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ABSTRACT

SYNTHESIS OF FEEDFORWARD/FEEDBACK
CONTROL SYSTEMS FOR NONLINEAR PROCESSES

by

Prodromos Daoutidis

Chairperson: Costas Kravaris

In this thesis, the unified problem of disturbance rejection and output tracking
for general nonlinear processes is studied, using methods from differential geome-
try. An analysis framework is initially established, through a detailed study of the
concept of relative order. The general problem of disturbance rejection and output
tracking is formulated as a feedforward/feedback control problem, and is addressed
first for single-input single-output processes and then for multiple-input multiple-
output processes. Feedforward/state feedback laws are synthesized that completely
eliminate the effect of measured disturbances on the controlled outputs and induce
a well-characterized linear input/output behavior. A general feedforward/feedback
control structure is developed that also accounts for modeling error and unmeasured
disturbances. The developed control methodology is applied to composition control
in a cascade of chemical reactors and to temperature and number average molecular

weight control in a continuous polymerization reactor. On the basis of the proper-

X1
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ties of relative order and the controller synthesis results, the problem of synthesis
of control configurations is also addressed. A general framework for the structural
evaluation of alternative control configurations is developed, based on fundamental
structural limitations in the control quality and structural coupling considerations.
The developed evaluation framework is applied to the synthesis of control configu-
rations in an evaporation unit, a continuous chemical reactor and a heat-exchanger

network.

xii
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CHAPTER I

INTRODUCTION

1.1 Motivation

All physical systems are nonlinear. In the field of chemical engineering, process
nonlinearities are the rule, rather than the exception. They arise mainly due to
complex reaction mechanisms, the Arrhenius dependence of reaction rates on tem-
perature, and thermodynamic and transport correlations. They manifest themselves
in the static and the dynamic behavior of processes, in the form of multiple steady
states, finite stability regions, parametric sensitivity, limit cycles, quasi-stochastic
behavior, etc. Examples of chemical engineering processes with highly nonlinear
behavior include polymerization reactions, high-purity distillation columns, biopro-
cesses, pH processes, etc. For control purposes, the traditional approach in deal-
ing with nonlinearities involves the approximate linea.ization of a nonlinear process
model around an operating steady state, followed by a linear controller design. The
presence of strong nonlinearities, however, necessitates large robustness margins in
the linear controller design, leading to degraded and, very often, unacceptable perfor-
mance characteristics. The above difficulties are aggravated, whenever there exists
a wide range of operating conditions or in the case of processes with a purely tran-

sient mode of operation, such as batch processes. Linear controller design based on
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linear time-invariant models for such cases may lead to unacceptable performance
characteristics, even in the presence of mild nonlinearities.

In addition to their nonlinear nature, chemical processes are inherently multivari-
able and exhibit a highly interactive behavior. Coupled with the nonlinearities, the
above issues lead to a formidable challenge in the field of process control: the devel-
opment of a rigorous, yet practical, nonlinear multivariable control framework,
able to systematically address the basic problems of regulation, set-point tracking
and interactions. Meeting this challenge necessitates an appropriate mathematical
and methodological framework, able to capture the fundamental nature of the control

problem in nonlinear systems.

1.2 Scope and Objectives

During the 50’s and the early 60’s the control field was dominated by the contro-
versy between the classical and the modern linear control theory. The classical theory
was essentially limited to single-input single-output (SISO) systems described by lin-
ear differential equations with constant coefficients (or their corresponding Laplace
transforms). The modern control theory adopted a state-space perspective and advo-

&

cated the use of matrix algebra techniques for analysis and synthesis purposes. I -cu

the matrix algebra framework, however, proved to be inadequate to provide transpar-¢
‘®

og

ent solutions to typical multiple-input multiple-output (MIMO) control problems like
invertibility, noninteracting control, etc. In the late 60’s, some new linear geometric
tools were introduced, such as invariant and controllability subspaces (Basile and
Marro, 1969, Wonham, 1970), and were used to understand and formulate precise
solutions for the above problems. This led to the so called linear geometric control

theory, the basic results of which can be found in the classical book by Wonham,
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1979.

On the nonlinear front, during the 50’s and 60’s most of the research was con-
centrated on stability analysis, based on operator methods and functional analysis
(Zames, 1966a,b). Although significant progress was made in studying nonlinear
stability and feedback properties (Safonov, 1980, Desoer and Vidyasagar, 1975), this
line of research had limited impact on controller synthesis. This was mainly due
to the abstract nature of nonlinear operators, which made the derivation of ana-
lytical controller synthesis results almost prohibitive. Numerical control algorithms
were proposed instead (Economou and Morari, 1985), within an explicit inversion
control framework (Economou et al., 1986, Parrish and Brosilow, 1988). A break-
through in nonlinear systems theory occured in the late 60’s and early 70’s, when
concepts from differential geometry were used to study the accessibility property of
nonlinear systems (Herman, 1963) and motivated further research on observability,
controllability and realization theory (e.g., Lobry, 1970, Sussmann, 1972, 1977). The
above early results provided meaningful nonlinear analogs of fundamental system-
theoretic notions and motivated the, so called, differential geometric approach
for the control of nonlinear systems. Research in this area has progressively evolved
from the study of fundamental mathematical concepts to the point where basic non-
linear control problems can be systematically addressed and find explicit, general
and elegant solutions. To this end, Lie Algebra has emerged as a powerful analog
of matrix algebra, providing the necessary mathematical tools for the manipulation
of nonlinear ordinary differential equations. Some of the most important results in
this area include solutions to the problems of invertibility (Hirschorn, 1979a,b), ex-
act state-space linearization (Jakubcsyk and Respondek, 1980, Su, 1982, Hunt et

al., 1983a,b), input/output decoupling via static state feedback (Freund, 1975, Ha
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and Gilbert, 1986) and input/output linearization (Claude et al., 1983, Isidori and
Ruberti, 1984, Kravaris and Chung, 1987, Kravaris and Soroush, 1990).

Limited research effort has been devoted, however, in studying explicitly the role
of disturbance inputs for analysis and controller synthesis purposes, and addressing
the problem of disturbance compensation and output tracking in a unified framework.
The only available results are within the context of the disturbance decoupling prob-
lem (Hirschorn, 1981b, Isidori et al., 1981, Nijmeijer and van der Schaft, 1983, Moog
and Glumineau, 1983) and the exact state-space linearization problem (Calvet and
Arkun, 1988), and their application hinges upon extremely restrictive conditions.
On the other hand, disturbance inputs arise naturally in practice, whenever input
variables are subject to unpredictable variations. The majority of the control prob-
lems in continuous chemical engineering processes involves the regulation of output
variables to desired steady state values despite the presence of disturbances. Impor-
tant control problems in batch and semi-batch processes involve tracking of output
profiles in the presence of disturbances. Moreover, measurements of the disturbance
inputs are often available, allowing for significant improvement in the control quality,
if properly incorporated in the controller synthesis.

Motivated by the above, this thesis studies the unified problem of disturbance
rejection and set-point tracking for general nonlinear processes, within a feedfor-
ward /feedback controller synthesis framework. Natural implications of the solution
of this problem in the synthesis of control configurations are also identified and stud-

ied. More specifically, the main objectives of the thesis are :

o The development of analysis tools for studying the role of disturbance inputs

in nonlinear control

o The synthesis of feedforward/feedback controllers for multivariable nonlinear
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processes

o The development of an evaluation framework for the selection of control con-

figurations for multivariable nonlinear processes

The mathematical and methodological framework of the thesis lies within the differ-
ential geometric control approach. The emphasis, however, is on the development of
explicit results, which are transparent from an analysis point of view and consistent
with intuitive considerations. For this reason, the treatment is purely analytical, and
is very often related to key structural characteristics of nonlinear systems.

In Chapter II, an analysis framework is developed, based on various formula-
tions and interpretations of the concept of relative order. The general disturbance
rejection and set-point tracking problem is addressed for SISO nonlinear processes in
Chapter III. The key step to the solution of this problem is the synthesis of nonlinear
feedforward/state feedback control laws that compensate completely for measurable
disturbances and induce a linear input/output behavior. Emphasis is placed on in-
terpreting the structure and the nature of the control laws. Closed-loop stability
issues are addressed in detail. The application of the method is illustrated in a
system of chemical reactors. Chapter IV generalizes the results of Chapter III in
MIMO nonlinear processes. Closed-loop design considerations, including stability,
performance and degree of coupling are studied in detail. A comparison with the
classical disturbance decoupling problem is also included. The method is applied
to a polymerization reaction system. Motivated by the controller synthesis results,
Chapter V addresses the problem of selection of control configurations among a set
of alternative ones. Structural evaluation guidelines are developed for this purpose,
and a number of chemical engineering examples are studied to illustrate the proposed

methodology. Finally, in Chapter VI, the main results of the thesis are summarized
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and future research directions are outlined.
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CHAPTER II

RELATIVE ORDER: A FUNDAMENTAL
ANALYSIS TOOL

2.1 Introduction

In this chapter, the main analysis tools of the thesis will be studied. In particular,
following a brief discussion on the form of nonlinear systems studied in this thesis,
the concept of relative order will be introduced in various forms. A graph-theoretic
interpretation of relative order will establish its structural nature. Relative order
will also be shown to quantify the notions of “direct effect” and “physical closeness”
between input and output variables, and to provide a measure of sluggishness of the
response of the output variables. The detailed study of the concept of relative order
and its interpretations will establish an analysis framework, which will allow the
controller synthesis results of Chapters III and IV to find transparent and intuitively
appealing interpretations. The same analysis framework will provide the theoretical

basis for studying the problem of selection of control configurations in Chapter V.
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2.2 Preliminaries

The nonlinear processes (systems) considered are described by continuous-time

state-space models of the form:

b= f(o)+ Yous(tg(e) + Yoda(twe(a)
= = (2.1)

v = hiz),i=1,---,m

where z denotes the vector of state variables, u; denotes a manipulated input, d, de-
notes a disturbance input, and y; denotes an output (to be controlled). It is assumed
that € X C IR, where X is open and connected. Also, u(t) = [uy(t), -, um(t)] €
R™ and d(t) = [dy(t),---,d,(1)]" € R?, Vi€ [0,00), and y = [y1,-*,ym]" € R™.
The dependence of z and y on time t is suppressed throughout the thesis for nota-
tional simplicity. f(z), g;j(z), ws(z) denote analytic vector fields on IR™, and h(z)
denote analytic scalar fields on IR*. Some of thé results of the thesis will hold even
under weaker smoothness assumptions on the above fields. If u;(t) and d.(t) are
piecewise constant functions, then there exists a unique solution of Eq.2.1, at least
locally. Conditions that guarantee existence and uniqueness of the solutions of Eq.2.1
for more general input functions (e.g., piecewise continuous) can be fornd in stan-
dard nonlinear systems textbooks (e.g., Vidyasagar, 1978, Hirsch and Smale, 1974).
Finally, it is assumed that the input and output variables in Eq.2.1 represent devia-
tions from some nominal values. Then, zo € X will be a nominal equilibrium point
(or steady state) for Eq.2.1 if f(zo) = 0.

The following remarks should also be made with regard to the process model of

Eq.2.1:

1. It describes general MIMO processes with an equal number of manipulated

inputs and controlled outputs. SISO process models can be casily obtained by
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setting m = 1.

2. It identifies and models explicitly the disturbance inputs d. These disturbance
inputs will be assumed to be measurable for controller synthesis purposes,

although for analysis purposes this is irrelevant.

3. It has an affine and separable structure, i.e., disturbance inputs and manipu-
lated inputs enter the dynamic equations linearly and separately. This struc-
ture corresponds to a broad class of practical situations and is especially con-
venient from a mathematical point of view. Treatment of more general process

models is also possible, and is briefly discussed in some parts of the thesis.

4. The standard linear model description of the form:

Q-
I

m 14
j=1 K=1

Ggr,t=1,---,m

Yi
is easily recovered from Eq.2.1, for f(z) = Az, g;(z) = b;, ws(z) = 7, and

hi(z) = c;z, where A, bj,7x,c; are matrices of appropriate dimension.
2.3 The concept of relative order

In this section, various formulations of the concept of relative order will be in-
troduced. All the definitions, unless otherwise stated, refer to nonlinear systems in
the form of Eq.2.1. For the definitions, as well as for the subsequent results, the
standard Lie derivative notation will be used, which is explained in Appendix A.
First, a standard concept of relative order for MIMO nonlinear systems will be re-
viewed (e.g., Ha and Gilbert, 1986, Kravaris and Soroush, 1990):

Definition 2.1: The relative order r; of the output y; with respect to the manip-

ulated input vector u is defined as the smallest inleger for which there erists some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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j €{L,2,---,m} such that:

Ly, LT 'hi(z) #0 (2.3)
for x € X. If no such integer ezxists, r; = co.
Proposition 2.1 (Isidori, 1989): Consider the nonlinear system of Eq.2.1, and
assume that each output y; possesses a finite relative order r;. Then, (ry+---+71,) <
n.
It will be assumed that each output y; possesses a finite relative order r;. This
is a necessary condition for output controllability, since, otherwise, certain output
variables would not be affected by any of the manipulated inputs.
Proposition 2.2: Consider the nonlinear system of Eq.2.1 and assume that d, =
0, Ve =1,---,p. Then, r; is the smallest-order derivative of y; that explicitly depends
on u.
Proof: Based on Definition 2.1 and the assumptions of Proposition 2.2, the following

expressions for the derivatives of the output y; can be easily obtained:

yi = hiz)
dy;
‘g = th,(.’l?)
(2.4)
dri—lyi e
dtri—1 Lf 1hi($)
d"’y,-

T L7 hi(z) + ;u;’(t)% L7 hi()

which directly establish the validity of Proposition 2.2.

Note that the above concept of relative order relates a single output variable with
the whole manipulated input vector. For analysis purposes, it is also meaningful
to relate a single output variable with a single manipulated input. The concept

of relative order between a single output variable and a single manipulated input for

SISO systems is originally due to Hirschorn, 1979a. Definition 2.2 provides a natural
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generalization of this concept in a MIMO context:
Definition 2.2: The relative order r;; of the output y; with respect to a manipulated

input u; is defined as the smallest integer for which:
Lo, L7 hi(a) # 0 (2:5)

for z € X. If no such integer ezxists, r;; = oo.

Proposition 2.3: Consider the nonlinear system of Eq.2.1. Then,
ri=min {riy, Ty s Tim} (2.6)

Proof: The above relation is a direct consequence of Definitions 2.1 and 2.2.
Based on Proposition 2.3, the relative orders r; can be immediately identified, once
the individual relative orders r;; have been calculated.

In analogy with Definition 2.2, the relative order between an output variable and
a disturbance input can be defined as follows (Daoutidis et al., 1990, Daoutidis
and Kravaris, 1989):

Definition 2.8: The relative order p;, of the output y; with respect to the disturbance

input d is defined as the smallest integer for which:
Lo, L5 hi(z) # 0 (2.7)

for z € X. If no such integer exists, pix = 00.

Remark 2.1: Proposition 2.2 can be easily modified to establish that p; is the
smallest-order derivative of the output y; that explicitly depends on d,, assuming
that all other input variables are equal to 0.

In what follows, unless otherwise stated, the term relative order will imply the relative
order between an input/output pair (Definitions 2.2 and 2.3).

Remark 2.2: For the special case of a MIMO linear system of the form of £q.2.2,
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r;; is the smallest integer for which:

AT b £ 0 (2.8)
while p; is the smallest integer for which:

i APTly £ 0 (2.9)

The quantities ¢;A*b;, & = 0,1,--- are known as Markov parameters in linear
systems theory (e.g., Kailath, 1980), and are used to characterize the input/output
behavior of linear systems.

Furthermore, for a linear system, the relative order between any input/output pair
is equal to the difference between the degrees of the denominator and the numerator
polynomials of the corresponding transfer function.

Finally, if the transfer matrix between u and y, G(s), has the matrix fraction form:
G(s) = N(s)[D(s)]™!

where N(s) and D(s) are polynomial matrices and D(s) is column reduced, then the
relative order r; is equal to the difference between the column degrees of .'ie i-th
column of D(s) and the ¢-th column of N(s).

2.4 Relative orders, graph-theory and the notion of “direct
effect”

In this section, a graph-theoretic interpretation of relative order will be developed,
which will provide intuitive insight on the concept and will also suggest an alternative
way for its calculation. First, a brief review of notions from graph-theory will be
given. The state-space model of Eq.2.1 can be associated with a directed graph

(digraph), defined by a set of vertices (or nodes) and a set of edges as follows :
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o The vertex set consists of the set of manipulated inputs (uy," -+, un), the set of
disturbance inputs (dy,- -, d,), the set of state variables (z,,--,z,) and the

set of output variables (y1,- -, Ym)-

o The set of edges consists of directed lines connecting two vertices according to

the following rules:

0fi(=)
- =

20, k,0=1,---,n, then there is an edge from z\ to
- Ifg;(z) 20, 1=1,---,n, then there is an edge from u; to z

— Ifwgy(z) £0, [=1,---,n, then there is an edge from d, to z;

- If ?%’Q #0, k=1, ---,n, then there is an edge from z to y;
Ty

where fi(z), g;i(z), wa(z) denote the I-th element of the vector fields f(z), g;(z)

and wg(z), respectively.

A path of a digraph is a particular directed sequence of some of its edges, such that
the initial vertex of the succeeding edge is the final vertex of the preceding edge. The
number of edges contained in a path is called the length of the path (for a detailed
review of notions of graph theory see e.g., Ore, 1962).

It can be easily seen from the above rules that the digraph representation of
a dynamic system contains much less information than its detailed state-space de-
scription. In particular, for nonlinear systems of the form of Eq.2.1, their digraph

representation contains no information about:

[y

. The dependence of the vector fields g; and w, on z

o

. The exact functional dependence of the vector field f on =

3. The numericai values of the system parameters
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Figure 2.1: A typical digraph

In fact, a digraph representation contains only the pattern of interdependencies
among the variables and is uniquely determined by them. This pattern of interde-
pendencies can also be expressed through the notion of a structural model, associated
with the well known notion of structural (or structured) matrices (e.g., Shields and
Pearson, 1976). Figure 2.1 provides a typical illustration of a digraph corresponding

to the class of dynamic systems with a structural model of the form:

2y = filz1,72,23) + u(t)gi(z)
g2 = fo(z1,22)
i3 = fa(21,72,73) + d(t)ws(z)
y = h(z)
Applying Definitions 2.2 and 2.3 for the calculation of the relative orders between u
and y and Between d and y, one easily finds that 7 = 2 and p = 3. Referring to the
digraph of the above system in Figure 2.1, it is also easily seen that the shortest path

between u and y has length equal to 3, while the shortest path between d and y has
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length equal to 4. The above example suggests an interesting connection between
relative orders and length of paths in a digraph. This connection will be rigorously
established in Theorem 2.1 that follows, which generalizes a result by Kasinski and
Levine, 1984. The proof of Theorem 2.1 is given in Appendix B.

Theorem 2.1: Consider the nonlinear system of Eq.2.1 and its corresponding di-
graph. Let {;; and {;; denote the lengths of the shortest paths connecting u; and y;,
and d. and y;, respectively. Also, let ri; and p; be the relative orders between u;
and y;, and d. and y;, respectively. Then, the following relations hold generically:
ri; = 4i; — 1 and pi = € — 1.

Remark 2.4: By generically in the above theorem, it is meant that the result holds
for all vector fields f,g;,w, and all scalar fields h;, except possibly for a “set of
measure zero”. Non-generic situations in the calculation of relative orders through
the digraph may arise because of the specific nonlinear dependence of the vector and
scalar fields on z.

A number of important observations arise from Theorem 2.1:

o Firstly, the result of Theorem 2.1 establishes that the generic calculation of
relative orders for a process requires knoweledge of its structural model only, or
equivalently its digraph, i.e., the lowest level of information about the process.
This fact makes the relative order a generic analysis tool and establishes its

structural nature.

o Furthermore, it is clear from the definition of a graph that, except from the
edges connecting state and output vertices, every other edge denotes the ef-
fect of one variable on another through an integration step. Therefore, the
result of Theorem 1 leads to a graph-theoretic interpretation of relative order

as the number of integrations that an input has to go through before it af-
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fects an output, generalizing the well-known SISO result obtained through the
Byrnes-Isidori normal form. In the above sense, relative order is a rigorous
and meaningful measure of how direct effect an input vartable has on an
output variable. The above interpretation is also supported by the result of
Proposition 2.2. Theorem 2.2 in the next section will illustrate how this notion

of direct effect manifests itself in typical response characteristics.

e Finally, the result of Theorem 2.1 can be used to increase the efficiency of cal-
culation of relative orders in a symbolic manipulation environment, especially

for large-scale systems.

Remark 2.5: For linear systems, the existence of a finite relative order r;; corre-
sponds to the property of accessibility (Lin, 1974) of the output node y; from the
input node u;. To denote accessibility of an output node from a disturbance node, the
term disturbability has been used (Shah et al., 1977, Morari and Stephanopoulos,
1980), which obviously corresponds to a finite relative order between a disturbance

input and an output.

2.5 Relative order as a measure of sluggishness

In this section, a rigorous interpretation of relative order will be provided as a
measure of sluggishness of the response of a dynamic system. The main result is
summarized in Theorem 2.2 that follows (the proof is given in Appendix B):
Theorem 2.2: Consider the nonlinear system of Eq.2.1 at an initial condition
z(0) = zo, where zo is a nominal equilibrium point. Also, let r;; denote the rela-
tive order of the output y; with respect to the manipulated input u;. Then, the initial

response of the output y; under a unit-step change at the input u; can be approzimated
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for small times t by:

rijm AR
yi(t) = Ly, L™ hi(z0)— (2.11)

T,'j!

