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least, my love Jenny

ii



ACKNOWLEDGMENTS

The road to finish this dissertation was long and arduous. I could not have tra-

versed it without the support of countless brilliant people with whom I have crossed

paths, who have touched my life for the better even before I arrived in Michigan, and

helped me reach this important milestone in my life. I will try my best to include

each individual who has had a more direct impact during these exciting years, and I

apologize in advance to anyone whom I might have omitted by accident.

First and foremost, I owe a great debt of gratitude to my advisor Kira Barton, for

her constant support and mentorship. Kira has been very patient and understanding

with me since our initial meeting, and for that I would like to thank her again. I know

I am not the easiest person to work with! Special thanks are also due to my coadvisor

Jessy Grizzle for his mentorship. He patiently answered the many questions that I

had about the intricacies of academic life in and outside of Michigan, and supported

my academic career since my first days in Ann Arbor as a lonely graduate student

with no research lab. Additionally, I would like to thank my committee members

James Freudenberg and Galip Ulsoy, for their help during the last year and a half of

my Ph.D., and Jing Sun, who provided valuable feedback during the proposal stage,

but unfortunately could not make the final defense.

Jeroen Willems from the Eindhoven University of Technology helped with the sim-

ulation and experimental studies of Chapter 5 during his masters internship at UM.

I would like to thank him for his efforts, along with his advisor Tom Oomen, and the

UM Mechatronics and Sustainability Research Lab members Chinedum Okwudire,

Molong Duan, and Amirhossein Ghasemi for allowing us to use their experimental

setup. The last section of the dissertation is the result of lively discussions with

Mamadou Diagne, who was also very supportive of me on a personal level during

the painful postdoc search process. Thank you Mamadou, and never forget, “Il faut

manger”! A big round of thanks also goes to the rest of the BRG members, who have

been the best of friends and colleagues. Additionally, I would like to acknowledge

that the funding for the research presented in this dissertation was provided in part

by the University of Michigan startup funds and the NSF grant CMMI-1334204.

iii



I have had the privilege of meeting many great friends who have made me feel like

I have one big family, thousands of miles away from my hometown, during my five

years in Ann Arbor. I would like to thank The Young Turks, in particular İbrahim
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ABSTRACT

Relaxing Fundamental Assumptions in Iterative Learning Control

by

Ozan Berk Altın

Co-Chairs: Kira L. Barton and Jessy W. Grizzle

Iterative learning control (ILC) is perhaps best decribed as an open loop feedfor-

ward control technique where the feedforward signal is learned through repetition of

a single task. As the name suggests, given a dynamic system operating on a finite

time horizon with the same desired trajectory, ILC aims to iteratively construct the

inverse image (or its approximation) of the desired trajectory to improve transient

tracking. In the literature, ILC is often interpreted as feedback control in the iteration

domain due to the fact that learning controllers use information from past trials to

drive the tracking error towards zero. However, despite the significant body of liter-

ature and powerful features, ILC is yet to reach widespread adoption by the control

community, due to several assumptions that restrict its generality when compared to

feedback control. In this dissertation, we relax some of these assumptions, mainly

the fundamental invariance assumption, and move from the idea of learning through

repetition to two dimensional systems, specifically repetitive processes, that appear in

the modeling of engineering applications such as additive manufacturing, and sketch

out future research directions for increased practicality: We develop an L1 adaptive

feedback control based ILC architecture for increased robustness, fast convergence,

and high performance under time varying uncertainties and disturbances. Simulation

xv



studies of the behavior of this combined L1-ILC scheme under iteration varying un-

certainties lead us to the robust stability analysis of iteration varying systems, where

we show that these systems are guaranteed to be stable when the ILC update laws

are designed to be robust, which can be done using existing methods from the litera-

ture. As a next step to the signal space approach adopted in the analysis of iteration

varying systems, we shift the focus of our work to repetitive processes, and show

that the exponential stability of a nonlinear repetitive system is equivalent to that of

its linearization, and consequently uniform stability of the corresponding state space

matrix.
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CHAPTER 1

Introduction

ILC is best decribed as an open loop feedforward control technique where the feed-

forward signal is “learned” through repetition of a single task. As the name suggests,

given a dynamic system operating on a finite time horizon with the same desired

trajectory, ILC aims to iteratively construct the inverse image (or its approximation)

of the desired trajectory to improve transient tracking. In the literature, ILC is often

interpreted as feedback control in the iteration domain due to the fact that learning

controllers use information from past trials to drive the tracking error towards zero.

In an abstract manner, let P : U → Y , where U is the space of admissible inputs

and Y is the space of outputs. Assuming that P is known and there are no exoge-

nous inputs affecting the output, the classical ILC problem can be stated as that of

finding a controller C that maps the input history u0, u1, . . . , uk−1 ∈ U to the current

input uk such that the output yk = Puk converges to a desired reference r in the

image of P , or a small neighborhood of it, as the iteration number k →∞. In most

cases, C is designed to consider the information from only the previous iteration,

thus giving rise to the name first order ILC. More generally, ILC can be viewed as

a special class of repetitive processes (also known as multipass processes earlier in

the literature) [2]; that is systems where the dynamics at trial k is a function of the

output history y0, y1, . . . , yk−1. In ILC, the trial domain dynamics are induced on the

input uk through the design of an update law as the process is inherently a static or

1



memoryless repetitive process.

Relatively speaking, ILC is a young but well established area of research. The

roots of ILC can be traced back to the works of Uchiyama [3], published in Japanese,

with Arimoto’s 1984 paper [4] widely accepted as among the first1 formal works on

ILC, although some earlier ideas that align with the ILC paradigm have appeared in

the 1970s [7]. Despite the significant body of literature, ILC is yet to reach widespread

adoption by the control community: Wherein the search terms “robust control” and

“’adaptive control” generate over 10,000 and 11,000 papers, respectively, “iterative

learning control” generates merely 465 papers2 in ieeeXplore.ieee.org [8]. Apart

from the fact that ILC is much younger than conventional control disciplines, one

reason for this disparity is that ILC is subject to several assumptions that restrict

its generality when compared to feedback control. Yet, ILC is a very powerful tech-

nique that has the potential to equip modern systems with enhanced capabilities: It

is hypothesized in [9] that ILC is loosely based on human learning. This hypothesis is

supported by the findings of Zhang et al. [10], and Zhou et al. [11]. This potential is

further underlined by the fact that as opposed to some other intelligent3 control tech-

niques, ILC is simple, easy to implement, and more importantly has proven stability

and convergence conditions guaranteeing perfect tracking.

1Craig [5], and Casalino and Bartolini [6] have published two other similar papers in the same
year independently of Arimoto, although these two papers have not attracted the same level of
attention.

2As of the end of 2005. As of April 5, 2016, the search terms “robust control” and “’adaptive
control” generate over 58,319 and 71,632 papers, respectively, “iterative learning control” gener-
ates 2,714 papers.

3In [12], the authors argue that ILC is an intelligent control technique since it “uses conventional
control methods to solve lower level control problems”, and “attempts to build upon and enhance the
conventional control methodologies to solve new challenging control problems”, based on a report
by Panos Antsaklis [13].
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1.1 The Invariance Assumption in ILC

ILC offers several advantages over feedback control such as improved transient re-

sponse, potential for “noncausal”4 operation, and the ability to compensate for repet-

itive effects, without resorting to high gain feedback. The standard assumption in

classical ILC is that of iteration invariance, of

1. The time interval [0, T ] in which the system operates,

2. The plant P ,

3. The desired reference r,

4. The exogenous disturbance d,

5. The initial condition x(0).

Here P may be thought of as an open loop stable plant, or the input-output relation-

ship of a closed loop stabilized plant. Although unrealistic, the above assumptions

lead to simple yet powerful results. For instance, consider the following single-input

single-output (SISO) discrete linear time invariant (LTI) system

xk(t+ 1) = Axk(t) +Buk(t), xk(0) = x0,

yk(t) = Cxk(t),

for all t ∈ {0, 1, . . . , T} and k ∈ N, where xk(t) ∈ Rn is the state vector, uk(t) ∈ R is

the input, yk(t) ∈ R is the output, and A,B,C are appropriately sized real matrices.

Assume that the system has relative degree 1. Take the update law

uk+1(t) = uk(t) + l(r(t+ 1)− y(t+ 1)),

4Of course, ILC is subject to causality in the strict sense as we can only process information from
past trials. However, the operator that we use to process this data can be noncausal in the sense
that the input uk+1(t) can depend on uk−l(t+ τ) for some t, τ > 0 and l ∈ {0, 1, . . . , k}.
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where r(t) ∈ R is the reference signal. Then yk(t) → r(t) as k → ∞ if and only

if |1− lCB| < 1, or equivalently if lCB ∈ (0, 2). Hence, the sign of the first nonzero

Markov parameter is all that is necessary to construct the feedforward inverse that

achieves perfect tracking, since the the inequality can be satisfied by decreasing |l|

provided we choose sgn(l) = sgn(CB).

The idea of learning an input signal u∞ that would achieve perfect tracking is a

very attractive feature of classical ILC. However, in practice, perfect tracking could

be an infeasible, inachievable, or undesired objective. For instance, in the presence

of measurement noise, a more reasonable strategy would be to design controllers that

converge to a neighborhood of the origin. If P is subject to some uncertainty, the

perfect tracking objective can result in update laws that violate certain robustness

criteria and result in unstable algorithms. Alternatively, in some contexts (e.g. pick

and place robotic applications), a subset of [0, T ] could be of interest rather than the

whole interval [14–17].

1.2 The Feedback-Learning Analogy

As stated before, the paradigm of ILC can be readily connected to feedback control

by selecting the iteration as the dependent variable as opposed to time. A more direct

treatment of this issue is discussed in several papers, where the converged ILC system

is found to be equivalent to a feedback controller for causal algorithms [18–22]. To

further underline the similarities between feedback and learning, let us have a closer

look at the definition of feedback control. Broadly speaking, the objective in feedback

control, or control theory in general, is to manipulate the input of a system in a way

so that the output behaves as desired. In today’s automated world, control is vital for

the proper operation of many devices and offers the development of new technologies

which would have otherwise been impossible. Control actively shapes society by
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enabling modern machinery to be fast, efficient, consistent, and reliable. A nice way

of interpreting control theory is that control engineers seek to find procedures that

would solve given classes of problem objectives dynamically as opposed to finding

solutions themselves: In the classical tracking problem for a plant P , it may indeed

be possible to compute explicitly an input u that solves the problem. However, this

fundamentally relies on the unrealistic assumptions that:

1. P is known perfectly and is invariant in time.

2. P is not subject to exogenous disturbances.

For instance, if in addition to the above assumptions, we assume P to be invertible,

we may uniquely select u = P−1r for a given reference r. However, by synthesizing a

feedback relationship, we can compensate for exogenous disturbances and variations

in P over time. Thus, roughly speaking, we can claim that control engineers design

controllers that “learn” the desired task asymptotically in time. It is the job of the

engineer to find controllers that achieve the best performance in terms of trade-offs

imposed by closing the loop, that are sufficiently general, flexible, robust, and easily

implementable.

In terms of the terminology used in describing feedback control, ILC “learns” the

desired task asymptotically in the iteration domain. As such, it is the job of the

engineer to find controllers that achieve the best performance in terms of trade-offs

imposed by closing the iteration loop, that are sufficiently general, flexible, robust,

and easily implementable. In practice, much as in conventional feedback control, by

synthesizing a recurrence relationship, we can compensate for violations of certain

assumptions listed above. For instance, iterative learning of an optimal feedforward

action as opposed to analytical computation can compensate for changes in P over

time (iteration), with the converged error e∞ = 0 given that P varies slowly. This

idea can be interestingly linked to more general methods such as the proof of the
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Picard-Lindelöf theorem, where the solution of the ordinary differential equation is

constructed through an iterated sequence, or more strongly to inversion techniques

that rely on Picard-like iterations [23]. Similar ideas are also used in system identifi-

cation [24–27]; for example in [28] power iteration like methods are used to estimate

the H∞ norm of a system.

Regardless, in an increasingly automated and smart world, it is desirable that the

assumptions are relaxed in theory in order for ILC to find use in a broader application

space and be more widely adopted. Especially when a perceived advantage of ILC

over other intelligent control methods is simplicity [9], it is necessary that the focus

of ILC is shifted from “control” to “learning”.

1.3 About Repetitive Processes

The feedback in the iteration domain interpretation of ILC is a powerful analogue

that paves the way into repetitive processes, which are two dimensional (2D) dynamic

systems that are characterized by sequences of finite passes who contribute to the

evolution of the future passes. These systems appear in applications such as additive

manufacturing (AM), wherein products are built via layer by layer deposition; a

specific example being laser metal deposition (LMD) [29, 30]. An LTI repetitive

process can be described as follows:

ẋk+1(t) = Axk+1(t) +Byk(t) +Buuk+1(t),

yk+1(t) = Cxk+1(t) +Dyk(t) +Duuk+1(t),

for all t ∈ [0, T ] and k ∈ N, where A,B,C,D,Bu, Du are continuous real matrices

of appropriate size. Here, the output at layer k acts as a forcing function on the

dynamics of layer k + 1. In the simplest case of a perfect AM process, the layer

to layer dynamics would be a perfect integrator, i.e. D = I and B = 0. Ignoring
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initial conditions and fixing uk = u, one way to interpret this process is that the filter

defined by (A,B,C,D) is applied recursively to find y satisfying

y(s) = (C(sI − A)−1B +D)y(s) + (C(sI − A)−1Bu +Du)u(s).

The interpretation discussed here shows that recursive algorithms for one dimensional

(1D) dynamic systems fall within the field of repetitive processes. Of course, one

problem that arises here is whether the process converges in a stable fashion to the

equilibrium signal y.

1.4 Problem Statement

Moore, Chen, Ahn, and Xu [31–33] have identified possible directions for future ILC

research as listed below:

� Nonlinear ILC: Nonlinear update laws have not been extensively researched in

ILC, save for adaptive learning laws for locally Lipschitz plants.

� Spatiotemporal dynamical systems: ILC theory for partial differential equa-

tions is not well understood. The practical infeasibility of having continuous

measurements point out to different directions for research.

� Performance analysis: Linear ILC is relatively mature and hence performance

oriented methodologies, design limitations, guidelines are increasingly impor-

tant.

� Fractional order dynamics: Fractional systems are an interesting new area of

research, examples of such systems can be found with polymers, piezo materials,

silicon gel etc.

� Network controlled systems and cooperative ILC: Consensus building, control
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under uncertain communication topologies, intermittent sensing and actuation

are some problems associated with these areas.

In addition to the above, based on our previous discussion we pose the following

questions:

� Can the iteration invariance assumptions on P, d, x(0) be relaxed, while still

maintaining the powerful features of classical ILC?

� Is it possible for a system to “learn” when r is iteration varying, under certain

conditions?

� Is it possible to shift the dependence from time to another variable? Can iter-

ation varying time intervals be considered?

� What are the limits of achievable performance and robustness bounds for iter-

ation invariant or varying systems?

The inspiration for the first question is drawn mainly from additive manufacturing.

While every repetitive system would be subject to variance in P, d and x(0), additive

manufacturing is an application area in which the change from iteration to iteration

can be quite high and uncertain. Repetitive process theory [2] provides another good

motivation for this area in terms of the layer by layer material deposition procedure,

as discussed before. The second question targets applications that do not involve

repetitive operation in the classical sense; a potential application for this scenario

is flight control, where gain scheduling and adaptive feedback control is common.

The third question aims to generalize the fundamental objective from the typical

tracking problem. For instance, for a robot that involves repetitive motion we may

wish to minimize the time elapsed to complete each action, or some other performance

measure. On a higher level, we may wish that the robot “learns” a different action

from previous actions; that is we expect that the robot extrapolates a new task based
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on prior learned tasks in its memory5. Finally, we wish to maximize performance and

robustness bounds for iteration varying and invariant systems to provide a systematic

and practical framework, in order to encourage the widespread adoption of ILC for

different practical applications.

1.5 Contributions and Organization of the Disser-

tation

This dissertation addresses some of the problems raised in Section 1.4 by moving from

a robust ILC framework towards stability analysis of nonlinear repetitive processes.

The specific problems we focus on are listed as follows:

1. Can the iteration invariance assumptions on P, d, x(0) be relaxed, while still

maintaining the powerful features of classical ILC?

2. Is it possible for a system to “learn” when r is iteration varying, under certain

conditions?

3. What are the limits of achievable performance and robustness bounds for iter-

ation invariant or varying systems?

4. Nonlinear update laws have not been extensively researched in ILC, save for

adaptive learning laws for locally Lipschitz plants. What are necesssary and

sufficient conditions for stability?

After providing a brief technical overview of ILC in Chapter 2, and presenting prior

literature as it relates to our problem statement in Chapter 3, along with a categorical

review of general ILC literature, the original work that led to this dissertation is

presented in Chapters 4 to 6.

5This has been explored previously in [34, 35] for the output tracking problem. Extending this
approach to higher level learning remains an open question.
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Chapter 4 presents an original robust ILC framework for precision motion control

applications, motivated by the plant invariance problem. This framework uses L1

adaptive feedback control to decrease parameter uncertainty and thereby reduce con-

servativeness in the learning algorithms to obtain better performance. The integration

of the feedback control strategy into a learning framework raises questions of stability

and design trade-offs which are addressed throughout the chapter. Through simu-

lations on the model of a flexure bearing based nanopositioner, it is shown that L1

adaptive control provides up to an order of magnitude improvement in transient

tracking, in addition to significantly increasing predictability of the system under

sudden parameter changes from iteration to iteration. This Chapter is partially based

on [36–38].

