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Abstract 

X-chromosome inactivation equalizes X-linked gene expression between the 

mammalian sexes by epigenetically silencing genes of one of the two X-chromosomes in 

females. Once established, the transcriptional states of the inactive and active X-

chromosomes are faithfully transmitted across many cell division cycles, making X-

inactivation a paradigm of epigenetic inheritance. In mice, the transcriptional fates of the 

two X-chromosomes are thought to be established by opposing long non-protein-coding 

(lnc) RNAs, Xist and Tsix. Xist is exclusively expressed from the inactive X-

chromosome and is postulated to trigger X-inactivation. Tsix RNA is expressed solely 

from the active-X-chromosome and is believed to prevent X-inactivation by repressing 

Xist.  

Prior work by our group has shown that X-linked gene silencing is able to initiate 

in the absence of Xist RNA, calling into question current models of X-inactivation, 

including the role of the Tsix RNA. Here, I examined the spatial and temporal 

requirement of the Tsix RNA in X-inactivation. By developing a protocol to image 

nascent RNA expression in intact mouse embryos, I discovered that Tsix is dispensable 

during the initiation phase of X-inactivation. Instead, Tsix is required to prevent Xist 

expression and X-inactivation once X-inactivation has occurred normally.  

Through these data, I hypothesized that novel X-linked lncRNAs and proteins 

contribute to X-inactivation. I therefore developed an allele-specific RNA-Seq pipeline to 
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catalog lncRNAs and proteins that are expressed from the inactive X-chromosome, which 

my data predict are candidate regulators of X-inactivation. I also leveraged this RNA-Seq 

pipeline to profile X-inactivation defects in mouse trophoblast stem cells (TSCs) lacking 

EED, a core subunit of Polycomb Repressive Complex 2 (PRC2) that is thought to 

silence X-linked genes. Unexpectedly, I found that only a small subset of genes is 

derepressed from the inactive X-chromosome in Eed-/- TSCs. In wild-type TSCs, these 

genes are characterized by low-level transcription and open chromatin. Thus, PRC2 

prevents induction of basally transcribed X-linked genes but is dispensable in the 

repression of stringently silenced X-linked genes, providing a novel mode of epigenetic 

transcriptional repression by PRC2. Future work will characterize novel regulators of X-

inactivation discovered through my RNA-Seq pipeline. 
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Chapter 1: Introduction 

 

Portions of this chapter have been previously published as part of a review in Chromosome 

Research as “Long non-coding RNAs at the X-inactivation Center”, by Emily Maclary, Michael 

Hinten, Clair Harris, and Sundeep Kalantry (Chromosome Research. 21, 601–614 (2013)).  

 

1-1: Introduction to Epigenetic Regulation and X-chromosome Inactivation 

 Inside the nucleus, DNA is wrapped around octamers of histone proteins and packaged 

into chromatin. Both the DNA itself and the histones it wraps around can be covalently modified 

without altering DNA sequence; DNA can be methylated at CpG dinucleotides, whereas histone 

tails can be modified with a wide variety of covalent modifications, including methylation, 

acetylation, phosphorylation, ubiquitylation, and sumoylation (Kouzarides, 2007). These histone 

modifications can influence gene expression patterns by altering DNA accessibility to 

transcriptional machinery. Some histone modifications can be heritably propagate transcriptional 

patterns through multiple mitotic cell divisions, or even through meiosis, i.e., transgenerationally 

(Campos et al., 2014). These mitotically or meiotically heritable gene expression changes are 

considered “epigenetic”, in that they alter gene expression in a transmissible manner without 

changing the underlying DNA sequence. Although many of the enzymes that catalyze covalent 

modifications of DNA and histones have been identified, the cellular factors that trigger and 

maintain epigenetic transcriptional states remain largely unknown (Bonasio et al., 2010). 
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Understanding how epigenetic regulation is established and inherited is essential, as epigenetic 

regulation plays a critical role in a wide variety of biological processes, including embryonic 

development, aging, and disease (Sauvageau and Sauvageau, 2010).  

X-chromosome inactivation is a paradigm of epigenetic regulation that offers a window 

into the mechanisms that establish and maintain epigenetic gene expression profiles in cells and 

their descendants (Lee, 2010; LYON, 1961). During X-inactivation, genes on one of the two X-

chromosomes in XX female mammals are transcriptionally silenced in order to equalize the 

dosage of X-linked genes to that expressed in XY males (Payer and Lee, 2008). Thus, X-

inactivation results in one of the two X-chromosomes within a shared nucleus becoming 

inactivated, while the other X-chromosome remains active. Once established, with a few notable 

exceptions, the transcriptional profiles of the two X-chromosomes are maintained through 

numerous rounds of cell division, essentially for the life of the organism. X-inactivation is an 

epigenetic process that occurs in all female mammalian cells, and the kinetics of X-inactivation 

are well-defined in the developing embryo, making X-inactivation an experimentally tractable 

model system for studying the factors involved in epigenetic regulation (Lee, 2010).  

The study of X-chromosome inactivation originated with the observation in 1949 that 

female, but not male, feline cells harbored a dark structure near the nucleolus (Barr and Bertram, 

1949). This structure, called a “Barr body”, was later demonstrated to be one of the X-

chromosomes within a female cell (OHNO et al., 1959). In 1961, Mary Lyon then proposed, 

based on observation of coat color patterns in mice, that this Barr body was not just condensed, 

but was a genetically inactivated X-chromosome (LYON, 1961). Lyon’s hypothesis was borne 

out by early studies of human females bearing mutations in the X-linked gene G6pdx (Deys et 

al., 1972; Kattamis, 1967).  
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Figure 1.1: Two types of X-inactivation in the mouse embryo. Initially, beginning around the 2-4 cell stage, 
all cells in the developing mouse embryo inactivate the paternally-inherited X-chromosome. Epiblast precursor 
cells (green) later reactivate the paternal-X in the peri-implantation embryo; these cells then unergo random 
inactivation. Extra-embryonic cells (gray) maintain imprinted inactivation of the paternal X-chromosome. 
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1-2: Identification and Mapping of the X-inactivation Center 

A key set of insights in X-inactivation came through chromosomal translocations and 

truncations involving the X-chromosome (Fig. 1.2). Through the study of these aberrant X-

chromosomes in mice and mouse embryonic stem cells (ESCs), as well as in human disorders, a 

region on the X-chromosome was pinpointed as being both necessary and sufficient to bring 

about inactivation. One of the most well-studied translocations is the mouse T16H Searle's 

translocation, a reciprocal translocation between the X-chromosome and chromosome 16 (Eicher 

et al., 1972). Cytological assessments suggested that only one of the translocation products, 16X, 

but not the other, X16, can undergo inactivation (Rastan, 1983; Takagi, 1980). Based on these 

observations, a region required for X-inactivation – the X-inactivation center - was predicted to 

reside distal to the T16H breakpoint (Rastan, 1983). 

A second mutation, termed HD3, in mouse ESCs truncated the X-chromosome but did 

not impede X-inactivation (Rastan and Robertson, 1985). Thus, the X-inactivation center was 

delimited to the interval between the T16H and HD3 breakpoints. Initial banding studies of these 

chromosomes followed by comparative genetic analyses of multiple rearranged X-chromosomes 

in mice, including the T16H translocation, narrowed the X-inactivation center to roughly 8 

centimorgan (Brown, 1991; Keer et al., 1990; Rastan and Brown, 1990). These mapping 

experiments pinpointed the mouse T16H breakpoint to lie just proximal to the Zfx locus (Keer et 

al., 1990). Mapping the HD3 breakpoint would have similarly delineated the distal end of the X-
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inactivation center, but the instability of this particular ESC line seems to have precluded 

molecular mapping (Brown, 1991).  

The human X-inactivation center was also defined by X-chromosomal abnormalities. In 

humans, the X-inactivation center was mapped distal to the AR, CCG-1, RPS4X, and PHKA loci 

and proximal to PGK1 (Brown et al., 1991a; 1991b). A comparison of the X-inactivation center 

regions of mice and humans demonstrated that they both belonged to a conserved linkage group 

(Brown, 1991). 

Figure 1.2: Schematic of Searle’s Translocation, Used to Map the X-inactivation Center. Searle’s 
translocation, a reciprocal translocation between the X-chromosome and chromosome 16, allowed for mapping 
of the minimal region required for a chromosome to undergo X-inactivation. 
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The X-inactivation center is now known to contain numerous genes, including a number 

of long non-protein coding RNAs (Fig. 1.3) (Augui et al., 2011; Maclary et al., 2013). The most 

prominently studied gene within the X-inactivation center is the X-inactive specific transcript, or 

Xist, and the antisense partner of Xist, Tsix. 

!

Figure 1.3: The X-inactivation Center. The X-inactivation center spans a 700 kb (~8 centimorgan) region, and is 
home to numerous protein coding genes (gray) and long non-coding RNAs (colored) 

1-3: The Xist Long Non-Coding RNA 

XIST was first identified based on hybridization of a human cDNA probe to female but 

not male samples (Brown et al., 1991a). This cDNA clone intriguingly mapped to the human X-

inactivation center (Brown et al., 1991a; 1991b). The sex-specific expression and the location of 

the transcript within the X-inactivation center made XIST a compelling candidate regulator of X-

inactivation. The mouse homolog, Xist, was identified shortly thereafter, and was similarly 

expressed from the inactive X-chromosome (Borsani et al., 1991; Brockdorff et al., 1991). Xist 

RNA was subsequently found to physically coat the inactive-X chromosome, and studies in mice 

demonstrated that Xist RNA remains associated with the inactive-X during mitosis (Figure 2) 

(Brown et al., 1992; Clemson et al., 1996; Jonkers et al., 2008). The presence of Xist on the 

mitotic inactive-X supports its role as a transmitter of the epigenetic state of the inactive-X from 

one cell division cycle to the next. In human cells, however, Xist RNA appears to dissociate 

from the X-chromosome during mitosis (Clemson et al., 1996; Hall and Lawrence, 2003). 

Xist has been shown to be instrumental in both the imprinted and random forms of X-

inactivation in mice. At the onset of both imprinted and random X-inactivation, Xist RNA is 

induced from and coats the X-chromosome that will become inactivated, thus suggesting a causal 
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role in inactivation itself. In agreement, mutational studies have shown that Xist is essential for 

both imprinted and random X-inactivation in mice. Embryos that inherit a paternally transmitted 

Xist mutation die due to compromised extra-embryonic development, consistent with a defect in 

imprinted X-inactivation (Kalantry et al., 2009; Marahrens et al., 1997). Analysis of the epiblast-

derived tissues, which have earlier undergone random X-inactivation, indicates that all fetal cells 

harboring a heterozygous Xist mutation will preferentially inactivate the wild-type X-

chromosome (Kalantry et al., 2009; Marahrens et al., 1998). In differentiating female ESCs, 

which are derived from the epiblast lineage and are the favored in vitro random X-inactivation 

model system, X-inactivation is also biased in cells heterozygous for a null Xist mutation (Penny 

et al., 1996). These biases in random X-inactivation suggest that Xist may be required in cis to 

bring about silencing of the chromosome from which it is expressed. However, Xist-

heterozygosity biases the choice of which X-chromosome becomes inactivated, such that the 

wild-type X is preferentially selected to become inactivated; the mutant-X therefore never has 

the option of being inactivated. Thus, strictly speaking, the biased choice step, which necessarily 

precedes random X-inactivation, precludes knowing if Xist is required for inactivation itself. 

The most convincing evidence supporting a role for Xist in triggering silencing is via 

transgenes that ectopically express Xist (Plath et al., 2002; Wutz and Jaenisch, 2000; Wutz et al., 

2002). In cultured ESCs, Xist transgenes can variably induce silencing of reporter constructs or 

endogenous genes surrounding the insertion site. Silencing is dependent on the genomic site of 

integration, the expression level, copy number of the transgene, as well as the inclusion of Xist 

regulatory regions present in the transgene. For example, a multi-copy 450 kb mouse transgene 

has been shown to induce Xist RNA expression and coating, as well as silencing of a LacZ 

reporter within the transgene in male ESCs (Lee et al., 1996). Additionally, fibroblast cells that 
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were derived from adult chimeric mice generated by injecting the transgenic ESCs into wild-type 

embryos displayed silencing of four endogenous autosomal genes spread across the length of the 

transgenic chromosome (Lee and Jaenisch, 1997; Lee et al., 1996). The conclusion in these 

studies was that the entire X-inactivation center function could be recapitulated by the 450 kb 

transgene sequence. Of note, however, is that haploinsufficiency for large regions of autosomes, 

which would occur in these cells if the Xist transgene resulted in extensive silencing of 

endogenous autosomal genes, typically results in early embryonic lethality, as suggested by 

studies of monosomic embryos and embryos harboring large chromosomal deletions (Baranov, 

1983; Magnuson et al., 1985). The extensive contribution of transgenic ESCs to adult chimeric 

mice, which were estimated to show up to 90% chimerism, suggests that silencing of endogenous 

genes by this transgene may be weak (Lee and Jaenisch, 1997; Lee et al., 1996). Whereas multi-

copy transgenes can bring about Xist induction and potentially gene silencing, single copies of 

similarly large transgenes are unable to induce silencing in ESCs. A single-copy 460 kb X-

inactivation center transgene including Xist showed negligible Xist induction in a number of 

adult cell types and was insufficient to silence a linked LacZ reporter cassette in mice, leading to 

the conclusion that the transgene does not contain sequences within it to induce Xist expression 

(Heard et al., 1996; 1999). The same animals, however, display imprinted Xist expression in 

early mouse embryos; Xist is only induced when the transgene is paternally-inherited (Okamoto 

et al., 2005). Ectopic Xist RNA expression and coating in this study correlates with 

transcriptional silencing of a gene within the transgene construct; whether endogenous genes 

near the insertion site are also silenced, though, is not known. The fact that the development of 

these animals is not defective argues against large-scale inactivation of endogenous loci that 

reside at or near the transgene integration site. Moreover, given the failure of transgenic Xist 
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expression in cells that undergo random X-inactivation, the ability of the same transgene to 

express Xist and silence during imprinted X-inactivation is paradoxical. This differential 

silencing ability may suggest divergent mechanisms that influence both the expression and 

function of Xist RNA during imprinted versus random X-inactivation. Though large transgenes 

that harbor the Xist locus as well as other elements of the X-inactivation center are not always 

sufficient to induce silencing, single-copy inducible Xist transgenes often are. For example, 

inducible Xist cDNA transgenes targeted to the Hprt locus on the X-chromosome or on 

autosomes are able to trigger silencing of endogenous genes (Jiang et al., 2013; Wutz and 

Jaenisch, 2000; Wutz et al., 2002). This silencing function may, however, be due to the 

artificially high levels of Xist expression from these inducible transgenes. Some evidence also 

suggests that ectopic Xist induction is able to silence genes in some cell types in vivo, not just in 

cultured cells. In transgenic mice harboring an inducible Xist transgene, Xist induction is able to 

lead to ectopic X-inactivation in immature hematopoietic precursor cells, but not hematopoietic 

stem cells or mature cells (Savarese et al., 2006). Similar to studies of Xist transgenes in ESCs, 

this work suggests that there is a window of opportunity during development when Xist RNA is 

able to silence; this silencing function is closely linked to the differentiation state of cells as well 

as, importantly, to the level of Xist expression (Savarese et al., 2006; Wutz and Jaenisch, 2000). 

  Xist is thought to function by recruiting proteins to the prospective inactive-X that 

modify chromatin structure and alter gene expression. Xist RNA expression is followed by the 

formation of a repressive chromatin state that excludes transcriptional machinery from the 

inactive-X, potentially by recruiting chromatin-modifying proteins (Chaumeil et al., 2006). 

These proteins are thought to help establish the heterochromatic and transcriptionally inert 

chromatin state characteristic of the inactive X-chromosome.  
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1-4: Tsix RNA: an Antisense Regulator of Xist Expression 

Following identification of Xist, an anti-sense transcript to Xist, called Tsix, was 

identified in the mouse model system. This antisense RNA was discovered following the 

observation that the region 3' to Xist influences X-chromosome counting, a process during which 

the cell senses the number of X-chromosomes present and determines how many, if any, to 

inactivate (Clerc and Avner, 1998). In the seminal study by Clerc and Avner, XX female cells 

inactivate a single X-chromosome, as expected. However, XO female cells that have lost the 

wild-type X chromosome and which also harbor a 65 kb deletion 3' of Xist on their intact X-

chromosome induce Xist RNA and initiate silencing of their single X-chromosome. The 

expectation is that cells with a single X-chromosome should not activate Xist expression or 

undergo X-inactivation. Thus, in the absence of the Xist 3' region, the cells failed to correctly 

identify the number of X-chromosomes present (Clerc and Avner, 1998). The 65 kb deleted 

segment, therefore, normally controls X-chromosome counting by suppressing Xist. 

Analysis of the Xist 3' region using RNA fluorescence in situ hybridization detected an 

RNA anti-sense to Xist in both male and female ESCs (Lee et al., 1999a). The transcript, termed 

Tsix (Xist spelled backwards) is expressed in females from both X-chromosomes prior to X-

inactivation; however, upon differentiation of female ESCs that triggers X-inactivation, Tsix is 

downregulated from the Xist-expressing inactive-X and is expressed only from the active X-

chromosome. Following the onset of X-inactivation, Xist and Tsix thus show mutually exclusive 

expression from the inactive and active X-chromosomes, respectively. Unlike Xist, however, 

Tsix RNA is expressed at relatively low levels and does not coat the active X-chromosome. Tsix 

transcription has been proposed to repress Xist at multiple key developmental time points. First, 

due to the early expression of Tsix, the Tsix RNA has been nominated as the instrument of the 
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oocyte-derived imprint that inhibits Xist expression from the maternally- inherited X 

chromosome during the onset of imprinted X-inactivation (Lee, 2000; Sado et al., 2001). 

Continued expression of Tsix is then posited to keep the maternal-X from undergoing X-

inactivation in the extra-embryonic tissues of the developing embryo that maintain imprinted X-

inactivation. This function of Tsix is clearly illustrated by the death of embryos harboring 

maternally-inherited Tsix mutations due to failed development of the extra-embryonic tissues 

(Lee, 2000; Sado et al., 2001). 

Tsix also plays a prominent role in random X-inactivation. As part of its role as a 

repressor of Xist, Tsix has been proposed to function in the counting and choice processes of 

random X-inactivation. Random X-inactivation is thought to be a linear three-step process. In the 

first step, counting, the cell senses how many X-chromosomes it has (Grumbach et al., 1963; 

LYON, 1962). If and only if there are two or more X-chromosomes does the choice step ensue. 

During the choice step, the cell selects which X chromosome will remain active, and which will 

be inactivated. Following the choice step, X-inactivation initiates (Rastan, 1983). Evidence for a 

counting step in X-inactivation is supported by observations of cells harboring abnormal 

complements of sex chromosomes. Whereas normal XY male cells do not undergo X-

inactivation, XXY nuclei inactivate one of their two X-chromosomes. Furthermore, in females, 

diploid cells with more than two X-chromosomes will inactivate all but one X, but XO cells do 

not undergo X-inactivation. This suggests that inactivation occurs, in part, as a function of the 

number of X-chromosomes in the cell. The autosomal complement also plays a critical role in X-

chromosome counting. Whereas diploid XX cells always have a single active and single inactive 

X-chromosome, tetraploid cells maintain two active- and two inactive-Xs (Monkhorst et al., 

2008; Webb et al., 1992). Tetraploid cells can therefore tolerate two active Xs. This suggests that 
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both X-linked and autosomal factors contribute to X-chromosome counting, and mediate the 

decision as to whether to undergo X-inactivation or not. 

Tsix was initially implicated as a counting factor based on a series of deletions adjacent 

to, and upstream of, the Tsix locus. These mutations can lead to aberrant Xist induction in 

differentiating XO female and XY male ESCs, a phenotype that is considered indicative of a 

counting defect (Clerc and Avner, 1998; Cohen et al., 2007; Vigneau et al., 2006). The DXPas34 

repetitive sequence, located adjacent to Tsix exon 3, has been identified as a regulator of 

counting based on these genetic studies. DXPas34 functions to enhance Tsix expression, thereby 

influencing X-chromosome counting (Cohen et al., 2007; Navarro et al., 2010). 

Tsix is also suggested to control the choice of which X-chromosome will be inactivated. 

In Tsix-heterozygous female embryos and ESCs, the Tsix-mutant X-chromosome is observed to 

always be the inactive-X (Lee and Lu, 1999; Sado et al., 2001). There are two models that could 

explain this bias. The first and most popular model is a primary non-random X-chromosome 

choice model, where the Tsix-mutant X is always chosen for inactivation due to ectopic Xist 

induction from the mutant-X at the onset of inactivation (Lee, 2000; Sado et al., 2001). A second 

possibility that could give rise to the observed bias is that random X-inactivation occurs 

normally, with both the wild type and the mutant X-chromosome equally likely to undergo 

inactivation. Subsequently, Xist is ectopically expressed from the Tsix mutant X-chromosome if 

the wild-type X is initially chosen for inactivation. These cells would then rapidly be selected 

away due to two inactive Xs. Since inactivation of the wildtype X-chromosome is not observed 

at significant rates in differentiating Tsix-mutant ESCs and embryos, the model of primary non-

random choice is favored. Incidentally, a secondary cell-selection effect has been invoked to 

explain X-inactivation patterns in Xist-heterozygous ESCs (Penny et al., 1996). 
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1-5: Beyond Xist and Tsix: Other lncRNAs at the X-inactivation Center 

In addition to the Xist and Tsix lncRNAs, the X-inactivation center is home to five 

additional lncRNAs: RepA, XistAR, Ftx, Jpx/Enox, and Tsx. The roles of these lncRNAs are 

less well studied than the Xist and Tsix RNAs; however, all have ties to regulation of X-

chromosome inactivation. Two of these lncRNAs, RepA and XistAR, reside completely within 

the exonic sequence of the Xist gene itself (Sarkar et al., 2015; Zhao et al., 2008). The remaining 

three RNAs flank the Xist/Tsix genomic locus.  

Within Xist RNA, there are a number of small repeat units. One of these repeats, the “A” 

repeat, is located at the 5’ end of Xist and has been found to be expressed as a distinct 

transcriptional unit (Zhao et al., 2008). This RNA, termed RepA, spans from basepair 300 to 

basepair 1,948 of Xist exon 1, and is transcribed in the same direction as Xist. RepA RNA 

interacts with chromatin modifying proteins recruited by Xist RNA such as PRC2, and shRNA 

knockdown of RepA leads to reductions of both Xist RNA expression and enrichment of 

repressive histone modifications on the inactive-X (Zhao et al., 2008). Thus, the RepA 

transcriptional unit may play a role in recruitment of chromatin modifiers and establishment of 

silencing marks, however, polycomb group proteins can be recruited to Xist in the absence of 

RepA (Plath et al., 2003), suggesting that RepA is not the only sequence involved in recruitment 

of chromatin modifiers.  

The XistAR RNA, like RepA, is a distinct transcriptional unit wholly contained within 

Xist exon 1; unlike RepA, XistAR is transcribed in the antisense direction from Xist (Sarkar et 

al., 2015). Targeted disruption of XistAR leads to disruption of Xist RNA expression in cis 

during the initiation of X-inactivation, suggesting that XistAR transcription is required to drive 

Xist RNA expression, perhaps functioning as an enhancer RNA (Sarkar et al., 2015).  
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Upstream of the Xist locus is the 63kb Ftx RNA, which is thought to play a role in 

activating Xist transcription (Chureau et al., 2011). Ftx escapes X-chromosome inactivation, and 

thus is expressed from both the active and inactive X-chromosomes, though expression levels 

from the inactive-X are lower (Chureau et al., 2011; Kunath et al., 2005; Mak et al., 2002). 

Genetic deletion of Ftx in male ES cells disrupts the expression of nearby genes, and 

intriguingly, appears to preferentially effect adjacent genes that are transcribed in the same 

orientation, including Xist (Chureau et al., 2011). This ablation of Ftx also leads to changes in 

DNA methylation and Histone H3 at lysine 4 dimethylation at the Xist promoter, suggesting that 

Ftx plays a role in regulating the chromatin environment at the Xist promoter (Chureau et al., 

2011). The precise role of Ftx in X-inactivation currently remains unclear, as disruption of Ftx in 

female cells has not been assessed, and prior genetic studies have relied on deletions of a large 

genomic segment, which could itself affect chromatin structure and local gene expression, 

regardless of the role of Ftx RNA expression.  

Approximately 40kb from the 3’ end of Xist is Tsx, or testes-specific X-linked, ncRNA 

(Simmler et al., 1996). Tsx is highly expressed in the testes, but is also expressed at lower levels 

in both male and female brain (Anguera et al., 2011). Genetic deletion of Tsx leads to decreased 

female fertility and sex ratio distortion, with female offspring underrepresented among litters 

((Anguera et al., 2011). In undifferentiated ES cells, Tsx is expressed in both male and female 

cells. Tsx expression is downregulated in differentiating female ES cells, coincident with Xist 

induction. In Tsx mutant ES cells, both female and male cells show a slight increase in the 

number of cells with Xist RNA coating on the active X. Tsix RNA, a repressor of Xist, is also 

downregulated in these mutants (Anguera et al., 2011). These data suggest that Tsx may function 

as a repressor of Xist RNA, perhaps via positive regulation of Tsix expression (Anguera et al., 
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2011).  

Jpx, also known as expressed neighbor of Xist, or Enox, lies 10kb upstream of Xist RNA 

and is transcribed in the antisense orientation to Xist (Johnston et al., 2002). Jpx was initially 

proposed to serve as a regulator of Xist after an 80kb transgene containing numerous 

components of the X-inactivation center, including Xist, Tsix, and the Tsix regulator Xite, was 

found to be unable to induce Xist RNA (Lee et al., 1999b). Deletion of Jpx in ES cells does not 

appear to have any phenotypic consequences in males, however, female ES cells heterozygous 

for Jpx mutations show growth defects, a decrease in Xist RNA coating, and increased cell death 

upon differentiation (Tian et al., 2010). These defects can be rescued by exogenous expression of 

Jpx from a transgene, suggesting that this lncRNA can, unusually, act in trans to activate Xist 

(Tian et al., 2010). The presence of a Jpx transgene in wild-type ES cells has been shown by one 

study to trigger low levels of ectopic Xist induction in male and female ES cells (Sun et al., 

2013), though prior work did not detect Xist induction in male ES cells harboring a Jpx 

transgene (Jonkers et al., 2009). Overall, Jpx may have a modest activating effect on Xist RNA, 

though a conclusive role for Jpx in X-inactivation has yet to be confirmed by genetic studies in 

mice.  

Whereas RepA, XistAR, Ftx, Jpx/Enox, and Tsx reside within the X-inactivation center 

and evidence suggests roles for some or all of these factors in X-inactivation, the Xist and Tsix 

RNAs remain the primary focus of many studies to elucidate the mechanisms of epigenetic 

silencing. The functions these two lncRNAs have been extensively studied both in vitro and in 

vivo, however, questions remain regarding their mechanisms of action and their precise roles in 

the cascade of events that trigger epigenetic silencing.  
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1-6: Trans-acting Regulators of X-inactivation 

Xist and Tsix are postulated to function as the master regulators that orchestrate X-

inactivation in cis, perhaps aided by the regulatory functions of other long non-coding RNAs at 

the X-inactivation center. In addition to these cis-acting RNAs, a number of trans-acting factors 

have also been identified as players in X-inactivation. Notable trans-acting factors postulated to 

be involved in X-chromosome inactivation include the Polycomb group proteins, which form 

Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), 

ASH2L, a member of the Trithorax group of chromatin modifying proteins, the X-linked RNF12 

ubiquitin ligase, and a variety of proteins recently identified as Xist RNA interactors.  

Xist RNA is known to recruit Polycomb group proteins, a process in which the RepA 

non-coding RNA that is encoded within Xist may play a role (Kohlmaier et al., 2004; Plath et al., 

2003; Silva et al., 2003; Zhao et al., 2008). These complexes catalyze repressive histone 

modifications that are enriched on the inactive-X, with PRC1 catalyzing ubiquitination of lysine 

119 in histone H2A (H2A-K119ub) and PRC2 catalyzing trimethylation of histone H3 lysine 27 

(H3-K27me3) (Gieni and Hendzel, 2009; Margueron and Reinberg, 2010; Sauvageau and 

Sauvageau, 2010; Surface et al., 2010). PRC2, specifically, has a well-characterized role in X-

chromosome inactivation. 

At the onset of both random and imprinted X-inactivation, PRC2 proteins and H3-

K27me3 are enriched on the inactive X-chromosome (Erhardt et al., 2003; Okamoto et al., 2004; 

Plath et al., 2003; Silva et al., 2003). PRC2 is a large evolutionarily conserved multimeric protein 

complex, which catalyzes H3K27me3 at target loci (Cao et al., 2002; Czermin et al., 2002; 

Kuzmichev et al., 2002; Müller et al., 2002; Tie et al., 2001). These post-translational 

modifications of histones within chromatin are thought to propagate epigenetic transcriptional 
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states across cell division (Margueron and Reinberg, 2011; Zhang et al., 2015). Mammalian 

PRC2 consists of the core components EZH2, EED, and SUZ12 (Cao et al., 2002; Kuzmichev et 

al., 2002). EZH2 is the enzymatic subunit of PRC2 that catalyzes H3-K27me3, a mark that 

correlates with gene silencing (Cao et al., 2002; Zhang et al., 2015). PRC2 is proposed to be 

recruited to the inactive X-chromosome by long non-coding RNAs, including both Xist and 

RepA RNAs. By virtue of its early enrichment on the inactive-X and its gene silencing function, 

PRC2 is thought to be critical for the stable silencing of X-linked genes (Plath et al., 2003; Silva 

et al., 2003). In agreement with this idea, loss-of-function studies suggest that PRC2 is required 

in imprinted mouse X-inactivation (Silva et al., 2003; Wang et al., 2001).  

Whereas Polycomb group proteins are perhaps the best known of the Xist recruits, a 

number of other proteins are also localized to the inactive-X, potentially via Xist RNA. ASH2L, 

a member of the Trithorax group of chromatin modifying proteins, is recruited to the inactive- X 

following the onset of X-inactivation (Pullirsch et al., 2010). Paradoxically, the trithorax group 

proteins catalyze H3K4 trimethylation, a chromatin modification typically associated with active 

transcription (Steward et al., 2006). The recruitment of ASH2L coincides with the recruitment of 

SAF-A, a nuclear scaffolding factor (Pullirsch et al., 2010). The histone variant macroH2A, a 

variant associated with transcriptional repression, is enriched on the inactive-X as well (Costanzi 

and Pehrson, 1998; Perche et al., 2000; Rasmussen et al., 2000).  

In addition to these chromatin modifiers, one protein-coding gene within the X-

inactivation center, Rnf12, has also been postulated to play a role in X-chromosome inactivation. 

A transgene-based screen found that overexpression of this E3 ubiquitin ligase led to ectopic Xist 

induction from the single X-chromosome in differentiating male and from both X-chromosomes 

female ES cells, suggesting a role for RNF12 as an activator of Xist (Jonkers et al., 2009). 
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Further work has not shown a conclusive role for RNF12 in initiation of X-inactivation, 

however. Female embryos harboring maternally-inherited mutations in the Rnf12 gene show that 

Xist induction is reduced, but not entirely absent, in cells that have undergone imprinted X-

inactivation, and that these embryos die post-implantation (Shin et al., 2010). Notably, this time 

point is far after the initiation of imprinted X-inactivation, which begins around the 4-cell stage 

of embryonic development. Through studies of paternally-inherited mutations, RNF12 was 

subsequently shown to be dispensable for random X-inactivation (Shin et al., 2014). Though 

RNF12 is, directly or indirectly, able to activate Xist expression and may be required during 

imprinted X-inactivation, it does not appear to be fundamentally required for the initiation of 

random X-inactivation.  

Proteomic and genetic screens have recently identified a number of Xist interacting 

factors that may function as trans-acting regulators of X-inactivation. One protein identified by 

multiple high-throughput screens is SPEN, a transcriptional repressor that interacts with nuclear 

receptor co-repressor 2 (NCOR2) and histone deacetylases (Chu et al., 2015; McHugh et al., 

2015; Minajigi et al., 2015; Moindrot et al., 2015; Monfort et al., 2015). Both NCOR2 and 

histone deacetylases are associated with transcriptional silencing. Knockdown of SPEN in 

differentiating ES cells results in defects in X-linked gene silencing (McHugh et al., 2015), 

whereas CRISPR/Cas9-mediated deletion of SPEN in male ES cells with an inducible Xist 

transgene similarly impairs silencing upon Xist induction (Monfort et al., 2015). SPEN loss 

additionally impairs both Polymerase II exclusion from the Xist RNA coated inactive-X and 

recruitment of PRC2 (McHugh et al., 2015; Monfort et al., 2015). SPEN was the only factor 

identified by all screening approaches, proteomic analysis consistently identified SAF-A, 

hnRNPM, RALY, RBM15, and MYEF2 as additional Xist-interacting factors (Chu et al., 2015; 
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McHugh et al., 2015; Minajigi et al., 2015). Knockdown of Myef2 and hnRNPM RNAs did not 

alter X-linked gene silencing, whereas hnRNPU knockdown leads to loss of Xist RNA 

localization and defects in X-linked gene silencing (McHugh et al. 2015). Knockdown of Rbm15 

in ES cells had mixed results, with one study reporting impaired silencing and another reporting 

no effect (McHugh et al., 2015; Moindrot et al., 2015). Individual studies also identified, and 

validated via shRNA screens, putative roles for LBR, WTAP, and hnRNPK as regulators of Xist 

localization or X-linked gene silencing (Chu et al., 2015; McHugh et al., 2015; Moindrot et al., 

2015), and numerous other Xist interactors have been identified, but have yet to be further 

investigated or validated.  

 Genetic studies and high-throughput screens have begun to characterize roles for 

numerous trans-acting factors in X-inactivation; taken together, these data begin to illustrate the 

complexity of the regulatory network that initiates and maintains X-chromosome inactivation. 

Many of these trans-acting factors, however, thus far appear to function downstream of Xist 

RNA, playing roles in mediating X-linked gene silencing after Xist RNA coating is established, 

or tethering Xist RNA to the inactive-X chromosome.  

1-7: Concluding Remarks 

Current models of X-inactivation center on the role of the Xist and Tsix RNAs; additional 

cis-acting factors, such as other lncRNAs expressed from the X-inactivation center, function as 

regulators of these primary effectors of X-inactivation. The Xist RNA then recruits a set of trans-

acting factors that are then thought to silence gene expression on the inactive X-chromosome. 

Numerous studies have provided important insights into the expression and function of Xist and 

Tsix RNAs, however, crucial gaps remain in our knowledge of the mechanisms underlying Xist 

and Tsix function in X-inactivation. 
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Critically, the temporal and lineage-specific function of Xist in X-linked gene silencing 

remains unclear. Xist RNA appears to be required during precise developmental windows in both 

imprinted and random X-inactivation. Evidence shows that Xist is dispensable during the early 

initiation phase of imprinted X-inactivation for many X-linked genes assayed (Kalantry et al., 

2009). Conversely, Xist is also not required to maintain random X-inactivation in differentiated 

cells, despite the persistence of Xist RNA coating in somatic cells (Brown and Willard, 1994; 

Csankovszki et al., 1999; Wutz and Jaenisch, 2000). The data therefore suggest that Xist plays a 

tightly regulated, temporally specific role in controlling X-inactivation. Additionally, in both 

imprinted and random X-inactivation, gene expression in the absence of Xist varies from gene to 

gene. Some genes are dependent more on Xist for silencing, but others are less so (Csankovszki 

et al., 1999; Kalantry et al., 2009). 

In addition to questions regarding the context-dependent requirement for Xist RNA in 

transcriptional silencing, how precisely Xist RNA acts as a catalyst for inactivation – i.e., 

through which of its recruited proteins – remains largely unknown. Both PRC1 and PRC2 that 

are recruited to the inactive-X by Xist are dispensable for random X-inactivation (Kalantry and 

Magnuson, 2006; Leeb and Wutz, 2007; Schoeftner et al., 2006). Mutations in SAF-A, another 

recruit of Xist, disrupt both Xist localization and X-linked gene silencing in ESCs, though not 

absolutely (Hasegawa et al., 2010). Both SAF-A and ASH2L, which are recruited to the inactive-

X after the onset of X-inactivation, are able to be recruited to the X-chromosome by mutant Xist 

transcripts that are unable to induce X-linked gene silencing (Pullirsch et al., 2010). Furthermore, 

a null mutation in macroH2A1 does not result in defective X-inactivation (Changolkar et al., 

2007). A paralog of MacroH2A1, macroH2A2, can potentially substitute for macroH2A1. In 

studies in which both macroH2A genes are knocked-down, X-inactivation is again normal 
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(Tanasijevic and Rasmussen, 2011). These data suggest that additional trans-acting factors 

contribute to X-linked gene silencing. These may include additional proteins recruited by Xist 

RNA, such as those recently identified in high-throughput screens, as well as via Xist-

independent mechanisms. Analysis of dosage compensation in marsupials suggests that the 

ancestral form of X-inactivation occurs independently of Xist, making the possibility of Xist-

independent mechanisms of X-inactivation particularly intriguing (Davidow et al., 2007; Hore et 

al., 2007; Shevchenko et al., 2007).  

Beyond remaining questions about Xist itself, numerous questions remain regarding the 

precise role of Tsix in X-inactivation, including the mechanisms underlying Tsix-mediated 

regulation of Xist. DNA methylation and chromatin modifications of the Xist promoter region 

have been proposed as mechanisms through which Tsix may influence Xist expression. Tsix 

transcription across the Xist promoter indeed leads to DNA methylation and accumulation of 

repressive histone modifications at Xist promoter (Navarro et al., 2006; Sado et al., 2005). DNA 

methylation changes induced by Tsix, however, may not be a primary mechanism for regulation 

of Xist, as loss of both Dnmt3a and Dnmt3b, the de novo methyltransferases shown to associate 

with Tsix, does not lead to defects in X-inactivation (Sado et al., 2004). Understanding the 

regulation of Tsix expression itself is also a work in progress. Induction of Tsix is dependent on 

the recruitment of REX1, a pluripotency factor, to the Tsix locus (Navarro et al., 2010). 