Corollary 2.1: Consider a SISO linear system of the form:

¢ = Az +u(t)d

y = cx
and let T denote the relative order of the output y with respect to the manipulated
input w. Then, the initial response of the output y under a unit-step change at the

input u can be approzimated for small times t by:
~ r—1 tr
y(t) = (cA b);? (2.13)

Remark 2.6: The result of Corollary 2.1 is already known and proven independently
in standard linear control books (the independent proof is included in Appendix B
for completeness).

The result of Theorem 2.2 establishes in a rigorous way that the relative order r;; is
a structural measure of how sluggish the response of the output y; is for step shanges
at the input u;: the larger the relative order, the more sluggish the response is. More

specifically (see Figure 2.2):
e r;; = 1 implies that the initial slope of the response will be non-zero

o 7;; = 2 implies that the initial slope of the response will be zero, but its rate

of change will be non-zero

o r;; > 2 implies that the initial slope of the response as well as its rate of change
will be zero, while a higher-order derivative of the slope will be non-zero if y;

is finite
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y(t)?

i 4

Figure 2.2: Relative order as a measure of sluggishness

The overall characteristics of the output response to an input change will also depend

on:

o the time constant, which will determine how quickly the output will adjust to

the input change, once it responds
o the steady state gain, which will determine the large time value of the output

As the time constant quantifies how “quick” the effect of an input variable is on
an output variable and the static gain how “significant” this is, the relative order
quantifies how “direct” this effect is.

Remark 2.7: A similar result to Theorem 2.2 can be obtained for the relative order
pix, as well as for r;. Clearly, r; is a measure of the sluggishness of the output y; with
respect to the manipulated input vector, i.e., a measure of the maximum sluggishness

of the response of the output y; with respect to any of the manipulated inputs.
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y(t)}

process

approximate model

rfv

Figure 2.3: Typical step-response of a high-order process

2.6 Relative order, dead time and the notion of “physical
closeness”

The analysis so far has indicated that the concept of relative order quantifies how
“direct” the effect of an input variable is on an output variable and has demonstrated
how this property affects the small-time response characteristics. In what follows,
motivated by the previous discussion, the concept of relative order will be associated
with apparent dead time, which has traditionally been used to capture small-time
response characteristics. Consider a typical step response of the output of a process
with dynamics higher than first-order (Figure 2.3). Along the lines of the above
treatment and assuming negligible transportation delay (which is the most common
case in a single processing unit), one can obtain a clear interpretation of the sigmoidal
shape of the response: it is due to the presence of a higher than one relative order
between the input and the output. When such a high-order process is approximated

by a first-order lag plus dead time model, the neglected dynamics gives rise to the
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dead time, which is therefore an apparent but not real quantity; although it provides
a useful indication of how responsive the output is, it has no physical significance
or rigorous justification. On the other hand, without any response data and based
purely on structural information, one can rigorously assess the qualitative feature of
the initial part of the response through the concept of relative order. It should be
clear, therefore, that relative order represents the structural analog of apparent dead
time. This analogy becomes obvious in the context of discrete linear systems, where
the pole excess of the pulse transfer function (i.e., the relative order) is exactly the
time delay of the process.

The above analogy between relative order and apparent dead time leads to an
interpretation of relative order as a measure of “physical closeness” between an input
variable and an output variable. An especially appealing illustration of this inter-
pretation can be obtained in the case of staged processes (e.g., distillation columns,
cascades of chemical reactors, etc.). Consider, for example, the cascade of two con-
tinuous stirred tank reactors shown in Figure 2.4, where a second order reaction
A — B takes place. Under standard assumptions, the material and energy bal-

ances that describe the dynamic behavior of this process take the following form:

E
%‘1 - g(c,m —em) - koe(_fE-T: car’
d;;u = %(cm — Caz) — koe(—ﬁ CA;; @.14)
5%1- = g(To -Ti)+ (—pé,f{)koe(—}? car’ + V/}Cp o)
% = -§(T1 _Ty)+ (_pzé,f{)koe(_m)c,qzz 5,0 @
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F To CAO
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1 F T [o]
ol v 1 Al l
Q2 Ty C

Figure 2.4: A cascade of two continuous stirred tank reactors

where
Cyp = heat capacity
E = activation energy
F = volumetric flow rate
@1,Q2 = heat inputs to tanks 1 and 2
T:,T, = temperatures in tanks 1 and 2
To = inlet temperature
V = volume
~AH = heat of reaction
ca1,c42 = molar concentration of A in tanks 1 and 2
Ca0 = inlet molar concentration of A
ko = Arrhenius frequency factor
p = density
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Figure 2.5: The digraph of the reactor cascade

From the dynamic model of Eq.2.14, one can easily obtain the digraph of the process,
which is shown in Figure 2.5. Suppose that we wish to control the concentration at
the exit of the second reactor, ¢y, and available manipulated inputs are the heat
inputs to the reactors, ¢, and Q. For notational consistency, set y; = ca2 — Ca2,
and u; = @ — Q1s, uz = Q2 — Q9, for the alternative manipulated inputs, where the
subscript s denotes a nominal steady state value. Based on the result of Theorem
2.1 and the digraph of Figure 2.5, we can easily calculate the corresponding relative
orders which take the values: r;; = 3 and r;; = 2. Clearly, the smallest relative
order corresponds to the heat input Q, which is “physically closer” to the controlled

output and has a more “direct effect” on it than the heat input @;.
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2.7 Notation

Roman Letters

d, = disturbance input

f,9;,ws = vector fields

h; = output scalar field

4 = the lenght of the shortest path connecting u; and y;
£ix = the lenght of the shortest path connecting d. and y;
T = relative order of the output y; with respect to the

manipulated input vector u
Ti = relative order of the output y; with respect to the

manipulated input u;

t = time

u; = manipulated input

x = vector of state variables
Y = output to be controlled

Greek Letters

pi» = relative order of the output y; with respect to the disturbance d,
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Math Symbols

= = approximately equal to
> = graeter than
€ = belongs to
C = subset
v = for all
T = transpose
! = factorial
oo = infinity
min = minimum element
R = realline
IR* = n-—dimensional Euclidean space
Acronyms
SISO = single-input single-output
MIMO = multiple-input multiple-output
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CHAPTER III

FEEDFORWARD /FEEDBACK CONTROL OF
SISO NONLINEAR PROCESSES

3.1 Introduction

In this chapter, the unified disturbance rejection and set-point tracking problem
will be studied for SISO nonlinear processes. More specifically, the problem will be
formulated in two-steps: a) a feedforward/state feedback synthesis step, and b) a
linear controller design step. In the first step, feedforward/state feedback laws will
be calculated that completely eliminate the effect of measurable disturbances on the
output, and induce a well-characterized linear input/output behavior. The concept
of relative order will arise naturally in the calculation of the control laws and the
interpretation of their nature. Important stability notions for the closed-loop system
will be studied. Finally, the developed feedforward/feedback control methodology

will be applied to composition control in a system of three CSTR’s in series.

o
(1]
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3.2 Formulation of the feedforward/feedback control prob-
lem

SISO nonlinear processes will be considered with a state-space representation of

the form: ,

& = f(z)+u(t)g(e) + D_da(t)wn(z)
w1 (3.1)

y = h(z)
where z € X, u(t) € R and d(¢) € R, Vt € [0,0), and y € IR. A general control

problem for processes of the above form, within a feedforward/feedback framework,

can be stated as follows:

Calculate a feedforward/feedback control law of the form:
u = F(z,y,dx, Ysp)

where z, y and d, are measurements of the states, the output and the disturbances,

and y,, is the output set-point, which :
e Rejects the effect of disturbance inputs on the output
o Enforces fast and smooth tracking of set-point changes
e Maintains stability in the closed-loop sysiem

Figure 3.1 provides a pictorial representation of the desired control structure.

Clearly, the above formulation of the problem is too general to allow analytical
control laws to be derived. For this reason, the following twe-sten formulation of the
problem is proposed, which will lead to a corresponding two-step control methodol-

ogy:

e Step 1: Calculate a feedforward/state feedback control law of the form:

u = p(z) + g(2)v + ¢'(2)Q(2, d,)
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Figure 3.1: General feedforward/feedback control structure

where p(z), q(z) and ¢'(z) are algebraic functions of the states, with q(z) in-
vertible on X, v is an external reference input and @ is a nonlinear operator

that may include time derivatives, which:

— Completely eliminates the effect of measured disturbances on the output

— Induces a linear input/output behavior between y and v of the form:

d*y
2 Bige ="

where By are adjustable parameters

e Step 2: Design a linear controller with integral action around the linear v/y
loop, to achieve the desired servo and regulatory behavior, in the presence of

unmeasured disturbances and/or modeling errors

The overall control structure resulting from the above two-step methodology is de-
picted in Figure 3.2.

Step 1 will be referred to as the feedforward/state feedback synthesis prob-
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...............................................................................................

FEEDFORWARD/FEEDBACK | o

COMPENSATOR d
v
Yip E:(ff;;g‘" STATE FEEDBACK| “ o} NONLINEAR o| outeur by
. CONTROLLER COMPENSATOR PROCESS MAP :

Figure 3.2: Proposed feedforward/feedback control structure

lem and its solution will be the main focus of the subsequent sections. Note that
the control law requested in Step 1 can, in general, be a dynamic feedforward/state
feedback law, including derivative action on both the state variabes and the distur-
bance inputs.

Step 2 will be referred to as the linear controller design problem. Given the
available linear control design methods, the solution to this problem is straightfor-
ward and a brief discussion will be included in Section 3.6.

Remark 3.1: The requirement of complete elimination of disturbances in Step 1 is
reasonable, since measurements of the disturbances are allowed to be incorporated in
the control law. The requirement of linear input/output behavior in the same step is
by no means restrictive. As will be shown later, a nonlinear input/output behavior
can also be requested and easily achieved. It is the linear dynamics however, that we
can better understand and for which we can more conveniently express performance
specifications. Moreover, requesting a linear input/output behavior in Step 1, allows

a straightforward incorporation of integral action in the control structure through
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the linear control loop of Step 2.

3.3 The feedforward/state feedback synthesis problem

Referring to nonlinear processes in the form of Eq.3.1, let 7 denote the relative
order of the output y with respect to the manipulated input u, i.e., the smallest
integer such that:

LgL}"lh(:c) Z0

for z € X. Without loss of generality, it will be assumed that X does not contain any
singular points, i.e., points z € IR for which LgL}"lh(x) = 0. In particular, as long
as LgL}"lh(:zo) # 0, where zg is the nominal equilibrium point, by the continuity of
Ly,L7"'h(z) one can always redefine X as an open and connected set that contains
zo and is such that LyL} " h(z) # 0, Vo € X. Then, let p. denote the relative order
of the output with respect to the disturbance input dx, i.e., the smallest integer for
which:

Luw Ly h(z) £ 0

for z € X.

Based on the results of Chapter I, the above concepts of relative order capture the
dynamic effect of the various input variables on the output variable. In particular,
they represent a measure of how direct the effect of an input variable (manipulated
or disturbance) is on the output variable, in the sense of the number of integrations
that the input variable has to go through before it affects the output variable. Thus,
by comparing the magnitudes of r and p,, one can determine which input, the
manipulated u or the disturbance d,, has more direct effect on the process output.

Motivated by the above, the following classification of the disturbances to the classes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

A, B and C is proposed:

d. €A &= p.>r
de €B <= pe=r (3.2)

de €C &= pc<rT

Referring to the above classification:

e Disturbances that belong to class A have a less direct effect on the output

compared with the effect of the manipulated input

¢ Disturbances that belong to class B have an equally direct effect on the output

compared with the effect of the manipulated input

e Disturbances that belong to class C have a more direct effect on the output

compared with the effect of the manipulated input

Given the competing nature of manipulated inputs and disturbance inputs from a
control point of view, it is intuitively expected that the degree of difficulty of the
regulatory control problem will be lower for disturbances that belong to class A
and higher for disturbances that belong to classes B and C. The above intuitive
considerations will arise naturally in the solution of the feedforward/state feedback
synthesis problem, which is given in Theorem 3.1 that follows. The proof can be
found in Appendix C.

Theorem 3.1: Consider the SISO nonlinear process described by £q.3.1. Let v, p,
denote the relative orders of the output y with respect to the manipulated input u
and the disturbance inputs d,, respectively. Let also A, B, C denote the classes of
disturbances defined in Eq.3.2. Then, a feedforward/state feedback law of the form:

u= (6L, Ly h(z)] {v - kz_j BLth(z) = 3 Brdu(t) Lu L} h(z)

de€B
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(T_ﬁn) T

-2 Z 2 Bkdtl( (t)Lu L5~ h(z ))} (3.3)

di€C 1=0 k=pi+!

o Completely eliminates the effect of the disturbances d.. on y

¢ Induces the linear input/output behavior:

r dky
—Z = 3.4
k;ﬂ = (3-4)

where By are adjustable parameters

Remark 3.2: The feedforward/state feedback law of Eq.3.3 is composed of:

e a pure state feedback component, which is static in nature:

VFB — Zﬂklfjh(x)
k=0
BrLy L h(z)

U =

(3.5)

o a feedforward/state feedback component, which in general involves anticipatory

action:
(T—p,‘) T
UF‘B=’U—Zﬁ,.d,¢(i wnL' h(z Z z Zﬂkdl(d(t wKLkllh( ))
d.€B de€C 1=0 k=pn+l

(3.6)
These two parts are clearly depicted as two separate compensators in the control
structure of Figure 3.2.
Remark 3.3: The feedforward/state feedback component vpp of Eq.3.6 contains
explicit compensation terms for each disturbance that belongs to the classes B and
C. Note the distinct and intuitively consistent nature of these compensation terms.
Disturbances that belong to class B require static feedforward/state feedback com-
pensation. This is consistent with the argument that these disturbances have an
equally direct effect on the output compared with the effect of the manipulated
input. Disturbances that belong to class C require dynamic feedforward/state feed-

back compensation. This is consistent with the argument that these disturbances
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have a more direct effect on the output compared with the effect of the manipulated
input. Finally, disturbances that belong to class A and have a less direct effect on the
output than the manipulated input, do not require any feedforward compensation.
Measurements of these disturbances are not used in the control law. All the useful
information on how these disturbance change is captured in the state measurements.
In fact, in the absence of disturbances that belong to classes B and C, Eq.3.3 reduces

to a static state feedback law of the form:

v — iﬁkl@h(m)

B.L,L; "h(z)

u =

and the control structure of Figure 3.2 reduces to the Globally Linearizing Control
{GLC) structure (Kravaris and Chung, 1987).

Remark 3.4: In the presence of disturbances that belong to class C the control law
of Eq.3.3 includes the time derivatives of state and disturbance dependent terms.
For the implementation of these components of the control law, one would have
to employ filtering of the data, in order to obtain approximations of the derivative
terms.

Remark 3.5: Following a procedure similar to the one the proof of the Theorem 3.1,
it is possible to calculate a control law that induces any desired nonlinear disturbance-

free behavior of the form:

dy dy dly
J et 3.
dtr (v, dat’ T dtrv’ v) (3.7)

Such an extension, however, does not seem particularly meaningful.
Remark 3.6: Consider the class of nonlinear processes of the form:
P

& = f(z) + ¢(z,u(t), d"(t))g(z) + 3 de(t)wi(z) (3.8)

K=1
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where ¢(z,u,d") is a scalar function solvable for u, and d* is an additional vector
of disturbances. This is a more general class of systems than the one described by
Eq.3.1. The proposed methodology can be applied to the above class of systems
by simply letting ¢(z,u,d*) = U, calculating &/ from Eq.3.3 and solving for the
actual manipulated input u. In this way, compensation for the disturbances d* is
also possible.

Proposition 3.1 that follows provides a solution to the feedforward/state feedback
synthesis problem for the special case of a linear process description.

Proposition 3.1 : Consider a SISO linear system of the form:

r=1 (3.9)

y = cx

where A, b, ., ¢ are mairices of appropriate dimensions. Let v, p,. denote the relative
orders of the output y with respect to the manipulated input u and the disturbance
inputs d,, respectively. Let also A, B, C denote the classes of disturbances defined in
Eq.3.2. Then, a feedforward/state feedback law of the form:

u= [ﬂ,cAf-lb]" {v ~ kéﬂkmkx — ¥ Bede(t)eA M,

de€B

(r~px) T dl

PP BkCAk_‘_l’Ynd_i[(dx(t))} (3.10)

de€C 1=0 k=pux+!

e Completely eliminates the effect of the disturbances dx on y

o Induces the input/output behavior:
r dky
2 Bop=v
k=1 dik

where Py are adjustable parameters
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Proof: It is straightforward to verify that, for f(z) = Az, g(z) = b, we(z) = 7« and

h(z) = cz, the following relations hold:
L_’;h(a:) = cAFz
LoLih(z) = cA*b
Ly, Lih(z) = cA*y,
Substituting the above relations to the control law of Eq.3.3, Eq.3.10 is easily ob-
tained.

The result of Proposition 3.1 lends itself to a number of important observations.

More specifically:

¢ According to Proposition 3.1, the solution to the feedforward/state feedback
synthesis problem for linear systems is a control law, which may be dynamic
in the disturbance inputs, but is always static in the state variables. On
the other hand, Eq.3.3 indicates that the corresponding solution for nonlinear
systems is a control law which may be dynamic both in the state variables and
the disturbance inputs. Therefore, from a theoretical point of view it would
be very interesting to characterize the class of nonlinear systems for which a

static in the states control law solves the posed synthesis problem.

o From a practical point of view, the computational effort required for the im-
plementation of the dynamic components of the control law of Eq.3.3 increases
considerably with their complexity (see also Remark 3.4). Clearly, a control
law which is static in the states would be significantly easier to implement.
It would simply require filtering of the disturbance measurements in order to
suppress noise effects, and this can be easily achieved using an appropriate

low-pass filter.
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Motivated by the above considerations, the rest of this section will be devoted to
obtaining a characterization of the class of nonlinear systems for which, a feedfor-

ward/static state feedback law of the form:

u=p(a) + qa)o + Q' (z,d(1), d(1)V, (1), ) (3.11)

where p(z), ¢(z) are algebraic functions of the states with ¢(z) invertible on X, and @’
is an algebraic function which is nonsingular under nominal conditions (i.e., remains
finite when d(t) = 0), induces the input/output behavior of Eq.3.4 independently of
the values of the disturbance inputs.

Without loss of generality and in order to simplify the notation, SISO nonlinear
systems with a single disturbance (SISOSD) will be considered initially, i.e., systems

of the form:
& = flz)+ut)g(z) + d(t)w(z)
y = h(z)

(3.12)

For such systems, the relative order of the output with respect to the manipulated
input will be denoted by r, while the relative order of the output with respect to the
disturbance input will be denoted by p. Then, according to Theorem 3.1, a control
law which eliminates the effect of d on y and induces the input/output behavior of

Eq.3.4, has the form:

v—zrjﬂkﬂ,‘h(x)
k=0 . §
BiL, L h(z) ez
— S BeLEh(z) — Bod(t) Ly L R
I i i _—
r—1 ) p=r
BrLyLy™ h(x)
"'—P) T
v— ka -3 %c (d(t) Lo, L5 (=)
=0 k=p+l pr<7‘
\ B.L, L h(z) ’
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Obviously, the case of p > r is of no interest, since in this case the resulting control law
does not require any dynamic compensation. Proposition 3.2 that follows provides
necessary and sufficient conditions in order for a control law of the form of Eq.3.11 to
induce the disturbance-free input/output behavior of Eq.3.4 in the case that p <.
The proof can be found in Appendix C.

Proposition 3.2: Consider the nonlinear system of Eq.3.12. Let r and p denote
the relative orders of the output y with respect to the manipulated input v and the

disturbance input d, respectively, with p < r. Then, the conditions:

Lyge(z,d(t)) =0, €=0,1,---,r—p—1 (3.14)
where
: - ad d g p—1
¢ (z,d(t)) = EL, s (d(t)Lw + 5-[) (L; +d(t)L, + 52) Lf h(z) (3.15)
p=0 '

are necessary and sufficient in order for a feedforward/static state feedback law of

the form of Eq.3.11 to:
o Completely eliminate the effect of the disturbance d on y, and

o Induce the linear input/output behavior:
r dk
Y
2 P =
k=1
where By are adjustable parameters.

