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CHAPTER 1

Introduction

Finite mixture models are powerful statistical modeling tools to analyze the underlying data
frame because of its flexible model structure and appealing interpretation. Numerous real data
applications can be found in a variety of areas, such as economics, finance and clinical trails. The
book by McLachlan and Peel (2000) has a very detailed summary of the finite mixture models
when training data are multivariate. Jordan and Jacobs (1993) introduced the finite mixture of
regression (FMR) models, which is an extension of the finite mixture models, under the term
of the mixture of experts. Different from the finite mixture models, FMR relates a response
variable Y to a set of baseline covariates X = (X, --,.X,) to capture the heterogeneity for
different subgroup populations. Jiang and Tanner (1999) showed that the FMR models are dense
in the exponential family in the sense that any exponential density can be approximated by FMR
models.

The logistic-normal mixtures is one of the FMR models. It allows both the mixing parameters
and the mean parameters to depend on covariates. This is very distinct from many other FMR
models, where the mixing parameters are treated as constants. Because of this unique feature,
the logistic-normal mixtures can jointly model the subgroup membership and the regression
component in each subgroup. Applications can be found at Wong and Li (2001), Muthen and
Asparouhov (2009) and Muthen and Shedden (1999). Recently, Shen and He (2015) utilized the
logistic-normal mixture model in testing the existence of subgroups with given covariates. In
the paper, Shen and He (2015) proposed an E M test (the name EM is from the Expectation-
Maximization algorithm) under the assumption that different subgroups have the same variance.
However, the assumption of homogeneity in subgroups’ variances does not generally hold in
practice. If the equal subgroups’ variances are insisted on, it is unclear whether the E'M test

will lose power and whether the model estimation will be biased. The purpose of Chapter 2 in
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the dissertation is to relax the equal variance assumption in the logistic-normal mixture model.
This additional flexibility in allowing unequal subgroup variances is highly valuable in practice,
but brings technical challenges in the theoretical development. When the component variances
are different, the unboundedness of the likelihood function renders the maximum likelihood
estimators invalid. To overcome this difficulty, we propose to work with a penalized likelihood
following the work of Chen (2008) for inference. We also propose a data-driven strategy to
select the penalty parameter A that maximizes the potential overall subgroup effect and provide
the asymptotic theory for the penalized likelihood estimator and its associated /M tests.

It is unlikely that we always have affirmatory covariates to work with. Quite often, we have to
consider numerous potential covariates and select important ones among them. There are some
variable selection methods that are proposed for FMR models with constant mixing parameters
and given number of components /. For example, when the dimension p of potential covariates
is fixed, Khalili and Chen (2007) proposed a penalized maximum likelihood method based on the
least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996) and the smoothly
clipped absolute deviation (SCAD) method of Fan and Li (2001), where the penalties depend
on the scale of the regression parameters and the mixture structure. Khalili and Chen (2007) ar-
gued that, although the maximum likelihood estimators are consistent when p is fixed in theory,
the empirical performances are very poor when the true models are sparse but the dimension p
of potential covariates is moderately large. The poor empirical performances are in the sense
that the maximum likelihood estimators are not stable and they do not help to identify the true
non-zero coefficients. Sometimes, Akaike information criterion (AIC) and Bayes information
criterion (BIC) are needed to perform model selection. Khalili and Chen (2007) showed that,
however, their proposed penalized maximum likelihood method can select the true covariates
almost surely, and in addition, they demonstrated in simulations that their method is computa-
tionally much more efficient than AIC and BIC. In many situations, however, the dimension of
potential covariates p grows with n, where n is the sample size. In such cases, the standard
asymptotic theory fails. The techniques in convex analysis, see Zhao and Yu (2006), Bickel,
Ritov and Tsybakov (2009), Greenshtein et al. (2004), van de Geer (2008) , which are developed
for large p small n scenario, cannot be applied to the non-convex log-likelihood of FMR models
either. Stddler, Biihlmann and van de Geer (2010) reparametrized the FMR models and consid-
ered a (;-penalized maximum likelihood estimators for the case of p = o(e™). They restricted

the new parameters in a compact set and instead of focusing on the consistency of the parame-



ters, they showed that the Kullback-Leibler divergence between the estimated model and the true

model goes to zero with probability going to one. They also showed that the convergence rate is

at the order of /log n3log(p V n)/n. van de Geer (2013) considered the same estimators as that
in Stiddler, Biihimann and van de Geer (2010), but improved the convergence rate to the order of
\/m by developing the Multivariate contraction theorem and using generic chaining tech-
niques. Note that the convergence rate for the /; penalized maximum log-likelihood estimators
of traditional linear regressions is at the rate of \/w, see Lounici et al. (2008) and Zhang
et al. (2009) for details. The log-likelihood function for linear regressions is convex and is in
a simple quadratic form, whereas the FMR models have non-convex log-likelihoods, which are
also in much more complicated forms than that of linear regressions, we do not expect the con-
vergence rate for the /; penalized maximum log-likelihood estimators of FMR to be better than
that of linear regressions. In other words, \/m is the best convergence rate we could hope
to get for FMR, and van de Geer (2013) showed that we indeed can achieve the optimal rates for
FMR. Khalili and Lin (2013) also considered the large p small n cases, and showed that there
exists a local penalized maximum likelihood estimator that can select the true covariates almost

1/4 _ 5 at most.

surely. However, their setting is rather restrictive; their p can be as large as 4n

For known number of components /', a common characteristic for the aforementioned results
is that they only concerned the FMR models with constant mixing parameters. In Chapter 3, we
consider logistic-normal mixtures, which allows both mixing parameters and component means
to depend on covariates, in high dimensions. Because the mixing parameters may also depend
on high dimensional covariates, and the logistic form renders them to behave very differently
from the component means, the consistency theory in van de Geer (2013) cannot be directly
applied to this situation. Furthermore, in numerical optimizations, the mixing parameters do
not have explicit update formulas as that in Stiddler, Biihlmann and van de Geer (2010), which
results lots of local minima in the optimization problem. In Chapter 3, we show that even with
the logistic form, the convergence rate for the model as well as that for the /; norm of all zero
coefficients estimators can still achieve the optimal rates of \/W. We also show that the
non-zero coefficients estimates will converge to the true values asymptotically.

Note that the assumption of known number of components K is not guaranteed in practice,
and we need a method to determine the number of components from data. Traditional AIC
and BIC do not work in our setting, because the dimension of covariates is increasing with the
sample size. Extended Bayesian Information Criteria (EBIC) which is developed by Chen and



Chen (2008) handles model selection in high dimensions, however, their work is under the linear
regression framework. Corduneanu and Bishop (2001) proposed a variational bayesian method
and very recently, Huang, Peng and Zhang (2013) proposed a penalized log-likelihood approach
to select the number of components for mixture models, but these methods are all for a fixed
dimension of covariates. In Chapter 3, we develop a selection criterion (SC'M M) for selecting
the number of components for logistic-normal mixture models with high dimensional covariates.
We show that SC'M M choose the true K with probability going to one.

The rest of the dissertation is organized as follows. We study the penalized maximum like-
lihood estimator and the penalized FM test for logistic-normal mixture models with a fixed
number of covariates in Chapter 2. The proposed method and the associated theory, simulations
and real data applications of variable selection with high dimensional covariates for logistic nor-
mal mixtures will be discussed in Chapter 3. We conclude the work with a brief discussion in

Chapter 4 and the detailed proofs are in the Appendix.



CHAPTER 2

Subgroup Inferences for Logistic-Normal Mixtures

with Heterogenous Components

Subgroup analysis is important in clinical trials and market segmentation. In recent years, how
to extract unknown subgroups with distinct responses to a treatment has gained increasing pop-
ularity. Much of the early research in subgroup analysis has focused on pre-specified subgroups
(Simon (2002), Song and Chi (2007), and Altstein et al. (2011) among others). Su et al. (2009)
introduced an interaction tree procedure to obtain subpopulations with heterogeneous treatment
effects across subpopulations. Foster et al. (2011) proposed the “Virtual Twins” method to
identify a subgroup for the binary response in a randomized clinical trial. A parametric scoring
system based on multiple covariates was presented in Cai et al. (2011) and Zhao et al. (2013), to
help assign treatments to new patients. Lipkovich et al. (2011) and Lipkovich and Dmitrienkoa
(2014) provided a recursive partitioning method for treatment assignments to patient subpop-
ulations. Berger, Wang and Shen (2014) proposed a Bayesian method for subgroup analysis
of multiple subgroups defined by a binary predictive variable. Kang, Janes and Huang (2014)
relied on a novel boosting algorithm to choose an optimal treatment. Besides interaction mod-
els, methods based on mixture models are proposed, for instance Shen and He (2015). Horn
et al. (2015) showed that regression mixture models can be effective in evaluating differential
treatment effects.

A critical concern with various subgroup identification methods is that they tend to identify
a subgroup even when no meaningful subgroup exists. Back in 2000, Sleight (2000) described
subgroup analyses as “fun to look at, but don’t believe them”. Two recent articles, Shen and
He (2015) and Fan, Lu and Song (2015) have advocated the use of hypothesis testing for the

existence of subgroups.



In Shen and He (2015), a structured logistic-mixture model was proposed to jointly model the
subgroup membership and the performance in each subgroup. An M test is constructed to test
the existence of the subgroup based on the model. However, they assume constant variability for
different subgroups, which does not hold in general. In this chapter, we relax the equal variance
assumption and propose a penalized maximum likelihood estimator and a penalized E'M test.

The rest of Chapter 2 is organized as follows. We introduce the logistic-normal mixture mod-
els in Chapter 2.1. In Chapter 2.2, we first discuss the behavior of the unbounded log-likelihood
function when we do not have equal variance assumption for subgroups. Then, we propose a
penalized maximum likelihood estimator and show its consistency. We propose a penalized &M
test based on the penalized maximum likelihood estimator in Chapter 2.3, and study its asymp-
totic property in Chapter 2.4. Chapter 2.5 will discuss the issues of tuning parameter selection

for penalties and simulation results are reported in Chapter 2.6.

2.1 Model

We consider the following logistic-normal mixture model that allows unequal variances in each

component. Forz =1,...,n,

Y; = ZlT(,Bl + ,6252) + 82'((510'1 + (1 — 51)0’2),
P =11Xi,Z;) = n(X]v)=exp(X]7)/(1+exp(X])), 2.1)
P, =0/X:,Z) = 1-P(6; =1X,),

where n is the sample size, Y; € R is the outcome, §; € {0, 1} is the latent subgroup indicator,
Z; € R% is the covariate associated with the subgroup mean, X ; € R? is the baseline covariate
associated with the group membership, 3, € R? 3, € R? ~ € R? are the corresponding
coefficients, ¢; ~ N(0,1) are independent of Z;, X; and ¢;, and o, and o, are the standard
derivations within each subgroup. The first element of X; and the first component of Z; are
taken to be 1 to allow intercepts in the model, and the second element of Z; is the treatment
indicator. We can have overlapping variables in the random vectors of X; and Z;.

In the two-component model, the overall model parameters are 7 = (7, BF{, BQT, 01, 02).
In this paper, we use 87 = (BlT, BQT, 01, 09) as the parameters except for «v. We observe a random
sample {W; = (Y;, ZF', X7),i =1,...n}, but §,’s are latent variables.



Remark. In the model formulation, we assume that the first nonzero component of 3, is
positive, and in the case of 3, = 0 we assume that oy > 09, to ensure parameter identifiability.
The model becomes degenerate if 3, = 0 and 0; = 0. In our implementation, we identify the
subgroups by taking the second component of 3, (the treatment effect difference) to be positive.
We are not concerned with the special case where the treatment effect difference is zero, in which
case the identification of subgroups is not practically important.

In the case of X; = Z;, we can think of the proposed model as a special case of the mixture-
of-experts models (Jordan and Jacobs (1994)), which is well studied in machine learning. Unlike
the mixture-of-experts models discussed in the literature, we have distinct and clear interpreta-
tions of the variables X; and Z;. In particular, the covariates in X ; must be baseline measure-
ments that are available prior to the treatment and can be used to predict subgroup membership
for future subjects, while the covariates in Z; include any variables relevant to the treatment
effects within subgroups. For example, any treatment-related variables can be part of Z;, but
not X ;. Moreover, mixture-of-experts models are constructed to predict the response, and the
response patterns in each component of the mixture model are not necessarily important or inter-
pretable. The existence of meaningful subgroups with differential treatment effects is the focus
of our work.

Another special case of the proposed model with v = 0 has been quite well studied in the
literature; see, for instance, Goffinet et al. (1992), Chen et al. (2001), and Chen and Li (2009).
In subgroup analysis, the case of v = 0 is rather uninteresting, because even if subgroups exist,
no covariates are informative for predicting the subgroup membership. An important feature of

the proposed model is to characterize subgroup membership given the baseline covariates X.

2.2 Penalized Maximum Likelihood

To identify the existence of subgroup membership, without knowing the variances of potential
subgroups are equivalent, we need to test Hy : 3, = 0,07 = 09 vs. H, = H§ for model (2.1).
We hope the EM test, which is proposed by Shen and He (2015) for equal subgroups’ variances
scenario, could also be applied for unequal variances case. Unfortunately, the theory can not be
worked out. Before we discussing the reason why £ M test fails in unequal variances setting, we
first briefly sketch its procedure.



In the EM test, Shen and He (2015) assumed 03 = 05 = o in model (2.1). In the first
step, they get the maximum likelihood estimator of (3, 0) and calculate the likelihood under
the null model (3, = 0). In the second step, they initialize ~, and get the maximum likelihood
estimator of (3, 35, o) under the alternative model (3, # 0). Using the EM algorithm, ~ and
(B4, 3,,0) can be updated finitely many times, and then, the likelihood under the alternative
model is calculated based on these updated parameters. Finally, the test statistic is the difference
between the log-likelihood under the null model and that under the alternative model.

This procedure fails in the unequal variances framework, because the different component
variances make the log-likelihood of model (2.1) unbounded, for any given ~ and any given
sample size. The unbounded log-likelihood renders the maximum likelihood estimators in every
step of /M test meaningless.

To see why the log-likelihood becomes unbounded, take a simple mixture normal model,

with unequal variances as an example. Let Y7, --- .Y, be i.i.d. from,
TN (61,07) + (1 — 7)N (62, 03),

then the likelihood

g1 (1 —(Y;i—6,)%, 1 —(Y; — 6)*
6= {Zont-T05 4 - T0 R
goes to infinity by taking #; = Y} and letting o; go to zero. The maximum likelihood estimator
does not exist.

A simply way to overcome the difficulty of unboundedness of log-likelihood for unequal
variance case is to impose a reasonable lower bound, say a > 0, for o. Then, the maximum like-
lihood estimators exist for (o1, 02) over [a, +00) X [a, +00), and the E M test can be applied to
this constrained parameter space. If the true values of o4, 05 do fall in this range, the estimation
of the parameters would be consistent, and the £ M test would follow the theoretical asymptotic
distribution as given in Theorem 2. However, if the true values fall out of this range, the es-
timated parameters would be biased, and the F'M test will be invalid. In practice it might be
hard to specify an appropriate constant a. We will consider an alternative approach of penalized
likelihood.

Let f(Y|Z, X, 6,3, 0) denote the conditional density of Y given (Z, X, §), then, the penal-



ized log-likelihood function is defined as

1

plim; W) = log> f(Yi|Zi, X, = j; B, 05) P(6: = §|1X 559)]+0n(01) +pn(02), (2.2)
=1

J=0

where p,,(01) and p,(o9) are penalties on subgroups’ variances. Consequently, the penalized

maximum likelihood estimator is given by

n = argmax pl(n; W). (2.3)
n

We consider data-dependent penalties and particularly, we use

2 2

S
Pulo) = =A(Z5 +1og()) 24)

for data analysis, where S? is the estimator for o from the equal variance model, and \ is a
tuning parameter. Given any positive \, p, (o) achieves its maximum 0 at 0> = S2, and goes to
negative infinity as o approaches zero or infinity.

The general conditions for the penalty are as follows.
C1. The penalty p, (o) < 0 almost surely.

C2. For any given constant C, for almost all sample w € (2, there exists no(w), such that when
n > ng(w),

inf{p, (c)/[(logn)*logo]: 0 <o < (1/n)} > C.

