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 ABSTRACT 

Exciton-polaritons or polaritons, which are part-light, part-matter hybrid 

quasiparticles, offer an entirely new physics for realizing semiconductor lasers. These 

relatively new solid-state devices, which are more commonly known as polariton lasers, 

can generate coherent light output at two to three thousand times lower input power than 

that required for an equivalent photon laser. Practical applications of polariton lasers 

require electrically pumped devices which can operate at high temperatures, if not at 

room temperature. The operation of GaAs-based electrically pumped polariton lasers, 

which are usually designed using the vertical cavity surface emitting geometry, has 

remained limited to cryogenic temperatures. Though a room temperature electrically 

pumped polariton laser has been recently demonstrated, several important aspects and 

characteristics of polariton laser diodes have hitherto remained unexplored. 

In the present study, GaAs- and GaN-based electrically pumped polariton lasers 

have been experimentally realized based on an edge-emitting geometry where cavity 

feedback and current injection are orthogonal to each other. The GaAs-based device is 

designed with a Al0.31Ga0.69As/Al0.41Ga0.59As single quantum well which emits in the 

visible region of the electromagnetic (EM) spectrum. The high exciton binding energy of 

this heterostructure enables strong coupling and polariton lasing at 155 K. The threshold 

for polariton lasing is observed at 90 A/cm2, whereas conventional photon lasing is 

recorded in the same device at ~17 times higher pump powers. A bulk GaN-based 



xxi 

microcavity polariton diode laser is also experimentally realized, which operates as an 

ultraviolet coherent emitter at room temperature. In this device, the non-linear threshold 

for polariton lasing occurs at 190 A/cm2, whereas a second non-linearity due to 

conventional photon lasing is observed at 46 kA/cm2. Polariton lasing phenomena in 

these devices have been further confirmed with the observation of linewidth collapse and 

blueshift of lower polariton emission, polariton population redistribution in momentum 

space and spatial coherence measurements. A maximum degree of linear polarization of 

~22% is also measured and theoretically analyzed in the GaN-based device.  

In this work, the small signal modulation characteristics of a polariton laser is also 

presented for the first time. These measurements, performed on the GaN-based 

electrically pumped polariton laser, shows promise of the device as a low-power 

modulated coherent light source for medical and biomedical applications or short 

distance plastic fiber communication at short wavelengths (violet and ultra-violet), where 

a conventional laser is difficult to realize. A maximum -3 dB modulation bandwidth of 

1.18 GHz is measured and the experimental results have been analyzed with a theoretical 

model based on the Boltzmann kinetic equations. Frequency chirping under high 

frequency operation has also been investigated, and gain compression in these devices 

has been phenomenologically defined. An area yet unexplored is the role of defects on 

the performance characteristics of polariton lasers. In this work, this aspect has been 

examined and elucidated in the context of dynamic condensation in both electric and 

optically pumped GaAs- and GaN-based polariton lasers. Finally, the possibility of 

realizing a low power optical amplifier based on strong coupling has been studied 

experimentally. 
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Chapter I 

Introduction 

 

1.1  Preface 

Semiconductor lasers have revolutionized almost all areas of modern science and 

technology, which include high-speed telecommunication, industrial processing, 

scientific experiments and explorations, consumer electronics, biomedical applications 

and so on [1-5]. The development of semiconductor lasers dates back to the late 1950s 

when the fundamental quantum limit of the lasing linewidth was reported by Schawlow 

and Townes [6]. Ever since the early demonstrations of coherent emission using 

semiconductor gain media [7-12], semiconductor lasers have developed significantly, 

mostly because of the advancements in high quality epitaxial growth and fabrication 

technologies. Followed by these developments, for over half a century we have been 

using semiconductor lasers which operate on the principle of light amplification by 

stimulated emission of radiation. However exciton-polaritons or polaritons, which are 

part-light, part-matter hybrid quasiparticles, offer an entirely new physics for realizing 

semiconductor lasers. When an emitter in the form of bulk, quantum well, quantum wire 

or quantum dot is placed inside a suitably designed microcavity, the strong interaction 

between the confined light modes and the exciton states results in new eigenstates in the 

form of exciton-polaritons [13-17]. Because exciton-polaritons are half-matter, half-light 
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like Bosonic quasiparticles, they can be exploited to study numerous phenomena related 

to cavity quantum electrodynamics (QED) and many-body physics, such as Bose-

Einstein condensation (BEC) [18-21], spontaneous symmetry breaking [22,23], 

superfluidity [24-26], Bardeen-Cooper-Schrieffer (BCS) states [27-28] and Berezinskii-

Kosterlitz-Thouless (BKT) transition [29-30]. However, as far as practical applications in 

photonics and optoelectronics are concerned, one of the most exciting prospects of 

exciton-polaritons is towards the realization of an inversionless coherent emitter.  

Imamoglu et al. first proposed the possibility of generating coherent light by 

spontaneous radiative recombination from a coherent exciton-polariton condensate in a 

semiconductor microcavity [31]. Whereas the gain mechanism in a conventional photon 

laser is stimulated emission, for a polariton device the process is stimulated scattering. 

Unlike a conventional photon laser, the separation of stimulation and emission in a 

polariton device leads to coherent emission without the requirement of population 

inversion. As a result, it is expected that the threshold energy required for coherent 

emission from this device would be much smaller than that of a photon laser [31-35]. 

This new kind of a solid-state device, which is more commonly known as a polariton 

laser, holds great promise as a low-power coherent light source for medical and 

biomedical applications, short distance plastic fiber communications, high-speed optical 

interconnects and logic circuits, and quantum information processing [36-43]. 

Consequently,  polariton lasing has continued to be an intense topic of research in recent 

years. In particular, advancements in areas of materials growth, device design and device 

fabrication technologies have led to numerous experimental realizations of this novel 

light source, which even about two decades ago used to be a mere scientific curiosity. 
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1.2  Overview of Previous Work 

 In the early experimental studies on excitons in semiconductors, it was observed 

that under optical excitation, the excitonic transitions are significantly influenced by their 

apparent coupling to light. In 1957, S. I. Pekar described these changes of the excitonic 

spectrum with respect to an additional wave appearing in the semiconductor crystal [44]. 

The observed phenomenon was later described by J. J. Hopfield in terms of the 

emergence of new eigenstates in the system, resulting from linear coupling of the exciton 

field to the electromagnetic field [45]. These eigenstates are defined as polaritons, or 

strictly speaking exciton-polaritons, to distinguish them from other types of light-matter 

entangled coupled states such as phonon-polaritons or plasmon-polaritons. It should be 

noted that in our text we have interchangeably used the terms exciton-polaritons and 

polaritons. 

 The first experimental observation of polaritons was reported by Frohlic in CuCl 

in 1971 using two-photon absorption spectroscopy [46]. However it was not until 1977, 

when exciton-polaritons were first observed in a semiconductor [47]. In this study, 

photoluminescence obtained from high purity GaAs epitaxial layers were explained 

within the polariton framework. Since then, there have been numerous reports on the 

experimental observation of exciton-polaritons in different direct bandgap 

semiconductors, such as GaAs, CdS, ZnO, ZnTe, ZnSe and GaN [48]. All these 

experiments were performed using bulk semiconductors instead of having a quantum 

well (QW) active region, because light-matter coupling of two-dimensional QW exciton 

to the three-dimensional continuum of photons is precluded by enhanced radiative decay 

[49]. A major breakthrough appeared in 1992, when Weisbuch et al. reported normal-
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mode splitting in a GaAs quantum well based microcavity, which consisted of 

GaAs/AlGaAs quantum wells imbedded between two distributed Bragg reflectors 

(DBRs) [13]. This work was followed by numerous observations of normal mode 

splitting and light matter coupling in semiconductor microcavities, mostly in GaAs-based 

systems because of their relatively matured growth and fabrication technologies [50-53]. 

 Followed by the experimental development of low-dimensional systems in the 

form of semiconductor microcavities, Imamoglu and coauthors first theoretically 

proposed the idea of generating coherent emission from a degenerate condensate of 

exciton-polaritons and coined in the term exciton-polariton laser [31]. Based on this 

concept, the first experimental observation of polariton lasing was reported by Le Si 

Dang et al. at liquid He temperature in a CdTe-based microcavity [54]. Since then, 

dynamic condensation of polaritons and polariton lasing in different material and 

nanostructure systems and with different dimensionality of the polaritons have been 

demonstrated in a series of elegant experiments using optical excitation [18-23, 55-75]. 

Because of the relatively matured growth and fabrication technology of GaAs, strong-

coupling and polariton lasing phenomenon have been studied extensively in GaAs-based 

polariton devices [13, 18, 20, 23-26, 50-53, 56-58, 63, 66]. Most of these measurements 

have been performed at cryogenic or low temperature, as at elevated temperatures the 

GaAs-based strongly coupled microcavity transitions into the weak coupling regime 

because of the intrinsically low exciton binding energy of the material system. To this 

end, wide bandgap semiconductors like GaN and ZnO gained considerable interest 

because of their low exciton Bohr radii and high exciton binding energies. Polariton 

lasing at high temperatures, if not at room temperature, has been demonstrated using 
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optical excitation in microcavities comprising of these material systems [21, 60, 61, 67-

74]. The first observation of polariton lasing at room temperature was reported in 2007 in 

an optically pumped bulk-GaN based hybrid microcavity [60]. More recently, polariton 

lasing has been reported at 450 K using an optically pumped ZnO microwire [74]. 

 As far as the dimensionality and nanostructures are concerned, strong-coupling 

and polariton lasing have been reported using bulk [60, 67, 71-73], quantum-well(s) [56-

59, 61-63, 66, 75], micro- and nanowire(s) [68-70, 74] and quantum dot(s) [76, 77]. Both 

semiconductor and dielectric materials have been utilized to successfully realize the DBR 

layers of the reported polariton lasers. It has been experimentally demonstrated that the 

polariton lasing threshold is 1-3 orders of magnitude smaller than the photon lasing 

threshold measured in the same device [57, 66, 68, 70, 71]. 

1.3  Motivation of Present Work 

 As discussed in the previous section, optically pumped polariton lasers based on 

different materials and nanostructures have been reported to operate at temperatures 

ranging from cryogenic to 300 K. Practical applications of these ultra-low threshold 

coherent emitters require electrical injection, so that they can be conveniently integrated 

into optical telecommunication networks, optoelectronic integrated circuits (OEICs) or 

embedded systems containing optoelectronic components. Experimental realization of 

polariton light emitting diodes was reported in 2008 using GaAs-based microcavity 

diodes [78, 79]. Though clear evidences of strong-coupling were observed in these 

devices, any indication of polariton lasing remained non-existent. These experiments 

however fomented the experimental realization of the first electrically pumped polariton 
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lasers, which were reported simultaneously in 2013 by two groups [80, 81]. In these 

works, exciton-polariton laser diodes were epitaxially grown and fabricated based on a 

vertical cavity surface emitting structure, where InGaAs/GaAs quantum well was 

employed as the active region. While this is a monumental achievement towards the 

development of these next-generation coherent light sources, the operations of these 

devices are limited to cryogenic temperatures. The first electrically pumped polariton 

laser which can operate at room temperature was reported very recently by Bhattacharya 

et al. using a bulk GaN-based microcavity diode [82]. Though this is an important 

milestone towards the practical application of polariton lasers, several important aspects 

and characteristics of polariton laser diodes have hitherto remained unexplored, among 

which the small-signal modulation response, steady-state output polarization, and the role 

of defects on dynamic condensation are particularly important. 

 Motivated by the challenges associated with the development of electrically 

pumped polariton lasers, and the need for a more detailed understanding of their 

performance characteristics and limitations, the experimental realization and 

characterization of polariton laser diodes, which can operate at high temperatures, was 

undertaken in this work. Utilizing a single Al0.31Ga0.69As/Al0.41Ga0.59As quantum well 

microcavity diode, a GaAs-based polariton laser has been fabricated and characterized 

which can operate at T=155 K. Contrary to the conventional surface emitting geometry, 

an edge-emitting structure has been employed in which current injection and optical 

feedback are orthogonal to each other. Based on the similar edge-emitting geometry, a 

room temperature bulk GaN-based electrically pumped polariton laser has also been 

designed, fabricated and characterized. Besides static characterization, we also report for 



7 
 

the first time small-signal modulation characteristics of an electrically pumped polariton 

laser. The role of defects, which are quite prevalent in GaN based material systems, has 

also been elucidated in the context of polariton lasing and dynamic condensation. 

Theoretical study shows that it is possible to amplify the guided mode in a waveguide 

operating in the strong-coupling regime [82]. Based on this principle, we also present a 

detailed experimental study of an electrically pumped semiconductor optical amplifier 

(SOA), which is expected to amplify the guided polariton mode in the system. 

1.4  Outline of the Dissertation 

 This dissertation presents an experimental study on the development of high 

temperature electrically injected exciton-polariton lasers and devices. The thesis is 

organized as follows. 

 Chapter 2 provides a theoretical overview of the fundamental concepts related to 

exciton-polaritons in a semiconductor microcavity. Excitons in semiconductors having 

different dimensionalities, such as bulk, quantum well, quantum wire and dots, are 

discussed first. Next the design principle of a semiconductor microcavity employing 

distributed Bragg reflectors are presented and characteristics of photons in a microcavity 

are discussed. Then the strong-coupling regime is discussed along with theoretical 

formulations and its differences with the weak coupling regime are presented. Finally, the 

polariton lasing phenomenon is explained and its main differences with conventional 

photon lasing are elucidated.  

 In chapter 3, the experimental techniques employed in this work for material 

growth, device fabrication, and materials and device characterization are discussed in 
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detail. The materials which are commonly employed in the growth and fabrication of 

polariton devices are presented. The epitaxial growth and deposition techniques used in 

this study are also presented therein. Next the device pumping scheme, and the 

fabrication techniques employed to realize the scheme are discussed in detail. This is 

followed by a description of the materials and device characterization techniques used in 

this study. Relevant technical specifications of the instruments used in this study are also 

mentioned in this chapter. 

 Chapter 4 presents the experimental realization of a GaAs-based polariton diode 

laser which operates at T=155 K. In this chapter, we first discuss how the exciton binding 

energy in this system can be enhanced to facilitate high temperature operation. Next, the 

design and characteristics of the single Al0.31Ga0.69As/Al0.41Ga0.59As quantum well used 

in this study are described. Then the device fabrication procedure is presented, which is 

followed by a detailed discussion of the results obtained from strong-coupling and 

polariton lasing characterization techniques. Finally, an experimental study towards the 

realization of a room temperature GaAs-based polariton laser is presented and the 

challenges and limitations involved are discussed. 

 Chapter 5 details the experimental realization of an electrically pumped GaN-

based polariton laser which operates at room temperature. In this chapter, we first discuss 

in brief previous reports on GaN-based polariton lasers. Next, the device heterostructure 

and the excitonic transition characteristics of this system are discussed. This is followed 

by a description of device fabrication. Finally, the strong coupling and polariton lasing 

characteristics obtained from different device characterization techniques are described. 

The results related to strong-coupling and polariton lasing presented here are limited to 
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measurements performed under steady-state electrical injection. The output polarization 

of the device has been analyzed and explained using stochastic kinetic theory, wherein 

the kinetics of the system is modeled with the four coupled stochastic differential 

equations. 

 In chapter 6, an experimental study on the first small-signal modulation response 

of a polariton laser is presented. The device has been operated at room temperature. A 

maximum −3 dB modulation bandwidth of 1.18 GHz is measured  in this study. The 

experimental results have been analyzed with a theoretical model based on the Boltzmann 

kinetic equations. Frequency chirping has been experimentally characterized and gain 

compression in a polariton laser is phenomenologically defined. In this chapter, the role 

of defects on the performance characteristics of these devices is also presented. Particular 

emphasis has been given on the lowering of the effective polariton temperature, which 

has been a lesser understood phenomenon. Experimental results obtained from the 

measurement of multiple devices are compared and analyzed in this study. Also a 

simplified theoretical model has been presented to phenomenologically explain the 

experimentally observed results. 

 Chapter 7 discusses the experimental study of possible amplification of guided 

polariton modes in an electrically pumped GaN-based device. At first, a brief theoretical 

overview of the concept of bulk polaritons is provided, and the theory of optical 

amplification in bulk GaN is discussed. Next the design, fabrication and characterization 

of the device are discussed. The device is expected to work as a semiconductor optical 

amplifier (SOA) in the strong coupling regime. Finally, based on the observed 
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experimental results, the challenges and difficulties associated with the experimental 

realization of such a device are discussed.  

 In chapter 8, a brief summary of the work presented in this thesis is provided. 

Finally, suggestions have been made for future work in regards to electrically pumped 

polariton lasers. 
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Chapter II 

Theoretical Background 

 

2.1  Introduction 

 Exciton-polaritons in a semiconductor microcavity offer the study of both cavity 

quantum electrodynamics (cavity QED)  and rich many body physics. In this chapter, we 

briefly present a semi-classical as well as quantum description of different attributes 

related to strong coupling and polariton lasing phenomena in a semiconductor 

microcavity. The characteristics of excitons in semiconductors having different 

dimensionalities, and the nature of cavity photon in a microcavity are first discussed. 

Theoretical aspects related to the design of a semiconductor microcavity are also 

presented. Next, light-matter coupling in the context of exciton-polaritons are discussed 

and the necessary conditions for the attainment of strong coupling in a microcavity are 

described. The differences between the strong- and the weak-coupling regimes are also 

presented herein. Finally, a theoretical discussion on the polariton lasing phenomenon is 

presented and its differences with conventional photon lasing are elucidated. 

2.2  Excitons in Semiconductors 

 An exciton is a charge neutral quasi-particle which arises from the Coulombic 

interaction of an electron and a hole. Excitons are in fact the elementary excitations in a 

semiconductor as the first excited state resulting from external excitation is a bound  
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organic materials, the excitons are tightly bound and their Bohr radii are typically in the 

order of a single unit cell. This type of excitons are known as Frenkel excitons. On the 

other hand, in semiconductor based material systems, the exciton Bohr radius is much 

larger than the interatomic spacing because of the delocalized nature of the exciton 

wavefunction. This type of excitons are commonly called Wannier or Wannier-Mott 

excitons. The dispersion relation of a free Wannier-Mott exciton is shown in Fig. 2.1(b), 

where the discrete exciton states appear below the conduction band continuum [83]. The 

exciton binding energy and Bohr radius are strongly dependent on the dimensionality and 

quantum confinement of the system. In the subsequent sections, excitons in 

semiconductors of different dimensionalities, namely bulk, quantum well, quantum wire 

and quantum dots will be discussed. As the work described in this thesis is limited to 

semiconductor based material systems, the term ‘exciton’ henceforth will refer to only 

Wannier type excitons. 

2.2.1  Excitons in Bulk Semiconductors (3D Excitons) 

 The Hamiltonian for excitons in a bulk semiconductor can be described by an 

electron term, a hole term and an electron-hole interaction term as follows [84]: 

                                          

2 2 2 2 2

* *2 2 4 || ||
bulk e h
X

e h e h

q
H

m m R R
 

   


 
      (2.1) 

Here q is the electronic charge, ћ is the Planck's constant, ε is the dielectric constant of 

the semiconductor, me (mh) is the electron (hole) effective mass, Re (Rh) is the spatial 

coordinate of the electron (hole), and 2
e  ( 2

h ) is the Laplacian operator corresponding to 
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electron (hole) co-ordinate. By solving the Schrödinger equation, the exciton energies in 

a bulk semiconductor is obtained to be: 

                                                      

2 2

, 22

bulk
bulk BX
X n G

X

EK
E E

M n
  


       (2.2) 

Here EG is the bandgap of the semiconductor, ,
bulk
X nE  is the bulk exciton binding energy, 

MX = me+mh, n = 1, 2, 3... is the principal quantum number, and K=ke+kh is the center of 

mass wave vector obtained from the electron and hole wave vectors ke and kh 

respectively. 

 As a first order approximation, the Hamiltonian of an exciton (equation 2.1) is 

similar to that of a Hydrogen atom if it is assumed that the proton plays the same role as 

the hole. Hence, by rescaling the physical quantities obtained from the solution of a 

Hydrogen atom problem, the bulk exciton binding energy, bulk
BXE and bulk exciton Bohr 

radius, bulk
BXa   can be expressed as: 

                                                   

*

2 2

2

*

bulk r
BX

r

bulk r
BX B

r

m
E Ry

n

n
a a

m





 

 
        (2.3) 

In this relation   1* * *1 / 1 /r e hm m m


  is the reduced effective mass of the exciton, εr is the 

dielectric constant of the semiconductor, Ry = 13.6 eV is the Rydberg constant and aB = 

0.53 nm is the Bohr radius. According to equation 2.3, the exciton binding energy should 

be high in a material having small exciton Bohr radius and dielectric constant, which 
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corresponds to enhanced electron-hole wave function overlap and reduced dielectric 

screening of the Columbic interaction respectively. 

2.2.2  Excitons in Quantum Wells (2D Excitons) 

 A quantum well consists of a narrow-bandgap semiconductor imbedded between 

two thicker layers of relatively wider bandgap semiconductors such that the thickness of 

the thin layer is comparable to the mean free path of the carriers. Unlike in a bulk, the 

motion of carriers in a quantum well is restricted within a plane and the allowed energy 

states of electrons and holes are quantized along the confinement direction, which is 

usually the growth direction of the semiconductor. Because of the one-dimensional 

confinement, excitons in a quantum well are two-dimensional (2D) in nature. Using the 

same notations as for the bulk case discussed previously, the Hamiltonian of a 2D exciton 

can be expressed as, 

     
2 2 2 2 2

* *2 2 4 || ||
well conf confe h
X e e h h

e h e h

q
H U z U z

m m R R
 

     


 
    (2.4) 

where  conf
e eU z  and  conf

h hU z  are the confinement potentials for electron and hole 

respectively along the growth direction z. By solving the Schrödinger equation for a 

perfect 2D system, the eigen energies of the Hamiltonian shown in equation 2.4 are 

derived as: 

     
2 2

, 22 1
2

bulk
well conf conf BX
X n G e h

X

EK
E E E E

M
n

    
  
 


      (2.5) 

Here conf
eE  and conf

hE  are confinement energies of the electron and hole respectively and 
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1
2

well bulk
BX n BXE E n   

 
 is defined as the quantum well exciton binding energy, where 

n=1, 2, 3…. According to this relation, the exciton binding energy of the first excitonic 

state in a quantum well can be 4 times than that of the exciton in a bulk semiconductor 

constituting the same active region. This result is however true only for a perfectly 2D 

quantum well, where the electron and hole wavefunctions are bound to be delta functions 

along the growth direction. The finite dimensionality of practical quantum wells results in 

wavefunction leakage and other non-ideal effects. As a result, the binding energy of 2D 

excitons are observed to be about 2-3 times of their bulk counterparts [85, 86]. 

2.2.3  Excitons in Quantum Wires and Dots (1D and 0D Excitons) 

 A quantum wire is a quantum confined structure in which carrier motion is 

restricted in two spatial dimensions. Advancement in material growth techniques have 

enabled the realization of quantum wire like structures in the form of nanowires, which 

can be a few microns in lengths and 40 nm to 80 nm in diameters [87]. Nanowires are 

particularly attractive as they can be grown with a relatively low density of extended 

defects compared to thin film based heterostructures. Theoretically, the exciton binding 

energy in an ideal quantum wire diverges towards infinity. However, because of the finite 

diameter of a practical quantum wire, the exciton binding energy is modified by the 

displacement of the electron-hole pair in the cross-sectional plane. For sufficiently small 

displacement, the exciton binding energy of a quantum wire can be larger than the 

theoretical 4well bulk
BX BXE E limit of a quantum well. 

 Quantum dots (QDs) are nanostructures in which carrier motion is restricted in all  
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Fig. 2.2 An AFM image of InAs self-assembled quantum dots grown on InP substrate by 

molecular beam epitaxy for 1.55μm emission wavelength [88]. 
 

three spatial dimensions. Because of the three dimensional quantum confinement, ideal 

quantum dots have delta-like density of states. Though theoretically a 0D system, 

practical quantum dots have finite dimensions depending on the growth and/or 

fabrication techniques involved. Figure 2.2 shows an atomic force microscopy (AFM) 

image of molecular beam epitaxy (MBE) grown self-assembled quantum dots, which 

have average diameter of ~25 nm and height of ~5-6 nm. The 0D exciton concept inside a 

quantum dot is in fact valid only if the exciton Bohr radius is smaller than the quantum 

dot size in all three spatial dimensions. Otherwise the quantum dot exciton behaves more 

like a bulk exciton with the difference that the center of mass motion is quantized 

because of the spatial confinement. The energy of an exciton inside a quantum dot can be 

estimated from the relation 
dot conf conf dot
X G e h BXE E E E E    , where conf

eE  and conf
hE  are the 
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electron and hole confinement energies and dot
BXE  is the QD exciton binding energy. It is 

noteworthy that there is no momentum term involved in the energy of QD excitons. This 

and the delta like density of states essentially makes excitonic transitions of a QD 

equivalent to the atomic transitions of a single atom [89]. For this reason QDs are 

considered to be highly prospective candidates for future quantum information processing 

and quantum computing [76, 89]. 

2.2.4  Free and Bound Excitons 

 Excitonic transitions manifest themselves as sub-bandgap, narrow spectral lines in 

the optical absorption spectra of semiconductors at low temperatures. The exciton 

energies ( XE ) in these transitions are related to the incident photon energy (Eph) by the 

relation: 2/ph G XE E E n  , where n=1, 2, 3, ... corresponds to different exciton states. 

The strength of these excitonic transitions is governed by the exciton oscillator strength, 

which is be defined in analogy with the atomic oscillator strength as follows [92]: 

      

*

3

2
| |v c

BX

m V
f u r E u

a




 
 


                  (2.6) 

Here uc (uv) is the electron (hole) Bloch function, ω is the frequency of the incident 

photon, m* is the free electron mass, r

 is the relative motion co-ordinate of the exciton, 

E


 is the photon field and V is interaction volume of the system. According to equations 

2.3 and 2.6, materials with high exciton binding energies should have large exciton 

oscillator strengths. However, in practice, homogenous and inhomogeneous broadening 

resulting from phonon interaction and disordered potential across the sample (arising 

from localized strain, defects, impurities, alloy clustering, interface roughness etc.) [90] 
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invariably affect the excitonic transitions and this appears as a broadening of the exciton 

linewidth. It is also important to note that the oscillator strength defined in equation 2.7 is 

for excitons which are delocalized over many lattices and are essentially free propagating 

excitons or free excitons. In real semiconductors however, defects and impurity centers 

can act as traps for excitons and form the so-called bound-excitonic states or simply 

bound excitons. Owing to the localization at these traps, the bound excitons do not have a 

kinetic energy distribution like the free excitons, and therefore they exhibit a relatively 

narrow linewidth in the emission spectra. In addition to this, bound excitonic 

luminescence is governed by the so-called giant oscillator strength as shown by Rashba 

and Gurgenishvili [91]. For these reasons, the bound exciton luminescence may appear 

significantly stronger than the free exciton luminescence in doped, or even nominally 

doped semiconductors and in semiconductors containing material defects. 

2.2.5  Bosonic Nature of Excitons 

 Whereas fermions are characterized by the Fermi-Dirac statistics and half integer 

spins, bosons are governed by the Bose-Einstein statistics and integer spin quantum 

numbers. Because excitons have integer spin numbers resulting from the constituent 

fermionic particles (the electron and the hole), it is expected that excitons should exhibit 

bosonic characteristics. The bosonic picture of excitons is however valid only in the low 

density regime, where excitons behave as non-interacting particles. As the carrier density 

is increased, the repulsive interaction between excitons results energy renormalization 

and the excitonic transition shifts towards higher energy, which appear as a blueshift in 

the emission spectra. With further increase of the carrier density, the Coulombic 

interaction between the excitons' fermionic components becomes stronger, and also 
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progressive filling of the phase space takes place [92]. The latter is known as the Pauli-

blocking principle, and is a direct consequence of the Pauli's exclusion principle. 

Quantitatively, both Coulombic interaction and phase space filling becomes non-

negligible when the inter-particle distance becomes comparable to the exciton Bohr 

radius. As a first approximation, a critical density (nmott) can be estimated as 

2~ 1 / ( )Mott Bn a for 2D excitons, beyond which the exciton binding energy decreases 

significantly and dissociation of the exciton complex takes place [34]. This transition 

process is often referred to as the Mott transition and the critical density is known as Mott 

density. Beyond Mott transition, an excitonic system becomes uncorrelated electron-hole 

plasma and no longer exhibits bosonic characteristics. 

2.3  Semiconductor Microcavity and Cavity Photon 

 A semiconductor microcavity is an optical resonator comprising of a 

semiconductor active region and a cavity dimension of the order of the optical 

wavelength. Depending on the method of light confinement, a semiconductor microcavity 

can be of different types, such as planar, spherical, pillar or photonic crystal microcavity. 

