Particle Weighting

Three run time/variance reduction techniques are allowed in SKEPTIC. These 

methods were implemented primarily to permit the solution of the problem of de

termining the energy spectrum of X-rays generated by an electron beam impingent 

on a  thick target and were mandated by the low production rate of photons. Be

cause of the specific nature of the problem, the techniques permitted here, collisional 

importance sampling, weight splitting, and weight russian rouletting, are limited in 

application.
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First, importance sampling as implemented by the weighting of cross sections 

is allowed. The user is able to  input a set of numbers which correspond to the 

desired relative weights of the different collision types. A collision type which occurs 

infrequently (such as bremsstrahlung) but which contributes greatly.to the desired 

problem outcome is artificially weighted to occur more frequently. If pi is the relative 

frequency a t which colhsion i occurs, a  new frequency pj, given by Pi/wi is used, 

where to,- is the desired weight. The program automatically adjusts the weighted 

cross sections and the actual weights to maintain the average weight a t 1 and keep 

the relative energy dependent weights equal to the input relative weight. When 

this technique is employed all source particles are given a  starting weight of 1 and 

have their weight multiphed by the appropriate cross section weight whenever they 

undergo a  coUision. Secondary particles are always born with the weight of their 

parents. Tallying is done by recording ti - W{ (w« is the particle weight) rather that 

just t{, the quantity of interest.

Also allowed is the splitting (in an inputable proportion) of particles which attain 

a  user specified weight. Since the weight of some of the collisions must be set to be 

greater than one in order to keep the average at unity, it is possible for particles 

to attain high weights. This is undesirable from a variance standpoint, as the tally 

from a single highly weighted particle can overwhelm the talhes generated in the 

rest of problem and create high variance. This effect can be alleviated by setting 

a  maximum allowed weight w^ax and modeling each high weight particle as Ns 

separate, independent particles of weight w^ax/Ns. This increases run time since 

more particles are created and tracked, but decreases the variance since the weights 

are more nearly uniform.

A companion process, Russian roulette, is also allowed. When weighting is used
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it is possible tha t a  particle will attain a  very low weight, and hence lose its ability 

to contribute to  the solution of the problem being investigated. Such particles are 

killed or allowed to  continue with a  user defined probability. Survivors have their 

weight increased by the reciprocal of the survival probability. This increases variance 

slightly, but decreases run time by not processing insignificant particles.

5.4 .4  T he M odel B uilding A lgorithm

The global algorithm describing the program which molds together the cross 

sections, relaxation data, distribution functions, and so on which make up a  complete 

transport model is shown in figure 5.48.

The titles in capital letters denote the names of individual subroutines and func

tions which comprise the model builder. Some of these (particularly the discretization 

routines) have been described previously. Most of the routines are generic, but sev

eral m ajor routines depend explicitly on the model in question and are described here 

in some detail. The basic function of PRECALl is the setup of global parameters 

such as the weight fraction and number density of the constituents, the shell energy 

levels, binding energies and occupation densities, and the relaxation probabihties. A 

few constants particular to specific models are also set on request in this routine, such 

as the ionization potential and the Molière screening constants of the constituents, 

in a  holdover from an initial version of the program. PRECAL2 performs similar 

functions for a  few energy dependent quantities, mostly having to do with stopping 

power and energy losses. The remainder of the routines described in this section are 

not actually subprograms, but rather Fortran entry points into subprograms entitled 

EDRIVE and PDRIVE. Each electron or photon model is generated by using differ

ent sections (yet possibly very similar) of the EDRIVE and PDRIVE routines. These
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*  IN IT B  -  In itia liz e  a  few s ta n d a rd  frac tio n a l energy loss d a ta  se ts

*  INTTA -  In itia lize  a  few s ta n d a rd  ang le  se ts

*  P R B IN l -  R e a d  d a t a  p e r tin e n t to  c u rre n t p ro b lem

■k P R B IN 2  — R e a d  d a ta  b a se

*  L oop  ov er «Ü1 m a te r ia ls  in  th e  p rob lem

0  Q U E M A T  — P o p  th e  cu rre n t m a te r ia l in  th e  ac tiv e  a rra y  

0  P R E C A L l — D o som e g lobal energy  in d ep en d en t ca lcu la tio n s 

0  L oop  o v e r p a r tic le  ty p es fro m  th is  p o in t

N P a s s  1: P E L E C T  — se t u p  th e  e lec tro n  m odel 
D P a ss  2: P P H O T  -  se t  u p  th e  p h o to n  m odel 
U L o o p  over to ta l  cross sec tio n  la d d e r  energies

o P R E C A L 2  -  D o som e g lobal energy  d e p en d en t ca lcu la tio n s 

o P a ss  1: T E L E C T  -  G e t to ta l  e lec tron  cross sections 

o P a ss  2: T P H O T  -  G e t to ta l  p h o to n  cross sections 
o A L IA S — A lias th e  to ta l  cross sections 
o X S T O R E  -  S to re  to ta l  cross sec tion  re su lts  

H L o o p  over a ll  cross sec tions a n d  m u ltip le  sc a tte rin g  d is tr ib u tio n s  

o I f  th e re  is a  d is tr ib u tio n  to  get: 
o L oo p  over 16 p re se t frac tio n a l energy en d p o in ts

•  P R E C A L 2  -  D o som e global energy  d ep en d en t c a lc u la 
tio n s

•  P a ss  1: D E L E C T  — G e t cu rre n t d is tr ib u tio n
•  P a ss  2: D P H O T  — G e t cu rre n t d is tr ib u tio n  

o L oop  over 14 p re se t frac tio n a l energy m id p o in ts
•  P R E C A L 2  -  D o som e global energy d ep en d en t ca lc u la 

tio n s
•  P a ss  1: D E L E C T  -  G e t cu rre n t d is tr ib u tio n
•  P a ss  2: D P H O T  -  G e t cu rre n t d is tr ib u tio n  

o E N C H O P  g e t energy  la d d e r  fo r th e  d is tr ib u tio n  

o L oop  over th e  e n e rp e s  d e te rm in ed  by  E N C H O P
•  P R E C A L 2  — D o som e global energy  d e p en d en t c a lc u la  

tio n s
•  P a ss  1: D E L E C T  -  G e t c u rre n t d is tr ib u tio n
•  P a ss  2: D P H O T  -  G e t cu rre n t d is tr ib u tio n
•  C O N C H P  — D o th e  co rrec t d isc re tiza tio n
•  D S T O R E  — S to re  th e  re su lts

Figure 5.48: Model Building Program Algorithm
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routines have three parallel main sections each, PELECT and PPHOT, TELECT 

and TPHOT, and DELECT and DPHOT. The ‘P-’ sections handle the initialization 

of the source, determine the number of cross sections (for energy dependent phe

nomena like inner shell ionization, even the number of cross sections of interest is 

energy dependent), set all of the sampling, flags, secondary particle generating flags, 

interaction result flags (those listed in tables 5.20,5.21 and 5.22), the values of the 

argument to be used in getting the distribution, the primary energy ladder and so on. 

These are called once per material. The ‘T-’ sections loop over all the cross sections 

in each material and get the total cross sections, and are called a t each energy in 

the total cross section ladder. The ‘D-’ sections of the routine return the differential 

distribution for a single specified cross section or multiple scattering distribution. 

They are called inside a loop over all the cross sections, and at each of the energy 

end points and midpoints during the ladder determining (ENCHOP) process and at 

each ladder point afterward. All adjustable parameters are set, and indeed, even the 

specification of the physics models are determined by adjusting several signal array 

flags which are read from the main problem data file.

