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ABSTRACT

Representation Theory of Combinatorial Categories

by

John D. Wiltshire-Gordon

Chair: David Speyer

A representation V of a category D is a functor D → ModR; the representations

of D form an abelian category with natural transformations as morphisms. Say V

is finitely generated if there exist finitely many vectors vi ∈ V di so that any strict

subrepresentation of V misses some vi. If every finitely generated representation

satisfies both ACC and DCC on subrepresentations, we say D has dimension zero

over R. The main theoretical result of this thesis is a practical recognition theorem

for categories of dimension zero (Theorem 4.3.2). The main computational result

is an algorithm for decomposing a finitely presented representation of a category of

dimension zero into its multiset of irreducible composition factors (Theorem 4.3.5).

Our main applications take D to be the category of finite sets; we explain how the

general results of this thesis suggest specific experiments that lead to structure theory

and practical algorithms in this case.

viii



CHAPTER I

Introduction

Just as the definition of a group axiomatizes the notion of symmetry, the def-

inition of a category axiomatizes the notion of transformation. Accordingly, a

representation of a category provides a rule by which abstract transformations

may be converted to concrete linear transformations.

Definition 1.0.1. A representation V of a category D is a functor V : D → VectQ.

One might call the study of such representations the representation theory of

categories, although this broad subject goes by many names.

Here is a very small category:

• ((
66 •

Figure 1.1: The Kronecker quiver

To form a representation, one places a vector space on each object (•), and a linear

map on each morphism (→). A map of representations consists of a vertical map

for each object so that these maps commute with corresponding horizontal maps.

V

��

V0
**
44

��

V1

��

V0
**

��

V1

��

V0 44

��

V1

��

W W0
++

33W1 W0
++
W1 W0 33W1

Figure 1.2: A map of representations and the two squares that must commute
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When the vertical maps are inclusions, V is called a subrepresentation of W . Any

collection of vectors generates a subrepresentation, which is the smallest containing

those vectors. A representation is said to be finitely generated if it admits a finite

generating set. One imagines the vectors being pushed around by the arrows until

they span every vector space.

The length `(V ) of a representation V is the number of steps in a maximal, strictly

increasing chain of subrepresentations. If there is no maximal chain, `(V ) =∞. Say

D has dimension zero if every finitely generated representation has finite length.

Theorem 1.0.2. Every category with finitely many morphisms has dimension zero.

Proof. Suppose V has generators v1, . . . , vg and D has morphisms f1, . . . , fm . Vectors

of the form vi · fj span V , so `(V ) ≤ g ·m <∞.

We call a category with finitely many morphisms a finite category, and admire the

computability and explicitness of its representation theory.

As a first example of an infinite category, take the natural numbers as objects and

say Hom(n,m) has one or zero elements depending if n ≤ m:

• // • // • // • // • // • // • // • // · · ·

Figure 1.3: The poset category (N,≤)

A representation of this category consists of a sequence of vector spaces, one for each

natural number, and a linear map from each to the next. In other words, representa-

tions of (N,≤) are N-graded Q[T ]-modules where multiplication by T pushes vectors

along the path.

Unsurprisingly, (N,≤) does not have dimension zero.1 The representation

Q 1 // Q 1 // Q 1 // Q 1 // Q 1 // Q 1 // Q 1 // · · ·

Figure 1.4: The trivial representation of (N,≤)

1It has dimension one, matching the Krull dimension of Q[T ].
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is generated by a single vector in the leftmost vector space, but has an evident infinite

descending chain of subrepresentations.

But there is a more pressing issue. Whereas a finitely generated representation

of a finite category is described by a finite collection of matrices, a näıve description

of a representation of an infinite category requires an infinite amount of data. And

yet, graded Q[T ]-modules, for example, manage to be practical objects. The secret:

one specifies a finitely generated Q[T ]-module not by its graded pieces with their

transition maps, but by a presentation matrix. Indeed, any finitely generated module

is the cokernel of a finite matrix with entries in Q[T ].

1.0.1 This thesis in broad strokes

• We explain how to write a presentation matrix for a representation of a category.

• We explain how to interpret presentation matrices, and find them in nature

wearing thin disguises.

• We give a combinatorial condition on D that detects if D is dimension zero.

There exist infinite categories of dimension zero! Our flagship example is the

category of finite sets.

• We give an algorithm by which a finitely presented representation of a dimension

zero category may be decomposed into its multiset of irreducible composition

factors.

In sum, we strive to make infinite diagrams of vector spaces as explicit and compu-

tational as finite diagrams.

3



1.0.2 Outline

Chapter I explains how to build a matrix over D with scalars in R, and how to

use it to get a presentation for a representation of D. We give numerous examples

of such presentations, and indicate the general circumstances in which they appear.

Several examples take D to be the category of finite sets.

Chapter II gives basic definitions and constructions of category theory. This

chapter may be skipped completely if the reader is already familiar with left and

right Kan extensions.

Chapter III explains how to construct the irreducible representations of a cate-

gory from the irreducible representations of the endomorphism algebras of its objects.

The results of this chapter may not be new, but are perhaps not widely known or

anywhere assembled. Theorem 3.3.4 gives the recipe for extending an irreducible

representation of an endomorphism algebra to a representation of D. We give a sim-

ilar construction for extending projective covers and injective hulls. Theorem 3.3.7

gives a convenient classification/description of the irreducible representations. Theo-

rem 3.3.10 tells how to compute the dimension of an irreducible representation eval-

uated at an object.

Chapter IV explains when every finitely presented representation is built up

from finitely many irreducibles (in the sense of composition series, not direct sums).

It gives the algorithm that takes a presentation matrix over D with coefficients in a

field and returns the multiplicities of irreducible representations present in a compo-

sition series. The results of this section are due to the author, with many appearing

already in [WG15]. Besides the main theorems (Theorem 4.3.2 detecting categories of

dimension zero and Theorem 4.3.5 computing multiplicities), we give a result explain-

ing that categories of dimension zero exhibit a strong form of homological stability

(Corollary 4.2.6) and are Morita equivalent to categories that are “obviously” dimen-

sion zero (Theorem 4.3.11). We also give several results on Hilbert series, including

4



a generalization that works over the integers (see Corollary 4.4.5).

Chapter V gives the complete story for the category of finite sets, relying freely

on the constructions of Chapter II and the results of Chapters III and IV. The level

of computational detail may be excessive for most readers; a summary of the results

in this chapter may be found in Section 5.1. Theorem 5.1.6 for computing simple

multiplicities from a presentation matrix is new. Most of the other results can be

found in [Rai09] who relies heavily on [Put96]. Our account situates these results in

an organized general framework.

1.1 What is a representation?

We have already suggested that a functorD →ModR is somehow a representation

of D. This definition is appealing and concise; we now explain where it comes from

and what it means.

A classical representation of a group G converts group elements g ∈ G to matrices

ϕ(g) so that

ϕ(1) = 1

ϕ(g) ◦ ϕ(h) = ϕ(g ◦ h).

Since the axioms of a group capture the notion of symmetry, a representation of a

group converts abstract symmetries (group elements) to concrete linear symmetries

(invertible square matrices).

But “symmetry” means “invertible self-transformation;” we should study the more

fundamental notion. Our view:

A representation converts abstract transformations to

concrete linear transformations.

5



Dropping the assumption of invertibility reflects the irreversibility of many important

processes; dropping the assumption of composability reflects that some processes

cannot be performed one after the other.2

1.1.1 Categories and their representations

Just as the group axioms formalize the notion of symmetry, the category axioms

formalize the notion of transformation. For example, linear transformations between

vector spaces form the category of vector spaces. A category feels a bit different

from a group. Whereas any two invertible n × n matrices compose happily, linear

transformations do not always compose. Two transformations Qm −→ Qn and Qp −→

Qq are composable exactly when n = p. In other words, a transformation passes

from a source to a target, and two transformations compose only when the target

of the first matches the source of the second. The possible sources and targets form

the collection of objects of the category, and the transformations themselves form

the collection of morphisms. If D is a category, and x, y ∈ Ob(D) are objects, write

HomD(x, y) for the set of morphisms passing from x to y. Each hom-set HomD(x, x)

has a distinguished element 1x representing the identity transformation.

A representation V of a category D consists of a vector space V x for every

object x ∈ D and a linear map V f : V x → V y for every morphism f ∈ HomD(x, y)

so that

V 1x = 1V x

V f ◦ V g = V (f ◦ g)

for any pair f, g of composable morphisms. If D has a single object (call it ∗) and

every morphism has a compositional inverse, then D “is” a group in the sense that

2For example, it’s impossible to reply-all to an email before it’s been sent. Or to fly a connecting
itinerary DTW-LGA, LAX-ORD. Or to castle kingside, then castle queenside.
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HomD(∗, ∗) is a set of elements closed under an associative composition law for which

all elements are invertible and which has an identity. Further, a representation of D

is a vector space V ∗ with an action of HomD(∗, ∗), and we recover the usual notion

of a representation.

A map of representations ϕ : V → W is a collection of linear maps ϕd : V d→

Wd indexed by objects d ∈ Ob(D). These maps are required to intertwine the

structure maps of V and W in the sense that ϕy ◦ (V f) = (Wf) ◦ ϕx for any D-

morphism f : x→ y. In other words, we require a map of representations to “commute

with the action of D.” In Chapter II we shall explain that taking kernels, images,

and cokernels still makes sense for maps of representations.

It bears mentioning that the representation theory of a category is sometimes

called the representation theory of a quiver with relations, particularly if D is

described by generating morphisms subject to certain identifications. Quiver theory

usually tries to answer finer questions than we will address, and usually restricts itself

to finite categories D, which we will not.

There is also a connection to M. Auslander’s theory of coherent functors [Aus66].

In his original formulation, the category D is assumed to be abelian, and a coherent

functor is a cokernel of a map between representables. Subsequent researchers, espe-

cially Henning Krause, have continued the study using a broader notion that assumes

only that D is additive [Kra02b] [Kra02a] [Kra03]. In this case, a finitely presented

representation of a category D is the same as a coherent functor on its additivization

D⊕.

1.1.2 Matrices and additive categories

Representation theory inherits its power from the elegance and concreteness of

linear algebra. We say, “linear transformations are concrete” because any such trans-

formation may be written as a rectangle of numbers—a matrix—with composition

7



given by an explicit rule using multiplication and addition. Mathematicians are good

at numbers, so it makes sense to use them to study transformations.

But the entries of a matrix need not be numbers. Indeed, in a certain view, the

entries of a matrix are little linear self-maps of the base field. This view acknowledges

that we often have block matrices whose entries are more complicated linear trans-

formations. For example, a linear map from a direct sum to a direct sum naturally

takes the form of a block matrix. Since any vector space is a direct sum of copies

of the ground field, and every linear map from the ground field to itself is multipli-

cation by some number, matrices of numbers do capture every linear map. But, as

every student of linear algebra learns, this description can obscure a transformation’s

essence.

Let us allow the entries of a matrix to be transformations, which is to say, mor-

phisms. For block matrix multiplication to make sense, we must be able to add any

two morphisms which have matching source and target. The correct formalism is

that of an additive category. Such a category comes equipped with a direct sum,

and a map between direct sums is given by a block matrix. Composing two block

matrices relies on both composition and addition of morphisms.

Any category D gives rise in a natural way to an additive category D⊕ where we

allow formal direct sums of objects and formal Z-linear combinations of morphisms.

We often use R-linear categories where the morphism coefficients come from some

ring R in place of Z. This construction appears, for example, in [Mit72].

For the purposes of demonstration, if a, b, c, p, q, x, y ∈ Ob(D) are objects and

ω : p→ a ζ : q → b ξ : q → b

ϕ : x→ p ψ : x→ p χ : x→ q

η : y → q σ : p→ c τ : p→ c

8



are morphisms, we may form matrices and multiply:


p q[ ]

x ϕ+ 5ψ −χ
y 0 2η

 ·


a b c[ ]
p ω 0 σ − τ
q 0 ζ + ξ 0

 =


a b c[ ]

x ω ◦ ϕ+ 5ω ◦ ψ −ζ ◦ χ− ξ ◦ χ σ ◦ ϕ+ 5σ ◦ ψ − τ ◦ ϕ− 5τ ◦ ψ
y 0 2ζ ◦ η + 2ξ ◦ η 0

 .

Figure 1.5: Multiplying matrices over D with coefficients in R

The row and column labels allow us to read off sources and targets, so in the future

there will be no need to announce every morphism before it appears in a matrix.

The source and target data may be conveyed even more succinctly by saying that

the first matrix lies in the matrix space MatDR(x ⊕ y → p ⊕ q) and the second in

MatDR(p⊕ q → a⊕ b⊕ c). Matrix multiplication then gives a map

MatDR(x⊕ y → p⊕ q)⊗R MatDR(p⊕ q → a⊕ b⊕ c) −→ MatDR(x⊕ y → a⊕ b⊕ c).

1.1.3 Matrices as presentations

One convenient way to specify an R-module is to give a presentation by generators

and relations. This data takes the form of a rectangular matrix giving a map from

the free module on the relations mapping to the free module on the generators; the

cokernel of this map is the module in question. Computational algebra often performs

constructions on modules by interacting with their presentation matrices.

Concretely, if A ∈ MatR(p× q) is a classical p× q matrix over R, we could define

the R-module presented by A

MA =
MatR( p × 1 )

A ·MatR(q × 1)
.

9



In other words, MA is the quotient of the R-module MatR(p×1) of column vectors by

the submodule spanned by vectors of the form A ·B for some B ∈ MatR(q × 1). We

think of B as performing column operations on A so that every vector in the column

span of A shows up in the denominator for some appropriately-chosen B.

Definition 1.1.1. Every matrix C ∈ MatDR(x⊕ → y⊕) gives rise to a representation

of D called VC . We say VC is finitely presented with presentation matrix C. Here is

the formula:

VCd =
MatDR(x⊕ −−−→ d)

C ·MatDR(y⊕ → d)
.

In other words, VCd is the quotient of the matrix space MatDR(x⊕ → d) by the R-

submodule of matrices that factor through the matrix C.

This construction gives a different R-module for every d ∈ Ob(D), but these R-

modules are related. If f : d→ d′ is a morphism in D, we have a post-multiplication

map VCf : VCd→ VCd
′ given by M 7→M · [f ]; this map respects the denominator of

the quotient since any matrix of the form C ·B maps to C ·B · [f ], and so its image

is still in the denominator taking B′ = B · [f ]. It follows that VC is a representation

of D.

Just as every matrix A ∈ MatR gives a presentation for MA, an R-module, so

every matrix C ∈ MatDR(x⊕ → y⊕) gives a presentation for VC , a representation of D.

1.2 What are the basic examples?

1.2.1 A familiar example of a finite presentation over a category

Let D be the category with objects Ob(D) = Z and morphisms

HomD(n,m) = { monomials of degree m− n in the variables w, x, y, z }

10



where composition is given by multiplication of monomials. Build the matrix

C =

2 2 2[ ]
0 xz − y2 yw − z2 xw − yz

.

Then, for every integer n ∈ Z, the vector space VCn consists of the vector space of

degree-n homogeneous polynomials modulo those which can be written as a poly-

nomial combination of the three entries of C. In other words, VC is the graded

Q[w, x, y, z]-module which is the quotient of Q[w, x, y, z] by the submodule generated

by those three particular elements in degree 2. The idea that VC gives rise to a vector

space for every n ∈ Z is not exotic at all; indeed, we define the Hilbert series almost

by reflex:

ϕC(t) =
∞∑

n=−∞

(dimVCn) · tn.

The program Macaulay2 [GS] readily accepts the matrix C as input, computing

ϕC(t) =
1− 3t2 + 2t3

(1− t)4
= 1 + 4t+ 7t2 + 10t3 + 13t4 + 16t5 + 19t6 + 22t7 + 25t8 + · · ·

Be inspired! The definition of C was a single line, but determines an infinite sequence

of interesting vector spaces. Then, by the magic of Gröbner bases, a computer calcu-

lates the entire sequence in a fraction of a second.

1.2.2 Another beginning example

Consider graph colorings of the five-cycle

11



Figure 1.6: A valid 3-coloring of the five-cycle

where no two adjacent nodes receive the same color. We may ask, “How many valid

colorings will there be with n colors?” A full answer will be a sequence of numbers.

Since a “coloring” is just a certain kind of function from the nodes to the colors, we

seek a category where morphisms are functions. Let D be the category whose objects

are the finite sets [n] = {1, . . . , n} for n ∈ N and whose morphisms are functions

written in one-line notation. (For example, the identity function on [3] is written

123 and the constant function [4]→ [1] is written 1111 ). Consider the matrix

C =

[4] [4] [4] [4] [4][ ]
[5] 11234 12234 12334 12344 12341

.

For every n ∈ N, the vector space VC [n] is the free vector space on the functions

[5]→ [n] modulo the subspace spanned by those functions that factor through one of

the five entries. Labeling the nodes with the numbers 1 through 5 clockwise starting

at the top node, we see that a function [5]→ [n] is an invalid coloring if and only if it

factors through one of the entries of C. In other words, the remaining basis vectors

of VC [n] give the valid colorings, and dimVC [n] is the number of valid colorings of the

graph using n colors.

Suppose we add two entries to the matrix
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C ′ =
[4] [4] [4] [4] [4] [5] [5][ ]

[5] 11234 12234 12334 12344 12341 12345 − 23451 12345 − 15432
.

Now dimVC′ [n] counts valid colorings up to rotation and reflection. In §5.5.2 we use

a program based on Theorem 4.3.5 to find the Hilbert series for this example.

1.2.3 Configurations of distinct points in C

Let z1, . . . , zn be coordinates on Cn, and let Xn ⊂ Cn be the open subset where

the de Rahm forms

ωij =
dzi − dzj
zi − zj

are defined. The space Xn can be thought of as parametrizing ordered n-tuples of

distinct points in C, with the form ωij measuring the winding of the ith point around

the jth. Certainly ωij = ωji, but Arnol’d [Arn69] found a further relation for every

triple i, j, k ∈ [n]

ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij = 0.

He subsequently proved that there are no other relations, and that the cohomology

algebra takes the form

H∗dR(Xn) =

∧∗{ωij}
(ωij − ωji ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij)

.

Where i, j, k are distinct elements of the set [n].

Once again, letD be the category whose objects are the finite sets [n] for n ∈ N and

whose morphisms are functions. Arnol’d’s presentation easily leads to the following

matrix C giving a presentation for the de Rahm cohomology H2(Xn) in the sense that
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VC [n] ' H2(Xn).

