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CHAPTER 1

Introduction

Finite mixture models are powerful statistical modeling tools to analyze the underlying data
frame because of its flexible model structure and appealing interpretation. Numerous real data
applications can be found in a variety of areas, such as economics, finance and clinical trails. The
book by McLachlan and Peel (2000) has a very detailed summary of the finite mixture models
when training data are multivariate. Jordan and Jacobs (1993) introduced the finite mixture of
regression (FMR) models, which is an extension of the finite mixture models, under the term
of the mixture of experts. Different from the finite mixture models, FMR relates a response
variable Y to a set of baseline covariates X = (X1, · · · , Xp) to capture the heterogeneity for
different subgroup populations. Jiang and Tanner (1999) showed that the FMR models are dense
in the exponential family in the sense that any exponential density can be approximated by FMR
models.

The logistic-normal mixtures is one of the FMR models. It allows both the mixing parameters
and the mean parameters to depend on covariates. This is very distinct from many other FMR
models, where the mixing parameters are treated as constants. Because of this unique feature,
the logistic-normal mixtures can jointly model the subgroup membership and the regression
component in each subgroup. Applications can be found at Wong and Li (2001), Muthen and
Asparouhov (2009) and Muthen and Shedden (1999). Recently, Shen and He (2015) utilized the
logistic-normal mixture model in testing the existence of subgroups with given covariates. In
the paper, Shen and He (2015) proposed an EM test (the name EM is from the Expectation-
Maximization algorithm) under the assumption that different subgroups have the same variance.
However, the assumption of homogeneity in subgroups’ variances does not generally hold in
practice. If the equal subgroups’ variances are insisted on, it is unclear whether the EM test
will lose power and whether the model estimation will be biased. The purpose of Chapter 2 in
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the dissertation is to relax the equal variance assumption in the logistic-normal mixture model.
This additional flexibility in allowing unequal subgroup variances is highly valuable in practice,
but brings technical challenges in the theoretical development. When the component variances
are different, the unboundedness of the likelihood function renders the maximum likelihood
estimators invalid. To overcome this difficulty, we propose to work with a penalized likelihood
following the work of Chen (2008) for inference. We also propose a data-driven strategy to
select the penalty parameter λ that maximizes the potential overall subgroup effect and provide
the asymptotic theory for the penalized likelihood estimator and its associated EM tests.

It is unlikely that we always have affirmatory covariates to work with. Quite often, we have to
consider numerous potential covariates and select important ones among them. There are some
variable selection methods that are proposed for FMR models with constant mixing parameters
and given number of components K. For example, when the dimension p of potential covariates
is fixed, Khalili and Chen (2007) proposed a penalized maximum likelihood method based on the
least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996) and the smoothly
clipped absolute deviation (SCAD) method of Fan and Li (2001), where the penalties depend
on the scale of the regression parameters and the mixture structure. Khalili and Chen (2007) ar-
gued that, although the maximum likelihood estimators are consistent when p is fixed in theory,
the empirical performances are very poor when the true models are sparse but the dimension p
of potential covariates is moderately large. The poor empirical performances are in the sense
that the maximum likelihood estimators are not stable and they do not help to identify the true
non-zero coefficients. Sometimes, Akaike information criterion (AIC) and Bayes information
criterion (BIC) are needed to perform model selection. Khalili and Chen (2007) showed that,
however, their proposed penalized maximum likelihood method can select the true covariates
almost surely, and in addition, they demonstrated in simulations that their method is computa-
tionally much more efficient than AIC and BIC. In many situations, however, the dimension of
potential covariates p grows with n, where n is the sample size. In such cases, the standard
asymptotic theory fails. The techniques in convex analysis, see Zhao and Yu (2006), Bickel,
Ritov and Tsybakov (2009), Greenshtein et al. (2004), van de Geer (2008) , which are developed
for large p small n scenario, cannot be applied to the non-convex log-likelihood of FMR models
either. Städler, Bühlmann and van de Geer (2010) reparametrized the FMR models and consid-
ered a `1-penalized maximum likelihood estimators for the case of p = o(en). They restricted
the new parameters in a compact set and instead of focusing on the consistency of the parame-
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ters, they showed that the Kullback-Leibler divergence between the estimated model and the true
model goes to zero with probability going to one. They also showed that the convergence rate is
at the order of

√
log n3 log(p ∨ n)/n. van de Geer (2013) considered the same estimators as that

in Städler, Bühlmann and van de Geer (2010), but improved the convergence rate to the order of√
log p/n by developing the Multivariate contraction theorem and using generic chaining tech-

niques. Note that the convergence rate for the `1 penalized maximum log-likelihood estimators
of traditional linear regressions is at the rate of

√
log p/n, see Lounici et al. (2008) and Zhang

et al. (2009) for details. The log-likelihood function for linear regressions is convex and is in
a simple quadratic form, whereas the FMR models have non-convex log-likelihoods, which are
also in much more complicated forms than that of linear regressions, we do not expect the con-
vergence rate for the `1 penalized maximum log-likelihood estimators of FMR to be better than
that of linear regressions. In other words,

√
log p/n is the best convergence rate we could hope

to get for FMR, and van de Geer (2013) showed that we indeed can achieve the optimal rates for
FMR. Khalili and Lin (2013) also considered the large p small n cases, and showed that there
exists a local penalized maximum likelihood estimator that can select the true covariates almost
surely. However, their setting is rather restrictive; their p can be as large as 4n1/4 − 5 at most.

For known number of componentsK, a common characteristic for the aforementioned results
is that they only concerned the FMR models with constant mixing parameters. In Chapter 3, we
consider logistic-normal mixtures, which allows both mixing parameters and component means
to depend on covariates, in high dimensions. Because the mixing parameters may also depend
on high dimensional covariates, and the logistic form renders them to behave very differently
from the component means, the consistency theory in van de Geer (2013) cannot be directly
applied to this situation. Furthermore, in numerical optimizations, the mixing parameters do
not have explicit update formulas as that in Städler, Bühlmann and van de Geer (2010), which
results lots of local minima in the optimization problem. In Chapter 3, we show that even with
the logistic form, the convergence rate for the model as well as that for the `1 norm of all zero
coefficients estimators can still achieve the optimal rates of

√
log p/n. We also show that the

non-zero coefficients estimates will converge to the true values asymptotically.
Note that the assumption of known number of components K is not guaranteed in practice,

and we need a method to determine the number of components from data. Traditional AIC
and BIC do not work in our setting, because the dimension of covariates is increasing with the
sample size. Extended Bayesian Information Criteria (EBIC) which is developed by Chen and
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Chen (2008) handles model selection in high dimensions, however, their work is under the linear
regression framework. Corduneanu and Bishop (2001) proposed a variational bayesian method
and very recently, Huang, Peng and Zhang (2013) proposed a penalized log-likelihood approach
to select the number of components for mixture models, but these methods are all for a fixed
dimension of covariates. In Chapter 3, we develop a selection criterion (SCMM ) for selecting
the number of components for logistic-normal mixture models with high dimensional covariates.
We show that SCMM choose the true K with probability going to one.

The rest of the dissertation is organized as follows. We study the penalized maximum like-
lihood estimator and the penalized EM test for logistic-normal mixture models with a fixed
number of covariates in Chapter 2. The proposed method and the associated theory, simulations
and real data applications of variable selection with high dimensional covariates for logistic nor-
mal mixtures will be discussed in Chapter 3. We conclude the work with a brief discussion in
Chapter 4 and the detailed proofs are in the Appendix.

4



CHAPTER 2

Subgroup Inferences for Logistic-Normal Mixtures
with Heterogenous Components

Subgroup analysis is important in clinical trials and market segmentation. In recent years, how
to extract unknown subgroups with distinct responses to a treatment has gained increasing pop-
ularity. Much of the early research in subgroup analysis has focused on pre-specified subgroups
(Simon (2002), Song and Chi (2007), and Altstein et al. (2011) among others). Su et al. (2009)
introduced an interaction tree procedure to obtain subpopulations with heterogeneous treatment
effects across subpopulations. Foster et al. (2011) proposed the “Virtual Twins” method to
identify a subgroup for the binary response in a randomized clinical trial. A parametric scoring
system based on multiple covariates was presented in Cai et al. (2011) and Zhao et al. (2013), to
help assign treatments to new patients. Lipkovich et al. (2011) and Lipkovich and Dmitrienkoa
(2014) provided a recursive partitioning method for treatment assignments to patient subpop-
ulations. Berger, Wang and Shen (2014) proposed a Bayesian method for subgroup analysis
of multiple subgroups defined by a binary predictive variable. Kang, Janes and Huang (2014)
relied on a novel boosting algorithm to choose an optimal treatment. Besides interaction mod-
els, methods based on mixture models are proposed, for instance Shen and He (2015). Horn
et al. (2015) showed that regression mixture models can be effective in evaluating differential
treatment effects.

A critical concern with various subgroup identification methods is that they tend to identify
a subgroup even when no meaningful subgroup exists. Back in 2000, Sleight (2000) described
subgroup analyses as “fun to look at, but don’t believe them”. Two recent articles, Shen and
He (2015) and Fan, Lu and Song (2015) have advocated the use of hypothesis testing for the
existence of subgroups.
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In Shen and He (2015), a structured logistic-mixture model was proposed to jointly model the
subgroup membership and the performance in each subgroup. An EM test is constructed to test
the existence of the subgroup based on the model. However, they assume constant variability for
different subgroups, which does not hold in general. In this chapter, we relax the equal variance
assumption and propose a penalized maximum likelihood estimator and a penalized EM test.

The rest of Chapter 2 is organized as follows. We introduce the logistic-normal mixture mod-
els in Chapter 2.1. In Chapter 2.2, we first discuss the behavior of the unbounded log-likelihood
function when we do not have equal variance assumption for subgroups. Then, we propose a
penalized maximum likelihood estimator and show its consistency. We propose a penalized EM
test based on the penalized maximum likelihood estimator in Chapter 2.3, and study its asymp-
totic property in Chapter 2.4. Chapter 2.5 will discuss the issues of tuning parameter selection
for penalties and simulation results are reported in Chapter 2.6.

2.1 Model

We consider the following logistic-normal mixture model that allows unequal variances in each
component. For i = 1, . . . , n,

Yi = ZT
i (β1 + β2δi) + εi(δiσ1 + (1− δi)σ2),

P (δi = 1|X i,Zi) = π(XT
i γ) ≡ exp(XT

i γ)/(1 + exp(XT
i γ)),

P (δi = 0|X i,Zi) = 1− P (δi = 1|X i),

(2.1)

where n is the sample size, Yi ∈ R is the outcome, δi ∈ {0, 1} is the latent subgroup indicator,
Zi ∈ Rq1 is the covariate associated with the subgroup mean,X i ∈ Rq2 is the baseline covariate
associated with the group membership, β1 ∈ Rq1 ,β2 ∈ Rq1 ,γ ∈ Rq2 are the corresponding
coefficients, εi ∼ N(0, 1) are independent of Zi, X i and δi, and σ1 and σ2 are the standard
derivations within each subgroup. The first element of X i and the first component of Zi are
taken to be 1 to allow intercepts in the model, and the second element of Zi is the treatment
indicator. We can have overlapping variables in the random vectors ofX i and Zi.

In the two-component model, the overall model parameters are ηT = (γT ,βT1 ,β
T
2 , σ1, σ2).

In this paper, we use θT = (βT1 ,β
T
2 , σ1, σ2) as the parameters except for γ. We observe a random

sample {W i = (Yi,Z
T
i ,X

T
i ), i = 1, . . . n}, but δi’s are latent variables.
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Remark. In the model formulation, we assume that the first nonzero component of β2 is
positive, and in the case of β2 = 0 we assume that σ1 > σ2, to ensure parameter identifiability.
The model becomes degenerate if β2 = 0 and σ1 = σ2. In our implementation, we identify the
subgroups by taking the second component of β2 (the treatment effect difference) to be positive.
We are not concerned with the special case where the treatment effect difference is zero, in which
case the identification of subgroups is not practically important.

In the case ofX i = Zi, we can think of the proposed model as a special case of the mixture-
of-experts models (Jordan and Jacobs (1994)), which is well studied in machine learning. Unlike
the mixture-of-experts models discussed in the literature, we have distinct and clear interpreta-
tions of the variables X i and Zi. In particular, the covariates in X i must be baseline measure-
ments that are available prior to the treatment and can be used to predict subgroup membership
for future subjects, while the covariates in Zi include any variables relevant to the treatment
effects within subgroups. For example, any treatment-related variables can be part of Zi, but
not X i. Moreover, mixture-of-experts models are constructed to predict the response, and the
response patterns in each component of the mixture model are not necessarily important or inter-
pretable. The existence of meaningful subgroups with differential treatment effects is the focus
of our work.

Another special case of the proposed model with γ = 0 has been quite well studied in the
literature; see, for instance, Goffinet et al. (1992), Chen et al. (2001), and Chen and Li (2009).
In subgroup analysis, the case of γ = 0 is rather uninteresting, because even if subgroups exist,
no covariates are informative for predicting the subgroup membership. An important feature of
the proposed model is to characterize subgroup membership given the baseline covariatesX .

2.2 Penalized Maximum Likelihood

To identify the existence of subgroup membership, without knowing the variances of potential
subgroups are equivalent, we need to test H0 : β2 = 0, σ1 = σ2 vs. Ha = Hc

0 for model (2.1).
We hope the EM test, which is proposed by Shen and He (2015) for equal subgroups’ variances
scenario, could also be applied for unequal variances case. Unfortunately, the theory can not be
worked out. Before we discussing the reason why EM test fails in unequal variances setting, we
first briefly sketch its procedure.
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In the EM test, Shen and He (2015) assumed σ1 = σ2 = σ in model (2.1). In the first
step, they get the maximum likelihood estimator of (β1, σ) and calculate the likelihood under
the null model (β2 = 0). In the second step, they initialize γ0 and get the maximum likelihood
estimator of (β1,β2, σ) under the alternative model (β2 6= 0). Using the EM algorithm, γ and
(β1,β2, σ) can be updated finitely many times, and then, the likelihood under the alternative
model is calculated based on these updated parameters. Finally, the test statistic is the difference
between the log-likelihood under the null model and that under the alternative model.

This procedure fails in the unequal variances framework, because the different component
variances make the log-likelihood of model (2.1) unbounded, for any given γ and any given
sample size. The unbounded log-likelihood renders the maximum likelihood estimators in every
step of EM test meaningless.

To see why the log-likelihood becomes unbounded, take a simple mixture normal model,
with unequal variances as an example. Let Y1, · · · , Yn be i.i.d. from,

πN(θ1, σ
2
1) + (1− π)N(θ2, σ

2
2),

then the likelihood

n∏
i=1

1√
2π

{
1

σ1

exp{−−(Yi − θ1)2

2σ2
1

}+
1

σ2

exp{−−(Yi − θ2)2

2σ2
2

}
}

goes to infinity by taking θ1 = Y1 and letting σ1 go to zero. The maximum likelihood estimator
does not exist.

A simply way to overcome the difficulty of unboundedness of log-likelihood for unequal
variance case is to impose a reasonable lower bound, say a > 0, for σ. Then, the maximum like-
lihood estimators exist for (σ1, σ2) over [a,+∞)× [a,+∞), and the EM test can be applied to
this constrained parameter space. If the true values of σ1, σ2 do fall in this range, the estimation
of the parameters would be consistent, and the EM test would follow the theoretical asymptotic
distribution as given in Theorem 2. However, if the true values fall out of this range, the es-
timated parameters would be biased, and the EM test will be invalid. In practice it might be
hard to specify an appropriate constant a. We will consider an alternative approach of penalized
likelihood.

Let f(Y |Z,X, δ,β, σ) denote the conditional density of Y given (Z,X, δ), then, the penal-
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ized log-likelihood function is defined as

pl(η;W ) =
n∑
i=1

log[
1∑
j=0

f(Yi|Zi,X i, δi = j;βj, σj)P (δi = j|X i;γ)]+pn(σ1)+pn(σ2), (2.2)

where pn(σ1) and pn(σ2) are penalties on subgroups’ variances. Consequently, the penalized
maximum likelihood estimator is given by

η̂ = argmax
η

pl(η;W ). (2.3)

We consider data-dependent penalties and particularly, we use

pn(σ) = −λ
(S2

n

σ2
+ log(

σ2

S2
n

)
)

(2.4)

for data analysis, where S2
n is the estimator for σ2 from the equal variance model, and λ is a

tuning parameter. Given any positive λ, pn(σ) achieves its maximum 0 at σ2 = S2
n, and goes to

negative infinity as σ approaches zero or infinity.
The general conditions for the penalty are as follows.

C1. The penalty pn(σ) < 0 almost surely.

C2. For any given constant C, for almost all sample ω ∈ Ω, there exists n0(ω), such that when
n ≥ n0(ω),

inf{pn(σ)/[(log n)2 log σ] : 0 < σ ≤ (1/n)} ≥ C.

C3. If β2 = 0 and σ1 = σ2 = σ0, we have pn(σ0) = o(n) almost surely; otherwise (under the
alternative model), pn(σ1) = o(n) and pn(σ2) = o(n) almost surely.

Remark. Condition C2 basically requires that the penalty should be small when σ is small, and
Condition C3 requires that the penalty should not dominate the likelihood function evaluated at
the true parameters. These two conditions together guarantee that the penalized likelihood does
not attain its maximum when σ is near zero, and therefore, the estimator of σ stays away from
zero. The conditions allow the penalties to depend on the data, which is quite useful in numerical
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analysis in practice. We would discuss how to choose the tuning parameter λ for the penalty in
equation (2.4).

For the variables X and Z, we further impose the following conditions. If we partition the
covariant vectorZ into a discrete componentU and a continuous componentV , that is, letZT =

(1, UT ,V T ), where 1 corresponds to the intercept,U consists of only discrete variables, and V
consists of only continuous variables. The separation of discrete and continuous covariates is to
facilitate mathematical handling in the proofs of our asymptotic results. We assume

C4. The sample space ofU is finite. For any unit vectorα of the same dimension as the vector
V , the conditional distribution of V Tα|U is continuous, and the maximum of its density
is uniformly bounded from above.

C5. The expectation E(||V ||1 | U = u) <∞ uniformly in u, where || · ||1 is the L1 norm.

The separation of Z is based on its own nature structure. It is also difficult to handle discrete
variables and continuous variables simultaneously, because the probability density function for
continuous variables and the probability mass function for discrete variables can not be unified
to discuss in the proof; they have their own unique characters. More details will be presented in
the Appendix.

With the above conditions, we are ready to state the consistency theorem of our proposed
penalized maximum likelihood estimators. Note that the consistency of the penalized maximum
likelihood estimators for unequal variances scenario plays the same role as the consistency of
the maximum likelihood estimators for equal variances scenario. They are fundamental for con-
structing statistical tests for testing the existence of subgroups.

