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ABSTRACT

This dissertation contains three projects focusing on two major high-dimensional prob-

lems for dependent data, particularly neuroimaging data: multiple testing and estimation

of large covariance/precision matrices.

Project 1 focuses on the multiple testing problem. Traditional voxel-level false dis-

covery rate (FDR) controlling procedures for neuroimaging data often ignore the spatial

correlations among neighboring voxels, thus suffer from substantial loss of efficiency in

reducing the false non-discovery rate. We extend the one-dimensional hidden Markov

chain based local-significance-index procedure to three-dimensional hidden Markov ran-

dom field (HMRF). To estimate model parameters, a generalized EM algorithm is pro-

posed for maximizing the penalized likelihood. Simulations show increased efficiency of

the proposed approach over commonly used FDR controlling procedures. We apply the

method to the comparison between patients with mild cognitive impairment and normal

controls in the ADNI FDG-PET imaging study.

Project 2 considers estimating large covariance and precision matrices from tempo-

rally dependent observations, in particular, the resting-state functional MRI (rfMRI) data

in brain functional connectivity studies. Existing work on large covariance and precision

matrices is primarily for i.i.d. observations. The rfMRI data from the Human Connec-

tome Project, however, are shown to have long-range memory. Assuming a polynomial-

decay-dominated temporal dependence, we obtain convergence rates for the generalized

thresholding estimation of covariance and correlation matrices, and for the constrained `1

minimization and the `1 penalized likelihood estimation of precision matrix. Properties of

ix



sparsistency and sign-consistency are also established. We apply the considered methods

to estimating the functional connectivity from single-subject rfMRI data.

Project 3 extends Project 2 to multiple independent samples of temporally dependent

observations. This is motivated by the group-level functional connectivity analysis using

rfMRI data, where each subject has a sample of temporally dependent image observations.

We use different concentration inequalities to obtain faster convergence rates than those in

Project 2 of the considered estimators for multi-sample data. The new proof allows more

general within-sample temporal dependence. We also discuss a potential way of improv-

ing the convergence rates by using a weighted sample covariance matrix. We apply the

considered methods to the functional connectivity estimation for the ADHD-200 rfMRI

data.
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CHAPTER I

Introduction

High dimensional data refers to cases where the number of variables p is comparable

to or larger than the number of observations n, i.e., the so-called “large p, small n” or

“large p, large n” scenarios (Donoho et al., 2000; Johnstone and Titterington, 2009). The

classical statistical methods built on the “small p, large n” assumption often fail to effi-

ciently handle high dimensional data. This has been called the “curse of dimensionality”

(Bellman, 1961). Over the last two decades, significant development has been made in

high dimensional data analysis, which is motivated primarily by numerous applications in

fields such as neuroscience, genomics, economics and finance (see Fan et al., 2014a).

Neuroimaging data are high dimensional data. The sample size n of images is usually

only a few hundred or thousand; however, the variable dimension p can vary from several

hundred for brain regions to several hundred thousand for brain voxels. Studies of men-

tal diseases such as Alzheimer’s disease, attention deficit hyperactivity disorder (ADHD),

schizophrenia and Parkinson’s disease can benefit from neuroimaging data analysis. The

abnormality found by the analysis is helpful for diagnosing the disease, monitoring disease

progression, and understanding the mechanisms underlying the disease. Examples of neu-

roimaging data are the three-dimensional (3D) 18F-Fluorodeoxyglucose positron emission

tomography (FDG-PET) data and the 4D functional magnetic resonance imaging (fMRI)
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data (temporally observed 3D images), which are involved with spatial and/or temporal

dependence.

Statistical methods developed for high dimensional data are largely based on certain

independent structures of the data, for which either the p variables are independent or the

n observations are independent and even identically distributed (i.i.d.). For example, many

multiple testing procedures (Benjamini and Hochberg, 1995, 2000; Genovese and Wasser-

man, 2004) are built on the former structure, and most large covariance/precision matrix

estimating methods (e.g., Rothman et al., 2008, 2009; Cai et al., 2011) assume the latter

structure. However, the validity and efficiency of these approaches are questionable for

data without such independent structures, in particular, neuroimaging data. Specifically,

the first structure is violated when the test statistic obtained at a brain voxel is correlated

with the statistics at its neighboring voxels. The second structure fails for the temporally

dependent image observations of the fMRI data.

Motivated by the need to analyze neuroimaging data, this dissertation contains three

projects focusing on the two major high-dimensional problems for dependent data: multi-

ple testing and estimation of large covariance/precision matrices. In Project 1, an efficient

multiple testing procedure is proposed for certain spatially correlated data. In Projects 2

and 3, we study the validity of three widely used estimating methods (Rothman et al.,

2008, 2009; Cai et al., 2011), originally developed for i.i.d. observations, under some

models of temporal dependence.

In Chapter II, we present Project 1, which focuses on the multiple testing problem.

Since it was introduced by Benjamini and Hochberg (1995), the false discovery rate (FDR)

has been widely used in multiple testing as an alternative measure of Type I error, specif-

ically for the family-wise error rate (FWER), which is the probability of making at least

one Type I error. FDR is defined as the expected proportion of false rejections among

2



the rejected hypotheses. The authors showed that there is a potential gain in power for

controlling FDR compared to controlling FWER. The corresponding measure of Type II

error to FDR, called the false non-discovery rate (FNR; Genovese and Wasserman, 2002),

is the expected proportion of errors among the accepted hypotheses. An FDR controlling

procedure is said to be optimal (Sun and Cai, 2009) if it has the smallest FNR among all

procedures controlling FDR at a pre-specified level. Traditional FDR procedures (Ben-

jamini and Hochberg, 1995, 2000; Genovese and Wasserman, 2004) theoretically based

on independent test statistics may substantially lose the efficiency in reducing FNR un-

der certain dependence structures (Sun and Cai, 2009). To address this problem, Sun and

Cai (2009) proposed an optimal FDR procedure built on a new test statistic called the

local index of significance (LIS) and a hidden Markov chain (HMC) which models the

one-dimensional dependence structure. Wei et al. (2009) extended this procedure to test

statistics with different HMC dependence structures.

However, the one-dimensional HMC is not applicable for 3D neuroimaging data. In

Chapter II, we extend the LIS-based procedure (Sun and Cai, 2009; Wei et al., 2009) for

such data, by using a hidden Markov random field (HMRF) model, in particular, the Ising

model (see Brémaud, 1999), to capture the 3D spatial structure. When the HMRF pa-

rameters are known, an optimal property is proved for the proposed HMRF-LIS-based

procedure. In practice, the HMRF parameters are unknown. To avoid the unbounded-

ness of the original likelihood function, a penalized likelihood approach is applied to the

HMRF parameter estimation. A generalized expectation-maximization algorithm is pro-

posed for maximizing the penalized likelihood. Extensive simulations show the superiority

of the proposed approach over commonly used FDR procedures in terms of reducing FNR.

Using FDG-PET data from the Alzheimer’s Disease Neuroimaging Initiative database

(adni.loni.usc.edu), we apply the method to a comparison between patients with

3



mild cognitive impairment, a disease status with increased risk of developing Alzheimer’s

or other dementia, and normal controls. More signals are found by the proposed approach

than by competing methods, with most discovered signals in regions typically affected by

Alzheimer’s disease.

Chapter III is devoted to Project 2, on estimating large covariance and precision matri-

ces from temporally dependent observations. This project is motivated by the functional

connectivity analysis using resting-state fMRI data. The functional connectivity refers to

the statistical associations of activation among brain nodes (regions or voxels; Friston,

2011; Zhou et al., 2009); thus, it can be assessed by either correlations or partial correla-

tions from the covariance matrix or the inverse covariance matrix (a.k.a. precision matrix)

respectively. The traditional estimator of the covariance matrix, the sample covariance

matrix, is no longer a consistent estimator when the variable dimension p (the number of

brain nodes) grows with the sample size n, e.g., p/n → c ∈ (0,∞) in the sense that its

eigenvalues may diverge from those of the covariance matrix (Bai and Yin, 1993; Bai and

Silverstein, 2010). Moreover, when p > n, the sample covariance matrix is not invert-

ible, and thus it cannot be directly applied for estimating the precision matrix by matrix

inversion. When the observations are i.i.d., many consistent estimating approaches have

been developed, such as the generalized thresholding (Rothman et al., 2009) estimation for

covariance matrix, and the constrained `1 minimization (CLIME; Cai et al., 2011) and the

`1 penalized likelihood estimation (Rothman et al., 2008) for precision matrix. Recently,

Chen et al. (2013), Bhattacharjee and Bose (2014), and Zhou (2014) considered the esti-

mation by using temporally dependent observations. But with restrictive conditions, their

models do not fit well for the resting-state fMRI data, which may exhibit heterogeneous

long-range temporal dependence among the p time series.

To conquer this problem, we consider the aforementioned three estimating approaches

4



under a polynomial-decay-dominated (PDD) temporal dependence. We provide the con-

vergence rates of the considered estimators under both the spectral norm and the Frobenius

norm (that is divided by
√
p) which are widely used in the literature (Bickel and Levina,

2008a,b; Rothman et al., 2008, 2009; Cai et al., 2011). Properties of sparsistency and sign-

consistency are also established. To reduce the temporal dependence between training and

validation datasets, a gap-block cross-validation method is proposed for the tuning param-

eter selection, which performs well in simulations. We apply the considered approaches

to analyzing a single subject’s functional connectivity using the resting-state fMRI data

obtained from the Human Connectome Project (humanconnectome.org). The discovered

functional hubs may be useful for further scientific investigation.

Project 3 is presented in Chapter IV. It is an extension of Project 2 from a single sam-

ple of temporally dependent observations to multiple independent samples. This project

is motivated by estimating the group-level functional connectivity from multiple subjects

each with a sample of temporally dependent image observations. We use the sample co-

variance matrix obtained from the concatenation of all observations (Smith et al., 2013;

Ng et al., 2013) for the estimating methods considered in Project 2. The proof used in

Project 2 does not make effective use of the independence among samples. A different

proof technique can show improved convergence rates for the multiple samples except

the CLIME method for estimating the precision matrix under short-range temporal depen-

dence. Moreover, the new proof allows more general within-sample temporal dependence.

We apply the sample-covariance-matrix based methods to estimating the group-level func-

tional connectivity of ADHD patients compared to normal controls using the ADHD-200

resting-state fMRI data (neurobureau.projects.nitrc.org/ADHD200).

At the end of Chapter IV, we also discuss a potential way of improving the convergence

rates by using a weighted sample covariance matrix. Accounting for potentially different

5



temporal dependence structures among these samples, a weight assigned for each sam-

ple in the proposed matrix aims to be proportional with its effective sample size. Using

this matrix as the initial estimator of the covariance matrix can theoretically have faster

convergence rates than using the sample covariance matrix, if with appropriate weights.

However, to select such weights is difficult in practice.

We leave some future work for discussion in Chapter V.
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CHAPTER II

Multiple Testing for Neuroimaging via Hidden Markov Random Field

2.1 Introduction

In a seminal paper, Benjamini and Hochberg (1995) introduced false discovery rate

(FDR) as an alternative measure of Type I error in multiple testing problems to the family-

wise error rate (FWER). They showed that the FDR is equivalent to the FWER if all null

hypotheses are true and is smaller otherwise, thus FDR controlling procedures potentially

have a gain in power over FWER controlling procedures. FDR is defined as the expected

proportion of false rejections among all rejections. The false nondiscovery rate (FNR;

Genovese and Wasserman, 2002), the expected proportion of falsely accepted hypothe-

ses among all acceptances, is the corresponding measure of Type II error. The traditional

FDR procedures (Benjamini and Hochberg, 1995, 2000; Genovese and Wasserman, 2004),

which are p-value based, are theoretically developed under the assumption that the test

statistics are independent. Although these approaches are shown to be valid in controlling

FDR under certain dependence assumptions (Benjamini and Yekutieli, 2001; Farcomeni,

2007; Wu, 2008), they may suffer from severe loss of efficiency in reducing FNR when

the dependence structure is ignored (Sun and Cai, 2009). By modeling the dependence

structure using a hidden Markov chain (HMC), Sun and Cai (2009) proposed an oracle

FDR procedure built on a new test statistic, the local index of significance (LIS), and the

7



corresponding asymptotic data-driven procedure, which are optimal in the sense that they

minimize the marginal FNR subject to a constraint on the marginal FDR. Following the

work of Sun and Cai (2009), Wei et al. (2009) developed a pooled LIS (PLIS) procedure

for multiple-group analysis where different groups have different HMC dependence struc-

tures, and proved the optimality of the PLIS procedure. Either the LIS procedure or the

PLIS procedure only handles the one-dimensional dependency. However, problems with

higher dimensional dependence are of particular practical interest in analyzing imaging

data.

FDR procedures have been widely used in analyzing neuroimaging data, such as positron

emission tomography (PET) imaging and functional magnetic resonance imaging (fMRI)

data (Genovese et al., 2002; Chumbley and Friston, 2009; Chumbley et al., 2010, among

many others). We extend the work of Sun and Cai (2009) in this chapter by developing

an optimal LIS-based FDR procedure for three-dimensional (3D) imaging data using a

hidden Markov random field model (HMRF) for the spatial dependency among multiple

tests. Existing methods for correlated imaging data, for example, Zhang et al. (2011) are

not shown to be optimal, i.e., minimizing FNR.

HMRF model is a generalization of HMC model, which replaces the underlying Markov

chain by Markov random field. A well-known classical Markov random field with two

states is the Ising model. In particular, the two-parameter Ising model, whose formal defi-

nition is given in equation (2.1), reduces to the two-state Markov chain in one-dimension

(Brémaud, 1999). The Ising model and its generalization with more than two states, the

Potts model, have been widely used to capture the spatial structure in image analysis; see

Brémaud (1999), Winkler (2003), Zhang et al. (2008), Huang et al. (2013) and Johnson

et al. (2013), among others. In this chapter, we consider a hidden Ising model for each area

based on the Brodmann’s partition of the cerebral cortex (Garey, 2006) and subcortical re-
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gions of the human brain, which provides a natural way of modeling spatial correlations

for neuroimaging data. To the best of our knowledge, this is the first work that introduces

the HMRF-LIS based FDR procedure to the field of neuroimaging.

We propose a generalized expectation-maximization algorithm (GEM; Dempster et al.,

1977) to search for penalized maximum likelihood estimators (Ridolfi, 1997; Ciuperca

et al., 2003; Chen et al., 2008) of the hidden Ising model parameters. The penalized likeli-

hood prevents the unboundedness of the likelihood function, and the proposed GEM uses

Monte Carlo averages via Gibbs sampler (Geman and Geman, 1984; Roberts and Smith,

1994) to overcome the intractability of computing the normalizing constant in the under-

lying Ising model. Then the LIS-based FDR procedures can be conducted by plugging

in the estimates of the hidden Ising model parameters. In what follows, we use the term

“HMRF” to refer to the 3D hidden Ising model.

The chapter is organized as follows. In Section 2.2, we introduce the HMRF model,

i.e., the hidden Ising model, for 3D imaging data. We provide the GEM algorithm for

the HMRF parameter estimation and the implementation of the HMRF-LIS-based data-

driven procedures in Section 2.3. In Section 2.4, we conduct extensive simulations to

compare the LIS-based procedures with conventional FDR methods. In Section 2.5, we

apply the PLIS procedure to the 18F-Fluorodeoxyglucose PET (FDG-PET) image data of

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which finds more signals than

conventional methods.

2.2 A Hidden Markov Random Field Model

Let S be a finite lattice of N voxels in an image grid, usually in a 3D space. Let

Θ = {Θs ∈ {0, 1} : s ∈ S} denote the set of latent states on S, where Θs = 1 if the null

hypothesis at voxel s is false and Θs = 0 otherwise. For simplicity, we follow Sun and Cai

9



(2009) to call hypothesis s to be nonnull if Θs = 1 and null otherwise. We also call voxel

s to be a signal if Θs = 1 and noise otherwise. Let Θ be generated from a two-parameter

Ising model with the following probability distribution

(2.1) Pϕ(θ) =
1

Z(ϕ)
exp{ϕTH(θ)} =

1

Z(β, h)
exp

β∑
〈s,t〉

θsθt + h
∑
s∈S

θs

 ,

where Z(ϕ) is the normalizing constant, ϕ = (β, h)T , H(θ) = (
∑
〈s,t〉 θsθt,

∑
s∈S θs)

T ,

and 〈s, t〉 denotes all the unordered pairs in S such that for any s, t is among the six nearest

neighbors of voxel s in a 3D setting. This model possesses the Markov property:

Pϕ(θs|θS\{s}) = Pϕ(θs|θN (s)) =
exp{θs(β

∑
t∈N (s) θt + h)}

1 + exp{β
∑

t∈N (s) θt + h}
,

where S \ {s} denotes the set S after removing s, and N (s) ⊂ S is the nearest neighbor-

hood of s in S.

For the above Ising model, it can also be shown that

(2.2) log

{
P (Θs=1,Θt=1|θS\{s,t})P (Θs=0,Θt=0|θS\{s,t})
P (Θs=1,Θt=0|θS\{s,t})P (Θs=0,Θt=1|θS\{s,t})

}
=


β, t ∈ N (s),

0, otherwise.

Therefore, if s and t are neighbors, β is equal to a log odds ratio that describes the asso-

ciation between Θs and Θt conditional on all the other state variables being withheld. We

can see that β reflects how likely the same-state voxels are clustered together. Similarly,

log

{
P (Θs = 1|

∑
t∈N (s) Θt = 0)

P (Θs = 0|
∑

t∈N (s)Θt = 0)

}
= h,

which is the log odds for Θs = 1 given that ΘN (s) are all zero. Thus, that β ≥ 0 and h ≤ 0

implies the nonnegative dependency of state variables at neighboring voxels. In addition,
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for a voxel s with m nearest neighbors, we have

log

{(
P (Θs = 1|

∑
t∈N (s) Θt = k)

P (Θs = 0|
∑

t∈N (s)Θt = k)

)
/(

P (Θs = 0|
∑

t∈N (s) Θt = m− k)

P (Θs = 1|
∑

t∈N (s)Θt = m− k)

)}

= mβ + 2h,(2.3)

where k is an integer satisfying 0 ≤ k ≤ m, which reflects the log ratio of the cluster

effect of signals (nonnulls) relative to the cluster effect of noises (nulls).

We assume the observed z-values X = {Xs : s ∈ S} are independent given Θ = θ

with

(2.4) Pφ(x|θ) =
∏
s∈S

Pφ(xs|θs),

where Pφ(xs|θs) denotes the following distribution

(2.5) Xs|Θs ∼ (1−Θs)N(µ0, σ
2
0) + Θs

L∑
l=1

plN(µl, σ
2
l )

with (µ0, σ
2
0) = (0, 1), unknown parametersφ = (µ1, σ

2
1, p1, ..., µL, σ

2
L, pL)T ,

∑L
l=1 pl = 1

and pl ≥ 0. In particular, the z-value Xs follows the standard normal distribution under

the null, and the nonnull distribution is set to be the normal mixture that can be used to

approximate a large collection of distributions (Magder and Zeger, 1996; Efron, 2004).

The number of components L in the nonnull distribution may be selected by, for example,

the Akaike or Bayesian information criterion. Following the recommendation of Sun and

Cai (2009), we use L = 2 for the ADNI image analysis.

Markov random fields (MRFs; Brémaud, 1999) are a natural generalization of Markov

chains (MCs), where the time index of MC is replaced by the space index of MRF. It

is well known that any one-dimensional MC is an MRF, and any one-dimensional sta-

tionary finite-valued MRF is an MC (Chandgotia et al., 2014). When S is taken to be
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one-dimensional, the above approach based on (2.1), (2.4) and (2.5) reduces to the HMC

method of Sun and Cai (2009).

2.3 Hidden Markov Random Field LIS-Based FDR Procedures

Sun and Cai (2009) developed a compound decision theoretic framework for multiple

testing under HMC dependence and proposed LIS-based oracle and data-driven testing

procedures that aim to minimize the FNR subject to a constraint on FDR. We extend these

procedures under HMRF for image data. The oracle LIS for hypothesis s is defined as

LISs(x) = PΦ(Θs = 0|x) for a given parameter vector Φ. In our model, Φ = (φT ,ϕT )T .

LetLIS(1)(x), ..., LIS(N)(x) be the ordered LIS values andH(1), ...,H(N) the correspond-

ing null hypotheses. The oracle procedure operates as follows: for a prespecified FDR

level α,

(2.6) let k = max

{
i :

1

i

i∑
j=1

LIS(j)(x) ≤ α

}
, then reject allH(i), i = 1, ..., k.

Parameter Φ is unknown in practice. We can use the data-driven procedure that simply

replaces LIS(i)(x) in (2.6) with L̂IS(i)(x) = PΦ̂(Θ(i) = 0|x), where Φ̂ is an estimate of

Φ.

If all the tests are partitioned into multiple groups and each group follows its own

HMRF, in contrast to the separated LIS (SLIS) procedure that conducts the LIS-based

FDR procedure separately for each group at the same FDR level α and then combines the

testing results, we follow Wei et al. (2009) to propose a pooled LIS (PLIS) procedure that

is more efficient in reducing the global FNR. The PLIS follows the same procedure as

(2.6), but with LIS(1), ..., LIS(N) being the ordered test statistics from all groups.

Note that the model homogeneity, which is required in Sun and Cai (2009) and Wei

et al. (2009) for HMCs, fails to hold for the HMRF model. In other words, P (Θs = 1)

for the interior voxels with six nearest neighbors are different to those for the boundary
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voxels with less than six nearest neighbors. We show the validity and optimality of the

oracle HMRF-LIS-based procedures in Appendix A.1.

We now provide details of the LIS-based data-driven procedure for 3D image data,

where the parameters of the HMRF model need to be estimated from observed test data.

2.3.1 A Generalized EM Algorithm

We start this subsection by showing the unboundedness of the observed likelihood func-

tion of HMRF. For any voxel t ∈ S, define a specific configuration of Θ by θ{t} = (θs)s∈S

with θt = 1 and θs = 0 if s 6= t. Then the observed likelihood function

L(Φ|x) = PΦ(x) =
∑
Θ

Pφ(x|Θ)Pϕ(Θ)

≥ Pφ(x|Θ = θ{t})Pϕ(Θ = θ{t})

= Pφ(xt|Θt = 1)
∏

s∈S\{t}

Pφ(xs|Θs = 0)Pϕ(ΘS\{t} = 0,Θt = 1)

=

(
1√

2πσ2
1

exp

{
−(xt − µ1)2

2σ2
1

}
+

L∑
l=2

N(xt;µl, σ
2
l )

)

× (2π)−
N−1

2 exp

−1

2

∑
s∈S\{t}

x2
s

 eh

Z(β, h)

→∞

if µ1 = xt and σ2
1 → 0 with other parameters fixed. Thus the observed likelihood func-

tion is unbounded. The similar unbounded-likelihood phenomenon for Gaussian hidden

Markov chain model has been shown in Ridolfi (1997) and Chen et al. (2014).

One solution to avoid the unboundedness is to replace the likelihood by a penalized

likelihood (Ridolfi, 1997; Ciuperca et al., 2003)

(2.7) pL(Φ|x) = L(Φ|x)
L∏
l=1

g(σ2
l ),
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where g(σ2
l ), l = 1, . . . , L, are penalty functions that ensure the boundedness of pL(Φ|x).

We follow Ridolfi (1997) and Ciuperca et al. (2003) to choose

g(σ2
l ) ∝

1

σ2b
l

exp

{
− a

σ2
l

}
, a > 0, b ≥ 0,

where x ∝ y means that x = cy with a positive constant c independent of any parameter.

Note that (2.7) reduces to the unpenalized likelihood function when a = b = 0. When

a > 0 and b > 1, the penalized likelihood approach is equivalent to setting g(σ2
l ) to be

the inverse gamma distribution, which is a classical prior distribution for the variance of

a normal distribution in Bayesian statistics (Hoff, 2009). We do not impose any prior

distribution here. The choice of a and b does not impact the strong consistency of the

penalized maximum likelihood estimator (PMLE) based on the same penalty function for

a finite mixture of normal distributions (Ciuperca et al., 2003; Chen et al., 2008). Such a

penalty performs well in the simulations, though formal proof of the consistency of PMLE

for hidden Ising model remains an open question.

We develop an EM algorithm based on the penalized likelihood (2.7) for the estimation

of parameters in the HMRF model characterized by (2.1), (2.4) and (2.5). We introduce

unobservable categorical variables K = {Ks : s ∈ S}, where Ks = 0 if Θs = 0, and

Ks ∈ {1, ..., L} if Θs = 1. Hence, P (Ks=0|Θs=0) = 1 and we denote P (Ks=l|Θs=1) =

pl. From (2.5), we let Xs|Ks ∼ N(µKs , σ
2
Ks

). To estimate the HMRF parameters Φ =

(φT ,ϕT )T , (Θ,K,X) are used as the complete data variables to construct the auxiliary

function in the (t+1)st iteration of EM algorithm given the observed data x and the current

estimated parameters Φ(t):

Q(Φ|Φ(t)) = EΦ(t) [logPΦ(Θ,K,X)|x] +
L∑
l=1

log g(σ2
l ),

where PΦ(Θ,K,X) = Pϕ(Θ)Pφ(X,K|Θ) = Pϕ(Θ)
∏

s∈S Pφ(Xs, Ks|Θs). The Q-
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function can be further written as follows

Q(Φ|Φ(t)) = Q1(φ|Φ(t)) +Q2(ϕ|Φ(t)),

where

Q1(φ|Φ(t)) =
∑
Θ

∑
K

PΦ(t)(Θ,K|x) logPφ(x,K|Θ) +
L∑
l=1

log g(σ2
l )

and

Q2(ϕ|Φ(t)) =
∑
Θ

PΦ(t)(Θ|x) logPϕ(Θ).

Therefore, we can maximize Q(Φ|Φ(t)) for Φ by maximizing Q1(φ|Φ(t)) for φ and

Q2(ϕ|Φ(t)) for ϕ, separately.

Maximizing Q1(φ|Φ(t)) under the constraint
∑L

l=1 pl = 1 by the method of Lagrange

multipliers yields

p
(t+1)
l =

∑
s∈S w

(t)
s (l)∑

s∈S γ
(t)
s (1)

,(2.8)

µ
(t+1)
l =

∑
s∈S w

(t)
s (l)xs∑

s∈S w
(t)
s (l)

,(2.9)

(σ2
l )

(t+1) =
2a+

∑
s∈S w

(t)
s (l)(xs − µ(t+1)

l )2

2b+
∑

s∈S w
(t)
s (l)

,(2.10)

where

ws(l) =
γs(1)plfl(xs)

f(xs)
, γs(i) = PΦ(Θs = i|x), fl = N(µl, σ

2
l ), and f =

L∑
l=1

plfl.

For Q2(ϕ|Φ(t)), taking its first and second derivatives with respect to ϕ, we obtain

U (t+1)(ϕ) =
∂

∂ϕ
Q2(ϕ|Φ(t)) = EΦ(t) [H(Θ)|x]− Eϕ[H(Θ)],

I(ϕ) = − ∂2

∂ϕ∂ϕT
Q2(ϕ|Φ(t)) = V arϕ[H(Θ)].

Maximizing Q2(ϕ|Φ(t)) is then equivalent to solving the nonlinear equation:

(2.11) U (t+1)(ϕ) = EΦ(t) [H(Θ)|x]− Eϕ[H(Θ)] = 0.
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It can be shown that equation (2.11) has a unique solution and can be solved by the

Newton-Raphson (NR) method (Stoer and Bulirsch, 2002). However, a starting point that

is not close enough to the solution may result in divergence of the NR method. There-

fore, rather than searching for the solution of equation (2.11) over all ϕ, we choose a

ϕ(t+1) that increases Q2(ϕ|Φ(t)) over its value at ϕ = ϕ(t). Together with the maxi-

mization of Q1(φ|Φ(t)), the approach leads to Q(Φ(t+1)|Φ(t)) ≥ Q(Φ(t)|Φ(t)) and thus

pL(Φ(t+1)|x) ≥ pL(Φ(t)|x), which is termed a GEM algorithm (Dempster et al., 1977).

To find such a ϕ(t+1) that increases the Q2-function, a backtracking line search algorithm

(Nocedal and Wright, 2006) is applied with a set of decreasing positive values λm in the

following

(2.12) ϕ(t+1,m) = ϕ(t) + λmI(ϕ(t))−1U (t+1)(ϕ(t)),

where m = 0, 1, ..., and ϕ(t+1) = ϕ(t+1,m) which is the first one satisfying the Armijo

condition (Nocedal and Wright, 2006)

(2.13) Q2(ϕ(t+1,m)|Φ(t))−Q2(ϕ(t)|Φ(t)) ≥ αλmU
(t+1)(ϕ(t))TI(ϕ(t))−1U (t+1)(ϕ(t)).

Since I(ϕ(t)) is positive-definite, the Armijo condition guarantees the increase of Q2-

function. In practice, α is chosen to be quite small. We adopt α = 10−4, which is recom-

mended by Nocedal and Wright (2006), and halve the Newton-Raphson step length each

time by using λm = 2−m.

In the GEM algorithm, Monte Carlo averages are used via Gibbs sampler to approxi-

mate the quantities of interest that are involved with the intractable normalizing constant

of the Ising model. By the ergodic theorem of the Gibbs sampler (Roberts and Smith,
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1994) (see Appendix A.2 for details),

U (t+1)(ϕ) ≈ 1

n

n∑
i=1

(
H(θ(t,i,x))−H(θ(i,ϕ))

)
,

I(ϕ) ≈ 1

n− 1

n∑
i=1

(
H(θ(i,ϕ))− 1

n

n∑
j=1

H(θ(j,ϕ))

)⊗2

,

where {θ(t,1,x), ...,θ(t,n,x)} are large n samples successively generated by the Gibbs sam-

pler from

PΦ(t)(θ|x) =
exp

{
β(t)

∑
〈s,r〉 θsθr +

∑
s∈S h

(t)
s θs

}
Z
(
β(t), {h(t)

s }s∈S
) ,

with

h(t)
s = h(t) − log

(
1√

2πσ2
0

exp

{
−(xs − µ0)2

2σ2
0

})

+ log

 L∑
l=1

p
(t)
l√

2πσ2(t)
l

exp

{
−(xs − µ(t)

l )2

2σ2(t)
l

}
and Z

(
β(t), {h(t)

s }s∈S
)

being the normalizing constant, and {θ(1,ϕ), ...,θ(n,ϕ)} are gener-

ated from Pϕ(θ). Here for vector v, v⊗2 = vvT . Similarly,

C

Z(ϕ)
= Eϕ[exp{−ϕTH(Θ)}] ≈ 1

n

n∑
i=1

exp{−ϕTH(θ(i,ϕ))},

where C is the number of all possible configurations θ of Θ. Then the difference between

Q2-functions in the Armijo condition can be approximated by

Q2(ϕ(t+1,m)|Φ(t))−Q2(ϕ(t)|Φ(t))

≈ 1

n
(ϕ(t+1,m) −ϕ(t))T

n∑
i=1

H(θ(t,i,x))

+ log

(∑n
i=1 exp{−ϕ(t+1,m)TH(θ(i,ϕ(t+1,m)))}∑n

i=1 exp{−ϕ(t)TH(θ(i,ϕ(t)))}

)
.

Back to Q1(φ|Φ(t)), the local conditional probability of Θ given x can also be approxi-

mated by the Gibbs sampler:

(2.14) γ(t)
s (i) = PΦ(t)(Θs = i|x) ≈ 1

n

n∑
k=1

1(θ(t,k,x)
s = i).
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2.3.2 Implementation of the LIS-Based FDR Procedure

The algorithm for the LIS-based data-driven procedure, denoted as LIS for single group

analysis, SLIS for separate analysis of multiple groups, and PLIS for pooled analysis for

multiple groups, is given below:

1. Set initial values Φ(0) = {φ(0),ϕ(0)} for the model parameters Φ of each group;

2. Update φ(t) from equations (2.8), (2.9) and (2.10);

3. Update ϕ(t) from equations (2.12) and (2.13);

4. Iterate Steps 2 and 3 until convergence, then obtain the estimate Φ̂ of Φ;

5. Plug-in Φ̂ to obtain the test statistics L̂IS from equation (2.14);

6. Apply the data-driven procedure (LIS, SLIS or PLIS).

The GEM algorithm is stopped when the following stopping rule

(2.15) max
i

(
|Φ(t+1)

i − Φ
(t)
i |

|Φ(t)
i |+ ε1

)
< ε2,

where Φi is the ith coordinate of vector Φ, is satisfied for three consecutive regular

Newton-Raphson iterations with m = 0 in (2.12), or the prespecified maximum num-

ber of iterations is reached. Stopping rule (2.15) was applied by Booth and Hobert (1999)

to the Monte Carlo EM method, where they set ε1 = 0.001, ε2 between 0.002 and 0.005,

and the rule to be satisfied for three consecutive iterations to avoid stopping the algorithm

prematurely because of Monte Carlo error. We used ε1 = ε2 = 0.001 in simulation studies

and real-data analysis. Constant α = 10−4 is recommended by Nocedal and Wright (2006)

for the Armijo condition (2.13), and the Newton-Raphson step length in (2.12) is halved

by using λm = 2−m . In practice, the Armijo condition (2.13) might not be satisfied when

the step length ‖ϕ(t+1,m)−ϕ(t)‖ is very small. In this situation, the iteration within Step 3
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is stopped by an alternative criterion

max
i

(
|ϕ(t+1,m)
i − ϕ(t)

i |
|ϕ(t)
i |+ ε1

)
< ε3

with ε3 < ε2, for example, ε3 = 10−4 if ε2 = 0.001. Small a and b should be chosen in

(2.10). We choose a = 1 and b = 2.