Discretization with error minimization is an incredibly slow process (almost com

parable to short Monte Carlo runs), although it need be done just once per model 

per material. In some instances, when a model similar to a previous one is being 

created, it is useful to  determine the discretized results for just the new component, 

rerun the total cross section portion, and insert existing discretizations. Provisions 

have been made in the program to allow for this.
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CH APTER VI

RESULTS AND CONCLUSIONS

The preceding chapters have identified the models potentially suited for use in 

the three classes of kilovolt energy Monte Carlo transport simulation algorithms 

discussed in chapter V. In this chapter, the best of these models are implemented, 

evaluated, and compared, with four objectives. First, the best choices of scattering 

models for each of the three classes of algorithms, based on comparisons with ex

periment, are sought. Second, the energy and atomic number regimes under which 

different classes of algorithms are suitable (with respect to both computation time 

and accuracy), are determined. Next, speed-ups achieved by vectorization of the 

various algorithm classes are reported. And lastly, purely numerical artifacts, as 

described in chapter V, regarding the inter-related effects of discretization error (on 

accuracy) and sample schemes (on speed) are examined.

All calculations reported in this chapter were performed on the San Diego Super

computer Center Cray YMP.

6.1 Comparison of Scattering M odels for Various Algo
rithms

Cross sections and distribution functions modeling electron scattering phenomena 

and applicable to the three algorithms types have been explored in chapters II and

300
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III. In some cases, it is clear from the discussion in those chapters tha t one particular 

description of a given phenomenon is the best available for use in a certain class of 

algorithms. In other cases there is some doubt, usually because the phenomenon 

being modeled is so poorly understood tha t a priori comments about.the validity of 

various models can not be made. In this section, an effort is made to identify the 

best scattering models for use in each of the three classes of algorithms.

6.1.1 Class I  M odels

A fully constituted class I (purely single scattering) scheme consists of two basis 

parts: one single elastic scattering cross section and a complete, inelastic scattering 

model, which is typically composed of several cross sections describing the various 

inelastic processes and takes into account the structure of the atom. It is clear from 

chapter II tha t only those elastic cross sections derived under the relativistic for

mulation of quantum mechanics employing the partial wave technique and screened 

atomic potentials are suitable for use in kilovolt energy electron transport simula

tions. It is not clear which full inelastic model is most appropriate, nor even which 

inelastic cross sections are best suited to modeling the various atomic electron col

lision processes of the various models. Thus, some preliminary evaluation of these 

models is warranted.

Usually three or four processes are treated by an inelastic models: ionization 

of inner shells,ionization of outer shells (delta ray production), atomic excitation, 

and sometimes plasmon excitation. For this work, five single scattering models were 

chosen, spanning the range from attempts at complete, first principle descriptions of 

all inelastic processes to primarily empirical models, as listed in table 6.1. In some 

inner shell ionization models, a two part scheme was adopted, in which the total
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Model No.: Inner loniz. Model Free Electron Model Excit. Model

1 Gryzinski Gryzinski none

2 Sco./Gryzinski Mod. M0ller Gryz., w / Quinn PI.

3 Sco./Gryzinski Mod. M0ller Streit., w / Quinn PI.

4 Pressa/Gryzinski M0ller l / { A E f

5 Sco./Mod. Mpller M0ller Mod. Gryz.

^  = E  /  <Tj(A2)AEd(AE) (6.1)

Table 6.1: Single Inelastic Scattering Models

cross section was taken from a parameterization, and the density function describing 

the shape of the differential distribution from one of the available theories.

In evaluating these models for potential use in Monte Carlo simulations, two 

factors should be examined. First, the average energy loss per pathlength predicted 

by the model, given by

dE _

a ll p r o c e s s e s  j

should be very close to the experimental stopping power, and second, the total 

inelastic cross section should scale properly with the total elastic cross section. (Note 

that the first condition is met by default for the empirically based models.) The 

second condition is somewhat difficult to evaluate because data on the ratio of total 

elastic to inelastic cross section is not widely available. In general, elastic cross 

sections are thought to  scale roughly as Z^f  E^, and inelastic cross sections as Z/E .  

However, at the low velocities seen in this work, screening effects on the elastic cross 

section become very important and the elastic process tends to scale roughly as Z^^^ 

at lower end of the kilovolt energy range, and as Z^^^ in the upper regions. Further, 

for light elements, crd tends to vary linearly with 1 /E  a t high energies, slightly more
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slowly near 1 keV, and even less sharply for heavier atoms at all energy ranges. 

The primary inelastic cross sections tend to retain the expected Z jE  dependence at 

most energies and for most atomic numbers, although the Z  dependence is somewhat 

less than linear for high Z  atoms, since the inner electrons become excluded from 

participating in inelastic processes at low energy. Thus we expect to see the fraction 

of elastic collisions to be roughly constant with energy at low atomic numbers, and 

increase as the energy increase for heavy elements, especially a t lower energies.

Several interesting effects which influence these evaluations must be noted. Most 

importantly, for all five scattering models the total cross section (and hence the 

stopping power) wiU be strongly dependent upon how the atomic electrons are ap

portioned among the categories of inner, valence, and conduction electrons. Further, 

the total cross section and stopping power predicted by those models explicitly de

scribing atomic excitations will be very dependent upon the minimum excitation 

energy chosen. The manner in which distinctions between the various categoriza

tions of electrons was made for this work is described below. An atomic subshell was 

considered an inner ionization shell if and only if the relaxation of a vacancy subse

quent to ionization could lead to the emission of a  traceable particle, i. e., one with 

energy greater than 1 keV. Several ways of assigning the remaining electrons to cross 

sections predicting the scattering with bound outer shells, valence shells, and the 

conduction band were investigated. The options are listed in table 6.2. The effects 

of using combinations of the various options were also investigated. For the three 

non-empirical models examined here, various versions of these atomic descriptions 

options were employed in efforts to best model the stopping power. It should also 

be noted tha t the manner in which outer shells are treated has a strong influence on 

the total data  set size for a  given problem, through the number of cross sections re-
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1. Assume all subshells can give rise to excitations as well as ionizations

2. Assume aU subshells not treated as inner ionization shells give rise to excitations

3. Assume conduction electrons contribute only to plasmon excitations

4. Assume only subshells with binding energies below 25 eV give rise to excitations

5. Assume a  minimum excitation energy of the Fermi level energy

6. Assume a  minimum excitation energy of 10 eV

7. Ignore the binding energy of all but the inner shells

Table 6.2: Single Inelastic Scattering Model Assumptions

quired to implement a  given scheme. The empirical models, which describe all of the 

permissible excitation transitions with one cross section, require much less data to 

fully model inelastic scattering than those models which treat each shell’s processes 

explicitly.

Comparisons of the stopping power calculated by the first three models listed in 

table 6.1 when employing various the assumptions listed in table 6.2 with the low 

energy stopping power for carbon, aluminum, copper, and gold at various energies 

are shown in figure 6.1 through 6.3.

For each of the five models, data  is presented only for the particular combination 

of options which best described both the stopping power and the elastic to inelastic 

cross section behavior. The assumptions employed are described here.

For the first model, every subshell is treated as an inner ionization shell, by taking 

the minimum excitation energy to be the electron binding energy. The maximum
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Figure 6.1: Stopping Power for Carbon Predicted by Inelastic Scattering Models
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Figure 6.2: Stopping Power for Copper Predicted by Inelastic Scattering Models
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Figure 6.3: Stopping Power for Gold Predicted by Inelastic Scattering Models

transfer is assumed to be the incident electron energy, so tha t in addition to ioniza

tions, each subshell can give rise to energetic knock-ons. Ignored are all excitations 

not producing ionizations. It is seen in the figure tha t the stopping powers are well 

predicted by this scheme a t low energy and underestimated a t higher energies, for 

all elements.

Model 2 from table 6.1 treats all inner ionizations with Gryzinski’s cross section 

shape and Scofield’s total cross section. It treats outer shells, defined as those giving 

rise to vacancies with relaxation energy less than 1 keV, using Gryzinski’s cross 

section to determine the excitations and the modified Mgller cross section to model 

all outer shell ionizations, and treats conduction electrons as giving rise to plasmon 

excitations as described by Quinn’s model. Stopping powers predicted by this model 

consistently overestimate the stopping power by a large amount, with this trend 

worsening at low energies. This is seen to be true regardless of the way in which with 

the atomic structure was modeled, or in size of the minimum energy transfer selected.
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The data in figures 6.1 through 6.3 was taken from a best case (lowest predicted 

stopping power) calculation in which only subshells with binding energies less than 

25 eV were considered to contribute to outer shell excitations and ionizations, and in 

which the minimum loss was also taken to be 25 eV. The results from this evaluation 

showed this model to  be so poorly representative of electron stopping that it was not 

considered for further analysis.