Interestingly, Rex1"/" female and male mice are born at the same rate, and show no defects in 

survival, suggesting that though REX1 may contribute to Tsix regulation it is not required for the 

establishment or maintenance of X-inactivation (Masui et al., 2008). Tsix regulation is also 

mediated by Xite, a non-coding RNA lying upstream of Tsix that promotes Tsix expression 

(Ogawa and Lee, 2003b). The DXPas34 repetitive element within the Tsix locus is believed to 
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serve a dual role as both an enhancer and repressor of Tsix (Cohen et al., 2007). Whereas these 

regulators of Tsix have been identified, the temporal requirement of these elements in regulating 

Tsix, Xist, and X-inactivation at the onset of both imprinted and random X-inactivation needs 

more scrutiny. 

The role of Tsix in X-chromosome counting is also highly contested. Mutations that 

abrogate Tsix RNA expression sometimes, but not always, lead to aberrant Xist induction (Lee, 

2000; Luikenhuis et al., 2001; Morey et al., 2001; Ohhata et al., 2006; Sado et al., 2001; Vigneau 

et al., 2006). Since Xist is not always induced in cells lacking Tsix, Tsix RNA itself may not be 

directly involved in counting. The DXPas34 enhancer of Tsix has also been implicated in X-

chromosome counting, and was initially presumed to act through Tsix RNA (Cohen et al., 2007; 

Navarro et al., 2008). Whereas deletion of DXPas34 results in ectopic Xist induction that is 

consistent with a counting defect, an overdose of the DXPas34 genomic segment unexpectedly 

leads to failure of Xist induction (Lee, 2005). This genomic segment is proposed to function in 

counting by sequestering proteins that would normally activate Xist, i.e., by repressing Tsix. 

  Finally, questions remain about The Tsix RNA is also thought to be involved in the 

reactivation of the inactive paternal X-chromosome prior to random X-inactivation. The 

reactivation of the paternal-X is characterized by loss of Xist RNA coating in epiblast precursor 

cells, a process posited to be mediated by Tsix, though again no direct genetic evidence supports 

this assertion (Mak et al., 2004; Nesterova et al., 2011; Sheardown et al., 1997). In contrast, 

reactivation is not disrupted in the epiblast lineage of embryos harboring paternally-inherited 

Tsix mutations, suggesting that Tsix may in fact be dispensable during reactivation of the 

inactive-X (Kalantry and Magnuson, 2006). Moreover, surprisingly, X-linked gene reactivation 

appears to occur prior to the loss of Xist coating during reactivation (Williams et al., 2011). If 
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Tsix is involved in Xist repression and X-reactivation, how Tsix is induced from the inactive 

paternal-X is also unclear. Careful analysis of the expression and function of Tsix in these early 

embryonic stages in future studies may help elucidate the precise role of the Tsix long non-

coding RNA in these processes. 

I first define a spatially and temporally specific role for Tsix RNA during the initiation 

and maintenance of imprinted and random X-chromosome inactivation by assessing the effects 

of a Tsix null mutation in developing mouse embryos and in stem cell models of X-inactivation. 

I found that, during initiation of imprinted inactivation, Tsix is not required to forestall Xist 

induction from the active X-chromosome. Tsix is instead required for the continued repression of 

Xist RNA in differentiating cells. I additionally find that Tsix is not required for X-chromosome 

reactivation at the peri-implantation stage of embryogenesis. During random X-inactivation, I 

find that Tsix RNA does not influence X-chromosome choice, and is again not required for the 

initiation of X-chromosome inactivation. Instead, as with imprinted X-inactivation, Tsix RNA is 

required for the continued repression of Xist RNA in differentiating cells.  

These analyses, coupled with prior data indicating that X-inactivation is able to initiate in 

the absence of Xist RNA, indicate that current models are insufficient to explain initiation of 

epigenetic silencing during X-chromosome inactivation. I hypothesize, based on my current 

work as well as evolutionary analysis of the X-chromosome, that X-inactivation is triggered 

regionally, by novel lncRNAs; Studies of the evolutionary history of the X and Y chromosomes 

in mammals indicate that X-inactivation likely arose in a piecemeal fashion, with discrete 

regions of the evolving X-chromosome becoming silenced as homologous genes were lost from 

the evolving Y-chromosome, suggesting regional control of dosage compensation (Bellott et al., 

2014; Jegalian and Page, 1998; Lahn and Page, 1999). My analysis of Tsix mutant embryos and 
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stem cells has also implicated trans-acting products of X-linked genes that escape from X-

inactivation as potential dosage-dependent regulators of X-inactivation in female cells. To 

identify potential novel lncRNAs and escapers of X-inactivation that may play a role in the 

regulation of imprinted and random X-inactivation, I have developed a strand-specific and allele-

specific RNA-sequencing pipeline to comprehensively evaluate the transcriptomes of stem cell 

models of both imprinted and random X-inactivation. Through this transcriptomic analysis, I 

identify numerous novel RNAs, including putative inactive-X specific transcripts, and delineate 

escapers of X-inactivation in both imprinted and randomly inactivated populations of cells.  

I have further applied this RNA-seq analysis pipeline to characterize X-chromosome 

inactivation defects in mutant mouse stem cells. Allele-specific RNA-seq allows for high-

throughput screening for defective X-linked gene silencing. I analyzed trophoblast stem cells 

(TSCs) lacking the EED protein, a core subunit of PRC2. I found that loss of EED leads to loss 

of H3K27me3 enrichment as well as of Xist RNA from the inactive-X. Surprisingly, only a 

subset of genes on the X-chromosome show defects in silencing when EED, Xist RNA, and 

H3K27me3 are absent, implicating factors other than PRC2 and Xist RNA in maintaining X-

linked gene silencing.  

Through these studies, I have defined the precise role of the Tsix lncRNA in mouse 

imprinted and random X-inactivation. Contrary to the broadly hypothesized function of lncRNAs 

as initiators of epigenetic transcriptional regulation, I show that the Tsix lncRNA serves instead 

as a factor that maintains epigenetic silencing in a differentiation-dependent manner. These 

observations establish a new model for lncRNA function, which may apply to other epigenetic 

regulatory processes in the genome, such as clusters of genes subject to genomic imprinting. I 

further establish an experimental pipeline for allele-specific analysis of X-linked gene expression 
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in mouse embryos and stem cells. Characterization of the transcriptomes of extra-embryonic and 

embryonic cell lineages identifies numerous escapers of X-inactivation, which may play a role in 

X-linked gene silencing (Gayen et al., 2015), as well as inactive-X specific transcription. Using 

this pipeline, I have characterized the role of PRC2 in X-inactivation. Together, these data 

demonstrate that current models of X-inactivation paint an incomplete picture of the processes 

that initiate epigenetic silencing in the developing embryo. Future work will characterize 

escapers of X-inactivation and novel transcripts identified by RNA-sequencing, and will 

continue to characterize the precise role of PRC2 in initiation and maintenance of X-

chromosome inactivation. 
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Chapter 2: Differentiation-dependent requirement of Tsix long non-coding RNA in 

imprinted X-chromosome inactivation 

 

This chapter was previously published in Nature Communications as Maclary, E. Buttigieg E., 

Hinten M., Gayen S., Harris C., Sarkar M.K., Purushothaman S., and Kalantry S. 

“Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-

chromosome inactivation”. (Nature Communications 5, 4209 (2014)). Data was predominantly 

generated by E.M., and all final images and figures were generated by E.M., E.B., and S.K. 

wrote the manuscript. M.H., E.B., and S.P. assisted with initial analysis of E3.5 embryos. C.H., 

S.G., and M.K.S derived and cultured TS and XEN cell lines. E.B. generated and optimized 

strand-specific RNA FISH probes.  

 

2-1: Introduction  

X-chromosome inactivation results in the mitotically-stable epigenetic transcriptional 

silencing of genes along one of the two X-chromosomes in female mammals, thereby equalizing 

X-linked gene expression between males and females (Morey and Avner, 2011). X-inactivation 

is thought to be separable into three phases: initiation, establishment, and maintenance (Plath et 

al., 2002). During the initiation phase, cell autonomous epigenetic mechanisms identify the 

future inactive X-chromosome and trigger the formation of transcriptionally inert 

heterochromatin on that X. This heterochromatic configuration is then proposed to spread during 
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the establishment phase to envelop genes across most of the inactive X-elect. Once inactivated, 

replicated copies of that X-chromosome are transmitted as inactive through multiple mitotic cell 

division cycles during the maintenance phase. While one X-chromosome is transmitted as 

inactive during mitosis, the other X within the same nucleus is maintained in a transcriptionally 

active state.  

The epigenetic transcriptional states of both the inactive and active X-chromosomes are 

controlled in cis by a segment on the X-chromosome that encodes long non-coding RNAs 

(lncRNAs) which play key roles in both X-inactivation and in forestalling inactivation of the 

active-X (Lee, 2011; Rastan, 1983; Rastan and Robertson, 1985). The two most prominent 

lncRNAs are Xist and Tsix. Xist is induced exclusively from the inactive X-chromosome and is 

considered a primary determinant of X-inactivation (Marahrens et al., 1998; Penny et al., 1996). 

Current models posit that Xist RNA transcription initiates a cascade of events that ultimately 

leads to X-inactivation (Morey and Avner, 2011; Payer and Lee, 2008). Xist RNA physically 

coats the chromosome from which it is expressed, leading to the deposition of proteins that 

catalyze epigenetic transcriptional silencing along this X-chromosome (Kalantry, 2011; Plath et 

al., 2002). The most notable of the Xist RNA recruits are Polycomb group proteins. Distinct 

Polycomb group complexes are thought to contribute to the formation of the unique facultative 

heterochromatic structure of the inactive-X via post-translational modification of histones (Lee, 

2011; Mak et al., 2002; Plath et al., 2003; 2004; Rastan, 1983; Rastan and Robertson, 1985; Silva 

et al., 2003). While expression of the Xist RNA is required in cis for X-inactivation, transcription 

of the Xist anti-sense RNA, Tsix, is necessary to prevent inactivation of the active-X (Lee, 2000; 

Lee and Lu, 1999; Marahrens et al., 1998; Penny et al., 1996; Sado et al., 2001). Tsix 



!

! ?Q!

transcription across the Xist gene is posited to inhibit Xist expression, potentially by influencing 

chromatin modifications at the Xist promoter (Sado et al., 2001; 2005).  

In mice, all cells of the developing zygote initially undergo imprinted inactivation of the 

paternal X-chromosome, beginning at around the 4-8 cell stage of zygotic development 

(Kalantry et al., 2009; Namekawa et al., 2010; Okamoto et al., 2004; Patrat et al., 2009). The pre-

programmed fate of the two Xs during imprinted X-inactivation implies that the X-chromosomes 

are differentially marked in the parental germlines. In the pre-implantation embryo, Xist is 

expressed exclusively from the paternal-X and Tsix only from the maternal-X (Lee, 2000; Sado 

et al., 2001). The mutually exclusive expression and divergent transcriptional impact of Xist and 

Tsix lncRNAs represent a paradigm of how parent-of-origin specific gene regulation is executed 

in the offspring(Lee, 2009). While the paternal-X undergoes imprinted X-inactivation, evidence 

indicates that the epigenetic imprint itself resides on the maternal-X(LYON and Rastan, 1984). 

This notion is supported by the observation that in early embryos that harbor two maternal X-

chromosomes, neither X-chromosome undergoes X-inactivation(Goto and Takagi, 2000; Kay et 

al., 1994; Tada et al., 2000). Conversely, embryos with two paternal-Xs initially express Xist 

from both X-chromosomes, but then down-regulate Xist from one of the two Xs and appear to 

stably inactivate the other Xist-coated X-chromosome(Okamoto et al., 2000). Due to its 

expression exclusively from the maternal-X, its Xist-antagonistic function, and that embryos 

harboring a Tsix-mutant maternal X-chromosome die during gestation, Tsix RNA has been 

nominated as the factor via which the oocyte prevents inactivation of the maternal X-

chromosome in the embryo(Lee, 2000; Sado et al., 2001). However, the temporal requirement of 

Tsix in imprinted X-inactivation, i.e., whether it functions during the initiation phase in the early 



!

! ?U!

embryo, which would support an oogenic imprint role, or in the maintenance phase in the later 

embryo, remains unclear.  

At the peri-implantation (~128-cell) stage of embryogenesis, the pluripotent epiblast 

precursor cells in the inner cell mass compartment reactivate the inactive paternal X-

chromosome(Mak et al., 2002; Williams et al., 2011). The epiblast lineage is the sole contributor 

of cells that will form the fetus; the rest of the cells from the early embryo give rise to the 

trophectoderm and the primitive endoderm lineages that will contribute to the extra-embryonic 

structures of the placenta and yolk-sac, respectively(Hogan et al., 1999). After the embryo 

implants, descendants of the epiblast precursor cells undergo transcriptional reactivation of the 

paternal X-chromosome, followed by random X-inactivation of either the maternal or paternal X-

chromosome(Rastan, 1982).  

The transcriptional reactivation of the inactive paternal X-chromosome in pluripotent 

epiblast progenitors is characterized by loss of Xist RNA coating(Mak et al., 2002; Sheardown et 

al., 1997; Williams et al., 2011). Xist RNA depletion is thought to contribute to the epigenetic 

remodeling of the inactive paternal X-chromosome, leading to the re-expression of paternal X-

linked genes (Mak et al., 2002). Similarly, Xist repression and the absence of or reactivation of 

the inactive-X are considered epigenetic hallmarks of pluripotency; female mouse embryonic 

stem (ES) cells and induced pluripotent stem (iPSCs) both display two active-Xs(Minkovsky et 

al., 2012; Payer et al., 2011; Plath and Lowry, 2011). As a negative regulator of Xist, Tsix is 

proposed to facilitate the loss of Xist RNA coating and reactivation of the inactive-X(Navarro et 

al., 2010; 2009; Nesterova et al., 2011). To date, however, genetic evidence linking Tsix 

expression to Xist repression during X- chromosome reactivation is lacking.  



!

! <J!

Here, we comprehensively examine the role of Tsix RNA in imprinted X-inactivation and 

-reactivation in vivo and in vitro. We find that Tsix is dispensable in suppressing Xist and for 

preventing X-inactivation during the initiation as well as maintenance phases of imprinted X-

inactivation through studies in the pre-implantation embryo and in stem cells of the 

trophectoderm and primitive endoderm lineages. Instead, Tsix is required to prevent Xist 

induction during the differentiation of trophoblast cells in vivo an in vitro. Despite the induction 

of intact Xist RNA and accumulation of Polycomb group-catalyzed histone methylation on the 

Tsix-mutant X-chromosome, a substantial number of trophoblast cells do not display ectopic X-

inactivation. We further find that both the repression of Xist and the reversal of imprinted X-

inactivation that occur in epiblast precursor cells prior to random X-inactivation do not require 

Tsix RNA.  

 

2-2: Role of Tsix During Initiation of Imprinted X-inactivation 

If Tsix expression serves to repress Xist during the initiation phase of imprinted X-

inactivation, then a maternal-X devoid of Tsix transcription should ectopically express Xist in 

the pre-implantation embryo. We therefore generated embryonic day (E) 3.5 blastocyst-stage 

(~64-cell) embryos that inherit either a wild-type (WT) or a Tsix-mutant maternal-X from Tsix-

heterozygous females. The Tsix mutation, TsixAA2!1. 7, truncates the Tsix transcript in exon 2 and 

deletes the critical DXPas34 repeat sequence that controls Tsix expression (herein referred to as 

X#Tsix) (Fig. 2.1 A)(Cohen et al., 2007; Sado et al., 2001; Stavropoulos et al., 2005; Vigneau et 

al., 2006). Since Tsix transcription across the Xist promoter region is required for Tsix RNA to 

inhibit Xist expression, X#Tsix is functionally a null Tsix mutation(Navarro et al., 2005; Sado et 

al., 2001; Sado and Ferguson-Smith, 2005). We first assayed Tsix and Xist expression by RNA 
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fluorescence in situ hybridization (RNA FISH) with single-stranded riboprobes that uniquely 

detect Tsix or Xist. Tsix expression is detectable from the active (maternal) X-chromosome in 

most nuclei of approximately half of the embryos; in the remaining embryos, Tsix is 

undetectable in all nuclei (Fig. 2.1 B). The active-X is additionally marked by expression of the 

Atrx gene, which is subject to X-inactivation. We therefore classified embryos with Tsix RNA 

FISH signals as WT XX and XY and the ones without as mutant X#TsixX and X#TsixY. These 

embryos displayed Xist RNA coating in XX but not XY embryos, as expected (Fig. 2.1 B). To our 

surprise, X#TsixX blastocysts also showed Xist RNA coating of only one X-chromosome, and no 

inactivation of the X#Tsix maternal X-chromosome (Fig. 2.1 B-C). As in X#TsixX females, X#TsixY 

males also failed to display Xist induction or defective gene expression from their single, 

maternally-inherited X-chromosome (Fig. 2. 1 B-C).  

To independently validate the RNA FISH data, we performed allele-specific RT-PCR 

amplification of Xist RNA in individual hybrid blastocyst stage embryos harboring polymorphic 

X-chromosomes. While the maternal X-chromosome is transmitted by M. domesticus-derived 

laboratory and Tsix-mutant strains (WT XLab and mutant X!Tsix, respectively), the paternal X-

chromosome is derived from the divergent M. molossinus JF1 (XJF1) strain; these strains contain 

numerous single nucleotide polymorphisms (SNPs), which permits defining the allele-specific 

origin of RNAs. We again assigned genotypes to the embryos by assaying Tsix RNA expression 

(Fig. 2.1 D). As expected, in WT XLabXJF1 and XLabY embryos Xist was expressed only in females 

and not in males (Fig. 2.1 D). We observed a similar pattern of Xist RNA expression in X#TsixXJF1 

and X#TsixY mutant blastocysts (Fig. 2.1 D). X#TsixY mutant males did not exhibit Xist expression, 

consistent with the RNA FISH data. We exploited a SNP in the Xist RT-PCR amplicon to 

identify the chromosomal source of Xist RNA in XLabXJF1 and X#TsixXJF1 embryos. Both genotypes 
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displayed Xist expression only from the paternal X-chromosome (Fig. 2.1 E). Taken together, 

the RNA FISH and RT-PCR results lead us to conclude that Tsix is dispensable in pre-

implantation embryos during the initiation phase of imprinted X-inactivation, both to prevent 

Xist expression and to forestall inactivation of the maternally-inherited X-chromosome.  

!

Figure 2.1: Absence of ectopic Xist induction from the X!Tsix maternal X-chromosome in embryonic day (E) 
3.5 blastocyst embryos.  (a) Schematic representation of the genomic structure of Xist, Tsix, and the Tsix RNA 
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truncation mutant X!Tsix.  (b) RNA FISH detection of Xist (white), Tsix (green) and Atrx (red) RNAs in 
representative E3.5 embryos.  Nuclei are stained blue with DAPI.  Insets show representative nuclei.   Scale bar, 25 
$m.  (c) Quantification of Xist, Tsix, and Atrx RNA expression patterns in blastocyst nuclei. The X-axis of each 
graph represents the average % nuclei observed in each class for each genotype.  n=4 embryos per genotype.  
Diagrams along the Y-axis depict all observed expression patterns.  +, RNA expression detected from a single X-
chromosome; + +, RNA expression detected from both X-chromosomes; !, absence of RNA detection.   Gene 
expression pattern does not differ significantly between wild-type and Tsix mutant blastocysts (Fisher’s exact test).  
Error bars, S.D.  (d) RT-PCR detection of Xist, Tsix, and control "-actin RNAs.  Three individual embryos are 
shown for each genotype.  M, marker; NTC, no template control; +, reaction with reverse transcriptase (RT); -, no 
RT control lane.  (e) Sanger sequencing chromatograms of representative Xist RT-PCR products.  Highlights mark a 
single nucleotide polymorphism that differs between the maternal XLab / X!Tsix alleles and the paternal XJF1 allele (see 
Methods).  Both XLabXJF1 and X!TsixXJF1 females express Xist only from the paternally-inherited X-chromosome (Xp).  
The XLabXJF1 epiblast is a control sample displaying expression from both parental alleles.  

 

2-3: Post-implantation Role of Tsix in Suppressing Xist  

Maternally-inherited Tsix mutations are typically embryonic lethal, suggesting an 

essential requirement for Tsix during embryonic development(Lee, 2000; Sado et al., 2001). 

Since X#TsixX and X#TsixY pre-implantation embryos displayed normal imprinted X-inactivation, 

we investigated imprinted X-inactivation in peri- and post-implantation embryos to pinpoint 

when Tsix is required. At the E4.0 peri-implantation stage, X#TsixX and X#TsixY embryos begin to 

exhibit Xist induction from the X#Tsix X-chromosome in a few nuclei, typically fewer than 3% 

(Fig. 2.2). We next examined Xist expression and X-inactivation in XX, X#TsixX, XY, and X#TsixY 

E6.5 post-implantation embryos. We initially assessed Xist RNA coating and expression of the 

X-linked gene Pgk1, which is subject to X-inactivation, in whole E6.5 embryos using double-

stranded probes that detect Xist and Tsix simultaneously(Kalantry et al., 2009; 2006). At E6.5, 

the extra-embryonic cell types derived from the trophectoderm and the primitive endoderm of 

earlier embryos maintain imprinted X-inactivation, while the epiblast cells display random X-

inactivation. We observed ectopic Xist expression from the mutant X-chromosome in both 

X#TsixX and X#TsixY embryos but not in WT XX and XY counterparts (Fig. 2.3 A-D, Movies 1-4). 

Using single-stranded riboprobes, we next quantified Xist RNA coating and Pgk1 expression in 

isolated extra-embryonic tissues and found that 15% of X#TsixX and 12% of X#TsixY cells showed 
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ectopic Xist RNA coating and Pgk1 silencing. These percentages represent a significant level of 

ectopic X-inactivation in extra-embryonic cells (p=3.5x10-5 and p=0.0003, respectively, Fisher’s 

exact test; Fig. 2.4 A-B). We confirmed ectopic expression of Xist RNA from the maternal X-

chromosome in mutant extra-embryonic cells and its absence in WT cells by allele-specific RT-

PCR followed by Sanger sequencing to determine the allelic origin of the transcript (Fig. 2.4 C-

D). Tsix deficiency, therefore, induces Xist expression and inactivation of the maternal X-

chromosome in the extra-embryonic tissues of post-implantation embryos.  

!

Figure 2.2: Limited Xist induction from the X!Tsix maternal X-chromosome in embronic day (E) 4.0 embryos. 
RNA FISH staining of whole E4.0 XX, X!TsixX, XY, and X!TsixY embryos. Three embryos were examined per 
genotype. Xist RNA coating and Tsix RNA are simultaneously detected in green using a double-stranded probe. 
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RNA expressed from the X-linked gene Atrx is shown in red. Nuclei are stained blue with DAPI. Insets show 
representative nuclei. Faint Xist induction from the XTsix can be seen in fewer than three percent of the XtsixX and 
XtsixY nuclei. Scale bar, 20 um.  

!

Figure 2.3: RNA FISH analysis of X-linked gene expression in intact wild-type and maternal X!Tsix mutant 
E6.5 embryos. Maximum intensity projections (left) and representative extra-embryonic nuclei (right) from 
embryos depicted in movies 1-4. (a) XX; (b); X!TsixX; (c) XY; (d) X!Tsix Y. Xist RNA coating and Tsix RNA 
pinpoints are detected in green with a double-stranded probe. RNA expressed from the X-linked gene Pgk1 is 
detected in red. Nuclei are stained blue with DAPI. Scale bar, 50 um.  
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Figure 2.4: Xist induction from the X!Tsix maternal X-chromosome in E6.5 extra-embryonic cells.  (a) RNA 
FISH detection of Xist (white), Tsix (green), and Pgk1 (red) RNAs in E6.5 extra-embryonic cells.  Nuclei are 
stained blue with DAPI.  Dashed boxes mark representative nuclei.  Scale bar, 10 $m.  (b) Quantification of Xist, 
Tsix, and Pgk1 RNA expression patterns.  The X-axis of each graph represents the % nuclei in each class out of 100 
total nuclei counted per genotype (from n > 3 embryos per genotype).  Diagrams along the Y-axis depict all 
observed expression patterns.  +, RNA expression detected from a single X-chromosome; + +, RNA expression 
detected from both X-chromosomes; !, absence of RNA detection.  Pairwise comparisons of the frequency of 
individual gene expression patterns between wild-type and X!Tsix mutant embryos were performed using Fisher’s 
exact test.  *, 0.001<p<0.01; **, p % 0.001.  Extra-embryonic cells show significantly increased level of inactivation 
of the X!Tsix X-chromosome (p=0.0003 for males; p=3.5x10-5 for females).  (c) RT-PCR detection of Xist and Tsix 
RNAs in extra-embryonic tissues from individual E6.5 embryos.  Results from three individual embryos of each 
genotype are shown.  M, marker; NTC, no template control; +, RT; !, no RT control lane.  (d) Sanger sequencing 
chromatograms of Xist RT-PCR products.  Highlights mark a single nucleotide polymorphism that differs between 
the maternal XLab / X!Tsix alleles and the paternal XJF1 allele.  XLabXJF1 females express Xist only from the paternally-
inherited X-chromosome, while X!TsixXJF1 females express Xist biallelically in extra-embryonic tissues.  X!TsixY 
embryos variably express Xist from the maternally-inherited X-chromosome.  
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2-4: Differentiation-dependent Function of Tsix in TS Cells 

Whole-mount RNA FISH stains of Tsix-mutant E6.5 embryos suggested that ectopic Xist 

induction primarily characterized the trophectoderm-derived extra-embryonic ectoderm or its 

differentiated derivatives (Fig. 2.3 A-D, Movies 1-4). To further examine the role of Tsix in 

imprinted X-inactivation, we generated XLabXJF1, X#TsixXJF1, XLabY, and X#TsixY trophoblast stem 

(TS) cells. TS cells arise from trophectoderm cells of the early embryo, and provide an in vitro 

model of early imprinted X-inactivation(Kalantry et al., 2006; Mak et al., 2002; Tanaka et al., 

1998). Strand-specific RNA FISH analysis of the TS cells showed that Xist RNA is expressed 

from and coats a single X-chromosome in undifferentiated WT and X#Tsix-mutant female TS cells, 

and is not expressed in male TS cells of either genotype (Fig. 2.5 A). We confirmed that Xist 

RNA is restricted to female cells despite the absence of Tsix by allele-specific RT-PCR (Fig. 2.5 

B). These data not only reinforce the conclusion from embryos that X-inactivation is unperturbed 

in the absence of Tsix transcription from the maternal X-chromosome in trophectoderm cells, but 

also demonstrate that Tsix is not required to stably maintain Xist repression in undifferentiated 

TS cells in culture.  

To reconcile why the extra-embryonic ectoderm in X#TsixXJF1 and X#TsixY post-implantation 

embryos but not TS cells displayed ectopic Xist expression and X-inactivation, we hypothesized 

that Tsix is required in a differentiation-dependent manner, rather than a temporally-specific 

manner, in the trophectoderm lineage. We therefore tested if differentiation of X#TsixXJF1 and 

X#TsixY TS cells would cause Xist induction from the Tsix-mutant X-chromosome. TS cell 

differentiation indeed led to ectopic Xist induction from the Tsix-mutant but not the WT 

maternal X-chromosome in both male and female cells by RNA FISH (Fig. 2.5 C-E). We 
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confirmed ectopic Xist induction from the maternal X#Tsix in differentiated TS cells by allele-

specific RT-PCR followed by Sanger sequencing (Fig. 2.5 F-G).  

!

Figure 2.5: The X!Tsix maternal X-chromosome displays ectopic Xist induction only upon differentiation in 
trophoblast stem (TS) cells.  RNA FISH detection of Xist (white), Tsix (green), and Atrx (red) RNAs in 
representative TS cell lines.  Nuclei are stained blue with DAPI. Scale bar, 10 $m.  Three cell lines of each genotype 
were analyzed.  (b) RT-PCR detection of Xist, Tsix (two different amplicons), and control "-actin RNAs in wild-
type (WT) and Tsix-mutant TS cells.  Three TS cell lines of each genotype were analyzed.  M, marker; NTC, no 
template control; +, RT; !, no RT control lane.  (c) RNA FISH detection of Xist (white), Tsix (green), and Atrx 
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(red) RNAs in 6-day (d6) differentiated TS cell lines.  Three cell lines of each genotype were analyzed.  Scale bar, 
10 $m.  (d) Quantification of Xist induction from the X!Tsix X-chromosome in females.  Aberrant Xist RNA coating 
(defined as two Xist RNA coats in a diploid cell or Xist coating of all chromosomes in polyploid giant cells) is 
observed in mutant but not WT d6 differentiated TS cells.  For giant cells, the number of X-chromosomes was 
identified based on distinct Xist and Atrx RNA FISH signals.  n=100 nuclei counted for each cell line per day of 
differentiation.  (e) Quantification of Xist induction from the X!Tsix X-chromosome in males.  Aberrant Xist RNA 
coating is observed in mutant but not WT d6 differentiated TS cells.  n=100 nuclei counted for each cell line per day 
of differentiation.  (f) RT-PCR detection of Xist and control "-actin RNA in undifferentiated (d0) and d6 
differentiated wild-type (WT) and Tsix-mutant TS cells.  A single representative TS cell line from each genotype is 
shown.  M, marker; NTC, no template control; +, RT; !, no RT control lane.  (g) Sanger sequencing chromatograms 
of representative XLabXJF1 and X!TsixXJF1 Xist RT-PCR products (RNA), and an Xist genomic DNA amplicon (gDNA) 
within exon 1.   Highlights mark a single nucleotide polymorphism that differs between the maternal XLab / X!Tsix 

alleles and the paternal XJF1 Xist allele*!
 

Next, we characterized when during differentiation TS cells induce Xist from the X#Tsix. 

Only cells devoid of CDX2, a marker of trophoblast progenitor cells, displayed ectopic Xist 

induction (Fig. 2.6 A-D). Moreover, Xist induction from the maternal X#Tsix coincided with a 

failure of the mutant TS cells to differentiate to completion. Whereas WT TS cells of both sexes 

are able to terminally differentiate into trophoblast giant cells, X#TsixXJF1 and X#TsixY TS cells 

displayed a significant reduction in the percentage of giant cells (Fig. 2.6 E-F). Together, these 

results demonstrate that Tsix prevents Xist induction from the maternal X-chromosome during 

the differentiation of trophectodermal progenitor cells. Ectopic Xist induction and the ensuing 

inactivation of both Xs in females or of a single X in males results in a paucity of X-linked gene 

expression, which in turn is expected to cause reduced or stalled cell proliferation and prevent 

terminal differentiation. A block in TS cell differentiation is also consistent with the variable 

ectopic Xist induction and X-inactivation in the trophectoderm lineage of X#TsixXJF1 and X#TsixY 

post-implantation embryos (Fig. 2.4, Fig. 2.3 A-D, Movies 1-4).  
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Figure 2.6: Characterization of differentiation-dependent Xist RNA induction from the X!Tsix maternal X-
chromosome.  (a) RNA FISH detection of Xist, Tsix, and the X-linked gene Atrx in undifferentiated and 6-day (d6) 
differentiated trophoblast stem (TS) cells.   Immunofluorescence (IF) staining of the same cells detects CDX2, a 
marker of undifferentiated trohoectodermal cells.  Scale bar, 10 $m.   (b) Quantification of Xist induction in CDX2 
positive and negative in undifferentiated and differentiated female TS cells.   100 nuclei were counted per cell line at 
each time point (n = 3 cell lines per genotype).  No aberrant Xist induction is observed from the X!Tsix in 
undifferentiated cells.   In d6 differentiated X!TsixXJF1 TS cells, ectopic Xist induction is restricted to cells that lack 
CDX2 staining.  A subset of differentiated nuclei show both multiple Xist-coated inactive X-chromosomes and 
multiple active X-chromosomes, due to endoreduplication.  (c) IF/RNA FISH analysis of male TS cells, as in (a).  
Scale bar, 10 $m.  (d) Quantification of Xist induction in undifferentiated and d6 differentiated male TS cells.  100 
nuclei were counted per cell line at each time point  (n = 3 cell lines per genotype).  (e) IF/RNA FISH detection of 
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Xist, Tsix, and the X-linked gene Atrx, in differentiated TS cells.  p57Kip2, a marker of trophoblast giant cells, is 
detected in the same cells by IF.  Scale bar, 10 $m.  (f) Quantification p57Kip2 positive cells and aberrant Xist 
induction in the TS cells.   100 nuclei were counted per cell line (n = 3 cell lines per genotype).  X!TsixXJF1 and X!TsixY 
TS cells show significantly reduced levels of p57Kip2 staining, suggesting failure of these genotypes to terminally 
differentiate.  Error bars, S.D.   

 In addition to TS cells, XEN cells undergo imprinted X-inactivation of the paternal X-

chromosome(Kalantry et al., 2006; Kunath et al., 2005). XEN cells are derived from the 

primitive endoderm layer of blastocysts that generates the extra-embryonic yolk-sac in later-

stage embryos. To test if Tsix-mutant XEN cells can stably undergo imprinted X-inactivation, 

we derived XLabXJF1, X#TsixXJF1, XLabY, and X#TsixY XEN cells. By both RNA FISH and allele-

specific RT-PCR, we found that, just like in TS cells, XEN cells can stably repress Xist from the 

maternal X-chromosome independently of Tsix (Fig. 2.7). 
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Figure 2.7: Lack of Xist induction from the X!Tsix maternal X-chromosome in cultured extra-embryonic 
endoderm (XEN) cells.   (a) RNA FISH detection of Xist (white), Tsix (green) and Atrx (red) RNAs in 
representative XEN cell lines.  Nuclei are stained blue with DAPI.  Three cell lines of each genotype were analyzed.  
Scale bar, 10 $m.   (b) Quantification of Xist RNA coating and X-linked gene expression in the XEN cells.  The X-
axis of each graph represents average % nuclei in each class from 100 cells counted per cell line (n = 3 cell lines per 
genotype).  Diagrams along the Y-axis depict all observed expression patterns.  +, RNA expression detected from a 
single X-chromosome; + +, RNA expression detected from both X-chromosomes; !, absence of RNA detection.  A 
subset of tetraploid XEN nuclei show two Xist-coated inactive X-chromosomes and two active X-chromosomes, due 
to endoreduplication.  Gene expression patterns do not differ significantly between wild-type and Tsix mutant XEN 
cells (Fisher’s exact test).  Error bars, S.D.  (c) RT-PCR detection of Xist, Tsix, and control "-actin RNAs in three 
individual XEN cell lines of each genotype.  M, marker; NTC, no template control; +, reaction with reverse 
transcriptase (RT); !, no RT control lane.  (d) Sanger sequencing chromatograms of representative XLabXJF1 and 
X!TsixXJF1 RT-PCR products spanning Xist exons 1-4 (RNA), and an Xist genomic DNA amplicon (gDNA) within 
exon 1.   Highlights mark a single nucleotide polymorphism that differs between the maternal XLab / X!Tsix alleles and 
the paternal XJF1 allele.  
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2-5: Disassociation of H3-K27me3 Enrichment and X-inactivation  

Xist RNA coating is postulated to lead to X-inactivation in cis(Brockdorff, 2011; Payer 

and Lee, 2008; Schulz and Heard, 2013). We noticed, however, that in 5% of the E6.5 X#TsixX 

extra-embryonic cells Xist RNA coated both X-chromosomes, but one Xist coated X-

chromosome remained active, as indicated by expression of Pgk1 from one of the two Xs in 

these cells (Fig. 2.4 A-B). In E6.5 X#TsixY extra-embryonic nuclei, 17% of cells displayed both 

ectopic Xist RNA coating and Pgk1 expression from the single X-chromosome (Fig. 2.4 A-B). 

To determine if Pgk1 expression from the ectopically Xist RNA-coated X-chromosome agreed 

with expression of other X-linked genes subject to X-inactivation, we performed pair-wise 

comparisons of expression of Pgk1 with Atrx and Atrx with Rnf12 (Fig. 2.8). We observed a high 

level of concordant expression of both sets of X-linked genes, leading to the conclusion that the 

ectopically Xist RNA-coated X-chromosome remained transcriptionally active in a subset of 

nuclei.  
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Figure 2.8:X-linked genes show concordance of allelic expression in X!TsixX and X!TsixY E6.5 extra- embryonic 
tissues. (a) Bar plots quantifying allelic expression of the X-linked genes Atrx and Pgk1 by RNA FISH in individual 
nuclei of XX, X!TsixX, XY, and X!TsixY E6.5 extra-embryonic cells. Nuclei are subdivided into classes based on 
observed Xist RNA expression and coating. Concordant expression of genes within a single nucleus is plotted in red. 
Discordant expression is plotted in blue. In females (left), expression of Atrx and Pgk1 is 78% concordant in XX 
embryos and 79% concordant in X!TsixX embryos (100 total nuclei analyzed per genotype from n = 3 embryos). In 
males (right), expression of Atrx and Pgk1 is 77% concordant in XY embryos and 87% concordant in X!TsixY 
embryos (100 total nuclei analyzed per genotype from n = 3 embryos). (b) Representative RNA FISH-stained nuclei. 
Xist and Tsix RNAs are shown in white, Atrx RNA in green, and Pgk1 RNA in red. Nuclei are stained blue with 
DAPI. Scale bar, 5 $m (c) Bar plots quantifying allelic expression of the X-linked genes Atrx and Rnf12 in 
individual nuclei of E6.5 extra-embryonic cells. Analysis was carried out as described in (a). In females (left), Atrx 
and Rnf12 expression is 78% concordant in XX embryos and 82% concordant in X!TsixX embryos (100 total nuclei 
analyzed per genotype from n = 3 embryos). In males (right), Atrx and Rnf12 expression are 74% concordant in XY 
embryos and 79% concordant in X!TsixY embryos (100 total nuclei analyzed per genotype from n = 3 embryos). (d) 
Representative RNA FISH- stained nuclei. Xist and Tsix RNAs are shown in white, Atrx RNA in green, and Rnf12 
RNA in red. Nuclei are stained blue with DAPI. Scale bar, 5 $m.   