The microcavity of interest in this study is a planar semiconductor microcavity, which 

consists of two flat reflectors (mirrors) on the opposite sides of a semiconductor active 

region. These mirrors can be realized by simple cleaving, which forms mirrors at the 

semiconductor-air interface, or using more advanced technologies such as metallic 

mirrors, distributed Bragg reflectors (DBRs) etc. In this section, the design and 

characteristics of a DBR-based semiconductor microcavity will be presented in brief. 

Also the concept of cavity photon and its characteristics will be discussed. 
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2.3.1  Distributed Bragg Reflector (DBR) 

 A DBR consists of alternate layers of materials having different refractive indices 

where the principle of interference is employed to realize high reflectivity. It is designed 

based on the principle of interference in multilayer structures. It can be shown that 

constructive interference of light reflected at each interface of the DBR creates a 

stopband for photons centering around a specific wavelength. This range of wavelength 

or the sopband is reflected by the DBR and thus it acts as a high reflectivity mirror. If the 

desired center-wavelength of the stopband of a DBR is λB,  it needs to be designed with 

periodic layers of two materials having thicknesses of h1 = λB/4n1 and h2 =λB/4n1, where 

n1 and n2 are their refractive indices respectively. The wavelength λB is known as the 

Bragg resonant wavelength and hence the name distributed Bragg reflector. Figure 2.3 

 

 
Fig. 2.3 Measured reflectivity spectra of 18 pairs of AlGaAs/GaAs DBR. 
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Fig. 2.4 Calculated reflectivity plotted as function of number of DBR pairs for different 
ratios of n1 and n2. 

 

shows the measured reflectivity spectra of AlGaAs/GaAs DBRs grown by molecular 

beam epitaxy (MBE). The reflectivity of a DBR is dependent on the number of pairs 

used, and also on the refractive index contrast of the alternate layers. Using transition 

matrix approach, it can be shown that at Bragg resonant wavelength, the power 

reflectivity (|r|2) of a DBR having N number of pairs is given by [93], 
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                        (2.7) 

From Fig. 2.4, it is quite obvious that the DBR reflectivity can be significantly enhanced 

by increasing the refractive index contrast of the constituent alternate layers. 
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2.3.2  Microcavity with DBRs 

 In a planar semiconductor microcavity, an emitter having optical thickness of ~ 

λc/2 (or its integer multiple) is imbedded between two high reflectivity DBRs, which have 

their stop-bands centered around λc. For normal light incident onto such a microcavity, 

the transmission is found to be maximum at λc , which is defined as cavity mode of the 

system. Hence a semiconductor microcavity is essentially a 1-D photonic crystal where 

the spacer region between the two mirrors act as an impurity in the photonic bandgap. In 

reflectivity measurements, the cavity mode is observed as a dip in the reflectance spectra 

as shown in Fig. 2.5. Theoretically calculated values using propagation matrix approach  

are plotted along with the measured data. 

 An important figure of merit of a microcavity is the cavity quality factor, Q which 

is defined as the ratio of the energy stored in the cavity to the power dissipation per round 

 
Fig. 2.5 Measured reflectance spectra of a AlGaAs/GaAs DBR based microcavity along 

with calculated results obtained from propagation matrix approach. 
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trip of a cavity photon. Quantitatively Q is defined as the ratio of the cavity mode energy 

(Ec) to the mode broadening ( cE ), i.e. /c cQ E E  . The cavity photon lifetime ( c ), 

which indicates how long a photon can reside inside the microcavity before it escapes 

into vacuum, can be estimated from cavity Q using the relation,  /c
c c c

Q Q

E E



  






For a microcavity with mirror reflectivity values of R1 and R2, the cavity Q can be 

expressed to a first approximation as 
 
 

1/4

1 2
1/2

1 21

R R
Q

R R





 [92].  Thickness variation, material 

degradation and finite reflectivity of DBR-mirrors can reduce the cavity quality factor in 

an experimentally realized semiconductor microcavity. 

2.3.3  Cavity Photon Characteristics 

 A semiconductor microcavity is essentially a light-trapping medium which allows 

only photons having energy equal to that of the cavity mode to out-couple with vacuum. 

These photons, which are usually called cavity photons, have substantially different 

characteristics from free-propagating light. For the semiconductor microcavity shown in 

Fig. 2.6, light is confined in the z-direction. In this case, the energy momentum relation of 

the cavity photon is given by: 

                         

2 2
cav z

c c

ck c
E k k

n n
   
 

        (2.8) 

Here c is the speed of light in vacuum, nc is the effective refractive index of the cavity 

region, ||zk k k 
  

 is the total wavevector of the cavity photon, and 2 2
|| x yk k k  and kz  
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Fig. 2.6 Schematic representation of a planar microcavity having DBR mirrors showing 

the in-plane and out-of-plane wave vectors. 

                

 

are the in-plane and out-of plane wave vectors respectively. For small in-plane wave 

vectors || zk k , and hence equation 2.9 can be approximated as: 
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From phase-matching condition for cavity resonance, it can be shown that the out-of 

plane wavevector kz is related to the cavity length Lc by the relation    2 2z cavk L m 

where m is an integer. Therefore replacing z
cav

m
k

L


  in Eqn. 2.9, the following dispersion 

relation is obtained for a cavity photon: 
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   (2.10) 
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where /c c cm mn cL   is defined as the cavity photon effective mass.  For m=1 and 

/ 2cL   , the cavity photon mass reduces to the more familiar expression of 

2 c
c

n
m

c







. Whereas a free propagating photon has zero mass, the cavity photon mass 

is finite and non-zero. It is also important to note that because of in-plane translational 

invariance, the k|| component of a cavity photon is conserved while it is outcoupled to 

vacuum. This property can be analytically expressed by || sinok k  , where 
2

ok



  is 

the free-space wavevector and θ is the angle of detection with respect to z-axis (Fig.2.6). 

2.4  Light-Matter Interaction 

 Light-matter interaction is an extensive area of research in quantum mechanics 

and cavity quantum electrodynamics. From a classical point of view, light-matter 

interaction is a result of resonant interaction between the oscillating electromagnetic field 

of light and charged particles, whereas from a quantum mechanical perspective, it is the 

observance of coupling of the optical field with the quantum states of the matter. 

Depending on the interaction strength between light and matter part of the system, light- 

matter interaction can be classified into weak, strong and very strong coupling regime. In 

this section, light-matter interaction will be discussed in the context of semiconductor 

microcavities, where the strong coupling regime leads to the generation of light-matter 

entangled eigenstates known as exciton-polaritons or polaritons. Different characteristics 

of polaritons are discussed here from both quantum-mechanical and semi-classical 

perspectives. 
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2.4.1  Strong vs. Weak Coupling Regime 

 When a semiconductor active medium is placed inside a suitably designed 

microcavity, the electric dipole of the exciton interacts with the electromagnetic field of 

light. This interaction takes place both in surface-emitting and edge-emitting structures, 

where the directions of excitation and optical detection are respectively parallel and 

perpendicular to each other (see Appendix A for details). The strength of this exciton-

photon interaction (  ) is governed by the exciton optical transition matrix element (M) 

[92]: 

     
2

*

e f
M

m V




         (2.11) 

where V is the interaction volume of the system and f  is the exciton oscillator strength as 

defined in equation 2.6. The term  in equation 2.11 contains the overlap integral of the 

electron and hole wave functions, the angular momentum conservation term governed by 

the selection rule, and the projection of exciton dipole moment onto the photon field. 

According to equations. 2.6 and 2.11,   should be significantly enhanced in a material 

system of low exciton Bohr radius and high exciton binding energy. In a high quality 

semiconductor microcavity, there is a periodic, reversible energy exchange between 

excitons and photons at a rate of  , which can be larger than both the exciton decay 

rate, γx and cavity photon decay rate, γcav. If ћΩ>>(γcav − γx)/2, there is at least one 

coherent energy transfer between the exciton and the photon before they decay by non-

radiative recombination or out-couple with vacuum, respectively. Because of this strong 

dipole interaction between the photon field and the polarization field of exciton, the 

degeneracy between the emitter and cavity photon is lifted and new light-matter 
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entangled eigenstates are created in the form of exciton-polaritons or polaritons. Because 

these quasiparticles emerge from the strong interaction of excitons and photons, this 

operation regime is known as the strong coupling regime. The interaction strength or rate 

of energy transfer   is often referred to as the vacuum Rabi splitting or normal mode 

splitting, whereas the periodic energy transfer phenomenon is commonly known as Rabi 

oscillation. The Rabi oscillation period, 2 /T    , is the timescale for one coherent 

energy transfer in the strong-coupling regime and is usually in the order of femtoseconds.  

 Whereas the strong-coupling regime is characterized by a reversible and periodic 

energy exchange between the emitter and cavity mode in the form of Rabi oscillation, the 

weak-coupling regime is governed by dissipation of uncoupled excitons and photons. 

This is a direct consequence of their relatively weak interaction strength compared to the 

respective damping factors. In the weak coupling regime, both the exciton and the cavity 

photon retain their uncoupled properties and no new eigen states are created in the 

system. However, the spontaneous emission rate of the emitter in a weakly coupled 

microcavity can be significantly enhanced by Purcell effect, in which the photon density 

of states is significantly increased because of resonant interaction between the emitting 

dipole and the cavity mode. The control of spontaneous emission rate by Purcell effect is 

an effective means of reducing lasing threshold of microcavity photon lasers, which 

invariably operate in the weak coupling regime. 

2.4.2  Exciton-Polaritons in the Strong Coupling Regime 

 Exciton-polaritons emanate as new eigen modes of the system in the strong 

coupling regime, resulting from periodic and coherent energy exchange between the 
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cavity photon and the exciton. In this subsection, different characteristics of exciton-

polaritons will be discussed from a quantum  mechanical perspective. Also the impact of 

different parameters and non-idealities on polariton dispersion will be discussed. 

2.4.2.1 Polariton Dispersion Characteristics 

 A exciton-polariton is essentially a linear superposition of an exciton and a photon 

having the same in-plane wave vector k||. The total Hamiltonian of the exciton-polariton 

for a given k|| can be expressed as [84, 93]: 

  
|| || || || || || || || || || || || || || ||

† † † †
, , cav, int, , cav, , , ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )

c c c cpol k X k k k k X k k k k k k k k k k k k k kH H H H E e e E c c g c e c e          

Here 
||, , ccav k kH  is the photon Hamiltonian for in-plane wave vector k||  and longitudinal 

wave vector kc  determined by cavity resonance, 
||cav, , ck kE  is the corresponding cavity 

photon energy, and 
|| ||

†
, ,ˆ ˆ( )

c ck k k kc c  is the photon creation (annihilation) operator. Similarly, 

|| ||

†ˆ ˆ( )k ke e  and 
||,X kE are the exciton creation (annihilation) operators and exciton energy 

respectively corresponding to the exciton Hamiltonian (
||,X kH ) for in-plane wave vector 

k||. The interaction Hamiltonian term  
||int,kH  contains the in plane coupling strength 

||kg . 

By neglecting the angular dependence of the coupling strength, 
||kg  can be approximated 

to be 
||

2 2k og g   . In the context of exciton-photon coupling, the Hamiltonian 
||,pol kH  

can be rewritten as: 

      || || || || || || ||

† †
, , , , , , ,ˆ ˆ ˆ ˆpol k LP k LP k LP k UP k UP k UP kH E p p E p p    (2.12) 

where the following unitary transformation has been used: 
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Here 
||

†
, ,ˆ ˆ( )LP k LP kp p  and 

||

†
, ,ˆ ˆ( )UP k UP kp p  are the creation (annihilation) operators of the so 

called lower and upper polaritons respectively, which are the new eigen modes of the 

system. 
||kX and 

||kC  are the Hopfield coefficients, which are defined as: 
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    (2.14) 

where 
|| || ||, X,k cav k kE E    is known as the cavity-to-exciton detuning. The energies of the 

lower and upper polaritons, denoted by 
||,LP kE  and 

||,UP kE respectively in equation 2.14, 

can be deduced by the diagonalization procedure, upon which the polariton Hamiltonian 

reduces to: 
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     (2.15) 

By solving this eigen value problem, the lower and upper polariton energies are obtained 

to be: 
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Fig. 2.7 General polariton dispersion characteristics in a semiconductor microcavity. 

 

Figure 2.7 shows a general polariton dispersion characteristics for small in plane wave 

vectors k||. It is noteworthy that equation 2.16 reduces to 
|| ||,, ,LP k UP kE E    when 

|| ||, ,X k cav kE E . This is observed as an anti-crossing in the polariton dispersion 

characteristics. This anticrossing behavior at cavity-to-exciton resonance is a signature of 

the strong coupling regime. 

 

2.4.2.2 The Role of Detuning in Polariton Dispersion 

  The excitonic and photonic nature of polaritons are strongly dependent on the 

cavity-to-exciton detuning at || 0k  . It is quite obvious from equation 2.14 that the 

Hopfield coefficients satisfy the relation 
|| ||

2 2

1k kX C  . From a physical perspective,  
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Fig. 2.8 Calculated polariton dispersion characteristics for two different detunings. 

||

2

kX  and 
||

2

kC  correspond to the exciton and photon fractions in the lower polariton 

(LP) branch, whereas in the upper polariton (UP) branch these coefficients correspond to 

the photon and exciton fractions respectively. Therefore according to equation 2.16, the 

excitonic and photonic fractions of both the upper and lower polariton branches can be 

efficiently varied by changing the detuning parameter. This is further illustrated in Fig. 

2.8, where polariton dispersion characteristics for two different detunings are shown 

corresponding to a fixed Rabi splitting and exciton energy. The bare cavity mode and 

exciton dispersions are also shown in the same plot using dashed lines. As can be seen in 

Fig. 2.8, for both the detunings, at high k|| values, the LP branch is flat, exciton-like 

whereas the UP branch is parabolic, cavity photon-like in nature. However, at small in-

plane momenta, which is the range of interest in our studies, the LP branch tends to be 

more photon-like at negative detuning, whereas it becomes more exciton-like at positive 
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detuning. The opposite trends are observed for the upper polaritons. Detuning also plays 

an important role in phase transition and dynamic condensation processes in the strong 

coupling regime, which will be discussed in the subsequent sections. 

2.4.2.3  Polariton Effective Mass 

  The polariton effective mass at a particular in plane momentum  k|| can be 

deduced from the constituent exciton and photon masses as follows: 
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     (2.17) 

Here 
||kX and 

||kC are the Hopfield coefficients defined in equation 2.14, Xm  is the center 

of motions mass of the exciton and cavm  is the cavity photon mass. Irrespective of 

detuning, 
||

1kX   at high in-plane wave vectors. Therefore for large values of ||k , 

equation 2.17 can be approximated as 
||

2

/LP X km m X  and 
||

2

/UP cav km m X , which are 

again indicative of the exciton and photon like nature of the lower and upper polariton 

respectively. However for || 0k  , the polariton mass is dominated by cavm as the exciton 

mass is about 4 orders of magnitude larger than the photon mass at the same in plane 

wave vector. Therefore from equation 2.17, the polariton effective masses at || 0k   can 

be approximated as: 
||

2

0/LP cav km m C  , 
||

2

0/UP cav km m X  , which indicates that the 

polaritons are more photon like at relatively small in plane wave vectors.  
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Fig. 2.9 Calculated lower polariton effective masses for the two different detunings 
considered in Fig. 2.8. 

 In Fig. 2.9, the calculated LP effective masses using equation 2.17 are plotted 

corresponding to the polariton dispersions shown in Fig. 2.8. It can be seen that the 

effective mass of the lower polariton increases as it becomes more exciton-like at high in 

plane wave vectors. Also the LP mass is higher for positive detuning because of the more 

exciton-like nature of the lower polariton, compared to the case of negative detuning. 

2.4.2.4  Impact of Homogenous and Inhomogeneous Broadening 

   In the derivation of the polariton dispersion characteristics shown in equation 

2.16, it has been assumed that the exciton and cavity photon have infinite lifetimes, i.e. 

their decay rates, 0X  , 0cav  . However, in a real semiconductor microcavity, both 

the exciton and the cavity photon have finite lifetimes because of homogenous and 

inhomogeneous broadening in the material system. Homogenous broadening occurs 
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primarily due to acoustic and optical phonon interactions, whereas inhomogeneous 

broadening is a consequence of non-idealities in the microcavity, such as defects, alloy 

disorder, monolayer fluctuation, interface roughness, impurity density variation and 

localized strain. To take into account the finite lifetime of excitons and cavity photons, 

the polariton Hamiltonian shown in Eqn. 2.16 can be modified as [84]: 

          ||

||

||

, 0

,
0 ,

cav k cav

pol k
X k X

E i g
H

g E i





 
  
  

   (2.18) 

where the exciton and cavity photon decay rates are introduced as imaginary parts to the 

bare mode energies. The eigenstates of this modified Hamiltonian are: 
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   (2.19) 

Comparing equation 2.16 with equation 2.19, the effective Rabi splitting ( eff ) in the 

presence of homogenous and inhomogeneous broadening can be expressed as, 

2
22

2
cav X

eff og
     
 

.  

2.4.3 2D, 1D and 0D Polaritons 

 Depending on the dimensionality of the exciton and the cavity photon, polaritons 

in a semiconductor microcavity can be zero-dimensional (0D), one-dimensional (1D) or 

two-dimensional (2D) in nature. This is illustrated in Fig. 2.10 where different 

dimensionalities of polaritons are realized using nanowire active regions. In the case of a 

single nanowire (Fig. 2.10(a)), where the nanowire is sandwiched between planar mirrors  
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(a) (b) (c) 

Fig. 2.10 A schematic representation of nanowire(s) imbedded between planar mirrors to 
illustrate (a) 0D, (b) 1D and (c) 2D polaritons [70]. 

 

both the cavity photon and the exciton are confined along the x- and z-directions and 

hence they are 1D in nature. Consequently, the polaritons resulting from their strong-

coupling are 1D polaritons. For the case where the single nanowire is oriented along the 

z-direction (Fig. 2.10(b)), the exciton is again 1D in nature. However the cavity photon in 

this system becomes confined in all 3-directions, resulting in their discrete in-plane wave 

vectors. Therefore their coupling with excitons results 0D-polariton modes. Figure 

2.10(c) shows the case where a dense array of nanowires is oriented along the z-direction 

and is embedded between two planar mirrors. In this case, because of wavefunction 

penetration into adjacent nanowires, the exciton becomes 3D in nature as in a bulk active 

region. The photon field is though confined along the z-direction, it gets spread over the 

x-y plane because of close proximity of the nanowires and assumes 2D characteristics. 

Hence polaritons emanating from the strong-coupling of excitons and photons in this case 

are 2D in nature. In the case of a quantum well (QW) active region, the cavity photon is 

2D in nature and its strong coupling with 2D exciton results the formation of 2D 

polaritons. It should be added that besides using planar microcavities, 0D polaritons can 
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also be realized using photonic crystal microcavities, where the photon is confined in all 

three dimensions . This is similar to the case of a strongly coupled single quantum dot in 

a  microcavity. The dimensionalities of polaritons significantly influences the scattering 

and dynamic condensation processes in the strong coupling regime. This will be 

discussed in details in section 2.4. 

2.4.4  Spin Dynamics of Polaritons 

 The fermionic components of the exciton, namely the electron and the hole have 

angular momentum projections or spins projections of 
1

2eJ    and 
1

2hJ    (light 

holes), 
3

2
  (heavy holes) respectively on a given axis. Therefore, the total angular 

momentum of an exciton is JX = ± 1 or ± 2. It is well known that the spin quantum 

number corresponding to a photon is ± 1. Because spin is conserved during photon 

absorption and creation processes, excitons having spin values of ± 2 cannot be optically 

excited and hence they are commonly known as ‘dark excitons’. On the other hand, 

excitons having spin projections of ± 1 can interact with the photon field during photon 

absorption and creation processes and hence they are usually called ‘bright excitons’. 

Because polaritons are essentially strongly-coupled bright-excitons and photons, they 

have spin projections of ± 1 on the structure axis of a semiconductor microcavity. The 

spin dynamics of polaritons can be exploited to study interesting physics and to realize 

novel spin optoelectronic devices. A detailed theory in this regard can be discussed using 

the pseudo-spin formalism [94, 95], which is beyond the scope of this thesis. 
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2.5  Polariton Lasing Phenomenon 

 The polariton lasing phenomenon is associated with the Bosonic nature of 

polaritons, which arises from the Bosonic characteristics of their constituent cavity 

photons and excitons. In this section, the underlying principle of polariton lasing will be 

discussed in the context of dynamic condensation. The differences between polariton 

lasing and conventional photon lasing will also be elucidated in brief. 

2.5.1  Polariton Lifetime and Scattering Events 

 Polaritons in a semiconductor microcavity have a finite lifetime c , after which 

they decay as photons by spontaneous radiative recombination. This lifetime can be 

expressed as a weighted sum of the exciton and photon lifetimes as follows: 

     

2 2

2 2

1

1

LP c X

UP c X

C X

X C

  

  

 

 

               (2.20) 

In real semiconductor microcavities, the exciton lifetime is in the order of nanoseconds 

whereas the cavity photon lifetime is in the order of picoseconds . Therefore, the upper 

and lower polariton lifetimes shown in equation 2.20 can be approximated as, 

2
/LP c C   and 

2
/UP c X 

 
respectively. This indicates that the polariton lifetime is 

governed by the cavity photon lifetime, which again is dependent on the quality of DBR 

mirrors. Because of the constituent excitonic fraction, polaritons may undergo three 

different types of scatterings before they decay as photons. These  are as follows. 
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 (i) Polariton-phonon scattering: Polaritons are scattered by acoustic and optical 

phonons, which are quantized vibrational modes of the crystal lattice. Polaritons are 

expected to be more efficiently scattered by optical phonons because of their higher 

energy compared to that of acoustic phonons. However, whereas optical phonon energy 

ranges from 20 to 90 meV, the energy of an acoustic phonon is ~1meV. Hence the 

probability of polaritons to be scattered by optical phonon is relatively low, especially at 

low temperatures. The timescale of an acoustic phonon scattering process is ~10 ps [96]. 

It is important to note that whereas acoustic phonons are 3D in nature, microcavity 

polaritons can be 2D, 1D or 0D, as discussed in section 2.4.3. In the case of 1D polariton, 

momentum conservation in two directions (x and z in Fig. 2.10(a)) are relaxed and hence 

polariton-phonon scattering is significantly enhanced compared to the case of 2D 

polaritons. Polariton-phonon scattering is further enhanced in 0D polaritonic systems 

where momentum conservation is relaxed in all three directions. 

 (ii)Polariton-electron scattering: Polariton-electron scattering is more efficient 

than polariton-phonon scattering because of the small electron effective mass and strong 

charge-dipole interaction [32, 96]. In an optically pumped system, electron polariton 

scattering can be imitated by exciting a secondary quantum well adjacent to the emitter of 

the microcavity [97, 98] . In an electrically pumped system, it can be realized using 

modulation doping, which creates a 2D electron gas and increases the probability of 

polariton-electron scattering. The introduction of a 2D electron gas often manifests itself 

in the formation of a middle polariton branch, which results from the coupling of cavity 

photons to trions (exciton-electron complex) [81]. 
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 (iii) Polariton-polariton scattering: This is an elastic scattering mechanism which 

results from the dipole-dipole interaction of the excitonic components of polaritons. The 

timescale of these events is in the order of a few picoseconds, whereas each scattering 

event results an energy exchange of a few meV. In the presence of spin anisotropy, 

polariton-polariton scattering is found to be strongly dependent on the spin-orientation of 

polaritons [94, 95]. Polaritons of same spin repulse each other whereas polaritons of 

opposite spin experience a weak attraction. Polariton-polariton scattering is considered to 

be the most important scattering mechanism in the realization of polariton lasing. 

2.5.2  LP Relaxation and Bottleneck Effect 

 Polariton lasing phenomenon is intricately related to the energy and momentum 

relaxation of lower polaritons (LPs) down to the ground state of the polariton dispersion. 

In this context, the polariton dispersion can be divided into three regions: thermalization 

region (I), bottleneck region (II) and polariton-trap region (III) as shown in Fig. 2.11. 

Upon external excitation, the electron-hole continuum leads to the formation of excitons 

which eventually couple with photons to form polaritons. The incoherent ensemble of 

excitons residing at high k|| values of the reciprocal space is known as the exciton 

reservoir. At high in-plane momenta of the polariton dispersion, polaritons are essentially 

exciton-like and therefore they have relatively long lifetimes, heavy effective masses and 

large density of states  (DOS). As a result, phonon mediated LP relaxation processes are 

very efficient over the thermalization region (denoted as region I in Fig. 2.11) of the 

dispersion. The energy difference between the bottleneck region and k||~0 state of the 

polariton dispersion is known as polariton-trap depth, which can be formulated using 

equation 2.19 as follows: 
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Fig. 2.11 Different regions of a generalized polariton dispersion, along with carriers in 

band, in the context of polariton relaxation. 
 

       
|| || || || ||
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2X k LPk X k cav k cav X k cav XE E E E i g i                   (2.21) 

As can be observed in the polariton dispersion, LP relaxation from the bottleneck (region 

II) down to the polariton-trap (region III) requires a significant change of energy, and a 

simultaneous small change of momentum [99]. In the vicinity of this region, the polariton 

lifetime decreases by about two orders of magnitude and becomes significantly smaller 

than the timescales of acoustic phonon scattering, which is the dominant scattering 

mechanism at low temperatures. Also, the polariton effective mass decreases by about 4 

orders of magnitude in this region, thereby significantly reducing the LP DOS. As a 

result, at low pump densities, there is also a lack of polariton-polariton scattering in this 

transitional region. In the presence of these effects, which are altogether known as the 



42 
 

bottleneck effect, it is very likely that polaritons will decay as photons before they can 

relax down to the bottom of the polariton trap. There are several ways of overcoming the 

bottleneck effect in semiconductor microcavities. These are the following. 

 By increasing the pumping density, polariton-polariton scattering rate can be 

increased. However the system may cease to be in the strong-coupling regime if 

the pumping density becomes comparable to the Mott density.  

 The scattering rate can be enhanced by increasing the exciton fraction near the 

bottleneck region. This can be attained by increasing positive detuning. However 

if the positive detuning is too large, the polaritons essentially become excitons. 

 By increasing the temperature (T), the phonon scattering rate can be increase. 

However this also results homogenous broadening of the exciton linewidth. 

Moreover excitons tend to dissociate if the kBT value is higher than the 

corresponding exciton binding energy, where kB is the Boltzmann constant. 

 By introducing excess carriers in the form of modulation doping, the polariton-

electron scattering rate can be enhanced. 

2.5.3  Stimulated Scattering and Dynamic Condensation 

 The dynamics of polariton lasing can be described using the semiclassical 

Maxwell-Boltzmann rate equations. In this framework, if 
||kN is defined as the LP 

occupation at an in plane wave vector k||, then its rate of change is given by: 

      
|| ||

|| || || || || || || || ||

|| ||||,

(1 ) (1 )
k k

k k k k k k k k k
k kLP k

dN N
P W N N W N N
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 

            (2.22) 
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Here 
||kP  is the pumping rate, 

||,LP k  is the LP decay rate and W is the scattering rates 

between states ||k  and ||k   in the momentum space. The scattering rate term W contains 

the contribution of different scattering events. It can be expressed using the relation:
 

|| || || ||, , ,k k pol phon k pol elec k pol polW W W W     , where 
|| ,k pol phonW   , 

|| ,k pol elecW   and 
|| ,k pol polW   are the 

polariton-phonon, polariton-electron and polariton-polariton scattering rates respectively. 

When 
||

1kN  , LP relaxation is mostly mediated by phonon scattering processes. As the 

external pumping density is increased, polariton-polariton scattering becomes important. 

Because energy and momentum is conserved during this scattering process, it plays a 

substantial role in overcoming the relaxation bottleneck. During a single polariton-

polariton scattering event, a LP from the bottleneck region may relax down to the 

polariton trap and at the same time a LP is scattered from the bottleneck region to a 

higher energy, exciton-like state. This process, which is also known as pair-scattering, is 

an incoherent two-body scattering process [100].  

 As the LP density increases, pair-scattering increases quadratically in the system 

and at a sufficiently high pumping density,  LP relaxation to the final state i.e. to the 

ground state is dominated by the term 0(1 )N  where 0N  is the ground state population 

in equation 2.22. Under this condition, the overall scattering rate increases non-linearly 

by what is known as the Bosonic final state stimulation. The enhanced scattering initiated 

by this Bose-Einstein statistical process is known as stimulated scattering. This is a phase 

coherent process where both polariton-polariton and polariton-phonon scattering rates are 

enhanced significantly [93]. Because 0 1N   for stimulated scattering to take place, it can 

be said that the system achieves quantum degeneracy during this process. This means a 
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macroscopic population of polaritons having same energy,  momentum and phase builds 

up at the ground state. Because of the short lifetime, these polaritons though may nor 

attain thermal equilibrium with the lattice, they can remain at a metastable condensed 

state where they are in thermal equilibrium among themselves. Hence it can be said that 

the stimulated scattering process leads to the formation of a non-equilibrium polariton 

condensate. This process is often referred to as the dynamic condensation of polaritons. 