The 3rd model examined here treats inner shells with a  combination of Pressa 

and Newell’s empirical total cross section and Gryzinski’s differential cross section, 

uses the modified M0ller cross section to  describe all outer shell ionizations, and 

uses Steitwolf’s excitation cross section assuming a minimum excitation loss equal 

to the Fermi level energy to model outer shell excitations. Stopping powers derived 

from this model typically model the stopping power well at lower energies, and under

estimate them at high energies, similar to model 1, although to  a slightly more severe 

degree.

The remaining two models predict the stopping power exactly because of the 

empirical excitation functions which they include. The fourth model treats inner 

ionization processes in the same way as the previous model, but uses a simple Mpller 

cross section for the knock-on delta ray production cross section. All electrons outside 

of the inner shell are considered to contribute to this process. This model also uses a 

1/A jE?̂  excitation cross section with the total cross section dictated by the stopping 

power. Minimum losses of both the Fermi level energy and 25 eV (maximum loss of 

1 keV) were tested.

The fifth model uses Scofield’s total cross section and the modified M0ller differ

ential cross section to describe inner shell processes, and then ignores the binding 

energy in all outer shells and uses the simple M0ller cross section to describe delta ray
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Figure 6.4: Elastic Fraction of Total Cross Section for Carbon

production. It also uses a Gryzinski cross section, modified to  include an empirical 

binding energy so as to preserve the stopping power, to trea t outer shell excitation 

processes. A minimum excitation energy of the Fermi energy and of 25-eV are both 

examined.

As mentioned before, the other way to evaluate the validity of various scattering 

models is by examining the total cross sections which they predict. In this work, 

this is done by comparing the the fraction of the total which is comprised of elastic 

scattering. Fractional elastic cross sections as functions of energy for each models 

are shown for various elements in figures 6.4 through 6.6.

Note th a t all of the models generally produce the anticipated scaling trends. 

The prim ary differences lie in the values of the ratio of elastic to total collisions. 

The validity of the various predictions should become apparent from Monte Carlo 

calculations.

Thus, of the five models initially examined, four have been found suitable for
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Figure 6.6: Elastic Fraction of Total Cross Section for Gold
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evaluation by Monte Carlo calculation based on comparison with low kilovolt energy 

experiments. The parameters for the data generation were the same as those used 

in the above analysis, except that all models which had such an option assumed 

10 eV minimum excitation losses, and the fourth model (model 5 described above) 

assumed tha t only the outermost subshell is involved to the excitation stopping. 

This last approximation was made because when all the outer shells are allowed to 

contribute to low energy ionizations and excitations and a small minimum loss been 

assumed, the empirical Gryzinski binding energy can be indeterminately small at 

low initial energies and high Z materials.

Three classes of experiments were selected for simulation and evaluation, namely, 

measurements of total badkscattering fraction, x-ray production, and energy distri

bution of backscattered electrons. Results are described below.

No consensus exists on the best values, as determined by experiment, of total 

backscattering coefficients throughout the full range of materials at kilovolt energies, 

although several authors have attempted to define them. Recently, Kalef-Ezra, et 

al. [Ka82] have reviewed the relevant data for low Z materials. Other summaries 

and/or wide ranging experiments can be found in Neubert and Rogaschewski [NeSO], 

Liuzzi and Martin [Li79], Darhngton [Da75], Darlington and Cosslett [Da72] and 

Drescher, et al. [Dr70]. A comparison of Monte Carlo simulations with experi

mental results is shown in table 6.3. Wherever more than one experimental result 

is available, the range of results is presented. (A small variation in the tabulated 

experimental value should be construed to represent not so much a highly confident 

figure for the backscattering fraction as a highly uncertain number derived from a 

single measurement.)

Agreement is generally good, although two anomalies are seen. First, models 1
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Experiment Expt Model 1 Model 3 Model 4 Model 5

A1 at 3 keV .275 .192 .164 .179 .169

A1 at 5 keV .186 -  .25 .206 .191 .186 .178

A1 at 10 keV .157 -  .19 .205 .211 .183 .183

Cu at 3 keV .38 .274 .242 .299 .309

Cu at 5 keV .352 -  .363 .301 .288 .316 .314

Cu at 10 keV .26 -  .35 .320 .325 .321 .318

Au at 3 keV .525 .408 .328 .414 .452

Au at 5 keV .43 -  .50 .458 .396 .457 .477

Au a t 10 keV .425 -  .50 .498 .462 .481 .482

Table 6.3: Backscattered Fractions from Experiment and Monte Carlo

and 3 tend to over-estimate the backscatter somewhat for low Z  materials. Most 

likely, this occurs because these models predict a stopping power for aluminum at 10 

keV which is somewhat less than the experimental value. Thus, these models tend 

to slow the electrons so slowly that too great a fraction manage to escape. For the 

higher Z test case, for which models 1 and 3 accurately predict the stopping power, 

and this effect does not exist.

The second incorrect result is a gross underestimation in the total backscattering 

coefficient at very low energies. The most likely reason for this is that backscattering 

experiments typically collect all electrons with energies above 50 eV while the simu

lation considers as stopped all electrons slowing to 1 keV. At high initial energies, the 

number of electrons expected between .05 and 1 keV is a small fraction of the  total 

backscatter, but for 3 and even 5 keV incident electrons, the backscattered electrons
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Experiment Expt Model 1 Model 3 Model 4 Model 5

A1 at 3 keV .275 .248 .204 .242 .210

A1 a t 5 keV .186 -  .25 .223 .208 .206 .203

A1 a t 10 keV .157 -  .19 .213 .215 .191 .189

Cu at 3 keV .38 .346 .287 .362 .381

Cu at 5 keV .352 -  .363 .322 .308 .340 .341

Cu at 10 keV .26 -  .35 .328 .328 .332 .325

Au a t 3 keV .525 .462 .379 .499 .518

Au a t 5 keV .43 -  .50 .483 .409 .481 .501

Au a t 10 keV .425 -  .50 .505 .465 .487 .491

Table 6.4: Corrected Backscattered Fractions from Class I Monte Carlo

ignored by the model may represent significant fraction of the total. This hypothesis 

is supported by the shape of the energy distribution (see for example, figure 6.7), 

which shows the peak in the distribution near 1 keV. Thus the Monte Carlo results 

would probably be closer to the experimental results if the low energy cut off were 

greater. Table 6.4 shows computational results corrected for this effect by assuming 

that the tail of the backscattered energy distribution is flat extending to 50 eV.

The extrapolation is admittedly crude, (especially at 3 keV), but it does show that 

the single scattering Monte Carlo results, when based on da ta  well-representative of 

the medium’s characteristics, conform to the general trend of increased backscatter

ing with decreasing energy. Note tha t at very low energies for the higher Z  materials, 

for which model 1 and particularly model 3 overestimate the stopping power, the pre

dicted backscattering fraction is far too low, even with the correction.
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Energy (keV) Experiment Model 1 Model 3 Model 4 Model 5

10 .403 .485 .470 .475 .458

15 1.38 1.42 1.83 1.30 1.58

20 2.69 2.12 3.08 1.90 2.70

25 4.29 3.54 4.75 2.86 4.10

(Values in 10  ̂photons/ electron-steradian)

Table 6.5: X-ray Yield for Various Class I Models for 1 0 - 2 5  keV Electrons on 
Chromium

The next experiment modeled was the yield of x-rays from a thick chromium

target bombarded by monoenergetic electrons, based on the experimental results

of Lifshin et al. [Li77]. This calculation tests primarily the accuracy of the inner

ionization cross section, since most emitted photons from this target a t this energy

are K  characteristic x-rays. It is seen from the results in table 6.5 tha t models using