To investigate the uncoupling of Xist RNA coating and X-linked gene silencing, we 

tested whether ectopic Xist RNA expression and coating led to the functional enrichment of the 

Polycomb group proteins on that X-chromosome. Xist RNA is thought to induce X-inactivation 



!

! I=!

via the recruitment of protein complexes, most notably the Polycomb repressive complex 2 

(PRC2), that inhibit transcription on the inactive-X(Plath et al., 2003; Schoeftner et al., 2006; 

Silva et al., 2003). PRC2 catalyzes methylation of lysine at amino acid position 27 in the tail of 

histone H3 (H3-K27me3), which is associated with transcriptional repression and is required for 

imprinted X-inactivation(Kalantry et al., 2006; Plath et al., 2003; Silva et al., 2003; Wang et al., 

2001). Moreover, both PRC2 components and H3-K27me3 accumulate on the inactive-X early 

during X-inactivation, suggesting an intimate role for PRC2 and H3-K27me3 in the formation of 

the inactive-X heterochromatin (Plath et al., 2003; Silva et al., 2003). We therefore tested ectopic 

accumulation of PRC2-catalyzed H3-K27me3 in E6.5 XX, X#TsixX, XY, and X#TsixY extra-

embryonic cells. We found discordance between Xist RNA coating and H3-K27me3 

accumulation; nuclei with ectopic Xist RNA coating in the Tsix-mutant cells did not always 

display H3-K27me3 enrichment (Fig. 2.9 A-C). In cells with ectopic Xist RNA coating and 

concomitant H3-K27me3 accumulation, however, a substantial percentage (20% of female and 

16% of male nuclei) harbored a transcriptionally-competent X-chromosome, as reflected by 

Pgk1 expression (Fig. 2.9 B-C). Together, these data demonstrate that Xist RNA induction often, 

but not always, leads to H3-K27me3 accumulation on the X#Tsix maternal X-chromosome, and 

that X-inactivation does not necessarily follow.  
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Figure 2.9: Disassociation of Xist induction, H3-K27me3 enrichment, and inactivation of the X!Tsix maternal 
X-chromosome in E6.5 extra-embryonic cells.  (a) RNA FISH detection of Xist, Tsix, and Pgk1 RNAs coupled 
with immunofluorescence (IF) detection of H3-K27me3 in extra-embryonic cells of E6.5 embryos.  Dashed boxes 
mark representative nuclei.  Scale bar, 10 $m.  (b) Quantification of H3-K27me3 enrichment and Pgk1 expression in 
nuclei displaying Xist RNA coating of both X-chromosomes in X!TsixX  extra-embryonic cells (50 nuclei with Xist 
RNA coating of both X-chromosomes were analyzed [n=5 X!TsixX  embryos]).  Wild-type (WT) XX embryos show 
Xist RNA coating and enrichment of H3-K27me3 on a single X-chromosome (n=5 embryos).  (c) Quantification of 
H3-K27me3 enrichment and Pgk1 expression in nuclei displaying Xist RNA coating of the X-chromosome in 
X!TsixY  extra-embryonic cells (50 nuclei with Xist RNA coating of the single X-chromosome [n = 4 X!TsixY  

embryos] were analyzed).  WT XY cells show neither Xist RNA coating nor H3-K27me3 enrichment (n = 4 
embryos).   

2-6: Tsix is Dispensable in X-chromosome Reactivation 

In addition to preventing Xist RNA expression and X-inactivation, Tsix is also implicated 

in Xist repression in pluripotent embryonic stem (ES) cells, an in vitro analog of the pluripotent 

epiblast precursor cells within the inner cell mass (ICM) of hatched blastocysts(Navarro et al., 

2009; 2010; Nesterova et al., 2011). Loss of Xist RNA coating is a hallmark of the chromosome-
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wide epigenetic remodeling that accompanies reactivation of the inactive-X in epiblast 

precursors(Mak et al., 2004; Sheardown et al., 1997; Williams et al., 2011). To test whether Tsix 

is required to repress Xist in the epiblast precursors, we isolated ICMs from XX and XX#Tsix E4.0 

embryos. In both XX and XX#Tsix ICMs, we observed loss of Xist RNA coating and biallelic 

expression of Atrx, a gene subject to X-inactivation, indicating that reactivation of the paternal-X 

had occurred in spite of its lacking functional Tsix (Fig. 2.10 A-C). We independently validated 

reactivation of the X#Tsix paternal X-chromosome by allele-specific RT-PCR amplification of the 

X-linked genes Pdha1, Rnf12, and Utx in E5.0 XJF1XLab and XJF1X#Tsix epiblasts (Fig. 2.10 D). 

Whereas Pdha1 and Rnf12 are subject to X-inactivation, Utx escapes X-inactivation and serves 

as a control for the assay to gauge biallelic X-linked gene expression. If the paternal X-

chromosome is reactivated, then transcription of all three genes should be apparent from both X-

chromosomes. In agreement, all three genes displayed biallelic expression in both genotypes in 

E5.0 epiblasts. Based on these data, we conclude that the paternal X-chromosome is reactivated 

in pluripotent stem cells independently of Tsix.  
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Figure 2.10: Reactivation of the inactive X!Tsix paternal X-chromosome in the inner cell mass (ICM).  RNA 
FISH detection of Xist (white), Tsix (green), and Atrx (red) RNAs in E4.0 ICMs.  Nuclei are stained blue with 
DAPI.  Insets show representative reactivated nuclei.  Scale bar, 20 $m.  (c) Quantification of the number of 
reactivated nuclei, as characterized by loss of Xist RNA coating and biallelic Atrx expression, in individual ICMs 
(n=6 ICMs per genotype).  The mean number of reactivated cells per ICM does not differ significantly between XX 
and XX!Tsix ICMs (p = 0.23, two-tailed T-test).  Error bars, S.D.  (d) Allele-specific X-linked gene expression 
analysis in E5.0 epiblast cells.  Representative chromatograms of sequenced cDNAs show biallelic expression of the 
X-linked genes Pdha1, Rnf12, and Utx, regardless of genotype.    

!
!
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2-6: Concluding Remarks 

Tsix transcription across the Xist promoter is thought to inhibit Xist expression, and 

thereby prevent X-inactivation(Navarro et al., 2005; Sado et al., 2005). We show instead that 

Tsix is not required to repress Xist and prevent X-inactivation in the early embryo and in stem 

cells of the trophectoderm and primitive endoderm lineages. Earlier studies implicating Tsix in 

imprinted X-inactivation did not profile the onset of X-inactivation in Tsix-mutant 

preimplantation embryos or in TS and XEN cells (Lee, 2000; Sado et al., 2001). We find that 

Tsix expression in cis is required to forestall inactivation of the maternal X-chromosome as the 

trophectoderm cells differentiate. By the post-implantation stage, the Tsix-mutant maternal X-

chromosome displayed ectopic Xist RNA coating in 25% and 20% of extra-embryonic cells 

isolated from E6.5 X#TsixX and X#TsixY male and female embryos, respectively. The variable 

induction of Xist reflects a requirement for Tsix in differentiating but not undifferentiated 

trophoblast cells to prevent Xist induction and X-inactivation.  

Xist expression from and coating of the X#Tsix maternal X-chromosome coincided with 

enrichment of the histone modification H3-K27me3 on the mutant-X in many, but not all, X#TsixX 

(54%) and X#TsixY (70%) extra-embryonic nuclei. Despite Xist RNA coating and H3-K27me3 

accumulation, however, we unexpectedly found that 20% of the X#Tsix maternal X-chromosomes 

in females and 16% in males did not undergo inactivation. This finding is consistent with and 

extends previous work showing that the recruitment of PRC2 and the catalysis of H3-K27me3 

are insufficient to trigger gene silencing by ectopically integrated Xist transgenes or by a mutant 

Xist RNA expressed from the endogenous locus(Plath et al., 2003; Silva et al., 2003; Wutz et al., 
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2002). In these studies, however, the site of integration of the Xist transgene or the specific 

mutation in Xist cannot be excluded as the cause of defective silencing. We find that ectopic 

coating of the X-chromosome by an unmodified and endogenous Xist RNA followed by robust 

H3-K27me3 enrichment nevertheless results in active transcription of endogenous X-linked 

genes. 

Our work shows that the oocyte-derived imprint that prevents inactivation of the maternal 

X-chromosome in the early embryo does not act through Tsix RNA. We instead propose a model 

where the oocyte marks the maternal-X with chromosome-wide histone modifications, ensuring 

that genes along the maternal X-chromosome remain transcriptionally competent during early 

embryogenesis (Fig. 2.11). This chromatin profile is sufficient to repress Xist during the 

initiation of imprinted X-inactivation in the early embryo independently of Tsix RNA. Tsix RNA 

is also not needed to maintain Xist repression in undifferentiated trophoblast stem cells. During 

trophectodermal differentiation, by contrast, Tsix absence leads to Xist induction from and X-

inactivation of the maternal-X. These data are consistent with previous findings that cellular 

differentiation can trigger X-inactivation defects, for example through large-scale chromatin 

changes that are inherent to differentiation (Corbel et al., 2013; Kalantry et al., 2006). The 

insufficiency of the germline-derived chromatin imprint to prevent inactivation of the maternal 

X-chromosome is also highlighted by the observations that the maternal-X in parthenogenetic 

embryos harboring two maternal-Xs is subject to inactivation in extra-embryonic tissues of post-

implantation embryos but not in pre-implantation embryos(Goto and Takagi, 2000; Rastan et al., 

1980). We further propose that Tsix expression from the maternal X-chromosome is not directly 

programmed by the oocyte, but is simply a byproduct of the absence of Xist transcription from 

that chromosome. Indeed, Tsix RNA is induced when Xist expression is absent(Hoki et al., 2009; 
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Rastan et al., 1980). Tsix transcription then contributes to the chromatin structure at the Xist 

promoter region, and these Tsix-induced modifications may assume the Xist-inhibitory role in 

differentiating trophectodermal cells(Navarro et al., 2005; Sado et al., 2005). This mode of 

lncRNA function in epigenetic transcriptional regulation may also apply to other loci subject to 

imprinted, parent-of-origin specific gene expression, where opposing sense-antisense lncRNA 

functions are invoked(Barlow, 2011). The reciprocal regulation by Tsix of Xist, in turn, is the 

cause of the Tsix-mutant maternal-Xs ectopically accumulating Xist RNA and H3-K27me3 in 

trophoblast cells. But, despite the enrichment of both Xist RNA and H3-K27me3 a significant 

percentage of X#Tsix maternal X-chromosomes do not undergo inactivation. These findings are 

consistent with the hypothesis that factors in addition to or other than Xist RNA and H3-K27me3 

contribute to the initiation of X-inactivation(Kalantry and Magnuson, 2006; Kalantry et al., 

2006; 2009). 
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Figure 2.11: A model for the role of Tsix in imprinted X-Inactivation.  The maternal X-chromosome, but not the 
paternal-X, is marked by histone modifications during gametogenesis that are transmitted to the offspring upon 
fertilization.  In the pre-implantation embryo, these histone modifications prevent inactivation of the maternal-X, 
while the paternal X-chromosome is subject to inactivation.  Xist is induced from the paternally-derived X-
chromosome in the pre-implantation embryo, and helps recruit protein complexes that catalyze histone marks 
characteristic of facultative heterochromatin on the paternal-X.  The oocyte-configured chromatin of the maternal-X, 
conversely, prevents Xist induction from the maternal X-chromosome during the initiation phase of X-inactivation 
(pre-implantation) and does not require Tsix.  The maternal-X then remains active during the maintenance phase of 
imprinted X-inactivation in undifferentiated extra-embryonic nuclei (post-implantation, undifferentiated cells), 
independently of Tsix expression.  Tsix is induced from the maternal-X due to the absence of Xist expression from 
this X-chromosome.  Upon differentiation, Tsix transcription across the Xist promoter region is required to induce 
heterochromatinization of the Xist promoter to keep Xist silenced in the extra-embryonic trophectodermal lineage.  
In XX differentiated extra-embryonic cells, the wild-type maternal-X remains transcriptionally competent while the 
paternal-X is maintained as transcriptionally inactive in imprinted X-inactivated cells.  Upon differentiation of 
X!TsixX trophectoderm cells, the Tsix-mutant maternal X-chromosome induces Xist. 

Our analysis additionally uncouples Tsix expression from the reactivation of the inactive 

paternal X-chromosome, a process that characterizes pluripotent epiblast precursor cells in the 

developing embryo(Mak et al., 2004; Williams et al., 2011). X-reactivation is also a prominent 
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epigenetic feature of pluripotent ES and iPSC cells(Minkovsky et al., 2012; Navarro et al., 2010; 

Plath and Lowry, 2011). Tsix induction from the inactive-X is posited to contribute to Xist 

repression and to the transcriptional equality of the two Xs in pluripotent cells(Navarro et al., 

2009; 2010; Nesterova et al., 2011). We find, however, that despite Tsix-absence, Xist RNA is 

repressed and the paternal X-chromosome is efficiently reactivated in epiblast precursor cells. In 

addition to by Tsix, Xist repression is postulated to occur via the pluripotency factors NANOG, 

OCT4, and SOX2, which are expressed in pluripotent epiblast progenitors and have been shown 

to bind within intron 1 of Xist in undifferentiated ES cells (Donohoe et al., 2009; Navarro et al., 

2008; 2010; Nesterova et al., 2011). Thus, it is conceivable that these pluripotency factors may 

function to repress Xist and induce reactivation of the X#Tsix paternal X-chromosome in the 

embryo. Countering this argument, however, Xist RNA upregulation and coating during random 

X-inactivation in the epiblast occurs despite high levels of NANOG, OCT4, and SOX2 

expression, suggesting the involvement of additional factors in both Xist repression and X-

reactivation(Pfister et al., 2007).  

 

 

2-7: Materials and Methods 

!
Ethics Statement.  

This study was performed in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were 

handled according to protocols approved by the University Committee on Use and Care of 

Animals (UCUCA) at the University of Michigan (Protocol #PRO00004007).  
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Mice. 

Mice harboring the TsixAA2!1. 7 mutation were generated from targeted ES cells that were a 

kind gift of Takashi Sado and have been described elsewhere (Kalantry and Magnuson, 2006; 

Sado et al., 2001). Tsix mutant mice were maintained on a CD1 strain background. The mice 

recapitulate the published transmission frequency and phenotype(Sado et al., 2001). The X-

linked GFP transgenic (X-GFP) strain is available via Jackson Labs [Tg (CAG-

EGFP)D4Nagy/J] and have been described previously(Hadjantonakis et al., 2001; Kalantry and 

Magnuson, 2006; Kalantry et al., 2006; 2009). The M. molossinus JF1 strain was sourced from 

Jackson Laboratories (JF1/ms).   

 

Embryo Dissections and Processing. 

 E3.5-E4.0 embryos were flushed from the uterine limbs in 1X PBS (Invitrogen, 

#14200075) containing 6% bovine serum albumin (BSA; Invitrogen, #15260037). Zona 

pellucidas surrounding E3.5 embryos were removed through incubation in cold acidic Tyrode’s 

Solution (Sigma, #T1788), immediately followed by neutralization through several transfers of 

cold M2 medium (Sigma, #M7167). GFP fluorescence conferred by the paternal transmission of 

the X-GFP transgene was used to distinguish female from male embryos, since only females 

inherit the paternal-X. Embryos were rinsed in 1X PBS with 6 mg/ml BSA, plated on gelatin-

coated glass coverslips, excess solution was aspirated, and the embryos air-dried for 15 min. 

After drying, embryos were permeabilized and fixed with 50 µL of 1X PBS containing 0.05% 

Tergitol (Sigma, #NP407) together with 1% paraformaldehyde for 10 min. Excess solution was 
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tapped off, and coverslips were rinsed 3X with 70% ethanol and stored in 70% ethanol at -20°C 

prior to RNA fluorescence in situ hybridization (RNA FISH) staining.  

For isolation of E5.0-E6.5 embryos, dissections were carried out in 1X PBS containing 

6% BSA. Individual implantation sites were cut from the uterine limbs, and decidua were 

removed with forceps. Embryos were dissected from the decidua, and the Reichert’s membranes 

surrounding post-implantation embryos were removed using fine forceps. For separation of 

extra-embryonic and epiblast portions of E6.5 embryos, fine forceps were used to physically 

bisect the embryos at the junction of the extra-embryonic ectoderm and epiblast. 

Immunofluorescence (IF) and/or RNA FISH staining were performed as described below.  

 

Trophoblast Stem Cells.  

 E3.5 embryos were flushed out from the uterus with MEM& (Invitrogen, #12561) with 

10% fetal bovine serum (FBS; Invitrogen, #10439-024) and plated on mouse embryonic 

fibroblast (MEF) cells in medium consisting of RPMI (Invitrogen, #21870076) with 20% FBS, 1 

mM sodium pyruvate (Invitrogen, #11360-070), 100 uM '-mercaptoethanol (Sigma, #M7522), 2 

mM L-glutamine (Invitrogen, #25030), 37.5 ng/mL FGF4 (R&D Systems, #235-F4-025), and 

1.5 ug/mL heparin (Sigma, #H3149-10KU). Following five days of growth at 37°C with 5% CO2 

blastocyst outgrowths were dissociated with 0.05% trypsin (Invitrogen, #25300-054). 

Dissociated cells were plated on MEFs and cultured at 37°C with 5% CO2. RNA was harvested 

from TS cells using Trizol (Invitrogen, #15596-018) and RT-PCR was performed as described 

below. For RNA FISH and/or IF, TS cells were split onto gelatin-coated glass coverslips and 

allowed to grow for 3-6 days. The cells were then permeabilized through sequential treatment 

with ice-cold cytoskeletal extraction buffer (CSK; 100 mM NaCl, 300 mM sucrose, 3 mM 
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MgCl2, and 10 mM PIPES buffer, pH 6. 8) for 30 sec, ice-cold CSK buffer containing 0.4% 

Triton X-100 (Fisher Scientific, #EP151) for 30 sec, followed twice with ice-cold CSK for 30 

sec each. After permeabilization, cells were fixed by incubation in 4% paraformaldehyde for 10 

min. Cells were then rinsed 3X in 70% ethanol and stored in 70% ethanol at -20°C prior to IF 

and/or RNA FISH. For differentiation of TS cells, cells were split onto gelatinized dishes or 

coverslips and cultured for 6 days (d6) in media without FGF4 or heparin. On d6 of 

differentiation, RNA was harvested or cells were processed as described above for IF and RNA 

FISH.  

 

RNA Fluorescence in situ Hybridization (RNA FISH).  

Double-stranded RNA FISH (dsRNA FISH) probes were created by randomly priming 

DNA templates using BioPrime DNA Labeling System (Invitrogen, #18094011). Probes were 

labeled with Fluorescein-12-dUTP (Invitrogen), Cy3-dCTP (GE Healthcare, #PA53021), or Cy5-

dCTP (GE Healthcare, #PA55031). Labeled probes for multiple genes were precipitated in a 3M 

sodium acetate (Teknova, #S0298) solution along with 300 µg of yeast tRNA (Invitrogen, 

#15401-029), 15 µg of mouse COT-1 DNA (Invitrogen, #18440-016) and 150 µg of sheared, 

boiled salmon sperm DNA (Invitrogen, #15632-011). The solution was then spun at 15,000 rpm 

for 20 min at 4°C. The resulting pellet was washed in 70% ethanol, then washed in 100% 

ethanol, dried, and re-suspended in deionized formamide (ISC Bioexpress, #0606-500ML). The 

re-suspended probe was denatured via incubation at 90°C for 10 min followed by an immediate 5 

min incubation on ice. A 2X hybridization solution consisting of 4X SSC, 20% Dextran sulfate 

(Millipore, #S4030), and 2.5 mg/ml purified BSA (New England Biolabs, #B9001S) was added 

to the denatured solution. The probe was then pre-annealed by incubation at 37°C for 1 hr to 
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minimize probe hybridization to repetitive sequences. Probes were stored at -20°C until use. 

Strand-specific RNA FISH (ssRNA FISH) probes were labeled with Fluorescein-12-UTP 

(Roche, #11427857910) or Cy3 CTP (GE Healthcare, # 25801086) using the Invitrogen 

MAXIscript Kit (Invitrogen, #AM-1324). Labeled probes were column purified (Roche, 

#11814427001). The labeled probes were then precipitated in an 0.25M ammonium acetate 

solution essentially as described above for dsRNA FISH probes, but without the addition of 

COT-1 DNA. Probes were resuspended as described for dsRNA FISH probes and stored at -20 

without preannealing. Embryos, embryo fragments, or TS cells mounted on coverslips were 

dehydrated through 2 min incubations in 70%, 85%, 95%, and 100% ethanol solutions and 

subsequently air-dried. The coverslips were then hybridized to the probe overnight in a humid 

chamber at 37°C. The samples were then washed 3X for 7 min each while shaking at 39°C with 

2XSSC/50% formamide, 2X with 2X SSC, and 2X with 1X SSC. A 1:250,000 dilution of DAPI 

(Invitrogen, #D21490) was added to the third 2X SSC wash. The embryos were then mounted in 

Vectashield (Vector Labs, #H-1200). A total of 64 E3.5 embryos (18 XX, 16 X!TsixX, 17 XY, and 

13 X!TsixY ) from eight litters were analyzed by RNA FISH. For assessment of E4.0 embryos, 13 

embryos from 2 litters were analyzed by RNA FISH.  

 

Whole-mount RNA FISH.  

E6.5 embryos were permeabilized through sequential transfers into ice-cold cytoskeletal 

extraction buffer (CSK;100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, and 10 mM PIPES 

buffer, pH 6.8) for 1 min, ice-cold CSK buffer containing 0.4% Triton X-100 (Fisher Scientific, 

#EP151) for 10 min, followed twice with ice-cold CSK for 1 min each. After permeabilization, 

the embryos were rinsed 3X in 70% ethanol and stored in 70% ethanol at -20°C prior to RNA 
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FISH. Embryos were rehydrated by incubating in decreasing concentrations of ethanol diluted in 

2X SSC for 3 min each. Embryos were then placed in a droplet of 2X SSC in a depression well 

slide (Fisher Scientific, #S175201). Embryos were incubated in 10 µL of probe (probe 

generation described in Experimental Procedures) overnight in a depression-well slide (Fisher 

Scientific, #S175201) sealed with a glass coverslip in a humid chamber at 37°C. Embryos were 

then rinsed with pre-warmed (50°C) 2X SSC/50% deionized formamide (Amresco, 

#NC9473844) and washed with 50% formamide/2X SSC solution 3X for 15 min each at 50°C, 

with periodic agitation via pipetting. Embryos were next washed with pre-warmed 2X SSC 

(50°C) 3X for 15 min each. In the first two 2X SSC washes, 4',6-diamidino-2-

phenylindoledichloride (DAPI; Invitrogen, #D21490) was included at a dilution of 1:200,000. 

Embryos were next washed in pre-warmed 1X SSC solution (50°C) 2X for 15 min each. After 

washing, embryos were processed through sequential incubations in PBS with 25%, 50%, 75%, 

and 100% Vectashield (Vector Labs, #H-1000) and mounted in depression-well slides with 

Vectashield.  

 

PCR and Allele-specific Reverse Transcriptase Polymerase Chain Reaction (RT-PCR).  

Embryos and embryo fragments were lysed in 100 µL of lysis/binding buffer (Dynabeads 

mRNA DIRECT Micro Kit; Invitrogen, #610.21). Messenger RNA was isolated by following 

manufacturer’s instructions. SuperScript III One-Step RT-PCR Platinum Taq enzyme mixture 

(Invitrogen, #12574-035) was used to prepare and amplify the complimentary DNA (cDNA). 

Strand-specific reverse transcription of Xist was performed using the XR-9816 primer, which 

spans bp 9815-9775 of Xist (CTCCACCTAGGGATCGTCAA). For PCR amplification, the 

forward primer XF-9229, which spans bp 9229-9248 of Xist (GACAACAATGGGAGCTGGTT) 
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was added upon completion of the RT reaction and prior to the PCR step. The Xist amplicon 

spans two introns, thus permits distinguishing genomic DNA sequence amplification by size. 

Genomic PCR for the Xist locus was performed the XR-271 primer, which spans 721-740 of Xist 

(CGGGGCTTGGTGGATGGAAAT), and XF-1083, which spans 1083-1064 of Xist 

(GCACAACCCCGCAAATGCTA). RT-PCR amplification of Tsix exon 4 in TS cells and E3.5 

embryos was performed using the RT primer TR-4224, which spans base pairs 4224-4205 of 

Tsix (TCGGATCCCACTACAGATGA), and the forward PCR primer TF-3796, which spans 

base pairs 3796-3815 of Tsix (CTAAGAGCACCTGGCTCCAC). For E3.5 blastocysts, an 

additional round of nested PCR was performed to detect Tsix using TR-4224 and TF-3987, 

which spans base pairs 3987- 4006 of Tsix (TCCCAATTCTTGCAAACCTC). RT-PCR for the 

Tsix amplicon spanning exons 2-4 was performed using the RT primer TR-732, which spans 

base pairs 732-713 of Tsix (GGAGAGCGCATGCTTGCAAT) and the forward PCR primer TF-

350, which spans base pairs 350-369 of Tsix (CCTGCAAGCGCTACACACTT). RT-PCR for "-

Actin was performed using the RT primer "A-R, which spans base pairs 673-655 of Actb 

(GTAGCCACGCTCGGTCAGG), and the forward primer "A-F, which spans base pairs 142-

159 of Actb (CGCGGGCGACGATGCTCC). Amplified cDNAs were run on agarose gels and 

purified using the Clontech NucleoSpin Kit (Clontech, #740609). The purified cDNAs were then 

sequenced and sequencing traces were examined for single nucleotide polymorphisms (SNPs) 

characteristic of the M. musculus-derived XJF1 chromosome and the M. domesticus-derived wild-

type XLab and mutant X!Tsix chromosomes. The SNP within the Xist amplicon localizes to bp 9399 

of Xist. The M. domesticus-derived wild-type XLab and mutant X!Tsix SNP is an adenosine while 

the M. musculus derived XJF1 SNP is a guanosine. The SNP within the Xist genomic PCR 

amplicon localizes to bp 804 of Xist.  The M. domesticus-derived wild-type XLab and mutant X!Tsix 
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SNP is a thymidine while the M. musculus derived XJF1 SNP is an adenosine. SNPs within X-

linked genes Rnf12 (bp 860, NM_011276), Pdha1 (bp 969, NM_008810.2), and Utx (bp 1383, 

NM_009483.1) have been described previously (Kalantry et al., 2009).  RT and PCR primers for 

these genes have also been described previously (Kalantry et al., 2009; Sado et al., 2001).  

 

Immunofluorescence.  

Embryo fragments mounted on glass coverslips were washed 3X in PBS for 3 min each 

while shaking. The fragments were then incubated in blocking buffer (0.5 mg/mL BSA (New 

England Biolabs, #B9001S), 50 ug/mL yeast tRNA, 80 units/mL RNAseOUT (Invitrogen, 

#10777-019), and 0.2% Tween 20, in PBS) in a humid chamber for 30 min at 37°C. The samples 

were next incubated with primary antibody, diluted in blocking buffer, for 1 hr in the humid 

chamber at 37°C. The H3-K27me3 (EMD Millipore, #ABE44) was used at 1:2500 dilution in 

blocking buffer. The CDX2 antibody (BioGenex, #MU328A-UC) was used at a 1:75 dilution in 

blocking buffer. The p57Kip2 antibody (Thermo Scientific, #RB-1637) was used at a 1:150 

dilution in blocking buffer. Following three washes in PBS/0.2% Tween-20 for 3 min each while 

shaking, the embryos were incubated in blocking buffer for 5 min at 37°C in the humid chamber. 

The embryos were then incubated in blocking buffer containing a 1:300 dilution of fluorescently-

conjugated secondary antibody (Alexa Fluor, Invitrogen) for 30 min in a humid chamber, 

followed by three washes in PBS/0.2% Tween-20 while shaking for 3 min each. The samples 

were then processed for RNA FISH as described above.  
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Immunosurgery.  

To isolate the inner cell mass (ICM) of E4.0 embryos, embryos were incubated in pre-

warmed rabbit anti-mouse serum (Rockland Immunochemicals, #110-4101) at a 1:5 dilution in 

M2 medium for 1 hr in a humid chamber at 37°C. After briefly rinsing in M2 medium, embryos 

were incubated in pre-warmed guinea pig complement (Sigma, cat No. S1639) at a 1:5 dilution 

in M2 medium for 45 min to 1 hr in a humid chamber at 37°C. The embryos were then 

repeatedly pipetted using a finely-pulled glass Pasteur pipette to remove trophectoderm cells. 

Isolated ICMs were treated with 0.05% trypsin for 10 min for mild dissociation, then incubated 

in M2 media with 10% fetal bovine serum (FBS) for 10 min to neutralize the trypsin. ICMs were 

then rinsed in 1X PBS and permeabilized through sequential transfers into ice-cold CSK for 1 

min, ice-cold CSK containing 0.4% Triton X-100 buffer for 5 min, followed twice with ice-cold 

CSK for 1 min each. ICMs were mounted on a glass coverslip coated with 1X Denhardt’s 

solution in a small drop of ice-cold solution of 1X PBS containing 1% paraformaldehyde and 

20% CSK buffer. Excess solution was aspirated off and the coverslip air-dried for 15 min. The 

ICMs were then fixed in cold 3% paraformaldehyde for 10 min. After fixation, the coverslips 

were rinsed 3X in 70% ethanol and stored in 70% ethanol at -20°C prior to use.  

 

Microscopy.  

Stained samples were imaged using a Nikon Eclipse TiE inverted microscope with a 

Photometrics CCD camera. The images were deconvolved and uniformly processed using NIS-

Elements software.  
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Statistics.  

Comparisons between gene expression patterns were performed using a two-tailed 

Fisher’s exact test. p=0.01 was used as the cutoff for statistical significance.  
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Chapter 3: A Primary Role for the Tsix lncRNA in  

Maintaining Random X-chromosome Inactivation 

!
!
This chapter was originally published in Cell Reports as 1. Gayen, S*., Maclary, E*., Buttigieg, 

E., Hinten, M. & Kalantry, S. “A Primary Role for the Tsix lncRNA in Maintaining Random X-

Chromosome Inactivation”. (Cell Reports 11, 1251–1265 (2015)). *, equal contribution. Data 

and figures were primarily generated by S.G. and E.M., E.M. is responsible for the data 

presented in figures 3.1, 3.5, 3.6, and 3.14. S.G. is responsible for the data presented in figures 

3.2, 3.3, 3.4, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13. E.M. performed all statistical analysis. E.B. 

assisted with development and optimization of strand-specific riboprobes. M.H. developed the 

allelic pyrosequencing assays utilized throughout the manuscript. E.M., S.G., and S.K. wrote the 

manuscript.  

 

3-1: Introduction 

X-chromosome inactivation results in the mitotically-stable transcriptional silencing of 

genes along one of the two X-chromosomes in female mammals (LYON, 1961).  In the 

pluripotential mouse epiblast cells, which will form the embryo proper, the selection of which X 

to inactivate is random. Molecularly, random X-inactivation is posited to be controlled in cis by 

a pair of oppositely-transcribed X-linked long non-coding (lnc) RNAs, Xist and Tsix (Barakat 

and Gribnau, 2012). Xist RNA is believed to initiate epigenetic silencing of genes in cis by 
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physically coating the X-chromosome from which it is transcribed and recruiting proteins that 

catalyze heterochromatin formation (Payer and Lee, 2008).  Tsix transcription across the Xist 

promoter, conversely, is proposed to inhibit Xist expression (Lee, 2000; Lee and Lu, 1999; 

Luikenhuis et al., 2001; Navarro et al., 2005; Sado et al., 2001; 2005). Because of its ability to 

repress Xist, the Tsix locus is postulated to be the site where molecular signals converge to help 

ensure that one X-chromosome remains active in both males and females (Clerc and Avner, 

1998; Cohen et al., 2007; Debrand et al., 1999; Gontan et al., 2012; Lee, 2005; Luikenhuis et al., 

2001; Morey et al., 2004; Navarro et al., 2010; Stavropoulos et al., 2005; Vigneau et al., 2006).   

Investigations of mutations that reduce or abrogate Tsix RNA expression, however, have 

resulted in disparate outcomes. In differentiating male embryonic stem cells (ESCs), a cell 

culture model of X-inactivation, some Tsix mutations display ectopic Xist induction, consistent 

with Tsix serving to inhibit Xist and thereby X-inactivation (Clerc and Avner, 1998; Debrand et 

al., 1999; Luikenhuis et al., 2001; Morey et al., 2004; Sado et al., 2002; Vigneau et al., 2006). 

Other Tsix-mutant male ESCs, though, do not exhibit Xist expression upon differentiation 

(Cohen et al., 2007; Lee, 2000; Lee and Lu, 1999; Minkovsky et al., 2013). The differences 

observed between the mutant ESC lines may reflect residual Tsix expression due to the 

incomplete ablation of Tsix or differences in the protocols employed to differentiate ESCs.  

Whereas ectopic X-inactivation may or may not occur in Tsix-mutant males, the choice 

of which X to inactivate appears absolutely biased in Tsix-heterozygous females (Cohen et al., 

2007; Kalantry and Magnuson, 2006; Lee, 2000; Sado et al., 2001). In these mice, the Tsix-

mutant X-chromosome is inactive in all cells of the differentiating epiblast lineage, which would 

otherwise undergo random X-inactivation. This bias in choice has been explained by the 
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preferential induction of Xist from the Tsix-mutant X-chromosome prior to or at the onset of X-

inactivation in the epiblast lineage.  

Despite the proposed models of Tsix function, the significance of Tsix RNA remains 

unclear in both males and females. In the course of a previous study, we noticed that the epiblast 

in X"TsixY post-implantation embryos appeared to ectopically express Xist in the absence of Tsix 

(Maclary et al., 2014). We therefore hypothesized that Tsix-heterozygous females might also 

aberrantly express Xist during development. Thus, an alternative explanation for the apparent 

lack of ectopic Xist expression and skewed X-inactivation in Tsix-heterozygotes is that a 

secondary cell-selection effect rapidly removes cells with two inactive-Xs from the population.  

Due to the tight coupling of X-inactivation with epiblast differentiation (Monk and Harper, 

1979), ectopic silencing of the previously active X"Tsix may occur concurrently with or shortly 

after the initiation of random X-inactivation. Inactivation of both Xs in females would render the 

cells effectively nullizygous for many X-linked genes, thus compromising proliferation and 

viability. Later-stage epiblast and ESC derivatives would therefore consist only of cells with an 

active WT X-chromosome. Here, we investigate Tsix function by profiling embryos harboring a 

Tsix-null allele at the onset of random X-inactivation; and, by deriving Tsix hemizygous male 

and heterozygous female EpiSC and ESC lines.   

 

3-2: Tsix Absence Results in Ectopic Xist RNA Expression and Coating in Male Embryonic 

Epiblasts  
 

Random X-inactivation initiates in epiblast cells between embryonic day (E) 4.5-6.5 in 

mice, just as the pluripotential epiblast cells begin to differentiate (Gardner and LYON, 1971; 

Kalantry and Magnuson, 2006; McMahon et al., 1983; Rastan, 1982). To examine the role of 
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Tsix RNA at the onset of X-inactivation, we generated embryonic day (E) 5.25 post-implantation 

stage embryos that inherit either a WT or a Tsix-null maternal X-chromosome from Tsix-

heterozygous females. The previously described Tsix mutation, TsixAA2!1.7 (herein referred to as 

X"Tsix) (Sado et al., 2001), terminates the Tsix transcript in exon 2 and also deletes the critical 

DXPas34 repeat thought to serve as a platform to drive Tsix expression (Fig. 3.1 A) (Cohen et 

al., 2007; Maclary et al., 2014; Navarro et al., 2010; Stavropoulos et al., 2005; Vigneau et al., 

2006). Since transcription across the Xist promoter region is required for the Tsix RNA to inhibit 

Xist expression (Navarro et al., 2005; Sado and Ferguson-Smith, 2005), X"Tsix is a bona fide null 

Tsix mutation (Fig. 3.1 B) (Maclary et al., 2014; Sado et al., 2001). We first tested if the absence 

of Tsix RNA led to Xist induction in male epiblasts by RT-PCR. Whereas WT E5.25 XY 

epiblasts exhibited Tsix but not Xist expression, X"TsixY epiblasts displayed the opposite pattern 

(Fig. 3.1 B). We next independently assessed Xist induction and X-inactivation in E5.25 XY and 

X"TsixY epiblast cells by immunofluorescence (IF) coupled with RNA fluorescence in situ 

hybridization (RNA FISH). We first marked epiblast cells via IF detection of NANOG, which 

distinguishes the epiblast from the extra-embryonic cells (Fig. 3.1 C). In the same samples, using 

strand-specific RNA FISH probes we also assayed expression of Tsix and Xist RNAs.  In WT 

XY epiblasts, Tsix RNA signal but not Xist RNA coating was detectable from the sole X-

chromosome (Fig. 3.1 C). In contrast, in X"TsixY mutant embryos ~34% of the nuclei displayed 

Xist RNA coating (Fig. 3.1 C). Moreover, Xist coating resulted in the accumulation of histone 

H3 lysine 27 trimethylation (H3-K27me3), a chromatin mark catalyzed by the Polycomb 

repressive complex 2 that is associated with the inactive-X heterochromatin (Fig. 3.1 D) (Plath et 

al., 2003; Silva et al., 2003), and accompanied silencing of the X-linked Pgk1 gene (Fig. 3.1 E). 
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Thus, Tsix absence leads to Xist RNA induction, coating, and gene silencing on the single X-

chromosome in male epiblast cells.  