C3. If B, = 0 and 0, = 09 = 0y, we have p,(0p) = o(n) almost surely; otherwise (under the

alternative model), p,(o1) = o(n) and p,(02) = o(n) almost surely.

Remark. Condition C2 basically requires that the penalty should be small when o is small, and
Condition C3 requires that the penalty should not dominate the likelihood function evaluated at
the true parameters. These two conditions together guarantee that the penalized likelihood does
not attain its maximum when o is near zero, and therefore, the estimator of o stays away from

zero. The conditions allow the penalties to depend on the data, which is quite useful in numerical



analysis in practice. We would discuss how to choose the tuning parameter A for the penalty in
equation (2.4).

For the variables X and Z, we further impose the following conditions. If we partition the
covariant vector Z into a discrete component U and a continuous component V', that is, let Z T—
(1, UT, V"), where 1 corresponds to the intercept, U consists of only discrete variables, and V'
consists of only continuous variables. The separation of discrete and continuous covariates is to

facilitate mathematical handling in the proofs of our asymptotic results. We assume

C4. The sample space of U is finite. For any unit vector « of the same dimension as the vector
V', the conditional distribution of VToz\U is continuous, and the maximum of its density

is uniformly bounded from above.
C5. The expectation E(||V'||; | U = u) < oo uniformly in u, where || - ||; is the L, norm.

The separation of Z is based on its own nature structure. It is also difficult to handle discrete
variables and continuous variables simultaneously, because the probability density function for
continuous variables and the probability mass function for discrete variables can not be unified
to discuss in the proof; they have their own unique characters. More details will be presented in
the Appendix.

With the above conditions, we are ready to state the consistency theorem of our proposed
penalized maximum likelihood estimators. Note that the consistency of the penalized maximum
likelihood estimators for unequal variances scenario plays the same role as the consistency of
the maximum likelihood estimators for equal variances scenario. They are fundamental for con-

structing statistical tests for testing the existence of subgroups.

Theorem 1. (Consistency of the penalized maximum likelihood estimator) Assume conditions
C1-C5 hold, then

(1) under the null hypothesis that 3, = 0 and 01 = 09 = 0y, if we fix any v with nonzero
slope, the penalized maximum likelihood estimator of 87 = (ﬁlT, BQT, o1, 09) from equation (2.3)
Is consistent,

(2) under the alternative hypothesis that 3, # 0 or o1 # 09, the penalized maximum likelihood

estimator of n* = (47, BT, 8L, 01, 03) defined in (2.3) is consistent.

To illustrate the idea used in the proof for Theorem 1, we consider any sequence of positive

10



numbers o,, and let

Wo(B) =n=t 30 1()Y; — Z] 8| < |oylogo,l),
A, (C) = {Supﬁequ W,(8) > Clo,loga,|},
By, = {supgcpa Wa(B) > 4(logn)?/n}.

With these quantities, we shall prove the following two statements:

S1. There exist C;,Cy > 0 such that for each given o, € (n™! exp(—1)), P(A,(C})) <

—2.
0277/ )

S2. There exists C3 > 0 such that uniformly in o,, € (0,n™ '), P(B,) < C3n~2.

The log-likelihood of the normal mixture model becomes unbounded when some sample points
are very close to one of the estimated component means and when the corresponding variance
estimator goes to zero. Statements S1 and S2 above actually give an upper bound on the number
of points that fall into such trouble regions. The upper bound is approximately limited to the
order of O((logn)?). The penalty that satisfies C1-C3 would ensure that the variance estimators
will stay away from zero.

Note that S1 and S2 play the same role as Lemma 1 of Chen et al.(2008) in a simpler setting.
By Lemma 2 of Chen et al. (2008), we can show that the number of sample points that fall
within the range of |0 log 0| to either one of the estimated component means is in the order of
O((logn)?). As a consequence, we can show that the estimates of o; and o will stay away from
zero. Standard techniques in the large sample theory can then be applied to show the consistency
of the maximum penalized likelihood estimators. Since proving Statement S2 is essentially the
same as proving S1, we only provide the details of the proof for S1 in the supplementary file.

With Theorem 1, we are ready to propose the penalized £ M test in Chapter 2.3.

2.3 Penalized F M test

Following the analog of the /M test proposed by Shen and He (2015), the procedure of the
penalized E'M test for testing the existence of subgroups with unequal variances is sketched as
follows.

Firstly, we compute the penalized maximum likelihood estimates 6, = (Bl, g) of B4, 0,

under the null model (3, = 0,07 = 02 = o). Then, initialize ’ygo), e ,’yf,o), where J is a

11



pre-specified integer. Typically, if v is ¢, dimension and ¢, is small, we choose J = 2971,
and the set of initial values have positive and negative values in each coordinate to cover all the
quadrants. For any fixed j € {1,2,---,J}, we compute the penalized maximum likelihood
estimates 05-0) of @ = (B, By, 01, 02) from (2.2) with fixed 7(.0) We then use the EM algorithm
to update the parameters 1 = (v, 3,, 35, 01, 02) finitely many, say K, times, and let 77 ) be the
final estimates. Then the penalized /M test statistic is defined by

where
pEMI = 2(pl(n'™) — pl(80)), (2.6)

in which pl(-) is defined in Equation (2.2). Note that pl(8y) is the penalized maximum log-

likelihood under the single normal component model, where 3, = 0 and 07 = 05.
(k)

Next, we describe the specific form of ;™ in each step of the E'M algorithm in detail, as
follows.
Let n*) denote the values at the k — th step of the £ M algorithm for (2.2). The objective

function at the k — th step is

—ZT 2
Q™) = S By s Yo (52 xp( —OZLBIR
2
[(51:0) log (% m»

exp(— 203
+pn(01) + pn(02)}7
To evaluate it, the E' step involves the calculation of

a? = P =1Y;, Z;, X ™)
= f(Yilo; =1,Z;0W)P(6; = 1| X 3;4®)/(f(Yil6; = 17Zi§0(k))P(5i = 1| X ;™)
+1(Yi]6: = 0, Z;; 0% P(5; = 0| X354 M)),

and bgk) =1- az(-k), and the M step gives

A kD) = argmax, Y1 ol log m(XT) + 0 log(1 — m(XT));
BE, oY) = argmaxg_, S al” log(Lexp(—(Y; — Z7B15)%/(202))) + pal0);

(k+
1
k+1) ( 1y o pk) 1oe(L Y, — ZT 2
(B4 ) ) = argmaxﬁl,az:izlbi Og(geXP( ( :31) /(20%))) + pulo),
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and BV = G g

In the M step, we use the Newton-Raphson method to update v+, and the updating for-

M1 s a weighted least squares solution. For the particular penalty (2.4), the calcu-

lations for agkﬂ) and aékﬂ)

mula for 3
given ,6(1’““) and ngﬂ) are simply

oD

(z;-; a? (v, — 2T (B + BI))2 2 4 Asz)w
S a2 4 ’

and

( _ i=1"1
0-2 -

S b2 4 A

1=1"1

k+1) <Zn b(k)(Yi — Z?B§k+1))2/2 + AS%)W

We see that the two variances from the penalized likelihood are weighted sums of S and the

corresponding estimators without the penalty.

2.4 Distribution of the Penalized £/ M Test Statistic

To evaluate the limiting distribution of the proposed p £/ M test statistic, we first define the Fisher

information matrix for 0 given ~ based on the penalized likelihood:

9* pl(n)
00007 n

I:(6) = —E !

By direct calculations, for a given =y, under the null hypothesis of 3, = 0,0, = 03 = 0,

1 I 0
50) = — ( 02; 22 > . Q2.7)
where
I E(zZ") E(r(X"v)ZZ")
O\ E(r(XT)22") E(rA(XT)ZZ")
and

QE(TI'(XT")/)(l — W(XT'y)))
2E(r(XTy)(1 - m(XT))) 2E((1 - m(XTA))?) — 02ZCE )

n

13



The above matrix is positive definite if the variable vectors X and Z are non-degenerate, and

E(p;;(a)) < 0.
To ensure that the penalty effect vanishes asymptotically, we further impose the following

condition:

C6. Under the null model of (3, = 0,01 = 02 = 0 > 0), we have Ep/(0) < 0, E(pll(0)) =
op(n), and pi,(0) = 0,(v/n).

Under C6, we have,

+ 0p(1),

o) =k | 2P (Qpl(n))T

00 n 00 n

and I (@) works just like the usual Fisher information matrix for deriving the limiting distribu-
tion of the likelihood ratio statistic in a standard problem.
To be more specific, given v with nonzero slope, let 8,, = argmax, pl(n) and 8, = argmaxge g, pl(n),

then we have a quadratic approximation of the penalized likelihood ratio statistic 7*(«) and
* ha ha 1 *
T*(7y) = 2(pl(6n, ) — Pl(Bo,7)) = ||%¢ (Yi, Zi, X559)[1* + 0p(1), (2.8)
where ¢*(K7 Zi7 XZ} 7) = (w(}/;? Zi? Xla 7)T7 Q/J()(l/;a Zi7 Xl? 7))’ in which
1 ~1/2 T -1 T

and

Yo(Yi, Zi, Xi3v) = <(2[E<w2<§c%>) — EE@(XT))Y) P EFXTy)) - 1(XT))
( Yi-Z!B1)* 1)

P )

with A = E(ZZ"); B(y) = E(n(X")ZZ"),C(v) = E(x*(X"¥)ZZ"); and D(~) =
C(~)—B(~)A~'B(~). Direct calculations show that both ¢ (Y;, Z;, X ;) and 1o (Y;, Z;, X ;)
have mean zero, and the covariance matrix of 1* is I, 1. Therefore, T*(~) has a x? limiting
distribution with the degrees of freedom ¢; 4+ 1. Note that here we have not updated the estimates
through the F M iterations. In other words, 7%(~) = pEM©) with only one starting value, .

Following similar arguments to those used for Theorem 1 of Shen and He (2015), we see that

14



the representation in (2.8) holds uniformly in v € T, where o As Tisa prespecified compact set

for v. We have the following theorem.

Theorem 2. Under the null hypothesis and Assumptions CI-C6, for any finite integers J > 0
and K > 0, the penalized EM test statistic pEM) converges in distribution as n — oo.
Specially, for J = 1 and K = 0, the limiting distribution is th 41 Where q is the dimension of

Bo.

If the null hypothesis Hj is rejected, the model parameter estimator is consistent from the
penalized likelihood due to Theorem 1. Furthermore, from (2.8) it follows that the bootstrap
method can be used to compute the p-value from the pE M test. The limiting distribution of
the test statistic under the null hypothesis is not a simple chi-square distribution when J > 1
and K > 1, and moreover, the convergence to the limiting distribution is very slow for the test
statistic even without covariates (Goffinet et al. (1992)). Therefore, we recommend to use the

bootstrap method for computing the p-values.

2.5 Choice of the Tuning Parameter

The choice of the tuning parameter A is practically important. Our conditions allow data-
dependent penalties. For the specific penalty in (2.4), we show that Conditions C1-C3 and C6

are satisfied with any choice of \ in the interval
[n=2" (logn)?, n®?], (2.10)

where ¢;, co € (0,1) are any constants.

C1 and C3 are satisfied under the null model by noting that ¢, € (0, 1). Also note that n® =
o(n) and n*1/2 = o( /i) imply E(p)(00)) = —4)/03 = o(n) and () = 2(n"/2A){n!/2(S2—
02)}/od = 2(n"Y2X)0,(1) = 0,(1/n), henceforth C6 is satisfied.

For C2, note that, under the null hypothesis, S? — o2 almost surely. Write S2 = o2 + ¢,

where €, — 0 almost surely. Then for any o € (0, 1/n) and sufficiently large n, we have

pn(0){(logn)*logo}~" =
M (0% + €,)/0? +log(c?/(02 + €,)) }{(logn)?*logo} ! (2.11)
> (—=)\/2)(02/a*){(logn)?log o} L.

15



Let fu(0) = (~A/2)(03/0%){(logn)?log 7} ., then

inf{p, (0){(logn)’log o} "+ 0 < o < (/n)} > inf{fu(0) : 0 < o < (1/n)}.
Because f,(c) is decreasing in o € (0, n~!) for large n, we have

inf{p, (0){(logn)*log o} " 0 < 0 < (1/n)} > fuln™") = O (logm) ).

By the choice of A, for sufficiently large n, inf{p,(c){(logn)*logo}~': 0 < o < (1/n)} >
O(n®) > C, for any given constant C'. Then, C2 is satisfied under the null hypothesis. The same

results can be obtained under the alternative hypothesis due to the fact that S? is almost surely
bounded.

2.6 Simulations

In this chapter, we report the performance of the proposed methods through Monte Carlo simu-
lations. We compare the parameter estimates from the structured logistic-normal mixture model
with equal and unequal variances, and the performance of the proposed pI/M test versus the
EM test of Shen and He (2015). We use ¢» = 2 and other parameters are given in details below.
The bootstrap method is used to compute the p values of the tests for the empirical studies. The
simulation results are part of the joint research that appeared in Shen, Wang and He (2016).

2.6.1 Estimation

We start with an evaluation of the parameter estimates under the two-component model, that
is, when the mixture model parameters are all well defined. Data as random samples of sizes
n = 400 are generated from

Y = Bu1 + B12Ti + Bi3Zi + (Bor + B2 + Pa3Zi)0; + €1:0; + €2:(1 — §;),

P(0; = 1]1X;) = m(y11 + 712X4),

fori = 1,...,n, where g1; ~ N(0,0?) and g9; ~ N(0, 03), independent of X;, Z; and T;. We

generate X; = Z; from Uniform (0,4), and 7; € {0, 1} used to mimic the treatment indicator is
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Figure 2.1: The boxplots of the absolute biases in 100 experiments discussed in Chapter 2.6.1. In
each sub-panel, the left and the right boxes are for the estimates under the equal and the unequal
variance models, respectively.

generated from the Bernoulli distribution with P(T; = 1) = 0.5. We fix 8, = (11, S12, f13) =
(2,0,2), 8y = (a1, P22, P23) = (1,2,0),7 = (m11,712) = (2,—1),01 = 1.5 and 05 = 0.5.
In the computations, we adopt the constraint that o5 > 0 to guarantee the uniqueness of the
parameters. We show in Figure 2.1 the boxplots of the absolute bias of the parameter estimates
based on 100 data sets. Not surprisingly, the estimates from the equal variance model have larger
biases than those from the unequal variances model, so it is helpful to take the heterogeneity in

the variances into consideration.

2.6.2 Typel errors

To evaluate the validity of the pE'M test, we generate data from Model (2.1) with ¢; = 3, ¢2 = 2,
B, = (1,0,2)T, 8, =(0,0,0)7, Z = (1,t,2)T, X = (1,2)T, where t resembles a treatment in-
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dicator distributed as Bernoulli(0.5), = is independent of ¢ with the distribution N (—1, 1), and the
error ¢ is white noise N (0,0.5%). The pE M test uses the initial values T' = {(1, —2)7, (1,2)7}.
The resulting type I errors at n = 60 and 100 are summarized in Table 2.1, from which we can
see the type I errors are quite close to the nominal levels for ' = 0, 3, and 9, even for relatively
small sample sizes. The tuning parameter is set as A = 1 here, but the results are similar for

other choices of \.