The formation of such a quasi- or non-equilibrium degenerate condensate means that 

upon decay by means of spontaneous radiative recombination, the exciton-polaritons will 

generate coherent light output and the system will act as a coherent emitter i.e. a laser. 

Though there is no stimulated emission of radiation, but only stimulated scattering in the 

process, the misnomer of ‘polariton laser’ is commonly used to indicate its operation as a 

coherent light source. 

2.5.4  Phase Transition and Lasing Threshold 

 Depending on the pumping density and temperature of operation, a polariton 

diode laser can operate in the strong or weak coupling regime. This has been illustrated in 

Fig. 2.12 using a generalized polariton phase diagram of a microcavity diode . The 

horizontal dashed line in this figure indicates the upper limit of polariton density, whereas 

the vertical dashed line is indicative of the upper limit of temperature for the system to 

reside in the strong coupling regime. Excitation above or around the Mott density results 

screening of the excitons, thereby transitioning the system into weak coupling. Again at 

high temperatures, thermal broadening of excitons decreases the coupling strength and 

the system goes into weak coupling. In the weak coupling regime, the device operates 

either as a conventional light emitting diode (LED) or as a laser. The solid line of  
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Fig. 2.12 A generalized polariton phase diagram for a microcavity diode showing its 
different regimes of operation. 

 

Fig. 2.12 corresponds to the critical density and temperature of KT transition in the 

system [29]. A quasi- or non-equilibrium degenerate condensate of polaritons are formed 

only if the polariton density is above this critical density. Below this density in the strong 

coupling regime, the device essentially works as a polariton LED. In a 3D system, the 

critical density ( cN ) and temperature ( cT  ) for a Bose-Einstein condensation (BEC)-like 

phase transition can expressed using the relation [49]: 

    3/23 2
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Here 

1/222
dB

critmkT


 

  
 


 is the thermal de Brogli wavelength and m is the effective mass 

of the particle. In the ideal case, excess particles above the critical density acquire the 

lowest energy state and form a degenerate condensate. According to equation 2.23, the 

critical density required for dynamic condensation will be small for a system having 

particles of small effective mass. Because polariton effective mass is of the order of 

410 om or smaller around k||~0, it is expected that the minimum density required for 

polaritons to form a non-equilibrium degenerate condensate will be significantly small. 

For e.g., at T=300 K, using 55 10LP om m   for a bulk GaN microcavity, dB  is obtained 

to be ~ 6µm. Therefore the minimum LP density required to attain polariton lasing in a 

bulk GaN microcavity is 2 8 2~ 1 / 2.7 10dB cm    . This value is significantly smaller than 

the transparency density of 13 2~ 1.8 10  cm  in bulk-GaN, which is the minimum carrier 

density required to attain conventional photon lasing. Therefore, because of the small 

effective mass and the corresponding small density of states of polaritons, it is expected 

that a polariton laser will generate coherent emission at an ultra-low threshold. 

2.5.5  Polariton vs. Photon Lasing 

 In conventional photon lasers, lasing is initiated by stimulated emission, which 

takes place when there is electronic inversion in the system, a condition commonly 

known as population inversion. Here amplification takes place when light generated by 

stimulated emission is larger than absorption in the system. On the contrary, the 

underlying dynamics of polariton lasing is the stimulated scattering process, which takes 

place when there is Bosonic final state stimulation in the ground state of the polariton 
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dispersion. The coherent emission in this case is generated by spontaneous radiative 

recombination of the degenerate polariton condensate. Therefore, whereas absorption has 

to be balanced by stimulated emission in a photon laser, in a polariton laser stimulation 

and emission processes are separated, thereby eliminating the requirement of population 

inversion. For this reason a polariton laser is often referred to as an inversionless laser. 

Besides the principle of operation, several distinct differences are observed between the 

output characteristics of polariton and photon lasers. These are the following. 

 Because of the low effective mass and DOS of polaritons, the polariton lasing 

threshold can be 2-3 orders of magnitude lower than an equivalent photon laser. 

The photon lasing threshold has to be larger than the transparency density, which 

is defined as the pumping density at which the absorption and losses are equal to 

the gain. This density is always several orders of magnitude higher than the 

critical density critN  , as discussed in the previous subsection. 

 Collapse of the emission linewidth at the onset of lasing is observed for both 

polariton and photon lasers. For both the cases, there is an associated coherence 

time ( )c  in the form of 
2

c c







  , where  is the emission wavelength, c  is the 

speed of light and   is the emission linewidth [96]. In a photon laser, the 

coherence time increases in proportion to the photon occupation number and the 

linewidth decreases accordingly to reach the Schawlow-Townes linewidth limit. 

However in a polariton laser, polariton-polariton scattering in the non-equilibrium 

degenerate condensate leads to the loss of coherence time and corresponding 

increase of the emission linewidth. 
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 Unless there is screening of the built-in electric field, as in GaN-based quantum 

well lasers, a red-shift of the emission peak in photon lasers may be observed 

because of device heating. However, in polariton lasers the emission peak blue-

shifts because of energy renormalization caused by polariton-polariton scattering 

in the non-equilibrium polariton condensate.  

 The spontaneous coupling factor  , which is a measure of the fraction of 

spontaneous emission coupled to the lasing mode, is usually greater than 1% in 

microcavity photon lasers because of Purcell effect. However in the polariton 

lasing regime, spontaneous emission emerges in the polariton mode which 

undergoes stimulated scattering and hence   is usually significantly smaller [60]. 

 Polariton lasers exhibit a characteristic magnetic field dependent Zeeman splitting 

because of the exciton-fraction of polaritons. As photon lasing is mediated by 

stimulated emission of uncoupled cavity photons in the weak coupling regime, 

such a magnetic field dependence is not observed [80]. 

2.6  Summary 

 A brief theoretical overview of microcavity exciton polaritons is presented in this 

chapter. The characteristics of excitons having different dimensionalities (3D, 2D, 1D 

and 0D) are described and it has been shown that the exciton binding energy can be 

significantly enhanced by increasing the quantum confinement of the active region. Also 

the concept of free and bound excitons has been illustrated and the Bosonic nature of 

excitons in the low density regime is explained. Next, we discuss the design and 

characteristics of semiconductor microcavities having DBRs. The relationship between 
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cavity photon lifetime and the quality of microcavity mirrors is also presented. This is 

followed by a detailed discussion of strong coupling regime in semiconductor 

microcavities. Using 2x2 coupled Harmonic oscillator model, the polariton dispersion 

characteristics has been described and the role of detuning and different non-ideal effects 

on the polariton dispersion have been elucidated. The idea of 1D, 2D and 0D polaritons 

are described assuming nanowire active region. Also the spin properties of polaritons are 

presented in brief. Finally, we discuss dynamic condensation and polariton lasing 

phenomenon and explain its main differences with conventional photon lasing. It has 

been shown that because of the low effective mass and density of states of the LPs, 

theoretically the polariton lasing threshold can be several orders of magnitude smaller 

than the photon lasing threshold. 
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Chapter III 

Experimental Techniques 

 

 

3.1  Introduction 

 Experimental realization of electrically pumped microcavity polariton lasers 

requires high quality epitaxially grown semiconductors and sub-micron scale device 

fabrication techniques. Material growth techniques having monolayer precision, such as 

molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), 

are employed to epitaxially grow the device heterostructure. Prior to device fabrication, 

the material characteristics, specially the excitonic transition characteristics are 

investigated by photoluminescence measurements. Also the quality of the microcavity 

mirrors is assessed by reflectivity, ellipsometry and micro-photoluminescence 

measurements. Finally, different device characterization techniques are employed to 

ascertain strong-coupling and polariton lasing phenomena under optical or electrical 

excitation. In this chapter, we first provide an overview of the materials which are 

commonly used to realize polariton devices. Next, we discuss the material growth and 

device fabrication techniques used in this study. A comparison of electrical and optical 

pumping schemes is also presented herein. Finally, details of the material and device 
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characterization techniques are described along with relevant technical specifications of 

the instruments used in this study.  

3.2  Materials Choices, Growth and Deposition Techniques 

 Experimental realization of microcavity exciton-polariton lasers poses stringent 

requirements on the quality of active-region and cavity-mirror materials. These 

requirements are related to both the intrinsic properties of the material itself, and the 

feasibility of growth of high quality epitaxial layers. In this section, different choices of 

inorganic materials will be first discussed with respect to the active region and cavity 

mirrors of the polariton devices. Next the epitaxial growth and material deposition 

techniques will be briefly discussed in the context of our work. 

3.2.1  Materials Choices for the Emitter 

 Direct-bandgap semiconductors have been the natural choice as the emitter 

material of semiconductor microcavities because of their significantly higher internal 

quantum efficiencies compared to those of indirect bandgap semiconductors. Ever since 

the first experimental demonstration of strong-coupling in a GaAs/AlGaAs quantum-well 

microcavity [13], GaAs-based heterostructures have remained to be the most commonly 

employed material to study dynamic condensation and polariton lasing phenomena. 

However these systems have the intrinsic limitations of large exciton Bohr radii and low 

exciton binding energies, which preclude the observation of polariton lasing at high 

temperatures. To this end, CdTe offers a better alternative because of its higher ionicity, 

smaller exciton Bohr radius and a consequently higher exciton binding energy. These 

also translate to about one order magnitude higher saturation density for CdTe than that  
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Fig. 3.1 Exciton Bohr radius, exciton binding energies and corresponding exciton 

dissociation temperatures of different materials plotted as a function of energy bandgap. 
 

of GaAs, which means that polariton lasing should be observable up to higher pump 

densities [19, 54, 55, 59, 101]. Wide bandgap semiconductors like GaN and ZnO have 

also gained considerable interest in the study of exciton-polaritons because of their 

relatively high exciton binding energies. Whereas problems related to p-doping of GaN 

have been significantly overcome, reliable p-type doping of ZnO has not been achieved 

yet. This poses a significant challenge towards the realization ZnO-based high quality 

microcavity diodes [102]. Therefore among the wide bandgap semiconductors, GaN 

holds the most promise for the realization of electrically pumped polariton devices. 

Recently there has been interest in the application of two- dimensional materials like 

Molybdenum disulphide (MoS2) and Molybdenum diselenide (MoSe2). These materials 

yield direct-bandgap photoluminescence, and at the same time offer exciton binding 
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energies of a few 100 meV. These properties make them potential candidate for room 

temperature polariton lasing [103, 104]. Figure 3.1 shows a comparison of the bandgaps, 

exciton binding energies and corresponding exciton dissociation temperatures of some of 

the commonly employed materials for the study of strong-coupling and polariton lasing 

phenomena. 

 The polariton devices studied in this work have been designed, grown and 

fabricated using GaAs and GaN-based material systems. It will be shown that by careful 

bandgap engineering and heterostructure design, the exciton binding energy of a GaAs-

based quantum-well can been significantly enhanced to obtain polariton lasing at high 

temperatures. On the other hand, by utilizing the high exciton binding energy and 

saturation density of GaN, room temperature polariton lasing can be obtained in a bulk-

GaN microcavity double heterostructure diode. These heterostructures are discussed in 

detail in the corresponding chapters. 

3.2.2  Materials Choices for Cavity Mirrors 

 Cavity mirrors of planar semiconductor microcavities are usually realized using 

DBRs, where materials of high refractive index contrasts are used. These materials can be 

either semiconductors or dielectrics, or a combination of both as in the case of a hybrid-

semiconductor microcavity. In GaAs-based systems, the DBRs are usually designed with 

alternate layers of GaAs/AlGaAs because of their negligible lattice mismatch. However, 

because the maximum refractive index contrast of these pairs is ~1.2, at least 25-30 pairs 

of DBRs are required to form high reflectivity mirrors in this material system (Fig. 2.4). 

In CdTe-based microcavities, CdMnTe/CdMgTe is the commonly employed DBR 
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material. The lattice mismatch of these layers results cavity mirror loss, which however is 

compensated by the high refractive index contrast, necessitating about 17-20 DBR pairs 

to attain high-reflectivity mirrors [92, 101]. It is more challenging to obtain lattice-

matched, semiconductor based high-reflectivity mirrors in GaN- and ZnO-based systems. 

For e.g., experimental realization of a high quality GaN-based microcavity requires 35 

pairs of lattice-matched In0.85Al0.15N/Al0.20Ga0.80N pairs. Careful stress relieving 

techniques have to be employed during the epitaxy of these layers to ensure crack-free 

growth. Nevertheless, threading dislocations are often observed in these mirrors because 

of the initial large number of defects in the starting substrate [102, 105]. An effective 

means of overcoming this problem is to employ dielectric DBRs, such as SiO2/TiO2, 

SiO2/Si3N4 or SiO2/HfO2. The choice of these dielectric materials is very much dependent 

on the wavelength of operation. Because of the high refractive index contrast of these 

alternate layers, relatively less number of pairs are required to fabricate high reflectivity 

cavity mirrors. A combination of semiconductor-based bottom DBRs and dielectric-based 

top DBRs has also been utilized in both GaN- and ZnO-based systems to demonstrate 

polariton lasing at room temperature [60, 61, 67, 71]. In this work we employ all-

dielectric DBRs using alternate pairs of SiO2/TiO2. The refractive index contrasts of these 

materials are ~1.8 and ~1.9, at the design wavelengths of our GaAs- and GaN-based 

devices respectively. 

3.2.3  Materials Growth and Deposition Techniques 

 Experimental realization of high-quality semiconductor microcavity requires 

monolayer precision over the crystalline growth of semiconductor compounds and their 

alloys. The commonly employed epitaxial growth techniques in this regard are metal-
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organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE). In 

MOCVD, crystalline growth is achieved by chemical reaction of suitable metal-organics 

and reactive gases in the vicinity of the growth substrate. On the other hand, MBE growth 

is carried out under ultra-high vacuum environment, where the source materials are 

heated high enough to create well collimated molecular beams towards the growth 

substrate. In the present study, MBE technology has been utilized for epitaxial growth of 

the GaAs-based structures, whereas the GaN-based heterostructures are grown by 

plasma-assisted MBE (PAMBE) (Fig. 3.2). The GaAs-based heterostructures are grown 

on (001) GaAs substrate, which has defect densities of 102 cm-2 or lower. This value can 

be assumed to be zero for all practical purposes and therefore negligible number of  

 

Fig. 3.2 Veeco Gen 930 MBE system used for epitaxial growth in the present study [150]. 
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defects are expected to propagate into the active region during epitaxial growth. In GaN-

based systems, however, the defect density ranges from 104 to 1010 cm−2, depending on 

whether the starting substrate is free-standing GaN, GaN-on-sapphire, silicon or SiC 

[106]. As a result, in spite of high-precision growth techniques, a significant number of 

defects are expected to propagate during epitaxial growth of high number of DBR pairs in 

GaN-based systems. An effective means of overcoming this problem is to utilize 

dielectric DBRs, which can be deposited using chemical or physical vapor deposition 

techniques. Plasma enhanced chemical vapor deposition (PECVD) has been reportedly 

employed to form SiO2/Si3N4 DBR pairs in GaN-nanowire microcavities [70]. However 

in the present work, we utilize electron beam (e-beam) evaporation technique to form the 

DBRs of our microcavity diodes. This physical vapor deposition technique uses a small 

point source and a long throw distance, which results highly directional deposition with 

minimal heat transfer. Moreover, the deposition rate can be maintained at ~2 Å/s to 

obtain good control over the deposited dielectric layer thicknesses. 

3.3  Pumping Schemes and Device Fabrication 

 In this section, different pumping schemes of the polariton devices are discussed. 

Also fabrication of the GaAs- and GaN-based devices studied in this work will be 

described. 

3.3.1  Optical and Electrical Pumping Schemes 

 Optical pumping is the most commonly employed pumping scheme of polariton 

devices. In this technique, the active region of the semiconductor microcavity is excited 

through its top DBR layers with a laser of suitable wavelength and excitation density. 



57 
 

Optical pumping can be resonant or non-resonant in nature. In resonant pumping scheme, 

the device is pumped directly at the condensate energy and hence the coherence 

generated here may not be directly attributed to the microcavity. Non-resonant optical 

pumping is usually done at normal incidence at an energy above the upper DBR stop 

band. In this case the laser energy is at least ~100meV higher than the condensate energy 

and therefore coherent emission from the device can be unambiguously attributed to 

polariton lasing, provided that other conditions of polariton lasing are satisfied. A special 

case of optical pumping is the so called magic angle excitation scheme, in which the 

device is pumped at an angle such that for each excitation at wavevector km (which is the 

inflection point of the lower polariton dispersion), one lower polariton (LP) is scattered to 

k=0 and another LP is scattered to k=2km. This technique is also known as optical 

parametric oscillator [56, 96].  

 As far as practical applications are concerned, the most important pumping 

technique of polariton devices is however the electrical pumping scheme, in which 

electrons and holes are injected non-resonantly into the active region of a microcavity 

diode. Whereas electrically pumped photon lasers are very common nowadays, there are 

several technological challenges involved in the practical realization of electrically 

pumped polariton devices. In the vertical cavity surface emitting (VCSEL) geometry, 

which is the most commonly employed design for polariton devices, both the top and 

bottom semiconductor DBRs have to be doped for carrier injection  (Fig. 3.3). This 

results free carrier absorption in the DBR layers [107], which invariably reduces the 

cavity quality factor and necessitates more number of DBR pairs to ensure  sufficient 

optical confinement. Increasing the number of DBR pairs can significantly increase the  
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Fig. 3.4 Schematic of the edge-emitting microcavity polariton diode used in this study 

(not drawn to scale) 
 
 

the carriers injected into this device do not have to transport through the DBR layers, the 

series resistance of the diode should remain significantly small. Also optical absorption at 

the electrical contacts is non-existent in the direction of light detection, which is not the 

case in a VCSEL. Moreover, because the mirrors here are not a part of the diode, the 

device heterostructure remains free of cracks or propagating defects which may otherwise 

arise from the growth of large number of DBR pairs above the emitter region. This 

facilitates the growth of high quality epitaxial layers, which is essential for uniform 

current injection into the active region of the device. In what follows, we discuss the 

general processing and fabrication steps of the GaAs- and GaN-based devices used in this 

study. 
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 a. Fabrication of GaAs-based devices: The process is initiated by alignment 

mark and p-contact patterning onto the MBE grown heterostructure by UV projection 

lithography, which has a resolution of 0.75 µm. Prior to metal deposition, the native 

oxide is removed from the exposed surface by buffer hydrofluoric acid (BHF) solution. 

Using e-beam evaporation, Pd/Zn/Pd/Au is deposited as the p-contact metal, which is 

subsequently rapid thermal annealed in an inert N2-atmosphere for 1 min at a temperature 

of 410º C. Next a 1 μm x 20 µm microcavity mesa is defined by reactive ion etching 

using a high density plasma etch tool. Here Ar/BCl3 are used as the etchant gases to 

obtain an etch rate of ~ 8.5 nm/s. Then Ni/Ge/Au/Ti/Au is selectively deposited onto the 

n+-doped region to form the n-contacts, after the removal of native oxide. The n-contact 

metal is annealed in N2- environment for 1 min at a temperature of 360º C. To facilitate 

electrical probing of the device, 700 nm SiO2 contact pad is deposited by plasma 

enhanced chemical vapor deposition at a heated substrate temperature of 200 oC. Finally 

Ti/Au interconnect for both n- and p-metal contacts are deposited on the contact pads. 

 b. Fabrication of GaN-based devices: Prior to the fabrication of the GaN-based 

devices, the PAMBE grown heterostructure is cleaned with acetone, IPA and HCl:DI 

water solution to remove organic or metallic droplets. Fabrication is initiated by selective 

deposition of Ni/Au p-contact, followed by rapid thermal annealing at 550o C in an air 

ambient for two minutes. Next a 1 μm x 40 μm cavity region is defined by UV projection 

lithography, which is subsequently etched down to the n-contact region using high 

density plasma etching. Ar/Cl2 reactant gases are used to obtain a etch rate of ~ 4 nm/s,. 

The etch step is followed by plasma enhanced chemical vapor deposition of 1 μm SiO2 

using SiH4/N2O gases, at a heated substrate temperature of 380 oC. The oxide is next 
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patterned and etched using SF6/C4F8/Ar gases to form the contact pads. Finally Ti/Au is  

deposited onto the n-doped substrate and onto the contact pads to realize the n-contacts 

and interconnects respectively. 

3.3.3  Defining the Microcavity: Focused Ion Beam Etching and Electron Beam 

 Evaporation 

 The semiconductor microcavities in this work are defined by focused ion beam 

(FIB) milling, followed by the deposition of dielectric DBRs using e-beam evaporation 

technique. FIB milling is a maskless, resistless, direct-write fabrication technology which 

can be employed to realize local modification of a sample or surface, or to create sub-

micron scale features. This high precision technique has been successfully applied in the 

fabrication of microelectronic and optoelectronic devices, fault analysis of integrated 

circuits, sample preparation for transmission electron microscopy (TEM) and 

micromachining [110, 111]. In our context, it is particularly important as this technique 

has been reportedly very effective in forming high quality laser facets of GaAs- and GaN- 

based photon lasers [111-115]. The FIB milling performed in this work has been carried 

out using a FIB/SEM Dualbeam system, where commercial Gallium is used as the liquid 

metal ion source. A drawback of FIB is its long processing time and low throughput. To 

overcome this limitation, an initial etching is carried out using inductively coupled 

plasma (ICP) enhanced reactive etching, as discussed in the previous section. Next FIB 

etching is performed at relatively high injections, which span over the range of 50 pA to 

1nA. To avoid re-deposition of the etched materials, FIB milling of the microcavities is 

conducted using multiple serpentine scans. A final FIB etching is carried out at a very 

low injection of below 30 pA to ensure optically flat surfaces along the lengths of the  
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Fig. 3.5 SEM image of a FIB etched facet of the microcavity diode. 
 

cavities. Studies show that the surface roughness of FIB etched GaN can be in the same 

order as that of as-grown GaN. Furthermore, surface-damages caused by FIB or ICP are 

reportedly recovered by rapid thermal annealing. Figure 3.5 shows the scanning electron 

microscope (SEM) image of a FIB etched cavity facet. Alternate 5-7 pairs of SiO2/TiO2 

layers are deposited onto the opposite sides of the FIB etched cavity facets using e-beam 

evaporation technique, which has already been discussed in the previous subsection. 

3.4  Materials Characterization 

 Prior to fabrication of the device, the MBE grown heterostructure and starting 

substrate are characterized by photoluminescence, surface morphology and compositional 

measurements. The DBR materials are characterized using reflectivity and ellipsometric 

measurements. These material characterization techniques are discussed in this section. 
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3.4.1  Photoluminescence Measurements 

 Both temperature dependent and time resolved photoluminescence (PL) 

measurements have been performed in this work to characterize the semiconductor active 

regions. Temperature dependent measurements have been performed by mounting the 

sample inside a liquid-Helium (He) cooled closed-cycle cryostat and exciting it with a 

continuous wave (cw) 325 nm He-Cd laser. The excitation density onto the sample is 

varied using a neutral density filter to conduct excitation dependent PL measurements at 

any fixed temperature. The temperature of the sample can be varied and stabilized over 

the range of 10 K - 300 K using a temperature controller having autotuning capability. 

Photoluminescence from the sample is focused into a triple-grating, 0.75 m focal length  

Fig. 3.6 A schematic representation of the temperature and excitation dependent PL 
measurement system [adapted from Ref. 150]. 
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monochromator, which has a maximum grating of 1200 g/mm to obtain spectral 

resolution of 0.023 nm at 435.8 nm. The signal is detected using a photomultiplier (PMT) 

tube and a phase-sensitive lock-in amplifier. A schematic of the temperature and 

excitation dependent PL measurement system is shown in Fig 3.6.  

 Time resolved photoluminescence or TRPL measurements have been performed 

by mounting the sample inside a liquid-He cooled , closed-cycle cryostat and exciting it 

with a frequency tripled mode-locked, tunable Ti:Sapphire laser (λ=267nm). The laser 

emission has a pulse width of 130 fs and a repetition rate of 80 MHz, which makes it 

suitable for studying transients having timescales of a few picoseconds to several 

nanoseconds. The sample emission is focused at the imaging plane of a triple grating 

monochromator, which has a spectral resolution of 0.03 nm and a focal length of 0.75 m. 

A single photon avalanche photodiode detector, which is integrated with a universal time 

interval and frequency counter, is coupled to one of the output slits of the monochromator 

to collect the transient information. The timing resolution of the single photon counter 

used in this study is 40 fs, whereas the universal time counter can measure time intervals 

with 25 ps rms resolution. The other output slit of the monochromator is coupled to a 

high gain PMT, which can be used to measure the emission spectra. This allows spectral 

detection and filtering of the transition of interest. 

3.4.2  Ellipsometry and Reflectivity Measurements 

 Prior to deposition onto the device facets, thickness, reflectivity and stopband of 

the dielectric DBRs are measured and calibrated using ultraviolet (UV)-visible 

spectroscopy and spectroscopic ellipsometry. Ellipsometry has been performed using a  
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(a) 

 

 
(b) 

Fig. 3.7 (a) Measured refractive indices of e-beam evaporated SiO2 and TiO2 films using 
spectroscopic ellipsometry, (b) measured reflectivity of 3 pairs of e-beam evaporated 

SiO2/TiO2 DBR pairs using UV-visible spectroscopy. 
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variable angle spectroscopic ellipsometer, which is equipped with a high speed CCD 

detector that collects reflected signal over a spectral range of 193-1683 nm 

simultaneously. The tool has the capability of extracting sample thicknesses ranging from 

1 nm to several micrometers. Hence it can been successfully utilized to measure and 

calibrate the desired SiO2/TiO2 layer thicknesses, which is within a range of 40 nm - 60 

nm in our study. During fabrication of the microcavity diode, ellipsometry has been 

performed to measure the thickness of the SiO2 contact pad, which is formed using 

PECVD. The plasma etch rate of SiO2 is also calibrated using spectroscopic ellipsometry.  

 Besides thickness measurements, the ellipsometer has also been utilized to 

measure refractive indices of the dielectric and semiconductor materials used in this 

study. Figure 3.7(a) shows the measured refractive indices for e-beam evaporated SiO2 

and TiO2. The ellipsometer used in our study allows reflection intensity measurements 

over an angular range of 0o - 45o. In order to measure normal incidence reflectivity, UV-

visible spectroscopy has been performed in our study. Figure 3.7(b) shows the measured 

reflectivity using UV-vis spectroscopy for 3 pairs of SiO2/TiO2 deposited onto a 

calibration sample. 

3.4.3  Surface Morphology and Compositional Measurements 

 In order to optimize the MBE growth conditions, MBE grown epitaxial layers and 

heterostructures have been studied with x-ray diffraction (XRD) and atomic force 

microscopy (AFM) measurements. XRD has been used to extract compositional 

information and to estimate lattice mismatch between the epilayers. This has been 

particularly useful in optimizing the growth condition of lattice matched In0.18Al0.82N  
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Fig. 3.8 AFM image of a GaN-on-sapphire surface after etch pit dislocation treatment. 

 

layer on GaN-on-sapphire substrate. Details of this study is discussed in chapter 5. AFM, 

on the other hand, has been utilized to estimate surface roughness and crystal defect 

densities of different epitaxial layers so that the substrate temperature and source fluxes 

can be calibrated accordingly during MBE growth. An important experiment carried out 

using AFM is the etch pit dislocation (EPD) measurement, which is a means of 

estimating the number of defects in the starting GaN on sapphire template [116-117]. In 

this experiment, the templates are selectively etched with a eutectic mixture of molten 

bases. AFM measurements are subsequently performed on the etched samples. Figure 3.8 

shows an AFM image of a GaN surface after etch pit dislocation treatment. These 

experiments are discussed in detail in chapter 7. Surface roughness of the dielectric DBRs 

is also estimated using AFM. From AFM imaging of 6 pairs of SiO2/TiO2 stacks, an 

average rms surface roughness of 2.2 nm is measured, which leads to a reduction in the  
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Fig. 3.9 Measured etch profile during fabrication of the GaAs-based device. 

 

reflectivity of R/R0 by about ~0.6% [82]. Surface roughness of the FIB etched cavities is 

observed by scanning electron microscopy (SEM), using dualbeam capabilities of the 

SEM/FIB tool. Stylus profilometer, which is also a surface profiling equipment, has been 

used during fabrication of the microcavity diode. This tool has the capability of 

measuring step heights ranging from 500 Å to 150 μm. Fig. 3.9 shows the measured 

profile of a inductively coupled plasma etched GaAs calibration sample, from which an 

etch rate of  ~ 8.5 nm/s is estimated. 

3.5  Device Characterization Techniques 

 The polariton diode lasers in this study have been characterized both at room and 

low temperature. The GaAs-based polariton laser is characterized at T=155 K, whereas 

measurements on the GaN-based devices have been made at room temperature. In this 

section, we discuss the device characterization techniques used in this study. Except for 
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microphotoluminescence measurement, all other measurements have been performed 

under electrical biasing of the fabricated microcavity diode. 