 
Figure 3.1: Xist is induced from the X!Tsix in E5.25 male epiblast cells.   (A) Diagram illustrating WT Xist and 
Tsix loci and the !Tsix mutation.  Dotted lines indicate the locations of strand-specific (ss) RNA FISH probes.   
Filled arrowheads mark the locations of RT-PCR primer pairs.  1 (orange arrowheads), Xist RT-PCR amplicon; 2 
(blue arrowheads), Tsix exon 4 RT-PCR amplicon; 3 (purple arrowheads), Tsix RT-PCR amplicon spanning exons 
2-4.   (B) RT-PCR amplification of Tsix (exon 4) and Xist RNAs in E5.25 epiblasts.   M, marker; NTC, no template 
control;  +, reaction with reverse transcriptase (RT);  -, no RT control lane.   (C) Strand-specific RNA FISH 
detection of Xist RNA (green) and Tsix RNA (red) coupled with IF staining for NANOG (purple) in isolated 
epiblasts and extra-embryonic ectoderm, which serves as a negative control for NANOG expression.  Nuclei are 
stained blue with DAPI.  Scale bar, 10 $m.  Right, quantification of Xist and Tsix expression in NANOG-positive 
epiblast nuclei.   The X-axis of each graph represents the average percentage of nuclei per embryo in each class (n = 
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3 embryos/genotype; 49-68 nuclei/embryo).   Diagrams along the Y-axis depict all observed expression patterns.  
Error bars represent the standard deviation of data from 3 different embryos.  *, p % 0.001 (Chi-square test).  (D) 
Xist RNA coating (green) and H3-K27me3 enrichment (purple) in E5.25 X!TsixY epiblast nuclei.  (E) Silencing of the 
X-linked gene Pgk1 (red) in E5.25 X!TsixY epiblast nuclei upon ectopic Xist RNA coating (green). 
 

3-3: Ectopic Xist Induction in Differentiating But Not Undifferentiated X"TsixY Epiblast 

Stem Cells  

To further explore the requirement of Tsix in the epiblast, we derived WT XY and mutant 

X"TsixY epiblast stem cells (EpiSCs; Fig. 3.2 A-C; Table 3.1). EpiSCs are thought to represent an 

early phase of X-inactivation (Bernemann et al., 2011; Brons et al., 2007; Han et al., 2011; 

Pasque et al., 2011a; 2011b; Tesar et al., 2007). If Tsix negatively regulates Xist in 

undifferentiated epiblast cells, EpiSCs lacking Tsix are expected to display aberrant Xist 

activation. In assaying Xist expression by RT-PCR, we found that Xist RNA was undetectable in 

the WT XY EpiSC lines (Fig. 3.3 A). In X"TsixY EpiSC lines, however, Xist RNA was expressed at 

minimally detectable levels (Fig. 3.3 A). This low level of Xist expression may reflect the 

induction of Xist in the small fraction of differentiated cells that are often found in stem cell 

cultures. This notion prompted us to test if Xist would be induced to high levels if we actively 

differentiated X"TsixY EpiSCs (Fig. 3.2 D). Indeed, Xist expression in X"TsixY but not XY cells 

increased markedly upon differentiation (Fig. 3.3 A).  

To examine if the ectopic Xist expression coincided with coating of the X-chromosome, 

we performed Xist RNA FISH on undifferentiated and differentiated EpiSCs. As expected, 

neither undifferentiated nor differentiated XY EpiSC lines exhibited any Xist RNA coated X-

chromosomes (Fig. 3.3 B). In all four of the X"TsixY EpiSC lines, we observed a similar lack of 

Xist RNA coating in the undifferentiated cells (Fig. 3.3 B). However, upon differentiation a 

significant percentage of the mutant cells displayed Xist RNA coating (29-35%; Fig. 3.3 B-C). 

As in E5.25 mutant epiblast cells, many Xist RNA-coated X"TsixY cells still expressed NANOG 
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(38-42%) (Fig. 3.2 E). Xist RNA coating also resulted in the accumulation of histone H3-

K27me3 and silencing of Pgk1 on the X"Tsix in a vast majority of the mutant cells (84-94%) (Fig. 

3.3 D-E). Together, the RT-PCR and RNA FISH data from X#TsixY EpiSCs prompt the conclusion 

that Tsix RNA does not participate in repressing Xist in undifferentiated male EpiSCs. Instead, 

Tsix is required to prevent ectopic Xist induction and X-linked gene silencing during the 

differentiation of male epiblast progenitor cells. 
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Figure 3.2: Characterization of EpiSCs and ESCs (A) Stereo micrographs of EpiSCs and ESCs highlighting 
differences in cellular morphology.  (B) Comparison of ESC, EpiSC, and trophoblast stem cell (TSC) lines through 
IF detection of OCT4, NANOG, and REX1.  A representative cell line is shown of each stain.  Whereas ESCs 
express all three proteins, EpiSCs express OCT4 and NANOG but not REX1.  TSCs serve as negative controls and 
lack expression of all three markers. Scale bars, 10 $m.   (C) Marker analysis by RT-PCR of all male and female 
EpiSC and ESC lines used in the study.  Fgf5 and Cer1 are expressed only in EpiSCs while high Rex1 expression 
marks ESCs.  (D) Characterization of differentiating male EpiSC lines.  RT-PCR amplification of pluripotency 
markers Nanog and Oct4; mesodermal marker Brachyury; neuroectodermal marker "-III tubulin; hepatocyte marker 
FoxA2 at successive days of differentiation in WT and Tsix-hemizygous EpiSCs analyzed in Fig 2.  d, days.  Loss 
of expression of Oct4 and Nanog indicates that EpiSCs had lost pluripotency and differentiated.  (E) Xist RNA 
coating in NANOG+ and NANOG- d5 differentiating X!TsixY EpiSCs.   
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Figure 3.3: Ectopic Xist RNA induction in differentiated but not undifferentiated X"TsixY EpiSCs and ESCs.   
(A) RT-PCR amplification of Xist and Tsix RNAs in undifferentiated and differentiated XY and X"TsixY EpiSC lines 
(2 and 4 cell lines, respectively).  !-actin amplification serves as control.  M, marker; +, reaction with reverse 
transcriptase (RT);  -, no RT control lane.   (B) RNA FISH detection of Xist RNA (green) and Tsix RNA (red) in 
representative undifferentiated and day (d) 10 differentiated EpiSC lines (XY line number [no.] 1; X"TsixY line no. 2).  
Nuclei are stained blue with DAPI. Scale bar, 10 $m.  (C) Quantification of Xist RNA coated nuclei in 
undifferentiated (d0) and d5 and d10 differentiated EpiSC lines.  Scale bar, 10 $m.  Only cells with a single Xist 
locus detected by DNA FISH (left) following RNA FISH were counted; n=100 nuclei/cell line.  (D) RNA FISH 
detection of Xist (green) combined with IF detection of H3-K27me3 (red) in d10 differentiated X"TsixY EpiSCs.  Data 
from two different lines are shown.  (E) Silencing of Pgk1 (red) upon Xist RNA (green) coating in representative 
d10 differentiated X"TsixY EpiSCs.  (F-G) RT-PCR (F) and RNA FISH (G) detection of Xist and Tsix RNAs in 
undifferentiated or embryoid body-differentiated XY and X"TsixY ESC lines (2 and 3 lines, respectively).  Scale bar, 
10 $m.  (H) Quantification of Xist RNA coated nuclei in the differentiated ESC lines.  Only cells with one Xist 
locus detected by DNA FISH (left) following RNA FISH were counted; n=100 nuclei/cell line.  Scale bar, 10 $m.   
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3-4: Ectopic Xist Induction in Differentiating X"TsixY ESCs 
That X#TsixY EpiSCs displayed robust Xist induction only upon differentiation is 

incongruous with some previous studies with Tsix-mutant male ESCs. Tsix deficiency in male 

ESCs is suggested to either be innocuous in both undifferentiated and differentiated cells (Cohen 

et al., 2007; Lee, 2000; Lee and Lu, 1999; Minkovsky et al., 2013; Ohhata et al., 2006; Sado et 

al., 2001; 2002); or, conversely, result in ectopic Xist RNA coating of the Tsix-mutant X during 

differentiation (Debrand et al., 1999; Luikenhuis et al., 2001; Morey et al., 2004; Navarro and 

Avner, 2010; Vigneau et al., 2006). We therefore derived XY and X#TsixY ESC lines (Fig. 3.2 ) 

and tested Xist induction in both undifferentiated and differentiated cells by RT-PCR and RNA 

FISH. As with EpiSCs, we found that Xist remained silenced in undifferentiated XY as well as in 

X"TsixY ESCs (Fig. 3.3 F-G); however, upon differentiation Xist RNA was induced in X"TsixY but 

not XY ESCs (Fig. 3.3 F-H).   

 To distinguish if Xist induction in X"TsixY ESCs occurred at the onset of differentiation or 

later, we transiently differentiated the ESCs into epiblast-like cells (EpiLCs) (Hayashi et al., 

2011). EpiLCs arise early during ESC differentiation and share key features with EpiSCs (Fig. 

3.4 A-C) (Buecker et al., 2014). We found that the mutant EpiLCs displayed low-level Xist 

expression by RT-PCR, with only a few cells displaying Xist RNA coating (10%) (Fig. 3.4 C-E). 

The Xist RNA-coated cells appeared to have differentiated beyond the EpiLC state, as suggested 

by reduced NANOG expression (Fig. 3.4 E). When the EpiLCs were differentiated further, 

significantly more cells displayed Xist RNA coating (27-36%) (Fig. 3.4 F), consistent with the 

EpiSC data. 
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Figure 3.4: Characterization of male ESC-derived EpiLCs. (A) Stereo micrographs of ESCs, EpiLCs, and 
EpiSCs.  (B) IF detection of OCT4, NANOG, and REX1 in EpiLCs.  A representative image is shown of each stain.  
EpiLCs express OCT4 and NANOG but not REX1, similar to EpiSCs (see Fig. S1). Scale bars, 10 $m.    (C) 
Analysis of male EpiLCs by RT-PCR.  Fgf5 and Cer1 are expressed in EpiLCs, similarly to in EpiSCs, whereas high 
Rex1 expression exclusively marks ESCs.  ‘EpiLC’ samples are individual fields in tissue culture wells containing 
largely if not exclusively cells morphologically resembling EpiLCs.  ‘EpiLC/ESC’ samples are of entire tissue 
culture wells in which ESCs were being converted to EpiLCs.  These samples display faint Rex1 expression, 
indicative of residual undifferentiated ESCs.  ‘ESC’ samples are of unconverted ESC wells.  Faint Xist expression is 
detected in X!TsixY but not XY EpiLCs.  (D) RT-PCR amplification of Tsix (exon 4) in XY and X#TsixY EpiLCs.  (E) 
Strand-specific RNA FISH detection of Xist (green) and Tsix (red) combined with IF detection of NANOG in 
EpiLCs.  Scale bars, 10 $m.  (F) Quantification of Xist RNA coated nuclei.  d2, differentiation of ESCs into EpiLCs, 
d4 and d6 differentiation of the ESCs beyond the EpiLC stage.  Scale bars, 10 $m.  Only cells with one Xist locus 
detected by DNA FISH (left) following RNA FISH were counted; n=100 nuclei/cell line.  
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3-5: Absence of Biased X-chromosome Choice in Tsix-heterozygous Female Epiblasts 
We next examined the impact of the X"Tsix mutation in females. The two X-chromosomes 

in inbred XX epiblast cells are normally equally likely to undergo inactivation; in heterozygous 

Tsix-mutant epiblasts, however, previous work has concluded that only the X"Tsix X-chromosome 

is chosen for inactivation (Lee, 2000; Sado et al., 2001). This model of biased inactivation in 

favor of the X"Tsix is borne out by allele-specific Xist RT-PCR analyses of F1 hybrid WT and 

Tsix-heterozygous E6.5 epiblasts (Fig. 3.5 A-B).  The X-chromosomes in these embryos are 

derived from two divergent mouse strains and are polymorphic, thereby allowing allele-specific 

expression analysis. Both Sanger sequencing (Fig. 3.5 A) and Pyrosequencing (Fig. 3.5 B), 

which quantifies allele-specific expression, of the cDNAs revealed that Xist is transcribed from 

either X in WT XLabXJF1 and XJF1XLab embryos (by convention, the maternal allele precedes the 

paternal allele), whereas in X"TsixXJF1 and XJF1X"Tsix epiblasts Xist is expressed almost exclusively 

from the X"Tsix. 

To evaluate the expression of Xist and Tsix in XX, X"TsixX, and XX"Tsix E6.5 epiblasts at 

the single cell resolution, we performed strand-specific RNA FISH. As with male embryos, we 

again confirmed the identity of epiblast cells by first assaying expression of NANOG by IF. We 

observed Xist RNA coating of both Xs by RNA FISH in a small fraction of X"TsixX and XX"Tsix 

mutant  (~2%), but not WT XX, E6.5 epiblast cells (Fig. 3.5 C). Based on this observation and 

the hypothesis that cells with ectopic inactivation of the X"Tsix are eliminated, we reasoned that a 

higher percentage of cells in Tsix-heterozygotes may display Xist RNA coating of both X-

chromosomes at an earlier stage of embryogenesis. We therefore assayed epiblast cells in E5.25 

embryos by RNA FISH (Fig. 3.5 D). Although most nuclei displayed Xist RNA accumulation, a 

proportion lacked Xist RNA coating but displayed nascent Xist and Tsix RNAs, suggesting that 
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X-inactivation was just beginning in the epiblast. Of the Xist RNA coated nuclei, a small but 

significant percentage clearly displayed Xist RNA coating of both X-chromosomes in X"TsixX 

epiblasts (12%) compared to XX epiblasts (0%), although one of the two Xist coats in the 

mutants was often comparatively weaker (Fig. 3.5 D). To rule out a parent-of-origin effect, we 

also investigated E5.25 epiblasts with paternally-transmitted X"Tsix mutation. A similar percentage 

of XX"Tsix epiblast cells (11%) exhibited Xist RNA coating of both X-chromosomes (Fig. 3.5 D). 

Xist RNA coating of both Xs coincided with H3-K27me3 enrichment and silencing of Pgk1 on 

both Xs in 80-90% of the nuclei, suggesting that both Xs were inactivated (Fig. 3.6 A-B). 
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Figure 3.5: Xist expression in E6.5 and E5.25 WT and Tsix-heterozygous female epiblast cells.   (A) Allele-
specific RT-PCR detection of Tsix (exon 4) and Xist RNAs in epiblasts of three individual WT (XLabXJF1) and Tsix-
heterozygous (X"TsixXJF1) E6.5 embryos.   M, marker; NTC, no template control;  +, reaction with reverse 
transcriptase (RT);  -, no RT control lane.  Bottom, Sanger sequencing of the amplified cDNAs.   Blue highlights 
mark a SNP that differs between the XLab / X"Tsix and XJF1 mouse strains.  (B) RT-PCR followed by Pyrosequencing-
based quantification of allelic Xist expression in epiblasts of individual E6.5 embryos.  Error bars represent the 
standard deviation of data from 3 different embryos.   (C-D) RNA FISH detection of Xist and Tsix RNAs coupled 
with IF detection of NANOG in isolated E6.5 (C) and E5.25 (D) epiblasts.  Nuclei are stained blue with DAPI. Scale 
bars, 10 $m.  Bottom, quantification of Xist and Tsix expression.  The X-axis of each graph represents the average 
percentage of nuclei in each class (n = 3 embryos/genotype; 100 nuclei/E6.5 embryo and 45-71 nuclei/E5.25 
embryo).   Diagrams along the Y-axis depict all observed expression patterns.  Error bars represent the standard 
deviation of data from 3 different embryos.   *, p % 0.01 (Chi-square test).  (E) RT-PCR amplification of Tsix (exon 
4) and Xist RNAs in WT and Tsix-heterozygous epiblasts.  Bottom, Sanger sequencing of the Tsix and Xist cDNAs.  
(F) RT-PCR followed by Pyrosequencing-based quantification of allelic Xist expression in epiblasts of individual 
E5.25 embryos.  Error bars represent the standard deviation of data from 3 different embryos.  No significant 
differences in allelic Xist expression were observed between WT and Tsix-mutant embryos (p = 0.44, E5.25 XLabXJF1 

vs. X"TsixXJF1; p = 0.46, E5.25 XJF1XLab vs. XJF1X"Tsix; Welch’s two-sample T-test.).  
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Figure 3.6: Characterization of X-inactivation, allelic Xist expression, and proliferation in E5.25 female 
epiblasts.  (A) Combined IF and RNA FISH detects Xist RNA coating (green) and H3-K27me3 enrichment (purple) 
in E5.25 X!TsixX epiblast nuclei.  Of the nuclei displaying ectopic Xist RNA coats, H3-K27me3 is enriched in >87% 
of the nuclei.  (B) RNA FISH shows silencing of the X-linked gene Pgk1 (red) in ~80% of nuclei upon ectopic Xist 
RNA coating (green).  (C) RNA FISH detection of X!Tsix as the active X-chromosome.  Nuclei with two Xist RNA 
coats do not express LacZ or Tsix (top panel); both are subject to X-inactivation.  Nuclei with an Xist RNA-coated 
inactive X-chromosome express either Tsix (green) from the WT X or LacZ (red) from the X!Tsix.  n=100 
nuclei/genotype.  (D) Quantification of Xist RNA coating and phospho-histone H3 staining in XX!Tsix E5.25 epiblast 
nuclei.  A total of 55 nuclei with single inactive-X chromosomes and 55 nuclei with two inactive X-chromosomes (2 
Xist RNA coats and no Pgk1 expression) were counted.  Nuclei with two inactive X-chromosomes show a 
significant reduction in the proportion of phospho-H3 stained nuclei (p=0.003, Fisher’s exact test). 
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In addition to nuclei with two Xist RNA coats, E5.25 Tsix-heterozygotes lacked Tsix 

RNA expression from the active-X in a significant percentage of nuclei (24%). We suspected 

that in these cells the X"Tsix was chosen as the active-X, and, hence, the WT X as the inactive-X. 

Upon differentiation, this population of cells would ectopically induce Xist from and undergo 

inactivation of the X"Tsix. We therefore set out to test directly if the X"Tsix can be chosen as the 

active-X in E5.25 epiblasts, by exploiting the expression of a '-galactosidase cassette integrated 

into the mutant Tsix locus (see Fig. 3.1 A); LacZ nascent transcripts uniquely mark the X"Tsix 

(Sado et al., 2001). Both unmodified Tsix and the mutated Tsix locus expressing LacZ are 

subject to X-inactivation and therefore are only transcribed when they reside on the active-X 

(Fig. 3.6 C) (Maclary et al., 2014; Sado et al., 2001). Simultaneous probing of Xist, Tsix, and 

LacZ RNAs by FISH in WT XX E5.25 epiblasts, which do not carry the transgene, showed Tsix 

but not LacZ expression as expected (Fig. 3.6 C). In X"TsixX and XX"Tsix epiblasts, by contrast, a 

significant percentage of nuclei (30-39%) expressed LacZ but not Tsix (Fig. 3.6 C). Thus, the 

X"Tsix can indeed be chosen as the active-X at the onset of random X-inactivation.  

To interrogate X-chromosomal choice further, we assayed Xist expression via allele-

specific RT-PCR followed by Sanger sequencing and Pyrosequencing in individual F1 hybrid 

E5.25 WT and Tsix-heterozygous epiblasts. Both sets of epiblasts displayed biallelic Xist 

expression by Sanger sequencing and negligible differences in allelic Xist expression by 

Pyrosequencing (Fig. 3E-F). The similarly unequal expression of the two Xist alleles in WT and 

Tsix-mutant epiblasts is consistent with differences in the X-controlling element (Xce) on the 

polymorphic X-chromosomes in F1 hybrid embryos (Chadwick et al., 2006; Johnston and 

Cattanach, 1981; Ohhata et al., 2008).  
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We next tested the inference that the paucity of ectopic Xist RNA coated cells in Tsix-

heterozygous E6.5 epiblasts compared to E5.25 epiblasts is due to a failure of mitotic division of 

E5.25 epiblast cells with two inactive X-chromosomes. We found that the mitotic index, as 

measured by the presence of phosphorylated-histone H3, is significantly reduced in E5.25 X"TsixX 

epiblast cells exhibiting Xist RNA coating and silencing of Pgk1 on both Xs, compared to cells 

with Xist RNA coating and silencing of Pgk1 on only one X (p = 0.003; Fig. 3.6 D). Thus, the 

proliferative potential of cells with two inactive-Xs is compromised.  

 

3-6: Tsix-heterozygous EpiSCs Undergo Ectopic X-inactivation Only Upon Differentiation  
We next wished to investigate if ectopic Xist RNA induction from the X"Tsix in 

heterozygous females occurs at the onset of X-inactivation or is linked to epiblast differentiation 

as in X"TsixY males. We therefore derived multiple WT XLabXJF1 and XJF1XLab and mutant X"TsixXJF1 

and XJF1X"Tsix EpiSC lines from F1 hybrid embryos (see Fig. 3.2 and Table 3.1).  Although Tsix 

was expressed from both X-chromosomes in WT EpiSCs, in Tsix-heterozygotes only the WT 

XJF1 expressed Tsix (Fig. 3.7A-B). To quantify how often each of the two parental X-

chromosomes were chosen for inactivation, we Pyrosequenced Xist cDNA and cDNAs from the 

X-inactivated genes Rnf12 and Atrx. The WT EpiSC lines displayed nearly equal levels of Xist 

expression from the two X-chromosomes, consistent with random choice (Fig. 3.7C). The Tsix-

heterozygous EpiSC lines did not uniformly show Xist expression exclusively from the X"Tsix, nor 

were Rnf12 and Atrx expressed only from the WT XJF1 in all the mutant cell lines (Fig. 3.7C). The 

cell lines instead displayed a normal distribution of which of the two Xs was inactivated, 

demonstrating that X-inactivation is not skewed in favor of the X"Tsix.  Although the variability 

was higher in the mutants, the mean as well as the median expression levels of Xist, Rnf12, and 
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Atrx in parent-of-origin-matched WT and Tsix-mutant EpiSC lines were not significantly 

different (p>0.1 in all cases).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Embryonic stage of cell line derivation for all wild-type and Tsix-mutant EpiSC lines. 

Embryonic Stage of EpiSC Derivation 

Genotype EpiSC Line No. Embryonic Stage 

XY 1-2 E3.5 

1-2 E3.5 
X!TsixY 

3-4 E5.5 
1-3 E3.5 

XLabXJF1 
4 E5.5 

XJF1XLab 1-2 E3.5 

1,3,10-14 E3.5 
X!TsixXJF1 

2,4-9,15 E5.5 
5,6 E3.5 
2-4 E4.5 XJF1X!Tsix 
1 E3.5 
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Figure 3.7: Lack of uniformly biased X-inactivation in undifferentiated Tsix-heterozygous EpiSC lines.   (A) 
RT-PCR amplification of Tsix RNA from WT and Tsix-heterozygous EpiSC lines.  M, marker; NTC, no template 
control;  +, reaction with reverse transcriptase (RT);  -, no RT control lane.  (B) Representative Sanger sequencing 
chromatograms of Tsix cDNAs.  (C) RT-PCR followed by Pyrosequencing-based quantification of allelic 
expression of Xist and the X-linked genes Rnf12 and Atrx.   Each bar represents an individual EpiSC line.  Xm, 
maternal X-chromosome; Xp, paternal X-chromosome.  Error bars represent the standard deviation of (3 
independent results.  The mean and median of allelic expression of Xist, Rnf12, and Atrx lack significant difference 
(p > 0.1, Welch’s two-sample T-test and Mood’s Median test) between parent-of-origin matched WT and mutant 
EpiSCs.   
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Figure 3.8: Characterization of differentiating female EpiSC lines. RT-PCR amplification of pluripotency 
markers Nanog and Oct4; mesodermal marker Brachyury; neuroectodermal marker "-III tubulin; hepatocyte marker 
FoxA2 at successive days of differentiation in WT and Tsix-heterozygous EpiSCs analyzed in Figs. 4-5.  d, days.  
Loss of expression of Oct4 and Nanog indicates that EpiSCs had lost pluripotency and differentiated. 

We next tested if the X"Tsix induced Xist in female EpiSCs as a function of differentiation, 

as it does in X"TsixY EpiSCs. We therefore differentiated a subset of the WT and Tsix-mutant 

female cell lines (Fig. 3.8). The selected X"TsixXJF1 and XJF1X"Tsix EpiSC lines encompassed 

different degrees of Xist mosaicism; the fraction of total Xist RNA transcribed from each of the 

two Xs varied between the cell lines, ranging from 0 – 100% of the total Xist expression in the 

undifferentiated EpiSCs (Fig. 3.9). Upon differentiation, the allelic ratio of Xist, Rnf12, and Atrx 

RNAs did not change in WT XLabXJF1 and XJF1XLab EpiSC lines.  In differentiating X"TsixXJF1 and 
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XJF1X"Tsix EpiSC lines, however, we found distinct alterations in allelic Xist expression (Fig. 3.9).  

In the eight mutant EpiSC lines most highly mosaic for Xist, where the WT XJF1 accounted for 

~25 – 75% of total Xist RNA output (XJF1X"Tsix line 4; and, X"TsixXJF1 lines 4, 5, 6, 8, 10, 12, and 

14), Xist expression became restricted to the X"Tsix mutant X-chromosome by the end of 20 days 

(d20) of differentiation (Fig. 3.9). Conversely, we found that Rnf12 and Atrx in these cell lines 

were increasingly expressed from the WT XJF1 over the course of differentiation (Fig. 3.10 B-C). 

In two mutant EpiSC lines in which >90% of Xist RNA was expressed from the WT XJF1 at d0 

(XJF1X"Tsix lines 5 and 6), Xist expression from the mutant X"Tsix increased only slightly by d20 of 

differentiation (Fig. 3.9). Rnf12 and Atrx displayed a correspondingly minimal decrease in 

expression from the X"Tsix in these cell lines (Fig. 3.10 B). In the mutant cell lines in which Xist 

was expressed almost exclusively from the WT XJF1 or from the X"Tsix at d0 (X"TsixXJF1 lines 15 and 

2, respectively), the allelic expression profile of Xist, Rnf12, and Atrx did not change upon 

differentiation (Figs. 3.9 and 3.10C). 
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Figure 3.9: Change in allelic Xist expression in differentiating Tsix heterozygous EpiSC lines.   (A) RT-PCR 
followed by Pyrosequencing-based quantification of Xist expression in EpiSC lines (cell line numbers in 
parentheses) differentiated for 0, 5, 10, 15, and 20 days (d).  Xm, maternal X-chromosome; Xp, paternal X-
chromosome.  Each bar represents an individual EpiSC line.  Error bars represent the standard deviation of (3 
independent results.  
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Figure 3.10: Quantification of allelic expression of Rnf12 and Atrx during differentiation of EpiSCs.  RT-PCR 
followed by Pyrosequencing-based quantitation of allelic expression in (A) XLabXJF1 and XJF1XLab; (B) XJF1X"Tsix; and, 
(C) X"TsixXJF1 female cell lines (cell line number in parentheses) from day (d) 0 to d20 of differentiation.  Xm, 
maternal X-chromosome; Xp, paternal X-chromosome.  Error bars represent the standard deviation of # 3 
independent Pyrosequencing results.  
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We observed a similar change in X-inactivation patterns by RNA FISH in the 

differentiating EpiSCs. As in E5.25 epiblasts, we exploited the mutually exclusive expression of 

Tsix and LacZ RNAs from the WT XJF1 and mutant X"Tsix, respectively, to determine which of the 

two X-chromosomes is chosen as the active-X. We profiled three EpiSC lines that displayed 

distinct and varied patterns of inactivation suggested by allele-specific Xist expression (X"TsixXJF1 

lines 2, 6, and 15; see Fig. 3.7C). Consistent with the inactivation pattern inferred by allele-

specific Xist RT-PCR, X"TsixXJF1 EpiSC line 2 lacked LacZ RNA FISH signal in all cells 

examined throughout differentiation (Fig. 3.11 A). X"TsixXJF1 EpiSC line 6 displayed nearly equal 

numbers of cells expressing LacZ and Tsix at d0, but during the course of differentiation this 

pattern gradually shifted to yield only cells with a Tsix RNA FISH signal by d20 (Fig. 3.11 A). 

By contrast, although EpiSC X"TsixXJF1 line 15 only exhibited cells with a LacZ signal at d0, 

consistent with the entire population being eligible to undergo ectopic inactivation, this pattern 

did not change appreciably even by d20 of differentiation (Fig. 3.11 A).  
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Figure 3.11: Characterization of allelic Xist expression in female EpiSCs, cell proliferation and cell viability 
in male EpiSCs, and analysis of Tsix-heterozygous ESCs.  (A) RNA FISH detection of X!Tsix as the active X-
chromosome.  Nuclei with two Xist RNA coats do not express LacZ or Tsix (top panel); both are subject to X-
inactivation.  Nuclei with an Xist RNA-coated inactive X-chromosome express either Tsix (green) from the WT X 
or LacZ (red) from the X!Tsix.  n=100 nuclei from each of three Tsix-heterozygous EpiSC lines.  The pattern of X-
inactivation is subject to change during differentiation, depending on the number of cells eligible to ectopically 
inactivate the X!Tsix, ultimately only yielding cells with the LacZ-expressing X!Tsix as the inactive-X.  (B) Xist RNA 
coating in NANOG+ and NANOG- d5 differentiating X!TsixXJF1 EpiSCs (lines 1 and 2).  (C) Phospho-H3 staining, a 
marker of cell proliferation, of a representative d10 differentiated X!TsixY cell line (line 1).  (D) Staining of live and 
dead d10 differentiated X!TsixY EpiSCs.  H3-K27me3 accumulation (purple) marks Xist RNA coated X-
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chromosomes (see Fig. 2D).  Ethd-1 (red) marks dead cells and Calcein AM (green) marks live cells.  Data from 3 
different mutant EpiSC lines are plotted (lines 1-3).  (E) Cell counts during differentiation of XY and X!TsixY EpiSCs.  
(F-G) Viability of adherent cells (F) and non-adherent cells in suspension (G) in differentiating XY and X!TsixY 
EpiSCs.  (H) RT-PCR amplification of Xist and Tsix RNAs in WT and Tsix-heterozygous undifferentiated and 
embryoid body-differentiated female ESC lines (2 and 3 cell lines, respectively).  '-actin serves as control.  M, 
marker;  +, reaction with reverse transcriptase (RT);  -, no RT control lane.  (I) Sanger sequencing chromatograms of 
Tsix and Xist cDNAs amplified from differentiated cells in (H).  Blue highlights mark a SNP that differs between 
the XLab / X"Tsix and XJF1 mouse strains.  (J) RNA FISH detection of Xist and Tsix RNAs in representative 
undifferentiated and embryoid body-differentiated WT and Tsix-heterozygous female ESC lines. Scale bars, 10 $m.  
(K) Quantification of Xist RNA coated nuclei in embryoid body-differentiated ESC lines.  Only cells with two Xist 
loci detected by DNA FISH (left) following RNA FISH were counted; n=100 nuclei/cell line. 

  

3-7: Reduced Proliferation and Induced Cell Death Upon Ectopic X-inactivation in Tsix-

heterozygous EpiSCs 

 The changes in X-inactivation patterns in differentiating X"Tsix mutant EpiSCs could arise 

from one of two possibilities. In the first, Xist expression switches from the WT XJF1 in favor of 

the mutant X"Tsix in individual cells. Alternatively, the ectopic induction of Xist from the X"Tsix 

results in two inactive-Xs in differentiating EpiSCs that had originally activated Xist from the 

WT XJF1. In this latter scenario, the deficiency in X-linked gene expression due to both Xs being 

inactivated would drive selection against these cells. The remaining population of cells would 

then be descendants of cells that had initially chosen to inactivate the X"Tsix, which do not 

undergo ectopic Xist induction from the WT XJF1.  

To further distinguish amongst the two possibilities, we performed single-cell analysis of 

differentiating EpiSCs. We found that whereas XX EpiSCs displayed Xist RNA coating of only a 

single X-chromosome in undifferentiated and in d5 and d10 differentiated cells, X"TsixX and 

XX#Tsix EpiSC lines exhibited Xist RNA coating of a single X in undifferentiated cells but of both 

Xs upon differentiation (Fig. 3.12A-C). A substantial percentage of the double Xist RNA-coated 

cells early in differentiation (d5) were also NANOG+ (32-35%; Fig. 3.11 B), consistent with the 

data from embryos. Nearly all the nuclei with double Xist RNA coats also displayed enrichment 
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of H3-K27me3 and silencing of Pgk1 on both Xs (both >90%; Fig. 3.12D-E). To examine if the 

cells with two inactive Xs are selected against, we compared the mitotic indices of cells with one 

inactive- vs. two inactive-Xs by staining for phosphorylated-histone H3. Differentiating EpiSCs 

with two Xist RNA coats appeared to divide significantly less often than with one Xist coat 

(p<0.001; Fig. 3.12F). We also evaluated cell death in differentiating EpiSCs, and found that 

cells with two Xist RNA coats were significantly more likely to be dead or dying compared to 

cells with one Xist coat (p<0.001; Fig. 3.12G).  
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Figure 3.12: Ectopic Xist RNA coating in differentiated Tsix-heterozygous EpiSC lines.  (A) RNA FISH 
detection of Xist RNA (green) and Tsix RNA (red) in representative undifferentiated and d10 differentiated WT and 
Tsix-heterozygous EpiSC lines (XJF1XLab cell line no. 1; X"TsixXJF1 cell line no. 14).  Nuclei are stained blue with 
DAPI.  Scale bars, 10 $m.   (B) RNA FISH detection of Xist RNA coat using an exonic probe (white) and nascent 
Xist RNA with an intronic probe (red), demonstrating that in cells with two Xist RNA coats both Xist alleles are 
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transcribed.  (C) Quantification of EpiSC nuclei displaying single vs. double Xist RNA coats during differentiation.  
Scale bar, 10 $m.   Only cells with two Xist loci detected by DNA FISH (left) following RNA FISH were counted; 
n=100 nuclei/cell line.  (D) Enrichment of H3-K27me3 on Xist RNA coated X-chromosomes in d10 differentiated 
X"TsixXJF1 EpiSCs.  Data from two different lines (nos. 5 and 14) are shown.  (E) Silencing of Pgk1 (red) upon ectopic 
Xist RNA coating (green) in d10 differentiated X"TsixXJF1 EpiSCs.  (F) Reduced phospho-H3 staining, a marker of 
cell proliferation, in d10 differentiated X!TsixXJF1 EpiSCs (cell line 14) with two Xist RNA coats compared to nuclei 
with a single Xist coat (p<0.001, Fisher’s exact test).  (G) Increased death of cells with two inactive-Xs compared to 
cells with one inactive-X in d10 differentiated X!TsixXJF1 EpiSCs (p<0.001, Welch’s two-sample T-test).  The 
inactive-X is marked by H3-K27me3 accumulation (purple).  Ethd-1 (red) marks dead cells and Calcein AM (green) 
marks live cells.  (H) Reduced cell counts during differentiation of Tsix-heterozygous compared to WT EpiSCs.  (I-
J) Reduced viability of adherent (I) and non-adherent cells in suspension (J) during differentiation of Tsix-
heterozygous compared to WT EpiSCs. 

The reduced proliferation of cells with two inactive-Xs would predict decreased cell 

numbers during differentiation of some but not other Tsix-heterozygous EpiSCs. Tsix-mutant 

EpiSC lines with few cells eligible to undergo ectopic inactivation are expected to display 

comparable cell counts to WT EpiSCs. Consistent with this scenario, XJF1X"Tsix EpiSC lines 1-3 

and X"TsixXJF1 EpiSC lines 1-2, which exhibit exclusive or almost exclusive inactivation of the 

X"Tsix and therefore lack cells that can undergo ectopic inactivation (Fig. 3.7C), have the highest 

cell counts throughout differentiation and are indistinguishable from WT EpiSCs (Fig. 3.12H and 

Table 3.2). Conversely, EpiSC lines that have completely or almost completely inactivated the 

WT XJF1 X-chromosome, XJF1X"Tsix lines 5 and 6 and X"TsixXJF1 line 15 (see Fig. 3.7C), and thus 

harbor the highest percentage of cells that are able to undergo ectopic inactivation, have the 

lowest cell counts by d20 of differentiation (Fig. 3.12H and Table 3.2). Cell counts in XJF1X"Tsix 

line 4 and X"TsixXJF1 lines 6 and 10 with intermediate percentages of cells subject to ectopic 

inactivation (~20-75%) again correlate with the available pool of cells eligible to ectopically 

inactivate the X"Tsix (Figs. 3.7C and 3.12H; Table 3.2). Thus, EpiSC lines with a higher 

percentage of cells that can ectopically induce Xist from the X"Tsix and thereby inactivate the 

second X display lower cell counts during differentiation (r = -0.94).  

We also quantified cell viability in populations of differentiating EpiSCs. Consistent with 

the higher rate of death of cells with two inactive-Xs (Fig. 3.12G), cell viability measurements 
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showed that the higher the percentage of EpiSCs subject to ectopic X-inactivation the lower their 

viability during differentiation (Fig. 3.12I-J and Table 3.2; r = -0.95 for adherent viable cells and 

-0.99 for viable cells in suspension). The phospho-histone H3 staining and cell death results 

together with the cell count and viability data lead to the conclusion that ectopic Xist induction 

from the X"Tsix and the resultant inactivation of both Xs potently selects against cells via both 

reduced cell proliferation and induced cell death. Ultimately, the outcome is skewed X-

inactivation in favor of cells that had chosen to initially inactivate the X"Tsix.  