2.4 Simulation Studies

The simulation setups are similar to those in Sun and Cai (2009) and Wei et al. (2009),

but with 3D data. The performances of the proposed LIS-based oracle (OR) and data-

driven procedures are compared with the BH approach (Benjamini and Hochberg, 1995),

the q-value procedure (Storey, 2003), and the local FDR (Lfdr) procedure (Sun and Cai,

2007) for single group analysis; and the performances of SLIS and PLIS are compared

with BH, q-value, and the conditional Lfdr (CLfdr) procedure (Cai and Sun, 2009) for

multiple groups. The Lfdr and CLfdr procedures are shown to be optimal for indepen-

dent tests (Sun and Cai, 2007; Cai and Sun, 2009). For simulations with multiple groups,

all the procedures are globally implemented using all the locally computed test statistics

based on each method from each group. The q-values are obtained using the R package

qvalue (Dabney and Storey, 2014). For the Lfdr or CLfdr procedure, we use the propor-

tion of the null cases generated from the Ising model with given parameters as the estimate

of the probability of the null cases P (Θs = 0), together with the given null and nonnull

distributions without estimating their parameters. For the LIS-based data-driven proce-

dures, the maximum number of GEM iterations is set to be 1,000 with ε1 = ε2 = 0.001,

ε3 = α = 10−4, a = 1 and b = 2. For the Gibbs sampler, 5,000 samples are generated

from 5,000 iterations after a burn-in period of 1,000 iterations. In all simulations, each

HMRF is on a N = 15×15×15 cubic lattice S, the number of replications M = 200 is

the same as that in Wei et al. (2009), and the nominal FDR level is set at 0.10.
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2.4.1 Single-Group Analysis

Study 1: L = 1

The MRF Θ = {Θs : s ∈ S} is generated from the Ising model (2.1) with parameters

(β, h), and the observations X = {Xs : s ∈ S} are generated conditionally on Θ from

Xs|Θs ∼ (1 − Θs)N(0, 1) + ΘsN(µ1, σ
2
1). Note that the MRF Θ is not observable in

practice. Figure 2.1 shows the comparisons of the performance of BH, q-value, Lfdr,

OR and LIS. In Figure 2.1(1a-1c), we fix h = −2.5, set µ1 = 2 and σ2
1 = 1, and plot

FDR, FNR, and the average number of true positives (ATP) yielded by these procedures

as functions of β. In Figure 2.1(2a-2c), we fix β = 0.8, set µ1 = 2 and σ2
1 = 1, and plot

FDR, FNR and ATP as functions of h. In Figure 2.1(3a-3c), we fix β = 0.8 and h = −2.5,

set σ2
1 = 1, and plot FDR, FNR and ATP as functions of µ1. The corresponding average

proportions of the nulls, denoted by P0, for each Ising model are given in Figure 2.1(1d-

3d). The initial values for the numerical algorithm are set at β(0) = h(0) = 0, µ
(0)
1 = µ1 +1

and σ2(0)
1 = 2.

From Figure 2.1(1a-3a), we can see that the FDR levels of all five procedures are con-

trolled around 0.10 except one case of the LIS procedure in Figure 2.1(3a) with the lowest

µ1, whereas the BH and Lfdr procedures are generally conservative. This case of obvious

deviation of the LIS procedure is likely caused by the small lattice size N . As a confirma-

tion, additional simulations by increasing the lattice size N to 30×30×30 yield an FDR

of 0.1019 for the same setup. From Figure 2.1(1b-3b) and (1c-3c) we can see that the two

curves of OR and LIS procedures are almost identical, indicating that the data-driven LIS

procedure works equally well as the OR procedure. These plots also show that the LIS

procedure outperforms BH, q-value and Lfdr procedures with increased margin of perfor-

mance in FNR and ATP as β or h increases or µ1 is at a moderate level. Note that from

(2.2) and (2.3), we can see that β controls how likely the same-state cases cluster together,
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and (β, h) together control the proportion of the aggregation of nonnulls relative to that of

nulls.

Study 2: L = 2

We now consider the case where the nonnull distribution is a mixture of two normal

distributions. The MRF is generated from the Ising model (2.1) with fixed parameters

β = 0.8 and h = −2.5, and the nonnull distribution is a two-component normal mix-

ture p1N(µ1, σ
2
1) + p2N(µ2, σ

2
2) with fixed p1 = p2 = 0.5, µ2 = 2, and σ2

2 = 1. In

Figure 2.2(1a-1c), σ2
1 varies from 0.125 to 8, and µ1 = −2. In Figure 2.2(2a-2c), we

fix σ2
1 = 1 and vary µ1 from −4 to −1. The initial values are set at β(0) = h(0) = 0,

p
(0)
1 = 1− p(0)

2 = 0.3, µ(0)
l = µl + 1, and σ2(0)

l = σ2
l + 1, l = 1, 2.

Similar to Figure 2.1, we can see that the FDR levels of all the procedures are controlled

around 0.10, where BH and Lfdr are conservative, and OR and LIS perform similarly

and outperform the other three procedures. In Figure 2.2(2a) at µ1 = −1, additional

simulations yield an FDR of 0.1035 when the lattice size N is increased to 30×30×30 for

the same setup.

The results from both simulation studies are very similar to those in Sun and Cai (2009)

for the one-dimensional case using HMC. It is clearly seen that, for dependent tests, in-

corporating dependence structure into a multiple-testing procedure improves efficiency

dramatically.

Study 3: misspecified nonnull

Following Sun and Cai (2009), we consider the true nonnull distribution to be the three-

component normal mixture 0.4N(µ, 1) + 0.3N(1, 1) + 0.3N(3, 1), but use a misspecified

two component normal mixture p1N(µ1, σ
2
1) + p2N(µ2, σ

2
2) in the LIS procedure. The

unobservable states are generated from the Ising model (2.1) with fixed parameters β = 0.8
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Figure 2.2: Comparison of BH (©), q-value (3), Lfdr (4), OR (+) and LIS (�) for a single group with
L = 2 (see 1a-2c), and the one with L being misspecified (see 3a-3c).
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and h = −2.5. The simulation results are displayed in Figure 2.2(3a-3c), the true µ varies

from −4 to −1 with increments of size 0.5. The initial values are set at β(0) = h(0) = 0,

p
(0)
1 = p

(0)
2 = 0.5, µ(0)

1 = −µ(0)
2 = −2, and σ2(0)

l = 2, l = 1, 2.

Figure 2.2(3a-3c) shows that the LIS procedure performs similarly to OR under mis-

specified model. Additionally, the obvious biased FDR level by the LIS procedure at

µ = −1 reduces to 0.1067 when the lattice size N is increased to 30×30×30.

2.4.2 Multiple-Group Analysis

Voxels in a human brain can be naturally grouped into multiple functional regions. For

simulations with grouped multiple tests, we consider two lattice groups each with size

15×15×15. The corresponding MRFs Θ1 = {Θ1s : s ∈ S} and Θ2 = {Θ2s : s ∈

S} are generated from the Ising model (2.1) with parameters (β1 = 0.2, h1 = −1) and

(β2 = 0.8, h2 = −2.5), respectively. The observations Xk = {Xks, s ∈ S} are generated

conditionally on Θk, k = 1, 2, from Xks|Θks ∼ (1−Θks)N(0, 1) + ΘksN(µk, σ
2
k), where

µ1 varies from 1 to 4 with increments of size 0.5, µ2 = µ1 +1 and σ2
1 = σ2

2 = 1. The initial

values are β(0)
1 = β

(0)
2 = h

(0)
1 = h

(0)
2 = 0, µ

(0)
2 = µ

(0)
1 = µ1 + 1, and σ2(0)

1 = σ2(0)

2 = 2.

The simulation results are presented in Figure 2.3, which are similar to that in Wei et al.

(2009) for the one-dimensional case with multiple groups using HMCs. Figure 2.3(a)

shows that all procedures are valid in controlling FDR at the prespecified level of 0.10,

whereas BH and CLfdr procedures are conservative. We also plot the within-group FDR

levels of PLIS for each group separately. One can see that in order to minimize the global

FNR level, the PLIS procedure may automatically adjust the FDRs of each individual

group, either inflated or deflated reflecting the group heterogeneity, while the global FDR

is appropriately controlled. In Figure 2.3(b) and (c) we can see that both SLIS and PLIS

outperform BH, q-value and CLfdr procedures, indicating that utilizing the dependency in-

formation can improve the efficiency of a testing procedure, and the improvement is more
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Figure 2.3: Comparison of BH (©), q-value (3), CLfdr (4), SLIS (5) and PLIS (•) for two groups with
L = 1. In (a), � and N represent the results by PLIS for each individual group; for PLIS, while
the global FDR is controlled, individual-group FDRs may vary.

evident for weaker signals (smaller values of µ1). Between the two LIS-based procedures,

PLIS slightly outperforms SLIS, indicating the benefit of ranking the LIS test statistics

globally. In particular, ATP is 8.3% higher for PLIS than for SLIS when µ1 = 1.

2.5 ADNI FDG-PET Image Data Analysis

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly popu-

lation. The worldwide prevalence of Alzheimer’s disease was 26.6 million in 2006 and is

predicted to be 1 in 85 persons by 2050 (Brookmeyer et al., 2007). Much progress has been

made in the diagnosis of AD including clinical assessment and neuroimaging techniques.

One such extensively used neuroimaging technique is FDG-PET imaging, which is used

to evaluate the cerebral metabolic rate of glucose (CMRgl). Numerous FDG-PET studies

(Nestor et al., 2003; Mosconi et al., 2005; Langbaum et al., 2009) have demonstrated sig-

nificant reductions of CMRgl in brain regions in patients with AD and its prodromal stage

mild cognitive impairment (MCI), compared with normal control (NC) subjects. These

reduction can be used for the early detection of AD. Voxel-level multiple testing methods

are common approaches to identify voxels with significant group differences in CMRgl

(Alexander et al., 2002; Mosconi et al., 2005; Langbaum et al., 2009). We focus on the
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comparison between MCI and NC for such a purpose, and consider the FDG-PET image

data from the ADNI database (adni.loni.usc.edu) as an illustrative example.

The data set consists of the baseline FDG-PET images of 102 NC subjects and 206

patients with MCI. Each image is normalized by the average of voxel values in pons and

cerebellar vermis, which are well preserved regions in Alzheimer’s patients. In human

brain, the cerebral cortex is segregated into 43 Brodmann areas (BAs) based on the cytoar-

chitectural organization of neurons (Garey, 2006). We consider 30 of them after removing

the BAs that are either too small or not always reliably registered. We also investigate

9 subcortical regions, including hippocampus, which are commonly considered in AD

studies. A region is further divided into two if its bilateral parts in the left and right hemi-

spheres are separated completely without a shared border in the middle of the brain. We

have considered combining neighboring regions to potentially increase accuracy, but failed

to find any pair with similar estimated HMRF model parameters. Finally, 61 regions of

interest (ROIs) are included in the analysis, where the number of voxels in each region

ranges from 149 to 20,680 with a median of 2,517. The total number of voxels of these 61

ROIs isN = 251, 500. The goal is to identify voxels with reduced CMRgl in MCI patients

comparing to NC.

We apply the HMRF-PLIS procedure to the ADNI data, and compare to BH, q-value

and CLfdr procedures. We implement the BH procedure globally for the 61 ROIs, whereas

we treat each region as a group for the q-value, CLfdr and PLIS procedures. For the BH

and q-value procedures, a total number of N two-sample Welch’s t-tests (Welch, 1947)

are performed, and their corresponding two-sided p-values are obtained. For the PLIS and

CLfdr procedures, z-values are used as the observed data x, which are obtained from those

t statistics by the transformation zi = Φ−1[G0(ti)], where Φ and G0 are the cumulative

distribution functions of the standard normal and the t statistic, respectively. The null
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distribution is assumed to be the standard normal distribution. The nonnull distribution is

assumed to be a two-component normal mixture for PLIS. The LIS statistics in the PLIS

procedure are approximated by 106 Gibbs-sampler samples, and the Lfdr statistics in the

CLfdr procedure are computed by using the R code of Sun and Cai (2007). All the four

testing procedures are controlled at a nominal FDR level of 0.001. In the GEM algorithm

for HMRF estimation, the initial values for β and h in the Ising model are set to be zero.

The initial values for the nonnull distributions are estimated from the signals claimed by

BH at an FDR level of 0.1. The maximum number of GEM iterations is set to be 5,000

with ε1 = ε2 = 0.001, ε3 = α = 10−4, a = 1 and b = 2. For the Gibbs sampler embedded

in the GEM, 5,000 samples are generated from 5,000 iterations after a burn-in period of

1,000 iterations. In this data analysis, the GEM algorithm reaches the maximum iteration

and is then claimed to be converged for five ROIs. Among all 61 ROIs, the estimates of

β have a median of 1.57 with the interquartile range of 0.36, and the estimates of h have

a median of −3.71 with the interquartile range of 1.52. Such magnitude of parameter

variation supports the multi-region analysis of the ADNI FDG-PET image data because

even a 0.1 difference in β or h can result in quite different Ising models, see Figure 2.1(1d)

and (2d).

Figure 2.4 shows the z-values (obtained by comparing CMRgl values between NC and

MCI) of all the signals claimed by each procedure. Figure 2.5 summarizes the number of

voxels that are claimed as signals by each procedure. We can see that PLIS finds the largest

number of signals and covers 91.5%, 97.2% and 99.9% of signals detected by CLfdr, q-

value and BH, respectively. It is interesting to see that the PLIS procedure finds more than

17 times signals as BH, twice as many signals as q-value, and about 20% more signals

than the CLfdr procedure.

Detailed interpretations of the scientific findings are provided in Appendix A.3.
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(a) BH (b) q-value

(c) CLfdr (d) PLIS

Figure 2.4: Z-values of the signals found by each procedure for the comparison between NC and MCI.
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Figure 2.5: Venn diagram for the number of signals found by each procedure for the comparison between
NC and MCI. Number of signals discovered by each procedure: BH=8,541, q-value=71,031,
CLfdr=122,899, and PLIS=146,867.
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CHAPTER III

Estimation of Large Covariance and Precision Matrices from
Temporally Dependent Observations

3.1 Introduction

Let {X1, . . . ,Xn} be a sample of p-dimensional random vectors, each with the same

mean µp, covariance matrix Σ and precision matrix Ω = Σ−1. It is well known that the

sample covariance matrix is not a consistent estimator of Σ when p grows with n (Bai and

Yin, 1993; Bai and Silverstein, 2010). When the sample observations X1, . . . ,Xn are

independent and identically distributed (i.i.d.), several regularization methods have been

proposed for the consistent estimation of large Σ, including thresholding (Bickel and Lev-

ina, 2008a; El Karoui, 2008; Rothman et al., 2009; Cai and Liu, 2011), block-thresholding

(Cai and Yuan, 2012), banding (Bickel and Levina, 2008b) and tapering (Cai et al., 2010).

Existing methods also include Cholesky-based method (Huang et al., 2006; Rothman et al.,

2010), penalized pseudo-likelihood method (Lam and Fan, 2009) and sparse matrix trans-

form (Cao et al., 2011). Consistent correlation matrix estimation can be obtained similarly

from i.i.d. observations (Jiang, 2003; El Karoui, 2008).

The precision matrix Ω = (ωij)p×p, when it exists, is closely related to the partial cor-

relations between the pairs of variables in a vector X . Specifically, the partial correlation

between Xi and Xj given {Xk, k 6= i, j} is equal to −ωij/
√
ωiiωjj (Cramér, 1946, Sec-

tion 23.4). Zero partial correlation means conditional independence between Gaussian or
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nonparanormal random variables (Liu et al., 2009). There is also a rich literature on the

estimation of large Ω from i.i.d. observations. Various algorithms for the `1 penalized

maximum likelihood method (`1-MLE) and its variants have been developed by Yuan and

Lin (2007), Banerjee et al. (2008), Friedman et al. (2008) and Hsieh et al. (2014), and

related theoretical properties have been investigated by Rothman et al. (2008), Lam and

Fan (2009) and Ravikumar et al. (2011). Methods that estimate Ω column-by-column thus

can be implemented with parallel computing include the nodewise Lasso (Meinshausen

and Bühlmann, 2006; Van de Geer et al., 2014), graphical Dantzig selector (Yuan, 2010),

constrained `1-minimization for inverse matrix estimation (CLIME; Cai et al., 2011), and

adaptive CLIME (Cai et al., 2016).

Recently, researchers become increasingly interested in estimating the large covariance

and precision matrices from temporally dependent observations {X t : t = 1, . . . , n}, here

t denotes time. Such research is particularly useful in analyzing the resting-state func-

tional magnetic resonance imaging (rfMRI) data to assess the brain functional connectivity

(Power et al., 2011; Ryali et al., 2012). In such imaging studies, the number of brain nodes

(voxels or regions of interest) p can be greater than the number of images n. The temporal

dependence of time series X t is traditionally dealt with by imposing the so-called strong

mixing conditions (Bradley, 2005). To overcome the difficulties in computing strong mix-

ing coefficients and verifying strong mixing conditions, Wu (2005) introduced a new type

of dependence measure, the functional dependence measure, and recently applied it to the

hard thresholding estimator of large covariance matrix and the `1-MLE type methods of

large precision matrix (Chen et al., 2013). But the functional dependence measure is still

difficult to understand and to interpret. Practically, it is straightforward to describe the

temporal dependence directly by using cross-correlations (Brockwell and Davis, 1991).

By imposing certain weak dependence conditions directly on the cross-correlation matrix
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of samples {X t}nt=1, Bhattacharjee and Bose (2014) extended the banding and tapering

regularization methods for covariance matrix. We consider a family of cross-correlation

matrices with much weaker conditions that allow the time series to have long-range tempo-

ral dependence (also called long memory), which more reasonably describes, for example,

the rfMRI data for brain connectivity studies.

A univariate stationary time series has polynomial decay temporal dependence if its

autocorrelation ρ(t) ∼ Ct−α as t → ∞ with some constants C 6= 0 and α > 0. The

notation xt ∼ yt means that xt/yt → 1 as t → ∞. This polynomial decay rate is much

slower than the exponential rates in autoregressive models. We use a generalized form of

such polynomial decay structure to the cross-correlation matrix of multivariate time series.

Note that the temporal dependence with
∑∞

t=1 |ρ(t)| = ∞ is called long memory (Palma,

2007), hence the polynomial decay processes with 0 < α ≤ 1 have long memory. The

weak temporal dependence considered by Bhattacharjee and Bose (2014) does not cover

the polynomial decay processes with 0 < α ≤ 3, and the short-range temporal dependence

assumption of Chen et al. (2013) excludes the case with 0 < α ≤ 1. Moreover, neither

of their models covers the long memory processes. Later we argue that the rfMRI data do

not meet their restrictive temporal dependence conditions, but well satisfy our model that

allows any α > 0 (see Figure 3.1(a)).

Note that the estimation of large correlation matrix was not considered by either Chen

et al. (2013) or Bhattacharjee and Bose (2014), which is a more interesting problem in,

for example, the study of brain functional connectivity. Moreover, they all assumed that

µp = (µpi)1≤i≤p is known. But µp is often unknown in practice and needs to be estimated.

Although the sample mean X̄i = n−1
∑n

j=1 Xij entrywise converges to µpi in probability

or even almost surely under some dependence conditions (Brockwell and Davis, 1991; Hu

et al., 2008), extra care will still be needed when true mean is replaced by sample mean
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in the estimation of covariance. We consider unknown µp in this chapter. Also note that

the estimation of large correlation matrix and its inverse is considered in a recent work by

Zhou (2014). However, her method requires that all p time series have the same temporal

decay rate, which is rather restrictive and often violated (see Figure 3.1(b) for an example

of rfMRI data).

In this chapter, we study the generalized thresholding estimation (Rothman et al., 2009)

for covariance and correlation matrices, and the CLIME approach (Cai et al., 2011) and

an `1-MLE type method called SPICE–sparse permutation invariant covariance estimation

(Rothman et al., 2008) for precision matrix. The theoretical results of convergence rates,

sparsistency and sign-consistency are provided for temporally dependent data, potentially

with long memory, which are generated from a class of sub-Gaussian distributions in-

cluding Gaussian distribution as a special case. A gap-block cross-validation method is

proposed for the tuning parameter selection, which shows satisfactory performance for

temporally dependent data in simulations. To the best of our knowledge, this is the first

work that investigates the estimation of large covariance and precision matrices for tem-

poral data with long memory.

The chapter is organized as follows. In Section 3.2, we introduce a polynomial-decay-

dominated model for the temporal dependence, and show that it best describes the rfMRI

data comparing to the existing literature (Chen et al., 2013; Bhattacharjee and Bose, 2014;

Zhou, 2014). We also introduce the considered sub-Gaussian data generating mechanism.

We provide the theoretical results for the estimation of covariance and correlation matri-

ces in Section 3.3 and of precision matrix in Section 3.4 under the considered temporal

dependence. In Section 3.5, we introduce a gap-block cross-validation method for the tun-

ing parameter selection, evaluate the estimating performance via simulations, and analyze

a rfMRI data set for brain functional connectivity. The proofs of theoretical results are
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sketched in Section 3.6, with detailed proofs provided in Appendix B.

3.2 Temporal Dependence

We start with a brief introduction of useful notation. For a real matrix M = (Mij), we

use the following notation for different norms, see, e.g., Golub and Van Loan (1996):

• spectral norm ‖M‖2 =
√
ϕmax(MTM), where ϕmax denotes the largest eigenvalue,

also ϕmin denotes the smallest eigenvalue;

• Frobenius norm ‖M‖F =
√∑

i

∑
jM

2
ij;

• matrix `1 norm ‖M‖1 = maxj
∑

i |Mij|;

• elementwise `1 norm |M|1 =
∑

i,j |Mij|;

• off-diagonal elementwise `1 norm |M|1,off =
∑

i 6=j |Mij|;

• elementwise `∞ norm (a.k.a. max norm) |M|∞ = maxi,j |Mij|.

Define vec(M) = vec{Mij : ∀ i, j} =
(
MT

1 ,M
T
2 , . . . ,M

T
n

)T
, where M j is the j-th

column of M. Write M � 0 when M is positive definite. Denote the trace and the deter-

minant of a square matrix M by tr(M) and det(M), respectively. Denote the Kronecker

product by ⊗. Write xn � yn if xn = O(yn) and yn = O(xn). Define dxe and bxc to be

the smallest integer≥ x and the largest integer≤ x, respectively. Let I(A) be the indicator

function of event A, (x)+ = xI(x ≥ 0) and sign(x) = I(x ≥ 0) − I(x ≤ 0). Let A := B

denote that A is defined to be B. Denote X d
= Y if X and Y have the same distribution.

Denote 1n = (1, 1, . . . , 1)T with length n and In×n to be the n×n identity matrix. If with-

out further notification, a constant is independent of n and p. Throughout the rest of the

chapter, we assume p→∞ as n→∞ and only use n→∞ in the asymptotic arguments.
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3.2.1 Polynomial-Decay-Dominated (PDD) Temporal Dependence

Let Xp×n = (X1, ...,Xn) be the data matrix with the covariance matrix Σ = (σkl)p×p

for eachX i. Let R = (ρkl)p×p be the correlation matrix for eachX i and Rij = (ρijkl)p×p =

(cov(Xki, Xlj)/
√
σkkσll)p×p be the cross-correlation matrix betweenX i andXj . Clearly,

R = Rij when i = j. We say that Xp×n has a PDD temporal dependence if its cross-

correlation matrices {Rij} belong to

B(C0, α) =
{
{Rij} : |Rij|∞ ≤ C0|i− j|−α for any i 6= j

}
(3.1)

with some positive constants C0 and α. This model allows an individual time series to

have the polynomial decay temporal dependence, which is long memory when 0 < α ≤ 1.

Note that for i.i.d. observations we have α = ∞. Our goal is to estimate Σ,R and Ω

while treating {Rij}i 6=j as nuisance parameters that need not be estimated.

3.2.2 Comparisons to Existing Models

For banding and tapering estimators of Σ, Bhattacharjee and Bose (2014) considered

the following weak dependence based on temporal distance. For any n ≥ 1,

An(an) =

{
{Rij} : max

an≤|i−j|≤n
|Θij|∞ = O(n−2an)

}
,

where Θij = (θijkl)p×p with θijkl satisfying ρijkl = θijklρkl, an
√

log p/n = o(1) and {an}n≥1

is a non-decreasing sequence of non-negative integers. That an
√

log p/n = o(1) im-

plies an = o(
√
n). Thus,

∣∣Θij : |i− j| = an
∣∣
∞ ≤ maxan≤|i−j|≤n |Θij|∞ = O(n−2an) =

o(a−3
n ). Then

∑∞
|i−j|=1 |Θ

ij|∞ < ∞, which means that their model does not allow any

individual time series to be a long memory process. Moreover, {Rij} in model (3.1) is not

in the above An(an) when 0 < α ≤ 3 and |Θij|∞ � |i− j|−α for any i 6= j.

Chen et al. (2013) considered the hard thresholding estimation of Σ and an `1-MLE

type estimation of Ω using the functional dependence measure of Wu (2005). Assume
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that {X1t}, the first row of Xp×n, is a stationary process with autocovariance γ1(t), and

follow their setup by letting E(X1t) = 0, then γ1(t) = E(X11X1,t+1). By the argument

in the proof of Theorem 1 in Wu and Pourahmadi (2009) together with Lyapunov’s in-

equality (Karr, 1993) and Theorem 1 of Wu (2005), one can see that their model requires∑∞
t=0 |γ1(t)| < ∞, which means {X1t} cannot be a long memory process. Hence their

model does not cover model (3.1) when 0 < α ≤ 1.

Zhou (2014) was interested in estimating a separable covariance cov(Xpn) = A⊗B,

where Xpn := vec(Xp×n). Her model implies that the autocorrelations {ρijkk}1≤i,j≤n are

the same for all k, indicating a rather restrictive model with homogeneous decay rate for

all p time series.

Now consider the rfMRI data example of a single subject which will be further an-

alyzed in Subsection 3.5.3. The data set consists of 1190 temporal brain images. We

consider 907 functional brain nodes in each image. All node time series have passed the

Priestley-Subba Rao test for stationarity (Priestley and Subba Rao, 1969) with a signifi-

cance level of 0.05 for p-values adjusted by the false discovery rate controlling procedure

of Benjamini and Yekutieli (2001). Hence the autocorrelations {ρijkk} can be approximated

by tha sample autocorrelations {ρ̂k(t)} for each k. To save computational cost, we only

plot the autocorrelations in Figure 3.1. One may make a mild assumption that the cross-

correlations are dominated by the autocorrelations in the sense that |ρijkl| ≤ C|ρijkk| for

a fixed constant C > 0, thus only need to check the autocorrelations in practice. Fig-

ure 3.1(a) shows that max1≤i≤p |ρ̂i(t)| can be bounded by 108t−3, but not by 107t−3. Thus

the temporal dependence assumption of Bhattacharjee and Bose (2014) does not seem to

fit the data well. For a randomly selected brain node, the least squares fitting for a log-

linear model yields |ρ̂1(t)| = 0.26t−0.50, thus the applicability of Chen et al. (2013) is

in question. Figure 3.1(b) illustrates the estimated autocorrelations for two randomly se-
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Figure 3.1: Sample autocorrelations of brain nodes.
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lected brain nodes, which clearly have different patterns, indicating that the assumption of

homogeneous decay rates for all time series in Zhou (2014) does not hold. On the other

hand, Figure 3.1(a) shows that the rfMRI data have the PDD structure with α̂ = 0.25 since

max1≤i≤p |ρ̂i(t)| ≤ t−0.25, assuming the cross-correlations are dominated by the autocor-

relations.

3.2.3 Sub-Gaussian Data

A random variable Z is called sub-Gaussian if there exists a constant K ∈ [0,∞) such

that

(3.2) E(exp{t[Z − E(Z)]}) ≤ exp
{
Kt2/2

}
, for all t ∈ R.

It can be shown that K ≥ var(Z) (Buldygin and Kozachenko, 2000, Lemma 1.2). We

simply call K the parameter of the sub-Gaussian distribution of Z, and call Z standard

sub-Gaussian if E(Z) = 0 and var(Z) = 1.

Throughout the chapter, we assume that the vectorized data are obtained from the fol-

lowing data generating mechanism

(3.3) Xpn = He+ µpn,

where H = (hij)pn×m is a real deterministic matrix, µpn = 1n ⊗µp, and the random vec-

tor e = (e1, . . . , em)T consists of m independent standard sub-Gaussian components with

the same parameter K ≥ 1. We allow m = ∞ by requiring that for each i,
∑m

j=1 hijej

converges both almost surely and in mean square when m → ∞. A sufficient and neces-

sary condition for both modes of convergence is
∑∞

j=1 h
2
ij < ∞ for every i, see Theorem

8.3.4 and its proof in Athreya and Lahiri (2006). Under these two modes of convergence, it

can be shown that E(He) = HE(e) and cov(He) = Hcov(e)HT (Brockwell and Davis,

1991, Proposition 2.7.1). Hence, for either finite or infinite m, we have E(Xpn) = µpn,
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cov(Xpn) = HHT with all n submatrices of dimension p × p on the diagonal equal to

Σ and temporal correlations, particularly those in (3.1), determined by the off-diagonal

submatrices, and moreover,

(3.4) E(exp{t[Xij − E(Xij)]}) ≤ exp{Kσiit2/2}, for all t ∈ R,

which follows from Fatou’s Lemma for m = ∞. The advantage of allowing m = ∞

is that any case with finite m becomes a special example by adding infinite number of

columns of zeros in H. In filtering theory, matrix H is said to be a linear spatio-temporal

coloring filter (Fomin, 1999; Manolakis et al., 2005), which generates the output Xpn

by introducing both spatial and temporal dependence in the input independent variables

e1, . . . , em.

The following are two examples of (3.3) which are widely studied in the literature.

Example III.1 (Gaussian data). Assume thatXpn has a multivariate Gaussian distribution

N (µpn,∆). Then ∆ = HH with a symmetric real matrix H. If ∆ � 0, then Xpn =

He + µpn with e = H−1(Xpn − µpn) ∼ N (0, Ipn×pn). If ∆ is singular, then Xpn has a

degenerate multivariate Gaussian distribution, and can be expressed as Xpn
d
= He+ µpn

with any e ∼ N (0, Ipn×pn). In fact, replacing “ =” in (3.3) by “ d
=” does not affect the

theoretical results.

Example III.2 (Moving average processes). Consider the following vector moving aver-

age processes

(3.5) Xj =
L∑
l=0

Blej−l, with 0 ≤ L ≤ ∞,

where the case with L = ∞ is well-defined in the sense of entrywise almost-sure con-

vergence and mean-square convergence, {Bl} are p× p real deterministic matrices, ej =

(e1j, e2j . . . , epj)
T with {est : 1 ≤ s ≤ p, −∞ ≤ t ≤ n} being independent standard
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sub-Gaussian random variables with the same parameter K ≥ 1. Since every Xij is a

linear combination of {est}, we always can find a matrix H such that Xpn = He with

e = (eT1−L, e
T
2−L, . . . , e

T
n )T . It is well-known that any causal vector autoregressive mov-

ing average process of the form

Xj −A1Xj−1 − · · · −AaXj−a = ej + M1ej−1 + · · ·+ Mbej−b

with finite nonnegative integers a and b, and real deterministic matrices {Ai,Mk}, can be

written in the form of (3.5) with L =∞ (Brockwell and Davis (1991), pp. 418).

3.3 Estimation of Covariance and Correlation Matrices

Consider the set of `q-ball sparse covariance matrices (Bickel and Levina, 2008a; Roth-

man et al., 2009)

(3.6) U(q, cp, v0) =

{
Σ : max

1≤i≤p

p∑
j=1

|σij|q ≤ cp, max
1≤i≤p

σii ≤ v0

}
,

and the corresponding set of correlation matrices

(3.7) R(q, cp) =

{
R : max

1≤i≤p

p∑
j=1

|ρij|q ≤ cp

}
,

where constants v0 > 0 and 0 ≤ q < 1. For any thresholding parameter τ ≥ 0, define

a generalized thresholding function (Rothman et al., 2009) by sτ : R → R satisfying

the following conditions for all z ∈ R: (i) |sτ (z)| ≤ |z|; (ii) sτ (z) = 0 for |z| ≤ τ ;

(iii) |sτ (z)− z| ≤ τ . Such defined generalized thresholding function covers many widely

used thresholding functions, including hard thresholding sHτ (z) = zI(|z| > τ), soft thresh-

olding sSτ (z) = sign(z)(|z| − τ)+, smoothly clipped absolute deviation and adaptive lasso

thresholdings. See details about these examples in Rothman et al. (2009). We define the

generalized thresholding estimators of Σ and R respectively by

Sτ (Σ̂) = (sτ (σ̂ij))p×p and Sτ (R̂) = (sτ (ρ̂ij)I(i 6= j) + I(i = j))p×p ,
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where Σ̂ := (σ̂ij)p×p is the sample covariance matrix defined by

(3.8) Σ̂ =
1

n

n∑
i=1

X iX
T
i − X̄X̄

T

with X̄ = n−1
∑n

i=1X i, and R̂ := (ρ̂ij)p×p =
(
σ̂ij/

√
σ̂iiσ̂jj

)
p×p is the sample correlation

matrix. Then we have the following results.

Theorem III.1. Uniformly on U(q, cp, v0) and B(C0, α), for sufficiently large constant

M > 0, if τ = Mτ ′ and τ ′ = o(1) with

(3.9)

τ ′ :=
√
f0 log(pf0)/n and f0 :=



3C0(n1−α − α)/(1− α), 0 < α < 1,

3C0(1 + log n), α = 1,

[3C0(n1−α − α)/(1− α)]1/α, α > 1,

then

|Sτ (Σ̂)−Σ|∞ = OP (τ ′),

‖Sτ (Σ̂)−Σ‖2 = OP

(
cpτ
′1−q) ,(3.10)

1

p
‖Sτ (Σ̂)−Σ‖2

F = OP

(
cpτ
′2−q) .(3.11)

Moreover, if p ≥ nc for some constant c > 0, then

E
(
|Sτ (Σ̂)−Σ|2∞

)
= O(τ ′2),

E
(
‖Sτ (Σ̂)−Σ‖2

2

)
= O

(
c2
pτ
′2−2q

)
,(3.12)

1

p
E
(
‖Sτ (Σ̂)−Σ‖2

F

)
= O

(
cpτ
′2−q) .(3.13)

Remark III.1. The constant 3 in f0 is chosen for simplicity, which can be replaced by

any arbitrary constant greater than 2. It is easily seen that τ ′ is continuous for α > 0,

and is monotonically decreasing as α increases, i.e., the temporal dependence decreases.
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Treating α as a fixed value, we have

(3.14) τ ′ �



n−α/2(log p+ log n)1/2, 0 < α < 1,

n−1/2[(log n)(log p+ log log n)]1/2, α = 1,

n−1/2(log p)1/2, α > 1,

which can be further simplified to

(3.15) τ ′ �



n−α/2(log p)1/2, 0 < α < 1,

n−1/2[(log n)(log p)]1/2, α = 1,

n−1/2(log p)1/2, α > 1.

when p ≥ nc with some constant c > 0. Thus, for covariance matrix estimation, the rates

of convergence in probability given in (3.10) and (3.11) under PDD temporal dependence

with fixed α > 1 are the same as those under i.i.d. observations given in Bickel and Levina

(2008a) and Rothman et al. (2009). The same rates of convergence in probability are

also obtained by Basu et al. (2015, Proposition 5.1) for certain short-memory stationary

Gaussian data using the hard thresholding method. Moreover, following Cai and Zhou

(2012) under the condition that p ≥ nc1 and cp ≤ c2n
(1−q)/2(log p)−(3−q)/2 with some

constants c1 > 1 and c2 > 0, it can be shown that the convergence rates in mean-squared

norms given in (3.12) and (3.13) for the case with fixed α > 1 are minimax optimal, which

are the same as the optimal minimax rates for the i.i.d. case.