Table 2.1: Type I errors of the pEM tests with bootstrap approximations in 1000 data sets with

standard errors in the parenthesis, with A = 1.

n | Nominal level « | pEM®© pEM®) pEM®
n=60 0.01 0.012(0.003) 0.011(0.003) 0.011(0.003)
0.05 0.055(0.007) 0.055(0.007) 0.050(0.007)
0.10 0.102(0.010)  0.103(0.010) 0.106(0.010)
n=100 0.01 0.010(0.003) 0.011(0.003) 0.010(0.003)
0.05 0.049(0.007)  0.051(0.007) 0.050(0.007)
0.10 0.102(0.010)  0.099(0.009) 0.104(0.010)

2.6.3 Power Comparison

We use the same model and the same pF M test as in the previous subsection, except that 3, =
(1,a,b)", v = (1,1)T for some non-negative values of a and b to be given in the tables and
for different sets of o values. In particular, we consider (o7 = 0.5,09 = 0.5), (67 = 0.4,09 =
0.6), (01 = 0.5,00 = 1.0) and (07 = 0.5,02 = 1.5) in Table 2.2 to represent different levels
of heterogeneity. The power is obtained from the £ M or pE M test under the equal or unequal
variance model. We only show the comparisons at the iterations times K = 9 as this is our
recommended choice. When the two component variances are close, the £ M test based on the
equal variance assumption is slightly more powerful, but when the two ¢’s differ with their ratios

equal to 2 and 3, the p /M test under the unequal variance model is significantly more powerful.
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Table 2.2: Power (%) of the (penalized) M tests at the 5% level. The (penalized) M
test uses I' = {(1,2)7, (1,—2)7}, with K = 9 iterations. The parameters of Model (2.1) are
B, =(1,0,2)", By, = (1,a,b)", v = (1,1)7, and the tuning parameter is A = 1.0.

n a b|pEM® EM® [pEM®  EM®
(01 =0.5,09 =0.5) | (60, = 0.4, 05 = 0.6)

60 05 1| 712 77.8 73.4 73.6

60 05 0] 356 36.0 422 37.6

60 1.0 1| 852 87.8 86.6 87.8

60 1.0 0| 814 84.8 82.8 82.0

100 05 1] 920 96.8 92.8 94.8

100 05 0] 57.8 54.8 74.6 49.6

100 1.0 1] 96.8 99.4 97.8 98.8

100 1.0 0] 958 97.6 97.2 96.0
(0'1 = 05, 09 = 10) (0'1 = 05, 09 = 15)

60 0.5 1| 49.0 38.4 53.8 31.0

60 05 0| 36.8 27.2 55.0 40.8

60 1.0 1| 634 472 63.8 39.6

60 1.0 0| 63.0 44.8 70.8 47.8

100 05 1| 77.6 60.6 81.2 42.0

100 05 0] 658 34.2 81.8 51.2

100 1.0 1| 876 75.4 86.6 51.8

100 1.0 0] 89.8 58.6 90.0 58.6
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CHAPTER 3

Logistic-Normal Mixture Model with High

Dimensional Covariates

When the number of potential covariates is large, we have to perform variable selection. This
type of problem falls into the area of the so-called variable selection with high dimensional co-
variates. There are quite a few methods, such as LASSO of Tibshirani (1996) and SCAD of Fan
and Li (2001), that have been proposed for linear regression, quantile regression, logistic regres-
sion and etc, in which the objective log-likelihood functions are convex. However, finite mixture
regression (FMR) models have non-convex log-likelihood, which makes variable selection in
high dimensions substantially difficult. As far as we know, only Stidler, Biihlmann and van de
Geer (2010) and van de Geer (2013) considered the variable selection for FMR models for the
case of p = o(e"), where p is the dimension of the potential covariates and n is the sample size.
Khalili and Lin (2013) also studied the problem, but their setting is very restrictive; the p can be

as large as 4n'/4

— b at most, which is not really a high dimensional problem. Other than that,
there is no discussion about FMR models in large p and small n scenario in literature.

Different from the FMR models with constant mixing parameters studied by Stadler, Biihlmann
and van de Geer (2010), van de Geer (2013) and Khalili and Lin (2013), we study the high di-
mensional variable selection method for logistic-normal mixture, which is a very special model
in the family of FMR that allows the mixing parameters to depend on possibly high dimensional
covariates. Besides, we note that the variable selection methods in high dimensions for FMR
models discussed in literature rely on the assumption of known number of components. One
may use BIC to select the number of components empirically, but BIC is only proved to work for
exponential families with fixed number of covariates; there is no theoretical guarantee for BIC to

work for FMR models with high dimensional covariates. We propose a new selection criterion
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(SCM M) for selecting the number of components for FMR models in high dimensions. We
show SCM M is consistent and we examine its empirical performance via simulations.

The rest of Chapter 3 is organized as follows. We introduce the logistic-normal mixture
model with high dimensional covariates and a reparameterization in Chapter 3.1. Investigation
of the variable selection methods with known number of components will be given in Chapter
3.2. In Chapter 3.3, we propose a new selection criterion SC'M M for selecting the number of
components in high dimensional setting and show its consistency. We evaluate the performance
of the proposed methods via simulations in Chapter 3.4, and we apply the methods to a real
data example in Chapter 3.5. Note that the notations in this chapter are independent of those in
Chapter 2.

3.1 Logistic Normal Mixtures

3.1.1 Model setup

Suppose that X; € R, ¢ = 1,2,--- ,n are random or fixed covariates which take values in

space X'. Assume X is bounded and {Y;}?_; are independent conditional on { X;} , and

_ pT 2
exp (_ (yz Qﬁ;ﬁk) ) 7 (31)

k

Yi| X —%NZ xlv,) \/_a

where 7(]y,) = exp(@]v,)/ (2,2, exp(a] ) with v, = 0.

The model (3.1) is the logistic normal mixtures with K components, where in each compo-
nent, there are two p dimensional parameter vectors in both mixing and mean parts. We consider
the scenario that p > n, and study the performance of the /; penalized maximum log-likelihood

estimator. Note that we assume K is known in chapter 3.1 and chapter 3.2.

3.1.2 Reparametrization

Section 3.1 of Stddler, Biihimann and van de Geer (2010) has a detailed discussion of the
reparametrization. But to make the dissertation complete, we will briefly illustrate the neces-

sity of reparametrizing the model.
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Consider a Gaussian linear model,
Y = X3 +¢, (3.2)

where Y is a n x 1 response vector, and X is a n X p design matrix. /3 is the unknown coefficients
with dimensions p x 1, and € is the error vector that follows N (0, UZIn). When p > n, the /;

norm penalized estimator, called LASSO, aims to find a sparse solution for 3. It is defined as
BA=arg;nin{llY—Xﬁllg+>\II5II1}, (3.3)

where || -

1, || - || are the ¢; and [ norm respectively, and X is the tuning parameter.
Note that the log-likelihood function for the Gaussian linear model can be calculated as

(without considering the constants)
(Y[X,B,0) = —nlogo — [|[Y — Xf]|3/20.

Therefore the LASSO estimator in equation (3.3) is essentially a penalized log-likelihood based
method, but without accounting for 0. There are two reasons for it to do so, one is that for a
certain range of selections of the tuning parameters )\, the estimates of 3 by considering the full
penalized log-likelihood method would be the same as the estimates of LASSO; the other reason
is that o for Gaussian linear model (3.2) is a nuisance parameter that people usually do not care.

However, there is no way to avoid the discussion of o for mixture models. Mathematically,
we can not separate § and o completely in the log-likelihood function, and besides that, a good
estimator of ¢ is usually very crucial for heterogeneous regression models as discussed in Chen,
Tan and Zhang (2008) and McLachlan et al. (2004). Hence, it is inevitable to consider the
optimization of the full penalized log-likelihood function for FMR models.

For Gaussian linear model, the full penalized maximum log-likelihood estimator is defined

as

Ny = (Br, 6x) = ar%rf\lin {logo +|[Y — XB]|5/(2no) + A||8]]: } - (3.4)

There are two main drawbacks of the above estimator. Firstly, the estimator in (3.4) is not

equivariant, in the sense that different scales of Y and X yield different estimates. Secondly and
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more importantly, the objective function in equation (3.4) is non-convex. Many fast algorithms,
e.g. pathwise coordinate optimization of Friedman et al. (2007), that are developed for convex
optimizations such as LASSO, can no longer be applied.

Stidler, Bithimann and van de Geer (2010) resolved the above two issues by penalizing 3 and
o simultaneously and reparametrizing the model. Specifically, they first consider the penalized

log-likelihood function as
logo + |[Y — XB3/(2n0®) + A(||8]l1/0), (3.5)

and then, they reparameterize

¢=pBlo, p=0".
The optimazation problem is then defined as
o a . 1
0, = (o, pr) = ar%mm {— logp + %HpY — Xo||5+ )\(Hngl)} . (3.6)
P

Note that the estimators in (3.6) are equivariant, and the objective function in (3.6) is now convex
in p and ¢.
We extend the idea of reparametrization to our model (3.1), and consider the /; norm penal-

ized maximum log-likelihood estimator. Let

¢ = /8/0-7 IO = 0-717
then
= Pk 1 T 2
YiI X, =x; ~ 7T£L'ZT exp | —= P — x; ) 3.7
| ];1 (x5 741 o P ( 5 (Pry ®y,) ) (3.7)

Then, the ¢; norm penalized estimator is

0, = argmingeg —1 1, log (45, m(@v,) &= exp (— 3 (ovyi — 27 6,)%) )

K X (3.8)

FALD ey nlle + A2 3oy vl
where we use 6 to denote all the parameters, i.e., @ = (vy, "+ , Y, D1, , Pr,M), and =
(p1,- -, pK)- A1, A are tuning parameters, © is the parameter space, and we will discuss its

regularizations in Chapter 3.2.
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Note that with the reparametrization, the objective function in (3.8) is still non-convex. How-
ever, in each optimization step of the EM algorithm to solve the optimization problem, the log
and the sum interchange and hence we have a convex objective function in every update step.
Although the reparametrization does not alleviate the difficulty in studying the theoretical prop-
erties of the ¢; penalized maximum log-likelihood estimator, it does help a lot in numeric data
analysis in the sense that it avoids lots of local minima solutions.

In the next chapter, we will discuss the properties of 6, defined in (3.8) as well as the neces-

sary conditions to ensure consistency.

3.2 Variable Selection for Known K

We consider the ¢; penalized estimator defined in (3.8) for logistic normal mixtures in high
dimensions. Because of the non-convexity, we need certain conditions on the parameter space
to control the behavior of the log-likelihood function. Note that the constants below vary line by

line.

3.2.1 Conditions

We assume the covariate space X is bounded, and
6 c @ = {6;||lognll < K116 — 60lls < M}, (3.9)

where 6, is the true parameter and & and M are fixed constants.
Define

T _ T T _ T
sup [|¢" alloc = sup max |ppxl, sup ||y @l = sup max |y, .
Then for any 0 € (:), we have

sup ||¢" || < C and sup ||y ||, < C (3.10)
xreX xeX
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for some constant C. This is because the boundedness of X and

¢ 2| <[(¢— ¢o) = +pp 2| < |2l (Il — dolls + [|olh)-

We also define

¢(w) = (W($T71>,--~ JW(wT7K)7wT¢17”' 7wT¢K7p17"' 7/0K)

Note that although () depends on « and 0, it has a fixed 3K dimension that is independent of
n and p. Let 1) be the space for the collections of ¢)(x) for all x € X and 0 € ©, and we write
1o (x) as the vector evaluated at the true parameter 6.

Let f, denote the conditional density of Y given x through %, and let [, = log f,, which is
the log-density. Define s, = 0l,,/0% to be the score function, and define the Fisher information

as
1(4) = / 55T fudp,

where p is the dominating measure of f,.
Let the Kullback-Leibler information be denoted as

c(Wlo) = — / log L{%] fuods

The following 5 conditions are needed in this chapter, but note that Conditions 1, 2, 3 and 5

are met automatically for the logistic-normal mixture model in (3.1). See Stéddler, Biihimann and
van de Geer (2010) for details.

C1. It holds that
93

Wlw(') < Gso(),

sup max
pep (1,52,93) {1, 3K}3

where

sup / G () fyo () dis(y) < 0.

rxeX

For a matrix A, let A,,;,(A) be its smallest eigenvalue.
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C2. For all € X, the Fisher information matrix /(¢ (x)) is positive definite, and,
Amin - ;g;( Amm(I(wO(w))) > 0.
C3. For any € > 0, there exists an o > 0 such that

inf inf € x)) > a..
TEX Ppep,|[p—ipo(@)||2>€ (¥lvo(x)) =

Let the active set, i.e., the set of non-zero coefficients of ¢ = (¢, -+ , Py ) € REP be
Sy ={(k,j); ¢k,j # 0}, and s; = |9,
and the active set of v = (v, -+ ,vx) € REP be

Sy = {(kvj)§7k,j # 0}, and sy = [Sy|.

C4. There exists a constant x > 1 such that, for any @ = (a1, - - , ax) € REP satisfies
llevsel[1 < 6lles ||,
then
K
HaSiH% < KQZa;‘onak, 1= 1land?2,
k=1

where X, = > x;xl /n.

Cs.

sup |[[sy(@) (Y)]loe < G1(Y),
zeX ,0€O

where by direction calculations, G1(Y) = K exp(2K)(|Y|? + |Y| + 1).

Condition ('4 is also called a restricted eigenvalue condition. Basically, it requires the active
covariates and the non-active covariates not to be strongly correlated. With Conditions 1, 2 and

3, and by Lemma 1 of Stéddler, Bilhimann and van de Geer (2010), we have, for any x € X,
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there exists a constant ¢y > 1, such that

() — vo(x)|[5 < cGe(v|o(e)). (3.11)

With these regularizations, we are ready to state our theorems.

3.2.2 Consistency Results
Let Ao = (logp/n)"/?, and
Lo(@,Y) = log (L1, m(@7,) £ exp (~ (Y — 279,)%))
Va(0) = 1 320 [Lo(@i, Yi) — Eeo{Lo(xi, Yi)}].

n

For any constant 7', define the event

sup

|Vn(0) - Vn(00)|
E(T) = o b .
0 {eeé (16— Golls + 117 — ol + 117 =m0l v ho — 0}

Denote the empirical average Kullback-Leibler information by

£(0100) = > el0(@)loo(w).

Then, we have following theorems.

Theorem 3. Under the logistic-normal mixture model, if p = o(exp(n)), then there exists a
constant T, such that as n — oo, we have P (£(T)) — 1.

Theorem 4. Under Condition C4, for A\; > 5T \g, Ay > 5T'\g, we have, on E(T),

£(0160) +2(\ — TAO)H&S%HI +2(A2 — TAo)||7sgl 11
S C()\l V /\2 + T)\0)2(81 V 82),

(A A X2+ T0)([[(@ — do)sill + [[(F = Yo)ssll1) < C(AV Ao+ TAg)2

Remark. Theorem 3 and Theorem 4 together imply that with probability going to 1, we

have an uniform upper bound for the empirical average Kullback-Leibler information as well
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as the ¢/, norm of the estimated zero coefficients. Moreover, the estimated non-zero coefficients
converge to the true values eventually. If we take \; = O(\) and A2 = O()\), then the up-

per bound in Theorem 4 is at the order of )y, which is (logp/n)'/?, and this is smaller than

V/log n?log(p V n)/n of Stidler, Biihlmann and van de Geer (2010). Because we have a theo-
retical upper bound for the estimated zero coefficients, in practice, we may use \g = (log p/n)"/?
as a threshold to perform variable selection in order to get a sparse but still accurate model. A

theorem for consistent variable selection with a beta-min condition are given as follows.

C6. Beta-min condition: There exists a large enough constant C, such that

min ¢; > C'/logp/n and %}91217] > Cy/logp/n.

JES1

Define S, = {(k,j);gzgm > C\/logp/n} and S, = {(k,j) Ve > C’\/logp/n} to be the

estimated activate sets for ¢ and ~ respectively. Then, if we properly choose some constant C
with the threshold value C'y/log(p)/n, we have

Theorem 5. Under Conditions C4 and C6, as n — oo,

P(§1 = Sland gg = SQ) — 1.

3.3 Selection for i

Chapter 3.2 provides the consistency theorems for variable selection assuming known number of
components K. In practice, we often need to estimate A from data. We propose a procedure and
a selection criterion called SC'M M in this chapter that can help to determine the true number of
components K consistently. With the estimated K, we can then utilize the ¢; penalized like-
lihood approach discussed in Chapter 3.2 to perform consistent variable selection. We describe
the procedure and SC'M M as follows.

Suppose we would like to identify the true underlying K, from the set B = {1,2,3,--- , B},
where B is any given finite number. We may choose B large enough so that Ky € B. For any
b € B, we first optimize (3.8) with & = b and denote the selected variable set as $(b). We then
calculate SCM M (5(b)), where SCM M (5(b)) is the selection criterion SCM M evaluating at
the model b with the variable set $(b). Our estimated Ky, is the b that minimizes SC'M M (3(b)).
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Specifically,
K, := argmin SCMM (5(b)), (3.12)
beB

where the selection criterion SC M M (5(b)) is defined as

SCMM(5(b)) =
—L S og (s m(@hy) ) oxp (3 (owys - 2hy B0?))  (BI3)
+b]3(b) [+ log p/n,

where {7}, fr, qAbk}zzl are the maximum likelihood estimates by fitting the b-component logis-
tic normal mixture model (model b) with the variable set §(b), and |5(b)| is the size of the variable
set $(b) and d; is any small positive constant. The need for a positive ¢; is for the asymptotic
consistency result that we prove, but in practice we use 6; = 0, which works fine.