The simulation scenario of abrupt parameter changes from iteration to iteration

naturally leads to the analysis of iteration varying systems, which is discussed in

Chapter 5. The specific problem tackled in the chapter is the robust stability and

performance of ILC systems violating the restrictive invariance assumption in an

abstract vector space setting. It is shown through basic mathematical analysis that

robust monotonic update laws lead to stable systems when the iteration varying plant

uncertainties are within the uncertainty set, and that the performance of the invariant

certain system can be recovered if the uncertainties are convergent along the iteration

axis. Some comments are made on the design trade-offs between predictability and

nominal performance, and an optimization approach is suggested for the update law

design for iteration varying uncertain systems. The findings of the chapter are verified

via simulations and experiments on a linear motion control stage. This Chapter is

partially based on [39,40].

As a natural next step to the holistic signal space approach adopted in the anal-

ysis of iteration varying systems, the focus of our work shifts to repetitive processes

in Chapter 6. As the existing literature on repetitive processes is predominantly on
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LTI systems, and repetitive processes in AM applications such as laser metal depo-

sition [29, 30] appear as nonlinear models, the chapter analyzes exponential stability

properties of nonlinear time varying repetitive processes from a local perspective.

New definitions of stability that depend on initial state sequences as well as the

initial output are developed. The exponential stability criterion of LTI systems is

extended to the time varying case. This spectral radius criterion is connected to non-

linear systems through local stability analysis, which is conducted partially by using

abstract Lyapunov functionals. Our main result shows that exponential stability of

a nonlinear system and its linearization is equivalent, which can be guaranteed by

making sure that the relevant state space matrix is uniformly Schur over all time. We

use this result to analyze local stability of Picard iterations with nonconstant initial

states, as well as nonlinear ILC algorithms. Simulation studies are conducted on the

model of an actuated Van der Pol oscillator with time varying damping; it is shown

that an ILC algorithm using the second derivative of the error can solve the problem

of uniformly tracking a sinusoidal reference, without any stabilizing feedback. This

Chapter is partially based on [41,42].

Concluding remarks, along with plans and suggestions for future research direc-

tions are given in Chapter 7. For a more compact presentation, additional technical

material for Chapters 4 and 6 are given in Appendices A and B, respectively.
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CHAPTER 2

Technical Overview of ILC

In this chapter, we will present a brief overview of ILC. We start with the classical

ILC problem, which will be first formulated in an abstract setting to keep some

generality as we saw in Chapter 1: Let P : U → Y be a mapping where U is the

space of admissible inputs and Y is the space of outputs. When P is known and

there are no exogenous inputs affecting the output, the problem can be stated as

that of finding a controller C that maps the input history u0, u1, . . . , uk−1 ∈ U to the

current input uk ∈ U such that the output yk = Puk converges to a desired reference r

in the image of P , as the iteration number k →∞. In most cases, C is designed to

consider the information from only the previous iteration, thus giving rise to the name

first order ILC. Algorithms that consider multiple iterations on the other hand, are

called higher order ILC.

Now let us consider the case where U and Y are Banach spaces equipped with

suitable norms, consistent with the approach in [7] and [2]. We base this assumption

on the fact that Banach spaces are the natural settings of contraction mapping based

ILC problems, which rely on the celebrated fixed point theorem. This is hardly a

restriction as we can assume most spaces that we work on in practice to be complete6.

For instance, Lp and lp spaces, which provide a general framework in time driven

6Completeness is not even a vital property and is just needed to ensure that a fixed point ex-
ists. The contraction condition is sufficient to guarantee that we converge to a limit point in the
completion of the space, as we will discuss in the following pages.
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dynamic systems, are well known to be complete normed spaces. Our motivation

in considering the problem in a Banach space setting is twofold: First, we would

like to keep the analysis simple, general, and intuitive. Second, we wish not to limit

the discussion to dynamic systems in the classical sense; that is, systems defined by

ordinary differential equations. Indeed, as mentioned in Chapter 1, there are other

areas of research in control and related fields that bear significant resemblance to the

problem of iteratively constructing an input to track a desired reference.

To develop the notions of stability, convergence, and boundedness for ILC prob-

lems, let us give some basic definitions. Of course, in ILC, such concepts should all

be defined over the iteration domain. Hence we assume that the plant P is well posed

in the sense of basic input-output stability; that P is either a bounded operator, or

in the case that P represents an unstable dynamic system on a time interval [0, T ],

the escape time is larger than T 7. For a rigorous study of these issues, we define the

spaces Uω ,
∏

k∈N U and Y ω ,
∏

k∈N Y . An element x in these spaces will be defined

so that xk denotes the kth coordinate. Alternatively, we define x , (x0, x1, . . . ) to

be a mapping from N, the set of nonnegative integers, to U or Y , where each xk can

be an element of U , Y . In addition, we introduce the following definitions where the

spaces X and V are in {U, Y }. We will use ‖.‖ to denote vector and induced operator

norms in the relevant spaces.

Definition 2.1. Let x be an element of Xω. We say x is bounded if ‖x‖ < ∞ and

unbounded otherwise, where ‖x‖ , supk∈N ‖xk‖.

The definition of boundedness is in essence the familiar notion of uniform bound-

edness, renamed to reflect the repetitive nature of the ILC problem. Readers would

also note that Uω and Y ω are not normed spaces since our definition of the norm en-

tails the possibility of unbounded elements. However, this is merely a formality and

7This is more of a theoretical assumption. In practice, we would most likely be working on a
stable or stabilized system.
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will not affect our analysis as any truncated vector in these spaces has a finite norm.

This is akin to the definition of input-output stability via the extended space Lpe.

Boundedness will not be studied in detail in this chapter since due to the discrete

nature of the ILC problem convergence implies boundedness; we will say that x ∈ Xω

converges to an element x̄ ∈ X if xk → x̄.

Definition 2.2 (Asymptotic Stability). Let H : X → X. An iterative system defined

by the equality xk+1 = Hxk for all k ∈ N is asymptotically stable if for all ε > 0 there

exists δ > 0, and a neighborhood X̄ of the unique fixed point x̄ of H such that

‖x0‖ < δ =⇒ ‖xk‖ < ε, ∀k ∈ N,

and x converges to x̄ for all x0 ∈ X̄.

Asymptotic stability is usually an insufficient condition in practice since asymptot-

ically stable systems may exhibit large transient growth before beginning convergent

behavior [9, 43]. A stronger notion is monotonic convergence, which is ubiquitous in

contraction mapping based ILC. In fact, this is one of the strongest stability notions

that we have for the problem since convergence of any kind implies boundedness by

virtue of the discrete nature of the problem.

Definition 2.3 (Monotonic Convergence). An asymptotically stable system is called

monotonically convergent if there exists a neighborhood X̄m of the fixed point such

that for all x0 ∈ X̄ ∩ X̄m,

‖x̄− xk+1‖ ≤ γ‖x̄− xk‖, ∀k ∈ N.

Before proceeding with the analysis, we will recall a fundamental result from

metric spaces; Banach’s celebrated fixed point (or contraction mapping) theorem.

The theorem plays a very important role in classical ILC as most of the fundamental
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convergence results can be proven with little to no effort through the formulation

of a contraction. By treating the theorem seperately, we will see that the design

of stable, monotonically convergent iterative learning controllers becomes almost a

trivial matter even in an abstract setting.

Theorem 2.1 (Banach Fixed Point). Let H : X → X be a contraction mapping on

a complete normed space X; i.e. there exists γ < 1 such that

‖Hx−Hy‖ ≤ γ‖x− y‖, ∀x, y ∈ X.

Then, H has a unique fixed point x̄ = Hx̄. Moreover, for any x0 ∈ X, the sequence

generated by xk+1 = Hxk for all k ∈ N converges to x̄ with ‖x̄− xk+1‖ ≤ γ‖x̄− xk‖.

The contraction mapping theorem can be likened to the small gain theorem [44,45],

where the constant γ can be thought of as the gain factor. The proof of the theorem

shows that the contraction condition γ < 1 ensures that the sequence {xk}∞k=0 is

Cauchy, and therefore convergent.

2.1 Contraction Mapping Based ILC

With the developments given before, consider

yk = Puk + d, ∀k ∈ N, (2.1)

where yk ∈ Y is the output, uk ∈ U is the input, d ∈ Y is the exogenous signal that

includes the feedback control response, disturbance, noise, and the effect of initial

conditions, and P is the bounded linear input-output operator. The objective is to

find an ILC update law such that the error e defined by ek , r − yk for all k ∈ N,

where the reference r is in the image of P , converges to a small neighborhood of 0.
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Hence, consider the linear first order update law

uk+1 = Quk + Lek, ∀k ∈ N, (2.2)

whereQ and L are linear operators, and u0 is arbitrary. Before stating the convergence

of the algorithm, we will need the following result from functional analysis.

Lemma 2.1. Let H : X → X be a bounded linear operator, where X is complete

and ‖H‖ < 1. Then (I −H)−1 =
∑∞

i=0H
k, where I is the identity operator on X.

Proof. Let x ∈ X be arbitrary and take m,n ∈ N. Without loss of generality,

assume m > n. Then
∑m

i=0 H
kx−

∑n
i=0 H

kx = Hn+1
∑m−n−1

i=0 Hkx, so

∥∥∥∥∥
m∑
i=0

Hkx−
n∑
i=0

Hkx

∥∥∥∥∥ ≤ ‖H‖n1− ‖H‖m−n

1− ‖H‖
‖x‖ ≤ ‖H‖n 1

1− ‖H‖
‖x‖.

Therefore, the partial sums (
∑n

i=0H
kx)n∈N form a Cauchy and hence convergent

sequence since ‖H‖ < 1 and X is complete. In other words,
∑∞

i=0H
k is an operator

on X. Moreover, direct computation shows that

(I −H)

(
∞∑
i=0

Hk

)
x =

(
∞∑
i=0

Hk

)
(I −H)x = x.

Thus, it follows that (I −H)−1 =
∑∞

i=0H
k. �

The above lemma guarantees the existence of the inverse operator, which will be

used to find the fixed point of the recurrence relation. We are now ready state the

monotonic convergence theorem for linear systems.

Theorem 2.2 (Monotonic Convergence). The ILC system described by (2.1) with the

update law (2.2) is monotonically convergent if ‖Q− LP‖ ≤ γ < 1. The fixed point

of the system is ū = (I −Q+ LP )−1L(r − d), where ‖.‖ is the induced norm on U .
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Proof. Substituting (2.1) into (2.2) yields uk+1 = (Q− LP )uk + L(r − d). Define the

mapping H : U → U such that Hu = (Q− LP )u+ L(r − d) for all u ∈ U . Then,

given arbitrary u, v ∈ U , Hu−Hv = (Q− LP )(u− v) from linearity so H is a con-

traction if and only if ‖Q− LP‖ < 1. It follows from the fixed point theorem that

the system is monotonically convergent if ‖Q− LP‖ ≤ γ < 1. In other words, we

have ‖ū− uk+1‖ ≤ γ‖ū− uk‖ for some ū. To find the fixed point, consider the equal-

ity ū = (Q− LP )ū+ L(r − d) and rearrange terms to solve for ū. �

Corollary 2.1 (Converged Error). If the ILC system described by (2.1) with the

update law (2.2) satisfies the monotonic convergence condition of Theorem 2.2, the

converged error of the system is given by

ē = r − (Pū+ d) = (I − P (I −Q+ LP )−1L)(r − d).

Proof. Follows from the fact that the error map from the input uk 7→ r − (Puk + d)

is continuous since P is bounded. �

Theorem 2.2 gives a sufficient condition for monotonic convergence8 of linear ILC

systems. There are a number of converses [46, 47] to the contraction mapping the-

orem, so it can be regarded as a necessary condition in a certain sense. One such

converse [48] states that in a T1 space9 we can find a metric so that the recurrence

relation is a contraction. This implies that asymptotically stable systems are also

monotonically convergent in a certain metric. However, this metric may not capture

the desired properties from an engineering standpoint, so Theorem 2.2 is still a very

significant result: In general, we would most likely want to see monotonic convergence

in the 2 norm or the sup norm, or their analogues. More importantly, the necessary

and sufficient condition for checking stability requires the computation of the spectral

8Note that monotonic convergence is considered for the input here. This condition can be modified
to ensure monotonic convergence in the error.

9In point set topology, a T1 space is a space in which given any two distinct elements x and y,
we can find a neighborhood of x that does not contain y, and vice versa.
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radius of the linear operator Q− LP , which is a nontrivial task when the underlying

input space is infinite dimensional [2, page 44]. On the other hand, generalizing the

monotonic convergence theorem to even nonlinear P is a straightforward matter when

we trade the condition ‖Q− LP‖ < 1 with ‖(Q− LP )u− (Q− LP )v‖ < γ‖u− v‖

for arbitrary u, v ∈ U , where γ < 1. Finally, the condition can always be satisfied in

any normed space as shown in the trivial result below:

Proposition 2.1 (Stabilizability). Given γ ∈ [0, 1) and linear P : U → Y , there

exists a pair (Q,L) such that ‖Q− LP‖ = γ < 1.

Proof. Let Q, L̄ be arbitrary bounded operators. Select L = QL̄. Then,

Q− LP = Q(I − L̄P ),

so ‖Q− LP‖ ≤ ‖Q̄‖‖(I − L̄P )‖ and one can satisfy the norm condition by decreasing

the gain of Q. �

The specific case where L = QL̄ is called Q filtering in the literature; which re-

formulates the update law as uk+1 = Q(uk + Lek). The Q filter is often used as a

robustifying measure at the expense of perfect tracking (zero asymptotic errors), which

can most intuitively be seen in an H2 setting: Most physical plants have near ±180◦

phase uncertainty in the high frequency region, which can be gain stabilized by select-

ing Q as a low pass filter with bandwidth similar to the passband of P [49]. Often L̄

is selected as the approximate inverse of P to ensure low converged errors in the low

frequency band.

So far we have considered the stability of the ILC problem. Perhaps more im-

portant is the asymptotic performance of the ILC system, and the ability to achieve

perfect tracking. We give necessary and sufficient conditions for perfect tracking

when ‖Q− LP‖ < 1 as follows:
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Theorem 2.3 (Perfect Tracking). Let P : U → Y be linear and bijective. Assume

that the conditions of Theorem 2.2 are satisfied for the ILC system described by (2.1)

with the update law (2.2). Then the converged error equals 0 for all r, d ∈ Y if and

only if Q = I.

Proof. Given r, d ∈ Y , by Theorem 2.2, the system is monotonically convergent with

the fixed point ū satisfying (I − Q)ū = Lē; ē , r − d − Pū. Sufficiency follows

directly from this relationship since: 1) The contraction condition, along with the

fact that Q = I means L is nonsingular; 2) Bijectivity of P implies that ū uniquely

satisfies ē = 0. For necessity, note that (I − Q)ū = 0 must hold for all ū ∈ U ,

thus Q = I. �

Under the conditions of the perfect tracking theorem, the optimal learning opera-

tor L in terms of fastest convergence is obviously P−1. Naturally, one can ask if ILC is

necessary at all when P is known perfectly and is invertible. Indeed, such a statement

would be valid when d = 0. For the nontrivial case of d 6= 0, one can achieve perfect

tracking by running a single trial to identify d and correcting for it in the second trial

by setting u = P−1(r − d). But this is no different than running the ILC system

for two trials with L = P−1! The ILC algorithm formalizes this procedure, with the

additional benefit of achieving zero errors under uncertainties in P .

Of course, given more detailed information about a particular system or a problem

setting it makes sense to incorporate more advanced methods to improve on desired

properties such as robustness, convergence speed and asymptotic performance. We

will look at a particular example of this situation in the next section.
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2.2 Discrete Time and the Supervector Frame-

work

Discrete time linear systems in ILC have a significant body of literature. This is due

to the fact that such systems can easily be represented in matrix form, thus transform-

ing the 2D ILC problem into the feedback control problem of a static multiple-input

multiple-output (MIMO) system. Of course, more generally, this statement is true

for any setting where the input and output spaces are finite dimensional; e.g. linear

systems with spatial or spatiotemporal dynamics that can be discretized.

Consider the following SISO discrete LTI system

xk(t+ 1) = Axk(t) +Buk(t), xk(0) = x0,

yk(t) = Cxk(t),

for all t ∈ {0, 1, . . . , T} and k ∈ N, where xk(t) ∈ Rn is the state vector, uk(t) ∈ R is

the input, yk(t) is the output, and A,B,C are appropriately sized real matrices. The

solution of this system is given by

yk(t) = (p ∗ uk)(t) + CAtx0, ∀t ∈ {0, 1, . . . , T} ,∀k ∈ N (2.3)

where p(t) is the impulse response of the system with the Markov parameters given

by p(t) = CAtB for all t ∈ {0, 1, . . . , T}, and ∗ is the convolution operator. Assuming

a relative degree or delay of 1, and letting d(t) = CAtx0, the system can be cast into
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the following matrix form:



yk(1)

yk(2)

...

yk(T )


︸ ︷︷ ︸

yk

=



p(0) 0 . . . 0

p(1) p(0) . . . 0

...
...

. . .
...

p(T − 1) p(T − 2) . . . p(0)


︸ ︷︷ ︸

P



uk(0)

yk(1)

...

yk(T − 1)


︸ ︷︷ ︸

uk

+



d(1)

d(2)

...

d(T )


︸ ︷︷ ︸

d

, (2.4)

for all k ∈ N. The error vector ek(t) = r(k) − yk(t) can be written in matrix form

in a similar manner. This procedure is called lifting in the ILC literature, and the

system (2.4) is said to be in lifted form with the supervectors yk, uk, d, ek. As with the

abstract representation of the previous section, the formulation yk = Puk + dk is a

sufficiently general form for iteration invariant discrete time linear systems, where the

effects of initial conditions, noise, and disturbance can be collected in the vector dk.

Causality implies that P has to be lower triangular10, and time invariance means

that P is Toeplitz, as can be seen in (2.4). This formulation can be easily generalized

to time varying and/or noncausal systems, and systems with relative degree higher

than 1. The standard assumption is that no matter the structure or properties of P

and d, they are invariant over the iteration axis. The general linear update law is

then given by

uk+1 = Quk + Lek, ∀k ∈ N, (2.5)

with arbitrary u0.