3.5.1  Micro-photoluminescence Measurements 

 Microphotoluminescence (micro-PL) measurements have been performed to 

estimate the cavity quality factor of the microcavity diode. These measurements have 

been performed using a frequency tripled Ti:Sapphire laser, a triple-grating 

monochromator having spectral resolution of 0.03 nm, a high-gain photomultiplier tube, 

focusing optics and optical fibers. Two techniques have been employed to measure the 

micro-PL. In both of these techniques, the microcavity is excited non-resonantly with 

λ=266 nm, which is the frequency tripled output of the tunable Ti:Sapphire laser. In one 

setup, the same objective lens is used to focus the laser beam onto one facet of the 

microcavity diode and to collect the photoluminescence signal, and then convey it to the 

monochromator using achromatic doublet lenses. The sample is positioned using a 

piezoelectric stage having a precision of ± 0.05 µm and the laser beam is focused with a 

spot size of ~20-50 µm. In the other setup, the laser beam is focused on one facet of the 

device along the axis of cavity resonance and the photoluminescence is collected from 

the other cavity-facet using an UV multi- or single-mode optical fiber. The optical fiber is 

coupled to the monochromator, which spectrally resolves and conveys the signal to the 

photomultiplier tube. 

3.5.2  Electrical Biasing and Current-Voltage Measurements 

 All the devices studied in this work have been pumped electrically at room or low 

temperature. The current-voltage (I-V) characteristics of the fabricated devices are 
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initially measured using a semiconductor characterization system, which has a voltage 

range of ±210 V and a current range of ±100 mA. During electroluminescence 

measurements, the device is biased in the constant current mode using a dual-channel 

source meter which is capable of applying continuous wave (cw) current over a range of 

100 nA to 10 A with a minimum resolution of 2 pA. It is well known that under cw 

operation, the active device temperature can well exceed 100oC because of heat generated 

in the non-radiative recombination centers [118]. Such high temperatures are detrimental 

to the diode performance, and more importantly to the sustainability of strong-coupling in 

the microcavity diode. Hence for room temperature measurements at high injection 

current densities, the device is biased with a low noise AC/DC current source, which has 

been employed to generate 10 kHz rectangular current pulses with a duty cycle of  5%. 

At higher biases, especially in the photon lasing regime, the device is mounted and 

cooled using a temperature-controlled Peltier cooler. For electrical probing at room 

temperature, gold plated tungsten  probes mounted onto x-y-z micrometer stages have 

been used. For low temperature measurements, the device is mounted onto a metal chip 

carrier and the device contact pads are wire-bonded with Au. The device is mounted 

inside a continuous flow liquid-He cooled cryostat, which has external connections for 

applying electrical bias. 

3.5.3  Angle-Resolved Electroluminescence and Momentum Space Mapping 

 Angle-resolved electroluminescence has been measured under cw electrical bias 

at room and low temperatures. The direction normal to the DBR mirrors is considered to 

be 0o and the detection angle is varied in a plane perpendicular to the growth axis. The 

device is mounted such that its emission spot can be taken as the pivot-point for angular  
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Fig. 3.10 Schematic diagram of an experimental setup for room temperature angle-

resolved electroluminescence measurement. 
 
 

detection of device electroluminescence (Fig. 3.10). Light is collected using a lens-

coupled optical fiber, which is mounted on a digital read-out angular mount having a 

precision of 0.1o. The detection angle is varied in the k|| plane for electroluminescence 

measurements up to a maximum of 30o. The electroluminescence collected with the fiber 

is transmitted to a 0.75 m Czerny-Turner imaging monochromator, which has a spectral 

resolution of 0.023 nm at 435.8 nm and maximum grating number of 1200 g/mm. The 

light is subsequently detected with a photomultiplier tube, which is coupled to one of the 

exit slits of the monochromator. Micrometer stages are used both at the receiving and 

detection ends to optimize optical alignment of the measurement setup. 

 The polariton occupation in k-space at different injection levels was measured by 

angle-resolved electroluminescence. Below threshold, the number of polaritons per k-

state is estimated from the LP electroluminescence integrated intensity by taking into 

account the radiative lifetime. At and above threshold, the occupation is calculated from 
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the output power measured with a power meter. The polariton occupation number per k|| 

state is calculated using the formula, 
2

|| ||( ) | ( ) |LP
LP

C

N k C k M
I




  , where η is the 

collection efficiency, 
2

||/ | ( ) |C C k  is the radiative lifetime of LPs, M  is the number of 

transverse states included in the detection cone, and |C(k||)|
2  is the photon fraction at a 

wave vector k||. The number of states within the detection cone is given by 

 22 /16 oM D k     , where D is the diameter of the emission spot, 2 /ok     and    

is the detection half angle [57, 119]. 

3.5.4  Light-Current Characteristics 

 The light-current (L-I) characteristics of the device were determined by recording 

the electroluminescence (EL) in the direction normal to the DBR mirrors (zero angle), as 

a function of continuous wave injection current. Two methods have been used to record 

the L-I characteristics and both of them yielded identical results. In the first technique, 

EL spectra are recorded using a combination of optical fiber, collection optics, high 

resolution monochromator and photomultiplier tube. The electroluminescence, collected 

using a multimode optical fiber mounted onto a x-y-z micrometer stage, is transmitted to 

a 0.75 m monochromator which has a minimum spectral resolution of 0.03 nm. Light is 

detected using the high gain PMT, which is out-coupled to one of the exit slits of the 

monochromator. Finally EL spectra is recorded with optimum spatial resolution, signal 

integration time and detector sensitivity. Upon analysis, integrated intensity of the 

polariton emission is plotted as a function of forward bias current to obtain the L-I 

characteristics. The spectral characteristics obtained in this measurement also yields the 
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emission linewidth and peak energy positions 

 In the second technique employed for L-I characterization, the output power is 

directly measured with a power meter of suitable sensitivity. In cases where the signal 

intensity is below the sensitivity of the power-meter, device luminescence is detected 

using the PMT, following calibration with the power-meter. Unlike the first measurement 

technique, this technique does not yield spectral information. However because of the 

short response time of the power-meter/PMT, this method is particularly useful for 

measuring the L-I characteristics in the photon lasing regime, where the injection current 

densities can cause irreversible damage to the electrical contacts if the device is pumped 

for too long. 

3.5.5  Spatial Coherence Measurements 

 The far-field interference pattern of the polariton condensate is measured using a 

slightly misaligned Mach-Zehnder interferometer to ascertain spatial coherence of the 

output LP electroluminescence. A schematic of this measurement setup is shown in Fig 

3.11. A beam splitter is utilized to split the output luminescence from the device. This 

generates two identical copies of the LP emission, which are next transmitted through 

two perfectly balanced arms of the interferometer. The two copies of the emission 

intensity profile are then made to interfere with each other in the far-field by overlapping 

them spatially. This has been accomplished by translational movement of one of the 

reflecting mirrors (Mirror 2), which is mounted diagonally on a piezo-stage. The piezo-

stage can be controlled using a closed-loop feedback system, which provides a minimum 

spatial resolution of 20 nm. The system creates a double image of the condensate at the 

image plane, where a pinhole is placed for spatial filtering of the dark and bright fringes.  
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Fig. 3.11 A schematic illustration of the Mach-Zender interferometer used in this study. 

The intensities of the dark and bright fringes have been measured using a PMT, following 

spectral-filtering with an imaging monochromator. Finally the visibility of the 

interference patterns is calculated using the relation    max min max min/V I I I I    where 

Imax and Imin are intensities of the bright and dark fringes respectively. 

 For room temperature measurements, the visibilities at several injections are 

calculated from the recorded LP emission intensities without actually imaging the 

interference pattern. This is done because the output luminescence at the far-field image 

plane is below the sensitivity of the CCD camera at our disposal. However at low 

temperature, the signal intensity is strong enough at an injection above the polariton 

lasing threshold so that an interference pattern can be detected by the CCD camera, 

which is positioned at the image plane of the interferometer [120]. 

3.5.6  Steady-State Output Polarization Measurements 

 Steady-state linear polarization of the output of the polariton lasers has been 

measured under cw electrical bias at room temperature.. The output electroluminescence 
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is collected in the normal direction (k||~0) using a UV multimode optical fiber and 

transmitted through a Glan-Thompson linear analyzer, whose orientation is referenced to 

the structural growth axis of the microcavity diode. The polarization-resolved 

luminescence is then spectrally dispersed by a 0.75 m Czerny-Turner imaging 

monochromator (with a spectral resolution of 0.023 nm at 435.8 nm) and detected by a 

photomultiplier tube. At a particular current bias, measurement of the 

electroluminescence for different angular orientations of the linear analyzer gives the 

degree of linear polarization, which is defined as  max min max min/ ( )I I I I  . Here Imax and 

Imin are the maximum and minimum polarization resolved intensities respectively. This 

measurement, when performed as a function of injection current density, renders 

information about the steady-state buildup of linear polarization in the polariton device 

[121]. 

 The same experimental setup has been employed to measure the linear 

polarization-resolved output light-current (L-I) characteristics. In this measurement, the 

L-I characteristics of the device has been measured in the normal direction (k||~ 0) to the 

DBR mirrors under cw electrical injection, with the linear analyzer oriented along θ = 0o , 

45o and 90o with respect to the crystallographic growth axis. Under the same 

measurement conditions and identical optical alignments, the unresolved light-current 

characteristics are measured without employing any polarization-splitting optics. A 

comparison of the results of these two measurements gives information about the nature 

of the polarization resolved L-I characteristics of the polariton laser diode. 
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3.5.7  Small-signal Modulation Measurements 

 Small-signal modulation measurements have been performed only at room 

temperature because reliable transmission of high-frequency electric pulses to the device 

is limited by electrical wirings of the cryostat. Experimental setup of the small-signal 

modulation measurement consists of the following: GSG probe, bias tee, optical fiber, 

single photon detector, single photon counter, AC pulse generator, DC source meter, 

triple grating monochromator, Peltier cooler and temperature controller (Fig. 3.12). For 

this measurement, the contact pads of the devices are carefully designed with 50 µm 

spacing so that they can be conveniently probed with the 100 µm pitch Beryllium Copper 

tip GSG probe. The highest frequency that can be transmitted through this probes is 40 

GHz. To avoid possible device heating, the device is mounted and cooled on a 

 

Figure 3.12 Experimental setup of small-signal modulation response measurement. 
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temperature controllable Peltier cooler. The high frequency pulses in this experiment has 

been generated in the form of a square wave using a low jitter pulse-pattern generator, 

where the output signal frequency can be varied from 15 MHz - 3.35 GHz. The 

maximum rise and fall times of the square-wave pulses is ~120 ps. The timing resolution 

of the single photon detector is 40 ps and time intervals can be measured with 25 ps rms 

resolution using the frequency counter. These specifications are essential for detection of 

the fast dynamics of a polariton device under high frequency electrical injection [122].

 The small-signal modulation response of the device is measured by 

superimposing a small-signal periodic switching pulse (1-3 mV) on different DC bias 

voltages set above the polariton lasing threshold. The output electroluminescence, 

collected normal to the cavity mirrors using an UV optical-fiber, is transmitted to a 

monochromator having a minimum spectral resolution of 0.03 nm. The transient 

information is subsequently collected using the combination of high-speed single photon 

detector and frequency counter. The modulation response is derived by the fast Fourier 

transform (FFT) of the measured transient response. The RC effect of the microcavity 

diode has been taken into account in the modulation response by measuring the diode 

series resistance and contact pad capacitance using a semiconductor characterization 

system. In order to measure the chirp of the polariton laser, an UV photomultiplier tube is 

connected at one of the exit slits of the monochromator. In this experiment, chirp of the 

polariton laser has been recorded as an average broadening of the coherent emission 

spectra under small signal (2 mV) pulsed bias condition above threshold (1.15 Jth) for 

different modulation frequencies. 
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3.6  Summary 

 In this chapter, we provide a description of the experimental techniques employed 

in this work. First, we provide a comparison of the commonly used materials in 

semiconductor microcavities and discuss the advantages of using all-dielectric DBRs. 

The epitaxial growth and deposition techniques used in this study are discussed. Next we 

describe the challenges associated with electrical pumping and describe how these 

limitations are overcome in an edge-emitting geometry. As described herein, 

conventional processing and fabrication techniques have been utilized to realize the 

proposed polariton device geometry. Different materials characterization techniques, 

which include photoluminescence, reflectivity, ellipsometric measurements, SEM, AFM 

and surface profilometry, are also discussed in the context our study. Finally, we present 

the device characterization techniques used in our study. Measurements performed both 

at room temperature and low temperature have been described. Except for micro-PL 

measurement, all other measurements performed on the devices are done under cw or 

pulsed electrical excitation. The measurements performed to ascertain strong-coupling 

and polariton lasing of the fabricated devices have been described in detail. Also the 

experimental setups and specifications of steady-state output polarization and high 

frequency small-signal modulation response measurements have been elucidated. 
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Chapter IV 

GaAs-based High Temperature Polariton Diode Lasers 

 

4.1  Introduction 

 In spite of the highly matured epitaxial growth and device fabrication 

technologies of GaAs-based material systems, experimental demonstration of GaAs-

based polariton diode laser has hitherto remained limited to cryogenic temperatures [80, 

81]. At or near room temperature, only strong coupling has been observed in GaAs-based 

electrically pumped polariton devices [78, 79, 123-125]. This limitation has been mainly 

attributed to the intrinsically low exciton binding energy of this material system. 

Furthermore, the reported devices are grown and fabricated based on the conventional 

vertical cavity surface emitting geometry, where doping of the DBR layers results cavity 

mirror loss in the form of free carrier or interband absorption [102, 107]. This, in effect, 

reduces the polariton lifetime and creates a polariton relaxation bottleneck, thereby 

further prohibiting the emergence of polariton lasing phenomenon. In this chapter, we 

present the experimental realization of a GaAs-based polariton laser which can operate at 

T=155 K under electrical excitaion. It will be shown that high exciton binding energies 

can be attained using a Al0.31Ga0.69As/Al0.41Ga0.59As single quantum well, which 

facilitates the observation of strong coupling and polariton lasing at high temperatures. 
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Also contrary to the surface emitting geometry, an edge emitting geometry has been 

employed to realize the device. Finally, an experimental study aimed towards the 

realization of a room temperature GaAs-based polariton laser is presented and the 

potential challenges have been elucidated on the basis of the observed results. 

4.2  Enhancement of Exciton Binding Energy in a GaAs-based System 

 Bulk GaAs has a low exciton binding energy of ~4 meV because of its 

intrinsically large exciton Bohr radius (~11.4 nm) and dielectric constant ( r = 13.1). 

However, experiments show that the exciton binding energy in AlxGa1-xAs alloys 

increases steadily from ~ 4 meV in GaAs (x=0) to ~10 meV in Al0.25Ga0.75As because of 

the reduced exciton Bohr radius and lower dielectric screening [86, 126]. There is a sharp 

increase of the binding energy for x>0.25, similar to the ionization energy behavior of 

deep donors in this alloy system, which is a result of multivalley effects in the vicinity of 

the direct-to-indirect bandgap transition regime [86, 127]. Furthermore, as discussed in 

section 2.1, the exciton binding energy in a planar GaAs/AlGaAs quantum well can be ~4 

times than in bulk GaAs [85, 128]. Therefore, to take advantages of the high Al mole 

fraction as well as of the 2D confinement in a quantum well, we have designed the GaAs-

based polariton device with an Al0.31Ga0.69As/Al0.41Ga0.59As quantum well as the emitter. 

The exciton Bohr radius and binding energy of this system can be theoretically 

approximated by solving the Schrödinger equation for a 2D Hydrogen atom, which to a 

first approximation, is similar to a QW-exciton problem. In regards to the binding energy 

of the lowest exciton state, the following relations are derived from the solution of 

Schrödinger equation for relative motion [129]: 
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Here Z = 1 (because it is a Hydrogen atom problem),   1* * *1 / 1 /h em m m


  is the reduced 

effective mass, ε is the dielectric constant and bulk
BXa   is the 3D exciton Bohr radius of the 

QW material, which in this study is Al0.31Ga0.69As. By estimating these material 

parameters using the virtual crystal approximation [130], we obtain  bulk
BXa ~ 7.73 nm for 

bulk Al0.31Ga0.69As. In an ideal quantum well, the 2D exciton Bohr radius ( bulk
BXa ) reduces 

to / 4well bulk
BX BXa a  1.93 nm and the corresponding exciton binding energy becomes E1s 

~31 meV. Using the same formulation, we observe that this value of E1s is significantly 

larger than those of ideal GaAs/AlGaAs (E1s~20 meV with well
BXa ~2.85  nm) and 

InGaAs/GaAs (E1s~13 meV  with well
BXa ~4.5 nm ) quantum wells, which are the commonly 

employed active regions in GaAs-based polariton devices [13, 18, 20, 23-26, 51-53, 56-

58, 66, 76]. 

4.3  Device Heterostructure 

 As can be observed from the bandgap energies plotted as a function of the Al 

mole fraction (Fig. 4.1(a)), AlxGa1-xAs is an indirect bandgap semiconductor for x > 0.41. 

Because free excitonic transitions are very susceptible to multivalley scattering and 

phonon scattering effects in indirect bandgap semiconductors, the quantum well is 

designed with Al0.31Ga0.69As/Al0.41Ga0.59As, where both the barrier and the active regions 

are direct bandgap semiconductors. The conduction and valence band offsets of this 
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(a) (b) 

Fig. 4.1 (a) Bandgap energies of  AlxGa1-xAs plotted as a function of the Al mole fraction 
[127], (b) calculated exciton binding energies of AlxGa1-xAs based quantum well plotted 

as a function of quantum well width [128]. 

system are 0.072 and 0.048 eV (at T= 155 K), respectively, assuming 0.6c gE E   . A 

single quantum well (SQW) is used to minimize inhomogeneous broadening of the 

emission linewidth due to interface roughness scattering [131, 132]. As discussed in the 

previous section, a quantum well (QW) comprising of this material system should exhibit 

a high exciton binding energy of ~31 meV.  Unfortunately, such a high value of the 

exciton binding energy for this material system can be obtained only in a perfectly two-

dimensional QW, where there is perfect overlap between the delta-like electron and hole 

wavefunctions along the growth axis. Nevertheless, theoretically it can be shown that the 

electron-hole wavefunction overlap, and consequently the exciton binding energy in a 

SQW can be increased by reducing the quantum well width, such that the wavefunctions 
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Fig. 4.2 A schematic of the device heterostructure grown by MBE. 

are mostly confined within the well. Based on the theoretically calculated data shown in 

Fig. 4.1(b), a quantum well width of 7 nm is chosen in our design, because a smaller well 

width may lead to wave function leakage and a consequent reduction of the exciton 

binding energy. Figure 4.2 shows a schematic of the p-i-n microcavity diode 

heterostructure, which has been grown by molecular beam epitaxy on (001) GaAs 

substrate. The 160 nm Al0.41Ga0.59As layers, along with a 7 nm Al0.31Ga0.69As SQW in the 

center, serves as the waveguide of the device. The waveguide region is surrounded by 

600 nm p- and n- doped Al0.6Ga0.4As layers, which provide optical confinement. Transfer 

matrix method based analysis shows a modal confinement of 2.5% for a single 

waveguide mode, the antinode of which coincides with the SQW. An effective refractive 

index of ~3.46 is obtained from this analysis. The heavily doped p- and n-type GaAs 

layers are grown to facilitate low resistance ohmic contacts of the device.  
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4.4  Materials Characterization 

4.4.1  Excitation Dependent and Time Resolved Photoluminescence 

 Excitation dependent and time-resolved photoluminescence measurements have 

been performed by exciting the active region of the SQW sample with an UV laser. To 

avoid absorption of the exciting laser in the top contact and cladding layers, the MBE 

grown full heterostructure is initially etched down to the top barrier layer by ICP reactive 

ion etching in a BCl3:Cl2:Ar environment. The prepared sample is next mounted inside a 

closed cycle liquid-He cooled cryostat, where it is excited using a cw 325 nm He-Cd 

laser. The excitation density is varied using a neutral density filter and the incident power 

is measured and calibrated using an optical power-meter. Figure 4.3 shows PL emission  

 
 

Fig. 4.3 Measured excitation dependent PL spectra at T= 30 K. The inset shows a linear 
dependence of the integrated intensity on excitation density. 
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spectra from the Al0.31G0.69As/Al0.41Ga0.59As SQW measured at 30 K under different 

excitation densities. The measured linewidth of the exciton transition at 30K is 7.8 meV 

(2.531 nm). The PL emission is also measured at 155 K, which is the measurement 

temperature of the polariton device. The homogeneously broadened linewidth at 155 K is 

~8.5±0.3 meV. As shown in the inset of Fig. 4.3, a linear dependence of the integrated 

intensity on excitation is obtained from our analysis of the measured spectra. Also the 

peak energy position remains invariant with excitation, which indicates the absence of 

band filling of defect bound states. This confirm the free excitonic behavior of the 

luminescence and indicates that the excitons in the system are less likely to be bound by 

defects or disorders. 

 To obtain the lifetime of the excitonic transition, TRPL measurements have been 

performed at 155 K using a frequency tripled Ti:Sapphire laser which has a repetition rate 

of 80MHz and pulse width of ~60-130 fs. The sample is mounted inside a liquid-He 

cooled cryostat and the photoluminescence (PL) is detected using the combination of a 

single-photon detector and a frequency counter. Figure 4.4 shows the measured PL 

transient from the Al0.31Ga0.69As/Al0.41Ga0.59As single quantum well at T=155 K.  Upon 

analysis of the measured data with a stretched exponential model expo

t
I I





     
   

 , 

we obtain  = 468 ps with 1  . The near unity value of   indicates the absence of 

carrier depopulation due to screening of piezoelectric field or a degree of compositional 

fluctuation, both of which lead to a change in the carrier lifetime. These effects are quite 

prevalent in InGaN quantum wells, where the value of   ranges from 0.5-0.7 [133, 134]. 
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Fig. 4.4 Measured time resolved photoluminescence from the AlGaAs/AlGaAs SQW at 

T=155 K along with exponential model based analysis. 
 
 

4.4.2  Estimation of Exciton Binding Energy 

 The exciton binding energy EBX in the Al0.31G0.69As/Al0.41Ga0.59As SQW is 

estimated from temperature dependent photoluminescence measurements performed over 

a temperature range of 30 K - 200 K. The temperature of the sample, which is mounted 

inside a continuous flow liquid-He cryostat, is varied and stabilized using an autotuning 

temperature controller. The sample is optically pumped at a fixed excitation density of 

the cw 325 nm He-Cd laser. The PL emission from the sample is focused onto a 

monochromator, where it is spectrally resolved and detected using a high gain PMT and 

lock-in-amplifier. Figure 4.5 shows the measured PL peak emission energy as a function 

of  temperature. The measured values are in good agreement with the empirical Varshni 
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Fig. 4.5 PL emission peak energy plotted as a function of temperature (inset shows the 

calculated energy states of the SQW). 

relation, which is 
2

( ) (0)g g

T
E T E

T




 


. Here (0)gE  is the bandgap at temperature T=0 

K, α and β are empirical parameters [130]. As obtained from the solution of time 

independent Schrödinger equation for a SQW (shown as an inset of Fig. 4.5), the PL peak 

energy corresponds to the energy difference between the e1-hh1 states. To estimate the 

exciton binding energy, the measured temperature dependent PL results are analyzed over 

the temperature range of 140-170 K using the relation: ph g e hh BXE E E E E    , where 

Eph is the peak energy of the PL spectra, Eg is the bandgap of the Al0.31Ga0.69As well, and 

Ee and Ehh are the confinement energies of the bound states of the electron and heavy 

hole, respectively. The temperature dependence of the bandgap is estimated by Varshni 

relation and the material parameters are calculated using the virtual crystal approximation 

[130]. The bound state energies Ee and Ehh, are calculated by solving the Schrödinger 
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Fig. 4.6 Measured values of Eph , along with the values obtained for Eg, Ee, Ehh, and EBX 

from our analysis. 

equation using these material parameters. Uncertainties in the quantum well thickness 

and compositions affect the calculation of the bound state energies, and also of the 

bandgap of the Al0.31Ga0.69As well material. The quantum well thickness is limited by the 

accuracy of the MBE growth (0.5 monolayer), whereas the compositions of the well and 

barrier materials are confirmed by high resolution X-ray diffraction analysis. The effect 

of uncertainties in quantum well and barrier composition and well thickness is taken into 

account in our analysis. It has been assumed that EBX does not vary over the considered 

temperature range. Figure 4.6 shows the measured values of Eph , along with the values 

obtained for Eg, Ee, Ehh, and EBX from our analysis. At T=155 K, the values of Ee, Ehh, and 

EBX are estimated to be 26.5±0.13 meV, 6.9±0.07 meV, and 15.8±1.8 meV, respectively. 

From EBX =kBT, we obtain T=180 K, which indicates that the binding energy is 

sufficiently high for the excitons to remain stable well above the cryogenic temperature. 



89 
 

4.5  Device Fabrication 

 A detailed outline of the processing and fabrication steps of the edge-emitting 

polariton devices has already been given in chapter 3. Nevertheless, we discuss the 

fabrication of the GaAs-based device here for completeness. The fabrication is initiated 

by selective deposition and annealing of Pd/Zn/Pd/Au (10nm/20nm/20nm/ 300nm) p-

contact metal, definition of the 1 µm x 20 µm microcavity region by reactive ion etching 

down to the n+ GaAs layer and selective deposition and annealing of Ni/Ge/Au/Ti/Au 

(25nm/325nm/65nm/20nm/300nm) n-contact on this layer. This is followed by deposition 

of 700 nm SiO2 contact pads and subsequent deposition of Ti/Au interconnect metal for 

both p- and n- contacts. The contact pads are designed to be large enough to facilitate Au-

Au wire bonding with the chip carrier. The final dimensions of the 929 nm (5λ) x 20 µm 

cavity are defined by focused ion beam (FIB) etching. Five and six pairs of SiO2/TiO2 

DBR mirrors, as schematically shown in Fig.4.7, are deposited on the two sides of the 

FIB etched facets by e-beam evaporation to complete the 5λ bulk resonant cavity. A SEM 

 

 
 

Fig. 4.7 A schematic representation of the GaAs-based SQW microcavity diode. 
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Fig. 4.8 SEM image of the fabricated device along with the contact pads. 
 

image of the completed device, along with the contact pads, is shown in Fig. 4.8. 

4.6  Device Characterization 

4.6.1  Microcavity and Diode Characteristics 

 The diode current voltage (I-V) characteristics, measured using a semiconductor 

characterization system, is shown in linear and logarithmic scales in Fig. 4.9(a). A low 

reverse leakage current of 5.23 x 10-10 A and a diode series resistance of 8.92 Ω is 

observed in the I-V characteristics. The quality factor (Q) of the microcavity is derived 

by micro-photoluminescence measurements at room temperature. In this measurement, 

the microcavity is excited non-resonantly with a frequency tripled (λ=266 nm) 

Ti:Sapphire laser. The same objective lens is used to focus the laser beam onto one facet  
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(a) 

 

 
(b) 

Fig. 4.9 (a) Current-voltage characteristics of the microcavity diode (the inset shows the 
I-V characteristics in logarithmic scale), (b) measured micro-PL spectrum from the 

microcavity. 
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of the microcavity diode and to collect the photoluminescence signal and then convey it 

to the monochromator using achromatic doublet lenses. As shown in Fig. 4.9(b), the 

cavity mode linewidth at Ec = 1.9161 eV (647.03 nm) is γc = 0.62 meV (0.2094 nm). This 

corresponds to a cavity quality factor of ~3091 and a corresponding cavity mode lifetime 

of c =1.06 ps. Polarization selection rules indicate that quantum well excitons couple to 

TE-polarized cavity photons [135]. 

4.6.2  Strong-Coupling Characteristics 

 The polariton dispersion characteristics are determined from angle-resolved 

electroluminescence (EL) spectra measured under low forward bias current density at 155 

K. The detection angles in this measurement are varied in a plane perpendicular to the 

growth axis. Figure 4.10 shows EL spectra recorded up to a maximum detection angle  

 

        
Fig. 4.10 Angle resolved electroluminescence spectra measured at T=155 K. 
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Fig. 4.11 Polariton dispersion calculated using coupled harmonic oscillator model 

alongside the measured data. 
 
 

of 30o , where the direction normal to the DBRs is considered to be 0o. The peak  below 

the exciton resonance energy and asymptotically approaching this energy at higher angles 

is identified as the lower polariton (LP) transition. The weaker peak above the exciton 

resonance is identified as the upper polariton (UP) transition. Using the one-to-one 

correspondence between the angle of the out-coupled photon and the in-plane wave 

number of the polaritons, we obtain the polariton dispersion relations shown in Fig. 4.11 

together with the measured exciton and cavity photon energies. This data is analyzed with 

a 2x2 coupled harmonic oscillator model, using an exciton linewidth γx= 8.3 meV and γc= 

0.62 meV. A cavity-to-exciton detuning δ = -10meV and Rabi splitting ΩVRS = 15.3 meV 

are derived from the analysis. The depth of the energy trap formed by the LP branch in 

momentum space is ~13.6 meV, which is larger than the kBT value at 155 K. 