Theorem 1. (Consistency of the penalized maximum likelihood estimator) Assume conditions

C1-C5 hold, then

(1) under the null hypothesis that β2 = 0 and σ1 = σ2 = σ0, if we fix any γ with nonzero

slope, the penalized maximum likelihood estimator of θT = (βT1 ,β
T
2 , σ1, σ2) from equation (2.3)

is consistent,

(2) under the alternative hypothesis that β2 6= 0 or σ1 6= σ2, the penalized maximum likelihood

estimator of ηT = (γT ,βT1 ,β
T
2 , σ1, σ2) defined in (2.3) is consistent.

To illustrate the idea used in the proof for Theorem 1, we consider any sequence of positive
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numbers σn and let

Wn(β) = n−1
∑n

i=1 1(|Yi −ZT
i β| ≤ |σn log σn|),

An(C) = {supβ∈Rq1 Wn(β) > C|σn log σn|},
Bn = {supβ∈Rq1 Wn(β) > 4(log n)2/n}.

With these quantities, we shall prove the following two statements:

S1. There exist C1, C2 > 0 such that for each given σn ∈ (n−1, exp(−1)), P (An(C1)) ≤
C2n

−2;

S2. There exists C3 > 0 such that uniformly in σn ∈ (0, n−1), P (Bn) ≤ C3n
−2.

The log-likelihood of the normal mixture model becomes unbounded when some sample points
are very close to one of the estimated component means and when the corresponding variance
estimator goes to zero. Statements S1 and S2 above actually give an upper bound on the number
of points that fall into such trouble regions. The upper bound is approximately limited to the
order of O((log n)2). The penalty that satisfies C1-C3 would ensure that the variance estimators
will stay away from zero.

Note that S1 and S2 play the same role as Lemma 1 of Chen et al.(2008) in a simpler setting.
By Lemma 2 of Chen et al. (2008), we can show that the number of sample points that fall
within the range of |σ log σ| to either one of the estimated component means is in the order of
O((log n)2). As a consequence, we can show that the estimates of σ1 and σ2 will stay away from
zero. Standard techniques in the large sample theory can then be applied to show the consistency
of the maximum penalized likelihood estimators. Since proving Statement S2 is essentially the
same as proving S1, we only provide the details of the proof for S1 in the supplementary file.

With Theorem 1, we are ready to propose the penalized EM test in Chapter 2.3.

2.3 Penalized EM test

Following the analog of the EM test proposed by Shen and He (2015), the procedure of the
penalized EM test for testing the existence of subgroups with unequal variances is sketched as
follows.

Firstly, we compute the penalized maximum likelihood estimates θ̂0 = (β̂1, σ̂) of β1, σ,
under the null model (β2 = 0, σ1 = σ2 = σ). Then, initialize γ(0)

1 , · · · ,γ(0)
J , where J is a

11



pre-specified integer. Typically, if γ is q2 dimension and q2 is small, we choose J = 2q2−1,
and the set of initial values have positive and negative values in each coordinate to cover all the
quadrants. For any fixed j ∈ {1, 2, · · · , J}, we compute the penalized maximum likelihood
estimates θ(0)

j of θ = (β1,β2, σ1, σ2) from (2.2) with fixed γ(0)
j . We then use the EM algorithm

to update the parameters η = (γ,β1,β2, σ1, σ2) finitely many, say K, times, and let η(K)
j be the

final estimates. Then the penalized EM test statistic is defined by

pEM (K) = max{pEM (K)
j : j = 1, . . . , J}, (2.5)

where
pEM

(K)
j = 2(pl(η

(K)
j )− pl(θ̂0)), (2.6)

in which pl(·) is defined in Equation (2.2). Note that pl(θ̂0) is the penalized maximum log-
likelihood under the single normal component model, where β2 = 0 and σ1 = σ2.

Next, we describe the specific form of η(k)
j in each step of the EM algorithm in detail, as

follows.
Let η(k) denote the values at the k − th step of the EM algorithm for (2.2). The objective

function at the k − th step is

Q(η|η(k)) =
∑n

i=1 Eδi|wi,η(k){I(δi=1) log
(π(XT

i γ)

σ1
exp(− (Yi−ZTi (β1+β2))2

2σ2
1

)
)
+

I(δi=0) log
(1−π(XT

i γ)

σ2
exp(− (Yi−ZTi β2)2

2σ2
2

)
)

+pn(σ1) + pn(σ2)},

To evaluate it, the E step involves the calculation of

a
(k)
i = P (δi = 1|Yi,Zi,X i; η

(k))

= f(Yi|δi = 1,Zi; θ
(k))P (δi = 1|X i;γ

(k))/(f(Yi|δi = 1,Zi;θ
(k))P (δi = 1|X i;γ

(k))

+f(Yi|δi = 0,Zi;θ
(k))P (δi = 0|X i;γ

(k))),

and b(k)
i = 1− a(k)

i , and the M step gives

γ(k+1) = argmaxγ
∑n

i=1 a
(k)
i log π(XT

i γ) + b
(k)
i log(1− π(XT

i γ));

(β
(k+1)
12 , σ

(k+1)
1 ) = argmaxβ12,σ

∑n
i=1 a

(k)
i log( 1

σ
exp(−(Yi −ZT

i β12)2/(2σ2))) + pn(σ);

(β
(k+1)
1 , σ

(k+1)
2 ) = argmaxβ1,σ

∑n
i=1 b

(k)
i log( 1

σ
exp(−(Yi −ZT

i β1)2/(2σ2))) + pn(σ),
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and β(k+1)
2 = β

(k+1)
12 − β(k+1)

1 .

In the M step, we use the Newton-Raphson method to update γ(k+1), and the updating for-
mula for β(k+1) is a weighted least squares solution. For the particular penalty (2.4), the calcu-
lations for σ(k+1)

1 and σ(k+1)
2 given β(k+1)

1 and β(k+1)
2 are simply

σ
(k+1)
1 =

(∑n
i=1 a

(k)
i (Yi −ZT

i (β
(k+1)
1 + β

(k+1)
2 ))2/2 + λS2

n∑n
i=1 a

(k)
i /2 + λ

)1/2

,

and

σ
(k+1)
2 =

(∑n
i=1 b

(k)
i (Yi −ZT

i β
(k+1)
1 )2/2 + λS2

n∑n
i=1 b

(k)
i /2 + λ

)1/2

.

We see that the two variances from the penalized likelihood are weighted sums of S2
n and the

corresponding estimators without the penalty.

2.4 Distribution of the Penalized EM Test Statistic

To evaluate the limiting distribution of the proposed pEM test statistic, we first define the Fisher

information matrix for θ given γ based on the penalized likelihood:

I∗γ(θ) = −E[
∂2

∂θ∂θT
pl(η)

n
].

By direct calculations, for a given γ, under the null hypothesis of β2 = 0, σ1 = σ2 = σ,

I∗γ(θ) =
1

σ2

(
I1 02×2

02×2 I2

)
. (2.7)

where

I1 =

(
E
(
ZZT

)
E
(
π(XTγ)ZZT

)
E
(
π(XTγ)ZZT

)
E
(
π2(XTγ)ZZT

) )
and

I2 =

 2E
(
π2(XTγ)− σ2 E

(
p′′n(σ)

)
n

)
2E
(
π(XTγ)(1− π(XTγ))

)
2E
(
π(XTγ)(1− π(XTγ))

)
2E
(
(1− π(XTγ))2

)
− σ2 E

(
p′′n(σ)

)
n

 .
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The above matrix is positive definite if the variable vectors X and Z are non-degenerate, and
E
(
p′′n(σ)

)
< 0.

To ensure that the penalty effect vanishes asymptotically, we further impose the following
condition:

C6. Under the null model of (β2 = 0, σ1 = σ2 = σ > 0), we have Ep′′n(σ) < 0, E
(
p′′n(σ)

)
=

op(n), and p′n(σ) = op(
√
n).

Under C6, we have,

I∗γ(θ) = E

[
∂

∂θ

pl(η)

n

(
∂

∂θ

pl(η)

n

)T]
+ op(1),

and I∗γ(θ) works just like the usual Fisher information matrix for deriving the limiting distribu-
tion of the likelihood ratio statistic in a standard problem.

To be more specific, given γ with nonzero slope, let θ̂n = argmaxθ pl(η) and θ̂0 = argmaxθ∈H0
pl(η),

then we have a quadratic approximation of the penalized likelihood ratio statistic T ∗(γ) and

T ∗(γ) = 2(pl(θ̂n,γ)− pl(θ̂0,γ)) = || 1√
n
ψ∗(Yi,Zi,X i;γ)||2 + op(1), (2.8)

where ψ∗(Yi,Zi,X i;γ) = (ψ(Yi,Zi,X i;γ)T , ψ0(Yi,Zi,X i;γ)), in which

ψ(Yi,Zi,X i;γ) =
1

σ0

D(γ)−1/2{π(XT
i γ)Iq2 −B(γ)A−1}(Yi −ZT

i β0)Zi, (2.9)

and

ψ0(Yi,Zi,X i;γ) =
(
2[E
(
π2(XTγ)

)
− (E

(
π(XTγ)

)
)2]
)−1/2

(E
(
π(XTγ)

)
− π(XTγ))

(
(Yi−ZTi β1)2

σ2 − 1),

with A = E
(
ZZT

)
;B(γ) = E

(
π(XTγ)ZZT

)
, C(γ) = E

(
π2(XTγ)ZZT

)
; and D(γ) =

C(γ)−B(γ)A−1B(γ). Direct calculations show that bothψ(Yi,Zi,X i;γ) andψ0(Yi,Zi,X i;γ)

have mean zero, and the covariance matrix of ψ∗ is Iq1+1. Therefore, T ∗(γ) has a χ2 limiting
distribution with the degrees of freedom q1 +1. Note that here we have not updated the estimates
through the EM iterations. In other words, T ∗(γ) = pEM (0) with only one starting value, γ.

Following similar arguments to those used for Theorem 1 of Shen and He (2015), we see that
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the representation in (2.8) holds uniformly in γ ∈ Γ̃, where γ ∈ Γ̃ is a prespecified compact set
for γ. We have the following theorem.

Theorem 2. Under the null hypothesis and Assumptions C1-C6, for any finite integers J > 0

and K ≥ 0, the penalized EM test statistic pEM (K) converges in distribution as n → ∞.

Specially, for J = 1 and K = 0, the limiting distribution is χ2
q1+1 where q1 is the dimension of

β2.

If the null hypothesis H0 is rejected, the model parameter estimator is consistent from the
penalized likelihood due to Theorem 1. Furthermore, from (2.8) it follows that the bootstrap
method can be used to compute the p-value from the pEM test. The limiting distribution of
the test statistic under the null hypothesis is not a simple chi-square distribution when J > 1

and K ≥ 1, and moreover, the convergence to the limiting distribution is very slow for the test
statistic even without covariates (Goffinet et al. (1992)). Therefore, we recommend to use the
bootstrap method for computing the p-values.

2.5 Choice of the Tuning Parameter

The choice of the tuning parameter λ is practically important. Our conditions allow data-
dependent penalties. For the specific penalty in (2.4), we show that Conditions C1-C3 and C6
are satisfied with any choice of λ in the interval

[n−2+c1(log n)3, nc2 ], (2.10)

where c1, c2 ∈ (0, 1) are any constants.
C1 and C3 are satisfied under the null model by noting that c2 ∈ (0, 1). Also note that nc2 =

o(n) and nc2−1/2 = o(
√
n) imply E

(
p′′n(σ0)

)
= −4λ/σ2

0 = o(n) and p′n(σ0) = 2(n−1/2λ){n1/2(S2
n−

σ2
0)}/σ3

0 = 2(n−1/2λ)Op(1) = op(
√
n), henceforth C6 is satisfied.

For C2, note that, under the null hypothesis, S2
n → σ2

0 almost surely. Write S2
n = σ2

0 + εn,
where εn → 0 almost surely. Then for any σ ∈ (0, 1/n) and sufficiently large n, we have

pn(σ){(log n)2 log σ}−1 =

−λ{(σ2
0 + εn)/σ2 + log(σ2/(σ2

0 + εn))}{(log n)2 log σ}−1

≥ (−λ/2)(σ2
0/σ

2){(log n)2 log σ}−1.

(2.11)
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Let fn(σ) = (−λ/2)(σ2
0/σ

2){(log n)2 log σ}−1, then

inf{pn(σ){(log n)2 log σ}−1 : 0 < σ ≤ (1/n)} ≥ inf{fn(σ) : 0 < σ ≤ (1/n)}.

Because fn(σ) is decreasing in σ ∈ (0, n−1) for large n, we have

inf{pn(σ){(log n)2 log σ}−1 : 0 < σ ≤ (1/n)} ≥ fn(n−1) = O(λn2(log n)−3).

By the choice of λ, for sufficiently large n, inf{pn(σ){(log n)2 log σ}−1 : 0 < σ ≤ (1/n)} ≥
O(nc1) > C, for any given constant C. Then, C2 is satisfied under the null hypothesis. The same
results can be obtained under the alternative hypothesis due to the fact that S2

n is almost surely
bounded.

2.6 Simulations

In this chapter, we report the performance of the proposed methods through Monte Carlo simu-
lations. We compare the parameter estimates from the structured logistic-normal mixture model
with equal and unequal variances, and the performance of the proposed pEM test versus the
EM test of Shen and He (2015). We use q2 = 2 and other parameters are given in details below.
The bootstrap method is used to compute the p values of the tests for the empirical studies. The
simulation results are part of the joint research that appeared in Shen, Wang and He (2016).

2.6.1 Estimation

We start with an evaluation of the parameter estimates under the two-component model, that
is, when the mixture model parameters are all well defined. Data as random samples of sizes
n = 400 are generated from

Yi = β11 + β12Ti + β13Zi + (β21 + β22Ti + β23Zi)δi + ε1iδi + ε2i(1− δi),

P (δi = 1|Xi) = π(γ11 + γ12Xi),

for i = 1, . . . , n, where ε1i ∼ N(0, σ2
1) and ε2i ∼ N(0, σ2

2), independent of Xi, Zi and Ti. We
generate Xi = Zi from Uniform (0, 4), and Ti ∈ {0, 1} used to mimic the treatment indicator is
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Figure 2.1: The boxplots of the absolute biases in 100 experiments discussed in Chapter 2.6.1. In
each sub-panel, the left and the right boxes are for the estimates under the equal and the unequal
variance models, respectively.

generated from the Bernoulli distribution with P (Ti = 1) = 0.5. We fix β1 = (β11, β12, β13) =

(2, 0, 2),β2 = (β21, β22, β23) = (1, 2, 0),γ = (γ11, γ12) = (2,−1), σ1 = 1.5 and σ2 = 0.5.
In the computations, we adopt the constraint that β22 > 0 to guarantee the uniqueness of the
parameters. We show in Figure 2.1 the boxplots of the absolute bias of the parameter estimates
based on 100 data sets. Not surprisingly, the estimates from the equal variance model have larger
biases than those from the unequal variances model, so it is helpful to take the heterogeneity in
the variances into consideration.

2.6.2 Type I errors

To evaluate the validity of the pEM test, we generate data from Model (2.1) with q1 = 3, q2 = 2,
β1 = (1, 0, 2)T , β2 = (0, 0, 0)T , Z = (1, t, x)T ,X = (1, x)T , where t resembles a treatment in-
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dicator distributed as Bernoulli(0.5), x is independent of twith the distributionN(−1, 1), and the
error ε is white noise N(0, 0.52). The pEM test uses the initial values Γ = {(1,−2)T , (1, 2)T}.
The resulting type I errors at n = 60 and 100 are summarized in Table 2.1, from which we can
see the type I errors are quite close to the nominal levels for K = 0, 3, and 9, even for relatively
small sample sizes. The tuning parameter is set as λ = 1 here, but the results are similar for
other choices of λ.

Table 2.1: Type I errors of the pEM tests with bootstrap approximations in 1000 data sets with
standard errors in the parenthesis, with λ = 1.

n Nominal level α pEM (0) pEM (3) pEM (9)

n=60 0.01 0.012(0.003) 0.011(0.003) 0.011(0.003)
0.05 0.055(0.007) 0.055(0.007) 0.050(0.007)
0.10 0.102(0.010) 0.103(0.010) 0.106(0.010)

n=100 0.01 0.010(0.003) 0.011(0.003) 0.010(0.003)
0.05 0.049(0.007) 0.051(0.007) 0.050(0.007)
0.10 0.102(0.010) 0.099(0.009) 0.104(0.010)

2.6.3 Power Comparison

We use the same model and the same pEM test as in the previous subsection, except that β2 =

(1, a, b)T , γ = (1, 1)T for some non-negative values of a and b to be given in the tables and
for different sets of σ values. In particular, we consider (σ1 = 0.5, σ2 = 0.5), (σ1 = 0.4, σ2 =

0.6), (σ1 = 0.5, σ2 = 1.0) and (σ1 = 0.5, σ2 = 1.5) in Table 2.2 to represent different levels
of heterogeneity. The power is obtained from the EM or pEM test under the equal or unequal
variance model. We only show the comparisons at the iterations times K = 9 as this is our
recommended choice. When the two component variances are close, the EM test based on the
equal variance assumption is slightly more powerful, but when the two σ’s differ with their ratios
equal to 2 and 3, the pEM test under the unequal variance model is significantly more powerful.
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Table 2.2: Power (%) of the (penalized) EM tests at the 5% level. The (penalized) EM
test uses Γ = {(1, 2)T , (1,−2)T}, with K = 9 iterations. The parameters of Model (2.1) are
β1 = (1, 0, 2)T , β2 = (1, a, b)T , γ = (1, 1)T , and the tuning parameter is λ = 1.0.

n a b pEM (9) EM (9) pEM (9) EM (9)

(σ1 = 0.5, σ2 = 0.5) (σ1 = 0.4, σ2 = 0.6)
60 0.5 1 71.2 77.8 73.4 73.6
60 0.5 0 35.6 36.0 42.2 37.6
60 1.0 1 85.2 87.8 86.6 87.8
60 1.0 0 81.4 84.8 82.8 82.0

100 0.5 1 92.0 96.8 92.8 94.8
100 0.5 0 57.8 54.8 74.6 49.6
100 1.0 1 96.8 99.4 97.8 98.8
100 1.0 0 95.8 97.6 97.2 96.0

(σ1 = 0.5, σ2 = 1.0) (σ1 = 0.5, σ2 = 1.5)
60 0.5 1 49.0 38.4 53.8 31.0
60 0.5 0 36.8 27.2 55.0 40.8
60 1.0 1 63.4 47.2 63.8 39.6
60 1.0 0 63.0 44.8 70.8 47.8

100 0.5 1 77.6 60.6 81.2 42.0
100 0.5 0 65.8 34.2 81.8 51.2
100 1.0 1 87.6 75.4 86.6 51.8
100 1.0 0 89.8 58.6 90.0 58.6
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CHAPTER 3

Logistic-Normal Mixture Model with High
Dimensional Covariates

When the number of potential covariates is large, we have to perform variable selection. This
type of problem falls into the area of the so-called variable selection with high dimensional co-
variates. There are quite a few methods, such as LASSO of Tibshirani (1996) and SCAD of Fan
and Li (2001), that have been proposed for linear regression, quantile regression, logistic regres-
sion and etc, in which the objective log-likelihood functions are convex. However, finite mixture
regression (FMR) models have non-convex log-likelihood, which makes variable selection in
high dimensions substantially difficult. As far as we know, only Städler, Bühlmann and van de
Geer (2010) and van de Geer (2013) considered the variable selection for FMR models for the
case of p = o(en), where p is the dimension of the potential covariates and n is the sample size.
Khalili and Lin (2013) also studied the problem, but their setting is very restrictive; the p can be
as large as 4n1/4 − 5 at most, which is not really a high dimensional problem. Other than that,
there is no discussion about FMR models in large p and small n scenario in literature.