If these conditions are satisfied, the appropriate control law takes the form:

u= [ﬂ,LgL}"h(w)]—l {v - kz_“a BrLEh(z)

"iﬂkqﬁk——p (:L‘,d(t), d(t)(l)a Tt d(t)(k—p)) } (3'16)
k=p
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Remark 3.7: The multiplication of the operators (Lf +d(t)L, + %) is not asso-

ciative. Therefore, the following convention is assumed in Eq.3.15:
(Ly+dt)Lw + Z)" L7 h(z) =
-1 _
Remark 3.8: The functions ¢, defined in Eq.3.15 take the following form for various

values of ¢:
o ¢ (z,d(t)) = d(t)L., L " h(z)

o ¢ (z,d(t),dt)) =
d(t) [LyLu Ly b(z) + LuL5h(z)]

+d(t)? [L2.L5 7 h(z)] + d(t)V [Ly LY h()]

° (x,a(t )™, d(t )(2)) -
d(t) [L3LuL5 7 h(z) + LyLuLfh(z) + Lol h(z)]

+d(8)? [LsI2 L h(z) + LuLyLu LY h(z) + L2 L5R(2)]

-4~

(t)? [Ls

d(t)® [L3,L5 h(z)]

+d(t) [LuLih(z) + 2L Ly Ly h(z)]
(

+d(t)d(t) [3L2.L57 h(z)] + d(t)® [Lu LY ()]

o ¢s (z,d(1),d(t)V),d(t)®,d(1)®) =
d(t) [L L5 h(z) + LiLy L5 h(x) + L1y Loh(z) + L3L, L5 h(z)]
+d(1)? [L2 L5 h(e) + Ly Ly Ly Lih(z) + Ly L3Ly LY h(z) + L L% LGh(2)
+LyLyLyLuLf h(z) + LAL2 LY h(z)]
+d(t)? [L3 Lo k() + L2 Ly L Ly h(z) + Lo Ly L LT h(z) + L L3157 h(z))|
d(tyt [L4,L7 h()]

+d()®) [Ly L5 h(x) + 2L s Lo, L h(z) + 3L3L, LY h(z)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

+d(t)d(t)® [3L2 L5h(x) + 4Ly Ly Ly Lf  h(z) + 5L;L3 L5 h(z)]
+d(t72d()® [6L3L5 h(z)] + d(t)Vd()®) [3L2,L57 h(s)]
+d(t)® [L,LSh(z) + 3L Ly LY h(z)]

+d(t)d(t)® [4L2 L5 h(z)| + d()® [Lu L5 h(z)]

o ¢a(z,d(1),d(t)V,d(t),d(t)®,d(t)¥) =
d(t) [LuLf*°h(z) + Ly Lo L5 ?h(z) + L3Ly L5 h(e) + LIL, Lfh(z)
+L3 L, L5 h(z))|
+d(t)? [L2 L5 h(z) + LuLsLuLf  h(z) + Ly L3 Lo Lih(z) + Ly L3 Lu LY h(z)
+L L2 L5 h(z) + LyLyLyLy Lih(z) + L3LL LR()
+Ly Ly L2 Ly L5 h(z) + L2Ly Ly Ly L5 h(z) + L3L2 LY h(z)]
+d(t)? [L3 L5 h(z) + L3 Ly Ly Lih(z) + LuLs L3 Lh(z) + Ly L3, Lh(z)
+L2L3L, L5 h(z) + LyLyLy Ly Ly Ly h(z) + Ly L3 L% LY A(z)
+Ly L% L Ly L8 h(z) + LyLy Ly LA LY  h(z) + L3L3, L5 h(z)]
+d(t)! [L4Loh(z) + L3 Ly Loy Lf " h(z) 4 LuL L3 L5 h(z) + L L L2 L5
+LyL4,L5 h(z)]
+d(t)® [L3,L5 7 h(z)]
+d(t)® [L, L5 h(z) + 2L Lo L h(z) + 313 LuLih(z) + 4L3Lu LY h(z)]
+d(t)d()® [3L2 L h(z) + 4Ly Ly Ly Lh(z) + 5L ;L% Lh(z)
+ 5Ly L3Ly L5 h(z) + 6L Loy Ly Ly L h(z) + TLALE LY h(z)]
+d(t)2d(t)V) [6L3 L5h(x) + TLELyLy L5 h(z) + 8Ly Ly L2 LT A(x)
+9Ly L3 L5 h(z)]
+d(t)3d(t)V [10L4, L5 h(z)]
+d(t)Dd(t)® [3L2L5h(x) + 4LuLs Lyl h(z) + 8L;LE L (=)
+d(t)d()Dd(t)®) [15L3 L5 h(z)]

+d(t)® [Lo L5 h(z) + 3L, Ly Loh(z) + 6L} LouLY  h(z))]
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+d(t)d(t)® [4L2Lh(z) + TLy L Ly L5 h(z) + 9L L2 L5 h(z)]

t

)
+d(t)2d(H)® [10L3.L57 h(z)] + d()Vd(t)® [10L2,L5 7 h(z)]
) [LuLfh(z) + 4L, L, L5 h(z)]

)

(
+d(
+d(t)d()® [5L2,L5 " h(z)] + d(t)® [Lu L] h(a)]
e etc.

Under nominal conditions (i.e., d(t) = 0), the above functions vanish and the control
law of Eq.3.16 reduces to a static state feedback law, as expected. Furthermore, for
d(t) a sufficiently smooth function of time, the control law of Eq.3.16 is nonsingular
for all values of the disturbance.

Remark 3.9: It is important to note that the functions ¢, (x, d(t),d(t)™, - ,d(t)(e))
are polynomial forms in d(t) and its derivatives. Therefore, the conditions of Eq.3.14
should be interpreted in the sense that all the z-dependent coefficients of the poly-
nomials must be identically equal to zero. More specifically, the pattern of the

conditions develops as follows:

er—p=1
Loto(z,d(t)) =0

which implies:

L,L,Ly'h(z) = 0 (3.17)
or—p=2
Lydo (z,d(t)) = 0
Lot (z,d(t),d()V) = 0

which, in addition to Eq.3.17, also imply:
Ly(LyL;+ L;L,) L5 Th(z) = 0
o (Luwly + LyLy) L7 h(z) (3.15)
L L2 L5 h() =0
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er—p=23:

I
o

Lydo (z,d(1))
Loy (,d(t), d(t)®)

Lydz (2,d(1),d()®,d)?) = 0
which, in addition to Egs.3.17 and 3.18, also imply:

il
o

Ly(LuwLy+2LsLy) L5 h(z) =0
Ly(L3Ls+ LyLgLy + LeL2) Ly 'h(z) = 0 (3.19)
Ly (LyL%+ LyL,L;+ L3L,) Ly h(z) = 0
LyL3 L5 h(z) = 0
er—p=4:
Lodo (z,d(t)) = 0
Lygs (=, d(t), d(t)V) = 0
Lyés (w,d(t), d(t)®), d(t)®) =0
Lyds (z,d(2), d0)V,d()D,d(1)P) = 0
which, in addition to Eqgs.3.17, 3.18 and 3.19, also imply:
Ly (LuwlL3 + LyLy L3 + L3 Ly + L3L,) L5 h(z) = 0
Ly (L2312 + LyLyLyLy+ L3L% + LyL% Ly + Ly L3 Ly,
+LsL,LyL,) Ly h(z) = 0
Ly(L3L;+ L2LsL, + Ly, L;L2 + LyL3) L5 h(z) =0 (320
Ly (LwL? +2L;L,L; +3L3L,) L h(z) =0
Ly(3LELy+4LyLyLy, +5LsL2) L5 h(z) = 0
LyL4 L5 h(c) =0

o etc.
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Remark 3.10: Suppose that the conditions of Eq.3.14 are violated, and, in partic-

ular, let 7’ < r be the smallest integer for which:

Lybri—pms (2,d(1), d(t)V, -, d(t)" V) 20 (3.21)

Then, it is straightforward to verify that a feedforward/static state feedback law of

the form:

-1

w=[BrLybrroper (z,d(2), d(B)D, -, d(1)"~*7D)]

{v -3 BiLsh(z) - S Bibis (z,d(t), d(t), - ,d(i)w—p))} (3.22)
k=0

—p
eliminates the effect of the disturbance on the output and induces the input/output
behavior:

r! dk
S BY = (3.23)
k=0 dt

The above suggests that, in principle, one can achieve elimination of the disturbance

and an input/output behavior of order lower than r, using feedforward/static state

feedback. It can be easily verified, however, that:

!

r'—p
Lyberp-r (a:,d(t),d(t)“),- > ,d(t)"’""‘”) =L, (L, +d(t)L, + %) L7 k()

(3.24)

which is equal to zero when d(t) = 0. In other words, under nominal conditions the

control law of Eq.3.22 becomes singular, which makes such an approach meaningless.

Example 3.1: Consider the system:

T, = T5—c +d(t)rzs
Ty = T3—C
(3.25)
i‘g = Iy—~¢c3+ u(t)
Yy =
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where ¢y, ¢;, ¢3 are positive real numbers and z € R>. Let 2o = (c3, c?'s,c;))T be the

nominal equilibrium point (corresponding to u = d = 0). For the above system:

r . roo r 7
i — ¢ 0 T1T3
f(l‘) =1 zz3—cy ) g(m) =10 ) w(z) = 0 ’ h(l‘) =T (326)
I Ty —C3 1 0

It can be easily verified that:
Loh(z) = LyLsh(z)=0
LyL3h(z) = 2z #0

Consequently, the relative order of y with respect to u is 7 = 3. Let:
S:{zEIRS:x2=O}
Define a set X C IR® with the following properties:
e X is connected and open
¢ X contains the nominal equilibrium point zq
o XNS=10
The set X will be considered te be the state space for Eq.3.25. Then,
Lyh(z)=z123 %0

for z € X. Consequently, the relative order of y with respect to d is p = 1. Clearly,

p < r and the control law:

1 3 2 3 d
u=————{v— 3 BLih(z) - B (d(t) Loy L5 Az 3.27
s (1~ S -E 5 gy ot )| a2
enforces the input/output behavior:
3 dk
> B =v (3.28)
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independently of the values of the disturbance d(t).

It can be easily verified that the conditions of Eq.3.14 are not satisfied. More specif-

ically, 7 — p =2, and for £ = 0:

L,Lyh(z) =2, #0 (3.29)

Therefore, dynamic feedforward/state feedback is necessary in order to achieve the
input/output behavior of Eq.3.28 for all values of d().

Theorem 3.2 that follows generalizes the result of Proposition 3.2 for general SISO
nonlinear systems of the form of Eq.3.1. The proof of Theorem 3.2 is completely
analogous to the one of Proposition 3.1 and is omitted for brevity.

Theorem 3.2 : Consider the SISO nonlinear process described by Fq.3.1. Let r,
px denote the relative orders of the output y with respect to the manipulated input u
and the disturbance inputs d,, respectively. Let also A, B, C denote the classes of

disturbances defined in Eq.3.2 and assume that C # 0. Then, the conditions:

Lyde(z,d(1) =0, £=0,1,---,7 —p. — 1 (3.30)
where
ée(z,d(t)) = i[ff“ (idﬁ(t)Lw,‘ + gf) (L! + id,;(t)wa + -gz)# L;‘_lh(:c)
= . = (3.31)
and
p- =min{py,- -, pp} (3.32)

are necessary and sufficient in order for a feedforward/static state feedback law of

the form of Eq.3.11 to:

o Completely eliminate the effect of the disturbance d on y, and
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o Induce the linear input/output behavior:

Z ka dtk =v
where By are adjustable parameters.

If these conditions are salisfied, the appropriate control law takes the form:

dc€B

u= [ﬁrL Lr_lh( ] o {‘U - Zﬁij Z :Br Lw,‘Lr—lh( )

k=pe

= Biden (2 (D), ), -,d(t)“-p-))} (3.33)

Remark 3.11: The results of Theorems 3.1 and 3.2 and Proposition 3.1 illustrate
the fundamental differences in the solution of the feedforward/state feedback synthe-
sis problem between linear and nonlinear systems. In particular, for linear systems,
the solution to the feedforward/state feedback synthesis problem is a control law
which is always static in the states, and affine in the disturbances and their deriva-
tives (Eq.3.10). On the other hand, it is only for a specific class of nonlinear systems
(i.e., those satisfying the conditions of Eq.3.14) that the resulting control law is static
in the states. Even for this class of systems, however, the control law is not affine in

the disturbances and their derivatives, in general (Eq.3.33).

3.4 Closed-loop stability considerations

The purpose of this section is to develop a framework that will allow the charac-
terization of the stability of the closed-loop system under the control law of 5q.3.3.
Clearly, the BIBO stability characteristics of the v — y system depend on the

location of the roots of the characteristic polynomial:

Bo+ Bis+ Pas*+ -+ B8 =0
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Since the parameters §; are adjustable, they can be chosen by the designer for in-
put/output stability and fast dynamics. In the absence of disturbances, ISE-optimal
response for step changes in v can be achieved as the roots of the above characteristic
equation approach —oo.

An interesting observation regarding the v — y system is that the relative order
between y and v is exactly equal to r, i.e., in loose temrs, relative order is preserved
under the control law of Eq.3.3. Moreover, the order of the v — y system is equal
to r, where r < n, and the v — y system has no zeros. This effective reduction in
the order of the original system implies that part of the dynamics of the original
system has become unobservable. Intuitively, the unobservable dynamics must be
stable in some sense, in order for the closed-loop system to be well behaved. More
precisely, in addition to input/output stability, asymptotic stability of the states
of the unforced closed-loop system is also required. In the absence of disturbance
inputs, this would be equivalent to the requirement of internal stability for the closed-
loop system, i.e., the requirement of asymptotic stability of the states with respect
to perturbations in the initial conditions. Conditions that guarantee the internal
stability of the closed-loop system, in the context of input/output linearization, have
been obtained based on the concepts of zero dynamics (Byrnes and Isidori, 1985) and
forced zero dynamics (Kravaris, 1988). These concepts have provided meaningful
generalizations of the notion of zeros in linear systems, in a nonlinear context. In
the case of nonlinear systems with disturbances, a characterization oflthe asymptotic
stability of the states must be more general, including stability with respect to the
disturbance inputs, as well as the initial conditions. Such a characterization will be
obtained through a concept analogous to the zero dynamics of a disturbance-free

system.
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At first, one must observe that when the system of Eq.3.1 is subject to the control

law of Eq.3.3, the output dynamics of the unforced closed-loop system is governed

by:
r dky
> B== =0
k=0 dtk
under appropriate initial conditions. Thus, by choosing the adjustable parameters

Bk so that closed-loop system is BIBO stable, any initial conditions of the states

will generate exponentially decaying signals for the output y and its derivatives
dy dr—ly
a1
zero in finite time. Consequently, the asymptotic stability of the states (i.e., the

Moreover, the output and its derivatives will get arbitrarily close to

stability as t — oo) of the unforced closed-loop system will depend, for all practical

purposes, on the asymptotic stability characteristics of the dynamic system resulting

of a concept of zero dynamics for a system described by Eq.3.1, as its dynamics
when the output y is constrained to remain at zero for all times. The above concept
of zero dynamics is consistent with the Byrnes-Isidori concept of zero dynamics for
disturbance-free systems. In what follows, a normal form for systems of the form of
Eq.3.1 will be introduced and will be used for the calculation of a representation of
the zero dynamics for such systems.

Referring to SISO nonlinear systems of the form of Eq.3.1, consider the {ollowing
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nonlinear coordinate transformation (Byrnes and Isidori, 1985):

¢ =T(z) = h(z) (3.34)

where:

o t1(z), - tuor(z), h(z), Lsh(z), -+, L}'2h(m), L 'h(z) arelinearly independent

scalar fields
o Ljiti(zr)=0,:=1,---,(n—71)

The above coordinate transformation has been used to obtain a normal-form descrip-
tion of disturbance-free SISO nonlinear systems (Byrnes and Isidori, 1985). In what
follows, the same transformation will be used to develop a normal form for systems
of the form of Eq.3.1, which include disturbance inputs.

Consider first the case where only disturbances that belong to classes A and B are

present. Then, the system of Eq.3.1 under the coordinate transformation of Eq.3.34
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becomes:

él = Lftl(C)‘*‘ Z dﬁ(t)Lw;ctl(C)

de€A,B

ier = Ltar(Q)+ Y du(t)Luytns(C)

dx€A,B
C.n—r+1 = Cn—r+2 (335)
én—l = Cn.
G = L3h(Q) + u(Lo Ly RO + 3 dul(t)Lu L)
d<€B
y = Cn—r+1

where the (¢) dependence in the right hand-side of the above equations implies that
the corresponding expressions are evaluated at £ = T7'(¢). In this new system
representation, it is clear how the various disturbances enter the system and affect

the output. In particular,

e Disturbances of class A enter the system only through the first n — r state
equations. The first n — r state variables in turn affect the right-hand side of

the last state equation and finally through a chain of r integrations, the output
Y = Cn—rs1-
e The effect of disturbances of class B is similar, except that they also affect the

right-hand side of the last state equation in a direct way.

Referring to the new system representation given by Eq.3.35, the conditions:

dy dr—ly

T T !

imply:

Crer41 =0= Caorg2=0= - =2 (=0
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Consequently, the zero dynamics of Eq.3.1 is given by the dynamic system:

G

]

Lftl((l’ B C”""’O" o ’0) + Z dﬁ(t)Lw,‘tl(Cla T ,Cn—raoa e 30)

de€A,B

C'n.-r = Lftn—r(CIa co a(n—n 0$ ot )0) + Z dn(t)Lw,‘tn-r(Cla Tty Cn—rv Oa e ,0)
de€A,B
(3.36)
The asymptotic stability characteristics of Eq.3.36 with respect to the disturbance
inputs and the initial conditions, will then determine the asymptotic stability of the
unforced closed-loop system.
Remark 3.12: In the coordinate system of Eq.3.34, the control law of Eq.3.3 takes

the form:

u=[8.L,L7 ()] {v— S BeCamrikss — BrLjh(C) - Zﬂrdn(t)LwnL}'lh(C)}
de€B
(3.37)
Substituting the above control law in Eq.3.35, the following closed-loop dynamics is

obtained:

G o= Lin(Q)+ 3 de(t)Lu ta(¢)

de€A,B

boer = Litas(O)+ Y de(t)Lyta—r(C)

de€A,B
Crortt = Cari2 (3.38)
C.n—l = Cn
: 1
Cn = ﬁ (v“ﬂOCn r+1“‘ﬁ1(‘n r+2"'"'_,5r ICn)
y = Cn—-r-i—l

Clearly, the first n —r state variables which correspond to the zero dynamics, become

unobservable in the v — y system, whose dynamics depends only on the last r state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

variables and is not affected by the disturbance inputs.

In the general case where disturbances that belong to class C are also present, the

system of Eq.3.1 under the coordinate transformation of Eq.3.34 takes the form:

G

én—r

Cn-r-H

Cn.—r-}-p- -1

Cﬂ—'l‘+p.

Cn—r+p.+1

C.n—l

Cn

y

Lits(O+ Y du(t)Luw,t1(C)

dx€A,BC

Lftn_,-(C) + z drc(t)Lwnt"—"(C)

d€A,B,C
Cn—r+2
Cn—-r+p.
- 3.39
(n—r+p.+l+ Z dn(t)LwnL;. lh(C) ( )
deect)

Cn—r+p.+2 + Z dﬂ(t)wa Ll}‘h(g)
deectluc(@)

Cnt D du(t)Lu, LT R(C)

de€C
Lh(C) + u() L Ly h(C) + Yo du(t)Lu, Ly R(O)
dx€B,C
Cn—r-H

where p, was defined in Eq.3.31, and CV = {d, € C : p. = p.}, C? = {d. € C :

px = pa + 1}, etc. In this system representation, it is easy to see that the effect of

disturbances of class C on the output y = (,_,4+1 is much more direct compared with

that of the disturbances of classes A and B. Disturbances of class C affect not only

the last state equation but also some of the previous state equations, and therefore

have to go through a smaller number of integrations before they affect the output y.

Imposing the zero-output conditions in the above system representation, we obtain
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the zero dynamics of Eq.3.1 as the dynamic system:

G o= Lii(O)+ Y de(t)Lueta(C)

ds€A,B,C
(3.40)
C'n—r = Lftn—r(C)+ Z dﬁ(t)Lwntn—r(C)
de€A,B,C
subject to the constraints:
Cn-—r+1 =0
Cn—r+2 = 0
Cnerdpe = 0
Cnortpatr = — Z dr‘.(t)LwnL?’.—lh(()
d,ec(1)
Crmrdpat2 = — Z dn(t)LwnL?‘h(C)
dn€C(?)
- d —
- 5 [ee08 g0+ 5 (@025 70)
drec(?)
o= = 3 de(t)Lu Li?R(()
d€C(r—ps)
d -
= T |deOLu L) + = (de0) L] 3h(())]—-~
deeClr—pe—1)
r— d T—
-y [dn(t)Lw,‘Lf Q) + 7 (delt)Lun LT °h()) + -
deec(1)
r—pe—1 .
s (A Lu LT h(o)]
(3.41)

The asymptotic stability characteristics of the above dynamic system will determine
the asymptotic stability of the closed-loop system under no external input. Obtain-
ing algebraic expressions for the last 7 ~ p, state variables in Eq.3.41 in terms of
(1,**,Cn—r and d, and their derivatives may not always be possible. The order and

the exact state-space realization of the zero dynamics will therefore depend on the
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specific form of the nonlinear process.

Remark 3.13: In the absence of disturbance inputs (i.e., when d, = 0, V& =
1,--+,p) the zero dynamics defined previously reduces, as expected, to the stan-
dard Byrnes-Isidori concept of zero dynamics for disturbance-free systems, i.e., the

dynamic system:
C.l = Lftl(<17' : 'aCn-'r,Oa' : ’0)
(3.42)

én—r = Lftn—r(Ch Tt Cn—raoa Tt >0)
Whenever the above system is asymtotically stable, the system of Eq.3.1 is called

minimum-phase, and the closed-loop system under the control law of Eq.3.3 (with

d. = 0) is internally stable.

3.5 The linear controller design problem

The second step of the proposed methodology involves the design of a linear
controller with integral action around the linear v — y system, which will reject the
effect of modeling errors and/or unmeasured disturbances. For example, one can

use a PI controller:
1t
o= K[ =)+ = [ o= v)] (3.43)
Tr J0O

in which case, the overall closed-loop BIBO stability and performance will depend

on the location of the roots of the characteristic equation:
i I, 2 .
(Bo+ Ke) + — + Pis+ fos"+ -+ rs” =0 (3.44)
1

In general, one can choose a linear controller with transfer function:

v(s) _fothist--- 455

Ysp(s) — y(s) (es+1)—1 (3.45)
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Figure 3.3: A cascade of three continuous stirred tank reactors

in order to induce a critically damped closed-loop response with the transfer function:

y(s) 1
ysp(s) B (63 + l)" (346)

3.6 Application of the control methodology to a cascade of
chemical reactors

In this section, the developed control methodology will be applied to composition
control of a system of 3 CSTR’s in series, where a second order reaction A — B
takes place. Figure 3.3 provides a schematic description of the process under consid-
eration.