 



94 
 

4.6.3  Polariton Lasing Characteristics 

 Electroluminescence from the device is measured in the normal direction (normal 

to the DBR mirror) as a function of cw forward bias. A distinct nonlinear threshold is 

observed in the light-output at a current density of 90 A/cm2
,
 as shown in Fig. 4.12. The 

subtreshold slope in the measured emission characteristics is 0.97 whereas above the 

nonlinear threshold, the slope is 3.2. The nonlinear threshold is accompanied by a steep 

reduction of linewidth of the LP emission, also depicted in Fig. 4.12. The LP coherence 

time of ~4.9 ps, corresponding to the minimum linewidth of 0.85 meV (0.2841 nm) is 

larger than the LP radiative lifetime, 
||

2

0/LP C kC   =1.3696 ps. Beyond 100 A/cm2, the 

emission linewidth increases again. The blueshift of the LP emission peak at the onset of  

 
Fig. 4.12 Integrated EL intensity, LP emission linewidth and blue shift of LP peak 

emission as a function of injected current density. 
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(a) 

 

 
 

Fig. 4.13 (a) EL spectra measured at various injection levels. Inset shows the magnified 
UP region; (b) LP and UP peak emission energies at higher injection levels showing the 

onset of the weak coupling regime. 
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polariton lasing is a signature of the enhanced polariton-polariton scattering.. The 

measured blueshift for LP emission is ~0.89 meV (Fig. 4.12). The polariton spectral 

characteristics are shown in Fig. 4.13(a), where both the LP and UP transitions are visible 

at all injections. With further increase of injection current and using a pulsed mode bias 

beyond 500 A/cm2 , the data shown in Fig. 4.13(b) and 4.14 are recorded. Under these 

conditions, the coupling strength between the excitons and photons decreases because of 

reduced exciton oscillator strength resulting from phase-space filling [96]. As a results, 

the two polariton peaks gradually merge into a single transition, signaling the onset of the 

weak coupling regime. Furthermore, a second threshold is observed at ~32 kA/cm2 (Fig. 

4.14), which is ascribed to photon lasing mediated by population inversion and stimulated 

emission. The linewidth of the emission for photon lasing is ~2.4 meV (0.80 nm). 

 
Fig. 4.14 Two threshold lasing behavior with the non-linearities due to both polariton and 

photon lasing. Inset shows EL spectra measured above photon lasing. 
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and the peak emission energy coincides with the cavity mode, as shown in the inset to 

Fig. 4.14. The LP density is related to the injection current density by the relation 

/LPn J q   where τ is the total exciton lifetime. Using this relation, the polariton 

density at the non-linear threshold is ~2.63 x 1011 cm-2. The polariton density at which 

this system transitions to the weak coupling regime, is derived from the data of Fig. 

4.13(b) to be 4.5 x 1012 cm-2, which is ~17 times larger than the threshold density.  

4.6.4  Momentum Space Distribution and Spatial Coherence 

 To ascertain that the observed first non-linear threshold in the emission 

characteristics is due to dynamic Bose condensation, we measured the LP population 

distribution in k-space at different injection levels by angle-resolved EL. The occupations 

in k-space, derived from the measured emission intensities at 155 K, are plotted in Fig. 

4.15. The occupation is characterized by a non-thermal random distribution below 

 
Fig. 4.15 LP ground state occupancy for different k|| states obtained  at three injections. 
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threshold and a Boltzman-like distribution at threshold. A bimodal distribution and strong 

peaking of the occupation at and near k|| = 0 is observed for injection above threshold. 

There is no signature of an energy relaxation bottleneck at any injection level. At J = Jth, 

the occupancy is analyzed with the Boltzmann thermal distribution, which is 

   0 ||exp (k ) 0 / k TB LPN N E E   . Here E(k||) is the LP energy at k||, N0 is the 

occupancy at k|| = 0 and TLP is the LP temperature. According to our analysis, the LP 

temperature at threshold is TLP=190 K.  

 The spatial coherence properties of the polariton emission have  been measured 

with a Mach-Zehnder interferometer. The visibility of the observed fringes is plotted in 

Fig. 4.16 as a function of displacement (x) between the two identical images of polariton 

emission. A value of 47% is obtained for J= 1.8 Jth , whereas below threshold (at J=0.8 Jth) 

 

 
Fig. 4.16 Interference visibility as a function of the displacement (x) between the double 

image of the polariton emission. Inset shows interference pattern for x = 2 μm; 
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the visibility decreases to 25%.  The full width at half maximum (FWHM) of the 

distribution above threshold gives an estimate of the spatial coherence length or size of 

the condensate, which is found to be ~3.8 μm. 

4.7  Towards Room Temperature Operation 

 As has been discussed in the previous section, the exciton binding energy in a 

GaAs-based system can be significantly enhanced by increasing the Al-mole fraction in 

the quantum well. To this end, an experimental study has been performed to explore the 

possibility of realizing a GaAs-based room temperature polariton laser diode using a 

Al0.41Ga0.59As/Al0.71Ga0.29As single quantum well. 

4.7.1  Device Heterostructure 

 A schematic of the device heterostructure used in this study is shown in Fig. 4.17. 

The heterostructure, which is grown by MBE on (001) GaAs substrate, consists of a 

single Al0.41Ga0.59As/ Al0.71Ga0.29As, quantum well. According to Fig. 4.1(a), the well 

 

Figure 4.17 A schematic of the Al0.41Ga0.59As/Al0.71Ga0.29As SQW p-i-n heterostructure; 
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Figure 4.18 Analyzed electronic states of the Al0.41Ga0.59As/Al0.71Ga0.29As SQW. 

 

region of this heterostructure is a direct bandgap material, whereas the barrier is an 

indirect bandgap semiconductor. The conduction and valence band offsets here are 

~0.072 eV and~0.048 eV respectively, assuming 0.6c gE E   . To maximize the exciton 

binding energy, the quantum well width of the active region is designed to be 7 nm. In 

order to minimize inhomogeneous broadening, only a single quantum well (SQW) has 

been employed in the heterostructure. The 160 nm Al0.41Ga0.59As layer, along with the 

Al0.31Ga0.69As single quantum well (SQW) in the center, serves as the waveguide of the 

device. The waveguide region is surrounded by 600 nm p- and n-doped Al0.6Ga0.4As 

layers, which provide optical confinement. An effective refractive index of ~3.3 is 

obtained from transfer matrix method based analysis. The heavily doped p- and n-type 

GaAs layers are grown to facilitate low resistance ohmic contacts of the device. Figure 

4.18 shows the analyzed electronic states of the designed heterostructure. Ec,1-Ehh,1 is 

expected to be the dominant excitonic transition in the SQW because of its larger 

oscillator strength. According to [136], the electron and hole effective masses 
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corresponding to these states are 0.1m0 and 0.592m0 respectively. These values 

correspond to a 3D exciton Bohr radius of 7.23 nm. Therefore, according to Eqn. 4.1, the 

exciton binding energy of an ideal Al0.41Ga0.59As/ Al0.71Ga0.29As SQW is E1s ~34 meV. 

Such a high exciton binding energy should facilitate the experimental observation of 

strong coupling and polariton lasing at or near room temperature. 

4.7.2  Materials Characterization 

 Photoluminescence studies have been performed to study excitonic transition 

characteristics of the SQW. Because the exciting laser is significantly absorbed by the top 

cladding and contact layers, the MBE grown full heterostructure is initially carefully 

etched down to the top Al0.71Ga0.29As barrier layer by ICP reactive ion etching in a 

BCl3:Cl2:Ar environment. Temperature and excitation dependent PL measurements have 

been subsequently performed to estimate the nature of the excitonic transitions. 

4.7.2.1 Temperature Dependent Photoluminescence 

 Temperature dependent measurements have been performed by exciting the 

sample with a 405nm solid state laser. The sample is mounted inside a closed-loop 

Helium cryostat and the temperature is varied from 10 K to 110 K using a temperature 

controller having auto tuning capability. As can be observed in the measured temperature 

dependent PL spectra (Fig. 4.19(a)), two distinct emission peaks are observed at all 

temperatures. At T = 10K, the emission linewidth of the lower energy peak (peak I) is 

~25 meV and the higher energy peak (peak II) is ~17 meV , as derived by multi-peak 

fitting based analysis (Fig. 4.19(b)). The energy difference between the two peaks is ~40 

meV, which is smaller than the bandgap energy difference of ~120 meV between the 
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(a) 

 
(b) 

Fig. 4.19 (a) Measured temperature dependent PL spectra in the 
Al0.41Ga0.59As/Al0.71Ga0.29As SQW, (b) multi-peak fitting based analysis. 



103 
 

well and barrier materials. The observed broad and weak emission between 2 eV - 2.02 

eV may be attributed to surface states. According to Fig. 4.19(b), all the transitions in the 

measured PL spectra show a Gaussian lineshape instead of a Lorentzian, which is 

indicative of the presence of inhomogeneous broadening of the excitonic resonances. In 

Fig. 4.20, the emission energies of peak I and II are plotted as a function of temperature 

along with the analysis based on Varshni relation. As expected, both the peaks red-shift 

with increasing temperature because of lowering of the bandgap energy. However instead 

of a monotonic decrease, a slight S-shaped behavior is observed in the temperature 

dependence of the PL emission peaks. This S-shaped behavior is commonly attributed to 

the redistribution of carriers within the ensemble of localized states which may arise 

because of compositional inhomogenity in a material system having high Al mole- 

 

Fig. 4.20 Peak emission energies of peak I and II are plotted as a function of temperature 
along with the analysis based on Varshni relation. 
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fraction [137]. Radiative recombination, thermal escape and re-capture of the excitons in 

these localized states may have resulted such a non-monotonic decrease of the emission 

peak energy as the temperature is increased. 

4.7.2.2 Excitation Dependent Photoluminescence 

  Excitation dependent photoluminescence measurements have been performed at 

T = 15 K by exciting the prepared sample with a 405 nm solid-state laser. The excitation 

density has been varied from 0.7 to 7 mW using a neutral density filter. The measured 

excitation dependent PL spectra are shown in Fig. 4.21, where two distinct peaks are 

observed at all excitation densities. It is also noteworthy that both the peaks blueshift as 

the excitation density is increased. This is further illustrated Fig. 4.22, where a maximum 

 
 

    

Figure 4.21 Measured excitation dependent PL spectra at T=15 K. 
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Fig. 4.22 PL peak energy values plotted as a function of the excitation power. 
 
 

blueshift of ~20 meV is measured for both the peaks. Such a shift of the peak emission 

energy may be related to the filling of higher energy bound excitonic states of the SQW. 

It is noteworthy that the free exciton energy is usually observed to remain invariant with 

excitation if the pumping density is kept below the saturation density. In Fig. 4.23, the 

integrated PL intensities corresponding to both the peaks are plotted as a function of the 

optical excitation density. A linear dependence on the excitation is observed for both the 

peaks using the relation nI P , where I is the integrated intensity and P is the pumping 

density. Though such a dependence is usually associated with free excitons, it has been 

reported that depending on the excitation density, 1n  can be observed for donor and 

acceptor bound excitonic transitions as well [138]. The dominance of bound excitonic  

transitions over free excitons may preclude the observation of strong-coupling in a 

semiconductor microcavity. 
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Fig. 4.23  Measured excitation dependent PL spectra of the Al0.41Ga0.59As/Al0.71Ga0.29As 

SQW at T=15 K 
 

4.7.3  Device Characterization 

 In order to study the electrical and electroluminescence characteristics of the 

SQW heterostructure, a microcavity diode has been fabricated based on the same edge-

emitting geometry discussed in section 4. All measurements on this device have been 

performed under cw electrical excitation at room temperature. From the measured 

current-voltage characteristics (Fig. 4.24), the series resistance of the microcavity diode is 

~8.9 ohms  and the device turn on voltage is ~3.5V. Figure 4.19 shows the measured EL 

spectra, which were recorded for emission normal to the DBR mirrors. In contrast to the 

measured low temperature PL, only a single peak is observed at all injections in the 

measured EL spectra. This indicates thermal dissociation of the bound exciton at room 

temperature. The peak emission energy of the measured EL is ~620 nm, which is in good  
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(a) 

 
(b) 

Fig. 4.24 (a) Current-voltage relations of several devices fabricated using the SQW p-i-n 
heterostructure,(b) measured room temperature EL spectra from the microcavity diode 

fabricated using the Al0.41Ga0.59As/Al0.71Ga0.29As SQW. 
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agreement with the results obtained from our analysis shown in Fig. 4.24(b). The 

minimum measured linewidth of the EL emission is ~27 meV. It is possible that 

multivalley scattering effects in the vicinity of the direct-to-indirect bandgap transition of 

the quantum-well material system results in inhomogeneous broadening of the free 

excitonic transition. Furthermore, the dominance of bound excitonic transitions, as 

observed from low temperature PL measurements, is not favorable to exciton-photon 

coupling in a semiconductor microcavity. These factors may have precluded the 

observation of strong coupling and polariton lasing in this material system. 

4.8 Summary 

 In conclusion, we present results on strong coupling and polariton lasing from a 

Al0.31G0.69As/Al0.41Ga0.59As SQW microcavity diode. The exciton binding energy of this 

GaAs-based system has been enhanced significantly by reducing the quantum well width 

and by increasing the Al composition in the active region. Instead of the conventional 

surface emitting geometry, the device is realized with an edge-emitting structure, which 

enables the fabrication of a low resistance microcavity diode. Strong coupling and 

polariton lasing characteristics with a non-linear threshold of 90 A/cm2 have been 

recorded at 155 K, with no observation of any polariton relaxation bottleneck. Photon 

lasing is also observed in the same device at higher injected current densities. In order to 

realize a GaAs-based room temperature polariton device, we have also presented our 

study of a Al0.41Ga0.59As/Al0.71Ga0.29As SQW p-i-n microcavity heterostructure and 

diode. Localized defects, disorders, alloy broadening and/or multi-valley scattering 

effects may have degraded the free excitonic transition characteristics in this system to 

impede the observation  of strong-coupling. 
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Chapter V 

GaN-based Room Temperature Polariton Diode Lasers 

 

5.1  Introduction 

 In spite of the relatively matured growth and fabrication technologies, room 

temperature operation of GaAs-based polariton laser diodes have remained elusive, 

mainly because of the low exciton binding energy of this material system. In this regard, 

wide bandgap materials like GaN and ZnO are potential candidates for high temperature 

operation because of their high exciton binding energies and oscillator strengths [139, 

140]. As far as electrical pumping is concerned, GaN holds more promise than ZnO 

because of recent advancements in epitaxial growth, p-doping and fabrication of this 

material system. Moreover, because of emission in the UV regime of the electromagnetic 

spectrum, realization of a GaN-based polariton laser diode may usher towards the 

commercial development of an ultra-low threshold coherent light source which can have 

applications in biochemical analysis, photo-alignment of nematic liquid crystals, eye 

surgery, and other industrial applications [141-146]. In this chapter, we describe our 

study towards the experimental realization of a bulk GaN-based polariton laser diode 

which can operate at room temperature and detailed characterization of this device, 

including the output polarization. Whereas current planar GaN-based UV lasers have 
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threshold currents ~10 kA/cm2 or higher [147], the polariton lasers realized in this work 

have threshold current densities in the range of 125 A/cm2 to 375 A/cm2. Photon lasing 

has been observed in the same devices having threshold current densities more than two 

orders of magnitude higher than those of the equivalent polariton lasers.  

5.2  Background of GaN-based Polariton Lasers 

 GaN-based room-temperature optically excited polariton lasers have been 

designed with all-semiconductor or hybrid dielectric-semiconductor microcavities having 

bulk, quantum well, or nanowire active regions. Experimental realization of the first 

room-temperature GaN-based polariton laser was reported using a bulk active region, 

where SiN/SiO2 and AlInN/AlGaN were used as the bottom and top DBRs respectively 

[60]. Enhanced strong-coupling with a large Rabi splitting of 56 meV has been 

demonstrated using a GaN/AlGaN multiple quantum well polariton laser [61]. Ultra-low 

threshold polariton lasing and Bose-Einstein condensation have been demonstrated using 

a single GaN-based nanowire embedded into all-dielectric microcavities [21, 68]. 

Optically pumped polariton laser has also been reported using a GaN nanowire array clad 

by Si3N4/SiO2 DBRs [70]. In regards to electrical injection, it has been theoretically 

shown that bulk GaN-based microcavity diode offers the simplest solution towards 

realizing an electrically driven polariton laser [147]. A threshold current density of 50 

A/cm2 is estimated for this device and it has been predicted that this value can be further 

reduced by employing a multiple quantum-well based active region, which should offer 

better carrier confinement and higher exciton binding energy than the bulk. An 

InGaN/GaN multiple quantum well based electrically driven polariton laser has been 

theoretically predicted and analyzed by Iorsh et al. [148], where a threshold current 
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density of 6 A/cm2 is calculated. More recently, a bulk GaN-based electrically pumped 

polariton laser has been demonstrated to operate at room temperature with a non-linear 

threshold of 169 A/cm2 [82]. The reported device exhibits unambiguous evidence of 

strong-coupling and polariton lasing when operated under cw electrical bias. However, a 

detailed study of the small-signal modulation response and steady steady-state output 

polarization of GaN-based polariton laser diodes is yet to be reported. 

 The proposed GaN-based room temperature polariton laser diodes in [147, 148] 

are based on the vertical cavity surface emitting geometry, which poses several 

difficulties as far as experimental realization is concerned. The growth of high-quality 

GaN-based DBRs has been observed to be difficult, particularly because of large 

dislocation densities in the starting substrate, lattice mismatch between alternate pairs of 

DBRs and also the large number of pairs required to realize high-reflectivity mirrors. In 

general, nitride-based DBRs are realized using Al(Ga)N/(Al)GaN, AlInN/GaN and 

AlN/GaN. Among these material systems, AlN/GaN has the highest refractive index 

contrast and hence it requires the least number of DBR pairs. However, the hole thermal 

activation energy in Mg-doped Al(Ga)N increases significantly as the Al content is 

increased. This in effect reduces the p-region electrical conductivity and increases the 

device series resistance [148]. The heat-induced effects resulting from high series 

resistance are particularly detrimental to GaN-based VCSELs because of high thermal 

resistance of this material system. In regards to MQW based VCSELs, the built in 

polarization of GaN-based systems results quantum confined stark effect (QCSE) induced 

carrier leakage, which can significantly increase the threshold current density in a laser 

diode [149]. In order to overcome these difficulties of the GaN-based surface emitting 
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structure, an edge-emitting structure has been employed in this work where bulk-GaN is 

used as the active region and SiO2/TiO2 pairs are used to form the DBRs. The device, 

which is schematically shown in Fig. 3.4, can also be viewed as an in-plane vertical 

cavity surface emitting laser (VCSEL) or a very short-cavity Fabry-Pérot laser. Optical 

feedback and current injection are orthogonal to each other in this geometry, which 

eliminates many of the difficulties associated with a conventional VCSEL structure. 

5.3  Device Heterostructure and Material Growth 

 The device heterostructure used in this study is schematically shown in Fig. 5.1. 

The active region of the microcavity diode consists of 300 nm undoped GaN, 300 nm  

                         
(a) 

 
(b) 

Fig. 5.1 (a) A schematic of the GaN-based polariton device along with the band diagram 
of the heterostructure (b) schematic representation of the edge emission geometry. 
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p (Mg) doped Al0.10Ga0.90N and 110 nm p (Mg) doped GaN. The 300 nm n (Si) doped 

In0.18Al0.82N layer is lattice matched to GaN and allows the growth of high quality 

epitaxial layers. Moreover, In0.18Al0.82N has a high refractive index contrast with GaN, 

which enhances optical confinement. Also the large conduction band offset between 

In0.18Al0.82N/GaN lowers substrate leakage in the n-doped region. In the p-doped region, 

the Al0.10Ga0.90N acts as an electron blocking layer because of its higher bandgap and also 

provides photon confinement because of its lower refractive index than GaN. Therefore, 

the In0.18Al0.82N and Al0.10Ga0.90N layers of this heterostructure form the lower and upper 

cladding respectively for bulk-GaN waveguide layer. The energy-band diagram, which is 

shown as an inset in Fig. 5.1(a), is obtained by self-consistently solving coupled 

Schrödinger-Poisson equations at zero applied bias, considering a conduction band offset 

of 0.6c gE E∆ = ∆ , and Ga-polar c-plane (0001) GaN growth substrate [150]. 

 Epitaxial growth of the heterostructure in this study is performed by plasma- 

assisted molecular beam epitaxy on c-plane GaN-on-sapphire substrate. In order to grow 

    

      
Fig. 5.2  XRD rocking curves for lattice matched In0.18Al0.82N/GaN epilayers [150]. 
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Fig. 5.3  AFM image of the surface of lattice matched In0.18Al0.82N on GaN-on-sapphire 

substrate [150]. 
 

high quality epitaxial layers, the substrate temperature, the In and Al fluxes and the III/V 

ratios have been varied and optimized. The growth of lattice matched In0.18Al0.82N layer 

is confirmed by x-ray diffraction measurements (Fig. 5.2). The smooth surface 

morphology of lattice matched In0.18Al0.82N layer, as observed by AFM measurements 

(Fig. 5.3), facilitates the growth of low defect density, high quality GaN active region of 

the microcavity diode. As will be shown in the next chapter, the defect density in the 

active region is estimated to be of the same order as that of the starting substrate. 

5.4  Photoluminescence Measurements 

 The excitonic transitions of the active region have been studied by 

photoluminescence measurements of c-plane GaN-on-sapphire using a 325 nm He-Cd 

laser at room and low temperatures. To ensure that the detection geometry of the sample 

is same as that of the microcavity diode, detection of the photoluminescence is done  
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(a) 

 
(b) 

 
Fig. 5.4 Measured photoluminescence of c-plane bulk GaN on sapphire at (a) T=25 K 

and (b) room temperature 
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perpendicular to the c-axis. The PL spectra are recorded using a monochromator having 

spectral resolution of 0.03 nm and a high sensitivity photomultiplier tube. As shown in 

Fig. 5.4(a), low temperature PL spectra shows the free excitonic transitions XA and XB at 

3.475 and 3.491 eV respectively. The XA exciton transition is found to be dominant witha 

linewidth of 7.8 meV at T=25 K. Whereas XB transition has been observed to be strong in 

some photoluminescence studies of bulk GaN, in our case the XA transition is dominant, 

probably because the polarization is fixed by crystal defects [151, 152]. The donor bound 

exciton DBXA is observed at 3.448 eV, whereas the weaker emission within a lower 

energy range of 3.36-3.43 eV may be attributed to the surface states [82]. At room 

temperature, the different exciton peaks merge to show a broad emission having a peak at 

~3.418 eV (Fig. 5.4(b)). 

 In order to estimate the temporal dynamics of the free excitonic transition, time 

resolved photoluminescence measurements have been performed at room temperature 

using a frequency tripled Ti:Sapphire laser which has a repetition rate of 80 MHz and a 

pulse width of 130 ps. The sample emission was spectrally filtered using a 

monochromator at the GaN excitonic peak and detected using a single photon avalanche 

photodiode with a response time of 40 ps. A measured PL transient is shown in Fig. 5.5. 

Analysis using the stretched exponential model, expo
tI I

β

τ

  = −  
   

 shows a mono-

exponential decay with a lifetime of 710τ =  ps and 1β = . This indicates the absence of 

carrier depopulation due to carrier screening of the piezoelectric field or a degree of 

compositional fluctuations, both of which are expected to be absent in bulk GaN,  
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Fig. 5.5 Measured time resolved photoluminescence from bulk GaN at room temperature. 

 
 

contrary to the case of single or multiple InGaN/GaN QW-based active region [133]. 

5.5  Device Fabrication 

 Device fabrication of the bulk-GaN microcavity diode is initiated by selective 

deposition of the Ni-Au (5nm/200 nm) p-contact by electron beam evaporation followed 

by rapid thermal annealing of the contact at 550o C in air for two minutes. Next, a 1 μm x 

40 μm density plasma under a Cl2:Ar environment. The etch rate is calibrated to be 

~4.5nm/s. The etching is followed by selective deposition of Ti/Au (10nm/200nm) by 

electron beam evaporation onto the n-doped substrate to form the n-contact. Prior to both 

p- and n-contact deposition, the native oxide is removed by a HCl:H2O solution. To form 

the 690 nm (5λ) x 40 μm cavity, focused ion beam (FIB) etching is done on the 

previously defined 1 μm x 40 μm region. To ensure optically flat surfaces along the 

length of the cavity, a final FIB etching is conducted at very low injection. A scanning  
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Fig. 5.6 SEM image of a FIB etched cavity along with the p-contact pad. 

 

electron microscope (SEM) image of a 690 nm x 20 μm FIB etched cavity, along with the 

p-contact pad, is shown in Fig. 5.7. Finally, using electron beam evaporation, five and six 

pairs of SiO2/TiO2 distributed Bragg reflector (DBR) mirrors are deposited on opposite 

sides of the FIB etched facet. An average rms roughness of 2.2 nm is obtained from 

atomic force microscopy measurements of the dielectric stack. This leads to a reduction 

in the reflectivity by 0.4%. 

5.6  Device Characterization 

 Several bulk GaN-based polariton laser diodes have been experimentally 

characterized in this study. All the measurements have been performed at room 

temperature. Also other than micro-photoluminescence measurements, all the 

measurements have been performed under electrical biasing. The results obtained from 

these measurements are discussed herein. 
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5.6.1  Diode and Microcavity Characteristics 

 The current voltage characteristics of the device at room temperature is shown in 

Fig. 5.7. The diode is characterized by a turn-on voltage of 4.5V and a series resistance of 

27ohms. The leakage current of the diode is less than 82 10−× A and the shunt resistance 

is ~5.5 MΩ.  The carrier recombination rate across the diode is analyzed by self-

consistently solving the Poisson equation and the electron and hole continuity equations. 

At an injection level of ~200 A/cm2, (around the polariton lasing threshold), the electron- 

hole recombination takes place predominantly in the unintentionally doped GaN region 

and to a smaller extent in the p-GaN region [82].  

 To measure the quality factor of the microcavity, micro-PL measurement has been 

performed on the fabricated microcavity diode after DBR deposition. The microcavity  

 
Fig. 5.7 Current-voltage characteristics of the device measured at room temperature. 
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Fig. 5.8 Micro-PL of the microcavity diode measured at room temperature. 

diode is optically excited non-resonantly with a frequency-tripled Ti-sapphire laser 

(λ=267 nm), focused to a spot size of ~50 μm in diameter on one facet of the device, 

along the axis of cavity resonance. The photoluminescence is collected from the other 

facet of the device and transmitted by an UV multimode optical fiber to a monochromator 

having a spectral resolution of 0.03 nm. Figure 5.8 shows the measured cavity resonance, 

which has a full-width-half-maximum of 1.8 meV and a peak energy of 3.408 eV. This 

corresponds to a cavity quality factor of ~1893 and a cavity photon lifetime of 0.366 ps. 

Such a high value of Q is considered to be necessary to achieve low injection polariton 

lasing and short-cavity photon lasing in this material system [153]. 
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5.6.2  Strong Coupling Characteristics 

 To ascertain strong coupling in the bulk GaN-based microcavity diode, angle-

resolved electroluminescence measurements have been performed under cw electrical 

injection below the polariton lasing threshold. In this measurement, the normal direction 

is considered to be perpendicular to the DBR mirrors and the measurements are done in 

the c-plane. As shown in the measured angle-resolved EL spectra (Fig. 5.9(a)), distinct 

lower polariton (LP) peaks are observed below the exciton energy (EX = 3.408 eV) at all 

angles. At higher angles, the LP peaks tend to approach the exciton energy 

asymptotically. It is noteworthy that the upper polariton transitions are generally not 

observed in the polariton dispersion of microcavities with large bandgap bulk 

semiconductors, such as GaN and ZnO since these transition energies lie within or are 

very close to the conduction band continuum of states. As a result the transitions are 

broadened and not observed clearly [60, 67, 69, 154-156]. The polariton dispersion 

characteristics corresponding to the measured angle-resolved EL has been analyzed using 

the 2x2 coupled harmonic oscillator model considering strong coupling of the cavity 

photon to the XA exciton. The dispersion characteristics is shown in Fig. 5.9(b), alongside 

the measured LP emission peak energies. The cavity-to-exciton detuning δ and the 

interaction potential or Rabi splitting, Ω are determined to be  -7 meV, and ~32 meV, 

respectively. This splitting value is close to those reported for bulk GaN microcavities 

[151, 154-156]. From the dispersion, the spontaneous radiative recombination lifetime of 

the lower polaritons in is estimated to be 2/ | C |LP cτ τ=  = 0.602 ps at k|| = 0. 