SCM M is essentially the sum of the negative log-likelihood and the penalty on the model
size. Let @ = {4, pr, ¢ }0_, and write *(5(b), @) as the log-likelihood evaluated at @ for
model b. Also define the penalty function for any model b (b-component) with any variable set
3(b) as p,(5(b)) = b]3(b)|n°>*+% log p/n. Then we can write SC'M M (3(b)) from (3.13) in short,

SCMM (5(b)) := —1"(5(b), 8) + p,(3(b)). (3.14)

Remark. The exact model size for model b with variable set $(b) is (2b — 1)|5(b)| + b, which is
the sum of b|5(b)| for ¢ and (b — 1)|5(b)| for «y and b for p, whereas we use b|$(b)| in the penalty
function to roughly captures the model size. Since we compare models between different b so
as to select the true K, the asymptotic behavior for SMCC' is only affected by the order of
n%5+9 log p/n. Hence, using either the exact model size (2b — 1)|5(b)| + b or the rough model
size b|5(b)| in the penalty function will provide the same asymptotic property for SMCC. We
use the rough model size for notational convenience. Note that if we select models within the
same b, we need to use the exact model size. However, our goal is to select K, then there is
no difference between using the exact model size and using the rough model size in the penalty
function.

Briefly speaking, we propose a two-step procedure for selecting K. For each model b, the
first step is to use the ¢; penalized likelihood approach to select a small subset of variables §(b).
The second step is to calculate SC'M M (5(b)), which is the sum of the negative log likelihood
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evaluated at $(b) and the penalty on the model size. Because the size of §(b) is small, we hope
the log-likelihood *(5(b), 8) can capture the model specific characteristics. Note that although
|5(b)| is small, it is data dependent. The traditional AIC and BIC may not work in this setting.
In order to take account for all C3" = O(p*®)) possible subsets of variables with size |3(b)],
we need a larger penalty in (3.13) than what is used in BIC. We see from the simulations in the
next chapter that BIC tends to choose overfitted models, which suggests the penalty in BIC is
not heavy enough.

Let So = {(k,j) : ¢;; # 0 ory,; # 0} be the true activate variable set. The following

theorem provides a key property of SCMM, which is quite essential for showing its consistency.

Theorem 6. Suppose Ky € B = {1,2,3,---,B} and p = o(n°) for some c. For any fixed

constant s, assume

sup sup E(I°(M, 8)) < E(I*°(Sy, 8y)). (3.15)

{b<K0,|M|§S} U{b>K0,S()¢M,|M‘§S} 60cO

Then as n — oo, we have

P (SCMM(SO(KO)) < inf SCMM(M(b))) — 1. (3.16)
b#Ko,|M|<s

Remark. We recall the notations in equation (3.15) that [°(M, 0) is the log-likelihood evalu-
ated at the model b (b-component) with the variable set M at the parameters 6, and SC M M (M (b))
is the SCM M evaluated at the model b with the variable set M. Therefore, [%°(Sy, 8,) and
SCM M (Sy(Ky)) are the log-likelihood and the SCMM evaluated at the true model, respec-
tively. Equation (3.15) is a necessary but mild assumption. Basically, it requires the maximum
of the expected log-likelihood to be obtained only at the true model and in addition, there is
a non-zero gap between the maximum and the expected log-likelihood evaluated at any other
model which differs from the truth. If the gap can be infinitely close to zero as p grows, we can

not distinguish the truth from other models in terms of likelihood.

Theorem 7. (Consistency of SCMM)
Suppose Ky € B=1{1,2,3,--- , B} and p = o(n°) for some c. Also assume conditions C'4 and
C6 and equation (3.15). Then as n, — oo, we have P(Ky = K;) — 1.

Proof: This is a direct result from Theorem 5 and Theorem 6. To see this, let 5‘0 be the
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estimated active variable set given K, and define the set
A, ={w: Sy = So}-
Also define the set

By, = {w: SCMM(Sy(Kp)) < b;ﬁKﬁmegs SCMM(M(b))}.
By the definition of A,, and B,,, for any w € A,, () B,,, Ky = argmin,.zg SCM M (5(b)). Hence,
A, Bn C {w: Ky = Ky}. By Theorem 5 and Theorem 6, P(A,) — 1 and P(B,) — 1.
Therefore,
P(Ky = Ko) > P(A,[)Bn) = 1.

3.4 Simulations

Chapter 3.2 considered the ¢, penalized likelihood approach to perform variable selection with
given K for logistic normal mixture models, whereas Chapter 3.3 discussed how to select K

from data. In this chapter, we investigate the empirical performance of our proposed methods.

3.4.1 Variable selection with given K

In this chapter, we consider 2 examples for the purpose of demonstration that our proposed ¢,
norm penalized maximum likelihood estimator works well in terms of variable selection for high
dimensional logistic normal mixture models with given /K. Our main focus is on variable selec-
tion, that is, we want to see if the proposed estimator can select the true non-zero coefficients
consistently while the number of the selected variables is small. After selection, we could esti-
mate the parameters by re-fitting the model with the selected variables. The classical asymptotic
theory of MLE guarantees consistent estimation if the selected model is correct.

Let 1" be the true model, and T be the estimated model. Also let 7 C T denote the case
that the estimated model includes all the variables in the true model. We consider the sparsity of

the estimated model by looking at its model size relative to the true model size. Specifically, we
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define ]
#of selected variables

Relative Sparsity (RS) = .
clative Sparsity (RS) #of variables in the true model

Hence, if the true model contains 3 variables, then RS=2 means the estimated model selects 6
out of p variables.

To optimize (3.8) numerically, we use the generalized EM algorithm described in Stidler,
Biihlmann and van de Geer (2010). The idea is that in the M-step of the EM algorithm, instead
of obtaining the minimizer of ¢, 7y, p simultaneously, we perform coordinate-wise updates. Note
that in the M-step, there is no explicit update formula for ~, and we approximate it by applying
the Newton-Raphson method. Due to the non-convexity of (3.8), we try multiple starting values
to try to find the global minimum. Based on Theorem 5, we also investigate the performance of
a thresholding method in variable selection.

The empirical performances depend on the signal-to-noise ratio (SNR). We use the definition
from Stddler, Biihlmann and van de Geer (2010),

Var(Y)
NR = )
SNE Var(Y|0 = 0)

By setting all the coefficients @ = 0, Var(Y|@ = 0) denotes the variance purely from noise.

Example 1

We consider 4 logistic normal mixture models with 2 mixture components: My, Ms, M3 and M,.
Models M; and M have independent baseline covariates X, whereas models M3 and M, have
correlated baseline covariates X. We use the notation corry,, to denote the correlation between
covariates [ and m. In all cases, X are simulated from a 200-variate Gaussian distribution, i.e.,
p = 200, however, only 3 of them are included in the true model. We consider small variances
for mixture components in models M, and M3, which produce high SNR. Models M, and M,y
have large variances for the components and hence have low SNR. The ¢; normed penalized
estimator is obtained from samples of size n = 200. The particular values for parameters p, ¢, =y
are specified in Table 3.1, and SNR is calculated via Monte Carlo simulations.

We consider 100 realizations for each model. For each realization, we try 25 random starting
values. To maintain the sparse nature of the true model, we require each starting value contains

at most 10 non-zero values for ¢ and -, respectively. To do so, we sample 10 out of p = 200
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Table 3.1: Models for Example 1 for K = 2. ¢;,, denotes Kronecker’s delta

M1 M2 M3 M4

n 200 200 200 200

p 200 200 200 200

k 2 2 2 2
01 (3,3,3,3) (3,3,3,3) (3,3,3,3) (3,3,3,3)
By | (11o11) (llolol) (lol-10-1) (-1-1-1-1)
v (3.-2.4) (3.-2.4) (3.-2.4) (3.-2.4)
o (0.5,0.3) (1.5,0.9) (0.5,0.3) (1.5,0.9)
COTT Y m, OLm Otm |0.8]1=™ 0.8]1=m

SNR 64.3 7.2 88.5 9.7

numbers to indicate the indices of initial non-zero ¢ and ~. For these 10 non-zero ¢ and ~,
we generate their values from N (0, 12). Repeat the procedure 25 times and we get 25 different
starting values. For each starting value, we get the estimates of the parameters via optimizing
(3.8), and finally we compare the value of (3.8) by plugging these 25 different estimates and
choose the one that minimize (3.8) as our final estimates for one realization. For 100 realizations,
Table 3.2 shows the probability of the estimated model including all the active covariates and the
average RS for both the thresholding and the non-thresholding method. We use a naive threshold
Viogp/n.

We can see from Table 3.2 that both the thresholding and the non-thresholding methods select
the true set of the variables with very high probability for well chosen A; and \,. In addition, the
thresholding method with a naive threshold \/W provides much sparser models compare
to the non-thresholding method, whereas the accuracy does not loss much in the sense that the
inclusion probabilities are almost the same for both methods. We also note that the correlated
covariates X make the variable selection harder and yield lower inclusion probabilities compare
to those models with independent covariates. SNR affects the average RS; the estimated models
for M2 and M4, which have low SNR, tend to contain more active covariates, which leads to
larger average RS.

To verify the claim in Theorem 5 that as n and p go to infinity, with properly chosen A,
A2 and a threshold value, the probability of the exact recovery of the model goes to one, we

examine model M; with n = 500 and p = 500. We also use the thresholding method with a
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Table 3.2: Probability of the estimated model containing the true model and the average RS
based on 100 realizations for Example 1 of K = 2. The numbers in the parentheses are from

the thresholding method with a naive threshold /log p/n.

K =21 (A,\) | (0.1,0.02) (0.08,0.01) (0.06,0.03) (0.12,0.05) (0.14,0.04)
Ml rcT 1(1) I(1) I(1) 0.52(0.4)  0.52(0.29)
ARS 4.8(1.4)  8.84(2.83) 3.48(1.16) 1.22(0.73) 1.41(0.65)
M2 TCcT 1(0.99) I(1) 1(1) 0.31(0.08)  0.27(0.05)
ARS 4.8(1.37)  10.8(2.7) 3.2(1.1) 1.22(0.5)  1.29(0.43)
M3 TcT |0.820.62) 0.97(0.96) 0.37(0.11) 0(0) 0(0)
ARS | 4.15(1.47) 7.64(3.07) 3.33(1.04) 1.06(0.86) 1.32(0.89)
M4 T CT |0.6200.42) 0.96(0.92) 0.16(0.03) 0(0) 0.02(0)
ARS | 4.45(1.37) 8.71(2.86) 5.42(1.0) 1.12(0.86) 1.27(0.87)

naive threshold y/log p/n. Then, with the tuning parameters (A;, A\2) = (0.11,0.028), we will
exactly select the true set of the variables 99 out of 100 times, which demonstrates the claim in

Theorem 5.

Example 2

It is usually easy to deal with two subgroups, i.e., i = 2, since we only need to estimate -, to
identify subgroup membership. When K > 2, say K = 3, mulitple v come into the model and
different combinations of v might give similar subgroup structures. We would like to see if our
method still works well for K = 3.

We consider 4 logistic normal mixture models with 3 mixture components: Ms, Mg, M;
and Mg. Similar to Example 1, Models M5 and Mg have independent baseline covariates X,
whereas models )M/ and Mg have correlated baseline covariates X. We use the notation corr; ,,
to denote the correlation between covariates [ and m. In all cases, X are simulated from a 200-
variate Gaussian distribution, i.e., p = 200, however, only 3 of them are included in the true
model. We consider small variances for mixture components in models M5 and M7, which pro-
duce high SNR, whereas models Mg and Mg have large variances for the components and hence
have low SNR. The ¢; normed penalized estimator is obtained from samples of size n = 200.

The particular values for parameters p, ¢, vy are specified in Table 3.3, and SNR is calculated via
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Table 3.3: Models for Example 2 for K = 3. ¢, denotes Kronecker’s delta

M5 M6 M7 M8

n 200 200 200 200

p 200 200 200 200

k 3 3 3 3

b1 (3,3,3,3) (3,3,3,3) (3,3,3,3) (3,3,3,3)

By | (L-1o1-1)  (11-1-1)  (1e1-1-1)  (-1-1-1-1)

B4 (1-2.2) (1-2.2) (1-2.2) (1,-2.2)

v (3,-2,4) (3,-2.4) (3,-2,4) (3,-2,4)

Y3 (-1,1,1) (-1,1,1) (-1,1,1) (-1,1,1)

o (0.5,0.3,0.2) (1.5,0.9,0.6) (0.5,0.3,0.2) (1.5,0.9,0.6)
COTTYm O1m Otm |0.8|t=™ 0.8t
SNR 65 8.0 112 13.5

Monte Carlo simulations.

We again consider 100 realizations for each model, and use the same procedure discussed
in Example 1 to get the /; normed penalized estimates. Table 3.4 shows the probability of the
estimated model including all the active covariates and the average RS for both the thresholding
and the non-thresholding methods with a naive threshold \/m.

The high inclusion probabilities and the small average RSs shown in Table 3.4 proved that our
proposed estimator works well even for complicated data structure (X = 3). Still in Example
1 of K = 2, we have even higher inclusion probabilities and smaller average RSs. This means
the estimations for ' = 2 are not only sparser but also more accurate than those for K = 3.
This is reasonable. Roughly speaking, with the same sample size n = 200, we have on average
70 observations for each mixture component when K = 3, whereas we have on average 100
observations for each mixture component when K = 2. Hence, the estimators for X' = 2 are

expected to be more accurate than K = 3.

3.4.2 Selection for K

Quite often, we do not know the number of the mixture components /. We need to estimate
it from the data. Stéddler, Biihlmann and van de Geer (2010) proposed to use cross valida-

tion, whereas Khalili and Lin (2013) suggested to use BIC to select /' in practice. However,
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Table 3.4: Probability of the estimated model containing the true model and the average RS
based on 100 realizations for Example 2 of K=3. The numbers in the parentheses are from the

thresholding method with a naive threshold +/log p/n.

K =31 (A,A\2) | (0.1,0.02) (0.08,0.01) (0.06,0.03) (0.12,0.05) (0.14,0.04)
M5 TcT 1(0.98) I(1) I(1) 0.46(0.23)  0.29(0.14)
ARS | 4.66(1.41) 9091(3.23) 4.21(1.14) 0.96(0.78)  1.08(0.59)
M6 TCcT | 0970.8) 0.950.93) 0.93(0.65) 0.16(0.03) 0.07(0.04)
ARS | 4.47(1.35) 12(3.5) 6.29(1.12) 0.62(0.31) 0.75(0.25)
M7 TcT | 0950.8) 1(0.99) 0.88(0.64) 0.09(0) 0.13(0.03)
ARS 4.9(1.66) 9.2(3.7)  4.22(1.18) 1.1(0.87)  1.43(0.90)

M8 T cT |071042) 0.9500.9) 0.42(0.09) 0.04(0) 0.02(0)
ARS |[4.97(1.52) 10.2(3.5) 5.32(1.06) 1.07(0.86) 1.26(0.88)

these methods do not yet have theoretical justifications. We proposed a new selection criterion
SCM M in Chapter 3.3 and showed its consistency. In this chapter, we would like to examine its
empirical performance and compare it to that of BIC and EBIC of Chen and Chen (2008) (EBIC
is proved to be useful in high dimensional variable selection in the linear regression framework).
We show in simulations that BIC tends to choose overfitted models.

Recall the variable selection procedure in Chapter 3.3 that for any b € B, we first optimize
(3.8) with K = b and denote the selected variable set as §(b). The estimators of K from SCMM,
BIC and EBIC are given as follows.

KSOMM .— aromin,_,; SCMM(5(b)),
KP1C .= argmin,_; BIC(3(b)),
KPBIC .— argmin,_; EBIC(5(b)),

where
SCMM (3(b)) := —1°(3 (Ab), 9) + b|§(b)|n°'5+51 logp/n,
BIC(3(b)) := —I"(3(b), 0) + (2b — 1)|3(b)| log n/(2n),
EBIC(5(b)) := BIC(5(b)) + (2b — 1)|5(b)| log p/(2n).