 

 

Comparisons of Cell Numbers and Viability Between Individual Wild-type and Tsix-heterozygous EpiSCs 
(Day 20 of Differentiation) 

Adherent Total Cell Count (x1000) Adherent Viability Suspension Viability 
Cell Line 

Xist Allelic 
Expression 

Ratio 
(XJF1 : X!Tsix) Average 

Count 
P Value 

(T Test vs. XLabXJF1 #1) 
Average 
Percent 

P Value 
(T Test vs. XLabXJF1 #1) 

Average 
Percent 

P Value 
(T Test vs. XLabXJF1 #1) 

XLabXJF1 #1 no X!Tsix 970 NA 86 NA 53 NA 

XLabXJF1 #2 no X!Tsix 973 0.7676 86 0.7521 51 0.1214 

XJF1XLab #1 no X!Tsix 980 0.4353 85 0.3819 56 0.0115 

X!TsixXJF1 #1 0 : 100 960 0.2879 85 0.5012 52 0.6695 

X!TsixXJF1 #2 0 : 100 970 1 86 0.5763 53 0.7135 

XJF1X!Tsix #1 0 : 100 973 0.6433 88 0.6503 50 0.0230 

XJF1X!Tsix #2 0 : 100 967 0.6433 84 0.1037 51 0.0997 

XJF1X!Tsix #3 3: 97 977 0.5614 85 0.2182 53 0.8278 

XJF1X!Tsix #4 22 : 78 530 2.83x10-6 81 0.0043 37 4.48x10-5 

X!TsixXJF1 #6 56 : 44 490 5.01x10-7 77 0.0006 37 0.0003 

X!TsixXJF1 #10 75 : 26 480 1.84x10-6 76 0.0011 34 0.0003 

XJF1X!Tsix #5 93 : 7 420 2.90x10-7 72 7.85x10-5 31 1.10x10-5 

XJF1X!Tsix #6 92 : 8 370 2.05x10-7 74 0.0003 30 1.21x10-5 

X!TsixXJF1 #15 100 : 0 363 1.39x10-6 72 9.33x10-5 29 5.10x10-6 

 
Table 3.2: Comparisons of cell numbers and viability between individual wild-type (WT) and Tsix-
heterozygous female EpiSCs at day 20 of differentiation.  NA, not applicable. The percentage of Xist expression 
from the WT X (XJF1) is strongly negatively correlated with total cell count (r = "0.94), adherent cell viability (r = 
"0.99), and suspension cell viability (r = "0.95).  
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We also tested if ectopic Xist induction selects against X"TsixY cells. Phospho-histone H3 

staining suggested slightly if not significantly reduced proliferation of cells with an Xist RNA 

coated X-chromosome compared to those without (p=0.02; Fig. 3.11 C). The ratio of live:dead 

cells, however was indistinguishable between cells with Xist RNA coating and those without 

(Fig. 3.11 D). The cell numbers and viability through 30d of differentiation were reduced in the 

mutants, but mostly at d25 and d30 time points (Fig. 3.11 E-G), which contrasts with the striking 

reduction in both measurements by d20 of differentiation in Tsix-heterozygous female EpiSCs. 

This difference potentially reflects a reduced level of ectopic Xist induction and X-linked gene 

silencing in mutant males compared to females (see Discussion).  

 

3-8: Ectopic Xist Induction in Differentiating Tsix-heterozygous Female ESCs 

As with X"TsixY EpiSCs, we sought to test if our observations of Tsix-heterozygous 

EpiSCs also apply to mutant ESCs. Although both WT XLabXJF1 / XJF1XLab and mutant X"TsixX JF1 / 

X JF1X"Tsix undifferentiated ESCs displayed a low level of Xist RNA expression by RT-PCR, all 

four genotypes induced Xist from either allele upon differentiation (Fig. 3.11 H-I). In agreement 

with the RT-PCR results, both WT and mutant ESCs displayed Xist RNA coating only upon 

differentiation (Fig. 3.11 J).  A subset of the differentiating mutant (but not WT) cells, though, 

exhibited Xist RNA coating of both Xs (Fig. 3.11 J-K). 

 We next differentiated the ESCs into EpiLCs to determine when during differentiation 

Tsix-heterozygous ESCs ectopically induced Xist (Fig. 3.13 A-C). The two Xs in WT EpiLCs 

were nearly equally likely to be chosen as the inactive-X, as evidenced by the allelic expression 

profiles of Xist (Fig. 3.13 D). Although the mutant EpiLC samples displayed a wide distribution 

of allelic Xist expression, the average expression ratios of the two Xist alleles matched closely 
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that of the WT EpiLCs (Fig. 3.13 D), recapitulating the pattern observed in EpiSCs (Fig. 3.7 C). 

RNA FISH demonstrated that a vast majority of the Tsix-heterozygous EpiLCs harbored only 

one Xist RNA coated X-chromosome (96%; Fig. 3.13 E-F). Upon further differentiation, the 

mutant cells displayed increasingly biased inactivation of the X"Tsix, consistent with selection 

favoring cells that had originally inactivated the X"Tsix (Fig. 3.13 G).  
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Figure 3.13: Characterization of female ESC-derived EpiLCs.   (A) Marker analysis by RT-PCR of female 
EpiLCs.  Fgf5 and Cer1 are expressed only in EpiLCs whereas high Rex1 expression marks ESCs.  ‘EpiLC’ samples 
are individual fields in tissue culture wells containing largely if not exclusively cells morphologically resembling 
EpiLCs.  ‘EpiLC/ESC’ samples are of entire tissue culture wells in which ESCs were being converted to EpiLCs.  
These samples display faint Rex1 expression, indicative of residual undifferentiated ESCs in the wells.  ‘ESC’ 
samples are cells from unconverted ESC wells.   (B) RT-PCR detection of Tsix expression (exon 4).  (C) 
Representative Sanger sequencing chromatograms demonstrating exclusive expression of Tsix from the WT XJF1 in 
Tsix-mutant ESCs.  Blue highlights mark a SNP that differs between the XLab / X"Tsix and XJF1 mouse strains.  (D) 
Pyrosequencing of Xist cDNAs quantifies Xist expression in the EpiLCs.  Error bars represent the standard 
deviation of 3 independent Pyrosequencing results.  The average expression of the two Xist alleles is not 
significantly different between the two genotypes (p = 0.13, Welch’s Two-sample T Test).  (E) Strand-specific RNA 
FISH detection of Xist (green) and Tsix (red) combined with IF detection of NANOG in EpiLCs.  A few cells 
display two Xist RNA coats, presumably reflecting ectopic Xist induction from the X"Tsix due to further 
differentiation of EpiLCs.  Scale bars, 10 $m.  (F) Quantification of Xist RNA coated nuclei in XLabXJF1 and 



!

! )JJ!

X!TsixXJF1 EpiLC lines.  Scale bars, 10 $m.  Only cells with two Xist loci detected by DNA FISH (left) following 
RNA FISH were counted; n=100 nuclei/cell line.  (G) Representative Sanger sequencing chromatograms of Xist 
cDNAs amplified from differentiating ESCs (2d = EpiLC stage, 4d and 6d, further differentiation after the EpiLC 
stage).  Blue highlights mark a SNP that differs between the XLab / X"Tsix and XJF1 mouse strains.  By d6, Xist 
expression is detected only from the X!Tsix in X!TsixXJF1 cells.   

3-9: Concluding Remarks 
Tsix repression of Xist at the onset of X-inactivation has been invoked previously to 

support a role for the Tsix locus in X-chromosome counting and/or choice (Clerc and Avner, 

1998; Cohen et al., 2007; Debrand et al., 1999; Lee, 2000; Lee and Lu, 1999; Lee, 2005; Morey 

et al., 2004; Navarro et al., 2010; Sado et al., 2001; Vigneau et al., 2006). In the counting step, 

the cell senses the number of X-chromosomes; only if there are two or more Xs do the cells 

proceed to the choice and inactivation steps (Grumbach et al., 1963; LYON, 1962). In the choice 

step, one of the two X-chromosomes is selected for silencing; only then does X-inactivation 

ensue (Rastan, 1983; Takagi, 1980). In this model of random X-inactivation, counting must 

precede choice, with the last step being inactivation itself.  Thus, XY male epiblast cells do not 

undergo X-inactivation because the cells ‘count’ only one X-chromosome, which would preclude 

both the choice and inactivation steps.  

Our data, however, rule out a function for Tsix in X-chromosome counting, in agreement 

with Monkhorst et al., (Monkhorst et al., 2008). In a diploid male or female cell, the counting 

process protects one X-chromosome from inactivation; a defect in counting is therefore expected 

to result in inactivation of the single X-chromosome in males at some frequency (Avner and 

Heard, 2001). The absolute absence of Xist RNA coating and X-inactivation in undifferentiated 

X"TsixY EpiSCs is evidence that the Tsix RNA is not part of the counting mechanism. Xist is only 

induced when X"TsixY EpiSCs differentiate. That not all differentiating X"TsixY cells express Xist 

may reflect intercellular variability in the levels of an Xist activating factor (see below).  
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 Our findings also exclude a primary role for Tsix in the choice of which X undergoes 

inactivation. Biased X-inactivation in Tsix-heterozygous cells occurs through a secondary cell 

selection effect, rather than through primary inactivation of the X"Tsix at the onset of X-

inactivation (Fig. 3.14). Tsix therefore constitutes a failsafe mechanism that prevents ectopic 

Xist induction and inactivation of the active X-chromosome, but only after X-inactivation has 

initiated normally (Fig. 3.14). Thus, Tsix is required not to establish but to maintain the 

randomized pattern of X-inactivation. This protective function of Tsix in the epiblast lineage 

appears to be conserved in extra-embryonic cell types. Stem cells of the trophectoderm lineage, 

which undergoes imprinted X-inactivation of the paternal X-chromosome, similarly ectopically 

silence the X"Tsix only upon differentiation both in vivo and in vitro (Maclary et al., 2014).  

 Tsix is expressed in pluripotent cells, but it is only required to silence Xist as these cells 

differentiate. Tsix expression in epiblast precursor cells in E4.5 embryos as well as in EpiSCs 

and EpiLCs may prime the epiblast cells to forestall inactivation of the active X-chromosome 

upon impending differentiation. In support of this idea, Tsix is robustly expressed in ESCs yet its 

loss does not lead to ectopic Xist induction in pluripotent cells of either sex, as shown here and 

in earlier studies (Cohen et al., 2007; Debrand et al., 1999; Lee and Lu, 1999; Luikenhuis et al., 

2001; Minkovsky et al., 2013; Morey et al., 2004; Ohhata et al., 2006). 

If Tsix does not regulate X-chromosome counting or choice, then alternate mechanisms 

must explain why X-inactivation does not occur in males and does so randomly in females. We 

favor a parsimonious model of random inactivation whereby a dose-dependent X-linked activity 

triggers inactivation only in females. For example, the increased dosage of an X-linked factor in 

XX compared to XY cells at the onset of inactivation when both Xs are active may facilitate X-

inactivation by stochastically and directly activating Xist on one of the two X-chromosomes in 
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females, as has been proposed (but debated) for RNF12 (Barakat et al., 2011; Gontan et al., 

2012; Jonkers et al., 2009; Shin et al., 2014). The lower level of such a factor may explain why 

Xist is ectopically induced from the mutant X in only some X#TsixY embryonic cells, but in all 

X"TsixX embryonic cells. Xist may also be expressed to a lesser extent in individual X"TsixY cells 

compared to female cells, resulting in a comparatively reduced degree of X-linked gene silencing 

in males and potentially explaining why differentiating Tsix-mutant female but not male EpiSCs 

are subject to cell selection. Future work will clarify the underlying reasons for this difference.  

Our work lends caution to the modeling of X-inactivation kinetics in differentiating 

ESCs. Depending on the ESC differentiation regimen, aberrantly inactivated cells may be rapidly 

outcompeted by appropriately inactivated ones, thus masking a defect in the initiation phase of 

X-inactivation. Conversely, errors in X-inactivation that manifest only during the maintenance 

phase are difficult to distinguish from those that occur at the onset due to the asynchronous 

differentiation of ESCs. Such a scenario may resolve the seemingly discordant observations of 

the Tsix-mutant X-chromosome appearing to be both susceptible and resistant to Xist induction 

in differentiating ESCs. Directed differentiation of ESCs into EpiLCs may be one route to 

capturing cells just after X-inactivation has initiated. Conversion of ESCs into EpiLCs, however, 

is also subject to key shortcomings. Not all ESCs differentiate into EpiLCs, thus resulting in a 

heterogeneous population of cells; and, when they do, the EpiLCs are only transiently present 

(Buecker et al., 2014; Hayashi et al., 2011).  

Our data instead highlight the utility of EpiSCs as a model system to uncouple the onset 

of random X-inactivation from differentiation of pluripotent cells. A comparison of X-

inactivation defects in Tsix-mutant EpiSCs with embryonic epiblasts suggests that EpiSCs can 

capture a window in differentiation of naïve pluripotent epiblast cells immediately after X-



!

! )J<!

inactivation has initiated. Whereas Tsix-heterozygous embryonic epiblasts display ectopic Xist 

induction beginning at ~E5.25 stage of embryogenesis, sex and genotype-matched EpiSCs do 

not. Upon differentiation, however, these EpiSCs exhibit Xist RNA coating of both Xs, 

mimicking the pattern of ectopic Xist induction in the mutant epiblasts as the embryos develop 

from E5.25, just after random X-inactivation has commenced, to E6.5, a stage by which ectopic 

Xist induction is almost undetectable. By E6.5, Tsix heterozygote epiblasts are comprised almost 

exclusively of cells in which the X"Tsix is the inactive-X, due to rapid selection against cells that 

had originally chosen the WT X for silencing but subsequently ectopically induced Xist and 

underwent inactivation of the X"Tsix.  Thus, the pattern of inactivation changes rapidly within ~1 

day of development, at a stage of embryogenesis that is not easily accessible. By mirroring early 

epiblast cells just after they have undergone X-inactivation, EpiSCs are a valuable resource to 

tease apart defects in the initiation of X-inactivation from differentiation of the pluripotential 

epiblast cells.  
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Figure 3.14: A model of Tsix function in X-inactivation.   At the onset of X-inactivation, Tsix heterozygous 
epiblast cells undergo stochastic X-inactivation indistinguishable from WT epiblasts.  Upon continued 
differentiation of the epiblast cells, the X"Tsix ectopically induces Xist RNA.   In female cells that had originally 
inactivated the WT X-chromosome, ectopic Xist induction accompanies the initiation of X-inactivation a second 
time (of the X"Tsix), resulting in two inactive-Xs.  As a result of a paucity of X-linked gene expression, these cells are 
selected away due both to reduced proliferation and induced cell death.  Thus, the developing embryo is ultimately 
populated only with cells that had originally inactivated the X"Tsix. 
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3-10: Materials and Methods 

Ethics Statement.  

This study was performed in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were 

handled according to protocols approved by the University Committee on Use and Care of 

Animals (UCUCA) at the University of Michigan (protocol #PRO00004007). 

Mice.  

The generation of mice harboring the TsixAA2!1.7 mutation has been described previously 

(Kalantry and Magnuson, 2006; Maclary et al., 2014; Sado et al., 2001).  The M. molossinus JF1 

strain was sourced from Jackson Laboratories (JF1/ms), and has been described previously 

(Maclary et al., 2014; Takada et al., 2013). 

Embryo Dissections and Processing.  

Pre-, peri-, and post-implantation stage embryos were isolated essentially as described 

(Maclary et al., 2014).  Dissections were carried out in 1X PBS (Invitrogen, #14200075) 

containing 6% bovine serum albumin (BSA; Invitrogen, #15260037). Individual implantation 

sites were cut from the uterine limbs, and decidua were removed with forceps. Embryos were 

dissected from the decidua, and the Reichert’s membranes surrounding post-implantation 

embryos were removed using fine forceps. For separation of extra-embryonic and epiblast 

portions of embryos, fine forceps were used to physically bisect the embryos at the junction of 

the extra-embryonic ectoderm and epiblast. Epiblast fragments were plated on gelatinized 
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coverslips for immunofluorescence and/or RNA FISH or collected for mRNA extraction. Extra-

embryonic portions of the embryo were lysed to extract DNA to confirm sex and genotype.  

Derivation, Culture, Differentiation, and Characterization of Epiblast Stem Cell (EpiSC) 

Lines.  

 EpiSCs were derived from pre-, peri-, and post-implantation stages essentially as 

described (Brons et al., 2007; Najm et al., 2011; Tesar et al., 2007). EpiSCs derived from different stages 

of embryogenesis (See Table 3-1) did not display any noticeable differences in Xist induction 

and X-inactivation patterns. For derivation of EpiSCs from pre- and peri-implantation mouse 

embryos, individual embryos were plated on quiescent mouse embryonic fibroblast (MEF) 

feeder cells in K15F5 medium containing Knockout DMEM (GIBCO, #10829-018) 

supplemented with 15% Knockout Serum Replacement (KSR; GIBCO, #A1099201), 5% ESC-

qualified fetal bovine serum (FBS; GIBCO, #104390924), 2 mM L-glutamine (GIBCO, #25030), 

1X nonessential amino acids (GIBCO, #11140-050), and 0.1 mM 2-mercaptoethanol (Sigma, 

#M7522). After 5–6 days, blastocyst outgrowths were dissociated partially with 0.05% trypsin 

(Invitrogen, #25300-054). The partial dissociates were plated individually into a 1.9 cm2 well 

containing MEF feeder layer and cultured for an additional 4-6 days in K15F5 medium. The 

culture was then passaged by a brief exposure (2–3 min) to 0.05% trypsin/EDTA with gentle 

pipetting to prevent complete single-cell dissociation of pluripotent clusters, and plated into a 

9.6 cm2 well containing MEF feeders in K15F5 medium. Morphologically distinct mouse EpiSC 

colonies became evident over the next 4–8 days and were subcloned from a mixed population of 

cells, including ESCs. EpiSC colonies were manually dissociated into small clusters using a 

glass needle and plated into 1.9 cm2 wells containing MEF feeders in EpiSC cell medium 

consisting of Knockout DMEM supplemented with 20% KSR, 2 mM Glutamax (GIBCO, 
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#35050061), 1X nonessential amino acids, 0.1 mM 2-mercaptoethanol, and 10 ng/ml FGF2 

(R&D Systems, #233-FB).   

For derivation of EpiSCs from postimplantation mouse embryos, the epiblast layer was 

microdissected from E5.5 embryos and plated on MEF cells in EpiSC medium and cultured for 

3-4 days to form a large EpiSC colony. EpiSC colonies were then manually dissociated into 

small clusters using a glass needle and plated into 1.9 cm2 wells containing MEF feeders in 

EpiSC cell medium. EpiSCs were passaged every third day using 1.5 mg/ml collagenase type IV 

(GIBCO, #17104-019) with pipetting into small clumps.  

Differentiation of EpiSCs was achieved by growing the EpiSCs on gelatin-coated tissue 

culture dishes in EpiSC medium lacking FGF2. Expression of pluripotency markers Oct4, 

Nanog; mesodermal marker Brachyury; neuroectodermal marker "-III tubulin; and hepatocyte 

marker FoxA2 was assessed by RT-PCR using Invitrogen SuperScript III One-Step RT-PCR 

System (Invitrogen, #12574-026).  Primer sequences were designed using the primer bank web 

software (http://pga.mgh.harvard.edu/primerbank/; PrimerBank ID: Oct4:356995852c2; Nanog: 

153791181c2; Brachyury:118130357c1; !-III tubulin:12963615a1; FoxA2:153945803c1). Fgf5 

forward primer: CTGTACTGCAGAGTGGGCATCGG; Fgf5 reverse primer: 

GACTTCTGCGAGGCTGCGACAGG. Cer1 forward primer: 

CTCTGGGGAAGGCAGACCTAT; Cer1 reverse primer: CCACAAACAGATCCGGCTT. 

Rex1 forward primer: TGGAAGCGAGTTCCCTTCTC; Rex1 reverse primer: 

GCCGCCTGCAAGTAATGAG. All primer pairs except Tsix (exon 4) spanned an intron, 

thereby distinguishing cDNA from genomic DNA amplification. Nevertheless, control reactions 

lacking reverse transcriptase for each sample were performed to rule out genomic DNA 

contamination. 
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For IF and/or RNA FISH, EpiSCs were cultured on gelatin-coated glass coverslips. The 

cells were then permeabilized through sequential treatment with ice-cold cytoskeletal extraction 

buffer (CSK:100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, and 10 mM PIPES buffer, pH 6. 8) 

for 30 sec, ice-cold CSK buffer containing 0.4% Triton X-100 (Fisher Scientific, #EP151) for 30 

sec, followed twice with ice-cold CSK for 30 sec each. After permeabilization, cells were fixed 

by incubation in 4% paraformaldehyde for 10 min. Cells were then rinsed 3X in 70% ethanol and 

stored in 70% ethanol at -20°C prior to IF and/or RNA FISH. 

Immunofluorescence (IF).  

Cells mounted on glass coverslips were washed 3X in PBS for 3 min each while shaking. 

Coverslips were then incubated in blocking buffer consisting of 0.5 mg/mL BSA (New England 

Biolabs, #B9001S), 50 ug/mL yeast tRNA (Invitrogen, #15401-029), 80 units/mL RNAseOUT 

(Invitrogen, #10777-019), and 0.2% Tween 20 (Fisher, #BP337-100) in 1X PBS in a humid 

chamber for 30 min at 37°C. The samples were next incubated with primary antibody diluted in 

blocking buffer for 1 hr in the humid chamber at 37°C. The H3-K27me3 antibody (Millipore, 

#07-449) was used at a 1:2500 dilution. The samples were then washed 3X in PBS/0.2% Tween 

20 for 3 min each while shaking. After a 5 min incubation in blocking buffer at 37°C in the 

humid chamber, the samples were incubated in blocking buffer containing a 1:300 dilution of 

fluorescently-conjugated secondary antibody (Alexa Fluor, Invitrogen) for 30 min in the humid 

chamber at 37°C, followed by three washes in PBS/0.2% Tween 20 while shaking for 3 min 

each. The samples were then processed for RNA FISH. 
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RNA Fluorescence in situ Hybridization (RNA FISH).   

Double-stranded RNA FISH (dsRNA FISH) was performed as previously described  (16, 

45, 77). The dsRNA FISH probes were made by randomly-priming DNA templates using 

BioPrime DNA Labeling System (Invitrogen, #18094011). Probes were labeled with 

Fluorescein-12-dUTP (Invitrogen), Cy3-dCTP (GE Healthcare, #PA53021). Labeled probes 

from multiple templates were precipitated in a 0.3M sodium acetate solution (Teknova, #S0298) 

along with 300 µg of yeast tRNA (Invitrogen, #15401-029) and 150 µg of sheared, boiled 

salmon sperm DNA (Invitrogen, #15632-011). The solution was then spun at 15,000 rpm for 20 

min at 4°C. The pellet was washed consecutively with 70% ethanol and 100% ethanol. The pellet 

was dried, then re-suspended in deionized formamide (ISC Bioexpress, #0606). The probe was 

denatured by incubating at 90°C for 10 min followed by an immediate 5 min incubation on ice. 

A 2X hybridization solution consisting of 4X SSC, 20% Dextran sulfate (Millipore, #S4030), 

and 2.5 mg/ml purified BSA (New England Biolabs, #B9001S) was added to the denatured 

solution. All probes were stored at -20°C until use.  

Strand-specific RNA FISH (ssRNA FISH) probes were labeled with Cy5 CTP (GE 

Healthcare, # 25801086) or Cy3 CTP (GE Healthcare, # 25801086) using Invitrogen 

MAXIscript Kit (Invitrogen, #AM-1324). Labeled probes were column purified (Roche, 

#11814427001) and precipitated in an 0.25M ammonium acetate solution as described above for 

the dsRNA FISH probes. Probes were resuspended as described for dsRNA FISH probes and 

stored at -20°C .  

Cells or embryo fragments mounted on coverslips were dehydrated through 2 min 

incubations in 70%, 85%, 95%, and 100% ethanol solutions and subsequently air-dried. The 
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coverslips were then hybridized to the probe overnight in a humid chamber at 37°C. The samples 

were then washed 3X for 7 min each while shaking at 39°C with 2XSSC/50% formamide, 2X 

with 2X SSC, and 2X with 1X SSC. A 1:250,000 dilution of DAPI (Invitrogen, #D21490) was 

added to the third 2X SSC wash. The cells were then mounted in Vectashield (Vector Labs, #H-

1200).  

DNA FISH.  

After RNA FISH, the cells were washed with 1X PBS three times and then incubated in 

PBS for 5 min at room temperature. The cells were then refixed with 1% (wt/vol) PFA 

containing 0.5% (vol/vol) Tergitol and 0.5% (vol/vol) Triton X-100 for 10 min at room 

temperature. The cells were next dehydrated through an ethanol series (70%, 85%, and 100% 

ethanol, 2 min each) and air dried for 15 mins. The cells were then treated with RNase A (1.25 

ug/µl ) at 370C for 30 min. The cells were again dehydrated through the ethanol series as 

described above. The samples were then denatured in a prewarmed solution of 70% formamide 

in 2) SSC on a glass slide stationed on top of a heat block set at 95°C for 11 min followed 

immediately by dehydration through a -20°C-chilled ethanol series (70%, 85%, 95%, and 100% 

ethanol, 2 min each). The cells were then air dried for 15 min followed by probe hybridization 

overnight at 370C. The BAC template used for Xist DNA FISH is RP24-287F13 (Children’s 

Hospital of Oakland Research Institute). The next day, the samples were washed twice with 

prewarmed 50% formamide/2X SSC solution at 390C and 2X with 2X SSC, 7 min each. 
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Quantification of Allele-specific Expression.  

Allele-specific expression was quantified using Qiagen PyroMark sequencing platform. 

Amplicons containing SNPs were designed using the PyroMark Assay Design software. cDNAs 

were synthesized using Invitrogen SuperScript III One-Step RT-PCR System 

(Invitrogen,#12574-026). Following the PCR reaction, 5 ul of a total of 25 uL of reaction was 

run on a 3% agarose gel to assess the efficacy of amplification. The samples were then prepared 

for pyrosequencing according to the standard recommendations for use with the PyroMark Q96 

ID sequencer. For Xist, the following primers were used: forward, 

CAAGAAGAAGGATTGCCTGGATTT; reverse, 5’-biotin-

GCGAGGACTTGAAGAGAAGTTCTG; sequencing, CAAACAATCCCTATGTGA. For Atrx, 

the following primers were used: forward: ATAGCTTCAGATTCTGATGAAACC; reverse: 5’-

biotin-ACATCGTTGTCACTGCCACTT; sequencing: TAAGCTCAGATGAAAAGA. For 

Rnf12, the following primers were used: forward: 5’-Biotin-

TGCAGCCAACAAGTGAAATTCC; reverse: TATCTGCTGTCTCAGGGTCACATG; 

sequencing: TAGAACTTCCTTCAGGC. All three amplicons span intron (s), thus permitting 

discrimination of RNA vs. any contaminating genomic DNA amplification due to size 

differences.  Control reactions lacking reverse transcriptase for each sample were also performed 

to rule out genomic DNA contamination.  

Cell Proliferation and Viability.  

 Live/Dead cell viability assay (Life technologies cat. #L3224) was performed as 

described previously (Gayen et al., 2015). 50,000 EpiSCs were plated on gelatinized plate and 

differentiated as described above. Cells were counted using the Trypan blue (Invitrogen cat. 

#15250061) exclusion assay with Invitrogen Countess Automated Cell Counter (cat. # C10227). 
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Cell viability was calculated both for adherent cells, harvested via trypsinization, and cells in 

suspension, harvested by centrifugation of culture media. Data were collected from three 

independent differentiation experiments. 

 

Microscopy.  

Samples were imaged using a Nikon Eclipse TiE inverted microscope with a 

Photometrics CCD camera. The images were deconvolved and uniformly processed using NIS-

Elements software. 

 

Statistics.  

p=0.01 was used as the cutoff for statistical significance. Tests used to calculate statistical 

significance are indicated in the corresponding figure legends. 
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Chapter 4: A Strand-Specific and Allele-Specific RNA-Seq Pipeline to Identify Novel 

Regulators of X-inactivation 

4-1: Introduction 

My studies of the role of Tsix RNA in imprinted and random X-chromosome inactivation 

have indicated that current models of X-inactivation are insufficient to explain the initiation of 

epigenetic silencing during embryonic development (Gayen et al., 2015; Kalantry et al., 2009; 

Maclary et al., 2014). I hypothesize, based on assessment of Tsix mutant embryos as well as 

evolutionary analysis of the X-chromosome, that previously unidentified X-linked factors play 

key roles in X-inactivation. We believe that these novel factors include both novel lncRNAs that 

regulate gene expression regionally in cis, and escapers of X-inactivation that function in trans.  

Evolutionary analysis of the X chromosome suggests that X-inactivation may be 

triggered regionally (Jegalian and Page, 1998; Lahn and Page, 1999; Sandstedt and Tucker, 

2004): The X and Y are hypothesized to have evolved from a pair of identical autosomes (Graves 

and Schmidt, 1992; Jegalian and Page, 1998), and dosage compensation may have evolved in a 

piecemeal fashion as genes were slowly lost from the Y-chromosome (Bellott et al., 2014; 

Jegalian and Page, 1998; Lahn and Page, 1999). Based on the nucleotide divergence between X 

and Y homologs, genes on the X chromosome can be divided into discrete groups, or 

evolutionary strata (Bellott et al., 2014; Cortez et al., 2014; Lahn and Page, 1999). Genes 

belonging to the oldest evolutionary strata were the first to diverge on the Y chromosome and 
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were likely to be the first genes to undergo dosage compensation on the X-chromosome (Jegalian 

and Page, 1998). As gene loss and the subsequent need for dosage compensation arose 

regionally, I hypothesize that X-inactivation may be triggered regionally, by novel cis-acting 

long non-coding RNAs. Long non-coding RNAs they are believed to influence regional 

epigenetic states through recruitment of chromatin modifying complexes, and have been 

implicated in the regulation of imprinted loci and establishment of parent-of-origin specific 

expression patterns, making them prime candidates for cis regulators of X-chromosome 

inactivation (Bartholdi et al., 2009; Delaval and Feil, 2004; Hung and Chang, 2010; Lee, 2009; 

O'Neill, 2005).  

Whereas evolutionary considerations point novel to cis acting players in X-chromosome 

inactivation, analysis of X-linked gene silencing in Tsix-mutant embryos and stem cells indicate 

a role for trans-acting X-linked genes that escape X-inactivation in mediating silencing (Gayen 

et al., 2016), (Gayen et al., in prep). During our investigations of the role of Tsix in random X-

inactivation, we observed that, though loss of Tsix leads to ectopic Xist RNA induction upon 

differentiation in both male and female cells, the frequency of Xist induction differed between 

male and female cells (Gayen et al., 2015). We subsequently utilized these ES cells and Epiblast 

Stem Cells harboring mutations in the Tsix lncRNA to evaluate both the frequency of Xist RNA 

induction and sufficiency of Xist RNA to silence X-linked genes. We found that a higher 

frequency of X!TsixY male cells displayed ectopic Xist RNA coating compared to X!TsixX female 

cells (Gayen et al., 2016). This increase reflects the inability of X!TsixY cells to efficiently silence 

X-linked genes compared to X!TsixX cells, despite equivalent Xist induction and coating. 

Silencing of genes on both Xs results in significantly reduced proliferation and increased cell 

death in X!TsixX female cells relative to X!TsixY male cells (Gayen et al., 2016). Thus, whereas 
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Xist RNA can inactivate the X-chromosome in females it may not do so in males.  

We further found comparable silencing in differentiating X!TsixY and 39, X!Tsix (X!TsixO) 

ESCs, excluding the Y-chromosome and instead implicating the X-chromosome dose as the 

source of the sex-specific differences (Gayen et al., 2016). In the Tsix mutants, the differences in 

Xist induction and X-linked gene silencing must be genetically attributed to the sex 

chromosomes, as both X!TsixX and X!TsixY cells have identical complements of autosomes, and 

since differentiating X!TsixO ESCs behave similarly to X!TsixY ESCs, a protective effect of the Y-

chromosome can be excluded as the source of sex-specific differences (Gayen et al., 2016). 

Instead, the data implicate the presence of the second X-chromosome as the source of the 

increased permissiveness for ectopic X-linked gene silencing in females compared to males.  

Most X-linked genes in females with an inactive X-chromosome are expressed at levels equal to 

that in males (Deng and Disteche, 2010; Deng et al., 2011; Disteche, 2012). A subset of X-linked 

genes, however, escape X-inactivation in female cells and are capable of being expressed from 

both X-chromosomes despite inactivation of one of the two Xs (Berletch et al., 2010; Marks et 

al., 2015). Due to expression from both alleles, these X-inactivation escapees are expressed at 

higher levels in females compared to males (Berletch et al., 2015a). Since X!TsixX female 

embryonic epiblast cells and EpiSCs harbor an inactivated X-chromosome prior to ectopic 

inactivation of the active X!Tsix X-chromosome, the increased dosage of one or more X-

inactivation escapees are prime candidates as trans-acting factors that help trigger X-linked gene 

silencing (Gayen et al., 2016). 

In order to discover and characterize putative novel regulators of X-inactivation, I sought 

to establish a pipeline able to identify both escapers of X-inactivation and novel non-coding 

RNAs. Recent advances in next-generation sequencing have revolutionized genetic analysis. To 
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delineate both novel lncRNAs and escapers of X-inactivation, we turned to high-throughput 

RNA-Sequencing, which is able to provide an unbiased survey of global gene expression in cell 

lines and embryos. Here, I outline an RNA-Seq approach for comprehensive transcriptome 

analysis, including approaches for both novel transcript identification and allelic expression 

analysis. Through this approach, I aim to identify novel cis and trans acting regulators of X-

inactivation.  

4-2: Sample Derivation, Library Preparation, and Sequencing 

 Allele-specific expression analysis, whether through high-throughput sequencing or 

single-gene approaches, relies on the presence of polymorphic sites in the genome to distinguish 

the two alleles. To generate polymorphic samples, I use two genetically divergent inbred mouse 

lines, the 129/S1 Mus musculus strain and the JF1 Mus molossinus strain. These strains were 

selected based on the sequence divergence between the two genomes and the availability of 

whole-genome sequencing data for both strains (Keane et al., 2011; Takada et al., 2013; Yalcin 

et al., 2011). I have identified 413,974 SNPs on the X-chromosome that differ between the two 

strains and we find that, for known genes included in the NCBI RefSeq annotation, 89% of X-

chromosome genes contain at least one polymorphic site, allowing for allele-specific expression 

analysis of most transcripts (Keane et al., 2011; Pruitt et al., 2014; Takada et al., 2013; Yalcin et 

al., 2011).  

I set up matings of these divergent mouse strains to generate F1 hybrid embryos, which 

will harbor a paternally-inherited X-chromosome from one mouse strain and a maternally-

inherited X-chromosome from the other. Thus, strain-specific single nucleotide polymorphisms 

(SNPs) can be identified and traced back to either the maternally-inherited or paternally-inherited 

genome. In cells and embryos that undergo imprinted X-inactivation, the paternally-inherited X 
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will always be inactive. Knowing the strain source of the paternal X-chromosome, I can then 

associate specific single nucleotide polymorphisms with the paternal-X, and thus the inactive-X. 

Blastocyst stage hybrid embryos, which undergo imprinted X-inactivation (Kay et al., 1994; Mak 

et al., 2004; Takagi et al., 1978), can be sequenced directly, or cell lines can be derived from 

individual embryos. Trophoblast stem cells (TSCs), which are derived from the trophectodermal 

lineage of the early embryo, and extra-embryonic endoderm (XEN) cells, which are derived from 

the primitive endoderm lineage of the embryo, stably maintain imprinted X-inactivation in 

culture, facilitating allele specific analysis of wild-type samples (Kunath et al., 2005; Maclary et 

al., 2014; Tanaka et al., 1998). To assess embryonic cell lineages, such epiblast stem cells 

(EpiSCs), which normally undergo random X-inactivation, genetic mutations can be introduced 

to bias X-inactivation (Berletch et al., 2015b; Marks et al., 2015; Tesar et al., 2007). Isolated 

wild-type extra-embryonic tissues of later-stage embryos, which maintain imprinted X-

inactivation, or epiblast-derived tissues in embryos harboring mutations that bias random X-

inactivation, could be sequenced using these methods as well. 

For sequencing, either total RNA or mRNA is extracted from embryos and cell lines. I 

have primarily opted to isolate mRNA, as the protein-coding genes that could function as trans-

acting regulators of X-inactivation are expected to be polyadenylated, and most lncRNAs are 

known to be polyadenylated as well (Guttman et al., 2010). Following mRNA extraction, strand-

specific RNA-Sequencing libraries are prepared. Strand-specific sequencing is critical for 

identification of lncRNAs and putative epigenetic initiators, as sense/antisense transcription from 

the same genomic locus is a feature of many expressed lncRNAs and imprinted genes (Ogawa 

and Lee, 2003a; Su et al., 2010). Without a strand-specific library, it is impossible to distinguish 

bi-directional transcription at these loci.  
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Of the many protocols available for strand-specific library preparation, dUTP 

incorporation provides a provides an accurate and reliable for strand-specific library preparation 

that is compatible with paired-end sequencing (Borodina et al., 2011; Levin et al., 2010; 

Parkhomchuk et al., 2009). The dUTP library preparation method allows for strand-specificity by 

incorporating uracil during second-strand cDNA synthesis in lieu of thymidine. Second-strand 

cDNA is then degraded following adapter ligation so that only the first-strand cDNA is 

ultimately sequenced, thus generating strand-specific sequence data. (Borodina et al., 2011; 

Parkhomchuk et al., 2009).  

Following library preparation, samples are sequenced on the Illumina HiSeq platform. I 

have opted for 100-basepair paired-end sequencing reads, as using long paired-end reads 

provides additional information for accurate assembly and identification of novel splice isoforms 

and transcripts (Williams et al., 2014). The additional sequence information contained in long 

reads can also assist improving the percentage of uniquely mapped reads (Williams et al., 2014). 

Following sequencing, I perform preliminary quality control of data using FastQC, which will 

flag anomalies in sequence content, GC content, or decreases in quality score towards the ends of 

reads that require trimming (Andrews, 2010).  