122 
 

               
(a) 

 
(b) 

Fig. 5.9 (a) Five point moving average filtered angle-resolved electroluminescence 
measured from the microcavity diode at room temperature; (b) 2x2 coupled harmonic 

oscillator based analysis of the polariton dispersion along with measured data. 
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5.6.3  Polariton Lasing Characteristics 

 To investigate the nonlinear output characteristics of the GaN microcavity diode, 

the electroluminescence from the device is measured in the normal direction as a function 

of cw forward bias. The variation of integrated intensity with current is depicted in Fig. 

5.10. The inset to this figure shows the output spectrum for 220 A/cm2 forward current 

density. A distinct nonlinear threshold is observed in the characteristics at 190 A/cm2
 . 

However, it should be noted that the actual current through the microcavity region is 

much smaller. It may be noted from Fig. 5.10 that the slope of the light-current 

characteristics is sub-linear (~0.8) in the pre-threshold regime. We believe this behavior 

is due to non-radiative recombination and carrier leakage from the active recombination 

 
 

Fig. 5.10 Integrated EL intensity of the LP emission as a function of injected current 
density. Inset shows an EL spectra measured at an injection above the lasing threshold. 
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Fig. 5.11 Two threshold lasing behavior showing the non-linearities due to polariton and 
photon lasing. The threshold current densities of polariton and photon lasing are indicated 

by arrows. 
 

region. The LP density at threshold is calculated to be 16 32.28 10 cm−×  using the relation 

/th
LP thn J qdτ=  where the exciton lifetime of 0.57 nsτ = , as obtained from TRPL 

measurements [82]. This threshold density is significantly smaller than the transparency 

density ( 18 3~ 3 10  cm−× ) [157] and the Mott density ( 19 31 2 10 cm−− × ) [60] reported for 

GaN. The injection current was further increased, using pulsed mode bias beyond 

21.5 kA/cm , and a second non-linear threshold is observed at 246 kA/cm  (Fig. 5.11). 

This non-linearity, which is accompanied by a three-orders-of-magnitude increase in the 

output power compared to that in the polariton lasing regime, is due to conventional 

photon lasing.  
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Fig. 5.12 Measured LP emission linewidth and blueshift of LP emission peak as a 
function of injected current density. 

 

 The measured variation of the linewidth of the LP emission with injection is 

plotted in Fig. 5.12. The minimum linewidth of 1.95 meV corresponds to a LP coherence 

time of 2.12 ps. Beyond the minimum, the linewidth increases again due to exciton-

exciton interactions. Also plotted in Fig. 5.12 is the measured blueshift of the LP 

emission peak, caused by polariton-polariton and polariton-exciton interactions [30]. 

From the measured blueshift δE of 1.9±0.28 meV around the non-linear threshold, the 

polariton density can be estimated using 3
33.3 B

x B DE E a Nδ π≅  [158]. Here B
xE  and Ba  are 

the exciton binding energy and Bohr radius, respectively. Using values of B
xE = (28±8) 

meV [159, 160] and Ba = (3.5±0.1) nm, a value of 3DN  = (1.53±1.13) x 1017 cm-3 is 

derived, which is slightly larger than the value derived from the measured current 
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density. A larger value results because the formula for the blueshift quoted above takes 

only phase space filling into account, while the measured blueshift can include both 

saturation of the oscillator strength and phase space filling. These values are again 

smaller than the Mott density and the transparency density, confirming that the observed 

non-linearity is indeed due to polariton lasing. 

5.6.4  Momentum Space Distribution 

 The polariton occupation in momentum space at different injection levels has 

been measured by angle-resolved electroluminescence. The occupation is calculated from 

the output power measured with an optical power-meter. The polariton occupation 

number per k|| state is calculated using the relation described in section 3.5 and is plotted 

in Fig. 5.13 for three different injection levels. From a non-thermal distribution below 

 
Fig. 5.13 LP ground state occupancy for different k|| states at three different injections.  
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threshold, a Boltzmann-like distribution emerges just below and at threshold. A bimodal 

distribution and strong peaking of the occupation at and near k||=0 is observed for 

injection above threshold. There is no evidence of a relaxation bottleneck at any 

injection. Such a complete suppression of the relaxation bottleneck is attributed to the 

efficient polariton-acoustic phonon scattering mechanism at room temperature [155]. To 

estimate the effective polariton temperature (TLP), the polariton occupation at J=Jth is 

analyzed with Maxwell-Boltzmann distribution: 
( )||

0

(k ) 0
exp

k TB LP

E E
N N

 −
= − 

 
, where 

E(k||) is the LP energy at k|| and N0 is the occupancy at k|| = 0. A TLP value of 230 K is 

obtained from this analysis. 

5.6.5  Spatial Coherence Measurements  

 It is known that polariton lasing generally originates from a non-equilibrium 

Bose-Einstein condensate (BEC) obtained by a dynamical balance between injection and 

polariton (photon) loss. One of the characteristics of this condensate, similar to that of an 

equilibrium BEC, is long-range spatial coherence. In this work, we have measured the 

spatial coherence properties of the polariton emission of one of the devices with a slightly 

misaligned Mach-Zehnder interferometer [81]. The experimental setup for this 

measurement is discussed in detail in section 3.5. The visibility of the fringes is measured 

as a function of displacement between two identical images of polariton emission for 

injection levels below and above the lasing threshold. The measured visibility is plotted 

as a function of the injection current in Fig. 5.14(a). A peak visibility of ~ 38 % is 

recorded above threshold at an injected current density of J = 1.3 Jth. While the peak 

visibility should ideally approach unity at zero displacement between two identical 
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(a) 

 
(b) 

Fig. 5.14 (a) Interference visibility measured as a function of the injected current density 
for zero displacement between the double images of the LP emission. The dashed line is a 

guide to the eye,(b) interference visibility measured as a function of the displacement 
between a double image of the polariton condensate below and above the polariton lasing 

threshold. 
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images of the polariton condensate, such high values have not been experimentally 

reported. This is probably due to quantum fluctuations in the condensate and the fact that 

the condensate fraction of the polariton gas should be less than 50%,which has been 

theoretically predicted [161]. The visibility of the fringes is plotted in Fig. 5.14(b) as a 

function of displacement between two identical images of the LP emission for injection 

levels below and above the polariton lasing threshold. The full-width at half maximum 

(FWHM) of the distribution above threshold is ~4 μm, which is the approximate size of 

the relevant condensate. 

5.6.6  Measurement and Analysis of Steady-State Output Polarization 

5.6.6.1 General Overview of the Output Polarization of a Polariton Laser 

 An important characteristic of the output of a polariton laser is its polarization 

[19-20, 22, 162-170]. The build-up of polarization in a polariton laser is commonly 

attributed to spontaneous symmetry breaking, which is a direct consequence of the 

Bosonic characteristics of polaritons. Though polariton lasing does not necessarily imply 

Bose-Einstein condensation, it is well established that a non- or quasi-equilibrium 

macroscopic coherent condensate is formed at the non-linear threshold of a polariton 

laser. This macroscopic condensate is usually described using a wavefunction ( )rΨ


, 

which has a random phase prior to spontaneous symmetry breaking. However, at the 

polariton lasing threshold, because of small deterministic perturbative term(s) in the 

system Hamiltonian, the condensate attain a specific phase, which remains the same 

throughout the condensate. Under this condition, output polarization is imparted by 
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( )r↑Ψ


 and ( )r↓Ψ


, which are respectively the spin-up and spin-down components of 

the condensate wavefunction. 

 It is important to note that below the non-linear threshold, 0Ψ =  and hence the 

optical output is essentially unpolarized [19-20, 22, 61, 81, 167, 169, 170]. As the non-

linear threshold is reached, because of spontaneous symmetry breaking in the degenerate 

condensate, there is spontaneous build-up of linear polarization in the emission spectra 

[22, 163-165, 168, 169]. In the absence of reduced symmetry or material disorders, this 

polarization is random in nature. However, in practical semiconductor microcavities, it is 

usually pinned along a preferential orientation, because of disorders in the active region 

material or reduced symmetry of the quantum confined structure, such as a quantum-well, 

wire or dot. Disorders or reduced dimensionalities of the material system also breaks the 

ground state degeneracy into two closely spaced states, as shown in Fig. 5.15. Above 

threshold, the condensate occupies the lowest of these two states and the linear 

polarization of the emission corresponds to this state. The buildup of linear polarization is 

usually followed by its decrease at higher injections beyond the polariton lasing 

threshold. This phenomenon is commonly described as the depinning effect, which is 

attributed to repulsive polariton-polariton interaction and self-induced Larmor precession 

of the Stokes vector of the polariton condensate. 

 In all the reported experiments [19-20, 22, 57, 61, 166, 168, 169], except one with 

a GaAs-based microcavity at 30 K [81], the device has been excited with linearly or 

circularly polarized light. We report here the first experimental study of the output 

polarization characteristics of a GaN-based electrically pumped microcavity polariton 
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Fig. 5.15 The splitting of the ground-state degeneracy illustrated using a generalized 
polariton dispersion relation. 

 
 
 

laser. Details of the experimental setup are discussed in  section of chapter . Measurement 

results and theoretical analysis follows in the subsequent sections. 

5.6.6.2 Experimental Results 

  The degree of linear polarization of the polariton emission in the normal direction 

(k||~0) as a function of injection current has been measured in two devices, which are 

denoted as Device 1 and Device 2 henceforth. The light current characteristics of the two 

devices are shown in Fig. 5.16(a). Here Device 1 exhibits a higher non-linear slope 

(~13.4) than that of Device 2 (~6.1). In Fig. 5.16(b), the electroluminescence intensity of 

Device 1 is plotted as a function of the angle of the linear analyzer. Below the non-linear 

threshold, the emission is depolarized. Above threshold, a maximum linear polarization 

of ~ 22 % is recorded for an injection level of 275 A/cm2. The linear polarization is found  
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(a)  

           
(b) 

 
Fig. 5.16 (a) Light-current characteristics of Device 1 and 2 at normal incidence with 
respect to the DBRs, (b) polar plots of the normal incidence LP electroluminescence 

intensities recorded as a function of angle of linear analyzer below and above threshold of 
Device 1  
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to be preferentially oriented along the [1100]  crystallographic axis in all the devices. 

 Figures 5.17 and 5.18 depict the measured steady state linear polarization of the 

output LP electroluminescence as a function of the injection current for the two devices. 

The output is essentially unpolarized below the threshold value, the degree of linear 

polarization being below the detection limit. At threshold, there is a sharp increase in 

linear polarization due to stimulated LP scattering from the unpolarized reservoir to the 

polarized seed condensate in the presence of a small linear polarization splitting [171]. 

This is followed by a peaking and a steady decrease at higher injection, which is the 

depinning effect also observed by Levrat et al. [169]. The depinning effect is a result of 

strong polariton-polariton repulsive interactions and self-induced Larmor precession of 

the Stokes vector of the condensate [168, 169]. The measured thresholds for linear  

 

 
Fig. 5.17 Measured steady-state degree of linear polarization of Device 1. The solid 

lines represent theoretical calculations. 
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Fig. 5.18 Measured steady-state degree of linear polarization of Device 2 as a function 

of injected current density. The solid lines represent theoretical calculations. 
 
 

polarization agree with the non-linear threshold in the light-current characteristics within 

the experimental accuracy. 

 Polarization-resolved light-current characteristics are also measured and are 

plotted alongside the polarization integrated characteristics for two devices in Fig. 5.19. 

The data of Device 2 in indicate that the value of the threshold current density remains 

unchanged for the two cases within the experimental accuracy (Fig. 5.19(a)). In contrast, 

the similar data for Device 1 shown in Fig. 5.19(b) indicate a reduction of the threshold 

current density of the polarization-resolved output by ~70 A/cm2 compared to that of the 

polarization unresolved output as one can clearly see in the inset. This effect was only 

observed in one device, nonetheless during repeated measurements. The lower threshold 

of a specific linear polarization resolved electroluminescence probably results from a 

spatially inhomogeneous polarization splitting in the GaN microcavity, similar to 
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(a) 

 
(b) 

Fig. 5.19  Polarization-resolved (along 90o angle of the linear analyzer) and unresolved 
light-current characteristics of (a) Device 2 and (b) Device 1. The inset shows an 

enlargement highlighting the different thresholds. 
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what has been observed before in a CdTe microcavity [171,172].  Some parts of the 

sample may be characterized by a large splitting of the linearly polarized modes and a 

specific linear polarization build-up occurs with a lower threshold. In other domains the 

polarization splitting is negligibly small, resulting in emission which will be unpolarized 

in the steady state. The lowering of threshold observed here is less than the expected 

factor of 2 due to deviations in the microcavity characteristics from an ideal case. 

Nonetheless, this is the manifestation of inhomogenity, probably arising from defects, in 

the linear polarization resolved electroluminescence of a polariton laser. 

5.6.6.3 Theoretical Analysis 

 The experimental results are analyzed with the stochastic kinetic theory [168, 

169] wherein the kinetics of the system is modeled with the four coupled stochastic 

differential equations (see Appendix B for details). Figure 5.16(a) shows the calculated 

dependence of the condensate occupation number n(t) on the injected current density 

alongside the measured data for Device 1. Figures 5.17 and 5.18 show the calculated 

dependence of the linear polarization degree of the polariton laser emission on the pump 

current to be compared to the measured data of Device 1 and 2. We observe that the 

calculated linear polarization shows a good agreement with the measured data, in general. 

One can see that the difference in current density dependence of the linear polarization 

between Devices 1 and 2 is chiefly due to the different spin relaxation and polariton 

radiative decay rates. The spin relaxation rate and the polariton radiative decay rate is ~ 

30% faster and ~ 30% slower respectively, in Device 2 as compared to Device 1. We 

ascribe these differences to the different magnitudes of photonic disorder in the two 

devices. The value of the peak polarization degree of ~ 22 % is governed by the ratio of 
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the polarization relaxation rate γ  and the polariton radiative decay rate cΓ . The lower is 

this ratio, the shorter time the polariton condensate possesses for relaxation to the lowest 

energy polarization state. We observe that this ratio and thus the degree of peak 

polarization is lower than that reported by Levrat et al. [169]. The rate of the decrease of 

the linear polarization beyond the peak depends on the ratio of the nonlinear coefficient 

1α  and the linear polarization splitting Ω (Appendix B). 

5.7  Summary 

 In conclusion, we demonstrate polariton lasing from a bulk GaN microcavity 

diode at room temperature under steady-state conditions. The nonlinear threshold is 

observed at 190 A/cm2, which is more than two orders of magnitude smaller than the 

photon lasing threshold in the same device. The nonlinearity in the output characteristics 

is accompanied by linewidth narrowing and a small blueshift of the emission peak. The 

measured population redistribution in momentum space and spatial coherence as a 

function of injection current confirm polariton condensation. The output polarization 

below and above threshold has also been characterized. The experimental results have 

been theoretically analyzed by modeling the kinetics of the system with a system of 

coupled stochastic differential equations. A maximum degree of linear polarization of ~ 

22% is observed in our measurements. It is envisaged that an array of the devices 

presented here will constitute a coherent linearly polarized ultraviolet light source with 

acceptable power and ultra-low threshold. 
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Chapter VI 

Small-signal Modulation and Role of Defects in Polariton Lasers 

 

6.1  Introduction 

 The characterization of optically or electrically pumped polariton lasers made 

with a variety of material systems has enabled a detailed study of the underlying physical 

processes such as polariton scattering and Bose-Einstein condensation [18-21], 

spontaneous symmetry breaking [22, 23] and superfluidity [24-26] in the condensate. 

However, all the results hitherto reported have been obtained under steady state 

conditions with continuous wave electrical biasing or optical excitation. The small-signal 

modulation bandwidth of a conventional semiconductor laser is intrinsically limited by 

gain compression and related hot carrier effects [173]. Since polariton lasers operate at 

much lower injection levels, it is expected that the intrinsic modulation bandwidth would 

not be similarly affected [148]. Other related effects such as chirp and self-pulsation 

should be small or non-existent. Dynamic characterization would also elucidate the 

similarities, or lack thereof, in terms of key lasing parameters such as differential gain 

and damping factor and the physical processes underlying them in a polariton laser. In 

this chapter, the small signal modulation characteristics of a GaN-based electrically 

pumped polariton laser operating at room temperature is discussed. Besides dynamic 
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characteristics, an area which has remained rather unexplored is the role of defects on the 

performance characteristics of polariton lasers. In this chapter, this attribute has been 

examined and elucidated in the context of dynamic condensation in both electric and 

optically pumped polariton lasers. 

6.2  Small-Signal Modulation of Polariton Lasers 

 In this section we discuss the small signal modulation characteristics of a GaN-

based electrically pumped polariton laser operating at room temperature. The 

experimental results have been analyzed with a theoretical model based on the Boltzmann 

kinetic equations and the agreement is very good. We have also investigated frequency 

chirping during such modulation. Gain compression phenomenon in a polariton laser is 

interpreted and a value is obtained for the gain compression factor. The details of 

material growth, device fabrication, strong-coupling and steady-state polariton lasing 

characteristics of the device under discussion have already been discussed in detail the 

previous chapter. 

6.2.1 Measurement and Analysis of Resonance Frequency 

 Frequency response of the polariton laser diode is estimated by time resolved 

electroluminescence measurements at different DC injection levels using the 

experimental setup described in section 3.5.7. The modulation response at various 

injection levels is shown in Fig. 6.1, where the inset shows the measured transient 

response of the polariton laser to a high speed switching pulse. A -3dB modulation 

bandwidth of 1.18 GHz was measured at an injection current density of 5.4 Jth and the 

resonance frequency, fr, at this injection level is 0.9 GHz. The solid curves in Fig. 6.1  
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Fig. 6.1 Frequency response derived from measured time resolved EL at different DC 

injection levels. The solid lines represent calculated frequency responses (Inset shows the 
measured transient response of the polariton laser to a switching pulse at J = 5.4Jth). 

 

represent the modulation response calculated in accordance with the transfer function, 

 
 

2

2
22 2 2

1
   

2
d

r

M f

f f f




    
 

, where d  is defined as the damping factor. The 

modulation response was derived by the fast Fourier transform (FFT) of the measured 

transient response. The RC effect of the microcavity diode is also taken into account in 

the modulation response. 

 Emission is stimulated in a conventional photon laser, whereas in the polariton 

laser polariton-polariton scattering is stimulated once the occupation is unity. The 

separation of stimulation and emission in a polariton laser leads to coherent emission 

without the requirement for population inversion. Iorsh et al. [148] have theoretically 
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investigated the small-signal modulation behavior of III-nitride electrically pumped 

polariton lasers. According to their theory, the resonance frequency of the modulation 

response, (pol)R , in the framework of the Boltzmann kinetic model is given by: 

                 2
3

(pol) 2R LP T
LP

b
n n


                    (6.1) 

where  LPn  is the steady-state polariton density at ||k ~ 0 , b is the polariton-polariton 

scattering rate beyond threshold and  LP  is the LP radiative lifetime. In equation 6.1, we 

have added the term Tn  as compared to the expression in [148]. This term accounts for 

the fraction of the polariton states which have been trapped in localized states and 

dislocations and do not contribute to the laser kinetics. Of course, the right hand-side of 

equation 6.1 should always be positive within the limits of validity of this model, i.e., 

conditions above threshold. Equation 6.1 is similar in nature to that for a photon laser, 

where 2
g p

R
ph

dg
v N

dn


  . Here gv  , /dg dn ,  Np and ph  are the photon group velocity, 

differential gain, photon density in the cavity and cavity photon lifetime, respectively. 

The exciton-exciton scattering rate is extracted from the simple three level rate equations 

of the polariton laser (see Appendix B for details). The value of b is obtained by setting 

the threshold current density to the experimentally observed value of 190 A/cm2. This 

gives us 12 10.7 10 psb    , which is very close to the value obtained from coupled 

semiclassical Boltzmann equation based analysis [148]. Figure 6.2 shows a plot of the 

measured resonance frequency plotted as a function of 1/2
LPn . Here the solid line  
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Fig. 6.2 Measured resonance frequency as function of 1/2

Lpn  along with calculated results 

obtained from equation (2). 
 

represents analysis of the data in accordance with equation 6.1. In this analysis, a value of 

1.1Tn   is obtained from the fitting of the experimental data to equation 6.1. 

6.2.2  Differential Gain and Gain Compression 

 Gain and differential gain are related to stimulated emission in a photon laser. 

Polariton lasing arises from stimulated polariton scattering with excitons, free carriers or 

phonons. This results in gain, which may be described by the negative imaginary part of 

the refractive index. Gergel' et al. have described gain induced by exciton Bose 

condensation and have derived the complex dielectric function explicitly [174]. 

Phenomenologically, therefore, a differential gain in a polariton laser may be expressed 

using the following relation: 



143 
 

        12
(pol)         [cm ]

g LP

dg b

dn v 
        (6.2) 

The important aspect of this equation is that the differential gain is large for a large 

scattering rate b and small LP  , i.e. a large coupling strength and a negative detuning. It 

may be noted that the small-signal modulation response depicted in Fig. 6.1 is damped. 

The damping factor γd can be derived from analysis of the modulation response. For large 

resonance frequency, the damping factor in a polariton laser is given by 2(pol)d R LP    

[148]. In a well-designed photon laser damping is generally a result of gain compression 

due to the accumulation of hot carriers in the active region and subsequent spectral and  

 
 

 
Fig. 6.3 Variation of the damping factor as a function of the square of the resonance 

frequency. 
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spatial hole burning. In a polariton laser, such damping can be caused by saturation of the 

oscillator strength by phase space filling [175] at high injection levels and the decrease of 

the Rabi oscillation frequency and the resultant exciton-photon coupling. Hence the 

damping factor can be expressed as, 

        2(pol)d rKf           (6.3) 

where 24 LPK   . Including gain compression, the K-factor of a polariton laser may 

phenomenologically be expressed as, 

            24        [s]
2 /

LP
LP

LP

K
b

 


 
  

  
       (6.4) 

where the gain compression factor LP  is dimensionless. The damping factor γd is plotted 

against the square of the resonance frequency in Fig. 6.3. From the slope of this plot, a 

value of K=0.52 ns is derived. The intrinsic -3 dB modulation bandwidth of the polariton 

laser, given by 3/2
3 2 /dBf K  , is determined to be 1.77 GHz. The differential gain is 

calculated to be 4 11.89 10 cm   from equation 6.2 using the values of b and  LP . 

Finally, the gain compression factor is derived from equation 6.4 to be 42.78 10LP   . 

In comparison, the differential gain and gain compression factor of GaN-based red-

emitting InGaN/GaN quantum dot lasers are reported to be 17 25.3 10 cm  and 

172.87 10 cm3, respectively [176]. The K-factor reported for a similar green emitting 

quantum dot laser is 1.24 ns and the corresponding gain compression factor and 

differential gain are 171.22 10 cm3 and 173 10 cm3 respectively [177]. 
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6.2.3  Frequency Chirping in a Polariton Laser 

 Frequency chirping in a semiconductor photon laser is generally a result of 

periodic modulation of the refractive index of the gain medium due to injection of 

carriers. Chirp is small in lasers having a large differential gain, such as quantum dot 

lasers [178], in which the carrier injection levels are small. In experiments, chirp 

manifests itself in the broadening of the emission spectra, from which a shift of the peak 

emission wavelength can be estimated as a function of modulation frequency. In this 

study, chirp of the polariton laser has been recorded as an average broadening of the 

coherent emission spectra under small signal (2 mV) pulsed bias condition above 

threshold (1.15 Jth) for different modulation frequencies. With an injection carrier density 

of ~1015 cm-3 in the polariton laser the estimated shift of the emission peak, Δλ~0.056 Å  

 
Fig. 6.4 Measured linewidth of LP emission peak as a function of the small signal 

modulating frequency, under a fixed DC bias of 1.15 Jth, 
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(see Appendix C for details). The data shown in Fig. 6.4 indicate that the expected near-

zero chirp is within the measurement error limits. Therefore because of the relatively 

small injection current density, frequency chirping is expected to be negligible in 

polariton lasers. This is advantageous for possible modulated polariton laser applications.  

6.2.4  Theoretical Limits of Frequency Response 

 In the theoretical work of Iorsh et al. [148], a -3dB modulation bandwidth of ~19 

GHz has been predicted for an electrically driven InGaN quantum well based polariton 

laser diode. In our work, we have instead employed a bulk GaN active region in order to 

overcome several challenges related to material growth and electronic properties. The 

highest -3dB modulation bandwidth measured in our device is ~1.2 GHz, whereas an  

 

 
Fig. 6.5 Calculated modulation frequencies for different polariton-polariton scattering 

rates and polariton lifetimes 
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intrinsic modulation bandwidth of ~1.8 GHz is phenomenologically predicted. It is 

expected that higher values of these parameters can be obtained by using a quantum well 

based active region.  

 In Fig. 6.5, resonance frequencies of the bulk-GaN polariton device is calculated 

using equation 6.1 for different polariton-polariton scattering rates. As can be seen, the 

resonance frequencies can be significantly increased by increasing the scattering rate. 

This can be attained by adjusting the cavity to exciton detuning of the microcavity, as 

discussed in [148]. Also according to equation 6.1, defects and dislocations in the active 

region of the polariton laser are important limiting factors of R  as they reduce the 

number of polaritons which can contribute to the lasing phenomenon. This is particularly 

important for materials having high dislocation densities, such as GaN. As shown in  

 
Fig. 6.6 Calculated resonance frequencies plotted as a function of the ground state LP 

occupancy for different values of nT . 
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Fig. 6.6, the resonance frequency value increases significantly with the decrease of nT. 

particularly in the low density regime. In addition to high frequency response, other 

performance characteristics of polariton lasers are significantly influence by the number 

of dislocations and defects in the active region of the device. This is discussed in detail in 

the next section. 

6.3  The Role of Defects in Polariton Lasers 

 In a semiconductor microcavity polariton laser, a macroscopic and coherent state 

of exciton-polaritons is generated by a dynamic condensation process, which involves 

polariton-phonon, polariton-carrier and polariton-polariton scattering, and finally 

stimulated polariton-polariton scattering. While the polariton lifetime has to be 

comparable to the scattering-mediated relaxation time of the polaritons for polariton 

lasing to occur, the system is in a metastable condensed state in which the polaritons are 

only in equilibrium among themselves and not with the lattice, which is at the ambient or 

measurement temperature [29, 179]. Thus the polariton temperature in the condensate at 

k||~0 in the lower polariton dispersion, TLP, is generally larger than Tlatt, the lattice 

temperature. This has been consistently the case for GaAs-based devices and GaN 

nanowire polariton lasers embedded in a dielectric microcavity [18, 20, 21, 57, 81, 120]. 

For a near-equilibrium Bose-Einstein condensate, which can be achieved by 

incorporating a potential trap in the microcavity [20, 21], a value of TLP very close to Tlatt 

can be attained. However, as shown in section 5.6.4, the  calculated TLP is significantly 

smaller than 300 K in our room temperature GaN-based polariton diode lasers. In this 

section, we elucidate the role of defects in lowering the effective polariton temperature in 

electrically and optically pumped polariton lasers. At first an outline of the experiment is 
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presented. Next, the observed results are discussed in detail. Finally, a simplified 

theoretical model is presented to explain the observed phenomenon. 

6.3.1  Outline of the Experiment 

 On a closer examination of the characteristics of the materials with which the 

polariton lasers are fabricated, it becomes apparent that there is a significant difference in 

the defect (dislocation) density in the active region, which originates from the 

dislocations present in the starting substrate material. In the case of GaAs, the defect 

density is ≤102 cm-2 and is considered to be zero for all practical purposes. However, in 

the case of GaN, the defect density in the active region ranges from 104-1010 cm-2, 

depending on whether it is epitaxially grown on GaN substrates, GaN-on-sapphire 

templates, silicon substrates, or SiC substrates. In the special case of GaN nanowires 

grown on silicon, the defect density is known to be very small (~102 -104 cm-2) because of 

the large surface-to-volume ratio of the nanowires [87, 180, 181].  

 In the present study, we have investigated the relation between the defect density 

in the active region and the value of TLP  as determined from analysis of measured 

polariton occupation in momentum space. We have analyzed results obtained from five 

different polariton lasers, three GaN-based and two GaAs-based. The GaN-based devices 

are operated at room temperature, while the GaAs-based devices show polariton lasing at 

lower temperatures. The GaAs-based device operated at T=155 K (denoted as GaAs 

Device 1) has been discussed in detail in chapter 4, whereas the device operated at 

cryogenic temperature (denoted as GaAs Device 2) was reported by our group in [81]. 

One of the GaN-based devices, which was reported by our group in [21], consists of a 
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single GaN nanowire embedded in a dielectric microcavity and is optically pumped. The 

two other GaN-based devices have bulk GaN in the active region and are electrically 

excited. One of these devices has already been discussed in detail in chapter 5 and it is 

denoted as GaN Device 2 henceforth. The other bulk GaN polariton diode laser, which is 

denoted here as GaN Device 1, is discussed in detail in the subsequent sections.  