Theorem III.2 (Sparsistency and sign-consistency). Under the conditions for the con-

vergence in probability given in Theorem III.1, we have sτ (σ̂ij) = 0 for all (i, j) where

σij = 0 with probability tending to 1. If additionally assume that all nonzero elements of

Σ satisfy |σij| ≥ 2τ , we then have sign(sτ (σ̂ij)) = sign(σij) for all (i, j) where σij 6= 0

with probability tending to 1.
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Corollary III.1. Theorems III.1 and III.2 hold with Σ̂,Σ, σ̂ij, σij and U(q, cp, v0) replaced

by R̂,R, ρ̂ij, ρij andR(q, cp), respectively.

3.4 Estimation of Precision Matrix

We consider both the CLIME and the SPICE methods for the estimation of Ω, which

originally were developed for i.i.d. data.

3.4.1 CLIME Estimation

Following Cai et al. (2011), we consider the following set of precision matrices

G1(q, cp,Mp, v0) =
{

Ω � 0 : max
1≤i≤p

p∑
j=1

|ωij|q ≤ cp, ‖Ω‖1 ≤Mp,

max
1≤i≤p

{σii, ωii} ≤ v0

}
,(3.16)

where constants 0 ≤ q < 1, v0 > 1, and cp and Mp are allowed to depend on p. We

also assume min{cp,Mp} > 1 for simplicity because it can be shown that min{cp,Mp}

has a positive constant lower bound. The original set considered in Cai et al. (2011) does

not contain the condition maxi{σii, ωii} ≤ v0. But their moment conditions on X (see

their (C1) and (C2)) implies maxi{σii} ≤ v0. The additional condition maxi{ωii} ≤ v0

facilitates the proof of consistency for the temporally dependent observations, which is

easily obtained from the widely used assumption ϕmax(Ω) ≤ v0 (Rothman et al., 2008;

Lam and Fan, 2009). Note that the above G1 contains `q-ball sparse matrices such as those

with exponentially decaying entries from the diagonal, for example, AR(1) matrices. For

an invertible band matrix Σ, its inverse matrix Ω generally has exponentially decaying

entries from the diagonal (Demko et al., 1984).

Let Ω̂
?

ε be a solution of the following optimization problem:

(3.17) min |Ωε|1 subject to |Σ̃εΩε − Ip×p|∞ ≤ λ1, Ωε ∈ Rp×p,
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where Σ̃ε = Σ̂ + εIp×p, Σ̂ is given in (3.8), ε ≥ 0 is a perturbation parameter introduced

for the same reasons given in Cai et al. (2011) and can be set to be n−1/2 in practice (see

Remark III.3 below), and λ1 is a tuning parameter. The CLIME estimator Ω̂ε := (ω̂ijε)p×p

is then obtained by symmetrizing Ω̂
?

ε := (ω̂?ijε)p×p with

ω̂ijε = ω̂jiε = ω̂?ijεI(|ω̂?ijε| ≤ |ω̂?jiε|) + ω̂?jiεI(|ω̂?ijε| > |ω̂?jiε|).

For 1 ≤ i ≤ p, let β̂εi be a solution of the following convex optimization problem:

(3.18) min |βεi|1 subject to |Σ̃εβεi − ei|∞ ≤ λ1,

where βεi is a real vector and ei is the vector with 1 in the i-th coordinate and 0 in

all other coordinates. Cai et al. (2011) showed that solving the optimization problem

(3.17) is equivalent to solving the p optimization problems given in (3.18), i.e., {Ω̂
?

ε} =

{(β̂ε1, ..., β̂εp)}. This equivalence is useful for both numerical implementation and the-

oretical analysis. The following theorem gives the convergence results of CLIME under

PDD temporal dependence.

Theorem III.3. Uniformly on G1(q, cp,Mp, v0) and B(C0, α), for sufficiently large con-

stant M > 0, if λ1 = Mλ′, 0 ≤ ε ≤Mλ′/(2v0) and λ′ = o(1) with

(3.19) λ′ :=
√
f1 log(pf1)/n and f1 := f0 ×


(v0Mp)

2, 0 < α ≤ 1,

(v0Mp)
2/α, α > 1,

then

|Ω̂ε −Ω|∞ = OP (Mpλ
′),

‖Ω̂ε −Ω‖2 = OP

(
cp(Mpλ

′)1−q) ,
1

p
‖Ω̂ε −Ω‖2

F = OP

(
cp(Mpλ

′)2−q) .
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Moreover, if p ≥ nc with some constant c > 0, then for any constant C > 0, there exists a

constantM ′ > 0 such that whenM > M ′ and min
{
p−C ,Mλ′/(2v0)

}
≤ ε ≤Mλ′/(2v0),

we have

E
(
|Ω̂ε −Ω|2∞

)
= O

(
(Mpλ

′)2
)
,

E
(
‖Ω̂ε −Ω‖2

2

)
= O

(
c2
p(Mpλ

′)2−2q
)
,(3.20)

1

p
E
(
‖Ω̂ε −Ω‖2

F

)
= O

(
cp(Mpλ

′)2−q) .(3.21)

Remark III.2. The continuity and monotonicity of λ′ with respect to α is the same as

those of τ ′ given in Remark III.1. Meanwhile, λ′ � M
I(0<α≤1)+I(α>1)/α
p τ ′. When α =∞,

we have λ′ �
√

log p/n, and thus for i.i.d data, the convergence rates of CLIME in mean-

squared norms given in (3.20) and (3.21) attain the minimax optimal convergence rates of

the adaptive CLIME in Cai et al. (2016) under slightly different assumptions. When Mp

is constant, then λ′ � τ ′ and the convergence rates are analogous to those for covariance

matrix estimation given in Theorem III.1.

Remark III.3. As discussed in Cai et al. (2011), the perturbation parameter ε > 0 is

used for a proper initialization of {βεi} in the numerical algorithm, and it also ensures the

existence of E(‖Ω̂ε − Ω‖2
2). When p ≥ nc, let M ≥ 2v0, C0 ≥ 1/3 and C ≥ 1/(2c),

then Mλ′/2v0 ≥ n−1/2 ≥ p−1/(2c) ≥ p−C . Thus, we can simply let ε = n−1/2 in practice,

which is also the default setting of the R package flare (Li et al., 2015) that implements

the CLIME algorithm. A similar choice of ε is given in (10) of Cai et al. (2011) for i.i.d.

observations.

To better recover the sparsity structure of Ω, Cai et al. (2011) introduced additional

thresholding on Ω̂ε. Similarly, we may define a hard-thresholded CLIME estimator Ω̃ε =

(ω̃ijε)p×p by ω̃ijε = ω̂ijεI(|ω̂ijε| > ξ) with tuning parameter ξ ≥ 2Mpλ1. Although such

an estimator enjoys nice theoretical properties given below, how to practically select ξ
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remains unknown.

Theorem III.4 (Sparsistency and sign-consistency). Under the conditions for the conver-

gence in probability given in Theorem III.3, we have ω̃ijε = 0 for all (i, j) where ωij = 0

with probability tending to 1. If additionally assume all nonzero elements of Ω satisfy

|ωij| > ξ + 2Mpλ1, then we have sign(ω̃ijε) = sign(ωij) for all (i, j) where ωij 6= 0 with

probability tending to 1.

3.4.2 SPICE Estimation

For i.i.d. data, Rothman et al. (2008) proposed the SPICE method for estimating the

following precision matrix Ω

(3.22) G2(sp, v0)=
{

Ω :
∑

1≤i 6=j≤p

I(ωij 6= 0) ≤ sp, 0<v
−1
0 ≤ϕmin(Ω)≤ϕmax(Ω)≤v0

}
,

where sp determines the sparsity of Ω and can depend on p, and v0 is a constant. Two

types of SPICE estimators were proposed:

(3.23) Ω̃λ2 = arg min
Ω̃�0, Ω̃=Ω̃T

{
tr(Ω̃Σ̂)− log det(Ω̃) + λ2|Ω̃|1,off

}
,

and

Ω̂λ2 := (ω̂ijλ2)p×p = Ŵ−1K̂λ2Ŵ
−1 with(3.24)

K̂λ2 = arg min
K̂�0, K̂=K̂

T

{
tr(K̂R̂)− log det(K̂) + λ2|K̂|1,off

}
,

where λ2 > 0 is a tuning parameter, and Ŵ = diag{
√
σ̂11, . . . ,

√
σ̂pp} is an estimator of

W = diag{√σ11, . . . ,
√
σpp}. We can see that K̂λ2 is the SPICE estimator of K := R−1.

The SPICE estimator (3.23) is a slight modification of the graphical Lasso (GLasso) esti-

mator of Friedman et al. (2008). GLasso uses |Ω|1 rather than |Ω|1,off in the penalty, but the

SPICE estimators (3.23) and (3.24) are more amenable to theoretical analysis (Rothman

et al., 2008; Lam and Fan, 2009; Ravikumar et al., 2011), and numerically they give similar
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results for i.i.d. data (Rothman et al., 2008). It is worth noting that for i.i.d. data, (3.23) re-

quires
√

(p+ sp) log p/n = o(1) but (3.24) relaxes it to
√

(1 + sp) log p/n = o(1). Sim-

ilar requirements also hold for temporally dependent observations. Hence in this chapter,

we only consider the SPICE estimator given in (3.24).

Theorem III.5. Uniformly on G2(sp, v0) and B(C0, α), for sufficiently large constant

M > 0, if λ2 = Mτ ′ and τ ′ = o(1/
√

1 + sp) with τ ′ defined in (3.9), then

‖K̂λ2 −K‖F = OP (τ ′
√
sp),(3.25)

‖Ω̂λ2 −Ω‖2 = OP (τ ′
√

1 + sp),

1
√
p
‖Ω̂λ2 −Ω‖F = OP

(
τ ′
√

1 + sp/p

)
.

If additionally assume ‖K̂λ2−K‖2 = OP (η) with η = O(τ ′), then with probability tending

to 1, ω̂ijλ2 = 0 for all (i, j) where ωij = 0.

For the case with fixed α > 1, τ ′ �
√

(log p)/n, so the above results in Theo-

rem III.5 are the same as those given in Rothman et al. (2008, Corollary 1 and Theo-

rem 2) and Lam and Fan (2009, Theorem 4) for i.i.d. observations. By the inequal-

ity ‖K̂λ2 − K‖F/
√
p ≤ ‖K̂λ2 − K‖2 ≤ ‖K̂λ2 − K‖F (Golub and Van Loan, 1996)

and equation (3.25), the sparsistency result requires that sp = O(1) if η = τ ′
√
sp, and

sp = O(p) if η = τ ′
√
sp/p. Moreover, the condition τ ′ = o(1/

√
1 + sp) implies

sp = o(τ ′−2) = o(n/ log p), meaning that Ω needs to be very sparse. Such a condition

easily fails for many simple band matrices when p ≥ n.

Under the irrepresentability condition, however, the sparsity requirement can be relaxed

(Ravikumar et al., 2011). In particular, define Γ = R⊗R. By (i, j)-th row of Γ we refer

to its [i + (j − 1)p]-th row, and by (k, l)-th column to its [k + (l − 1)p]-th column. For

any two subsets T and T ′ of {1, ..., p}×{1, ..., p}, denote ΓTT ′ be the card(T )×card(T ′)

matrix with rows and columns of Γ indexed by T and T ′ respectively, where card(T )
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denotes the cardinality of set T . Let S be the set of nonzero entries of Ω and Sc be the

complement of S in {1, ..., p}×{1, ..., p}. Define κR = ‖R‖1 and κΓ = ‖Γ−1
SS‖1. Assume

the following irrepresentability condition of Ravikumar et al. (2011):

(3.26) max
e∈Sc

∣∣ΓeSΓ−1
SS

∣∣
1
≤ 1− β

for some β ∈ (0, 1]. Define d to be the maximum number of nonzeros per row in Ω. Then

we have the following result.

Theorem III.6. Let r = (0.5 + 2.5(1 + 8/β)κΓ)Mτ ′v0, where τ ′ is defined in (3.9).

Uniformly on G2(sp, v0) and B(C0, α), for sufficiently large constant M > 0, if λ2 =

8Mτ ′/β ≤ [6(1 + β/8)dmax{κRκΓ, κ
3
Rκ

2
Γ}]−1 and τ ′ = o(min{1, [(1 + 8/β)κΓ]−1}),

then with probability tending to 1 we have

|Ω̂λ2 −Ω|∞ ≤ r,

‖Ω̂λ2 −Ω‖2 ≤ rmin
{
d,
√
p+ sp

}
,

1
√
p
‖Ω̂λ2 −Ω‖F ≤ r

√
1 + sp/p,

and ω̂ijλ2 = 0 for all (i, j) with ωij = 0. If we further assume all nonzero elements of Ω

satisfy |ωij| > r, then with probability tending to 1, sign(ω̂ijλ2) = sign(ωij) for all (i, j)

where ωij 6= 0.

Consider the case when β remains constant and max{κR, κΓ} has a constant upper

bound. Then the conditions in Theorem III.6 about λ2 and τ ′ reduce to λ2 = M ′τ ′ and

τ ′ = o(1) with a constant M ′ = 8M/β, and meanwhile we have ‖Ω̂λ2 −Ω‖2 = OP (τ ′d).

Then the desired result of ‖Ω̂λ2 − Ω‖2 = oP (1) is achieved under a relaxed sparsity

condition d = o(τ ′−1). If d2 > 1+sp, then sp = o(τ ′−2) and the condition of Theorem III.5

satisfies. Hence ‖Ω̂λ2 − Ω‖2 = OP (τ ′
√

min{d2, 1 + sp}) = oP (1), which is the better

rate between those from Theorems III.5 and III.6.
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3.5 Numerical Experiments

3.5.1 Cross-Validation

For tuning parameter selection, we propose a gap-block cross-validation (CV) method

that includes the following three steps:

1. Split the data Xp×n into H1 ≥ 4 approximately equal-sized non-overlapping blocks

X∗i , i = 1, . . . , H1, such that Xp×n = (X∗1,X
∗
2, . . . ,X

∗
H1

). For each i, set aside block

X∗i that will be used as the validation data, and use the remaining data after further

dropping the neighboring block at either side of X∗i as the training data that are denoted

by X∗∗i .

2. Randomly sampleH2 blocks X∗H1+1, . . . ,X
∗
H1+H2

from Xp×n, where X∗H1+j consists of

dn/H1e consecutive columns of Xp×n for each j = 1, . . . , H2. Note that these sampled

blocks can overlap. For each i = H1 + 1, . . . , H1 + H2, set aside block X∗i as the

validation data, and use the remaining data by further excluding the dn/H1e columns

at either side of X∗i from Xp×n as the training data that are denoted by X∗∗i .

3. LetH = H1 +H2. For generalized thresholding of covariance matrix estimation, select

the optimal tuning parameter τ among a prespecified set of candidates {τj}Jj=1 and

denote it by

τΣ
s = arg min

1≤j≤J

1

H

H∑
i=1

‖Sτj(Σ̂
∗∗
i )− Σ̂

∗
i ‖2
F ,

where Σ̂
∗
i and Σ̂

∗∗
i are the corresponding sample covariance matrices based on X∗i and

X∗∗i , respectively. For the estimation of correlation matrix, we replace Σ̂∗i and Σ̂∗∗i by

R̂∗i and R̂∗∗i , respectively. For the estimation of precision matrix, we choose the optimal

tuning parameter using the loss function tr(Ω̂∗∗λ Σ̂∗)− log det(Ω̂∗∗λ ).

In the above CV method, we use gap blocks, each of size ≈ dn/H1e, to separate train-

ing and validation datasets so that they are nearly uncorrelated. The idea of using gap
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blocks has been employed by the hv-block CV of Racine (2000) for linear models with

dependent data. Similar to the k-fold CV for i.i.d. data, Step 1 guarantees all observations

are used for both training and validation, but is limited due to the constrain of keeping

the temporal ordering of the observations. Step 2 allows more data splits. This is par-

ticularly useful when Step 1 only allows a small number of data splits due to large-size

of the gap block and/or limited sample size n. Step 2 is inspired by the commonly used

repeated random subsampling CV for i.i.d. observations (Syed et al., 2012). The above

loss functions for selecting tuning parameters are widely used in the literature (Bickel and

Levina, 2008a; Rothman et al., 2009; Cai et al., 2011, 2016). The theoretical justification

for the gap-block CV remains open. However, our simulation studies show that the method

performs well for data with PDD temporal dependence.

3.5.2 Simulation Studies

We evaluate the numerical performance of the hard and soft thresholding estimators for

large correlation matrix and the CLIME and SPICE estimators for large precision matrix.

We generate Gaussian data with zero mean and covariance matrix Σ or precision matrix

Ω from one of the following four models:

Model 1: σij = 0.6|i−j|;

Model 2: σii = 1, σi,i+1 = σi+1,i = 0.6, σi,i+2 = σi+2,i = 0.3, and σij = 0 for |i− j| ≥ 3;

Model 3: ωij = 0.6|i−j|;

Model 4: ωii = 1, ωi,i+1 = ωi+1,i = 0.6, ωi,i+2 = ωi+2,i = 0.3, and ωij = 0 for |i−j| ≥ 3.

Similar models have been considered in Bickel and Levina (2008a), Rothman et al. (2008),

Rothman et al. (2009), Cai et al. (2011), and Cai et al. (2016). For the temporal depen-

dence, we set ρijkl = θijklρkl with

(3.27) θijkl = (|i− j|+ 1)−α, 1 ≤ i, j ≤ n,
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Figure 3.2: Approximation of h(x) = x−α for α = 0.1, 0.25, 0.5, 1, 2.

so that |ρijkl| ≤ |θ
ij
kl| ∼ |i− j|−α. It is computationally expensive to simulate data Xpn :=

vec(Xp×n) directly from a multivariate Gaussian random number generator because of the

large dimension of its covariance matrix cov(Xpn). We use an alternative way to simulate

the data that approximately satisfy (3.27). Note that h(x) = x−α, x ∈ [1, n] and α > 0, can

be approximated by ĥ(x) =
∑N

i=0 ai exp(−bix) with small N and appropriately chosen

{ai, bi} by the method of Bochud and Challet (2007) (see Figure 3.2). Thus, data Xp×n

are simulated as follows: each column of Xp×n is generated byX t =
∑N

i=0 ciY
(i)
t for t =

1, ..., n, where ci =
√
ai exp(−bi), Y (i)

1 are i.i.d. N (0,Σ) for all i, and for t = 2, ..., n,

Y
(i)
t = ρiY

(i)
t−1 + e

(i)
t with ρi = exp(−bi) and white noise (1− ρ2

i )
−1/2e

(i)
t i.i.d. N (0,Σ).

It is easily seen that Rt,t+j =
∑N

i=0 c
2
i ρ
j
iR =

∑N
i=0 ai exp{−bi(j + 1)}R ≈ (j + 1)−αR.

Simulations are conducted with sample size n = 200, variable dimension p ranging
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from 100 to 400, and 100 replications under each setting, for which α varies from 0.1 to

2. The i.i.d. case is also considered. For each simulated data set, we choose the optimal

tuning parameter from a set of 50 specified values (see Appendix B.3) using the gap-block

CV with H1 = H2 = 10 for the PDD temporal dependence and the ordinary 10-fold

CV for the i.i.d. case recommended by Fang et al. (2016). The CLIME and SPICE are

computed by the R packages flare (Li et al., 2015) and QUIC (Hsieh et al., 2014),

respectively. For CLIME, we use the default perturbation of flare with ε = n−1/2.

The estimation performance is measured by both the spectral norm and the Frobenius

norm. True-positive rate (TPR) and false-positive rate (FPR) are used for evaluating spar-

sity recovering:

TPR =
#{(i, j) : sτ (ρ̂ij) 6= 0 and ρij 6= 0, i 6= j}

#{(i, j) : ρij 6= 0, i 6= j}
,

and

FPR =
#{(i, j) : sτ (ρ̂ij) 6= 0 and ρij = 0, i 6= j}

#{(i, j) : ρij = 0, i 6= j}

for correlation matrix and similarly for precision matrix. The TPR and FPR are not pro-

vided for Models 1 and 3.

Simulation results are summarized in Tables 3.1-3.3. In all setups, the sample correla-

tion matrix and the inverse of sample covariance matrix (whenever possible) perform the

worst. It is not surprising that the performance of all the regularized estimators gener-

ally is better for weaker temporal dependence or smaller p. The soft thresholding method

performs slightly better than the hard thresholding method in terms of matrix losses for

small α and slightly worse for large α, and always has higher TPRs but bigger FPRs.

The CLIME estimator performs similarly as the SPICE estimator in matrix norms, but

generally yields lower FPRs.

We notice that the SPICE algorithm in the R package QUIC is much faster than the
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CLIME algorithm in the R package flare by using a single computer core. However,

the column-by-column estimating nature of CLIME can speed up using parallel computing

on multiple cores.

3.5.3 rfMRI Data Analysis

Here we analyze a rfMRI data set for the estimation of brain functional connectiv-

ity. The preprocessed rfMRI data of a healthy young woman are provided by the WU-

Minn Human Connectome Project (www.humanconnectome.org). The original data con-

sist of 1,200 temporal brain images and each image contains 229,404 brain voxels with

size 2×2×2 mm3. We discard the first 10 images due to concerns of early nonsteady

magnetization, and for the ease of implementation reduce the image dimension using a

grid-based method (Sripada et al., 2014) to 907 functional brain nodes that are placed in

a regular three-dimensional grid spaced at 12-mm intervals throughout the brain. Each

node consists of a 3-mm voxel-center-to-voxel-center radius pseudosphere, which encom-

passes 19 voxels. The time series for each node is a spatially averaged time series of the

19 voxels within the node. The estimated α from all 907 time series is about 0.25 (see

Subsection 3.2.2, Figure 3.1(a)).

The functional connectivity between two brain nodes can be evaluated by either cor-

relation or partial correlation. Here we follow the convention by simply calling them the

marginal connectivity and the direct connectivity, respectively. For the marginal connec-

tivity, we only apply the hard thresholding method for estimating the correlation matrix

which usually yields less number of false discoveries than the soft thresholding, and find

that 1.47% of all the pairs of nodes are connected with a threshold value of 0.12 to the

sample correlations. For the direct connectivity, we calculate the estimated partial corre-

lations {−ω̂ij/
√
ω̂iiω̂jj, i 6= j} from the precision matrix estimator Ω̂ := (ω̂ij)p×p. Both

CLIME and SPICE yield similar result, hence we only report the result of CLIME. We find
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(a) (b)

(c) (d)

Figure 3.3: rfMRI data analysis for brain functional connectivity. (a) Node degrees of marginal connectivity
found by hard thresholding. (b) Marginally connected nodes and their estimated correlations
to the selected hub. (c) Node degrees of direct connectivity found by CLIME. (d) Directly
connected nodes and their estimated partial correlations to the selected hub. The brain is plotted
in the Montreal Neurological Institute 152 space with Z-coordinates displayed.
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that 2.71% of all the pairs of nodes are connected conditional on all other nodes. Most of

the nonzero estimated partial correlations have small absolute values, with the medium at

0.01 and the maximum at 0.45. About 0.62% of all the pairs of nodes are connected both

marginally and directly.

Define the degree of a node to be the number of its connected nodes, and a hub to be a

high-degree node. We illustrate the node degrees of marginal connectivity and direct con-

nectivity in Figure 3.3 (a) and (c), respectively. The marginal connectivity node degrees

range from 0 to 164 with the medium at 2, and the direct connectivity node degrees range

from 5 to 85 with the medium at 22. The top 10 hubs found by either method are pro-

vided in Appendix B.4 with six overlapping hubs. Seven of the top 10 hubs of marginal

connectivity are spatially close to those in Buckner et al. (2009) and Cole et al. (2010)

obtained from multiple subjects. Note that they arbitrarily used 0.25 as the threshold value

for the sample correlations, whereas our threshold value of 0.12 is selected from cross-

validation. As an illustration, we plot the marginal and the direct connectivity of a single

hub in Figure 3.3 (b) and (d) respectively. The selected hub has 164 marginally connected

nodes and 79 directly connected nodes, where 80% of the directly connected nodes are

also marginally connected. It is located in the right inferior parietal cortex, a part of the

so-called default mode network (Buckner et al., 2008) that is most active during the resting

state.

3.6 Sketched Proofs of Theoretical Results

3.6.1 General Theorems

We first provide theoretical results for the following general model of temporal depen-

dence which includes the PDD temporal dependence as a special case. The proofs of these

general results are provided in Appendix B. Then the theoretical results for the PDD tem-
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poral dependence given in Sections 3.3 and 3.4 can be obtained directly by specifying the

appropriate model parameters, which will be shown in subsection 3.6.2. Consider

(3.28) A(f(n, p), g(n, p)) =

{
{Rij} : max

1≤j≤n

∑
i∈{1≤i≤n:
|i−j|=kf,

k=1,...,bn/fc}

|Rij|∞ ≤ g(n, p)

}

where f(n, p) ∈ [1, n] is an integer-valued function and g(n, p) is a real function. We

sometimes drop the dependence of f, g on n, p for notational simplicity. Define τ0 =√
f log(pf)/n. Then we have the following general theorems.

Theorem III.7. (a). Uniformly on U(q, cp, v0) and A(f, g), for sufficiently large constant

M > 0, if τ = Mτ0 with τ0 = o(1), and lim sup
n→∞

g(n, p) < 1, then

|Sτ (Σ̂)−Σ|∞ = OP (τ0),(3.29)

‖Sτ (Σ̂)−Σ‖2 = OP

(
cpτ

1−q
0

)
,(3.30)

1

p
‖Sτ (Σ̂)−Σ‖2

F = OP

(
cpτ

2−q
0

)
,(3.31)

and sτ (σ̂ij) = 0 for all (i, j) where σij = 0 with probability tending to 1. When all nonzero

elements of Σ satisfy |σij| ≥ 2τ , then sign(sτ (σ̂ij)) = sign(σij) for all (i, j) where σij 6= 0

with probability tending to 1. Moreover, if p ≥ nc for some constant c > 0, then

E
(
|Sτ (Σ̂)−Σ|2∞

)
= O(τ 2

0 ),(3.32)

E
(
‖Sτ (Σ̂)−Σ‖2

2

)
= O

(
c2
pτ

2−2q
0

)
,(3.33)

1

p
E
(
‖Sτ (Σ̂)−Σ‖2

F

)
= O

(
cpτ

2−q
0

)
.(3.34)

(b). Part (a) holds with Σ̂,Σ, σ̂ij, σij and U(q, cp, v0) replaced by R̂,R, ρ̂ij, ρij and

R(q, cp), respectively.

Theorem III.8. Uniformly on G1(q, cp,Mp, v0) andA(f, g), for sufficiently large constant

M > 0, if λ1 = Mτ0 and 0 ≤ ε ≤ Mτ0/(2v0) with τ0 = o(1), and lim sup
n→∞

v2
0M

2
p g < 1,
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then

|Ω̂ε −Ω|∞ = OP (Mpτ0),(3.35)

‖Ω̂ε −Ω‖2 = OP

(
cp(Mpτ0)1−q) ,(3.36)

1

p
‖Ω̂ε −Ω‖2

F = OP

(
cp(Mpτ0)2−q) ,(3.37)

and ω̃ijε = 0 for all (i, j) where ωij = 0 with probability tending to 1. When all nonzero

elements of Ω satisfy |ωij| > ξ + 2Mpλ1, then sign(ω̃ijε) = sign(ωij) for all (i, j) where

ωij 6= 0 with probability tending to 1. Moreover, if p ≥ nc with some constant c > 0, then

for any constant C > 0, there exists a constant M ′ > 0 such that when M > M ′ and

min
{
p−C ,Mτ0/(2v0)

}
≤ ε ≤Mτ0/(2v0), we have

E
(
|Ω̂ε −Ω|2∞

)
= O

(
(Mpτ0)2

)
,

E
(
‖Ω̂ε −Ω‖2

2

)
= O

(
c2
p(Mpτ0)2−2q

)
,

1

p
E
(
‖Ω̂ε −Ω‖2

F

)
= O

(
cp(Mpτ0)2−q) .

Theorem III.9. Uniformly on G2(sp, v0) andA(f, g), for sufficiently large constantM > 0,

if λ2 = Mτ0 with τ0 = o(1/
√

1 + sp), and lim sup
n→∞

g < 1, then

‖K̂λ2 −K‖F = OP (τ0
√
sp),(3.38)

‖Ω̂λ2 −Ω‖2 = OP (τ0

√
1 + sp),(3.39)

1
√
p
‖Ω̂λ2 −Ω‖F = OP

(
τ0

√
1 + sp/p

)
.(3.40)

When ‖K̂λ2 − K‖2 = OP (η) with η = O(τ0), then with probability tending to 1, we

have ω̂ijλ2 = 0 for all (i, j) where ωij = 0. Furthermore, if the conditions λ2 = Mτ0 and

τ0 = o(1/
√

1 + sp) are replaced by λ2 = 8Mτ0/β ≤ [6(1+β/8)dmax{κRκΓ, κ
3
Rκ

2
Γ}]−1

and τ0 = o(min{1, [(1+8/β)κΓ]−1}), let r = (0.5 + 2.5(1 + 8/β)κΓ)Mτ0v0, then under

57



the irrepresentability condition (3.26), with probability tending to 1,

|Ω̂λ2 −Ω|∞ ≤ r,

‖Ω̂λ2 −Ω‖2 ≤ rmin
{
d,
√
p+ sp

}
,

1
√
p
‖Ω̂λ2 −Ω‖F ≤ r

√
1 + sp/p,

and ω̂ijλ2 = 0 for all (i, j) with ωij = 0, and moreover, sign(ω̂ijλ2) = sign(ωij) for all

(i, j) where ωij 6= 0 when all nonzero elements of Ω satisfy |ωij| > r.

3.6.2 Proofs of Main Results for PDD Temporal Dependence

We first show that B(C0, α) ⊂ A(f, g) with suitable choices of f and g. If {Rij} ∈

B(C0, α), then for any f ∈ [1, n], we have

max
1≤j≤n

∑
i∈{1≤i≤n:
|i−j|=kf,

k=1,...,bn/fc}

|Rij|∞/(2C0) ≤ (f)−α + (2f)−α + · · ·+ (bn/fcf)−α

≤

(
1 +

∫ bn/fc
1

y−αdy

)
/fα

≤


f−α[(n/f)1−α − α]/(1− α), α 6= 1,

f−1[1 + log(n/f)], α = 1.

Thus, B(C0, α) ⊂ A(f, g) with

(3.41) g = 2C0 ×


f−α[(n/f)1−α − α]/(1− α), α 6= 1,

f−1[1 + log(n/f)], α = 1.

We then show that all the theoretical results given in Sections 3.3 and 3.4 for B(C0, α)

can be obtained from the general theorems in Subsection 3.6.1 by specifying appropriate f .

Proofs of Theorems III.1, III.2 and Corollary III.1. These results are for generalized thresh-

olding estimators under B(C0, α). We only need to consider the choice of f such that g

given in (3.41) also satisfies the assumption lim sup
n→∞

g < 1 in Theorem III.7.
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Since (3.41) gives

g = 2C0 ×



f−1(n1−α − αf 1−α)/(1− α), 0 < α < 1

f−1(1 + log n− log f), α = 1,

f−α[α− (f/n)α−1]/(α− 1), α > 1,

≤ 2C0 ×



f−1(n1−α − α)/(1− α), 0 < α < 1,

f−1(1 + log n), α = 1,

f−α(n1−α − α)/(1− α), α > 1,

(3.42)

then letting (3.42) be less than 2/3 for convenience (or any constant in (0, 1)), we obtain

f > f0 with f0 given in (3.9). Thus, f = bf0c+ 1 is an appropriate choice, and then plug-

ging it into τ0 =
√
f log(pf)/n yields τ0 � τ ′ that is given in (3.9). Hence, the theoretical

results of generalized thresholding for B(C0, α) automatically follow from Theorem III.7

with f = bf0c+ 1 and g given in (3.41).

Proofs of Theorems III.3 and III.4. For CLIME, Theorem III.8 requires lim sup
n→∞

v2
0M

2
p g <

1. Set v2
0M

2
p g < 2/3 for simplicity. Following the same steps shown in the above, we

obtain an appropriate choice that f = bf1c + 1 with f1 given in (3.19). Plugging it into

τ0 =
√
f log(pf)/n yields τ0 � λ′ that is also given in (3.19). Then apply Theorem III.8

to B(C0, α) with f = bf1c+ 1 and g given in (3.41).

Proofs of Theorems III.5 and III.6. For SPICE, Theorem III.9 requires lim sup
n→∞

g < 1 that

is the same condition required by Theorem III.7 for generalized thresholding. Hence, we

use the same choice of f , i.e., f = bf0c + 1. Then apply Theorem III.9 to B(C0, α) with

f = bf0c+ 1 and g given in (3.41).

59



Ta
bl

e
3.

1:
C

om
pa

ri
so

n
of

av
er

ag
e

(S
D

)m
at

ri
x

lo
ss

es
fo

rc
or

re
la

tio
n

m
at

ri
x

es
tim

at
io

n

M
od

el
1

M
od

el
2

p
α

R̂
H

ar
d

So
ft

R̂
H

ar
d

So
ft

R̂
H

ar
d

So
ft

R̂
H

ar
d

So
ft

Sp
ec

tr
al

no
rm

Fr
ob

en
iu

s
no

rm
Sp

ec
tr

al
no

rm
Fr

ob
en

iu
s

no
rm

10
0

0.
1

13
.7

(1
.6

8)
2.

8(
0.

09
)

2.
6(

0.
07

)
22

.6
(1

.0
8)

9.
9(

0.
28

)
8.

7(
0.

24
)

13
.8

(1
.7

1)
1.

8(
0.

04
)

1.
6(

0.
04

)
22

.6
(1

.0
5)

8.
7(

0.
29

)
7.

7(
0.

22
)

0.
25

10
.5

(1
.5

9)
2.

4(
0.

15
)

2.
4(

0.
08

)
17

.4
(0

.9
5)

8.
1(

0.
42

)
7.

5(
0.

26
)

10
.5

(1
.6

1)
1.

5(
0.