Different from the FMR models with constant mixing parameters studied by Städler, Bühlmann
and van de Geer (2010), van de Geer (2013) and Khalili and Lin (2013), we study the high di-
mensional variable selection method for logistic-normal mixture, which is a very special model
in the family of FMR that allows the mixing parameters to depend on possibly high dimensional
covariates. Besides, we note that the variable selection methods in high dimensions for FMR
models discussed in literature rely on the assumption of known number of components. One
may use BIC to select the number of components empirically, but BIC is only proved to work for
exponential families with fixed number of covariates; there is no theoretical guarantee for BIC to
work for FMR models with high dimensional covariates. We propose a new selection criterion
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(SCMM ) for selecting the number of components for FMR models in high dimensions. We
show SCMM is consistent and we examine its empirical performance via simulations.

The rest of Chapter 3 is organized as follows. We introduce the logistic-normal mixture
model with high dimensional covariates and a reparameterization in Chapter 3.1. Investigation
of the variable selection methods with known number of components will be given in Chapter
3.2. In Chapter 3.3, we propose a new selection criterion SCMM for selecting the number of
components in high dimensional setting and show its consistency. We evaluate the performance
of the proposed methods via simulations in Chapter 3.4, and we apply the methods to a real
data example in Chapter 3.5. Note that the notations in this chapter are independent of those in
Chapter 2.

3.1 Logistic Normal Mixtures

3.1.1 Model setup

Suppose that X i ∈ Rp, i = 1, 2, · · · , n are random or fixed covariates which take values in
space X . Assume X is bounded and {Yi}ni=1 are independent conditional on {X i}ni=1, and

Yi|X i = xi ∼
K∑
k=1

π(xTi γk)
1√

2πσk
exp

(
−(yi − xTi βk)2

2σ2
k

)
, (3.1)

where π(xTi γk) ≡ exp(xTi γk)/(
∑K

k=1 exp(xTi γk)) with γ1 = 0.
The model (3.1) is the logistic normal mixtures with K components, where in each compo-

nent, there are two p dimensional parameter vectors in both mixing and mean parts. We consider
the scenario that p� n, and study the performance of the `1 penalized maximum log-likelihood
estimator. Note that we assume K is known in chapter 3.1 and chapter 3.2.

3.1.2 Reparametrization

Section 3.1 of Städler, Bühlmann and van de Geer (2010) has a detailed discussion of the
reparametrization. But to make the dissertation complete, we will briefly illustrate the neces-
sity of reparametrizing the model.
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Consider a Gaussian linear model,

Y = Xβ + ε, (3.2)

where Y is a n×1 response vector, and X is a n×p design matrix. β is the unknown coefficients
with dimensions p × 1, and ε is the error vector that follows N(0, σ2In). When p � n, the `1

norm penalized estimator, called LASSO, aims to find a sparse solution for β. It is defined as

β̂λ = argmin
β

{
||Y −Xβ||22 + λ||β||1

}
, (3.3)

where || · ||1, || · ||2 are the `1 and l2 norm respectively, and λ is the tuning parameter.
Note that the log-likelihood function for the Gaussian linear model can be calculated as

(without considering the constants)

l(Y|X, β, σ) = −n log σ − ||Y −Xβ||22/2σ2.

Therefore the LASSO estimator in equation (3.3) is essentially a penalized log-likelihood based
method, but without accounting for σ. There are two reasons for it to do so, one is that for a
certain range of selections of the tuning parameters λ, the estimates of β by considering the full
penalized log-likelihood method would be the same as the estimates of LASSO; the other reason
is that σ for Gaussian linear model (3.2) is a nuisance parameter that people usually do not care.

However, there is no way to avoid the discussion of σ for mixture models. Mathematically,
we can not separate β and σ completely in the log-likelihood function, and besides that, a good
estimator of σ is usually very crucial for heterogeneous regression models as discussed in Chen,
Tan and Zhang (2008) and McLachlan et al. (2004). Hence, it is inevitable to consider the
optimization of the full penalized log-likelihood function for FMR models.

For Gaussian linear model, the full penalized maximum log-likelihood estimator is defined
as

η̂λ := (β̂λ, σ̂λ) = argmin
β,λ

{
log σ + ||Y −Xβ||22/(2nσ2) + λ||β||1

}
. (3.4)

There are two main drawbacks of the above estimator. Firstly, the estimator in (3.4) is not
equivariant, in the sense that different scales of Y andX yield different estimates. Secondly and
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more importantly, the objective function in equation (3.4) is non-convex. Many fast algorithms,
e.g. pathwise coordinate optimization of Friedman et al. (2007), that are developed for convex
optimizations such as LASSO, can no longer be applied.

Städler, Bühlmann and van de Geer (2010) resolved the above two issues by penalizing β and
σ simultaneously and reparametrizing the model. Specifically, they first consider the penalized
log-likelihood function as

log σ + ||Y −Xβ||22/(2nσ2) + λ(||β||1/σ), (3.5)

and then, they reparameterize
φ = β/σ, ρ = σ−1.

The optimazation problem is then defined as

θ̂λ := (φ̂λ, ρ̂λ) = argmin
φ,ρ

{
− log ρ+

1

2n
||ρY −Xφ||22 + λ(||φ||1)

}
. (3.6)

Note that the estimators in (3.6) are equivariant, and the objective function in (3.6) is now convex
in ρ and φ.

We extend the idea of reparametrization to our model (3.1), and consider the `1 norm penal-
ized maximum log-likelihood estimator. Let

φ = β/σ, ρ = σ−1,

then

Yi|X i = xi ∼
K∑
k=1

π(xTi γk)
ρk√
2π

exp

(
−1

2
(ρkyi − xTi φk)2

)
. (3.7)

Then, the `1 norm penalized estimator is

θ̂λ = argminθ∈Θ̃− 1
n

∑n
i=1 log

(∑K
k=1 π(xTi γk)

ρk√
2π

exp
(
−1

2
(ρkyi − xTi φk)2

))
+λ1

∑K
k=1 ||φk||1 + λ2

∑K
k=1 ||γk||1,

(3.8)

where we use θ to denote all the parameters, i.e., θ = (γ2, · · · ,γK ,φ1, · · · ,φK ,η), and η =

(ρ1, · · · , ρK). λ1, λ2 are tuning parameters, Θ̃ is the parameter space, and we will discuss its
regularizations in Chapter 3.2.
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Note that with the reparametrization, the objective function in (3.8) is still non-convex. How-
ever, in each optimization step of the EM algorithm to solve the optimization problem, the log
and the sum interchange and hence we have a convex objective function in every update step.
Although the reparametrization does not alleviate the difficulty in studying the theoretical prop-
erties of the `1 penalized maximum log-likelihood estimator, it does help a lot in numeric data
analysis in the sense that it avoids lots of local minima solutions.

In the next chapter, we will discuss the properties of θ̂λ defined in (3.8) as well as the neces-
sary conditions to ensure consistency.

3.2 Variable Selection for Known K

We consider the `1 penalized estimator defined in (3.8) for logistic normal mixtures in high
dimensions. Because of the non-convexity, we need certain conditions on the parameter space
to control the behavior of the log-likelihood function. Note that the constants below vary line by
line.

3.2.1 Conditions

We assume the covariate space X is bounded, and

Θ̃ ⊂ Θ :=
{
θ; || log η||∞ ≤ K̃, ||θ − θ0||1 ≤M

}
, (3.9)

where θ0 is the true parameter and K̃ and M are fixed constants.
Define

sup
x∈X
||φTx||∞ = sup

x∈X
max

1≤k≤K
|φTkx|, sup

x∈X
||γTx||∞ = sup

x∈X
max

1≤k≤K
|γTkx|.

Then for any θ ∈ Θ̃, we have

sup
x∈X
||φTx||∞ ≤ C and sup

x∈X
||γTx||∞ ≤ C (3.10)
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for some constant C. This is because the boundedness of X and

|φTx| ≤ |(φ− φ0)Tx|+ |φT0 x| ≤ ||x||∞(||φ− φ0||1 + ||φ0||1).

We also define

ψ(x) = (π(xTγ1), · · · , π(xTγK),xTφ1, · · · ,xTφK , ρ1, · · · , ρK).

Note that although ψ(x) depends on x and θ, it has a fixed 3K dimension that is independent of
n and p. Let ψ be the space for the collections of ψ(x) for all x ∈ X and θ ∈ Θ̃, and we write
ψ0(x) as the vector evaluated at the true parameter θ0.

Let fψ denote the conditional density of Y given x through ψ, and let lψ = log fψ, which is
the log-density. Define sψ = ∂lψ/∂ψ to be the score function, and define the Fisher information
as

I(ψ) =

∫
sψs

T
ψfψdµ,

where µ is the dominating measure of fψ.
Let the Kullback-Leibler information be denoted as

ε(ψ|ψ0) = −
∫

log

[
fψ
fψ0

]
fψ0dµ.

The following 5 conditions are needed in this chapter, but note that Conditions 1, 2, 3 and 5

are met automatically for the logistic-normal mixture model in (3.1). See Städler, Bühlmann and
van de Geer (2010) for details.

C1. It holds that
sup
ψ∈ψ

max
(j1,j2,j3)∈{1,··· ,3K}3

∣∣∣∣ ∂3

∂ψj1∂ψj2∂ψj3
lψ(·)

∣∣∣∣ ≤ G2(·),

where
sup
x∈X

∫
G2(y)fψ0(y|x)dµ(y) <∞.

For a matrix A, let Λmin(A) be its smallest eigenvalue.
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C2. For all x ∈ X , the Fisher information matrix I(ψ0(x)) is positive definite, and,

Λmin = inf
x∈X

Λmin(I(ψ0(x))) > 0.

C3. For any ε > 0, there exists an αε > 0 such that

inf
x∈X

inf
ψ∈ψ,||ψ−ψ0(x)||2>ε

ε(ψ|ψ0(x)) ≥ αε.

Let the active set, i.e., the set of non-zero coefficients of φ = (φ1, · · · ,φK) ∈ RKp be

S1 = {(k, j);φk,j 6= 0}, and s1 = |S1|,

and the active set of γ = (γ1, · · · ,γK) ∈ RKp be

S2 = {(k, j);γk,j 6= 0}, and s2 = |S2|.

C4. There exists a constant κ ≥ 1 such that, for any α = (α1, · · · ,αK) ∈ RKp satisfies

||αSci ||1 ≤ 6||αSi ||1,

then

||αSi ||22 ≤ κ2

K∑
k=1

αTkΣnαk, i = 1 and 2,

where Σn =
∑n

i=1 xix
T
i /n.

C5.
sup

x∈X ,θ∈Θ̃
||sψ(x)(Y )||∞ ≤ G1(Y ),

where by direction calculations, G1(Y ) = K exp(2K̃)(|Y |2 + |Y |+ 1).

Condition C4 is also called a restricted eigenvalue condition. Basically, it requires the active
covariates and the non-active covariates not to be strongly correlated. With Conditions 1, 2 and
3, and by Lemma 1 of Städler, Bühlmann and van de Geer (2010), we have, for any x ∈ X ,
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there exists a constant c0 ≥ 1, such that

||ψ(x)− ψ0(x)||22 ≤ c2
0ε(ψ|ψ0(x)). (3.11)

With these regularizations, we are ready to state our theorems.

3.2.2 Consistency Results

Let λ0 = (log p/n)1/2, and

Lθ(x, Y ) = log
(∑K

k=1 π(xTγk)
ρk√
2π

exp
(
−1

2
(ρkY − xTφk)2

))
,

Vn(θ) = 1
n

∑n
i=1[Lθ(xi, Yi)− Eθ0{Lθ(xi, Yi)}].

For any constant T , define the event

E(T ) =

{
sup
θ∈Θ̃

|Vn(θ)− Vn(θ0)|
(||φ− φ0||1 + ||γ − γ0||1 + ||η − η0||2) ∨ λ0

≤ Tλ0

}
.

Denote the empirical average Kullback-Leibler information by

ε̄(θ̂|θ0) =
1

n

n∑
i=1

ε(θ̂(xi)|θ0(xi)).

Then, we have following theorems.

Theorem 3. Under the logistic-normal mixture model, if p = o(exp(n)), then there exists a

constant T, such that as n→∞, we have P (E(T ))→ 1.

Theorem 4. Under Condition C4, for λ1 ≥ 5Tλ0, λ2 ≥ 5Tλ0, we have, on E(T ),

ε̄(θ̂|θ0) + 2(λ1 − Tλ0)||φ̂Sc1 ||1 + 2(λ2 − Tλ0)||γ̂Sc2 ||1
≤ C(λ1 ∨ λ2 + Tλ0)2(s1 ∨ s2),

(λ1 ∧ λ2 + Tλ0)(||(φ̂− φ0)S1||1 + ||(γ̂ − γ0)S2||1) ≤ C(λ1 ∨ λ2 + Tλ0)2.

Remark. Theorem 3 and Theorem 4 together imply that with probability going to 1, we
have an uniform upper bound for the empirical average Kullback-Leibler information as well
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as the `1 norm of the estimated zero coefficients. Moreover, the estimated non-zero coefficients
converge to the true values eventually. If we take λ1 = O(λ0) and λ2 = O(λ0), then the up-
per bound in Theorem 4 is at the order of λ0, which is (log p/n)1/2, and this is smaller than√

log n3 log(p ∨ n)/n of Städler, Bühlmann and van de Geer (2010). Because we have a theo-
retical upper bound for the estimated zero coefficients, in practice, we may use λ0 = (log p/n)1/2

as a threshold to perform variable selection in order to get a sparse but still accurate model. A
theorem for consistent variable selection with a beta-min condition are given as follows.

C6. Beta-min condition: There exists a large enough constant C, such that

min
j∈S1

φj ≥ C
√

log p/n and min
j∈S2

γj ≥ C
√

log p/n.

Define Ŝ1 =
{

(k, j); φ̂k,j > C
√

log p/n
}

and Ŝ2 =
{

(k, j) : γ̂k,j > C
√

log p/n
}

to be the
estimated activate sets for φ and γ respectively. Then, if we properly choose some constant C
with the threshold value C

√
log(p)/n, we have

Theorem 5. Under Conditions C4 and C6, as n→∞,

P (Ŝ1 = S1 and Ŝ2 = S2)→ 1.

3.3 Selection for K

Chapter 3.2 provides the consistency theorems for variable selection assuming known number of
components K. In practice, we often need to estimate K from data. We propose a procedure and
a selection criterion called SCMM in this chapter that can help to determine the true number of
components K0 consistently. With the estimated K0, we can then utilize the `1 penalized like-
lihood approach discussed in Chapter 3.2 to perform consistent variable selection. We describe
the procedure and SCMM as follows.

Suppose we would like to identify the true underlying K0 from the set B = {1, 2, 3, · · · , B},
where B is any given finite number. We may choose B large enough so that K0 ∈ B. For any
b ∈ B, we first optimize (3.8) with K = b and denote the selected variable set as ŝ(b). We then
calculate SCMM(ŝ(b)), where SCMM(ŝ(b)) is the selection criterion SCMM evaluating at
the model b with the variable set ŝ(b). Our estimated K̂0 is the b that minimizes SCMM(ŝ(b)).
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Specifically,
K̂0 := argmin

b∈B
SCMM(ŝ(b)), (3.12)

where the selection criterion SCMM(ŝ(b)) is defined as

SCMM(ŝ(b)) :=

− 1
n

∑n
i=1 log

(∑b
k=1 π(xTŝ(b),iγ̂k)

ρ̂k√
2π

exp
(
−1

2
(ρ̂kyi − xTŝ(b),iφ̂k)2

))
+b|ŝ(b)|n0.5+δ1 log p/n,

(3.13)

where {γ̂k, ρ̂k, φ̂k}bk=1 are the maximum likelihood estimates by fitting the b-component logis-
tic normal mixture model (model b) with the variable set ŝ(b), and |ŝ(b)| is the size of the variable
set ŝ(b) and δ1 is any small positive constant. The need for a positive δ1 is for the asymptotic
consistency result that we prove, but in practice we use δ1 = 0, which works fine.

SCMM is essentially the sum of the negative log-likelihood and the penalty on the model
size. Let θ̂ = {γ̂k, ρ̂k, φ̂k}bk=1 and write lb(ŝ(b), θ̂) as the log-likelihood evaluated at θ̂ for
model b. Also define the penalty function for any model b (b-component) with any variable set
ŝ(b) as pn(ŝ(b)) = b|ŝ(b)|n0.5+δ1 log p/n. Then we can write SCMM(ŝ(b)) from (3.13) in short,

SCMM(ŝ(b)) := −lb(ŝ(b), θ̂) + pn(ŝ(b)). (3.14)

Remark. The exact model size for model b with variable set ŝ(b) is (2b− 1)|ŝ(b)|+ b, which is
the sum of b|ŝ(b)| for φ and (b− 1)|ŝ(b)| for γ and b for ρ, whereas we use b|ŝ(b)| in the penalty
function to roughly captures the model size. Since we compare models between different b so
as to select the true K0, the asymptotic behavior for SMCC is only affected by the order of
n0.5+δ1 log p/n. Hence, using either the exact model size (2b − 1)|ŝ(b)| + b or the rough model
size b|ŝ(b)| in the penalty function will provide the same asymptotic property for SMCC. We
use the rough model size for notational convenience. Note that if we select models within the
same b, we need to use the exact model size. However, our goal is to select K, then there is
no difference between using the exact model size and using the rough model size in the penalty
function.