Since the matrices Q and L can be thought of as lifted forms of linear operators

in RT , from here onwards, we will use the term time invariant to signify a Toeplitz

matrix. Similarly, causality will signify a lower triangular matrix. With this ter-

minology, we are ready to state the asymptotic stability condition for discrete LTI

systems.

10Similarly, an anticausal operator has to be upper triangular.
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Theorem 2.4 (Asymptotic Stability). The ILC system (2.4) with the update

law (2.5) is asymptotically stable if and only if ρ(Q − LP ) < 1. If Q and L are

causal time invariant matrices, the condition simplifies to |q0 − l0p0| < 1, where q0

and l0 are the first nonzero Markov parameters of Q and L.

Proof. The asymptotic stability condition follows directly from linear systems theory.

When Q and L are causal and time invariant, Q−LP is lower triangular and Toeplitz

with q0 − l0p0 on the main diagonal. Hence, q0 − l0p0 is the only distinct eigenvalue

of Q− LP , so the system is asymptotically stable if and only if |q0 − l0p0| < 1. �

A couple of remarks are in order here: First, as asymptotic stability implies

bounded-input bounded-output (BIBO) stability, u is bounded. Second, the simple,

model free11 nature of ILC can be observed with the asymptotic stability condition.

The next theorem is the specialization of Theorem 2.2 for the discrete time case. As

before, monotonic convergence here means the exponential convergence of the input

vector.

Theorem 2.5. The ILC system (2.4) with the update law (2.5) is monotonically

convergent in a given vector norm if ‖Q− LP‖ < 1, where ‖.‖ is the associated

induced matrix norm.

Corollary 2.2. The ILC system (2.4) with the update law (2.5) is asymptotically

stable if the norm condition of Theorem 2.5 is satisfied.

Proof. Follows from Theorem 2.4 and the fact that the spectral radius is a lower

bound on any induced matrix norm. �

11The term model free is in reality a misnomer and should be used cautiously. In this context, it
means that the knowledge of the first nonzero Markov parameter, or knowledge of the matrices B,C
is necessary and sufficient to design a stable update law. No prior knowledge of A is necessary. This
is similar to some traditional adaptive control schemes where only limited information about the
system, such as its relative degree and the sign of high frequency gain, is assumed.
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2.3 Higher Order Algorithms

The standard first order linear algorithm can be generalized to an nth order algorithm

by the following formula:

uk+1 = −(Qnuk +Qn−1uk−1 + · · ·+Q0uk−n) +Lnek +Ln−1ek−1 + · · ·+L0ek−n, (2.6)

for all k ∈ N by taking el = ul = 0 for l < 0. Here, Qi and Li can be thought of as

linear operators in general, which would simplify to a matrix representation in finite

dimensions. For this case, some authors [50] have defined the so called w transform,

where w is a one step trial shift operator, e.g. w−1uk(t) = uk−1(t). The w transform

is no different than the familiar z transform, renamed to emphasize the fact that it

operates pointwise on the trial domain. With this, the higher order algorithm (2.6)

can be written in the form

u(w) = C(w)e(w); C(w) , Q−1
c (w)Lc(w),

where

Qc(w) , Iwn+1 +Qnw
n + · · ·+Q1w +Q0,

Lc(w) , Lnw
n + Ln−1w

n−1 + · · ·+ L1w + L0.

Again, we are reminded of the fact that lifting the discrete time system transforms

the 2D ILC problem into a standard feedback control problem, where higher order

algorithms can be designed using existing methods from linear multivariable feed-

back control. Checking the stability of the ILC system then reduces to checking the

stability of the following transfer matrix:

G(w) , (Qc(w) + Lc(w)P )−1Lc(w)P = P (Qc(w) + Lc(w)P )−1Lc(w),
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where P is the plant input-output matrix. For the special case of

uk+1 = (I −Qn−1)uk + (Qn−1 −Qn−2)uk−1 + · · ·+ (Q1 −Q0)uk−n+1 +Q0uk−n

+ Lnek + Ln−1ek−1 + · · ·+ L1ek−n+1 + L0ek−n,

we have

u(w) =
1

w − 1
C(w)e(w),

so

G(w) , ((w − 1)Qc(w) + Lc(w)P )−1Lc(w)P = P (Qc(w) + Lc(w)P )−1Lc(w). (2.7)

Equation (2.7) reflects the integrator action of ILC on the iteration domain. By the

final value theorem, if G is stable, ek → 0.
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CHAPTER 3

Literature Review of ILC

In this chapter, we will do a short review of ILC literature. The chapter will be

divided into two sections: In Section 3.1, we will cover publications on general ILC

theory and some practical applications. Section 3.2 will focus on literature specific

to some of the research questions.

3.1 A Short History of ILC

The works of Uchiyama [3] are the first publications to appear on ILC. The learning

paradigm was arguably first formalized by Arimoto [4] on 1984, although independent

rigorous treatments of the problem were developed simultaneously by Craig [5], and

Casalino and Bartolini [6]. Interestingly, the central idea of learning from repetition

has appeared in the literature as early as the 1970s [7, 51], and even before in a US

patent filed in 1967 [52]. The two recent surveys by Bristow et al. [9] and Ahn et

al. [12] are currently the most extensive resources on ILC. We also note three other

surveys that have appeared in the 1990s [51,53,54]. In addition to these surveys, sev-

eral monographs [7,32,55–59] and special issues [60–62] have appeared since then. A

good starting point for the working engineer is [49], where the exposition is restricted

to discrete LTI systems. Although, not exclusively on ILC, the edited volume It-

erative Identification and Control [63] contains interesting ideas that link feedback,

adaptation, identification, and ILC. Finally, recalling that ILC is a special class of
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repetitive processes, the 2007 monograph by Rogers et al. [2] can also be regarded as

an important reference, wherein a systematic study of the stability, robustness, and

optimality of linear repetitive processes is conducted.

Without going into extensive literature on the subject, we also note that repetitive

control12 is a similar area of research, with the main difference from ILC being that

repetitive control is intended for continuous operation, whereas ILC has a discrete

nature: In repetitive control, the objective is to improve the tracking performance of

a system that is subject to periodic references or disturbances, e.g. a rotating hard

disk drive head [9]. As opposed to ILC, this implies that the terminal condition of a

period dictates the initial condition of the next period, leading to different analysis

techniques and results [43,64].

A comprehensive pool of references on ILC theory and applications, along with

taxonomy and categorization of these works into subfields can be found in the most

recent surveys [9, 12]. In the following subsections we will see the broad picture on

the state of the art on ILC theory and applications.

3.1.1 Theoretical Works

ILC theory has a vast body of literature and includes, for example, feedback equiv-

alence [18–22], higher order algorithms [65, 66], 2D systems based design and analy-

sis [67, 68], among others. The three main subfields, as it relates to feedback control

theories, can be stated as robust ILC, optimal ILC, and adaptive control based ILC.

3.1.1.1 Robustness in ILC

As in feedback control, robustness is a central issue in ILC. Works in this category deal

with disturbance rejection [69], plant uncertainties [32, 70], stochastic noise [32, 71],

using H∞ methods [70, 72, 73], µ synthesis [74], interval uncertainties and model

12Not to be confused with repetitive processes.
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conversion [32]. Robust methods are well studied in the literature, although the

majority of the results assume the uncertain plant descriptions and/or signals to be

iteration invariant save for some preliminary work [69,71,75]13.

3.1.1.2 Optimal ILC

Optimization based ILC design is an active research area, perhaps due to the fact

that it allows a systematic design of learning filters that guarantee stable behav-

ior and minimize certain performance criteria. Indeed, the classical ILC problem

can be cast into an optimization framework by requiring that the output converges

to arg minu∈U‖r−Pu‖ [7]. Other references on optimal ILC include [76–79]. Another

advantage to the optimization formulation is flexibility, where additional performance

metrics can be included in the cost function especially for systems that have a degree

of redundancy [14–17].

3.1.1.3 Adaptive Approaches in ILC

Adaptive control based methods are quite popular in ILC and are directly related to

adaptive feedback control concepts. These methods provide a useful way of designing

ILC algorithms for nonlinear systems and often times are extended from adaptive

feedback controllers [80]. Another advantage to adaptive ILC (AILC) is the ability

to incorporate varying references [81, 82]. AILC relies on certainty equivalence as in

adaptive feedback, except that in the iterative case estimations are performed in a

discrete manner during each trial. This also provides the ability to correct transient

tracking errors in adaptive feedback [82]. Some other examples of AILC can be seen

in [83,84].

13We exclude ILC schemes based on higher order internal models in this statement; these will be
elaborated on later on in Section 3.2.
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3.1.2 ILC Applications

Examples of ILC applications in the literature are abundant; in particular, ILC im-

plementations are common in the following application areas:

1. Robotics: Robotics is the most active area for ILC applications. As a matter

of fact, Arimoto’s original paper [4] develops the ILC algorithm on the basis

that it can be used for improved performance in robotic manipulators. ILC

applications in robotics are numerous, for example see [79,85–88].

2. Rotary Systems: Rotary systems are suitable candidates for ILC implementa-

tion due to the implicit spatial or temporal periodicity [89,90].

3. Manufacturing and Batch Processes: Batch processes commonly use a combi-

nation of feedback (for example, model predictive control [91]) and ILC algo-

rithms [92]. Among a number of manufacturing applications, semiconductor

production widely uses ILC as a compensation tool [73, 93]. ILC is a very ef-

fective control strategy for manufacturing applications, especially in situations

where online sensing is challenging or infeasible [94].

4. Bioengineering Applications: Biomedical and biomechanics applications is an

emerging research field in ILC, see for instance [95–97].

5. Actuator Nonlinearity Compensation: ILC is used in systems to compensate for

actuator nonlinearities (deadzone, hysteresis, backlash) [98] in precision motion

control applications [99].

3.2 Relevant Literature for the Research Problems

We first discuss the literature related to the research directions pointed out in [31–33].

Of these directions, nonlinear update laws are the most active area of research in the
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literature. However, the analysis is constrained to AILC as pointed out in [33]. Spatial

ILC is a recent area that has attracted attention [94,100]. Performance analysis and

guidelines for linear ILC is increasingly prevalent; for example refer to [32, 101, 102].

Finally, network controlled systems are briefly discussed in [32].

The research questions we posed in Chapter 1 can be roughly condensed to the

single question of whether the fundamental iteration invariance assumption in ILC,

which was discussed in Section 1.1, can be relaxed. To date, there has been lim-

ited material that has attempted to relax these assumptions. Among these, initial

condition invariance is by far the most discussed topic since perfect resetting can

be hard to achieve for certain systems [103]. The central result in [103] is that the

varying system (that is, the system subject to an initial condition resetting error) con-

verges to a bounded neighborhood of the invariant system when the resetting error is

uniformly bounded. Varying references are also increasingly studied in ILC theory;

AILC is one of the avenues in which this objective is pursued [81], while some other

works consider parametrizing the set of references by basis functions [34, 104, 105]

or library based interpolations [35]. Varying disturbance signals have been studied

in stochastic settings [32, 69, 71]. Ref. [106] considers varying time intervals through

the use of a time scale transformation. Lastly, iteration varying plant models are

actively studied in the case that they can be described by a higher order internal

model (HOIM) [107]; that is systems wherein the plant operator Pk at trial k is a

function of Pk−1, Pk−2, . . . , Pk−n for some n, although to the best of our knowledge,

there has been no studies on whether HOIMs occur naturally in physical systems.
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CHAPTER 4

Robust ILC through L1 Adaptive

Feedback

In this chapter, we tackle the robust monotonic convergence problem of uncertain lin-

ear systems for high precision tracking performance. The problem will be discussed

for continuous time systems under parametric uncertainties. A practical motivation

for this study comes from precision motion control applications, where demanding

design specifications pose a large array of control challenges. As a result, precision

motion control design relies on a variety of advanced control strategies developed to

cope with specific problems present in control theory. Although ILC can decrease

tracking errors up to several orders of magnitude for repetitive tasks, the achievable

performance is limited by dynamic uncertainty. Thus, in this chapter, we propose

the combination of L1 adaptive control (L1 AC) and linear ILC for precision motion

control under parametric uncertainties. We will rely on the adaptive loop to compen-

sate for parametric uncertainties, and ensure that the plant uncertainty is sufficiently

small so that an aggressive learning controller can be designed on the nominal sys-

tem. We will exploit the closed loop stability condition of L1 AC to design simple,

robust ILC update laws that reduce tracking errors to measurement noise for time

varying references and uncertainties. Finally, we will demonstrate in simulation that

the combined control scheme maintains a highly predictable, monotonic system be-

havior; and achieves near perfect tracking within a few trials regardless of the level
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of uncertainty in the system.

Of course, combining ILC with feedback control techniques to achieve high perfor-

mance is not a novel idea by any means14. This is because essentially, the achievable

performance through learning is limited by the closed loop dynamics, much as a hu-

man is constrained by the dynamic limitations of his or her neuromuscular system

when learning to perform a motion task15. Theoretically, our approach is motivated

by an effort to relax the plant invariance assumption, even though the analysis will

assume that the uncertainties are invariant from iteration to iteration. This is sim-

ilar to conventional adaptive control, wherein the objective is to adapt to changing

conditions to provide high tracking performance under uncertainty, although most

of the basic theory assumes time invariant uncertainties16. In that sense, adaptive

control is a good feedback strategy to explore the effects of iteration varying uncer-

tainties. L1 AC, in particular, has certain benefits over conventional adaptive control,

such as arbitrarily close uniform tracking of a linear reference model, which makes

it a suitable feedback control candidate from a learning perspective. The simulation

example presented at the end of the chapter shows the importance of considering it-

eration varying effects in a more explicit manner. A more detailed motivation for our

approach and a summary of the technical material is given in the following section.

4.1 On Robust ILC and L1 Adaptive Control

Recall from Chapters 1 and 2 that dynamic uncertainty is an essential challenge

motivating the field of ILC. Much as in feedback control, the main approaches for

14Some authors even consider feedback control directly in an ILC framework, where the update law
is modified to include a feedback term; often called “current cycle feedback” or “ current iteration
feedback” [7, 9].

15It can be argued that this is not the case when perfect tracking can be achieved. However,
even when such an objective is theoretically feasible, it is rarely achieved in practice. For exam-
ple, stochastic measurement noise is a major obstacle to the tracking objective, and the statistical
characteristics of this random process can be amplified by feedback.

16Another way of interpreting this is that the time scale of the parameter variations is much slower
than the time scales of the estimation and control loops [108].
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mitigating uncertainties in ILC can be roughly classified as robust or adaptive meth-

ods. As we have discussed in Chapter 3, there has been a significant body of research

on both robust and adaptive ILC methodologies. The main drawback of robust ILC

methods is that while ILC convergence is guaranteed within the prescribed set of

uncertainties, performance is often limited due to conservative designs. Additionally,

the sensitivity of robust learning controllers to variations in the uncertainties is still

an open question. On the other hand, while the adaptive nature of AILC schemes

signify high performance and reduced sensitivity to parametric variations, the ro-

bustness of adaptive ILC to unmodeled dynamics may be questionable, analogous to

adaptive feedback control [109,110].

Most of the fundamental limitations and trade-offs of control theory can be ob-

served to a greater extent in precision motion control due to complex, demanding

design specifications. Key issues in the control of precision positioning systems in-

clude robustness to parameter variations, unmodeled high frequency dynamics, and

the bandwidth-precision trade-off [99]. More complex process modeling can mitigate

uncertainty issues to an extent, but this becomes unfeasible as complexity increases,

specifically due to the fact that certain information about the process, such as exter-

nal loads and/or parameters that are sensitive to exogenous effects, cannot be known

a priori. Although adaptive feedback methods provide a good solution to the problem

of robustness to parametric variation and increase precision, this often comes at the

expense of reduced robustness to unmodeled dynamics [110] as fast estimation, which

is desired from a performance standpoint, leads to high gain feedback. This problem

essentially boils down to the fact that conventional adaptive control ignores Bode’s

sensitivity integral [111,112], also known as the waterbed effect, by compensating for

uncertainties throughout the whole frequency spectrum. Similarly, while ILC extends

the available bandwidth [112] of the control channel for repetitive systems, thereby

alleviating the bandwidth-precision trade-off, the achievable reduction in errors and
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monotonicity on the iteration axis depends largely on the level of uncertainty in the

feedback stabilized plant.

Hence, to address these issues, we propose the combination of conventional ILC

with L1 AC, a recent model reference adaptive control (MRAC) paradigm that bridges

the gap between adaptive and robust control with a priori known, quantifiable tran-

sient response and robustness bounds [110]. The idea of combining ILC with L1 AC

was first introduced in [113], wherein the adaptive loop was utilized to keep the plant

sensitivity close to its nominal value for performance improvement through learning.

Despite the displayed advantages of L1 AC over linear feedback, a trade-off was ob-

served between the closed loop bandwidth and learning performance. More precisely,

it was seen that higher closed loop bandwidths resulted in slower convergence and

larger converged errors in the iteration domain. To resolve this problem, we proposed

the augmentation of the L1 AC architecture with an arbitrary feedforward signal to

accommodate learning, leading to an adaptation that considers changes in the nom-

inal system trajectories due to learning [36]. The resulting L1 AC-ILC (L1-ILC)

scheme had predictable performance in both the time and iteration domains: The

feedforward augmented closed loop preserved the a priori known quantifiable tran-

sients from L1 AC theory, and the learning controller displayed similar convergence

behavior regardless of the uncertainty present in the system. It was also seen that

increasing feedback bandwidths resulted in decreasing effects of uncertainty in the

iteration domain, with faster convergence and lower converged errors. In [37], we pre-

sented design guidelines and showed the performance gains of the modified scheme

over linear output feedback on a large range nanopositioner via simulation.