Scofield’s parameterization (models 3 and 5) are more likely to give correct results

than those using Pressa’s empirical formulation (model 4) or Gryzinski’s total cross

section (model 1), both of which predict too great a yield at low energies and too low

a yield a t high energies. It is also apparent from the table tha t other portions of the

scattering model influence the x-ray yield prediction, as models 2 and 5, which use the

same total ionization cross section, predicted different x-ray yields. Recall that the

non-empirical model 2 tends to underestimate stopping powers at high energies, and

would be expected to  predict an increase in the population of high energy electrons

after traversal of a given pathlength and hence too large a  likelihood of inner shell

ionization. Since the underestimation of diminishes at low energies, the difference
ax

in the predictions of x-ray yield between this model and model 5, which is pinned to
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Author Energy (keV) Element

Darlington [Da75] 10 13
10 29
10 79

Kanter [Ka57] 10 13
10 79

Sternglass [St54] 1.92 6

Table 6.6: Backscattered Experiments Used in Investigating Class I Algorithm In
elastic Scattering Models

the stopping power, is expected to be smallest in the low energy region. •

The final set of evaluations involve the prediction of the energy distribution of 

backscattered electrons. These experiments, especially those employing obliquely 

incident electrons, are expected to test the complete model since both the deflection 

and energy degradation components of the models must conform to actual conditions 

in order to accurately predict the energy of the ejected electrons. The experiments 

chosen for this portion of the examination are listed in table 6.6.

As noted before, backscattering data  in the energy range of interest here is some

times contradictory. Table 6.7 gives the total backscattering fraction predicted by 

the various models for the various experiments, and that given by the experimenters 

whose distributions measurements are being used.

Agreement between experiment and the Monte Carlo calculations is generally 

very good. It should be noted tha t Sternglass’s experimental value is generally held 

to be much too low, 1/3 to 1/2 of the usually accepted value for carbon in this energy 

range [Da72, Ve77, Ka82], and so the relatively good agreement between the carbon 

experiment and the models is chance, especially in light of the argument put forth
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Experiment Expt Model 1 Model 3 Model 4 Model 5

C at 1.92 keV .065 .0688 .0565 .0622 .0554

A1 a t 10 keV .19,.173 .205 .211 .183 .183

A1 a t 10 keV, 80° .66 .671 .656 .650 .648

Cu a t 10 keV .312 .322 .326 .322 .317

Au a t 10 keV .48,.479 .498 .462 .481 .482

Au at 10 keV, 80° .80 .797 .766 .786 .788

Table 6.7: Backscattered Fractions from Experiment and Monte Carlo

earlier concerning the relatively high cut off energy used in the simulations. In the 

comparisons involving gold and aluminum, the only significant deviation between 

the Monte Carlo simulations and experimental results arises for models 1 and 3 for 

normally incident electrons impingent on aluminum, in which case the calculation 

over-estimates the backscattering. This is expected based on the analysis of the 

total backscattering results presented earlier. For obliquely incident electrons this 

effect is limited because of the fewer number of inelastic (as well as elastic) collisions 

necessary to eject the electron.

Results of distributions calculated by the four models are plotted in figures 6.7 

through 6.27.
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Figure 6.7; Backscattered Electron Energy Distributions for Various Class I Models 
for 1.92 keV Electrons on Carbon
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Figure 6.8: Backscattered Electron Energy Distributions for Class I, Model 1 for 10 
keV Electrons on Aluminum (Normally Incident)
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Figure 6.9: Backscattered Electron Energy Distributions for Class I, Model 3 for 10 
keV Electrons on Aluminum (Normally Incident)
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Figure 6.10: Backscattered Electron Energy Distributions for Class I, Model 4 for 10 
keV Electrons on Aluminum (Normally Incident)
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Figure 6.11: Backscattered Electron Energy Distributions for Class I, Model 5 for 10 
keV Electrons on Aluminum (Normally Incident)
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Figure 6.12: Backscattered Electron Energy Distributions for Class I, Model 1 for 10 
keV Electrons on Aluminum (80° Incident)
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Figure 6.13: Backscattered Electron Energy Distributions for Class I, Model 3 for 10 
keV Electrons on Aluminum (80° Incident)
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Figure 6.14: Backscattered Electron Energy Distributions for Class I, Model 4 for 10 
keV Electrons on Aluminum (80® Incident)
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Figure 6.15: Backscattered Electron Energy Distributions for Class I, Model 5 for 10 
keV Electrons on Aluminum (80° Incident)
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Agreement with experimental results is very good for models 4 and 5 , except for 

the carbon experiment and the experiments using very obUquely incident electrons. 

Models 1 and 3 generally perform poorly, tending to underestimate the most probable 

loss, and to overestimate the intensity at the peaks of the distributions. Model 4 

provides a slightly more accurate simulation of the normal incident electrons on 

aluminum experiment, and Model 5 of the copper and the gold experiments. For 

obliquely incident electrons, all of the models overestimate the peak intensity and 

underestimate the most probable loss. This observation suggests th a t the average 

energy loss per inelastic collision (which is smallest in model 3), is an important factor 

in providing extensive details of simulations (although not as influential as the total 

stopping power), and is not modeled well for any of the experiments. No explanation 

for the poor performance of all the models in simulating the carbon experiment is 

obvious, although the problems with other data from the same citation have been 

noted previously. Further, the shape of the distribution predicted by the model 5 

Monte Carlo appears to be more in line with the scale suggested by the other low Z  

experiments modeled here than the Sternglass experiment.

Computational Comparisons

The number of tracks per incident electron, processing time per track, and total 

required processing time found in simulating some of these problems with the various 

schemes are presented in tables 6.8 through 6.9. Results of the chromium photon 

prediction computations are not included because it is not known how the importance 

sampling skews the computation time.

These results are at once misleading and enlightening; higher Z materials, even 

though they have a  higher cross section and so would be expected to require more
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Figure 6.16: Backscattered Electron Energy Distributions for Class I, Model 1 for 10 
keV Electrons on Copper (Normally Incident)

Experiment Model 1 Model 3 Model 4 Model 5

C at 1.92 keV 48 70 45 66

A1 a t 10 keV 409 603 405 605

Cu at 10 keV 324 358 315 493

Au a t 10 keV 245 384 281 439

A1 at 10 keV, 80° 212 309 213 321

Au a t 10 keV, 80° 126 180 144 222

Table 6.8: Number of Collisions per Incident Paiticle Predicted by Various Class I 
Models
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Figure 6.17: Backscattered Electron Energy Distributions for Class I, Model 3 for 10 
keV Electrons on Copper (Normally Incident)
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Figure 6.18: Backscattered Electron Energy Distributions for Class I, Model 4 for 10 
keV Electrons on Copper (Normally Incident)
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Figure 6.19: Backscattered Electron Energy Distributions for Class I, Model 5 for 10 
keV Electrons on Copper (Normally Incident)
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Figure 6.20: Backscattered Electron Energy Distributions for Class I, Model 1 for 10 
keV Electrons on Gold (Normally Incident)
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Figure 6.21: Backscattered Electron Energy Distributions for Class I, Model 3 for 10 
keV Electrons on Gold (Normally Incident)
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Figure 6.22: Backscattered Electron Energy Distributions for Class I, Model 4 for 10 
keV Electrons on Gold (Normally Incident)
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Figure 6.23: Backscattered Electron Energy Distributions for Class I, Model 5 for 10 
keV Electrons on Gold (Normally Incident)
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Figure 6.24: Backscattered Electron Energy Distributions for Class I, Model 1 for 10 
keV Electrons on Gold (80° Incident)
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Figure 6.25: Backscattered Electron Energy Distributions for Class I, Model 3 for 10 
keV Electrons on Gold (80° Incident)
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Figure 6.26: Backscattered Electron Energy Distributions for Class I, Model 4 for 10 
keV Electrons on Gold (80° Incident)
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Figure 6.27: Backscattered Electron Energy Distributions for Class I, Model 5 for 10 
keV Electrons on Gold (80° Incident)
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Experiment Model 1 Model 3 Model 4 Model 5

C at 1.92 keV 6.43 5.63 6.03 6.13

A1 at 10 keV 6.55 5.93 6.27 6.29

Cu at 10 keV 6.87 6.52 6.43 6.48

Au a t 10 keV 6.78 6.51 6.36 6.42

A1 at 10 keV, 80° 6.68 6.03 6.35 6.37

Au a t 10 keV, 80° 6.99 6.68 6.54 6.53

Table 6.9: Computation Speed (^sec/track) for Various Class I Models

collisions to stop, instead are seen to use fewer. This is because these materials 

have both a higher stopping power (and thus completely stop electrons in a shorter 

tracklength) and a  more preferentially backward scattering distribution, yielding 

more backscattering and thus fewer colhsions per particle on average over the course 

of a full simulation. The interesting result is that this effect is so great that the 

to tal problem processing time per particle is higher for low Z materials than for 

heavy elements at comparable energies. Of course, for certain problems in which the 

backscattered electrons are of no consequence, more particles must be run for high 

Z materials to limit statistical uncertainty, and so simulations in high Z  materials 

will take longer than in hghter elements.