4-3: Reference Genome Assembly and Allele-specific Mapping 

 Allele-specific RNA-Seq analysis presents unique challenges. Analysis relies on mapping 

of short reads to the reference genome, and RNA-Seq read aligners typically allow a small 

number of mismatches within alignments between the read and reference sequence. These 

mismatches permit mapping of reads containing polymorphisms or sequencing errors. Though 

mismatches are permitted, reads that contain mismatches to the reference sequence are less likely 

to be aligned to the reference genome. For quantification of allele-specific expression, mapping 
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bias towards the reference allele can lead to inaccuracies in observed allelic balance when reads 

are mapped to a single reference genome, with the reference allele overrepresented among 

mapped reads (Degner et al., 2009; Stevenson et al., 2013). To diminish reference mapping bias, 

I built in silico strain-specific references for both the 129/S1 and JF1 genomes. Read mapping to 

strain-specific or species specific reference genomes is a strategy that has previously been used 

to identify imprinted genes in both mice and drosophila as well as to characterize X-inactivation 

in mouse stem cells (Berletch et al., 2015b; Calabrese et al., 2012; Coolon et al., 2012; Finn et 

al., 2014). I generated strain-specific reference genomes by substituting strain-specific SNPs 

identified by whole-genome sequencing into appropriate sites in the reference genome using 

VCFtools (Danecek et al., 2011). Then, reads are mapped separately to the 129/S1 and JF1 

reference genomes. Importantly, though use of a strain-specific reference genome minimizes 

mapping bias, it does not eliminate it entirely since, in addition to SNPs, different mouse strains 

harbor indels and structural variations.  

 I mapped reads to the strain-specific reference genomes using the rapid spliced aligner 

STAR (Dobin and Gingeras, 2015). A systematic comparison of numerous read mappers 

indicates that STAR yields accurate alignment of a high proportion of both spliced and unspliced 

RNA-Seq reads (Engström et al., 2013). During alignment to strain-specific reference genomes, I 

required a perfect match between the read sequence and reference sequence (zero mismatches in 

alignment); thus, reads overlapping polymorphic sites in the reference genome will only overlap 

that SNP in one of the two allele-specific references, allowing for rapid downstream 

quantification of allele-specific reads. During mapping, STAR truncates reads for which it is 

unable to find a perfect full-length alignment, and will then map these “clipped” reads. For my 

stringent mapping protocol, this allows for a higher percentage of reads to be mapped, even if 
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sequencing errors are present: in RNA-Seq data, as sequence quality of reads frequently 

diminishes toward the end of long reads. This read trimming also may assist in diminishing 

reference mapping bias due to indels, as some reads aligning near indels can be truncated to 

permit mapping; STAR does permit small insertions and deletions in full-length mapped reads as 

well.  

 When setting STAR mapping parameters, in addition to requiring a perfect match 

between the read and reference genome, I provided a reference genome annotation from Ensembl 

to serve as a splice junction database. The use of a splice junction database assists in accurate 

mapping of spliced reads to known genes and gene models. STAR is also able to identify splice 

junctions de novo; I permitted de novo splice junction identification to allow assembly of novel 

transcripts, but required a minimum of 3 reads supporting each novel junction with a consensus 

splice donor and acceptor site, and five reads supporting novel splice junctions without 

consensus donor and acceptor sites. This allows for discovery of novel splice junctions in known 

or novel transcripts, but restricts spurious prediction of splice junctions from single reads.  

 Following read mapping to both reference genomes, I divided into three groups: reads 

that do not cover polymorphic sites (“non-allelic reads”), reads overlapping SNP sites that map 

to the JF1 reference genome, and reads overlapping SNP sites that map to the 129 reference 

genome. Both nonallelic and allelic reads were compiled into a single non-redundant alignment 

file for transcriptome annotation and novel transcript discovery (see section 4-4). For allele-

specific analysis (section 4-5), only reads overlapping polymorphic sites were used.  

4-4: Transcriptome Annotation and Novel Transcript Discovery 

RNA-Seq allows for comprehensive analysis of transcriptional profiles based on 

sequencing of short reads from fragmented RNA. Analysis pipelines typically rely on assembly 
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of transcripts from these short reads. For differential expression analysis of known genes, reads 

are associated with known genes based on map coordinates from a reference annotation. 

Reference transcript assemblies for commonly used model organisms, including mouse, are 

available from numerous sources, and typically include known protein coding genes and long 

non-coding transcripts, as well as an assortment of predicted transcripts, such as those identified 

by the RIKEN pipeline or through expressed sequence tags. Each annotation differs: RefSeq 

includes validated genes and a small number of gene models, whereas the Ensembl genome 

annotation includes additional gene models and predicted transcripts, curated in part from 

UniProt and HAVANA manual annotation (Cunningham et al., 2015; Pruitt et al., 2014). Since 

RNA-Seq provides an unbiased snapshot of cellular transcription, recent studies of mammalian 

transcriptomes have shown, however, many sequencing reads typically map outside of annotated 

regions in the reference assembly (ENCODE Project Consortium et al., 2007; Trapnell et al., 

2012). One current challenge in biology is identifying and annotating these putative novel 

transcripts from sequencing data, and distinguishing novel transcripts from polymerase read-

through or other transcriptional “noise”.  

 Cufflinks, part of an RNA-Seq analysis suite, provides a method for identifying novel 

transcripts from a reference-mapped assembly (Trapnell et al., 2012; 2010). Cufflinks includes 

flexible options for building transcripts and annotating novel transcripts based on the reference 

genome, with the goal of identifying the minimum possible set of transcriptional units that could 

explain mapped reads within the RNA-Seq dataset (Trapnell et al., 2010). The Cufflinks pipeline 

is capable of identifying both fully novel transcriptional units as well as putative anti-sense 

transcripts and novel splice variants.  

Briefly, to assemble transcripts, Cufflinks assesses the numbers of reads mapped to 
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specific regions of the reference genome. A set minimum number of reads must map to any 

putative region in order for the cluster of mapped reads to be considered a transcript. I set 5 reads 

as the minimum for a transcript to be called; this low threshold is likely to yield false-positive 

transcript calls, however, with biological replicates, these can be filtered out while avoiding the 

possibility of missing transcripts, like lncRNAs, that may be expressed at very low levels. I then 

compared assembled transcripts to a reference transcriptome annotation. For this comparison, I 

opted to utilize the Ensembl mm9 build transcriptome annotation (Cunningham et al., 2015). 

Whereas the Ensembl transcriptome contains redundancies in annotations, it also includes the 

most comprehensive panel of predicted genes and gene models. Cufflinks comparison of 

assembled transcripts and the reference annotation sorts assembled transcripts into numerous 

categories using 11 different class codes (Trapnell et al., 2012). These codes identify known 

genes and gene variants, putative novel transcripts, and assembled reads that likely represent 

polymerase run-on or spurious transcription.  

To prioritize putative novel transcripts for follow-up, I first filtered transcripts by class 

code. I kept novel intergenic transcripts, antisense transcripts, and transcripts that are fully 

intronic. Transcripts that have exonic overlap in the same direction as known transcripts and 

putative polymerase run-on fragments were excluded. I next filtered transcripts based on 

comparison between multiple biological replicates, only transcripts that appear in multiple cell 

lines are targeted for follow-up. I additionally filtered by expression level, transcript length, and 

intron-exon structure, prioritizing transcripts that are highly expressed, greater than 500 base 

pairs, or show evidence of splicing structure. My interests focus particularly on long non-coding 

RNAs, which may function as cis-acting regulators of epigenetic inheritance; To identify and 

prioritize putative lncRNAs, I predicted protein coding potential based on RNA sequence using 
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Coding Potential Calculator (CPC) (Kong et al., 2007). CPC evaluates the presence and coverage 

of open reading frames in transcript sequences and provides a coding score. Specifically, CPC 

looks for a single open reading frame that covers the majority of the sequence length, as well as 

the presence of in-frame start and stop codons (Kong et al., 2007). Following identification of 

transcripts, the transcript annotation file is used to identify allele-specific expression of both 

known and novel genes.  

4-5: Allele-specific Transciptome Analysis 

From our set of mapped reads and a list of SNP sites that differ between the 129/S1 and 

JF1 genomes, I counted the number of overlapping reads mapping to the 129 genome and the 

number of overlapping reads mapping to the JF1 genome using Bedtools (Quinlan and Hall, 

2010), For each SNP, I calculated inactive-X expression, calculating the number of allele-

specific reads mapped to the inactive-X strain divided by the total number of allele specific reads 

overlapping the SNP in both strains. For samples with imprinted X-inactivation, including 

blastocysts, TSCs, and XEN cells, this will be the paternal strain. For samples that typically 

would undergo random X-inactivation, such as ES cells or EpiSCs, the strain and parent of origin 

for the inactive-X depends on the cell line and on how biased X-inactivation was achieved. Once 

allelic expression calculations have been made for individual polymorphic sites, I compare SNP 

sites to a reference transcriptome annotation to identify transcript-level allele-specific 

expression.  

From the transcriptome annotation, I generated a non-redundant set of exons, and identify 

polymorphic sites within each exon using Bedtools (Quinlan and Hall, 2010). To calculate allelic 

expression for a given gene, I averaged the percent expression from the inactive allele for all 

SNPs that reside within exon boundaries for that single gene. For some genes with low 
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expression levels, or for SNPs near the end of transcripts, where read coverage can be 

inconsistent, the numbers of SNP overlapping reads can be quite low. To avoid biasing gene-

level allelic expression calls based on low coverage SNPs, which may not be accurate reflections 

of true allelic balance, I set a threshold for the minimum number of reads covering each 

polymorphic site. Our preliminary data analysis utilizes thresholds of 10 reads per SNP or 5 

reads per SNP, I find that these coverage thresholds yield similar results, however, including 

SNPs with only 5 allele-specific reads increases variability in average allelic expression within 

single genes (See Chapter 5). Analyzing the variability between allelic expression calls for all 

SNPs within a given gene can be highly informative both for understanding gene expression and 

for filtering potential incorrect polymorphism calls from whole-genome sequencing. Assessing 

variability between SNPs in the same transcript provides confidence in allelic expression calls, 

and can identify individual SNPs that behave abnormally. SNPs that do not match the allelic 

balance of other polymorphic sites in the same transcript may arise from alternative splicing, or 

could represent errors in SNP calls from whole genome sequencing, variants that differ between 

our samples and those for which whole-genome sequencing was performed, or regions harboring 

small indels or structural rearrangements that lead to reference mapping bias. Depending on 

context and the consistency of read mapping, these sites may be excluded from analysis.  

Based on calculated allele-specific expression levels, I have identified escapers of X-

inactivation and inactive-X specific transcripts. Early surveys of escape from X-inactivation 

frequently used a threshold of 10% inactive-X expression as the definition of escape (Carrel and 

Willard, 2005; Marks et al., 2015; Yang et al., 2010). This definition is advantageous in that it is 

simple and will typically encompass the genes for which escape from X-inactivation is 

substantial enough to impact gene dosage in a biologically relevant way, such as sex-specific 
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increases in expression in females compared to males. Sequencing based approaches to 

surveying escape from X-inactivation, however, have made it increasingly apparent that escape 

from X-inactivation occurs on a broad spectrum. Some X-linked genes are very strictly silenced, 

however, many show low levels of transcription from the inactive X-chromosome; this basal 

inactive-X transcription ranges from vanishingly small, contributing less than a percent of the 

total expression level of the gene, to modest: in my preliminary data analysis, a number of genes 

fall in the range of 1-10% inactive-X expression. This low level of inactive-X expression may 

not indicate a functional increase in dosage in females, however, it is clear that the regulation of 

these genes differs from those that are strictly silenced, and does not preclude that this low-level 

escape from X-inactivation serves a biological purpose, even if dosage is not substantially 

altered. Given this spectrum of escape, alternative approaches to defining escape genes have 

recently been developed, utilizing binomial models to predict whether the inactive-X 

contribution of a given gene is significant (Berletch et al., 2015b; Calabrese et al., 2012). These 

models have the advantage of identifying broad ranges of inactive-X contribution that differ 

from expectations, even at low levels. For future studies, the choice of how to define escape from 

X-inactivation depends largely on the goals of the specific project.  

4-6: Strategies for Follow-up Characterization of Gene Expression 

Following identification of novel lncRNAs and escapers of X-inactivation in WT cells by 

RNA-Seq, it is critical to confirm these expression patterns using alternative approaches. I have 

previously analyzed expression of X-linked genes in populations of cells using RT-PCR 

followed by Sanger sequencing (Gayen et al., 2015; Maclary et al., 2014). Design of RT-PCR 

primers flanking SNP sites can identify monoallelic versus biallelic expression from the maternal 

or paternally-inherited X-chromosomes. I and other members of the lab have also optimized a 
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more quantitative approach for allele-specific expression of X-linked genes using 

pyrosequencing (Gayen et al., 2015; 2016). Pyrosequencing again relies on design of an RT-PCR 

amplicon flanking a SNP site, followed by quantitative analysis of the relative proportions of 

each allele present based on quantification of pyrophosphate release during nucleotide 

incorporation (Kreutz et al., 2015). In addition to these sequencing-based approaches to analyze 

populations of cells, I will use RNA fluorescence in situ hybridization (FISH) to confirm allele-

specific expression at the single-cell level. For escapees, this will help to clarify whether escape 

occurs at a low level in all cells, or if genes of interest escape X-inactivation in every cell within 

a population. I will develop specific oligonucleotide probes that hybridize to genes of interest, 

and perform RNA-FISH for these genes of interest in conjunction with Xist RNA, which marks 

the inactive-X, as commonly used in our publications (see, for example, (Hinten et al., 2016). 

From RNA FISH stains, I can assess allele-specific expression by counting colocalization of 

genes of interest with Xist RNA coating. An RNA FISH approach uniquely allows for 

assessment of gene expression in non-hybrid genetic backgrounds, to determine if any gene 

expression pattern changes result from hybrid genetic background. Additionally, I have recently 

optimized a protocol for allele-specific RNA FISH for Xist, which stains Xist RNA from the M. 

molossinus derived X-chromosome and the M. musculus derived X-chromosome in separate 

colors (Levesque et al., 2013). This novel approach permits follow-up of novel transcript 

expression in randomly inactivated populations of cells. This is particularly important for 

analysis of any novel transcripts identified in lineages that typically undergo random X-

inactivation, such as EpiSCs. Analysis of novel factors on the single-cell level in WT, randomly-

inactivated cells can distinguish if these transcripts are expressed in WT cells, or if they are 

restricted to mutant cell lines and, if so, if they show any strain bias in inactive-X expression.  
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4-7: Applications for Allele-Specific RNA-Seq Analysis and Future Goals 

 I and other members of the lab have generated numerous cell lines and embryos from F1 

hybrid crosses of M. molossinus and M. musculus mice. Preliminarily, I aim to comprehensively 

identify escapers of X-inactivation and novel lncRNAs in cell lines representative of all three 

lineages of the blastocyst-stage mouse embryo: TSCs, XEN cells, and EpiSCs. TSCs are derived 

from the trophectodermal lineage, which will give rise to the placenta in later stage embryos 

(Tanaka et al., 1998). XEN cells are derived from the primitive endoderm lineage, which gives 

rise to the yolk sac (Kunath et al., 2005). Both TSCs and XEN cells stably maintain imprinted X-

inactivation in culture. EpiSCs arise from the inner cell mass of the early embryo, and are 

representative of randomly inactivated populations (Tesar et al., 2007). I have derived and 

sequenced nine lines of WT hybrid TSCs and nine lines of wild-type hybrid XEN cells. For each 

cell type, these lines include six female cell lines, three derived from a M. molossinus dam 

crossed to an M. musculus sire and three derived from a M. musculus dam crossed to an M. 

molossinus sire. Using these reciprocal crosses, we can discern escape from X-inactivation or 

inactive-X specific expression from strain-specific differences in expression. I have additionally 

sequenced three male cell lines for each cell type, to allow for differential expression analysis 

between female and male cells and identification of female-specific or female-upregulated 

transcripts. For EpiSCs, I have sequenced twelve cell lines: nine female lines with biased X-

inactivation and three male lines, for comparative analysis. Of the nine female cell lines, six 

harbor mutations in the Tsix lncRNA; five of these cell lines have the M. musculus-derived Tsix 

mutant X inactivated in all cells, whereas one has the M. molossinus-derived X-chromosome 

inactivated. The other three cell lines harbor mutations in the Xist lncRNA, in these cells, the 
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wild-type M. molossinus-derived X is inactivated. In these cells, I am currently working to 

identify novel lncRNAs and escapers of X-inactivation.  

In addition to sequencing of WT cells, I have leveraged this allele-specific expression 

analysis pipeline to characterize X-inactivation status in mutant embryos and stem cells. I have 

performed allele-specific RNA-Seq of TSCs bearing mutations in EED, the core component of 

the chromatin modifying complex Polycomb Repressive Complex 2 (see Chapter 5). Through 

this analysis, I have identified a limited defect in X-linked gene expression upon loss of EED. I 

have also sequenced XEN cells harboring mutations in EED. In collaboration with other 

members of the lab, I am currently pursuing RNA-Seq analysis of individual blastocyst-stage 

embryos harboring mutations in multiple components of PRC2, to develop a comprehensive 

understanding of the role of PRC2 in initiation of imprinted X-inactivation. 
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Chapter 5: Repression of Basally Transcribed Inactive X-linked genes 

by PRC2 and Xist RNA 
!
This chapter will be submitted for publication as: Maclary E., Hinten M., Sethuraman S., Harris 

C., and Kalantry S., “Repression of Basally Transcribed Inactive X-linked genes by PRC2 and 

Xist RNA”. This chapter was written by E.M., M.H., and S.K. Data presented in this chapter was 

primarily collected and analyzed by E.M. and M.H.; M.H. performed experiments and analyzed 

all data presented in figures 5.1 and 5.2, with the exception of figure 5.1D; E.M. performed 

experiments and analyzed data presented in figures 5.1D, 5.3-5.13 and tables 5.1-5.6; S.S. 

assisted with bioinformatic analysis; C.H. derived and maintained Eedfl/fl mice and assisted with 

cell line derivation and culture.   

5-1: Introduction 

Post-translational modifications of histones in chromatin are capable of transmitting 

epigenetic transcriptional states across cell division (Margueron and Reinberg, 2011; Ragunathan 

et al., 2015; Zhang et al., 2015).  The histone H3-K27me3 modification constitutes a key 

chromatin modification.  H3-K27me3 is deposited at target loci by the Polycomb repressive 

complex 2 (PRC2), a large evolutionarily conserved multimeric protein complex (Cao et al., 

2002; Czermin et al., 2002; Kuzmichev et al., 2002; Müller et al., 2002; Tie et al., 2001).  In 

mammals, PRC2 and H3-K27me3 are implicated in many physiological processes, including in 
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pluripotency, differentiation, tumorigenesis, and X-chromosome inactivation (Brockdorff, 2013; 

Laugesen and Helin, 2014; Margueron and Reinberg, 2011). 

Mammalian PRC2 consists of the core components EZH2, EED, and SUZ12 (Cao et al., 

2002; Kuzmichev et al., 2002).  EZH2 is the enzymatic subunit of PRC2 that catalyzes 

H3K27me3, a mark that is associated with gene silencing (Di Croce and Helin, 2013; Margueron 

and Reinberg, 2011; Zhang et al., 2015).  The PRC2 protein EED acts to propagate H3-K27me3 

at target loci (Margueron et al., 2009).  PRC2 binds to pre-deposited H3-K27me3 in S-phase and 

in turn stimulates EZH2 to catalyze H3-K27me3 on newly deposited histones (Hansen et al., 

2008; Margueron et al., 2009).  In the absence of EED, H3-K27me3 catalysis is ablated and the 

levels of the other core PRC2 proteins are reduced, indicating that PRC2 does not assemble 

(Montgomery et al., 2005).  Thus, EED is required for PRC2 recruitment, stability, and robust 

enzymatic catalysis of H3-K27me3. 

X-chromosome inactivation has provided essential insights into PRC2 function 

(Brockdorff, 2013; Froberg et al., 2013; Pontier and Gribnau, 2011).  X-inactivation is an 

evolutionarily conserved epigenetic process in mammals that equalizes X-linked gene dosage 

between XX females and XY males (BEUTLER et al., 1962; LYON, 1961).  Two different forms 

of X-inactivation characterize the early mouse embryo.  The initial form is imprinted X-

inactivation, in which all cells of the pre-implantation mouse embryo exclusively inactivate the 

paternally-inherited X-chromosome (Kay et al., 1994; Mak et al., 2004; Takagi et al., 1978).  In 

later stage embryos, imprinted inactivation of the paternal-X is maintained in the trophectoderm 

and primitive-endoderm derived placental and yolk-sac cells (Takagi and Sasaki, 1975; West et 

al., 1977; 1978).  The epiblast progenitor cells that give rise to the embryo proper, on the other 
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hand, reactivate the paternal-X and subsequently randomly inactivate either the paternal or the 

maternal X-chromosome (Mak et al., 2004).  

At the onset of both random and imprinted X-inactivation, PRC2 proteins and H3-

K27me3 are enriched on the inactive X-chromosome (Erhardt et al., 2003; Mak et al., 2002; 

Okamoto et al., 2004; Plath et al., 2003; Silva et al., 2003).  PRC2 is proposed to be recruited to 

the inactive X-chromosome by the Xist long non-coding (lnc) RNA (Sunwoo et al., 2015; Zhao 

et al., 2008), which is only transcribed from the inactive X-chromosome and is necessary for 

stable X-inactivation (Kalantry et al., 2009; Marahrens et al., 1997; Penny et al., 1996).  By 

virtue of its early enrichment on the inactive-X and its gene silencing function, PRC2 is thought 

to be critical for the stable silencing of X-linked genes (Plath et al., 2003; Silva et al., 2003).  In 

agreement with this idea, loss-of-function studies suggest that PRC2 is required in imprinted 

mouse X-inactivation (Wang et al., 2001) .  The extra-embryonic tissues in Eed-/- mouse embryos 

and Eed-/- trophoblast stem cells (TSCs) are defective in maintaining silencing of paternal X-

linked genes (Kalantry et al., 2006; Wang et al., 2001).  Although EED loss compromises 

imprinted X-inactivation, whether PRC2 is required for silencing of all or only some X-linked 

genes is not known.  In this study, we generated F1 hybrid Eed-/- TSC lines harboring 

polymorphic X-chromosomes, thus enabling a comprehensive analysis of X-linked gene 

expression by allele-specific RNA-Seq.  Eed-/- TSCs lack H3-K27me3 and Xist RNA coating.  

Despite the absence of H3-K27me3 and Xist RNA coating, fewer than one-fifth of the X-linked 

genes are derepressed from the inactive X-chromosome in Eed-/- TSCs.  Analysis of ChIP-Seq 

profiles of transcriptional machinery and histone modifications in wild-type (WT) TSCs 

demonstrates that the derepressed genes in Eed-/- TSCs display hallmarks of open chromatin and 

basal transcriptional activity on the inactive-X.  X-linked genes that are completely silenced, 
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however, are refractory to the loss of EED, H3-K27me3, and Xist RNA.  Thus, PRC2 and Xist 

RNA are required to prevent upregulation of genes that are transcribed at low levels or are 

primed for expression but are dispensable for the continued silencing of genes that are stably 

inactivated.   

 

5-2: Loss of H3-K27me3 Enrichment and Xist RNA Coating on the Inactive X-chromosome 
in Eed-/-TSCs. 

From a conditionally-mutant Eed mouse strain, we generated Eedfl/fl TSC line, in which a 

portion of one of the evolutionarily conserved WD40 repeats (WD3) is flanked by loxP 

sequences (Fig. 5.1A).  WD40 domains have been shown to be necessary for EED to interact 

with the PRC2 enzyme EZH2 (Denisenko et al., 1998; Han et al., 2007), which catalyzes H3-

K27me3.  A perturbation of the WD40 may therefore disrupt essential PRC2 interactions and 

function.  From Eedfl/fl TSCs, we generated three Eed-/- TSC subclones.  In Eedfl/fl and Eed-/- TSC 

lines, we first assessed enrichment of EED protein and H3-K27me3 by immunofluorescence 

(IF).  In the same cells, we also assessed Xist RNA expression by FISH; Xist RNA accumulation 

marks the inactive X-chromosome (Brown et al., 1992; Clemson et al., 1996; Jonkers et al., 

2008).  As expected, in Eedfl/fl cells EED and H3-K27me3 are enriched on the Xist RNA-coated 

inactive paternal X-chromosome.  Eed-/- TSCs, by contrast, lack EED and H3-K27me3 

enrichment as well as Xist RNA coating (Fig. 5.1B).  Thus, EED absence results in the loss of 

H3-K27me3 enrichment on and Xist RNA coating of the paternal X-chromosome that is subject 

to imprinted X-inactivation, consistent with previous data (Kalantry et al., 2006). 

To test that the absence of Xist RNA coating in Eed-/- TSCs did not reflect loss of the Xist 

locus, we tested whether the TSCs harbored two Xist loci by DNA FISH.  A vast majority of the 
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cells in both the Eedfl/fl and Eed-/- TSC lines exhibited two Xist loci (Fig. 5.1C).  We also 

investigated X-chromosomal ploidy by X-chromosome paint, which showed that most cells of 

both genotypes harbored two X-chromosomes (Fig. 5.1D). 

!

Figure 5.1: Absence of H3-K27me3 enrichment and Xist RNA coating on the inactive X-chromosome in Eed-/- 
TSCs.  (A) Diagram of conditional Eed mutation.  (B) Detection of EED (in green) and H3-K27me3 (red) by 
immunofluorescence (IF) and Xist RNA (white) by RNA FISH in Eedfl/fl and Eed-/- TSCs.  Nuclei are stained blue 
with DAPI.  Scale bar, 2 µm.  Bottom, quantifications of numbers of nuclei with H3-K27me3 enrichment and Xist 
RNA coating in Eedfl/fl and Eed-/- TSCs.  (C) Combined Xist RNA FISH and Xist DNA FISH in Eedfl/fl and Eed-/- 
TSCs.  Xist RNA is detected in green and Xist DNA in red (pinpoints).  Nuclei are stained blue with DAPI.  Scale 
bar, 2 µm.  Right, quantification of Xist DNA FISH data.  (D) Detection of X-chromosomes via X-chromosome 
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paint (DNA FISH) in Eedfl/fl and Eed-/- TSC lines.  Top, representative nucleus from each genotype.  Bottom, 
quantification of X-chromosome number.  100 nuclei were counted from a representative cell line of each genotype. 
 

5-3: RNA FISH in Eed-/- TSCs Reveals Limited Derepression of X-linked genes  

To test whether X-inactivation is compromised in Eed-/- TSCs, we assayed the expression 

by RNA FISH of four X-linked genes subject to X-inactivation, Atrx, Rnf12, Pdha1, and Pgk1.  

Both the parental Eedfl/fl parental TSC line and the three derived Eed-/- TSC lines displayed 

monoallelic expression of Atrx, Rnf12, and Pdha1 (Fig. 5.2).  All three genes appeared to be 

silenced on one allele in Eed-/- TSCs, presumably the inactive paternal-X, despite the absence of 

H3-K27me3 and Xist RNA coating.  The fourth X-linked gene, Pgk1, however, was 

monoallelically expressed in Eedfl/fl TSCs but biallelically expressed in Eed-/- TSCs (Fig. 5.2).  

Pgk1, therefore, is no longer silenced on the inactive-X when EED is deleted.  In summary, these 

results imply that some genes, but not others, are subject to derepression from the previously 

inactive paternal X-chromosome when Eed is deleted. 
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Figure 5.2: RNA FISH analysis of X-linked gene expression in Eed-/- TSCs.  Left, RNA FISH detection of Xist 
RNA coating (green) and RNAs of four X-linked gene (Atrx, Rnf12, Pdha1, and Pgk1, red) in Eedfl/fl and Eed-/- 
TSCs.  Nuclei are stained blue with DAPI.  Scale bar, 2 µm.  Right, quantifications of the RNA FISH data.  Whereas 
Atrx, Rnf12, and Pdha1 remain silenced in Eed-/- TSCs, Pgk1 is derepressed from the inactive-X in the absence of 
EED. 
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5-4: X-chromosome-wide Identification of Derepressed Genes in Eed-/- TSCs  

To comprehensively identify genes across the inactive paternal X-chromosome that 

require PRC2 and Xist RNA coating for stable silencing, we performed RNA-Seq on Eed+/+ and 

Eedfl/fl (both classified as control WT genotype hereafter) as well as on Eed-/- TSCs.  Both the 

WT and mutant TSC lines are F1 hybrid and harbor polymorphic X-chromosomes, with the 

maternal-X derived from the Mus musculus 129/S1 mouse strain and the paternal-X from the 

Mus molossinus JF1/Ms strain.  The genomes of the 129/S1 and JF1/Ms strains are highly 

divergent and contain many defined single nucleotide polymorphisms (SNPs) (Keane et al., 

2011; Takada et al., 2013; Yalcin et al., 2011).  Since TSCs undergo imprinted X-inactivation, 

the JF1/Ms-derived paternal X-chromosome is the inactive-X and the 129/S1-derived maternal 

X-chromosome is the active-X.  We were thus able to exploit the strain-specific SNPs to 

interrogate parent-of-origin-specific expression of X-linked genes across the X-chromosome.  

For RNA-Seq analysis, we generated 100-base pair paired-end reads from strand-specific 

libraries to facilitate accurate allele-specific mapping of sequencing reads (see detailed 

discussion in Methods).  

We first assessed EED mRNA expression in Eed-/- TSCs in the RNA-Seq data.  

Compared to Eedfl/fl TSCs, Eed was negligibly detected in Eed-/- TSCs.  Notably, reads mapping 

to the deleted Eed exon 7 were missing entirely in Eed-/- TSCs (Fig. 5.3A).  The RNA-Seq data 

also showed that Xist RNA was robustly expressed in Eedfl/fl TSCs but was significantly reduced 

in Eed-/- TSCs, in agreement with the RNA FISH results (Fig. 5.3B).  For allele-specific analysis, 

we identified 413,974 SNPs on the X-chromosome based on previously published whole-genome 

sequencing of the divergent strains used to generate the TSCs (Keane et al., 2011; Takada et al., 

2013; Yalcin et al., 2011).  From the RefSeq mm9 genome annotation, 89% of the non-redundant 

set of X-linked genes contained at least one SNP (Fig. 5.3C).  
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To map RNA-Seq reads in an allele-specific manner, we created in silico strain-specific 

reference genomes by substituting SNPs from the 129/S1 and JF1/Ms mouse strains into the 

reference genome from the C57BL/6J strain.  We then separately mapped the RNA-Seq reads to 

each strain-specific reference genome using STAR, permitting zero mismatches between the 100 

base pair paired-end reads and the strain-specific genomes.  Reads expressed from the JF1/Ms 

allele that overlapped SNP sites would map uniquely to the JF1/Ms reference, while reads 

expressed from the 129/S1 allele would map only to the 129/S1 genome, facilitating 

quantification of allelic expression.  Use of in silico strain-specific reference genomes also 

minimizes the mapping bias that can skew read counts towards the reference allele when 

mapping to a single reference genome (Degner et al., 2009), though due to structural 

rearrangements and indels between genomes reference mapping bias cannot be eliminated 

entirely (see detailed discussion in Methods).  For each gene, we identified reads overlapping 

known SNPs and calculated the percent inactive-X expression by averaging the fraction of reads 

that mapped to the paternal (JF1/Ms) allele at all SNP sites with # 10X read coverage in that 

gene (Fig. 5.4).  

!

Figure 5.3: RNA-Seq profiling of X-linked gene expression in Eed+/+, Eedfl/fl, and Eed-/- TSCs.  (A) RNA-Seq 
detects robust expression of full-length Eed mRNA in Eedfl/fl TSCs.  In Eed-/- TSCs, minimal levels of Eed mRNA 
are observed, lacking expression altogether from the excised exon 7 (red box).  (B) Xist RNA expression in Eedfl/fl 

and Eed-/- TSCs.  (C) Table summarizing allele-specific RNA-Seq analysis of X-linked genes.  
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Figure 5.4: Allelic Read Mapping with STAR. All panels show varying resolutions of read and read coverage data  
at the Xist locus from a representative wild-type sample mapped separately to the 129/S1 and JF1 in silico genomes. 
Because Xist RNA is expressed from the inactive-X, we expect reads overlapping SNP sites to map to the JF1 
reference genome exclusively. We observe a decrease in read coverage surrounding SNP sites in the 129/S1 
mapping, as well as the presence of clipped reads adjacent to the SNP site.   

To evaluate allele-specific expression in the TSCs, we first identified genes that 

contained at least one SNP with #10X read coverage.  Three hundred and sixty-four and 371 

genes in the four WT TSC lines and three Eed-/- TSC lines, respectively, satisfied the 10X 

coverage threshold (Fig. 5.3C).  We assessed relative expression of genes from the inactive 

paternal vs. the active maternal X-chromosome by calculating the proportion of SNP-

overlapping reads mapping to the paternal vs. the maternal allele in every TSC line.  As expected 

for TSCs, most genes are expressed almost exclusively from the maternally-inherited active X-

chromosome.  A small subset of genes, however, showed substantial expression from the 
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paternal-X in WT Eed+/+ and Eedfl/fl TSCs (Fig. 5.5A; see Table 5-1 at end of chapter for allelic 

information for all genes and TSC lines).  Genes expressed from the inactive-X are known as 

escapers of X-inactivation (reviewed in (Berletch et al., 2010; Peeters et al., 2014)).  Levels of 

inactive-X expression vary widely between genes. Based on average paternal-X expression in 

our wild-type cells, we identify 65 genes with less than 1% expression from the inactive-X, 215 

genes expressed at very low, but detectable, levels from the inactive X-chromosome (i.e., 1-5% 

of total expression from the inactive-X), and 84 genes displaying more substantial levels of 

inactive-X expression (>5%).  We defined X-inactivation escapees as genes whose paternal 

allele expression is #10% of total expression.  The 10% threshold has previously been used to 

define escape genes in both mouse and human (Balaton et al., 2015; Carrel and Willard, 2005; 

Cotton et al., 2013; Marks et al., 2015; Yang et al., 2010). Using this threshold, we found that 20 

of 364 genes (5%) escape X-inactivation in all three Eed+/+ and the sole Eedfl/fl TSCs (Fig. 5.5A).  

This set includes genes previously shown to escape X-inactivation such as Kdm5c and Eif2s3x 

(Balaton et al., 2015; Berletch et al., 2015b; Calabrese et al., 2012; Yang et al., 2010).  Included 

are also genes that escape X-inactivation in TSCs but not in other tissues, such as Yipf6 

(Calabrese et al., 2012).  An additional 12 genes not previously reported to escape X-inactivation 

display #10% of total expression from the paternal X-chromosome in all four WT TSC lines; 

these unique escapers include genes such as Dusp9 and Atp7a.  Both tissue-specific differences 

and strain-specific differences in escape from X-inactivation may explain why these genes have 

not previously been identified as escapees.  

We next interrogated expression from the paternal X-chromosome in Eed-/- TSCs.  

Compared to the WT TSCs, a substantially higher number of genes were expressed from the 

paternal allele in all three Eed-/- TSCs (112/371, or 30%) (Fig. 5.5B; see also Table 5.1).  
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Contained within this subset are most of the genes that escape X-inactivation in the four WT 

TSCs (18 out of 20 escape genes).  The two escapees unique to WT TSCs do not reach the 

required 10x depth of coverage at SNP sites in Eed-/- TSCs to permit calculation of allelic 

expression ratio, but do show expression from the paternal-X in the mutant cells.  An additional 

94 genes that are X-inactivated in the WT TSCs were expressed from the paternal X-

chromosome in the three Eed-/- TSCs.  Overall, Eed-/- TSCs displayed a much higher percentage 

of genes that are expressed from the paternal X-chromosome (30%) compared to WT TSCs 

(5%).  
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Figure 5.5: Identification and characterization paternal-X expression in in Eed+/+, Eedfl/fl, and Eed-/- TSCs. (A) 
Euler diagram assessing escape from X-inactivation, defines as #10% expression from the paternal-X, in three Eed+/+ 
TSC lines and one Eedfl/fl  TSC line. All four wild-type lines show a low level of escape from X-inactivation, with 20 
genes (5%) consistently escaping X-inactivation in all four cell lines. (B) Euler diagram assessing escape from X-
inactivation in three Eed-/- TSC lines. Upon loss of EED, all cell lines show a higher percentage of genes escaping 
X-inactivation, with 106 (28%) of genes escaping in all three cell lines. (C) Comparison of percent paternal-X 
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expression in Eed-/- TSCs compared to WT TSCs. Percent paternal-X expression for individual Eed-/- lines was 
compared to the average percent paternal-X expression in WT TSCs (left). In each line, genes that showed #10% 
increase in paternal-X expression compared to the average level in WT cells were identified. Right, Euler diagram 
comparing the genes displaying a #10% increase in paternal-X expression in each Eed-/- line. Seventy-seven genes 
consistently show an increase in paternal-X expression level in all three Eed-/- cell lines. (D) Identification of genes 
showing a statistically significant difference in percent paternal-X expression in Eed-/- TSCs compared to WT TSCs. 
Percent paternal-X expression in the four WT cell lines and three Eed-/- lines was compared by T-test for the 77 
genes found to show a consistent increase in paternal-X expression in Eed-/- lines. Of these, 74 genes were found to 
show a statistically significant increase in paternal-X expression in Eed-/- TSCs, following Benjamini-Hochberg 
correction for multiple testing (FDR=0.1). 

We next calculated the extent of upregulation of genes that were expressed from the 

paternal-X in Eed-/- TSCs (Fig. 5.5C).  We compared the ratio of paternal to total (paternal + 

maternal) allelic expression for a common set of 338 X-linked genes with #10X read coverage in 

each of the three Eed-/- TSC lines to the average percent paternal allele expression in the four WT 

lines (Fig. 5.5C).  We defined genes whose expression from the paternal allele was increased by 

#10% in Eed-/- TSCs compared to the standard level of paternal allele expression observed in 

WT TSCs as candidate derepressed X-linked genes in the mutants.  A total of 77 out of the 338 

genes, or 23%, reached this threshold.  Seventy-two of the 77 genes are inactivated in WT TSCs.  

The remainder escaped X-inactivation in the WT TSCs, but were nevertheless expressed from 

the paternal allele at a higher level in Eed-/- TSCs.  