Briefly speaking, we propose a two-step procedure for selecting K0. For each model b, the
first step is to use the `1 penalized likelihood approach to select a small subset of variables ŝ(b).
The second step is to calculate SCMM(ŝ(b)), which is the sum of the negative log likelihood
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evaluated at ŝ(b) and the penalty on the model size. Because the size of ŝ(b) is small, we hope
the log-likelihood lb(ŝ(b), θ̂) can capture the model specific characteristics. Note that although
|ŝ(b)| is small, it is data dependent. The traditional AIC and BIC may not work in this setting.
In order to take account for all C ŝ(b)

p = O(pŝ(b)) possible subsets of variables with size |ŝ(b)|,
we need a larger penalty in (3.13) than what is used in BIC. We see from the simulations in the
next chapter that BIC tends to choose overfitted models, which suggests the penalty in BIC is
not heavy enough.

Let S0 = {(k, j) : φk,j 6= 0 orγk,j 6= 0} be the true activate variable set. The following
theorem provides a key property of SCMM, which is quite essential for showing its consistency.

Theorem 6. Suppose K0 ∈ B = {1, 2, 3, · · · , B} and p = o(nc) for some c. For any fixed

constant s, assume

sup
{b<K0,|M |≤s}

⋃
{b>K0,S0 6⊂M,|M |≤s}

sup
θ∈Θ

E(lb(M,θ)) < E(lK0(S0,θ0)). (3.15)

Then as n→∞, we have

P

(
SCMM(S0(K0)) < inf

b 6=K0,|M |≤s
SCMM(M(b))

)
→ 1. (3.16)

Remark. We recall the notations in equation (3.15) that lb(M,θ) is the log-likelihood evalu-
ated at the model b (b-component) with the variable setM at the parameters θ, and SCMM(M(b))

is the SCMM evaluated at the model b with the variable set M . Therefore, lK0(S0,θ0) and
SCMM(S0(K0)) are the log-likelihood and the SCMM evaluated at the true model, respec-
tively. Equation (3.15) is a necessary but mild assumption. Basically, it requires the maximum
of the expected log-likelihood to be obtained only at the true model and in addition, there is
a non-zero gap between the maximum and the expected log-likelihood evaluated at any other
model which differs from the truth. If the gap can be infinitely close to zero as p grows, we can
not distinguish the truth from other models in terms of likelihood.

Theorem 7. (Consistency of SCMM)

Suppose K0 ∈ B = {1, 2, 3, · · · , B} and p = o(nc) for some c. Also assume conditions C4 and

C6 and equation (3.15). Then as n→∞, we have P (K̂0 = K0)→ 1.

Proof: This is a direct result from Theorem 5 and Theorem 6. To see this, let Ŝ0 be the
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estimated active variable set given K0 and define the set

An := {ω : Ŝ0 = S0}.

Also define the set

Bn := {ω : SCMM(S0(K0)) < inf
b6=K0,|M |≤s

SCMM(M(b))}.

By the definition of An and Bn, for any ω ∈ An
⋂
Bn, K0 = argminb∈B SCMM(ŝ(b)). Hence,

An
⋂
Bn ⊂ {ω : K̂0 = K0}. By Theorem 5 and Theorem 6, P (An) → 1 and P (Bn) → 1.

Therefore,
P (K̂0 = K0) ≥ P (An

⋂
Bn)→ 1.

3.4 Simulations

Chapter 3.2 considered the `1 penalized likelihood approach to perform variable selection with
given K for logistic normal mixture models, whereas Chapter 3.3 discussed how to select K
from data. In this chapter, we investigate the empirical performance of our proposed methods.

3.4.1 Variable selection with given K

In this chapter, we consider 2 examples for the purpose of demonstration that our proposed `1

norm penalized maximum likelihood estimator works well in terms of variable selection for high
dimensional logistic normal mixture models with given K. Our main focus is on variable selec-
tion, that is, we want to see if the proposed estimator can select the true non-zero coefficients
consistently while the number of the selected variables is small. After selection, we could esti-
mate the parameters by re-fitting the model with the selected variables. The classical asymptotic
theory of MLE guarantees consistent estimation if the selected model is correct.

Let T be the true model, and T̃ be the estimated model. Also let T ⊂ T̃ denote the case
that the estimated model includes all the variables in the true model. We consider the sparsity of
the estimated model by looking at its model size relative to the true model size. Specifically, we
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define
Relative Sparsity (RS) =

#of selected variables
#of variables in the true model

.

Hence, if the true model contains 3 variables, then RS=2 means the estimated model selects 6
out of p variables.

To optimize (3.8) numerically, we use the generalized EM algorithm described in Städler,
Bühlmann and van de Geer (2010). The idea is that in the M-step of the EM algorithm, instead
of obtaining the minimizer of φ,γ, ρ simultaneously, we perform coordinate-wise updates. Note
that in the M-step, there is no explicit update formula for γ, and we approximate it by applying
the Newton-Raphson method. Due to the non-convexity of (3.8), we try multiple starting values
to try to find the global minimum. Based on Theorem 5, we also investigate the performance of
a thresholding method in variable selection.

The empirical performances depend on the signal-to-noise ratio (SNR). We use the definition
from Städler, Bühlmann and van de Geer (2010),

SNR =
V ar(Y )

V ar(Y |θ = 0)
.

By setting all the coefficients θ = 0, V ar(Y |θ = 0) denotes the variance purely from noise.

Example 1

We consider 4 logistic normal mixture models with 2 mixture components: M1,M2,M3 andM4.
Models M1 and M2 have independent baseline covariates X , whereas models M3 and M4 have
correlated baseline covariates X . We use the notation corrl,m to denote the correlation between
covariates l and m. In all cases, X are simulated from a 200-variate Gaussian distribution, i.e.,
p = 200, however, only 3 of them are included in the true model. We consider small variances
for mixture components in models M1 and M3, which produce high SNR. Models M2 and M4

have large variances for the components and hence have low SNR. The `1 normed penalized
estimator is obtained from samples of size n = 200. The particular values for parameters ρ,φ,γ
are specified in Table 3.1, and SNR is calculated via Monte Carlo simulations.

We consider 100 realizations for each model. For each realization, we try 25 random starting
values. To maintain the sparse nature of the true model, we require each starting value contains
at most 10 non-zero values for φ and γ, respectively. To do so, we sample 10 out of p = 200

32



Table 3.1: Models for Example 1 for K = 2. δl,m denotes Kronecker’s delta

M1 M2 M3 M4
n 200 200 200 200
p 200 200 200 200
k 2 2 2 2
β1 (3,3,3,3) (3,3,3,3) (3,3,3,3) (3,3,3,3)
β2 (-1,-1,-1,-1) (-1,-1,-1,-1) (-1,-1,-1,-1) (-1,-1,-1,-1)
γ2 (3,-2,4) (3,-2,4) (3,-2,4) (3,-2,4)
σ (0.5,0.3) (1.5,0.9) (0.5,0.3) (1.5,0.9)

corrl,m δl,m δl,m |0.8|l−m |0.8|l−m
SNR 64.3 7.2 88.5 9.7

numbers to indicate the indices of initial non-zero φ and γ. For these 10 non-zero φ and γ,
we generate their values from N(0, 12). Repeat the procedure 25 times and we get 25 different
starting values. For each starting value, we get the estimates of the parameters via optimizing
(3.8), and finally we compare the value of (3.8) by plugging these 25 different estimates and
choose the one that minimize (3.8) as our final estimates for one realization. For 100 realizations,
Table 3.2 shows the probability of the estimated model including all the active covariates and the
average RS for both the thresholding and the non-thresholding method. We use a naive threshold√

log p/n.
We can see from Table 3.2 that both the thresholding and the non-thresholding methods select

the true set of the variables with very high probability for well chosen λ1 and λ2. In addition, the
thresholding method with a naive threshold

√
log p/n provides much sparser models compare

to the non-thresholding method, whereas the accuracy does not loss much in the sense that the
inclusion probabilities are almost the same for both methods. We also note that the correlated
covariatesX make the variable selection harder and yield lower inclusion probabilities compare
to those models with independent covariates. SNR affects the average RS; the estimated models
for M2 and M4, which have low SNR, tend to contain more active covariates, which leads to
larger average RS.

To verify the claim in Theorem 5 that as n and p go to infinity, with properly chosen λ1,
λ2 and a threshold value, the probability of the exact recovery of the model goes to one, we
examine model M1 with n = 500 and p = 500. We also use the thresholding method with a
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Table 3.2: Probability of the estimated model containing the true model and the average RS
based on 100 realizations for Example 1 of K = 2. The numbers in the parentheses are from
the thresholding method with a naive threshold

√
log p/n.

K = 2 (λ1, λ2) (0.1,0.02) (0.08,0.01) (0.06,0.03) (0.12,0.05) (0.14, 0.04)
M1 T ⊂ T̃ 1(1) 1(1) 1(1) 0.52(0.4) 0.52(0.29)

ARS 4.8(1.4) 8.84(2.83) 3.48(1.16) 1.22(0.73) 1.41(0.65)
M2 T ⊂ T̃ 1(0.99) 1(1) 1(1) 0.31(0.08) 0.27(0.05)

ARS 4.8(1.37) 10.8(2.7) 3.2(1.1) 1.22(0.5) 1.29(0.43)
M3 T ⊂ T̃ 0.82(0.62) 0.97(0.96) 0.37(0.11) 0(0) 0(0)

ARS 4.15(1.47) 7.64(3.07) 3.33(1.04) 1.06(0.86) 1.32(0.89)
M4 T ⊂ T̃ 0.62(0.42) 0.96(0.92) 0.16(0.03) 0(0) 0.02(0)

ARS 4.45(1.37) 8.71(2.86) 5.42(1.0) 1.12(0.86) 1.27(0.87)

naive threshold
√

log p/n. Then, with the tuning parameters (λ1, λ2) = (0.11, 0.028), we will
exactly select the true set of the variables 99 out of 100 times, which demonstrates the claim in
Theorem 5.

Example 2

It is usually easy to deal with two subgroups, i.e., K = 2, since we only need to estimate γ2 to
identify subgroup membership. When K > 2, say K = 3, mulitple γ come into the model and
different combinations of γ might give similar subgroup structures. We would like to see if our
method still works well for K = 3.

We consider 4 logistic normal mixture models with 3 mixture components: M5,M6,M7

and M8. Similar to Example 1, Models M5 and M6 have independent baseline covariates X ,
whereas models M7 and M8 have correlated baseline covariates X . We use the notation corrl,m
to denote the correlation between covariates l and m. In all cases, X are simulated from a 200-
variate Gaussian distribution, i.e., p = 200, however, only 3 of them are included in the true
model. We consider small variances for mixture components in models M5 and M7, which pro-
duce high SNR, whereas models M6 and M8 have large variances for the components and hence
have low SNR. The `1 normed penalized estimator is obtained from samples of size n = 200.
The particular values for parameters ρ,φ,γ are specified in Table 3.3, and SNR is calculated via
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Table 3.3: Models for Example 2 for K = 3. δl,m denotes Kronecker’s delta

M5 M6 M7 M8
n 200 200 200 200
p 200 200 200 200
k 3 3 3 3
β1 (3,3,3,3) (3,3,3,3) (3,3,3,3) (3,3,3,3)
β2 (-1,-1,-1,-1) (-1,-1,-1,-1) (-1,-1,-1,-1) (-1,-1,-1,-1)
β3 (1,-2,2) (1,-2,2) (1,-2,2) (1,-2,2)
γ2 (3,-2,4) (3,-2,4) (3,-2,4) (3,-2,4)
γ3 (-1,1,1) (-1,1,1) (-1,1,1) (-1,1,1)
σ (0.5,0.3,0.2) (1.5,0.9,0.6) (0.5,0.3,0.2) (1.5,0.9,0.6)

corrl,m δl,m δl,m |0.8|l−m |0.8|l−m
SNR 65 8.0 112 13.5

Monte Carlo simulations.
We again consider 100 realizations for each model, and use the same procedure discussed

in Example 1 to get the `1 normed penalized estimates. Table 3.4 shows the probability of the
estimated model including all the active covariates and the average RS for both the thresholding
and the non-thresholding methods with a naive threshold

√
log p/n.

The high inclusion probabilities and the small average RSs shown in Table 3.4 proved that our
proposed estimator works well even for complicated data structure (K = 3). Still in Example
1 of K = 2, we have even higher inclusion probabilities and smaller average RSs. This means
the estimations for K = 2 are not only sparser but also more accurate than those for K = 3.
This is reasonable. Roughly speaking, with the same sample size n = 200, we have on average
70 observations for each mixture component when K = 3, whereas we have on average 100
observations for each mixture component when K = 2. Hence, the estimators for K = 2 are
expected to be more accurate than K = 3.

3.4.2 Selection for K

Quite often, we do not know the number of the mixture components K. We need to estimate
it from the data. Städler, Bühlmann and van de Geer (2010) proposed to use cross valida-
tion, whereas Khalili and Lin (2013) suggested to use BIC to select K in practice. However,
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Table 3.4: Probability of the estimated model containing the true model and the average RS
based on 100 realizations for Example 2 of K=3. The numbers in the parentheses are from the
thresholding method with a naive threshold

√
log p/n.

K = 3 (λ1, λ2) (0.1,0.02) (0.08,0.01) (0.06,0.03) (0.12,0.05) (0.14, 0.04)
M5 T ⊂ T̃ 1(0.98) 1(1) 1(1) 0.46(0.23) 0.29(0.14)

ARS 4.66(1.41) 9.91(3.23) 4.21(1.14) 0.96(0.78) 1.08(0.59)
M6 T ⊂ T̃ 0.97(0.8) 0.95(0.93) 0.93(0.65) 0.16(0.03) 0.07(0.04)

ARS 4.47(1.35) 12(3.5) 6.29(1.12) 0.62(0.31) 0.75(0.25)
M7 T ⊂ T̃ 0.95(0.8) 1(0.99) 0.88(0.64) 0.09(0) 0.13(0.03)

ARS 4.9(1.66) 9.2(3.7) 4.22(1.18) 1.1(0.87) 1.43(0.90)
M8 T ⊂ T̃ 0.71(0.42) 0.95(0.9) 0.42(0.09) 0.04(0) 0.02(0)

ARS 4.97(1.52) 10.2(3.5) 5.32(1.06) 1.07(0.86) 1.26(0.88)

these methods do not yet have theoretical justifications. We proposed a new selection criterion
SCMM in Chapter 3.3 and showed its consistency. In this chapter, we would like to examine its
empirical performance and compare it to that of BIC and EBIC of Chen and Chen (2008) (EBIC
is proved to be useful in high dimensional variable selection in the linear regression framework).
We show in simulations that BIC tends to choose overfitted models.

Recall the variable selection procedure in Chapter 3.3 that for any b ∈ B, we first optimize
(3.8) with K = b and denote the selected variable set as ŝ(b). The estimators of K from SCMM,
BIC and EBIC are given as follows.

K̂SCMM := argminb∈B SCMM(ŝ(b)),

K̂BIC := argminb∈B BIC(ŝ(b)),

K̂EBIC := argminb∈B EBIC(ŝ(b)),

where
SCMM(ŝ(b)) := −lb(ŝ(b), θ̂) + b|ŝ(b)|n0.5+δ1 log p/n,

BIC(ŝ(b)) := −lb(ŝ(b), θ̂) + (2b− 1)|ŝ(b)| log n/(2n),

EBIC(ŝ(b)) := BIC(ŝ(b)) + (2b− 1)|ŝ(b)| log p/(2n).

We first consider the 4 models in last chapter, M1, · · · ,M4, and pretend as if we do not know
the right number of the mixture components. We use SCMM, BIC and EBIC selection criterion
discussed above to select K from data, with the candidate set B = {1, 2, 3, 4} and the com-
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Table 3.5: Frequencies of the estimates K̂ for the true K=2 based on SCMM, BIC and EBIC

K̂(SCMM,BIC,EBIC) M1 M2 M3 M4
1 0,0,0 0,0,0 0,0,0 0,0,0
2 98,92,99 99,97,98 100,82,96 100,97,100
3 2,8,1 1,3,2 0,17,4 0,3,0
4 0,0,0 0,0,0 0,1,0 0,0,0

mon tuning parameters (λ1, λ2) = (0.06, 0.03). We use 100 realizations for each model. The
frequencies of K̂ being 1, 2, 3 and 4 from SCMM, BIC, EBIC are shown in Table 3.5.

We see SCMM and EBIC works well for all 4 models, whereas for model M3, BIC chooses
overfitted models 18 out of 100 times.

Note that the linear regression for one single normal component model (K=1) is the degener-
ate case of the mixture models, whereas it is fundamentally different from the mixture models.
The convex log-likelihood function and the explicit formulas of the parameters estimation for
linear regression make it attractive to real data applications. Hence, it is important for us to
tell if a single normal component model is sufficient for the data or if we need to use the more
complicated mixture models structure. The following simulations demonstrate that our proposed
selection criterion SCMM can detect K = 1 consistently if the data is from the single normal
component model, whereas BIC tends to choose K = 2.

We consider 4 single normal component models: F1, F2, F3 and F4. Models F1 and F2

have independent baseline covariates X , whereas models F3 and F4 have correlated baseline
covariatesX . We use the notation corrl,m to denote the correlation between covariates l and m.
In all cases, X are simulated from a 200-variate Gaussian distribution, i.e., p = 200, however,
only 2 of them are included in the true model. We consider small error variances for models
F1 and F3 and large error variances for models F2 and F4. The `1 normed penalized estimator
is obtained from samples of size n = 200. The particular values for parameters ρ,φ,γ are
specified in Table 3.6.

We again consider the candidate set B = {1, 2, 3, 4} and 100 realizations for each model
with the common tuning parameters (λ1, λ2) = (0.1, 0.02). The frequencies of K̂ being 1, 2, 3
and 4 from SCMM, BIC and EBIC are shown in Table 3.7. Note that the penalty used in SCMM
is larger than those used in BIC and EBIC, hence quite often, if BIC and EBIC choose K = 1,
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Table 3.6: Models for K=1. δl,m denotes Kronecker’s delta

F1 F2 F3 F4

n 200 200 200 200
p 200 200 200 200
k 1 1 1 1
β (1,-1,1) (1,-1,1) (1,-1,1) (1,-1,1)
σ 1 2 1 2

corrl,m δl,m δl,m |0.8|l−m |0.8|l−m
SNR 3 1.5 1.4 1.1

Table 3.7: Frequencies of the estimates K̂ for the true K=1 based on SCMM, BIC and EBIC

K̂(SCMM,BIC,EBIC) F1 F2 F3 F4

1 92,12,27 96,35,93 98,8,40 61,50,60
2 8,87,73 4,62,7 2,90,59 39,48,40
3 0,1,0 0,3,0 0,2,1 0,2,0
4 0,0,0 0,0,0 0,1,0 0,0,0

then SCMM will also do. The simulation results in Table 3.7 show that BIC and EBIC generally
loss the power to detect the true K = 1, however, our proposed SCMM works very well for
F1, F2 and F3. The SNR for F4 is as low as 1.1, which approaches the lower bound of SNR of 1.
Hence, it is reasonable in this case to see less satisfactory performances for all the methods.