Model 1 simulations are the slowest in terms of processing time per track because 

of the large number of secondary particles which this model creates (every inelastic 

colhsion, regardless of the energy of the particle created, is modeled as an secondary 

electron generating ionization in this model) and the mechanism employed by the 

program to eliminate secondaries born below the problem cutoff. All the models
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Experiment Model 1 Model 3 Model 4 Model 5

C a t 1.92 keV 0.312 0.392 .273 .406

A1 a t 10 keV 2.679 3.577 2.537 3.800

Cu at 10 keV 2.223 2.336 2.024 3.192

Au a t 10 keV 1.659 2.500 1.788 2.815

A1 a t 10 keV, 80° 1.413 1.864 1.345 2.042

Au a t 10 keV, 80° 0.883 1.321 0.944 1.453

Table 6.10: Computation Time (msec /  particle) Required for Various Class I Models

speed up (in terms of performance per track) at low Z materials because fewer dif

ferent types of collisions are possible and so the number of trips through loops with 

short vectors is smaller. In this respect, Models 4 and 5 are very similar in structure, 

and this is evidenced by their nearly identical processing speed.

Overall simulation time is mainly dependent on thé value of the total cross section 

used by the various models, which, since all models use the same elastic cross section, 

is determined by the inelastic cross section. Thus models 1 and 4, which have smaller 

total inelastic cross sections but higher average energy loss per collision, are always 

faster.

C onclusions

Several conclusions can be drawn from the discussion in the previous sections. 

The single most im portant factor in determining the success of a  single scattering 

model is how closely the stopping power which it predicts adheres to experimentally 

accepted values. No other factor had so great an influence on the results predicted
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by all simulations. Second, models which preserve stopping power by using higher 

total inelastic cross sections with a lower average loss per collision seem to be shghtly 

more accurate in modeling detailed experiments. Overall computation time increases, 

since more tracks must be processed, but for some types of problems, this appears to 

be the only way to  accurately simulate experiments. In many types of calculations 

however, faster, less detailed models are suitable. Lastly, Scofield’s total ionization 

cross section is preferred over that of Gryzinski and of Pressa and Newell.

6.1.2 Class II Algorithms

The optimal Class II algorithm is obvious from the results of the class I evaluation. 

This is true because of the three components of this algorithm class (the elastic cross 

section, the  ‘im portant’ inelastic event cross sections, and the continuous loss model), 

only the choice of the inelastic model is not obvious from the preliminary analysis 

of chapters II and III, and it is set by the best choice seen in the class I evaluation. 

As in Class I schemes, the elastic scattering component, partial wave elastic cross 

sections are mandated. The best choice for continuous slowing down model is Bethe 

as corrected by Flynn, as noted in chapter III. And from the previous section, it is 

seen tha t the optimal discrete inelastic model is one employing Scofield’s total cross 

section. The unsettled portion of the Class I model, the small energy transfer inelastic 

model, is taken up here in the stopping power. Whether or not this model of low 

transfer collisions provides adequate detail in Monte Carlo simulations is explored in 

the next section 2 of this chapter.
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6.1.3 Class i n  Algorithms

Based on the conclusions drawn in chapter III, there can be only slight doubt 

about the make up of the class III (condensed history) model which is optimal for 

simulating kilovolt electron transport. The only applicable elastic scattering model 

is clearly tha t of Goudsmit and Saunderson with the Riley cross section. Choices for 

the inelastic scattering model can be limited to two, depending on whether energy 

loss restricted stragghng distributions (which case Vavilov’s formalism is superior) 

or restricted stopping power is used. For the remainder of this section, models 

employing simply the stopping power will be referred to as scheme 1 models, and 

models using energy loss fluctuation distributions as scheme 2 models.

The only other facet of these algorithms which is of significance then is the selec

tion of the multiple scattering step size. Recall that it is of paramount importance 

that the deflection be kept small so tha t the actual pathlength and the Monte Carlo 

step size be roughly equivalent, and so tha t the displacement modeled by the Monte 

Carlo straight line transport assumption be accurate. It is also important that there 

be enough colhsions over the interval tha t the distributions functions are valid and 

numerically determinable.

To evaluate these choices, two primary models were constructed, one using the 

continuous slowing down formahsm of Bethe’s model, as corrected by Flynn, and one 

employing a loss distribution function, the restricted Vavilov. These models included 

all of the peripheral model (such as the use of pathlength straggling, apphcation of 

multiple scattering at boundaries and a t pre-collision sites, and the inclusion of the 

no-scatter probabihty), reasoning that these only enhance the adherence of the Monte 

Carlo simulation to the physics of electron transport.

Multiple scattering distributions were generated for various fractional energy loss
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Figure 6.28: No Scattering Probabilities for Various Elements a t Various Fractional 
Energy Loss Steps in Class III Models .

steps for both models. The step sizes chosen for the analysis were defined as those 

which were 1 /5 ,1 /1 0 ,1 /1 5 , and 1/20 of the path necessary for an electron to travel a  

distance so as to lose 8.5% of its energy in a single step. At low energies this distance 

is often less than one elastic scattering mean free path, and no-scattering probabihties 

more than 80% are not uncommon. Plots of the no-scattering probability and the 

average scattering angle (actually, the angle corresponding to the average deflection 

cosine) as a  function of initial step energy for different fractional losses (the longest 

and shortest tested) are given in figures 6.28 and 6.29.

It is seen that the average cosine increases with atomic number, as expected. 

Further, the average cosine is constant with energy for steps beginning a t higher en

ergies (as by design for condensed history simulations [Be63]) but tha t the deflections 

increase dramatically at lower initial energies for all materials. Also noteworthy is 

the fact that the average deflection for similar energy loss steps is not constant with 

Z. This suggests th a t some scheme might be found to generate spacing constants 

which provide identical average deflections for all elements, a t least a t high energies.
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Figure 6.29: Average Scattering Angle in Various Elements for Various Fractional 
Energy Loss Steps in Class III Models ■ .

The results of Monte Carlo runs using the greatest and smallest step sizes for 

both schemes for this algorithm cletss (those with and without distributed losses) are 

discussed below. As with class I models, the evaluation of class III models begins with 

an comparison of the Monte Carlo and experimental total backscattering coefficients. 

Results are presented in table 6.11.