C =

[4] [3] [4] [3][ ]
[4] 1234 − 2134 1123 1234 + 3412 1223 + 2331 + 3112

.

To interpret a function [4] → [n] as a monomial in the algebra, just read subscripts

from left to right. For example, the function 3281 corresponds to the monomial

ω32 ∧ ω81. We return to this example in §5.5.1 using the multiplicity theorem to

compute the Hilbert series of VC .

1.2.4 Monomials with combinatorial indexing

Let xS,T be a variable for every pair of subsets S, T ⊆ [n], and consider the vector

space Vn of degree-three monomials xA,BxP,QxS,T modulo the relations

xA,ExQ,PxS,T + xA,BxP,ExT,S + xB,AxP,QxS,E = 0

xA,BxA∪B,S∪TxS,T = xA,A∪SxA∪T,B∪SxB∪T,T

for any subsets A,B, P,Q, S, T, E ⊆ [n]. What is the dimension of this space as [n]

grows?

Even for n = 3, there are 8 subsets of [n] and so 87 = 2097152 possible substitu-

tions for the first relation. (The second relation depends on four variables, so it has

only 4096 substitutions). We have every reason to expect subtle linear dependencies

among generators.

The good news is that this vector space has no actual relevance, to my knowledge.

The bad news is that similarly impractical presentations do have a way of cropping

up. We introduce this presentation only as an example of the sort of detective work

that must go into figuring out what category is responsible.
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In order to imitate the previous examples, we would like each monomial

xA,BxP,QxS,T

to behave as if it were a morphism in some category D. Since we are trying to

evaluate at the finite set [n], we might take [n] with n ∈ N to be the objects of D.

Each morphism monomial carries with it 6 subsets of [n]. This observation suggests

that a morphism [6] → [n] should be determined by a 6-tuple of subsets of [n]. The

sorts of constructions appearing in the relations give clues about composition. In this

case, the composition law must use union in some way.

The answer: we take D to be the category of finite sets with relations. Explicitly,

the objects are natural numbers and a morphism n→ m is an n×m binary matrix;

composition is given by matrix multiplication where + is replaced by max. Define

the matrix

C =

[7] [4]
[6]

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

+

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

+

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

1 0 0 0

0 1 0 0

1 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

−

1 0 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 0 1

.

Indeed, we have VC [n] ' V [n], and once again the combinatorics of a presentation

are perfectly captured by the composition law in some combinatorial category.
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Typical monomial Description Governing category
zizjyiijj Subscripts drawn Finite sets with functions

from a finite set
ri≤j≤k Subscripts drawn Totally-ordered sets with

from a totally-ordered set monotone functions
ωi 6=j Subscripts drawn Finite sets with

from a set injections
without repetition

xS∪T,U ∧ xS,T∪U Subscripts unions of Finite sets with
subsets of a set relations

Table 1.1: Examples of monomials for combinatorial categories

Of course, every category gives rise to a corresponding style of monomial, and so the

examples given must not come close to capturing the notion.

1.3 How do we handle a presentation matrix classically...

1.3.1 When D is a finite group?

Upon arriving at the sand volleyball court, four friends wish to pick teams for

doubles. In how many ways is this possible? (You are right if you think the answer

is 3, but the following argument is likely different from the one you have in mind.)

Introduce the symbol
a b

c d

indicating the position of the four players on the

court. Sometimes two court positionings give the same teams:

a b

c d

=
b a

c d

a b

c d

=
a b

d c

a b

c d

=
c d

a b

.

These basic relations may generate other more complex relations. Conversely, these

relations may be redundant in some ways. Still, they perfectly capture the idea of

“picking teams without caring about shuffling within a side or which team is on which

side of the net.” Let us write a corresponding 1 × 3 matrix over the group algebra
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CS4:

C =

[4] [4] [4][ ]
[4] 1234 − 2134 1234 − 1243 1234 − 3412

.

Squinting if necessary, we see that this matrix fully expresses the three relations

written more pictorially above. What’s more, C is a presentation matrix for the

CS4-module of solutions to our original problem (where S4 acts by permuting the

four friends). In other words, the dimension of M = coker
(

(CS4)⊕3 C−→ CS4

)
as a

C-vector space answers the question.

Let’s take no shortcuts, and determine the decomposition of M into irreducible

representations. The group algebra CS4 is semisimple by Maschke’s theorem, and

decomposes explicitly using the following map ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) of C-algebras

CS4 −→ M1(C) × M3(C) × M2(C) × M3(C) × M1(C)

2134 7−→
[

1
]

,


0 −1 0

−1 0 0

0 0 1

 ,

 1 1

0 −1

 ,


−1 0 0

0 0 −1

0 −1 0

 ,
[
−1

]

2341 7−→
[

1
]

,


−1 −1 0

1 0 −1

−1 0 0

 ,

 −1 0

1 1

 ,


1 1 1

−1 0 0

0 −1 0

 ,
[

1
]

Here we have specified the map of algebras on a generating set for the group S4. The

actual matrices were computed by Sage [Dev14]. Applying each ϕi to the presentation
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matrix C in turn,

ϕ1(C) =
[

0 0 0
]

ϕ2(C) =


1 1 0 0 0 1 1 −1 −1

1 1 0 0 0 −1 0 2 0

0 0 0 0 0 2 −1 −1 1


ϕ3(C) =

[
0 −1 0 −1 0 0

0 2 0 2 0 0

]

ϕ4(C) =


2 0 0 0 −1 −1 1 0 −1

0 1 1 0 2 0 1 2 1

0 1 1 0 0 2 −1 0 1


ϕ5(C) =

[
2 2 0

]
.

The coranks of these matrices correspond to the multiplicities of irreducible repre-

sentations in M . The matrices ϕ2(C), ϕ4(C), and ϕ5(C) have full rank, and ϕ1(C)

and ϕ3(C) have corank 1. In other words, the computation gives that M is composed

of two irreducibles: one 1-dimensional, one 2-dimensional. Adding these together, we

see that there are exactly 3 ways to pick doubles teams among four players.

There is a similar algorithm for decomposing any finitely presented module over a

finite dimensional algebra using the indecomposable injective modules in place of the

ϕi. This is a standard fact of representation theory; see, for example, [EGH+11][Prop.

9.2.3]. The main computational result of this thesis Theorem 4.3.5 is a suitable gener-

alization of this construction in the context of the representation theory of categories.

1.3.2 When D is a graded polynomial algebra?

Nine lily pads float in a perfect square, each populated with some number of

indistinguishable frogs. At any moment, a frog may leap over a frog on an adjacent

pad (no diagonals allowed), landing on the pad one further in that direction (no

jumping into the water allowed). We consider two frog arrangements the same if
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one can be obtained from the other by a sequence of leaps. How many different frog

arrangements are there with exactly n frogs?

Introduce a variable for each lily pad:

a b c

d e f

g h i.

A monomial in these variables has a simple interpretation; b3f 5, for example, indicates

that three frogs are situated at matrix coordinate (1, 2), and five frogs sit at (2, 3).

Build the 1× 6 matrix

M =

[
ab− bc de− ef gh− hi ad− dg be− eh cf − fi

]

with entries in the polynomial algebra R = C[a, b, c, d, e, f, g, h, i]. Each entry specifies

a pair of frog-placements that are meant to be the same. Indeed, this matrix gives

a presentation for the module of solutions to our problem—except this time the

answer is a graded module, and we must think of R as a graded algebra and M as a

homogeneous matrix. The program Macaulay2 easily computes the Hilbert series for

this module:

−1− 4t− 4t2 + 3t3 + 4t4

(t− 1)5
= 1 + 9t+ 39t2 + 112t3 + 251t4 + 481t5 + · · ·

where the 39t2 means, for example, that there are 39 arrangements of two frogs.

19



1.4 Generalizing these classical techniques to representations

of categories

The previous two examples—D a finite group and D a polynomial algebra—both

have extremely satisfactory classical solutions, but the solutions differ in certain re-

spects. Column reduction of matrices is parallelizable, and proceeds at a brisk, poly-

nomial clip. Gröbner reduction of an ideal, while undeniably fast for ideals of low

degree without too many variables, slows considerably on larger problems. Even the

best Gröbner algorithms run in highly non-polynomial time.

Since the representation theory of categories generalizes both the representation

theory of finite groups and the module theory of polynomial rings, we have great

freedom in our line of inquiry. Our chosen direction is to study categories for which

the representation theory has a computational style similar to the story for finite

groups (or Artinian algebras), but where the final answer is still a Hilbert series.

More specifically, we are concerned with categories “of dimension zero,” as we now

explain.

1.4.1 The dimension of a category D

Let us call a category D dimension zero over a ring R if every presentation

matrix C ∈ MatDR(x⊕ → y⊕) gives rise to a representation VC that has a composition

series, which is to say, a finite filtration

0 = V 0
C ( V 1

C ( · · · ( V k
C = VC

so that the successive quotients V i
C/V

i−1
C are irreducible representations, meaning

they have no subrepresentations. A representation possessing this sort of filtration is

said to have finite length. In summary, D has dimension zero if and only if every

finitely presented representation VC has finite length.
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When considered as a one-object category, any finite group is dimension zero over

any Artinian ring R, and similarly for any category with a finite number of morphisms.

For this reason, the representation theory of a dimension zero category “feels like”

linear algebra over a field.

There is a more general notion of dimension due to Gabriel and Rentschler that

assigns a number (or perhaps an ordinal) to every category (see [MR01], for example).

For example, a graded polynomial algebra in 7 variables over an Artinian ring will

have dimension 7. The representation theory of a higher-dimensional category “feels

like” module theory more than representation theory.

1.4.2 Sam-Snowden Gröbner theory

The most successful approach to higher dimensional categories can be found in the

important paper of Steven Sam and Andrew Snowden [SS]. They explain what extra

structure on a category leads to a theory of Gröbner bases. Introducing the notion of

a lingual category, they give practical results on the dimensions of representations

of such categories. Many natural categories are lingual: the category of finite total

orders with injections, the opposite of the category of finite sets with surjections, the

category of finite sets with injections. In theory, their methods should be able to take

matrices over lingual categories and compute Hilbert series as rational functions or

as implicit power series satisfying some polynomial.

1.4.3 Representation stability

Thomas Church and Benson Farb’s work [CF13] isolated and named the repre-

sentation stability phenomenon, which crops up whenever a sequence of represen-

tations seems to stabilize even though they may be growing and their actions come

from different groups (Hilbert series are the basic example of growth that still “sta-

bilizes;” representation stability generalizes this idea to representations of symmetric
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groups and similar cases). Subsequent papers clarified and expanded the notion, of-

fering rich results in varied subjects: [Chu12], [CEF15], [CEFN14], [Put13], [Put15],

[CEF14], [Wil12], [JR11]. Sam-Snowden simultaneously spearheaded an overlapping

story deepening certain aspects considerably and providing a connection to twisted

commutative algebras and equivariant ideals in infinitely many variables, as well as

solutions to combinatorial problems: [Sno13], [SS16a], [NSS16], [SS15], [SS16b].

In [WG14], this author took up the subject of presentation matrices over the

category of finite sets, proving a strong form of representation stability. Those results

were put to use in [EWG15]. The present work addresses a point raised in [SS, 11.1]

indicating interest in a practical characterization of dimension zero categories.

22



CHAPTER II

Basic constructions

We introduce the fundamental notions of the representation theory of categories.

Two canonical references are [ML98], [Mit72].

2.1 Categories, functors, and natural transformations

2.1.1 Basic definitions of category theory

Definition 2.1.1. A category D = (Ob(D),HomD, ◦D) consists of

• a collection of objects Ob(D),

• for any two objects x, y ∈ Ob(D), a set of morphisms HomD(x, y),

• for any object x ∈ Ob(D), a morphism 1x ∈ HomD(x, x), and

• for any triple of objects x, y, z ∈ Ob(D), a composition law

HomD(x, y)× HomD(y, z) −→ HomD(x, z)

(f, g) 7−→ g ◦D f,

satisfying the identity condition 1y ◦D f = f = f ◦D 1x and the associativity

condition (h ◦D g) ◦D f = h ◦D (g ◦D f) whenever both sides of this last equation

make sense.
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Remark 2.1.2. Later, we shall generalize the composition law in D to a product for

matrices over D. In this context, one may consider a morphism to be a 1× 1 matrix

over D. For two morphisms f and g, this product will be written f ·g, abbreviating the

diagrammatic style x
f−→ y

g−→ z. For the time being, we shall compose morphisms

using the ◦-infix style g ◦ f .

Definition 2.1.3. Let f : x −→ y be a morphism in a category D. Say f is epic if

for every z ∈ Ob(D), the precomposition function

HomD(y, z)→ HomD(x, z)

ϕ 7→ ϕ ◦ f

is an injection. Say f is monic if for every w ∈ Ob(D), the postcomposition

function HomD(w, x)→ HomD(w, y), ψ 7→ f ◦ ψ is an injection.

Definition 2.1.4. Let f : x −→ y be a morphism in a category D. Say f is split

epic if there exists a morphism g : y −→ x so that f ◦ g = 1y. Say f is split monic

if there exists a morphism g : y −→ x so that g ◦ f = 1x. Say f is an isomorphism

if there exists an inverse morphism g : y −→ x so that fg = 1x and gf = 1y. Two

objects x and y are called isomorphic if there exists an isomorphism between them.

2.1.2 R-linear categories

In the event that the sets HomD(x, y) come with the structure of an R-module

for some commutative ring R, and that the composition laws are bilinear over R, we

shall call D an R-linear category.

Example 2.1.5. Given R, a commutative ring, the collection of R-modules and the lin-

ear transformations between them form a category called ModR = (ModR,HomR, ◦).

Given two R-modules M,N ∈ ModR, the set of morphisms HomR(M,N) comes with

an addition and an action of R, and so ModR is an R-linear category.
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Definition 2.1.6. Given categories C and D, a functor f : C −→ D consists of

• an object f c ∈ D for every object c ∈ C, and

• a morphism f ϕ ∈ HomD(f c, f c′) for every ϕ ∈ HomC(c, c
′) with c, c′ ∈ Ob(C),

so that f 1c = 1f c for all objects c ∈ C, and f ϕ ◦D f ψ = F (ϕ ◦C ψ) whenever both

sides of this last equation make sense. If C and D are R-linear categories, then f is

said to be an R-linear functor if the function

HomC(c, c
′) −→ HomD(f c, f c′)

f 7−→ f f

is R-linear. A functor f is said to be full if this function is surjective, and faithful

if injective. A functor f is said to be essentially surjective on objects if every

object d ∈ D is isomorphic to an object of the form f c for some c ∈ C. A functor is

called an equivalence of categories if it is full, faithful, and essentially surjective

on objects.

Definition 2.1.7. Given functors f , g : C −→ D, a natural transformation

φ : f −→ g provides a component morphism φc ∈ HomD(f c, gc) for every object

c ∈ C, so that, for every ψ ∈ HomC(c, c
′), (gψ) ◦D φc = φc′ ◦D (f ψ).

2.2 Representations and the category ModDR

Definition 2.2.1. A representation of a category D over a commutative ring R is

a functor V : D −→ModR. If D is an R-linear category, then we require that V be

an R-linear functor.

Definition 2.2.2. If V,W are representations of D over R, a map of represen-

tations φ : V −→ W is a collection of R-linear maps φd : V d −→ Wd indexed by
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objects d ∈ Ob(D) so that for any pair of objects d, d′ ∈ D and morphism f : d −→ d′,

the following square commutes in the the category of R-modules:

V d
φd−−−→ Wd

V f

y yWf

V d′ −−−→
φd′

Wd′.

In other words, it is a natural transformation from V to W . Evidently, the representa-

tions of D over a commutative ring R form a category where natural transformations

compose componentwise; write ModDR = (ModDR, HomDR, ◦) for the category whose

objects are representations of D over R and whose morphisms are maps of represen-

tations.

Observation 2.2.3. Kernels and cokernels in ModDR may be computed objectwise

in ModR. More precisely, any map of representations φ : V −→ W determines two

more representations, called kerφ and cokerφ, fitting into a commutative diagram

0 −−−→ (kerφ)d −−−→ V d
φd−−−→ Wd −−−→ (cokerφ)d −−−→ 0y (kerφ)f

y V f

y yWf

y(cokerφ)f

y
0 −−−→ (kerφ)d′ −−−→ V d′ −−−→

φd′
Wd′ −−−→ (cokerφ)d′ −−−→ 0

where the rows are exact sequences of R-modules. These representations behave in

perfect analogy with usual kernels and cokernels of maps between R-modules. We may

similarly construct the image as the kernel of the map to the cokernel. A subrep-

resentation of V is one that appears as a kernel of a map out of V ; a quotient

representation of V is one that appears as a cokernel of a map into V . Be assured

that these constructions behave exactly as expected. See [Wei94, 1.6.4].

26



2.3 Matrices over a category with coefficients in a ring

Definition 2.3.1. For D a category and objects x1, . . . , xk; y1 . . . , yl ∈ Ob(D), define

the R-module of matrices over D,

MatDR(x1 ⊕ · · · ⊕ xk → y1 ⊕ · · · ⊕ yl) =
k⊕
i=1

l⊕
j=1

R · HomD(xi, yj).

where each summand is a free module on a hom-set of D. Matrices over a category

enjoy a natural matrix multiplication

MatDR(⊕ixi → ⊕jyj)⊗R MatDR(⊕jyj → ⊕kzk) −→ MatDR(⊕ixi → ⊕kzk)

(M ⊗N) 7−→M ·N

where the (i, k)-entry of M · N is given by the formula
∑

j Njk ◦Mij extending the

composition law in D by linearity.

If x⊕ and y⊕ are formal sums of objects of D, any functor f : C −→ D induces an

R-linear map

MatCR(x⊕ → y⊕) −→ MatDR(f x⊕ → f y⊕)

by entrywise application of f . Evidently, this construction commutes with matrix

multiplication.

Definition 2.3.2 (Evaluating a representation on a matrix). Given V ∈ ModDR and

M ∈ MatDR(⊕ki=1xi → ⊕lj=1yj), we form a k × l block matrix

V (M) :
k⊕
i=1

V xi −→
l⊕

j=1

V yj

by entrywise application of V .
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2.3.1 The R-linearization of a category

In the same way that a representation of a group is the same data as a repre-

sentation of the group algebra, there is a natural way to convert a category D to an

R-linear category D⊕. An object d⊕ ∈ D⊕ is a formal direct sum of objects of D, and

a morphism is a matrix over D with coefficients in R. Matrix multiplication gives the

composition law. Since our representations have a right action of D, our convention is

that matrix multiplication proceeds left-to-right along the direction of the morphisms

of D, in contrast to the ◦-infix notation that reverses the order of arrows. For this

reason, we shall not reason about D⊕ as a category, preferring to think of matrices

over D as computational objects that may be added and multiplied.