3.5 Real Data Example

We apply of our methods to a real data set. The data set concerns telemonitoring of Parkinson’s
disease (PD), which is a neurological disorder that has affected over one million people in North
America. Although the current medications are effective in controlling its symptoms at the early
stages of the disease, there is no prescription to cure the disease. Therefore, it is important to
diagnose and monitor PD in the early phase. Traditional ways of tracking PD symptoms involves
physical examinations. To reduce the cost yet still able to track PD progression, a noninvasive
telemonitoring technique, called sustained vowel phonations (SVP) (Little et al, 2009), has been
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proposed. The data set at http://archive.ics.uci.edu/ml/datasets/Parkinsons+ Telemonitoring is
collected from a clinical trial to assess if SVP can be used as surrogate to study PD severity
and progression. There are n = 5875 observations of speech signals of 42 patients and a to-
tal of 16 characteristics with clinically relevant properties were extracted for each observation
(Little et al., 2009). Besides the 16 characteristics, we consider 16 extra covariates which are
quadratic forms of the 16 characteristics. The reasons for including those quadratic terms have
been discussed in Tsanas et al. (2010).

Using the Unified Parkinson’s Disease Rating Scale (UPDRS), which is designed to follow
PD progression, as the response variable and p = 32 covariates (16 linear and 16 quadratic),
Khalili and Lin (2013) fitted the mixture model with constant mixing parameters to the data set.
They also assumed constant variability for subgroups. Under their framework, they choseK = 2

and selected 6 out of 32 variables as the predictors.
We believe that homogeneity of subgroups is not a reasonable assumption in this study. The

purpose of our study is to apply our logistic-normal mixture model to see if we will find some-
thing different. To provide a direct contrast with the results of Khalili and Lin (2013), we proceed
as if the observations were independent. We note that within-subject correlations need to be ex-
amined in any inferential analysis.

We fit the logistic-normal mixtures to the data set withK = 1, 2, 3, 4. Based on our proposed
selection criterion SCMM with the tuning parameters (λ1, λ2) = (3

√
log p/n,

√
log p/n) =

(0.073, 0.024), we also chose K = 2, but selected only 3 variables as the predictors, which
are PPE, HNR2 and DFA2, where HNR2 and DFA2 are quadratic terms of HNR and DFA,
respectively. Table 3.8 gives the detailed estimation.

Note that φ, ρ are the reparameterized parameters. We transfer them back and write the fitted
model in terms of β and σ as follows.

Group1(G1) :

Y (UPDRS) = 29.6 + 1.88PPE − 2.67HNR2− 3.41DFA2 + ε1, ε1 ∼ N(0, 10.462).

Group2(G2) :

Y (UPDRS) = 21.32− 0.95PPE − 3.55HNR2− 3.4DFA2 + ε2, ε2 ∼ N(0, 2.982).

Based on the estimated γ2, the average mixing probabilities for Group1 and Group2 are
0.94 and 0.06, respectively. The results suggest that the vast majority of the cases come from
Group1. We look at the linear regression for a single normal component model with covariates
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Table 3.8: Parameter estimates and the corresponding standard errors. Standard errors are ob-
tained via observed Fisher information and are reported inside parentheses purely for reporting
purposes. HNR2 and DFA2 are the quadratic terms of HNR and DFA respectively. All covariates
are standardized.

Predictors φ1 φ2 γ2 ρ1 ρ2

Intercept 2.83 (0.01) 7.15 (0.35) -8.02 (0.85) 9.5×10−2 (3×10−4) 0.34 (2.4×10−3)
PPE 0.18 (0.02) -0.32 (0.08) -0.45 (0.2) - -

HNR2 -0.26 (0.02) -1.19 (0.13) -3.93 (0.45) - -
DFA2 -0.33 (0.02) -1.14 (0.23) -4.63 (0.43) - -

PPE, HNR2 and DFA2. The estimated model from linear regression is

Global linear regression :

Y (UPDRS) = 29.02 + 1.19PPE − 1.89HNR2− 2.34DFA2 + ε, ε ∼ N(0, 10.292).

Not surprisingly, the model from the global linear regression is fairly close to that ofGroup1.
In fact, the global linear regression with the covariates PPE, HNR2 and DFA2 has already pro-
vided a very high adjusted R-square of 0.8894. However, the QQ-plot for the residuals in Figure
3.1 does not support the normality assumption and statistically, the BIC which works well for
small p and large n and SMCC of the global linear regression are worse than those of the two
components logistic normal mixture model in Table 3.8. Our analysis indicates that there may
exist a small portion of observations that are actually from Group2, which can not be predicted
well by the global linear regression.

The FMR model with constant mixing parameters discussed in Khalili and Lin (2013) is
unable to provide much information, since the model assigns common mixing probabilities for
every observation. A distinct advantage of the logistic normal mixture model is that based on
different attributes of different observations, we can calculate individual-specific mixing proba-
bilities and predict their subgroup memberships. Figure 3.2 shows the individual-specific mixing
probabilities for Group2. The observations that have large mixing probabilities for Group2 are
very likely from Group2.

We select individual observations whose mixing probabilities forGroup2 are larger than 0.85
as a subgroup, and we call it S. The size for S is 168. Note that they are not necessarily all from
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Figure 3.1: QQ-plot for the linear regression residuals
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Figure 3.2: Individual-specific mixing probabilities for Group2

Group2, but we believe most of them should be because of the large mixing probabilities, and
we expect the majority of the observations from S can not be predicted well by the global linear

41



regression. Figure 3.3 is the plot for the response Y(UPDRS) against the individual-specific
characters X=1.19 PPE -1.89 HNR2 -2.34DFA2 from the global linear regression coefficients.
The straight line in black is the fitted global linear regression and the red points are the selected
individuals in S. We can see that the points (green) other than red are fairly symmetric with
respect to the line, whereas the red points seem to be outliers. Indeed, the global linear regression
can not predict these red points well. Figure 3.3 explained the reason intuitively why a single
linear regression is not sufficient for the data, and it also demonstrated that the two component
logistic normal mixture model is effective in characterizing the subgroup membership based on
the mixing probabilities.
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Figure 3.3: The overall data set with the linear regression line in black. The red points are the
selected individuals in S based on the mixing probabilities.

Quantitatively, we compare the mean square errors (MSE) of the fitted values to the true
values for the observations from S via model G2 and the global linear regression. The MSE for
model G2 and the global linear regression are 9.6 and 148.5, respectively, whereas the optimal
MSE from the least squares of the linear regression based solely on the observations from S is
8.1. Because the MSE for G2 is close to the optimal MSE and is much smaller than that for
the global linear regression, it also demonstrates that most of the observations from S should be
centered around the means from Group2.
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For the mixture model discussed in Khalili and Lin (2013) (MKL), which assumes both ho-
mogeneity for subgroups and constant mixing parameters, we found if we relax the homogeneity
condition, the fitted model (MKL1) has better BIC. The estimated mixing parameters are 0.92
and 0.08, which also suggests that most cases are from one single subgroup. However, both the
models MKL and MKL1 assign common mixing probabilities for every observation and hence
fail to capture the underlying subgroup membership for the data set. Consequently, the BIC for
MKL and MKL1 are worse than the two components logistic normal mixture model in Table 3.8.
The BIC for MKL is 2.92, and 2.84 for MKL1, and the BIC for the two components logistic
normal mixture model in Table 3.8 is 2.79.

Further inspections of the data show that most observations in S are from one subject, and
quite a few others are from another subject. Specifically, 43 out of 168 observations in S are from
patient 33 and 110 out of 168 observations in S are from patient 36. The analysis shows that the
logistic-normal mixture model is more effective than the traditional FMR model in detecting
meaningful subgroups.

When we added 500 noise predictors to the data, each of which is simulated independently
from the normal distribution with mean zero and variance one, and choose the tuning parameters
(λ1, λ2) = (

√
log p/n,

√
log p/n) = (0.033, 0.033), we once again selected K = 2 and the

active covariates PPE, HNR2 and DFA2. This exercise shows that the proposed method in this
Chapter can handle a large number of possible predictors.
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CHAPTER 4

Discussion

In this dissertation, we considered two issues that are related to the logistic-normal mixture
model. In Chapter 2, we proposed a penalized maximum likelihood estimator that can consis-
tently estimate the true parameters when the variances might be unequal for different subgroups.
In addition, we proposed a penalized EM test for testing the existence of subgroups. We allow
to use data dependent penalty, and we provide a guideline for selecting tuning parameter. The ex-
isting literature mainly focuses on homogeneous subgroups or FMR models with no covariates,
whereas our setting is geared towards more practical problems where the subgroup membership
needs to be characterized by covariates.

In Chapter 3, we proposed a `1 norm penalized maximum likelihood estimator for the sake of
variable selection for the logistic normal mixture models with high dimensional covariates when
the number of the mixture components K is given. We proved consistency in terms of Kullback-
Leibler information as well as the `1 norm of the estimated coefficients. We also showed the
convergence rate is at the order of (log p/n)1/2, which is the best convergence rate that we could
expect. When K is unknown, we proposed a selection criterion SCMM in finding the number
of components K and showed its consistency. In addition, we studied the performance of our
proposed methods through simulations and a real data example. There are only a few discussions
of variable selection in the literature on FMR models with constant mixing parameters in high
dimensions; we are the first to study model selection for FMR models with data dependent
mixing parameters. Moreover, we provided a selection criterion with theoretical justifications to
determine the number of the mixture components for FMR models.

There are a number of possible future directions to further enrich the current state of the
research and applications of the FMR models. For example, we required certain compactness
of the parameter space when we select variables in high dimensions, but the `1 penalty might
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automatically ensure that. It would be useful if the compactness condition can be relaxed. When
selecting the number of the mixture components, the candidate values for K need to have a
known upper bound. It would be interesting to know what happens if the upper bound is incor-
rectly specified. The current theory also requires a larger penalty in SCMM than it might be
necessary; it tends to choose a model with a small number of the mixture components. It would
be interesting to investigate the local power of SCMM , when one of the mixture components
vanishes, in the sense that the coefficients in the component shrink to zero. Last but not least,
our empirical work shows that when λ1 and λ2 are appropriately chosen, the results of model se-
lection are quite good, as predicted by the theory. However, it remains a future research problem
how we can choose those parameters data adaptively.
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APPENDIX A

Proofs for the Main Results in Chapter 2

We first provide a useful lemma which is proved at the end of this section.

Lemma 8. Suppose {(Pk, Qk)}∞k=1 are i.i.d. continuous random variables with finite means.

Also suppose that the density of Qk and the conditional density of Pk|Qk are bounded by C, then

uniformly in σn between n−1 and exp(−1), there exists a constant C∗ such that for sufficiently

large n,

P ( sup
a,b∈R

1

n

n∑
k=1

1(|Pk − aQk − b| ≤ |σn log σn|) > C∗|σn log σn|) ≤ Cn−2.

A.1 Proof of Theorem 1

We note that S1 and S2 play the role of Lemma 1 in Chen et al. (2008). With these two
properties, it then follows from the Borel-Cantelli Lemma that as n→∞ and almost surely,
1. for each given σ between n−1 and exp(−1),

sup
β∈Rq1

n−1

n∑
i=1

1(|Yi −ZT
i β| ≤ |σ log σ|) ≤ C|σ log σ|,

2. uniformly for σ between 0 and n−1,

sup
β∈Rq1

n−1

n∑
i=1

1(|Yi −ZT
i β| ≤ |σ log σ|) ≤ 4(log n)2/n.
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These almost sure results are stated for a given σ. However, following the arguments in Lemma
2 of Chen et.al (2008), we have a stronger result as follows.
Except for a zero-probability event not depending on σ, we have for all large enough n:

1. for σ between n−1 and exp(−1), supβ∈Rq1 n
−1
∑n

i=1 1(|Yi−ZT
i β| ≤ |σ log σ|) ≤ C|σ log σ|,

2. for σ between 0 and n−1, supβ∈Rq1 n
−1
∑n

i=1 1(|Yi −ZT
i β| ≤ |σ log σ|) ≤ 4(log n)2/n.

We partition the parameter space with respect to σ as in Chen et.al. (2008). Let Γ1 = {Θ :

σ1 ≤ σ2 ≤ ε0}, Γ2 = {Θ : σ1 ≤ τ0, σ2 ≥ ε0}, Γ3 = Γ − (Γ1

⋃
Γ2), where ε0, τ0 and Γ are

specified in Chen et.al. (2008). Note that ZT
i β in our setting plays the same role as θ in Chen

et.al. (2008), where the model has no covariates. Hence, with the above almost surely results
and Theorem 1 and Theorem 2 of Chen et.al.(2008), we have as n → ∞ and almost surely,
the penalized maximum likelihood estimators of our model will be attained in Γ3. Note that σ is
bounded away from zero in Γ3, standard techniques of proving the consistency of the maximum
likelihood estimators lead to the consistency of our proposed penalized maximum likelihood
estimators.

Next, we show S1 and S2. Since the proof of S2 is essentially the same as that for S1, we
only provide the details of the proof of S1. For convenience, we allow the constants used in the
proofs vary line by line.

Recall that Z = (1, U ,V ), where 1 represents the intercept in the model and U consists of
only discrete variables with a finite sample space and V consists of only continuous variables.
We prove S1 for the following three cases.
Case 1: If Z only has three dimensions, that is, Z = (1, U, V ). Further, we assume U ∼
Ber(1/2).
Case 2: If Z = (1,U , V ), where U is a random vector taking any finite values and V is one
dimensional continuous variable.
Case 3: If Z = (1,U ,V ), where U is a random vector taking finite values and V is a vector of
continuous random variables.
From Case 1 to Case 3, we will prove S1 from the simplest case to the most general situation.
Then we complete the proof of Theorem 1.
Next we provide the detailed proof under Cases 1-3.

Proof for Case 1: We prove S1 when Z only has three dimensions, that is, Z = (1, U, V ).
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Further, we assume U ∼ Ber(1/2).

Let Ūn = n−1
∑n

i=1 Ui and let fX(x) and fX|Y (x|y) denote the density of X and the condi-
tional density of X|Y , respectively. Then, for any given σn ∈ (n−1, exp(−1)), let

εn = {n−1(8 log n)}1/2,

I = P
(
supβ∈R3 Wn(β) > C|σn log σn| | |Ūn − 1/2| ≤ εn

)
,

II = P
(
|Ūn − 1/2| > εn

)
.

We have,

P (An(C)) = P
(
supβ∈R3 Wn(β) > C|σn log σn|

)
≤ P

(
supβ∈R3 Wn(β) > C|σn log σn| | |Ūn − 1

2
| ≤ εn

)
+ P

(
|Ūn − 1

2
| > εn

)
= I + II.

(A.1)

We verify the following two claims:

CL1 II ≤ Cn−2;

CL2 I ≤ Cn−2.

Proof of CL1: By Bernstein’s inequality, for sufficient large n,

II = 2P

(∑n
i=1 Ui
n

− 1

2
> εn

)
≤ exp

{
−

1
2
n2ε2n

n+ 1
3
nεn

}
≤ Cn−2.

Proof of CL2: Note that

I = P
(
supβ∈R3 Wn(β) > C|σn log σn| | |Ūn − 1

2
| ≤ εn

)
=
∑

u1,··· ,un P
(
supβ∈R3 Wn(β) > C|σn log σn| |U1 = u1, · · · , Un = un, |Ūn − 1

2
| ≤ εn

)
×f(u1,··· ,un|Ūn)(u1, · · · , un).

For any u1, · · · , un such that Ūn = n−1
∑n

i=1 ui ∈ [2−1 − εn, 2−1 + εn], let U = (U1, · · · , Un),
u = (u1, · · · , un), and {i1, · · · , inŪn} are indices for u = 1, and {j1, · · · , jn−nŪn} are indices
for u = 0. Also let U ik = (Ui1 , · · · , UinŪn ), U jk = (Uj1 , · · · , Ujn−nŪn ) and let the variables
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(Pk, Qk) and (P ′k, Q
′
k) be specified with the following distributions:

{(P ′k, Q
′

k)}nŪnk=1

D
= {(Yik , Vik)}

nŪn
k=1 |U ik = 1

and
{(Pk, Qk)}n−nŪnk=1

D
= {(Yjk , Vjk)}

n−nŪn
k=1 |U jk = 0.

By the independence of {Zk}nk=1 = {(1, Uk, Vk)}nk=1, we have

P
(
supβ∈R3 Wn(β) > C|σn log σn| |U1 = u1, · · · , Un = un, |Ūn − 1

2
| ≤ εn

)
= P

(
supβ∈R3 Wn(β) > C|σn log σn| |U1 = u1, · · · , Un = un

)
= P

(
supβ∈R3{ 1

n

∑nŪn
k=1 1(|Yik − β1 − β2 − β3Vik | ≤ |σn log σn|)

+ 1
n

∑n−nŪn
k=1 1(|Yjk − β1 − β3Vjk | ≤ |σn log σn|)} > C|σn log σn| |U = u

)
≤ P

(
supβ∈R3

1
n

∑nŪn
k=1 1(|Yik − β1 − β2 − β3Vik | ≤ |σn log σn|) > (C/2)|σn log σn| |U ik = 1

)
+P

(
supβ∈R3

1
n

∑n−nŪn
k=1 1(|Yjk − β1 − β3Vjk | ≤ |σn log σn|) > (C/2)|σn log σn| |U jk = 0

)
≤ P

(
supa,b∈R

1
nŪn

∑nŪn
k=1 1(|(P ′k − aQ

′

k − b| ≤ |σn log σn|) > (C/2)|σn log σn|
)

+P
(

supa,b∈R
1

n−nŪn

∑n−nŪn
k=1 1(|Pk − aQk − b| ≤ |σn log σn|) > (C/2)|σn log σn|

)
.

Since {Yi,Zi,X i}ni=1 are i.i.d., {(Pk, Qk)}n−nŪnk=1 are i.i.d. and so are {(P ′k, Q
′

k)}
nŪn
k=1 . We claim

the following two properties under both the null hypothesis and the alternative hypothesis.

CL3 (Pk, Qk) and (P
′

k, Q
′

k) have finite means;

CL4 The densities of Pk, P
′

k and the conditional densities of Pk|Qk, P
′

k|Q
′

k are bounded.

Then, by the choice of Ūn, nŪn = O(n/2) and n − nŪn = O(n/2) almost surely. Taken CL3
and CL4 and Lemma 8 together, we conclude that there exist constant C ′ such that I ≤ C ′n−2

for sufficiently large n. The proof for CL1 and CL2 is then complete.

Proof of CL3 and CL4: Recall

Y |{(U, V ),X} ∼ π(XTγ)N(ZT (β1 + β2), σ2
1) + (1− π(XTγ))N(ZTβ1, σ

2
2).