It is desired to maintain the composition of the stream leaving the last reactor con-
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stant, despite fluctuations in the feed temperature and/or composition.

Three cases are examined:

1. Case 1: The major disturbances are the inlet concentration and composition

and the manipulated input is the heat input in the third vessel.

2. Case 2: The major disturbance is the inlet temperature and the manipulated

input is the heat input in the first vessel.

3. Case 3: The major disturbance is the inlet concentration and the manipulated

input is the heat input in the first vessel.

Although Cases 2 and 3 could be examined together, they are examined separately for
methodological reasons. It is assumed that both heating and cooling of the reactors
is possible. It is also assumed that the inlet and intermediate flowrates, as well as the
reactor volumes, are equal and remain constant during the operation. The dynamic
equations of the system are the mass and energy balances for each reactor and the

form they take under the previous assumptions is :

d
% 2’:1 = F(cso—ca1) — Vkicar®
d
V (Cl?g = F(CAI — CA2) - szCAzz
d
V-—cl2 = F(CAQ - CA3) - Vk3CA32
dt
. (3.47)
Vpe—= = Fpep(To—Th) + V(=AH)kica® + @
dT.
vpc,,_&.tl = Fpc,(Ty — To) + V(=AH)kycar? + Q2
dT:
VPde_: = Fpey(Ta — Ts) + V(= AH)kscas® + Qs
where
E .
ki = koea:p(————RT‘), 1=1,2,3 (3.48)

The following typical values were given to the process parameters:

F =541/h, V =91, E = 76480J/mol, ko = 1.25x10*{/mol.h,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

~AH = 500x10%J/mol, p * ¢, = 30000J /1.

The steady state values of the process variables were:

Tos = 298.13K, Ty, = Tz, = T3, = 298.13K,

caos = 2.1641mol/l, ca1s = 1.1216mol/l, cass = 0.7071mol/l, ca3, = 0.5mol/l
These conditions correspond to a stable steady state as was verified by the simula-
tions. The states of the system are chosen to be the concentrations and temperatures

in each reactor:
T = Tx, T2 = Cq1y, I3 = T, z4=-ca2, 5= T3, Te = CA3

all assumed measurable.
Figure 3.4 provides the digraph corresponding to this process, which can be used
to calculate and interpret the relative orders and the nature of the resulting control

laws, for the three different cases examined. More precisely :

o Case 1: As shown in Figure 3.4 and can be easily seen from the system dynamic
equations, the disturbances and the manipulated input Q3 affect the output
through different paths. A change at T has to go through 3 more states
before affecting the output (e.g., To — Ty — T — T35 — y = ca3).
The path is shorter for cyg, for which only 2 states are affected before the
output (cgo — €41 — cg2 — y = ca3). On the other hand, @; causes
the change of only 1 state (73) before the output. Moreover, since both the
manipulated and the controlled variable are in the third tank, the effect of any
of the disturbances is actually transfered to the states ¢4y and 73. Therefore,
no measurement of the disturbances is required in the contro law, provided

that the states are measured.
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Figure 3.4: The digraph of the reactor cascade

¢ Case 2: Figure 3.4 shows clearly that both inputs (the disturbance T and the
manipulated input Q;) immediately affect 7} and then two more states before
they affect the output. Physically, the effects of T; and @), are very similar and

a change AT, can be eliminated by a change AQ, = —Fpc,ATp.

e Case 3: Figure 3.4 shows that the shortest path that a change at the disturbance
c40 must follow in order to reach the output, involves two intermediate states
(ca1 and cg2), while the one for the manipulated input @; involves three (e.g.
T, cay and cgz). Therefore, the disturbance has a more direct effect on the
output than the manipulated input and it is expected that predictive action

will be necessary to eliminate the effect of the disturbance.

To evaluate the controller performance we tested:
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1. The ability of the closed-loop system to reject disturbances (regulatory behav-

ior)

2. The ability of the closed-loop system to follow set point changes (servo behav-

ior)

For the two disturbance inputs considered, step changes and random noise were
applied. In the simulated noise we used a standard deviation equal to 0.5 for the
concentration and 20 for the temperature. The step changes were from 2.1641 to
2.5mol/l for the concentration and from 298.13 to 308K for the temperature, and
they were applied at TIME = 0.5h. Since no model uncertainty or unmeasured dis-
turbances were considered, the external PI loop of the control scheme remained in-
active. The performance of the feedforward/feedback control methodology (FF/FB)
was compared with that of the Globally Linearizing Control (GLC) methodology
(Kravaris and Chung, 1987), where no measurements of the disturbances are used in
the control law.

Case 1

Setting:

U=Q3_Q33

dl = TO - TOs

dz = C40 — C40s
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the state equations can be put in the form of Eq.3.1, where

[ F AH . 2 @
E(Tm —zy) — _/zkl(xl):% + Vpc,,
V(CAOs - xz) - k1($1)$§
AH
L o1 —2) = 2R by (as)al + 22
fay=|"Y pev Ve (349)
(72 =) — ka(z3)23
F AH . 2 QBs
'}/:(.’1,‘3 - :l)s) — -/;;k:;(iﬂs):lze + VpCp
L "7(.24 —_ zs) - kg(ms)xé |
: r :
F
0 _
0 v
0 0 0
g(:t:) = ’wl(m) = 7w2($) = (350)
0 0 0
b
Ve, 0 0
U | 0] [ 0]
h(z) = z¢ 51
(3.51)

Calculation of the relative orders yields:

1. Lyh(z) =0

Lgth(:E) é 0

2. Lyyh(2) = Ly Lyh(z) = Ly, L2h(z) = 0

Loy L2h(z) 20

3. Ly,h(z)=Ly,Lh(z)=10

Ly, L3h(z) #0
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Consequently, r = 2, p; =4, p2 = 3, and d,,d; € A. Hence, according to Theorem

3.1, the control law :

v— 3 B LEh(z)
_ k=0
u= BoL, L h(z) (3.52)

eliminates the effect of dy, d; on y and induces the input/output behavior:

2 k
Choosing f, = 100, 8; = 20, B, = 1, the poles of the closed-loop system were placed
at -10,-10. The behavior of the closed-loop system is shown in Figures 3.5 and 3.6.
In Figure 3.5, the output is not affected under step changes and noise in c49 and T.
In Figure 3.6, the servo behavior of the closed-loop system is shown under noise in

c40 and Ty. The response is identical with the one obtained when the disturbances

are not present.

Case 2
Setting:
u= Q@ — Q1
d =Ty — Tos
the new f,g and w functions are :
[ F AH Qis |
. s— 1) — —_—k 2 wls
77 (Tos = 21) e i(z)zs + Ve,
7 (e10 = 72) = ka(w1)a?
F AH
Do = 2s) = S k() +
f@)=1 o P Py (3.53)
(72 = %3) = ka(za)a3
F AH ., @3
"‘7(333 —z5) —~ -p—c;‘lva(fls)% + Voe,

";'(%1 — z6) — ks(z5)z}
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Figure 3.5: Output profile under feedforward/feedback control, for random noise and
step changes in the disturbance inputs (Case 1)
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]
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Figure 3.6: Output set-point tracking under feedforward/feedback control, for ran-
dom noise in the disturbance inputs (Case 1)
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Voc, v
0 0
0 0

g(z) = ,w(z) = (3.54)
0 0
0 0
0 0

and h(z) remains the same. In this case, calculation of the relative orders yields:
1. Loh(z) = LyLsh(z) = LyLih(z) =0
LyL3h(z) # 0
2. Lyh(z) = LyLsh(z) = L,Lk(z) =0
L,L3h(z) #0

Consequently, r = p = 4, and d € B. According to Theorem 3.1, the control law :

v— ;,BkLﬁh(x) — BaL o L3R (z)d(2)

u= ¢ L) (3.55)

eliminates the effect of d on the output y and induces the input/output behavior:

Choosing 3, = 30000, 5; = 9500, B, = 1100, B3 = 55, B4y = 1, the closed-loop poles
were placed at —10,~10,—15,—20. Figures 3.7 and 3.8 illustrate the performance of
the closed-loop system under the feedforward/feedback control law, comparing it with
the performance under the GLC methodology, where pure state feedback is applied
and an external PI controller is responsible for the disturbance rejection. In Figure
3.7, under the step change in the inlet temperature, the open-loop, the FFF/FB and

the GLC responses are compared. The PI settings in the GLC structure were chosen
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Figure 3.7: Output profiles for a step change in the disturbance input. Comparison
of feedforward/feedback control, GLC and open-loop responses (Case 2)

as K. = 50000 and 7; = 0.5. Feedforward compensation improves significantly the
regulatory behavior of the system. In Figure 3.8, the system is forced to track a set-
point change at TIM E = 0.5k, under noise in the inlet temperature. The response in
the case of the feedforward /feedback action is identical to the one under GLC in the
case where no disturbance is present. Under the presence of the disturbance however,
the feedforward action improves significantly the system behavior, as expected. For
the PI controller in the GLC structure, we used K. = 5000 and 7; = 1.

Case 3
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Figure 3.8: Qutput set-point tracking for random noise in the disturbance input.
Comparison of feedforward/feedback control and GLC responses (Case
2)
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Setting:
u= Ql - le
d = ch0 — Caos

the new f and w functions are :

[ F AH A 2 le r 9
g(TO R 7 0
V(CAOs - 22) — k()25 g
F AH
e =) = el 2 0

f(z) = P P Pe | w(z) = (3.56)
"7(552 - 23) — ky(z3)z} 0
F AH 2 Q3
fulll _ _ =" 0
¥(.'133 .735) pcp I»g(l‘{,)fEG + Vpcp
7(1‘4 — z6) — k3(zs)al | 0

where g and h remain the same as in Case 2. The calculation of relative orders goes
as follows:
1. Lyh(z) = LyLsh(z) = LyLih(z) =0

LyL3h(z) # 0

2. Lyh(z) = LyLsh(z)=0

L,L%h(z) #0

and yields: r =4 and p = 3. Consequently, d € C, and a dynamic feedforward/state
feedback control law has to be employed. Moreover, 7 — p = 1 and L,L}h(z) =
({;)3 Clearly then, the condition of Eq.3.17 is satisfied and, therefore, a dynamic
feedforward/static state feedback law can solve the posed synthesis problem. The
required control law is obtained either directly from Eq.3.3, or alternatively from

Eq.3.16, and has the form:

v— Yo BLih(z) = B (5) d(t) = BaLuL3h(z)d(t) — By (£) d(t)®
k=0

= 3.57
" BaL,L3h(z) (3.57)
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Figure 3.9: Output profiles for a step change in the disturbance input. Comparison
of feedforward /feedback control, GLC and open-loop responses (Case 3)

The choice of the adjustable parameters: 8, = 30000, 8, = 9500, £, = 1100, B5 = 53,
B4 = 1 places the closed-loop poles at —10, —10, —15,—20. For the implementation,
the first derivative of the disturbance was approximated by a first order lead-lag, with
the filter parameter equal to 0.01. Figures 3.9 and 3.10 illustrate the behavior of the
system under the same conditions described in Case 2. As expected, feedforward
action improves significantly the servo and regulatory behavior of the closed-loop

system.
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Figure 3.10: Output set-point tracking for random noise in the disturbance input.
Comparison of feedforward/feedback control and GLC responses (Case
3)
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Remark 3.14: In all three cases presented in the example, the corresponding figures
do not show any effect of the disturbances on the process output. This happens
because the model and measurements are assumed to be perfect, there are no active

constraints on the input and there is not any time lag in the control action.
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3.7 Notation

Roman Letters

A, B = reactant and product
= activation energy, J/mol

= volumetric feedrate, [/h

K. = proportional gain

Q: = heat input in i-th reactor, J/h

T; = temperature in the z-th reactor, I{

| = reactor volume,!

R = Ideal Gas constant, J/mol.K{

Cai = concentration of species A in the i-th reactor,mol/!
dy = disturbance input

d.(t)*) = k-th order time derivative of the disturbance input d,
ko = specific rate constant,!/mol.h

ki,ky, k3 = rate constants,!/mol.h

r = relative order of the output y with respect to the

manipulated input u

S = the Laplace domain variable
t = time

u = manipulated input

v = reference input

x = vector of state variables

Y = output

Ysp = output set-point
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f,g,wx = vector fields

h,t; = scalar fields

—AH = heat of reaction, J/mol
A,B,C = classes of disturbances

u = generalized manipulated input

Greek Letters

B = parameters of the feedforward/state feedback law

p*c, = thermal capacity, J/I.K

px = relative order of the output y with respect to the disturbance d,
77 = reset time

¢ = transformed state variables

Math Symbols

=> = implies

> = greater than

< = less than

0 = void set

€ = belongs to

C = subset

v = for all

min = minimum element

IR = realline

IR* = n—dimensional Euclidean space
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Acronyms
BIBO = bounded-input bounded-output
CSTR = continuous stirred tank reactor
GLC = globally linearizing control
FF/FB = feedforward/feedback
SISO = single-input single-output
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CHAPTER IV

FEEDFORWARD /FEEDBACK CONTROL OF
MIMO NONLINEAR PROCESSES

4.1 Introduction

In this chapter, the general feedforward /feedback control problem for MIMO non-
linear processes will be addressed. In particular, the two-step control methodology
introduced in the previous chapter for SISO nonlinear processes will be generalized
to MIMO processes. In the first step, feedforward/state feedback laws will be syn-
thesized, which: a) completely eliminate the effect of measurable disturbances on the
output variables, and b) induce a well-characterized linear input/output behavior. In
analogy with the SISO results, the concept of relative order will arise naturally in the
control laws and will allow a transparent interpretation of their nature, consistent
with intuitive considerations. Specific design objectives in the closed-loop system
(e.g., degree of coupling) will be associated with appropriate choice of some ad-
justable parameters. The relation of the feedforward/state feedback control problem
with the classical disturbance decoupling problem will also be studied. Finally, the
developed feedforward/feedback control methodology will be applied to the control
of temperature and number average molecular weight in a continuous polymerization

reactor.
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4.2 Formulation of the feedforward/feedback control prob-
lem

MIMO nonlinear processes will be considered with a state-space description of

the form of Eq.2.1, i.e., :

& = fz)+ X u;(t)gi(z) + D de(twu(z)
J=1
Yi = h,‘(&'), 1= L---,m
where z € X C R, u(t) = [u1(t), -, um(t)]" € R™ and d(t) = [dy(t),- -, dy(t)]" €
IR? Vt € [0,00), and y = [yl,"',ym]T € R™. In analogy with the SISO case, the

general servo and regulatory control problem for such processes will be formulated

as follows:

o Step 1 (Feedforward/state feedback synthesis problem):

Calculate a feedforward/state feedback control law of the form:
u = p(z) + q(z)v + ¢'(2)Q(z, dx)

where p(z), q(z) and ¢'(z) are matrices of appropriate dimensions, with q(z)
invertible on X, v is an external reference input vector and Q is a nonlinear

operator that may include time derivatives, which:

— Completely eliminates the effect of measured disturbances on the outputs

— Induces an input/output behavior between the reference inputs v and the

outputs y; that has the form:

m dk .
Yi
Zﬂ;k—.‘ =v
i=1 k dtk
where By, = (8L B% - [’,f)T € R™ are vectors of adjustable parameters
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Figure 4.1: Feedforward/feedback control structure

e Step 2 (Linear controller design problem):
Design a MIMO linear controller with integral action around the linear v/y
loop, to achieve the desired servo and regulatory behavior, in the presence of

unmeasured disturbances and/or modeling errors

The solution to the synthesis problem of Step 1 will be the main focus of the subse-
quent chapters, while the solution to the linear controller design problem of Step 2
will be briefly discussed in Section 4.5. The overall control configuration is shown in
Figure 4.1 and it clearly depicts the resulting two-step control methodology.

The basic analysis and synthesis tools for the solution of the feedforward/state
feedback synthesis problem will be the concepts of relative order introduced in Def-
initions 2.1 and 2.3 of Chapter II. According to Definition 2.1, r; will denote the
relative order of the output y; with respect to the manipulated input vector u, i.e.,

the smallest integer for which there exists a j € {1,2,---,m} such that:

Lo, Ly hi(z) 0
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for z € X. It will be assumed that each output y; possesses a finite relative order r;.
Then, the following concept can be defined:
Definition 4.1 (Claude, 1986): Consider the nonlinear system of Eq.2.1. The

matriz:
LylL}"lhl(:c) oo Ly, L}"lhl(x)
C(z) = s s (4.1)

i Lg,L}"“lhm(x) cvr Ly L () |
is called the characteristic matrix of the system.

Remark 4.1: The characteristic matrix C(z) is also referred to as the decoupling
matrix (e.g., Ha and Gilbert, 1986), due to its significance to the nonlinear decoupling
problem.

In analogy with the SISO treatment, it will be assumed that X does not contain any
singular points, i.e., points ¢ € IR™ for which detC(z) = 0. As long as detC(zo) # 0,
one can always redefine X in order to satisfy the above assumption. According to

Definition 2.3, p;. will then denote the relative order of the output y; with respect

to the disturbance input d,, i.e., the smallest integer for which:
L., L’}"‘"lh;(z) #0
forz € X.

4.3 The feedforward/state feedback synthesis problem

Based on the results of Chapter III, relative orders are expected to play a fun-
damental role in the solution of the feedforward/state feedback synthesis problem.
Referring to a nonlinear process described by Eq.2.1, the following partition of the

set of disturbance inputs is proposed, into the classes A;, B; and C;, associated with
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the output y;:

de € Ai = pix > T

di € B; < pix=Ti (4.2)

de €Ci <= pix <Ti
Note that for each output, a different, in general, partition of the set of the distur-
bances will be obtained. The above partition captures the relative dynamic interac-
tions between the manipulated input vector and the individual disturbance inputs,

for a particular output. More specifically,

e Disturbances that belong to class A; have a less direct effect on the output y;

than the manipulated input vector

e Disturbances that belong to class B; have an equally direct effect on the output

y; as the manipulated input vector

o Disturbances that belong to class C; have a more direct effect on the output y;

than the manipulated input vector

Based on the intuition that has been obtained from the SISO treatment of the subject,
the following properties are expected to hold concerning the nature of the regulatory

control problem:

e B; =C; =0 : pure feedback compensation will suffice to eliminate the effect of

the disturbances on the output y;

o B; #0,C; =0 : static feedforward/state feedback compensation will be neces-

sary to eliminate the effect of the disturbances on the output y;

o C; # 0 : dynamic feedforward/state feedback compensation will be necessary

to eliminate the effect of the disturbances on the output y;
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The overall control action must compensate for each class of disturbances and for
each output in an appropriate way.

The above considerations arise naturally in the solution of the synthesis problem
which is given in Theorem 4.1 that follows. Its proof can be found in Appendix D.
Theorem 4.1: Consider the MIMO nonlinear process described by Fq.2.1. Let ;
and pic, t = 1,---,m, & = 1,---,p denote the relative orders of the outputs y; with
respect to u and dy, respectively. Consider also the output-dependent partition of the
set of disturbances defined in Eq.4.2. Then, a feedforward/state feedback law of the

form:

u= [iﬁi"'x‘LQIL —lh' Zﬁ"tLgmLT‘—lh( )}_

=1 =1

{v_ iziﬂtqu‘h Z Z ﬁlf. n Lw,.Ln—lh( )
=1 k=0

i=1d.€B;

—Z > f-—zﬂm Z B‘Ldt,( WKLA (g ))} (4.3)

1=1 de€C; 1=0 k=p+l

o Completely eliminates the effect of the disturbances d, on y;

o Induces the linear input/output behavior:

o dhy
Z Z Bix—= =v (44)
i=1 k=0 dtk
where By, = [BY B -+~ BR)" € R™ are vectors of adjustable parameters with
det [ﬂlrl B’lm e ﬁmrm] # 0 (45)
and v=1[v; vy - vm]T € R™ is a vector of reference inputs

Remark 4.2: Despite the apparent complexity of the control law of Eq.4.3, a rather
simple structure is present. In particular, Eq.4.3 is composed of three distinct parts:

e a pure static state feedback part, which accounts for input/output linearity and
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eliminates, for each ¢, the effect of the disturbances in A; on the output y;:

[Zﬂw. Ly (o) - 32 B Ln i ) {v—iim?h«-w)}

1=1 k=0

e a static feedforward/state feedback part which eliminates, for each iz, the effect of

the disturbances in B; on the output y;:

{Zﬂzr, glLTI_lh Zﬂzr. ger'—lh( )]_ {—i Z :Bir.'LwKL}l_lhi(x)dn}

i=1d.€B;

e a dynamic feedforward/state feedback part which eliminates, for each z, the effect

of the disturbances in C; on the output y;:

-1
[Z ﬂ"'Lnyr‘_lh Zﬂtr. Lyer'_lh (z )}

{ SY Y S At e )d)}

t=1d€C; =0 k=px+i

In each one of the above parts of the control law, the control action results by
superimposing explicit compensation terms for each output and for each disturbance,
depending on the corresponding partition of the set of disturbances. It is exactly this
explicit character of the control law that results in its rather complicated form. More
compact expressions can be written, by adopting a more compact vector notation.