6.3.2  Estimation of Dislocation Densities 

 The defect density in the substrate and active region of the GaN-based devices 

were determined from etch pit dislocation measurements [116, 117]. The sample is 

selectively etched with a eutectic mixture of molten bases (NaOH, KOH and MgO) at 

4500C under 50 mTorr ambient pressure for 15 minutes. Atomic force microscopy 

(AFM) measurements are subsequently performed on the etched samples to determine the 

dislocation density. GaN-based devices 1 and 2 were grown and fabricated on GaN-on-

sapphire templates obtained from different sources. The dislocation densities 

corresponding to substrates of these two devices are obtained to be 6.4 x 108 cm-2 and 7.2 

x 108 cm-2 respectively. The defect density in the active region of GaN device 1 was also 

measured, and a value of 6.1 x 108 cm-2 is obtained, which confirms that the defect 

density in the active region is almost identical to that in the starting substrate. The defect 

density in the single GaN nanowire was estimated from transmission electron microscopy 

(TEM) measurements [87, 181] and is very small (~102 -104 cm-2) because of radial strain 

relaxation and large surface-to-volume ratios. For the GaAs-based devices, the defect 

density is very small (less than 102 cm-2) because of the nearly lattice matched epitaxial 

growth and hence has been considered to be zero in this study. The dislocation densities 

of all the devices examined in this study are listed in Table 1. In what follows, the 
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microcavity, strong-coupling and polariton lasing characteristics of GaN Device 1 are 

described in detail. 

6.3.3  Heterostructure and Microcavity Diode 

 The edge-emitting electrically pumped GaN-based Device 1 was epitaxially 

grown, fabricated and characterized in the present study. As can be seen, the 

heterostructure of this device is identical to that of GaN Device 2. However it is 

important to note that the starting GaN-on-sapphire substrates of the two devices are 

different. Device fabrication is initiated by selective deposition of Ni-Au p-contact, 

followed by rapid thermal annealing at 550o C in an air ambient for two minutes. Next a 5 

μm x 40 μm cavity region is defined by standard UV lithography and high density plasma 

etching, down to the substrate through the In0.18Al0.82N layer. This is followed by plasma 

enhanced chemical vapor deposition of 1 μm SiO2 contact pads and subsequent 

deposition of Ti/Au interconnect metal for both p- and n-contacts using electron beam 

evaporation technique. The final dimensions of the cavity, 690 nm (5λ) length x 40 µm 

width are patterned by focused ion beam (FIB) etching. Six and seven pairs of SiO2/TiO2 

distributed Bragg reflector (DBR) mirrors are deposited on opposite sides of the FIB 

etched cavity by electron beam evaporation. The current voltage characteristics of the 

device shows a turn-on voltage of 4.6 V and a series resistance of 35 ohms.  

6.3.4  Strong-Coupling Characteristics 

 Angle-resolved electroluminescence (EL) of the polariton laser diode is measured 

at room temperature using a digital-readout angular mount which has an angular  
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(a) 

 

 
(b) 

 
Fig. 6.7 (a) Angle-resolved EL measured from the bulk-GaN, (b) corresponding polariton 

dispersion characteristics from 2x2 couple harmonic oscillator model. 
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precision of 0.1o. Distinct lower polariton (LP) peaks are observed below the exciton 

energy (EX = 3.395 eV) at all angles and the LP peaks tend to approach the exciton 

energy at higher angles (Fig. 6.7(a)). The corresponding polariton dispersion 

characteristics, which is calculated using 2x2 coupled harmonic oscillator model, is 

shown in Fig. 6.7(b). The cavity-to-exciton detuning δ and the Rabi splitting Ω are 

determined to be -13 meV and 33.9 meV, respectively. The strong-coupling regime of the 

other devices have been discussed  in chapter 4  and 5 and are reported in [21, 81]. 

6.3.5  Polariton Lasing Characteristics 

 The electroluminescence output of the device was measured as a function of 

continuous wave (CW) diode injection current in the direction normal to the distributed 

Bragg reflector (DBR) mirrors of the microcavity (zero angle). Two methods were used 

to record the light-current (L-I) characteristics. In the first, the integrated intensity of the 

polariton emission was plotted as function of forward bias current. In the second, the 

output power was directly measured with a power-meter. Both techniques yielded 

identical trends in the output characteristics. The variation of the integrated 

electroluminescence intensity with injection current density at room temperature is 

depicted in Fig. 6.8. A non-linear threshold is observed at a current density Jth=205 A/cm2 

which is similar to the value observed previously in chapter 5. The corresponding LP 

density at threshold is 3.03x1016 cm-3, calculated with an exciton lifetime of 0.71 ns. The 

non-linear region of the electroluminescence is characterized by a slope of ~3.3. The 

onset of threshold and non-linearity is accompanied by a sharp reduction of emission 

linewidth and a small blue-shift of the polariton emission (3.5 meV). The minimum  
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Fig. 6.8 Integrated EL intensity of the LP emission, measured LP emission linewidth and 

blueshift of LP emission peak as a function of injected current density. 
 

recorded linewidth is 2.96 meV, which corresponds to a LP coherence time of 1.4ps. The 

LP radiative lifetime is calculated using the relation 2

0/c LP kC   , where the cavity 

photon lifetime c  is estimated by microphotoluminescence measurements performed 

onto the microcavity. From the obtained quality factor of ~2090 and a cavity photon 

lifetime of ~0.408 ps, the LP lifetime is obtained to be  LP = 0.596 ps. 

6.3.6  Measurement and Analysis of LP Occupancy 

 The polariton occupation in momentum space at different injection levels has 

been measured by angle-resolved electroluminescence. Below threshold, the number of 

polaritons per k||-state is estimated from the LP electroluminescence integrated intensity 
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by taking into account the radiative lifetime. At and above threshold, the occupation is 

calculated from the output power measured with a power meter. Next the polariton 

occupation number per k|| state is calculated using the relation, 

2
|| ||( ) | ( ) |LP

LP
C

n k C k Mhc
I


 



 , the different terms of which are defined in section 3.5.3. 

The polariton distribution in momentum space as a function of injection is shown in Fig. 

6.9. A random and non-thermal LP occupation below threshold transforms to a peaked 

occupancy at k||~0 above threshold. Also, there is no evidence of a polariton relaxation 

bottleneck at any injection. The measured polariton occupation at threshold is analyzed 

by the Maxwell-Boltzmann distribution    0 ||exp (k ) 0 / k TB LPN N E E   . The  

 

 
Fig. 6.9 LP ground state occupancy for different k|| states obtained from angle-resolved 

EL at four different injections, along with Maxwell-Boltzmann distribution based 
analysis at J=Jth. 
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Fig. 6.10 Measured polariton occupation at J=Jth for GaN-based Device 1, GaN-based 
Device 2 and GaAs-based Device 1 along with the Maxwell-Boltzmann distribution 

based analysis. The error bars indicate experimental uncertainty, whereas the standard 
deviation of the temperature fits are shown in the legend. 

 

analysis, along with the measured data, for GaN Device 1 and GaN Device 2 are 

illustrated in Fig. 6.10. According to our analysis, the effective lower polariton 

temperature i.e. TLP of GaN Device 1 and GaN Device 2 are 270±8.9 K and 230±9.7 K 

respectively. It is to be noted again that the measurements for these two devices were 

done at 300 K. The standard deviation here is derived from analysis of the occupation 

data, whereas the error bars in Fig. 6.10 indicate the uncertainty in experimental data. 

Also shown for comparison in Fig. 6.10 is the measured LP occupation data for GaAs 

Device 1 at 155 K. From analysis of this data with the Maxwell-Boltzmann distribution, a 

value of TLP=190±30.5 K  is derived. The values of TLP and the measurement temperature  
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Table 6.1     Dislocation density, TLP and τLP values in polariton lasers 

Device 
 
 
 
 

Dislocation  
density, n2d  

(cm-2) 
 
 

Measurement 
(lattice) 

temperature 
(K) 

 

Polariton 
lifetime, τLP 

(ps) 
 
 

LP temperature from 
analysis of 

occupation data, (K) 
 
 

GaN Device 1 6.44±0.34 x 108 300 0.60 270±8.9 

GaN Device 2 7.22±0.34 x 108 300 0.58 230±9.7 

GaN Nanowire 
Device a) 

~ 102 - 103 

 
300 

 
0.55 

 
357 

 

GaAs Device 1 ~ 0 155 1.4 190±30.9 

GaAs Device 2 

b) ~ 0 30 4.2 57 
        
a) Ref. [21];  b) Ref. [81]  

(Tmeas) of these three devices are listed in Table 1. The values of Tmeas and TLP for the 

GaN nanowire and a surface-emitting InGaAs/GaAs quantum well polariton laser are 

also listed in the Table. Also the LP lifetimes of the considered devices are shown herein. 

6.3.7  Discussion of Results 

 Dislocations and defects manifest themselves in a manner similar to impurity 

levels in a semiconductor, in that they create defect-bound excitons. The optical binding 

energy of impurity-bound excitons in GaN is ~5-7 meV [182, 183]. To estimate the 

binding energy, temperature dependent photoluminescence (PL) measurements are 

performed on GaN epitaxial layer, grown on a GaN-on-sapphire template identical to 

GaN Device 1. As shown in Fig. 6.11, the integrated PL intensities obtained from the 

temperature dependent measurements are analyzed with the Arrhenius formula:  
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Fig. 6.11 Arrhenius plot of the integrated photoluminescence intensity as a function of 
reciprocal temperature of a GaN epitaxial layer, grown on a GaN-on-sapphire template, 

identical to GaN-based Device 1. 
 

31 21 1 exp exp expo

EE E
I I A B C

kT kT kT

                      
, where three non-radiative 

recombination channels having activation energies of E1, E2 and E3 are considered. As 

discussed in Ref. 184, E1 can be attributed to the binding energy of the excitons to defects 

and is found to be Δ=E1=6.5meV from our analysis. The formation of defect bound 

excitons will probably lower the polariton density and a fraction of the condensate. The 

thermal activation energy E2 is related to the free exciton luminescence quenching and is 

of the same order of the XA exciton binding energy [184]. The quenching of the 

luminescence represents the deactivation of the free exciton. The third channel having an 

activation energy of E3 may be related to some deep level trap, which are quite prevalent 

in GaN-based material systems [184, 185]. It is difficult to comment on the exact nature 
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of the deep level without doing measurements such as deep level transient spectroscopy. 

Studies show that a deep level with a relatively low activation energy is more likely to be 

related to linear line defects due to dangling bonds along dislocation cores [185]. 

 The observed lower polariton temperature in the devices with large defect 

densities can depend on the injection technique and polariton decay rates. With reference 

to the data listed in Table 1 and the description of the devices, it seems that the lowering 

of TLP is independent of the pumping scheme. The polariton lifetime is determined by the 

cavity detuning and cavity quality factor. In examining the polariton lifetimes, which will 

affect the kinetics for the different devices, it is apparent that there is no correlation 

between LP  and the observation of TLP smaller than Tlatt. The observed lowering of TLP 

in all probability originates from non-equilibrium effects originating from 

thermodynamic and kinetic factors and how the defects alter the coupling of excitons to 

cavity photons. A full Boltzmann equation solution of the problem, including the 

emission-capture processes at the defects, is required and this is beyond the scope of this 

thesis. Instead, a simplified theoretical model based on the assumption of thermal 

equilibrium is presented here which can phenomenologically describe the observed 

lowering of the polariton temperature. 

6.3.8  Simplified Theoretical Modeling 

 In this simplified model [186], a bulk (three dimensional) semiconductor having a 

defect density Tn  has been assumed. It is also assumed that the polariton gas may be 

described by the Bose-Einstein statistics. The chemical potential in this case would be 

pinned to the energy of the polariton condensate which is assumed to be independent on 
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the concentration of traps. We are interested in the high-energy tail of the polariton 

distribution that can be conveniently approximated by the Boltzmann exponential tail. 

We realize that the thermal equilibrium approximation is never perfectly valid, strictly 

speaking, but it is convenient as it allows introducing the effective polariton temperature 

TLP  and it is usually rather accurate in polariton lasers (see e.g. Refs. 18-20). The 

concentration of trapped exciton-polaritons Tn  can be linked to the effective polariton 

temperature TLP using the Boltzmann statistics as,  

         
3/2

3/2

2

1

2T B LP

m
n n k T


    
 

      (6.5) 

where Bk  is the Boltzmann constant. Excitons can be trapped to shallow defects in a 

disordered semiconductor at low temperatures which is the most likely mechanism of 

polariton trapping in our system. Tn  is linked to the defects concentration via the thermal 

activation law: 

      /1 B LPk T
T Dn n e        (6.6) 

Here lattT  is the lattice temperature. Note, that the exciton trapping probability depends on 

the lattice temperature (not on ) because the activation of trapped quasiparticles goes 

through their interaction with acoustic phonons. Equations 6.5 and 6.6 link the effective 

temperature of polaritons to the lattice temperature and concentration of polaritons. The 

next step is to exclude the concentration of polaritons. In order to do so, we assume that if 

there are no defects, the effective polariton temperature is equal to the lattice temperature. 

This assumption can only be correct in the case of full thermalization of the polariton gas, 
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that may or may not occur in the polariton lasing regime. We consider it as a useful 

limiting case that allows us to estimate the effective temperature lowering due to the 

trapping of a part of polaritons in defects. Within this approximation, 

         
3/2

3/2

2

1

2 B latt

m
n k T


   
 

                 (6.7) 

For the case of one-dimensional defects such as dislocations, the volume defect density 

Dn   can be expressed via the two-dimensional defect density 2dn  as 3/ 2
2( )D dnn  . 

Finally, the effective temperature TLP  can be expressed through the lattice temperature 

lattT  using Eqs. 6.5-6.7 as: 

   

2/33/22
21 2 1 expD

B Lp B latt
B latt B latt

n
k T k T

mk T k T

                    


   (6.8) 

Remarkably, Eq. (4) predicts LP lattT T , while of course for a kinetically driven 

condensation process, TLP will be larger than Tlatt. The fact that LP lattT T  as predicted by 

Eq. 6.8, is indeed observed in the  two bulk GaN-based polariton lasers, whereas TLP > 

Tlatt is observed for the GaN nanowire laser and the two GaAs-based lasers listed in Table 

1. Figure 6.12(a) shows a plot of the effective temperature TLP versus Tlatt for the two 

GaN devices, where the effective mass has been extracted from the angle dependent 

electroluminescence data and the value of Δ=6.5 meV is assumed. It can be seen that for 

the constant lattice temperature of 300K, the effective polariton temperature is lower, as 

derived from analysis of the occupation data of Fig.6.10. Thus it is essential to take into  
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(a) 

 
(b) 

Fig. 6.12 (a) A plot of the effective LP temperature (TLP) as a function of lattice 
temperature (Tlatt) for the two GaN-based devices, (b) A 3D plot of effective LP 

temperature, lattice temperature and the 2D defect density. 
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account the presence of impurities and defects in the active region of the polariton laser 

to accurately characterize the polariton condensate. Figure 6.12(b) shows a three- 

dimensional plot with n2d, TLP  and Tlatt as variables. It is seen that the lowering of TLP is 

maximum at low lattice temperatures and high defect densities. 

6.4 Summary 

 In conclusion, we have investigated the small-signal electrical modulation 

characteristics of a polariton laser at room temperature. The variation of the resonance 

frequency, derived from the measured modulation response, with polariton occupation in 

the ground state has been analyzed with a rate equation model from which the polariton-

polariton scattering rate is derived. The linewidth of coherent emission beyond threshold 

exhibits negligible broadening with high frequency modulation, which indicates that 

chirp is negligible. Differential gain and gain compression in a polariton laser are also 

phenomenologically defined, calculated and interpreted in terms of lasing parameters. We 

also discuss the role of defects in optically and electrically pumped polariton lasers. 

Though the study focuses mostly on dynamic condensation and effective temperature of 

the lower polariton condensate, it is believed that the presence of defects will affect other 

characteristics of polariton lasers as well, for e.g. the small signal modulation response, 

as has been observed in our study. Higher resonance frequencies and modulation 

bandwidths should be attained in polariton devices made with defect-free material. 
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Chapter VII 

Optical Amplification in the Strong-Coupling Regime 

 

7.1  Introduction 

 Optical amplifiers are deemed to be one of the most important components in 

modern optical communication networks [187-191]. As data transmitted over optical 

fibers are susceptible to signal attenuation and dispersion, it is imperative to have 

regenerators or optical amplifiers in the communication link for reliable transfer of 

information. The process of regeneration involves photo-detection, electrical signal 

amplification and retransmission. On the other hand, optical amplification offers a 

simplified means of in-line transmission of the optical signal without any optoelectronic 

conversion. Optical amplifiers are generally categorized as optical fiber amplifiers 

(OFAs) and semiconductor optical amplifiers (SOAs) [190]. While OFAs, such as 

Erbium doped fiber amplifiers (EDFAs), have dominated optical communication 

networks, recent development in semiconductor materials growth and device fabrication 

technologies have generated renewed interests in SOAs for short- and long-haul optical 

communications. Besides their realization as basic signal amplifiers, they can also be 

employed as optical switch, modulator, wavelength converter or other functional 

elements in optical communication networks and processing systems [187-191]. 
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 Conventional SOAs, which are designed and implemented based on the principle 

of stimulated emission in the gain medium, invariably operate in the weak-coupling 

regime [190, 191]. However, a recent theoretical study by Solnyshkov et al. shows that 

optical amplification in a semiconductor gain medium can be realized by means of 

stimulated scattering as well, provided the device is operating in the strong-coupling 

regime [192]. In this chapter we report our experimental studies towards the possible 

realization of a bulk GaN-based SOA, which is expected to operate in the strong-coupling 

regime. Though this material system does not allow amplification in the 

telecommunication wavelength (1.3 or 1.5 µm), it holds promise for short-range 

amplifications in areas related to biomedical and sensors, optoelectronic integrated 

circuits (OEICs) and all-optical computing and quantum information processing systems.   

7.2  Theory and Background 

 Experimental realization of a SOA based on guided polaritons in a bulk-GaN 

waveguide is intricately related to the theory and concept of bulk polaritons. In this 

section, the theory of bulk polaritons and its major differences with microcavity 

polaritons is presented. Next, the underlying theory behind optical amplification in the 

strong-coupling regime is elucidated based on the framework presented in [192]. 

7.2.1  Theory of Bulk Polaritons 

 The concept of bulk polaritons was first proposed in the early works of Huang, 

Pekar and Hopfield in the 1950s  [44, 45, 193]. Huang first observed that the nature of 

light can depart from that of an electromagnetic wave and assume a more mechanical 

nature because of interaction between the photon field and ionic-polarizability of the 
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solid. Later Hopfield defined this entity as a polariton and suggested that in an infinite 

crystal (which can be a bulk semiconductor), the exciton is strongly coupled to a single 

photon mode because of momentum selection rules arising from translational invariance 

of the system [45]. This coupled mode, which is defined as a polariton, is in fact the true 

propagating mode in the system. In this picture, the one-to-one coupling between 

excitons and photons having same momenta results in the emergence of two normal 

modes, which are the so called upper and lower polaritons. In analogy with two linearly 

coupled harmonic oscillators, the bulk polariton dispersion characteristics can be 

expressed using the following relation: 

           
2

2

, 2 2
X X

LP UP

E E E E
E

         
   

       (7.1) 

Here Ex and E are the energies of the coupled exciton and photon and   is the coupling 

strength, as described in our discussion of microcavity polaritons. Based on this equation, 

the UP and LP dispersion characteristics of bulk polaritons in a GaN-based system is 

shown in Fig. 7.1. A distinct anticrossing exists between the two polariton modes, in the 

vicinity of which the polaritons are a mixture of the constituent exciton and photon 

modes. However, far from this anticrossing or the bottleneck region, the lower and upper 

polaritons posses characteristics similar to those of uncoupled excitons (at high values of 

k) and photons (at small values of k). Because of the absence of a k=0 state in this 

dispersion relation, bulk polaritons tend to accumulate more near the bottleneck region 

[96] and light is emitted at the corresponding energy and momentum upon their 

spontaneous radiative recombination. For this reason, due consideration of polaritonic 
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Fig. 7.1 Bulk polariton dispersion characteristics in GaN; inset shows the dispersion over 
a larger range of the wave vector 

effects is necessary in the theoretical analysis of photoluminescence measurements 

performed on bulk semiconductors. 

7.2.2  Experimental Studies on Bulk Polaritons 

 Experimental investigation of bulk polaritons has remained limited to the case of 

optically excited systems. Ever since the proposition by Hopfield, numerous experiments 

have been performed to study bulk polaritons in direct bandgap semiconductors and 

halides. The first experimental observation of bulk polaritons was reported by Frohlic et 

al. [46] in CuCl. Weisbuch et al. reported the first experimental study of bulk polaritons 

in semiconductors, employing high purity GaAs epitaxial layers [47]. Since then bulk 

polaritonic effects have been observed and studied using resonant and non-resonant PL 
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spectroscopy in GaAs, CdS, ZnO, ZnTe and ZnSe material systems [48, 194-196]. In 

bulk GaN semiconductor, which is the material used in this study, polaritonic effects 

have been studied by photoluminescence and photoreflectance measurements at low 

temperatures. However, because bulk polaritons are stationary states which transform 

into photons only at the crystal surface, their experimental detection and theoretical 

interpretation is found to be rather complicated compared to the case of microcavity 

polaritons. In what follows, we describe the basic differences between bulk and 

microcavity polaritons.  

7.2.3  Bulk vs. Microcavity Polaritons 

 A generalized dispersion characteristics of the bulk polaritons, along with that of 

a 2D microcavity polariton, is shown in Fig. 7.2. An important difference between bulk 

and microcavity polariton is that whereas microcavity polaritons have reduced 

dimensionalities of wavevector k||, bulk polaritons have the same 3D wavevectors as their 

strongly coupled excitons and photons. Similar to the case of microcavity polaritons, the 

LP and UP branches of bulk polaritons are exciton- and photon-like respectively at high 

k||. However, whereas microcavity polaritons have well defined minima at k||~0, the k=0 

state of the bulk polariton is non-existent because a photon with k=0 does not exist in the 

strict sense. This means that a dynamic condensation process is prohibited in the bulk 

polariton picture, contrary to the case of microcavity polariton. Also, whereas both the 

UP and LP branches of the microcavity polaritons reside within the light cone (which is 

defined by the dispersion of the free-space photon), the LP branch of the bulk polariton 

lies outside. Consequently bulk polaritons from the LP branch are not out-coupled to free 

space and hence are not detectable in experiments. Moreover, because of their 3D wave- 
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Fig. 7.2 A comparison between the dispersion relation of bulk and 2D microcavity 
polaritons. 

vectors, bulk-polaritons have large phase and kinetic energy and hence they are very 

susceptible to dephasing channels in the crystal, such as defects, impurities or photonic 

disorder. Bulk polariton based systems also offer less flexibility than microcavity-based 

environments because in the bulk polariton case, design parameters like dimensionality of 

the emitter, number of quantum wells, cavity length etc. are non-existent. For these 

reasons, experimental detection and characterization of bulk polaritons are more difficult 

than their microcavity-polariton counterparts. 

7.2.4  Theory of SOA in the Strong-Coupling Regime 

 While conventional SOAs work on the principle of stimulated emission, a novel 

scheme of optical amplification has been proposed by Solnyshkov et al. [192] based on 

stimulated scattering of guided polariton modes. The suggested gain medium in this  
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comprising of bulk GaN or ZnO as the waveguide and gain region is shown in Fig. 

7.3(a). Assuming single mode propagation, the polariton dispersion for this waveguide 

can be obtained by combining the eigen-value equation of a symmetric dielectric slab 

waveguide and the bulk polariton dispersion relation (Eqn. 7.1). Figure 7.3(b) shows the 

lower polariton dispersion for a bulk-GaN waveguide. Electrical or optical excitation of 

this device creates an exciton reservoir, which enables relaxation of exciton-polaritons 

from the reservoir down to the guided mode region, i.e. towards smaller wavevector of 

the polariton dispersion (Fig. 7.3(b)). The efficiency of this process is strongly dependent 

on XE E E   , which is the energy difference between the guided mode and the exciton 

state. Using semi-classical Boltzmann equation based analysis it can be shown that for an 

optimal value of E , the exciton reservoir results stimulated scattering to the guided 

polariton mode and amplifies the propagating signal, provided that losses are overcome 

in the medium. Whereas in a conventional SOA an electron and a hole recombine to 

create a photon, in the strongly-coupled SOA, two excitons in the reservoir scatter with 

each other for one of them to relax down to the guided exciton-polariton mode and 

amplify the propagating signal. These scattering rates are in the order of ps-1, which is 

fast enough to amplify the signal in spite of the high propagation velocity (~ 107 m/s) of 

the guided mode. 

 According to the theoretical calculations reported by Solnyshkov et al. [192], the 

guided polariton mode should be ~35 meV below the exciton energy in a bulk GaN 

waveguide for signal amplification to occur. Besides E , the incident signal intensity is 

also important in this theoretical framework. The signal intensity should be sufficiently 

low as otherwise the exciton reservoir gets depleted at high signal intensities. Depending 
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electrical measurements in this study. Four other devices having L = 600, 700, 800 and 

900 μm were fabricated to measure the waveguide loss. The widths of all the devices are 

kept fixed at W=50 um. To facilitate probing of the devices with smaller dimensions, 

metal interconnects have been formed onto SiO2 contact pads. The p- and n-contacts of 

the devices are realized with Ni/Au (5nm/200nm) and Ti/Au (20nm/200nm) ohmic 

contacts respectively. After initial pattering and reactive ion etching, both the facets of 

the device are etched down by focused ion beam milling (FIB) to define the length. A 

subsequent FIB milling has been performed at low injection to form optically smooth 

surfaces. Finally, using e-beam evaporation technique, SiO2 is deposited onto both the 

FIB etched facets to form antireflection coatings. The optimal thickness of the deposited 

SiO2 is calibrated using spectroscopic ellipsometry prior to deposition onto the facets. 

7.4  Measurements and Results 

 The material characteristics of the bulk-GaN active region were studied by 

temperature dependent and time-resolved photoluminescence measurements and have 

already been described in chapter 6. Waveguide loss, electroluminescence and time-

integrated intensity measurements have been performed on the fabricated devices to 

study possible optical amplification effects. These measurements and the obtained results 

are discussed as follows. 

7.4.1  Diode Characteristics and Waveguide Loss Measurements 

 The diode current-voltage (I-V) characteristics, measured at room temperature, 

(Fig. 7.5(a)) shows a turn-on voltage of ~3 V and a minimum reverse leakage current of ~ 

1nA. The series resistance is estimated to be ~114 ohms at a forward bias of 4 volts. In 

order to characterize the waveguide, the propagation loss, which includes the scattering 
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(a) 
 

 
(b) 

 
Fig. 7.5 (a) Current-voltage characteristics of the bulk GaN diode; inset shows the I-V 

characteristics in logscale, (b) output intensity of the waveguide as a function of 
waveguide length. 
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loss and substrate leakage, is obtained from transmission measurements on devices 

having different lengths. In this measurement, the waveguides are end-fired with a 540 

nm He:Ne laser focused to a 10 μm2 spot and the output intensity is measured with a 

charged coupled device (CCD) detector. The measured output intensity as a function of 

guide length is plotted in Fig. 7.5(b), from which a loss of γ = 3.52 dB/cm is derived. The 

insertion loss is estimated to be -0.27 dB/cm. 

7.4.2  Measurement System and Ti:Sapphire Laser Calibration 

 The experimental arrangement for the measurements performed in this study is 

schematically shown in Fig. 7.6. The light intended to be amplified by the device is 

generated using a tunable, frequency doubled Ti:Sapphire laser. The resonator cavity of 

this laser contains a birefringent Ti:Sapphire rod, along with adjustable optical 

components. Electronic driver circuits and chiller mediated temperature controller have 

been utilized to minimize timing jitter and to stabilize the laser output. Nevertheless, to 

take into account any temporal fluctuation, the frequency doubled output of the laser is 

transmitted through a beam splitter into a multi-mode fiber and monitored using a UV-

spectrometer. The other output from the beam splitter is collected using a single mode 

fiber and incident on one facet of the device, as shown in the schematic diagram of Fig. 

7.6. The power of the incident light is adjusted using a neutral density filter to ensure that 

the signal intensity is low enough for the device to amplify. At the detection end, light is 

collected from the other facet of the device using a multi-mode fiber, which is coupled to 

a photomultiplier tube (PMT) and a triple grating monochromator having a minimum 

spectral resolution of 0.023 nm. The device is electrically biased with a continuous wave 

DC signal at room temperature. The measurement setup has been calibrated to take into  
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Fig. 7.6 A schematic diagram of the experimental setup used in this study. 

 
account fiber losses and fiber-coupling losses. 