18
)

1.
4(

0.
09

)
17

.5
(0

.9
4)

6.
7(

0.
48

)
6.

5(
0.

24
)

0.
5

7.
8(

1.
14

)
2.

0(
0.

15
)

2.
2(

0.
08

)
14

.3
(0

.6
9)

6.
8(

0.
33

)
6.

6(
0.

23
)

7.
8(

1.
10

)
1.

2(
0.

17
)

1.
3(

0.
07

)
14

.3
(0

.6
6)

5.
2(

0.
34

)
5.

6(
0.

21
)

1
4.

2(
0.

45
)

1.
5(

0.
10

)
1.

7(
0.

08
)

9.
9(

0.
29

)
5.

2(
0.

23
)

5.
1(

0.
20

)
4.

2(
0.

40
)

0.
7(

0.
09

)
1.

0(
0.

05
)

10
.0

(0
.2

7)
4.

0(
0.

17
)

4.
1(

0.
16

)
2

2.
6(

0.
24

)
1.

1(
0.

09
)

1.
4(

0.
08

)
7.

5(
0.

17
)

3.
9(

0.
15

)
4.

0(
0.

19
)

2.
5(

0.
18

)
0.

6(
0.

05
)

0.
8(

0.
04

)
7.

5(
0.

14
)

2.
6(

0.
25

)
3.

2(
0.

13
)

i.i
.d

.
2.

4(
0.

18
)

1.
0(

0.
08

)
1.

3(
0.

08
)

7.
0(

0.
15

)
3.

5(
0.

13
)

3.
7(

0.
15

)
2.

3(
0.

15
)

0.
5(

0.
07

)
0.

7(
0.

04
)

7.
0(

0.
13

)
2.

0(
0.

23
)

2.
8(

0.
12

)
20

0
0.

1
27

.2
(2

.6
9)

2.
9(

0.
05

)
2.

8(
0.

04
)

45
.6

(1
.5

4)
14

.5
(0

.2
5)

13
.1

(0
.2

2)
27

.2
(2

.6
2)

1.
8(

0.
02

)
1.

7(
0.

03
)

45
.6

(1
.5

1)
12

.9
(0

.2
8)

11
.6

(0
.2

1)
0.

25
20

.6
(2

.5
4)

2.
5(

0.
14

)
2.

5(
0.

06
)

35
.0

(1
.3

9)
12

.2
(0

.5
6)

11
.4

(0
.2

9)
20

.6
(2

.2
9)

1.
6(

0.
15

)
1.

5(
0.

07
)

35
.0

(1
.2

9)
10

.3
(0

.5
6)

9.
9(

0.
27

)
0.

5
15

.2
(1

.7
7)

2.
2(

0.
12

)
2.

3(
0.

06
)

28
.7

(0
.9

9)
10

.2
(0

.4
0)

10
.1

(0
.2

5)
15

.1
(1

.5
8)

1.
3(

0.
14

)
1.

4(
0.

05
)

28
.8

(0
.8

8)
7.

9(
0.

43
)

8.
6(

0.
21

)
1

7.
8(

0.
64

)
1.

6(
0.

08
)

1.
9(

0.
06

)
20

.1
(0

.3
5)

7.
9(

0.
24

)
7.

9(
0.

21
)

7.
7(

0.
57

)
0.

8(
0.

10
)

1.
1(

0.
04

)
20

.1
(0

.3
4)

5.
8(

0.
15

)
6.

5(
0.

20
)

2
4.

3(
0.

24
)

1.
3(

0.
08

)
1.

6(
0.

06
)

15
.1

(0
.1

5)
5.

9(
0.

19
)

6.
3(

0.
18

)
4.

2(
0.

18
)

0.
6(

0.
05

)
0.

9(
0.

04
)

15
.2

(0
.1

4)
4.

2(
0.

30
)

5.
0(

0.
13

)
i.i

.d
.

3.
8(

0.
22

)
1.

1(
0.

07
)

1.
5(

0.
06

)
14

.1
(0

.1
5)

5.
3(

0.
14

)
5.

8(
0.

17
)

3.
6(

0.
16

)
0.

6(
0.

06
)

0.
8(

0.
04

)
14

.1
(0

.1
4)

3.
2(

0.
23

)
4.

4(
0.

12
)

30
0

0.
1

40
.6

(3
.3

9)
3.

0(
0.

03
)

2.
8(

0.
03

)
68

.5
(1

.8
8)

18
.0

(0
.2

1)
16

.5
(0

.2
4)

40
.8

(3
.5

4)
1.

8(
0.

05
)

1.
7(

0.
02

)
68

.7
(1

.8
4)

16
.0

(0
.2

7)
14

.6
(0

.2
4)

0.
25

30
.9

(3
.2

3)
2.

6(
0.

11
)

2.
6(

0.
04

)
52

.6
(1

.7
5)

15
.4

(0
.6

3)
14

.5
(0

.3
0)

30
.8

(2
.9

5)
1.

7(
0.

17
)

1.
6(

0.
13

)
52

.6
(1

.6
2)

13
.2

(0
.6

9)
12

.5
(0

.2
8)

0.
5

22
.5

(2
.1

6)
2.

3(
0.

12
)

2.
4(

0.
04

)
43

.2
(1

.1
6)

12
.8

(0
.4

7)
12

.9
(0

.2
7)

22
.4

(2
.0

4)
1.

4(
0.

12
)

1.
4(

0.
09

)
43

.3
(1

.1
0)

10
.1

(0
.5

7)
10

.9
(0

.2
5)

1
11

.2
(0

.7
9)

1.
7(

0.
05

)
2.

0(
0.

05
)

30
.2

(0
.4

2)
9.

9(
0.

21
)

10
.1

(0
.2

5)
11

.1
(0

.7
3)

0.
9(

0.
08

)
1.

1(
0.

03
)

30
.3

(0
.4

1)
7.

3(
0.

16
)

8.
3(

0.
20

)
2

5.
8(

0.
27

)
1.

3(
0.

08
)

1.
7(

0.
05

)
22

.8
(0

.1
6)

7.
5(

0.
25

)
8.

2(
0.

19
)

5.
6(

0.
22

)
0.

6(
0.

04
)

0.
9(

0.
04

)
22

.8
(0

.1
4)

5.
5(

0.
29

)
6.

5(
0.

18
)

i.i
.d

.
5.

0(
0.

20
)

1.
2(

0.
08

)
1.

6(
0.

05
)

21
.2

(0
.1

5)
6.

7(
0.

12
)

7.
5(

0.
17

)
4.

7(
0.

15
)

0.
6(

0.
05

)
0.

8(
0.

03
)

21
.2

(0
.1

3)
4.

1(
0.

21
)

5.
7(

0.
12

)
40

0
0.

1
54

.2
(4

.0
1)

3.
0(

0.
02

)
2.

9(
0.

02
)

91
.7

(2
.1

7)
20

.9
(0

.1
7)

19
.4

(0
.2

2)
54

.0
(3

.6
1)

1.
8(

0.
04

)
1.

7(
0.

02
)

91
.7

(1
.9

7)
18

.6
(0

.1
6)

17
.2

(0
.1

5)
0.

25
41

.0
(3

.8
8)

2.
7(

0.
09

)
2.

7(
0.

04
)

70
.1

(2
.0

9)
18

.4
(0

.6
1)

17
.1

(0
.2

9)
41

.1
(3

.5
8)

1.
7(

0.
09

)
1.

7(
0.

12
)

70
.2

(1
.8

9)
15

.8
(0

.6
3)

14
.9

(0
.3

3)
0.

5
29

.8
(2

.6
2)

2.
3(

0.
12

)
2.

5(
0.

04
)

57
.7

(1
.3

8)
15

.2
(0

.5
9)

15
.3

(0
.3

0)
29

.7
(2

.5
3)

1.
5(

0.
17

)
1.

5(
0.

08
)

57
.7

(1
.2

9)
12

.1
(0

.6
2)

13
.0

(0
.2

4)
1

14
.6

(0
.9

1)
1.

7(
0.

05
)

2.
1(

0.
04

)
40

.3
(0

.4
8)

11
.6

(0
.2

2)
12

.1
(0

.2
0)

14
.5

(0
.8

6)
0.

9(
0.

08
)

1.
1(

0.
03

)
40

.4
(0

.4
6)

8.
6(

0.
16

)
10

.0
(0

.2
3)

2
7.

2(
0.

26
)

1.
4(

0.
07

)
1.

8(
0.

04
)

30
.4

(0
.1

6)
9.

0(
0.

27
)

9.
8(

0.
23

)
7.

0(
0.

26
)

0.
7(

0.
04

)
0.

9(
0.

03
)

30
.4

(0
.1

4)
6.

6(
0.

26
)

7.
7(

0.
15

)
i.i

.d
.

6.
0(

0.
21

)
1.

2(
0.

08
)

1.
6(

0.
05

)
28

.2
(0

.1
5)

7.
9(

0.
14

)
8.

9(
0.

17
)

5.
7(

0.
18

)
0.

6(
0.

05
)

0.
9(

0.
03

)
28

.3
(0

.1
3)

4.
9(

0.
21

)
6.

8(
0.

12
)

60



Ta
bl

e
3.

2:
C

om
pa

ri
so

n
of

av
er

ag
e

(S
D

)m
at

ri
x

lo
ss

es
fo

rp
re

ci
si

on
m

at
ri

x
es

tim
at

io
n

M
od

el
3

M
od

el
4

p
α

Σ̂
−
1

C
L

IM
E

SP
IC

E
Σ̂

−
1

C
L

IM
E

SP
IC

E
Σ̂

−
1

C
L

IM
E

SP
IC

E
Σ̂

−
1

C
L

IM
E

SP
IC

E

Sp
ec

tr
al

no
rm

Fr
ob

en
iu

s
no

rm
Sp

ec
tr

al
no

rm
Fr

ob
en

iu
s

no
rm

10
0

0.
1

38
1.

7(
40

.0
7)

4.
9(

0.
26

)
5.

7(
0.

53
)

85
0.

5(
38

.2
2)

28
.8

(1
.5

4)
27

.1
(1

.4
6)

35
5.

4(
37

.6
2)

4.
9(

0.
40

)
5.

9(
0.

72
)

82
9.

5(
35

.7
8)

28
.0

(2
.0

5)
26

.5
(1

.6
8)

0.
25

97
.6

(9
.2

3)
1.

8(
0.

09
)

2.
2(

0.
08

)
21

4.
6(

9.
38

)
9.

5(
0.

34
)

9.
3(

0.
20

)
91

.1
(8

.4
2)

1.
9(

0.
31

)
1.

7(
0.

19
)

20
9.

0(
8.

63
)

8.
2(

1.
03

)
7.

3(
0.

30
)

0.
5

43
.3

(4
.6

0)
2.

4(
0.

09
)

2.
7(

0.
06

)
93

.9
(4

.3
6)

7.
7(

0.
15

)
8.

6(
0.

15
)

40
.7

(4
.2

9)
1.

1(
0.

10
)

1.
4(

0.
07

)
91

.6
(3

.9
6)

4.
7(

0.
17

)
5.

8(
0.

19
)

1
21

.8
(2

.7
4)

2.
6(

0.
06

)
2.

9(
0.

04
)

45
.4

(2
.7

3)
8.

0(
0.

19
)

9.
2(

0.
15

)
20

.5
(2

.4
4)

1.
3(

0.
07

)
1.

6(
0.

06
)

44
.4

(2
.4

4)
5.

1(
0.

26
)

6.
2(

0.
21

)
2

14
.1

(1
.8

0)
2.

7(
0.

05
)

2.
9(

0.
04

)
28

.9
(1

.8
6)

8.
0(

0.
20

)
9.

1(
0.

14
)

13
.3

(1
.6

2)
1.

4(
0.

07
)

1.
6(

0.
05

)
28

.3
(1

.7
0)

5.
3(

0.
25

)
6.

3(
0.

17
)

i.i
.d

.
12

.6
(1

.6
6)

2.
5(

0.
06

)
2.

8(
0.

04
)

25
.5

(1
.5

6)
7.

4(
0.

20
)

8.
6(

0.
15

)
11

.8
(1

.4
4)

1.
2(

0.
06

)
1.

4(
0.

05
)

25
.0

(1
.3

7)
4.

6(
0.

24
)

5.
7(

0.
18

)
20

0
0.

1
N

/A
6.

2(
0.

38
)

5.
8(

0.
48

)
N

/A
49

.6
(2

.4
6)

38
.4

(1
.4

8)
N

/A
5.

4(
0.

50
)

5.
6(

0.
61

)
N

/A
41

.4
(2

.8
9)

33
.9

(1
.6

1)
0.

25
N

/A
2.

1(
0.

12
)

2.
4(

0.
06

)
N

/A
14

.8
(0

.5
2)

13
.7

(0
.1

8)
N

/A
1.

8(
0.

19
)

1.
6(

0.
14

)
N

/A
11

.5
(0

.5
9)

10
.5

(0
.1

8)
0.

5
N

/A
2.

6(
0.

07
)

2.
8(

0.
04

)
N

/A
11

.9
(0

.1
8)

12
.8

(0
.1

2)
N

/A
1.

4(
0.

11
)

1.
7(

0.
04

)
N

/A
8.

5(
0.

32
)

9.
6(

0.
17

)
1

N
/A

2.
9(

0.
05

)
3.

1(
0.

03
)

N
/A

12
.4

(0
.2

3)
13

.7
(0

.1
4)

N
/A

1.
6(

0.
06

)
1.

8(
0.

03
)

N
/A

9.
1(

0.
38

)
10

.5
(0

.2
1)

2
N

/A
2.

9(
0.

04
)

3.
1(

0.
02

)
N

/A
12

.6
(0

.2
1)

13
.8

(0
.0

9)
N

/A
1.

6(
0.

05
)

1.
8(

0.
03

)
N

/A
9.

2(
0.

32
)

10
.8

(0
.1

7)
i.i

.d
.

N
/A

2.
7(

0.
04

)
3.

0(
0.

02
)

N
/A

11
.6

(0
.2

4)
13

.3
(0

.1
4)

N
/A

1.
4(

0.
06

)
1.

7(
0.

03
)

N
/A

7.
8(

0.
34

)
9.

9(
0.

17
)

30
0

0.
1

N
/A

5.
3(

0.
36

)
5.

9(
0.

45
)

N
/A

51
.2

(2
.8

5)
47

.1
(1

.4
8)

N
/A

6.
0(

0.
54

)
5.

6(
0.

67
)

N
/A

54
.7

(4
.2

6)
39

.8
(1

.5
8)

0.
25

N
/A

2.
4(

0.
11

)
2.

4(
0.

05
)

N
/A

18
.0

(0
.3

6)
17

.1
(0

.1
8)

N
/A

1.
6(

0.
12

)
1.

6(
0.

14
)

N
/A

14
.0

(0
.3

0)
13

.2
(0

.1
3)

0.
5

N
/A

2.
8(

0.
07

)
2.

9(
0.

03
)

N
/A

15
.7

(0
.2

7)
15

.9
(0

.1
3)

N
/A

1.
8(

0.
07

)
1.

8(
0.

04
)

N
/A

13
.1

(0
.5

1)
12

.5
(0

.2
0)

1
N

/A
3.

0(
0.

04
)

3.
1(

0.
02

)
N

/A
15

.9
(0

.2
8)

17
.1

(0
.1

2)
N

/A
1.

9(
0.

06
)

1.
9(

0.
03

)
N

/A
13

.1
(0

.5
3)

13
.8

(0
.2

0)
2

N
/A

3.
0(

0.
03

)
3.

1(
0.

01
)

N
/A

16
.1

(0
.2

2)
17

.3
(0

.0
9)

N
/A

1.
8(

0.
05

)
2.

0(
0.

03
)

N
/A

12
.6

(0
.3

9)
14

.2
(0

.2
0)

i.i
.d

.
N

/A
2.

8(
0.

04
)

3.
1(

0.
02

)
N

/A
15

.0
(0

.2
6)

16
.8

(0
.1

1)
N

/A
1.

5(
0.

05
)

1.
8(

0.
02

)
N

/A
10

.5
(0

.3
8)

13
.2

(0
.1

9)
40

0
0.

1
N

/A
5.

8(
0.

44
)

6.
0(

0.
37

)
N

/A
63

.9
(4

.2
9)

54
.7

(1
.6

0)
N

/A
5.

1(
0.

46
)

5.
4(

0.
62

)
N

/A
54

.4
(4

.1
2)

44
.6

(1
.4

3)
0.

25
N

/A
2.

6(
0.

08
)

2.
5(

0.
05

)
N

/A
20

.8
(0

.2
2)

20
.0

(0
.1

9)
N

/A
1.

8(
0.

09
)

1.
7(

0.
14

)
N

/A
17

.5
(0

.2
8)

15
.5

(0
.1

1)
0.

5
N

/A
2.

9(
0.

06
)

2.
9(

0.
03

)
N

/A
19

.0
(0

.3
1)

18
.6

(0
.1

2)
N

/A
2.

0(
0.

06
)

1.
9(

0.
03

)
N

/A
17

.3
(0

.5
5)

14
.9

(0
.1

9)
1

N
/A

3.
0(

0.
04

)
3.

1(
0.

02
)

N
/A

19
.0

(0
.3

2)
19

.9
(0

.1
3)

N
/A

2.
0(

0.
06

)
2.

0(
0.

02
)

N
/A

16
.7

(0
.5

9)
16

.5
(0

.2
0)

2
N

/A
3.

1(
0.

03
)

3.
2(

0.
01

)
N

/A
19

.0
(0

.2
4)

20
.2

(0
.1

0)
N

/A
1.

9(
0.

05
)

2.
0(

0.
02

)
N

/A
15

.9
(0

.5
0)

17
.1

(0
.2

0)
i.i

.d
.

N
/A

2.
9(

0.
04

)
3.

1(
0.

01
)

N
/A

17
.9

(0
.3

1)
19

.7
(0

.1
0)

N
/A

1.
7(

0.
06

)
1.

9(
0.

02
)

N
/A

13
.5

(0
.4

8)
16

.0
(0

.2
0)

61



Ta
bl

e
3.

3:
C

om
pa

ri
so

n
of

av
er

ag
e

(S
D

)T
PR

(%
)/

FP
R

(%
)f

or
M

od
el

s
2

&
4

M
od

el
2

M
od

el
4

p
α

H
ar

d
So

ft
C

L
IM

E
SP

IC
E

10
0

0.
1

10
.8

6(
4.

35
)/

0.
02

(0
.0

3)
54

.1
9(

4.
41

)/
4.

98
(1

.2
6)

91
.2

8(
2.

76
)/

25
.4

9(
2.

37
)

82
.9

9(
2.

76
)/

28
.9

7(
1.

04
)

0.
25

35
.1

6(
5.

43
)/

0.
07

(0
.0

6)
70

.7
2(

3.
96

)/
6.

10
(1

.1
6)

92
.6

5(
2.

35
)/

17
.8

2(
1.

84
)

90
.9

3(
2.

19
)/

29
.6

8(
1.

31
)

0.
5

48
.4

3(
3.

76
)/

0.
06

(0
.0

6)
80

.4
3(

3.
19

)/
6.

75
(1

.1
9)

95
.3

0(
1.

73
)/

17
.8

0(
1.

47
)

96
.0

0(
1.

54
)/

31
.5

8(
1.

49
)

1
60

.9
2(

4.
25

)/
0.

02
(0

.0
3)

94
.3

4(
2.

12
)/

7.
23

(1
.3

9)
98

.4
7(

0.
90

)/
14

.3
7(

1.
21

)
99

.2
4(

0.
66

)/
30

.6
5(

1.
49

)
2

83
.9

3(
4.

08
)/

0.
04

(0
.0

5)
99

.3
3(

0.
73

)/
7.

47
(1

.5
7)

99
.7

1(
0.

36
)/

11
.9

9(
1.

27
)

99
.9

4(
0.

17
)/

27
.7

7(
1.

34
)

i.i
.d

.
93

.4
2(

2.
63

)/
0.

13
(0

.0
9)

99
.9

1(
0.

21
)/

11
.4

2(
1.

82
)

99
.9

1(
0.

20
)/

16
.2

1(
1.

63
)

99
.9

9(
0.

07
)/

31
.4

0(
1.

28
)

20
0

0.
1

5.
57

(2
.9

3)
/0

.0
0(

0.
00

)
45

.9
1(

3.
86

)/
2.

40
(0

.5
5)

82
.2

4(
2.

70
)/

12
.7

2(
0.

64
)

76
.0

7(
1.

95
)/

17
.7

8(
0.

56
)

0.
25

28
.3

1(
4.

75
)/

0.
02

(0
.0

2)
64

.7
1(

3.
23

)/
3.

20
(0

.6
9)

84
.8

3(
2.

28
)/

15
.7

0(
2.

62
)

84
.7

5(
1.

90
)/

18
.8

7(
0.

59
)

0.
5

44
.4

8(
3.

02
)/

0.
02

(0
.0

2)
74

.3
8(

2.
42

)/
3.

40
(0

.5
9)

89
.5

5(
2.

39
)/

13
.2

1(
3.

00
)

91
.6

5(
1.

45
)/

20
.0

7(
0.

64
)

1
57

.4
5(

2.
14

)/
0.

01
(0

.0
1)

91
.4

0(
2.

11
)/

3.
84

(0
.8

1)
93

.8
1(

1.
52

)/
7.

27
(0

.5
8)

97
.1

2(
0.

97
)/

19
.0

7(
0.

85
)

2
79

.0
4(

3.
66

)/
0.

02
(0

.0
1)

98
.7

1(
0.

67
)/

3.
73

(0
.5

8)
97

.7
7(

0.
97

)/
4.

86
(0

.5
5)

99
.3

1(
0.

42
)/

16
.2

5(
0.

81
)

i.i
.d

.
90

.7
4(

2.
68

)/
0.

07
(0

.0
5)

99
.6

8(
0.

31
)/

6.
64

(0
.6

5)
99

.5
6(

0.
36

)/
7.

24
(0

.7
9)

99
.8

8(
0.

18
)/

19
.4

2(
0.

81
)

30
0

0.
1

4.
15

(2
.5

0)
/0

.0
0(

0.
00

)
40

.6
1(

3.
94

)/
1.

50
(0

.4
3)

82
.6

0(
3.

59
)/

12
.7

1(
2.

55
)

71
.6

6(
1.

71
)/

13
.0

5(
0.

34
)

0.
25

24
.2

8(
4.

85
)/

0.
01

(0
.0

1)
61

.2
7(

2.
70

)/
2.

13
(0

.4
2)

77
.6

2(
2.

62
)/

14
.3

9(
2.

62
)

81
.0

9(
1.

71
)/

14
.0

6(
0.

39
)

0.
5

41
.7

5(
3.

51
)/

0.
01

(0
.0

1)
71

.6
5(

2.
51

)/
2.

43
(0

.4
7)

82
.2

3(
2.

48
)/

14
.3

3(
3.

57
)

88
.7

1(
1.

44
)/

14
.9

8(
0.

42
)

1
55

.4
2(

2.
10

)/
0.

00
(0

.0
0)

89
.4

1(
1.

80
)/

2.
61

(0
.4

4)
86

.8
4(

2.
58

)/
4.

71
(0

.6
7)

94
.8

7(
1.

02
)/

14
.2

0(
0.

54
)

2
74

.3
9(

3.
23

)/
0.

01
(0

.0
1)

98
.1

1(
0.

69
)/

2.
49

(0
.5

7)
94

.8
8(

1.
38

)/
2.

84
(0

.4
1)

98
.2

7(
0.

68
)/

11
.5

9(
0.

65
)

i.i
.d

.
88

.9
7(

2.
29

)/
0.

04
(0

.0
2)

99
.5

7(
0.

34
)/

4.
77

(0
.8

4)
98

.8
3(

0.
49

)/
4.

89
(0

.5
8)

99
.5

6(
0.

29
)/

14
.3

2(
0.

70
)

40
0

0.
1

2.
65

(1
.2

9)
/0

.0
0(

0.
00

)
36

.8
0(

2.
27

)/
1.

02
(0

.2
3)

83
.0

4(
2.

84
)/

14
.9

1(
2.

84
)

68
.5

1(
1.

49
)/

10
.3

6(
0.

24
)

0.
25

20
.8

1(
3.

74
)/

0.
01

(0
.0

0)
58

.3
0(

2.
86

)/
1.

54
(0

.3
5)

76
.7

6(
3.

46
)/

15
.1

1(
3.

40
)

78
.5

0(
1.

41
)/

11
.4

1(
0.

32
)

0.
5

40
.1

4(
3.

58
)/

0.
01

(0
.0

1)
68

.7
4(

2.
06

)/
1.

68
(0

.3
5)

78
.5

8(
2.

35
)/

15
.6

7(
3.

64
)

86
.1

9(
1.

44
)/

12
.2

0(
0.

35
)

1
53

.8
2(

1.
65

)/
0.

00
(0

.0
0)

87
.5

1(
1.

87
)/

1.
80

(0
.4

0)
79

.4
4(

3.
05

)/
4.

40
(0

.7
7)

92
.8

5(
1.

09
)/

11
.5

5(
0.

41
)

2
72

.1
9(

2.
58

)/
0.

00
(0

.0
0)

97
.7

9(
0.

66
)/

1.
97

(0
.2

2)
90

.4
7(

2.
32

)/
1.

92
(0

.3
5)

96
.6

8(
0.

85
)/

8.
97

(0
.5

5)
i.i

.d
.

87
.5

1(
1.

65
)/

0.
03

(0
.0

1)
99

.3
8(

0.
30

)/
3.

93
(0

.4
0)

97
.6

3(
0.

82
)/

3.
50

(0
.5

2)
99

.0
9(

0.
39

)/
11

.3
4(

0.
60

)

62



CHAPTER IV

Estimation of Large Covariance and Precision Matrices from Multiple
Independent Samples of Temporally Dependent Observations

4.1 Introduction

Group-level functional connectivity analysis is important for understanding the brain

mechanisms underlying mental diseases (see, e.g., Tomson et al., 2015). We are interested

in estimating the group-level functional connectivity of p brain nodes (regions or voxels)

using n rfMRI images obtained from L subjects in a group of interest. Suppose that the

L samples are independent, and each of the n images has the same mean and the same

p × p covariance matrix Σ. Our goal is to estimate Σ or the correlation matrix R for

the marginal functional connectivity, and the precision matrix Ω = Σ−1 for the direct

functional connectivity.

A traditional estimator of Σ is the sample covariance matrix Σ̂ for the concatenation of

all the n image observations (Smith et al., 2013; Ng et al., 2013). Although Σ̂ is not a con-

sistent estimator for Σ when p grows with n (Bai and Yin, 1993; Bai and Silverstein, 2010),

we can use it as the initial estimator of Σ in many consistent procedures for estimating Σ,

R and Ω. In this chapter, we focus on the generalized thresholding estimation of Σ and R

as well as the SPICE and CLIME approaches of Ω for the multiple independent samples

of temporally dependent sub-Gaussian observations. We then apply these approaches to

assessing the group-level functional connectivity of patients with attention deficit hyperac-
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tivity disorder (ADHD) compared to normal controls using the rfMRI data obtained from

the ADHD-200 Preprocessed repository (neurobureau.projects.nitrc.org/ADHD200).

Multiple independent samples provide faster convergence rates. For example, when

all the L samples have the same sample size n1 and the same PDD temporal dependence

B(C0, α) defined in (3.1) with α ∈ (0, 1), the convergence rates given in Chapter III by

applying the PDD model directly to the total Ln1 observations are mainly driven by the

factor
√

(log p)/(Ln1)α, but we will show that using the independence of the samples,

the convergence rates are primarily controlled by the factor
√

(log p)/Lnα1 , a faster rate

when L → ∞. To achieve such an improvement, we use a different proof technique to

that in Chapter III. Recall that in Chapter III, following the grouping idea of Bhattacharjee

and Bose (2014), we established the desirable concentration inequality from a set of in-

equalities obtained for a careful partition of the temporal observations. In this chapter, we

establish a different concentration inequality for the independent samples using the large

deviation inequalities given in Vershynin (2012). For L = 1, this new proof yields faster

rates under certain conditions for generalized thresholding estimation of Σ (or R) and the

SPICE estimation of Ω. For CLIME, however, the improvement is not guaranteed. More-

over, the considered family of temporal dependence in this chapter is characterized only

by the autocorrelations of each time series without considering the cross-correlations that

need some care in Chapter III.

The gap-block cross-validation was proposed in Chapter III for temporally dependent

observations. With multiple independent samples, however, we no longer need gap-blocks.

The usual k-fold cross validation that partitions independent samples can be applied.

We also discuss a potential way to improve the convergence rates by replacing the sam-

ple covariance matrix Σ̂ with a weighted sample covariance matrix in the estimation. Each

sample is assigned a weight to be proportional with its effective sample size. Given appro-
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priate weights, usually unknown in practice, using the weighted sample covariance matrix

can theoretically achieve better convergence rates than using Σ̂. However, to practically

select such weights remains an open question.

In this chapter, we continue using the notation given in Chapter III if without further

notification. Also we assume p → ∞ as n → ∞ and only use n → ∞ in the asymptotic

arguments. The rest of the chapter is organized as follows. In section 4.2, we introduce

the sub-Gaussian data structure for the multiple independent samples. Section 4.3 pro-

vides the theoretical results for the considered estimators based on the sample covariance

matrix. The performance of the estimators is evaluated by simulations in section 4.4. In

section 4.5, we analyze the group-level functional connectivity of a ADHD group com-

pared to a normal control group using the ADHD-200 rfMRI data. We end the chapter

with a discussion of using the weighted sample covariance matrix. The detailed proofs for

all the theoretical results are provided in Appendix C.

4.2 Data Structure

For each ` ∈ {1, . . . , L}, we observe a p-variate time seriesX(`)
1 , . . . ,X(`)

n`
, where each

X
(`)
i has mean µp, covariance matrix Σ and precision matrix Ω = Σ−1. Write X

(`)
p×n`

=

(X
(`)
ij )p×n`

= (X
(`)
1 , . . . ,X(`)

n`
). We simply call X

(`)
p×n`

the `-th sample of observations,

and assume such L samples are independent. In the application of fMRI data, X
(`)
p×n`

can

be viewed as the n` images of p prespecified brain nodes for the `-th subject, and n` are

usually equal for all `.

Throughout the chapter, we assume that each sample X(`)
pn`

= vec(X
(`)
p×n`

) is obtained

from the following with its own linear filter H(`):

(4.1) X(`)
pn`

= H(`)e+ 1n`
⊗ µp,

where the sub-Gaussian random vector e = (e1, e2, . . . )
T with dimension m = ∞ is the
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same for all samples, which is the same as in (3.3).

For the time series X(`)
i1 , . . . , X

(`)
i,n`

, let Θ
(`)
i = (θ

(`)
i,jk)n`×n`

be the autocorrelation matrix

with θ(`)
i,jk = corr(X(`)

ij , X
(`)
ik ). Define

(4.2) g` = max
1≤i≤p

‖Θ(`)
i ‖2.

By

(4.3) ‖Θ(`)
i ‖2

F/n` ≤ ‖Θ
(`)
i ‖2 ≤ ‖Θ(`)

i ‖1,

we have g` ∈ [1, n`]. We can see that g` = 1 if all the p time series of the `-th sample

are white noise processes, and g` = n` if every pair of data points in a univariate time

series are perfectly correlated or anti-correlated. The quantity g` naturally reflects the

maximum strength of temporal dependence within the `-th sample. We shall see that {g`}

are involved in the tuning parameters of the considered estimating procedures.

4.3 Estimating Methods Based on the Sample Covariance Matrix

In this section we study several estimating methods for Σ and Ω based on the sample

covariance matrix defined by

(4.4) Σ̂ =
1

n

L∑
`=1

n∑̀
i=1

(
X

(`)
i

)⊗2

−

(
1

n

L∑
`=1

n∑̀
i=1

X
(`)
i

)⊗2

with v⊗2 = vvT for vector v. Define gmax = max1≤`≤L g` and

(4.5) τ1 = max


√√√√ log p

n

L∑
`=1

n`
n
g`,

gmax log p

n

 .

We assume τ1 = o(1) in the following. Then τ1 = O(
√
gmax(log p)/n).

4.3.1 Main Results

Theorem IV.1 (Generalized thresholding estimation of Σ and R). (a). For any data

{X(`)
p×n`
}L`=1 generated from (4.1), uniformly on Σ ∈ U(q, cp, v0) where U is defined
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in (3.6), for sufficiently large constant M > 0, if τ = Mτ1 and τ1 = o(1), then

|Sτ (Σ̂)−Σ|∞ = OP (τ1),

‖Sτ (Σ̂)−Σ‖2 = OP

(
cpτ

1−q
1

)
,

1

p
‖Sτ (Σ̂)−Σ‖2

F = OP

(
cpτ

2−q
1

)
,

and sτ (σ̂ij) = 0 for all (i, j) where σij = 0 with probability tending to 1. When all nonzero

elements of Σ satisfy |σij| ≥ 2τ , then sign(sτ (σ̂ij)) = sign(σij) for all (i, j) where σij 6= 0

with probability tending to 1. Moreover, if p ≥ nc for some constant c > 0, then

E
(
|Sτ (Σ̂)−Σ|2∞

)
= O(τ 2

1 ),

E
(
‖Sτ (Σ̂)−Σ‖2

2

)
= O

(
c2
pτ

2−2q
1

)
,

1

p
E
(
‖Sτ (Σ̂)−Σ‖2

F

)
= O

(
cpτ

2−q
1

)
.

(b). Part (a) holds with Σ̂,Σ, σ̂ij, σij and U(q, cp, v0) replaced by R̂,R, ρ̂ij, ρij and

R(q, cp), respectively.

Theorem IV.2 (SPICE of Ω). (a). For any data {X(`)
p×n`
}L`=1 generated from (4.1), uni-

formly on Ω ∈ G2(sp, v0) where G2 is defined in (3.22), for sufficiently large constant

M > 0, if λ2 = Mτ1 and τ1 = o(1/
√

1 + sp), then

‖K̂λ2 −K‖F = OP (τ1
√
sp),

‖Ω̂λ2 −Ω‖2 = OP (τ1

√
1 + sp),

1
√
p
‖Ω̂λ2 −Ω‖F = OP

(
τ1

√
1 + sp/p

)
.

When ‖K̂λ2 −K‖2 = OP (η) with η = O(τ1), then with probability tending to 1, we have

ω̂ijλ2 = 0 for all (i, j) where ωij = 0.