2.4 Yoneda’s lemma and basic projectives in the category

ModDR

Definition 2.4.1 (Basic projectives). For any object d ∈ D and commutative ring

R, define a representation P d ∈ModDR , the basic projective at d, given on objects

by the formula P d(x) = R · HomD(d, x) and on morphisms ϕ : x→ y by the formula

HomD(d, x) −→ HomD(d, y)

f 7−→ ϕ ◦ f

extended by linearity to the free R-module R · HomD(d, d′). The finite direct sum

P = P x1 ⊕ · · · ⊕ P xk admits the easy description

Py = MatDR (x1 ⊕ · · · ⊕ xk → y) ;

in this description, a morphism ϕ : y → z acts by right matrix multiplication with

the single-entry matrix [ϕ] ∈ MatDR(y → z).

28



The next lemma shows that P d behaves like a module “freely generated by the

vector 1d ∈ R · HomD(d, d) = P dd.”

Lemma 2.4.2 (Yoneda). Let V ∈ ModDR be a representation, and let d ∈ Ob(D) be

an object. There is an isomorphism of R-modules

HomDR(P d, V )
∼−→ V d

given by φ 7→ φd(1d).

Proof. The inverse map is given by the formula v 7→ (f 7→ (V f)(v)).

As a consequence, the representations P d are projective, for the same reason that

free modules are projective: a lift of the destination of the identity vector 1d provides

a lift of the map. The following basic fact grants us access to the representation

theory of D using matrices over D.

Corollary 2.4.3. By the Yoneda lemma, every matrix

M ∈ MatDR(x1 ⊕ · · · ⊕ xk → y1 ⊕ · · · ⊕ yl)

gives rise to a unique map

M \ : P y1 ⊕ · · · ⊕ P yl −→ P x1 ⊕ · · · ⊕ P xk

fitting into the commutative diagram

P y1d⊕ · · · ⊕ P yld
(M\)d−−−−→ P x1d⊕ · · · ⊕ P xkd

∼
y y∼

MatDR(y1 ⊕ · · · ⊕ yl → d) −−−→
M ·−

MatDR(x1 ⊕ · · · ⊕ xk → d).

The assignment takes matrix multiplication to composition: (M ·N)\ = M \ ◦N \.
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2.4.1 Finitely generated representations of a category

We provide many equivalent ways to think about finite generation.

Proposition 2.4.4. The following are equivalent conditions on a representation V ∈

ModDR:

• There exists a finite list of objects di ∈ Ob(D) and a surjection ⊕iP di −→ V ;

• There exist finitely many vectors vi ∈ V di so that any subrepresentation W ⊆ V

with each vi ∈ Wdi has W = V ;

• There exist finitely many vectors vi ∈ V di so that any strict subrepresentation

W ⊂ V misses some vi;

• There exists a row vector v ∈ ⊕iV di, i ∈ {1, . . . , k}, so that any other vector

w ∈ V d has the form v · (VM) for some matrix M ∈ MatDR(⊕ki=1di → d);

• If V =
∑

α Vα where each Vα ⊆ V , then there exists a finite list α1, . . . , αk so

V =
∑k

i=1 Vαi.

Definition 2.4.5. Say V ∈ ModDR is finitely generated if it satisfies any of the

equivalent hypotheses of Proposition 2.4.4. Say it is finitely presented if there

exists some matrix M ∈ MatDR(⊕ixi → ⊕jyj) so that V = cokerM \; we say M is a

presentation for V .

Certainly any finitely presented representation is finitely generated using the basis

vectors 1xi . In the case where these two notions coincide, we borrow the corresponding

term from module theory.

Definition 2.4.6. The category D is Noetherian over R if every finitely generated

V ∈ ModDR is finitely presented, if and only if every subrepresentation of a finitely

generated representation is finitely generated.
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This definition, which may appear unassuming, captures an extremely subtle prop-

erty of D, but one which is absolutely crucial for computations. Succinctly: if D is

Noetherian, every matrix over D has a nullspace given by another matrix over D.

2.5 Idempotents and projectives

Definition 2.5.1. A square matrix π ∈ MatDR(d⊕ → d⊕) is idempotent if π ·π = π.

It is an indecomposable idempotent if π 6= 0 and any decomposition π = π′ + π′′

as a sum of two idempotents π′, π′′ ∈ MatDR(d⊕ → d⊕) has either π′ = 0 or π′′ = 0.

Proposition 2.5.2. Every finitely generated projective P ∈ ModDR is a direct sum-

mand of a finite direct sum of basic projectives. Equivalently, there exists an idem-

potent matrix π over D with coefficients in R so that P ' imπ\. Conversely, if

π is idempotent, then imπ\ is projective. For any V ∈ ModDR, there is a natural

isomorphism

HomDR(P, V ) ' ImV (π),

where V (π) denotes entrywise application of the representation V to the matrix π as

in Definition 2.3.2.

Proof. Since P is finitely generated, it admits a surjection from some direct sum

of basic projectives P d1 ⊕ · · · ⊕ P dk using the first condition of Proposition 2.4.4.

By projectivity of P , this surjection splits. The composite is an endomorphism of

P d1 ⊕ · · · ⊕ P dk which must come from an idempotent matrix by Corollary 2.4.3.

Conversely, by Corollary 2.4.3, π\ is an idempotent endomorphism of a direct sum

of basic projectives. Since a summand of a sum of projectives is projective, im π\ is

projective as well. The last isomorphism is a consequence of Yoneda’s Lemma 2.4.2.

Definition 2.5.3. The category of idempotents ΠR(D) of a category D over a
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commutative ring R is the R-linear category whose objects are idempotent matrices

Ob(ΠR(D)) = {π ∈ MatDR(d⊕ → d⊕) | d⊕ ∈ D⊕, π · π = π}

and whose morphisms from π1 ∈ MatDR(d⊕1 → d⊕1 ) to π2 ∈ MatDR(d⊕2 → d⊕2 ) are given

by

HomΠ(D)(π1, π2) = {γ ∈ MatDR(d⊕1 → d⊕2 ) | π1 · γ · π2 = γ}.

Composition in ΠR(D) is matrix multiplication.

The category of idempotents goes by many other names: the Cauchy completion,

the Karoubi envelope, the idempotent completion. Its construction is standard in

category theory and algebra. See [KS06, p. 66], for example.

Proposition 2.5.4. The category of idempotents ΠR(D) is equivalent to the full sub-

category of (ModDR)op spanned by the finitely generated projectives.

Proof. The equivalence is given by the construction π 7→ π\ together with Corol-

lary 2.4.3.

2.6 Left and right Kan extensions

Induction and coinduction play a fundamental role in classical representation the-

ory. In module theory, these notions correspond to extension and coextension of

scalars. The generalization of these familiar concepts in the setting of categories: left

and right Kan extension.

Any functor f : C −→ D determines a pullback functor

f ∗ : ModDR −→ModCR.

Definition 2.6.1. For any representation V ∈ ModDR, define the pullback repre-
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sentation f ∗V ∈ ModCR on an object c ∈ C by the formula (f ∗V )c = V (f c), and on

a morphism ϕ : c −→ c′ by (f ∗V )ϕ = V (f ϕ).

The next result provides left and right adjoints for the pullback functor. The

details about units and counits will be necessary for proofs, but not for casual reading;

in any event, suitable background on adjoint functors may be found in [ML98, IV].

Proposition 2.6.2. There exists a pair of functors f!, f∗ : ModCR −→ ModDR called

the left and right Kan extensions along f with the properties that, for any

V ∈ ModCR and W ∈ ModDR,

HomDR(V, f∗W ) ' HomCR(f ∗V,W )

HomDR(f!V,W ) ' HomCR(V, f ∗W ).

Moreover, these isomorphisms are natural in the variables V and W . Concisely, we

have described two adjunctions: f! a f ∗ and f ∗ a f∗. The unit and counit for the first

adjunction will be written η : 1 → f ∗f! and ε : f!f ∗ → 1. The unit and counit for the

second adjunction will be written η′ : 1 → f∗f ∗ and ε′ : f ∗f∗ → 1. They satisfy the

unit-counit equations 1 = εf! ◦ f ∗η, 1 = f ∗ε ◦ ηf! and 1 = ε′f ∗ ◦ f∗η′, 1 = f∗ε′ ◦ ηf ∗.

Proof. The existence of left and right Kan extensions may be found in [ML98, X].

The unit-counit equations may be found in [ML98, IV].

It may be helpful to think of f!V as the universal representation generated by V

and f∗V as the universal representation cogenerated by V .

Readers familiar with the usual tensor-hom adjunction of module theory may

think of a “counit” as some sort of “evaluation map” and a unit as some sort of

“identity matrix.” Shortly, we will give concrete constructions for the left and right

Kan extensions of a representation along a functor using a direct analog of the tensor-

hom adjunction. We first list some appealing formal properties.
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Proposition 2.6.3. The functor f ∗ is exact, f! is right exact, and f∗ is left exact.

The functor f! takes projectives to projectives, and the functor f∗ takes injectives to

injectives. In the following table, an entry in the first column implies the other entries

in its row.

f f! f ∗ f∗ f!f ∗
ε→ 1 1

η→ f ∗f! f ∗f∗
ε′→ 1 1

η′→ f∗f ∗

essentially
surjective =⇒ faithful epic monic
on objects

full full full
+ =⇒ + + iso iso

faithful faithful faithful

full + full
ess. surj. =⇒ + iso iso

on objects faithful

Table 2.1: Useful properties of Kan extensions

Proof. Basic properties of adjoint functors relate the conditions appearing within

a row; see [Wei94, 2.6]. The top row is obvious. The middle row may be found

in [ML98, X.3.3], and has recently been used in a similar context by Gan and Li [GL].

The bottom row may be found in [Ves08, Proposition A.2].

Proposition 2.6.4. If M is a matrix over C giving a presentation for V , then ap-

plying a functor f : C → D entrywise to the matrix M gives a presentation for f!V :

f!V ' coker (f (M))\.

Proof. By right-exactness of f! it suffices to check that f!M
\ = (f M)\. Let c ∈ Ob(C).

Yoneda’s Lemma 2.4.2 gives P c ' i!R where i denotes the inclusion of c with its
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identity morphism into C. Since f! ◦ i! = (f ◦ i)!, we have that f! ◦ i!P c ' P f c. So

HomDR(f!P
c, f!P

c′) ' HomDR(P f c, P f c′)

' R · HomD(f c′, f c)

again by Yoneda. Applying this computation to the entries of M gives the result.

2.6.1 Construction of the functors f! and f∗

If f : R→ S is a ring homomorphism, then any S-module restricts to an R-module.

This construction has a left adjoint called extension of scalars which may be thought

of as a tensor product. For example, if MR is a right R-module, then we form the

tensor product

MR ⊗R RSS

where R acts on S from the left using f . The usual tensor-hom adjunction reads

HomS(MR ⊗R RSS, NS) ' HomR(MR,HomS(RSS, NS))

where we recognize that HomS(RSS, NS) is a complicated way to refer to the restricted

module f ∗NS. In other words, the tensor product on the left side of the adjunction

provides an explicit model for a left adjoint to restriction, which we should call f!:

f!MR 'MR ⊗R RRS.

This discussion motivates the following definition. Further explanation and context

may be found in [Rie14, §4.1].

Definition 2.6.5. If V : C →ModR is a right C-module and W : Cop →ModR is a
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left C-module, the functor tensor product is defined

V ⊗C W =

⊕
c∈Ob(C) V c⊗RWc

vϕ⊗ w − v ⊗ ϕv

where ϕ : c→ c′ ranges over all morphisms in the category C and v ∈ V c, w ∈ Wc′.

Remark 2.6.6. If the category C has infinitely many objects, then this description of

the functor tensor product cannot be used directly for computation. However, if V

is finitely generated, then we may restrict this sum to the degrees of the generators

of V . Indeed, any vector can be written in the span of the images of the generators

under the action of C, and these morphisms may be moved across the tensor sign ⊗C.

Proposition 2.6.7. If f : C → D is a functor and V ∈ ModCR a representation, the

left Kan extension of V along f takes the form

f!V d ' V ⊗C HomD(f−, d),

where HomD(f−,−) carries a left action of C in its first coordinate, and a right action

of D in its second coordinate.

Proof. We show that the functor tensor product satisfies a direct analog of the usual

tensor-hom adjunction. Let M be a right C-module, B be a C,D-bimodule, and N

be a left D-module. We have an isomorphism

HomCR(M ⊗C B,N)
Φ−→ HomDR(M,HomCR(B,N))

natural in the variables M and N . The map is defined by the formula Φ(ϕ)(m)(b) =

ϕ(m ⊗ b), and its inverse by the formula Φ−1(ψ)(m ⊗ b) = ψ(m)(b). With this

adjunction in hand, it is enough to observe that f ∗ is represented by the bimodule

HomD(f−,−); the formula then follows by uniqueness of adjoints. A more detailed
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proof of this adjunction may be found in [AW92]. A direct proof of this construction

of f! may be found in [Rie14, Example 4.1.5].

We state the corresponding formula for right Kan extensions.

Corollary 2.6.8. If R is a field and V ∈ ModCR is a representation, then the right

Kan extension of V along a functor f : C → D takes the form

f∗V d ' V ⊗C HomD(d, f−)∨,

where we have used a dual vector space to reverse the variance of both actions on the

bimodule HomD(−, f−).

Proof. Apply the dual vector space functor to Proposition 2.6.7.

2.6.2 Two easy facts about the functors f!, f ∗, and f∗

The following two facts will be used in Proposition 3.1.11 to give circumstances

under which f! and f∗ preserve indecomposability, and later to help with the proof of

Theorem 3.3.4. In what follows, let V be a representation of C, and let f : C → D.

Proposition 2.6.9. Suppose U ⊆ f∗V . If f ∗U = 0, then U = 0.

Proof. By naturality of the unit η′ we have a commuting square

U
⊆−−−→ f∗V

η′U

y yη′f ∗V
f∗f ∗U −−−→ f ∗f∗f ∗V.

The right vertical arrow is split monic by the unit-counit equations, so the clockwise

composite map is injective, and the left vertical map must be injective as well. On

the other hand, the lower left representation is zero since f ∗U = 0.

Corollary 2.6.10. Dually, if f!V � Q with f ∗Q = 0, then Q = 0.

37



Proof. An indication of the dual argument: the composite f!f ∗f!V → f!V → Q is

surjective, and so by naturality of the counit ε, the representation Q is a quotient of

f!f ∗Q = 0.
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CHAPTER III

Irreducible representations, injective hulls, and

projective covers

3.1 Simple representations, finite length representations

Definition 3.1.1. A representation V ∈ ModDR is irreducible (we also say simple) if

it is nonzero and admits no nontrivial subrepresentation. A representation V ∈ ModDR

is indecomposable if it admits no nontrivial direct summand.

The notion of an irreducible representation of a category, being easy and natural,

has been studied before. The definition appears already in [Ner91], for example.

We introduce notation that will be useful in several upcoming proofs.

Definition 3.1.2. Given V ∈ModDR, write

IrrQuot(V ) = {V/W | W ⊆ V, `(V/W ) = 1}
/
'

for the set of simple quotients of V up to isomorphism. Similarly, write

IrrSubQuot(V ) = {W ′/W | W ⊆ W ′ ⊆ V, `(W ′/W ) = 1}
/
'

for the set of simple subquotients of V up to isomorphism.
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Definition 3.1.3. A representation V ∈ ModDR is said to have finite length if it

admits a composition series

0 = V0 ( V1 ( V2 ( · · · ( V` = V

with the property that each Si = Vi/Vi−1 is simple. The S1, S2, . . . , S` are called

the composition factors of V , and the number ` = `(V ) is called the length of

V . The Jordan-Hölder theorem gaurantees that every composition series has the

same composition factors up to reordering; see [KS06, p. 205] for details. We have

IrrSubQuot(V ) = {S1, . . . , S`}. If V does not have finite length, we set `(V ) =∞.

3.1.1 The Krull-Schmidt decomposition

We give the reassuring fact that every finitely generated projective can be written

as a direct sum in an essentially unique way.

Theorem 3.1.4. If R is Artinian and each HomD(x, y) is finite, every finitely gen-

erated projective representation P ∈ ModDR decomposes as a direct sum of indecom-

posable projectives

P ' P1 ⊕ · · · ⊕ Pk

where the summands are determined uniquely up to isomorphism and reordering.

Proof. Since any finitely generated projective is a summand of a finite sum of basic

projectives by Proposition 2.5.2, the endomorphism ring of P is a corner ring of

End(d⊕) for some formal sum d⊕ ∈ D⊕. It follows that End(P ) is finitely generated

as an R-module, and hence is itself Artinian. Since Artinian rings are semiperfect—

their finitely generated modules have projective covers—we may apply the following

result, which appears as [Kra14, Corollary 4.4].

Theorem 3.1.5. An additive category is a Krull-Schmidt category if and only if it
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has split idempotents and the endomorphism ring of every object is semiperfect.

In Krause’s terminology, this means that every finitely generated projective splits

essentially uniquely as a sum of projectives with local endomorphism rings. In par-

ticular, the summands are indecomposable, and the result follows.

3.1.2 Length and the three functors f!, f ∗, and f∗

We must see how our existing toolkit of adjunctions interacts with the notion of

length. Let f : C −→ D be a functor and V ∈ ModDR a representation.

Proposition 3.1.6. If f is essentially surjective on objects, then `(V ) ≤ `(f ∗V ).

Proof. Since f is essentially surjective on objects, we have f ∗V ' 0 if and only if

V ' 0. Any nontrivial inclusion U ( U ′ ⊆ V has U ′/U 6= 0, but since f ∗ is

exact, f ∗U ′/f ∗U ' f ∗(U ′/U) 6= 0 and so f ∗ takes nontrivial inclusions to nontrivial

inclusions.

Proposition 3.1.7. If f is full and essentially surjective on objects, then `(f ∗V ) =

`(V ). In particular, V is simple if and only if f ∗V is simple.