The material that we discuss in this chapter was originally presented in [38] and is a

generalization of L1-ILC to different classes of systems through vector space methods.

We demonstrate how ILC algorithms can be combined with L1 AC schemes to achieve

robust, high precision motion control. We present feedforward augmented L1 AC
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architectures for state and output feedback cases (see Figures 4.2 and 4.5) to accom-

modate parallel ILC signals and show how this preserves the a priori known L1 AC

transient bounds. We explain how these bounds, which imply arbitrary close tracking

of linear reference models in the time domain, can be exploited for learning purposes

in the iteration domain. We then show how the L1 AC stability condition relates

directly to the robust monotonic convergence conditions of LTI learning laws, and

how robust ILC algorithms can be designed in a simple, straightforward manner for

different L1 AC architectures.

The rest of the material in this chapter is organized as follows. Section 4.2 in-

troduces some preliminaries for clarity of exposition. Section 4.3 gives a brief intro-

duction to L1 AC and ILC, and presents our proposed method for the state feedback

case. Section 4.4 extends the results to time varying uncertainties in output feedback.

Simulation results are given in Section 4.5. Section 4.6 gives concluding remarks and

summarizes our findings. For a streamlined presentation, we give certain intermedi-

ate results in Appendix A.1, proofs of our main results in Appendix A.2 and several

auxiliary variables in Appendix A.3.

4.2 Notation and Preliminaries

Throughout this chapter, we use time and frequency domain representations inter-

changeably for signals. For example, f(s) denotes the Laplace transform of the sig-

nal f(t). We denote systems and matrices with upper case letters. We represent

signals and vectors with lower case letters. We use script letters to distinguish linear

operators in general from their matrix and transform representations (e.g. F instead

of F (s)). We take R to represent the set of real numbers and R+ the set of positive

real numbers. We choose C to denote complex numbers. We take I to be the identity

matrix of appropriate size and I to be the identity operator in the relevant space.
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We use λmax(.) and λmin(.) to denote the maximum and minimum eigenvalues of a

positive definite matrix, respectively. We take ‖.‖p for p ∈ [1,∞] as the standard

vector and induced p norm. We use F T for the transpose of a matrix F .

In the rest of the section, we collect several definitions and facts from systems

theory pertinent to our discussion.

Definition 4.1. For any p ∈ [1,∞), Lnp is defined as the space of all piecewise

continuous f : R→ Rn such that ‖f‖Lp , (
∫∞
−∞ ‖f(t)‖pdt)1/p <∞, where ‖.‖ is any

standard vector norm in Rn. However, it is conventional to use the 2 norm for Ln2 .

Similarly, Ln∞ is defined as the space of all piecewise continuous f : R → Rn such

that ‖f‖L∞ , supt∈R ‖f(t)‖∞ <∞.

Definition 4.2. For any p ∈ [1,∞], the extended space Lnpe is defined as the space of

all piecewise continuous causal f : R → Rn such that ‖fτ‖Lp < ∞ ∀τ ≥ 0, where fτ

is the truncation of f defined by fτ (t) , f(t) for 0 ≤ t ≤ τ and fτ (t) , 0 for t > τ .

Definition 4.3. For a given m input n output LTI system F (s) with impulse re-

sponse f(t) ∈ Rn×m, the L1 norm is defined as ‖F (s)‖L1 , maxk∈1,2,...,n

∑m
l=1 ‖fkl‖L1 ,

where fkl(t) is the entry at the kth row and lth column of f(t).

Definition 4.4. The L∞(jR) norm of a BIBO stable LTI system F (s) is defined

by ‖F (s)‖∞ , supω∈R ‖F (jω)‖2.17

Lemma 4.1. Let F (s) be a stable causal LTI system. Then for every bounded input ζ,

the output ξ is bounded and we have ‖ξτ‖L∞ ≤ ‖F (s)‖L1‖ζτ‖L∞ [110, page 273].

Remark 4.1. Lemma 4.1 shows that the L1 norm of a stable LTI system is essentially

its induced L∞ norm: If ‖F (s)‖L1 =
∑m

l=1 ‖fkl‖L1 for some k, the equality can be

achieved by taking ul(t − υ) = sgn(fkl(υ)). Consequently, an LTI system F (s) is

17The L∞(jR) norm of a transfer function should not be confused with the L∞ norm of a signal
in the time domain. For causal F (s), ‖F (s)‖∞ is precisely the H∞ norm.
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BIBO stable if and only if ‖F (s)‖L1 < ∞ [110, page 274], which justifies the use of

the L1 norm in establishing boundedness in L1 AC algorithms.

Theorem 4.1. For a BIBO stable LTI system F (s) the induced L2 norm is equal

to ‖F (s)‖∞ [11, page 101].

Readers will note that we mainly consider two types of signal norms: L∞ and L2.

The L∞ norm will be used in L1 AC to establish boundedness (Lemma 4.1), while

the L2 norm will be of interest in ILC as a performance metric. The following will

be used in establishing the relationship between the two for ILC design:

Lemma 4.2. For a stable causal n output LTI system F (s), ‖F (s)‖∞ ≤
√
n‖F (s)‖L1.

Proof. See Appendix A.2. �

Remark 4.2. While Lemmas 4.1 and 4.2 are given for causal systems, the results are

also true in essence for noncausal systems. For example, for a stable noncausal LTI

system F (s) with bounded input ζ, ‖ξ‖L∞ ≤ ‖F (s)‖L1‖ζ‖L∞ , where ξ is the output.

In the rest of the chapter, unless otherwise noted, we will assume all systems and

signals to be causal.

4.3 State Feedback

We will start our discussion with the full state feedback L1 AC architecture (Fig-

ure 4.1) for SISO LTI systems with unknown pole locations. This class of systems

offers a good introduction to L1 AC and will show us that the guaranteed transient

property holds with the addition of a feedforward signal in the problem objective.

We will then demonstrate how this property, along with the main stability condition

of L1 AC, can aid us in the design of our learning law. Finally, we will have a brief

look at the design trade-offs and argue how L1 AC and ILC can be combined into a
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single framework with the unified objectives of high tracking performance, robustness

to uncertainties and monotonic transient response in the time and iteration domains.

4.3.1 L1 Adaptive Control

L1 AC is a recently developed model following control methodology [110] with guar-

anteed transient performance and robustness in the presence of fast adaptation. The

central idea of L1 AC theory lies in the use of the available bandwidth of the control

channel, imposed by physical hardware [112]. Drawing inspiration from robust and

classical control, L1 AC aims to compensate for uncertainties in a limited range of

frequencies, a more “feasible” objective than that of conventional MRAC wherein

uncertainties are compensated over the whole spectrum. This approach brings sig-

nificant advantages over conventional MRAC, the most critical of these being the

“decoupling” of estimation and control, realized by the presence of a bandlimited

filtering structure at a particular point18 in the architecture. As a result of this prop-

erty, the performance-robustness trade-off of L1 systems is defined by the bandwidth

of the filter as opposed to the rate of adaptation. This trade-off can be addressed with

tools from classical and robust control; whereas the adaptation rates can be increased

arbitrarily and are limited only by practical concerns such as hardware speed and

noise. Consequently, uniform performance bounds on the input and output signals

can be enforced by high adaptation rates while still maintaining a relatively high level

18This particular point varies depending on the class of systems, see for instance Figure 4.1 for
the LTI state feedback with unknown pole locations.
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of robustness [114].

In spite of the advantages we have laid out, there have been a number of publi-

cations to date that have questioned the merits of L1 AC, claiming that 1) L1 AC

offers “no benefits in terms of robustness, performance, or bounds that suggest useful

trade-offs”, 2) the reference model stability condition cannot be satisfied for certain

plants and reference models, and 3) adaptation is unnecessary in L1 AC in some sense.

Claim 3) has important implications from a robust control point of view, and shows

that for certain classes of L1 controllers, there exists an equivalent implementable

nonadaptive control law. However, for the architectures we consider, this requires the

relative degree of the filtering structure to be higher than that of the plant. This issue

is discussed in detail in Appendix A.4, along with other issues raised in the literature.

L1 AC algorithms have been developed for a wide range of classes. In this section,

we present the L1 architecture for SISO LTI systems with unknown constant param-

eters. To account for changes in system trajectory due to feedforward control, and

put the problem into a meaningful format, we augment the original controller [110]

with a bounded feedforward signal.

4.3.1.1 Problem Formulation

We consider the following class of systems

ẋ(t) = Ax(t) + b(u(t) + θTx(t)), x(0) = xin,

y(t) = cTx(t),

(4.1)

where x(t) ∈ Rn is the measured state vector; u(t) ∈ R is the input; b, c ∈ Rn are

known constant vectors; A ∈ Rn×n is a known constant matrix, with (A, b) control-

lable; θ ∈ Θ is an unknown constant vector contained in the compact convex set Θ;

and y(t) ∈ R is the output signal. Without loss of generality, let A be Hurwitz.

Assumption 4.1. The set Θ = {θ ∈ Rn : ‖θ‖∞ ≤ θM∞} for some θM∞ ∈ R+.
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Remark 4.3. Assumption 4.1 will enable us to abuse the relationship of Lemma 4.2

for ILC purposes.

The L1 AC objective is to track a given reference system in transient and steady

state phases.

4.3.1.2 Closed Loop Reference System

The reference system dynamics are described by (A, b, cT , 0), the strictly proper BIBO

stable transfer function C(s) with DC gain 1 and zero state space initialization, and

the unknown parameter θ. C(s) is also subject to the L1 norm condition

‖G(s)‖L1θM1 < 1, (4.2)

where G(s) , Hx(s)(1−C(s)), Hx(s) , (sI−A)−1b; and θM1 , maxθ∈Θ ‖θ‖1 = nθM∞ .

Let H(s) , cTHx(s). The feedforward augmented closed loop reference system can

be defined as

ẋref(t) = Axref (t) + b(uref(t) + θTxref(t)), xref (0) = xin,

yref(t) = cTxref(t),

uref(s) = C(s)(kgr(s)− θTxref(s)) + ui(s),

(4.3)

where kg = 1/H(0) is a static precompensator; r(s) is the reference signal; and ui(s)

is a bounded input signal in Laplace notation.

By augmenting the reference system with a feedforward control signal, we refor-

mulate the problem so that the objective is to track certain given dynamics driven by

a reference signal and a feedforward signal. Since this signal will be synthesized by

certain filtering methods, and be used later for performance improvement, we choose

not to pass it through C(s). Note that letting C(s) = 1 in (4.3) results in the nominal

system given by (A, b, cT , 0) (i.e. θ = 0) with input kgr(t) + ui(t). In that sense, we
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aim to only partially compensate for uncertainties, within the bandwidth of C(s).

Lemma 4.3. If (4.2) is satisfied, the reference system (4.3) is bounded-input bounded-

state bounded-input bounded-state (BIBS) stable.

Proof. See [110]. The proof follows in the same manner from the boundedness of ui(t).

�

Remark 4.4. Condition (4.2) ensures that the feedback gain of θ on the system states

is small enough for stability (see Lemma A.1 in Section A.1) since ‖θ‖1 is the L1 norm

of the static LTI system θT . In other words, we require the bandwidth of C(s) be

high enough for sufficient compensation of uncertainties.

4.3.1.3 L1 Adaptive Controller

The L1 adaptive controller is based on a fast estimation scheme which consists of a

state predictor, the bounded feedforward input ui(t) and the bandlimited filter C(s).

State Predictor The controller relies on the following state predictor

˙̂x(t) = Ax̂(t) + b(θ̂T (t)x(t) + u(t))−Kspx̃(t), x̂(0) = xin, (4.4)

where x̂(t) is the state prediction vector; θ̂(t) is the estimate of the unknown constant

vector θ; x̃(t) , x̂(t) − x(t) is the prediction error; and Ksp ∈ Rn×n can be used to

assign faster poles to (A−Ksp) [115].

Adaptation Law The adaptation law that estimates θ is

˙̂
θ(t) = Γ Proj(θ̂(t),−x̃T (t)Pbx(t)), θ̂(0) = θ̂in, (4.5)

where the arbitrary initial condition θ̂in ∈ Θ, Proj(., .) is the projection operator

defined in [116], with projection bound θM2 , maxθ∈Θ ‖θ‖2 =
√
nθM∞ ; Γ > 0 is
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Figure 4.2: ILC with feedforward augmented L1 adaptive feedback

the adaptation rate; and P = P T > 0 is the solution to the algebraic Lyapunov

equation ATP + PA = −Z, with arbitrary Z = ZT > 0. The projection operator

ensures the boundedness of θ̂(t) by definition. This property is used extensively in

the analysis of L1 schemes.

Control Law The control input is defined as

u(t) = uad(t) + ui(t),

uad(s) , C(s)(kgr(s)− η̂(s)),

(4.6)

where uad(t) and ui(t) are the feedback and feedforward signals, respectively; and η̂(s)

is the Laplace transform of θ̂T (t)x(t). Inclusion of the feedforward signal in the control

input leads to the augmentation of the state predictor (see Figure 4.2). Hence, the

controller generates the proper adaptive signal uad(t) to track (4.3).

4.3.1.4 Transient Performance

The controller ensures transient and steady-state behavior in the input and output

channels with respect to the L1 reference system, as stated in the theorem below.

Theorem 4.2. For system (4.1) with the controller defined according to (4.4), (4.5),

and (4.6), subject to the L1 norm condition (4.2); and its corresponding reference
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system (4.3), we have

‖xref − x‖L∞ ≤ χ1√
Γ
, lim

t→∞
(xref(t)− x(t)) = 0,

‖uref − u‖L∞ ≤ χ2√
Γ
, lim

t→∞
(uref(t)− u(t)) = 0,

(4.7)

where χ1, χ2 ∈ R are defined in [110].

Proof. See [110]. The proof is the same since xref(t)− x(t) and uref(t)− u(t) do not

change with the choice of ui(t). �

Theorem 4.2 implies that while itself being nonlinear, the L1 adaptive controller

can track the linear reference model arbitrarily closely as Γ is increased. Since ILC

uses information from the input and output channels, this property enables the use

of the reference model in designing the ILC update law. Moreover, the reference

system can be made arbitrarily close to the design system, at the expense of reduced

robustness, by increasing the bandwidth of C(s). For further details, we refer the

readers to [110].

4.3.2 Iterative Learning Control

ILC architectures can be broadly classified as parallel or series in terms of their

relation to feedback control loops. The parallel architecture, which we use in our

controller (compare the L1 AC formulation in Section 4.3.1.2 with Figure 4.3), divides

the input signal into feedback and feedforward components. In this approach, the

feedforward signal for the next iteration is synthesized by processing the error and

the feedforward input at the current iteration.

ILC design methods are numerous and include frequency domain, plant inversion,

and optimization techniques. While frequency domain methods only approximate the

system due to finite trial duration, they offer simplicity, flexibility and tunability as

in classical control. For these reasons, we will be adopting frequency domain methods
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to design our learning law.

4.3.2.1 Update Law

A common first order frequency domain ILC algorithm, which we will employ, is the Q

filter and learning function approach19:

ui+1(s) = Q(s)(ui(s) + L(s)ei(s)). (4.8)

In (4.8), ui(s) is the ILC input; Q(s) is the Q filter; L(s) is the learning func-

tion; ei(s) is the reference tracking error; and i is the iteration index. In this ap-

proach, L(s) is used to maximize learning, while Q(s) limits the bandwidth for ro-

bustness and other practical purposes at the expense of performance. Asymptotic

stability and monotonic convergence of the algorithm is given by the following well

known theorem, which is a specific case of Theorem 2.2:

Theorem 4.3. The ILC system, defined by the update law (4.8) acting on a stable

SISO LTI system F (s), is monotonically convergent if

‖Q(s)(I − L(s)F (s))‖∞ ≤ µF < 1

19This algorithm was discussed previously in Chapter 2 in general form; here we specialize it to
the frequency domain.
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for some µF . That is, ‖u∞ − ui+1‖L2 ≤ µF‖u∞ − ui‖L2, i = 0, 1, . . . , where u∞(t) is

the converged input.

Remark 4.5. As causality is not a constraint in ILC, the readers might ask if the

condition is valid for noncausal Q(s) and L(s). The answer is yes, since the theorem

is proven by defining a contraction in the input space L2 by aid of Theorem 4.1.

Readers interested in the use of noncausal LTI operators in ILC can refer to [21].

4.3.2.2 Monotonic Convergence and Robustness

Recall the guaranteed transient property of the adaptive system as stated in (4.7). For

the design of the update law, we will assume Γ is sufficiently high, and consequently

that x(t) = xref(t). Nevertheless, since the L1 controller aims to compensate for

uncertainties within the bandwidth of C(s), parametric uncertainties will still exist.

The closed loop system can be described as

yi(s) = H̄(s)ui(s) + H̄(s)C(s)kgr(s) + cT (I −G(s)θT )−1xnr(s),

H̄(s) , cT (I −G(s)θT )−1Hx(s) =
H(s)

1− θTG(s)
,

xnr(s) , (sI − A)−1xin,

where the identity for H̄(s) follows from Lemma A.2.

While Theorem 4.3 ensures monotonic convergence in the L2 space for a nominal

system, it does not guarantee the same under uncertainty. We now state our main

result which shows that for the L1-ILC scheme, robust monotonic convergence can

be guaranteed in a very simple way.