(b). If the conditions λ2 = Mτ1 and τ1 = o(1/
√

1 + sp) in part (a) are replaced

by λ2 = 8Mτ1/β ≤ [6(1 + β/8)dmax{κRκΓ, κ
3
Rκ

2
Γ}]−1 and τ1 = o(min{1, [(1 +
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8/β)κΓ]−1}), let r = (0.5 + 2.5(1 + 8/β)κΓ)Mτ1v0, then under the irrepresentability

condition (3.26), with probability tending to 1,

|Ω̂λ2 −Ω|∞ ≤ r,

‖Ω̂λ2 −Ω‖2 ≤ rmin
{
d,
√
p+ sp

}
,

1
√
p
‖Ω̂λ2 −Ω‖F ≤ r

√
1 + sp/p,

and ω̂ijλ2 = 0 for all (i, j) with ωij = 0, and moreover, sign(ω̂ijλ2) = sign(ωij) for all

(i, j) where ωij 6= 0 when all nonzero elements of Ω satisfy |ωij| > r.

For CLIME, we consider the following set of precision matrices

G∗1(q, cp,Mp, v0) =
{

Ω � 0 : max
1≤i≤p

p∑
j=1

|ωij|q ≤ cp, ‖Ω‖1 ≤Mp, max
1≤i≤p

σii ≤ v0

}
,

for 0 ≤ q < 1. The set G∗1(q, cp,Mp, v0) is the original one considered by CLIME in

Cai et al. (2011) for i.i.d. observations. It is a modified version of G1(q, cp,Mp, v0) given

in (3.16) without the condition max1≤i≤p ωii ≤ v0, which was useful for the proof of the

consistency of CLIME given in Theorem III.3 for a single sample with PDD dependence.

The new proof considered here no longer needs this extra condition. Let the tuning param-

eter ξ ≥ 4Mpλ1 for the hard-thresholded CLIME estimator Ω̃ε. Although how to select

an appropriate ξ in practice is unclear, it is still of interest to present the nice properties of

sparsistency and sign-consistency for Ω̃ε.

Theorem IV.3 (CLIME of Ω). For any data {X(`)
p×n`
}L`=1 generated from (4.1), uniformly

on Ω ∈ G∗1(q, cp,Mp, v0), for sufficiently large constant M > 0, if λ1 = Mτ1Mp and

0 ≤ ε ≤ τ1 with τ1 = o(1), then

|Ω̂ε −Ω|∞ = OP (M2
p τ1),(4.6)

‖Ω̂ε −Ω‖2 = OP

(
cp(M

2
p τ1)1−q) ,(4.7)

1

p
‖Ω̂ε −Ω‖2

F = OP

(
cp(M

2
p τ1)2−q) ,(4.8)
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and ω̃ijε = 0 for all (i, j) where ωij = 0 with probability tending to 1. When all nonzero

elements of Ω satisfy |ωij| > ξ + 4Mpλ1, sign(ω̃ijε) = sign(ωij) for all (i, j) where

ωij 6= 0 with probability tending to 1. Moreover, if p ≥ nc with some constant c > 0, then

for any constant C > 0, there exists a constant M ′ > 0 such that when M > M ′ and

min
{
p−C , τ1

}
≤ ε ≤ τ1, we have

E
(
|Ω̂ε −Ω|2∞

)
= O

(
(M2

p τ1)2
)
,

E
(
‖Ω̂ε −Ω‖2

2

)
= O

(
c2
p(M

2
p τ1)2−2q

)
,

1

p
E
(
‖Ω̂ε −Ω‖2

F

)
= O

(
cp(M

2
p τ1)2−q) .

4.3.2 Comparison to the Results in Chapter III for L = 1 under the PDD dependence

In this subsection, we compare the convergence rates of the considered estimators ob-

tained in this chapter with those in Chapter III for the single-sample data (i.e., the case

with L = 1) under the PDD dependence defined by (3.1). As mentioned in the intro-

duction section, different proof techniques are used for the theoretical results in the two

chapters, so we have two slightly different sets of convergence rates.

The PDD dependence B(C0, α) satisfies

(4.9) max
1≤i≤p

|θ(1)
i,jk| ≤ C1(|j − k|+ 1)−α for j, k = 1, . . . , n,

with a constant C1 dependent on C0. Then

gmax = g1 ≤ 2C1 ×


(n1−α − α)/(1− α), α 6= 1,

1 + log n, α = 1,

69



thus τ1 = O(τ(n, α)) with

τ(n, α) :=



√
(log p)/nα, 0 < α < 1,√
(log n)(log p)/n, α = 1,√
(log p)/n, α > 1.

Remark IV.1. Consider the generalized thresholding estimators of Σ and R as well as

the SPICE estimators of Ω. Recall that their convergence rates obtained in Chapter III are

mainly determined by

τ ′ �



√
(log p+ log n)/nα, 0 < α < 1,√
(log n)(log p+ log log n)/n, α = 1,√
(log p)/n, α > 1.

By comparing τ1 = O(τ(n, α)) with τ ′, we see that the convergence rates yielded by

Theorems IV.1 and IV.2 are sharper than those given in Chapter III for α ∈ (0, 1) when

log p = o(log n) and for α = 1 when log p = o(log log n), otherwise they are the same.

Remark IV.2. Consider the CLIME estimator of Ω. The convergence rates given by

Theorems III.3 and IV.3 under the same norm can be written by the same function of

cp, q,Mp and λ1. Recall that λ1 � M
I(0<α≤1)+I(α>1)/α
p τ ′ in Theorem III.3, and λ1 �

Mpτ1 = O(Mpτ(n, α)) in Theorem IV.3. For the scenario when α > 1 and Mp grows

with p, the convergence rates given in Theorem III.3 are faster than those deduced from

Theorem IV.3. Otherwise, similar to Remark IV.1, the rates obtained in Theorem IV.3 can

be better than those in Theorem III.3.

4.3.3 Some General Remarks

Remark IV.3. If gmax < C with a constant C, then τ1 �
√

(log p)/n, so all the results

given in subsection 4.3.1 except Theorem IV.2 (b) reduce to those for i.i.d. observations
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given in the literature (Rothman et al., 2009; Cai et al., 2011; Rothman et al., 2008; Lam

and Fan, 2009). If additionally assume β is constant and max{κR, κΓ} has a constant

upper bound, then the convergence rates of the correlation-based SPICE given in Theo-

rem IV.2 (b) are the same as those shown in Ravikumar et al. (2011) for the covariance-

based SPICE obtained by i.i.d. observations.

The quantities {g`}L`=1 sometimes are more suitable to characterize the temporal de-

pendence than the PDD model. Examples are given in the following two remarks.

Remark IV.4. A unvariate stationary time series is said to be short-memory if the matrix

`1 norm of its autocorrelation matrix is bounded by a constant. For the single-sample data,

i.e., L = 1, the PDD model sometimes cannot give suitably theoretical convergence rates

of the considered estimators for certain short-memory dependence with spiked autocor-

relations. Figure 4.1 illustrates such an example, where the autocorrelation function of a

short-memory time series has a finite number of spikes. Fitting a PDD model yields the

parameter α ≤ 0.2. Note that the convergence rates for α ∈ (0, 1) are mainly driven

by the factor
√

(log p)/nα. However, if the other (p − 1) univariate time series are also

short-memory such that gmax < C with a constant C, from Remark IV.3 we have a much

smaller factor
√

(log p)/n, leading to faster convergence rates.

Remark IV.5. Suppose all the L samples have the same sample size n1, which is common

for fMRI studies, and also satisfy the PDD model in (3.1) with common C0 and α. We can

have τ1 = O(τ(n1, α)/
√
L). If ignoring the independence among the multiple samples

and applying the PDD model to all the Ln1 observations, we have τ1 = O(τ(Ln1, α)).

Note that τ(n1, α)/
√
L ≤ τ(Ln1, α) with equality only when α > 1. When α ∈ (0, 1),

τ(n1, α) = τ(Ln1, α)/L(1−α)/2 = o(τ(Ln1, α)) if L → ∞, yielding sharper convergence

rates.
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Figure 4.1: Autocorrelation function ρ(t), t > 0 of a stationary short-memory time series.

4.4 Simulation Studies

In this section, we evaluate the performance of the sample-covariance-matrix-based

estimating methods for the multiple samples of temporally dependent observations. We

only consider the hard and soft thresholding estimators of R, and the SPICE estimator of

Ω computed by the R package QUIC (version 1.1; Hsieh et al., 2014). The R package

flare (version 1.5.0; Li et al., 2015) for computing the CLIME estimator of Ω is too

slow for simulations, and the R package fastclime (version 1.2.5; Pang et al., 2014) is

not stable. Hence the CLIME estimator is not considered in our numerical examples.

We generate L=6 samples, each of sample size 200, and thus n = 1200. Each setting

is simulated with 100 replications. The temporally dependent observations are generated

by the same method used in Subsection 3.5.2 from a zero-mean Gaussian distribution with

the same model for Σ or Ω. For each model of Σ or Ω, we consider the following three

72



Table 4.1: Comparison of average (SD) matrix losses for correlation matrix estimation

Spectral norm Frobenius norm

p α R̂ Hard Soft R̂ Hard Soft

Model 1
200 0.1 29.28(2.006) 2.934(0.039) 2.834(0.033) 52.87(1.355) 14.56(0.176) 13.53(0.170)

0.25 16.52(1.392) 2.219(0.138) 2.344(0.052) 30.86(1.073) 10.46(0.294) 10.37(0.229)
0.5 7.493(0.634) 1.315(0.081) 1.643(0.052) 16.42(0.484) 6.248(0.234) 6.609(0.182)
1 2.550(0.194) 0.722(0.049) 1.055(0.041) 8.654(0.139) 3.420(0.094) 3.882(0.104)
2 1.506(0.082) 0.536(0.041) 0.814(0.036) 6.185(0.067) 2.513(0.063) 2.897(0.076)
Mixed 12.62(1.447) 1.693(0.205) 2.010(0.249) 19.67(1.088) 7.810(0.452) 7.765(0.303)
i.i.d. 1.366(0.081) 0.507(0.042) 0.772(0.038) 5.732(0.063) 2.327(0.059) 2.716(0.075)

400 0.1 55.64(2.527) 2.978(0.013) 2.901(0.018) 106.1(1.928) 20.88(0.105) 19.74(0.179)
0.25 31.74(1.745) 2.395(0.125) 2.494(0.043) 62.37(1.372) 15.71(0.525) 15.73(0.254)
0.5 14.20(0.795) 1.447(0.076) 1.792(0.040) 33.15(0.614) 9.430(0.268) 10.19(0.203)
1 4.288(0.210) 0.800(0.052) 1.164(0.038) 17.35(0.141) 5.113(0.102) 6.031(0.122)
2 2.322(0.076) 0.589(0.037) 0.916(0.031) 12.41(0.071) 3.748(0.102) 4.527(0.082)
Mixed 25.25(1.963) 1.848(0.187) 2.507(0.388) 39.69(1.343) 11.85(0.490) 12.08(0.324)
i.i.d. 2.072(0.074) 0.554(0.037) 0.855(0.025) 11.51(0.059) 3.512(0.067) 4.213(0.076)

Model 2
200 0.1 29.18(1.674) 1.806(0.047) 1.734(0.018) 53.05(1.216) 12.90(0.235) 12.00(0.163)

0.25 16.40(1.186) 1.411(0.146) 1.384(0.048) 30.92(1.025) 8.275(0.425) 8.847(0.209)
0.5 7.410(0.573) 0.730(0.105) 0.881(0.041) 16.44(0.464) 4.442(0.282) 5.223(0.170)
1 2.456(0.161) 0.254(0.071) 0.487(0.024) 8.664(0.123) 1.020(0.075) 2.758(0.068)
2 1.409(0.057) 0.132(0.016) 0.353(0.017) 6.191(0.061) 0.686(0.029) 1.964(0.048)
Mixed 12.63(1.344) 0.948(0.175) 1.517(0.279) 19.69(1.008) 5.934(0.302) 6.361(0.313)
i.i.d. 1.266(0.054) 0.122(0.015) 0.329(0.016) 5.739(0.056) 0.644(0.031) 1.832(0.045)

400 0.1 55.16(2.297) 1.817(0.042) 1.767(0.012) 106.1(1.904) 18.59(0.137) 17.59(0.174)
0.25 31.55(1.518) 1.671(0.234) 1.521(0.124) 62.44(1.290) 12.72(0.604) 13.46(0.216)
0.5 14.06(0.704) 0.842(0.191) 0.995(0.078) 33.16(0.636) 7.029(0.278) 8.147(0.167)
1 4.178(0.198) 0.314(0.050) 0.524(0.019) 17.36(0.135) 1.497(0.087) 4.274(0.067)
2 2.182(0.059) 0.139(0.014) 0.381(0.014) 12.42(0.062) 0.982(0.032) 3.074(0.054)
Mixed 25.31(1.926) 1.092(0.220) 2.025(0.322) 39.79(1.293) 8.792(0.222) 9.953(0.291)
i.i.d. 1.923(0.049) 0.130(0.014) 0.353(0.014) 11.51(0.050) 0.914(0.035) 2.823(0.045)

scenarios for the L=6 samples:

1. Same α: all samples have the same α ∈ {0.1, 0.25, 0.5, 1, 2};

2. Mixed α: α = 0.25 for the first and second samples, α = 0.5 for the third and fourth

samples, and α = 1 for the rest two samples;

3. The i.i.d. case.

Two different dimensions are considered: p = 200 and p = 400. The tuning parameter for

each simulated data set is prepared with 50 different candidate values (see Appendix B.3).

We run 6-fold cross-validation with data naturally partitioned by the 6 independent sam-

ples. The estimation performance is measured by both the spectral norm and the Frobenius
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Table 4.2: Comparison of average (SD) matrix losses for precision matrix estimation

Spectral norm Frobenius norm

p α Σ̂−1 SPICE Σ̂−1 SPICE

Model 3
200 0.1 78.11(3.163) 2.289(0.134) 273.5(3.776) 16.07(0.332)

0.25 20.15(0.957) 2.381(0.052) 70.64(1.073) 10.82(0.138)
0.5 9.102(0.407) 2.640(0.036) 31.35(0.455) 11.28(0.184)
1 4.499(0.236) 2.542(0.026) 14.84(0.251) 10.65(0.129)
2 2.961(0.158) 2.249(0.027) 9.657(0.159) 9.130(0.129)
Mixed 8.937(0.399) 2.523(0.037) 30.46(0.451) 10.69(0.160)
i.i.d. 2.696(0.158) 2.181(0.027) 8.738(0.163) 8.779(0.126)

400 0.1 190.6(6.810) 2.276(0.139) 870.4(8.239) 22.46(0.356)
0.25 48.64(1.609) 2.570(0.029) 218.3(2.091) 16.33(0.125)
0.5 21.61(0.768) 2.798(0.025) 95.40(0.964) 17.13(0.178)
1 10.66(0.357) 2.718(0.018) 45.22(0.513) 16.42(0.129)
2 6.995(0.243) 2.538(0.019) 28.96(0.347) 15.03(0.145)
Mixed 21.80(0.732) 2.700(0.027) 93.99(0.991) 16.38(0.175)
i.i.d. 6.287(0.224) 2.475(0.021) 25.91(0.300) 14.56(0.152)

Model 4
200 0.1 67.94(2.142) 2.511(0.305) 264.0(3.032) 14.49(0.524)

0.25 17.56(0.649) 1.114(0.063) 68.29(0.841) 6.264(0.134)
0.5 8.009(0.319) 1.271(0.048) 30.46(0.369) 6.745(0.202)
1 4.015(0.172) 1.130(0.031) 14.55(0.217) 6.276(0.155)
2 2.677(0.110) 0.942(0.026) 9.520(0.142) 5.260(0.130)
Mixed 7.867(0.314) 1.181(0.049) 29.58(0.395) 6.042(0.196)
i.i.d. 2.453(0.123) 0.897(0.024) 8.617(0.142) 5.005(0.129)

400 0.1 169.6(5.240) 2.306(0.242) 841.5(7.070) 18.61(0.467)
0.25 43.45(1.252) 1.345(0.056) 211.4(1.765) 10.15(0.183)
0.5 19.41(0.613) 1.467(0.029) 92.66(0.830) 11.33(0.218)
1 9.630(0.282) 1.342(0.028) 44.18(0.440) 10.82(0.185)
2 6.385(0.200) 1.146(0.023) 28.43(0.312) 9.284(0.163)
Mixed 19.67(0.627) 1.395(0.040) 91.30(0.840) 10.42(0.260)
i.i.d. 5.783(0.190) 1.092(0.022) 25.47(0.256) 8.826(0.172)

Table 4.3: Comparison of average (SD) TPR(%)/FPR(%) for Models 2 & 4

Model 2 Model 4
p α Hard Soft SPICE

200 0.1 5.85(3.03)/0.01(0.01) 39.92(3.52)/2.93(0.68) 95.88(0.96)/26.31(0.67)
0.25 43.68(3.24)/0.04(0.02) 73.75(2.46)/4.62(0.62) 99.83(0.19)/30.68(0.78)
0.5 77.88(3.81)/0.05(0.03) 98.24(0.79)/5.82(0.78) 100.00(0.03)/29.95(0.79)
1 99.85(0.21)/0.00(0.00) 100.00(0.00)/5.70(1.01) 100.00(0.00)/27.25(1.01)
2 100.00(0.00)/0.00(0.00) 100.00(0.00)/6.13(1.14) 100.00(0.00)/26.95(0.99)
Mixed 57.11(4.88)/0.02(0.02) 93.85(2.19)/5.36(0.68) 100.00(0.03)/30.71(0.87)
i.i.d. 100.00(0.00)/0.00(0.00) 100.00(0.00)/5.60(1.02) 100.00(0.00)/26.96(0.92)

400 0.1 3.08(1.15)/0.00(0.00) 32.42(3.43)/1.38(0.47) 92.49(0.98)/15.83(0.40)
0.25 38.31(3.88)/0.02(0.01) 67.78(2.09)/2.41(0.37) 99.56(0.23)/19.25(0.49)
0.5 70.63(3.17)/0.02(0.01) 96.92(0.81)/3.15(0.44) 99.99(0.03)/19.55(0.54)
1 99.77(0.18)/0.00(0.00) 100.00(0.00)/3.15(0.35) 100.00(0.00)/17.69(0.67)
2 100.00(0.00)/0.00(0.00) 100.00(0.00)/2.91(0.54) 100.00(0.00)/17.42(0.65)
Mixed 52.73(1.67)/0.01(0.00) 89.86(1.92)/2.74(0.38) 99.99(0.03)/19.81(0.63)
i.i.d. 100.00(0.00)/0.00(0.00) 100.00(0.00)/3.15(0.27) 100.00(0.00)/17.72(0.73)
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norm. The sparsity recovering ability is evaluated by the TPR and FPR defined in Subsec-

tion 3.5.2.

The simulation results are summarized in Tables 4.1-4.3. We see that the sample corre-

lation matrix and the inverse of sample covariance matrix have the worst performance. For

the considered estimating approaches based on the sample covariance matrix, the overall

pattern is similar to what we observed in Subsection 3.5.2 for L = 1, with reduced matrix

losses due to the larger sample size.

4.5 Real Data Analysis

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder af-

fecting about 7.2% chirden worldwide (Thomas et al., 2015). ADHD can be divided into

three different types based on symptom presentation: predominantly inattentive type, pre-

dominantly hyperactive-impulsive type, and combined type. The combined type is the

most common type of ADHD. We thus analyze the group-level functional connectivity

of children with combined type ADHD (ADHD-C) compared with normal controls (NC)

using the rfMRI data obtained from the ADHD-200 Preprocessed repository (neurobu-

reau.projects.nitrc.org/ADHD200). The data set contains images with 351 regions of in-

terest (ROIs) from 15 boys with ADHD-C and 15 age-matched healthy boys. All the

subjects are medication naı̈ve and right-handed with age between 9 and 15 years. The

rfMRI data have been preprocessed by The Neuro Bureau using the Athena pipeline (see

details on the above website). Each subject has 232 temporal images. Thus, for either

ADHD-C group or NC group, p = 351, L = 15, and n1 = · · · = nL = 232. The time

series of each ROI is the spatially averaged time series of all the voxels within the ROI.

Following the suggestion of Ng et al. (2013), we normalize each subject’s time series by

subtracting its sample mean and dividing by its sample standard deviation to reduce the
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Figure 4.2: Absolute values of sample autocorrelation functions. For each univariate time series, the model
(t + 1)−α is fitted to its absolute sample autocorrelations. Here |ρ̂`(t)| represents the absolute
sample autocorrelation function corresponding to the time series with the smallest fitted α among
all the p time series of the `-th subject. The wide solid line is the fitted curve (t+1)−α̂min , where
α̂min is the smallest fitted α among all the L subjects.

inter-subject variability.

We illustrate the temporal dependence in each group using a rough estimation of the

upper bound of gmax. Because the sample autocorrelation matrix is not a consistent es-

timator of the true autocorrelation matrix under the spectral norm (Wu and Pourahmadi,

2009, Theorem 1), it is not appropriate to apply the spectral norm of each sample autocor-

relation matrix for the estimation of gmax. Instead, we first fit the absolute values of each

sample autocorrelation function by (t + 1)−α using the nonlinear least-squares method.

Denote α̂min to be the smallest fitted α that is obtained from all the L×p time series of
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one of the groups. Then approximate max`≤L maxi≤p ‖Θ(`)
i ‖1 by the matrix `1 norm of(

(t+1)−α̂min
)

232×232
, which gives an estimated upper bound for gmax following from (4.3).

We obtain α̂min = 0.46 for the NC group and α̂min = 0.42 for the ADHD-C group, and

the corresponding gmax is roughly bounded by 44.8 and 51.2, respectively. More details

are provided in Figure 4.2.

We estimate the correlation matrix and the partial correlation matrix for the marginal

and the direct functional connectivities of the 351 ROIs, respectively. The correlation ma-

trix is estimated by the hard thresholding method. We estimate the (i, j)-th off-diagonal

entry of the partial correlation matrix by −ω̂ij/
√
ω̂iiω̂jj using the SPICE estimator Ω̂ :=

(ω̂ij)p×p of the precision matrix. The optimal value of each tuning parameter is selected

from 50 different candidates (see Appendix B.3 with the largest candidate value to be 1)

by using the 5-fold cross-validation that randomly divides the 15 samples into 5 groups,

each with 3 samples, together with the one-standard-error rule (Hastie et al., 2009). We

find that about 46.5% and 63.1% of pairs of ROIs are marginally connected for the NC

and the ADHD-C groups with threshold values of sample correlations around 0.105 and

0.066, respectively. Although the ADHD-C group has a larger number of nonzero es-

timated correlations, the average of the absolute values of those nonzeros is 0.170 with

standard deviation 0.107, which is smaller than 0.215 for the NC group with standard de-

viation 0.111. In terms of the direct connectivity, about 12.6% of all the pairs of ROIs

are connected for the NC group, and 11.2% for the ADHD-C group. The averages of the

absolute values of nonzero estimated partial correlations are around 0.034 for both groups

with standard deviation 0.055 for NC and 0.056 for ADHD-C.

We reorder the estimated correlation matrix of the NC group using the average linkage

hierarchical clustering method (Everitt et al., 2011) based on the dissimilarity measure

dij = 1−|sHτ (ρ̂ij)| for the (i, j)-th entry, so that entries with large absolute values |sHτ (ρ̂ij)|
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are clustered around the diagonal. The resulting order is also applied to the other three

estimated matrices for ease of comparison. The heat maps of the reordered estimated

matrices are shown in Figure 4.3. In the heat maps, the absolute values of the entries are

presented, the diagonals of the estimated partial correlation matrices are set as zero for

a better visual effect, and the 10 clusters chosen by visualization are framed with black

rectangles.

From Figure 4.3, we see that the ADHD-C group generally has weaker marginal con-

nectivity than the NC group, which can be clearly seen in the largest block on the lower-

right corner of the heat maps. However, both groups have very weak and similar direct

connectivities. The corresponding cluster of the largest block contains 82 ROIs. The node

strength (Barrat et al., 2004) of a brain node (i.e., a ROI here) is defined for marginal

connectivity by the sum of its absolute correlations with the other nodes of interest, and

similarly defined for direct connectivity by using absolute partial correlations instead. We

compare ADHD-C to NC by using ROIs’ node strength within the largest cluster. Fig-

ures 4.4 shows the difference of estimated node strength of ADHD-C and NC in this

cluster. We see that most ROIs in the cluster have reduced node strength of marginal con-

nectivity for ADHD-C. The two most severe losses can be seen in areas at the coordinates

Z = −44 and Z = 64 in Figure 4.4 (a). These two areas are respectively located in

the right middle temporal cortex and the left superior parietal cortex, which have been re-

ported with abnormalities for ADHD patients in the literature (Kim et al., 2002; Fan et al.,

2014b). For the direct connectivity, the estimated differences in node strength between

ADHD-C and NC are very small in this cluster.
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Figure 4.3: (a,b) Heat maps of the absolute values of estimated correlation matrices for NC and ADHD-
C. (c,d) Heat maps of the absolute values of estimated partial correlation matrices for NC and
ADHD-C.
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4.6 General Results for Estimation Using Weighted Sample Covariance Matrix

In previous sections, we use the sample covariance matrix Σ̂ as the initial estimator

of Σ in the considered estimating procedures. In fact, we can have consistency results of

the final considered estimators by using any given initial estimator, denoted as Σ̌, if the

following concentration inequality

(4.10) P
[
|Σ̌−Σ|∞ ≤Mu

]
= 1−O(p−M

′
)

holds with u = o(1) and some positive constants M,M ′. Smaller u yields faster conver-

gence rates. This motivates us to construct an initial estimator of Σ with the max-norm

error as small as possible.

An equivalent expression of Σ̂ in (4.4) is

(4.11) Σ̂ =
L∑
`=1

n`
n

Σ̂
(`)
0 −

( L∑
`=1

n`
n
µ̂(`)

)⊗2

,

where Σ̂
(`)
0 = n−1

`

∑n`

i=1(X
(`)
i )⊗2 and µ̂(`) = n−1

`

∑n`

i=1X
(`)
i . In the above expression of

Σ̂, n`/n can be viewed as the weight of the `-th sample. For i.i.d. observations, n` is

the effective sample size of the `-th sample. Intuitively, replacing n` and n by their cor-

responding effective sample sizes (defined in a certain reasonable way) for the temporally

dependent observations may yield a smaller u. Thus, we consider the following weighted

sample covariance matrix:

(4.12) Σ̃ := (σ̃ab)p×p = Σ̃0 − µ̃⊗2 :=
L∑
`=1

$`Σ̂
(`)
0 −

( L∑
`=1

$`µ̂
(`)
)⊗2

,

where the weight $` := n`f
−1
` /

∑
i nif

−1
i with any given f` > 0 for each ` = 1, . . . , L.

Note that {f`} and {cf`}, with an arbitrary constant c > 0, give the same weights {$`}.

The corresponding weighted sample correlation matrix is defined by R̃ = (ρ̃ij)p×p =(
σ̃ij/

√
σ̃iiσ̃jj

)
p×p . By the following equivalent form of (4.12)

(4.13) Σ̃ =
L∑
`=1

$`

n`

n∑̀
i=1

(X
(`)
i − µ̃)⊗2,
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it is easily shown that Σ̃ is positive-semidefinite and |R̃|∞ ≤ 1. Define

(4.14) τ2 =
max{

√
(
∑

` n`g`/f
2
` ) log p,max`(g`/f`) log p}∑
` n`/f`

,

which will become clear in the proof of the following Theorem IV.4. For any given {$`},

a concentration inequality in the form of (4.10) is given in Theorem IV.4 and the corre-

sponding asymptotic properties of the considered estimators started with Σ̃ are given in

Theorem IV.5 that generalizes all the theorems given in Subsection 4.3.1.

Theorem IV.4. Assume data {X(`)
p×n`
}1≤`≤L are generated from (4.1) with |Σ|∞ ≤ v0 for

a constant v0 > 0. For any constant M ′ > 0, there exists a constant M > 0 such that

when τ2 = o(1), we have

(4.15) P
[
|Σ̃−Σ|∞ ≤Mτ2

]
= 1−O(p−M

′
).

Theorem IV.5. All the statements given in Theorems IV.1–IV.3 hold more generally when

τ1, Σ̂ and R̂ are replaced by τ2, Σ̃ and R̃ respectively.

We can see that τ2 is a main factor determining the convergence rates. Define two ran-

dom variables f and g with sample spaces {f`}L`=1 and {g`}L`=1 respectively and P (g/f =

g`/f`) = n`g
−1
` /

∑L
i=1 nig

−1
i . Then τ2 can be further written as

τ2 = max

{√
log p∑
` n`g

−1
`

(
var(g/f)

[E(g/f)]2
+ 1

)
,

(log p) max(g/f)

(
∑

` n`g
−1
` )E(g/f)

}
.

Hence, if and only if f` = cg` with an arbitrary constant c > 0 for all `, τ2 attains its

minimum. The minimum is

(4.16) τ ∗2 :=

√
log p∑
` n`/g`

when τ ∗2 = o(1). Hence, using the sample covariance matrix Σ̂ as the initial estimator

yields the optimal τ2 only when all g` are equal, e.g., when all the n observations are i.i.d..
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In fact, if gmax/min` g` = C with a constant C, then τ1 � τ ∗2 when τ ∗2 = o(1). Moreover,

when f` = 1 for all `, we have τ2 = τ1, hence Theorem IV.5 reduces to all the theorems

with Σ̂ as the initial estimator given in Subsection 4.3.1.

4.7 Discussion

In Section 4.6 we see that using the weighted sample covariance matrix in the estima-

tion yields faster convergence rates when f` = g` for all `. However, {g`} are unknown in

practice and are difficult to be estimated. Even for stationary time series, it is well-known

that they cannot be consistently estimated using the sample autocorrelation matrix (Wu

and Pourahmadi, 2009, Theorem 1). Developing a procedure for choosing appropriate

weights in (4.12) is of great interest.
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CHAPTER V

Conclusion and Future Work

Classical statistical methods often fail to handle high dimensional data, for which the

variable dimension p is comparable to or larger than the sample size n. Although sig-

nificant development has been made in high dimensional data analysis over the past two

decades, most high dimensional methods are assumed on certain independent structures

of the data. There is a great need for statistical methods that are suitable for analyzing

large-scale neuroimaging data with spatial and/or temporal dependence.

Motivated by this need, this dissertation focused on two major high dimensional prob-

lems for dependent data. We considered (i) the multiple testing problem for spatially

correlated data in Chapter II, and (ii) the estimation of large covariance and precision ma-

trices from a single sample of temporally dependent observations in Chapter III and from

multiple independent samples in Chapter IV.

In Chapter II, we considered LIS-based FDR procedures based on HMRF for 3D neu-

roimaging data, where HMRF provides a natural way of modeling spatial correlations. The

proposed procedures aim to minimize the FNR while FDR is controlled at a pre-specified

level. We found that brain regions are spatially heterogeneous, and hence we modeled each

region separately by a single HMRF, and implemented the PLIS procedure to minimize the

global FNR. We proposed a GEM algorithm based on the penalized likelihood to obtain
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the HMRF parameter estimates, which overcomes the unboundedness of the original like-

lihood function. Numerical analysis showed the superiority of the HMRF-LIS-based pro-

cedures over commonly used FDR procedures, illustrating the value of HMRF-LIS-based

FDR procedures for spatially correlated image data.

We also proved the validity and optimality of the oracle HMRF-LIS-based procedures,

for which the parameters are known. However, when the parameters are unknown, the

asymptotic equivalence of the data-driven procedures to the oracle procedures remains

an open problem, although they performed similarly in our extensive simulations. More-

over, one can extend the Ising model to more complicated MRFs, but how to examine the

model fitness of the selected MRF is unknown. These two points are directions for future

research.

In Chapters III and IV, properties of consistency, sparsistency and sign-consistency

were established for the generalized thresholding estimation of covariance/correlation ma-

trices and for the CLIME and SPICE estimators of precision matrix using a single sample

and multiple independent samples of temporally dependent observations, respectively. A

different proof technique to that in Chapter III was used in Chapter IV. They each have

their own advantages in terms of the convergence rates.

The results obtained in these two chapters for a single sample apply to the temporal

dependence with longer memory than those in Chen et al. (2013) and Bhattacharjee and

Bose (2014). As expected, the convergence rates of considered estimators decrease as the

temporal dependence increases. Under similar conditions in Cai and Zhou (2012), it can

easily be shown that the rates of convergence in mean square are minimax optimal for

the covariance/correlation matrix estimation under temporal dependence with gmax < C

for some constant C > 0. One may consider the minimax optimal rates for the other

cases, especially for strong temporal dependence. A gap-block cross-validation method
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was proposed for the tuning parameter selection, which performed well in simulations by

using parameters H1 = H2 = 10. The theoretical justification of this intuitive cross-

validation and its optimal choices of H1 and H2 are of future interest.

For multiple independent samples, the results of Chapter IV can give faster convergence

rates than those in Chapter III. Compared to using the sample covariance matrix, using the

weighted sample covariance matrix in the considered estimating methods can theoretically

improve the rates if appropriate weights are given. It is of great interest to develop a

procedure for selecting such weights in practice.

A potential way to improve the current convergence rates is incorporating the estima-

tion or modeling of temporal dependence into the estimating procedures of large covari-

ance and precision matrices. This can be an interesting topic.

In conclusion, we proposed an efficient FDR controlling procedure for certain spatially

correlated data, and we also showed that several commonly used methods of estimating

covariance and precision matrices for independent observations can be applied to a wide

family of temporally dependent data. This dissertation makes an innovative contribution

to the analysis of high dimensional dependent data, in particular, neuroimaging data.
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APPENDIX A

Supplementary Materials for Chapter II

A.1 Theoretical Results of the Oracle LIS-Based Procedures for HMRF

In this section, we show the theoretical results of the oracle LIS-based procedures orig-

inally for HMC model in Sun and Cai (2009) (Theorems 1 to 4 and Corollary 1) and Wei

et al. (2009) (Theorems 1 and 2), including the validity and optimality of the procedures,

also hold for our HMRF model. Here, an FDR procedure is called valid if it controls FDR

at a prespecified level α, and is called optimal if it minimizes marginal FNR (mFNR) while

controlling marginal FDR (mFDR) at the level α. Note that the asymptotic equivalence

between FDR and mFDR as well as that between FNR and mFNR hold under certain con-

ditions (Genovese and Wasserman, 2002; Xie et al., 2011), but remain open questions for

both HMC and HMRF.