Proof. By exactness, f ∗ takes subobjects of V to subobjects of f ∗V . This assign-

ment is injective as in the proof of Proposition 3.1.6. By [Ves08, Prop. A.2], any

subrepresentation U ⊆ f ∗V has the form U ' f ∗W for some W ∈ ModDR, and so this

assignment is surjective as well.

Proposition 3.1.8. If f is full and faithful, then `(f ∗V ) ≤ `(V ).

Proof. Any nontrivial inclusion U ( U ′ between subrepresentations of f ∗V gives rise

to an inclusion f∗U ⊆ f∗U by left exactness of f∗. To see that this inclusion remains

nontrivial, note that applying f ∗ gives back the original inclusion U ( U ′ because,

using Proposition 2.6.3, the counit ε′ : f ∗f∗ → 1 is an isomorphism.

Proposition 3.1.9. If f is full, then `(f ∗V ) ≤ `(V ).
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Proof. Factor f = i ◦ g where g is full and essentially surjective on objects, and i is

full and faithful, and apply Propositions 3.1.6 and 3.1.8.

The following fact—a simple extends to at most one simple—should be considered

a basic fact of representation theory. Its first appearance seems to be in the master’s

thesis of Yoshioka [Yos93]; our proof mirrors the English account in [Kos99, Theo-

rem 2.8].

Proposition 3.1.10 (Yoshioka). If f : C → D is full and faithful and V,W ∈ ModDR

are simples with f ∗V ' f ∗W 6= 0, then V ' W .

Proof. Let U ∈ ModCR be a representation isomorphic to both f ∗V and f ∗W . By

additivity of the adjoint functors f! a f ∗:

HomCR(U, f ∗V ⊕ f ∗W ) ' HomDR(f!U, V ⊕W ).

The left side of this isomorphism has an element ϕ ⊕ ψ, the direct sum of two iso-

morphisms, corresponding on the other side to an element ϕ† ⊕ ψ†. We claim that

ϕ† ⊕ ψ†, which is nonzero because ϕ⊕ ψ 6= 0, is also non-surjective, and so its image

is simple since `(V ⊕W ) = 2.

If ϕ† ⊕ ψ† were surjective, then its restriction f ∗ϕ† ⊕ f ∗ψ† would be as well, since

f ∗ is exact. But f is full and faithful, so Proposition 2.6.3 implies that f ∗ϕ† ⊕ f ∗ψ†

is surjective if and only if ϕ ⊕ ψ is surjective. And ϕ ⊕ ψ is not surjective since its

source is simple and its target is a direct sum of two nonzero representations.

To conclude the argument, note that both maps ϕ† and ψ† induce nonzero maps

from im (ϕ† ⊕ ψ†) which must be isomorphisms since we have shown that both the

source and target are simple. It follows that V ' im (ϕ† ⊕ ψ†) ' W as required.

We end this section with a method of building new indecomposables from old.

42



Proposition 3.1.11. If f is full and faithful and V is indecomposable, then both f!V

and f∗V are indecomposable.

Proof. Suppose f∗V = A ⊕ B decomposes as a direct sum. Applying the additive

functor f ∗ to both sides, we see that f ∗f∗V = f ∗A⊕ f ∗B. Since f is full and faithful,

the counit provides an isomorphism f ∗f∗V ' V . Since V is indecomposable, either

f ∗A = 0 or f ∗B = 0. Applying Proposition 2.6.9, either A = 0 or B = 0. A dual

argument proves that f!V is indecomposable using Corollary 2.6.10.

3.2 Projective covers and injective hulls

The results of this section are standard. We refer the reader to [Kra14] for a

detailed treatment.

Definition 3.2.1. A projective P ∈ ModDR with a surjection ϕ : P � V is called

a projective cover of V ∈ ModDR if for all X ∈ ModDR and ψ ∈ HomDR(X,P ),

ϕ ◦ ψ is surjective if and only if ψ is surjective. Dually, an injective I ∈ ModDR with

an injection ι : V ↪→ I is called an injective hull of V if for all Y ∈ ModDR and

κ ∈ HomDR(I, Y ), κ ◦ ι is injective if and only if κ is injective.

Intuitively, a projective cover for a module is the “best approximating projective

module.” A rephrasing of the definition is that any submodule U ⊆ V with U +

kerϕ = V actually has U = V . In order to guarantee that every finitely generated

representation has a projective cover, we usually assume that R is Artinian and that

the hom-sets of D are finite.

Proposition 3.2.2. Suppose R is Artinian and the hom-sets of D are finite. If V is

simple, then its projective cover P is indecomposable and satisfies IrrQuot(P ) = {V }.

Conversely, every finitely generated indecomposable projective is a projective cover for

some simple which is its unique simple quotient and appears as a composition factor

of any nonzero quotient of V .
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Proof. This follows from [Kra14, Lemma 3.6].

Definition 3.2.3. A cover-hull description of a simple V is a composite map

(
P

p
� V

i
↪→ I

)

from an indecomposable projective to an indecomposable injective so V ' im (i ◦ p).

3.3 The intermediate extension functor f!∗

Recall that a functor f : C −→ D induces two adjunctions: left and right Kan

extension along f . In the event that f is full and faithful, we have seen that f! inter-

acts well with indecomposable projectives and f∗ interacts well with indecomposable

injectives. To handle simples, we introduce a new functor. In what follows, write

η : 1 −→ f ∗f! for the unit of the left Kan extension adjunction, and η′ : 1 −→ f∗f ∗ for

the unit of the right Kan extension adjunction.

Definition 3.3.1. If f : C −→ D is full and faithful, (and so the unit for left

Kan extension has an inverse η−1 : f ∗f! −→ 1), then define the the intermediate

extension functor f!∗ : ModCR −→ModDR as the image of the composite

f!
η′f!−−→ f∗f ∗f!

f∗η−1

−−−→ f∗.

Proposition 3.3.2. If f : C −→ D is full and faithful, and V ∈ ModCR, then

f ∗f!∗V ' V.

Proof. This is an immediate consequence of Proposition 2.6.3.

Remark 3.3.3. The intermediate extension functor appears in [BBD82].

44



The next theorem lets us upgrade cover-hull descriptions of simples for a full

subcategory to cover-hull descriptions of simples for the ambient category. The most

important application will be when the full subcategory has a single object. In this

case, the Theorem 3.3.4 upgrades representation theory of an endomorphism algebra

to representation theory of a category.

Theorem 3.3.4. If f : C −→ D is full and faithful, and
(
P

p
� V

i
↪→ I

)
is a cover-hull

description of a simple, then f!∗V is simple with cover-hull description

(
f!P

p′

� f!∗V
i′

↪→ f∗I
)
,

satisfying i′ ◦ p′ = (f∗i) ◦ (f∗η−1) ◦ (η′f!) ◦ (f!p).

Proof. The representation f!P is projective since f! takes projectives to projectives. It

is indecomposable by Proposition 3.1.11. Similarly, f∗I is an indecomposable injective.

Since f∗i is an injection (by left-exactness of f∗) and f!p is a surjection (similarly),

we see that the image of the composite (f∗i) ◦ (f∗η−1) ◦ (η′f!) ◦ (f!p) matches the image

of the middle two maps, which is exactly the definition of f!∗V . Letting p′ and i′ form

an epi-mono factorization of this long composite, it remains only to show that f!∗V is

simple.

Let U ⊆ f!∗V with quotient Q = f!∗V/U . We have a short exact sequence

0 −→ U −→ f!∗V −→ Q −→ 0,

which, after applying the exact functor f ∗, becomes

0 −→ f ∗U −→ f ∗f!∗V −→ f ∗Q −→ 0.

The middle representation is simple by Proposition 3.3.2, so one of the outer two

representations must be zero. But U ⊆ f!∗V ⊆ f∗V , and similarly Q is a quotient of
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f!V , so either Proposition 2.6.9 or its dual Corollary 2.6.10 applies, and f!∗V is simple

as required.

3.3.1 Filtered categories, associated graded categories, and the classifi-

cation of irreducible representations

Definition 3.3.5. A categoryD is called an N-filtered category if it comes equipped

with a degree function deg : Ob(D) −→ N. For any k ∈ N, define the subcategory

D≤k ⊆ D which is full on the objects of degree at most k. Similarly, define the sub-

category D<k full on the objects of degree less than k, and Dk full on the subobjects

of degree equal to k.

Definition 3.3.6. If D is a filtered category, the associated graded R-linear cate-

gory A = tkAk is the universal quotient category of D sending to zero all maps that

factor through lower degree. Concretely, each category Ak is the quotient of Dk by

the two-sided ideal generated by maps that factor through an object of degree less

than k. For each k, write ik : Dk ↪→ D for the inclusion, and pk : Dk � Ak for the

projection.

The next theorem shows how a choice of N-filtration for D gives a canonical graded

bijection between the simples of A and the simples of D. Since the associated graded

category A is often much more tractable, Theorem 3.3.7 helps classify irreducible

representations of D.

Theorem 3.3.7. If D is an N-filtered category with associated graded A = tkAk,

then every simple V ∈ ModDR can be written V = (ik)!∗ ◦ (pk)∗W for some k ∈ N and

some unique-up-to-isomorphism simple W ∈ ModAkR .

Proof. If W ∈ ModAkR is simple, then pkW is also simple since pk is full and essentially

surjective on objects, using Corollary 3.1.7. By Proposition 3.3.4, (ik)!∗ takes simples

to simples, and so any V constructed in this way is simple.
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Suppose that V is simple. Since V 6= 0, there must be some object d ∈ D with

V d 6= 0; let k ∈ N be the minimal degree of such an object. So (ik)∗V 6= 0, and hence

by Proposition 3.1.9, (ik)∗V is simple. Every morphism of D that factors through an

object of degree less than k acts by zero on (ik)∗V since k is minimal. It follows that

the action of Dk on (ik)∗V descends to the quotient category Ak.

By Proposition 3.3.2, i∗ ◦ (ik)!∗ ◦ (pk)∗W ' (pk)∗W . Since (pk)!(pk)∗W ' W

by Proposition 2.6.3, we may recover W from (ik)!∗ ◦ (pk)∗W by applying (pk)! ◦

(i∗). Theorem 3.1.10 (Yoshioka’s theorem) says that two simples are isomorphic if

and only if their restrictions to some full subcategory are nonzero and isomorphic.

Since i is the inclusion of a full subcategory, and we have produced at least one

irreducible representation with the correct restriction, this representation is unique

up to isomorphism and the constructions provide a bijection.

3.3.1.1 A corollary in the representation theory of algebras

If d1, . . . , dn ∈ Ob(D) is a sequence of objects with each di−1 a retract of di (meaning

that the identity map on di−1 factors through di), write Ai for the quotient algebra

End(di)/(morphisms factoring through di−1).

Corollary 3.3.8. The number of irreducible representations of End(dn) is given by

the sum
n∑
i=1

#{irreducible representations of Ai}.

Example 3.3.9. The category of finite sets satisfies these hypotheses, setting di =

{1, 2, . . . , i}. The algebras Ai are group algebras for the symmetric group. It follows

that the irreducible representations of the full transformation monoid End(dn) are

in bijection with the irreducible representations of the symmetric groups of degree

1, 2, . . . , n. The result holds over any field. This result is well-known, since it follows

from the general representation theory of semigroups; see, for example [CP61, Chap-

ter 5].
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3.3.2 Computing the dimensions of the irreducible representation i!∗p∗W

We give the explicit method by which the matrices of an intermediate extension

from an endomorphism algebra may be computed. Let i : End(d)→ D be the inclu-

sion. We assume that R is a field.

Let V = p∗W be an irreducible right End(d)-module, and ϕ : End(d) → R a

matrix entry of V . For any x ∈ D, let Hx be the Hom(d, x)×Hom(x, d) matrix with

(f, g)-entry ϕ(g ◦ f).

Theorem 3.3.10. We have

dimR (i!∗p∗W )x = rankR Hx.

Proof. In fact, the row span of Hx coincides with the image of the natural map

i!p∗W → i∗p∗W . The proof is just an unraveling of the construction of the left and

right Kan extensions already described in Proposition 2.6.7 and Corollary 2.6.8.

This sort of construction is called a “monomial representation” in the representa-

tion theory of monoids. See [Ste, §5.5] for this perspective.
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CHAPTER IV

Imaginations, homological moduli, and categories

of dimension zero

4.1 The object preorders ≤d

We introduce the technical heart of the thesis: preorders on the objects of D that

control the subrepresentations of a finitely generated representation.

Definition 4.1.1. If d, x, y ∈ Ob(D), say x ≤d y if for all representations V generated

by vectors in V d, every subrepresentation U ⊆ V generated by vectors in Ux is also

generated by vectors in Uy.

In a moment, we give several conditions equivalent to x ≤d y, each suited to

a different purpose; let us develop a bit more notation before stating the result as

Proposition 4.1.3.

Let S(x, y) denote the set of self-maps of x that factor through y. For each s ∈ S(x, y),

define a square 0-1-matrix Ms whose rows and columns are indexed by HomD(d, x),

putting a 1 in position (f, g) whenever s ◦ f = g. Equivalently, the entries of Ms
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record the commutativity of the following diagram:

d
f

��

g

��
x //

s

::y // x.

Definition 4.1.2. Given representations P,Q ∈ ModDR, the imagination of P in

Q is the set of submodules of Q that admit surjections from a finite direct sum of

copies of P :

Imag(P → Q) = {imψ | for k ∈ N and ψ : P⊕k −→ Q}.

Finally, recall that the basic projective P d associated to d ∈ Ob(D) is the represen-

tation x 7→ R · HomD(d, x) where a map h : x→ y acts by ϕ 7→ h ◦ ϕ.

Proposition 4.1.3. If HomD(d, x) is finite, the following are equivalent to the state-

ment x ≤d y:

1. The condition given in Definition 4.1.1;

2. The identity matrix is in the R-span of the matrices Ms;

3. There exists an invertible matrix is in the R-span of the matrices Ms;

4. Imag(P x → P d) ⊆ Imag(P y → P d);

5. There are matrices α ∈ MatDR(x → y⊕k), β ∈ MatDR(y⊕k → x) so that for any

matrix f ∈ MatDR(d→ x), we have f · α · β = f ;

6. A condition to be given soon as Proposition 4.1.5;

7. A condition relying on further assumptions to be given later as Proposition 4.3.4.
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Remark 4.1.4. The second condition gives an algorithmic test to check if x ≤d y. The

third condition gives a probabilistic test (since a random linear combination will be

invertible). From the fourth condition, we see that ≤d is reflexive and transitive, and

so defines a preorder.

4.1.1 Useful facts about the preorders ≤d

To shorten proofs in this section, we introduce concise notation for useful sub-

modules of the R-linearized hom-bimodules coming from D. If d1, d2, . . . , dk ∈ D

are objects, write (d1, d2, . . . , dk) for the R-submodule of MatDR(d1 → dk) spanned by

all maps d1 −→ dk that can be written as a composite d1 −→ d2 −→ · · · −→ dk.

For example, (x, y) = MatDR(x → y), and (x, y, z) = MatDR(x → y) ·MatDR(y → z).

As we already do for matrices, write · for the R-bilinearized composition law, so

(x, y) · (y, z) = (x, y, z), for example. If N ⊆ (x, y) is a submodule, define left and

right annihilator submodules of N

Nd = {f ∈ N : f · (y, d) = 0}

dN = {f ∈ N : (d, x) · f = 0}.

Proposition 4.1.5. We have x ≤d y if and only if (x, x) = d(x, x) + (x, y, x).

Proof of Propositions 4.1.3 and 4.1.5. We prove that the first six conditions of Propo-

sition 4.1.3 are equivalent; Proposition 4.1.5 appears in this list as condition (6).

(6) ⇐⇒ (2): The matrices Ms with s ∈ S(x, y) give the action of (x, y, x) ⊆ (x, x)

on (d, x) by postcomposition. Their span is a (possibly unitless) R-algebra isomor-

phic to (x, y, x)/(d(x, x) ∩ (x, y, x)), by construction. This algebra has a unit exactly

when 1 ∈ d(x, x) + (x, y, x), which is condition (2); we are done since this sum is a

two-sided ideal of (x, x) containing 1.
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(2) ⇐⇒ (3): The Cayley-Hamilton theorem gives the identity matrix in the R-span

of the powers of any invertible matrix.

(5) ⇐⇒ (6): We have 1 = δ + ω with δ ∈ d(x, x) and ω ∈ (x, y, x) if and only if

f · ω = f for every f . Any element of (x, y, x) expands as a finite linear combination

of morphisms factoring through y; this decomposition translates directly into a pair

of matrices.

(5) =⇒ (4): Every map ψ : (P x)⊕k → P d satisfies ψ = ψ ◦ α\ ◦ β\ by Corol-

lary 2.4.3, and so im (ψ ◦ α\) = imψ.

(4) =⇒ (6): For each f ∈ MatDR(d → x) we get a map f \ : P x → P d. Since P y

is at least as imaginative as P x is in P d, we have a surjection ϕf : (P y)⊕k → im (f \).

By the projectivity of P x, we may lift the map f \ along this surjection using some

map αf : P x → (P y)⊕k. Similarly, the map ϕf lifts along the surjection f \ : P x � P d

using some map βf : (P y)⊕k → P x. The composite map satisfies f ◦ βf ◦ αf = f ,

and so for each vector f ∈ (d, x), the ideal (x, y, x) contains an element ωf with the

property that f · ωf = f . If the action of (x, y, x) on (d, x) is to be unitless, (d, x)

must have a subquotient for which the action is identically zero. This is impossible

since a generator f for the subquotient is fixed by ωf . It follows that there is some

element ω ∈ (x, y, x) that acts on (d, x) by the identity, and so 1 = δ + ω for some

δ ∈ d(x, x).

(1) ⇐⇒ (4): A representation V being generated by k vectors in V d is equiv-

alent to the existence of a surjection (P d)⊕k � V . It follows that any U ⊆ V is

generated by finitely many vectors in Ux if and only if it is in the imagination of P x.

52



Writing V as an increasing union of finitely generated subrepresentations gives the

result.

Proposition 4.1.6. We have x ≤x y exactly when x is a retract of y.

Proof. If x is a retract of y, then (x, y, x) ⊆ (x, x) is a two-sided ideal containing 1, and

so (x, y, x) = (x, x). Similarly, if x ≤x y, then (x, y, x) = (x, x) since x(x, x) = 0.

Definition 4.1.7. Write x ≤d y whenever x ≤d y in the opposite category Dop.