A strong dependence on the step size is seen, with long steps repeatedly under

estimating the backscattering, except possibly for aluminum. The most interesting 

result seen here is tha t only the short step sdieme using continuous loss correctly 

predicts the trend of increasing backscattering for decreasing energy for low Z  ma

terials. Two factors seem to be contribute to this, first, an increase in the error in 

the the shape of the fluctuation distribution at low energy, and second, a  potential 

breakdown in the algorithm at high atomic number beginning around 50 keV. Thus 

while it appears th a t it is possible to tailor a calculation to  fit a  particular backscat

tering experimental result by a suitable choice of the step size, the physics seems to 

be subverted, since experiment trends are not correctly portrayed.
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Experiment Expt.
Result

Stop. Power Meth. 
(Scheme 1)

Distributed Loss Meth. 
Scheme 2

Long Step Short Step Long Step Short Step

A1 a t 30 keV .137 -  .165 .155 .168 .152 ■ .146

A1 a t 50 keV .141 -  .147 .150 .161 .157 .165

A1 a t 70 keV .136 -  .145 .155 .145 .158 .153

Cu at 30 keV .298 -  .306 .280 .300 .278 .292

Cu at 50 keV .295 -  .301 .283 .298 .289 - .306

Cu at 70 keV .293 -  .298 .304 .299 ' .294 .315

Au at 30 keV .490 -  .521 .426 .470 .419 .459

Au at 50 keV .510 -  .523 .451 .488 .444 .484

Au at 70 keV .480 -  .525 .461 .501 .452 .495

Table 6.11: Backscattered Fractions from Experiment and Monte Carlo for Class III 
Simulations
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Energy (keV) Experiment Scheme 1 
Long Step

Scheme 1 
Short Steps

Scheme 2 
Long Steps

Scheme 2 
Short Steps

25 4.29 5.08 5.29 5.51 5.54

(Values in 10  ̂ photons/electron-steradian)

Table 6.12: X-ray Yield for Various Class III Models for 25 keV Electrons on 
Chromium

The second simulation again involves the prediction of the x-ray yield from 

chromium at various energies. Based on the results from the analysis of class I 

schemes, the Scofield total cross section was used to describe the inner ionization 

process. ^

This time fairly consistent agreement across models is seen, most likely because 

the same ionization cross section was used in all cases. Also evident is a  gross (20%) 

overestimation of the x-ray yield. This is somewhat surprising, since all models 

tended to predict the backscatter of medium Z  materials quite well, even at the lowest 

energies examined so far, and these condensed history models use the same ionization 

cross section as those single scattering models which performed this calculation quite 

well.

The final set of experiments simulated were those measuring energy distributions 

of backscattered electrons. Again, experiments of Kanter are used. Results are 

shown in table 6.13 (total backscattering fraction) and figures 6.30 through 6.45 

(energy distributions).

Agreement is generally good, except for aluminum at 80 degree incident angle. 

However, Ranter’s figure of .73 for the backscattering fraction is considerably larger 

than the measurements of other investigators, who report a  backscatter fraction of
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Experiment Expt Scheme 1 
Long Steps

Scheme 1 
Short Steps

Scheme 2 
Long Steps

Scheme 2 
Short Steps

A1 a t 70 keV .14 .156 .149 .157 .155

A1 a t 70 keV, 80° .73 .573 .624 .579 .619

Au a t 70 keV .48 .457 .502 .453 .498

Au at 70 keV, 80° .80 .674 .756 .671 .749

Table 6.13: Backscattered Fractions from Experiment and Monte Carlo

just over .60 [Dr70]. This second number is more in line with the trend of lower 

backscatter a t higher energy (recall that at 10 keV the backscattering fraction was 

.66) and with the Monte Carlo runs, particularly in the short step situations, which 

have been seen to  model aluminum backscattering fairly well in this energy regime.
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Figure 6.30: Backscattered Electron Energy Distributions for Class HI, Scheme 1 
(Long Steps) for 70 keV Electrons on Aluminum, Normally Incident
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Figure 6.31: Baekscattered Electron Energy Distributions for Class III, Scheme 1 
(Short Steps) for 70 keV Electrons on Aluminum, Normally Incident
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Figure 6.32: Backscattered Electron Energy Distributions for Class III, Scheme 2 
(Long Steps) for 70 keV Electrons on Aluminum, Normally Incident
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Figure 6.33: Backscattered Electron Energy Distributions for Class III, Scheme 2 
(Short Steps) for 70 keV Electrons on Aluminum, Normally Incident
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Figure 6.34: Backscattered Electron Energy Distributions for Class III, Scheme 1 
(Long Steps) for 70 keV Electrons on Aluminum, 80° Incident
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Figure 6.35: Backscattered Electron Energy Distributions for Class III, Scheme 1 
(Short Steps) for 70 keV Electrons on Aluminum, 80° Incident
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Figure 6.36: Backscattered Electron Energy Distributions for Class III; Scheme 2 
(Long Steps) for 70 keV Electrons on Aluminum, 80° Incident
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Figure 6.37: Backscattered Electron Energy Distributions for Class l i t ,  Scheme 2 
(Short Steps) for 70 keV Electrons on Aluminum, 80° Incident
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Figure 6.38: Backscattered Electron Energy Distributions for Class III, Scheme 1 
(Long Steps) for 70 keV Electrons on Gold, Normally Incident

it is seen in the figures tha t both scheme 1 and scheme 2 model the distributions 

extremely accurately, so long as short steps are used. Somewhat surprisingly, the use 

of short steps even permits correct modeling of the energy spectrum in the region of 

small energy loss.

Numerical Comparisons

The number of tracks per incident electron, processing time per track, and total 

required processing time found in simulating some of these problems with the various 

schemes are presented in tables 6.14 through 6.15.

As expected, the short step simulations, for which the step was one fourth the 

step of the long step runs, took approximately 4 times as many steps. W hat is 

surprising about this data is the far fewer number of steps taken by the scheme 2
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Figure 6.39: Backscattered Electron Energy Distributions for Class III, Scheme 1 
(Short Steps) for 70 keV Electrons on Gold, Normally Incident

Experiment Scheme 1 
Long Steps

Scheme 1 
Short Steps

Scheme 2 

Long Steps

Schettie 2 

Short Steps

A1 at 70 keV 425 1719 370 1067

Cu a t 70 keV 383 1533 304 751

Au at 70 keV 353 1319 225 497

Table 6.14: Number of Tracks per Incident Particle Predicted by Various Class III 
Models
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Figure 6.40: Backscattered Electron Energy Distributions for Class III-, Scheme 2 
(Long Steps) for 70 keV Electrons on Gold, Normally Incident
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Figure 6.41: Backscattered Electron Energy Distributions for Class IIL, Scheme 2 
(Short Steps) for 70 keV Electrons on Gold, Normally Incident
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Figure 6.42: Backscattered Electron Energy Distributions for Class III; Scheme 1 
(Long Steps) for 70 keV Electrons on Gold, 80° Incident
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Figure 6.43: Backscattered Electron Energy Distributions for Class Illj Scheme 1 
(Short Steps) for 70 keV Electrons on Gold, 80° Incident
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Figure 6.44: Backscattered Electron Energy Distributions for Class III, Scheme 2 
(Long Steps) for 70 keV Electrons on Gold, 80° Incident
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Figure 6.45: Backscattered Electron Energy Distributions for Class III, Scheme 2 
(Short Steps) for 70 keV Electrons on Gold, 80° Incident
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Experiment Scheme 1 
Long Steps

Scheme 1 
Short Steps

Scheme 2 
Long Steps

Scheme 2 
Short Steps

A1 a t 70 keV 6.38 5.50 6.88 6.20

Cu a t 70 keV 6.37 5.52 6.96 6.43

Au at 70 keV 6.30 5.50 6.98 6.54

Table 6.15: Computation Speed (/fsec/track) for Various Class III Models

Experiment Scheme 1 
Long Steps

Scheme 1 
Short Steps

Scheme 2 
Long Steps

Scheme 2 
Short Steps

A1 a t 70 keV 2.715 9.544 2.545 6.615

Cu a t 70 keV 2.437 8.471 2.115 4.833

Au a t 70 keV 2.225 7.259 1.571 3.253

Table 6.16: Computation Time (msec/particle) Required for Various Class III Mod
els

models. This can only come about because of a skewing of the distribution toward 

more high energy losses. The effect is more dramatic for heavier elements.

In keeping with expectations, the use of fluctuations slows the processing time per 

particle because an extra distribution sampling procedure must be performed. The 

effect is most dramatic for short steps, for which distribution sampling comprises a 

greater fraction of the total processing time.