At this point, let us summarize the basic characteristics of the proposed approach.

e Calculating the relative orders r; and p;, for every output y; and disturbance

d,, and

o Implementing the control law of Eq.4.3, for an appropriate choice of the ad-

justable parameters f,,
all the available process information is used, so that:

e The input/output behavior of the closed-loop system for changes in the refer-

ence input is linear
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o The regulatory behavior of the closed-loop system is perfect with respect to

the measurable disturbances

under the assumption of course, of a perfect model and perfect implementation of
the controller. In the next section, the choice of the adjustable parameters 8}, will be
associated with the stability characteristics and the degree of coupling in the closed-
loop system. It should be mentioned that an implicit assumption in the previous
development is that measurements of the system’s states are available. In fact, this
assumption is a key one in obtaining the perfect disturbance rejection property on
the output y; for the disturbances that belong to the class A;, without using mea-
surements of these disturbances. The measurements of the states completely capture
the effect of these disturbances and since the manipulated input vector has a more
direct effect on the output y; than these disturbances, it completely cornpensates for
their effect.

Remark 4.3: The control law of Eq.4.3 simplifies greatly in the following two cases:

o C; =0 for every i:

-1
u= [Eﬂl'r. gl‘Lrl—lh Zﬂ”l Qer‘—lh (l)]

{v-zzﬁwh “Y Y d(t)f wKL"'lu)} (4.6)

1=1 k=0 =1 d B,

which is a static feedforward/state feedback control law

e B; =C; =0 for every i:

-1 m T
u= [Zﬁ!‘ﬁLQILTl—lh ZﬂlT'LIhnLr'_lh ( )] {U_ ZZﬂ!kalll(m)}
1=1 i=1 k=0
(4.7)
which is a pure state feedback control law, identical to an input/output lineariz-

ing control law in the absence of disturbances (Kravaris and Soroush, 1990)
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The above results conform with the previous intuitive arguments concerning the
nature of the control law, depending on the classes of disturbances present in each
partition.

Remark 4.4: In the case of a SISO nonlinear process (i.e., for m = 1), the control

law of Eq.4.3 reduces to:

d<€B

u= [ﬂrL Lr lh(m ] {v_ ZﬁLLj Zd ﬂer,‘Lk lh( )

_Z"ZP:K Z ﬂkdtl ( ; Lw"Lk . - 1h( ))}

de€C 1=0 k=ps+i

which, as expected, is identical to the previous result for SISO systems (Eq.3.3).
Remark 4.5: A key assumption throughout the previous treatment was that the
characteristic matrix C(z) defined in Eq.4.1 was non-singular for all z € X. The non-
singularity of C(z) is a sufficient condition for a static state feedback input/output
linearizing control law to exist. It has been shown, however (Kravaris and Soroush,
1990), that input/output linearization can be achieved for a larger class of disturbance-
free systems than those satisfying this assumption. Generalization of Theorem 4.1
for this class of systems is possible, but would involve several technicalities which go
beyond the scope of this thesis.

Remark 4.6: The proposed methodology can be easily generalized to achieve any

nonlinear input/output behavior of the form:

di d"y dym d"™ Yo

q’(yu Ea"'a dtrlv"'vyma dta"'v dir’")z

(4.8)

In analogy with the SISO case, however, such a generalization does not seem partic-
ularly meaningful.

Remark 4.7: Consider the more general class of nonlinear processes with a state-
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space description of the form:

§ = IO DU EnO G+ Nk

v = hi(z),i1=1,---,m

where ¢;(z,u;,d;) is a scalar function solvable for u; and dj is a vector of additional
measurable disturbances. The above class incorporates cases where some manip-
ulated inputs appear in the state equations coupled with some measurable distur-
bances. In this case, the proposed methodology can be applied by simply letting
U; = ¢;(z,u;,d;), calculating U; from Eq.4.3, and then solving for the actual ma-
nipulated inputs u;. Following this procedure, compensation for the disturbances d;
is also possible.
Remark 4.8: The disturbance rejection capability of the control law of Eq.4.3 with
respect to the disturbances in class A; can find an interesting robustness interpre-
tation. In particular, consider a localized perturbation (model uncertainty and/or
unmeasured disturbance) of arbitrary magnitude which enters the system dynamic
structure in an additive way at a certain location (i.e.) a certain state equation). Such
a perturbation can be viewed as an unmeasurable disturbance and can be assigned an
“equivalent relative order”. The particular perturbation can then be included in one
of the classes of disturbances defined by Eq.4.2. If it belongs to the class A4;, it will
not affect the output y;, under the control law of Eq.4.3. The above inherent robust-
ness feature of the control law is extremely meaningful in chemical systems, where a
model uncertainty can often be identified with errors in certain system parameters,
e.g., kinetic rate constants, heat transfer coefficients, etc.

Proposition 4.1 that follows provides a solution to the feedforward/state feedback

synthesis problem for the special case of a linear process description.
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and pig, i =1,---,m, £ = 1,---,p denote the relative orders of the outputs y; with
respect to u and d,, respectively. Consider also the output-dependent partition of the
set of disturbances defined in Eq.f.2. Then, a feedforward/state feedback law of the

form:

m m »
“e [Zﬁir‘ci/{ri—lbl Zﬁir.CiAri_lbm]
i=1 =1

=1 k=0 1=1d.€EB;

{v - i i BikCiAk:L‘ - i Z ﬁiridrc(t)ciAri_l'Yn

m Ti—Pix  Ti 1
—Z Z Z Z ﬁ;kC;Ak_l_l')’n'c% (dn(t))} (410)

1=1d€C; I=0 k=pix+l

o Completely eliminates the effect of the disturbances d; on y;

o Induces the input/output behavior:

R d*y;
)T .
i=1 k=0 dt*
where By = [BY B2 --- B7)T € R™ are vectors of adjustable parameters

Proof: It is easily verified that, for f(z) = Az, g;(z) = b;, we(z) = v« and hi(z) =
c;z, the following relations hold:
Lihi(z) = ciAfz
ngL];hg(Z) = C,‘Akbj
Lw,‘L’}hi(:c) = ¢; AF,

Substituting the above relations to the control law of Eq.4.3, Eq.4.10 is easily ob-
tained.
Motivated by the corresponding discussion and results of Chapter IIl, the class

of MIMO nonlinear systems will now be characterized, for which the solution to the
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feedforward/state feedback synthesis problem is a feedforward/static state feedback

law of the form:
w=p(2) +ge)o + Q' (z,d(1), d(H)V, d(), ) (4.11)

where p(z), g(z) are matrices of appropriate dimensions, with ¢(z) invertible on X,
and Q' is a vector function which is nonsingular under nominal conditions. Such
a characterization is useful both from a theoretical and practical perspective, given
the result of Proposition 4.1 and the considerations regarding the implementation of
the dynamic components of Eq.4.3. Theorem 4.2 that follows generalizes the result
of Theorem 3.2 for MIMO nonlinear systems in the form of Eq.2.1. The proof of
Theorem 4.2 is completely analogous, although notationally more complicated, to
the one of Proposition 3.2, and is omitted for brevity.

Theorem 4.2 : Consider the MIMO nonlinear system described by Eq.2.1, Let r;
and pi, 1 = 1,---,m, &£ = 1,---,p denote the relative orders of the output y; with
respect to u and d,, respectively. Consider also the output-dependent partition of the
set of disturbances defined in Eq.4.2, and assume that C; # 0, for some output y;.
Then, the conditions:

Lg,¢if (:E,d(t)) =0 (412)

€=0,17“',7'i—ﬂi—13 i=11"'7maj:11"'am

where
bulend) = S (V)b + ) (L1 S0+ 57) 257hto
= . . (4.13)
and
pi = min {pi,* -, pip} (4.14)
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are necessary and sufficient in order for a feedforward/static state feedback law of

the form of Eq.4.11 to:

o Completely eliminate the effect of the disturbances d. on y;, and

o Induce the linear input/output behavior:

m Te d y
Z Z ﬂ:k - =
pacirur ML
where Bix = [BL B -+ BT]T € R™ are vectors of adjustable parameters.

If these conditions are satisfied, the appropriate control law takes the form:

-1
u= [Z Biri Loy L hi(a Zﬂ,r. Lo LF  hi(z )]

1=1

{v‘i%ﬁxkﬂk Z Z ﬂzr.d (t w.gLr‘ lh( )

i=1 k=0 i=1 d€B;

-3 Y Butieen (x’d(t),d(f)(l),"-,d(t)(k“"'))} (w15

=1 k=p;

4.4 Closed-loop design considerations

a) Design of the feedforward/feedback inner loop: Under the control law of Eq.4.3,

the dynamics of the v — y system is governed by:

(Bioyr + -+ + Py —— d;ff‘) + -+ (Bmoym + +ﬂmrmd;::"‘) =v (4.16)
or, expanding the f-column notation:
Ban +--+ B3, T4 b (a4 B, SER) =,
(Bioyr + - +ﬁ1r,d(;;:f‘) + o+ (Broym t+ +ﬂifmd;—:f—"i) =
B+ + B S0 4 g (Bt B ) =,
(4.17)
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or, in the Laplace domain and using a matrix fraction description:

1 T2 Tm -1
y(s) = |2 Buks®) (O Bars®) -+ (30 Bais™)|  w(s) (4.18)
k=0 k=0 k=0
The order of the closed-loop system is (71 + 72 + -+ - + ) < n. In analogy with the
SISO case, the closed-loop system does not possess any finite zeros. On the other

hand, the poles of the closed-loop system are the roots of the characteristic equation:
T1 T2 Tm
det [(3 Buiks®) (30 Bars®) -+ (3 Brrs®)| =0
k=0 k=0 k=0

Consequently, the BIBO stability characteristics in the closed-loop depend on the
values of the m(r; + - -+ + r,) + m? adjustable parameters ﬂ{k.

The issue of asymptotic stability of the states in the unforced closed-loop system
can be addressed following a similar procedure to the one followed for SISO systems.
In particular, one can generalize the disturbance-free concept of MIMO zero dynamics
(e.g., Isidori and Moog, 1988, Daoutidis and Kravaris, 1991a) to obtain a concept
of zero dynamics for MIMO nonlinear systems with disturbances; then, appropriate
stability conditions on the zero dynamics will guarantee the asymptotic stability of
the unforced closed-loop system.

In some cases, it may be desirable to achieve input/output decoupling in the
closed-loop system, i.e., to have each reference input v; affect only the output y;. In

this case, the postulated closed-loop response is:

d"y;
(ﬂlloyl + SRR B}rl dtr! ) =
d"ys
2
(Baoyz + - + ﬁzrz?r;) = vy
d ™y
(Bristm + 4 B =) = i (4.19)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

and one simply sets
=0, 147

in the control law. Any kind of partially decoupled closed-loop response can also
be achieved, by appropriate choice of the adjustable parameters ﬁfk, as long as
the nonsingularity condition of Eq.4.5 is satisfied. By requesting any kind of in-
put/output decoupling, additional structural constraints are imposed on the closed-
loop system, which may cause deterioration in its performance characteristics. On
the other hand, several advantages are present, such as fewer adjustable parameters
((ry+- -+ +7m +m), in the case of full decoupling) and the use of SISO controllers in
the external loop, in which case their tuning is straightforward. Physical constraints
on the manipulated input and/or physical importance of the controlled output may
often dictate whether decoupling is realistic and/or desirable. In general, despite
the extensive research effort in this area, there is a lack of systematic methods of
fundamental rigor for assessing when decoupling is favorable, even in the case of
linear systems. It should be noted that, within the proposed synthesis framework,
any degree of decoupling can be achieved by simply an appropriate choice of the
adjustable parameters (without any modification in the actual synthesis procedure).
This fact allows a significant degree of flexibility to the designer, who can incorporate
his/her own intuition and experience in the tuning procedure and test the resulting
performance characteristics.

b) Design of the external linear controller: The design of a multivariable linear

controller for the linear v/y system can be performed using techniques from linear
control theory. Of course, if the v/y system is decoupled, the controller designer
has a much simpler task of synthesizing and tuning the corresponding SISO linear

controllers. In any case, the external linear controller must be designed to ensure:
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o Stability of the overall closed-loop system y,,/y

o Satisfactory tracking of set points and rejection of the unmeasurable distur-

bances

e That the magnitude of the manipulated inputs u; will not exceed the bounds

imposed by practical constraints

4.5 Feedforward/state feedback and the disturbance de-
coupling problem

In this section the relation between the feedforward/state feedback synthesis prob-
lem and the classical disturbance decoupling problem of the theoretical literature will
be studied. Referring to a nonlinear system of the form of Eq.2.1, the disturbance
decoupling problem is to find a static state feedback law u = p(z) + ¢(z)v, where
p(z), g(z) are matrices of appropriate dimension, with ¢(z) invertible, such that the
disturbances do not influence the output vector in the closed-loop system. In the
case of a system with nonsingular characteristic matrix, the necessary and sufficient
condition for solvability of this problem takes an explicit form (e.g., see Isidori et al.,
1981), given in the theorem that follows:

Theorem 4.3: Consider the nonlinear system of the form of Eq.2.1. Let r;, 1 =
1,---,m denote the relative order of the output y; with respect to u. Then, the dis-
turbance decoupling problem is solvable in X, if and only if,
wy(z) € ﬁ [ker dh;(z)(\ker dLshi(z)()...[ | ker dL}‘_lh,-(x)] (4.20)
i=1
for every k and everyz € X.
Remark 4.9: In geometric terms, the right-hand-side of the above equation is equal

m

to the maximal controlled invariant distribution contained in ker dh = {"\ker dhi(z),

i=1
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where dh;(z) is the covector associated with hi(z).

Proposition 4.2 that follows provides an equivalent representation of the condition
of Eq.4.20, in terms of the relative orders of the output variables. The proof can be
found in Appendix D.

Proposition 4.2: Consider the nonlinear system of the form of Eq.2.1. Let r; and
Pix, 1 =1,-+-,m, k = 1,---,p denote the relative orders of the output y; with respect
to u and d,, repsectively. Then, the disturbance decoupling problem is solvable in X,
if and only if,

Pix > Ty (421)

for every 1 and K.

The condition of Eq.4.21 is equivalent to the condition C; = B; = 0, for all 7. When
this condition is satisfied, the control law of Eq.4.3 takes the form of Eq.4.7, which
clearly represents a solution to the disturbance decoupling problem for the system
under consideration.

The condition of Eq.4.21 is rarely met in practice; this realization motivated
the study of a modified disturbance decoupling problem (Moog and Glumineau,
1983) where a static feedforward/state feedback of the form u = p(z) + ¢(z)v +
s(z)d is allowed. The treatment of this problem parallels the one for the original
disturbance decoupling problem. As expected, the necessary and sufficient condition
for its solvability is weaker and, for the special case of nonsingular characteristic
matrix, takes the following form:

Theorem 4.4: Consider the nonlinear system of the form of Eq.2.1. Let r;, 1 =

1,---,m denote the relative order of the outpul y; with respect to u. Then, the
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modified disturbance decoupling problem is solvable in X, if and only if,
we(z) € () [ker dhi(z) (Yker dLshi(z) (... ker dL} ™ k(<))
i=1

+ span{gi(z), g2(2), -+, gm(2)} (4.22)

for every & and every z € X.

Similarly with the original case, Proposition 4.3 that follows provides an equivalent
formulation of the above condition in terms of the relative orders of the outputs.
The proof can be found in Appendix D.

Proposition 4.3: Consider the nonlinear system of the form of Eq.2.1. Let 7
and pix, t = 1,---,m, K = 1,---,p denote the relative orders of the output y; with
respect to u and d,, respectively. Then, the modified disturbance decoupling problem
is solvable in X, if and only if,

Pix 2 Ti (4.23)

for every ¢ and k.

The condition of Eq.4.23 is equivalent to the condition: C; = §, for all . When
this condition is satisfied, the control law of Eq.4.3 takes the form of Eq.4.6, which
obviously represents a solution to the modified disturbance decoupling problem for
the system under consideration.

Remark 4.10: Based on the above discussion, it is clear that, the conditions for
the solvability of the disturbance decoupling and the modified disturbance decou-
pling problem take a much more transparent and easier to verify form in terms of
the relative orders. Furthermore, whenever the disturbance decoupling problem or
the modified disturbance decoupling problem are solvable, the control law of Eq.4.3
provides a solution to these problems, and in addition, induces a well-characterized

input/output behavior. Finally, the control law of Eq.4.3 allows the elimination
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Figure 4.2: A continuous polymerization reactor

of the effect of all measurable disturbances on the outputs, even when the distur-
bance decoupling problem and the modified disturbance decoupling problem are not

solvable.

4.6 Application of the control methodology to a continuous
polymerization reactor

In this section, the developed feedforward/feedback control methodology will be
applied to a polymerization reaction system. In particular, consider the CSTR shown
in Figure 4.2, where free-radical polymerization of methyl methacrylate (MMA) takes

place, with azo-bis-isobutyronitrile (AIBN) as initiator and toluene as solvent. The
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reaction is exothermic and a cooling jacket allows the heat removal. The standard
mechanism of free-radical polymerization is assumed, together with the resulting rate

laws (Ray, 1972, Ray et al., 1971, Congalidis et al., 1989, Schmidt and Ray, 1981,

Tsoukas et al., 1982). The following assumptions are also made:
o perfect mixing in the reactor
e constant density of the reacting mixture (no volume shrinkage)
e constant heat capacity of the reacting mixture
¢ uniform coolant temperature in the jacket
¢ insulated reactor and cooling system
e constant density and heat capacity of the coolant
o no polymer in the inlet streams
e no gel effect (because of low conversion of the monomer)
e constant reactor volume (constant volumetric flowrate of the monomer stream)

e negligible flowrate of the initiator solution, in comparison to the flowrate of the

monomer stream
e negligible inhibition and chain transfer to solvent reactions

e quasi-steady state and long-chain hypothesis
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The dynamic behavior of the process is then described by the following mass and

energy balances:

de _ E F(Cm-'n—'cm)
= (Zenp( ) + Zpean(T2)) CaRo(Cr, T) + — e )
ey _B;. .  FCy —FC
- = —Zrexp( BT )Cr + v
T, By (-AHp) UA o gy, FTa=T)
L = GG TR0, T) - (T - T+
any _ ~Er ) iRy T
= = (0.5ZTcea:p( —22) + Zr,eap(—2) ) [Po(Cr, )
—E FD
+ 25, eap(—2)Cn Po(C1, T) = =7
D, —E, —E, ) FD,
e M, (Zpezp( RT)+mee$P( RT) CrnPo(Cr, T) ~ Vv
dT;  Fa UA
T = BT+ — (T -T)
(4.24)
where
_E; 0.5
2f CIZzexp( RT)
PO(C'IaT)= — E
Zr,exp( 7T )+ZTce:£p( AT =)

) D
Control of the temperature T and the number average molecular weight —ﬁl of the
0
polymer product is considered, by manipulating the volumetric flow rate of the ini-
tiator F; and the volumetric flow rate of the cooling water F,,. The concentration

of monomer in the inlet stream C,,, and the temperature of the inlet stream T;,

are the major measurable disturbances. Thus, following the standard procedure and
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2y =Cn, 22=C1, z3=T, z4=Do, z5=D1, 26 =71
and:
uy = Fr— Fry, wp = Foy — Fous
dy =Cn, = Cysy d2=Tin — Tins
Y= %;, y2=T

where the subscript s denotes steady state values, the system dynamic equations are

93

put in the form of Eq.2.1, withn=6,m =2,p=2 and

fi(z)
fr(z)
fa(z)
flz) = =
fa(z)
fs(z)
I fe(z) ]
-E -E,, F(Cm,s —
—L 1sC1,, — Fz2
—Zrexp( Rz, )zq v .
_Ep ('—AHP) (-[A F( ins —
Zyexp( 313)11 pCPE Po(z2,23) ~ pc,,V(Is Is)+E_""—V
-E _ -E,,
(O.SZTCe:rp( R.r:c ) + Z1,exp( Rz?)) [Po(z2.23))* + Z;,exp( Ra:j;,
-F ~E,. Fzs
M, (Z,,erp( Rz:) + 2y, exp( Ra:!3 )) z1Po(z4,23) — A
FCW!
i T(Two - IG) + chw‘/;(ra IG)
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F
0 0 G 0
Cy.
—in 0
% 0 2
0 0 0 -
gl(z) = 9 g'Z(:E) = ) wl(x) = 9 wz(I) = V
0 0 0 0
0 0 0 0
Two — Tg
i 0 ] i 7 ] i 0 ] i 0 |
T
hi(z) ==, ho(z) = =3
T4

For the above system, the relative orders are easily found to take the following values:
e Output y;: 71 =2, pu =2, p12=2
e Output yo: 79 =2, po1 =2, pra=1
Consequently, the set of disturbances is partitioned as follows:
e A, =0, By ={d),dy},Ci =10
o Ay =0, By, = {d}, C = {ds}

Clearly, as a result of the dynamic structure of the particular system, static feedfor-
ward /feedback compensation is required in order to eliminate the effect of d; and d;
on y; and the effect of d; on y,, while dynamic feedforward/feedback compensation
will be necessary to eliminate the effect of d; on y,.