Theorem 4.4. The ILC system with the update law (4.8) defined over H̄(s) subject

to (4.2), is monotonically convergent with rate µ ∈ [0, 1) for all θ ∈ Θ if

κ ≤ µ− |Q(jω)||1− L(jω)H(jω)|
|Q(jω)||L(jω)||H(jω)|

, (4.9)
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for all ω ∈ R, where

κ ,
θM2‖G(s)‖∞

1− θM2‖G(s)‖∞
. (4.10)

Proof. Theorem 4.4 is a natural result of Theorem 6 of [9] when the uncompensated

uncertainty is written in multiplicative uncertainty form. See Appendix A.2 for the

details. �

Theorem 4.3 states that the nominal system can be rendered monotonically con-

vergent by defining a contraction mapping in the input space. Theorem 4.4, on

the other hand, directly extends monotonic convergence to the L1-AC scheme by

making sure that the update law defines a contraction for all θ ∈ Θ. More specifi-

cally, (4.9) implies maxθ∈Θ ‖Q(s)(1− L(s)H̄(s))‖∞ ≤ µ̄ < 1 for some µ̄. This con-

dition follows elegantly from the L1 norm condition which ensures that the plant

uncertainty (1− θTG(s))−1 exists and is BIBO stable.

4.3.3 Design Trade-Offs

For a better understanding of the combined L1-ILC scheme, we will have a look at

the design trade-offs. We first define Λ(s) , (1− θTG(s))−1. The inequalities below

follow directly from the definitions of Λ(s) and µ̄:

|Λ(jω)| ≥ 1

|1− θTHx(jω)|+ |C(jω)||θTHx(jω)|
, (4.11)

µ̄

|Q(jω)|
≥ |1− |L(jω)H(jω)Λ(jω)||. (4.12)

It follows that

|L(jω)||H(jω)| ≤
(

µ̄

|Q(jω)|
+ 1

)(
|1− θTHx(jω)|+ |C(jω)||θTHx(jω)|

)
. (4.13)

Recall that C(s) and Q(s) describe the performance-robustness trade-offs in their
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respective domains. Thus, generally speaking, we can conclude the following:

1. Increasing the bandwidth of C(s) decreases the minimum µ̄ that satisfies (4.13),

i.e. faster convergence. Indirectly, a higher bandwidth also results in better

iteration domain robustness since µ̄ becomes bounded further away from 1,

thereby leaving the possibility of higher gain Q filters for enhanced performance:

As the bandwidth of C(s) increases, κ, as defined in (4.10), decreases since by

definition ‖G(s)‖∞ ≤ ‖Hx(s)‖∞‖1− C(s)‖∞. As a result, the designer can

tune Q(s) to increase its bandwidth and minimize the converged error.

2. Decreasing the bandwidth of Q(s) decreases the minimum µ̄ that would sat-

isfy (4.13), which signifies increased iteration domain robustness. This further

implies that one can use a lower gain C(s) for a feedback system with better

stability margins: Because Q(s) has a lower gain, there exists a higher value

of κ satisfying (4.9) for the initial value of µ̄.

It thus makes sense to summarize the design trade-offs for the combined L1-ILC

scheme as that of performance versus robustness. Intuitively, this is to be expected

as increasing the passband of C(s) decreases the uncertainty

Λ(s) = (1− θTH(s)(1− C(s)))−1,

which is the desired result from an ILC perspective. For further insight into the con-

troller, we refer the readers to [36] where we provide extensive simulations showcas-

ing decreasing effects of uncertainty with increasing feedback bandwidth, and similar

performance for all uncertainties and bandwidths such that the closed loop system

remains stable.
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4.3.4 Practical Considerations and Design Guidelines

The level of detail surrounding the previous sections may leave the impression that

the design of the combined L1-ILC algorithm is highly complicated. In reality, de-

spite the algebraic intensity of the analysis, the adaptive and learning controllers rely

on fundamental ideas of classical and robust control. Hence, in this section we will

explore how the controller can be designed in a relatively straightforward and sys-

tematic way using these ideas. The trade-offs given in Section 4.3.3 will be helpful

towards that end.

The obvious starting point of this procedure is the design of the L1 adaptive feed-

back controller. Readers would note that the main design decisions of L1 AC are the

bandwidth of the feedback filter C(s) and the magnitude of the adaptation rate Γ. At

this point we would like to direct the readers’ attention to Theorem 4.2 and remind

that the theoretical model tracking error of the feedback system can be set arbitrar-

ily low. Therefore, the design of the filter and selection of the adaptation rate are

decoupled. As we have mentioned in Section 4.3.3, C(s) describes the performance-

robustness trade-off in the time domain; i.e. a higher closed loop bandwidth results in

decreased robustness margins and vice versa. Thus, the natural question that follows

is if the L1 norm condition can be satisfied. The lemma below illustrates how this is

indeed always possible:

Lemma 4.4. Let F (s) =
∏m
k=1(s+zk)∏n
k=1(s+pk)

be a strictly proper causal transfer function.

Assume there exists ψ ∈ (π/2, π] such that arg(pk) ∈ [ψ, 2π − ψ], k = 1, 2, . . . , n.

Then, as mink=1,2,...,n |pk| → ∞, ‖F (s)‖L1 → 0.

Proof. See Appendix A.2. �

Let us assume the filter C(s) is chosen in the form of 1−sn/(sn+an−1s
n−1+· · ·+a0),

which guarantees that the DC gain of C(s) is 1 and that the numerator of 1− C(s)
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Figure 4.4: Design flowchart of the L1-ILC scheme

is constant regardless of the choice of poles. Now, we have

‖G(s)‖L1 ≤
∥∥∥∥ sn−1

sn + an−1sn−1 + · · ·+ a0

∥∥∥∥
L1
‖sHx(s)‖L1 .

The above lemma then implies that ‖G(s)‖L1 can be rendered arbitrarily small to

satisfy condition (4.2) by increasing the bandwidth of C(s) since ‖sHx(s)‖L1 ∈ R

from the stability assumption and the strict properness of Hx(s). Observe that an

obvious choice for C(s) is ωC/(s+ωC) and note that for a given C(s) the L1 adaptive

controller has guaranteed (bounded away from 0) robustness margins [110]. Hence,

after C(s) is designed, the adaptation rate should be set as high as possible, while

taking into consideration that large values of Γ might amplify noise and hinder closed

loop performance.

Once the adaptive control design is finalized, the learning function can be designed

on the nominal system (i.e. θ = 0) via the well known Nyquist tuning method [9]. A

good rule of thumb to minimize the converged error is to set |1−L(jω)H(jω)| small
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within a large bandwidth since

e∞(s) =
1−Q(s)

1−Q(s)(1− L(s)H(s))
efb(s),

for θ = 0, where efb(s) is the feedback error without any feedforward input. The Q

filter can then be used to limit this bandwidth so that the learning controller is

robust against unmodeled high frequency dynamics, noise, and the uncompensated

parametric uncertainty Λ(s) as per Theorem 4.4.

In light of these observations, the design procedure has been summarized in Fig-

ure 4.4. We remind the readers that while higher values of ωC and ωQ signify high

closed loop and learning performance, this comes at the expense of reduced stability

margins.

4.4 Output Feedback

The results of Section 4.3 show us that by a slight modification of the L1 AC formu-

lation, we can preserve the guaranteed transient property of the feedback controller.

By doing so, we make sure that the L1 controller uses information from the feedfor-

ward input and keeps the plant sensitivity close to the nominal case for performance

improvement through learning. In this section we extend the results of Section 4.3

to the output feedback case with time varying unknown feedback gains and input

disturbances. While the structure of the L1 controller is slightly different and less

intuitive, we see that the results are similar from an ILC standpoint. We follow the

same procedure of defining the feedforward augmented adaptive controller, and de-

signing an iterative update law under the assumption of high adaptation gain. Unless

explicitly stated, our assumptions and definitions from Section 4.3 will continue to

hold.

49



kg

ILC

Control Law

State Predictor

Adaptation Law

T (s) System

r

v = vad + vi u

vi

e

ŷ
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Figure 4.5: ILC with feedforward augmented L1 adaptive output feedback

4.4.1 L1 Adaptive Control

We present the L1 adaptive output feedback control architecture (Figure 4.5) for SISO

linear systems with unknown time varying parameters and disturbances. Our main

assumption is that the nominal system is minimum phase and of relative degree 1.

The L1 controller for this class of systems considers an equivalent, virtual system with

a virtual adaptive control input [117]. This virtual control signal is passed through

a BIBO stable filter to synthesize the actual control input. Hence, we augment this

virtual adaptive system with a virtual feedforward signal for learning purposes.

For completeness, we list some variables that are used in the analysis of the original

controller [117] in Appendix A.3. We include some minor changes to account for the

addition of an additional input in the adaptive controller.

4.4.1.1 Problem Formulation

Consider the class of systems

ẋ(t) = Ax(t) + b(u(t) + θT (t)x(t) + σ(t)), x(0) = xin,

y(t) = cTx(t),

(4.14)

where x(t) is the unmeasured state vector; and σ(t) ∈ R, |σ(t)| ≤ ∆ for some ∆ ∈ R+,

is the time varying bounded disturbance.
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Assumption 4.2. The transfer function H(s) is minimum phase with relative de-

gree 1.

Assumption 4.3. The signals θ(t) and σ(t) are continuously differentiable with uni-

formly bounded derivatives; i.e. there exist dθ, dσ ∈ R+ such that ‖θ̇(t)‖2 ≤ dθ

and |σ̇(t)| ≤ dσ.

The L1 AC objective is to track a given reference system in transient and steady

state phases by using only output feedback.

4.4.1.2 System Transformation

In this section, we restate definitions and a lemma from [117] which will define our

virtual system. Let

Hn(s) , b1s
n−1 + b2s

n−2 + · · ·+ bn,

Hd(s) , sn + a1s
n−1 + · · ·+ an,

where ak, bk ∈ R for k = 1, 2, . . . , n so that we have H(s) = Hn(s)/Hd(s). Further

let AT ∈ Rn×n such that the following equality holds:

Hx(s) =

AT

[
1 s . . . sn−1

]T
Hd(s)

.

Note that H(s) is stable, minimum phase, and with relative degree 1 by assumption.

Hence Hn(s) and Hd(s) are stable polynomials of order n and n − 1, respectively,
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which implies b1 6= 0. Define

Am ,



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1


,

bm ,

[
0 . . . 0 1

]T
.

Since Am is Hurwitz, for any Zm = ZT
m > 0 there exists Pm = P T

m > 0 that solves

ATmPm + PmAm = −Zm.

Let cm , Pmbm. By the Kalman-Yakubovich-Popov lemma [44], the transfer func-

tion Hm(s) , cTm(sI − Am)−1bm = Hp(s)/Hd(s) is strictly positive real. For a given

signal v(s), let

u(s) = T (s)v(s), (4.15)

where T (s) , Hp(s)/Hn(s) with zero state space initialization. Further let wx(s) be

the output of the following system W :

wx(s) = wT−1(s)w1(s),

w1(t) = θT (t)w2(t),

w2(s) = T (s)ATx(s).

(4.16)

Lemma 4.5. Given v(t), θ(t), and σ(t), there exists a signal σm(t), |σm(t)| ≤ ∆m

and |σ̇m(t)| ≤ dσm for some ∆m, dσm ∈ R+, such that the output y(t) of (4.14) with

input u(t) synthesized according to (4.15) is equal to the output ym(t) of the following
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system:

ẋm(t) = Amxm(t) + bm(v(t) + wxm(t) + σm(t)), xm(0) = x̂in,

ym(t) = cTmxm(t),

(4.17)

where wxm(t) is the output of (4.16) with the input x(t) replaced by xm(t) and x̂in is

any point such that we have cTmx̂in = cTmxin [117].

Since the above lemma states equivalence of the outputs for arbitrary v(t), we can

proceed with (4.17) as the actual system with proper modification of v(t).

4.4.1.3 Closed Loop Reference System

With proper modification of vref (t), the augmented closed loop reference system can

be defined as

ẋref(t) = Amxref(t) + bm(vref(t) + wxref (t) + σm(t)), xref(0) = x̂in

vref(s) = C(s)r̄ref(s) + vi(s),

r̄ref(t) , kgr(t)− wxref (t)− σm(t), kg , 1/Hm(0),

yref(t) = cTmxref(t),

(4.18)

where wxref (t) is the output of W with the input x(t) replaced by xref(t); vi(s) is an

arbitrary bounded signal; and C(s) is subject to the L1 norm condition

‖Gm(s)‖L1M < 1, (4.19)

where

Gm(s) , Hxm(s)(1− C(s)),

Hxm(s) , (sI − Am)−1bm,

M , ‖T−1(s)‖L1θM1‖T (s)AT‖L1 .
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Lemma 4.6. If (4.19) is satisfied, the reference system (4.18) is BIBS stable.

Proof. See [117]. The proof follows in the same manner from the boundedness of vi(t).

�

Corollary 4.1. For θ(t) = θ, the reference system (4.18) is BIBS stable if

‖Gm(s)‖L1θM1‖AT‖L1 < 1. (4.20)

Proof. The proof is omitted and is similar to the proof of Lemma 4.3. �

4.4.1.4 L1 Adaptive Controller

The L1 adaptive controller for the virtual system is similar to that of the state feed-

back case, with the exception that we have a single adaptive law that estimates the

combined effects of wxm(t) and σm(t).

State Predictor The controller has the following state predictor

˙̂x(t) = Amx̂(t) + bm(v(t) + σ̂(t)), x̂(0) = x̂in

ŷ(t) = cTmx̂(t),

(4.21)

where ŷ(t) is the output prediction signal and σ̂(t) is the output of the adaptation

law below.

Adaptation Law The adaptation law is given as

˙̂σ(t) = Γc Proj(σ̂(t),−ỹ(t)), σ̂(0) = 0, (4.22)

where ỹ(t) , ŷ(t)−ym(t) = ŷ(t)−y(t) is the output prediction error; the projection is

defined with the bound ∆̄ given in Section A.3; and Γc is the adaptation rate subject
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to

Γc > max

{
αβ3

(α− 1)2β4λmin(Pm)
,

αβ4

λmin(Pm)γ̄2

}
,

with α > 1 arbitrary and β3, β4, γ̄ defined in Section A.3.

Control Law The control law is given by

v(t) = vad(t) + vi(t),

vad(t) , C(s)(kgr(s)− σ̂(s)),

(4.23)

where vad(t) and vi(t) are the feedback and feedforward signals, respectively.

4.4.1.5 Transient Performance

The guaranteed transient property of the controller is given by the following theorem.

Theorem 4.5. For system (4.17) with the controller by (4.21), (4.22) and (4.23),

subject to the L1 norm condition (4.19); and its corresponding reference system (4.18),

we have

‖yref − ym‖L∞ = ‖yref − y‖L∞ ≤
γ1√
Γc
,

‖vref − v‖L∞ ≤
γ2√
Γc
.

(4.24)

Proof. See [117]. The proof follows the same structure with the redefinitions in Ap-

pendix A.3. �

4.4.2 Iterative Learning Control

Having proved that the transient property holds with our additional feedforward

signal, we are ready to design a learning law on the adaptive system for performance

improvement. The recipe is the same as before and we will be using the nominal

system to check robust monotonic convergence by bounding the system uncertainty.
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4.4.2.1 Update Law

We use the Q filter and learning function approach as per Section 4.3 for simplicity

and consistency with the state feedback case:

vi+1(s) = Q(s)(vi(s) + L(s)ei(s)). (4.25)

Note that since we consider (4.18) for design and analysis, we define the update law

on the virtual control v(s) as opposed to the actual control u(s) (see Figure 4.5).

4.4.2.2 Monotonic Convergence and Robustness

We will design the learning controller under the same assumption as in the state

feedback case; xm(t) = xref (t). We first analyze the case of constant feedback gain,

i.e. θ(t) = θ. The closed loop reference system can then be described as

xmi(s) = Hxm(s)vi(s) +Hxm(s)C(s)kgr(s)+

Gm(s)θTATxmi(s) +Gm(s)σm(s) + xnr(s), (4.26)

where xnr(s) , (sI − Am)−1x̂in, which leads to

ymi(s) = H̄m(s)vi(s) + H̄m(s)C(s)kgr(s)+

H̄m(s)(1− C(s))σm(s) + cTm(I −Gm(s)θTAT )−1xnr(s),

where H̄m(s) , cTm(I − Gm(s)θTAT )−1Hxm(s). The following extends the result of

Theorem 4.4 to the output feedback case. Note that the condition is identical in

structure to condition (4.9).

Theorem 4.6. The ILC system with the update law (4.25) defined over H̄m(s) subject
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to (4.19) or (4.20), is monotonically convergent with rate µm ∈ [0, 1) for all θ ∈ Θ if

κm ≤
µm − |Q(jω)||1− L(jω)Hm(jω)|
|Q(jω)||L(jω)||Hm(jω)|

, (4.27)

for all ω ∈ R, where

κm ,
θM2‖ATGm(s)‖∞

1− θM2‖ATGm(s)‖∞
.

Proof. The proof follows the same steps as that of Theorem 4.4 and is omitted. �

We note that in both the state and output feedback cases, Theorems 4.4 and 4.6

show that the contraction mapping condition can be guaranteed for all uncertainties

by well defined relationships that result from the L1 norm condition and bounds on

the induced norms of the uncertainties. Therefore, we can extend the convergence

conditions to time varying feedback in a similar fashion. To that end, we will rewrite

the plant dynamics in operator form. Observe that in (4.26), the mapping θTAT

is in essence the system W that maps xi to wxi for the special case of constant θ.

Therefore, the plant dynamics can be rewritten in more general form as

xmi = Hxmvi +HxmCkgr + GmWxmi + Gmσm + xnr, (4.28)

where Hxm, C and Gm are Hxm(s), C(s) and Gm(s) in operator notation, respectively.

Note that the dynamics are the same with the exception of W being a linear time

varying map, which prevents us from further simplification in the Laplace domain.

Regardless, we see after some manipulations that the L2 gain of the uncertainty and

therefore the robust monotonic convergence condition is very similar.

Theorem 4.7. The ILC system with the update law (4.25) defined over (4.28) subject

to (4.19), is monotonically convergent with rate µmtv ∈ [0, 1) for all θ(t) ∈ Θ if

κmtv ≤
µmtv − ‖Q(s)(1− L(s)Hm(s))‖∞

‖Q(s)L(s)Hm(s)‖∞
, (4.29)
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where

κmtv ,
M2‖T (s)ATHxm(s)‖∞‖1− C(s)‖∞

1−M2‖T (s)ATGm(s)‖∞
,

with M2 , ‖T−1(s)‖∞θM2.