We first consider the 4 models in last chapter, M, - -- , My, and pretend as if we do not know
the right number of the mixture components. We use SCMM, BIC and EBIC selection criterion

discussed above to select K from data, with the candidate set B = {1,2,3,4} and the com-
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Table 3.5: Frequencies of the estimates K for the true K=2 based on SCMM, BIC and EBIC

K(SCMM,BIC,EBIC) | Ml M2 M3 M4
1 0,0,0 0,0,0 0,0,0 0,0,0
2 98,92,99 99,97,98 100,82,96 100,97,100
3 2,81 13,2 0,17,4 0,3,0
4 0,0,0 0,0,0 0,1,0 0,0,0

mon tuning parameters (A1, A\2) = (0.06,0.03). We use 100 realizations for each model. The
frequencies of K being 1, 2, 3 and 4 from SCMM, BIC, EBIC are shown in Table 3.5.

We see SCMM and EBIC works well for all 4 models, whereas for model M3, BIC chooses
overfitted models 18 out of 100 times.

Note that the linear regression for one single normal component model (K=1) is the degener-
ate case of the mixture models, whereas it is fundamentally different from the mixture models.
The convex log-likelihood function and the explicit formulas of the parameters estimation for
linear regression make it attractive to real data applications. Hence, it is important for us to
tell if a single normal component model is sufficient for the data or if we need to use the more
complicated mixture models structure. The following simulations demonstrate that our proposed
selection criterion SCMM can detect X' = 1 consistently if the data is from the single normal
component model, whereas BIC tends to choose K = 2.

We consider 4 single normal component models: F, F5, F3 and Fy. Models F} and F5
have independent baseline covariates X, whereas models F5 and F); have correlated baseline
covariates X. We use the notation corr; ,, to denote the correlation between covariates [ and m.
In all cases, X are simulated from a 200-variate Gaussian distribution, i.e., p = 200, however,
only 2 of them are included in the true model. We consider small error variances for models
F} and F3 and large error variances for models F, and F}. The ¢; normed penalized estimator
is obtained from samples of size n = 200. The particular values for parameters p, ¢,y are
specified in Table 3.6.

We again consider the candidate set 5 = {1,2,3,4} and 100 realizations for each model
with the common tuning parameters (A1, A\2) = (0.1,0.02). The frequencies of K being 1, 2, 3
and 4 from SCMM, BIC and EBIC are shown in Table 3.7. Note that the penalty used in SCMM
is larger than those used in BIC and EBIC, hence quite often, if BIC and EBIC choose K = 1,
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Table 3.6: Models for K=1. ¢; ,,, denotes Kronecker’s delta

F F; Fy Fy
n 200 200 200 200
P 200 200 200 200
k 1 1 1 1
15} (1,-1,1) (1,-1,1) (1,-1,1) (1,-1,1)
o 1 2 1 2
corrym, Sm Om 0.8]=™ ]0.8]F=™
SNR 3 1.5 14 1.1

Table 3.7: Frequencies of the estimates K for the true K=1 based on SCMM, BIC and EBIC

K(SCMM,BIC,EBIC) | F 2 2} F,
1 92,1227 96,3593 98,840 61,50,60
2 8,87,73 4,627 290,59 39,4840
3 0,1,0 030 021 020
4 0,0,0 000 01,0 000

then SCMM will also do. The simulation results in Table 3.7 show that BIC and EBIC generally
loss the power to detect the true KX = 1, however, our proposed SCMM works very well for
Fy, Fs and F3. The SNR for F} is as low as 1.1, which approaches the lower bound of SNR of 1.
Hence, it is reasonable in this case to see less satisfactory performances for all the methods.

3.5 Real Data Example

We apply of our methods to a real data set. The data set concerns telemonitoring of Parkinson’s
disease (PD), which is a neurological disorder that has affected over one million people in North
America. Although the current medications are effective in controlling its symptoms at the early
stages of the disease, there is no prescription to cure the disease. Therefore, it is important to
diagnose and monitor PD in the early phase. Traditional ways of tracking PD symptoms involves
physical examinations. To reduce the cost yet still able to track PD progression, a noninvasive

telemonitoring technique, called sustained vowel phonations (SVP) (Little et al, 2009), has been
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proposed. The data set at http://archive.ics.uci.edu/ml/datasets/Parkinsons+ Telemonitoring is
collected from a clinical trial to assess if SVP can be used as surrogate to study PD severity
and progression. There are n = 5875 observations of speech signals of 42 patients and a to-
tal of 16 characteristics with clinically relevant properties were extracted for each observation
(Little et al., 2009). Besides the 16 characteristics, we consider 16 extra covariates which are
quadratic forms of the 16 characteristics. The reasons for including those quadratic terms have
been discussed in Tsanas et al. (2010).

Using the Unified Parkinson’s Disease Rating Scale (UPDRS), which is designed to follow
PD progression, as the response variable and p = 32 covariates (16 linear and 16 quadratic),
Khalili and Lin (2013) fitted the mixture model with constant mixing parameters to the data set.
They also assumed constant variability for subgroups. Under their framework, they chose K = 2
and selected 6 out of 32 variables as the predictors.

We believe that homogeneity of subgroups is not a reasonable assumption in this study. The
purpose of our study is to apply our logistic-normal mixture model to see if we will find some-
thing different. To provide a direct contrast with the results of Khalili and Lin (2013), we proceed
as if the observations were independent. We note that within-subject correlations need to be ex-
amined in any inferential analysis.

We fit the logistic-normal mixtures to the data set with K = 1,2, 3, 4. Based on our proposed
selection criterion SC'M M with the tuning parameters (A, A2) = (3y/logp/n,/logp/n) =
(0.073,0.024), we also chose K = 2, but selected only 3 variables as the predictors, which
are PPE, HNR2 and DFA2, where HNR2 and DFA2 are quadratic terms of HNR and DFA,

respectively. Table 3.8 gives the detailed estimation.

Note that ¢, p are the reparameterized parameters. We transfer them back and write the fitted

model in terms of 3 and o as follows.

Group,(Gy) :

Y(UPDRS) =29.6 + 1.88PPE — 2.6THNR2 — 3.41DF A2 + ¢;, €, ~ N(0,10.46%).
Groupy(G3) :

Y(UPDRS) =21.32 — 0.95PPE — 355HNR2 — 3.4DF A2 + €3, €3 ~ N(0,2.98?%).

Based on the estimated -,, the average mixing probabilities for Group, and Group, are
0.94 and 0.06, respectively. The results suggest that the vast majority of the cases come from

Group;. We look at the linear regression for a single normal component model with covariates
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Table 3.8: Parameter estimates and the corresponding standard errors. Standard errors are ob-
tained via observed Fisher information and are reported inside parentheses purely for reporting
purposes. HNR2 and DFA?2 are the quadratic terms of HNR and DFA respectively. All covariates
are standardized.

Predictors (o Py Y2 P1 P2

Intercept | 2.83 (0.01) | 7.15(0.35) | -8.02(0.85) | 9.5x1072 3x10™%) | 0.34 (2.4x107?)

PPE 0.18 (0.02) | -0.32(0.08) | -0.45(0.2) - -

HNR2 | -0.26 (0.02) | -1.19 (0.13) | -3.93 (0.45) - -

DFA2 -0.33(0.02) | -1.14 (0.23) | -4.63 (0.43) - -

PPE, HNR2 and DFA2. The estimated model from linear regression is

Global linear regression :
Y(UPDRS) =29.02 + 1.19PPE — 1.89HNR2 — 2.34DF A2 + ¢, ¢ ~ N(0,10.29?).

Not surprisingly, the model from the global linear regression is fairly close to that of Group;.
In fact, the global linear regression with the covariates PPE, HNR2 and DFA2 has already pro-
vided a very high adjusted R-square of 0.8894. However, the QQ-plot for the residuals in Figure
3.1 does not support the normality assumption and statistically, the BIC which works well for
small p and large n and SMCC of the global linear regression are worse than those of the two
components logistic normal mixture model in Table 3.8. Our analysis indicates that there may
exist a small portion of observations that are actually from Group,, which can not be predicted
well by the global linear regression.

The FMR model with constant mixing parameters discussed in Khalili and Lin (2013) is
unable to provide much information, since the model assigns common mixing probabilities for
every observation. A distinct advantage of the logistic normal mixture model is that based on
different attributes of different observations, we can calculate individual-specific mixing proba-
bilities and predict their subgroup memberships. Figure 3.2 shows the individual-specific mixing
probabilities for Group,. The observations that have large mixing probabilities for Group, are
very likely from Group,.

We select individual observations whose mixing probabilities for Group, are larger than 0.85

as a subgroup, and we call it S. The size for S is 168. Note that they are not necessarily all from
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Figure 3.1: QQ-plot for the linear regression residuals
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Figure 3.2: Individual-specific mixing probabilities for Group,

Groups, but we believe most of them should be because of the large mixing probabilities, and

we expect the majority of the observations from S can not be predicted well by the global linear
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regression. Figure 3.3 is the plot for the response Y(UPDRS) against the individual-specific
characters X=1.19 PPE -1.89 HNR2 -2.34DFA?2 from the global linear regression coefficients.
The straight line in black is the fitted global linear regression and the red points are the selected
individuals in S. We can see that the points (green) other than red are fairly symmetric with
respect to the line, whereas the red points seem to be outliers. Indeed, the global linear regression
can not predict these red points well. Figure 3.3 explained the reason intuitively why a single
linear regression is not sufficient for the data, and it also demonstrated that the two component
logistic normal mixture model is effective in characterizing the subgroup membership based on

the mixing probabilities.

Other than S
o  Selected S
Global OLS

50

o
—

T T T T T
-10 -5 0 5 10

X:=1.2PPE-1.89HNR2-2.34DFA2

Figure 3.3: The overall data set with the linear regression line in black. The red points are the
selected individuals in S based on the mixing probabilities.

Quantitatively, we compare the mean square errors (MSE) of the fitted values to the true
values for the observations from S via model (G5 and the global linear regression. The MSE for
model G2 and the global linear regression are 9.6 and 148.5, respectively, whereas the optimal
MSE from the least squares of the linear regression based solely on the observations from S is
8.1. Because the MSE for G is close to the optimal MSE and is much smaller than that for
the global linear regression, it also demonstrates that most of the observations from S should be

centered around the means from Group,.
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For the mixture model discussed in Khalili and Lin (2013) (Mg,), which assumes both ho-
mogeneity for subgroups and constant mixing parameters, we found if we relax the homogeneity
condition, the fitted model (M) has better BIC. The estimated mixing parameters are 0.92
and 0.08, which also suggests that most cases are from one single subgroup. However, both the
models Mg and Mg, assign common mixing probabilities for every observation and hence
fail to capture the underlying subgroup membership for the data set. Consequently, the BIC for
M, and M1, are worse than the two components logistic normal mixture model in Table 3.8.
The BIC for My is 2.92, and 2.84 for Mk, and the BIC for the two components logistic
normal mixture model in Table 3.8 is 2.79.

Further inspections of the data show that most observations in S are from one subject, and
quite a few others are from another subject. Specifically, 43 out of 168 observations in S are from
patient 33 and 110 out of 168 observations in S are from patient 36. The analysis shows that the
logistic-normal mixture model is more effective than the traditional FMR model in detecting
meaningful subgroups.

When we added 500 noise predictors to the data, each of which is simulated independently
from the normal distribution with mean zero and variance one, and choose the tuning parameters
(A1, A2) = (y/logp/n,/logp/n) = (0.033,0.033), we once again selected K = 2 and the
active covariates PPE, HNR2 and DFA2. This exercise shows that the proposed method in this

Chapter can handle a large number of possible predictors.
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CHAPTER 4

Discussion

In this dissertation, we considered two issues that are related to the logistic-normal mixture
model. In Chapter 2, we proposed a penalized maximum likelihood estimator that can consis-
tently estimate the true parameters when the variances might be unequal for different subgroups.
In addition, we proposed a penalized £ M test for testing the existence of subgroups. We allow
to use data dependent penalty, and we provide a guideline for selecting tuning parameter. The ex-
isting literature mainly focuses on homogeneous subgroups or FMR models with no covariates,
whereas our setting is geared towards more practical problems where the subgroup membership
needs to be characterized by covariates.

In Chapter 3, we proposed a /; norm penalized maximum likelihood estimator for the sake of
variable selection for the logistic normal mixture models with high dimensional covariates when
the number of the mixture components K is given. We proved consistency in terms of Kullback-
Leibler information as well as the ¢/; norm of the estimated coefficients. We also showed the
convergence rate is at the order of (log p/n)'/2, which is the best convergence rate that we could
expect. When K is unknown, we proposed a selection criterion SC'M M in finding the number
of components K and showed its consistency. In addition, we studied the performance of our
proposed methods through simulations and a real data example. There are only a few discussions
of variable selection in the literature on FMR models with constant mixing parameters in high
dimensions; we are the first to study model selection for FMR models with data dependent
mixing parameters. Moreover, we provided a selection criterion with theoretical justifications to
determine the number of the mixture components for FMR models.

There are a number of possible future directions to further enrich the current state of the
research and applications of the FMR models. For example, we required certain compactness

of the parameter space when we select variables in high dimensions, but the ¢; penalty might
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automatically ensure that. It would be useful if the compactness condition can be relaxed. When
selecting the number of the mixture components, the candidate values for K need to have a
known upper bound. It would be interesting to know what happens if the upper bound is incor-
rectly specified. The current theory also requires a larger penalty in SC'M M than it might be
necessary; it tends to choose a model with a small number of the mixture components. It would
be interesting to investigate the local power of SC'M M, when one of the mixture components
vanishes, in the sense that the coefficients in the component shrink to zero. Last but not least,
our empirical work shows that when \; and A, are appropriately chosen, the results of model se-
lection are quite good, as predicted by the theory. However, it remains a future research problem

how we can choose those parameters data adaptively.
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APPENDIX A

Proofs for the Main Results in Chapter 2

We first provide a useful lemma which is proved at the end of this section.

Lemma 8. Suppose {(Py,Qr)}32, are i.i.d. continuous random variables with finite means.
Also suppose that the density of Qy, and the conditional density of Py|Qy. are bounded by C, then
uniformly in o, between n~' and exp(—1), there exists a constant C* such that for sufficiently

large n,

1 n
P(sup = > (P — aQy — b| < |oylogoy|) > C*|oyloga,|) < Cn 2.
a,bcR T 1

A.1 Proof of Theorem 1

We note that S1 and S2 play the role of Lemma 1 in Chen et al. (2008). With these two
properties, it then follows from the Borel-Cantelli Lemma that as n — oo and almost surely,

1. for each given o between n~' and exp(—1),

n

sup n~' Y 1(]Y; — Z 8| < |ologo]) < Clologal,
pern i=1

2. uniformly for o between 0 and n™ !,

BERN

sup n=' Y 1(Y; = Z] 8| < |ologo]) < 4(logn)’/n.
i=1
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These almost sure results are stated for a given 0. However, following the arguments in Lemma
2 of Chen et.al (2008), we have a stronger result as follows.

Except for a zero-probability event not depending on o, we have for all large enough n:

1. for o between n™" and exp(—1), supgepa n ' > i, 1(|Y; = Z] B| < |ologo|) < Clolog o],
2. for o between 0 and n™", supgega n ' >0 1(|Y; — Z7 B8] < |ologo]) < 4(logn)?/n.

We partition the parameter space with respect to o as in Chen et.al. (2008). Let I'; = {© :
o1 <oy <€}, [y ={O : 01 < 19,00 > €6}, s = — (I'1 YI'9), where €y, 79 and T" are
specified in Chen et.al. (2008). Note that Z! 3 in our setting plays the same role as 6 in Chen
et.al. (2008), where the model has no covariates. Hence, with the above almost surely results
and Theorem 1 and Theorem 2 of Chen et.al.(2008), we have as n — oo and almost surely,
the penalized maximum likelihood estimators of our model will be attained in I's. Note that o is
bounded away from zero in I'3, standard techniques of proving the consistency of the maximum
likelihood estimators lead to the consistency of our proposed penalized maximum likelihood
estimators.