The characteristic matrix C(z) of this system defined by Eq.4.1 becomes:

Ly, Liha(2) Loy Lyha(2)

Ly, Lyha(z) Lo, Lyho(z)
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where

_ (0fs(x) _ 250fa(x)\ Chn
Lg,thl(l‘)—< dz, _3;4 0z, Vzy

Lysz (CII) =0

0fs(z) Crin
82!32 \%

UAT,, —z6

o,V V,

Lo, Lsho(z) =

Ly, Lyha(z) =

It can be easily checked that C(z) is generically nonsingular, which allows the
straightforward application of the Theorem 4.1. The control law of Eq.4.3 takes

the form:
~1
BusL Lita(s) + BLoy Lyha(z)  BualnLha(s) + BaaLyyLshala) |

{'U - Z Z ﬁ,’kL;hi(.’L‘)

— (Br12Lw, Lihi(z)dy(t) + BraLu, Lihi(z)d2(t) + Baz Lo, Lyho(z)d:i(t))
(B Lonba(a)dn0) + B Lyba(e)nt) + B (Bsba(e)ae)) | (426
where:
Lyta(2) = (fu(e) - Z 1)) -

Liho(z) = fa(z)
L2ha(z) = fi(z) <5f5($) _ ﬁfv_af4($)) + fo(z) (6f5(3:) B §_53f4($))

T4 dz, T4 Oz T4 0z, zy Oz
Uitala) = 2202 0y 4 202D gy o OB ) 1 D0 g
szhz(x)=§
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it = (50250 v
b= (55,0250 7
Ly, Lyho(z) = 3_%5)%

In order to obtain full input/output decoupling of the form:

d d*y

Ui +511 h +ﬂ12 dt; =
d d*y,

Y2 + ﬂzl y2 + ﬂ22 12 = U2

we simply set:

5210 = 551 = ﬂéz =0, ﬂ220 =1

ﬂfo = ,3121 = ﬁfz =0, ﬂllo =1
in Eq.4.26. The kinetic and physical parameters and the operating steady state
conditions for the particular process are given in Tables 1 and 2. Integration of the
system dynamic equations was performed (after appropriate dedimensionalization)
by using the subroutine LSODA from the ODEBACK Library, on the Apollo network

of The University of Michigan. The values for the adjustable parameters in the

feedforward/feedback (FF/FB) control law of Eq.4.26 were chosen as:
ﬁlll = 1831 = 0'44ha ﬁ%g = ﬁ222 = 0.016)&2

to place the closed-loop poles at -2.5 and -25.0 for the two decoupled vy /y; and vy /3y,
systems. The location of the closed-loop poles was chosen so that the constraints on
the magnitude of the manipulated input variables (F; > 0 and F,,, > 0) be satisfied.
The external linear controllers in the FI'/FB control structure were chosen as two

PI controllers with settings K. = 15 and 7; = 0.4h. A number of simulation runs
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i Z;, E;, Reference
T. 3.8223 x 10'%mol/m3.h  2.9442 x 10%kJ /kmol (Schmidt and Ray, 1981)
Ty 3.1457 x 10" kmol/m®.h 29442 x 10%kJ /kmol (Schmidt and Ray, 1981)
I 3.7920 x 10'3h-! 1.2877 x 105k J/kmol (Tobolsky and Baysal, 1953)
P 1.7700 x 10%mol/m3.h  1.8283 x 10*J/kmol  (Mahabadi and O’Driscoll, 1977)
fm 1.0067 x 10'5kmol/m3.h  7.4478 x 10%kJ/kmol (Stickler and Meyhoff, 1978)
fr =058 (Tobolsky and Baysal, 1953)
Table 4.1: Kinetic parameters
= 1.00 m? Fr, = 001679 m3/h
= 0.1 m3 R = 8314 kJ/kmol K
P = 866 kg/m? M, = 10012 kg/kmol
Cr, = 6.0 kmol/m?® Cm,., = 80 kmol/m3
c, = 20 kJ/kg.K —AHp = 57800 kJ/kmol
= 2.0 m? U = 720 kJ/m?h.K
Pu = 1,000 kg/m3 Co = 42 kJ/kg. K
Vo = 002 m3 Tins = 350 K
Yisp = 25,000 kg/kmol Y2sp = 33 K
Fews = 326363 m3/h Twe = 293.2 K

Table 4.2: Process parameters and steady state values
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verified the stability of the open-loop system around the operating steady state and
the internal stability of the closed-loop system.

The performance of the proposed feedforward/feedback control methodology was
tested in terms of rejection of step changes at the two measurable disturbances. The
process was initially assumed to be at steady state. At time ¢t = 1h a step change
at the inlet monomer concentration C,,, was applied, from 6 to 5 kmol/m®. The
process was allowed to reach a new steady state, and at time ¢t = 6k a step change
at the inlet temperature T}, was applied, from 350 to 345 K.

Figures 4.3 through 4.7 illustrate the profiles of the two controlled outputs and
the two manipulated inputs, under the assumption of perfect model and perfect
measurements. The figures provide a comparison of the output and input responses

under
a) The MIMO FF/FB control structure
b) The MIMO GLC structure (Kravaris and Soroush, 1990)

c) Two linear SISO PI loops (coolant flowrate/temperature, initiator flowrate/number

average molecular weight)

The time derivative of the disturbance d, in Eq.4.26 was approximated by a lead-

lag element with transfer function In the implementation of the GLC

s

0.001s + 1"
structure, the same values of ﬂfk were used as in the FF/FB structure, while the
external linear controllers were chosen as PI controllers with the same settings as
in the FF/FB structure. Finally, in the linear control approach, the two SISO PI
controllers were tuned through a trial-and-error procedure which resulted in the

values K. = —1 x 107"m3/h, 71 = 0.075h and K, = —0.1m*/h.K, 71 = 0.075k,

respectively for “best” closed-loop performance. Due to the severe nonlinearity of
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Figure 4.3: Number average molecular weight profiles under feedforward/feedback
control, GLC and SISO PI control (perfect model)
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Figure 4.5: Initiator flow rate profiles corresponding to Figures 4.3 and 4.4
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the process, the response characteristics were found to be very sensitive to the values
of the PI controllers’ settings.
Clearly, as the theory predicts, the FF/FB control law results in perfect regulation
of the outputs, i.e., an obvious improvement of the closed-loop behavior compared
with the one under the GLC structure (where no measurements of the disturbances
are used in the control law), or the linear PI controllers.

In another set of simulation runs, assuming the same disturbance changes as
previously, the robustness characteristics of the FF/FB method were tested in the
face of modeling error and measurement noise. In particular we compared the closed-

loop behavior of the process under:
a) Perfect model and perfect disturbance measurements
b) 20% error in the frequency factor Z; and the heat of reaction AHp

c) Sinusoidal noise in the measurements of the disturbances d; and d; of ampli-
tudes 0.05 kmol/m® and 0.5 K, respectively, and period of oscillation of 10
min

Figures 4.7 and 4.8 depict the excellent performance of the FF/FB structure in
rejecting the applied step changes in the disturbances for the case when the above
model uncertainties exist. As shown in the two figures, even in the presence of
the modeling errors, the output profiles are very close to the ones obtained when a
perfect model is available. Figures 4.9 and 4.10 depict the performance of the FF/FB
structure in rejecting the applied step changes when the disturbance measurements
are corrupted with the above noise. Clearly, although the output regulation is not

perfect in the presence of measurement noise, the proposed method performs very

satisfactorily.
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Figure 4.7: Number average molecular weight profile under feedforward /feedback
control (effect of modeling error)
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Figure 4.8: Reactor temperature profile under feedforward/feedback control (effect
of modeling error)
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Figure 4.9: Number average molecular weight profile under feedforward/feedback
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Figure 4.10: Reactor temperature profile under feedforward/feedback control (effect
of measurement noise)
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4.7 Notation

Roman Letters

A
C(z)

Cmin

Cr
Cr,

Do

E;,..Ep, E;

Er,, ET,

heat tranfer area,m?

characteristic matrix

molar concentration of the monomer, krmol/m?

molar concentration of monomer in the monomer

inlet stream, kmol/m®

molar concentration of the initiator, kmol/m?

molar concentration of the initiator in the initiator

inlet stream, kmol/m?

molar concentration of the dead polymer chains, kmol/m3
mass concentration of the dead polymer chains, kg/m®
activation energies for chain transfer to monomer, propagation,
and initiation reactions, respectively, kJ/kmol
activation energies for termination by coupling and
disproportionation reactions, respectively, kJ/kmol
volumetric flow rate of the inlet monomer stream,m*/h
volumetric flow rate of the inlet initiator stream, m®/h
volumetric flow rate of the inlet cooling water,m®/h
proportional gain

molecular weight of the monomer, kg/kmol

molar concentration of the live polymer chains, kmol/m?
Ideal Gas constant, kJ/kmol. K

reactor temperature, &

jacket temperature,
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temperature of the inlet streams in the reactor, I{
temperature of the inlet coolant stream, i
overall heat transfer coefficient, kJ/m?.h.K

reactor volume, m>

overall effective volume of the cooling subsystem,m3
frequency factors for chain transfer to monomer,
and propagation reactions, respectively, kmol/m>.h
frequency factors for termination by coupling

and disproportionation reactions, respectively, kmol/m3.h
frequency factor for initiation reaction, h~!

heat capacity of the reacting mixture, kJ/kg.IX

heat capacity of water, kJ/kg. KX

vector of disturbance inputs

itiator efficiency

vector fields

output scalar field

relative order of the output y; with respect to u
time

vector of manipulated inputs

external reference input vector

vector of state variables

vector of outputs

vector of output set-points

heat of propagation reaction, kJ/kmol

partition of disturbances for the output y;
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Greek Letters

ﬂ{k = parameters of the feedforward/state feedback law
77 = reset time

p = density of the reacting mixture, kg/m?

pw = density of water, kg/m?®

pi» = relative order of the output y; with respect to the disturbance d,

Math Symbols

= = implies

= = is equivalent to

0 = void set

€ = belongs to

C = subset

v = for all

N = intersection

<.,.> = inner product

T = transpose

min = minimum element

det = determinant of a matrix
ker = kernel of an operator

dh; = gradient of a scalar field h;
R = real line

R" = n~—dimensional Euclidean space
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Acronyms
BIBO = bounded-input bounded-output
CSTR = continuous stirred tank reactor
FF/FB = feedforward/feedback
GLC = globally linearizing control
SISO = single-input single-output
MIMO = multiple-input multiple-output
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CHAPTER V

STRUCTURAL EVALUATION OF CONTROL
CONFIGURATIONS FOR MIMO
NONLINEAR PROCESSES

5.1 Introduction

The first step in the synthesis of a control system for a given process is the synthe-
sis of the control configuration. Although this step precedes the controller synthesis
itself, it affects significantly the final performance of the control system. The prob-
lem of synthesis of control configurations has been investigated from various points of
view in recent years (see e.g., Stephanopoulos, 1983), and, mainly for methodological

purposes, can be viewed as consisting of the following two sub-problems:

1. Generation of all feasible control configurations

2. Evaluation and selection of a control configuration

The first sub-problem includes the specification of the control objectives, the
identification of the available manipulated inputs and the assessment of feasibility
of the resulting control configurations. Research in this area is extensive regarding
linear time invariant processes, for which the system theoretic properties of state
controllability, output controllability and output functional controllability have been

used as feasibility criteria. On the other hand, research regarding nonlinear processes
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is still at the stage of understanding the corresponding system theoretic properties.
In analogy with linear results, right invertibility, a concept closely related to output
functional controllability, is the criterion that determines the feasibility of control
configurations for most practical purposes. The first attempts to study this issue
for general MIMO nonlinear systems have been within the framework of algorithmic
procedures for the construction of inverses (Hirschorn, 1979b, 1981a, Singh, 1982a,
1982b, 1982c). In a differential algebraic framework (Fliess, 1985, 1986), the notion
of differential output rank has generalized the notion of rank of a transfer matrix
in a nonlinear setting and has led to necessary and sufficient rank conditions for
invertibility, analogous to the ones for linear systems. Finally, conditions for right
invertibility for a particular class of nonlinear systems have also been derived in
terms of the “structure at infinity” (Nijmeijer, 1986). The implications of the above
theoretical results, however, in the synthesis of control configurations have not been
investigated yet.

Given a number of alternative feasible control configurations, the second sub-
problem consists of the evaluation of the alternative control configurations and the
final selection of the one to be employed. In this direction, the majority of research
effort for processes described by linear models concerns a) dynamic resilience and
b) decentralized control studies. Dynamic resilience studies have mainly focused on
identifying factors that pose limitations on the system invertibility (Morari, 1983)
and consequently on the achievable control quality. Such factors include dead time
(Holt and Morari, 1985a), right-half-plane zeros (Holt and Morari, 1985b), model
uncertainty (Skogestad and Morari, 1987), etc. In decentralized control studies, a
variety of static and dynamic interaction measures have been proposed for identify-

ing favorable pairings of manipulated inputs and controlled outputs (for a review see
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Jensen et al., 1986). By far the most popular analysis tool for this purpose is the rel-
ative gain array (RGA) (Bristol, 1966) and its generalizations that take into account
dynamic considerations (e.g., Tung and Edgar, 1981 and Gagnepain and Seborg,
1982) or disturbance inputs (e.g., Stanley et al., 1985). All the above approaches
assume a transfer function description of the process, often obtained from experi-
mental data and therefore, are based on linear control considerations. On the other
hand, in nonlinear process control theory, there are essentially no results related to
the problem of evaluation of control configurations except for some results concern-
ing the calculation of nonlinear gains (e.g., Mijares et al., 1985, Manousiouthakis
and Nikolaou, 1989). One possible direction is to study the effect of nonlinearities
within a linear analysis (and consequently linear controller synthesis) framework.
An alternative, much more meaningful direction is to develop analytical tools and
methodologies which arise from the nonlinear description of a process itself.

In this chapter, a structural perspective will be introduced in the problem of eval-
uation of control configurations for MIMO nonlinear processes. Structural methods
have already been introduced in the generation and assessment of feasibility of con-
trol configurations for linear processes (Morari and Stephanopoulos, 1980, Govind
and Powers, 1982, Johnston and Barton, 1985, Johnston et al., 1985, Russel and
Perkins, 1987, Georgiou and Floudas, 1989). They are essentially based on graph-
theoretic concepts and the notion of structural controllability (Lin, 1974, Shields and
Pearson, 1976, Glover and Silverman, 1976). The major advantage of these methods
is the genericity of the results and the minimum amount of process information that
they require, which allows them to be efficiently used at the early stages of the design
procedure. There has not been any attempt, however, to systematically introduce

structural considerations in the evaluation and selection of control configurations ei-
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ther for linear or nonlinear processes. On the other hand, intuitive guidelines for the
selection and pairing of manipulated inputs do make implicit use of structural con-
siderations, through the notions of “direct effect” and “physical closeness” (see e.g.,
the modern process control textbooks by Stephanopoulos, 1984 and Seborg et al.,
1989). The idea is that chosing a manipulated input which is “physically close” to a
controlled variable (or has a “direct effect” on it), we have good chances of obtaining
favorable static and dynamic characteristics for the particular input/output pair,
i.e., small time delays, small time constants as well as significant static gain. Clearly
though, as the size and complexity of the process increase, such intuitive consid-
erations become obscure and sometimes misleading, especially in a MIMO context.
Furthermore, there is no theoretical justification on the use of such intuitive notions
as evaluation criteria. The results of Chapter II with regard to the concept of relative
order established that relative order quantifies the above intuitive notions of “direct
effect” and “physical closeness”. Also, the controller synthesis results of Chapters
III and IV showed that relative order arises naturally in the synthesis of nonlinear
control laws, capturing important structural characteristics of a process. Motivated

by the above, the purpose of this chapter is:

1. To identify and quantify limitations that the structure of a process poses on

the control quality

2. To develop guidelines for the structural evaluation of alternative control config-
urations based on control quality characteristics and structural coupling con-

siderations

The above guidelines will allow a systematic hierarchization of alternative control

configurations at the early stages of the design procedure, based on a minimum
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amount of process information. Quantitative, static and dynamic, process informa-
tion can be used at later stages of the design procedure to complement the results
of the structural analysis.

Standing assumptions throughout this chapter will be the following:
1. The control of a single processing unit is considered

2. Operational, environmental, economical, safety and production requirements

have resulted in a set of control objectives (controlled outputs)

3. The major disturbances have been identified (from physical considerations and

possibly steady state gain information)
4. The physical phenomena with non-negligible dynamics have been identified

The term “alternative control configurations” will then imply alternative sets of ma-
nipulated inputs, while the term “multi-loop configuration” will be used to denote
the specification of input/output pairs for a given set of manipulated inputs. In
general, disturbance inputs that can be manipulated may also be considered as ma-
nipulated input candidates. Each control configuration will then correspond to a
state-space model of the form of Eq.2.1.

In Section 5.2 that follows, the fundamental limitations that the structure of
a process poses on the control quality will be studied, as they are expressed by
relative orders; this will naturally lead to guidelines for the structural evaluation of
control configurations on the basis of the overall servo and regulatory characteristics.
Then, a matrix of relative orders will be introduced, which will allow quantifying
structural coupling among input and output variables; the analysis will naturally lead

to guidelines for evaluating alternative multi-loop configurations, based on structural
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coupling considerations. Finally, chemical engineering examples will illustrate the
application of the proposed generic evaluation framework.

5.2 Structural limitations in the control quality and overall
evaluation of control configurations

At a first level of evaluation of alternative control configurations (i.e., alternative
sets of manipulated inputs), one would like to identify inherent limitations in the
control quality imposed by the structure of the process itself. Since the whole treat-
ment is based on structural considerations, issues like non-minimum-phase behavior,
open-loop instability or constraints on the manipulated inputs are beyond consid-
eration at this point, since their assessment requires more quantitative information.
Instead, we are concerned with the general tracking and regulatory characteristics
of the control configurations and the way that they are affected by structural con-
straints. The above issues will be investigated in the light of results on nonlinear
inversion and nonlinear feedforward/state feedback control. The analysis will focus
on systems with non-singular characteristic matrix, which guarantees the feasibility

of the corresponding control configurations (Daoutidis and Kravaris, 1991a).

5.2.1 Relative orders in an explicit inversion control framework

In the case of a general MIMO nonlinear system, the issue of invertibility is
extremely involved. Hirschorn, 1979b suggested an algorithm for the construction
of a left inverse, that recursively generates a sequence of operators Sy, Sz, ..., Sk, by
differentiating the output map. The sequence terminates when the output map for
Sy can be solved for the manipulated input vector, in terms of derivatives of the
output. Under certain conditions, invertibility of this map implies invertibility of the

original system. In Theorem 5.1 that follows, an explicit formula for the system’s
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inverse is derived for systems with non-singular characteristic matrix (the proof can
be found in Appendix E):

Theorem 5.1: Consider a MIMO nonlinear system of the form:

i = f(e)+g(@) o)

B = hi(m)a 1= 1""am
where g(z) is a (n x m) matriz with columns the vector fields gi(z),- - -, gm(z). As-

sume that detC(z) # 0 for z € X, where C(z) is the characteristic matriz defined in

Eq.4.1. Then, the dynamic system :

AR [
o L7 ha(€)
£ = fE)+9(6)CE)™ : -
A" Ym
. Ly hm(£)
[ drlyl T dt"‘ - T ! - (52)
e L7 (€)
v = C(§)™ I
drmy,. ]
i dtrgr/n | L ha(£) |

is a realization of the inverse of the original system.
Remark 5.1: In the case of a SISO nonlinear system (m = 1) with relative order r,

the inverse given by Eq.5.2 reduces to:

d"y
. — L5h(¢)
_ dfr f
7{?; ~ L3A(€)

e
I

LyLy ™ h(€)

which, as expected, is exactly the formula for the inverse of a SISO nonlinear system
originally derived by Hirschorn, 1979a.

It is important to note that the order of the output derivatives required in Eq.5.2 is

determined by the relative orders 1,79, +,7m, which therefore represent a measure
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of “improperness” of the inverse system. Therefore, in any explicit inversion-based
control structure like IMC, Inferential Control, etc. (Economou et al., 1986, Parrish
and Brosilow, 1988), the relative orders ry,7;, -+, 7, will determine the order of
the filter required in order to make the control action finite and consequently the
order of the closed-loop response. In the above sense, the relative orders r; play a

fundamental role in “shaping” the closed-loop response.

5.2.2 Relative orders in a feedforward/state feedback control framework

The considerations of the previous subsection become even more transparent
within the feedforward/state feedback controller synthesis framework of Chapter
IV. Referring to MIMO nonlinear systems of the form of Eq.2.1 with non-singular
characteristic matrix, the control law of Eq.4.3 induces the closed-loop response of
Eq.4.4 which is of order exactly equal to (r; + 72 + -+ + r,,). This should not be
surprising since such an input/output linearizing control law can also be interpreted
as an implicit and finite approximation of an inverse-based controller. Furthermore,
considering the relative orders of the outputs y; with respect to the external input
vector v, it is clear that they are exactly equal to r;. This implies that the order
of the closed-loop response for the individual outputs y; is exactly equal to r;. It
also implies, in loose terms, that the relative orders r; are preserved in closed-loop
and the outputs can not be made more responsive than they were in open-loop.
Similar characteristics have been attributed to dead time within the framework of
linear control (Holt and Morari, 1985a), which is consistent with the connection of
the relative order with apparent dead time established in Chapter II. In the above
feedforward/feedback framework, the role of the relative orders p;, is also significant.

In particular, the extent that the condition r; < p;. is satisfied determines the
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extent that measurements of the disturbances and derivatives of the disturbances are
required for complete disturbance rejection on the output y;; moreover, the difference
(r; — pix) represents the order of finite approximation required for the derivatives of

the disturbances in the control law.

5.2.3 Overall evaluation of control configurations

The fundamental structural limitations in the control quality expressed by the
concept of relative order lead naturally to a framework for the structural evaluation of
alternative control configurations, on the basis of their overall servo and regulatory
characteristics. In particular, the following criteria arise as the basis of such an

evaluation:
1. Low order response characteristics for the individual outputs (min r;)
2. Low order overall response characteristics (min (ry + -+ + 7))

3. More direct effect of the manipulated inputs than the disturbance inputs on

the controlled outputs (r; < pix)

The intuitive basis of the above criteria lies exactly on the notions of “direct ef-
fect” and “physical closeness” (see e.g., the reactor cascade example), for which they
provide a quantitative expression. Obviously, the most favorable control configura-
tion would be one for which 7; = 1 and p;. > 1 for all outputs y; and disturbances
d;. When such a configuration does not exist, one must carefully hierarchize the
alternative control configurations depending on the nature and the specific control
needs of the process under consideration. A ranking of the outputs according to their
importance may then be helpful in order to identify the most favorable control con-

figurations. The above procedure will also allow identifying disturbances for which
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feedforward compensation may be required.