Proof. See Appendix A.2. �

Due to the time varying nature of the feedback uncertainty, Theorem 4.7 is nat-

urally more conservative than Theorem 4.6. Algebraically, this is attested to the

fact that we cannot simplify W and commute SISO operators as in matrix notation.

Physically, we can interpret this as the effect of time varying parameters being much

less predictable than that of constant parameters. Nevertheless, due to the condition

being conservative, we might see in practice that the actual performance of ILC is

much better than expected. We would also like to add that the design trade-offs of

the output feedback L1-ILC scheme can be evaluated straightforwardly much as in

Section 4.3.3. We omit these for the sake of brevity.

4.5 Simulations

To illustrate the benefits of our proposed method, we will consider an L1 AC based

ILC design on a model of the flexure bearing based nanopositioner shown in Fig-

ure 4.6 [1]. In [1], the authors consider the following output compensator

D(s) =
1.57× 104(s+ 141.5)(s2 + 159.5s+ 5.01× 104)

s(s+ 4000)(s2 + 6700s+ 1.92× 107)
, (4.30)

designed on the open loop transfer function from the actuator input, identified as

P (s) =
1.28× 1010(s2 + 5.63s+ 3.34× 105)

(s+ 333.1)(s2 + 150.50s+ 3.31× 104)(s2 + 12.43s+ 3.87× 105)
,
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Figure 4.6: Single axis flexure bearing based nanopositioner with moving magnet
actuator [1]

which results in the closed loop complementary sensitivity function

TP (s) , D(s)P (s)/(1 +D(s)P (s)),

by unity gain feedback (Figure 4.7). Since P (s) was obtained through system identi-

fication, we do a balanced realization to come up with the system matrices Ā, b, and c

such that P (s) = cT (sI − Ā)−1b. To simulate an uncertainty in the pole locations,

we assume a time varying θ(t), subject to θM∞ = 1, with a bounded derivative.

We will be considering two feedback based learning schemes to compare on the

plant (Ā, b, cT , 0) with the uncertain feedback gain θ(t); LTI output feedback based

ILC (LTI-ILC) and L1-ILC. The control objective is to minimize the tracking error

for dynamic references within 10 rad/s, regardless of the level of uncertainty imposed

by θ(t). We would like to see similar learning performances and converged tracking

errors for every θ(t). Furthermore, we expect that performance degradations due to

abrupt changes in θ(t) to be low, and can be compensated within a few iterations.
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Figure 4.7: Bode magnitude plot of the closed loop complementary sensitivity func-
tion Tp(s) of the flexure bearing based nanopositioner

4.5.1 LTI-ILC Design

We consider the output compensator of [1] and take the control law as

uLTIi(s) = D(s)((r(s) + ui(s))− yi(s)),

where uLTIi(s) is the feedback control input, D(s) is defined in (4.30), and ui(s)

is the feedforward learning signal. Note that this results in the dynamics given

by yi(s) = Tp(s)ui(s) + Tp(s)r(s), which is similar to the iteration domain dynamics

in Section 4.3.2.2 under zero initial conditions and θ(t) = 0.

The signal ui(s) is given by the update law (4.8), with

Q(s) =
250

s+ 250
, L(s) =

5000

s+ 5000
.

The filter L(s) is designed to approximate T−1
p (s) and to keep |1−L(jω)Tp(jω)| small

over a large bandwidth, while Q(s) is chosen to maintain stability whilst having a

sufficiently high bandwidth. More specifically, the cutoff frequency of L(s) was chosen

to be higher than that of Tp(s) for ample learning, while Q(s) was chosen to be
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more than a decade faster than the desired tracking bandwidth of 10 rad/s. The

signal ui(s)+L(s)ei(s) is passed through Q(s) twice via time reversal to emulate zero

phase filtering in continuous time and eliminate the phase lag in the ILC signal. Note

that the gain of this process is |Q(jω)|2 due to double filtering.

4.5.2 State Feedback L1 AC based ILC Design

For the proposed L1-ILC scheme, we employ a static feedback kfb such that the

closed loop response given by (A, b, c, 0), where A = Ā − bkTfb, is similar to Tp(s)

under zero uncertainty, i.e. θ(t) = 0. To ensure a fair comparison and have similar

dynamics with the LTI case, we select the desired pole locations as the poles of the

reduced order (5th) approximation to Tp(s) to yield near identical step responses

for kgH(s) = kgc
T (sI − A)−1b and Tp(s).

In the L1-ILC design, we consider a 3rd order filter to better attenuate the effects

of θ(t) and take C(s) = 1−s3/(s+ωC)3 , which satisfies (4.2) for ωC ≥ 2600. Note that

since the relative degree of the filter C(s) is less than that of the plant P (s), there

exists no implementable LTI feedback controller equivalent to the resulting L1 AC

reference control law (see Appendix A.4).

To avoid an excessive bandwidth, we choose ωC = 3000, and also note that con-

dition (4.2) can be satisfied by a lower bandwidth through careful selection of the

desired pole locations, since the lightly damped poles of Tp(s) (and consequently H(s)

by virtue of the selected poles) manifest as high gain feedback through θ(t) in terms

of the L1 norm condition. We consider a noisy measurement scenario wherein each

state is corrupted by Gaussian white noise with variance 3.16 × 10−8, which results

in an output noise variance of 1.96× 10−5. To limit noise amplification, we take the

adaptive gain Γ to be 1×106. For the state predictor, we select Ksp = 0 for simplicity.
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For the ILC update law, we choose

Q(s) =
250

s+ 250
, L(s) = kg

5000

s+ 5000
,

which result in a similar learning performance to that of the output feedback based

design. As with the LTI-ILC scheme, we filter ui(s) + L(s)ei(s) through Q(s) twice

to eliminate phase lag.

4.5.3 Simulation Setup

To compare the L1 AC and LTI based learning schemes, we will be looking at unknown

parameters θ(t) with θ1(t) as the only nonzero element. The reason for this is twofold:

First, the Hankel singular values of the states x1, x2, x3, x4, and x5 of the balanced

realization of P (s) are 910, 454, 172, 170, and 42; respectively. In other words, x1 has

a much higher contribution to the output when compared to other states. Second,

by doing so we are able to consider large time varying uncertainties without having

an excessively conservative robust monotonic convergence condition, stated as

κtv ≤
µtv − ‖Q(−s)Q(s)(1− L(s)H(s))‖∞

‖Q(−s)Q(s)L(s)H(s)‖∞
,

for µtv ∈ [0, 1), with

κtv ,
θM∞‖1− C(s)‖∞‖Hx1(s)‖∞

1− θM∞‖G1(s)‖∞
,

where Hx1(s) and G1(s) are the transfer functions to the first outputs of Hx(s)

and G(s), respectively. The readers can verify that the condition guarantees mono-

tonic convergence in the same vein as Theorems 4.4 and 4.7. More specifically,

the terms ‖Hx1(s)‖∞, ‖G1(s)‖∞, and θM∞ is used in the definition of κtv instead

of ‖Hx(s)‖∞, ‖G(s)‖∞, and θM2 since θ(t) is zero for all elements but θ1(t), and the

inequalities θM∞ < θM2 , ‖Hx1(s)‖∞ ≤ ‖Hx(s)‖∞, ‖G1(s)‖∞ ≤ ‖Gx(s)‖∞ hold. Also
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note that this further implies θM∞‖G1(s)‖∞ ≤ θM2‖G(s)‖∞ < 1. On the other hand,

the product Q(−s)Q(s) is due to double filtering, where Q(−s) is the stable anticausal

counterpart of Q(s).

For the simulation scenarios, we consider the responses of the two schemes to a

sinusoidal reference, r(t) = sin(10t), over periods of 8 seconds, wherein each period

defines a trial. At the beginning of each trial, we reset the clock to 0, and reinitiate

the process with the updated feedforward signals. To better make our point, we

consider noiseless measurements for the LTI feedback system.

4.5.4 Simulation Results

First, we look at the feedback response (without learning) of the two systems to a

fast parameter, selected as θ1(t) = sin(50t). We see in Figure 4.8 that L1 AC clearly

outperforms LTI control with an error norm (in the L2 sense) of 0.0126 against 0.138.

We also observe that the L1 AC input is smooth and devoid of high frequency con-

tent from the estimation loop. Then, we study the learning performance of the two

schemes and observe in Figure 4.9 that the L1-ILC scheme performs almost an order

of magnitude better than the LTI feedback based system for all iterations. We note

that, the converged error of the LTI scheme is much larger than that of the L1-ILC

algorithm with significant effects due to the 50 rad/s feedback uncertainty. We look

more closely at the converged error of the L1-ILC architecture in Figure 4.10 and see

that the majority of the remaining error comprises Gaussian noise from the measure-

ments.

Next, we consider two scenarios wherein θ1(t) has an abrupt change of sign at

the 6th iteration. In the first scenario, we keep the parameter at the same frequency

but decrease the amplitude to 0.1, thus starting the trials with θ1(t) = 0.1 sin(50t)

and switching to θ1(t) = −0.1 sin(50t) at the 6th iteration. We see in Figure 4.11 that

both controllers experience a large transient growth but converge back to equilibrium
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within a few trials. We also observe that the LTI feedback scheme performs better

than before (compare to Figure 4.9) due to decreasing uncertainty, yet the learning

performance is still poor when compared to L1-ILC with larger transients that ex-

ceed the original feedback control performance. In the second scenario, we assume a

time invariant parameter with a very small amplitude and take θ1(t) = 0.01, which

is changed to θ1(t) = −0.01 at the 6th iteration. Figure 4.12 shows us that the

controllers show near identical learning dynamics due to the uncertainty being close

to 0. We also see that the converged LTI error is slightly smaller than the L1 AC

error due to the limiting noise factor. However, we observe that the error growth

experienced by the LTI feedback based ILC is noticeable, whereas the L1-ILC system

shows negligible change.

Finally, we redirect our attention to Figures 4.9, 4.11, and 4.12: We note that

the L1-ILC scheme displays similar performance (in terms of initial and converged

errors) regardles of the uncertainty, whereas the LTI feedback based ILC shows ap-

proximately an order of magnitude variance in terms of both the initial and con-

verged errors. This clearly indicates the improvement in performance predictability

for the L1-ILC system over the LTI feedback based ILC system.

4.6 Conclusion

In this chapter we presented a combined L1-ILC scheme for robust precision motion

control. L1 AC was utilized to reduce the effects of parametric variation and increase

precision whilst preserving robustness against unmodeled dynamics. This reduction

in parametric uncertainty enabled the use of aggressive ILC design to increase system

bandwidth and improve tracking performance.

The combined controller is robust against parametric uncertainties and unmodeled

dynamics, with high tracking performance over a large bandwidth. Simulation results
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on a precision nanopositioner demonstrate that the well posed feedback controller

helps us in extracting high performance from ILC and achieve near perfect track-

ing even with information, bandwidth and hardware constraints, which is especially

important due to the complex requirements for high precision tracking even in the

presence of parametric uncertainty. It is important to note that the specific L1 AC

architecture considered in the simulation scenario cannot be implemented as an equiv-

alent LTI controller, since the relative degree of the filter is lower than that of the

plant. Whether L1 AC has architectural advantages in the presence of unmodeled

dynamics and signals is an issue that needs further attention. Similarly, whether

lower relative degree filters have any benefits is an open question, as noted in Ap-

pendix A.4.
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CHAPTER 5

Robust Stability of Iteration Varying

Systems with Experimental

Implementation

In the previous chapter, we considered the robust monotonic convergence problem

of uncertain linear systems for high precision tracking performance, targeting the

application area of precision motion control systems. Although the analysis assumed

iteration invariance of the uncertainties, we were motivated by relaxing the plant

invariance assumption a la adaptive feedback control. In this chapter, we consider

the stability and convergence of linear iteration varying systems. In the introduction

to this chapter, we recall some of our arguments from earlier about the invariance

assumption and the feedback analogy of ILC.

5.1 Introduction

The fundamental assumption that enables the success of ILC algorithms is the it-

eration invariance of the: 1) plant dynamics, 2) exogenous disturbances, 3) initial

conditions, and 4) reference. This assumption greatly simplifies the ILC problem

and enables the control engineer to design an asymptotically stable recurrence rela-

tion in the iteration domain by employing a contraction mapping. Even though the
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Figure 5.1: Feedback control in the iteration domain interpretation of ILC: The in-
herent integral action of the control law ensures that the output yk converges to r
for constant dk = d for the static LTI plant P̄ , provided the feedback loop is sta-
ble. Here, w−1 represents the trial delay operator, and dk is a term that represents
disturbances, noise, and the effect of initial conditions.

assumption is unrealistic, similar to feedback control of LTI systems, it yields good

results in practice provided that the variation of the process (dynamics, exogenous

disturbances, initial conditions etc.) from trial to trial is small.

5.1.1 The Feedback Analogy

The restrictive nature of the invariance assumption is perhaps best understood via an

analogy to feedback control, since a common interpretation of ILC is that of a feedback

controller in the iteration domain, as per the following discussion: Let P̄ : U → Y be

a bounded linear operator, where U is the space of admissible inputs and Y is the

space of outputs. Assuming that P̄ is known and there are no exogenous signals

apart from uk affecting the output, the classical ILC problem can be stated as that of

finding a controller C that maps the input history u0, u1, . . . , uk−1 ∈ U to the current

input uk, such that the output yk = P̄ uk converges to a desired reference r in the

image of P̄ as k → ∞. In most cases, C is designed to consider only the previous

iteration, thus giving rise to the name first order ILC. The internal model principle

then dictates that the controller (update law) C includes integral action to guarantee

perfect tracking in the limit, so C(uk) = uk−1 + L(r − P̄ uk−1), as can be seen in

Figure 4.2, which guarantees yk → r even in the case where the output is corrupted

by a constant vector d ∈ Y such that yk = P̄ uk + d. Essentially, the ILC problem

is that of designing a time invariant feedback controller for a constant static plant
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to track step references [7], under the assumption of constant noise and disturbance

signals.

The objective of this chapter is to generalize the ILC problem by relaxing the

invariance assumption, which restricts the feedback analogy to setpoint tracking, and

fails to capture the generality associated with the feedback paradigm. In practice,

initial conditions and disturbances are always subject to variations, while references

and plants can commonly appear as outputs of HOIMs in the context of robotic

manipulators doing different tasks, or freeway traffic models [118].

5.1.2 Relevant Work

Linear feedback control encompasses a wide array of problems and their accompanying

solutions, such as stabilization, robustness, optimality, sensitivity reduction, funda-

mental limitations, and design trade-offs. Since the 1990s, there has been an increased

effort in the ILC community to generalize the classical problem in these directions.

These include the synthesis of 1) robust ILC algorithms [32,36,69–73], 2) norm opti-

mal ILC algorithms with quadratic cost functions, 3) AILC methodologies [80,82–84],

along with the study of performance guidelines and design trade-offs [32, 101, 102].

See also [9, 12,33] and the references therein.

Implicit in the vast majority of these earlier works is the invariance assumption

in some form. To date, there has been relatively limited material attempting to relax

these assumptions. Among these, initial condition invariance was by far the most dis-

cussed topic earlier in the literature, since perfect resetting can be hard to achieve for

certain systems [103]. The central result of [103] shows that initial condition resetting

errors and bounded disturbances affect the tracking error continuously, provided they

are uniformly bounded in the iteration domain. The effects of varying disturbance

signals have been studied in stochastic settings [32, 69, 71, 119]. Varying references

are also increasingly studied in ILC theory; AILC is one of the avenues in which this

72



objective is pursued [33, 81], while some other works consider parametrizing the set

of references by basis functions [34,104,105,120] or library based interpolations [35].

Lastly, iteration varying plant models are actively studied in the case that they can

be described by a HOIM [107], with generalizations to iteration varying references

and signals considered in [121].

Despite all these efforts, the feedback interpretation of ILC still paints mostly

an incomplete picture, and lacks the fundamental notions of asymptotic and input-

output stability. In this sense, the introduction of the w transform (z transform in

the iteration domain) in [50] has been crucial in adopting a more holistic view of ILC

as an input-output system, induced by feedback control in the iteration domain. The

transform enables the integration of iteration varying signals into the ILC problem and

is a good step towards the establishment of input-output stability properties in ILC.

However, it restricts the analysis to iteration invariant plants and update laws. On

the other hand, while [75] presents a framework to investigate the stability of discrete

time iteration varying systems, the analysis is restricted to iteration invariant signals.

Our aim in this chapter is 1) to construct a general framework to analyze stability

properties of ILC systems in the presence of iteration varying signals (including refer-

ences) and plant operators, where the operators are assumed to belong to a bounded

subset and otherwise unknown, and 2) connect our analysis to the robust ILC liter-

ature by showing that robust updates lead to stable behavior in ILC. In addition,

we will compare the performance of this uncertain iteration varying system to its

nominal invariant counterpart, discuss how nominal performance can be recovered,

and verify the theory with simulation examples and experimental implementation.

5.1.3 Organization of the Chapter

The remainder of the chapter is organized as follows: Section 5.2 introduces prelimi-

naries and the ILC problem. Section 5.3 proves the basic boundedness result of the
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algorithm. In Section 5.4, asymptotic performance and design trade-offs are investi-

gated. Section 5.5 describes the experimental setup, which also forms the basis for

the simulation examples. Simulation examples are presented in Section 5.6, with the

experimental results following in Section 5.7. Finally, concluding remarks are given

in Section 5.8.