For the set of genes that reached the threshold for calculating allelic expression in only 

WT or only Eed-/- TSCs (7% and 9% of genes with allelic information, respectively), the ratios 

of paternal allele:total expression could not be compared. These genes reach the 10X coverage 

threshold in all WT lines or all mutant lines, however, one or more TSC lines does not reach the 

required level of SNP coverage in the other genotype. For these subsets of genes, we calculated 

the percent paternal allele expression in the individual genotypes.  Of the 26 genes that are 

uniquely expressed with #10 reads overlapping at least one SNP site in the WT TSC lines, only 

one, Xist, was expressed from the paternal allele.  
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Figure 5.6: Distribution of Allelic Expression Profiles for X-linked Genes in Individual Cell Lines. (A) Allelic 
distribution profiles for 364 genes reaching the 10X coverage threshold in all WT cell lines. Lines show varying 
distributions of allelic expression, however, genes show predominantly <10% paternal-X expression. (B) Allelic 
distribution profiles for 371 genes reaching the 10X coverage threshold in all Eed-/- lines. A greater proportion of 
genes in Eed-/- TSCs show >10% expression from the paternal-X.  

For the 33 genes that reached #10 read coverage threshold only in Eed-/- TSCs, a higher 

proportion of the X-linked genes were expressed from the paternal allele (9, or 27%). These 

results are consistent with our observations of increased escape in Eed-/- TSCs within the set of 

368 genes that reach the 10X read coverage threshold in all seven lines. Distributions of allelic 

expression for each WT and Eed-/- TSC line are plotted in Figure 5.6.   
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For genes with #10% increase in paternal-X expression in all Eed-/- TSC lines compared 

to the WT TSC lines, we performed T-tests to calculate the statistical significance of the change 

in allelic expression.  Of the 77 genes that demonstrated an increase in expression from the 

paternal-X in all three Eed-/- TSC lines, 74 displayed a statistically significant difference between 

the proportion of paternal-X expression in Eed-/- TSC lines vs. the control WT TSC lines (FDR = 

0.1) (Fig. 5.5D; Table 5.1).   

In principle, the relative increase in expression from the paternal-X allele in Eed-/- TSCs 

could be driven by one of two major mechanisms: either increased expression of the paternal-X 

allele or reduced expression from the maternal-X allele.  In order to distinguish between these 

two possibilities, we performed differential analysis of X-linked gene expression between WT 

and Eed-/- TSCs (Love et al., 2014).  For genes whose shift in allelic expression is driven by 

derepression of the paternal-X allele, both the percent of total expression contributed by the 

paternal allele as well as the total expression itself are expected to increase, since these genes are 

now expressed from both the maternal and paternal X-chromosomes.  SNP-containing reads 

provide only sparse coverage of genes, thus, SNP-ovelapping reads alone cannot be used for 

differential expression analysis. We therefore calculated read coverage of the entire gene, 

including reads overlapping both polymorphic and non-polymorphic sites. From the total read 

counts, we calculated paternal-X expression by multiplying the number of mapped reads for each 

gene by the proportion of SNP containing reads mapping to the paternal X-chromosome (See 

detailed description in Methods).  We then performed differential expression analysis on these 

calculated paternal-X expression levels between the four WT TSC lines and the three Eed-/- TSC 

lines (See Table 5.2 at end of chapter; Fig. 5.7A) (Love et al., 2014).  The majority of X-linked 

genes exhibiting a relative increase in expression from the paternal allele also showed an 
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increase in the absolute expression from the paternal X-chromosome (65/74, or 85%).  The 

remaining 11 genes displayed either negligible changes in the absolute level of paternal-X 

expression or a decrease in paternal-X expression.  In these genes, the observed shift in the 

proportion of paternal allele expression is likely due to down-regulation of the maternal allele.  

!

Figure 5.7: Differential Expression Analysis of X-linked Genes.  (A) Plot of log2 fold change between genotypes 
in the expression of paternal X-chromosome genes (Y axis) versus percent difference in paternal allele expression 
(X axis) for the 74 X-linked genes exhibiting a relative increase in the proportion of paternal:maternal allele 
expression, as calculated by DESeq2. (B) Table summarizing the 10 X-linked genes that show the greatest increase 
in paternal allele expression in Eed-/- TSCs. (C) Differential expression analysis of X-linked genes. Heat maps and 
volcano plots illustrating differential expression results for genes with allelic expression data (n = 338) and genes 
without allelic expression data (n = 105). Both groups show similar percentages of upregulated and downregulated 
genes, as well as similar log2 fold change magnitudes for genes that are differentially expressed. In volcano plots, 
each points indicates a single gene; red points indicate genes that are significantly differentially expressed between 
WT and Eed-/- TSCs (p <0.05 following BH correction for multiple testing).  
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We therefore defined paternally derepressed genes as the set of 65 X-linked genes (19% 

of the 338 genes assayed) that exhibit both relative and absolute upregulation of the paternal 

allele in Eed-/- TSCs compared to WT TSCs.  The ten highest derepressed X-linked genes in Eed-

/- TSCs are summarized in Fig. 5.7B.  To confirm that the gene-specific derepression observed is 

not simply a function of the thresholds set for read coverage and allelic balance, we additionally 

assessed expression from the paternal X-chromosome in Eed+/+, Eedfl/fl, and Eed-/- TSC lines at a 

less stringent coverage threshold, requiring only 5X coverage of SNPs.  The lower stringency 

criteria yielded derepression of a similar subset of paternal X-linked genes in Eed-/- TSCs (21%) 

(Fig. 5.8; see Table 5.3 at end of chapter). 
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Figure 5.8: Identification and characterization paternal-X expression in in Eed+/+, Eedfl/fl, and Eed-/- TSCs at a 
5X read coverage threshold. (A) Euler diagram assessing escape from X-inactivation, defined as #10% expression 
from the paternal-X, in three Eed+/+ TSC lines and one Eedfl/fl  TSC line.  (B) Euler diagram assessing escape from 
X-inactivation in three Eed-/- TSC lines. (C) Comparison of percent paternal-X expression in Eed-/- TSCs compared 
to WT TSCs. Percent paternal-X expression for individual Eed-/- lines was compared to the average percent paternal-
X expression in WT TSCs (left). In each line, genes that showed #10% increase in paternal-X expression compared 
to the average level in WT cells were identified. Right, Euler diagram comparing the genes displaying a #10% 
increase in paternal-X expression in each Eed-/- line. (D) Identification of genes showing a statistically significant 
difference in percent paternal-X expression in Eed-/- TSCs compared to WT TSCs. Percent paternal-X expression in 
the four WT cell lines and three Eed-/- lines was compared by T-test, and P-values were corrected for multiple testing 
(FDR=0.1). (E) Plot of log2 fold change between genotypes in the expression of paternal X-chromosome genes (Y 
axis) versus percent difference in paternal allele expression (X axis) for X-linked genes exhibiting a relative increase 
in the proportion of paternal:maternal allele expression, as calculated by DESeq2. 
 

To extend the allelic expression calculations and differential expression analysis above, 

we evaluated derepression of all RefSeq X-linked genes, including non-SNP containing genes, in 

Eed-/- TSCs.  We first tabulated X-linked genes with at least five reads mapped annotated exons 

in at least one of the seven cell lines.  Expression of four hundred forty three X-linked genes 

surpassed 0.2 RPKM in all seven cell lines, a threshold established based on the minimum 

expression levels of genes that harbored SNPs.  In addition to the 338 genes that contained SNPs 

with #10X coverage threshold, we identified 82 expressed SNP-containing genes that did not 

reach the 10X coverage threshold at SNP sites and 23 expressed genes that lacked SNPs 

altogether. Compared to WT TSCs, Eed-/- TSCs displayed a statistically significant upregulation 

of 43 X-linked genes (10% of expressed X-chromosome genes; FDR=0.05). This number differs 

from the 65 derepressed genes previously identified for two reasons: First, derepressed genes 

were identified on the basis of calculated paternal-X expression, while this number takes into 

account changes in maternal expression as well. Second, some derepressed genes show only 

modest upregulation (1.1 to 1.5-fold increase in paternal-X expression). These modest fold 

changes are consistent with a 10% or greater increase in paternal-X expression, but, depending 

on variability between cell lines and total read coverage of each gene, does not necessarily 

represent a statistically significant increase in expression.  To understand if loss of EED affects 
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the 338 genes with SNPs and the 105 genes without SNPs differently, we calculated differential 

expression of X-linked genes in both groups.  Of the 338 allelically analyzed genes, 31, or 9%, 

were significantly upregulated (Fig. 5.7C).  Of the 105 genes without allelic information, a 

slightly higher percentage was significantly upregulated (12 genes or 11%) (Fig. 5.7D).  We also 

identified statistically significant downregulation of 31 X-linked genes in Eed-/- TSCs (7% of 

expressed X-chromosome genes).  Once again, the percentage of downregulated X-linked genes 

with SNPs is similar to the percentage of downregulated genes that lacked SNPs (Fig. 5.7C-D).  

The downregulation of X-linked genes in Eed-/- TSCs may be indirect, for example due to the 

induction of transcriptional silencers in the absence of EED.   

We next validated the allele-specific RNA-Seq data by RT-PCR followed by Sanger 

sequencing.  We selected six genes distributed across the X-chromosome, Hdac6, Wdr13, 

Med12, Pgk1, Wbp5, and Rnf128, that are found by RNA-Seq to be derepressed from the 

paternal X-chromosome in Eed-/- TSCs (Fig. 5.9A).  We also chose six X-linked genes, 

C330007P06Rik, Atp11c, Fam3a, Rnf12, Atrx, and Pdha1, that stably maintain silencing of the 

paternal allele in Eed-/- TSCs (Fig. 5.9A).  For each gene, we selected amplicons spanning SNPs 

that differ between the 129/S1 and JF1/Ms mouse strains and performed RT-PCR followed by 

Sanger sequencing (see Table 5.4 at end of chapter for primer and SNP information).  For all six 

genes derepressed in Eed-/- TSCs, the Sanger chromatograms exhibited expression from only the 

maternal (active)-X allele in all four WT TSC lines but biallelic expression in all three Eed-/- 

TSC lines, consistent with the RNA-Seq data (Fig. 5.9B).  For the six X-linked genes for which 

there was no allelic shift in the RNA-Seq data, the WT as well as the Eed-/- TSCs displayed 

expression from only the maternal allele (Fig. 5.9C).  We also validated the presence of the 

genomic loci of the genes assayed by RT-PCR.  Sanger sequencing of PCR amplified genomic 
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DNAs from WT and Eed-/- TSC lines, using amplicons spanning the same polymorphic sites 

assayed by RT-PCR, demonstrated that both alleles of all the genes tested were intact in all TSC 

lines (Fig 5.10 A-B). 

 !

Figure 5.9: Validation of RNA-Seq results by RT-PCR and Sanger sequencing.  (A) Schematic of chromosomal 
locations of genes selected for validation. From RNA-Seq data, six X-linked genes that display an increase in 
paternal allele expression in Eed-/- TSCs (top, red) and six genes that show no allelic shift in Eed-/- TSCs (bottom, 
green) were selected.  (B) Sanger sequencing chromatograms of amplified cDNAs from Hdac6, Wdr13, Med12, 
Pgk1, Wbp5, and Rnf128. All 6 genes are derepressed from the paternal X-chromosome in Eed-/- TSCs by RNA-Seq.  
Blue highlights mark SNPs that differ between the 129/S1 strain (maternally-inherited X-chromosome in all TSC 
lines) and the JF1/Ms strain (paternally-inherited X-chromosome in all TSC lines).   (C) Sanger sequencing 
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chromatograms from RT-PCR products for C330007P06Rik, Atp11c, Fam3a, Rnf12, Atrx, and Pdha1.  These six X-
linked genes exhibit no change in paternal allele expression in Eed-/- TSCs by RNA-Seq. 

    !
Figure 5.10: Genomic PCR for selected X-linked genes validates the presence of both alleles in DNA samples 
from WT and Eed-/- TSCs  

 

5-5: Characterization of Derepressed Genes 

RNA-Seq analysis of WT and Eed-/- TSCs identified a small subset of genes that are 

derepressed from the inactive-X upon loss of EED, which abrogates H3-K27me3 and Xist RNA 

expression.  We next sought to determine if these genes shared any unifying features in WT 

TSCs, which may predict their derepression when EED is abrogated.  We first tested if the 

derepressed X-linked genes were clustered in specific regions of the X-chromosome, which may 

suggest that those regions are particularly sensitive to loss of EED, H3-K27me3, or Xist RNA 

coating.  The derepressed genes were distributed along the length of the X-chromosome, and did 

not occupy any one specific region (Fig. 5.11A).  A subset of the derepressed genes, however, 

was clustered near the centromere and in a few other regions of the X-chromosome.  We 

reasoned that the three-dimensional structure of the X-chromosome might explain such non-
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linear arrangement of the clusters.  We took advantage of published allele-specific Hi-C data 

from mouse embryonic stem cells (ESCs) (Dixon et al., 2012; Minajigi et al., 2015). The allele-

specific Hi-C data identifies topologically associated domains (TADs) on the active and inactive 

X-chromosomes.  In mouse cells, the active-X forms a series of well-defined TADs.  The 

inactive-X, on the other hand, is structured into two large superdomains that meet at a “hinge” 

region centered on the Dxz4 minisatellite repeat, rather than into the discrete TADs that 

characterize the active-X.  When Xist RNA is knocked-down in X-inactivated cells, the inactive 

X-chromosome now takes on a conformation more similar to the active-X (Minajigi et al., 2015).  

We hypothesized that the derepressed X-linked genes in Eed-/- TSCs may occupy regions that 

correspond to specific TADs on the active X-chromosome.  The spike of derepressed genes near 

the centromere indeed occupies a single TAD on the active X-chromosome in WT ESCs and in 

X-inactivated cells in which Xist RNA is knocked-down (Minajigi et al., 2015).  Nevertheless, 

many derepressed X-linked genes do not appear to cluster in specific TADs or lie in or near 

defined TAD boundaries (Fig. 5.12).  
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Figure 5.11: Chromatin context and genomic location of derepressed X-linked genes (A) Histogram indicating 
the location of all 338 X-linked genes with informative SNPs at ( 10X coverage (gray bars) and the 65 upregulated 
genes whose relative expression from the paternal allele is significantly increased (green bars).  Derepressed X-
linked genes are distributed across the length of the X-chromosome.  (B) Allelic profiles of H3-K27me3, DNAse 
hypersensitivity, PolII occupancy, H3K27ac, H3K4me2, H3K36me3, Tata binding protein (TBP) occupancy and 
CTCF occupancy were calculated from previously published ChIP-seq data from F1 hybrid C57Bl/6J x CAST/EiJ  
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TSCs (Calabrese et al. 2012). Plots show average chromatin modification or occupancy profiles 10kb upstream and 
10kb downstream of the transcription start site for the inactive X-chromosome for derepressed genes, non-
derepressed genes, and escapers of X-inactivation. The active-X chromatin profile for the 65 genes derepressed from 
the inactive-X is also shown for comparison. (B) Plot illustrating the location of homologous human X-linked genes 
compared to mouse X-linked genes with an increase in paternal allele expression in Eed-/- TSCs (green lines) versus 
all X-linked genes with ( 5X coverage (gray lines).  Genes that require EED and/or Xist RNA for repression do not 
exhibit any significant clustering pattern within the ancient evolutionary strata of the human X-chromosome.  

  

!

Figure 5.12: Locations of X-chromosome Topologically Associated Domains compared to derepressed genes. 
Horizontal lines mark TADs identified in previously published data (Dixon et al., 2012; Minajigi et al., 2015). 
Derepressed genes (locations indicated by vertical lines) do not cluster in individual TADs or at TAD boundaries.  

 

We next interrogated if the genes that require EED, H3-K27me3, or Xist RNA to 

maintain repression share known chromatin features in WT TSCs.  We reasoned that the 

chromatin context could indicate whether genes were susceptible to reactivation upon loss of 

EED and Xist RNA coating.  Due to the essential role of EED in H3-K27me3 catalysis, and the 

proposed silencing function of H3-K27me3, we first hypothesized that genes sensitive to EED 

loss are normally occupied by higher levels of H3-K27me3 compared to genes whose inactive-X 
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expression is unchanged.  Using published H3-K27me3 chromatin immunoprecipitation-

sequencing (ChIP-Seq) data from WT F1 hybrid TSCs (Calabrese et al., 2012), we examined 

H3-K27me3 profile in WT and Eed-/- TSCs at the transcription start sites (TSSs) of the allelically 

analyzed X-chromosome genes.  As a frame of reference, we also assessed H3-K27me3 ChIP-

Seq profile of the active X-chromosome alleles of the set of 65 X-linked genes that are 

derepressed in Eed-/- TSCs and of the 20 genes that escape X-inactivation in WT TSCs.  

Consistent with the enrichment of H3-K27me3 on the inactive X-chromosome that is detected 

cytologically, genes on the inactive-X displayed a high average level of H3-K27me3 that peaks 

at the TSSs.  In contrast to this H3-K27me3 enrichment, TSSs of genes that escape X-

inactivation displayed a reduced average H3-K27me3 level.  On the active X-chromosome, H3-

K27me3 occupancy is very low, correlating with transcriptional competency of genes on that X-

chromosome (Fig. 5.11B).  Notably, H3-K27me3 is not present at higher levels at TSSs of X-

linked genes that are derepressed in Eed-/- TSCs compared to genes that remain silenced, 

suggesting that H3-K27me3 levels alone do not dictate susceptibility to reactivation (Fig. 5.11B).  

We next tested whether the derepression of X-linked genes in Eed-/- TSCs correlated with 

the preferential binding of Xist RNA to those genes in WT cells, since Xist RNA expression is 

lost in Eed-/- TSCs.  Using previously published CHART-Seq (capture hybridization analysis of 

RNA targets with deep sequencing) data assessing where Xist was bound on the inactive-X 

(Simon et al., 2013), we did not find Xist RNA to be enriched at X-linked genes that were 

derepressed vs. genes that remained silenced in Eed-/- TSCs (Fig. 5.13).  Thus, Xist RNA 

enrichment does not appear to be predictive of derepression of X-linked genes upon EED loss. 
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Figure 5.13: Xist RNA binding pattern is not predictive of derepression of paternal X-linked genes in Eed-/- 

TSCs. (A) Xist RNA binding profiles 10kb upstream and 10kb downstream of the transcription start in ESCs 0, 3, or 
7 days following Xist induction and fully X-inactivated terminally differentiated fibroblast (MEFs), as assessed by 
CHART-seq (Simon et al. 2013).  d, day after Xist induction.  Binding patterns are shown for all genes with allelic 
information, genes with an increase in paternal-X expression in Eed-/- TSCs, and genes with no change in allelic 
expression in Eed-/- TSCs.  Genes with an increase in paternal-X expression exhibit no detectable difference in Xist 
accumulation compared to genes with no change in allelic expression pattern. (B) Xist RNA binding profiles within 
gene bodies in ESCs 0, 3, or 7 days following Xist induction and fully X-inactivated mouse embryonic fibroblast 
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(MEF) cells, as assessed by CHART-seq (Simon et al. 2013).  Binding patterns are shown for all genes with allelic 
information, genes with an increase in paternal-X expression in Eed-/- TSCs, and genes with no change in allelic 
expression in Eed-/- TSCs.  Genes with an increase in paternal-X expression display no detectable difference in Xist 
accumulation compared to genes with no change in allelic expression. 
 

We additionally hypothesized that reactivation may be influenced by when during 

evolution X-linked genes became subject to dosage compensation.  The X- and Y- chromosomes 

are believed to have evolved from a pair of identical autosomes (Graves and Schmidt, 1992; 

Jegalian and Page, 1998; Ohno, 1967).  As the proto-X and proto-Y diverged, the proto Y-

chromosome lost many of its genes.  The loss of genes on the proto Y-chromosome is believed to 

have driven gradual dosage compensation on the X-chromosome, which likely occurred in a 

piecemeal fashion (Bellott et al., 2014; Jegalian and Page, 1998; Lahn and Page, 1999).  

Intriguingly, the region of the X-chromosome with higher than average H3-K27me3 density lies 

within the ancestral region of the human X-chromosome, which is thought to have undergone 

dosage compensation first, based on analysis of nucleotide divergence between X and Y 

homologs (Lahn and Page, 1999; Vallot et al., 2015).  This ancestral segment of the X-

chromosome is enriched for genes most susceptible to reactivation upon a reduction in H3-

K27me3 levels that characterizes the inactive-X during the culture of human embryonic stem 

cells (hESCs) (Vallot et al., 2015).  Additionally, based on gene coordinates, Xist appears to 

reside within the group of genes that underwent dosage compensation early, if not first, during 

the evolution of the sex chromosomes (Bellott et al., 2014; Cortez et al., 2014). We therefore 

hypothesized that Xist may play a more prominent role in the silencing of genes in the 

evolutionary older group of X-linked genes, since genes in the older groups may have been under 

the influence of Xist RNA longer.  

On the human X-chromosomes, the group of genes that underwent dosage compensation 

at similar times during evolution, termed evolutionary strata, are collinear with map position 
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(Bellott et al., 2014; Cortez et al., 2014; Lahn and Page, 1999) .  In the mouse, by contrast, the 

X-chromosome has undergone numerous rearrangements.  Analysis of nucleotide divergence, 

however, has demonstrated that mouse X-chromosome genes correspond to human X-

chromosome evolutionary strata, despite the rearrangements (Sandstedt and Tucker, 2004).  To 

identify whether each derepressed gene is a member of one of the ancient evolutionary strata or 

one of the newer strata, we converted the mouse gene coordinates for all X-linked genes with 

allelic information to human coordinates.  Comparison of the derepressed paternal X-linked 

genes in Eed-/- TSCs to human evolutionary strata, however, showed that the genes were not 

concentrated in a specific evolutionary stratum (Fig. 5.11C).  This indicates that the genes 

dependent on EED, H3-K27me3, and Xist RNA coating for silencing may not have become 

dosage compensated together but rather did so at distinct periods during evolution.   

To determine if chromatin features in WT cells other than H3-K27me3 levels or Xist 

RNA enrichment predict the derepression of X-linked genes in Eed-/- TSCs, we interrogated a 

panel of chromatin modifications and indicators of chromatin structure, focusing now on markers 

of active transcription.  Again using published allele-specific ChIP-seq as well as DNAse-Seq 

data from WT F1 hybrid TSCs (Calabrese et al., 2012), we assessed profiles of histone H3-

K27ac, H3-K4me2, H3-K36me3, H4-K20me1, DNAse hypersensitivity, PolII occupancy, and 

TBP binding at TSSs of the 338 allelically analyzed X-chromosome genes in WT and Eed-/- 

TSCs.  We again assessed if in the WT TSCs the average profile of these chromatin features was 

similar or differed in the set of genes that were derepressed vs. the set that remained silenced on 

the inactive-X in Eed-/- TSCs.  As a frame of reference, we also examined the chromatin state on 

the active X-chromosome in WT TSCs of the 65 genes derepressed in Eed-/- TSCs and of the 20 

genes that escape X-inactivation (Fig. 5.11B). 
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DNAse hypersensitivity marks nucleosome-free regions of DNA, and is characteristic of 

regulatory elements and TSSs of active genes (Song et al., 2011).  In agreement, DNAse 

hypersensitivity is a prominent feature of TSSs on the active X-chromosome (Fig. 5.11B) 

(Calabrese et al., 2012)*  On the inactive-X, DNAse hypersensitivity is greatly reduced at 

silenced genes, whereas genes that escape X-inactivation exhibit an intermediate level of DNAse 

hypersensitivity.  In WT TSCs, DNAse hypersensitivity of genes on the inactive-X that become 

derepressed parallels that of escape genes, suggesting that the chromatin at TSSs of derepressed 

genes is more open compared to genes that remain silenced in Eed-/- TSCs.  Similarly, in F1 WT 

TSCs Pol II occupancy, H3-K27 acetylation, and H3-K4me2, all indicators of active 

transcription and open chromatin, TSSs at genes that are derepressed in Eed-/- TSCs again mimic 

escapees.  Binding of TBP (TATA-binding protein), another indicator of active transcription, 

also exhibits an intermediate pattern of enrichment on the inactive-X in WT TSCs at genes that 

are derepressed in Eed-/- TSCs, with occupancy higher than in silenced genes but lower than at 

genes on the active-X.  H3-K36me3, a chromatin modification that is enriched in the gene bodies 

of actively transcribed genes, is also enriched at derepressed compared to silenced genes.  

However, H3-K36me3 enrichment is far lower in derepressed genes than in escape genes, 

suggesting that the derepressed genes are normally not transcribed at the frequency of escape 

genes.   

We additionally assessed histone H4-K20me1 levels in F1 WT TSCs, and observed that 

whereas peak height at TSSs was indistinguishable between derepressed and silenced X-linked 

genes the derepressed genes had higher H4-K20me1 deposition flanking TSSs (Fig. 5.11B).  H4-

K20me1 is enriched on the inactive-X as detected by IF, consistent with a role in transcriptional 

repression (Kalakonda et al., 2008; Karachentsev et al., 2005; Kohlmaier et al., 2004).  H4-
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K20me1, however, has also been associated with transcriptional activation (Barski et al., 2007; 

Vakoc et al., 2006; Wang et al., 2008).  H4-K20me1 may therefore have context-dependent 

roles, perhaps contingent on other surrounding chromatin modifications; or, H4-K20me1 may be 

an intermediate to the catalysis of H4-K20me2/3 (Oda et al., 2009).  If H4-K20me1 at TSSs 

functions as a mark of active chromatin, it could mark genes that are lowly transcribed from the 

normally inactive-X and which are derepressed in Eed-/- TSCs, like Pol II, TBP and DNAse 

hypersensitivity.  Alternatively, if H4-K20me1 contributes to transcriptional repression, as the 

enrichment on the inactive-X might suggest, then its loss may predispose certain X-linked genes 

to derepression.  Eed-/- TSCs have previously been shown to lose H4-K20me1 enrichment from 

the inactive-X (Kalantry et al., 2006), potentially triggering derepression of a small subset of 

genes that depend on this histone modification for transcriptional silencing.   

Together, the ChIP-Seq analysis shows that in WT TSCs H3-K27me3 profiles do not 

differ between genes that are derepressed vs. genes that remain silenced in Eed-/- TSCs.  

However, derepressed genes in Eed-/- TSCs are characterized by markers of open chromatin 

compared to genes that remain silenced.  The data therefore imply that the derepressed genes are 

poised for transcriptional activation upon loss of EED, H3-K27me3, and Xi st RNA.  

Alternatively, Pol II and H3-K36me3 presence at the derepressed genes suggest that these genes 

may in fact be transcribed from the inactive-X at low levels, but whose transcriptional activity is 

upregulated in Eed-/- TSCs.  

To evaluate the basal transcription of the X-linked genes that become derepressed upon 

EED loss, we ranked the 65 genes that are derepressed in Eed-/- TSCs by their average paternal-X 

expression in WT TSCs (Fig. 5.14).  We found that, based on the 10% threshold used previously 

to define escapers of X-inactivation, the majority of the derepressed genes (84%) fall below this 
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threshold in WT TSCs.  Transcription from the inactive-X, however, occurs on a broad and 

highly variable spectrum (Calabrese et al., 2012)*  Whereas few derepressed genes show >10% 

expression from the paternal-X in WT TSCs, many show a low, but detectable, level of inactive-

X expression, ranging from 1-10% of total expression from the paternal X-chromosome 

(Calabrese et al., 2012).  To determine if genes that are derepressed in Eed-/- TSCs display, on 

average, higher levels of basal inactive-X transcription than genes that remain silenced, we 

ranked all 338 genes for which allelic information was available by percent paternal-X 

expression in WT TSCs, and divided this ranked list into five quintiles, each containing 67-68 

genes (Fig. 5.14).  We evaluated the range of percent paternal-X expression for each quintile, 

and identified the number of derepressed genes in each group (Fig. 5.14).  Through this analysis, 

we found that the derepressed X-linked genes are not evenly distributed between the quintiles (p 

=0.0011, Fisher’s exact test).  Derepressed genes are underrepresented in quintile 1, which 

encompasses genes ranging from 0% to 1% paternal-X expression in WT TSCs and includes 7 

derepressed genes, but are over-represented in quintile 4, which encompasses genes that display 

3-6% inactive-X expression in WT TSCs and includes 25 derepressed genes.  To determine if the 

presence of marks of open chromatin and active transcription at genes in WT TSCs that are 

derepressed in Eed-/- TSCs was driven by this low-level transcription from the inactive paternal-

X in WT TSCs, we separately evaluated the average chromatin profiles for genes in each quintile 

(Fig. 5.14).  We found that derepressed genes in quintile 5, which harbors genes with >6% 

paternal-X expression in WT TSCs and thus includes escape genes, show the highest levels of 

Pol II occupancy, H3-K27ac, H3-K4me2, and H3-K36me3, whereas quintiles with lower levels 

of expression exhibit reduced levels of these features of active transcription.   
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Figure 5.14: Assessment of Basal Transcription at Derepressed X-chromosome Genes. (A) Ranking of 
derepressed X-linked genes. The X-axis indicates the rank order of each gene from least to most paternal-X 
expression in WT cells. The Y-axis indicates percent paternal-X expression for individual genes in WT (red dots) or 
Eed-/-  (green) TSCs. (B) Paternal-X contribution for all expressed X-linked genes in WT TSCs. The X-axis indicates 
the rank order of each gene from least to most paternal-X expression in WT cells. Gray dots indicate genes that are 
not derepressed, while red dots mark genes that are derepressed in Eed-/-  TSCs. The Y-axis depicts percent paternal-
X expression for each gene. Based on percent paternal-X expression, expressed genes can be divided into 5 
quintiles. Derepressed genes are overrepresented in quintile 4, indicating that derepressed genes show, on average, a 
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higher level of basal transcription from the paternal-X in WT TSCs. (C) Average chromatin modification profiles 
surrounding the transcription start sites for derepressed genes in each quintile.  

5-6: Discussion 

The Polycomb PRC2 complex and the H3-K27me3 histone modification it catalyzes are 

associated with gene silencing in wide variety of contexts, including in X-inactivation 

(Brockdorff, 2013; Laugesen and Helin, 2014; Margueron and Reinberg, 2011).  PRC2 proteins 

and H3-K27me3 are recruited to the prospective inactive-X at the beginning of X-inactivation 

(Erhardt et al., 2003; Mak et al., 2002; Okamoto et al., 2004; Plath et al., 2003; Silva et al., 

2003).  As a result, PRC2 has been proposed to contribute to gene silencing on the inactive-X 

(Plath et al., 2003; Silva et al., 2003).  In agreement, EED, a core subunit of PRC2, is necessary 

to maintain silencing of X-linked genes during imprinted mouse X-inactivation (Kalantry et al., 

2006; Wang et al., 2001).  Here, we sought to delineate the repertoire of X-linked genes that 

require EED for silencing on the inactive X-chromosome, using the imprinted X-inactivation 

model system.  

Imprinted X-inactivation offers a unique opportunity to assess allele-specific expression 

of X-linked genes.  Since the paternal X-chromosome is exclusively inactivated in cells that 

undergo imprinted X-inactivation, strain-specific SNPs can be exploited to comprehensively 

identify transcripts originating from the active and the inactive X-chromosome by RNA-Seq.  In 

cells that undergo imprinted X-inactivation, i.e., mouse TSCs, transcripts expressed from the 

inactive-X harbor paternal-specific SNPs, whereas RNAs expressed from the active-X contain 

maternal-specific SNPs.  Compared to imprinted X-inactivation, random X-inactivation is more 

difficult to study by high-throughput approaches.  In a randomly inactivated population of cells, 

parent-of-origin specific SNPs will not correspond exclusively to the active- or the inactive X-

chromosome, since some cells will have inactivated the maternal- and some the paternal-X. 
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Eed-/- TSCs lose Xist RNA coating on the inactive-X, suggesting that PRC2 induces Xist 

RNA expression (Fig. 5.1; see also (Kalantry et al., 2006)).  Analysis of differentiating female 

ESCs, which undergo random X-inactivation, previously revealed that the Xist promoter 

undergoes a transient heterochromatinization prior to X-inactivation and Xist induction (Sun et 

al., 2006; Zhao et al., 2008) .  This heterochromatic state is characterized by H4 hypoacetylation, 

a reduction in H3-K4 dimethylation, and an increase in PRC2-catalyzed H3-K27me3.  The 

marking of the Xist chromatin in this manner may be necessary for Xist RNA expression, 

potentially explaining why the absence of EED and H3-K27me3 abrogates Xist RNA expression. 

Despite the loss of both H3-K27me3 and Xist RNA expression, only a subset of the genes 

on the inactive-X is reactivated.  Overall, 19% of the genes containing SNPs displayed loss of 

silencing on the normally inactivated paternal X-chromosome in Eed-/- TSCs.  These genes are 

distributed across the X-chromosome, with no obvious linear clustering. Derepressed genes also 

do not appear be associated with changes in three-dimensional conformation of the X-

chromosome, based on assesment of topologically associated domains; Genes that are 

derepressed in Eed-/- TSCs do not appear to cluster in individual TADs any more than they do so 

linearly, nor do they appear to be enriched at TAD boundaries, which could be disrupted upon 

loss of H3-K27me3 and Xist RNA.  

An altered local chromatin state in the derepressed genes would be consistent with the 

reactivation of X-linked genes with high H3-K27me3 that is lost in hESCs under prolonged 

culture (Vallot et al., 2015).  H3-K27me3 levels, however, did not differ significantly between 

X-linked genes that are derepressed vs. silenced in TSCs.  Xist RNA binding at gene promoters 

and in gene bodies also did not correlate with derepression of inactivated X-linked genes.   
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We next examined which evolutionary strata that the reactivated genes fall into on the X-

chromosome.  Prior work has suggested that the requirement for Xist RNA in X-linked gene 

silencing may depend on the length of time a gene has been subject to dosage compensation 

during evolution (Kalantry et al., 2009).  However, the derepressed genes in Eed-/- TSCs did not 

correlate with membership in the ancient evolutionary strata on the X-chromosome.  

In addition to loss of H3-K27me3 and Xist RNA accumulation from the inactive-X, Eed-/- 

TSCs are also devoid of enrichment of other histone variants and chromatin modifications that 

are enriched on the inactive-X chromosome, including histone H2a ubiquitination that is 

catalyzed by PRC1, MacroH2a, and, as discussed above, H4-K20me1 (Kalantry et al., 2006).  

One or more of these chromatin modifications and histone variants may be required to maintain 

silencing of the X-linked genes that are derepressed from the inactive X-chromosome in Eed-/- 

TSCs.  The reactivated X-linked genes may also accumulate activating chromatin modifications 

following loss of H3-K27me3, whereas genes that maintain silencing do not. To gain insight into 

these possibilities, we looked beyond the classic markers of the inactive-X, H3-K27me3 and Xist 

RNA, and assessed CHiP-seq data for a panel of chromatin modifications that mark active 

transcription, as well as PolII occupancy and DNAse-seq data. Through this analysis, we found 

that derepressed genes showed an enrichment of activating marks. We observed that escape from 

X-inactivation is not a binary readout in WT TSCs.  Rather, whereas few genes are transcribed 

from the inactive-X at high levels, many show a low basal level of transcription.  Although not 

all genes that are derepressed from the paternal-X in Eed-/- TSCs are transcribed from the 

paternal-X in WT TSCs, derepressed genes are overrepresented among the set that is transcribed 

at a low level from the inactive-X in WT TSCs.  This baseline expression level appears to 

correlate with the enrichment of marks of open chromatin and active transcription in WT TSCs. 
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Since many of these genes harbor marks of active chromatin and are occupied by RNA Pol II in 

WT TSCs, they may be prone to induction from the inactive-X upon loss of EED and Xist RNA.  

Notably, the X-linked genes that escape from X-inactivation in Eed-/- TSCs, but do not reach the 

10X threshold of SNP coverage to accurately calculate allelic balance in WT TSCs also show 

baseline levels of inactive-X expression in WT cells. Several of these genes reach 5X coverage 

in one or more WT cell lines and, in all cases, harbor reads mapping to the paternal X-

chromosome. Intriguingly, however, many genes that do show low-level expression from the 

inactive-X remain silenced upon loss of EED or Xist RNA, suggesting that other factor(s) must 

continue to constrain transcriptional activity at these genes.  

  Our previous analysis of Eed-/- TSCs concluded that EED is required to maintain 

silencing on the inactive-X only upon differentiation of trophoblast progenitor cells in vivo and 

in vitro (Kalantry et al., 2006).  Our results herein instead show that EED is also required to 

maintain silencing of a subset of X-linked genes on the inactive-X in undifferentiated TSCs.  The 

earlier study assessed expression of a limited number of X-linked genes and may therefore have 

missed the X-inactivation defects in undifferentiated TSCs.  Intriguingly, the loss of dosage 

compensation of the derepressed genes is not catastrophic, since Eed-/- TSCs are viable and can 

proliferate.  This suggests that undifferentiated TSCs may be insensitive to the dosage imbalance 

between the sexes of the subset of derepressed X-linked genes in Eed-/- TSCs. Though these 

genes may not be required to be dosage compensated in undifferentiated TSCs, their dose may 

need to be balanced later during differentiation of the trophoblast lineage.  Consistent with a 

differentiation-dependent requirement for correct dosage compensation, Eed-/- TSCs are blocked 

in differentiation (Kalantry et al., 2006). 
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X-linked gene silencing defects observed in Eed-/- TSCs may also characterize random X-

inactivation.  Notably, our previous work has shown that EED loss does not alter random X-

inactivation, based again on the expression analysis of a limited number of X-linked genes 

(Kalantry and Magnuson, 2006).  Profiling of the whole X-chromosome in Eed-/- epiblast lineage 

by allele-specific RNA-Seq, however, may reveal a gene-specific requirement for EED in 

random X-inactivation much as in imprinted X-inactivation. Whereas the analysis of a randomly 

inactivated population of cells is not directly feasible by sequencing-based approaches like 

allele-specific RNA-Seq, sequencing of single cells or of a population of cells in which random 

X-inactivation has been biased is possible (Berletch et al., 2015b; Calabrese et al., 2012; Carrel 

and Willard, 2005; Marks et al., 2015; Yang et al., 2010).  If one or the other X-chromosome is 

preferentially inactivated in cells that are normally randomly inactivated, then allele-specific 

RNA-Seq can be exploited to catalog gene expression defects across the X-chromosome in an 

Eed-/- background. 