Remark 5.2: It is clear from the above discussion that the relative orders r; (instead
of the individual relative orders r;;) capture the overall control quality characteristics.
This is a consequence of the fact that we have used muitivariable control consider-
ations as the basis of the discussion. In the next section, multi-loop configurations
will also be discussed and the individual relative orders r;; will naturally arise.

5.3 Structural coupling and evaluation of multi-loop con-
figurations

At a second level of evaluation, one would like to identify control configurations
with favorable input/output coupling characteristics. This is especially important
when one is faced with the possibility of employing a multi-loop control configura-
tion (i.e., a partially or completely decentralized control configuration). Obviously,
in this case, there is a tradeoff between the simplicity in the controller synthesis and
the performance deterioration due to neglected interactions. Steady state gain and
time constant considerations, encoded in appropriate interaction measures have been
traditionally used in the linear control literature to identify favorable input/output
pairs and evaluate the resulting configurations.

The graph-theoretic representation of a process introduced in Chapter II lends itself
naturally to a notion of structural coupling (or structural interaction), i.e., cou-
pling in the sense of structural interdependencies among the process variables. In
the light of Theorem 2.1, relative order arises then as a natural measure of structural
coupling between input and output variables. Based on the above, in what follows,
we will introduce a matrix of relative orders and use it to systematically formulate in-

tuitive guidelines for the synthesis and evaluation of multi-loop configurations based
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on structural coupling considerations.
Definition 5.1 (Daoutidis and Kravaris, 1991b): For a nonlinear process with

a model of the form of Eq.2.1, we define the relative order matrix:

Tin = Tim

M, = | : : (5.3)

[ Tmi 't Tmm |
with elements the individual relative orders r;; between the manipulated input and
output variables.

Clearly, the relative order matrix of Eq.5.3 captures the overall pattern of structural
coupling among manipulated input and output variables in the process under consid-
eration. Before proceeding any further, the well-known notion of a structural matrix
and its generic rank will now be reviewed (e.g., Shields and Pearson, 1976, Glover
and Silverman, 1976):

Definition 5.2: A structural matrix is ¢ matriz having fized zeros in certain
locations and arbitrary entries in the remaining locations. For a given matriz, its
equivalent structural matrix is the one which has zeros and arbitrary entries in
ezactly the same locations as the zeros and the non-zero entries of the original ma-
triz.

Definition 5.3: The generic rank of a structural matriz is the mazimal rank that
the matriz achieves as a function of its arbitrary nonzero elements.

Theorem 5.2 that follows will facilitate the synthesis and evaluation of multi-loop
configurations based on structural coupling considerations (the proof is given in Ap-
pendix E):

Theorem 5.2: Consider a nonlinear system in the form of Eq.2.1 and its character-

istic matriz C(z). Then, the generic rank of the structural matriz which is equivalent
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to C(z) will be equal to m, if and only if the outputs can be rearranged so that the
minimum relative order in each row of the relative order matriz appears in the major

diagonal position, i.e., M, takes the form:

T Ti2 " Tim
Tor T2 =+ Tom

M, = (5.4)
Tmi Tm2 °°° Tm

Remark 5.3: If the matrix C(z) itself is nonsingular (i.e., has full numerical rank),
its equivalent structural matrix will also have full generic rank, and the output rear-
rangement will therefore be possible. The converse, however, is not necessarily true.
Remark 5.4: The output rearrangement contained in Theorem 5.2 is similar to the
output rearrangement suggested by Holt and Morari, 1985a in studying the effect of
dead time in dynamic resilience and by Jerome and Ray, 1986 in the context of dead
time compensation for MIMO linear systems. This is consistent with the connection
between apparent dead time and relative order established earlier.

Given a process model with a characteristic matrix whose equivalent structural ma-

trix has full generic rank, the result of Theorem 5.2 is important in two ways:

o The suggested output rearrangement indicates the input/output pairings u;/y;

with the dominant structural coupling

o After the output rearrangement, the off-diagonal relative orders allow the eval-
uation of structural coupling between a specific input/output pair and the

remaining input and output variables

In particular, off-diagonal relative orders in a row indicate the coupling between

a specific output and the other inputs, and they will necessarily (due to the rear-
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rangement) be larger or equal to the diagonal relative order. On the other hand,
off-diagonal relative orders in a column indicate the coupling between a specific in-
put and the other outputs, and there is no guarantee that they will be larger or equal
to the diagonal relative order. The differences between off-diagonal and diagonal rel-
ative orders 2) in a column of the relative order matrix: (r; —r;), and b) in a row of
the relative order matrix: (r;; — r;), provide then a measure of the overall structural
coupling in the system, for the particular input/output assignment. The larger these
differences are, the weaker the structural coupling is in the system, and the more
favorable the employment of a multi-loop configuration is from a structural point of
view. In the above spirit, it is also possible to identify groups of inputs and outputs
such that structural coupling among members of different groups is weak, providing
thus favorable candidates for partially decentralized control structures.

Remark 5.5: In the special case of an input/output decoupled system, M, becomes:

TL 00 -+ 00

m 7‘2 LY m
M, =

00 00 -+ Ty

The linear analog of this case would be a diagonal transfer function matrix.

5.4 Concluding remarks

Relative order has been established as a fundamental structural concept, which
quantifies the notions of “direct effect” and “physical closeness™, expresses fundamen-
tal structural limitations in the control quality and allows the evaluation of structural
coupling among input and output variables in a process. The above properties al-

lowed us to develop general guidelines for the structural evaluation of alternative
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control configurations. In summary, for a particular process and after the alternative

control configurations are identified,
o The relative orders r;; and p;, for all 7, j, & are calculated
o The relative order matrix M, is formed

Then, after checking the nonsingularity of the characteristic matrix C(z) (or its
equivalent structural matrix), we proceed with an evaluation of the overall servo
and regulatory characteristics of the alternative configurations and the evaluation
of structural coupling. Clearly, the above evaluation framework is a generic one; it
allows quantifying structural differences of control configurations, if there are any,
and allows a hierarchization of alternative control configurations, often based
on the specific control needs of the process under consideration. At the early stages
of the design procedure, with a minimum amount of information availabe, this is
clearly the best we can hope for. In later stages of the design procedure, when
more quantitative information becomes available, additional analytical tools have
to be employed in order to check the modeling assumptions and make sure that
the structurally favorable control configurations are statically and dynamically well-

defined and well-behaved.

5.5 Ilustrative examples

In this section, the structural evaluation guidelines developed previously will be
applied to three typical chemical engineering processes. In the first two examples and
without loss of generality, the analysis will be based on detailed state-space models
in order to better illustrate the procedure. In the third example, the analysis will be

based on purely structural information.
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Figure 5.1: A single effect evaporator

5.5.1 A single-effect evaporator

In this example, the single-effect evaporator shown in Figure 5.1 is considered. A
solution stream at solute molar concentration zr enters the evaporator at a molar
flow rate F. Heat provided by steam is used to vaporize the water, producing a
vapor stream D and a liquid effluent B at solute concentration zp. For the purpose

of this example, the following simplifying assumptions are made:
1. The liquid is perfectly mixed

2. The solute concentration in the vapor stream is negligible compared with that

of the liquid stream (zp = 0)
3. The vapor holdup is insignificant
4. The feed and bottom stream have a constant molar density c

5. The vapor and liquid are in thermal equilibrium at all times
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6. All the heat input to the evaporator is used for vaporization
7. The heat capacities of the steam chests, tube walls etc., are negligible

Under the above assumptions, the following equations describe the dynamic behavior

of the process:

o Total material balance

dh
Ac-(—izzF—B—-D (5.5)

o Solute balance

AC&IZ-B—) = Fzp — Bzp (5.6)

where

A = cross sectional area
F,B,D = molar flow rates
c = molar density of feed and bottom streams
h = liquid level in the evaporator
zp,zp = solute concentration at the feed and bottom stream respectively

(in mole fractions)

Assumption 3 implies that the flowrate D is equal to the rate of evaporation and

together with assumption 6 imply that:

(5.7)

where AH, is the latent heat of vaporization and @ is the heat input to the evapo-
rator. The above equation can then be substituted to the total material balance.
Clearly, the variables to be controlled are the liquid level in the evaporator, &, and

the concentration of the effluent stream, zg. Available manipulated variables are the
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flowrate B and the heat input Q, while ¢ is the major disturbance. Thus, setting:
Il:h"hn T2 =TB — IBs

and also:
up=B—B;, u; =Q —@;
dl =T — ITps
N1=21, Y2 =12

where the subscript s denotes a nominal steady-state value, the dynamic equations

assume the following state-space form:

0
= Bsalg
AC(Z}’*‘}LS) i
1 [ AH,
" Ac T Ac
+ :C Ut AH (2o + 28,) | @2
Ac(zy + hy) (5.8)
0
+ F dy
Ac(zy + h,)
hh = o
Yo = T2

The vector fields f(z),¢1(z),92(z),w;i(z) and the scalar fields hy(z), ho(z) can be
easily identified from the above equations. A straightforward calculation of the

relative orders r;; and the relative order matrix M, yields:

™1 Ti12 11

M, = =

Tor To2 21
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while the characteristic matrix of the above system is found to be equal to:

1 AH,
Lphi(z) Luhi(e) | | =) ()
C(z) = = AH,(z2 + zB;)
0 Lyho(z) 0 Ac(z: + hy)

and is nonsingular, which guarantees the feasibility of the control configuration and
allows the application of Theorem 5.2.
Clearly,

T'1=1,7'2=1

and the overall structural characteristics of the configuration are the best possible.
Moreover, the relative orders of the two outputs with respect to the disturbance
input take the values:

p11 =00, pa1 =1

which indicate that the output y; is not affected by the disturbance d;, while y;, is
affected in a direct way and moreover pg, = rp. This implies that feedforward com-
pensation will be required for the disturbance d; in order to completely eliminate its
effect on y,.

Proceeding with the evaluation of structural coupling for the given control configu-
ration, note that the relative order matrix is in a form such that all the r; are in the

major diagonal. This automatically suggests an input/output pairing of the form:

(wr/y1), (u2/ys)

(B/k), (Q[zB)

as the most favorable input/output pairing from a structural point of view, while the

off-diagonal relative orders in the relative order matrix indicate a significant one-way
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Fa Ta ©ao Fg Tg Cgo
0 O
o v F T >
c, ¢, c. C

Figure 5.2: A continuous stirred tank reactor

structural coupling. The above conclusion clearly agrees with intuitive considerations

based on criteria of the “direct effect” or “physical closeness” type.

5.5.2 A continuous stirred tank reactor

Consider the CSTR shown in Figure 5.2. Two solution streams consisting of
species A and B, at volumetric flowrates F4 and Fpg, temperatures T4 and Tp and
concentrations cq¢ and cgo, respectively, enter the reactor, where the elementary
reaction A + B — C + D takes place. The effluent stream leaves the reactor at
flowrate F, concentrations c4,cp,cc,cp and temperature T. Heat may be added
to or removed from the system at a rate @, using an appropriate heating/cooling
system. Assuming constant density p and constant heat capacity C, for the liquid

streams and neglecting heat of solution effects, the material and energy balances that
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describe the dynamic behavior of the process take the following form:

%— = Fy+Fg—F
dcy Fu B (—i
~ = V(CAO —cy) — Ay~ kcscpe RET
% = FVE(CBo —cB) — CBT;l - kgACBe(_Yﬁ) (5.9)
%070_ = —cc&;—}i@- + kcAcBe(—-fﬁ
% = EVA(TA -T)+ %(TB -T)+ (_p%f)kcAcBe(_—ﬁf) + V;C,,Q
where
C, = heat capacity
E = activation energy
F4, Fg,F = volumetric flow rates
Q = heat input to the tank
Ts,T,T = temperatures
Vv = volume
~AH = heat of reaction
et = molar concentrations of species z
p = density

For the above process, we wish to control the volume of the liquid in the tank, V,
the concentrations of the effluent stream, cy4, cc, and the temperature of the effluent
stream, T'. Available manipulated variables are the flowrates F4, Fg, F' and the heat

input (). Thus, setting:
r1=V =V, 23 =cqa—cas, T3=CB —CBs, T4 =Cc —CCs, T5 =T — T
and also:

uy = Fy— Fys, up = Fg — Fpy, us = F — F;, ug = Q — Qs
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Y1 =21, Y2 =122, Y3 =Ty, Y4 = Ts

where the subscript s denotes a nominal steady-state value, the dynamic equations
can be put in the standard state-space form of Eq.2.1. Then, the calculation of the

relative orders and the relative order matrix is straightforward and yields:

™11 T2 T13 Ti4 111

To1 To2 T3 T24 1 1 2 2
M, = =

T31 T32 T33 T 1 1 2 2

T41 T42 Ty3 T44 1 1 2 1

The characteristic matrix is given by:

Lohi(z) Lghi(z) Lghi(z) 0
Lglh2($) nghg(.'ll) 0 0
Luho(a) Lyhs() O 0

| Ly, ha(z) Ly hy(z) 0 Ly, ha(z) |
and its equivalent structural matrix has full generic rank.

The overall structural characteristics of the control configuration are clearly the best
possible, since all r; are equal to 1.

Following Theorem 5.2, we interchange the first and the third row of M,, obtaining

the following form of the relative order matrix:

I ]
112 2
112 2
1 11 o

_1121-

with the relative orders r; in the major diagonal. Further rearrangement of the first

and second row is possible, without aflecting the form of the relative order matrix.
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Consequently, the input/output pairs with the dominant structural coupling are :

(u1/y2), (u2/ys), (ua/y1), (ua/ya)

(Fafca), (Flcc), (FIV), (Q/T)
(w1/ya), (uafy2), (us/y1), (ua/ya)

(Fa/ec), (Fe/ca), (FIV), (Q/T)

On the other hand, the off-diagonal relative orders indicate a significant overall struc-
tural coupling, induced mainly by Fj, Fp.
Note that as in the previous example, the results conform with intuitive considera-

tions about the process.

5.5.3 A heat exchanger network

Consider the network of heat exchangers shown in Figure 5.3 (Georgiou and
Floudas, 1989). The energy balances that describe the dynamic behavior of the

process have the following structural form:

ar;

o = (f)l(T],Tg, T107F1)
dT:

—d.TZ = ¢2(T1,T2,T207F2)
dT:

—2 = $5(Ts, Ty, Tso, F3)
7 (5.10)
d_; = ¢4(T3,T4,T401F4)
dT

-.(-ﬂ—s = ¢5(T5,T67T505F5)
dT

ngﬁ = ¢G(T5,Te, Tso, FG)
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Fr T
F2 Tag F, Tp >
Fg Tg
F1 Ty
Fg Tgo Fg Tg >
F3 T3
Fs Tgg
Fs Tao F, T, .
F3 T3q

Figure 5.3: A heat exchanger network
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where
F; = flow rate of stream 2
T; = exit temperature of stream ¢
T, = entrance temperature of stream

and ¢;(.) denotes a functional dependence.
Assuming steady state conditions at the mixing junction, the following algebraic
equations also hold:

F(; = ¢7(F2,F4) (511)
TBO = ¢8(T2’T4aF27F4) (512)

Consequently, the last equation in Eq.5.10 can be more appropriately represented as:

dT;
7} = ¢o(Ty, Ts, Ts, Ts, Fz, F) (5.13)

The control objective, determined by the operational needs of the plant under con-
sideration, is to keep the temperatures T} and Ty at some desired values. The major
disturbances are considered to be the temperatures T3¢, T50. For notational consis-

tency, let:

dy = Tso, dy = Tg
y="T, y2=Ts

Available manipulated inputs are the flowrates Fy, Fy, and Fy. Therefore, three alter-
native control configurations are possible, corresponding to the pairs of manipulated
inputs (Fy, F2), (F2, Fy), and (Fy, Fy).

The structural dynamic model of the above process corresponds to the digraph rep-
resentation shown in Figure 5.4 (where only the input.nodes that correspond to the
possible manipulated inputs and the disturbances are shown, for simplicity). TFor the

three alternative control configurations under consideration, the calculation of the
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Figure 5.4: The digraph of the heat exchanger network

various relative orders can be based on the result of Theorem 2.1 and can be readily
performed from the digraph representation of the process. More specifically:

Configuration 1: u; = F}, u, = F;

A{r _ Ty Ti12 _ 1 2

T21 T2 3 1

and the characteristic matrix has the form:

Lyhi(z) 0
C(z) =
0 nghg(flf)

which guarantees full generic rank of its equivalent structural matrix.

Configuration 2: u; = F, up, = Fj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

T11 Ti2 2 oo

M, = =

To1 To2 1 1

and the characteristic matrix has the form:

LglL hl xz 0
;( ) f ( )
Lglhg(.’t) nghz(l')

which also guarantees full generic rank of its equivalent structural matrix.
Configuration 3: u; = Fy, up = Fy
T11 Ti2 1 o
M, = =
To1 To2 3 1

and the characteristic matrix has the form:

Lg () 0
C(z) =
0 Lg2h2(z)

which also guarantees full generic rank of its equivalent structural matrix.

Also, the relative orders with respect to the disturbance inputs are given by:

P11 = 00, P12 = OO

pa =3, pp=2
Clearly, the relative orders with respect to the manipulated input vectors take the
following values:
Configuration 1: r; =1, rp, =1
Configuration 2: r; =2, r, =1
Configuration 3: r; =1, rp, =1

Since r; < p;x for all 7,x, all three configurations have very favorable regulatory
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characteristics from a structural point of view. Configurations 1 and 3 have the best
possible overall structural characteristics, since 7y = 7, = 1 for both, while configu-
ration 2 has less favorable structural characteristics since 7, = 2.

We can now proceed evaluating the structural coupling in the three configurations.
The relative order matrices do not require any rearrangement and they immediately
indicate the most favorable input/output pairings for each configuration. A close
inspection of the off-diagonal elements indicates that configuration 2 has an unfavor-
able structural coupling, since the off-diagonal relative order in the first column of
M, is smaller than the diagonal. Comparing the structural coupling in configurations
2 and 3, it is clear that configuration 3 is the most favorable one, since it is charac-
terized by the weakest structural coupling. In the case of a multi-loop configuration,

the most structurally favorable input/output pairing would then be:

(I /Ty), (Fi/Ts)
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5.6 Notation

Roman Letters

C(z) = characteristic matrix
M, = relative order matrix
T = relative order of the output y; with respect to the

manipulated input vector u
Tij = relative order of the output y; with respect to the

manipulated input u;

t = time

uj = manipulated input

z = vector of state variables
Yi = output to be controlled

Greek Letters

pix = relative order of the output y; with respect to the disturbance d,

Acronyms
CSTR = continuous stirred tank reactor
MIMO = multiple-input multiple-output

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER VI

CONCLUSIONS

In this thesis, a unified methodological framework was developed for the syn-
thesis of feedforward/feedback control systems for multivariable nonlinear processes.
First, an original formulation of the concept of relative order was introduced, in order
to study the effect of disturbance inputs on process outputs. A number of attrac-
tive properties of relative order were rigorously established: its generic calculation
requires only structural information for the process, it provides a measure of sluggish-
ness of the respone, it quantifies the intuitive notions of “direct effect” and “physical
closeness” and it represents a structural analog of apparent dead time. Then, a
general feedforward/feedback control problem was formulated for multivariable non-
linear processes. The key step in the solution of this problem was the synthesis of
explicit feedforward/state feedback control laws that completely eliminate the effect
of measurable disturbances on the process outputs and induce a well characterized
linear input/output behavior. A general feedforward/feedback control structure was
developed, which incorporates a linear multivariable controller with integral action
to account for model uncertainty and unmeasured disturbances. Closed-loop sta-
bility, performance and degree of coupling were associated with appropriate choice

of a number of adjustable parameters. The proposed methodology was applied to

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



141

composition control in a cascade of chemical reactors in series and number average
molecular weight and temperature control in a continuous polymerization reactor.
Simulation studies verified the theoretical results and illustrated the superiority of
the proposed method over existing linear and nonlinear techniques. Motivated by
the fundamental properties of relative orders and the controller synthesis results, the
problem of selection of control configurations was also addressed. General guidelines
were developed for the evaluation and hierarchization of alternative control config-
urations at the preliminary stages of the design procedure, on the basis of their
structural characteristics.

The results of the thesis illustrated the power of differential geometric methods in
addressing typical control problems for nonlinear systems. The state-space approach
was advocated throughout the thesis (as opposed to the input/output approach), be-
cause of the explicitness of the results and the transparent insight obtained from an
analysis point of view. Appropriate combination of state observers and state feedback
controllers appears to provide effective ways for dealing with the issue of unavailable
state measurements (Daoutidis and Kravaris, 1991c, Daoutidis et al., 1990). The
methodological framework introduced in the thesis can be generalized to more gen-
eral forms of nonlinear systems in a straightforward fashion. Future research in this
direction must also address the development of adaptive control schemes that deal
effectively with parametric uncertainty and unmeasured disturbances. Other chal-
lenging problems include the development of ISE-optimal compensators for MIMO
nonlinear systems with time delays or unstable inverses, as well as the develop-
ment of design methods that take systematically into account modeling errors and
constraints in the process variables. Regarding the problem of selection of control

configurations, future research must focus on static and dynamic limitations in the
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control quality posed by different control configurations, as well as issues of feasibility
of control configurations. Coupled with the theoretical investigations, issues related
to the implementation of the control methods are also of obvious importance. These
include the study of discretization and sampling effects, the development of software
packages within a symbolic computation environment, and finally the experimental

application of the methods.
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APPENDIX A

DIFFERENTIAL GEOMETRIC NOTATION

Let f(z) denote a smooth vector field on R™ and A(z) a smooth scalar field on

IR™. Then, the Lie derivative of h(z) with respect to f(z) is defined as:

Libie) = 3= 52) G (A1)

where fi(z) denotes the [-th row of f(z).