Similar to the results seen for class I algorithm, the high number of backscattered 

electrons for heavy elements results in shorter processing time for these materials.
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Conclusions

Clearly, very small step sizes must be used to accurately simulate transport at low 

energies. Also, there appears to be a breakdown in scheme 2 caused by inaccuracies 

in the Vavilov fluctuation distribution a t low energies. Additionally, a potential 

breakdown in the model itself is seen at high Z  materials as low as 50 keV. Whether 

or not this could be alleviated by the use of even smaller steps is uncertain. Indeed, 

for the short step simulations described above, the average loss in gold is about 100 

eV at steps taken around 50 keV and 4 eV for steps at 1 keV.

6.2 Applicability of Algorithm Classes

This section seeks to define the regions in Z  and E  for which the best models in the 

different classes of algorithms, as determined in the previous section, are best suited, 

with respect to both accuracy in reproducing experimental results and computation 

time. This analysis essentially involved attempting to apply class III models at low 

velocity and class I schemes at high velocities. Models chosen for this simulation are 

models 4 and 5 of the class I algorithm, a  class II model using the same ‘important’ 

cross sections as model 5 of class I, and a class III, scheme 1 model using short steps, 

as defined in the previous section. The analysis is carried out similar to the analysis 

of the models within each class, first by generating simple thick target backscattering 

fractions, and then by examining results of more detailed simulations

Backscattering fractions from simulations and experiment are shown in figures 

6.46 through 6.48.

For aluminum, the class I and II schemes consistently overestimate the backscat

tering fraction for energies above 10 keV. There is a great deal of uncertainty as to 

the backscatter fraction below 10 keV or so, with recent data suggesting that it is
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Figure 6.46: Backscattering Fractions a t Kilovolt Energies for Aluminum, Experi
ment and Monte Carlo

around .19, (which agrees well with all three schemes) and older data predicting a 

somewhat lower value. At energies greater than 110 keV, while there is no general 

agreement as to the correct value, there is no data which predicts as high a value as 

the class I and class II schemes. The problem may lie in the extreme diflBculty in nu

merically modeling the Riley elastic cross section for Al, as discussed in a succeeding 

section.

For copper, all 4 models consistently predict the relatively flat or gently rising 

backscattering fraction typically encountered in experimental data. All models also 

lie within the range of experimentally predicted values, with the class II model agree

ing very well with the data of Drescher et a/[Dr70] and of Darhngton [Da75], and the 

class I and II da ta  extremely close to tha t of Neubert and Rogaschewski [NeSO] and 

of Bishop (as cited in [NeSO]). No absolute conclusions can be drawn as to validity
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Figure 6.47: Backscattering Fractions a t Kilovolt Energies for Copper, Experiment 
and Monte Carlo

conditions.

The situation for the gold backscattering case is somewhat similar to that in 

copper, as all models correctly predict the established trend (in this case, softly de

creasing backscatter with energy), yet there is a distinct difference in the magnitude 

predicted by the single scattering and condensed history cases, and all.simulated re

sults fall close to one experiment or another. In this instance however, the majority 

or the da ta  tends vahdate the single scattering models, which predict slightly higher 

backscattering fractions.

The number of tracks and total computation time (per particle) required for 

simulating these backscattering experiment for the 4 models as a  function are shown 

in figures 6.49 through 6.54.

The interesting result from this section is that the number of tracks required to
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Figure 6.48: Backscattering Fractions a t Kilovolt Energies for Gold, Experiment and 
Monte Carlo

perform a  calculation using a condensed history model actually exceeds tha t required 

by a  class I single scattering model for low energies (below 15 or 20 keV), and is 

greater than the number of collisions in a class II model at all energies examined here. 

This is certainly because the very small step sizes required for accurate modehng force 

a great many transport steps on the class III schemes at low energies.

The time advantage achieved by using class III models at higher energies is appar

ent from figures 6.52 through 6.54. It is seen that while the single scattering tracking 

time increase almost linearly with energy, the class III time rises much more slowly, 

which is as expected since the step sizes are set between logarithmically varying en

ergy points. Note tha t the the extra vectorization speed attained by the class III 

schemes yields a fast computation even though more tracks are model, as compared 

with the class II single scattering model.
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Figure 6.49: Number of Tracks per Incident Particle at Kilovolt Energies for Alu
minum
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Figure 6.50: Number of Tracks per Incident Particle a t Kilovolt Energies for Copper
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Figure 6.51: Number of Tracks per Incident Particle at Kilovolt Energies for Gold
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Figure 6.52: Computation Time (msec) per Incident Particle at Kilovolt Energies for 
Aluminum
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Figure 6.53: Computation Time (msec) per Incident Particle at Kilovolt Energies for 
Copper
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Figure 6.54: Computation Time (msec) per Incident Particle at Kilovolt Energies for 
Gold

Further experiments used in this analysis are backscattered energy loss distribu

tion experiments of Darlington a t 30 keV for aluminum, copper and gold. Plots of 

results from theses runsa are shown in figures 6.55 through 6.63.

For aluminum, we see that all of the models underestimate the width of the 

distribution and overestimate the height of the tail, and that the class 111 scheme 

best models the low energy loss portion of the distribution. (The class 1, model 5 

results may be better than the class 1, model 4 result. At 10 keV in aluminum, model 

5 predicts fewer high energy particles being backscattered, which is where model 4 is 

deficient. Model 4 was chosen for these runs because it is roughly twice as fast and 

very time consuming runs were required to achieve good statistics. In retrospect, 

tha t may have been a mistake.) It certainly seems as though the condensed history 

technique is desirable in this regime, as the simulation is accurate and it is much
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Figure 6.55: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Aluminum, Experiment vs Class I Model 4
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Figure 6.56: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Aluminum, Experiment vs Class II Model
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Figure 6.57: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Aluminum, Experiment vs Class III Model
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faster. In general, the condensed history technique does not seem to lose validity in 

aluminum scattering simulations down to the point below which it becomes slower 

than single scattering models, roughly 5 to 15 keV. Above 10 keV, it does not suffer 

from the numerical difficulties incumbent upon single scattering codes, and as it is 

also faster, it is clearly preferable.
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Figure 6.58: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Copper, Experiment vs Class I Model 4

In the copper simulation, the class II scheme models the low loss region quite well, 

but the tail very poorly, predicting much too narrow of a  spectrum.. The condensed 

history scheme models the tail extremely well, but underestimates the the low loss 

portion of the distribution. The class I model does quite well in all regions.
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Figure 6.59: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Copper, Experiment vs Class II Model
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Figure 6.80: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Copper, Experiment vs Class III Model
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Figure 6.61: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Gold, Experiment vs Class I Model 4

In gold at 30 keV, the condensed history case performs poorly, shifting the dis

tribution peak toward low energy and overestimating its magnitude. The class II 

scheme again predicts too narrow of a  distribution. The class I scheme underesti

mates the peak, but locates it correctly and the overestimation is slight.

In summary, condensed history schemes axe desirable in low Z  materials down to 

the point at which they become just as time consuming as accurate, class I schemes, 

from 5 to 15 keV. In high Z  materials, they lose accuracy a t higher energies (from 

20 to perhaps 40 or 50 keV), and a trade-off must be made between the longer run 

times required by single scattering models and the desire for accuracy which they 

can provide.
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Figure 6.62: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Gold, Experiment vs Class II Model
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Figure 6.63: Backscattered Energy Distributions for 30 keV Electrons Incident on 
Gold, Experiment vs Class III Model
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Problem Algorithm 
(/isec /  track)

Scalar Speed 
(fisec /  track)

Vector Speed Speed Up

Aluminum

Backscattering

Class I 37.24 6.03 6.18

Class II 38.20 6.86 ■ 5.56

Class III 37.45 5.50 6.81

Copper

Backscattering

Class I 36.66 6.43 5.70

Class II 38.38 6.96 5.51

Class III 36.58 5.52 6.63

Gold

Backscattering

Class I 37.71 6.36 5.93

Class II 38.40 7.02 5.47

Class III 37.35 5.50 6.79

Table 6.17: Vector Speed ups

Despite the extreme speed relative to the class I single scattering model, the 

class II scheme never fits a in a niche in which it is the desired technique, as in all 

situations either a class III scheme would be faster and still be just as accurate, or a 

class I model would be much more accurate, or both.