Note that the null model is just a special case of the above in that β2 = 0 and σ1 = σ2. By the
definitions of (Pk, Qk) and (P

′

k, Q
′

k), for any βT = (γT ,βT1 ,β
T
2 , σ1, σ2), if suffices to show the
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following two statements:

S(i) E (|Y | |U) <∞, E (|V | |U) <∞;

S(ii) the conditional densities of V |U and Y |U, V are bounded.

The statement S(ii) is obvious, since Y |V, U,X follows the logistic mixture of normals, its den-
sity is uniformly bounded by {

√
2πmin{σ1, σ2}}−1, where σ1, σ2 are the true parameters in the

model. Therefore, the conditional density of Y |V, U is bounded, and by Condition C4, the con-
ditional density of V |U is bounded. For S(i), by Condition C5, E(|V | |U) < ∞, again because
Y |V, U,X follows logistic mixture of normals,

E (|Y | |U) = E {E (|Y | |U, V,X) |U}
= E

{(
E
(
π(XTγ)|Y1|+ (1− π(XTγ))|Y2| |U, V,X

))
|U
}

= E
{(
π(XTγ)E(|Y1| |U, V,X) + (1− π(XTγ))E(|Y2| |U, V,X)

)
|U
}

where Y1|(U, V,X) ∼ N(ZT (β1 +β2), σ2
1), Y2|(U, V,X) ∼ N(ZTβ1, σ

2
2), andZ = (1, U, V ).

Note that

E(|Y1| |U, V,X)

≤ σ1E
(
|Y1−ZTβ1−ZTβ2

σ1
| |U, V,X

)
+ (1 + |V |+ |U |)||β1 + β2||∞

= 2√
2π
σ1 + (1 + |V |+ |U |)||β1 + β2||∞,

where || · ||∞ is the supreme norm and the last equation is due to the fact that E|Z| = 2(2π)−1/2

if Z ∼ N(0, 1). Similarly,

E(|Y2| |U, V,X) ≤ 2√
2π
σ2 + (1 + |V |+ |U |)||β1||∞.

Therefore,

E(|Y | |U) ≤ 2√
2π

max{σ1, σ2}+ max{||β1||∞, ||β1 + β2||∞}E(1 + |V |+ |U | |U) <∞,

where the last inequality is due to Condition C5.
We have now verified properties CL3 and CL4 for any βT = (γT ,βT1 ,β

T
2 , σ1, σ2), under

both the null and the alternative hypotheses. By the results from CL1, CL2 and Equation (A.1),
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we finished the proof of Case 1.

Proof for Case 2: We prove S1 with Z = (1,U , V ), whereU is a random vector taking any
finite values and V is one dimensional continuous variable.

Let P (U = ut) = pt > 0, t = 1, 2, · · · , r, and
∑r

t=1 pt = 1. Also let Ū t
n = n−1

∑n
i=1 1(U i =

ut), t = 1, 2, · · · , r. As in the earlier proof, we set εnt = {n−1(8 log n)}1/2, and we bound
P (An(C)) by

P
(
An(C)|Ū t

n ∈ [pt − εnt, pt + εnt], t = 1, · · · , r
)

+
r∑
t=1

P
(
|Ū t

n − pt| > εnt
) 4

= I + II.

By Bernstein’s inequality, we know II < Cn−2. For part I , we use arguments conditional on
U i = ui, i = 1, 2, · · · , n, such that the values of ui satisfy Ū t

n ∈ [pt−εnt, pt+εnt], t = 1, · · · , r.
We then group the U i = ui which have the same value of ut. Note that the number of the items
in each group is of the order of O(ptn), and by the independence of the vectors of Zi, we can
directly apply Lemma 8 and get the desired results.

Proof for Case 3: We prove S1 for general Z = (1,U ,V ), where U is a random vector
taking finite values and V is a vector of continuous random variables.

We bound P (An(C)) by conditioning on the possible values ofU as we did previously, then
it suffices to show

P

(
sup

b∈R,ρ∈R+,||α||=1

1

n

n∑
k=1

1(|Pk − ραTQk − b| ≤ |σn log σn|) > C∗|σn log σn|

)
≤ Cn−2,

for some C∗ and C and sufficiently large n. However, the set of α with ||α|| = 1 is a compact
set, we can prove it by using standard empirical process argument and the same techniques as
those used to prove Lemma 8 in the next subsection.
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A.2 Proof of Lemma 8

In this subsection, we prove Lemma 8 which is needed for the proof of Theorem 1. We allow
the constants below to vary line by line. Let

Gn(a, b, σn) = n−1
∑n

k=1 1(|Pk − aQk − b| ≤ |σn log σn|),
Ln1 = P (sup|a|≤n2,b∈RGn(a, b, σn) > C∗|σn log σn|),
Ln2 = P (sup|a|>n2,b∈RGn(a, b, σn) > C∗|σn log σn|).

Note that

sup
a,b∈R

Gn(a, b, σn) = max

{
sup

|a|≤n2,b∈R
Gn(a, b, σn), sup

|a|>n2,b∈R
Gn(a, b, σn)

}
.

Thus we have,

P

(
sup
a,b∈R

Gn(a, b, σn) > C∗|σn log σn|
)
≤ Ln1 + Ln2. (A.2)

Step 1: We show Ln2 ≤ Cn−2.
Note that for any given σn ∈ (n−1, exp(−1)), |σn log σn| ≥ n−1 log n. We have

Gn(a, b, σn)

≤ 1
n

∑n
k=1 1

(
Pk
|a| −

|σn log σn|
|a| ≤ Qk + b

|a| ≤
Pk
|a| + |σn log σn|

|a|

)
1(|Pk| ≤ (|a| − 1)|σn log σn|)

+ 1
n

∑n
k=1 1(|Pk| > (|a| − 1)|σn log σn|).

Therefore,

sup|a|>n2,b∈RGn(a, b, σn)

≤ sup|a|>n2,b∈R

{
1
n

∑n
k=1 1

(
Pk
|a| −

|σn log σn|
|a| ≤ Qk + b

|a| ≤
Pk
|a| + |σn log σn|

|a|

)
×1(|Pk| ≤ (|a| − 1)|σn log σn|)

}
+ sup|a|>n2

{
1
n

∑n
k=1 1(|Pk| > (|a| − 1)|σn log σn|)

}
≤ supθ∈R

1
n
{
∑n

k=1 1(−|σn log σn| ≤ Qk − θ ≤ |σn log σn|)}+ 1
n

∑n
k=1 1(|Pk| > n).

Let

Ln21 = P (supθ∈R{n−1
∑n

k=1 1(−|σn log σn| ≤ Qk − θ ≤ |σn log σn|)} > (C∗/2)|σn log σn|) ,
and Ln22 = P (n−1

∑n
k=1 1(|Pk| > n) > (C∗/2)|σn log σn|) .
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Then,

Ln2 = P

(
sup

|a|>n2,b∈R
Gn(a, b, σn) > C∗|σn log σn|

)
≤ Ln21 + Ln22. (A.3)

Step 1-1: We show Ln21 ≤ Cn−2.
Observe that in Ln21,

n−1
∑n

k=1 1(−|σn log σn| ≤ Qk − θ ≤ |σn log σn|)
= Fn(θ + |σn log σn|)− Fn(θ − |σn log σn|),

where Fn is the empirical distribution for Q. Since the density of Q is bounded, a direct applica-
tion of Lemma 1 of Chen et al. (2008) yields Ln21 ≤ Cn−2.
Step 1-2: We show Ln22 ≤ Cn−2.

Note that E{1(|Pk| > n)} ≤ n−1E(|Pk|) ≤ n−1 log n ≤ |σn log σn|, for sufficiently large n.
Then, by Bernstein’s inequality, we have

Ln22 ≤ P
(∑n

k=1(1(|Pk| > n)− E(1(|Pk| > n))) > C̃n|σn log σn|
)

≤ exp
{
− (C̃n)2|σn log σn|2

2n|σn log σn|+2C̃n|σn log σn|

}
≤ Cn−2,

where C̃ = C∗/2− 1.
By Step 1-1, Step 1-2 and Equation (B.25), we have

Ln2 ≤ Ln21 + Ln22 ≤ Cn−2, (A.4)

which completes the proof of Step 1.
Step 2: We show Ln1 ≤ Cn−2.

Let δn = n−1|σn log σn| ≥ n−2(log n). Divide |a| ≤ n2 into the union of kn subsets
{Ωnj}knj=1, such that, the distance between any two points in each subset is no greater than
δn. It is clear that we can achieve this with kn ≤ (log n)−12n4 ≤ O(n4). Let Uk(a, b, σn) =
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1(|Pk − aQk − b| ≤ |σn log σn|), then

sup|a|≤n2,b∈RGn(a, b, σn)

= max1≤j≤kn

[
supa∈Ωnj ,b∈R{Gn(a, b, σn)}

]
≤ max1≤j≤kn

[
supb∈RGn(aj, b, σn) + sup|a−aj |≤δn,b∈R {|Gn(a, b, σn)−Gn(aj, b, σn)|}

]
≤ max1≤j≤kn

[
supb∈RGn(aj, b, σn) + sup|a−aj |≤δn,b∈R

{
1
n

∑n
k=1 |Uk(a, b, σn)− Uk(aj, b, σn)|

}]
,

where aj is any fixed point in Ωnj . Let

Ln11 = kn supa∈R P (supb∈RGn(a, b, σn) > (C∗/2)|σn log σn|) ,
Ln12 = kn supa′∈R P

(
sup|a−a′ |≤δn,b∈R(1/n)

∑n
k=1 |Uk(a, b, σn)− Uk(a

′
, b, σn)| > (C∗/2)|σn log σn|

)
.

Then we have
Ln1 ≤ Ln11 + Ln12. (A.5)

Step 2-1: We show Ln11 ≤ Cn−2.
InLn11, for any a ∈ R, letRa

k = Pk−aQk. Since Pk, Qk are continuous, andRa
k is continuous

and its density fRak(r) =
∫
fRak|Qk(r|qk)fQk(qk)dqk =

∫
fPk|Qk(r + aqk|qk)fQk(qk)dqk ≤ C.

Therefore,
Gn(a, b, σn) = 1

n

∑n
k=1 1(|Ra

k − b| ≤ |σn log σn|)
= Fn(b+ |σn log σn|)− Fn(b− |σn log σn|),

where Fn is the empirical distribution forRa
k, k = 1, · · · , n. Since the density ofRa

k is uniformly
bounded over a, a direct application of Lemma 1 of Chen et al. (2008) yields

P

(
sup
b∈R

(1/n)
n∑
k=1

1(|Ra
k − b| ≤ |σn log σn|) > (C∗/2)|σn log σn|

)
< Cn−6,

for any a ∈ R and for some fixed constant C∗. By using the order of kn, we have for some C∗,

Ln11 ≤ C∗n−2 (A.6)

for sufficiently large n.
Step 2-2: We show Ln12 ≤ Cn−2.
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For any a′ ∈ R, let

Mn1(a, b, a
′
, σn) = n−1

∑n
k=1 1(Pk − a

′
Qk − b ≥ −|σn log σn|)1(Pk − aQk − b ≤ −|σn log σn|),

Mn2(a, b, a
′
, σn) = n−1

∑n
k=1 1(Pk − a

′
Qk − b ≤ |σn log σn|)1(Pk − aQk − b ≥ |σn log σn|),

Mn3(a, b, a
′
, σn) = n−1

∑n
k=1 1(Pk − a

′
Qk − b ≤ −|σn log σn|)1(Pk − aQk − b ≥ −|σn log σn|),

Mn4(a, b, a
′
, σn) = n−1

∑n
k=1 1(Pk − a

′
Qk − b ≥ |σn log σn|)1(Pk − aQk − b ≤ |σn log σn|);

Nn1(b, a
′
, σn) = n−1

∑n
k=1 1(−|σn log σn|+ δn|Qk| ≥ Pk − a

′
Qk − b ≥ −|σn log σn|),

Nn2(b, a
′
, σn) = n−1

∑n
k=1 1(−|σn log σn| − δn|Qk| ≤ Pk − a

′
Qk − b ≤ −|σn log σn|),

Nn3(b, a
′
, σn) = n−1

∑n
k=1 1(|σn log σn| − δn|Qk| ≤ Pk − a

′
Qk − b ≤ |σn log σn|),

Nn4(b, a
′
, σn) = n−1

∑n
k=1 1(|σn log σn|+ δn|Qk| ≥ Pk − a

′
Qk − b ≥ |σn log σn|).

Then,

1
n

∑n
k=1 |Uk(a, b, σn)− Uk(a

′
, b, σn)|

= 1
n

∑n
k=1 |Uk(a, b, σn)− Uk(a

′
, b, σn)|Uk(a

′
, b, σn)

+ 1
n

∑n
k=1 |Uk(a, b, σn)− Uk(a

′
, b, σn)|(1− Uk(a

′
, b, σn))

≤Mn1(a, b, a
′
, σn) +Mn2(a, b, a

′
, σn) +Mn3(a, b, a

′
, σn) +Mn4(a, b, a

′
, σn).

Note that for any a, such that |a− a′ | ≤ δn,

Pk−a
′
Qk− b = Pk−aQk− b− (a

′−a)Qk ∈ [Pk−aQk− b− δn|Qk|, Pk−aQk− b+ δn|Qk|].

Thus, for any a, such that |a− a′| ≤ δn,

Mn1(a, b, a
′
, σn) +Mn2(a, b, a

′
, σn) +Mn3(a, b, a

′
, σn) +Mn4(a, b, a

′
, σn)

≤ Nn1(b, a
′
, σn) +Nn2(b, a

′
, σn) +Nn3(b, a

′
, σn) +Nn4(b, a

′
, σn).

Therefore, for any a′ ∈ R,

sup|a−a′ |≤δn,b∈R
1
n

∑n
k=1 |Uk(a, b, σn)− Uk(a

′
, b, σn)|

≤ supb∈RNn1(b, a
′
, σn) + supb∈RNn2(b, a

′
, σn) + supb∈RNn3(b, a

′
, σn) + supb∈RNn4(b, a

′
, σn).
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Let Ln12i = kn supa′∈R P
(
Nni(b, a

′
, σn) > (C∗/8)|σn log σn|

)
, i = 1, 2, 3, 4. Then

Ln12 ≤
4∑
i=1

Ln12i. (A.7)

By the choice of δn,

Nn1(b, c, σn)

≤ supb∈R
1
n

∑n
k=1 1(−|σn log σn|+ δn|Qk| ≥ Pk − a

′
Qk − b ≥ −|σn log σn|)1(|Qk| ≤ n)

+ 1
n

∑n
k=1 1(|Qk| > n)

≤ supb∈R
1
n

∑n
k=1 1(0 ≥ Pk − a

′
Qk − b ≥ −|σn log σn|)

+ 1
n

∑n
k=1 1(|Qk| > n).

Therefore,

Ln121 ≤ kn supa′∈R P
(
supb∈R

1
n

∑n
k=1 1(0 ≥ Pk − a

′
Qk − b ≥ −|σn log σn|) > (C∗/16)|σn log σn|

)
+knP

(
1
n

∑n
k=1 1(|Qk| > n) > (C∗/16)|σn log σn|

)
.

Analogous to the proof for (A.4), we have Ln121 ≤ Cn−2. Similarly, the results hold for
Ln12i, i = 2, 3, 4. Therefore, by (A.7), Ln12 ≤

∑4
i=1 Ln12i ≤ Cn−2.

By Step 2-1, Step 2-2 and Equation (A.5), we have

Ln1 ≤
2∑
i=1

Ln1i ≤ Cn−2, (A.8)

which completes the proof of Step 2.
By Step1, Step 2 and Equation (A.2), we complete the proof of Lemma 8.
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APPENDIX B

Proofs for the Main Results in Chapter 3

B.1 Proof of Theorem 3

The constants below vary line by line and depend only on fixed numbers, e.g. K, K̃, s1, s2, c0.
We are going to show P (E(T )c)→ 0. Note that

P (E(T )c) = P

(
sup
θ∈Θ̃

| 1
n

∑n
i=1{(lθ(Yi,xi)− E[lθ(Yi,xi)])− (lθ0(Yi,xi)− E[lθ0(Yi,xi)])}|

(||φ− φ0||1 + ||γ − γ0||1 + ||η − η0||2) ∨ λ0

> Tλ0

)
,

and

|lθ(Yi,xi)− lθ0(Yi,xi)|
= |STθ∗{(xTi φj − xTi φ0,j)

K
j=1, (ρj − ρ0,j)

K
j=1, (π(xTi γj)− π(xTi γ0,j))

K
j=1}|,

(B.1)

where Sθ∗ is defined in Chapter 3.2.1, and θ∗ is between θ and θ0. φj ,φ0,j are the j’th component
of φ and φ0, ρj , ρ0,j are the j’th component of ρ and ρ0, and γj , γ0,j are the j’th component of
γ and γ0.

For any postive number M̄ , define Θ̃M̄ =
{
θ; || log η||∞ ≤ K̃, ||θ − θ0||1 ≤ M̄

}
. By C5,

||Sθ∗||∞ ≤ G1(Yi) := C(|Yi|2 + |Yi|+ C). Then for any given M̄ > 0 and θ ∈ Θ̃M̄ ,

|lθ(Yi,xi)− lθ0(Yi,xi)|
≤ CG1(Yi)

∑K
j=1(|xTi (φj − φ0,j)|+ |π(xTi γj)− π(xTi γ0,j)|+ |ρj − ρ0,j|)

≤ CG1(Yi)
∑K

j=1(|xTi (φj − φ0,j)|+
∑K

j=1 |xTi (γj − γ0,j)|+ |ρj − ρ0,j|)
≤ CKG1(Yi)(||xi||∞ ∨ 1)

∑K
j=1(||φj − φ0,j||1 + |ρj − ρj,0|+ ||γj − γ0,j||1)

= CG1(Yi)||θ − θ0||1 ≤ CG1(Yi)M̄,

(B.2)
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where we use the fact of the boundedness of X and |(π(xTi γj)−π(xTi γ0,j))| ≤
∑K

j=1 |(xTi γj −
xTi γ0,j)| for all j = 1, 2, · · · , K.

Let ρcθ(Yi,xi) = lθ(Yi,xi)− E[lθ(Yi,xi)], then

Vn(θ)− Vn(θ0) =
1

n

n∑
i=1

(ρcθ(Yi,xi)− ρcθ0(Yi,xi)).

Also define

Y ε(θ, θ0) =
1

n

n∑
i=1

(ρcθ(Yi,xi)− ρcθ0(Yi,xi))εi,

where ε1, · · · , εn is a Rademacher sequence independent of Y1, · · · , Yn.
Then for any given M̄ > 0, we are going to establish the bounds for

En := E
([

supθ∈Θ̃M̄
|Y ε(θ, θ0)|

]
| Y
)
,

Rn := supθ∈Θ̃M̄

√
1
n

∑n
i=1 |ρcθ(Yi,xi)− ρcθ0(Yi,xi)|2.