Higher order Lie derivatives can be defined inductively, as follows:

LOh(z) = h(z
#h(z) (z) (A.2)
L’}h(x) = L;L‘}"h(x), k=1,2,---

Let g(z) denote a different smooth vector field on IR*. Then, mixed Lie derivatives

of the form:

LyL%h(z)

can also be defined in an obvious way.

The Lie derivative operator is a linear first-order partial differential operator

defined by:

z 0
L= ;fl(x)%‘[ (A.3)
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For hy, k2, smooth scalar fields and f, g, smooth vector fields, the following properties

of the Lie derivative operator hold:

Lf(hl + hg) = th] + Ljhg
L = L+ L
f+g ft L (Ad)
thf = hlLf

Lny # Lng
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APPENDIX B

PROOFS OF CHAPTER II

B.1 Proof of Theorem 2.1

Only the part of the theorem concerning the relative order r;; will be proved. The
same arguments will hold for p;x. The procedure follows closely the one by Kasinski
and Levine, 1984.

For the purpose of the proof, define v;; as the smallest integer such that there exist

integers ky,ka,---,k,, € {1,---,n} for which:

Ofk,-1(2)  8fy, (x) Ohi(z)

Oz, Ozy, Oy,

gjk"i) (IZJ) ,?:‘ 0 (Bl)

The proof of the theorem will then go through the following steps:
Step 1: It will be shown that v;; = {;; — 1.
Step 2: It will be shown that v;; <ry;.
Step 3: It will be shown that generically v;; = ;.
Step 1: v;; ={i; — 1

From the definition of »;;, we have that :

i (2)  Bfiy(x) Ohile) .
k=117 s £ 0 (B.2)

AN
6zkul,1 8:ck2
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Consequently, according to the definition of the graph, the sequence (u;, Thy, s "5 Thys i)
corresponds to a directed path connecting u; and y;, of length (v;; + 1). By its
definition, ¢;; is the length of the shortest path connecting u; and y;. Therefore,
£; < (vij + 1)

Suppose now that ¢;; is strictly less than (v;; + 1). Then, by the definition of the

graph and £;;, there exist integers ky, ko, -, kg,—1 € {1,-- ,n}, such that:

Bfk,o_g(m) o 0fk, (z) Ohi(z)

* 8(1:1:1, -1 6$k2 8%
i

20 (B.3)

with £;; — 1 < v;;. But this leads to contradiction, since v;; is by its definition the
smallest integer for which such a sequence of integeres exists. Consequently, the
strict inequality does not hold and ¢;; = (vi; +1).

Step 2: v;; <1y
In order to proceed with the proof, some auxiliary notation is needed. In particular,
we define the subsets I/ and I of {1,---,n}, with j > 1, by induction, as follows:

I’ = {ke{ln) ah(”’

#0} =

i = {kje{1,..-,n}:3kj_lerg ek el .
Ofx,_, () [, (z) Ohi(z) 40} _ P (B.4)
Ba:kJ a:L'k2 8:% !
Also, the following analytic functions are defined:
: h;
7{'1'(1{,'1’ e k]) — afl\.,-—l (x) e afkl(z) a 1‘1(:1:) (B.S)

Oz, Ozy, Oxy,
The dependence of 7; on z is suppressed mainly for notational convenience. Taking
into account the previous definitions of the sets I¥ and T, it can be deduced that
mi(k1,- -+, k;) is a function of the state variables zy, with k; € ff Finally, the

following lemma will be needed (for its proof he reader is referred to Kasinski and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

Levine, 1984):

Lemma:

Lihi= Y fumilhyee k) + @0 (B.6)
kyer},.. kel :

where <I’1(f‘ f"l) is a linear combination with analytic coefficients of all the terms of

al_sulﬂ'i(kl’ to 7ks)

the form m;(k;,---,k-1) and OTp,_, -+ 0Tk,

, for every s < [ — 1 and every
kyyoo kg € DL

In the above lemma, the exact dependence on « is also suppressed. While m;(kq,- -+, ki)
is a function of z,, with k; € T}, it can also be deduced that fi, is a function of z4,,,,
with kiy, € THL

The relative order r;; is defined as the smallest integer for which L, Lr"—1 (z) #0.

Applying the above lemma to the case of the scalar field Lr"-lh :(z), the following

expression is obtained:

LTIJ ]1( ) = Z fL,.u_] (1\,1’ ..y k"'.J—l) + QT,J—I(FTU 2) (B.7)
ki€, ,.'J_lel‘:ﬁ =1
and
riy= oLk
Lyl hie) = 3 gﬂw__gz_i_lz (B.S)
kri] EI-‘:iJ .'l]
a-fkv'u—l
Z gjkr‘_,”rf(klﬂ"'vkr.‘.,)'*' Z gjkr,' Wf(kl’”"kr,,—l) 8 -
N - ) Zr,
k1 Er}""'k"ueri ! ky ,u"kTiJEFI'J 7]
(B.9)
Omi(kyy- -+ kv, 1) 0%, -1
+ E_r . gjkr.’, a.'ll fLr,}—x + Z.- 1J_ﬂsr,] ar (BlO)
kypeeeihr;, €17 kr,, €)Y

In order for the above expression not to be identically equal to zero, at least one
term should be nonzero. If the first term is nonzero, then at least one product

Gikr,, mi(ky, -+, ky,,) should be nonzero. Since, by definition, »;; is the smallest integer
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such that there exist integers for which this is true, we must have v;; < ry;. If the
first term is equal to zero, but the second is nonzero, there must be a product

gj;:rijm(kl,---,k,‘j), with k,--- k.. € f‘:"—l which is nonzero. In this case, we

Tij
should also have v;; < r;;. Similar arguments can be used for the other terms,
proving that »;; < ry;.

Step 3: Generically, v;; = r;
Given the result of Step 2, suppose that v;; is strictly less than r;;. Then, the

following system of equations will hold:

Ly, L' hi(z) = 0
(B.11)

LQJ L}u —2hi(z)

il
)

This is a system of (r;; — v;;) non-trivial partial differential equations in f, g;, h; and
their partial derivatives. The set of solutions of the above system will be a closed
subset with empty interior of the space of analytic vector-valued functions on R".

Consequently, v;; = r;; generically, i.e., for almost all functions f, g;, k;
B.2 Proof of Theorem 2.2

Under the assumptions of the theorem, in a neighborhood of 2o and for sufficiently

small times, the output y; of the system assumes a unique Volterra series expansion

of the form (Fliess, 1980):

t)+/ t T])'LLJ Tl)dTl +/ / t y T2, T1 u](TZ)uJ(TI)dTZdTl +

(B.12)
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where ki(t,7;,---,7) are the Volterra kernels associated with the output y;, which
assume a Taylor series expansion of the form:
0 = ) 1
k'- (t) = Z Lj h,($o)"7—1—' (B13)

51=0

(t—r)r"

Ht,m) Z Z L% Ly, L% hi(o) = (B.14)
72=03j1=0 Ji-Jz2:
0o 00 o 3 . . ft — 7 _ _72 .73
B(tm,m) =53 L’;LgJL’!’LgJL’I‘h,-(xO)( n)!(n - )" (s
) 0

]1!]2!]3-

<
X
1
o
.
b
1l
o
[
=
Il

The first term of the expansion, k2(¢), which corresponds to the part of the response
that depends only on the initial conditions, will vanish at the given initial condition
To, since the output is in deviation variable form. Then, we obtain in a straight-
forward way the following form for the response under a unit-step change at the

input:

t‘Z
yi(t) = [Lghi(zo)]t + [Lg,Lshi(zo) + LyLg,hi(zo) + L] hi(xo)]=

+[Lg,L2hi(z0) + LyLg, Lhi(xo) + L} L, hi(0) + 2L% Lyhi(zo) (B-16)
t3
+L91LngJ h,'(l'o) + QLJ‘LgJ h,’((l)o)]‘g + h.o.t.

One can then easily verify that:

o if ry; =1, yi(t) = Ly hi(zo)t ast — 0

2
e if rj; =2, yit) = Ly, th,-(xo)—tQ— ast — 0

3

1
o if Ts; = 3, y,(t) = LgJL‘Z{h,'(IIJQ)E ast— 0

Ty

and, by induction, yi(£) = Ly, L~ k(o)

ast — 0.
o]
i
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B.3 Proof of Corollary 2.1

A simple proof of Corollary 2.1, independent of the result of Theorem 2.2, goes
as follows:
Consider the transfer function between u and y, G(s) = ¢(sI — A)~'b and its expan-

sion in terms of the Markov parameters (see e.g., Kailath, 1980):

cb  cAb cA?b
+ +

s2 s3

(B.17)

Then, calculating the response of the output under a unit-step change at the input,

the following relation is obtained:
t? t°
y(t) = (cb)t + (cAb)7 + (CA%)E + h.o.t. (B.18)

and the result of Corollary 2.1 follows immediately.
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APPENDIX C

PROOFS OF CHAPTER III

C.1 Proof of Theorem 3.1

Let p. be the minimal relative order p; of the output with respect to the distur-

bances in class C. Also, define the following subclasses of class C:

ct = {dn ECIPK=P.‘}

C? = {d.e€C:pe=p.+1}

Clr=r) = {d,eC:p.=r—1}

Then, a direct calculation of the derivatives of the output y up to order r yields the

following expressions:
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y = hiz)
d
= = L)
dp.—l _
dipe-1 = Ll)," lh(w)
dP*y 1
= g)+ Y. de(t)Lu Ly h(z)
a Leecd
[
.d_g — Lp'_Hh:E)-'{- Z d Lwanh()
dtes deC(?)
+ % [‘1 L L) + 5 (4 ()LWL‘}"‘W))]
de€CH)
dr—ly - -
o = L@+ X ddblu Ly ha)
d,‘EC('-Pt)
d
+ Z [d,;(t)Lw,,L}’zh(a:)+:l-£(d,:(t)waL}“h(x))]+
d€C(r—pe—1)

d
+ Y |4 Lu L5 h(@) + 5 (delt) L, Ly Ph(2)) +
deeCcl)

dr—lh-l

T (d~<t)Lw~L'}“’fz(w>)]

= Lih(e) + w(t)L, L7 h(z) + ) de(t)Lu, L7 h(z)

ds€B

+ 3 [d,;(t)LwKL}‘lh(m)+%(d,‘(t)waL}‘zh(x))]+

d€C(T—pe)

d'y
dt”

+ 3 {de(®)Lu, LT h(z) +
de€C)
dr—re
g7

= (de(t) Lo, L} 2h(2)) +

(dx(t)LwﬁLﬁ"lh(x))}
(C.2)

k

d;‘/ and substituting u from

Eq.3.3, it is easily found, after some algebraic mampulatmns, that:

Using the above expressions to form the sum Zﬂk

T dky
gﬁkm =v

which completes the proof.
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C.2 Proof of Proposition 3.2

The operation of calculating derivatives of the output y is equivalent to the recur-

d
sive application of the operator (Lf + d(t)Ly, + u(t)Ly + —) to h(z). More specif-

ot
ically,
y = hiz)
dy 0
i (L, +d(t)L,, + u(t)Lg + at) h(z)
(C.3)
dr—ly a r—1
dy o\’
= (errdomsuon %) e
Given the definition of the relative orders r and p, the above expressions take the
form:
y = h(z)
dy
E = L/h(l‘)
d*ly -1
=i L5~ h(z)
dpy _ a p~1
i Ly+d(t)L, + E) Ly h(z)
dP+1y a 0 ~1
prrili Ly+d(t)L, +u(t)Ly + E) (L, +d(t)L, + E) L} h(z)
Ty L;+d(#)L )L T_HL d(t)L +a Lo h(z)
di—1 f+()w+u()g+a s+ d(t) Ly EY 1 T
dry _ a e a p—1 '
e (L, +d(t) Ly, + u(t) Ly + E) <Lf +d(t)L, + Ot) Ly h(z)

(C.4)

According to the procedure of the proof of Theorem 3.1, it is clear the disturbance-
free input/output behavior of Eq.3.4 can be induced by a feedforward/static state

feedback law if and only if the manipulated input u does not appear explicitly earlier
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that in the r-th order derivative of the output. Imposing this condition on the
expressions of the derivatives of y of order p+1 through r—1, the following equations

are easily obtained:

£
Lg((L,+d(t)Lw+%) —Lg) " 'h(z)=0, £=1,---,(r—p—1) (C.5)

It is also straightforward to show by induction that the following operator identity

holds:

3\ e ) 9\*
(L, +d(t)Ly, + 55) —Lf= ‘;)L‘;“"‘ (d(t)Lw + E)’t) (L, +d(t)L, + E)
(C.6)
Combined with the definitions of the functions ¢¢(z,d) (Eq.3.15) and Eq.C.5, Eq.C.6
directly leads to the conditions of Eq.3.14 for £ = 0,1,---,7 — p — 2. Furthermore,
whenever these conditions are satisfied, the expressions for the derivatives of the

output y take the form:

y = hiz)

dy

di = th(.’l,‘)
drly -
- = L *h(z)

dry ’

— = th(a:)-i-(ﬁo (z,d(t))

dts (C.7)
4Pty

ditl Lf}+1h(m)+¢1 (.’L‘,d(t)’d(t)(l))

dr—ly . -
o = L)+ b (2,d(0), (), - d(1) 07 7Y)
d’y . -
i Lih(z) + ¢,-, (x,d(t),d(t)“),---,d(t)( ,,))

+u(t) Ly (L7 h(@) + $rope (2, (1), A, - -, d(1)=71))

Then, it can be easily shown that a control law of the form:
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w= 8Ly (L7 h(e) + brmpn (2,d(2), dO, - (1))

{v — 3 BiLkh(z) = 3 Bed—, (z,d(2), d(B), - ,d(t)“'-"’)} (C.8)
k=0 k=p

induces the input/output behavior of Eq.3.4, for all values of the disturbance d(t).

The control law of Eq.C.8 will be in the form of Eq.3.11 (and therefore, well defined

for all z € X), if and only if:
Ly$reper (2, d(t),d&)D, -+, d(1)=*70) = 0 (C.9)

which establishes the condition of Eq.3.14 for £ = r — p — 1. Under this additional

condition, Eq.C.8 reduces to the control law of Eq.3.16, which completes the proof.
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APPENDIX D

PROOFS OF CHAPTER IV

D.1 Proof of Theorem 4.1

Let p; = min(pi1,- -, pip) and assume without loss of generality that p; < r; for

every ¢. Also, define the following subclasses of the classes C;:

V= {de€Citpis=pi}

c? = {de€Ci:pp=pi+1
{ } (D.1)

clri=e) - {d €C;: pix =1i — 1}
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Then, a direct calculation of the derivatives of each output y; up to order r; yields

the following expressions:

i = hiz)
dy;
- = Lihil=)
dp.'—l -
2 = 1)
dPe i _ _
B o )+ Y d(OLu L) h(e)
deectV
dﬂi+lyi _ Lpi+1h'($)+ Z d (t)L Lp'h'(a:)
dietr LT r\b b g
deec®
d -
+ 3 {da() Lo L hi(z) + -(;—(d,;(t)LwKLJ’ hi(z))
dn EC“) t
dri—lyi ri—1 rim2
= LT+ X d(®)Lu L hi(a)
d"ecf"l_ﬂi)
. d
+ Z [d,;(t)Lw,‘L;-—'-’.h,-(g;) + = (d~(t)Lw,<L}"3lzi(x))] .-
deectnimo
d .
+ 2 [ )L L7 72hi(2) + = (de(t) Lu L7 i) + -
doec) dt
dri_Pl_l picl
+dtr.<_p.. (€00 L™ (2)
dry,
dt}yf Ly ki +Zu1(tL Ly hi(z) + S du(t) Lo L7 hilz)
i=1 Zl‘eB.
+ 2 [dn(t)LwnL;-—lh,-(x)Jra(dh.(t)LwNL;.—zhi(m]+...
d,‘ecﬁr"_”")
T— d ry—
+ E dn(t)Lw,chl lhx(x)+gt' (d ( )Lw,‘Ll 2}1( )) 4.
deectt

d"i"l’l _
S T (d(t) Lo, Lf lh,-(x))]

(D.2)
Substituting the above expressions and Eq.4.3 to the left-hand-side of Eq.4.4, it is

straight{forward to show that the right-hand-side of Eq.4.4 becomes equal to v, which
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completes the proof.

D.2 Proof of Proposition 4.2

The condition of Eq.4.20 is equivalent to:

< dhi(z),we(z) > = 0
< dLjhi(z),we(z)> = 0
s (z) (D.3)
< dL}‘_llz;(x),wn(z) > =0
for every ¢,x and 2 € X. Using the Lie derivative notation, the above relations are

equivalent to:

L, hi(z) =0

L, Lih(z =0
hil) (D.4)

L, L’f""1 hi(z) = 0

for every 7,k and z € X, which directly leads to the condition of Eq.4.21.

D.3 Proof of Proposition 4.3

The condition of Eq.4.22 is equivalent to the existence, for each &, of scalar

functions axj(z), 7 =1,-+-,m and a vector function ¢.(z) such that :
we(z) = Y aw;(2)g;(2) + du(2) (D.5)
Jj=1
where
Ly hi(z) =0
L¢,"th,'(£l,‘) = 0

(D.6)

L L7 hi() = 0
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for every ¢z and every z € X.

Then, the following relation can be easily shown to hold for all &:

Ly, LERi( Zam ) Lo, Lhi(z) + Ly, Lihi(z) 5 k=10,1,--- (D.7)

which, given Eq.D.6, becomes:
Lo, Lihi( Za,g, )Lg, Lshi(z) 5 k=0,1,---,r — 1 (D.8)

The condition of Eq.4.23 follows directly then, given the definitions of relative orders.
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APPENDIX E

PROOFS OF CHAPTER V

E.1 Proof of Theorem 5.1

A constructive proof of Theorem 5.1 through Hirschorn’s inversion algorithm is
possible, but will not be given here because of the rather complicated procedure and
the technicalities involved. Instead, Theorem 5.1 will be proved by simply verifying
that the system of Eq.5.2 indeed acts as a inverse to the original system.

In particular, calculating expressions for the derivatives of the outputs y; of the

system of Eq.5.2, we get:

dr , -
= LPh()+ LI ()
(E.1)
dmy, , _—
W Lfmhm(.’l:) + Lngm lhm(a:)u

Since the characteristic matrix is nonsingular, the above set of equations can be

solved for u to obtain:

F drly 7 F ] -
dtrll Lflhl(x)
u = C(z)™ P - (E.2)
d"™ Yrm (o
e L Lf hu(z) ]
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subject to the dynamics:

[ drjy 7 r . 7
dtrxl Lflhl(x)
& = f(z)+9(z)C(z)™ : - : (E.3)
d"™ Ym o
T | i LY hm(z) |

But the u calculated above is exactly equal to the output of the dynamic system
described by Eq.5.2 (just substitute z for £). Therefore, by definition of the inverse,

Eq.5.2 is a realization of the inverse of the original system.

E.2 Proof of Theorem 5.2

First, we prove the “only if part” of the theorem. Suppose that given that
the structural matrix equivalent to C(z) has generic rank equal to m, the output
rearrangement is not possible. This implies that there is at least one input u;. for

which one of the following two is true:

]. There is no output y; with the minimum relative order at the j*-th column of

the relative order matrix M., i.e., there is no output y; such that r; = ry;..

2. There are two or more outputs, e.g. y;, and y;,, whose minimum relative order
appears at the j*-th column of the relative order matrix M, and nowhere else,
L.e., T, =Tije, Tiy = Tigje and Ty, j > Ti je, Tiyj > Tiyje for j # 7%
In the first case, we would have:
Lg],L}"'lh,-(:s) =0 (E.4)
for every i, and therefore the j*-th column of the characteristic matrix (and its
structural equivalent) would be zero.

In the second case, we would have:

r,l-l

Lo L7 hif(2) 20, Ly L hiy(2) #0 (E.5)
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and

Lo, L7 hiy(@) = 0, Ly, 17" hiy(2) = 0 (E6)

for every j # j*. But then, the corresponding to the outputs y;, and y;, rows of the
characteristic matrix would have only one non-zero element, at the same position
(the j*-th).

In both cases, a rank defficiency would result, contrary to our assumption. Therefore,
by contradiction, the suggested output rearrangement is always possible.

Now, we prove the “if part” of the theorem. Suppose that the suggested output
rearrangement is possible, but the structural matrix equivalent to C(z) has rank

defficiency. This implies either one of the following two for this matrix:
1. At least one row or column has zeros in all positions.

2. There are k (k > 2) columns or rows that cause the rank defficiency in a

non-trivial way.

In the first case, we would have the case where all relative orders in a row or column
are equal to infinity. In the second case, in order for rank defficiency to exist, we must
have at least m — (k — 1) zeros at the same positions in all & columns or rows. This
leaves (k — 1) or less nonzero elements at the same (k — 1) positions of all k rows or
columns. However, because of the rearrangement, there should & nonzero elements
in the diagonal positions of these k rows or columns, i.e., in & distinct positions. In

both cases, the contradiction is clear, and the theorem is proved.
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