Unless stated otherwise, the notation in this section is the same as in Sun and Cai (2009)

to which readers are referred. Define πij = P (Θi = j), i ∈ S, j = 0, 1. The model homo-

geneity, i.e., πij = π
(k)
j for all i in k-th HMC, is required in Sun and Cai (2009) and in Wei

et al. (2009) but fails to hold for HMRF because the boundary voxels and interior voxels

have different numbers of neighbors. However, the theory of the oracle procedures still

holds for HMRF if we redefine the average conditional cumulative distribution functions
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(CDFs) of the test statistic T (x) = {Ti(x) : i ∈ S} by

(A.1) Gj(t) =

∑
i∈S πijG

j
i (t)∑

i∈S πij
,

where Gj
i (t) = P (Ti < t|Θi = j).

For HMC model, Sun and Cai (2009) proved the optimality of oracle LIS procedure

in their Theorems 1 to 3 and Corollary 1, and its validity in their Theorem 4; Wei et al.

(2009) showed the validity of oracle SLIS procedure in their Theorem 1, and both validity

and optimality of oracle PLIS procedure in their Theorem 2. We modify the statements in

these theorems and corollary for HMRF by

(i) replacing HMM by HMRF;

(ii) in Corollary 1 of Sun and Cai (2009), replacing the definition of Gj(t) by (A.1) and

the equation g1(t)/g0(t) = (1/t)π0/π1 by g1(t)/g0(t) = (1/t)
∑

i∈S πi0/
∑

i∈S πi1;

(iii) in Theorem 2 of Wei et al. (2009), more precisely stating the optimality of oracle

PLIS procedure based on mFDR and mFNR.

For simplicity, we omit all the modified statements and only provide their proofs in the

following.

A.1.1 Modified Theorem 1 of Sun and Cai (2009) for HMRF

Proof. Following the proof of Proposition 1 in Sun and Cai (2007), we have

(A.2) g0(c)G1(c)−G0(c)g1(c) > 0

and

(A.3) g0(c)[1−G1(c)]− g1(c)[1−G0(c)] < 0.
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Additionally, by (A.1),

mFDR(c) =
E(N10)

E(R)
=

∑
i∈S P (Ti < c,Θi = 0)∑

i∈S P (Ti < c)

=

∑
i∈S πi0G

0
i (c)∑

i∈S(πi0G0
i (c) + πi1G1

i (c))

=
G0(c)

∑
i∈S πi0

G0(c)
∑

i∈S πi0 +G1(c)
∑

i∈S πi1
,

and

mFNR(c) =
E(N01)

E(S)
=

∑
i∈S P (Ti ≥ c,Θi = 1)∑

i∈S P (Ti ≥ c)

=

∑
i∈S πi1[1−G1

i (c)]∑
i∈S(πi0[1−G0

i (c)] + πi1[1−G1
i (c)])

=
[1−G1(c)]

∑
i∈S πi1

[1−G0(c)]
∑

i∈S πi0 + [1−G1(c)]
∑

i∈S πi1
.

Then,

d(mFDR(c))

dc
=

(
g0(c)

∑
i∈S

πi0

[
G0(c)

∑
i∈S

πi0 +G1(c)
∑
i∈S

πi1

]

−G0(c)
∑
i∈S

πi0

[
g0(c)

∑
i∈S

πi0 + g1(c)
∑
i∈S

πi1

])
/[

G0(c)
∑
i∈S

πi0 +G1(c)
∑
i∈S

πi1

]2

=
[g0(c)G1(c)−G0(c)g1(c)](

∑
i∈S πi0)(

∑
i∈S πi1)

[G0(c)
∑

i∈S πi0 +G1(c)
∑

i∈S πi1]2

> 0
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following from (A.2), and

d(mFNR(c))

dc
=

{
− g1(c)

∑
i∈S

πi1

(
[1−G0(c)]

∑
i∈S

πi0 + [1−G1(c)]
∑
i∈S

πi1

)

−

(
[1−G1(c)]

∑
i∈S

πi1

)(
−g0(c)

∑
i∈S

πi0 − g1(c)
∑
i∈S

πi1

)}
/(

[1−G0(c)]
∑
i∈S

πi0 + [1−G1(c)]
∑
i∈S

πi1

)2

=
(g0(c)[1−G1(c)]− g1(c)[1−G0(c)])(

∑
i∈S πi0)(

∑
i∈S πi1)

([1−G0(c)]
∑

i∈S πi0 + [1−G1(c)]
∑

i∈S πi1)2

< 0

following from (A.3). Hence we obtain part (a) and (b) of the theorem.

For part (c), the classification risk with the loss function

Lλ(Θ, δ) =
1

N

∑
i∈S

{λ(1−Θi)δi + Θi(1− δi)}

is

E[Lλ(Θ, δ)] =
1

N

∑
i∈S

{λP (Θi = 0, Ti < c) + P (Θi = 1, Ti ≥ c)}

=
1

N

∑
i∈S

{λπi0G0
i (c) + πi1[1−G1

i (c)]}

=
1

N

{
λG0(c)

∑
i∈S

πi0 + [1−G1(c)]
∑
i∈S

πi1

}
.

The optimal cutoff c∗ that minimizes this risk satisfies

λ =
g1(c∗)

∑
i∈S πi1

g0(c∗)
∑

i∈S πi0
.

Since T ∈ T , we have g1(c∗)/g0(c∗) is monotonically decreasing in c∗. Thus, λ(c∗) is

monotonically decreasing in c∗.

A.1.2 Modified Theorem 2 of Sun and Cai (2009) for HMRF

Proof. Suppose there are vL hypotheses from the null and kL hypotheses from the nonnull

among the r rejected hypotheses when the decision rule δ(L, cL) is applied with test statis-
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tic L and cutoff cL. We have vL =
∑

i∈S P (Θi = 0, Li < cL) and kL =
∑

i∈S P (Θi =

1, Li < cL), and the classification risk

Rλ(α) = E[Lλ(α)(Θ, δ(L, cL))]

=
1

N

∑
i∈S

{λ(α)P (Θi = 0, Li < cL) + P (Θi = 1, Li ≥ cL)}

=
1

N

{∑
i∈S

πi1 + λ(α)vL − kL

}
.(A.4)

Then following the proof of Theorem 1 in Sun and Cai (2007) using the expression (A.4)

for the classification risk Rλ(α), we complete the proof.

A.1.3 Modified Theorems 3 and 4 of Sun and Cai (2009) for HMRF

Proof. The proofs are the same as those of Theorems 3 and 4 in Sun and Cai (2009), thus

omitted.

A.1.4 Modified Corollary 1 of Sun and Cai (2009) for HMRF

Proof. Following the proof of Corollary 1 in Sun and Cai (2009) with the expression of

the risk R replaced by

R =
1

N

∑
i∈S

{
1

t
πi0G

0
i (t
∗) + πi1[1−G1

i (t
∗)]

}

=
1

N

{
1

t
G0(t∗)

∑
i∈S

πi0 + [1−G1(t∗)]
∑
i∈S

πi1

}
and their equation g1(t∗)/g0(t∗) = (1/t)π0/π1 substituted by the new equation g1(t∗)/g0(t∗) =

(1/t)
∑

i∈S πi0/
∑

i∈S πi1, we complete the proof.

A.1.5 Modified Theorems 1 and 2 of Wei et al. (2009) for HMRF

Proof. For Theorem 1 and the validity of oracle PLIS procedure in Theorem 2, the proofs

are the same as those in Wei et al. (2009). For the optimality of oracle PLIS procedure in

Theorem 2, the proof is the same as the proof of the optimality of oracle LIS procedure

given above.
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A.2 Gibbs Sampler Approximations

This section presents the approximations of quantities of interest in GEM. Let Ω be the

set of all possible configurations of Θ: Ω = {θ = (θs)s∈S : θs ∈ {0, 1}, s ∈ S}. By the

ergodic theorem of the Gibbs sampler (see Lemma 1 and Theorem 1 in Roberts and Smith

(1994)), for any Gibbs distribution (see definition (4.3) in Geman and Geman (1984)) π(θ)

and any real-valued function f(θ) on Ω, with probability one,

lim
n→∞

1

n

n∑
i=1

f(θ(i)) =

∫
Ω

f(θ)dπ(θ) = E[f(Θ)],

where θ(i), i = 1, ..., n are samples successively generated using the Gibbs sampler by

π(θ). For our HMRF, it is easy to see that both the Ising model probability distribu-

tion Pϕ(θ) and the conditional probability distribution PΦ(t)(θ|x) are Gibbs distributions.

Thus by the ergodic theorem, the following quantities can be approximated using Monte

Carlo averages via Gibbs sampler:

U (t+1)(ϕ) = EΦ(t) [H(Θ)|x]− Eϕ[H(Θ)]

≈ 1

n

n∑
i=1

(
H(θ(t,i,x))−H(θ(i,ϕ))

)
,

I(ϕ) = V arϕ[H(Θ)]

= Eϕ
[
(H(Θ)− Eϕ[H(Θ)])⊗2

]
≈ 1

n− 1

n∑
i=1

(
H(θ(i,ϕ))− 1

n

n∑
j=1

H(θ(j,ϕ))

)⊗2

,

γ(t)
s (i) = PΦ(t)(Θs = i|x) = EΦ(t) [1(Θs = i)|x]

= EΦ(t) [1(Θs = i)1(Θ ∈ Ω)|x]

≈ 1

n

n∑
k=1

1(θ(t,k,x)
s = i),

C

Z(ϕ)
= Eϕ[exp{−ϕTH(Θ)}]

≈ 1

n

n∑
i=1

exp{−ϕTH(θ(i,ϕ))},
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and

Q2(ϕ(t+1,m)|Φ(t))−Q2(ϕ(t)|Φ(t))

= EΦ(t) [logPϕ(t+1,m)(Θ)− logPϕ(t)(Θ)|x]

= EΦ(t) [(ϕ(t+1,m) −ϕ(t))TH(Θ)|x] + log

(
Z(ϕ(t))

Z(ϕ(t+1,m))

)
≈ 1

n
(ϕ(t+1,m) −ϕ(t))T

n∑
i=1

H(θ(t,i,x))

+ log

(∑n
i=1 exp{−ϕ(t+1,m)TH(θ(i,ϕ(t+1,m)))}∑n

i=1 exp{−ϕ(t)TH(θ(i,ϕ(t)))}

)
,

where {θ(1,ϕ), ...,θ(n,ϕ)} and {θ(t,1,x), ...,θ(t,n,x)} are large n samples successively gener-

ated using the Gibbs sampler by Pϕ(θ) and PΦ(t)(θ|x) respectively, and C is the cardinal-

ity of set Ω.

A.3 ADNI FDG-PET Imaging Data Analysis

We apply the PLIS procedure with HMRFs to the analysis of ADNI FDG-PET imag-

ing data, which is compared with BH, q-value and CLfdr procedures. Since the FDG-PET

scans were normalized to the average of pons and cerebellar vermis, areas of the brain

known to be least affected in AD, it was not surprising that almost all the signal voxels

are found with decreased CMRgl. Both PLIS and CLfdr procedures discovered signifi-

cant metabolic reduction, with a regional proportion of signals > 50%, in brain regions

preferentially affected by AD, including the posterior cingulate (BAs 23, 31; Mosconi et

al., 2008; Langbaum et al., 2009), parietal cortex (BAs 7, 37, 39, 40; Minoshima et al.,

1995; Matsuda, 2001), temporal cortex (BAs 20 to 22; Alexander et al., 2002; Landau et

al., 2011), medial temporal cortex (BAs 28, 34; Karow et al., 2010), frontal cortex (BAs

8 to 11, and 44 to 47; Mosconi, 2005), insular cortex (Perneczky et al., 2007), amygdala

(Nestor et al., 2003) and hippocampus (Mosconi et al., 2005). In regions also typically

affected in AD, such as anterior cingulate (BAs 24, 32; Fouquet et al., 2009) and occipital
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cortex (BAs 17 to 19; Langbaum et al., 2009), the proportions of signals found by PLIS are

49.6% and 39.0%, respectively, compared with 35.4% and 11.6% found by CLfdr, 12.2%

and 0.94% by q-value, as well as only 1.24% and 0.87% by BH.

With respect to the regions that are relatively spared from AD (Benson et al., 1983;

Matsuda, 2001; Ishii, 2002) or rarely reported in the literature of the disease, caudate,

thalamus and putamen are found with high proportions of signals by PLIS (> 45%) and

CLfdr (> 25%) in each of these regions; signals in medulla, midbrain, cerebellar hemi-

spheres, pre-motor cortex (BA 6) and primary somatosensory cortex (BAs 1, 2, 3, 5) are

each claimed with a proportion greater than 20% by PLIS, but very sparse found by the

other three procedures. Since MCI as a group consists of a mix of patients, many of them

will progress to AD but some will not which may include subjects with corticobasal de-

generation (Ishii, 2002), frontotemporal dementia (Jeong et al., 2005), or Parkinsonism

(Huang et al., 2007; Zeman et al., 2011; Ishii, 2014), it is not surprising that some areas

not typical of AD patients were found to be abnormal in the MCI group.
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APPENDIX B

Supplementary Materials for Chapter III

This Supplementary Material contains the detailed proofs of the general theorems given

in Subsection 3.6.1, the instructions for selecting the candidates values of tuning parame-

ters, and additional results of the rfMRI data analysis.

B.1 Technical Lemmas

The following lemma is an extension of the “Hanson-Wright inequality” (Rudelson and

Vershynin, 2013, Theorem 1.1) and “Hoeffding-type inequality” (Vershynin, 2012, Propo-

sition 5.10) for independent sub-Gaussian data to that for a certain type of uncorrelated

sub-Gaussian data.

Lemma B.1. Let e = (e1, e2, . . . )
T be an infinite-dimensional random vector with in-

dependent standard sub-Gaussian components, each with the same parameter K ≥ 1

defined in (3.2). Let Y = Ae be a well-defined random vector with length d in the sense

of entrywise almost-sure convergence and mean-square convergence, and AAT = Id×d.

Then for t ≥ 0, there exists a constant c > 0 only dependent on K such that

(B.1) P
[∣∣Y TBY − E[Y TBY ]

∣∣ ≥ t
]
≤ 2 exp

{
−cmin

(
t2

‖B‖2
F

,
t

‖B‖2

)}
and

(B.2) P
[∣∣bTY ∣∣ ≥ t

]
≤ exp(1) · exp

{
− ct2

‖b‖2
F

}
,
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where nonzero matrix B = (bij)d×d, and b is a d-dimensional nonzero vector.

Proof. Consider the nontrivial case when t > 0. Let A = (aij)d×∞, Am = (aij)d×m

consist of the first m columns of A, em = (e1, e2, ..., em)T consist of the first m elements

of e, and Y m = (Y m
1 , ..., Y m

d )T = Amem. For each i, when m → ∞, we have Y m
i =∑m

j=1 aijej
P→ Yi =

∑∞
j=1 aijej , with

∑m
j=1 a

2
ij → 1 and

∑m
j=1 aijakj → 0 for i 6= k

following from AAT = Id×d. Thus, for dimension d and positive values ε1, ε2 and δ, there

exists a number N such that for any m > N , we have

(B.3) P
[
|Y TBY − Y T

mBY m| ≥ ε1

]
≤ δ,

(B.4) P
[
|bTY − bTY m| ≥ ε1

]
≤ δ,

(B.5)

∣∣∣∣∣
m∑
j=1

a2
ij − 1

∣∣∣∣∣ ≤ ε2

d
, and

∣∣∣∣∣
m∑
j=1

aijakj

∣∣∣∣∣ ≤ ε2

d2
for i 6= k.

Since E(Y m) = AmE(em) = 0 and cov(Y m) = Amcov(em)AT
m = AmAT

m, we have

E[Y T
mBY m] =

∑
1≤i,k≤d bikE[Y m

i Y
m
k ] =

∑
1≤i,k≤d bik

∑m
j=1 aijakj . So E[Y TBY ] =∑d

i=1 bii. By Lemma 5.5 in Vershynin (2012), there exists a constant c1 only dependent on

K such that

sup
k≥1

k−1/2(E|ej|k)1/k ≤ c1 for all j = 1, 2, . . . .

Without loss of generality, we assume c1 > 1. Then by Theorem 1.1 in Rudelson and

Vershynin (2013) and Proposition 5.10 in Vershynin (2012), for every t > 0, there exists
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an absolute constant c2 > 0 such that

P

[∣∣∣∣∣Y T
mBY m −

∑
1≤i,k≤d

bik

m∑
j=1

aijakj

∣∣∣∣∣ ≥ t/2

]

= P
[∣∣Y T

mBY m − E[Y T
mBY m]

∣∣ ≥ t/2
]

≤ P
[∣∣eTmAT

mBAmem − E[eTmAT
mBAmem]

∣∣ > t/3
]

≤ 2 exp

{
−c2 min

(
t2

9c4
1‖AT

mBAm‖2
F

,
t

3c2
1‖AT

mBAm‖2

)}
≤ 2 exp

{
− c2

9c4
1

min

(
t2

‖AT
mBAm‖2

F

,
t

‖AT
mBAm‖2

)}
(B.6)

and

(B.7) P
[
|bTY m| ≥ t/2

]
= P

[
|bTAmem| ≥ t/2

]
≤ exp(1) exp

{
− c2t

2

4c2
1‖bTAm‖2

F

}
.

Letting ε2 ≤
√
d, then by (B.5), we have

ϕmax(AT
mAm) = ϕmax(AmAT

m) = ‖AmAT
m‖2

≤ ‖AmAT
m −AAT‖2 + ‖AAT‖2 ≤ ‖AmAT

m − Id×d‖F + 1

=

√√√√2
d∑
i=1

d∑
k>i

(
m∑
j=1

aijakj

)2

+
d∑
i=1

(
m∑
j=1

a2
ij − 1

)2

+ 1

≤
√

(d2 − d)ε2
2/d

4 + dε2
2/d

2 + 1 ≤
√
ε2

2(d−2 + d−1) + 1 ≤ 9,

By Lemma 1 in Lam and Fan (2009), we have ‖M1M2‖F ≤ ‖M1‖2‖M2‖F for real

matices M1 and M2 of appropriate sizes. Thus,

‖AT
mBAm‖F ≤ ‖AT

m‖2‖BAm‖F = ‖AT
m‖2‖AT

mBT‖F

≤ ‖AT
m‖2

2‖BT‖F = ϕmax(AmAT
m)‖B‖F ≤ 9‖B‖F ,

‖AT
mBAm‖2 ≤ ‖AT

m‖2‖Am‖2‖B‖2 =
√
ϕmax(AmAT

m)ϕmax(AT
mAm)‖B‖2

= ϕmax(AmAT
m)‖B‖2 ≤ 9‖B‖2,
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and

‖bTAm‖F = ‖AT
mb‖F ≤ ‖AT

m‖2‖b‖F =
√
ϕmax(AmAT

m)‖b‖F ≤ 3‖b‖F .

Then from (B.6) and (B.7), we have

P

[∣∣∣∣∣Y T
mBY m −

∑
1≤i,k≤d

bik

m∑
j=1

aijakj

∣∣∣∣∣ ≥ t/2

]
≤ 2 exp

{
−cmin

(
t2

‖B‖2
F

,
t

‖B‖2

)}
and

P
[∣∣bTY m

∣∣ ≥ t/2
]
≤ exp(1) · exp

{
− ct2

‖b‖2
F

}
with some constant c > 0 only dependent onK. Letting ε1 = t/4 and ε2 ≤ min{t(8|B|∞)−1,

√
d},

then by (B.3), (B.4) and (B.5), we obtain

P
[∣∣Y TBY − E[Y TBY ]

∣∣ ≥ t
]

= P

[∣∣∣∣∣Y TBY −
d∑
i=1

bii

∣∣∣∣∣ ≥ t

]

≤ P

[∣∣Y TBY − Y T
mBY m

∣∣+

∣∣∣∣∣ ∑
1≤i,k≤d

bik

m∑
j=1

aijakj −
d∑
i=1

bii

∣∣∣∣∣ ≥ t/2

]

+ P

[∣∣∣∣∣Y T
mBY m −

∑
1≤i,k≤d

bik

m∑
j=1

aijakj

∣∣∣∣∣ ≥ t/2

]

≤ P

[ ∣∣Y TBY − Y T
mBY m

∣∣+
d∑
i=1

|bii|

∣∣∣∣∣
m∑
j=1

a2
ij − 1

∣∣∣∣∣
+

d∑
i=1

∑
k 6=i,1≤k≤d

|bik|

∣∣∣∣∣
m∑
j=1

aijakj

∣∣∣∣∣ ≥ t/2

]

+ 2 exp

{
−cmin

(
t2

‖B‖2
F

,
t

‖B‖2

)}
≤ P

[∣∣Y TBY − Y T
mBY m

∣∣+ t/8 + t/8 ≥ t/2
]

+ 2 exp

{
−cmin

(
t2

‖B‖2
F

,
t

‖B‖2

)}
≤ δ + 2 exp

{
−cmin

(
t2

‖B‖2
F

,
t

‖B‖2

)}
(B.8)
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and

P [|bTY | ≥ t] ≤ P [|bTY − bTY m| ≥ t/2] + P [|bTY m| ≥ t/2]

≤ δ + exp(1) · exp

{
− ct2

‖b‖2
F

}
.(B.9)

Letting δ → 0 on both sides of inequalities (B.8) and (B.9), we obtain (B.1) and (B.2).

Lemma B.2. Let e = (e1, e2, . . . )
T be the same as that in Lemma B.1, and let X =

Be be a well-defined random vector with length d in the sense of entrywise almost-sure

convergence and mean-square convergence. Assume the covariance matrix ofX , denoted

as Σx, is positive definite. Then for u ≥ 0, there exists a constant c > 0 only dependent

on K such that

(B.10) P
[
|X̄|2 ≥ u

]
≤ exp(1) exp {−cdu}+ exp(1) exp

{
− cdu

‖Σx − Id×d‖1

}
,

with the second term on the right hand side (RHS) of (B.10) being 0 when Σx = Id×d.

Proof. We consider the nontrivial case when u > 0. Since Σx is positive definite, there

exists a symmetric positive definite matrix Σ
1/2
x such that Σx = Σ

1/2
x Σ

1/2
x . Let Y =

Σ
−1/2
x X and A = Σ

−1/2
x B, then Y = Σ

−1/2
x Be = Ae. Thus, AAT = Acov(e)AT =

cov(Ae) = cov(Y ) = cov(Σ
−1/2
x X) = Σ

−1/2
x ΣxΣ

−1/2
x = Id×d, where the second equal-

ity holds for the infinite-dimensional e according to Proposition 2.7.1 in Brockwell and

Davis (1991). We have

P
[
|X̄|2 ≥ u

]
= P

[
|Ȳ + X̄ − Ȳ | ≥

√
u
]

≤ P

[
|Ȳ | ≥

√
u

2

]
+ P

[∣∣∣∣1d1Td (Σ1/2
x − Id×d)Y

∣∣∣∣ ≥ √u2
]
.(B.11)

Consider the nontrivial case when Σx 6= Id×d. By (B.2) in Lemma B.1 with a redefined

constant c > 0 only dependent on K, we have

(B.12) P

[
|Ȳ | ≥

√
u

2

]
≤ exp(1) exp {−cdu}
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and

P

[∣∣∣∣1d1Td (Σ1/2
x − Id×d)Y

∣∣∣∣ ≥ √u2
]

≤ exp(1) exp

{
− cu

‖1
d
1Td (Σ

1/2
x − Id×d)‖2

F

}

≤ exp(1) exp

{
− cu

‖1
d
1d‖2

F‖Σ
1/2
x − Id×d‖2

2

}

= exp(1) exp

{
− cdu

‖Σ1/2
x − Id×d‖2

2

}

≤ exp(1) exp

{
− cdu

‖Σx − Id×d‖1

}
(B.13)

The second inequality in (B.13) is obtained from Lemma 1 in Lam and Fan (2009). The

last inequality in (B.13) follows from

‖Σ1/2
x − Id×d‖2

2 = max
i
|ϕ1/2
i − 1|2 ≤ max

i
|(ϕ1/2

i − 1)(ϕ
1/2
i + 1)|

= max
i
|ϕi − 1| = ‖Σx − Id×d‖2 ≤ ‖Σx − Id×d‖1,

where ϕi > 0, i = 1, . . . , d, are the eigenvalues of Σx. Plugging (B.12) and (B.13) into

(B.11) yields (B.10).

Lemma B.3. If τ0 =
√
f log(pf)/n = o(1), then for any positive constants M ′, c1, c2,

there exists a constant M > 0 such that for sufficiently large n,

pc1f exp

{
−c2nu

f

}
< pc1f exp

{
−c2nu

2

f

}
≤ p−M

′
,

where u = Mτ0.

Proof. By τ0 = o(1), for any constant M > 0, there exists a constant N(M) > 0

such that when n > N(M), we have u = Mτ0 < 1, thus pc1f exp {−c2nu/f} <
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pc1f exp {−c2nu
2/f}. Since

pc1f exp

{
−c2nu

2

f

}
= exp

{(
c1 +

log f

log p
− c2nu

2

f log p

)
log p

}
= exp

{(
c1 +

log f

log p
− c2nM

2τ 2
0

f log p

)
log p

}
= exp

{[
c1 +

log f

log p
− c2M

2

(
1 +

log f

log p

)]
log p

}
= exp

{[
−(c2M

2 − c1)− (c2M
2 − 1)

log f

log p

]
log p

}
,

for any constant M ′ > 0, choosing a constant M such that c2M
2 − c1 ≥ M ′ and c2M

2 −

1 ≥ 0, i.e., M ≥
√

max{(c1 +M ′)/c2, 1/c2}, we have pc1f exp {−c2nu
2/f} ≤ p−M

′ .

B.2 Proofs of the General Theorems

B.2.1 Proof of Theorem III.7

Proof of Theorem III.7 (a). Similar to the case of i.i.d. data discussed in Bickel and Levina

(2008a) and Rothman et al. (2009), the key to the proof is to find a desirable probabilistic

bound of max1≤i,j≤p |σ̂ij − σij| for temporally dependent observations. Once the bound is

established, the remaining of the proof for the convergence in probability follows the same

steps as those in the aforementioned literature.

Without loss of generality, we assume µp = 0. We only consider data generated from

(3.3) with m = ∞ because any case with finite m can be constructed by adding infinite

number of zero columns in H. Since

max
1≤i,j≤p

|σ̂ij − σij| ≤ max
1≤i,j≤p

∣∣X̄iX̄j

∣∣+ max
1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

XikXjk − σij

∣∣∣∣∣
≤ max

1≤i≤p

∣∣X̄i

∣∣2 + max
1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

XikXjk − σij

∣∣∣∣∣ ,(B.14)
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for any u > 0, we have

P

[
max

1≤i,j≤p
|σ̂ij − σij| ≥ 2u

]
≤ P

[
max
1≤i≤p

∣∣X̄i

∣∣2 ≥ u

]
+ P

[
max

1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

XikXjk − σij

∣∣∣∣∣ ≥ u

]
.(B.15)

Let Zij = Xij/
√
σii, Ar,f = {k ∈ Z+ ∪ {0} : kf + r ≤ n}, r ∈ {1, . . . , f}, and

Cr,f be the cardinality of Ar,f . For a fixed integer f and any integer 1 ≤ j ≤ n, we have

j = kf + r, where k = bj/fc if j/f is not an integer, otherwise k = j/f − 1. Hence,

n∑
j=1

Xij =

f∑
r=1

∑
k∈Ar,f

Xi,kf+r and n =

f∑
r=1

Cr,f .

Moreover, for any r ∈ {1, . . . , f},

n/f − 2 ≤ bn/fc − 1 ≤ Cr,f − 1 ≤ bn/fc ≤ n/f,

thus n − f ≤ fCr,f ≤ 2n. By τ0 =
√
f log(pf)/n = o(1), we have f = o(n). Hence,

there exists a constant N1 such that when n > N1, we have

(B.16) n/2 ≤ fCr,f ≤ 2n.

We assume n > N1 in the following.

Now, for the first term on the RHS of (B.15), following from (B.16) and σii ≤ v0 we
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have

P

[
max
1≤i≤p

|X̄i|2 ≥ u

]
≤

p∑
i=1

P
[
|X̄i| ≥ u

1
2

]
=

p∑
i=1

P

[∣∣∣∣∣
n∑
j=1

Xij

∣∣∣∣∣ ≥ nu
1
2

]

=

p∑
i=1

P

∣∣∣∣∣∣
f∑
r=1

∑
k∈Ar,f

Xi,kf+r

∣∣∣∣∣∣ ≥ nu
1
2


≤

p∑
i=1

P

 f∑
r=1

∣∣∣∣∣∣
∑
k∈Ar,f

Xi,kf+r

∣∣∣∣∣∣ ≥ nu
1
2


≤

p∑
i=1

f∑
r=1

P

∣∣∣∣∣∣
∑
k∈Ar,f

Xi,kf+r

∣∣∣∣∣∣ ≥ nu1/2

f


=

p∑
i=1

f∑
r=1

P

∣∣∣∣∣∣ 1

Cr,f

∑
k∈Ar,f

Zi,kf+r

∣∣∣∣∣∣ ≥ n

fCr,f

√
u

σii


≤

p∑
i=1

f∑
r=1

P

∣∣∣∣∣∣ 1

Cr,f

∑
k∈Ar,f

Zi,kf+r

∣∣∣∣∣∣ ≥ 1

2

√
u

v0

 .(B.17)

Let ∆ifr be the covariance matrix of vec {Zi,kf+r : k ∈ Ar,f}, then

‖∆ifr − ICr,f×Cr,f
‖1 = max

l

∑
k 6=l

|ρkf+r,lf+r
ii |

≤ max
1≤b≤n

∑
a∈{1≤a≤n:
|a−b|=kf,

k=1,...,bn/fc}

|Rab|∞ ≤ g(n, p)(B.18)

by assumption (3.28). Since lim sup
n→∞

g(n, p) < 1, there exists a constant c1 > 0 such

that lim sup
n→∞

g(n, p) < c1 < 1. Then there exists a constant N2(c1) > 0 such that g <

c1 < 1 when n > N2(c1). We now assume n > max{N1, N2(c1)}. By (B.18), ∆ifr

is a strictly diagonally dominated matrix, thus positive definite by the Levy-Desplanques

theorem (Horn and Johnson, 2013). From equation (3.3), we have

(B.19) vec{Zi,kf+r : k ∈ Ar,f} = PifrHe,
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where Pifr is a Cr,f×pnmatrix with σ−1/2
ii in the

(
k+1, i+(kf+r−1)p

)
entries and 0 in

all other entries for k ∈ Ar,f . By Proposition 2.7.1 in Brockwell and Davis (1991), ∆ifr =

PifrH(PifrH)T holds for the case when m = ∞, and since ∆ifr for all r ∈ {1, . . . , f}

are positive definite, H has rank no less than max1≤r≤f Cr,f = b(n−1)/fc+1. By (B.19),

Lemma B.2, (B.18), (B.16) and g < 1, we have

P

∣∣∣∣∣∣ 1

Cr,f

∑
k∈Ar,f

Zi,kf+r

∣∣∣∣∣∣ ≥ 1

2

√
u

v0


≤ exp(1) exp

{
−c2Cr,fu

4v0

}
+ exp(1) exp

{
−c2Cr,fu

4v0g

}
≤ 2 exp(1) exp

{
−c2nu

8v0f

}
(B.20)

with some constant c2 > 0. Plugging (B.20) into (B.17) yields

(B.21) P

[
max
1≤i≤p

|X̄i|2 ≥ u

]
≤ 2pf exp(1) exp

{
−c2nu

8v0f

}
.

For the second term on the RHS of (B.15), we use a similar argument in Bhattacharjee

and Bose (2014). Note that

P

[
max

1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

XikXjk − σij

∣∣∣∣∣ ≥ u

]

≤
∑

1≤i,j≤p

P

[∣∣∣∣∣ 1n
n∑
k=1

XikXjk − σij

∣∣∣∣∣ ≥ u

]

=
∑

1≤i,j≤p

P

[∣∣∣∣∣
n∑
k=1

ZikZjk − nρij

∣∣∣∣∣ ≥ nu
√
σiiσjj

]

≤
∑

1≤i,j≤p

P

[∣∣∣∣∣
n∑
k=1

(Zik + CgZjk)
2 − n

(
1 + C2

g + 2Cgρij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiσjj

]

+
∑

1≤i,j≤p

P

[∣∣∣∣∣
n∑
k=1

(Zik − CgZjk)2 − n
(
1 + C2

g − 2Cgρij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiσjj

]
,(B.22)

where constant Cg =
1−√c1
1+
√
c1
∈ (0, 1). Without loss of generality, we only consider the

105



second term on the RHS of the above inequality. Then

P

[∣∣∣∣∣
n∑
k=1

(Zik − CgZjk)2 − n
(
1 + C2

g − 2Cgρij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiσjj

]

= P

[∣∣∣∣∣
f∑
r=1

∑
k∈Ar,f

(Zi,kf+r − CgZj,kf+r)
2

−
f∑
r=1

Cr,f
(
1 + C2

g − 2Cgρij
) ∣∣∣∣∣ ≥ 2Cgnu√

σiiσjj

]

≤ P

[
f∑
r=1

∣∣∣∣∣ ∑
k∈Ar,f

(
Zi,kf+r − CgZj,kf+r√

1 + C2
g − 2Cgρij

)2

− Cr,f

∣∣∣∣∣
≥ 2Cgnu

(1 + C2
g − 2Cgρij)

√
σiiσjj

]

≤
f∑
r=1

P

[∣∣∣∣∣ ∑
k∈Ar,f

(
Zi,kf+r − CgZj,kf+r√

1 + C2
g − 2Cgρij

)2

− Cr,f

∣∣∣∣∣
≥ 2Cgnu

(1 + C2
g − 2Cgρij)fv0

]
.(B.23)

Let

Z = vec

{
Zi,kf+r − CgZj,kf+r√

1 + C2
g − 2Cgρij

: k ∈ Ar,f

}
,

and Γ := (γkl)Cr,f×Cr,f
= cov(Z), where for k, l ∈ Ar,f ,

γkl =



[
ρkf+r,lf+r
ii − Cg(ρkf+r,lf+r

ij + ρkf+r,lf+r
ji )

+C2
gρ

kf+r,lf+r
jj

]
(1 + C2

g − 2Cgρij)
−1, k 6= l;

1, k = l.