By comprehensively analyzing defects in imprinted X-inactivation arising from loss of 

the essential Polycomb protein EED in TSCs, we have found that, despite the loss of the classic 

gene silencing elements Xist RNA and H3-K27me4, only a subset of genes on the paternal X-

chromosome are subject to derepression in Eed-/- TSCs.  The continued stable silencing of 

majority of genes on the paternal X-chromosome in Eed-/- TSCs implies that factors in addition 

to PRC2, H3-K27me3, and Xist RNA must play a role in the maintenance of X-inactivation.  

Silencing may be maintained in part by the suite of factors recently shown to interact with Xist 

RNA (Chan et al., 2011; Chu et al., 2015; McHugh et al., 2015; Minajigi et al., 2015; Minkovsky 

et al., 2015; Moindrot et al., 2015; Monfort et al., 2015). Critically, we find that derepressed 

genes in Eed-/- TSCs display hallmarks of open chromatin and basal transcriptional activity from 
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the inactive-X, while X-linked genes that are completely silenced are refractory to loss of EED, 

H3-K27me3, and Xist RNA. This points to an intriguing new role for PRC2 in regulating gene 

expression, in which PRC2-catalyzed H3-K27me3 may be responsible for minimizing the 

expression levels of basally transcribed genes without establishing stringent X-linked gene 

silencing.  Based on our current analysis of allele-specific expression and chromatin profiles, we 

hypothesize that susceptibility to reactivation is a gene-intrinsic property that is influenced by the 

local chromatin context. Depending on local chromatin structure, different factors may be 

responsible for maintaining repression of different gene sets. Future work will further explore 

both the role of PRC2 in regulating basally transcribed genes and the mechanisms that maintain 

silencing of stringently silenced X-linked genes.  

 

5-7: Materials and Methods 

Ethics Statement.   

This study was performed in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were 

handled according to protocols approved by the University Committee on Use and Care of 

Animals (UCUCA) at the University of Michigan (protocol #PRO00006455). 

Mice.   

Mice harboring a conditional mutation in Eed were generated by the University of 

Michigan Transgenic Animal Model Core using Eedtm1a(EUCOMM)Wtsi targeted ES cells 

(EUCOMM). Briefly, ES cells were injected into blastocysts, and implanted into pseudopregnant 
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females. Mice with high percentages of chimerism were bred and assessed for germline 

transmission.  To generate homozygous EED mutant mice harboring polymorphic X-

chromosomes, first, male and female mice on a B6 Mus musculus background carrying the 

conditional mutant allele for EED were intercrossed (EEDfl/+ x EEDfl/+) to achieve 

homozygosity. To obtain mice conditionally mutant for EED and on the JF1 Mus molossinus 

divergent background, we bred EEDfl/fl males (B6 Mus musculus background) to WT JF1 Mus 

molossinus females. This gave us F1 hybrid EEDfl/+ males that possessed an X-chromosome 

from the JF1 Mus molossinus background (XJF1/Y). Such males were backcrossed to WT JF1 Mus 

molossinus females to derive EEDfl/+ females that were a mix of B6 Mus musculus and JF1 Mus 

molossinus and also harbored two X-chromosomes from the JF1 Mus molossinus background (X 

JF1/XJF1). EEDfl/+; X JF1/XJF1 females were bred against EEDfl/+; X JF1/Y males to derive EEDfl/fl; X 

JF1/Y males. To obtain our female embryos used for TS cell derivation, we crossed an EEDfl/fl 

female on the B6 Mus musculus background with an EEDfl/fl male that was a mix of B6 Mus 

musculus and JF1 Mus molossinus but possessed an X-chromosome from the JF1 Mus 

molossinus background (XJF1/Y). The JF1/Ms strain has been described previously. 

TS cell derivation and culture.  

Blastocysts were dissected out of pregnant mice 3.5 dpc and plated in 4 well dishes pre-

seeded with MEFs. Hatched embryos were cultured in standard TS medium supplemented with 

1.5x FGF4 and Heparin for 4-5 days until blastocyst outgrowths were of ideal size. Blastocysts 

were then trypsinized in 0.05% Trypsin-EDTA, neutralized with TS media supplemented with 

1.5x FGF4 and Heparin, and cultured in 96 well dishes. Once lines were well established 

genotyping PCRs confirmed a female Eedfl/fl line. Cell lines were then cultured in standard TS 

media supplemented with FGF4 and Heparin. RNA was harvested from TS cells using Trizol 
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(Invitrogen, #15596-018) and RT-PCR was performed as described below.  For RNA FISH 

and/or IF, TS cells were split onto gelatin-coated glass coverslips and allowed to grow for 3-6 

days.  The cells were then permeabilized through sequential treatment with ice-cold cytoskeletal 

extraction buffer (CSK; 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, and 10 mM PIPES 

buffer, pH 6. 8) for 30 seconds, ice-cold CSK buffer containing 0.4% Triton X-100 (Fisher 

Scientific, #EP151) for 30 seconds, followed twice with ice-cold CSK for 30 seconds. After 

permeabilization, cells were fixed by incubation in 4% paraformaldehyde for 10 minutes at RT.  

Cells were then rinsed 3 times each in 70% ethanol and stored in 70% ethanol at -20°C prior to 

IF and/or RNA FISH. For differentiation of TS cells, cells were split onto gelatinized dishes or 

coverslips and cultured for 6 days (d6) in media without FGF4 or heparin. On d6 of 

differentiation, RNA was harvested or cells were processed as described above for IF and RNA 

FISH. 

 

Generation of stable Eed-/- TSCs.  

EEDfl/fl TSCs were plated at a 1:24-1:48 dilution into 6 well dishes pre-seeded with 

MEFs and allowed to adhere until the next day. Cells were then transduced with Ad5-CMV-Cre 

(Adenovirus type 5, University of Michigan Viral Vector Core adenoviral construct, 4 x 1012 

particles/mL) at an MOI of 1000. Once cell colonies were large enough, they were subcloned 

into 96 well dishes pre-seeded with MEFs and re-transduced 24 hours later with Adeno-Cre at 

MOI of 1000. Following this expanded 96 well samples were split to 6 well dishes pre-seeded 

MEFs and again transduced 24 hours later. A portion of each 96 well samples was lysed for 

DNA genotyping to assess the efficiency of Cre-mediated deletion of the Eed floxed alleles. 
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Subcloning, transduction, and genotyping procedures were repeated until a pure population of 

Eed-/- TSCs was achieved. Eed-/- TSCs were maintained in culture as described above. 

 

Immunofluorescence.  

Sample coverslips containing CSK-treated and 4% PFA-fixed cells were placed in a 6-

well dish that contained 2ml of 1X PBS in each well. Samples were then washed briefly with 3 

changes of 1X PBS to remove ethanol followed by three successive washes with 1X PBS for 3 

minutes each on a rocker. Samples were blocked for 30 minutes at 37°C in 50 µl pre-warmed 

blocking buffer in a humid chamber. Samples were then incubated for 1 hour at 37°C in 50 uL 

diluted primary antibody (dilution depends on primary antibody used, 1:500 EED primary Ab, 

previously used in (Kalantry et al., 2006; Plath et al., 2003; Shen et al., 2008; Silva et al., 2003; 

Valk-Lingbeek et al., 2004; Wang et al., 2001); 1:5000 H3-K27me3 primary Ab: polyclonal 

Rabbit anti-mouse, Millipore,  #ABE44) in a humid chamber. After incubation, samples were 

washed 3 times with 1X PBS/0.2% Tween-20 for 3 min each on a rocker. Coverslips were then 

placed back in 50 uL pre-warmed blocking buffer in a humid chamber for 5 minutes at 37°C 

followed by an additional incubation at for 30 minutes at 37°C in 50 uL diluted secondary 

antibody. Alexa Fluor conjugated secondary antibodies were used at a 1:300 dilution. Following 

secondary incubation, coverslips were washed 3 times with 1X PBS/0.2% Tween-20 for 3 min 

each on a rocker. Samples were incubated in 100 µl of 2% PFA on a glass plate wrapped in 

parafilm for 10 minutes at room temperature. Following this, samples were dehydrated through 

room temperature ethanol series (5 minutes each for 70%, 85%, 95% and 100% ethanol). 

Coverslips were allowed to dry for 15 minutes after the 100% ethanol wash, followed by 

hybridizing the samples overnight with the appropriate RNA FISH probe. After hybridization, 
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samples were washed for 7 minutes at 39°C 3 times each in 2X SSC/50% formamide, followed 

by three 7 minute washes at 39°C in 2X SSC (1:100,000-1:200,000 dilution of DAPI added at 

third wash of 2X SSC), followed by two 7 minute washes at 39°C in 1X SSC. Sample coverslips 

were then mounted onto glass microscope slides with Vectashield. Coverslips were sealed to the 

glass slides with clear nail polish. 

 

RNA FISH.   

Samples were dehydrated through room temperature ethanol series (5 minutes each for 

70%, 85%, 95% and 100% ethanol). Coverslips were allowed to dry for 15 minutes at room 

temperature after the 100% ethanol wash, followed by hybridizing the samples overnight with 

the appropriate RNA FISH probe. After the hybridization, samples were washed for 7 minutes at 

39°C 3 times each in 2X SSC/50% formamide, followed by three 7 minute washes at 39°C in 2X 

SSC (1:100,000-1:200,000 dilution of DAPI added at third wash of 2X SSC), followed by two 7 

minute washes at 39°C in 1X SSC. Sample coverslips were then mounted onto glass microscope 

slides with Vectashield. Coverslips were sealed to the glass slides with clear nail polish. 

 

DNA FISH.   

After RNA FISH and imaging of the samples, a razor blade was used to cut away the nail 

polish used to seal the coverslip to the slide. Coverslips were submerged in a solution of 2X 

SSC. While the sample was still submerged the coverslips were gently peeled of the slide. 

Coverslips were washed with 1X PBS three times quickly and then incubated in 1X PBS for 5 

minutes at room temperature. Samples were then re-fixed in 1% PFA containing 0.5% Tergitol 

and 0.5% Triton X-100 (vol/vol) for 10 minutes at room temperature. A dehydration step was 
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performed with the coverslips by moving them through a room-temperature ethanol series (70%, 

85%, and 100% ethanol) for 2 minutes each. Coverslips were then air dried at for 15 minutes at 

room temperature. Following a drying period, samples were RNase treated with 1.25 µg/µl 

RNase A (Roche, #10109142001) in 2X SSC, incubating for 30 minutes at 37°C. Coverslips 

were dehydrated through a room-temperature ethanol series (85%, 95%, and 100% ethanol) for 2 

min each followed by air drying at for 15 minutes at room temperature. Samples were then 

denatured in a pre-warmed solution of 2X SSC/70% formamide on a glass slide or glass plate 

stationed on top of a heat block for 11 minutes set at 95°C. Samples were immediately 

dehydrated through a -20°C ethanol series (70%, 85%, 95%, and 100% ethanol) for 2 min each 

followed by a final drying period for 15 minutes at room temperature. Samples were then 

hybridized to the appropriate DNA probes overnight. After the hybridization, samples were 

washed for 7 minutes at 39°C 2 times each in 2X SSC/50% formamide, followed by two 7 

minute washes at 39°C in 2X SSC (1:100,000-1:200,000 dilution of DAPI added at first wash of 

2X SSC). Sample coverslips were then mounted onto glass microscope slides with Vectashield. 

Coverslips were sealed to the glass slides with clear nail polish. 

 

RNA-sequencing.  

Total RNA was isolated from TRIZOL according to manufacturers instructions and 

submitted to the University of Michigan DNA Sequencing Core for Poly-A Purification and 

Strand-specific library preparation using the Illumina TruSeq Library Preparation Kit. Libraries 

were sequenced on the Illumina HiSeq2000 platform to generate 100 basepair paired-end reads. 

Increased sequence length increases the likelihood of finding a single unique map location, 

minimizing multi-mapping reads; as such, these long reads can permit robust allele-specific 



!

! )TI!

mapping, even in genes belonging to multi-gene families. RNA-seq reads were mapped in an 

allele-specific manner to identify the allelic contribution of the paternally-inherited inactive-X to 

the transcriptome. Briefly, we generated in silico strain-specific reference genomes by 

substituting SNP data from whole-genome sequencing of the 129/S1 and JF1/Ms strains into the 

mm9 mouse reference genome build (Keane et al., 2011; Takada et al., 2013; Yalcin et al., 

2011). Use of strain-specific references minimizes reference allele mapping bias, which can 

result from mapping polymorphic reads to a single reference genome (Degner et al., 2009). 

Strain-specific references do not completely eliminate reference mapping bias, however, due to 

the presence of structural variations and small indels between the genomes of the two strains.  

Sequencing reads were separately mapped to each strain-specific reference genome using STAR 

(Dobin et al., 2013), allowing 0 mismatches in mapped reads to ensure allele-specific mapping of 

SNP containing reads to only one strain-specific reference genome. STAR was selected for read 

mapping, in part, due to improved ability to handle structural variability and indels, with the goal 

of again reducing reference mapping bias; STAR is a spliced aligner capable of detecting 

structural variations, and is able to handle small insertions and deletions during read mapping. 

STAR additionally permits soft-clipping of reads during mapping, trimming the ends of long 

reads that cannot be perfectly mapped to the reference genome. This would permit reads flanking 

indels to be clipped if indels fall near the ends of reads, thus preserving mapability at SNPs that 

may be near indels. All multi-mapping reads were excluded from both differential expression 

and allele-specific analysis. For differential expression analysis, all reads (non-SNP-overlapping 

reads, as mapped to the 129 genome + SNP reads with the 129 allele + SNP reads with the JF1 

allele) were merged into a single alignment file and the number of reads per RefSeq annotated 

gene was counted using HTSeq (Anders et al., 2015), and differential expression analysis was 
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performed using DESeq2 (Love et al., 2014).  For allelic expression analysis, only sequencing 

reads overlapping known polymorphic sites that differ between the 129/S1 and JF1/Ms genomes 

were retained.  For each polymorphic site, reads mapping to the 129/S1 and JF1/Ms genomes 

were counted, and the proportion of reads from each X-chromosome identified. Allelic 

expression was calculated individually for each polymorphic site; for genes containing multiple 

SNPs, the paternal-X percentage for all SNPs was averaged to calculate gene-level allelic 

expression. To calculate paternal-X expression for DESeq2 analysis, we took the total read 

counts from HTSeq and multiplied the number of mapped reads for each gene by the proportion 

of SNP containing reads mapping to the paternal X-chromosome, calculating 

 

 

We then performed differential expression analysis for the paternal-X expression level using 

DESeq2 (Love et al., 2014).   

 

Allele-specific Reverse Transcriptase Polymerase Chain Reaction (RT-PCR).  

Total RNA was isolated from TRIZOL following manufacturers instructions. SuperScript 

III One-Step RT-PCR Kit with Platinum Taq enzyme mixture (Invitrogen, #12574-035) was 

used to prepare and amplify the complimentary DNA (cDNA). See Table 5.4 for primer and SNP 

information for each amplicon. Amplified cDNAs were run on agarose gels and purified using 

the Clontech NucleoSpin Kit (Clontech, #740609).  The purified cDNAs were then sequenced 

and sequencing traces were examined for single nucleotide polymorphisms (SNPs) characteristic 

of the M. molossinus-derived XJF1 chromosome and the M. musculus-derived XLab chromosomes. 
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PCR.  

For DNA isolation, cell pellets from TSCs were lysed in buffer composed of 50mM KCl, 

10mM Tris-Cl (pH 8.3), 2.5mM MgCl2, 0.1mg/ml gelatin, 0.45%NP-40, and 0.45% Tween-20. 

Cells in lysis buffer were incubated at 50C overnight, then stored at 40C until use. Genomic PCR 

reactions were carried out in ChromaTaq buffer (Denville Scientific) with 1.5mM Magnesium 

Chloride using RadiantTaq DNA polymerase (Alkali Scientific, #C109). Primers and SNPs are 

described in Table 5.4. 

 

X-Chromosome Paint.  

Fixed and permeabilized TS Cells on coverslips were denatured in a pre-warmed solution 

of 2X SSC/70% formamide at 95°C, as with DNA FISH (above). Samples were immediately 

dehydrated through a -20°C ethanol series (70%, 85%, 95%, and 100% ethanol) for 2 min each 

followed by a final drying period for 15 min at room temperature. Dried coverslips were inverted 

onto a glass slide with 8 µl of XCyting X-chromosome Paint (Metasystems, #D-1420-050-Fl). 

Coverslip and probe were then denatured together for an additional 2 min at 750C, then placed in 

a humid chamber for overnight hybridization at 370C. Hybridized samples were washed once for 

2 min at 75C in 0.4X SSC, pH7, with a 1:250,000 dilution of DAPI, then once for 30 sec in 2x 

SSC with 0.2% Tergitol. Samples were then rinsed briefly with ddH20 to prevent formation of 

salt crystals and allowed to air dry briefly. Dried samples were mounted on glass slides with 

VectaShield and sealed with clear nailpolish. 
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Microscopy.   

Stained samples were imaged using a Nikon Eclipse TiE inverted microscope with a 

Photometrics CCD camera.  The images were deconvolved and uniformly processed using NIS-

Elements software. 

 

Profiling of Chromatin Modifications.  

DNAse-Seq data and ChIP-Seq data for H3K27me3, PolII, H3K27ac, H3K4me2, 

H3K36me3, H4K20me1, and TBP were sourced from a study of TSCs by Calabrese et al. 

(Calabrese et al., 2012) as a part of GEO data set GSE39406. Wiggle tracks for total H3-K27me3 

coverage were cross-referenced with allele-specific read calls. For regions containing SNPs, the 

proportion of inactive-X expression of a given peak was calculated based on the percentage of 

inactive X-specific reads overlapping SNP sites within the peak.  ChIP-seq data assigned to the 

inactive-X was subdivided into 50bp bins along the span of the X-chromosome. Allelic ChIP-seq 

peak depth surrounding the transcription start site of genes was calculated by averaging the 50bp 

bins into 500bp sections spanning from 10kb upstream to 10kb downstream of the transcription 

start site. 

 

Analysis of Xist binding profiles.  

Xist RNA binding data was sourced from a CHART-Seq study by Simon et al. (Simon et 

al., 2013) as a part of GEO data set GSE48649. Bedgraph tracks for allelic Xist binding were 

subdivided into 50bp bins along the span of the X-chromosome. CHART-Seq read depth 

surrounding the transcription start site of genes was calculated by averaging the 50bp bins into 

500bp sections spanning from 10kb upstream to 10kb downstream of the transcription start site 



!

! )TQ!

of each gene. CHART-Seq values for individual genes were then averaged for each bin. 

CHART-Seq read depth within gene bodies was calculated by averaging 50bp bins into 40 bins 

of even length spanning the transcription start site to the transcription termination site of 

individual genes. CHART-Seq values for individual genes were then averaged for each bin. 

 

Analysis of Evolutionary Strata.  

X-chromosome gene coordinates from all exons of the Ensembl mouse annotation for the 

mm9 genome build were lifted over to the human genome (hg19 build) using UCSCs LiftOver 

tool. For mouse X-chromosome genes with coordinates mapped back to the human X-

chromosome, gene locations were plotted based on the start coordinate of both mouse and human 

genes. Genes were assigned to evolutionary strata based on human coordinates, with stratum 

boundaries defined based on previously published analysis of the Y chromosome (Bellott et al., 

2014; Cortez et al., 2014; Lahn and Page, 1999).
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Chapter 6: Concluding Thoughts and Future Directions 

 

6-1: Summary of Findings and Recent Advances 
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8.:1&/7/".67D!711'.789(2W!M!(#7D&7/(A!/9(!'.D(2!.3!;./9!/9(!,2"C!6.658.A"6%!KL@!76A!/9(!

89'.:7/"6!:.A"30"6%!8.:1D(C!\.D08.:;!K(1'(22"#(!R.:1D(C!?!E\KR?G!"6!4589'.:.2.:(!

"678/"#7/".6*!^./9!,2"C!KL@!76A!\KR?!97A!;((6!1.2/&D7/(A!/.!;(!8(6/'7D!1D70('2!"6!/9(!

"6"/"7/".6!.3!45"678/"#7/".6*!Y0!2/&A"(2!29.-!/97/!378/.'2!./9('!/976!,2"C!76A!\KR?!7'(!

"6#.D#(A!"6!"6"/"7/"6%!/9(!(1"%(6(/"8!37/(2!.3!/9(!/-.!4589'.:.2.:(2*!,.!"A(6/"30!/9(2(!

6.#(D!'(%&D7/.'2W!M!A(#(D.1(A!76!7DD(D(521(8"3"8!KL@52(a!711'.789*!

I first characterized a spatially and temporally specific role for the Tsix lncRNA during 

imprinted and random X-inactivation (Chapters 2 and 3, (Gayen et al., 2015; Maclary et al., 

2014)). I assessed the role of Tsix RNA in all steps of X-chromosome regulation in the 

developing mouse embryo, including initiation and maintenance of imprinted X-inactivation, X-

chromosome reactivation in the epiblast precursor cells, and the initiation and maintenance of 

random X-inactivation (See Fig. 1.1).   I found that, during both imprinted and random X-

inactivation, Tsix is not required to repress induction of Xist RNA from the active-X 

chromosome in undifferentiated cells (Gayen et al., 2015; Maclary et al., 2014). I instead 
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identified a novel role for the Tsix lncRNA.  I find that Tsix is required for the proper 

maintenance of X-inactivation patterns in differentiating cells that have undergone X-

inactivation normally (Gayen et al., 2015; Maclary et al., 2014).  Notably, these studies describe 

a novel role not just for Tsix, but for lncRNAs broadly, as most are postulated to be initiators of 

epigenetic transcriptional changes, not maintenance factors (Froberg et al., 2013; Lee, 2009).  

Due to the timing of Tsix RNA expression in early embryonic development and the 

exclusive expression of Tsix from the maternal X-chromosome, Tsix RNA expression has been 

postulated to be the direct readout of the imprint that protects the maternal-X from inactivation in 

the developing embryo. By demonstrating that Tsix is dispensable for maintaining Xist 

repression in undifferentiated cells, including the cells of the blastocyst-stage mouse embryo, my 

analysis of imprinted X-inactivation indicates that the imprint that prevents inactivation of the 

maternal X-chromosome in the early embryo does not act through Tsix RNA (Chapter 2, 

(Maclary et al., 2014)). Classic studies of androgenetic and gynogenetic embryos indicate that 

this imprint resides on the maternally-inherited X-chromosome, as embryos harboring two 

maternal X-chromosomes are refractory to X-inactivation, while embryos harboring two paternal 

X-chromosomes initially induce Xist RNA from both X chromosomes (Gayen et al., 2015; Goto 

and Takagi, 2000; Kay et al., 1994; Maclary et al., 2014; Okamoto et al., 2000; Tada et al., 

2000). The identity of this maternal imprint remains a topic of much interest in current studies. 

One recent evaluation of blastomeres from two-cell embryos identified antagonistic transcription 

of both Xist and Tsix from the same chromosome, including low-level Xist RNA transcription 

from the maternal-X (Deuve et al., 2015; Gayen et al., 2015; Maclary et al., 2014).  The authors 

of this study suggest that this simultaneous sense/antisense transcription could be involved in 

establishment of the imprint through either recruitment of chromatin modifiers or production of 
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endo-siRNAs (Deuve et al., 2015; Gayen et al., 2015; Maclary et al., 2014).  However, these 

findings do not elucidate what distinguishes the maternal-X from the paternal-X in the 

developing embryo. Another study of Xist RNA induction from transgenes in developing 

embryos shows evidence of imprinted Xist RNA induction from paternally-inherited transgenes 

is more robust when the transgene is unpaired in the male germline during meiosis (Gayen et al., 

2015; Maclary et al., 2014; Sun et al., 2015). This suggests that the paternal germline somehow 

differentially marks hemizygous DNA, such as the X-chromosome, for imprinted expression.  

This model would suggest that, in embryos with two maternal X-chromosomes, X-inactivation 

does not initiate because the X-chromosomes lack permissive marks to trigger Xist induction.  

However, Xist RNA is not always induced from unpaired paternally-inherited transgenes in the 

embryos studied (Froberg et al., 2013; Lee, 2009; Sun et al., 2015). Any epigenetic marks 

established in the male germline, therefore, are not necessarily sufficient to trigger consistent, 

robust, Xist induction. The inconsistency of Xist transgene induction from hemizygous 

transgenes, coupled with prior observations from androgenetic and gynogenetic embryos, 

supports the hypothesis that the maternal germline is the source of the imprint. Thus, we favor a 

model where the oocyte marks the maternal-X with chromosome-wide histone modifications. 

These maternally established marks establish an open chromatin conformation, and ensure that 

genes along the maternal X-chromosome remain transcriptionally competent during early 

embryogenesis.  An oocyte-established chromatin profile may mediate monoallelic Tsix 

induction, but alone would be sufficient to repress Xist during the initiation of imprinted X-

inactivation in the early embryo independently of Tsix RNA.   

I further show that Tsix RNA is dispensable for reactivation of the inactive-X in the inner 

cell mass of developing embryos (Chapter 2, (Maclary et al., 2014)); Alternative factors must be 
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responsible for Xist repression and subsequent X-linked gene reactivation in this cell lineage 

(Maclary et al., 2014). Tsix induction from the inactive-X is posited to contribute to Xist 

repression and to the transcriptional equality of the two Xs in pluripotent cells (Goto and Takagi, 

2000; Kay et al., 1994; Navarro et al., 2009; 2010; Nesterova et al., 2011; Okamoto et al., 2000; 

Tada et al., 2000).  However, X-chromosome reactivation occurs in Tsix-mutant epiblast 

precursor cells (Maclary et al., 2014; Payer et al., 2013). Numerous other factors are implicated 

in Xist repression and are thus candidates for mediating X-chromosome reactivation, including 

the pluripotency factors NANOG, OCT4, and SOX2. These pluripotency factors have been 

shown to bind within intron 1 of Xist in undifferentiated ES cells (Donohoe et al., 2009; Navarro 

et al., 2008; 2010; Nesterova et al., 2011). Pluripotency factors are particularly intriguing 

candidate regulators of X-inactivation, as overexpression of OCT4 and SOX2, in conjunction 

with KLF4 and C-MYC, can induce reprogramming of terminally differentiated cells into 

induced pluripotent stem cells (iPSCs), a process that includes reactivation of the inactive X-

chromosome (reviewed in (Deuve and Avner, 2011; Pasque and Plath, 2015)). Notably, 

however, Xist RNA induction is not impeded by expression of NANOG, OCT4, and SOX2 in 

epiblast cells during random X-inactivation (Pfister et al., 2007), and the first intron of Xist that 

is bound by these pluripotency factors is be dispensable during X-chromosome reactivation in 

vitro and in vivo (Minkovsky et al., 2013).  Thus, though forced overexpression of pluripotency 

factors can trigger large-scale epigenetic reprogramming, these factors are not required in vivo 

for the epigenetic changes that mediate X-chromosome reactivation.  

Beyond pluripotency factors, the reprogramming of iPSCs may be able to provide 

valuable insights into the epigenetic changes underlying X-chromosome reactivation and assist 

in identification of potential triggers of reactivation. During reprogramming, cells sequentially 
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induce the expression of CDH1, NANOG, ESRRB, DPPA4, and finally PECAM1, with X-

chromosome reactivation occurring between induction of DPPA4 and PECAM1 (Pasque and 

Plath, 2015; Pasque et al., 2014). These proteins, or their downstream targets, may help to 

mediate X-chromosome reactivation. X-chromosome reactivation is also associated with loss of 

methylation, suggesting that active demethylation may contribute to X-chromosome reactivation; 

TET proteins, which catalyze the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, are 

thus intriguing candidate regulators of reactivation. TET1 and TET2 are postulated to be drivers 

of epigenetic reprogramming in primordial germ cells and during iPSC generation, both 

processes during which X-chromosome reactivation occurs (reviewed in (Hill et al., 2014)). Both 

Tet1 and Tet2, however, were recently shown to be dispensable during reprogramming of 

differentiated cells that are X-inactivated into iPSCs (Pasque et al., 2014).  Thus, the TETs may 

not normally reactivate the inactive-X.   

The germline factor PRDM14 was identified as another candidate regulator of X-

chromosome reactivation based on its expression pattern, which is spatiotemporally correlated 

with X-chromosome reactivation, and that it is found to be involved with epigenetic 

reprogramming in primordial germ cells (Payer et al., 2013; Yamaji et al., 2008; 2013). Loss of 

PRDM14, however, leads to a slight reduction in the efficiency of X-chromosome reactivation, 

but does not abrogate reactivation entirely (Payer et al., 2013).  It is clear from these studies that 

further work is required to identify the mechanisms that drive X-chromosome reactivation during 

embryonic development.  

Finally, I show that Tsix appears to play no role in the counting or choice steps that 

characterize initiation of random X-chromosome inactivation (Chapter 3, (Gayen et al., 2015)). 

During the counting step, the cell senses the number of X-chromosomes present; if and only if 
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there are two or more X-chromosomes will X-inactivation proceed. In the choice step, the cell 

then selects one X-chromosome to silence. The absolute absence of Xist RNA coating and X-

inactivation in undifferentiated X"TsixY EpiSCs is evidence that the Tsix RNA is not part of the 

counting mechanism (Gayen et al., 2015). That biased X-inactivation in Tsix-heterozygous cells 

occurs through a secondary cell selection effect, rather than through primary inactivation of the 

X"Tsix at the onset of X-inactivation, precludes a role for the Tsix RNA in X-chromosome choice 

(Gayen et al., 2015).  If Tsix does not regulate X-chromosome counting or choice, then alternate 

mechanisms must explain why X-inactivation does not occur in males and does so randomly in 

females.  Further studies of Tsix mutant embryos and stem cells have identified a sex-specific 

difference in ectopic Xist RNA induction ectopic X-linked gene silencing on the Tsix mutant X-

chromosome (Gayen et al., 2016). These data implicate a dose-dependent X-linked factor in 

triggering both Xist RNA coating and X-inactivation in female cells.   

One previously proposed X-linked trigger of X-inactivation is RNF12, an E3 ubiquitin 

ligase that lies within the X-inactivation center. RNF12 may be involved in initiation of 

imprinted X-inactivation, by functioning as a dose-dependent activator of Xist expression. In 

agreement, embryos harboring maternally-inherited mutations show reduced Xist RNA induction 

and ultimately die due to failure of extra-embryonic tissues (Shin et al., 2010). However, RNF12 

is dispensable for random X-inactivation (Shin et al., 2014), and thus cannot play a critical role 

in X-chromosome counting and choice.  Recent data point to an escaper of X-inactivation as the 

dose-dependent factor that regulates X-chromosome counting (Gayen et al., 2016).  Mechanistic 

insights into the choice of the inactive X-chromosome could come through the characterization 

of strain-specific differences between mouse strains, as hybrid mice often show biases in X-
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chromosome choice during random X-inactivation (Chadwick et al., 2006; Gayen et al., 2015; 

Maclary et al., 2014; Thorvaldsen et al., 2012). 

In addition to my comprehensive study of the role of Tsix RNA in imprinted and random 

X-inactivation, I characterized the requirement for EED, a core subunit of PRC2, in imprinted X-

inactivation (Chapter 5). PRC2 is a key chromatin modifying complex that is enriched on the 

inactive X-chromosome and catalyzes H3-K27me3, a histone modification associated with a 

repressive chromatin state (Barski et al., 2007; Froberg et al., 2013; Kouzarides, 2007; Lee, 

2009). Through RNA-seq of hybrid Eed-/- TSC lines, I comprehensively evaluated allelic X-

linked gene expression.  Despite the absence of H3-K27me3 and Xist RNA coating, in Eed-/- 

TSCs, less than one-fifth of the X-linked genes are derepressed from the inactive X-chromosome 

in Eed-/- TSCs.  I find that derepressed genes in Eed-/- TSCs display hallmarks of open chromatin 

and basal transcriptional activity from the inactive-X, while X-linked genes that are completely 

silenced are refractory to loss of EED, H3-K27me3, and Xist RNA. This points to an intriguing 

new role for PRC2 in regulating gene expression, in which PRC2-catalyzed H3-K27me3 may be 

responsible for minimizing the expression levels of basally transcribed genes without 

establishing stringent X-linked gene silencing.   

Taken together, these data highlight many gaps in our current knowledge of the 

mechanisms that initiate epigenetic states in the developing embryo. Recent proteomic 

approaches have identified numerous proteins that interact with Xist, some of which are involved 

in X-linked gene silencing (Chu et al., 2015; McHugh et al., 2015; Minajigi et al., 2015) .  

However, these proteins are recruited by, and thus act downstream, of Xist RNA. These proteins, 

however, may not be involved in initiation of X-inactivation, which encapsulates the induction of 

Xist itself. We hypothesize, based on evolutionary considerations and my recent work, that two 
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classes of X-linked gene may be of particular interest as putative initiators of X-inactivation: 

lncRNAs and escapers of X-inactivation (see discussion in Chapter 4-1, (Gayen et al., 2016; 

Jegalian and Page, 1998)). I postulate that lncRNAs specific to the inactive-X may function 

regionally to initiate X-linked gene silencing in an Xist-independent manner, and that escapers of 

X-inactivation play a dosage-sensitive role in establishing a permissive environment for X-linked 

gene silencing in female cells. I present a pipeline for identifying these novel factors in mouse 

stem cells and embryos using a strand-specific, allele-specific RNA-seq approach (Chapter 4). 

This approach allows for both allele-specific analysis and novel transcript discovery, and permits 

evaluation of both known and novel cis and trans-acting factors, which I will characterize as part 

of future studies.  

!

6-2: Current Work and Future Directions 

Prior studies have sought to assess escape from X-inactivation in a variety of tissues 

(Berletch et al., 2015b; Calabrese et al., 2012; Yang et al., 2010). For many genes, escape from 

X-inactivation varies in different cell types. These studies have, however, identified a core group 

of dosage-sensitive regulators that appear to escape X-inactivation across tissue types, many of 

which still have functional homologs on the mammalian Y-chromosome (Bellott et al., 2014; 

Berletch et al., 2010; Calabrese et al., 2012; Yang et al., 2010). The genes that consistently 

escape X-inactivation in multiple cell lineages are prime candidates as regulators of X-

inactivation. In addition, I have begun to comprehensively identify genes that escape X-

inactivation in all cell lineages derived from the early mouse embryo: TSCs, XEN cells, and 

EpiSCs. I am able to identify both genes that escape in all cell lineages, and genes that show cell-

type specific escape. I have also preliminarily identified a subset of genes that show strain-
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specific escape from X-inactivation. These genes are expressed from the inactive-X in only in 

cell lines where the X-chromosome from a permissive strain is inactivated; In hybrid crosses 

from 129/S1 and JF1 mouse strains, I have identified both genes that escape X-inactivation only 

when the 129/S1 derived X is inactivated and genes that escape X-inactivation only when the 

JF1-derived X is inactivated. One gene of particular interest is Zfx, which escapes X-inactivation 

only when the 129/S1 strain is the inactive-X.  Zfx is known to escape X-inactivation in humans, 

but prior studies in mice indicate that it does not escape X-inactivation (Adler et al., 1991; 

Schneider-Gädicke et al., 1989). I am currently confirming and characterizing strain-specific 

escape of Zfx using RT-PCR and RNA FISH analysis of stem cells and embryos.  

Through RNA-sequencing analysis, I have also begun to identify novel non-coding 

RNAs that may function as putative regulators of X-inactivation. Current work aims to compare 

and contrast expression of novel lncRNAs between cell types and identify novel transcripts 

expressed across different lineages. Following computational characterization of novel non-

coding RNAs, I aim to confirm their expression patterns by RT-PCR and RNA FISH. Future 

work will characterize the function of novel inactive-X specific non-coding RNAs in X-

inactivation by knocking down or knocking out these transcripts in mouse cell lines.  

I am also continuing to leverage allele-specific RNA-seq approaches to characterize the 

effects of mutations in known regulators of X-inactivation.  In addition to sequencing of Eed-/- 

TSCs (see Chapter 5), I have performed RNA-seq on Eed-/- XEN cells. Intriguingly, preliminary 

analysis of EED mutant XEN cells suggests that X-linked gene silencing defects in the primitive 

endoderm lineage are even milder than those observed in the trophectodermal lineage (Clair 

Harris and Emily Maclary, unpublished data).  Whereas my analysis of Eed-/- TSCs suggests 

gene-intrinsic properties are responsible for susceptibility to EED loss, this preliminary data in 
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XEN cells indicates that the genes susceptible to reactivation respond differently in different cell 

types. These divergent responses between cell types may be due to differential expression of key 

regulators, or changes in chromatin context. Future experiments will focus on comparison of 

gene expression in wild-type and Eed-/- TSCs and XEN cells, with the goal of identifying the 

differences in transcriptional profile that render XEN cells unresponsive to loss of EED, though a 

subset of genes in TSCs are affected.  In conjunction with my recent work on Eed-/- stem cells, 

additional work in the lab has utilized genetic approaches to dissect the specific roles of 

individual components of PRC2 during initiation of X-inactivation in vivo, by examining 

blastocyst stage embryos. To complement this work, we aim to complete RNA-seq analysis of 

individual blastocyst-stage embryos harboring mutations in Eed, Ezh2, or Ezh1 and provide a 

chromosome-wide picture of any X-inactivation defects in mutant embryos.   

Through these transcriptomic analyses of stem cells and early embryos, I plan to identify 

and characterize novel regulators of X-linked gene silencing. I anticipate that these studies will 

lend insight into the mechanisms that regulate X-chromosome inactivation and, in turn, assist in 

our understanding of the cellular processes that underlie epigenetic regulation broadly, in both 

development and disease.   
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