Proposition 4.1.8. If c ≤x d, then d(x, y) ⊆ c(x, y).

Proof. By Proposition 4.1.5, (c, c)x + (c, d, c) = (c, c). Let f : x −→ y, and suppose

(d, x) · f = 0. Then

(c, x) · f = (c, c) · (c, x) · f

= [(c, c)x + (c, d, c)] · (c, x) · f

= (c, c)x · (c, x) · f + (c, d, c) · (c, x) · f

= 0 + (c, d, c, x) · f

= (c, d) · (d, c, x) · f

⊆ (c, d) · (d, x) · f

⊆ 0,

and so f ∈ c(x, y) as required.

Lemma 4.1.9. If x ≤d y and c ≤x d, then x ≤c y.

Proof. By Proposition 4.1.8, d(x, x) ⊆ c(x, x), and by Proposition 4.1.3, d(x, x) +

(x, y, x) = (x, x). So

(x, x) = d(x, x) + (x, y, x) ⊆ c(x, x) + (x, y, x) ⊆ (x, x)

and x ≤c y as required.
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The following result of Andrew Gitlin [Git15] provides a useful combinatorial

strategy for proving x ≤d y.

Lemma 4.1.10 (Gitlin’s trick). If HomD(d, x) is finite and there exists a partial

order � on HomD(d, x) and a function s : (d, x) → (x, y, x) such that s(f) ◦ f = f

and h � s(f) ◦ h for all f, h ∈ HomD(d, x), then x ≤d y over any infinite field.

Proposition 4.1.11. If x, y ∈ Ob(D) satisfy x ≤y y and p denotes the projection

p : R · End(x)→ R · End(x)/(x, y, x),

then the induced left Kan extension p! is exact.

Proof. We use the statement x ≤y y to produce an idempotent π, and show that the

functor p! coincides with taking the image of π, proving exactness. By Proposition

4.1.3, we have

(x, x) = y(x, x) + (x, y, x)

By the second isomorphism theorem,

(x, x)

(x, y, x)
' y(x, x)

y(x, x) ∩ (x, y, x)
,

and so there is an element δ ∈ y(x, x) that acts as an identity for this second algebra.

Setting B = (x, y, x), choose some vector space A ⊆ End(x) so that End(x) = A⊕B.

Since δ annihilates every map from y, we see that B ·δ = 0, and so a block matrix for δ

has the form [ 1 ∗
0 0 ], from which it follows that δ is idempotent. We claim that any right

End(x)-module V satisfies p!V ' im (V
1−δ−−→ V ). Indeed, we have an isomorphism

p!V ' V/(V · (x, y, x)) ' V/ (V · [ 0 ∗
0 ∗ ]) ' ker(V

δ−→ V ) by direct multiplication of

block matrices.

Corollary 4.1.12. If x ≤y y then p∗ takes injectives to injectives.
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Proof. The functor p∗ admits an exact left adjoint.

4.2 Upper bounds for the preorder ≤d

We begin with a technical lemma that compiles a finite list of upper bounds into

a convenient pair of matrices. Using the lemma, we are able to prove Theorem 4.2.2

explaining the usefulness of upper bounds in the preorder ≤d. Finally, in Defini-

tion 4.2.4, we introduce terminology for a complete system of joint upper bounds for

the preorders ≤d.

Lemma 4.2.1. Suppose V ∈ ModDR is finitely generated in degrees d1, . . . , dk ∈

Ob(D), and suppose we have a system of upper bounds on some x ∈ Ob(D):

x ≤d1 m1 x ≤d2 m2 · · · x ≤dk mk

for m1, . . . ,mk ∈ Ob(D). Then there exists some formal sum m⊕ ∈ D⊕ with sum-

mands drawn (possibly with repetition) from the list m1, . . . ,mk, and a pair of matrices

α ∈ MatDR(x→ m⊕) β ∈ MatDR(m⊕ → x)

so that V (α · β) = 1V x.

Proof. Let MatDR(x→ m• → x) denote the R-submodule of MatDR(x→ x) spanned by

all matrices that factor through one of themi. Since any matrix ω ∈ MatDR(x→ m• → x)

mentions only finitely many monomials, it is of the form ω = α · β for some pair of

matrices

α ∈ MatDR(x→ m⊕) β ∈ MatDR(m⊕ → x)

where m⊕ has summands drawn from the list m1, . . . ,mk. If we find such a matrix ω

with the property that V (ω) = 1V x, then we are done.

55



For each i ∈ {1, . . . , k}, the corresponding inequality x ≤di mi provides an element

ωi ∈ MatDR(x→ mi → x) with the property that, for any matrix γ ∈ MatDR(di → x),

γ · ωi = γ. We claim

ω = 1− (1− ω1) · (1− ω2) · · · · · (1− ωk)

satisfies V (ω) = 1V x, completing the proof. (Note that the leading 1’s cancel and so

ω ∈ MatDR(x→ m• → x).)

By Proposition 2.4.4, every vector u ∈ V x is of the form u = v · V (γ) for some

v ∈ V d⊕, and γ ∈ MatDR(d⊕ → x), where the formal sum d⊕ has summands drawn

(possibly with repetition) from the finite list d1, . . . , dk. To show that V (ω) fixes

u ∈ V x, it suffices to show that γ · ω = γ, since then

u · V (ω) = (v · V (γ)) · V (ω) = v · V (γ · ω) = v · V (γ) = u.

We show that for all γ ∈ MatDR(d⊕ → x), we have γ′·ω = γ′ for each γ′ ∈ MatDR(di → x),

a matrix entry appearing in γ. Compute

γ′ · ω = γ′ · (1− (1− ω1) · (1− ω2) · · · · · (1− ωk))

= γ′ − γ′ · (1− ω1) · (1− ω2) · · · · · (1− ωk)

= γ′ −
[
γ′ · (1− ω1) · · · · · (1− ωi−1)

]
· (1− ωi) · · · · · (1− ωk)

= γ′

since ωi fixes the matrix
[
γ′ · (1− ω1) · · · · · (1− ωi−1)

]
∈ MatDR(di → x). It follows

that ω fixes every entry of γ, and so γ · ω = γ as required.

Theorem 4.2.2. Suppose W ∈ ModDR is generated by vectors in Wd1, . . . ,Wdk with

di ∈ Ob(D). If i : M⊆ D is a full subcategory with the property that for all x ∈ Ob(D)
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there exist m1, . . . ,mk ∈ Ob(M) such that x ≤di mi, then i∗ induces isomorphisms

HomDR(V,W )
∼−−→ HomMR (i∗V, i∗W )

for all V ∈ ModDR.

Proof. The map HomDR(V,W ) −→ HomMR (i∗V, i∗W ) is easily seen to be surjective

since i is full and faithful; indeed, Proposition 2.6.3 gives that i∗ϕ 7−→ ϕ for any

ϕ ∈ HomDR(i∗V, i∗W ).

To prove injectivity, we show that any map ψ ∈ HomDR(V,W ) can be recovered

from its restriction i∗ψ. More specifically, for any d ∈ D, we give a formula for

the component ψd depending only on the components ψm with m ∈ M. Applying

Lemma 4.2.1 to the representation W , obtain a formal sum m⊕ ∈ M⊕ and two

matrices

α ∈ MatDR(d→ m⊕) β ∈ MatDR(m⊕ → d)

so that W (α) ·W (β) = 1Wd. Since ψ is a map of representations, components of ψ

interpose this factorization:

V d

ψd
��

V (α)
// V m⊕

V (β)
//

⊕ψm
��

V d

ψd
��

Wd
W (α)
//

W (1)

;;Wm⊕
W (β)

//Wd.

We deduce the formula ψd = W (β) ◦W (α) ◦ ψd = W (β) ◦ (⊕ψm) ◦ V (α), and note

that it references only components at objects of M as required.

Corollary 4.2.3. If W ∈ ModDR and i : M ⊆ D satisfy the hypotheses of Theo-

rem 4.2.2, any subrepresentation S ⊆ W is determined by its restriction i∗S ⊆ i∗W .

In particular, `(W ) = `(i∗W ).
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We make a definition collecting a system of joint upper bounds (as in the hypothe-

ses of Lemma 4.2.1) into a single object that may or may not exist.

Definition 4.2.4. A homological modulus for a category D over a ring R is a

function

µ : Ob(D) −→ {finite subsets of Ob(D)}

such that for every d, x ∈ Ob(D), there exists y ∈ µ(d) so that x ≤d y. By convention,

we extend µ to finite subsets of Ob(D) by the formula

µ(S) =
⋃
s∈S

µ(s).

Here is an example of the sort of result that becomes easy to state with Defini-

tion 4.2.4 in hand.

Observation 4.2.5. If D admits a homological modulus µ over R, then any repre-

sentation V ∈ ModDR generated in degrees D ⊆ Ob(D) has a projective resolution of

the form

· · · −→ P2 −→ P1 −→ P0 −→ V −→ 0

where each Pi is a direct sum of basic projectives P d with d ∈ µi(D) (here, µi denotes

the i-fold composition of µ).

Proof. Follows directly from Definitions 4.1.1 and 4.2.4 and Proposition 4.1.3.

Corollary 4.2.6 (Homological stability from a homological modulus). If a rep-

resentation V ∈ ModDR is generated in degrees D ⊆ Ob(D), then Extk(V,W ) '

Extk(i∗V, i∗W ), for i the inclusion of the full subcategory on the objects µk+1(D).

Proof. Follows from Theorem 4.2.2 and the Yoneda Lemma 2.4.2.
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4.3 Dimension zero categories

Definition 4.3.1. Say a category D is dimension zero over a commutative ring

R if every finitely generated V ∈ ModDR has finite length.

Theorem 4.3.2. A category D is dimension zero over a commutative ring R if and

only if R is Artinian, each hom-set HomD(x, y) is finite, and D admits a homological

modulus over R.

Proof. Let us assume that R is Artinian, that D has finite hom-sets, and µ is a

homological modulus for D over R. Suppose V ∈ ModDR is finitely generated in

degrees d1, . . . , dk. Let i : M⊆ D be the full subcategory on the finite set of objects

µ({d1, . . . , dk}). By Corollary 4.2.3, `(V ) = `(i∗V ). Since D has finite hom-sets and

V is finitely generated, each V d is a finitely generated R-module. Since R is Artinian,

the finite sum
⊕

m∈M V m is finite length. It follows that i∗V is finite length, and

hence V as well.

In the other direction, suppose every finitely generated representation V ∈ ModDR

is finite length. We rely on the following result of Zel′manov (for an English account,

see Okniński’s book [Okn91, p. 172, Theorem 23]):

Theorem 4.3.3 ( [Zel77]). If R is a commutative ring and M is a monoid, then the

monoid ring RM is Artinian exactly when R is Artinian and M is finite.

We first show that every endomorphism monoid of D is finite, and then that every

hom-set is finite as well. If i : End(d) ⊆ D is the inclusion of the full subcategory on

the single object d ∈ Ob(D), then the length of i∗P d = REnd(d) as a module over

itself is bounded above by the length of P d using Proposition 3.1.9. It follows that

REnd(d) is Artinian, and so R is Artinian and each endomorphism monoid is finite

by the theorem of Zel′manov. Similarly, i∗P d′ = R · Hom(d′, d) is finite length as a

right REnd(d)-module, and so Hom(d′, d) is finite as well.

To prove that D admits a homological modulus over R, we need the following.
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Proposition 4.3.4. If d, x, y ∈ Ob(D) with either P d or P x finite length, we have

x ≤d y if and only if

IrrQuot(P x) ∩ IrrSubQuot(P d) ⊆ IrrQuot(P y) ∩ IrrSubQuot(P d).

Assuming Proposition 4.3.4, we produce a homological modulus as follows. If a

collection of simples appears as a subset of IrrQuot(P z) for some z ∈ Ob(D), we call

that collection attainable, and we say that d witnesses attainability.

Fix d ∈ Ob(D). For every attainable subset Q ⊆ IrrSubQuot(P d), let yQ witness

attainability:

Q ⊆ IrrQuot(P yQ).

We claim that we may take µ(d) = {yQ | Q is an attainable subset of IrrSubQuot(P d)}.

Specifically, given x ∈ Ob(D), Proposition 4.3.4 gives that x ≤d yQ with Q =

IrrQuot(P x) ∩ IrrSubQuot(P d).

Proof of Proposition 4.3.4. Suppose x ≤d y, and let

S ∈ IrrQuot(P x) ∩ IrrSubQuot(P d).

Choose A ⊂ B ⊆ P d so that S ' B/A. Since S is a quotient of P x and P x is

projective, B is also a quotient of P x. So B ∈ Imag(P x → P d). By Proposition 4.1.3,

B ∈ Imag(P y → P d) as well, and so S is also a simple quotient of P y.

In the other direction, if B ∈ Imag(P x → P d), then B is finite length since at

least one of P d and P x is finite length. Let A ( B be a maximal subrepresentation.

We have that the quotient S = B/A is simple and that `(A) + 1 = `(B). Assume

by way of induction on the length that A ∈ Imag(P y → P d); we must show that
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B ∈ Imag(P y → P d) as well. Since S a quotient of P x and a subquotient of P d,

S ∈ IrrQuot(P x) ∩ IrrSubQuot(P d),

so S is also a quotient of P y since we have assumed that IrrQuot(P x)∩IrrSubQuot(P d) ⊆

IrrQuot(P y)∩IrrSubQuot(P d). The outer representations of the short exact sequence

0 −→ A −→ B −→ S −→ 0

have been established as elements of Imag(P y → P d). Using the projectivity of P y,

we may lift any surjection P y � S to B. This proves that B ∈ Imag(P y → P d) as

required.

4.3.1 Computing simple multiplicities from a presentation matrix

If D is dimension zero over R, then any presentation matrix

M ∈ MatDR(x⊕ → y⊕)

gives rise to some finite length representation VM ∈ ModDR. If we have already com-

puted the indecomposable injective representations of D, the following result gives

the best way to compute simple multiplicities.

Theorem 4.3.5. If R is an algebraically closed field, VM has finite length, and S ∈

ModDR is irreducible, then the multiplicity of S in a composition series for VM is given

by the corank of the matrix I(M) where I is the injective hull of S. (Here I(M)

denotes the the block matrix obtained by applying I to the entries of M .)

If D is dimension zero with homological modulus µ over R, then VM automatically

has finite length. Writing i : C → D for the inclusion of the full subcategory on the

finite set µ(X) where X ⊆ Ob(D) is a finite set containing the row labels of M ,
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every irreducible composition factor S of VM satisfies S ' i!∗ i∗S. Since there are

only finitely many irreducible representations S with i∗S 6= 0, only a finite number of

coranks need be computed.

Proof. We have dimR HomDR(S, I) = 1 since this module is free of rank one over

the division algebra End(S), which must be one-dimensional since R is algebraically

closed. (If R is not algebraically closed, we have a similar result, but we would have

to divide the coranks by the dimension of End(S).) Since HomDR(−, I) is an exact

functor, an easy induction on the length of V proves that dimR HomDR(V, I) gives

the multiplicity of the simple S in a composition series for V . The result follows by

applying Proposition 2.5.2 to the opposite category Dop wherein the linear dual of I

is projective.

Corollary 4.2.3 gives that the restriction i∗VM has the same length as VM . It

follows that each composition factor of VM remains nonzero under the exact functor

i∗. By Proposition 3.1.8 `(i∗S) ≤ `(S) = 1, and since i∗S 6= 0, i∗S is irreducible. By

Yoshioka’s theorem (Proposition 3.1.10) S is the unique irreducible representation

that restricts to i∗S. But Theorem 3.3.4 gives that i∗i!∗i∗S ' i∗S as well, and so

S ' i!∗i∗S as required.

The computation becomes finite because the category C has finitely many objects

(by construction) and finite hom-sets since D does (by Theorem 4.3.2), and so C is

a finite category with finitely many irreducible representations up to isomorphism.

Each of these extends uniquely to an irreducible representation of D by Yoshioka’s

theorem, and these are the only irreducibles that may appear in a composition series

for VM .

Remark 4.3.6 (Column reduction of a matrix over a category). We return to the

notion of column reduction advertized in the introduction. The idea is that the

indecomposable injectives provide a faithful functor f : D ↪→
∏

λ VectC by the formula

f =
∏

λ Iλ. Under f , every arrow of D maps to an infinite list of matrices, almost all
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of which are zero (this is equivalent to D being dimension zero over R). Applying f

to a matrix M over D gives a λ-indexed system of linear maps over R. The purpose

of Theorem 4.3.5 is to explain how traditional (but λ-parallel) Gaussian elimination

on f M computes the K-class of VM .

In light of the theorem, we have no need (or desire) to introduce a separate version

of Gaussian elimination for every dimension zero category. Instead, we have a general

method by which such problems may be converted to usual Gaussian elimination.

4.3.2 Bounded models

This section provides a result saying that every category of dimension zero has

the same representation theory as a category that “obviously” has dimension zero

because its basic projectives have finite length when considered as R-modules. The

fundamental example is the equivalence of cosimplicial R-modules and cochain com-

plexes of R-modules supported in nonnegative degree. We return to this example in

§4.3.3.

Definition 4.3.7. Two categories C and D are called Morita equivalent over a

commutative ring R if their categories of representations ModDR and ModCR are

equivalent as R-linear categories.

Lemma 4.3.8. If P ⊆ ΠR(D) is a full subcategory of the category of idempotents

with the property that for all nonzero V ∈ ModDR there exists some π ∈ Ob(P) so

that V (π) 6= 0, then P is Morita equivalent to D.

Proof. Given a representation V ∈ ModDR, we have a representation V ′ : P →ModR

given by the formula V ′π = imV π. Certainly this assignment is functorial, full, and

faithful. It is essentially surjective on objects since it is exact and the basic projective

representations of P come from a collection of enough projectives in ModDR.
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Definition 4.3.9. A Cauchy model for a category D over a ring R is a full subcate-

gory of ΠR(D) spanned by idempotents πλ so that the representations im π\λ ∈ModDR

form a complete set of representatives for the indecomposable projectives up to iso-

morphism.

By the Krull-Schmidt Theorem 3.1.4, if D is dimension zero over R, every basic

projective splits uniquely as a direct sum of indecomposable projectives, so a Cauchy

model is always Morita equivalent to D by Lemma 4.3.8.

Definition 4.3.10. An R-linear category C is called bounded if for every object

c ∈ Ob(C), the set of objects {c′ ∈ Ob(C) | HomC(c, c
′) 6= 0} is finite and every

hom-R-module HomC(c, c
′) is finitely generated.