6.3 Vectorization Speed-ups

Several examples of each of the three classes of transport algorithms were run 

in both vector and scalar modes in order to determine the speed up due solely to 

vectorization. Speed ups are expected to be very similar within each the classes, 

since much of the same coding was used for each type of algorithm. Three problems 

were run to check for consistency, and the most accurate models for each class of 

algorithm were chosen for this comparison. Results are presented in table 6.17.
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As anticipated, speed up is consistent within each class, although as explained 

earlier, class I models run somewhat faster for low Z  materials, since the smaller 

number of rare inner ionizations limits the number of short loops. Between the 

models there are some differences in speed up, with the speed up is greatest for the 

class III algorithm, which performs the most long vector operations in all cases.

The vectorization speed up is not particularly impressive, but it is in line with 

the results for sampling speed ups seen in chapter 5. Also contributing to  the small 

speed enhancement seen is the rather short maximum vector length of 1000, which 

leads to a  good deal of processing with short vectors in some of the secondary par

ticle production modeling loops. Additionally, no optimization, meaning check of 

vector lengths and designating seldom used loops to be run in scalar, etc.,) was per

formed. Further, no effort was made to tailor to code (removing test loops, removing 

conditional checks th a t apply only to certain models, etc.) to  specific models and 

problems.

6.4 Purely Num erical Artifacts

It was pointed out in chapter V that the discretization most commonly used in 

Monte Carlo calculations, chosen for the sake of sampling speed, involves dividing 

distributions or cross section densities into binned sections of equal probabihty and 

can introduce substantial discrepancies between the discrete functions and the con

tinuous functions which they attem pt to represent. RMS errors often range up to 

20%, but are tolerated for the sake of speed and simplicity. The effect th a t the choice 

of discretization scheme has on Monte Carlo calculations, with respect to  both accu

racy and overall computation time, is examined in this section. A single scattering 

model using Riley’s elastic cross section, Gryzinski’s classical cross section for inner
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shell ionization, and a 1/A.B^ empirical distribution for excitations (model 5 of the 

first section of this chapter) was discretized using several schemes and using different 

errors for the same scheme, and transport results generated from runs using data 

produced for the different schemes was analyzed. Since it is assumed, tha t the most 

accurate discretization will result in the most accurate result, no attem pt is made to 

examine the complete range of energies and atomic numbers. Rather, the amount of 

deviation from the results obtained using the most accurate discretization is studied, 

in an attem pt to  discern the magnitude of the effect discretization errors. Also ex

amined is the maximum effect that the slower sampling speed of the more accurate 

binning schemes can have on total computation time.

6.4.1 Effects o f  D iscretization Errors

The main thrust of the first part of this evaluation is the determination of differ

ences in computational results caused solely by inaccuracy in modeling differential 

cross section densities and distribution functions. Since the discretization scheme 

employing arbitrarily spaced spaced bins with linear interpolation between bin end

points was seen in the previous chapter to be the only scheme permitting highly 

accurate discretizations of all cross sections, it is used throughout. Requested error 

tolerances are increased to simulate poor discretization. The discretization errors 

tested are listed in table 6.18. Note that both the requested error and the obtained 

error for discretization and energy ladder endpoints and the midpoints between lad

ders are listed in the table. In most instances, the minimum number of energy 

basepoint condition, in which the number is automatically set tc 7 (a number arbi

trarily set by the ENCHOP routine) if the error in going from one energy to  the next 

does not rise above the requested maximum, was invoked.
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Case Number: Error at Energy Endpts (%) Error at Energy Midpts (%)

Requested Obtained Requested Obtained

1 0.5 0.5 1.0 1.0 -  1.9

2 2.0 2.0 5.0 <  5.0

3 5.0 5.0 10.0 < 10.0

4 10.0 10.0 20.0 < 20.0

Table 6.18: Errors for Discretization Tests

The problem selected was the prediction of the energy distribution of backscat

tered 10 keV electrons, impingent upon a  semi-infinite gold slab. This was chosen 

since both the energy loss and the angular deflection distributions must be modeled 

correctly in order to obtain correct results. Test runs used 100,000 incident electrons. 

Plot of the output histograms for the four tests case are shown in figure 6.64.

Not much difference in the results is in evidence, although the large error case 

does tend to over estimate the height of the peak of the distribution somewhat more 

than the small error cases.

A much more dramatic effect was seen when equally probable bins with linear 

interpolation were used. The data was set so as to use 50 bins regardless of the 

endpoint error and 40 energy bins. Calculations performed for chapter V show that 

the error for such discretizations should be in the 2 to 5 percent range for gold, and it 

was assumed that they would be smaller for lighter Z materials. This assumption was 

proven glaringly deficient by test results. Table 6.19 shows backscattering fractions 

predicted by all four class I schemes using 50 by 50 set of equally probable bins and 

using 1% error arbitrarily probable bins.
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Figure 6.64: Backscattered Electron Energy Distributions for Various Discretization 
Errors

Monte Carlo A1 a t 10 keV Cr at 25 keV Au at 10 keV

Model 1, Equal Prob .298 .430 .486

Model 1, Arb Prob .213 .330 .505

Model 3, Equal Prob .289 .468 .446 .

Model 3, Arb Prob .215 .326 .465

Model 4, Equal Prob .264 .443 .473

Model 4, Arb Prob .191 .295 .487

Model 5, Equal Prob - .419 .441

Model 5, Arb Prob .189 .295 .491

Table 6.19: Backscattered Fractions from Monte Carlo for Class I Simulations, Dif
ferent Discretizations
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It is seen tha t for both aluminum and chromium, the equally probable bin scheme 

is inadequate. The discrepancies caused by the discretization errors are enormous. 

For Gold they are within the limits of statistical fluctuations. It is suggested then 

tha t the minimum discretization error, which is usually obtained by a arbitrarily 

probable scheme, always be employed, particularly a t low Z.

6.5 Suggested Future Work

Several comments on the shortcomings of this work and the points which should 

be examined if the work were to be pursued are included here. Some of these com

ments are pertinent to all kilovolt electron transport studies, while others refer mainly 

to the present work.

It is obvious from the discussions of chapter II tha t the least understood area 

relevant to kilovolt electron transport is that of inelastic scattering. Further work in 

this area should start with a somewhat more thorough and com prehensive examina

tion of many of the cross section formulations uncovered during the long course of 

this study, but not detailed in chapter II. One can envision the end product of such 

an efibrt a single program designed to calculate atomic and molecular electron wave 

functions for any input configuration under very little approximation, and produce 

both a partial wave expansion for accurate elastic cross sections and a complete set 

of generalized oscillator strengths or differential inverse mean free paths for inelastic 

process descriptions.

Additionally, as many important physical processes (such as molecular bond dis

sociation) can be initiated by particles with energies less than 1 keV, the extension 

of this work to lower energies would be desirable. The main obstacles currently in

hibiting this extension are the lack of a good partial wave elastic cross section, as
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well as the general uncertainty about

Similarly, as energetic de-excitation products from high Z  heterogeneities in 

mixed media can greatly effect energy asborption characteristics of in surrounding 

low Z  materials, a  more accurate and extensive relaxation data base, including more 

of the possible transitions in the slightly more outer shells (M and N) of high Z  

materials might be helpful.

Several applications of electron transport in electric and magnetic fields have 

been noted. The extension of single scattering algorithms to general magnetic field 

would be simple, and a  general prescription applicable to  all charge particle transport 

algorithms has been given by Bielajew [Bi89].

Lastly, the treatm ent of geometry in this work was trivial. Some sort of surface 

based or combinatorial geometry algorithm (various geometry packages have previ

ously been apphed to  other problems in a  vectorized format [Br84, Yo89]) should be 

added.
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