Next, we show S1 and S2. Since the proof of S2 is essentially the same as that for S1, we
only provide the details of the proof of S1. For convenience, we allow the constants used in the
proofs vary line by line.

Recall that Z = (1, U, V'), where 1 represents the intercept in the model and U consists of
only discrete variables with a finite sample space and V' consists of only continuous variables.
We prove S1 for the following three cases.

Case 1: If Z only has three dimensions, that is, Z = (1,U, V). Further, we assume U ~
Ber(1/2).

Case 2: If Z = (1,U,V), where U is a random vector taking any finite values and V' is one
dimensional continuous variable.

Case3: If Z = (1,U, V), where U is a random vector taking finite values and V' is a vector of
continuous random variables.

From Case 1 to Case 3, we will prove S1 from the simplest case to the most general situation.
Then we complete the proof of Theorem 1.

Next we provide the detailed proof under Cases 1-3.

Proof for Case 1: We prove S1 when Z only has three dimensions, that is, Z = (1,U, V).
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Further, we assume U ~ Ber(1/2).

LetU, =n~'Y"  U;andlet fx(z) and fxy(z|y) denote the density of X and the condi-
tional density of X|Y’, respectively. Then, for any given o,, € (n™!, exp(—1)), let

en = {n"1(8logn)}'/?,
I = P (supgegs Wa(B) > Cloylogon| | |U, — 1/2] <€),
IT=P(|U,—1/2] >¢,).

We have,
P (4,(C)) = P (suppes Wa(B) > Clo log o)

<P (supﬁeRg Wo(B) > Clo,logo,|||U, — %| < en) + P (|Un — %| > en) (A.1)
=1+11I.

We verify the following two claims:

CL1 [T <(Cn™%

9

CL2 [ < Cn™2

Proof of CL1: By Bernstein’s inequality, for sufficient large n,
U1 sn’e
II =2P (ZZ—l - = > €n> < exp {—%} < Cn2.
n 2 n+ 3ney,
Proof of CL2: Note that
I=pP (Sup,@ER3 Wn(,@) > C|0n 10g0n| | |Un - %| < En)
= Zuh...mn P (SupﬁeRB Wn(ﬁ) > C|0n logan] | Ul = Uy, 7Un = Unp, |Un - %| < €n)

Xf(ulv'“ 7un|Un)(u17 e 7u’I’L)'

For any uy, -+ ,u, suchthat U, = n=' >0 jw; € 27! —€,,27 +¢,), let U = (Uy, -+ ,U,),
w = (uy, - ,uy), and {i,--- 7,5, } are indices for w = 1, and {j1,--- ,j, .5, } are indices
foru = 0. Also let Uy, = (Uy,,---,U; . ), Uj, = (Uy,,---,Uj, ) and let the variables
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Py, Q) and (P, ;) be specified with the following distributions:
ks Wk

{(PLQURG =V Vi |Us, =
and
{(Pe QU 2 (G Vi)™ 1U S, = 0
By the independence of {Z}}_; = {(1, Uk, Vi) }}¥_;, we have
P (supBeRg W, (8) > Clo,logo,| | Uy = uy, -+, Up = up, |U, — %\ < en)

=P (SupﬁeRs W (,8) > C|0n 10g0n| | Ul = Up,y - 7Un = U’n)
= P(supﬂeRs{ ZnU" 1Y, — By — B2 — BsVi | < |onlogoyl)

TS (Y, — B~ B3Vl < lowlog o))} > Clowlog | |U = u)
<P(supﬁeRslz"U”1<m —ﬁl—ﬁz—ﬁs%lﬁ 0w logaa]) > (C/2)|onlog | |Us, =1)
+P (suppers L 4 1Y, — By — B3Vi| < lowloganl) > (C/2)loy log ol | U, =0)

< P (subysen it A% 1P — aQ; = b] < |owlog oul) > (C/2) o log o)
+P (UPpper o S 1P — aQy = b] < lowlog o) > (C/2)|on log ol )

Since {Y;, Z;, X}, are i.i.d., {( Py, Qr) } o= ”U” are i.i.d. and so are {(P;, Qk)}ZU” We claim
the following two properties under both the null hypothesis and the alternative hypothesis.

CL3 (P, Qy) and (P,g, Q}g) have finite means;

CL4 The densities of P;, P, and the conditional densities of P,|Qy, P,|Q, are bounded.

Then, by the choice of U, nU,, = O(n/2) and n — nU, = O(n/2) almost surely. Taken CL3
and CL4 and Lemma 8 together, we conclude that there exist constant C’ such that 7 < C'n =2
for sufficiently large n. The proof for CL1 and CL2 is then complete.

Proof of CL3 and CL4: Recall
YH{U V), X} ~7(XTY)N(Z" (81 + By),01) + (1 = n(XT4))N(Z" B, 03).

Note that the null model is just a special case of the above in that 3, = 0 and 0, = 0,. By the
definitions of (P, Q) and (P, Q, ), for any 37 = (v, 81, 8L, o1, 0), if suffices to show the

49



following two statements:
SG@) E([Y]IU) <oo, E([V[|U) < o0
S(ii) the conditional densities of V|U and Y |U, V' are bounded.

The statement S(ii) is obvious, since Y|V, U, X follows the logistic mixture of normals, its den-
sity is uniformly bounded by {v/27 min{oy, 05} } !, where oy, o, are the true parameters in the
model. Therefore, the conditional density of Y|V, U is bounded, and by Condition C4, the con-
ditional density of V'|U is bounded. For S(i), by Condition C5, E(|V||U) < oo, again because

Y|V, U, X follows logistic mixture of normals,

mwm—EmeUMXWG
((w |+ (1 = 7(XTy)|Ya| | U, V. X)) U}
T muUVX>u—ﬂX%wmmuuMX»W}

E{(n(X"y
where Y, (U, V, X) ~ N(Z"(B,+8,),03), Ya|(U,V,X) ~ N(Z'B3,,03),and Z = (1,U, V).
Note that
E(W||U,V, X)
<o B (|BZBZ8) |0V, X) + (1+ V] + |U))18, + Ball
= =01+ (L+|V]+ [U])]|B1 + Balls,

where || - ||« is the supreme norm and the last equation is due to the fact that £|Z| = 2(27)~1/2

if Z ~ N(0,1). Similarly,

2
\ 2T

E(Y2| UV, X) < o2 + (14 [V]+ [UDIIB1]]ee-

Therefore,

2
E(Y]U) < Fmax{al,az} + max{[|B1lsc, 181 + Balloo}E(L + [V] + [U[|U) < 00
™

where the last inequality is due to Condition CS5.
We have now verified properties CL3 and CL4 for any 8 = (47,31, 33,01, 04), under
both the null and the alternative hypotheses. By the results from CL1, CL2 and Equation (A.1),
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we finished the proof of Case 1.

Proof for Case 2: We prove S1 with Z = (1, U, V'), where U is a random vector taking any
finite values and V' is one dimensional continuous variable.

LetP(U=u!)=p, >0,t=1,2,--- ,r,and > ;_, p = L. AlsoletUt =n~1 3" 1(U; =
u'), t = 1,2,--- 7. As in the earlier proof, we set ¢,; = {n~!(8logn)}'/2, and we bound
P (4,(C)) by

r

P (An(C)‘U'rtl € [pt - 6ﬂt7pt+€nt]7t = 1? 771) +ZP(’U7€ _pt‘ > 6nt) é I+ 11.

t=1

By Bernstein’s inequality, we know 11 < Cn~2. For part I, we use arguments conditional on
U; =u;, i =1,2,---,n,such that the values of u; satisty Ul € [p,— e, pr+en,t =1,--+ 7.
We then group the U; = u; which have the same value of u’. Note that the number of the items
in each group is of the order of O(p;n), and by the independence of the vectors of Z;, we can

directly apply Lemma 8 and get the desired results.

Proof for Case 3: We prove S1 for general Z = (1,U, V'), where U is a random vector
taking finite values and V' is a vector of continuous random variables.
We bound P (A, (C')) by conditioning on the possible values of U as we did previously, then

it suffices to show

1 n
p ( sup — Z 1(|P, — pa’ Q, — b| < |onlogo,|) > C*|o, log 0n|> <Cn?,

bER,pERT [lal|=1 TV 1

for some C* and C' and sufficiently large n. However, the set of a with ||a|| = 1 is a compact
set, we can prove it by using standard empirical process argument and the same techniques as

those used to prove Lemma 8 in the next subsection.
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A.2 Proof of Lemma 8

In this subsection, we prove Lemma 8 which is needed for the proof of Theorem 1. We allow

the constants below to vary line by line. Let

Gnla,b,0,) =010 1(| Py — aQr — b] < |oy, log o)),
Lny = P(Supj4j<n2 per Gnla, b, 0,) > C*|o, log a,)),
Lz = P(SUp g sn2 per Gnla, b, 0,) > C*loy, log o).

Note that

sup G,(a,b,0,) = max sup  Gyla,b,0,), sup Gy(a,b,o,) .
a,beER la|<n2beER la|>n2bER
Thus we have,

P (sup Gn(a,b,0,) > C*|o, log an]> < Lpi + L. (A.2)
a,beR

Step 1: We show L, < Cn~2.
Note that for any given o,, € (n™!, exp(—1)), |0, loga,| > n~'logn. We have

Gn(CL?b?UTL)
SIS (- el < @y < B Lokl 1By < (Ja] = )]0 log o)

|al la| = la |al

+3 et L(IP] > (la = 1)]on log o).

Therefore,

Sup|a|>n2,b€R Gn(a7 ba Un)
n on log oy on log oy
< subjapsngen Sior L — 220 < Qut gl < 4 epneel)
x1(|P| < (la| = 1oy 10g0n|)} + 5D o {2 502, LI Pkl > (la] = 1)|o log 0a]) }
< subpen 1 {Xkmt 1-lonlogon] < Q=0 < lowlog o)} + 3 Sy 1P > m).
Let

Loy = P(SUPGGR{R_l ZZ:1 I(—|onlogo,| < Qr — 0 < |o,logay,])} > (C*/2)|onlog o),
and Lpgo = P (n= ' >0 1(|Pg| > n) > (C*/2)|o,log o)) .
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Then,

la|>n2bER

L,,=P < sup  Gyla,b,0,) > C*|o, log an|> < Lyo1 + Lyoo. (A.3)

Step 1-1: We show L, < Cn~2.
Observe that in L,,o1,

nt Y H(—lonlogo,| < Qr — 0 < |0, logayl)

where F), is the empirical distribution for (). Since the density of () is bounded, a direct applica-
tion of Lemma 1 of Chen et al. (2008) yields L, < Cn~2.
Step 1-2: We show L,20 < Cn =2

Note that E{1(|P.| > n)} < n'E(|P:]) < n~tlogn < |0, log o,|, for sufficiently large n.
Then, by Bernstein’s inequality, we have

Lizn < P (S, (1P| > n) = BB > m))) > Cnlo, logor)

Cn)2|on log oy |? )
< —_—_(Cn)onlogon <
= exp 2n|oy log oy |+2Cn|on logon| | — Cn )

where C' = C*/2 — 1.
By Step 1-1, Step 1-2 and Equation (B.25), we have

Lpg < Ly + Lpgy < Cn™2, (A4)

which completes the proof of Step 1.
Step 2: We show L,,; < Cn~2.

Let 6, = n ' o,logo,| > n%(logn). Divide |a] < n?

into the union of k,, subsets
{an}§l1’ such that, the distance between any two points in each subset is no greater than

d,. It is clear that we can achieve this with &k, < (logn)~'2n* < O(n?). Let Up(a,b,0,) =
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1(| P, — aQy — b| < |oplogoy,l), then

SUD|q|<n2,per Gn(a, b, 07)
— maxi<jch, [SWucn,, sen{Gala,b.00)} ]
< maxi<j<k, [SupbeR Gy(aj,b,0,) + SUP|q—a;|<6,,beR {IGula,b,04) — Grlay, b, Unﬂ}]

< maxi<j<k, [SupbeR Gn(aﬁ b, Un) + SUDP|q—a;|<d,,beR {% Zzzl |Uk(a’ b, UN) - Uk(ajv b, Un) | }} )
where a; is any fixed point in €2,,;. Let

Lpiy = knsup,ep P (supper Gula, b, 0,) > (C*/2)|0, log a,]) ,
Lz = knsupycp P (Supla—a/\één,beR(l/n) ZZ:l |Uk(a,b,0,) — Uk’(a/a b,0,)| > (C*/2)|o, log 0n|> :

Then we have
Lnl S Lnll + Ln12- (AS)

Step 2-1: We show L,;; < Cn~2.
In L,,11, forany a € R, let R} = P,—a(Q). Since Py, () are continuous, and 1?{ is continuous

and its density fra(r) = [ freq,(rlar) foi(@)dar = [ friq.(r + agilar) fo, (a)da, < C.
Therefore,
Gnla,b,0,) = 3 >0 W(|Rf: — 0] < |0y logoy)
= Fn(b+ |o,logo,|) — Fo(b— |onlogayl),

where £, is the empirical distribution for Rf, kK = 1,--- , n. Since the density of R is uniformly

bounded over a, a direct application of Lemma 1 of Chen et al. (2008) yields

p (Sup(l/n) > LR — b < |onlog o)) > (C*/2)|oy log0n|> <Cn™°,

beR P

for any a € R and for some fixed constant C*. By using the order of k,,, we have for some C*,
Lnyy < C*n7? (A.6)

for sufficiently large n.
Step 2-2: We show L,,1o < Cn~2.
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For any a € R, let

M,(a,bya’0,) =nt S0 1(Py—ad' Qp — b > —|o,log o, ) 1P, — aQy — b < —|o, log o),
Mps(a,bya’o,) =n S0 1(Py —ad'Qp — b < |o,log o, ) 1P, — aQy — b > |0, log 0,,]),
Mys(a,b,a’,0,) =n"tY 0 1(Pe— a' Qp — b < —|o,log 0,|)1(Py — aQr — b > —|o, log a,]),
My(a,bya’0,) =n S0 1Py —d' Qp — b > |onloga,)L(Py, — aQy — b < |0, log 0,.]);

N (b’ 0,) =n S0 H(—|o,logon| + 0,|Qk| > P — @' Qp — b > —|o, log a,.]),
Npa(bya',0,) =n Y0 1(=|onlogon| — 6,|Qk| < P —a' Q. — b < —|o, log o)),
Nus(b,a',0,) =030 1(|lonlogon| — 64| Qx| < P — a'Qr — b < |0, log o)),
Nus(b,a',0,) =n S0 1(|onlog o] + 0,|Qk] > P — a' Qi — b > |0, log a,)).

Then,

% ZZ:1 |Uk(a,b,0,) — Uk(al7 b, o)
= L5 |Uk(a,b,0,) — Up(a',b,0,)|Us(a’, b, 0,)
+L 5 |Usla, b,0,,) — Up(a',b,0,)|(1 = Ug(a',b,0y,))
< Myi(a,b,a’,0,) + Mpa(a,b,a’,0,) + Mys(a,b,a’,0,) + Mus(a,b,a’,0y,).

Note that for any «a, such that |a — a'] < 0Oy,
Pk —ale —b= Pk —an —b— (CL/ —CL)Qk - [Pk —an _b_5n|Qk|7Pk: —CLQk _b+5n|Qk|]
Thus, for any a, such that |a — a'] <6,

Mnl (aa b7 a/7 Un) + Mn2<a7 ba ala O_n) + Mn3(a7 b7 CL/, Un) + Mn4(aa b7 a/7 Un)
S an(b; a’) Un) + Nn2<b> ala gn) + Nn3(ba ala O-n) + Nn4(b7 aly Un)~

Therefore, for any a € R,

SUD|,_ o/ |<5, beR LS |Uk(a,b,0,) — Up(a',b,0,)|
S SupbeR an <b> a'la Un) + SupbeR Nn2<b7 ala Un) + SupbeR Nn3(b7 ala Un) + SupbeR Nn4(b7 ala Un)-
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Let L1z = kysupyep P (Noi(b,a',0,) > (C*/8)|0,1log ay|), i = 1,2, 3,4. Then

4
Lnz <Y Lo (A7)
=1

By the choice of ¢,

Npa (b, c,00)
< Supyer % Zzzl 1(—~|onlogon| + 0, Qx| > P — a/Qk —b> —|onlogo,|)1(|Qk] < n)
+5 2o 1(Qul > 1)
< SUPpep % 22:1 1(0 > Py — a,Qk —b > —lo,logoy,|)
+i 2okt LIQwl > ).