Theorem 4.3.11 (Bounded models). A category D is dimension zero over an Ar-

tinian ring R if and only if it is Morita equivalent to a bounded category C over R.

In this case, we may take C to be a Cauchy model of D over R.

Question 4.3.12. If a category admits a homological modulus over Z, is it Morita

equivalent over Z to a bounded Z-linear category?

Remark 4.3.13. Theorem 4.3.11 tells us that all dimension zero categories are ab-

stractly Morita equivalent to categories where the basic projectives are finite length

as R-modules, but the result has computational use only when a bounded model may

be computed, as we may for example in §4.3.3. Typically, however, using Theorem

4.3.2 to show that a category is dimension zero is much easier than finding a bounded

model, and almost as useful in computations.

Proof of Theorem 4.3.11. Certainly if D has a bounded model over an Artinian ring

R, then it is dimension zero over R; indeed, finitely generated representations have

finite length even after forgetting the action of the bounded model.

In the other direction, suppose Λ is an indexing set for the simple representations

of D so that each simple representation is isomorphic to one of the form Sλ ∈ ModDR
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for a unique λ ∈ Λ. By Proposition 3.2.2, Sλ ∈ ModDR has a projective cover Pλ,

which can be written Pλ = im π\λ for some idempotent matrix πλ ∈ MatDR(d⊕λ → d⊕λ )

by Proposition 2.5.2. Let P be the full subcategory of ΠR(D) on the idempotents

{πλ}λ∈Λ. We claim that P is bounded and Morita equivalent to D. Moreover, since

any indecomposable projective is a projective cover for some simple (again, by Propo-

sition 3.2.2), the category P is a Cauchy model for D.

Suppose that HomΠ(D)(πλ, πλ′) 6= 0. By Proposition 2.5.4, there must be a nonzero

map ϕ : Pλ′ −→ Pλ since Pλ = imπ\λ and Pλ′ = imπ\λ′ . Since imϕ is a quotient of

Pλ′ , it must have Sλ′ as a composition factor by Proposition 3.2.2, and so Pλ must

have Sλ′ as a composition factor as well. Since Pλ has only finitely many composition

factors, P is bounded.

We prove Morita equivalence using the condition from in Proposition 4.3.8: given a

nonzero representation V ∈ ModDR, we must produce λ so that V (πλ) 6= 0. Pick some

nonzero vector in V , and let V0 ⊆ V be the subrepresentation it generates inside V .

Since V0 is nonzero and finitely generated, it is finite length and has minimal subrep-

resentation Sλ. So Pλ admits a nonzero map to V0 and HomDR(Pλ, V0) ⊆ HomDR(Pλ, V )

are both nonzero. By Proposition 2.5.2, this last R-module equals imV (πλ), and the

claim is proved.

4.3.3 The Dold-Kan Correspondence

We give the most famous example of a bounded model: the category of cochain

complexes. Let ∆ be the category whose objects are the finite sets [1], [2], . . . and

whose morphisms are functions that are weakly order preserving. A functor V : ∆→

ModR is more commonly known as a cosimplicial R-module. We state the Dold-

Kan correspondence for cosimplicial R-modules.

Theorem 4.3.14. The category of cosimplicial R-modules is equivalent to the cate-

gory of cochain complexes supported in nonnegative degree.
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A cochain complex is a representation of the cochain category Ch, a bounded

category whose objects are the natural numbers and where HomCh(n, n) = R · 1n,

HomCh(n, n + 1) = R · ∂, and HomCh(n,m) = 0 for any other m ∈ N. Evidently, the

basic projectives for this bounded model are indecomposable, so the cochain category

provides a Cauchy model for ∆. Standard proofs of the Dold-Kan Correspondence

(for example, [Wei94, Chapter 8]) give the following stronger result.

Theorem 4.3.15. The basic projective P [n] : ∆→ModR decomposes as a direct sum

of indecomposable projectives

P [n] '
n⊕
k=1

(P k)⊕(n−1
k−1)

where P k is a basic projective in the cochain model.

4.3.4 Further examples of categories of dimension zero

Example 4.3.16 (A homological modulus for the category of finite sets). The paper

[WG14] shows that, over the rationals, the category of finite sets has a homological

modulus given by µ(0) = {0, 1}, µ(d) = {d+ 1} for d 6= 0, which also gives the more

precise result that one may take µ(εk) = {εk, εk+1} and µ(θk) = {θk, εk}.

Example 4.3.17 (Noncommutative finite sets are dimension zero). In [EWG15], Pirashvili-

Richter’s category of noncommutative finite sets [PR02] is shown to be dimension zero

over any field, and the simples in characteristic zero are deduced from [WG14] (these

simples appeared earlier in [Rai09], and their images under Schur-Weyl duality even

earlier in [Rud74]).

Example 4.3.18 (The category of finite sets with relations is dimension zero). Andrew

Gitlin [Git15] has produced a homological modulus over Q for the category of finite

sets with relations, wherein µ(d) = {2d}. This is the first example known to the author

of a homological modulus that is not “linear in d.” The irreducible representations
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over Q have now been constructed by Serge Bouc and Jacques Thévenaz [BT15].

Example 4.3.19 (Homological modulus for finite dimensional vector spaces over a

finite field). The category of finite dimensional vector spaces over a finite field of

characteristic p admits a homological modulus over Z[1
p
] by work of Kuhn [Kuh15],

who relies on idempotents constructed much earlier by Kovács [Kov92]. Working in a

skeleton where objects are natural numbers and morphisms are Fq-matrices, we may

take µ(n) = {n}. Indeed, the two-sided ideal (n + 1, n, n + 1) ⊆ (n + 1, n + 1) is

generated by an explicit idempotent that acts as an identity for this ideal considered

as a subalgebra, and so witnesses n+1 ≤n n. Appropriate application of Lemma 4.1.9

finishes the proof.

4.3.5 Schur projectives

We give the definition and basic properties of Schur projectives. These representa-

tions were useful in [WG14], which used them to give an analogue of Hilbert’s syzygy

theorem for the category of finite sets. They will not be used further in this thesis.

Suppose D is an N-filtered category with associated graded A = tkAk, inclusions

of homogeneous subcategories ik : Dk ⊆ D and projections pk : Dk � Ak. Choose

subcategories jk : Bk ↪→ Dk so that the composites pk ◦ jk are full and essentially

surjective on objects.

In this section, we assume thatD is dimension zero overR. Suppose the irreducible

representations of A are indexed by an N-graded set Λ, and write Wλ ∈ ModAkR

for the irreducible corresponding to λ ∈ Λ. Similarly, set Vλ = i!∗p∗Wλ. Every

irreducible representation of D is uniquely of this form by Theorem 3.3.7. Finally,

using Theorem 3.3.4, fix a projective cover Pλ and injective hull Iλ for each simple

Vλ. For each λ ∈ Λ, use Proposition 2.5.2 to choose a formal sum d⊕λ ∈ D⊕ and

πλ ∈ MatDR(d⊕λ → d⊕λ ) with Pλ ' imπ\λ.
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Definition 4.3.20. Given λ ∈ Λ, a Schur projective Uλ ∈ ModDR is defined

Uλ = (ik ◦ jk)!Tλ

where Tλ ∈ ModBkR is a projective cover of the simple (pk ◦ jk)∗Wλ.

Proposition 4.3.21. The Schur projective Uλ decomposes upper-triangularly

Uλ = Pλ ⊕
⊕

deg(λ′)<deg(λ)

P
⊕mλ′
λ′

as a direct sum of indecomposable projectives.

Proof. A decomposition into indecomposable projectives exists and is unique by the

Krull-Schmidt Theorem 3.1.4; we must prove upper-triangularity. Let λ, λ′ ∈ Λ,

supposing (for now) deg(λ) = deg(λ′) = k. Compute

HomDR(Uλ, Vλ′) ' HomDR((ik ◦ jk)!Tλ, Vλ′)

' HomDkR ((jk)!Tλ, (ik)∗Vλ′)

' HomDkR ((jk)!Tλ, (ik)∗(ik)!∗(pk)∗Wλ′)

' HomDkR ((jk)!Tλ, (pk)∗Wλ′)

' HomBkR (Tλ, (pk ◦ jk)∗Wλ′).

If λ = λ′, then all nonzero maps give projective covers, and this last module is

free of rank 1 when considered as a right D-module where D is the division ring

End(Wλ′) ' End(Vλ′) acting by postcomposition. It follows that the projective cover

of Vλ occurs as a summand of Sλ with multiplicity one. If λ 6= λ′, then this last

module is zero since Tλ is the projective cover of (pk ◦ jk)∗Wλ and cannot map to

any other simple. If, on the other hand, deg(λ) < deg(λ′); then (ideg(λ))
∗Vλ′ = 0

since Vλ′d = 0 for any d ∈ D with deg(d) < deg(λ′), and so the second line in the
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computation vanishes as well.

4.4 D-regular functions

Every representation V ∈ ModDR determines a dimension function d 7→ dimV d.

In this section, we develop tools to explain the behavior of dimension functions,

including a generalization to the case R = Z.

Definition 4.4.1. A basic D-regular function over R is a function Ob(D) → N

of the form

d 7→ (multiplicity of Pλ in a direct sum decomposition of P d)

for some λ ∈ Λ, where we have assumed that this multiplicity makes sense (if R

is Artinian and the hom-sets of D are finite, we may rely on the Krull-Schmidt

Theorem 3.1.4; other situations will need their own Krull-Schmidt theorems). A

D-regular function over R is any N-linear combination of basic D-regular functions.

Similarly, a signed D-regular function (defined to take values in Z instead of N)

is any Z-linear combination of basic D-regular functions.

Example 4.4.2. By Theorem 4.3.15, the basic ∆-regular functions (here, ∆ is the

category of finite, nonempty total orders and monotone maps) over any Artinian ring

are of the form [n] 7→
(
n−1
k−1

)
for various k.

Theorem 4.4.3. If V ∈ ModDR is a finitely generated representation of a dimension

zero category D over a commutative ring R (which is necessarily Artinian by The-

orem 4.3.2), then there exists a finite list of indecomposable R-modules M1, . . . ,Mk

and a corresponding list of basic D-regular functions ϕ1, . . . , ϕk so that

V d 'M
⊕ϕ1(d)
1 ⊕ · · · ⊕M⊕ϕk(d)

k .
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Proof. By Theorem 4.3.11, a Cauchy model C for D is bounded and has ModDR '

ModCR. Proposition 2.4.4 provides an intrinsic description of being finitely generated

(any formula of the form V =
∑

α Vα for some infinite collection of subrepresentations

Vα has infinite redundancy), so V is still finitely generated when considered as a

representation of C. Since C is bounded, there are only finitely many c ∈ C for which

V c 6= 0; write Supp(V ) = {c ∈ C | V c 6= 0} for this finite set of objects. For each

c ∈ Supp(V ), the previous discussion gives `(V c) <∞ and so by the (classical) Krull

Schmidt Theorem, V c 'Mc,1⊕· · ·⊕Mc,kc where each Mc,i ∈ ModR is indecomposable.

Let d ∈ D. By the Krull-Schmidt Theorem 3.1.4, P d decomposes as a direct sum

of indecomposable projectives. In a Cauchy model, every indecomposable projective

P ∈ ModDR, considered as an object of ModCR, is isomorphic to a unique projective

of the form P c ∈ ModCR for some c ∈ C. So P d corresponds under the equivalence

ModDR ' ModCR to a representation isomorphic to P c1 ⊕ · · · ⊕ P cl for some objects

c1, . . . , cl ∈ C. Fixing c ∈ C, we may ask for the number of appearances of c among

the list c1, . . . , cl; indeed, this number is exactly the multiplicity of P c appearing as

a direct summand of P d. In other words, as d ∈ D varies, this multiplicity coincides

with some basic D-regular function ϕc(d). To conclude the proof, compute

V d ' HomDR(P d, V )

' HomCR (P c1 ⊕ · · · ⊕ P cl , V )

' V c1 ⊕ · · · ⊕ V cl

'
⊕

c∈Supp(V )

(V c)⊕ϕc(d)

'
⊕

c∈Supp(V )

(Mc,1)⊕ϕc(d) ⊕ · · · ⊕ (Mc,kc)
⊕ϕc(d).

Corollary 4.4.4. If V ∈ ModDR satisfies the hypotheses of Theorem 4.4.3 and N ∈

70



ModR is a simple R-module, then the function

d 7−→ (multiplicity of N in a composition series for V d)

is D-regular. Similarly, d 7−→ `(V d) is D-regular. More generally, if χ : ModR → Z≥0

(resp. Z) is a function that’s additive on direct sums, then d 7−→ χ(V d) is D-regular

(resp. signed D-regular).

Proof. Use additivity of χ on the direct sum decomposition in Theorem 4.4.3.

Corollary 4.4.5. If R is a PID, each hom-set HomD(x, y) is finite, and D admits a

homological modulus over R, then for each finitely generated V ∈ ModDR there exists

a finite list of prime powers q1, . . . , qk ∈ R and a corresponding list of functions

ϕ1, . . . , ϕk along with an extra function ψ so that

V d ' R⊕ψ(d) ⊕R/(q1)⊕ϕ1(d) ⊕ · · · ⊕R/(qk)⊕ϕk(d),

where the function ψ is D-regular over the field of fractions of R, and each function

ϕi is signed D-regular over R/(qi).

Proof. First, let us show that the list of prime powers appearing is finite. By The-

orem 4.2.2, every map of representations P d → V is determined by its restric-

tion along i : M → D, where M is the full subcategory spanned by the objects

µ( location of generators for V ). By Yoneda’s lemma, HomDR(P d, V ) ' V d, and so

V d ' HomMR (i∗P d, i∗V ) ⊆
∏

m∈MHomZ(P dm,V m) '
∏

m∈M(V m)⊕|HomD(d,m)| is a

submodule of a module built from sums of the modules V m. It follows that the

prime powers that appear must divide the order of their primary component inside

the finitely generated module ⊕m∈MV m.

Tensoring V with the field of fractions of R, we kill all non-free summands and

so the dimension matches the free rank; it follows that ψ is D-regular over this
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field. Pick i so that qi doesn’t divide any of the other prime powers. Tensoring

with R/(qi), we pick up copies of R/(qi) from free copies of R as well as legitimate

copies of R/(qi). This overcount is still D-regular over R/(qi) because it gives the

multiplicities of R/(qi) in the finitely generated representation R/(qi) ⊗R V/torsion,

and so ϕi is signed-D-regular over the ring R/(qi). A similar inclusion-exclusion gives

the result.
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CHAPTER V

Case study: Representations of the category of

finite sets

The purpose of this chapter is two-fold: to exhibit the power of the general toolkit

in a special case, and to advertise its usability by showing the ease with which we

compute examples and formulate conjectures. The tools themselves were developed

in Chapters III and IV, but we strive to make this chapter reasonably self-contained.

A future researcher might use this chapter as a schematic for attacking a new

category suspected of being dimension zero.

5.1 Summary of results for the representation theory of the

category of finite sets

Let D denote the category whose objects are the finite sets [n] = {1, . . . , n}

for n ∈ N and whose morphisms are the functions between them. Since any other

finite set is isomorphic to one of these, the representation theory of D matches the

representation theory of the category of finite sets.

The main computational result of this chapter (Theorem 5.1.6) is novel, giving a

practical way to deal with representations of D arising in nature. The construction

of the indecomposable injective modules in Theorem 5.4.2 appears to be new as well.
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Finally, Theorem 5.6.1 gives a new result about representations over Z.

The other results were obtained by this author in the early years of his Ph.D., but

in actuality are due to (or were already known to) Eric Rains [Rai09] who deduces

them from classical work of Putcha [Put96] on the representation theory of the full

transformation monoid. The proofs below are due to the author.

We begin with a concrete characterization of the finitely generated representations.

Theorem 5.1.1. If V : D → VectQ is a representation, then V is finitely generated

if and only if the sequence n 7→ dimQ V is bounded above by a polynomial in n.

We give the classification of irreducible representations.

Theorem 5.1.2. The irreducible representations of D are in bijection with integer

partitions. If λ is a partition, the matrices Xλ given in Theorem 5.3.3 provide an

explicit model of the irreducible representation corresponding to λ. In particular, the

dimension sequences satisfy

dimVλ[n] =

 dimWλ ·
(
n
k

)
for λ not a column(

n−1
k−1

)
for λ a column, n > 0

where Wλ denotes an irreducible representation of S|λ|.

We now describe the precise way in which every finitely generated representation

is built up from these irreducibles.

Theorem 5.1.3. Every finitely generated representation V : D → VectQ admits a

filtration

0 = V0 ( V1 ( V2 ⊆ · · · ( Vk = V

so that each successive quotient Vi/Vi−1 is irreducible. As usual, any two such filtra-

tions gives the same multiset of irreducibles.

Since dimension functions add in short exact sequences, we obtain the following.
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Corollary 5.1.4. A representation V is finitely generated if and only if the sequence

n 7→ dimQ V coincides with a polynomial for all n > 0.

The next result guarantees the existence of a presentation matrix for every finitely

generated representation.

Theorem 5.1.5. A representation V : D → VectQ is finitely generated if and only if

it admits a presentation matrix over D with coefficients in Q.

Once we have a presentation matrix for V , the last result (and the only novel result

in this summary) lets us compute its multiset of irreducible composition factors.

Theorem 5.1.6. If M is a presentation matrix for a representation V : D → VectQ

the multiplicity in V of the irreducible representation associated to λ may be computed

as the corank of the matrix obtained by applying Yλ (see Theorem 5.4.2) to the entries

of M . In particular, if the largest row label is [r], then no partition of size greater

than r + 1 appears with positive multiplicity, and any of size exactly r + 1 must be a

column partition.

The rest of the chapter is an extended, fully-worked example.

5.2 First experiments

5.2.1 Computing in D

To prepare for the computations required in further steps, we must program a

computer to perform composition in D and find hom-sets. A few keystrokes should

tell us that

HomD([2], [3]) = { 11 , 12 , 13 , 21 , 22 , 23 , 31 , 32 , 33 }

or that

2231 ◦ 32441 = 32112 .
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It will also be convenient to allow linear combinations of morphisms in D, where

composition extends by linearity:

(
412 − 3 222

)
◦
(
12 + 23

)
= 12 − 6 22 + 41 .

5.2.2 Computing the preorders ≤d

According to Definition 4.1.1, each object d ∈ D induces a preorder ≤d on Ob(D).