By (B.1),

|ρcθ(Yi,xi)− ρcθ0(Yi,xi)| = |(lθ(Yi,xi)− lθ0(Yi,xi))− E(lθ(Yi,xi)− lθ0(Yi,xi))|
≤ (||Sθ∗ ||∞ + E(||Sθ∗ ||∞))(

∑K
j=1(|xTi (φj − φ0,j)|+K|xTi (γj − γ0,j)|+ |ρj − ρ0,j|))

≤ CG1(Yi)(
∑K

j=1(|xTi (φj − φ0,j)|+K|xTi (γj − γ0,j)|+ |ρj − ρ0,j|)).

where the last inequality is because ||Sθ∗||∞ ≤ G1(Yi) := C(|Yi|2 + |Yi| + C) and we note the
fact that E|G1(Yi)| ≤ C when Yi follows logistic normal mixtures.

Write xi = (xir)
p
r=1, φj = (φrj)

p
r=1,φ0,j = (φ0,rj)

p
r=1, and γj = (γrj)

p
r=1,γ0,j = (γ0,rj)

p
r=1

for j = 1, 2, · · · , K. Then,

|ρcθ(Yi,xi)− ρcθ0(Yi,xi)|
≤
∑K

j=1 |
∑p

r=1(φrj − φ0,rj)CxirG1(Yi)|+
∑K

j=1 |(ρj − ρ0,j)CG1(Yi)|
+
∑K

j=1 |
∑p

r=1(γrj − γ0,rj)CKxirG1(Yi)|.
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Let Ψj,r(Yi, i) = CKxirG1(Yi) and Ψj(Yi, i) = CG1(Yi), then from the above, we have

|ρcθ(Yi,xi)− ρcθ0(Yi,xi)|
≤
∑K

j=1 |
∑p

r=1(φrj − φ0,rj)Ψj,r(Yi, i)|+
∑K

j=1 |
∑p

r=1(γrj − γ0,rj)Ψj,r(Yi, i)|
+
∑K

j=1 |(ρj − ρ0,j)Ψj(Yi, i)|.
(B.3)

LetKn := maxj,r {||Ψj,r||n, ||Ψj||n} = maxj,r
{

(n−1
∑n

i=1 Ψ2
j,r(Yi, i))

1/2, (n−1
∑n

i=1 Ψ2
j(Yi, i))

1/2
}

,
by Theorem 4.1 of van de Geer (2013), for any M̄ > 0,

En := E

([
sup
θ∈Θ̃M̄

|Y ε(θ, θ0)|

]
| Y

)
≤ CM̄

√
log p

n
Kn = CM̄λ0Kn. (B.4)

Next, for any M̄ > 0, we consider Rn.
Let ajr = |φrj − φ0,rj|, bj,r = |γrj − γ0,rj|, and cj = |ρj − ρj,0|. By (B.3), for any θ ∈ Θ̃M̄ ,

∑n
i=1 |ρcθ(Yi,xi)− ρcθ0(Yi,xi)|2

≤
∑n

i=1

(∑K
j=1

∑p
r=1 aj,r|Ψj,r(Yi, i)|+

∑K
j=1

∑p
r=1 bj,r|Ψj,r(Yi, i)|+

∑K
j=1 cj|Ψj(Yi, i)|

)2

.

For notational convenience, we use uniform sequence {ul}2Kp+K
l=1 to re-label aj,r, bj,r, cj , and

re-label |Ψj,r|, |Ψj| by {hl}2Kp+K
l=1 . Then from the above, we have

∑n
i=1 |ρcθ(Yi,xi)− ρcθ0(Yi,xi)|2

≤
∑n

i=1

(∑2Kp+K
l=1 ulhl(Yi, i)

)2

=
∑n

i=1

(∑2Kp+K
l=1 u2

l h
2
l (Yi, i) + 2

∑
l<l′ ulul′hl(Yi, i)hl′(Yi, i)

)
=
∑2Kp+K

l=1 u2
l

∑n
i=1 h

2
l (Yi, i) +

∑
l<l′ ulul′

∑n
i=1 2hl(Yi, i)hl′(Yi, i)

≤
∑2Kp+K

l=1 u2
l

∑n
i=1 h

2
l (Yi, i) +

∑
l<l′ ulul′

∑n
i=1(h2

l (Yi, i) + h2
l′(Yi, i))

Note that maxl ||hl||n = maxl(n
−1
∑n

i=1 h
2
l (Yi, i))

1/2 = Kn, then

∑2Kp+K
l=1 u2

l

∑n
i=1 h

2
l (Yi, i) +

∑
l<l′ ulul′

∑n
i=1(h2

l (Yi, i) + h2
l′(Yi, i))

≤ n
∑2Kp+K

l=1 u2
lK

2
n + 2n

∑
l<l′ ulul′K

2
n = nK2

n(
∑2Kp+K

l=1 ul)
2

≤ nK2
nM̄

2,
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where the last line is because

2Kp+K∑
l=1

ul =
∑
j,r

(|φrj − φ0,rj|+ |γθ,rj − γ0,rj|) +
∑
j

|ρj − ρj,0| ≤ M̄.

Henceforth,

Rn = sup
θ∈Θ̃M̄

√√√√ 1

n

n∑
i=1

|ρcθ(Yi,xi)− ρcθ0(Yi,xi)|2 ≤ M̄Kn. (B.5)

Note that the space for X is bounded, we have Kn ≤ C||G1||n = C {(n−1
∑n

i=1 G
2
1(Yi)}1/2. By

(B.4) and (B.5), for any given M̄ ,

En ≤ CM̄λ0||G1||n and Rn ≤ CM̄ ||G1||n. (B.6)

With (B.6), for any given M̄ > 0,we are ready find an upper bound for

P

(
sup
θ∈Θ̃M̄

| 1
n

n∑
i=1

(ρcθ(Yi,xi)− ρcθ0(Yi,xi))| > Cλ0M̄

)
.

By Chebyshev’s inequality, for any θ ∈ Θ̃M̄ with λ0 = {log p/n}1/2,

P
(

1
n

∑n
i=1(ρcθ(Yi,xi)− ρcθ0(Yi,xi)) >

C
2
λ0M̄

)
≤ (C2n2λ2

0M̄
2)−1[

∑n
i=1 V ar (lθ(Yi,xi)− lθ0(Yi,xi))]

≤ (C2n log pM̄2)−1
∑n

i=1E[(lθ(Yi,xi)− lθ0(Yi,xi))
2].

By (B.2),
E[(lθ(Yi,xi)− lθ0(Yi,xi))

2] ≤ C2M̄2E[G2
1(Yi)] ≤ C∗M̄2,

where we note that E[G2
1(Yi)] ≤ C for i = 1, 2, · · · , n.

Therefore, there exists a constant C, such that, for any θ ∈ Θ̃M̄ ,

P

(
1

n

n∑
i=1

(ρcθ(Yi,xi)− ρcθ0(Yi,xi)) >
C

2
λ0M̄

)
≤ nC∗M̄2

C2n log pM̄2
=

C∗

C2 log p
≤ 1

2
. (B.7)
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By symmetrization of Pollard (1984),

P

(
sup
θ∈Θ̃M̄

| 1
n

n∑
i=1

(ρcθ(Yi,xi)− ρcθ0(Yi,xi))| > Cλ0M̄

)
≤ 4P

(
sup
θ∈Θ̃M̄

|Y ε(θ,θ0)| > C

4
λ0M̄

)
.

(B.8)
By Theorem 3 of Massart (2000), we have

P

(
sup
θ∈Θ̃M̄

|Y ε(θ,θ0)| > C (En + λ0Rn)

)
≤ 1

p
. (B.9)

Then,

P
(

supθ∈Θ̃M̄
|Y ε(θ,θ0)| > C

4
λ0M̄

)
≤ P

(
{supθ∈Θ̃M̄

|Y ε(θ,θ0)| > C
4
λ0M̄}

⋂
{||G1||n ≤ C∗}

)
+ P (||G1||n > C∗)

(B.10)

Note that by (B.6), ||G1||n ≤ C∗ implies

C(En + λ0Rn) ≤ C(Cλ0M̄ ||G1||n + Cλ0M̄ ||G1||n) ≤ C̃λ0M̄. (B.11)

Choose C in (B.10) large enough so that C/4 > C̃, then from (B.11){
y : { sup

θ∈Θ̃M̄

|Y ε(θ,θ0)| > C

4
λ0M̄}

⋂
{||G1||n ≤ C∗}

}
⊂

{
y : sup

θ∈Θ̃M̄

|Y ε(θ,θ0)| > C (En + λ0Rn)

}
.

Therefore by (B.9),

P
(
{supθ∈Θ̃M̄

|Y ε(θ,θ0)| > C
4
λ0M̄}

⋂
{||G1||n ≤ C∗}

)
≤ P

(
supθ∈Θ̃M̄

|Y ε(θ,θ0)| > C (En + λ0Rn)
)
≤ p−1.

(B.12)

Also note that,

P (||G1||n > C∗) = P

(
1

n

n∑
i=1

(G2
1(Yi)− E[G2

1(Yi)]) > C

)
≤
∑n

i=1E[G4
1(Yi)]

n2C2
≤ C

n
, (B.13)

where we use the fact that E[G2
1(Yi)] and E[G4

1(Yi)] are uniformly bounded over i = 1, · · · , n.
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Then, from (B.12),(B.13) and together with (B.10), we have

P

(
sup
θ∈Θ̃M̄

|Y ε(θ,θ0)| > C

4
λ0M̄

)
≤ C

(
1

p
+

1

n

)
.

Therefore from (B.8), there exists C such that for any given M̄ > 0,

P

(
sup
θ∈Θ̃M̄

| 1
n

n∑
i=1

(ρcθ(Yi,xi)− ρcθ0(Yi,xi))| > Cλ0M̄

)
≤ C

(
1

p
+

1

n

)
. (B.14)

Finally, to bound P (E(T )c), we invoke the peeling device and choose the constant T in E(T ) at
least as large as Cexp(1), where C is from (B.14).

Then, for any given M > 0, devide Θ̃M to Θ̃F

⋃{
Θ̃Mj

}
j=1,2,···

, where

{
Θ̃Mj

}
=
{
θ; || log η||∞ ≤ K̃, e−jM ≤ ||θ − θ0||1 ≤ e1−jM

}
,

and
{

Θ̃F

}
=
{
θ; || log η||∞ ≤ K̃, ||θ − θ0||1 ≤ λ0

}
. It can be seen that the number of these

sets is at most C log n. Then, by (B.14),

P (E(T )c)

≤
∑

j P
(

supθ∈Θ̃Mj

| 1
n

∑n
i=1{(lθ(Yi,xi)−E[lθ(Yi,xi)])−(lθ0 (Yi,xi)−E[lθ0 (Yi,xi)])}|

||θ−θ0||1 > C exp(1)λ0

)
+P

(
supθ∈Θ̃F

| 1
n

∑n
i=1{(lθ(Yi,xi)−E[lθ(Yi,xi)])−(lθ0 (Yi,xi)−E[lθ0 (Yi,xi)])}|

λ0
> Cλ0

)
≤
∑

j P
(

supθ∈Θ̃Mj
| 1
n

∑n
i=1(ρcθ(Yi,xi)− ρcθ0(Yi,xi))| > Cλ0e

1−jM
)

+P
(
supθ∈Θ̃F

| 1
n

∑n
i=1(ρcθ(Yi,xi)− ρcθ0(Yi,xi))| > Cλ2

0

)
≤ C log n

(
1
p

+ 1
n

)
→ 0,

and we complete the proof of Theorem 1.
Before proving Theorem 4, we list a useful lemma.

Lemma 9. For all θ = (γ,φ,η), θ̃ = (γ̃, φ̃, η̃) ∈ Θ̃, and x ∈ X , there exists a constant C,

such that
K∑
k=1

|xT (γ̃k − γk)|2 ≤ C
K∑
k=1

{
π(xT γ̃k)− π(xTγk)

}2
,
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B.2 Proof of Theorem 4

It can be seen that on E(T ), we have

ε̄(θ̂|θ0) + λ1||φ̂||1 + λ2||γ̂||1
≤ Tλ0

[
(||φ̂− φ0||1 + ||γ̂ − γ0||1 + ||η̂ − η0||2) ∨ λ0

]
+ λ1||φ0||1 + λ2||γ0||1.

Following the arguments used for Theorem 3 of Städler, Bühlmann and van de Geer (2010), we
discuss 4 different cases.

Case 1: If ||φ̂− φ0||1 + ||γ̂ − γ0||1 + ||η̂ − η0||2 ≤ λ0, then we have,

ε̄(θ̂|θ0) ≤ Tλ2
0 + λ1||φ̂− φ0||1 + λ2||γ̂ − γ0||1 ≤ (λ1 ∨ λ2 + Tλ0)λ0.

Note that ||φ̂Sc1 ||1 ≤ ||φ̂− φ0||1 and ||γ̂Sc2 ||1 ≤ ||γ̂ − γ0||1, we have,

ε̄(θ̂|θ0) + 2(λ1 − Tλ0)||φ̂Sc1 ||1 + 2(λ2 − Tλ0)||γ̂Sc2 ||1
≤ (λ1 ∨ λ2 + Tλ0)λ0 + 2(λ1 ∨ λ2 − Tλ0)(||φ̂− φ0||1 + ||γ̂ − γ0||1)

≤ (λ ∨ λ2 + Tλ0)λ0 + 2(λ1 ∨ λ2 − Tλ0)λ0

≤ 3(λ ∨ λ2 + Tλ0)λ0,

and ||φ̂S1
− (φ0)S1||1 + ||γ̂S2

− (γ0)S2||1 ≤ ||φ̂− φ0||1 + ||γ̂ − γ0||1 ≤ λ0.
Case 2: When ||φ̂− φ0||1 + ||γ̂ − γ0||1 + ||η̂ − η0||2 > λ0, on E(T ) we have,

ε̄(θ̂|θ0) + λ1||φ̂||1 + λ2||γ̂||1
≤ Tλ0(||φ̂− φ0||1 + ||γ̂ − γ0||1 + ||η̂ − η0||2) + λ1||φ0||1 + λ2||γ0||1.

Note that
||φ̂||1 = ||φ̂S1

||1 + ||φ̂Sc1 ||1,
||γ̂||1 = ||γ̂S2

||1 + ||γ̂Sc2 ||1,
||φ̂− φ0||1 = ||(φ̂− φ0)S1||1 + ||φ̂Sc1 ||1,
||γ̂ − γ0||1 = ||(γ̂ − γ0)S2||1 + ||γ̂Sc2 ||1.
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On E(T ), we have

ε̄(θ̂|θ0) + (λ1 − Tλ0)||φ̂Sc1 ||1 + (λ2 − Tλ0)||γ̂Sc2 ||1
≤ Tλ0(||(φ̂− φ0)S1||1 + ||(γ̂ − γ0)S2 ||1 + ||η̂ − η0||2) + λ1||(φ̂− φ0)S1||1 + λ2||(γ̂ − γ0)S2 ||1

≤ (λ1 + Tλ0)||(φ̂− φ0)S1||1 + (λ2 + Tλ0)||(γ̂ − γ0)S2 ||1 + Tλ0||η̂ − η0||2.

We study 3 sub-cases of Case 2.
Case 2.1: If (λ1 + Tλ0)||(φ̂−φ0)S1||1 + (λ2 + Tλ0)||(γ̂ − γ0)S2||1 ≤ Tλ0||η̂− η0||2, then

on E(T ),

ε̄(θ̂|θ0) + (λ1 − Tλ0)||φ̂Sc1 ||1 + (λ2 − Tλ0)||γ̂Sc2 ||1 ≤ 2Tλ0||η̂ − η0||2.

By (B.21), ||η̂ − η0||22 ≤ c2
0ε(θ̂(xi)|θ0(xi)), for i = 1, · · · , n. Then, ||η̂ − η0||22 ≤ c2

0ε̄(θ̂|θ0).
Therefore, by Cauchy-Schwarz inequality,

ε̄(θ̂|θ0) + (λ1 − Tλ0)||φ̂Sc1 ||1 + (λ2 − Tλ0)||γ̂Sc2 ||1
≤ 2Tλ0c0

√
ε̄(θ̂|θ0)

≤ 2T 2λ2
0c

2
0 + 1

2
ε̄(θ̂|θ0).

Then, we can conclude that

ε̄(θ̂|θ0) + 2(λ1 − Tλ0)||φ̂Sc1 ||1 + 2(λ2 − Tλ0)||γ̂Sc2 ||1 ≤ 4T 2λ2
0c

2
0. (B.15)

Also note (λ1 ∧ λ2 + Tλ0)(||(φ̂− φ0)S1||1 + ||(γ̂ − γ0)S2||1) ≤ Tλ0||η̂ − η0||2, by (B.21) and
(B.15), we have

||(φ̂− φ0)S1||1 + ||(γ̂ − γ0)S2||1 ≤ ||η̂ − η0||2 ≤ c0

√
ε̄(θ̂|θ0) ≤ 2Tc2

0λ0.

Case 2.2: If (λ1 + Tλ0)||(φ̂−φ0)S1||1 + (λ2 + Tλ0)||(γ̂ − γ0)S2||1 > Tλ0||η̂ − η0||2, and
(λ1 + Tλ0)||(φ̂− φ0)S1||1 ≥ (λ2 + Tλ0)||(γ̂ − γ0)S2||1, then on E(T ),

ε̄(θ̂|θ0) + (λ1 − Tλ0)||φ̂Sc1 ||1 + (λ2 − Tλ0)||γ̂Sc2 ||1 ≤ 4(λ1 + Tλ0)||(φ̂− φ0)S1||1.
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By the choice of λ1, we have

||(φ̂− φ0)Sc1 ||1 = ||φ̂Sc1 ||1 ≤
4(λ1 + Tλ0)

λ1 − Tλ0

||(φ̂− φ0)S1||1 ≤ 6||(φ̂− φ0)S1||1.

By C4,
||(φ̂− φ0)S1||22

≤ κ2
∑K

k=1(φ̂k − φ0k)
TΣn(φ̂k − φ0k)

= κ2 1
n

∑n
i=1

∑K
k=1 |xTi (φ̂k − φ0k)|2.

By (B.21),
K∑
k=1

|xTi (φ̂k − φ0k)|2 ≤ c2
0ε(θ̂(xi)|θ0(xi)), for i = 1, · · · , n.

Therefore, ||(φ̂− φ0)S1||22 ≤ κ2c2
0ε̄(θ̂|θ0). By Cauchy-Schwarz inequality,

ε̄(θ̂|θ0) + (λ1 − Tλ0)||φ̂Sc1 ||1 + (λ2 − Tλ0)||γ̂Sc2 ||1
≤ 4(λ1 + Tλ0)

√
s1||(φ̂− φ0)S1||2

≤ 4(λ1 + Tλ0)κc0
√
s1

√
ε̄(θ̂|θ0)

≤ 8(λ1 + Tλ0)2s1κ
2c2

0 + 1
2
ε̄(θ̂|θ0).