Therefore,

Lyio1 < kpsupyep P (supper 2 Y 0 1(0 > Py — d'Qp, — b > —|o, log 0,|) > (C*/16)|0, log 0,,])
+ho P (2370 1(|1Qk| > n) > (C*/16)|0, log 0,,]) -

Analogous to the proof for (A.4), we have L,15; < Cn~2. Similarly, the results hold for

Lpi2i,1 = 2,3, 4. Therefore, by (A.7), Ly12 < Zle Lo < Cn2.
By Step 2-1, Step 2-2 and Equation (A.5), we have

2
Lpy <) Lo <Cn72, (A8)
=1

which completes the proof of Step 2.
By Stepl, Step 2 and Equation (A.2), we complete the proof of Lemma 8.
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APPENDIX B

Proofs for the Main Results in Chapter 3

B.1 Proof of Theorem 3

The constants below vary line by line and depend only on fixed numbers, e.g. K, K, s1, 89, co.
We are going to show P (£(7')¢) — 0. Note that

(o ALY ) — Bl ) — (o, (Vi) — Bl (v )]}
P<5(T>)‘P<e£ 16— alls + v — w0l + [l — 1ol ¥ Ao >TA0>’

and

HH(Y;7 wl) - l90 (Y;, wl)‘

(B.1)
= |Sg*{(sz¢J - m?¢07j)§(:17 (pj — PO,j)f(:h (W(mz‘T’Yj) - W($?70,j))§(:1}|>

where Sy- is defined in Chapter 3.2.1, and 8™ is between @ and 0. ¢, 0 ; are the j’th component
of ¢ and ¢y, pj, po,; are the j’th component of p and p,, and v, 7, ; are the j’th component of
~ and 7,,.

For any postive number M, define © ;; = {9; [Tog M|l < K, ||0 — 6|1 < ]\7[} By C5,
|So||oe < G1(Y;) := C(|Y;|*> + |Y;| + C). Then for any given M > 0 and 0 € O,

Lo (Yi, i) — Loy (Yi, )]
< CGL(Yy) Zf:l(|m?(¢j - ¢0,j)| + |7T(33iT'7j) - W(wz‘T’Yo,j” + 1pj — po,l)
< CGL(Y) i (2] (05 = bo )l + 2 2] (v; = Yo)| + 105 = posl) (B.2)
< CKG(Y:) (|2l V 1) 220 (Il — ol + 105 = piol + 175 = voullh)
= CG1(Y)]|0 — 0¢l|s < CGL(Yi) M,
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where we use the fact of the boundedness of X and |(7(x] ;) — 7(x] v, ;)| < ZjK:l (2], —
x]v,,;)| forall j =1,2,--- K.
Let pg<}/;7 ml) = le(}/h ml) - E[ZG(Y;7 wl)]’ then

n

1

Va(8) = Va(B0) = — > _(05(Yi ) — pf, (Yi, ).
=1
Also define
€ 1 . C (&
Y<(0,00) = — > (05(Ysxs) = pj, (Y, x:))er,
i=1
where €1, - - - , €, 1s a Rademacher sequence independent of Y3, --- | Y.

Then for any given M > 0, we are going to establish the bounds for

By = B ([supgee, V0. 00)[] 1Y),
R = subgee,, /2 S (Vi) = g (Vi) -

By (B.1),

105(Yis i) — 04, (Yi, @) = [(lo(Vi, i) — Loy (Vi @) — E(lg(Yi, @) — lgy(Yi, 1))
< (1186+ oo + B[S0 100)) (=1 (12 (85 = B0) + K|2T (v; = Yo,)l + 105 = posl)
< CGLY)(Cjm (2] () — do)| + K2l (v; = 7o)l + s = posl)-

where the last inequality is because ||Sp-||.c < G1(Y;) := C(|Y;|*> + |Y;| + C) and we note the

fact that £'|G1(Y;)| < C when Y, follows logistic normal mixtures.

Write @; = (24)7_,, ¢j = (¢7’j>£:17¢0,j = (¢0,rj)£=1’ and Y= (%j)f:la'Yo,j = (7077"3‘){«):1
forj =1,2,---, K. Then,

|pg(Y;> wl) - pgo (Y;7 ml)'

< S I 20 (b — G0,5) CaranGr (V) + 3255, (05 = o) CGL(Y)]
+ 35 | 20 (g = 70,5 O K G (Y5).
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Let ¥, ,.(Y;,i) = CKx;,G1(Y;) and ¥;(Y;, 1) = CG1(Y;), then from the above, we have

\,Of)(Y;, wl) - pgo (Y;a wl)’
< I (B — G0 W (Vi )| + 320 | 520y (g — Yourg) Wy (Vi 6)| (B.3)
K .
+ > e (05 = pog)V5(Yi, ).

Let K,y := max, {[[Wjlln, [19]]n} = max;, {(n™! 300, 03, (V;,0)12, (0t 300, U3(Y3,4)) 2 ),
by Theorem 4.1 of van de Geer (2013), for any M > 0,

En::E<

Next, for any M > 0, we consider R,,.
Let Qjr = |¢rj — ¢077~j|, bjﬂn = |’77n]' — 70,7’j|a and C; = |p] — Pj,0|- By (B3), for any 0 c @M,

log

K = CMMNK, (B.4)

sup |Y(0,00)|| | Y| <CM
0cO;

Z:’L:l ‘pg(ma wl) - pgo (Y;> wl)P )
< S (S0 S DO )] S0, S By, (Vi) S 72, )])

. . . 2Kp+K
For notational convenience, we use uniform sequence {u;},_ 5 to re-label @y, bjr,cj, and
2Kp+K
re-label ||, |W;| by {h;};=F"". Then from the above, we have

> iy |5 (Yi, i) — G, (Yi, )|
< S (S (Vi) = S (S A 0) + 2 5 vV, i)h(Y;,)
= ST ST B (Y1) + X w Yy 2 (Y, i) e (Vi )
< ZQKHK ! Zz 1 hQ(Y;> Z) + Zl<l’ uyty Zi:l(th(Y;7 Z) + hlZ' (Y;> 2))

Note that max; ||ly||, = max;(n=t Y1 | h2(Y;,4))Y? = K,,, then
ST ST B (Y1) ey e Yo (R (Y d) + B (Y, 6)

< nZZKerK Kz +2n Zl<l’ UIUI’K2 — nKz( 2Kp+K Ul)2
< nK2:M?,
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where the last line is because

2Kp+K
Z u; = Z(|¢’f’] - ¢O,Tj| + |/y@77‘j — '}/077‘]") + Z |p‘7 — pj70| S M
=1 i -
Henceforth,
1 & -
Ry = sup | = |p5(Yi, @) — pf, (Vi @)|? < MK, B.5)

Note that the space for X’ is bounded, we have K,, < C||Gy||, = C {(n"? 320, G2(Y;)}"/*. By
(B.4) and (B.5), for any given M,

E, < CMM\||Gi]|, and R,, < CM||G1]|n. (B.6)

With (B.6), for any given M > 0,we are ready find an upper bound for

I _
P ( sup = > (p5(Vi, i) — pf, (i, @:))| > C')\OM> -

OeéM =1
By Chebyshev’s inequality, for any 8 € © ;7 with Ay = {log p/n}'/?,

< (C*P XM Var (l(Y;, @) — Loy (Y, ;)]
< (CQﬂ 10gpM2)_1 Z?:l E[<l9<Y;7 ml) - 190 (}/17 w2)>2]

By (B.2),
E[(l9(wa2) - leo(}/hmi))Q] < 02M2E[G%(}/Z>] < O*M27

where we note that F[G2(Y;)] < Cfori=1,2,--- n.

Therefore, there exists a constant C, such that, for any 8 € ) W

1 & c. - nC*M? c* 1
P - o Y;‘, i) — e Y;‘, i —)\ M S = - S -=. B7
(n;(Pe( i) = Py (Yi, i) > 5 ho ) Conlogpll2 ~ CPlogp = 2 (B.7)
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By symmetrization of Pollard (1984),

1< _ c. -
P < sup |—Z(p§(Yi,m,-) — pg,(Yi, x;))| > C)\OM> < 4P ( sup |Y(0,60)| > Z)\OM

06, "o 0cO
(B.8)
By Theorem 3 of Massart (2000), we have
1
P | sup |Y6,0) > C(E,+ XNR,) | < -. (B.9)
96(:31\-4 p
Then,
P (supgea,, [Y(8,60)| > $ 201 )
A * (810
< P ({supee,, [V4(8,60)] > oM} |G [n < €7} ) + P (IGalln > €*)
Note that by (B.6), ||G1||, < C* implies
C(E, 4+ XRy) < C(CXM||G1||n + CAM||G4]]n) < CAoM. (B.11)

Choose C in (B.10) large enough so that C'/4 > C, then from (B.11)

{y { sup [Y(6,60)| > C/\OM} Gl < C*}} C {y: sup [Y(60,60)] > C (E, + MoRy)

0cO 4 0€0 5,

Therefore by (B.9),

P ({suppee,, [Y(8.60)| > Sodl} N{IIGA]l < C°})

(B.12)
< P (supgea,, [Y(8,80) > C (Ey+ NoRy)) <p7.
Also note that,
BN > ElGI(Y)] _ C
p S _pl 2 2(Y,) — E|G2(Y; C| < &=l 1 < =, (B.13
(16l > ) (n;«;l( )~ BIGA(Y)) > ) < 2 PO € g 15
where we use the fact that E[G?(Y;)] and E[G1(Y;)] are uniformly bounded over i = 1,--- | n.
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Then, from (B.12),(B.13) and together with (B.10), we have

1 1
P sup |Y(0,00)] > O)\O <C (— + —) :
0c6 p n

Therefore from (B.8), there exists C such that for any given M > 0,

1 ¢ . 1 1
P sup [= (p5(Yi, i) — p, (Vi i) > CAM | < C (— + —) . (B.14)
0co,; i pn
Finally, to bound P(E(T')¢), we invoke the peeling device and choose the constant T in £(T") at
least as large as Cexp(1), where C is from (B.14).
Then, for any given M > 0, devide ©,; to O U {(:) M]} , where

Jj=12,
{Ou,} = {Osll1ogmllc < KM <10~ Olls < e 0},

and {ép} = {9; [log n||se < K, ||0 — 6|1 < )\0}. It can be seen that the number of these
sets is at most C'log n. Then, by (B.14),

1 P(E(T))
=30 {e(Yies)—Ellg(Yi,x:)])—(lo, (Yi,xs)—Ellg, (Y,
<P (SupeeéMj 130 (e (Yia)—Ello( \\072())\\1(90( )= Elloy (Yiz))}| C’exp(l)/\0>
P (SUPOG(:)F |%22;1{(lem,wi)fE[lem,w;)szeo(Yuzz) Bllgg (@)D} vy )

<2;P <SuPeeéM L3 (s (Vi, i) — pg, (Yi, ®:))| > C)\Oel—ﬂM)
+P (supgeo, | > (05 (Yi, s) — pg, (Yi, )| > CAJ)
< Clogn <5 +;) — 0,

and we complete the proof of Theorem 1.

Before proving Theorem 4, we list a useful lemma.

Lemma 9. For all 0 = (v, ¢,m), 0 = (4, ¢,m) € ©, and x € X, there exists a constant C,
such that

PNECAEA |2<02{w (@)},
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B.2 Proof of Theorem 4

It can be seen that on £(T"), we have

(0100) + Al blls + a1
< T [(116 = @olls + 115 = Yol + 1172 = 1moll2) V 0] + Mlllls + Aol yoll.

Following the arguments used for Theorem 3 of Stddler, Biihlmann and van de Geer (2010), we
discuss 4 different cases.
Case 1: If || — o1 + [V — ollr + |17 — moll2 < Ao, then we have,

2(0100) < TAZ+ Ml — dolli + Xal[7 — Yol < (M V A2+ TAg) o

Note that ||gAZ>Sf 1 < |7 = 7ol|1, we have,

1 < [l — |1 and ||y

£(0160) + 2(M — TAo)l|sell1 + 2(A2 — TAo) [ Al
< (A V A2+ Tho)Ao + 20\ V A — Tho)(1d — doll + 19 — ¥olln)
< AV Ao+ TAo)Ao + 200 V Aa — TAo)Ag
< 3(AV As + Tho)Ao,

and [[bs, — (o) |1 + 15, — (Yo)salls < 116 — olls + 114 = volli < Ao-
Case 2: When [|¢ — ylls + | — Yolls + [l = mpllz > Ao, on E(T) we have,

£(0160) + M|l + Xal|¥]
< TAo(llp — olls + 17 = ollr + 1111 = m0ll2) + Ailldollr + Aallvollr-

Note that

@l = [lps, |1 + [[Dsel 1,
Al = 17,1+ gl
1 — dollr = [[(@ — &g)sull1 + ||@sel]1,

1Y = ollr = (7 = o) sall + 1751
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On &£(T'), we have

£(0160) + (A1 — TAo)l|se |l + (A2 = Tho)|Fs5] |1
STAo([[(@ — do)si |l + 1[(F = Yo) sl + 11— moll2) + Ml[(d — @) s |1 + X2l [(F = Yo)s.ln
< (A +TX)|[(@ = bo)sy [ + (Mo +TXo)[(F = Yo)sall1 + T Aol |7 — 102

We study 3 sub-cases of Case 2.
Case 2.1: If (A1 + T'A0)[[(@ — @p)s, |1 + (A2 + TA)[[(FY = Yo)sullr < TAol[ —my
on £(T),

9, then

§(é|90) + (A1 — TAo)||c?>s;

1+ (A2 = TA0)|[Asg

1 < 2T Aol |1 — mgl 2

By (B.21), |7 — mol3 < Ge(0(@:)|fo(w:)), for i = 1,--- ,n. Then, || — nl[3 < c32(60]60)-
Therefore, by Cauchy-Schwarz inequality,

£(6]60) + (M — T)xo)||q3sg||1 + (A2 = TXo) |75l 11
§ 2T)\000 é(é|60)
< 2T2\2c2 + 32(0]6p).

Then, we can conclude that

£(0160) +2(\ — Tho)|| e 1 SATNECE. (B.15)

1+ 2(A — T)\O)H’?Sg

Also note (A A \a + TA0)(|[(@ — do)su |l + [|(F — o)ssl[1) < Tl — mgl|2, by (B.21) and
(B.15), we have

1@ = @o)sa |l + 113 = ¥o)ssll1 < (172 = o]l < e01/2(0160) < 2T,

Case 2.2: If (A1 + T)o)||(& — do)s. |1 + (N2 + TA)|[(F — Yo)sall1 > TXol|) — mo]|2, and
(AL +TA)[[(D — bo)si |1 = (A2 + T A)|[(F — Yo)s, |1, then on E(T),

£(6160) + (M1 — Tho)|| s 1 <A +TX)[(@ — do)s, -

1+ (A2 = TA0)|[Asg
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By the choice of \;, we have

16 = dw)silh = Idll < 2522106 — g < 6116 — s
By C4,
16— g I
<RSI (G B0 B — o)
= “2% > i 25:1 ’sz(&k — doi)|*.
By (B.21),

] (¢ — Poi)|* < ce(Bl@i)|bo(y)), fori=1,--- ..

]~

k=1

Therefore, ||(¢ — b)s, |12 < x2c26(0]6)). By Cauchy-Schwarz inequality,

£(0160) + (A1 = Tho)l|se |l + (A2 = Tho)|Fs5] 1
<A+ Tho)v/51] (@ — o)s |2
< 4(Ay + Tho)kcor/51\/E(0]66)
< 8(A\i + Tho)2siw2c2 + 12(0]0).

We then can conclude that

£(0]60) + 2(M — Tho)|| s L < 16(A + Tho)2s1s%c2. (B.16)

1+ 2(A2 = TAo)[|Ysg

Also note )
(A A X+ TA)(I[(@ = Po)si |l + 1Y = Y0)s )

< 2(A1 + TX0)I[(@ — o), |11 < 2(A\1 + Tho)ricoy/(0]60).
By (B.16), we have

M A X +TX)([1(@ = b)s, |11 + [1(F — Yo)s.ll1) < C(A+Tho)™.