Theorem 4.3.2 characterizes categories of dimension zero as those for which every

preorder ≤d has a finite “joint maximum,” which is to say, a finite collection of

objects µ(d) ⊆ Ob(D) so that for any x ∈ D there exists m ∈ µ(d) so that x ≤d m.

We use a computational description of ≤[d] suitable for experimentation (see

Proposition 4.1.3). For any composite map s : [n] → [m] → [n], we build the

HomD([d], [n]) × HomD([d], [n]) matrix Ms whose (f, g) entry is 1 if s ◦ f = g and 0

otherwise. We have [n] ≤[d] [m] exactly when the identity matrix is in the Q-linear

span of the Ms.

Let’s check if [3] ≤[1] [2]. For each

s ∈ { 111 , 112 , 113 , 121 , 122 , 131 . . . , 333 }

in the set of self-maps of [3] that factor through [2], build the 1-0-matrix Ms:


1 0 0

1 0 0

1 0 0

,


1 0 0

1 0 0

0 1 0

,


1 0 0

1 0 0

0 0 1

,


1 0 0

0 1 0

1 0 0

,


1 0 0

0 1 0

0 1 0

,


1 0 0

0 0 1

1 0 0

, · · · ,


0 0 1

0 0 1

0 0 1

 .

Since 
1 0 0

0 1 0

0 0 1

 =


1 0 0

0 1 0

0 1 0

+


1 0 0

1 0 0

0 0 1

−


1 0 0

1 0 0

0 1 0

 ,
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the inequality holds. Record this result in a table for [n] ≤[1] [m].

≤[1] [0] [1] [2] [3] [4]
[0]
[1]
[2]
[3] 3

[4]

Table 5.1: Recording the inequality [3] ≤[1] [2]

A computer calculation fills out the table.

≤[1] [0] [1] [2] [3] [4]
[0] 3 3 3 3 3

[1] 7 3 3 3 3

[2] 7 7 3 3 3

[3] 7 7 3 3 3

[4] 7 7 3 3 3

Table 5.2: The preorder ≤[1]

It seems as though [2] might be a maximum element for this preorder. A similar

computation for ≤[2] gives the table

≤[2] [0] [1] [2] [3] [4]
[0] 3 3 3 3 3

[1] 7 3 3 3 3

[2] 7 7 3 3 3

[3] 7 7 7 3 3

[4] 7 7 7 3 3

Table 5.3: The preorder ≤[2]

suggesting that [3] might be a maximum for the preorder ≤[2]. Since it also seems

that [1] is a maximum for the preorder ≤[0], we feel justified making the following

guess.

Guess 5.2.1. Every object [n] ∈ D satisfies [n] ≤[d] [d+ 1].
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If true, this statement is an elementary fact of combinatorics and linear algebra,

and should be amenable to direct proof. The general theory provides a simplifying

fact, which is a corollary of Lemma 4.1.9:

Proposition 5.2.2. If the identity morphism of c can be factored through d, then

x ≤d y =⇒ x ≤c y.

Since the identity function on [n] factors through [n+ 1] for n ≥ 1, the preorders

≤d only gain checkmarks as d gets smaller. Consequently, to prove Guess 5.2.1, it

suffices to prove that for each n ≥ 0, we have

[n+ 2] ≤[n] [n+ 1].

Proof of Guess 5.2.1. Define the set

H = {h ∈ HomD([n+ 2], [n+ 2]) : i ≤ h(i) ≤ i+ 1 for all i} .

We claim that ∑
h∈H

(
(−1)

∑n+2
i=1 (h(i)−i)

)
·Mh = 0,

from which the result follows since the identity matrix shows up in this sum exactly

once with coefficient 1. We must show that the (f, g)-entry of this matrix is zero

for any f, g ∈ HomD([n], [n + 2]). To this end, choose some k 6∈ Im(f), k 6= n + 2,

and define an involution τ : H → H flip-flopping function values at k; precisely,

τ(h)(i) = h(i) when i 6= k and t(h)(k) = 2k+ 1− h(k). We see that h ◦ f = τ(h) ◦ f ,

and so the (f, g)-entry, which depends only on the truth of the equation h ◦ f = g,

is fixed under the action of τ . On the other hand, τ changes exactly one term in the

sum
∑n+2

i=1 (h(i) − i), switching between even and odd; so τ also acts on the sum by

negation.

Using terminology to be introduced in Definition 4.2.4 and applying Theorem 4.3.2,
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we have proved the following result:

Theorem 5.2.3. The function µ([0]) = {[0], [1]}, µ([d]) = {[d+ 1]} is a homological

modulus for D over Z, and therefore D is dimension zero over any Artinian ring R.

Let us list some concrete statements that follow from our work so far. Every

finitely generated representation has finite length, meaning that every representation

has a finite filtration whose successive quotients are simple. If we later get a grip on the

simples, we will have gone a long way toward understanding a general representation.

By Proposition 4.1.3, the homological modulus tells us that if U is generated by

vectors in U [k] (with k > 0, say), any subrepresentation U ′ ⊆ U is generated by

vectors in U ′[k + 1].

These theoretical consequences are complemented by a crucial computational fact.

Corollary 5.2.4. Every finitely generated representation of D over a commutative

ring R can be described completely by a finite presentation matrix whose entries are

R-linear combinations of morphisms in D. The category of finitely generated repre-

sentations is closed under taking kernels, images, and cokernels. Furthermore, these

constructions may be carried out algorithmically from knowledge of the homological

modulus.

A representation of D is an infinite amount of highly compatible data. To be

able to write one succinctly as an explicit matrix seems extremely convenient. Corol-

lary 5.2.4 guarantees that homological computation on finitely generated representa-

tions may be carried out with explicit presentation matrices!

5.2.3 A first pass at the irreducible representations

The first step in constructing the simples is to pick an N-filtration of D, which is to

say, a degree function deg : Ob(D)→ N. We write Dk for the full subcategory on the
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objects of degree k ∈ N. Since it will be in our interest to pick the filtration in a natu-

ral way, we set deg([n]) = n. Our N-filtration induces an “associated graded” category

A = tkAk, where eachAk = Dk/(morphisms factoring through objects with degree < k).

Theorem 3.3.7 tells us that the irreducible representations of D are in canonical

bijection with the irreducible representations of A; it also give a computational recipe.

Let Λk be an indexing set for the irreducible representations of Ak, and set Λ = tkΛk

an N-graded indexing set for the irreducible representations of A.

In our case, Ak is defined to be the algebra of endomorphisms of [k] modulo

the ideal spanned by functions factoring through smaller sets. Since these functions

are exactly the non-bijections, we have a canonical isomorphism Ak ' QSk with

the group algebra of the symmetric group. The irreducible representations of the

symmetric group Sk are indexed by partitions of size k, so we may as well think of

the elements λ ∈ Λ as partitions. We have a result.

Theorem 5.2.5. The irreducible representations of D are in bijection with partitions.

Given λ ∈ Λk, write Wλ for the irreducible representation of Sk corresponding

to λ. We describe the general procedure by which an irreducible representation of

D may be computed from knowledge of the irreducibles of A. Write Vλ for the

irreducible representation of D coming from Wλ. By Yoshioka’s Theorem (given as

Proposition 3.1.10), the representation Vλ is the unique irreducible with the property

that Vλ[k] ' Wλ.

As before, we proceed computationally in the hopes of making a conjecture. Fix a

matrix coefficient of the irreducible representation Wλ, and precompose with the nat-

ural map HomD([k], [k])→ Ak to obtain ψ : HomD([k], [k])→ Q. Theorem 3.3.10 tells

us that Vλ[n] may be computed as the row space of the HomD([k], [n])×HomD([n], [k])

whose (p, q)-entry is given by ψ(q ◦ p).

For example, let λ = , the partition of 2 with one part, and suppose we wish

to compute Vλ[3]. In this case, the function ψ is given by ψ( ij ) = 1 if i 6= j

80



and ψ( ii ) = 0 (for more general λ, we could use the coefficients of the Young

symmetrizer). Build the multiplication table for HomD([2], [3])× HomD([3], [2])

111 112 121 122 211 212 221 222



11 11 11 11 11 22 22 22 22

12 11 11 12 12 21 21 22 22

13 11 12 11 12 21 22 21 22

21 11 11 21 21 12 12 22 22

22 11 11 22 22 11 11 22 22

23 11 12 21 22 11 12 21 22

31 11 21 11 21 12 22 12 22

32 11 21 12 22 11 21 12 22

33 11 22 11 22 11 22 11 22

,

and apply ψ:

111 112 121 122 211 212 221 222



11 0 0 0 0 0 0 0 0

12 0 0 1 1 1 1 0 0

13 0 1 0 1 1 0 1 0

21 0 0 1 1 1 1 0 0

22 0 0 0 0 0 0 0 0

23 0 1 1 0 0 1 1 0

31 0 1 0 1 1 0 1 0

32 0 1 1 0 0 1 1 0

33 0 0 0 0 0 0 0 0

.

Since this matrix has rank 3, we see that dimV [3] = 3. Performing similar compu-

tations, we obtain the following table
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n 0 1 2 3 4 5
dimV [n] 0 0 1 3 6 10

.

Table 5.4: Dimensions of the irreducible representation with λ =

The resulting function seems to match n 7→
(
n
2

)
. Computing more data,

n 0 1 2 3 4 5
dimV [n] 0 0 1 2 3 4

,

Table 5.5: Dimensions of the irreducible representation with λ =

and we see that the partition seems to give the function n 7→ n−1 for n > 0. With

no immediate general pattern to conjecture, we compute the values for the partitions

of 3:

0 1 2 3 4 5
0 0 0 1 4 10
0 0 0 2 8 20

0 0 0 1 3 6

Table 5.6: Dimensions of the irreducible representations with λ a partition of 3

Each sequence seems to be a multiple of a binomial sequence, but if the diagram is a

column, the sequence is shifted by one.

Guess 5.2.6. If λ is a partition of k, the irreducible representation Vλ satisfies

dimVλ[n] =

 dimWλ ·
(
n
k

)
for λ not a column(

n−1
k−1

)
for λ a column, n > 0.
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5.3 More experiments suggested by the results of the first

experiments

5.3.1 A Morita equivalent category separating columns and non-columns

According to Guess 5.2.6, the construction of Vλ is likely to depend on whether

or not λ is a column. We introduce a technique for encoding this casework into a

category. The idea is that there may be other categories with the same representation

theory as D. These categories can be thought of as “Morita equivalent” to D by

analogy to the case of two rings having equivalent categories of modules.

Lemma 4.3.8 provides a rich source of categories Morita equivalent to D using

linear combinations of morphisms that are idempotent under composition. With this

construction in mind, define two idempotents in the algebra C · HomD([k], [k])

εk =
1

k!

∑
σ∈Sk

sign(σ) · σ

θk = 1− εk.

Since a column partition gives rise to the alternating representation, these idempo-

tents neatly separate the cases of being a column or non-column.

Definition 5.3.1. Let C be the category with three infinite families of objects

1[0], 1[1], 1[2] . . ., ε0, ε1, . . ., and θ2, θ3, . . . where morphisms in C are linear combinations

of morphisms in D according to the rule

HomC(πk, π
′
l) = {ϕ ∈ C · HomD([k], [l]) | π′l ◦ ϕ ◦ πk = ϕ} ,

and πk can stand for any of the idempotents 1[k], εk, or θk, similarly for π′l. Compo-

sition is inherited from composition in D.

The category C satisfies the hypotheses of Lemma 4.3.8 because it contains “enough
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idempotents” in the sense that any nonzero representation U of D must have Uπ 6= 0

for some π ∈ Ob(C).

5.3.2 Computing the preorders ≤π for the Morita equivalent category C

Once again we seek information from the preorders ≤c. Experimentation directly

analogous to the earlier computations leads to the following guess, which we state as

a proposition since we prove it forthwith.

Proposition 5.3.2. For each k ≥ 1, θk+1 ≤1[k] 1[k] in the category C.

Proof. Unraveling the definitions, we must find an element

δk ∈ Q · HomD([k + 1], [k + 1])

so that for any map f ∈ HomD([k], [k + 1]), δk ◦ f = 0 and δk ∼= θk modulo the ideal

of maps factoring through [k]. Define the set

H = {h ∈ EndD([k + 1]) : i ≤ h(i) ≤ i+ 1 if i ≤ k and k ≤ h(k + 1) ≤ k + 1} .

An argument similar to the proof of Guess 5.2.1 shows that

∑
h∈H

(
(−1)

∑k+1
i=1 (h(i)−i)

)
·Mh = 0,

and that this element is congruent (modulo maps factoring through [k]) to 1 + τ ,

the sum of the identity and the transposition flipping k and k + 1. This element

of QSk generates the two-sided ideal that misses ε since any representation sending

1 + τ to zero must send τ to −1 (along with every other transposition, since these are

conjugate in the group). In particular, the idempotent θk is in this ideal, and so we

may pre- and post-multiply this sum by elements of QSk to obtain an element that

is congruent to θk modulo maps that factor through [k], as required.
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Let us gain more fluency in the meaning of the preorders ≤d. Earlier, we computed

µ([k]) = {[k + 1]} for any k ≥ 1, telling us that if U is generated by vectors in U [k],

any subrepresentation U ′ ⊆ U is generated by vectors in U ′[k + 1]. The result we

have just obtained is more refined; it says that if U is generated by vectors in U [k]

and U ′ ⊆ U is a subrepresentation generated by vectors in U ′[k+ 1] that are fixed by

the action of θk+1, then U ′ is equally-well generated by vectors in U ′[k]. The detailed

grammar of the previous sentence may be a bit hard to parse—therein lies the value

of the notation ≤d.

Armed with Proposition 5.3.2, we return our attention to understanding the ir-

reducible representations Vλ. We had conjectured their dimensions in Guess 5.2.6,

which we are now ready to prove.

5.3.3 Explicit construction of the irreducibles

In the case of λ a non-column partition of k, the conjectured dimension function

n 7→ dimWλ ·
(
n
k

)
suggests a possible form for the matrices of Vλ: block matrices with

rows and columns coming from k-subsets of [n] and entries coming from the classical

irreducible Sk-representation Wλ. If λ is a column, we hope for matrices labeled by

those k-subsets of [n] that contain n.

To this end, pick some favored injections

ChosenInj([k], [n]) ⊆ {ι : [k] ↪→ [n]}

so that each k-subset of [n] is realized exactly once as the image of some ι ∈

ChosenInj([k], [n]). (For example, we could take ChosenInj([k], [n]) to be the mono-

tone injections.) Similarly, pick

ChosenColumnInj([k], [n]) ⊆ {ι : [k] ↪→ [n] such that ι(k) = n}.
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Theorem 5.3.3. If λ is a non-column partition of k, then for each function f : [n]→

[m], build the ChosenInj([k], [m])×ChosenInj([k], [n]) block matrix Xλ(f) with (κ, ι)-

entry

Xλ(f)κ,ι =

 Wλσ if f ◦ ι = κ ◦ σ for some σ ∈ Sk

0 otherwise.

If λ is a column of height k, build the ChosenColumnInj([k], [m])×ChosenColumnInj([k], [n])

matrix Xλ(f) with (κ, ι)-entry

Xλ(f)κ,ι =

 sgn(σ) if g = κ ◦ σ for some σ ∈ Sk

0 otherwise,

where g : [k]→ [m] denotes the function

g(p) =

 m if f(ι(p)) 6∈ im (κ)

f(ι(p)) otherwise.

The assignment f 7→ Xλ(f) is an irreducible representation of D isomorphic to Vλ.

Proof. If we argue that these are irreducible representations and give the right Sk-

representation when evaluated on [k], the required isomorphism will follow by Yosh-

ioka’s theorem (Proposition 3.1.10).

Let us begin with the case where λ is not a column. It is straightforward to

check that Xλ(1) = 1. Given functions f : [a] → [b] and g : [b] → [c], we verify

that Xλ(g ◦ f) = Xλ(g) ◦Xλ(f) entry by entry. For all α ∈ ChosenInj([k], [a]) and

γ ∈ ChosenInj([k], [c]), we must check that

Xλ(g ◦ f)γ,α =
∑

β∈ChosenInj([k],[b])

Xλ(g)γ,β ◦Xλ(f)β,α.

Each summand on the right vanishes unless g ◦ β = γ ◦ σ and f ◦ α = β ◦ τ for some
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uniquely-determined σ, τ ∈ Sk. Since fixing γ and α fixes β = f ◦ α ◦ τ−1, there is

only one term in the sum. We have g ◦ f ◦ α = g ◦ β ◦ τ = γ ◦ σ ◦ τ , and so the claim

follows because Wλσ ◦Wλτ = Wλ(σ ◦ τ).

Still assuming λ is not a column, let us verify irreducibility. Certainly Xλ[k] ' Wλ,

by construction. We also see that the representation Xλ is generated by any vector in

Xλ[k] since any vector with nonzero values in a single block inside Xλ[l] is the image

of the corresponding vector in Xλ[k] under the corresponding chosen injection. By

Proposition 5.3.2, any subrepresentation X ′ ⊆ Xλ generated by vectors in X ′[k + 1]

that are fixed by θk+1 must be generated by vectors inX ′[k]. SinceXλ[k] is irreducible,

it suffices to show that every vector in Xλ[k + 1] is fixed by θk—equivalently, that

every vector in Xλ[k + 1] is killed by εk+1.

Let v ∈ Xλ[k] be a nonzero vector. Since Xλ is generated by v, the vector

space Xλ[k + 1] is spanned by vectors of the form (Xλf)(v) as f ranges over the set

HomD([k], [k + 1]). Since λ is not a column, (Vλθk)(v) = v. So (Xλεk+1 ◦Xλf)(v) =

(Xλεk+1 ◦Xλf ◦Xλθk)(v). In a moment we shall see that

HomC(θk, εk+1) = 0

and so εk+1 acts by zero on a spanning set for Xλ[k + 1]. We conclude the proof

by showing that this hom-vector-space is zero. Let
∑

f∈HomD([k],[k+1]) αf · f be a lin-

ear combination of morphisms from D that is fixed under precomposition by θk and

poscomposition by εk+1. If f is non-injective, then αf = 0; indeed, otherwise the

image of f misses two points, and so f is fixed under postcomposition with some

transposition. Since all injections [k] ↪→ [k + 1] are in the same free orbit under

postcomposition by elements of the symmetric group Sk+1, every αf = ±αf ′ depend-

ing on the sign of the permutation σ ∈ Sk+1 for which σ ◦ f = f ′. In other words,

dim HomC(θk, εk+1) ≤ 1. If ι : [k] ↪→ [k + 1] is some chosen injection, we must prove
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that the vector ∂ =
∑

σ∈Sk+1
sgn(σ) · (σ ◦ ι) is killed by precomposition with θk. It

suffices to check that ∂ is fixed by precomposition with εk; this is clear since pre-

composition by a transposition (a b) matches postcomposition by the transposition

(ι(a) ι(b)).