5.2 Problem Formulation

We recall the vector space formulation of the first order ILC problem presented in

Chapter 2, also discussed in Section 5.1. We assume U and Y to be Banach spaces

equipped with suitable norms. We base this assumption on the fact that Banach

spaces are the natural settings of contraction mapping based ILC, which relies on the

fixed point theorem. Furthermore, Lp and lp spaces, the natural framework for 1D dy-

namic systems, are complete. The motivation for this assumption is to come up with

a general framework that contains the variety of different settings in ILC, consistent

with the vector space approach in [7].

In this framework, the operator P̄ represents the input-output relationship of a

linear system, which can be described by an ordinary differential equation, a partial

differential equation, or a difference equation, over a finite or infinite domain. By

taking U and Y as complete normed spaces, and P̄ : U → Y as a bounded linear op-

erator, we will be able to have a complete analysis valid for a broad class of problems,

in a simplified fashion.

Care must be taken in the definitions of the operators, as boundedness depends

on the specific choice of spaces. Two examples are given below.

Example 5.1. Consider the scalar differential equation ẏ(t) = cy(t) + u(t) with the

initial condition y(0) = 0, where c ∈ R, and U = Y is the space of continuous

functions over the interval [a, b] with the sup norm. The differential equation is a
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bounded operator for

� a = 0, b =∞, if and only if c < 0,

� a = −∞, b = 0, if and only if c > 0, and

� a, b ∈ R, for all c.

Example 5.2. Consider the convolution operator represented by the transfer func-

tion 1/(1 − s). This operator is unbounded (unstable) if the transfer function is

the one sided Laplace transform (over the positive real line) of the kernel et, but

is bounded (stable) if it is the bilateral Laplace transform of the kernel et1(−t),

where 1(.) is the Heaviside step function.

5.2.1 Notation and Preliminaries

We take N to represent the set of nonnegative integers and N+ the set of positive

integers. For normed vector spaces X and V , B(X, V ) is the space of all bounded

linear operators from X to V . We use ‖.‖ to denote vector and induced operator

norms in the relevant spaces. For a family of operators indexed by a subset of N,

the product notation indicates the composition of the operators in increasing order;

e.g.
∏k

i=j Hi , HkHk−1 . . . Hj for j ≤ k and
∏k

i=j Hi , I for j > k, where I is the

identity. The uniform distribution over [a, b] is denoted U(a, b).

For a rigorous study of the convergence and stability of the iterative problem, we

define the spaces20 Uω ,
∏

k∈N U and Y ω ,
∏

k∈N Y . An element x in these spaces

will be defined so xk denotes the kth coordinate. We will use this notation to refer

to any sequence of objects in the same space, e.g. x , (x0, x1, . . . ) where each xk can

be an element of U , Y , or an operator in these spaces. In addition, we introduce the

following definitions where the spaces X and V are in {U, Y }.
20The notation Rω typically denotes the product

∏
k∈N R, hence Uω, Y ω.
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Definition 5.1. Let x be an element of Xω. The norm of x is given

by ‖x‖ , supk∈N ‖xk‖.

Definition 5.2. A linear mapping H : Xω → V ω is BIBO stable if there exist a

finite constant ε such that ‖(Hx)κ‖ ≤ ε‖(x)κ‖ for all x ∈ Xω and κ ∈ N,

where (x)κ , (x0, x1, . . . , xκ, 0, 0, . . . ) is the truncation of x.

The spaces Uω and Y ω are not normed spaces since our definition of the norm

entails the possibility of unbounded elements. However, this is merely a formality and

will not affect our analysis as any truncated vector in these spaces has a finite norm.

This is akin to the definition of input-output stability via the extended space Lpe.

Definition 5.3. Let x, v ∈ Xω. We say x converges to v if limk→∞ ‖xk − vk‖ =

0. Otherwise, if lim supk→∞ ‖xk − vk‖ is bounded, we say x converges to a bounded

neighborhood of v.

Definition 5.4. Let Hk ∈ B(X,X). The system defined by the equality xk+1 = Hkxk

for all k ∈ N is asymptotically stable if there exists a scalar ε such that ‖x‖ ≤ ε‖x0‖,

and x converges to 0 for all x0 ∈ X.

The framework described above will enable us to adopt a holistic signal space

approach to ILC, with the closed loop system (in the iteration domain) as the input-

output operator, so stability and convergence can be studied for the case of iteration

varying factors.

5.2.2 System Dynamics

Based on the above, we consider the following class of systems:

yk = Pkuk + dk, ∀k ∈ N, (5.1)
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where yk ∈ Y is the output, uk ∈ U is the input, dk ∈ Y is the exogenous signal

that includes disturbance, noise, and the effect of initial conditions, and Pk is the

iteration varying linear input-output operator. Moreover, we assume that each Pk

is in the vicinity of the known bounded linear operator P̄ as stated in the following

assumption.

Assumption 5.1. The input-output operators lie in a neighborhood of P̄ . In other

words, there exists a finite real constant ρ such that

Pk ∈ P ,
{
H ∈ B(U, Y ) : ‖H − P̄‖ < ρ

}
, ∀k ∈ N.

Due to the assumption that the process variables Pk and dk are varying along

the iteration axis, it is a straightforward matter to assume that the reference is also

subject to variations from trial to trial. Thus, our objective is to solve the following

problem:

Problem 5.1. Find an ILC update law such that the error vector e defined

by ek , rk − yk for all k ∈ N, where the reference rk is in the image of P̄ for all k ∈ N,

converges to a small neighborhood of 0.

As with the plant operators, we make a boundedness assumption on r.

Assumption 5.2. The reference vectors lie in a neighborhood of a nominal reference r̄

in the image of P̄ . In other words, there exists a finite real constant ζ such that

rk ∈ R ,
{
h ∈ P̄ (U) ⊂ Y : ‖h− r̄‖ < ζ

}
, ∀k ∈ N.
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5.3 Stability of Iteration Varying Systems via Ro-

bust Update Laws

This section will detail the stability analysis of our proposed solution to Problem 5.1.

The solution will generalize the findings of [75] along the abstract contraction map-

ping approach of [7], and connect the iteration varying problem to the robust ILC

literature. Consider the most general linear iteration invariant update law

uk+1 = Quk + Lek, ∀k ∈ N, (5.2)

where Q and L are bounded, and u0 is arbitrary. Furthermore, we will require the

update law to be subject to the robustness condition

‖Q− LH‖ ≤ γ < 1, ∀H ∈ P , (5.3)

for some real constant γ, which guarantees monotonic convergence for all H ∈ P

when the system is iteration invariant.

Condition 5.3 is a sufficient condition for asymptotic stability of the iteration

varying input equation, as we shall see below. When the spaces U and Y are finite

dimensional, i.e. Q, L, and all H ∈ P have matrix representations, (uniform/robust)

asymptotic stability is equivalent to the joint spectral radius of the bounded set of

operators (Q− LP) being strictly less than 1, which has been shown to be an unde-

cidable problem [122].

Substituting (5.1) into the update law (5.2) yields the recurrence relation

uk+1 = Tkuk + Lηk, ∀k ∈ N, (5.4)

where Tk , Q− LPk and ηk , rk − dk. The solution of the input vector in terms
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of u0 and ηk can then be given as

uk+1 =

(
k∏
i=0

Ti

)
u0︸ ︷︷ ︸

Natural response

+
k∑
i=0

(
k∏

j=i+1

Tj

)
Lηi︸ ︷︷ ︸

Forced response

, ∀k ∈ N. (5.5)

Equation (5.4) defines a time (iteration) varying discrete dynamical system on the

space U , as such, its solution (5.5) is conceptually the same as that of a discrete time

system on Rn. When (5.3) holds, since ‖Tk‖ ≤ γ < 1, it is easy to see that (5.4) is a

well-defined, stable dynamical system.

Proposition 5.1. The linear iterative system described by (5.4) with η = 0, subject

to (5.3), is asymptotically stable.

Proof. Assume (5.3) holds and η = 0. Take an arbitrary u0 ∈ U . Then

from (5.5), ‖uk+1‖ ≤ γk+1‖u0‖. Since γ < 1, it follows that u converges to 0

and ‖u‖ ≤ ‖u0‖. Therefore, system (5.4) is asymptotically stable. �

Proposition 5.2. The linear iterative system described by (5.4) with input η, subject

to (5.3) and the equality u0 = 0, is BIBO stable.

Proof. Assume (5.3) holds and u0 = 0. Take any η ∈ Y ω. Then from (5.5) we have

‖uκ+1‖ ≤
κ∑
i=0

γκ−i‖L‖‖(η)κ‖ =
1− γκ+1

1− γ
‖L‖‖(η)κ‖

≤ ‖L‖‖(η)κ‖
1− γ

≤ ‖L‖‖(η)κ+1‖
1− γ

, ∀κ ∈ N,

where we use the fact that the truncated norm is monotonically increasing by defini-

tion. Using the same property, we can show by the above inequality that

‖(u)κ‖ = max
i=1,...,κ

‖ui‖ ≤
‖L‖‖(η)κ‖

1− γ
, ∀κ ∈ N. (5.6)

Therefore, system (5.4) is BIBO stable. �
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We showed that the recursion relation (5.4) is asymptotically and BIBO stable

when subject to (5.3). We finish this section with the following theorem, which shows

that u and y are bounded if d is bounded.

Theorem 5.1. The signals u and y of the linear iterative system (5.1) with the update

law (5.2) is bounded if d is bounded.

Proof. Consider the solution (5.5) of the input u, which is the superposition of the

natural response describing the asymptotic response to the initial condition u0, and

the forced response describing the input-output behavior due to η. Since r is bounded

by Assumption 5.2, η is bounded if d is bounded. From Propositions 5.1 and 5.2, it

follows that u is bounded. Now observe that

‖yk‖ ≤ ‖Pk‖‖uk‖+ ‖dk‖ ≤ ‖Pk‖‖u‖+ ‖d‖, ∀k ∈ N,

by (5.1). Since P is uniformly bounded, it follows that y is bounded. �

The results of this section show that an ILC update law can be safely applied on

iteration varying systems, provided the update law is designed to be robust against

plant uncertainties. Based on the nature of the underlying spaces U, Y , and the

operator set P , this update law can be designed using existing robust ILC techniques.

5.4 Asymptotic Performance and Design Trade-

offs

Having shown that the ILC system with our proposed solution is well-posed under the

robustness assumption, we will direct our attention to the asymptotic performance of

the system, when compared to a nominal iteration invariant systems. One motivation

for analyzing these systems in general, as opposed to systems where Q = I, is that

80



perfect tracking can be an infeasible objective for various reasons. For example, the

set P might be too big, so (5.3) cannot be satisfied for Q = I. As such, we will

introduce a nominal iterative system via the known operator P̄ and reference r̄ under

the assumption that d = 0, which will facilitate our analysis.

5.4.1 Asymptotic Response of the System and the Corre-

sponding Nominal Dynamics

As the choice of u0 has no effect on the input (5.5) as the iteration index k →∞, we

will drop the natural response from (5.5), and consider

uk+1 ,
k∑
i=0

(
k∏

j=i+1

Tj

)
Lηi,

ek , −Pkuk + ηk,

(5.7)

for all k ∈ N, where u0 = 0.

We define the nominal asymptotic system to be the case where the signal d = 0

and the plant Pk = P̄ for all k ∈ N. In other words, we describe the nominal system

as

ȳk = P̄ ūk, ∀k ∈ N,

where ȳk ∈ Y is the nominal output and ūk ∈ U is the nominal input. Thus, the error

dynamics of the nominal system are given by the relation below, where η̄ , r̄:

ēk = −P̄ ūk + η̄, ∀k ∈ N.

We take the update law as ūk+1 = Qūk + Lēk, with Q and L the same as before.
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Consequently, since the choice of ū0 has no effect in the limit, we consider

ūk+1 ,
k∑
i=0

(
k∏

j=i+1

T̄

)
Lη̄,

ēk , −P̄ ūk + η̄,

(5.8)

for all k ∈ N, where T̄ , Q− LP̄ and ū0 = 0. This nominal system is well known

to be stable and convergent, with the limits ū∞ , limk→∞ uk and ē∞ , limk→∞ ek,

when (5.3) holds.

5.4.2 Asymptotic Learning Performance

We will now analyze the performance of the algorithm (5.2) on the ILC system.

Towards that end, based on the results of the previous section, we will compare the

dynamics (5.7) and (5.8) written below in recursive form:

ūk+1 = T̄ ūk + Lη̄, ∀k ∈ N, (5.9)

uk+1 = Tkuk + Lηk, ∀k ∈ N. (5.10)

The equalities above will enable us to show that the iteration varying ILC system

converges to a bounded neighborhood of the nominal invariant system. In showing

this result, the main idea is to subtract the system (5.10) from the nominal dynam-

ics (5.9) and come up with a stable recursion, driven by the bounded uncertainties

due to P, r, d.

Theorem 5.2. Assume that the linear iterative system described by (5.1) with the

update law (5.2) is subject to (5.3). Then, if d is bounded, u and e converge to a

82



neighborhood of ū and ē, respectively. In other words,

lim sup
k→∞

‖ũk‖ ≤ ‖L‖
ρ‖ū∞‖+ ζ + ‖d‖

1− γ
, (5.11)

and

lim sup
k→∞

‖ẽk‖ ≤
(
‖L‖‖P̄‖+ ρ

1− γ
+ 1

)
(ρ‖ū∞‖+ ζ + ‖d‖) . (5.12)

Proof. Assume that (5.3) holds. Then, subtracting (5.10) from (5.9), it is easy to

show

‖ũk+1‖ ≤ γ‖ũk‖+ ‖L‖(‖P̃k‖‖x̄k‖+ ‖r̃k‖+ ‖dk‖), (5.13)

for all k ∈ N, where x̃k , x̄k − xk, P̃k , P̄ − Pk, and r̃k , r̄ − rk. Now recall that ū

converges to a fixed point ū∞. Hence

lim sup
k→∞

‖ũk‖ ≤ γ lim sup
k→∞

‖ũk‖+ ‖L‖(ρ‖ū∞‖+ ζ + ‖d‖),

for all k ∈ N. It follows that

lim sup
k→∞

‖ũk‖ ≤ ‖L‖
ρ‖ū∞‖+ ζ + ‖d‖

1− γ
,

which verifies (5.11). Similarly, letting ẽk , ēk − ek for all k ∈ N, it is easy to derive

ẽk = Pkũk − P̃kūk + r̃k + dk, ∀k ∈ N,

which leads to the inequality

‖ẽk‖ ≤ (‖P̄‖+ ‖P̃k‖)‖ũk‖+ ‖P̃k‖‖ūk‖+ ‖r̃k‖+ ‖dk‖, (5.14)
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for all k ∈ N. From above, by substituting (5.11) it follows that

lim sup
k→∞

‖ẽk‖ ≤
(
‖L‖‖P̄‖+ ρ

1− γ
+ 1

)
(ρ‖x̄∞‖+ ζ + ‖d‖) ,

which verifies (5.12). This completes the proof. �

In addition, if the input-output operator and the reference converge to the nominal

case, and d converges to 0, it can be shown that the ILC system converges to the

nominal invariant system, as shown in the following theorem. Here, convergence of P

to P̄ is to be interpreted as limk→∞ ‖Pk − P̄‖ = 0 as in Definition 5.3.

Theorem 5.3. Assume that the linear iterative system described by (5.1) with the

update law (5.2) is subject to (5.3). Then, if P converges to P̄ , r converges to r̄,

and d converges to 0, u and e converge to ū and ē, respectively.

Proof. Consider (5.13). Then we have

lim sup
k→∞

‖ũk‖ ≤ γ lim sup
k→∞

‖ũk‖+ ‖L‖ lim sup
k→∞

(
‖P̃k‖‖ūk‖+ ‖r̃k‖+ ‖dk‖

)
,

which by the convergence assumptions on P , r and d implies

lim sup
k→∞

‖ũk‖ ≤ γ lim sup
k→∞

‖ũk‖.

The fact that the norm is nonegative and γ ∈ [0, 1) necessitates lim supk→∞ ‖ũk‖ = 0.

Thus, u converges to ū. Similarly, by (5.14) we have

lim sup
k→∞

‖ẽk‖ ≤
(
‖P̄‖+ ρ

)
lim sup
k→∞

‖ũk‖+ lim sup
k→∞

(
‖P̃k‖‖ū‖+ ‖r̃k‖+ ‖dk‖

)
.

The convergence assumptions on the uncertain terms imply that the right hand side

of the inequality tends to 0. Thus, e converges to ē, completing the proof. �
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Theorems 5.2 and 5.3 are significant results for the following reasons: First, the

bounds in (5.11) and (5.12) are continuous increasing functions of the uncertainties

quantified by the scalars ρ, ζ, and the disturbance magnitude ‖d‖. As such, decreased

levels of uncertainty imply that system response can be guaranteed to be closer to

its nominal counterpart. Moreover, in the case where ρ = ζ = 0 and d = 0, (5.11)

and (5.12) predict that the asymptotic response is equal to that of the nominal system,

as expected. Second, in the case that the uncertainties vanish asymptotically, we can

guarantee that the nominal response can be recovered in the limit.

5.4.3 Design Trade-offs

As in the iteration invariant case, it is trivial to show that γ is a measure of the

convergence speed21 of the algorithm: Recall from Section 5.1 that the input and

error converge to the forced response of the ILC system. Furthermore, we saw in

Section 5.3 that the effect of the initial input vanishes geometrically with rate γ.

Hence, lower values of γ correspond to faster convergence to the forced response of

the system, and vice versa.

Let α , ‖L‖/(1− γ). We note that from (5.6), the bound ‖ū∞‖ ≤ α‖r‖ can

be derived for the nominal case. Plugging this into (5.11) and (5.12), without

loss of generality, it is easy to see that both the input and output asymptotic er-

rors (lim supk→∞ ‖ũk‖ and lim supk→∞ ‖ẽk‖) decrease as α decreases. Moreover

lim
α→0

(
lim sup
k→∞

‖ũk‖
)

= 0,

and

lim sup
α→0

(
lim sup
k→∞

‖ẽk‖
)
≤ ζ + ‖d‖, (5.15)

since limα→0 ‖ū∞‖ = 0 by (5.6). However, we note that decreasing α might come at

21More strictly, the convergence speed of the algorithm would be the smallest γ satisfying (5.3).
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the expense of steady state performance. In the simulation examples and experimental

implementation, we will use this fact to design optimal algorithms given steady state

performance constraints.