Case 2.3: If (A + TXo)[|(& — do)su |l + (N2 + T (3 — Yo)ssll1 > Thol[H) — mg]|2 and
(AL +TA)[[( = bo) sy |1 < (A2 +TXo)|[(F — Yo)s. |1, then on E(T),

£(0160) + (M — Tho)llscl s + (A2 = TA) Al < 4002 + TA)(F = ¥o) s, -
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Similar to the arguments used in Case 2.2,

£(0160) + (M1 — TAO)H‘%Sle + (A2 = TAo)[ |75l
< A(A2 + TAo)|[(¥ = Yo)sal 1
<42 + TXo)v/32/|(F — Yo) sl

<4(A2 + T)‘O)’f\/g\/% Z?:l Zszl |331T(’3’k — Yor) %

By Lemma 9 and the argument in Case2.2, we continue the above inequality to have,

£(0160) + (A1 = TAo)l|se |1 + (A2 = Tho)|[F55] 1
<400 + Tho)sy/Ey/ 2 Sy S8 [ (B — Yo
<400+ TA)AVEC\E S0, S {n(@77,) — (@0}

< 4()\2 + T)\())HC()\/ SQC’\/ §<é|60>
< 8(Na + Tho)?w2c2C'sy + L(0]0p).

Therefore,

£(0160) + 2(\ — Tho)|| e 1 < 16(Ag + TAo)?K22C's,.

1+ 2(A2 = Tho)[|Ysg

Similar analog in Case2.2 yields

M A A2 +TX)([[(@ = bo)s, |11 + (7 — Yo)s,ll1) < CAa +Tho)™.

Combining the above 4 cases, we finish the proof of Theorem 4.

B.3 Proof of Lemma 9

Let ay = "4, by = x"~,. Note that 4, = v, = 0] ,, we have a; = by = 0. Since
0 = (v,0,m),0 = (4,¢,7) € ©, and x € X, and both © and X are bounded, we have

lag| < Q, |bg] < @, for k = 2,3,--- | K, for some finite number (). What we need to show is

then
K ebk 2
Qap — bk < C y
Z Z (Zk €% Zszl ebk>

=2
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for some C. We consider C' = 4K3 exp(8Q){exp(2Q) V 1}.
Let R = S exp(a;) and S = S0 exp(by). Since |ax] < Q, |by| < Q, we have
R < Kexp(Q)and S < K exp(Q). Therefore,

2
ek ebr
K - K
1 Zk:1 ek Zkzl el

]~

k

_ i (e“’“S — eka>2
p SR

] K
> S

1 K
- 2 a b
- K2e2Q +Z S - kR

k=2
Let t = maxXo<k<k |ax — bg|, and we just need to consider the case of ¢ > 0. Let j =

miHQSkSK {/'C . |ak — bk| = t}, then,
Case I: If | S — R| > {2exp(4Q)} ¢, by the choice of C, we have

b O 2 K

2
< Ct . 2
CZ (Z’f p % R lec(:l ebk) T K% e Rz 4K 2e10Q = 2 Kt Z(ak — by)

Case IL: If |S — R| < {2exp(4Q)} ', it follows

b

K o 2 C
(&
> (Lj _ bj 2'
21 (Zk e ak 2521 ebk> — K262Q(6 S—e R)
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Note that .S > 1, it holds

€S — % R|
= |(e% — e")S + e (S — R)|
> |e¥ — "] — |e" (S — R)|

t

) b Q
> |e¥ —e|—e 510

t

= |e%le® ™% —1| - 2030

Since |b;| < @), we have exp(b;) > exp(—(Q)). Also note that | exp(z) — 1| > exp(—2Q)|z| for
all |z| <2@Q and |a; — b;| < 2Q. It follows
t |6Lj — b]| t t

: b bi || a;—bj _
€5 — eV R| 2 fex]len ™ — 1] = 2e3Q = eQ  2e3Q T 2e3Q°

Furthermore, by the choice of C', we have

2
ebk C Ct? K
C — > ¢S —ehiT > Kt* > —by)
Z (Zk et Zszl ebk> = K262Q< € ) = AK2e8Q © ; ay—by,)

Based on Case I and Case I1, the proof of Lemma 9 is completed.

B.4 Proof of Theorem 6

There are only two classes of SCMM that we need to consider; one is for b < K| and the other
one is for b > K. The former one is for under-fitted models and the latter one is for overfitted
models. Hence, without loss of generality, we assume Ky = 3 and B = {2,3,4}. Then, it is

sufficient to show

P (SCMM(So(3)) < infjar<s SCMM(M(2))) — 1

. (B.17)
P (SCMM(Sy(3)) < infiyjcs SCMM(M(4))) — 1
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We first show the second statement in equation (B.17). Note that

P (SCMM(Sy(3)) > infjar<s SCMM(M(4)))
= P (SCMM/(Sy(3)) > min{inf|asj<s socnr SCMM (M (4)), infar<s g0 SCMM (M (4))})
< P (SCMM(So(3)) > infjarj<s, s SCMM (M (4)))
+P (SCMM(S0(3)) > infjar<s so¢e SCMM (M (4)))

= U1 + Uz
(B.13)
By definition,
SCMM(Sy(3)) = —13(So, Bs,) + 3]So|n®3+0 log p/n,
SCMM(M(4)) = —I4(M, 0,;) + 4| M|n®5+% log p/n.
Note that if Sy C M, |So| < |M]. Hence,
U, <P ( sup  14(M,0,) — 13(Sy, Bg,) > n’5t% logp/n) . (B.19)
|M|<s,SoCM

Let g™ (x,y|0) as the log of logistic-normal density function for K = i with covariates set M
given 0. Let fM(0) = Ey[gM (z,y|0)] and WM = maxgee f(0), where Ej is the expectation
taken under the truth. Note that the dimension for 0 is different for different < and M, however,
because M includes the true set of covariates, we know ngw = Wi” := W for all M. Another
important fact is that W can only be obtained at the true value 8, but W} may be attained at
multiple 6’s.

Note that

P (supjasi<sycar (1M, Oar) = 13(S9, B5,) > n05* log p/n)

. . (B.20)
< Cp®supg, e m<s P <l4(M, O1r) — 1°(S0, 05,) > 005t 10gp/”> :

For any M such that Sy C M, |M| < s, define RY = supyg ||[I*(M,0) — fM(0)|| and R} =
supgee |[I*(M, 8) — f37(6)]|. We show

14(M,0,) — 13(S,, 05,) < RM + RS, (B.21)
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Note that
I4(M, 001) — 1¥(S0, 05,) < |14(M, 0,) — w‘ + \13(50,1950) —wl.
By definition,
I4(M,0y) — W = I4(M, 0,;) — 1*(M,0,) + 1*(M,0,) — W > —RM
(M. Bar) — W = (M, By) — [1(03)) + f1(8,) — W < R}

Therefore, ‘l‘l(M, 0,) — W‘ < RM and similarly we have |?(S,, 0g,) — W‘ < R3. Then
(B.21) is proved. Together with (B.20) and (B.19), to prove U; — 0, it is sufficient to prove for
any M such that My, C M, |M| < s, we have

{ p°P (Ri” > %n0'5+51 logp/n) -0 (B22)

p*P (RY > In05logp/n) — 0

Let ZM(0) = g} (z;,y:|0)— f1'(0), then ZM ismean 0 and I*(M, 0)— M (0) = 2 37 | ZM(6).
By equation (B.2), we know |2 (z;, 4;|0)— g} (s, y:]0")| < CG1(Y;)]|0—0'||1, where G1(Y;) =
C(|Y;|*> + |Yi] + O). 1t is easy to verify that Ey(G4(Y;)) < C, and hence,

1£11(0)—127(0")] < Eo(lg3" (2, yi]0)— 92" (w1, 1:16)]) < CE(G1(Y;)]|6—8']1) < C||6—6'|]1.
Therefore

127(0) = ZM(0")] < 112"(8) = f1(6")] + 91" (wi, 1:10) — 94" (wi, il 6)] < CGL(YD)]|0 — |1
(B.23)

dn ) )
: where the maximum distance

Divide the parameter space © into d,, pieces, namely, {€2; }]:1,

for each piece is no more than n~!. Since © is compact with at most 8s dimension, we know
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d,, < Cn®. Then,

P (RY > in%5*%logp/n) = P (supgee |+ Yory Z1M(0)] > 051 logp/n)

= P (maxj<a, subpeg, |1 20, ZM(8)] > 1n 0 log p/n)

< On® max;eq, P (supgeﬂj LS ZM(6)] > Ln®5 log p /n>

< Cn*max;<q, P(|5 220, 2" (00,) |1+

SUPgeq; |25 ZM(0) — 2 50, ZM(00,)| > 5n*P 0 log p/n)

< Cn®* maxj<q, P (12300, ZM(0g,)| > in®5T logp/n) +
Cn® max;<q, P (Supeegj | 2o ZM(0) — 1 300, 2 (8g,)| > qnoot 1ng/n>
= Ly + Lo,
(B.24)
where Oq; is a point in €2;.
By (B.23),

Ly < Cn® maxj<q, P (237, G1(Y))||0q, — 6]|1 > Cn®* Tt logp/n)
< Cn®P (230 Gi(Y;) > Cn® ot log p)
< CnP (LY, GY)L(Yi| < VETSTogD) > Cr* log)
+CnoP (U, (Il > vI05Tog7})

= L21 + L22.

Note that if Y follows standard normal, P (|Y| > t) < Cexp{—t*/2} for large t. The same
results can be readily extended to the mixture normal case by noting that the component means

and variances are uniformly bounded over x € X'. Therefore,

Loy < Cn* TP (Y] > /20slogp) < Cn®*exp{—10slogp} < Cp'~%.

Since G1(Y;)1(]Y;| < v/20slogp) are i.i.d. and bounded by 20s log p, and also note that
E(G1(Y;) < C = o(n®*logp) and E(G(Y;)) < C = o(n®5*1logp). By Bernstein
inequality,

3 (log p)
Cn(logp)? + Cnt>+91(log p)?

Ly < On® exp {—C’ } < On® exp{—n}.
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Hence,
Ly < Ly + Loy < C(p' ™% 4+ n® exp{—n}). (B.25)

Next, for any 6 € ©, we calculate P (|= > | ZM(8)| > 1n’5™ log p/n). Note that
4

21(0) = gt (v, 10) ~ 12'(8) = o (Z T T o, {00 =2 ) }) o),

2
k=1

and since © is compact, f;(0) is uniformly bounded over 8 € ©. Then for large p,

1ZM(0)] > Clogp = ]10g (o e exp {—M})] > Clogp

N Zi:l w(m\T/}T,:)pk exp {_(pkyfachfbk)Q} < Op!

= exp {——(ply_§T¢1)2} < Cp™t = |y| > Cy/logp,

where the last line is again by noting that ® is compact and X" is bounded. For any 8 € O,
choose C large enough, such that {|Z(8)| > C'logp} C {|y| > v/20slogp}, then

P (1230, ZM(6)] > in®5+0 log p/n)

< P(|1230, Z2M(0)1(12M(0)] < Clogp)| > tn®*0logp/n) + P (U, {|ZM(8)] > Clogp})

< P (|23, Z2M(0)1(|1Z}(8)] < Clogp)| > in"***logp/n) + P (Ui {|Yil > v20sTog p})
=: L11 + Lqo.

(B.26)
From the bound of Ly, we know L, < Cp!=105,
Note that ZM(0)1(|ZM(0)| < Clogp) are i.i.d. and bounded by C'log p. In order to use
Bernstein inequality, we need to show E(ZM(0)1(|ZM(0)] < Clogp)) = o(n®>*t logp/n).
Note that E(Z(0)) = 0, then it is equivalent to show

E(ZM(0)1(12}(8)| > Clogp)) = o(n** " logp/n). (B.27)

72



Note that

E(Z(0)1(1Z)(8)| > Clogp))

< | (log (Sohoy T2 exp { - X9 ) 1120 (6)] > C'logp) )|
HAMO)E(( 22 (0)] > Clogp))|

< | (1og (ko "Xiget exp { -0t Y 1)y > 305 Togp) )| (B28)
R IBAY] > vEsTos )

= | (tog (She, 055005 exp { — 0XIR 1) 1)y > /205 Tog) )|

+0 7108)

where the inequality holds because {|Z(0)| > Clogp} C {|Yi| > v/20slogp} and the log
likelihood function is negative when |Y;]| is large.

Note again the compactness of @, when |Y;| is large we have

Zk 1 XA”“ exp{ o X% }>Zk 1X—7M6XP{ CY?} > Cexp{~CY?}.

27r r
Then,
T )2
| (tog (3o, T exp { - X0 11y > 205 Togp))
< [log (C'exp {~CY?*})| 1(|Yi| > +/20slog p)
< ([log C| + CY?)1(|Yi| > v/20slogp).
Thus,

‘ <log<2k L XZf exp{ M}) 1(]Y;] > +/20s1log ))’
< B((|log C| + OY2)1(1¥] > y205Togp) 8.29)
= CE(Y?1([Y;| > v/20sTogp)) + o(p™'%).

When Y is standard normal, direct integration yields E(Y?1(Y > Cy/logp)) < C/logp/p. It
can be seen that the same result can be obtained when Y follows mixture of normals. Hence by
(B.28) and (B.29),

|E(ZM(0)1(12}(0)] > Clogp))| < O(Iogp/p) + o(p™™) = o(n®*** log p/n).

Therefore (B.27) is proved and thus we have E(Z(0)1(]Z(0)| < Clogp)) = o(n®>* logp/n).
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We then use Bernstein inequality to the sequence of {ZM(6)1(|ZM(6)| < C'logp))}™, and

we have

77414—25 o 2
Lll S exp {_Cn(logp)Q—i-nlO('{r""g‘gl))(logp)Q} S exp{_n251}_ (B30)
By (B.26),
P (1230, ZM(0)] > 1n05t0 log p/n) < exp{—n?1} 4 p!-10s,
Hence

Ly = Cn® max;<q, P (|1 30, ZM(0g,)| > 1n05t9 logp/n)

B.31
S Cn88(exp{_n251} +p1_108). ( )

Together (B.31), (B.25) with (B.24), we have,

p*P (R > 1n05+9 log p/n) < p*(Ly + Ly)
< C«ps(nss(exp{_nzél} + pl—los) + p1—2s + n8s exp{—n})
< Op*(exp{—n?" + 8slogn} + 2p*~2 + exp{—n + 8slogn}) (B.32)
= C(exp{—n®" + 8slogn + slog p} + 2p'~* + exp{—n + 8slogn + slog p})
— 0,

where the last line is because p < n® for some C.

By (B.32), we have proved the first statement in (B.22). Similar arguments yield the second
statement in (B.22). Hence U; — 0.

Next we are going to show U; — 0. Note that

SCMM(So(3)) — infar<s,so¢ 00 SCMM(M(4))
< —13(So, éso) + 3[So[n** 0t log p/n + SUD|pr|<s,S07 M (M, éM)
= —W + supasi<s, 50 M I*(M, 9M) + 3|S5+t log p/n + 0,(1)
< =W+ sup i< sog m 11 (M, 011) — 2 (0u)} (B.33)
+ SUD|p1|<s,50¢ M fi\/[(éM) + 3’5’0‘n0'5+61 log p/n + 0,(1)
< =W + sup) i< sog mr B2’
+ SUD| 7)<, 507 M WM + 3|Sp|n®5 % log p/n + 0,(1).
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By condition (3.15) in Theorem 6, there exists a positive constant C', such that

W—  sup WM>cC.

|M|<s,SoZ M

Hence by (B.33),

" 0.5+ (B.34)
< P(supjpsj<s.sogm Ba" > C = 3[SpIn”> "1 logp/n — 0,(1)) — 0,

where the last line is by noting (B.22) and the fact that C' — 3|Sy|n®**° logp/n — 0,(1) >
n5+91 log p/n eventually.
By (B.18), we proved the second statement in equation (B.17). Similar arguments in proving

Uy — 0 yields the first statement in equation (B.17). Hence, we proved Theorem 6.
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