We then can conclude that

ε̄(θ̂|θ0) + 2(λ1 − Tλ0)||φ̂Sc1 ||1 + 2(λ2 − Tλ0)||γ̂Sc2 ||1 ≤ 16(λ1 + Tλ0)2s1κ
2c2

0. (B.16)

Also note
(λ1 ∧ λ2 + Tλ0)(||(φ̂− φ0)S1||1 + ||(γ̂ − γ0)S2 ||1)

≤ 2(λ1 + Tλ0)||(φ̂− φ0)S1||1 ≤ 2(λ1 + Tλ0)κc0

√
ε̄(θ̂|θ0).

By (B.16), we have

(λ1 ∧ λ2 + Tλ0)(||(φ̂− φ0)S1||1 + ||(γ̂ − γ0)S2||1) ≤ C(λ1 + Tλ0)2.

Case 2.3: If (λ1 + Tλ0)||(φ̂−φ0)S1||1 + (λ2 + Tλ0)||(γ̂ − γ0)S2||1 > Tλ0||η̂ − η0||2, and
(λ1 + Tλ0)||(φ̂− φ0)S1||1 < (λ2 + Tλ0)||(γ̂ − γ0)S2 ||1, then on E(T ),

ε̄(θ̂|θ0) + (λ1 − Tλ0)||φ̂Sc1 ||1 + (λ2 − Tλ0)||γ̂Sc2 ||1 ≤ 4(λ2 + Tλ0)||(γ̂ − γ0)S2||1.
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Similar to the arguments used in Case 2.2,

ε̄(θ̂|θ0) + (λ1 − Tλ0)||φ̂Sc1 ||1 + (λ2 − Tλ0)||γ̂Sc2 ||1
≤ 4(λ2 + Tλ0)||(γ̂ − γ0)S2||1
≤ 4(λ2 + Tλ0)

√
s2||(γ̂ − γ0)S2||2

≤ 4(λ2 + Tλ0)κ
√
s2

√
1
n

∑n
i=1

∑K
k=1 |xTi (γ̂k − γ0k)|2.

By Lemma 9 and the argument in Case2.2, we continue the above inequality to have,

ε̄(θ̂|θ0) + (λ1 − Tλ0)||φ̂Sc1 ||1 + (λ2 − Tλ0)||γ̂Sc2 ||1
≤ 4(λ2 + Tλ0)κ

√
s2

√
1
n

∑n
i=1

∑K
k=1 |xTi (γ̂k − γ0k)|2

≤ 4(λ2 + Tλ0)κ
√
s2C

√
1
n

∑n
i=1

∑K
k=1{π(xTi γ̂k)− π(xTi γ0k)}2

≤ 4(λ2 + Tλ0)κc0

√
s2C

√
ε̄(θ̂|θ0)

≤ 8(λ2 + Tλ0)2κ2c2
0Cs2 + 1

2
ε̄(θ̂|θ0).

Therefore,

ε̄(θ̂|θ0) + 2(λ1 − Tλ0)||φ̂Sc1 ||1 + 2(λ2 − Tλ0)||γ̂Sc2 ||1 ≤ 16(λ2 + Tλ0)2κ2c2
0Cs2.

Similar analog in Case2.2 yields

(λ1 ∧ λ2 + Tλ0)(||(φ̂− φ0)S1||1 + ||(γ̂ − γ0)S2||1) ≤ C(λ2 + Tλ0)2.

Combining the above 4 cases, we finish the proof of Theorem 4.

B.3 Proof of Lemma 9

Let ak = xT γ̃k, bk = xTγk. Note that γ̃1 = γ1 = 0Tp×1, we have a1 = b1 ≡ 0. Since
θ = (γ,φ,η), θ̃ = (γ̃, φ̃, η̃) ∈ Θ̃, and x ∈ X , and both Θ̃ and X are bounded, we have
|ak| ≤ Q, |bk| ≤ Q, for k = 2, 3, · · · , K, for some finite number Q. What we need to show is
then

K∑
k=2

(ak − bk)2 ≤ C
K∑
k=1

(
eak∑K
k=1 e

ak
− ebk∑K

k=1 e
bk

)2

,
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for some C. We consider C = 4K3 exp(8Q){exp(2Q) ∨ 1}.
Let R =

∑K
k=1 exp(ak) and S =

∑K
k=1 exp(bk). Since |ak| ≤ Q, |bk| ≤ Q, we have

R ≤ K exp(Q) and S ≤ K exp(Q). Therefore,

K∑
k=1

(
eak∑K
k=1 e

ak
− ebk∑K

k=1 e
bk

)2

=
K∑
k=1

(
eakS − ebkR

SR

)2

≥ 1

K2e2Q

K∑
k=1

(eakS − ebkR)2

=
1

K2e2Q

[
(S −R)2 +

K∑
k=2

(eakS − ebkR)2

]
.

Let t = max2≤k≤K |ak − bk|, and we just need to consider the case of t > 0. Let j =

min2≤k≤K {k : |ak − bk| = t}, then,
Case I: If |S −R| > {2 exp(4Q)}−1t, by the choice of C, we have

C
K∑
k=1

(
eak∑K
k=1 e

ak
− ebk∑K

k=1 e
bk

)2

≥ C

K2e2Q
(S −R)2 ≥ Ct2

4K2e10Q
≥ Kt2 ≥

K∑
k=2

(ak − bk)2.

Case II: If |S −R| ≤ {2 exp(4Q)}−1t, it follows

K∑
k=1

(
eak∑K
k=1 e

ak
− ebk∑K

k=1 e
bk

)2

≥ C

K2e2Q
(eajS − ebjR)2.
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Note that S ≥ 1, it holds

|eajS − ebjR|

= |(eaj − ebj)S + ebj(S −R)|

≥ |eaj − ebj | − |ebj(S −R)|

≥ |eaj − ebj | − eQ t

2e4Q

= |ebj ||eaj−bj − 1| − t

2e3Q
.

Since |bj| ≤ Q, we have exp(bj) ≥ exp(−Q). Also note that | exp(x) − 1| ≥ exp(−2Q)|x| for
all |x| ≤ 2Q and |aj − bj| ≤ 2Q. It follows

|eajS − ebjR| ≥ |ebj ||eaj−bj − 1| − t

2e3Q
≥ |aj − bj|

eQ
− t

2e3Q
=

t

2e3Q
.

Furthermore, by the choice of C, we have

C
K∑
k=1

(
eak∑K
k=1 e

ak
− ebk∑K

k=1 e
bk

)2

≥ C

K2e2Q
(eajS−ebjT )2 ≥ Ct2

4K2e8Q
≥ Kt2 ≥

K∑
k=2

(ak−bk)2.

Based on Case I and Case II, the proof of Lemma 9 is completed.

B.4 Proof of Theorem 6

There are only two classes of SCMM that we need to consider; one is for b < K0 and the other
one is for b > K0. The former one is for under-fitted models and the latter one is for overfitted
models. Hence, without loss of generality, we assume K0 = 3 and B = {2, 3, 4}. Then, it is
sufficient to show

P
(
SCMM(S0(3)) < inf |M |≤s SCMM(M(2))

)
→ 1

P
(
SCMM(S0(3)) < inf |M |≤s SCMM(M(4))

)
→ 1

(B.17)
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We first show the second statement in equation (B.17). Note that

P
(
SCMM(S0(3)) > inf |M |≤s SCMM(M(4))

)
= P

(
SCMM(S0(3)) > min{inf |M |≤s,S0⊂M SCMM(M(4)), inf |M |≤s,S0 6⊂M SCMM(M(4))}

)
≤ P

(
SCMM(S0(3)) > inf |M |≤s,S0⊂M SCMM(M(4))

)
+P

(
SCMM(S0(3)) > inf |M |≤s,S0 6⊂M SCMM(M(4))

)
:= U1 + U2

(B.18)
By definition,

SCMM(S0(3)) = −l3(S0, θ̂S0) + 3|S0|n0.5+δ1 log p/n,

SCMM(M(4)) = −l4(M, θ̂M) + 4|M |n0.5+δ1 log p/n.

Note that if S0 ⊂M , |S0| ≤ |M |. Hence,

U1 ≤ P

(
sup

|M |≤s,S0⊂M
l4(M, θ̂M)− l3(S0, θ̂S0) > n0.5+δ1 log p/n

)
. (B.19)

Let gMi (x, y|θ) as the log of logistic-normal density function for K = i with covariates set M
given θ. Let fMi (θ) = E0[gMi (x, y|θ)] and WM

i = maxθ∈Θ f
M
i (θ), where E0 is the expectation

taken under the truth. Note that the dimension for θ is different for different i and M, however,
because M includes the true set of covariates, we know WM

3 = WM
4 :≡ W for all M. Another

important fact is that WM
3 can only be obtained at the true value θ0 but WM

4 may be attained at
multiple θ′s.

Note that

P
(

sup|M |≤s,S0⊂M l4(M, θ̂M)− l3(S0, θ̂S0) > n0.5+δ1 log p/n
)

≤ Cps supS0⊂M,|M |≤s P
(
l4(M, θ̂M)− l3(S0, θ̂S0) > n0.5+δ1 log p/n

)
.

(B.20)

For any M such that S0 ⊂ M, |M | ≤ s, define RM
4 = supθ∈Θ ||l4(M,θ) − fM4 (θ)|| and RM

3 =

supθ∈Θ ||l3(M,θ)− fM3 (θ)||. We show

l4(M, θ̂M)− l3(S0, θ̂S0) ≤ RM
4 +RS0

3 . (B.21)
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Note that

l4(M, θ̂M)− l3(S0, θ̂S0) ≤
∣∣∣l4(M, θ̂M)−W

∣∣∣+
∣∣∣l3(S0, θ̂S0)−W

∣∣∣ .
By definition,

l4(M, θ̂M)−W = l4(M, θ̂M)− l4(M,θ0) + l4(M,θ0)−W ≥ −RM
4 ,

l4(M, θ̂M)−W = l4(M, θ̂M)− fM4 (θ̂
M

4 ) + fM4 (θ̂
M

4 )−W ≤ RM
4 .

Therefore,
∣∣∣l4(M, θ̂M)−W

∣∣∣ ≤ RM
4 and similarly we have

∣∣∣l3(S0, θ̂S0)−W
∣∣∣ ≤ RS0

3 . Then
(B.21) is proved. Together with (B.20) and (B.19), to prove U1 → 0, it is sufficient to prove for
any M such that M0 ⊂M, |M | ≤ s, we have{

psP
(
RM

4 > 1
2
n0.5+δ1 log p/n

)
→ 0

psP
(
RM

3 > 1
2
n0.5+δ1 log p/n

)
→ 0

. (B.22)

LetZM
i (θ) = gM4 (xi, yi|θ)−fM4 (θ), thenZM

i is mean 0 and l4(M,θ)−fM4 (θ) = 1
n

∑n
i=1 Z

M
i (θ).

By equation (B.2), we know |gM4 (xi, yi|θ)−gM4 (xi, yi|θ′)| ≤ CG1(Yi)||θ−θ′||1, whereG1(Yi) =

C(|Yi|2 + |Yi|+ C). It is easy to verify that E0(G1(Yi)) ≤ C, and hence,

|fM4 (θ)−fM4 (θ′)| ≤ E0(|gM4 (xi, yi|θ)−gM4 (xi, yi|θ′)|) ≤ CE0(G1(Yi)||θ−θ′||1) ≤ C||θ−θ′||1.

Therefore

|ZM
i (θ)−ZM

i (θ′)| ≤ |fM4 (θ)− fM4 (θ′)|+ |gM4 (xi, yi|θ)− gM4 (xi, yi|θ′)| ≤ CG1(Yi)||θ−θ′||1.
(B.23)

Divide the parameter space Θ into dn pieces, namely, {Ωj}dnj=1, where the maximum distance
for each piece is no more than n−1. Since Θ is compact with at most 8s dimension, we know
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dn ≤ Cn8s. Then,
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2
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)
≤ Cn8s maxj≤dn P

(
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4
n0.5+δ1 log p/n
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supθ∈Ωj
| 1
n

∑n
i=1 Z

M
i (θ)− 1
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M
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n0.5+δ1 log p/n

)
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(B.24)
where θΩj is a point in Ωj .

By (B.23),

L2 ≤ Cn8s maxj≤dn P
(

1
n

∑n
i=1 G1(Yi)||θΩj − θ||1 > Cn0.5+δ1 log p/n

)
≤ Cn8sP

(
1
n

∑n
i=1 G1(Yi) > Cn0.5+δ1 log p

)
≤ Cn8sP

(
1
n

∑n
i=1G1(Yi)1(|Yi| ≤

√
20s log p) > Cn0.5+δ1 log p

)
+Cn8sP

(⋃n
i=1

{
|Yi| >

√
20s log p

})
:= L21 + L22.

Note that if Y follows standard normal, P (|Y | > t) ≤ C exp{−t2/2} for large t. The same
results can be readily extended to the mixture normal case by noting that the component means
and variances are uniformly bounded over x ∈ X . Therefore,

L22 ≤ Cn8s+1P
(
|Y | >

√
20s log p

)
≤ Cn8s+1 exp{−10s log p} ≤ Cp1−2s.

Since G1(Yi)1(|Yi| ≤
√

20s log p) are i.i.d. and bounded by 20s log p, and also note that
E(G1(Yi)) ≤ C = o(n0.5+δ1 log p) and E(G2

1(Yi)) ≤ C = o(n0.5+δ1 log p). By Bernstein
inequality,

L21 ≤ Cn8s exp

{
−C n3+2δ1(log p)2

Cn(log p)2 + Cn1.5+δ1(log p)2

}
≤ Cn8s exp{−n}.
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Hence,
L2 ≤ L21 + L22 ≤ C(p1−2s + n8s exp{−n}). (B.25)

Next, for any θ ∈ Θ, we calculate P
(
| 1
n

∑n
i=1 Z

M
i (θ)| > 1

4
n0.5+δ1 log p/n

)
. Note that

ZM
i (θ) = gM4 (xi, yi|θ)− fM4 (θ) = log

(
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π(xTγk)ρk√
2π

exp

{
−(ρky − xTφk)2

2

})
− fM4 (θ),

and since Θ is compact, fM4 (θ) is uniformly bounded over θ ∈ Θ. Then for large p,

|ZM
i (θ)| > C log p⇒
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2

}
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⇒ exp
{
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2

}
< Cp−1 ⇒ |y| > C

√
log p,

where the last line is again by noting that Θ is compact and X is bounded. For any θ ∈ Θ,
choose C large enough, such that

{
|ZM

i (θ)| > C log p
}
⊂
{
|y| >

√
20s log p

}
, then
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20s log p}

)
=: L11 + L12.

(B.26)
From the bound of L22, we know L12 ≤ Cp1−10s.

Note that ZM
i (θ)1(|ZM

i (θ)| ≤ C log p) are i.i.d. and bounded by C log p. In order to use
Bernstein inequality, we need to show E(ZM

i (θ)1(|ZM
i (θ)| ≤ C log p)) = o(n0.5+δ1 log p/n).

Note that E(ZM
i (θ)) = 0, then it is equivalent to show

E(ZM
i (θ)1(|ZM

i (θ)| > C log p)) = o(n0.5+δ1 log p/n). (B.27)
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Note that
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(B.28)

where the inequality holds because {|ZM
i (θ)| > C log p} ⊂ {|Yi| >

√
20s log p} and the log

likelihood function is negative when |Yi| is large.
Note again the compactness of Θ, when |Yi| is large we have
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(B.29)

When Y is standard normal, direct integration yields E(Y 21(Y > C
√

log p)) ≤ C
√

log p/p. It
can be seen that the same result can be obtained when Y follows mixture of normals. Hence by
(B.28) and (B.29),

|E(ZM
i (θ)1(|ZM

i (θ)| > C log p))| ≤ O(
√

log p/p) + o(p−5s) = o(n0.5+δ1 log p/n).

Therefore (B.27) is proved and thus we haveE(ZM
i (θ)1(|ZM

i (θ)| ≤ C log p)) = o(n0.5+δ1 log p/n).
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We then use Bernstein inequality to the sequence of {ZM
i (θ)1(|ZM

i (θ)| ≤ C log p))}ni=1 and
we have

L11 ≤ exp
{
−C n1+2δ1 (log p)2

n(log p)2+n0.5+δ1 (log p)2

}
≤ exp{−n2δ1}. (B.30)

By (B.26),
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(B.31)

Together (B.31), (B.25) with (B.24), we have,

psP
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2
n0.5+δ1 log p/n
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≤ ps(L1 + L2)
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≤ Cps(exp{−n2δ1 + 8s log n}+ 2p1−2s + exp{−n+ 8s log n})

= C(exp{−n2δ1 + 8s log n+ s log p}+ 2p1−s + exp{−n+ 8s log n+ s log p})
→ 0,

(B.32)

where the last line is because p ≤ nC for some C.
By (B.32), we have proved the first statement in (B.22). Similar arguments yield the second

statement in (B.22). Hence U1 → 0.
Next we are going to show U2 → 0. Note that

SCMM(S0(3))− inf |M |≤s,S0 6⊂M SCMM(M(4))

≤ −l3(S0, θ̂S0) + 3|S0|n0.5+δ1 log p/n+ sup|M |≤s,S0 6⊂M l4(M, θ̂M)

= −W + sup|M |≤s,S0 6⊂M l4(M, θ̂M) + 3|S0|n0.5+δ1 log p/n+ op(1)

≤ −W + sup|M |≤s,S0 6⊂M{l
4(M, θ̂M)− fM4 (θ̂M)}

+ sup|M |≤s,S0 6⊂M fM4 (θ̂M) + 3|S0|n0.5+δ1 log p/n+ op(1)

≤ −W + sup|M |≤s,S0 6⊂M RM
4

+ sup|M |≤s,S0 6⊂M WM
4 + 3|S0|n0.5+δ1 log p/n+ op(1).

(B.33)
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By condition (3.15) in Theorem 6, there exists a positive constant C, such that

W − sup
|M |≤s,S0 6⊂M

WM
4 > C.

Hence by (B.33),

U2 = P (SCMM(S0(3))− inf |M |≤s,S0 6⊂M SCMM(M(4)) > 0)

≤ P (sup|M |≤s,S0 6⊂M RM
4 > C − 3|S0|n0.5+δ1 log p/n− op(1))→ 0,

(B.34)

where the last line is by noting (B.22) and the fact that C − 3|S0|n0.5+δ1 log p/n − op(1) >

n0.5+δ1 log p/n eventually.
By (B.18), we proved the second statement in equation (B.17). Similar arguments in proving

U2 → 0 yields the first statement in equation (B.17). Hence, we proved Theorem 6.
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