Similar to (B.18), we have

‖Γ− ICr,f×Cr,f
‖1 ≤ (1 + 2Cg + C2

g )(1 + C2
g − 2Cgρij)

−1 max
1≤b≤n

∑
a∈{1≤a≤n:
|a−b|=kf,

k=1,...,bn/fc}

|Rab|∞

≤ (1 + Cg)
2(1 + C2

g − 2Cgρij)
−1g(n, p)(B.24)

≤
(

1 + Cg
1− Cg

)2

g(n, p) = g(n, p)/c1 < 1,

106



thus Γ � 0. Then there exists a symmetric positive definite matrix Γ1/2 such that Γ =

Γ1/2Γ1/2. Let Y = Γ−1/2Z. Then by (B.19), we have

(B.25) Y = Ae, with AAT = ICr,f×Cr,f
,

where

A =
Γ−1/2(Pifr − CgPjfr)H√

1 + C2
g − 2Cgρij

,

and the second equality in (B.25) is from Proposition 2.7.1 in Brockwell and Davis (1991)

which gives AAT = Acov(e)AT = cov(Ae) = cov(Y ) = ICr,f×Cr,f
. Now we have

P

∣∣∣∣∣∣
∑
k∈Ar,f

(
Zi,kf+r − CgZj,kf+r√

1 + C2
g − 2Cgρij

)2

− Cr,f

∣∣∣∣∣∣ ≥ 2Cgnu

(1 + C2
g − 2Cgρij)fv0


= P

[∣∣Y TΓY − Cr,f
∣∣ ≥ 2Cgnu

(1 + C2
g − 2Cgρij)fv0

]
≤ P

[
|Y T (Γ− ICr,f×Cr,f

)Y | ≥ Cgnu

(1 + C2
g − 2Cgρij)fv0

]
(B.26)

+ P

[
|Y TY − Cr,f | ≥

Cgnu

(1 + C2
g − 2Cgρij)fv0

]
.

The first term on the RHS of (B.26) obviously equals zero for u > 0 when Γ = ICr,f×Cr,f
,

thus we only consider the case that Γ 6= ICr,f×Cr,f
. By the fact thatE[Y T (Γ−ICr,f×Cr,f

)Y ] =
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tr(Γ− ICr,f×Cr,f
) = 0, (B.25), (B.1) in Lemma B.1, (B.24), (B.16) and g < 1, we have

P

[
|Y T (Γ− ICr,f×Cr,f

)Y | ≥ Cgnu

(1 + C2
g − 2Cgρij)fv0

]
≤ 2 exp

{
− c3 min

(
(Cgnu)2

[(1 + C2
g − 2Cgρij)fv0]2‖Γ− ICr,f×Cr,f

‖2
F

,

Cgnu

(1 + C2
g − 2Cgρij)fv0‖Γ− ICr,f×Cr,f

‖2

)}

≤ 2 exp

{
− c3 min

(
(Cgnu)2

[(1 + C2
g − 2Cgρij)fv0]2Cr,f‖Γ− ICr,f×Cr,f

‖2
1

,

Cgnu

(1 + C2
g − 2Cgρij)fv0‖Γ− ICr,f×Cr,f

‖1

)}

≤ 2 exp

{
− c3 min

(
C2
gn

2u2

f 2v2
0Cr,f (1 + Cg)4g2

,
Cgnu

fv0(1 + Cg)2g

)}

≤ 2 exp

{
− c3 min

(
C2
gnu

2

2v2
0(1 + Cg)4f

,
Cgnu

v0(1 + Cg)2f

)}
(B.27)

with some constant c3 > 0. Similarly,

P

[
|Y TY − Cr,f | ≥

Cgnu

(1 + C2
g − 2Cgρij)fv0

]
≤ 2 exp

{
− c3 min

(
(Cgnu)2

[(1 + C2
g − 2Cgρij)fv0]2Cr,f

,

Cgnu

(1 + C2
g − 2Cgρij)fv0

)}

≤ 2 exp

{
− c3 min

(
C2
gnu

2

2v2
0(1 + Cg)4f

,
Cgnu

v0(1 + Cg)2f

)}
.(B.28)

By (B.23), (B.26), (B.27) and (B.28), we have

P

[∣∣∣∣∣
n∑
k=1

(Zik − CgZjk)2 − n
(
1 + C2

g − 2Cgρij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiσjj

]

≤ 4f exp

{
−c4 min

(
nu2

f
,
nu

f

)}
,
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with some constant c4 > 0. Similarly,

P

[∣∣∣∣∣
n∑
k=1

(Zik + CgZjk)
2 − n

(
1 + C2

g + 2Cgρij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiσjj

]

≤ 4f exp

{
−c4 min

(
nu2

f
,
nu

f

)}
.

Therefore by (B.22), we have

(B.29) P

[
max

1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

XikXjk − σij

∣∣∣∣∣ ≥ u

]
≤ 8p2f exp

{
−c4 min

(
nu2

f
,
nu

f

)}
.

From (B.15), (B.21) and (B.29), we obtain

P

[
max

1≤i,j≤p
|σ̂ij − σij| ≥ 2u

]
≤ 2pf exp(1) exp

{
−c2nu

8v0f

}
+ 8p2f exp

{
−c4 min

(
nu2

f
,
nu

f

)}
.(B.30)

By Lemma B.3, for any constant M ′ > 0, there exists a constant M1 > 0 such that when

M ≥M1, we have

(B.31) P

[
max

1≤i,j≤p
|σ̂ij − σij| ≥ τ

]
= O(p−M

′
), with τ = Mτ0.

Then following the similar lines of the proof of Theorem 1 after equation (12) in Bickel

and Levina (2008a) and the proof of Theorem 1 in Rothman et al. (2009), we obtain that

for any constant M ′ > 0, there exists a constant M2 ≥M1 such that

P
[
‖Sτ (Σ̂)−Σ‖2 ≥ C1cpτ

1−q
0

]
≤ P

[
‖Sτ (Σ̂)−Σ‖1 ≥ C1cpτ

1−q
0

]
= O(p−M

′
),(B.32)

where τ = Mτ0 with any constant M ≥ M2 and some constant C1 > 0 dependent on M .

Thus, we obtain (3.30).
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By condition (iii) of the generalized thresholding function and (B.31), we have

P
[
|Sτ (Σ̂)−Σ|∞ ≥ 2τ

]
= P

[
max

1≤i,j≤p
|sτ (σ̂ij)− σij| ≥ 2τ

]
≤ P

[
max

1≤i,j≤p
|sτ (σ̂ij)− σ̂ij|+ max

1≤i,j≤p
|σ̂ij − σij| ≥ 2τ

]
≤ P

[
τ + max

1≤i,j≤p
|σ̂ij − σij| ≥ 2τ

]
= O(p−M

′
).(B.33)

Thus, (3.29) holds. By (B.32), (B.33) and the inequality ‖M‖2
F ≤ p‖M‖1|M|∞ for any

p× p matrix M, we have

P

[
1

p
‖Sτ (Σ̂)−Σ‖2

F ≥ 2τC1cpτ
1−q
0

]
≤ P

[
‖Sτ (Σ̂)−Σ‖1|Sτ (Σ̂)−Σ|∞ ≥ 2τC1cpτ

1−q
0

]
≤ P

[
‖Sτ (Σ̂)−Σ‖1 ≥ C1cpτ

1−q
0

]
+ P

[
|Sτ (Σ̂)−Σ|∞ ≥ 2τ

]
= O(p−M

′
).(B.34)

Hence, we obtain (3.31).

For the sparsistency and sign-consistency, the proof follows the similar lines of the

proof of Theorem 2 in Rothman et al. (2009) by replacing their equation (A.4) with (B.31).

Details are hence omitted.

For the convergence in mean square, we additionally assume p ≥ nc for some constant

c > 0. Now

E‖Sτ (Σ̂)−Σ‖2
2

= E
[
‖Sτ (Σ̂)−Σ‖2

2I
(
‖Sτ (Σ̂)−Σ‖2 ≥ C1cpτ

1−q
0

)]
+ E

[
‖Sτ (Σ̂)−Σ‖2

2I
(
‖Sτ (Σ̂)−Σ‖2 < C1cpτ

1−q
0

)]
≤
(
E‖Sτ (Σ̂)−Σ‖4

2

) 1
2
(
P
[
‖Sτ (Σ̂)−Σ‖2 ≥ C1cpτ

1−q
0

]) 1
2

+ (C1cpτ
1−q
0 )2

≤
(
E‖Sτ (Σ̂)−Σ‖4

F

) 1
2
O(p−

M′
2 ) + (C1cpτ

1−q
0 )2.(B.35)
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We want to show E‖Sτ (Σ̂) − Σ‖4
F = O(pc5) with a constant c5 > 0, and then choose a

sufficiently large M ′ to obtain desired result. By condition (iii) of the generalized thresh-

olding function, we have ‖Sτ (Σ̂)− Σ̂‖F ≤ pτ, then

E‖Sτ (Σ̂)−Σ‖4
F ≤ E

(
‖Sτ (Σ̂)− Σ̂‖F + ‖Σ̂−Σ‖F

)4

= E
[
‖Sτ (Σ̂)− Σ̂‖4

F + ‖Σ̂−Σ‖4
F + 4‖Sτ (Σ̂)− Σ̂‖3

F‖Σ̂−Σ‖F

+ 4‖Sτ (Σ̂)− Σ̂‖F‖Σ̂−Σ‖3
F + 6‖Sτ (Σ̂)− Σ̂‖2

F‖Σ̂−Σ‖2
F

]
≤ p4τ 4 + E‖Σ̂−Σ‖4

F + 4p3τ 3E‖Σ̂−Σ‖F + 4pτE‖Σ̂−Σ‖3
F

+ 6p2τ 2E‖Σ̂−Σ‖2
F

≤ p4τ 4 + E‖Σ̂−Σ‖4
F + 4p3τ 3

(
E‖Σ̂−Σ‖2

F

) 1
2

+ 4pτ
(
E‖Σ̂−Σ‖6

F

) 1
2

+ 6p2τ 2E‖Σ̂−Σ‖2
F .(B.36)

Since p ≥ nc, it is easy to see that for d = 1, 2, 3,

(B.37) ‖Σ̂−Σ‖2d
F =

 ∑
1≤i,j≤p

(
1

n

n∑
k=1

XikXjk − X̄iX̄j − σij

)2

d

is a polynomial of variables Xij of degree 4d, 1 ≤ i ≤ p, 1 ≤ j ≤ n, the number of

its terms is bounded by pC2 with a constant C2 > 0, and all its coefficients are absolutely

bounded by a constant C3 that only depends on v0. Denote by P (d)
k the k-th term in the

corresponding polynomial of Xij in (B.37). Then by the Hölder’s inequality (Karr, 1993),

there exist positive constants c6 and c7 for all k and d such that

(B.38) E|P (d)
k | ≤ C3

∏
i,j

(E|Xij|cijkd)
1

Cijkd

with appropriate choices of integer constants cijkd ∈ [0, c6] and Cijkd ∈ [1, c7], and∑
i,j I(cijkd 6= 0) ≤ 4d. By inequality (3.4) and σii ≤ v0, we have

(B.39) E(exp{t[Xij − E(Xij)]}) ≤ exp{Kv0t
2/2}, for all t ∈ R.
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Then by (B.39) and Lemma 5.5 in Vershynin (2012), there exists a constant c8 > 0 only

dependent on Kv0 such that (E|Xij − E(Xij)|k)1/k ≤ c8

√
k for all k ≥ 1, 1 ≤ i ≤ p and

1 ≤ j ≤ n, thus

(B.40) (E|Xij|k)1/k ≤ c8

√
k

with the assumption µp = 0. Combining (B.37), (B.38) and (B.40), we have

(B.41) E‖Σ̂−Σ‖2d
F = O(pC2), for d = 1, 2, 3.

Then by (B.36), we obtain E‖Sτ (Σ̂)−Σ‖4
F = O(pc5) with some constant c5 > 0. Hence,

by (B.35), we have

E‖Sτ (Σ̂)−Σ‖2
2 ≤ O(p

c5−M′
2 ) + (C1cpτ

1−q
0 )2.

Since τ0 =
√
f log(pf)/n ≥

√
n−1 log p ≥

√
p−1/c log p following from p ≥ nc, we

can let M ′ be sufficiently large such that pc5−
M′
2 = O

(
(cpτ

1−q
0 )2

)
, then (3.33) holds. By

(B.33) and (B.34), we can similarly obtain (3.32) and (3.34) respectively.

Proof of Theorem III.7 (b). The key of the proof is to show that for any constant M ′ > 0,

there exists a constant C ′ > 0 such that

(B.42) P

[
max

1≤i,j≤p
|ρ̂ij − ρij| ≥ C ′τ0

]
= O(p−M

′
).

Similar to (B.14),

max
1≤i,j≤p

∣∣∣∣ σ̂ij − σij√
σiiσjj

∣∣∣∣ ≤ max
1≤i,j≤p

∣∣∣∣ X̄iX̄j√
σiiσjj

∣∣∣∣+ max
1≤i,j≤p

∣∣∣∣∣ 1

n
√
σiiσjj

n∑
k=1

XikXjk − ρij

∣∣∣∣∣
≤ max

1≤i,j≤p

∣∣∣∣ X̄i√
σii

∣∣∣∣2 + max
1≤i,j≤p

∣∣∣∣∣ 1

n
√
σiiσjj

n∑
k=1

XikXjk − ρij

∣∣∣∣∣
= max

1≤i,j≤p

∣∣Z̄i∣∣2 + max
1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

ZikZjk − ρij

∣∣∣∣∣ ,(B.43)
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where Zik = Xik/
√
σii. In (B.43), since max1≤i,j≤p |ρij| ≤ 1, we do not need to assume

max1≤i≤p |σii| ≤ v0 any more and we impose the `q-ball sparsity assumption (3.7) on R

instead of (3.6) on Σ. Then following the similar lines of the proof of Theorem III.7 (a)

up to equation (B.31), we can obtain that for any constant M1 > 0, there exists a constant

C1 > 0 such that

(B.44) O(p−M1) = P

[
max

1≤i,j≤p

∣∣∣∣ σ̂ij − σij√
σiiσjj

∣∣∣∣ ≥ C1τ0

]
≥ P

[∣∣∣∣ σ̂ij − σij√
σiiσjj

∣∣∣∣ ≥ C1τ0

]
for any 1 ≤ i, j ≤ p. Thus letting i = j, we have

(B.45) O(p−M1) = P

[∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣
∣∣∣∣∣
√
σ̂ii
σii

+ 1

∣∣∣∣∣ ≥ C1τ0

]
≥ P

[∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣ ≥ C1τ0

]
,

and

O(p−M1) = P

[∣∣∣∣ σ̂iiσii − 1

∣∣∣∣ ≥ C1τ0

]
+ P

[∣∣∣∣ σ̂jjσjj − 1

∣∣∣∣ ≥ C1τ0

]
≥ P

[∣∣∣∣ σ̂iiσii − 1

∣∣∣∣ ∣∣∣∣ σ̂jjσjj − 1

∣∣∣∣ ≥ C2
1τ

2
0

]
= P

[∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣
∣∣∣∣∣
√
σ̂jj
σjj
− 1

∣∣∣∣∣
∣∣∣∣∣
√
σ̂ii
σii

+ 1

∣∣∣∣∣
∣∣∣∣∣
√
σ̂jj
σjj

+ 1

∣∣∣∣∣ ≥ C2
1τ

2
0

]

≥ P

[∣∣∣∣∣
√
σ̂iiσ̂jj
σiiσjj

−
√
σ̂ii
σii
−

√
σ̂jj
σjj

+ 1

∣∣∣∣∣ ≥ C2
1τ

2
0

]

≥ P

[∣∣∣∣∣
√
σ̂iiσ̂jj
σiiσjj

− 1

∣∣∣∣∣ ≥ C2
1τ

2
0 +

∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣+

∣∣∣∣∣
√
σ̂jj
σjj
− 1

∣∣∣∣∣
]
.(B.46)
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By (B.45), (B.46) and τ0 = o(1), we have

P

[∣∣∣∣∣
√
σ̂iiσ̂jj
σiiσjj

− 1

∣∣∣∣∣ ≥ 3C1τ0

]

≤ P

[∣∣∣∣∣
√
σ̂iiσ̂jj
σiiσjj

− 1

∣∣∣∣∣ ≥ 3C1τ0,

∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣ ≤ C1τ0,

∣∣∣∣∣
√
σ̂jj
σjj
− 1

∣∣∣∣∣ ≤ C1τ0

]

+ P

[∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣ ≥ C1τ0 or

∣∣∣∣∣
√
σ̂jj
σjj
− 1

∣∣∣∣∣ ≥ C1τ0

]

≤ P

[∣∣∣∣∣
√
σ̂iiσ̂jj
σiiσjj

− 1

∣∣∣∣∣ ≥ C1τ0 +

∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣+

∣∣∣∣∣
√
σ̂jj
σjj
− 1

∣∣∣∣∣
]

+O(p−M1)

≤ P

[∣∣∣∣∣
√
σ̂iiσ̂jj
σiiσjj

− 1

∣∣∣∣∣ ≥ C2
1τ

2
0 +

∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣+

∣∣∣∣∣
√
σ̂jj
σjj
− 1

∣∣∣∣∣
]

+O(p−M1)

= O(p−M1).(B.47)

Then,

P

[
max

1≤i,j≤p
|ρ̂ij − ρij| ≥ 4C1τ0

]
≤ P

[
max

1≤i,j≤p

∣∣∣∣∣ σ̂ij√
σ̂iiσ̂jj

− σ̂ij√
σiiσjj

∣∣∣∣∣+ max
1≤i,j≤p

∣∣∣∣ σ̂ij − σij√
σiiσjj

∣∣∣∣ ≥ 4C1τ0

]

≤ P

[
max

1≤i,j≤p

(∣∣∣∣∣ σ̂ij√
σ̂iiσ̂jj

∣∣∣∣∣
∣∣∣∣∣
√
σ̂iiσ̂jj
σiiσjj

− 1

∣∣∣∣∣
)
≥ 3C1τ0

]
+ P

[
max

1≤i,j≤p

∣∣∣∣ σ̂ij − σij√
σiiσjj

∣∣∣∣ ≥ C1τ0

]

≤ P

[
max

1≤i,j≤p

∣∣∣∣∣
√
σ̂iiσ̂jj
σiiσjj

− 1

∣∣∣∣∣ ≥ 3C1τ0

]
+ P

[
max

1≤i,j≤p

∣∣∣∣ σ̂ij − σij√
σiiσjj

∣∣∣∣ ≥ C1τ0

]
= O(p−M1+2),

following from (B.44) and (B.47). Equation (B.42) holds by letting C ′ = 4C1 and M ′ =

M1 − 2 > 0. Then the proof follows similar lines of the proof of Theorem III.7 (a) after

equation (B.31), where we simply use ‖Sτ (R̂) −R‖4
F ≤ 16p4 to bound the first term on

the RHS of the counterpart of (B.35).
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B.2.2 Proof of Theorem III.8

Proof. Without loss of generality, we assume µp = 0, and m =∞. First, we consider the

probabilistic upper bound of |Σ̂Ω− Ip×p|∞. Note that

|Σ̂Ω− Ip×p|∞ = max
1≤i,j≤p

∣∣∣∣∣
p∑
l=1

[
1

n

n∑
k=1

XikXlk − X̄iX̄l

]
ωlj − I(i = j)

∣∣∣∣∣
≤ max

1≤i,j≤p

∣∣∣∣∣X̄i
1

n

n∑
k=1

p∑
l=1

Xlkωlj

∣∣∣∣∣+ max
1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

Xik

p∑
l=1

Xlkωlj − I(i = j)

∣∣∣∣∣
= max

1≤i,j≤p

∣∣∣X̄i
¯̃Xj

∣∣∣+ max
1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

XikX̃jk − I(i = j)

∣∣∣∣∣(B.48)

with X̃jk :=
∑p

l=1Xlkωlj and ¯̃Xj := n−1
∑n

k=1 X̃jk. Since cov(ΩXk) = Ω and ωjl =

ωlj , then we have var(X̃jk) = var (
∑p

l=1 ωjlXlk) = ωjj . Besides, cov(Xik, X̃jk) =

E [Xik

∑p
l=1 Xlkωlj] =

∑p
l=1 σilωlj = I(i = j). Let Z̃jk = X̃jkω

−1/2
jj and Zik = Xikσ

−1/2
ii ,

then ρ̃ij := corr(Zik, Z̃jk) = σ
−1/2
ii ω

−1/2
jj I(i = j). From τ0 =

√
f log(pf)/n = o(1),

(B.16) holds when n > N1 with some constant N1. In the following proof, we assume

n > N1. Now we consider

P

[
max

1≤i,j≤p

∣∣∣X̄i
¯̃Xj

∣∣∣ ≥ u

]
≤ P

[
max
1≤i≤p

|X̄i| max
1≤j≤p

| ¯̃Xj| ≥ u

]
≤ P

[
max
1≤i≤p

|X̄i| ≥ u1/2

]
+ P

[
max
1≤j≤p

| ¯̃Xj| ≥ u1/2

]
.(B.49)

We first consider the second term on the RHS of the above inequality. Similar to (B.17),

(B.50) P

[
max
1≤j≤p

| ¯̃Xj| ≥ u1/2

]
≤

p∑
j=1

f∑
r=1

P

∣∣∣∣∣∣ 1

Cr,f

∑
k∈Ar,f

Z̃j,kf+r

∣∣∣∣∣∣ ≥ 1

2

√
u

v0

 .
Let ∆jfr be the covariance matrices of vec{Z̃j,kf+r : k ∈ Ar,f}. Since

cov(Z̃j,kf+r, Z̃j,lf+r) = ω−1
jj cov(

p∑
s=1

Xs,kf+rωsj,

p∑
t=1

Xt,lf+rωtj)

= ω−1
jj

p∑
s=1

p∑
t=1

ωsjωtj
√
σssσttρ

kf+r,lf+r
st ,(B.51)

115



‖∆jfr − ICr,f×Cr,f
‖1 = max

l∈Ar,f

∑
k∈Ar,f :
k 6=l

|cov(Z̃j,kf+r, Z̃j,lf+r)|

= max
l∈Ar,f

∑
k∈Ar,f :
k 6=l

∣∣∣∣∣ω−1
jj

p∑
s=1

p∑
t=1

ωsjωtj
√
σssσttρ

kf+r,lf+r
st

∣∣∣∣∣
≤ ω−1

jj v0M
2
p g ≤ v2

0M
2
p g(B.52)

following from ω−1
jj = ρ̃2

jjσjj ≤ v0. Since lim sup
n→∞

v2
0M

2
p g < 1, there exists constants

c1 > 0 andN2(c1) > 0 such that v2
0M

2
p g < c1 < 1 when n > N2(c1). We now assume n >

max{N1, N2(c1)}. By (B.52), ∆jfr is strictly diagonally dominant and is thus positive

definite. From equation (3.3),

(B.53) vec{Z̃j,kf+r : k ∈ Ar,f} = P̃jfrHe,

where P̃jfr is a Cr,f × pn matrix with ω−1/2
jj ωlj in the

(
k + 1, l + (kf + r − 1)p

)
, k ∈

Ar,f , l = 1, . . . , p, entries and 0 in all other entries. By (B.53), Lemma B.2, (B.52), (B.50),

(B.16), and v2
0M

2
p g < 1, we have

P

[
max
1≤j≤p

| ¯̃Xj| ≥ u1/2

]
≤ pf exp(1) exp

{
−c2Cr,fu

4v0

}
+ pf exp(1) exp

{
− c2Cr,fu

4v3
0M

2
p g

}
≤ 2pf exp(1) exp

{
−c2nu

8v0f

}
(B.54)

with some constant c2 > 0. For the first term on the RHS of (B.49), we still have (B.21)

here because maxi σii ≤ v0 and g < v2
0M

2
p g < 1. Thus by (B.21), (B.54) and (B.49), we

obtain

(B.55) P

[
max

1≤i,j≤p

∣∣∣X̄i
¯̃Xj

∣∣∣ ≥ u

]
≤ 4pf exp(1) exp

{
−c2nu

8v0f

}
.
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Now considering the second term in (B.48). Similar to (B.22), we have for any u > 0,

P

[
max

1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

XikX̃jk − I(i = j)

∣∣∣∣∣ ≥ u

]

≤
∑

1≤i,j≤p

P

[∣∣∣∣∣
n∑
k=1

(
Zik + CgZ̃jk

)2

− n
(
1 + C2

g + 2Cgρ̃ij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiωjj

]

+
∑

1≤i,j≤p

P

[∣∣∣∣∣
n∑
k=1

(
Zik − CgZ̃jk

)2

− n
(
1 + C2

g − 2Cgρ̃ij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiωjj

]
,(B.56)

where constant Cg =
1−√c1
1+
√
c1
∈ (0, 1). Without loss of generality, we only consider the

second term on the RHS of the above inequality. Similar to (B.23),

P

[∣∣∣∣∣
n∑
k=1

(
Zik − CgZ̃jk

)2

− n
(
1 + C2

g − 2Cgρ̃ij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiωjj

]

≤
f∑
r=1

P

∣∣∣∣∣∣
∑
k∈Ar,f

(
Zi,kf+r − CgZ̃j,kf+r√

1 + C2
g − 2Cgρ̃ij

)2

− Cr,f

∣∣∣∣∣∣ ≥ 2Cgnu

(1 + C2
g − 2Cgρ̃ij)fv0

 .(B.57)

Let

Z = vec

{
Zi,kf+r − CgZ̃j,kf+r√

1 + C2
g − 2Cgρ̃ij

: k ∈ Ar,f

}
,

and Γ := (γkl)Cr,f×Cr,f
= cov(Z). We have γkk = 1. For k 6= l,

γkl =
(
1 + C2

g − 2Cgρ̃ij
)−1
[
cov(Zi,kf+r, Zi,lf+r)− Cgcov(Zi,kf+r, Z̃j,lf+r)

− Cgcov(Zi,lf+r, Z̃j,kf+r) + C2
gcov(Z̃j,kf+r, Z̃j,lf+r)

]
,

cov(Zi,kf+r, Zi,lf+r) = ρkf+r,lf+r
ii ,

and

cov(Zi,kf+r, Z̃j,lf+r) = σ
−1/2
ii ω

−1/2
jj cov(Xi,kf+r,

p∑
s=1

Xs,lf+rωsj)

= σ
−1/2
ii ω

−1/2
jj

p∑
s=1

ωsjcov(Xi,kf+r, Xs,lf+r) = σ
−1/2
ii ω

−1/2
jj

p∑
s=1

ωsj
√
σiiσssρ

kf+r,lf+r
is .
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Then together with (B.51), we obtain

γkl =
(
1 + C2

g − 2Cgρ̃ij
)−1
(
ρkf+r,lf+r
ii − Cgσ−1/2

ii ω
−1/2
jj

p∑
s=1

ωsj
√
σiiσssρ

kf+r,lf+r
is

− Cgσ−1/2
ii ω

−1/2
jj

p∑
s=1

ωsj
√
σiiσssρ

lf+r,kf+r
is

+ C2
gω
−1
jj

p∑
s=1

p∑
t=1

ωsjωtj
√
σssσttρ

kf+r,lf+r
st

)
.

Hence, similar to (B.52), we have

‖Γ− ICr,f×Cr,f
‖1 = max

l∈Ar,f

∑
k∈Ar,f :
k 6=l

|γkl|

≤ (1 + C2
g − 2Cgρ̃ij)

−1
(

1 + 2Cgσ
−1/2
ii ω

−1/2
jj

p∑
s=1

|ωsj
√
σiiσss|

+ C2
gω
−1
jj

p∑
s=1

p∑
t=1

|ωsjωtj
√
σssσtt|

)
max
l∈Ar,f

∑
k∈Ar,f :
k 6=l

max
1≤s,t≤p

|ρkf+r,lf+r
st |

≤ (1 + C2
g − 2Cgρ̃ij)

−1

(
1 + 2Cgω

−1/2
jj |Σ|1/2∞

p∑
s=1

|ωsj|

+ C2
gω
−1
jj |Σ|∞

( p∑
s=1

|ωsj|
)2

)
max
1≤b≤n

∑
a∈{1≤a≤n:
|a−b|=mf

m=1,...,bn/fc}

max
1≤s,t≤p

|ρabst |

≤ (1 + C2
g − 2Cgρ̃ij)

−1(1 + Cgω
−1/2
jj v

1/2
0 Mp)

2g

≤ (1 + C2
g − 2Cgρ̃ij)

−1(1 + Cgv0Mp)
2g

≤ (1 + C2
g − 2Cgρ̃ij)

−1(1 + Cg)
2v2

0M
2
p g(B.58)

≤
(

1 + Cg
1− Cg

)2

v2
0M

2
p g = v2

0M
2
p g/c1 < 1,

and thus Γ � 0. Hence, Γ = Γ1/2Γ1/2 with a symmetric positive definite matrix Γ1/2. Let

Y = Γ−1/2Z. Then by (B.19) and (B.53),

Y = Ae with AAT = cov(Y ) = ICr,f×Cr,f
and A =

Γ−1/2(Pifr − CgP̃jfr)H√
(1 + C2

g − 2Cgρ̃ij)
.
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Similar to (B.26),

P

∣∣∣∣∣∣
∑
k∈Ar,f

(
Zi,kf+r − CgZ̃j,kf+r√

1 + C2
g − 2Cgρ̃ij

)2

− Cr,f

∣∣∣∣∣∣ ≥ 2Cgnu

(1 + C2
g − 2Cgρ̃ij)fv0


≤ P

[
|Y T (Γ− ICr,f×Cr,f

)Y | ≥ Cgnu

(1 + C2
g − 2Cgρ̃ij)fv0

]
+ P

[
|Y TY − Cr,f | ≥

Cgnu

(1 + C2
g − 2Cgρ̃ij)fv0

]
,(B.59)

and we only consider the nontrivial case when Γ 6= ICr,f×Cr,f
. Similar to (B.27), by

Lemma B.1 and (B.58) we have

P

[
|Y T (Γ− ICr,f×Cr,f

)Y | ≥ Cgnu

(1 + C2
g − 2Cgρ̃ij)fv0

]
≤ 2 exp

{
− c3 min

(
C2
gnu

2

2v2
0(1 + Cg)4f

,
Cgnu

v0(1 + Cg)2f

)}
,(B.60)

and similar to (B.28),

P

[
|Y TY − Cr,f | ≥

Cgnu

(1 + C2
g − 2Cgρ̃ij)fv0

]
≤ 2 exp

{
− c3 min

(
C2
gnu

2

2v2
0(1 + Cg)4f

,
Cgnu

v0(1 + Cg)2f

)}
,(B.61)

with some constant c3 > 0. From (B.60), (B.61), (B.59) and (B.57), we obtain

P

[∣∣∣∣∣
n∑
k=1

(
Zik − CgZ̃jk

)2

− n
(
1 + C2

g − 2Cgρ̃ij
)∣∣∣∣∣ ≥ 2Cgnu√

σiiωjj

]

≤ 4f exp

{
−c4 min

(
nu2

f
,
nu

f

)}
,

with some constant c4 > 0. Then by (B.56),

P

[
max

1≤i,j≤p

∣∣∣∣∣ 1n
n∑
k=1

XikX̃jk − I(i = j)

∣∣∣∣∣ ≥ u

]

≤ 8p2f exp

{
−c4 min

(
nu2

f
,
nu

f

)}
.(B.62)

From (B.48), (B.55) and (B.62), we obtain

P
[
|Σ̂Ω− Ip×p|∞ ≥ 2u

]
≤ 4pf exp(1) exp

{
−c2nu

8v0f

}
+ 8p2f exp

{
−c4 min

(
nu2

f
,
nu

f

)}
.
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By Lemma B.3, for any constant C ′ > 0, there exists a constant M1 > 0 such that with

u = M1τ0/4, P
[
|Σ̂Ω− Ip×p|∞ ≥ 2u

]
= O(p−C

′
). Thus, for any constant M ≥M1,

P
[
|Σ̂Ω− Ip×p|∞ ≥Mτ0/2

]
≤ P

[
|Σ̂Ω− Ip×p|∞ ≥M1τ0/2

]
= O(p−C

′
).

Let 0 ≤ ε ≤Mτ0/(2v0). Then

P
[
|Σ̃εΩ− Ip×p|∞ ≥Mτ0

]
≤ P

[
|Σ̂Ω− Ip×p|∞ + |εΩ|∞ ≥Mτ0

]
= P

[
|Σ̂Ω− Ip×p|∞ ≥Mτ0 − |εΩ|∞

]
≤ P

[
|Σ̂Ω− Ip×p|∞ ≥Mτ0/2

]
= O(p−C

′
).

Let λ1 = Mτ0. Then with probability 1−O(p−C
′
), |Σ̃εΩ−Ip×p|∞ ≤ λ1. By the definition

of Ω̂ε and the equivalence between (3.17) and (3.18), on the event {|Σ̃εΩ−Ip×p|∞ ≤ λ1},

we have ‖Ω̂ε‖1 ≤ ‖Ω̂
?

ε‖1 ≤ ‖Ω‖1 and |ω̂jε|1 ≤ |ω̂?jε|1 ≤ |ωj|1 for 1 ≤ j ≤ p, where

ω̂jε, ω̂?jε and ωj are j-th columns of Ω̂ε, Ω̂
?

ε and Ω respectively. Thus, on the event

{|Σ̃εΩ− Ip×p|∞ ≤ λ1}, we have

|Ω̂ε −Ω|∞ ≤ |Ω̂
?

ε −Ω|∞ = |(ΩΣ̃ε − Ip×p)Ω̂
?

ε + Ω(Ip×p − Σ̃εΩ̂
?

ε)|∞

≤ ‖Ω̂
?

ε‖1|Σ̃εΩ− Ip×p|∞ + ‖Ω‖1|Σ̃εΩ̂
?

ε − Ip×p|∞

≤ λ1‖Ω̂
?

ε‖1 + λ1‖Ω‖1 ≤ 2λ1Mp,(B.63)

which follows from the inequality |AB|∞ ≤ |A|∞‖B‖1 for matrices A,B of appropriate

sizes, and moreover,

‖Ω̂ε −Ω‖2 ≤ ‖Ω̂ε −Ω‖1 ≤ 12cp|Ω̂ε −Ω|1−q∞ ≤ 12cp(2Mτ0Mp)
1−q,

following from Lemma 7.1 of Cai et al. (2016). Inequality (3.37) follows from the in-

equality ‖M‖2
F ≤ p‖M‖1|M|∞ for any p× p matrix M.

For the sparsistency and sign-consistency, the proof follows the similar lines of the

proof of Theorem 2 in Rothman et al. (2009) by replacing their equation (A.4) with (B.63).

Details are hence omitted.
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For the convergence in mean square, we additionally assume p ≥ nc with some constant

c > 0, and for any constant C > 0, we let min
{
p−C ,Mτ0/(2v0)

}
≤ ε ≤ Mτ0/(2v0).