In the case where λ is a column of height k, we produce an irreducible represen-

tation Dk and claim that the matrices Xλ describe Dk in a natural basis. Define

Dk[n] ⊆ MatDQ([k − 1]→ [n]) by the formula

Dk[n] = εk−1 · ([k − 1] ⊆ [k]) · εk ·MatDQ([k], [n]),

where a function f : [n]→ [m] acts by postcomposition. Each ι ∈ ChosenColumnInj([k], [n])

corresponds to εk−1 · ([k − 1] ⊆ [k]) · εk · ι. A routine computation verifies that these

vectors form a basis and transform according to the entries of Xλ.

To see thatDk is irreducible, note thatDk is a subrepresentation of MatDQ([k − 1],−)

which is generated by the matrix 1[k−1] ∈ MatDQ([k− 1], [k− 1]) and so any subrepre-

sentation U ⊆ Dk is generated by vectors in U [k] since µ([k − 1]) = {[k]}. But Dk[k]

is one-dimensional, and so U = Dk or else U = 0.

5.3.4 What we know after constructing the irreducibles

Since Guess 5.2.6 holds, we have proved the following result.

Theorem 5.3.4. If V is a finitely generated representation of D, then the function

n 7→ dimV [n] coincides with a polynomial in n for n > 0.

Proof. By Theorem 5.2.3, V has a finite composition series; by Theorem 5.3.3, its

composition factors have the polynomiality property.

Surprisingly, we also get a converse—a numerical test for finite generation.

Theorem 5.3.5. If V is a representation of D so that the the function n 7→ dimV [n]

is bounded above by a polynomial in n, then V is finitely generated.
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Proof. We prove the formally stronger (but actually equivalent by Theorem 5.2.3)

fact that V has finite length. Any increasing chain of subrepresentations of V gives

a pointwise-nondecreasing sequence of nonnegative integer-valued polynomials. But

there are only finitely many nonnegative integer-valued polynomials that never ex-

ceed a given nonnegative integer-valued polynomial, and so any chain of distinct

subrepresentations must be finite.

Finally, we know a great deal about “representation stability” phenomena for

representations of D. If λ is not a column and |λ| = k, then our construction of the

irreducibles gives that Xλ[n] ' IndSnSkWλ, which may be computed by Pieri’s rule. In

other words, the story for non-column partitions perfectly matches the representation

theory of FI#. If λ is a column, then we obtain a sequence of hooks in the same way

we would for FI (see [CEF15]).

5.3.5 What’s left?

Returning to the theme of Chapter 1, we may ask for an algorithm that takes

a presentation matrix over D and returns the composition factors of its representa-

tion and their multiplicities. This is enough information to read off the dimension

polynomial or even the symmetric group characters.

In other words, we wish to apply the multiplicity Theorem 4.3.5.

5.4 Preparing to apply the Multiplicity Theorem 4.3.5

5.4.1 Experimentally computing the indecomposable injectives

Any minimal idempotent π ∈ Q · HomD(d, d) gives rise to an indecomposable

injective representation using the formula

x 7→ {ϕ ∈ Q · HomD(x, d) | π ◦ ϕ = ϕ}
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where a function f : x→ y acts by ϕ 7→ ϕ◦f . It is a general fact that every indecom-

posable injective has a unique irreducible subrepresentation, and moreover, that every

indecomposable injective is determined up to isomorphism by this subrepresentation.

In other words, any indecomposable injective is the injective hull of some irreducible

representation. Write Iλ for the injective hull of Vλ.

Let’s try the recipe with λ = . We start with the Young symmetrizer (some

multiple of which is idempotent)

YoungSymmetrizer( ) = 12 + 21 ∈ Q · HomD([2], [2]).

Since the algebra Q ·HomD([2], [2]) is Artinian, any such idempotent in the quotient

algebra Q · S2 has a lift which is a minimal idempotent of Q · HomD([2], [2]). Such

a lift may be obtained computationally using the MeatAXE algorithm, for example,

although this case requires no tools:

π =
1

2
( 12 + 21 − 11 − 22 ).

In order to compute dim I [3], for example, we must compute the span of the eight

vectors

{π ◦ 111 , π ◦ 112 , π ◦ 121 , π ◦ 122 , π ◦ 211 , π ◦ 212 , π ◦ 221 , π ◦ 222 }

which, after expanding, take the form

{0, − 111 + 112 + 221 − 222 , − 111 + 121 + 212 − 222 ,

− 111 + 122 + 211 − 222 , − 111 + 122 + 211 − 222 ,

− 111 + 121 + 212 − 222 , − 111 + 112 + 221 − 222 , 0},
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and after row-reducing,

{ 111 − 122 − 211 + 222 ,

112 − 122 − 211 + 221 ,

121 − 122 − 211 + 212 }.

It follows that dim I [3] = 3. A few similar calculations give a table:

n 0 1 2 3 4 5
dim I [n] 0 0 1 3 7 15

.

Table 5.7: Dimensions of the indecomposable injective corresponding to

Probably the formula is n 7→ 2n−1 − 1, at least for n > 0. We try the partitions of 3:

0 1 2 3 4 5
0 0 0 1 6 25
0 0 0 2 12 50

0 0 1 4 13 40

Table 5.8: Dimensions of the indecomposable injectives for partitions of 3

A bit of poking around in the OEIS [Slo] leads us to a conjecture.

Guess 5.4.1. If λ is a partition of k, the indecomposable injective Iλ satisfies

dim Iλ[n] =

 dimWλ ·
{
n
k

}
for λ not a column{

n
k

}
+
{

n
k−1

}
for λ a column,

where
{
n
k

}
denotes a Stirling number of the second kind: the number of partitions of

the set [n] into k nonempty disjoint subsets.

91



5.4.2 Construction of the indecomposable injectives

As before, Guess 5.4.1 suggests a form for our matrices. We hope for block matrices

where the rows and columns are indexed by k-element quotients of the set {1, . . . , n}

and the entries are still coming from Wλ. In the column case, we hope for rows and

columns to be indexed by k- and (k− 1)-element quotients with entries coming from

the sign representation of Sk.

Taking a cue from the construction of the irreducibles, pick some favored surjec-

tions ChosenSurj([n], [k]) ⊆ HomD([n], [k]) so that any function f : [n]→ [m] factors

through exactly one element of ChosenSurj([n], [#(im f)]). For example, we may

choose the surjections ζ : [n]→ [k] with the property that min ζ−1(i) is an increasing

sequence for 1 ≤ i ≤ k.

Theorem 5.4.2. If λ is a non-column partition of k, then for each function f : [n]→

[m], build the ChosenSurj([m], [k]) × ChosenSurj([n], [k]) block matrix Yλ(f) with

(ζ, ξ)-entry

Yλ(f)ζ,ξ =

 Wλσ if ζ ◦ f = σ ◦ ξ for some σ ∈ Sk

0 otherwise.

If λ is a column of height k, build the (ChosenSurj([m], [k]) t ChosenSurj([m], [k − 1]))×

(ChosenSurj([n], [k]) t ChosenSurj([n], [k − 1])) matrix Yλ(f) with (ζ, ξ)-entry

Yλ(f)ζ,ξ =



sign(σ) if |im (ζ)| = k and ξ ◦ f = σ ◦ ζ for some σ ∈ Sk

sign(τ) if |im (ζ)| < k and ξ ◦ f = τ ◦ ζ for some τ ∈ Sk−1

sign(σ) if |im (ζ)| < k, ξ ◦ f = σ ◦ ι ◦ ζ for some σ ∈ Sk,

where ι : [k − 1] ⊆ [k] denotes the natural inclusion

0 otherwise.

Then the assignment f 7→ Yλ(f) is a representation of D isomorphic to the indecom-
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posable injective Iλ which is the injective hull of the irreducible Vλ.

Proof. Let us prove that Yλ is a representation when λ is not a column. It is straight-

forward to check that Yλ(1) = 1. Given functions f : [a]→ [b] and g : [b]→ [c], let us

verify that Yλ(g ◦ f) = Yλ(g) ◦ Yλ(f) entry-by-entry. For all α ∈ ChosenSurj([a], [k])

and γ ∈ ChosenSurj([c], [k]), we must check that

Yλ(g ◦ f)γ,α =
∑

β∈ChosenSurj([b],[k])

Yλ(g)γ,β ◦ Yλ(f)β,α.

The summand associated to β vanishes unless γ ◦ g = σ ◦ β and β ◦ f = τ ◦ α for

some uniquely defined σ, τ ∈ Sk. There can be at most one non-vanishing summand

because β = σ−1◦γ◦g is determined. In this case, we have γ◦g◦f = σ◦β◦f = σ◦τ ◦α,

and so Yλ is a representation since Wλ(σ ◦ τ) = Wλσ ◦Wλτ .

We set about proving that Iλ is an indecomposable injective. By Proposition 5.3.2

and Corollary 4.1.12, inflation along the surjection pk : Dk � Ak preserves injectivity

of representations of Ak on which θk acts by the identity. Since Wλ is always injective

because Ak ' QSk is semisimple, and θk acts by the identity whenever λ ∈ Λ is not a

column, we have an injective Dk-representation (pk)∗Wλ by inflation for non-column

λ. By Corollary 3.1.7, this inflated representation is still irreducible, in particular in-

decomposable. It follows by Theorem 3.3.4 that the right Kan extension (ik)∗(pk)∗Wλ

is an injective hull for the irreducible Vλ. The general formula for right Kan extension

(Proposition 2.6.7)

((ik)∗(pk)∗Wλ)[n] = ((pk)∗Wλ)⊗Dk HomD([n], [k])∗

simplifies in this case because maps [k]→ [k] that factor through [k − 1] act by zero

on (pk)∗Wλ, which means that

(pk)∗Wλ ⊗Dk Ak ⊗Ak Ak ' (pk)∗Wλ,
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as right Dk-modules, and so

((ik)∗(pk)∗Wλ)[n] ' Wλ ⊗Ak Ak ⊗Dk HomD([n], [k])∗.

Since Ak ⊗Dk HomD([n], [k])∗ ' Surj([n] → [k])∗ is free as a QSk-module, we see

that this tensor product may be computed by first picking orbit representatives for

the free Sk-action on Surj([n] → [k]). This step was accomplished earlier by picking

ChosenSurj([n], [k]) ⊆ Surj([n], [k]). The rest of the construction mirrors the forma-

tion of this tensor product, and we are done.

In the case where λ is a column of height k, we produce an indecomposable

injective representation Jk and claim that the matrices Yλ describe Jk in a natural

basis. Define Jk[n] ⊆ MatDQ([n] → [k]) the summand of the basic injective Ik given

by the indecomposable idempotent εk

Jk[n] = MatDQ([n]→ [k]) · εk

where a function f : [m]→ [n] acts by precomposition. Each ζ ∈ ChosenSurj([n], [k])

corresponds to ζ · εk. A routine computation verifies that these vectors form a basis

and transform according to the entries of Yλ.

5.5 The multiplicity theorem for presentations

In this section, we switch to the complex numbers for consistency with Theo-

rem 4.3.5. As it happens, all these computations will give the correct answer over Q

as well because the representation theory of Sk is defined over Q.
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5.5.1 Demonstration computation

Let M ∈ MatDC (x⊕ → y⊕) be a presentation matrix with entries from D and

coefficients in C. Recall that any such matrix gives rise to a representation VM ∈

ModDC by the formula

VMd =
MatDC (x⊕ −−−→ d)

M ·MatDC (y⊕ → d)
,

where a morphism f ∈ HomD(d, d′) acts by postcomposition. The following result

specializes Theorem 4.3.5 to the category of finite sets.

Theorem 5.5.1. The multiplicity of the irreducible representation Vλ as a compo-

sition factor of the finitely presented representation VM is given by the C-corank of

the block matrix Iλ(M) obtained by applying the indecomposable injective Iλ to the

presentation matrix M entrywise.

No theorem could be easier to use. We demonstrate with the presentation matrix

from §1.2.3

M =

[4] [3] [4] [3][ ]
[4] 1234 − 2134 1123 1234 + 3412 1223 + 2331 + 3112

,

an element of MatDC ([4]→ [4]⊕ [3]⊕ [4]⊕ [3]). Let us compute the multiplicity of the

irreducible representation V inside VM . By the theorem, this multiplicity is given

by the corank of the block matrix I (M). Using the explicit construction of I from
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Theorem 5.4.2 we obtain

1
2
2
2

1
1
2
2

2
1
2
2

2
2
2
1

1
2
2
1

2
2
1
2

1
2
1
2

1
2
2

2
2
1

2
1
2

1
2
2
2

1
1
2
2

2
1
2
2

2
2
2
1

1
2
2
1

2
2
1
2

1
2
1
2

1
2
2

2
2
1

2
1
2



1222 1 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1

1122 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0

2122 -1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

2221 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1

1221 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 2 0 0 1 1 1

2212 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0

1212 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0

a matrix of corank 0. It follows that VM contains no copy of V as a subquotient. A

similar calculation carried out for all partitions computes the full K-class

[VM ] = [V ] + [V ].

This computation is actually finite because almost all Iλ vanish on the sets [3] and [4]

by the dimension count. More generally, we could appeal to the homological modulus

for an upper bound as explained in Theorem 4.3.5. By Theorem 3.3.10, we see that

the dimension of VM is given by the formula

dimVM [n] = 2 ·
(
n

3

)
+ 3 ·

(
n

4

)
.

5.5.2 A computer program

The explicit construction for Iλ is easy to code. Let us run the computation on

the example from §1.2.2 asking for the number of n-colorings of a five-cycle up to

rotation and reflection.

In: coker([5],"[[aabcd,abbcd,abccd,abcdd, \\

abcda,abcde-bcdea,abcde-aedcb]]",[4,4,4,4,4,5,5])
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Out: This finitely presented representation decomposes into \\

irreducible representations as follows:

[coker] = 1*[2, 1] + 1*[3] + 1*[2, 1, 1] + 1*[2, 2] \\

+ 2*[3, 1] + 1*[4] + 1*[1, 1, 1, 1, 1] \\

+ 1*[2, 2, 1] + 1*[3, 2] + 1*[5] \\

+ 1*[1, 1, 1, 1, 1, 1].

In particular, the dimension is given \\

as a function of n > 0:

(1/10) * (n - 2) * (n - 1) * n * (n^2 - 2*n + 2).

Total computation time: 5.51840806007 seconds

The source code for this program will be available on the author’s website.

5.6 What can be said over Z

Until now, we have not hesitated to assume that R to be Artinian, or even some

convenient field like Q or C. Still, if we plan to apply these results to problems of

algebraic topology, we must prepare. In Definition 4.4.1 we give the notion of a regular

function on a category; in this case, the regular functions restrict to integer-valued,

nonnegative polynomials on the sets [1], [2], . . .. (This fact is stronger than the fact

that the irreducible representations of D have polynomial dimension over any field).

The following result is an immediate consequence of Corollary 4.4.5 where we know

the form of the D-regular functions by Example 4.4.2.

Theorem 5.6.1. For every finitely generated representation V : D → ModZ there

exists a finite sequence of prime powers q1, . . . , qk ∈ Z with the property that

V [n] ' Z⊕ϕ0(n) ⊕ (Z/q1)⊕ϕ1(n) ⊕ · · · ⊕ (Z/qk)⊕ϕk(n)

for certain integer-valued, nonnegative polynomials ϕ0, ϕ1, . . . , ϕk in n > 0.
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of combinatorial categories. J. Amer. Math. Soc. arXiv:1409.1670.

[SS15] Steven V. Sam and Andrew Snowden. Stability patterns in representation
theory. Forum Math. Sigma, 3:e11, 108, 2015. doi:10.1017/fms.2015.

10.

[SS16a] Steven V. Sam and Andrew Snowden. GL-equivariant modules over
polynomial rings in infinitely many variables. Trans. Amer. Math. Soc.,
368(2):1097–1158, 2016. doi:10.1090/tran/6355.

[SS16b] Steven V Sam and Andrew Snowden. Proof of Stembridge’s conjecture
on stability of Kronecker coefficients. J. Algebraic Combin., 43(1):1–10,
2016. doi:10.1007/s10801-015-0622-1.

[Ste] Benjamin Steinberg. The Representation Theory of Finite Monoids.
Springer. Available from: http://www.sci.ccny.cuny.edu/~benjamin/
monoidrep.pdf.

[Ves08] Christine Vespa. Generic representations of orthogonal groups: the func-
tor category Fquad. J. Pure Appl. Algebra, 212(6):1472–1499, 2008.

[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38
of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 1994.

[WG14] John D. Wiltshire-Gordon. Uniformly presented vector spaces, 2014.
arXiv:1406.0786.

[WG15] John D. Wiltshire-Gordon. Categories of dimension zero. 2015. arXiv:

1508.04107.

102

http://dx.doi.org/10.1007/s00222-015-0581-0
http://dx.doi.org/10.1007/s00029-008-0467-8
http://dx.doi.org/10.1017/CBO9781107261457
http://dx.doi.org/10.1215/00127094-1962767
http://arxiv.org/abs/1409.1670
http://dx.doi.org/10.1017/fms.2015.10
http://dx.doi.org/10.1017/fms.2015.10
http://dx.doi.org/10.1090/tran/6355
http://dx.doi.org/10.1007/s10801-015-0622-1
http://www.sci.ccny.cuny.edu/~benjamin/monoidrep.pdf
http://www.sci.ccny.cuny.edu/~benjamin/monoidrep.pdf
http://arxiv.org/abs/1406.0786
http://arxiv.org/abs/1508.04107
http://arxiv.org/abs/1508.04107


[Wil12] Jennifer C. H. Wilson. Representation stability for the cohomology of the
pure string motion groups. Algebr. Geom. Topol., 12(2):909–931, 2012.
doi:10.2140/agt.2012.12.909.

[Yos93] Y. Yoshioka. Representation of the Jones category (in Japanese). Master’s
thesis, Osaka University, 1993.

[Zel77] E. I. Zel′manov. Semigroup algebras with identities. Sibirsk. Mat. Ž.,
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