 The photon energy incident onto the waveguide is varied by tuning the slits and 

prism sequence of the  Ti: Sapphire laser. Fig. 7.7(a) shows frequency doubled outputs of 

the Ti:Sapphire laser obtained under different positions of the slit and prism sequence. 

The energy reference of Fig. 7.7(b) is the GaN exciton energy of 3.418 eV, as obtained 

from room temperature photoluminescence measurements (Fig. 7.7(b)). The laser 

wavelength has been varied to obtain the optimal exciton to photon energy difference

XE E E   , as reported in [192]. The linewidth of the incident laser beam is ~0.865 nm 

(7.81 meV) and the lineshape is near Gaussian. Two techniques have been employed to 

study possible amplification effects. In the first, electroluminescence spectra, along with 

the laser beam being incident onto the device, is recorded using the PMT and the 

monochromator over a range of injection current densities and incident photon energies. 

In the second technique, output light from the device facet is spectrally filtered using the 

monochromator and time integrated luminescence is recorded using the PMT. The 

current densities and photon energies have been varied in this scheme as well to obtain 

the necessary scattering rate required for amplification of the guided polariton mode. 
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(a) 

 
(b) 

Fig. 7.7 (a) Frequency doubled outputs of the tunable Ti:Sapphire laser for different 
positions of the laser's slit and prism sequence, (b) frequency doubled output of the laser, 

where the GaN-exciton energy is taken as the reference. 
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7.4.3  Electroluminescence Measurements 

 Electroluminescence (EL) spectra measured from the device under different cw 

electrical injections are shown in Fig. 7.8. The output light is collected normal to the AR-

coated facet using a multimode optical fiber and recorded using a PMT coupled to the 

monochromator. The maximum current bias applied to the 400 x 50 µm2 device is 30 

mA, whereas for the 80 x 50 µm2 device it is 6 mA. These values of the current bias 

correspond to a current density of 150 A/cm2 and a carrier density of ~1.8 x 1016 cm-2. 

Hence the injected carrier density is lower than the threshold carrier densities obtained 

for a electrically pumped GaN-based polariton laser having identical active region. This 

is one of the necessary conditions for optical amplification effect in this device [192], 

similar to the case of conventional SOAs, which are operated below the photon lasing 

threshold. 

 

 
Fig. 7.8  EL spectra measured in a direction normal to the AR-coated facet of the device. 
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Figure 7.9  Recorded EL spectra with the laser tuned to 372 nm and the device biased at 

different injection current densities. 
 
 

 Next, using identical optical alignment and detection settings, the Ti:Sapphire 

laser output is made incident normal to one facet of the amplifier device using a single 

mode UV optical fiber and light output from the other facet of the amplifier is recorded. 

By tuning the Ti: Sapphire laser, the incident photon energy is varied to obtain the 

optimal E  values for possible amplification effect. The recorded EL spectra with the 

laser tuned to 372 nm and the device biased at different injection current densities are 

shown in Fig. 7.9. As can be seen, both the GaN and the laser peak can be resolved in the 

EL spectra. The previously recorded EL spectra with the laser beam off (Fig. 7.8) serves 

as the baseline to analyze possible amplification effects. However no amplification of the 

incident light is observed upon comparison between the two sets of EL  spectra. 
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7.4.4  Time-Integrated Intensity Measurements 

 In this scheme, the luminescence is spectrally filtered using a monochromator 

with a minimum spectral resolution of 0.03 nm, and then recorded using a high gain PMT 

with an integration time of 300 ms. At first, the laser beam is incident onto one facet of 

the device and the luminescence intensity I1 is recorded from the other facet without any 

applied electrical bias. Next, using identical measurement setup, luminescence intensity 

I2 from the output facet is recorded under different forward bias currents. In this 

measurement, the current bias is gradually increased from 2 mA to 6 mA and each 

current bias is maintained for ~10s, which is significantly larger than the PMT’s signal 

integration time of 300 ms. Hence, an amplification effect should appear as an increase of 

the output luminescence at some current bias of the device. However, it is important to  

 
Fig. 7.10 Measured time-integrated intensities I2 and I3 while the device’s current bias is 

incremented approximately every 10s 
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Fig. 7.11 Measured time-integrated intensities I1 and I2-I3 plotted as a function of time 

 
 

note that because of the close proximity between EX and Eph, the recorded intensity I2 

comprises of both the EL emission and the guided photon counts. Hence for comparison, 

under same optical alignment and forward bias currents, device EL intensity I3 is 

recorded without any laser beam being incident onto the facet.  

 Figures 7.10 and 7.11 show the measured intensities I1, I2 and I3 for an incident 

beam, λ=367 nm, which corresponds to 40E   meV.  It can be shown that I2-I3 , which 

is plotted in Fig. 7.11, takes into account the waveguide loss, fiber losses and the fiber 

coupling losses. Therefore, an approximate estimate of signal amplification can be 

obtained from the ratio (I2-I3)/I1, which we define here as amplification factor. As shown 

in Fig. 7.12(a), at all injection levels,  3 2 1/ 1I I I  , within the thermal noise of the 

PMT sensitivity. This corresponds to an amplification 0 dB.  In our measurement, the  
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(a)  

 
(b) 

Fig. 7.12 (a) The amplification factor plotted as a function of time corresponding to the 
results shown in Fig. 7.15, (b) amplification factor as a function of injection current for 

different values of ΔE 
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incident laser peak emission energy has been varied between 365 and 372 nm, which 

corresponds to E  values of 0 and -100 meV respectively. The amplification factor is 

plotted as a function of the incident peak emission energy in Fig. 7.12(b) for different 

applied current biases. It is obvious that the amplification ratio is ~1 or slightly less over 

the entire range. 

 

7.5  Discussions and Conclusion 

 Based on the experimental results of the present study, we cannot confirm the 

observation of optical amplification of the guided polariton mode in our bulk GaN-based 

device. Several challenges and limitations can be associated with this observation. As 

discussed earlier, optical amplification in the current scheme is closely related to the bulk 

polariton modes, which have been observed in GaN only at low temperatures, in high 

quality MBE or HVPE grown epitaxial layers. Because of the nature of the bulk-polariton 

dispersion characteristics (Fig. 7.1), it is expected that only excitons with large wave 

vectors may scatter to the guided polariton mode to fulfill momentum conservation 

requirement. This indicates that the scattering rate may be insufficient for signal 

amplification to take place. It is also noteworthy that the dispersion characteristics of the 

polariton in this scheme is strongly non-linear at the exciton-to-waveguide mode 

anticrossing. This may cause the guided polariton mode to get distorted while 

propagating through the waveguide. Consequently, instead of an amplified signal, a 

spread in time low amplitude signal may be observed at the output. Time evolution of the 

propagating mode can provide further insight in this regard. The defects and dislocations 

appearing in the active region of the material system may also preclude the presence of 
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strong coupling, and thereby annul possible amplification effects. This problem is 

particularly severe for GaN-based systems which have dislocation densities of 106-108 in 

the starting substrate. In a separate experiment discussed in the previous chapter we have 

shown that excitons bound to defects do not contribute to the strong-coupling 

phenomenon. Finally, while GaN has high exciton binding energy and oscillator strength, 

the values of these parameters are still smaller than those of ZnO, which is one of the 

proposed material systems in the theoretical study [192]. Hence it remains to be seen 

whether the optical amplification effect can be observed in a bulk ZnO based system 

under electrical or optical excitation. 
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Chapter VIII 

Summary and Suggestions for Future Works 

 

 

8.1  Summary of Present Work 

 The work presented in this thesis concentrated on the development and 

understanding of electrically injected exciton polariton lasers. To this end, we have 

designed, epitaxially grown, fabricated and characterized GaAs- and GaN-based 

polariton lasers which can operate at high temperature and room temperature 

respectively. Besides steady state characterization, small-signal modulation response of 

polariton laser diodes have been studied experimentally in this work. We have also 

elucidated the role of defects on the performance characteristics of polariton lasers, 

particularly its influence on lowering the effective polariton temperature in the non-

equilibrium polariton condensate. Finally design, growth, fabrication and characterization 

of a bulk GaN based semiconductor optical amplifier has been conducted and the 

challenges associated with its realization are discussed from an experimental perspective. 

In what follows, the discourse appearing in different chapters are presented in brief. 

 A theoretical overview of exciton-polaritons in semiconductor microcavities is 

presented in Chapter I. It is shown that the exciton binding energy can be significantly 
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enhanced by reducing the dimensionality of excitons in semiconductors. The cavity 

photon characteristics on the other hand is strongly dependent on the quality of the 

microcavity mirrors. It has been theoretically shown that high quality mirrors can be 

realized using DBRs, where the principle of interference is employed. Next the strong-

coupling phenomenon is explained in the context of exciton-polaritons in a 

semiconductor microcavity. The polariton dispersion characteristics have been derived 

and explained using the 2x2 coupled harmonic oscillator model. Also the nature of 2D, 

1D and 0D polaritons are discussed. Finally, the underlying principles of polariton lasing 

is discussed. It is shown that in a polariton laser, the separation of stimulation and 

absorption eliminates the requirement of population inversion for light amplification. 

Moreover, the low polariton effective mass significantly reduces the critical density for 

dynamic condensation. Altogether, it should operate as an ultra-low threshold, 

inversionless coherent emitter. 

 The theoretical framework provided in chapter 2 is followed by the experimental 

techniques used in this work. Different semiconductors and dielectric materials with 

respect to the experimental realization of polariton lasers are discussed. Wide bandgap 

semiconductors are deemed to be more suitable for realizing high temperature polariton 

lasers because of their high exciton binding energies. However, there are several 

challenges associated with the growth and fabrication of conventional surface emitting 

microcavity diodes using these materials. To this end, we have presented a novel edge 

emitting geometry, where the cavity is defined by focused ion beam milling and e-beam 

evaporation technique. The material and device characterization  techniques used in this 

work are also discussed. These techniques are necessary to ascertain, as well as to 
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characterize, the strong-coupling and polariton lasing phenomena in the final fabricated 

devices. 

 Based on the edge emitting geometry discussed in chapter 2, we present in chapter 

3 the experimental realization of a GaAs-based high temperature polariton diode laser 

which operates at 155 K. Here we first discuss how the exciton binding energy can be 

increased in a SQW GaAs-based system by increasing the Al composition and reducing 

the well width. The excitonic transition characteristics of the MBE grown heterostructure 

shows an exciton binding energy of 15.8 meV, as obtained from temperature dependent 

PL measurements. The strong-coupling regime of the fabricated low series-resistance 

microcavity diode is characterized by a Rabi splitting of 15 meV, whereas the polariton 

lasing is characterized by a threshold current density of 90 A/cm2. Photon lasing is 

observed from the same device at ~17 times higher injection density. Momentum space 

distribution and spatial coherence have also been confirmed in the polariton lasing 

regime. We also present in this chapter our study towards realizing a room temperature 

GaAs-based polariton diode laser by further increasing the Al composition in the active 

region. However, photoluminescence studies performed on the MBE grown 

heterostructure shows the dominance of bound excitonic states, which are not conducive 

to the realization light-matter coupling. 

 In chapter 5, we present the epitaxial growth, fabrication and characterization of 

an electrically pumped polariton laser which operates at room temperature. This device 

has a similar edge emitting geometry as the previously discussed GaAs-based device, 

however the active region here is bulk GaN. The heterostructure used in this work is 

grown by plasma assisted molecular beam epitaxy and the material is characterized by 
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AFM, XRD and photoluminescence measurements. Strong coupling and polariton lasing 

characteristics of several microcavity diodes are presented in this chapter. The non-linear 

threshold corresponding to polariton lasing in these devices is within a range of 125- 375 

A/cm2. At more than two orders of magnitude higher injection current densities, 

conventional photon lasing is also observed. Output polarization characteristics of the 

bulk GaN microcavity diode polariton laser are also measured and theoretically modeled 

in this work. A maximum 22% linear degree of polarization is obtained from these bulk 

GaN-based devices. It is envisaged that an array of these devices presented here will 

constitute a coherent linearly polarized ultraviolet light source with acceptable power. 

 In chapter 6, we present the small-signal modulation response of the room 

temperature polariton diode laser, the steady state characteristics of which were discussed 

in chapter 5. Based on the high frequency transient response of this electrically pumped 

device, we derive its modulation bandwidth, resonance frequencies and damping factor. 

A maximum -3dB modulation bandwidth of 1.18 GHz is measured, whereas the intrinsic 

bandwidth is estimated to be 1.8 GHz. Gain compression and differential gain are also 

phenomenologically described and formulated for a polariton device. Based on 

Boltzmann kinetic equations, we theoretically model the resonance frequency of the 

device. Interestingly, the role of defects needs to be taken into account in this model to 

describe the experimental observation. In this chapter, we further discuss the role of 

defects in the context of dynamic condensation and the effective temperature of the non-

equilibrium lower polariton condensate. A simplified theoretical model is presented here 

as well to further illustrate the observed phenomena. 
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 In chapter 7, we present our experimental study on the prospect of a bulk GaN 

based optical amplifier operating in the strong coupling regime. The underlying theory of 

the work is first presented in brief. The heterostructure of the device studied here is 

identical to those of the polariton laser diodes presented in the previous chapter. However 

this device does not have a microcavity as the dynamics here are based on bulk polariton 

modes. Our experimental study does not exhibit any clear indication of optical 

amplification of the guided polariton mode. Based on the observed results, we discuss the 

challenges associated with the experimental realization of such a device. 

8.2  Suggestions for Future Work 

8.2.1  Quantum Well-based Room Temperature Polariton Laser Diode 

 Though experimental realization of an electrically pumped polariton laser 

operating at room temperature is a significant milestone, there is ample scope for 

improvement of both the static and dynamic characteristics of the device. It is expected 

that better non-linearity, lower lasing threshold, larger modulation bandwidth, and 

possibly higher output power may be obtained if the active region of the reported 

microcavity diode is replaced with quantum well(s). Polariton lasing in a GaN-based 

system containing quantum well(s) active region has only been demonstrated using 

optical excitation. To this end, we suggest an InGaN/AlGaN quantum well-based 

electrically pumped polariton laser having the same edge-emitting structure as the bulk 

GaN polariton laser diode presented in this work. A schematic of the possible 

heterostructure is shown in Fig. 8.1. The high exciton binding energy of the system 

should enable room temperature polariton lasing. Also lower In composition in the well 
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Fig. 8.1 Schematic representation of the proposed GaN/AlGaN quantum well based 
polariton diode laser 

material should minimize alloy broadening and clustering effects [197]. The barrier and 

cladding layers are designed to provide adequate electrical and optical confinements.

 To study the quantum well active region, the heterostructure shown in Fig. 8.1 

was grown up to the top Al0.09Ga0.91N barrier layer using PAMBE. Photoluminescence 

measurements were performed by exciting the sample with a 325 nm He:Cd laser at low 

and room temperature. Figure 8.2 shows the excitation dependent PL spectra measured at 

T=20K. The low energy shoulder may be associated with the dopant bound excitonic 

transition. The higher energy shoulders on the other hand are most likely the XA and XB 

free excitonic transitions, as have been observed in the measured PL spectra of the bulk-

GaN active regions shown in chapter 5. The excitonic nature of these shoulders were 

confirmed by the nearly linear dependence of their integrated intensities on the excitation 

density and also the peak invariance with the change of excitation density. At room  
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Fig. 8.2 Excitation dependent PL intensities of the InGaN/GaN multiple quantum-well 
heterostructure at T=30 K 

 

temperature, these distinct transitions merge to show a broad peak at ~3.47 eV. It is 

expected that further optimization of the material growth will result stronger excitonic 

transition, thereby facilitating the realization of a quantum well based polariton laser 

diode which can operate at room temperature. 

8.2.2  Electrical Exciton-Polariton Spin Switch 

 Exciton-polaritons are spin-degenerate quasi-particles which have spin 

projections of 1zs = +  and 1zs = −  on the growth axis. Theoretical and experimental 

studies show that these spin projections can directly couple with circularly polarized light 

σ +  and σ −  respectively both in the emission and excitation [94, 95, 199]. Using these  
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Fig. 8.3 Proposed electrically controllable exciton-polariton spin switching scheme 

 
 

properties of polaritons, several optically pumped polarization sensitive devices have 

been theoretically proposed or experimentally demonstrated [198-200]. Here we suggest 

a bulk GaN-based exciton-polariton spin switch employing the same edge-emitting 

geometry presented in the current work. In the proposed scheme (Fig. 8.3), the device is 

expected to operate under simultaneous electrical and optical pumping at room 

temperature. The device is electrically pumped with spin-unpolarized carriers such that 

the pre-threshold low intensity output of point I is reached (Fig. 8.4).  This is defined as 

the off-ready state of the device. As shown in our study of the steady state polarization of 

a polariton laser diode (discussed in section 5.5.5), the output is unpolarized at this 

injection. By pumping the system further, with additional bias or a probe light, stimulated 

polariton-polariton scattering is initiated and a linear degree of polarization builds up in 

the emission output. Because this linearly polarized output contains equal superposition 

of polaritons having opposite spins, a circularly polarized probing light (σ + or σ − ) can  
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Fig. 8.4 Principle of operation of the exciton polariton spin switch. 

 

be utilized to drive the system to point II for polaritons of one particular spin polarization 

( 1zs = +  and -1 respectively). This phenomenon is related to the stronger interaction 

between polaritons with parallel spins than between polaritons with anti-parallel spins 

[200]. Such non-local measurements can play an important role towards the development 

of spin-based polariton logic devices on a single platform. 

8.2.3  Spin-Polarized Exciton-Polariton Spin Switch 

 It is envisaged that greater control over the operation of an electrical exciton-

polariton spin switch can be obtained if spin-polarized carriers are injected into the 

electrically driven polariton device. To this end, we propose an edge-emitting polariton 

laser diode in which injected spin polarized carriers will travel by drift and diffusion from 

a spin injector across the contact and cladding layers and reach the device active region.  



195 
 

 
(a) 

 
(b) 

Fig. 8.5 (a) Magnetization characteristics of the FeCo/MgO tunnel contact obtained by 
MOKE measurements, (b) peak magnetoresistance measured as function of channel 

length to obtain the spin injection efficiency and diffusion lengths. 
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A prospective candidate for the spin injector is FeCo/MgO ferromagnetic tunnel contact 

which can be deposited using electron beam evaporation technique. The magnetization 

characteristics of this contact obtained by magneto optic Kerr effect (MOKE) 

measurements are shown in Fig. 8.5(a). We have already studied the diffusive spin 

transport properties by four terminal non-local Hanle spin precision measurements in 

bulk GaAs and GaN, employing the mentioned spin contact [201]. As shown in Fig. 

8.5(b), the spin diffusion length and spin injection efficiencies obtained for the GaAs spin 

valve are 6 μm and 37%  respectively, using the approach described in [202]. Based on 

these values, the GaAs-based spin polarized polariton laser may be designed, grown and 

fabricated using the conventional non-inverted structure. The device heterostructure may 

have single or multiple quantum well as the active region and it can be epitaxially grown  

 
 

 

Fig. 8.6 An image of the proposed GaAs-based edge emitting microcavity diode 
employing spin injectors as the n-type contact; inset shows the magnified cavity region. 
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on n-doped (001) GaAs substrate. A SEM image of the proposed GaAs-based device is 

shown in Fig. 8.6. As can be seen, the n- and p-contacts are designed to be within a 

distance of the spin diffusion length, so that spin-polarized carriers can reach the active 

region before losing their spin orientations under the influence of different scattering 

events. This device can be fabricated using standard UV lithography, which has a 

resolution of 700 nm in our study. However for sub-micron spin diffusion lengths, the 

fabrication and processing needs to be performed using electron beam lithography, which 

is a direct-write lithographic technique having sub-10 nm resolution. 

 An alternate to the proposed device scheme is to employ a inverted 

heterostructure, which has to be epitaxially grown on a p-doped substrate. This is 

particularly useful for GaN based systems, in which we have measured a spin diffusion 

length and spin injection efficiencies of 147 nm and 8% respectively [201]. The proposed  

 

Fig. 8.7 Proposed GaN-based inverted heterostructure for realizing an electrically 
pumped exciton-polariton spin switch. 
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(a) 

 

 
(b) 

Fig. 8.8 (a) Output circular polarization alongside the measured magnetization of the 
tunnel injector contacts (the dashed line is a guide to the eye), (b) output circular 

polarization as a function of injection. 
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GaN-based inverted heterostructure is shown in Fig. 8.7. In this scheme, the device can 

be fabricated using the same design as the bulk GaN-based polariton laser presented in 

this work. Preliminary results obtained from the measurements performed on such a 

device are shown in Fig. 8.8. In these measurements, the devices were characterized at 

various in-plane magnetizing fields of the ferromagnetic spin injector, in the range of  to  

-1.6 kOe to 1.6 kOe. The non-linear threshold is significantly reduced to a very low value 

of ~ 19μA (48 A/cm2) at all magnetic fields. The output circular polarization follows the 

measured magnetization of the spin injection as a function of magnetic field. A peak 

circular polarization of ~69% is measured, which decreases with increasing injection. The 

helicity of the output polarization reverses with reversal in the direction of magnetization 

of the spin injector. 
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Appendix A 

 

Exciton-Photon Coupling in Surface- and Edge-Emitting Geometries 

 

 The electric dipole of an exciton can strongly interact with the electromagnetic 

field of light in semiconductor microcavities having both surface- and edge-emitting 

structures. Here we consider the case of bulk GaN-based surface- and edge-emitting 

geometries, which are schematically shown in Fig. A.1. As can be seen, in the surface-

emitting structure, excitation and light output are in the same direction whereas in the 

edge-emitting structure, they are in orthogonal directions. The growth axis, which is c-

axis for the wurtzite GaN heterostructures used in this study, is parallel to the direction of  

 
(a)                        (b) 

 
Fig. A.1 Surface- and edge-emitting geometry-based semiconductor microcavities 

showing the directions of excitation, light output and exciton dipole moment. 
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optical or electrical excitation. The ground exciton state in wurtzite GaN is 12-fold 

degenerate, which is split into 12 exciton states in the presence of external excitation. 

Among these 12 states, five states are optically active, three of which have 5  symmetry 

and the two others have 1  symmetry [203]. Only these five dipole-allowed excitonic 

transitions can contribute to the formation of exciton-polaritons in a semiconductor 

microcavity. Exciton states having 5  symmetry can form exciton-polaritons in the 

surface-emitting geometry, where the exciton-dipole moment E


  is perpendicular to the 

c-axis (Fig. A1(a)). On the other hand, the two states having 1 symmetry participate in 

strong-coupling in the edge-emitting geometry, where E


 is parallel to the c-axis (Fig. 

A1(b)). Similarly, in GaAs quantum-well based edge-emitting geometry, polarization 

selection rules indicate that quantum-well excitons couple to TE-polarized cavity 

photons.  
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Appendix B 

 

Theoretical Analysis of Steady-State Output Polarization 

  

 Experimental results on the output polarization of GaN-based polariton diode 

lasers can be analyzed by modeling the kinetics of the system with the four coupled 

stochastic differential equations, as shown by Kavokin et al. [121] 
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The order parameter   describes the many body wavefunction of polariton condensates 

with +1 and -1 projections of spin to the structure axis, Nris the exciton reservoir 

occupation, and ne-h is the occupation of the free carrier reservoir. W(t) defines the rate of 

the polariton relaxation towards the ground state. We consider two relaxation 

mechanisms, namely the polariton-phonon scattering characterized by the scattering rate 

aphand polariton-polariton scattering with the rate bpol. In all probability, the phonon 

scattering process (the first term on the right-hand side of equation (2)) does not involve a 

single scattering event but rather proceeds through a cascade of phonon emissions. 
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Nevertheless, the phenomenon of final-state stimulation is present and for the rate of 

polariton-polariton scattering, it is proportional to square of the reservoir occupation as 

the rate of any two-body collision process. The first term in the right-hand side of 

equation (2) describes the phonon induced scattering of excitons and is linearly 

dependent on the exciton reservoir occupation. The two-body collision process is 

described by the second term in equation (2) which is quadratic in the exciton reservoir 

occupation. c is inversely proportional to the polariton lifetime, which is mainly 

governed by the cavity quality factor. The constants  and correspond to the effective 

magnetic field leading to the energy splitting of the polarized condensate states and to the 

spin relaxation term, respectively. Constants 1 and 2 describe the interactions of 

polaritons with the same and opposite spin projections, respectively. Phenomenological 

constants r
 and We describe the decay rate of the excitons in the reservoir and the 

exciton formation rate, respectively.

 

The noise term ( )t is defined by its correlators: 
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The system of equations (1-4) is then numerically solved using the stochastic 

Runge-Kutta algorithm. For the numerical calculation we use the following parameters 

corresponding to conventional GaN -based laser diodes [43]: c = 1.3 ps-1, = 0.0035 ps-

1,  = 0.03 ps-1, 1 =0.0001 ps-1, 2 = -0.1 1 , aph= 10-11 ps-1, bpol= 10-12 ps-1, r  = 0.001 

ps-1, We= 0.01 ps-1, e h  = 2000 ps. The ground state occupation number is given by 
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2 2
( )n t     and the components of the condensate pseudospin linked to the output 

light polarization are: 
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Time and noise averaged signals have been recorded during the measurements. 

Namely the degree of linear polarization is given by ( ) / ( )x xs dtS t dtn t   , where 

brackets symbolize averaging over the noise. In order to obtain the theoretical values of 

the degree of linear polarization for Device 2, the following parameters have been varied 

with respect to the analysis for Device 1: the spin relaxation rate,    , has been changed 

from 0.0035 ps-1 to 0.005 ps-1 , the polariton radiative rate c has been changed from 1.3 

ps-1 to 1 ps-1 and the internal magnetic field    has been changed from 0.03 ps-1 to 0.05 

ps-1. 
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Appendix C 

 

Three-level Rate Equation based Modeling of the Polariton Laser 

 

 The dynamics of an electrically pumped polariton laser has been theoretically 

explained by Iorsh. et al. [148], within the framework of Boltzmann kinetics, using a 

simplified quasianalytical model. In this model, the electron-hole plasma, the exciton 

reservoir and the ground state polaritons are described by three rate equations, 

respectively, as follows: 
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Here ne-h is the electron hole plasma density, nx is the exciton reservoir density and np is 

the lower polariton occupation. The scattering events are represented by the scattering 

rates a, b and c, where a takes into account the acoustic and optical phonon scatterings, b 

accounts for the exciton-polariton scatterings and c is the free-carrier mediated relaxation 

rate. e h   , x  and LP correspond to the free carrier, exciton and ground state polariton 

lifetimes respectively. W is the exciton formation, J is the current density, q is the 
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electron charge, S is the contact surface area of the device. 1/ Bk T   and esc  is the 

polariton trap depth. 

 Because exciton-exciton scattering is the dominant relaxation mechanism in the 

polariton lasing regime, Eqns. A.1-A.3 can be simplified considering ,a b c . Also 

above threshold, the  1 pn  and  1 xn  terms can be approximated as pn  and xn , 

respectively. Based on these assumptions, the steady state occupation numbers of the 

polariton ground state LPn , reservoir occupation number xn  and the number of free 

carriers in the system ehn  can be expressed using the following Boltzmann kinetic 

equation set: 
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where W = 0.01 ps-1 (ref. 27), and 1 ns,  0.6 ns,eh x    0.58 psLP  are considered in 

our analysis. From, a differential analysis of these simplified rate equations, the 

resonance frequency of the microcavity diode can be expressed as: 

2
3

(pol) 2R p
LP

b
n


  

As has been discussed in chapter 6, a term Tn  is introduced into this equation to take 

phenomenologically take into account the role of defects in the active region of the 

polariton laser. 
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Appendix D 

 

Change in Refractive Index and Peak Wavelength with Small-Signal 
Modulation 

 

 The dielectric function of a material with a free carrier concentration changes as: 

 

where N is the free carrier concentration, e is the charge of an electron,  is the 

permittivity of free space, mr
* is the carrier mass, and v is the photon frequency,  is the 

relative permittivity [203].Substituting wavelength for frequency 

 

If we ignore the wavelength dependence of the permittivity and only consider the free 

carrier change, we can simplify this as  

 

where V is a “volume” intrinsic to the material that we define as: 

 

If we modulate the device, we expect a change in permittivity equal to  
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By replacing the constants with known values, we obtain: 

 

With a DC value of n=2.65, we obtain  The cavity 

length, L, was designed to be 50/n0= 688.679 nm. 

The peak will shift due to the change in refractive index to: 

 

 

 

Fig. D.1 Theoretically calculated relation between increase of the emission linewidth and 
the shift of the peak emission wavelength   
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So the peak moves from nominal center by  ~ 0.0557 Å. The correlation between 

measured broadening of the emission linewidth and frequency chirping is theoretically 

shown in Fig. D.1 As can observed, for small values of  (which is the case for 

polariton lasers), there appears to be no broadening of the peak linewidth. On the other 

hand, for larger values of , the linewidth seems to increase approximately linearly, and 

slightly smaller than 2 . 
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