Since ϕmin(Σ̃ε) = ϕmin(Σ̂ + εIp×p) ≥ ε, we have |Σ̃−1

ε |∞ ≤ 1/ϕmin(Σ̃ε) ≤ ε−1 and

‖Σ̃−1

ε ‖1 ≤ p|Σ̃−1

ε |∞ ≤ pε−1. Then by the definition of Ω̂ε and the equivalence be-

tween (3.17) and (3.18), ‖Ω̂ε‖1 ≤ ‖Ω̂
?

ε‖1 ≤ ‖Σ̃
−1

ε ‖1 ≤ pε−1. In addition with ‖Ω‖1 =

max1≤j≤p
∑p

i=1 |ωij|q|ωij|1−q ≤ cpM
1−q
p , we obtain ‖Ω̂ε − Ω‖1 ≤ ‖Ω̂ε‖1 + ‖Ω‖1 ≤

pε−1 + cpM
1−q
p . Now,

E‖Ω̂ε −Ω‖2
2 ≤ E‖Ω̂ε −Ω‖2

1

= E
[
‖Ω̂ε −Ω‖2

1I
(
‖Ω̂ε −Ω‖1 > 12cp(2Mτ0Mp)

1−q
)]

+ E
[
‖Ω̂ε −Ω‖2

1I
(
‖Ω̂ε −Ω‖1 ≤ 12cp(2Mτ0Mp)

1−q
)]

≤
(
E‖Ω̂ε −Ω‖4

1

)1/2 (
P
[
‖Ω̂ε −Ω‖1 > 12cp(2Mτ0Mp)

1−q
])1/2

+
(
12cp(2Mτ0Mp)

1−q)2

≤ (pε−1 + cpM
1−q
p )2O(p−C

′/2) +
(
12cp(2Mτ0Mp)

1−q)2
.(B.64)

Let M ≥ max(v0,M1). Since τ0 =
√
f log(pf)/n ≥ p−1/(2c), then we have ε−1 ≤

max
(
pC , 2v0M

−1p1/(2c)
)
≤ max

(
pC , 2p1/(2c)

)
. WhenC ′ ≥ 2 max(2+2C, 2+1/c)+2/c,

by min(cp,Mp) > 1 and M ≥ v0 > 1, we have

(pε−1 + cpM
1−q
p )2O(p−C

′/2) ≤ O(pmax(2+2C,2+1/c)−C′/2) +O(c2
pM

2−2q
p p−C

′/2)

= O(c2
pM

2−2q
p p−1/c) = O

((
12cp(2Mτ0Mp)

1−q)2
)
,

and thus by (B.64), we have E‖Ω̂ε −Ω‖2
2 = O

(
c2
p(τ0Mp)

2−2q
)
.

Since |Ω̂ε−Ω|∞ ≤ ‖Ω̂ε−Ω‖1 ≤ ‖Ω̂ε‖1 + ‖Ω‖1 ≤ pε−1 +Mp and p−1‖Ω̂ε−Ω‖2
F ≤

‖Ω̂ε − Ω‖1|Ω̂ε − Ω|∞ ≤ (pε−1 + cpM
1−q
p )(pε−1 + Mp), similarly to (B.64), we have

E|Ω̂ε −Ω|2∞ ≤ (pε−1 +Mp)
2O(p−C

′/2) + (2Mτ0Mp)
2 and p−1E‖Ω̂ε −Ω‖2

F ≤ (pε−1 +

cpM
1−q
p )(pε−1 + Mp)O(p−C

′/2) + 12cp(2Mτ0Mp)
2−q. Let C ′ be sufficiently large, then
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E|Ω̂ε −Ω|2∞ = O ((τ0Mp)
2) and p−1E‖Ω̂ε −Ω‖2

F = O (cp(τ0Mp)
2−q).

B.2.3 Proof of Theorem III.9

Proof. Since mini σii − ϕmin(Σ) = mini e
T
i (Σ − ϕmin(Σ)Ip×p)ei ≥ 0 and maxi σii ≤

|Σ|∞ ≤ ‖Σ‖2 = ϕmax(Σ), we have

(B.65) v−1
0 ≤ min

i
σii ≤ max

i
σii ≤ v0.

Thus,

(B.66) v
−1/2
0 ≤ ‖W‖2, ‖W−1‖2 ≤ v

1/2
0 .

(B.67) ‖K‖2 ≤ ‖W‖2‖Ω‖2‖W‖2 ≤ v2
0,

‖R‖2 ≤ ‖W−1‖2‖Σ‖2‖W−1‖2 ≤ v2
0,

and

(B.68) v−2
0 ≤ ‖K‖−1

2 = ϕmin(R) ≤ ϕmax(R) = ‖R‖2 ≤ v2
0.

Under maxi σii ≤ v0, lim sup
n→∞

g(n, p) < 1 and τ0 = o(1), we can obtain (B.31), (B.42)

and (B.44), i.e., for any constant C ′ > 0, there exists a constant C1 > 0 such that with

probability 1−O(p−C
′
),

(B.69) max
1≤i,j≤p

|σ̂ij − σij| ≤ C1τ0,

(B.70) max
1≤i,j≤p

|ρ̂ij − ρij| ≤ C1τ0,

and

(B.71) max
1≤i,j≤p

∣∣∣∣ σ̂ij − σij√
σiiσjj

∣∣∣∣ ≤ C1τ0.
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From (B.69) and (B.65), we obtain that, with probability 1−O(p−C
′
), maxi σ̂

−1/2
ii ≤ 2v

1/2
0 .

Letting i = j in (B.71), we have that, with probability 1−O(p−C
′
),

o(1) = 2C1τ0v
1/2
0 ≥ C1τ0 max

1≤i≤p
σ̂
− 1

2
ii ≥ max

1≤i≤p

∣∣∣∣ σ̂ii − σiiσii

∣∣∣∣ max
1≤i≤p

σ̂
− 1

2
ii

≥ max
1≤i≤p

∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣
∣∣∣∣∣
√
σ̂ii
σii

+ 1

∣∣∣∣∣ σ̂− 1
2

ii ≥ max
1≤i≤p

∣∣∣∣∣
√
σ̂ii
σii
− 1

∣∣∣∣∣ σ̂− 1
2

ii

= max
1≤i≤p

|σ−
1
2

ii − σ̂
− 1

2
ii | = ‖Ŵ−1 −W−1‖2,(B.72)

and then by (B.66),

(B.73) ‖Ŵ−1‖2 ≤ ‖Ŵ−1 −W−1‖2 + ‖W−1‖2 = o(1) + v
1/2
0 .

Now recall the assumption that τ0 = o(1/
√

1 + sp). Following similar lines of the

proof of Theorem 1 in Rothman et al. (2008) by replacing their line 10 on page 500 by

rn = τ0
√
sp → 0, replacing their line 5 on page 501 by (B.70), replacing their inequality

(14) by II = 0, replacing their equation (15) by λ2 = C1τ0/ε with a sufficiently small

constant ε > 0, and replacing the last line on their page 501 by |∆−S |1 ≤
√
sp‖∆−‖F ,

as well as using (B.68) to establish the counterpart of their inequality (18) for K, we can

obtain (3.38).

From the proof of Theorem 2 in Rothman et al. (2008), we have

‖Ω̂λ2 −Ω‖2 ≤ ‖K̂λ2 −K‖2(‖Ŵ−1 −W−1‖2
2 + ‖Ŵ−1‖2‖W−1‖2)

+ ‖Ŵ−1 −W−1‖2(‖K̂λ2‖2‖W−1‖2 + ‖K‖2‖Ŵ−1‖2)

≤ ‖K̂λ2 −K‖F (‖Ŵ−1 −W−1‖2
2 + ‖Ŵ−1‖2‖W−1‖2)

+ ‖Ŵ−1 −W−1‖2

[
(‖K̂λ2 −K‖F + ‖K‖2)‖W−1‖2 + ‖K‖2‖Ŵ−1‖2

]
.(B.74)

Plugging (3.38), (B.72), (B.73), (B.66) and (B.67) into (B.74) yields (3.39).
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We can obtain (3.40) similarly from

‖Ω̂λ2 −Ω‖F

= ‖Ŵ−1K̂λ2Ŵ
−1 −W−1KW−1‖F

= ‖(Ŵ−1 −W−1)(K̂λ2 −K)(Ŵ−1 −W−1) + W−1K̂λ2(Ŵ
−1 −W−1)

+ (Ŵ−1 −W−1)KŴ−1 + Ŵ−1(K̂λ2 −K)W−1‖F

≤ ‖K̂λ2 −K‖F (‖Ŵ−1 −W−1‖2
2 + ‖Ŵ−1‖2‖W−1‖2)

+ ‖Ŵ−1 −W−1‖F (‖K̂λ2‖2‖W−1‖2 + ‖K‖2‖Ŵ−1‖2)

≤ ‖K̂λ2 −K‖F (‖Ŵ−1 −W−1‖2
2 + ‖Ŵ−1‖2‖W−1‖2)

+
√
p‖Ŵ−1 −W−1‖2

[
(‖K̂λ2 −K‖F + ‖K‖2)‖W−1‖2 + ‖K‖2‖Ŵ−1‖2

]
,

where ‖BA‖F = ‖AB‖F ≤ ‖A‖2‖B‖F for symmetric matrices A and B (see Lemma 1

in Lam and Fan, 2009).

If additionally assuming ‖K̂λ2 − K‖2 = OP (η) with η = O(τ0), the proof of the

sparsistency property is similar to the proof of Theorem 2 in Lam and Fan (2009) by using

the inequality (B.70) and (B.68). Details are hence omitted. Note that our η2 = ηn in their

notation. Also note that K̂λ2 and K have the same the sparsity structures as Ω̂λ2 and Ω,

respectively.

Now, we consider the properties of Ω̂λ2 under the irrepresentability condition given in

(3.26). We replace the original conditions about λ2 and τ0 by λ2 = 8Mτ0/β ≤ [6(1 +

β/8)dmax{κRκΓ, κ
3
Rκ

2
Γ}]−1 and τ0 = o(min{1, [(1 + 8/β)κΓ]−1}). First, we need to

show |K̂λ2−K|∞ = oP (1), which is similar to the proof of Theorem 1 in Ravikumar et al.

(2011). We follow some of their notation for convenience. In the proof, their Θ and Σ

are now replaced by our K and R respectively. But we keep their W that is our R̂ −R,

which should not be confused with our W in bold. From (B.70), for any constant τ > 2

(note that here we use the notation τ given in Ravikumar et al. (2011) rather than the one
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defined as τ = Mτ0 for the thresholding parameter of covariance matrix estimation), there

exist constants M1 and N1 such that when M ≥M1 and n > N1, we have

(B.75) P (|W |∞ ≤Mτ0) ≥ P (|W |∞ ≤M1τ0) ≥ 1− 1/pτ−2,

thus we can set their δ̄f (n, pτ ) = Mτ0 and their 1/v∗ = ∞. Then, λ2 = 8Mτ0/β =

8δ̄f (n, p
τ )/β. From λ2 ≤ [6(1 + β/8)dmax{κRκΓ, κ

3
Rκ

2
Γ}]−1, we have

(B.76) δ̄f (n, p
τ ) ≤ [6(1 + 8/β)dmax{κRκΓ, κ

3
Rκ

2
Γ}]−1.

Then following the proof of their Theorem 1 by using (B.75) instead of their Lemma 8,

and (B.76) instead of their (15) and (29), with probability 1−O(p2−τ ) we have

(B.77) |K̂λ2 −K|∞ ≤ 2(1 + 8/β)κΓδ̄f (n, p
τ ) = 2(1 + 8/β)κΓMτ0 = o(1),

and all entries of K̂λ2 in Sc are zero. By |BA|∞ = |AB|∞ ≤ |A|∞‖B‖1 for symmetric

matrices A and B, we have

|Ω̂λ2 −Ω|∞ = |Ŵ−1K̂λ2Ŵ
−1 −W−1KW−1|∞

= |(Ŵ−1 −W−1)(K̂λ2 −K)(Ŵ−1 −W−1) + W−1K̂λ2(Ŵ
−1 −W−1)

+ (Ŵ−1 −W−1)KŴ−1 + Ŵ−1(K̂λ2 −K)W−1|∞

≤ |K̂λ2 −K|∞‖Ŵ−1 −W−1‖2
1 + |K̂λ2|∞‖W−1‖1‖Ŵ−1 −W−1‖1

+ |K|∞‖Ŵ−1 −W−1‖1‖Ŵ−1‖1 + |K̂λ2 −K|∞‖Ŵ−1‖1‖W−1‖1

= |K̂λ2 −K|∞‖Ŵ−1 −W−1‖2
2 + |K̂λ2|∞‖W−1‖2‖Ŵ−1 −W−1‖2

+ ‖K‖2‖Ŵ−1 −W−1‖2‖Ŵ−1‖2 + |K̂λ2 −K|∞‖Ŵ−1‖2‖W−1‖2.(B.78)

By inequalities (B.67) and (B.77), with probability 1−O(p2−τ ) we have

(B.79) |K̂λ2|∞ ≤ |K|∞ + |K̂λ2 −K|∞ ≤ ‖K‖2 + |K̂λ2 −K|∞ ≤ v2
0 + o(1).
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Plugging (B.77), (B.72), (B.79), (B.66), (B.67), (B.73) into (B.78) and letting M ≥

max{M1, 10C1v
2
0} yields that, with probability 1−O(p2−τ ),

|Ω̂λ2 −Ω|∞ ≤ 2(1 + 8/β)κΓMτ0o(1) +
(
v2

0 + o(1)
)
v

1/2
0 2C1τ0v

1/2
0

+ v2
02C1τ0v

1/2
0

(
o(1) + v

1/2
0

)
+ 2(1 + 8/β)κΓMτ0

(
o(1) + v

1/2
0

)
v

1/2
0

≤ 5C1τ0v
3
0 + 2.5(1 + 8/β)κΓMτ0v0 ≤ (0.5 + 2.5(1 + 8/β)κΓ)Mτ0v0 = r,(B.80)

‖Ω̂λ2 −Ω‖2 ≤ min{‖Ω̂λ2 −Ω‖1, ‖Ω̂λ2 −Ω‖F} ≤ min{d,
√
p+ sp}|Ω̂λ2 −Ω|∞

≤ min{d,
√
p+ sp}r,

and

p−
1
2‖Ω̂λ2 −Ω‖F ≤ min{‖Ω̂λ2 −Ω‖2, p

− 1
2

√
p+ sp|Ω̂λ2 −Ω|∞}

≤ rmin

{
d,
√

1 + sp/p

}
= r
√

1 + sp/p,

where the last equality follows from
√

1 + sp/p ≤
√

1 + (d− 1)p/p =
√
d ≤ d. For

any (i, j) ∈ S, by (B.80) and |ωij| > r, ω̂ijλ2 cannot differ enough from the nonzero

ωij to change sign. Since Ω̂λ2 has the same sparsity as K̂λ2 and we have shown that,

with probability 1 − O(p2−τ ), all entries of K̂λ2 in Sc are zero, then Ω̂λ2 also has this

sparsistency result.

B.3 Candidate Values for Tuning Parameters

In this section, we introduce the method selecting candidate values for the tuning pa-

rameter of each considered estimating approach. We use η as the general notation of

considered tuning parameters such that η = τ for generalized thresholding, η = λ1 for

CLIME, and η = λ2 for SPICE. The ordered candidate values η1, . . . , ηN of η are chosen

from a logarithmic spaced grid. Specifically, log η1, . . . , log ηN are equally spaced values
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with η1 = rηN and a ratio number r ∈ (0, 1). In numerical examples, we use N = 50 and

r = 0.01.

For the generalized trhesholding estimation of correlation matrix, we let ηN be the

largest absolute value in the off-diagonal of the sample correlation matrix so that the

thresholding estimator with ηN is a diagonal matrix.

For CLIME, we use the same ηN generated by the R package flare (version 1.5.0;

see the function sugm) based on the following formula

ηN = I(η∗ 6= 0)η∗ + I(η∗ = 0)η∗∗

with

η∗ = min

{
max

1≤i,j≤p
sij,− min

1≤i,j≤p
sij

}
η∗∗ = max

{
max

1≤i,j≤p
sij,− min

1≤i,j≤p
sij

}
S := (sij)p×p = Σ̂− diag{σ̂11, . . . , σ̂pp}.

For SPICE, we generate its ηN using the same approach implemented in the R package

huge (version 1.2.7; see the function huge.glasso; Zhao et al., 2012) for GLasso.

Thus ηN is the largest absolute value in the off-diagonal of the sample correlation matrix.

Note that SPICE is a slight modification of GLasso.

B.4 Additional Results of the rfMRI Data Analysis

The top 10 hubs for marginal connectivity and the top 10 hubs for direct connectivity

are listed in the following two tables. The coordinates of the center of each hub is given

in the Montreal Neurological Institute (MNI) 152 space. The hubs with MNI coordinates

listed in bold numbers are spatially close to those found in Buckner et al. (2009) and Cole

et al. (2010) from studies with multiple subjects. The hub illustrated in Subsection 3.5.3 is

ranked No. 1 in degree of marginal connectivity and No. 4 in degree of direct connectivity.
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Table B.1: Top 10 hubs for marginal connectivity found by hard thresholding
Rank Location MNI coordinates Degree Direct rank Direct degree
1 Inferior parietal 48, -72, 24 164 4 79
2 Supramarginal -60, -36, 36 151 3 82
3 Superior frontal 0, 48, 36 150 6 73
4 Medial orbitofrontal 0, 60, -12 140 20 53
5 Inferior parietal -36, -72, 36 137 15 61
6 Supramarginal 60, -48, 36 131 1 85
7 Precuneus 0, -72, 48 128 16 58
8 Precuneus 0, -72, 36 125 10 64
9 Rostral middle frontal -48, 12, 36 121 5 74
10 Inferior parietal -48, -60, 24 109 37 48

Table B.2: Top 10 hubs for direct connectivity found by CLIME
Rank Location MNI coordinates Degree Marginal rank Marginal degree
1 Inferior parietal 60, -48, 36 85 6 131
2 Precentral -48, 0, 48 82 18 98
3 Supramarginal -60, -36, 36 82 2 151
4 Inferior parietal 48, -72, 24 79 1 164
5 Rostral middle frontal -48, 12, 36 74 9 121
6 Superior frontal 0, 48, 36 73 3 150
7 Caudal middle frontal 48, 12, 48 68 29 87
8 Middle temporal 60, -60, 12 66 19 96
9 Precuneus 0, -72, 24 65 14 101
10 Precuneus 0, -72, 36 64 8 125
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APPENDIX C

Supplementary Materials for Chapter IV

In this appendix, we prove Theorems IV.4 and IV.5 with the weighted sample covari-

ance matrix as the initial estimator. As special cases of these two theorems, all the the-

orems given in Subsection 4.3.1 using the sample covariance matrix can be immediately

obtained by letting f1 = · · · = fL = 1.

Before proceeding to the proofs, we introduce a technical lemma.

Lemma C.1. Let e = (e1, e2, . . . )
T be an infinite-dimensional random vector with inde-

pendent standard sub-Gaussian components, each with the same parameterK ≥ 1 defined

in (3.2). Let X = Ae and Y = Be be two well-defined random vector with length d in

the sense of entrywise almost-sure convergence and mean-square convergence. Then for

t > 0, there exists a constant c > 0 only dependent on K such that

P
[∣∣XTY − E(XTY )

∣∣ ≥ t
]

≤ 2 exp

{
−cmin

(
t2

‖AAT‖F‖BBT‖F
,

t√
‖AAT‖2‖BBT‖2

)}
,(C.1)

and for a d-dimensional vector b,

(C.2) P
[
|bTX| ≥ t

]
≤ exp(1) exp

{
− ct2

‖b‖2
F‖AAT‖2

}
,

where the right hand sides of the above inequalities are zero if ATB and bTA are zero,

respectively.
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Proof. Consider the nontrivial case when both ATB and bTA are not zero. Let A =

(aij)d×∞ and B = (bij)d×∞. Let Am = (aij)d×m and Bm = (bij)d×m consist of the

first m columns of A and B respectively, em = (e1, e2, ..., em)T consist of the first m

elements of e, Xm = (Xm
1 , ..., X

m
d )T = Amem, and Y m = (Y m

1 , ..., Y m
d )T = Bmem.

By the entrywise almost-sure convergence and mean-square convergence, for each i, when

m → ∞, we have Xm
i =

∑m
j=1 aijej

P→ Xi =
∑∞

j=1 aijej , Y
m
i =

∑m
j=1 bijej

P→ Yi =∑∞
j=1 bijej ,

∑∞
j=1 a

2
ij <∞ and

∑∞
j=1 b

2
ij <∞. Thus, for any positive d, ε1, ε2 and δ, there

exists a number N such that for any m > N , we have

(C.3) P
[
|XTY −XT

mY m| ≥ ε1

]
≤ δ,

(C.4) P
[
|bTX − bTXm| ≥ ε1

]
≤ δ,

and for each 1 ≤ i, j ≤ d,

(C.5)

∣∣∣∣∣
m∑
k=1

aikbik −
∞∑
k=1

aikbik

∣∣∣∣∣ ≤ ε2/d,

(C.6)

∣∣∣∣∣
m∑
k=1

aikajk −
∞∑
k=1

aikajk

∣∣∣∣∣ ≤ δ/d,

(C.7)

∣∣∣∣∣
m∑
k=1

bikbjk −
∞∑
k=1

bikbjk

∣∣∣∣∣ ≤ δ/d.

The convergence of
∑m

k=1 aikbik given in (C.5) holds because

∞∑
k=1

|aikbik| ≤

√√√√ ∞∑
k=1

|aik|2
∞∑
k=1

|bik|2 <∞.

By the similar argument, we obtain (C.6) and (C.7). Then we have

‖AmAT
m‖F ≤ ‖AAT‖F + ‖AmAT

m −AAT‖F

= ‖AAT‖F +

√√√√ ∑
1≤i,j≤d

∣∣∣∣∣
m∑
k=1

aikajk −
∞∑
k=1

aikajk

∣∣∣∣∣
2

≤ ‖AAT‖F +
√
d2(δ/d)2 = ‖AAT‖F + δ,(C.8)
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and

‖AmAT
m‖2 ≤ ‖AAT‖2 + ‖AmAT

m −AAT‖2

≤ ‖AAT‖2 + ‖AmAT
m −AAT‖F ≤ ‖AAT‖2 + δ.(C.9)

Similarly,

(C.10) ‖BmBT
m‖F ≤ ‖BBT‖F + δ and ‖BmBT

m‖2 ≤ ‖BBT‖2 + δ.

By Lemma 5.5 in Vershynin (2012), there exists a constant c1 only dependent on K such

that

sup
k≥1

k−1/2(E|ej|k)1/k ≤ c1 for all j = 1, 2, . . . .

Then by Theorem 1.1 in Rudelson and Vershynin (2013) and Proposition 5.10 in Vershynin

(2012), for every t > 0, there exists a constant c > 0 only dependent on c1, i.e., only

dependent on K, such that

P
[
|XT

mY m − E(XT
mY m)| ≥ t/4

]
≤ 2 exp

{
−cmin

(
t2

‖AT
mBm‖2

F

,
t

‖AT
mBm‖2

)}
and

P
[
|bTXm| ≥ t/2

]
≤ exp(1) exp

{
− ct2

‖bTAm‖2
F

}
.

Since

‖AT
mBm‖2

F = tr(AT
mBmBT

mAm) = tr(AmAT
mBmBT

m)

≤
√

tr(AmAT
mAmAT

m)tr(BmBT
mBmBT

m) = ‖AmAT
m‖F‖BmBT

m‖F ,

‖AT
mBm‖2 ≤ ‖AT

m‖2‖Bm‖2 =
√
ϕmax(AmAT

m)ϕmax(BT
mBm)

=
√
ϕmax(AmAT

m)ϕmax(BmBT
m) =

√
‖AmAT

m‖2‖BmBT
m‖2,
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and

‖bTAm‖2
F = ‖AT

mb‖2
F ≤ ‖AT

m‖2
2‖b‖2

F = ϕmax(AmAT
m)‖b‖2

F = ‖AmAT
m‖2‖b‖2

F

which is obtained by Lemma 1 in Lam and Fan (2009), then

P
[∣∣XT

mY m − E(XT
mY m)

∣∣ ≥ t/4
]

≤ 2 exp

{
−cmin

(
t2

‖AmAT
m‖F‖BmBT

m‖F
,

t√
‖AmAT

m‖2‖BmBT
m‖2

)}
(C.11)

and

P
[
|bTXm| ≥ t/2

]
≤ exp(1) exp

{
− ct2

‖b‖2
F‖AmAT

m‖2

}
.(C.12)

Let ε1 = t/2 and ε2 = t/4, then by (C.3), (C.5), (C.11), (C.8), (C.9) and (C.10) we have

P
[∣∣XTY − E(XTY )

∣∣ ≥ t
]

≤ P
[
|E(XT

mY m)− E(XTY )|+ |XT
mY m − E(XT

mY m)| ≥ t/2
]

+ P
[∣∣XTY −XT

mY m

∣∣ ≥ t/2
]

= P

[∣∣∣∣∣
d∑
i=1

m∑
k=1

aikbik −
d∑
i=1

∞∑
k=1

aikbik

∣∣∣∣∣+ |XT
mY m − E(XT

mY m)| ≥ t/2

]

+ P
[∣∣XTY −XT

mY m

∣∣ ≥ ε1

]
≤ P

[
d∑
i=1

∣∣∣∣∣
m∑
k=1

aikbik −
∞∑
k=1

aikbik

∣∣∣∣∣+ |XT
mY m − E(XT

mY m)| ≥ t/2

]
+ δ

≤ P
[
|XT

mY m − E(XT
mY m)| ≥ t/2− ε2

]
+ δ

≤ 2 exp

{
−cmin

(
t2

‖AmAT
m‖F‖BmBT

m‖F
,

t√
‖AmAT

m‖2‖BmBT
m‖2

)}
+ δ

≤ 2 exp

{
− cmin

(
t2

(‖AAT‖F + δ)(‖BBT‖F + δ)
,

t√
(‖AAT‖2 + δ)(‖BBT‖2 + δ)

)}
+ δ,(C.13)
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and by (C.4), (C.12) and (C.9) we obtain

P
[
|bTX| ≥ t

]
≤ P

[
|bTXm| ≥ t/2

]
+ P

[
|bTX − bTXm| ≥ t/2

]
≤ exp(1) exp

{
− ct2

‖b‖2
F‖AmAT

m‖2

}
+ δ

≤ exp(1) exp

{
− ct2

‖b‖2
F (‖AAT‖2 + δ)

}
+ δ.(C.14)

Letting δ → 0 on both sides of inequalities (C.13) and (C.14), we obtain (C.1) and (C.2).

Proof of Theorem IV.4. From (4.13) we see that Σ̃ is invariant with any mean µp, so we

assume µp = 0 without loss of generality.

DefineZ(`)
i = (Z

(`)
i1 , . . . , Z

(`)
in`

)T withZ(`)
ij = X

(`)
ij /
√
σii, then by (4.1),Z(`)

i = P
(`)
i H(`)e,

where P
(`)
i is a n` × pn` matrix with σ−1/2

ii in the
(
j, i + (j − 1)p

)
entries and 0 in all

other entries for j = 1, . . . , n`. From Proposition 2.7.1 in Brockwell and Davis (1991),

we have corr(Z(`)
i ) = cov(Z

(`)
i ) = cov(P

(`)
i H(`)e) = P

(`)
i H(`)cov(e)H(`)TP

(`)
i

T
=

P
(`)
i H(`)H(`)TP

(`)
i

T
. Since

(C.15) |Σ̃−Σ|∞ ≤ |µ̃⊗2|∞ + |Σ̃0 −Σ|∞ ≤ |µ̃|2∞ + |Σ̃0 −Σ|∞,
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then for any u > 0, by |Σ|∞ ≤ v0 we have

P
[
|Σ̃−Σ|∞ ≥ 2u

]
≤ P

[
|µ̃|2∞ ≥ u

]
+ P

[
|Σ̃0 −Σ|∞ ≥ u

]
≤

p∑
i=1

P

[∣∣∣∣∣
L∑
`=1

$`

n`

n∑̀
k=1

X
(`)
ij

∣∣∣∣∣ ≥ u1/2

]

+
∑

1≤i,j≤p

P

[∣∣∣∣∣
L∑
`=1

$`

n`

n∑̀
k=1

X
(`)
ik X

(`)
jk − σij

∣∣∣∣∣ ≥ u

]

=

p∑
i=1

P

[∣∣∣∣∣
L∑
`=1

$`

n`

n∑̀
j=1

Z
(`)
ij

∣∣∣∣∣≥
√

u

σii

]

+
∑

1≤i,j≤p

P

[∣∣∣∣∣
L∑
`=1

$`

n`

n∑̀
k=1

Z
(`)
ik Z

(`)
jk −ρij

∣∣∣∣∣≥ u
√
σiiσjj

]

≤
p∑
i=1

P

[∣∣∣∣∣
L∑
`=1

$`

n`

n∑̀
j=1

Z
(`)
ij

∣∣∣∣∣ ≥
√
u

v0

]

+
∑

1≤i,j≤p

P

[∣∣∣∣∣
L∑
`=1

$`

n`

n∑̀
k=1

Z
(`)
ik Z

(`)
jk − ρij

∣∣∣∣∣ ≥ u

v0

]
.(C.16)

Now, consider the first term on the RHS of (C.16). For i = 1, . . . , p, ` = 1, . . . , L, and

t > 0, by (C.2) in Lemma C.1, we have

P

[
1

√
n`g`

∣∣∣∣∣
n∑̀
j=1

Z
(`)
ij

∣∣∣∣∣ ≥ t
√
n`g`

]

= P

[∣∣∣∣∣
n∑̀
j=1

Z
(`)
ij

∣∣∣∣∣ ≥ t

]
= P

[
|1Tn`

P
(`)
i H(`)e| ≥ t

]
≤ exp(1) exp

{
− c1t

2

‖1n`
‖2
F‖P

(`)
i H(`)H(`)TP

(`)
i

T
‖2

}

= exp(1) exp

{
− c1t

2

n`‖corr(Z(`)
i )‖2

}
≤ exp(1) exp

{
− c1t

2

n`g`

}
with some constant c1 > 0 dependent on K. Obviously for t = 0, we still have the above

inequality. Thus,
∑n`

j=1 Z
(`)
ij /
√
n`g` is a sub-Gaussian random variable from Definition 5.7
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in Vershynin (2012), and then by their Proposition 5.10 we have

P

[∣∣∣∣∣
L∑
`=1

$`

n`

n∑̀
j=1

Z
(`)
ij

∣∣∣∣∣ ≥
√
u

v0

]
≤ exp(1) exp

{
− c2u∑

`($`

√
g`/n`)2

}

= exp(1) exp

{
−c2(

∑
` n`/f`)

2u∑
` n`g`/f

2
`

}
(C.17)

with some constant c2 > 0 dependent on c1 and v0.

Next, consider the second term on the RHS of (C.16). For i, j = 1, . . . , p, ` = 1, . . . , L,

and t > 0, by (C.1) in Lemma C.1 we have

P

[∣∣∣∣∣
n∑̀
k=1

Z
(`)
ik Z

(`)
jk − n`ρij

∣∣∣∣∣ ≥ t

]
= P

[∣∣∣Z(`)
i

T
Z

(`)
j − E(Z

(`)
i

T
Z

(`)
j )
∣∣∣ ≥ t

]
≤ 2 exp

{
− c3 min

(
t2

‖P(`)
i H(`)H(`)TP

(`)
i

T
‖F‖P(`)

j H(`)H(`)TP
(`)
j

T
‖F
,

t√
‖P(`)

i H(`)H(`)TP
(`)
i

T
‖2‖P(`)

j H(`)H(`)TP
(`)
j

T
‖2

)}

= 2 exp

{
− c3 min

(
t2

‖corr(Z(`)
i )‖F‖corr(Z(`)

j )‖F
,

t√
‖corr(Z(`)

i )‖2‖corr(Z(`)
j )‖2

)}

≤ 2 exp

{
−c3 min

(
t2

n`g`
,
t

g`

)}
(C.18)

with some constant c3 > 0 dependent on K, where the last inequality follows from (4.2)

and

1

n`
‖corr(Z(`)

i )‖2
F =

1

n`
tr([corr(Z(`)

i )]2) =
1

n`

n∑̀
k=1

ϕ2
k(corr(Z(`)

i ))

≤ ϕmax(corr(Z(`)
i ))

1

n`

n∑̀
k=1

ϕk(corr(Z(`)
i ))

= ‖corr(Z(`)
i )‖2

1

n`
tr(corr(Z(`)

i )) = ‖corr(Z(`)
i )‖2 ≤ g`.

Obviously for t = 0, we still have (C.18). Let Y (`)
ij =

∑n`

k=1 Z
(`)
ik Z

(`)
jk − n`ρij , Y

(`)
ij,1 =
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Y
(`)
ij I(|Y (`)

ij | ≤ n`), and Y (`)
ij,2 = Y

(`)
ij I(|Y (`)

ij | > n`). Then for t ≥ 0,

P

[
|Y (`)
ij,1|√
n`g`

≥ t
√
n`g`

]
= P

[
|Y (`)
ij,1| ≥ t

]
= P

[
|Y (`)
ij,1| ≥ t

]
I(t ≤ n`) + P

[
|Y (`)
ij,1| ≥ t

]
I(t > n`)

≤ P
[
|Y (`)
ij | ≥ t

]
I(t ≤ n`) + 0 ≤ 2 exp
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Thus, by Definitions 5.7 and 5.13 in Vershynin (2012), Y (`)
ij,1/
√
n`g` and Y (`)

ij,2/g` are sub-

Gaussian and sub-exponential random variables, respectively. Then by Propositions 5.10

and 5.16 in Vershynin (2012) and g` ≤ n`, we have
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with some constant c4 > 0 dependent on c3 and v0. Hence,
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Plugging (C.17) and (C.19) into (C.16), we obtain

P
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for 0 < u < 1. By τ2 = o(1), we have u = o(1) when u = Mτ2/2 with a constant M > 0.

Then plugging u = Mτ2/2 into the above inequality yields (4.15) for any given constant

M ′ > 0 by choosing sufficiently large M .

Proof of Theorem IV.5. The proofs for generalized thresholding and SPICE are identical to

the proof of Theorem III.7 after (B.31) and the proof of Theorem III.9, respectively, with

corresponding notational changes. The proof for the consistency of the CLIME estimator

is identical to the proofs of Theorems 2, 5 and 6 in Cai et al. (2011) following (4.15),

where we also obtain |Ω̂ε −Ω|∞ ≤ 4Mpλ1 with probability tending to 1. Then the proof

for the sparsistency and sign-consistency of the thresholded CLIME estimator follows the

same arguments for the proof of Theorem 2 in Rothman et al. (2009). Details are hence

omitted.
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