5.4.4 Constrained Optimal Design for Predictable Perfor-

mance

By definition of α, the ILC problem can be formulated as a constrained minimization

of the following form:

minimize
Q∈B(U,U)
L∈B(Y,U)

‖L‖
1− γ̄

subject to γ̄ = ‖Q− LP̄‖+ ρ‖L‖ ≤ σ < 1,

‖I − P̄ (I −Q+ LP̄ )−1L‖ ≤ β.

(5.16)

In (5.16), the constraint ‖Q− LP̄‖+ ρ‖L‖ < 1 is the robust stability criterion, de-

rived by applying the triangle inequality on the uncertainty set P described by As-

sumption 5.1. This constraint can be relaxed as

sup
H∈P
‖Q− LH‖ ≤ ζ < 1,

at the expense of computational complexity. On the other hand, the con-

straint ‖I − P̄ (I −Q+ LP̄ )−1L‖ ≤ β sets a limit on the allowable nominal steady

state error ē∞ since

ȳ∞ = P̄ (I − (Q− LP̄ ))−1Lr̄, (5.17)

and therefore

ē∞ = (I − P̄ (I −Q+ LP̄ )−1L)r̄.

86



Thus, the objective of the nonlinear program (5.16) is to find a robust linear ILC

update law with guaranteed nominal steady state performance, that minimizes the

deviations from the nominal system. The program (5.16) will be solved numerically

via the MATLAB command fmincon and verified via simulations and experiments in

the following sections.

5.5 Description of the Experimental Setup

This section describes the experimental setup that will be used to verify the find-

ings of the previous sections. We will be working with discrete time linear dynamic

systems over a fixed finite horizon, i.e. the spaces U = Y = Rn for some positive

integer n, equipped with the 2 norm. The plant set P is a bounded set of n× n

lower triangular (causal) nonsingular matrices. Similarly, the learning operators Q

and L are n× n real matrices. Here, the inherent delay of the plant is ignored by

shifting the output [9]. For example, if the system has relative degree 1, we consider

the matrix equation yk = P̄ uk, where

uk ,

[
uk(0) uk(1) . . . uk(n− 1)

]T
,

yk ,

[
yk(1) yk(2) . . . yk(n)

]T
.

(5.18)

Similarly, the reference vector is given as

rk ,

[
rk(1) rk(2) . . . rk(n)

]T
. (5.19)

5.5.1 Plant Description

The experimental setup considered in our work is an Aerotech ALS 25010, a low profile

high accuracy linear motion stage, controlled through dSPACE. The specifications of
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Figure 5.2: The experimental setup.

Table 5.1: Specifications of Aerotech ALS 2501022

Total Travel 100 mm
Servomotor Brushless Linear
Encoder Noncontact Linear
Resolution 0.001-0.2µm
Maximum Travel Speed 2 m/s
Maximum Linear Acceleration 30 m/s2

Accuracy ±1µm

the stage (the Y stage) are detailed in Table 5.1. The stage is mounted onto a similar

Aerotech stage (the X stage), which in turn is connected to a 600×900 mm TMC

breadboard. The motion ranges of the two stages are orthogonal to each other in

Cartesian coordinates, thereby forming a dual axis XY type motion control platform.

For simplicity, the latter of the stages is stabilized at a fixed position by a proportional-

integral-derivative (PID) controller, and the overall setup is treated as a single axis

motion stage.

22The travel speed and linear acceleration are limited to 300 mm/s and 3 m/s2, respectively, by
the software.
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5.5.2 Closed Loop Identification

The Y stage is controlled by a PID controller (implemented at 1 kHz), resulting in

the closed loop complementary sensitivity function

Tcl(s) = KKp(Kds
2 + s+Ki)

× 1

Ms3 + (C +KKpKd)s2 + (D +KKp)s+KKpKi

,

where the controller has proportional gain Kp = 5, integral gain Ki = 0.3, and

derivative gain Kd = 3.51 × 10−3. The function Tcl(s) is derived by combining the

PID controller and the open loop empirically identified second order model with

mass M = 1 kg, damping coefficient C = 55 Ns/m, spring coefficient D = 2.6 N/m,

and open loop gain K = 6660.

It is well known that arbitrary small open loop modeling errors can lead to arbi-

trarily large closed loop modeling errors [63]. The identified closed loop model Tcl(s)

is inaccurate for our purposes since ILC requires a relatively high bandwidth23. As

such, a closed loop identification experiment at 1 kHz is performed in order to have

an accurate impulse response of the closed loop, which can be used to construct the

lower triangular Toeplitz plant matrix P̄ . This is done by sending a Heaviside step

signal as the desired reference and differentiating the output signal. The first 200

samples of the identified impulse response are shown in Figure 5.3, where the signal

is compared to the response T disc
cl (z) derived by discretizing Tcl(s) at 1 kHz.
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Figure 5.3: Modeled (via T disc
cl (z)) and empirically identified closed loop impulse

responses.

5.5.3 The Desired Output

The used reference signal is shown in Figure 5.4. It is a smooth ramp up and down

signal at 1 kHz and lasts for 1 s. The signal covers approximately 75 percent of the

Y-stage range and sets the velocity close to the software limit so that the reference

is as challenging as possible, without excessive acceleration and jerk; this is done to

avoid oscillations of the base that carries the breadbord and hence uncontrollable

perturbations.

5.5.4 Plant Perturbations

Several weights varying between 100 g and 1.5 kg are used to perturb the experimental

setup: During the experiments, these weights are placed on the Y stage according to

a predetermined sequence S that was randomly chosen. As a result of the increased

mass, the closed loop impulse response is perturbed. The magnitude of the pertur-

23For linear discrete time ILC, the relative degree, and the sign of the first nonzero Markov
parameter is all that is needed for a stable update law. Similarly, for linear continuous time ILC,
the relative degree and the sign of the corresponding feedthrough term is necessary and sufficient
for a stable update law. However, the variety of algorithms that can be used with such limited
information is small, and may result in slower convergence.
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Figure 5.4: The desired output.

bations are roughly estimated to be ρ = 0.01 in terms of the uncertainty description

of Assumption 5.1.

5.6 Simulations

As stated in Section 5.5, we will be working with the spaces U = Y = Rn for some

positive integer n, equipped with the 2 norm. The plant set P is composed of n× n

lower triangular nonsingular matrices, and the nominal plant P̄ is derived from the

closed loop identified impulse response (solid blue line) shown in Figure 5.3, unless

otherwise stated. The objective of this section is twofold. First, the input-output sta-

bility of several well-known ILC algorithms under iteration varying uncertainties will

be verified via simulation. Second, for certain classes of update laws, we will attempt

to minimize the bounds on lim supk→∞ ‖ẽk‖ using the nonlinear program (5.16) to

obtain more predictable performance.
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Figure 5.5: Comparison of several first and higher order algorithms under random
perturbations. All algorithms maintain stability and boundedness under iteration
varying disturbances and uncertainties. The higher order H∞ ILC algorithms exhibit
significantly slower convergence compared to the first order algorithms. While inverse
ILC converges in a single iteration, it has a higher steady state error, since it is
sensitive to plant uncertainties and disturbances.

5.6.1 Stability under Iteration Varying Perturbations

Figure 5.5 compares the performance of four different ILC algorithms in the pres-

ence of trial varying uncertainties and disturbances. The additive plant uncer-

tainty (Pk − P̄ ) is chosen to be a lower triangular random matrix, where each nonzero

entry is drawn from U(−0.005, 0.005). Similarly, disturbances are considered to be

a combination of input and output disturbances din
k , d

out
k , where each entry is drawn

from U(−0.0025, 0.0025).

The ILC algorithms considered in this scenario are listed as follows:

1. H∞ ILC for certain systems.

2. H∞ ILC for uncertain systems.

3. Norm optimal ILC, in which the quadratic cost function J is minimized by
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solving for uk+1 without constraints;

J = eTk+1Week+1 + uTk+1Wuuk+1

+ (uk+1 − uk)TW∆u(uk+1 − uk), (5.20)

where We,Wu,W∆u are positive (semi) definite matrices. To simplify the

problem further for the norm optimal framework (5.20), we will assume

that these weighting matrices are scalar multiples of the identity matrix,

so We = we, Wu = wu, W∆u = w∆u. The algorithm in Figure 5.5 is derived

by setting the weighting parameters as we = 1, wu = 0, and w∆u = 0.5, which

are heuristically tuned.

4. Inverse ILC, i.e. Q = I and L = P̄−1. Note that the matrix P̄ is invertible since

the plant set P comprises nonsingular matrices.

TheH∞ type ILC algorithms are described in detail in [12] and in general yield higher

order (up to order n for n samples) algorithms. However, it is a straightforward

exercise to extend our analysis to nth order algorithms by augmenting (5.1); e.g. we

can consider yaug
k = (yk, yk+1, . . . , yk+n−1). The reader can see in Figure 5.5 that all

algorithms maintain stability and boundedness under iteration varying disturbances

and uncertainties. It is also worth noting that the higher order H∞ ILC algorithms

exhibit significantly slower convergence compared to the first order algorithms.

5.6.2 Computation and Verification of Optimal Update Laws

To demonstrate the utility of the optimization approach to ILC design, the perfor-

mance of different Q and L matrices computed via (5.16) will be compared. For each

of the computed algorithms, a set of 200 trials will be conducted, and for each algo-

rithm there exist positive integers N0 and Nf such that disturbances and uncertainties
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affect the system from trial N0 to Nf . The performance measure we would like to

minimize is given as

δ , max
k,j∈{N0,N0+1,...,Nf}

‖ek − ej‖. (5.21)

The scalar quantity δ is an indirect measure of fluctuations from nominal performance,

with lower values signifying better predictability with respect to the nominal system.

The reason for considering this measure as opposed to maxk∈N ‖ẽk‖ is consistency

with the experimental validation, since the “nominal” system is not implementable

in practice due to noise and disturbances.

The following steps are taken to enhance computational aspects of the problem:

� Norm optimally derived filters: The first case we consider is that the update

law is derived via the norm optimal framework (5.20) with scalar weighting

matrices, so

J = we‖ek+1‖2 + wu‖uk+1‖2 + w∆u‖uk+1 − uk‖2. (5.22)

The solution of the norm optimal problem is given in the form of matrices Q,L

such that

uk+1 = Quk + Lek. (5.23)

In other words, we impose the additional constraint on (5.16) that the matri-

ces Q,L minimize the cost function (5.22) via (5.23).

A specific solution (Q,L) for a given nonzero (we, wu, w∆u) is invariant over the

set {µ(we, wu, w∆u) : µ ∈ (0,∞)}. As such, the weighting we can be fixed so

that the program (5.16) with the additional constraint defined above optimizes

over the two scalars wu and w∆u.

� Lower triangular Toeplitz filters: In a similar fashion, to reduce complex-

ity, we will also consider the case where Q and L are lower triangular Toeplitz
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matrices. This reduces the number of variables to be optimized from 2n2 to 2n,

significantly decreasing the computational burden. Despite this simplification,

the program (5.16) is still computationally expensive for large n. For demon-

stration purposes, the number of samples for this simplification will be chosen

as 10, and the model used will be the discretization of the identified closed loop

model Tcl(s) sampled at 100 Hz. The considered reference signal is a 5 Hz unit

amplitude sine wave. Note that since the output and the reference are shifted

via (5.18) and (5.19), the matrix L represents a noncausal LTI filter when it

is nonsingular: The input uk(i) at time i depends on the error ek(i+ 1), for

all i ∈ {0, 1, . . . , n− 1}.

We also note that similar simplifications can be made, for example, by choosing Q

and L to be diagonal, or upper triangular and/or Toeplitz. As before, the additive

plant uncertainties will be chosen to be lower triangular random matrices, where

each nonzero entry is drawn from U(−0.005, 0.005). Similarly, the disturbances are

considered to be a combination of input and output disturbances din
k , d

out
k , where each

entry is drawn from U(−0.0025, 0.0025).

Remark 5.1. At first glance, optimizing an “optimal” learning law might seem redun-

dant, but can be explained by analogy to linear quadratic regulation (LQR). LQR is

an optimal control methodology in which a quadratic “cost” function is minimized to

find an optimal state feedback law. In practice, the cost function and the associated

weighting matrices are not given as the design specification for a control problem.

Often, the weighting matrices are used as “tuning knobs” to properly adjust the re-

sulting state feedback law and achieve given design specifications (e.g. maximum rise

time and/or settling time, minimum disturbance rejection etc.). In this sense, our

approach is similar to optimally selecting the LQR weights to minimize plant sensi-

tivity, subject to a lower bound on convergence rate and an upper bound on steady

state error under step responses, which can be done in a numerical fashion.
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Table 5.2: Simulation comparison of optimized update laws derived from (5.22) for
different values of β. Here, we = 10 is the fixed weighting so the optimization is
over wu and w∆u. The additive plant uncertainties are chosen to be lower triangular,
where each nonzero entry is drawn from U(−0.005, 0.005). Similarly, each entry
of din

k , d
out
k is drawn from U(−0.0025, 0.0025). For each case, ‖ē∞‖ = β.

β wu w∆u γ̄ α δ

0.9500 0.0263 0 0.0975 10.803 183.05
0.9990 1.1383 0 0.0134 1.3623 129.95
0.9999 10.000 0 0.0050 0.5025 70.29

Table 5.2 compares update laws derived from (5.22) for different values of β, which

bounds the acceptable steady state error level. For all cases, the nominal asymptotic

error turns out to have magnitude β; i.e. ‖ē∞‖ = β. It can be seen that decreasing

values of α signify a decreasing level of performance uncertainty, i.e. decreasing δ.

Moreover, there seems to be a trade-off between β and δ, so predictable performance

comes at the expense of nominal performance.

The norm optimal framework (5.22) gives limited design freedom since only two

scalar variables are optimized. The usefulness of the optimization approach (5.16)

can be seen better in Figure 5.6, where 10× 10 lower triangular Toeplitz matrices Q

and L are optimized, as noted before. To further verify the trade-off between α

and δ, different lower bounds on α are set as optimization constraints, while β is

kept constant. The update law with α = 0.6882 yields more predictable performance

compared to when α = 3.3345, which can also roughly be seen from the fact that the

latter achieves a higher maximal and and a lower minimal error, while the nominal

asymptotic performance is the same.

5.7 Experimental Results

In this section, experimental implementation results for the update laws derived in

Section 5.6 will be presented. The objectives of the section are similar to that of

Section 5.6. That is, we would like to verify experimentally, the input-output stability
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Figure 5.6: Performance of optimized lower triangular Toeplitz controllers with:
For α = 3.3345 we have δ = 8.3930, and for α = 0.6882 we have δ = 3.1896. The
additive plant uncertainties are chosen to be lower triangular, where each nonzero
entry is drawn from U(−0.05, 0.05). Similarly, each entry of din

k , d
out
k is drawn

from U(−0.25, 0.25).

of a couple of ILC algorithms under iteration varying uncertainties. Second, we would

like to roughly verify the optimization approach (via the nonlinear program (5.16))

to norm optimal ILC synthesis by comparing the experimental performance of the

update laws whose simulation results are shown in Table 5.2. As an additional point,

we will discuss the idea of precompensation in the iteration domain and test this idea

on our experimental setup.

5.7.1 Robust Stability of First and Higher Order ILC

We will compare the H∞ ILC algorithm for certain systems described in [12] with a

simple manually tuned norm optimal controller; the particularH∞ algorithm is chosen

since it requires significantly less time to be synthesized and has similar performance

compared to its uncertain counterpart (see Figure 5.5). For robustness against high

frequency noise buildup, the computed input uk+1 of the H∞ controller is further

filtered through a first order low pass filter with a cutoff frequency of 400 Hz. The

norm optimal controller has the scalar weightings we = 10, wu = 0, and w∆u = 5. At
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the samples where the velocity of the reference signal is equal to 0, a first order low

pass filter with cutoff frequency of 150 Hz is applied to ensure robustness against

high frequency noise buildup and avoid numerical instability. The results can be

seen in Figure 5.7, where both systems maintain stability and portray comparable

performance under unknown bounded perturbations from trials 25 to 45, where the

predefined sequence S of weights are placed on the Y stage.
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Figure 5.7: Comparison of H∞ and norm optimal ILC algorithms under bounded
unknown perturbations from trials 25 to 45, where the predefined sequence S of
weights are placed on the Y stage from trials 25 to 45. Both systems maintain stability
and portray comparable performance under unknown bounded perturbations.

5.7.2 Optimized Update Laws

The norm optimal controllers derived from (5.16), whose simulation results are shown

in Table 5.2, are tested on the experimental setup to verify the hypothesis that δ

can be minimized via the program (5.16). However, to avoid high frequency noise

buildup, we fix w∆u = 1. The predefined sequence S of weights are placed on the

Y stage as before from trials 25 to 45. We note that we use the scalar quantity δ

defined in (5.21), since the “nominal” system is not implementable in practice due to

noise and disturbances. As can be seen in Table 5.3, decreasing values of α signify
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Table 5.3: Experimental comparison of optimized update laws derived from (5.22)
for different values of β. Here, we = 10 is the fixed weighting so the optimization is
over wu and w∆u. For each case, ‖ē∞‖ = β. Decreasing values of α signify decreasing
values of δ, as expected.

β wu w∆u γ̄ α δ

0.9500 0.0263 1 0.0975 57.9360 1.2274
0.9990 1.1383 1 0.4193 1.7637 1.1830
0.9999 10.000 1 0.0909 0.9689 0.5244

Pkw−1LK

Q

yk
dk

ukuk+1r
Controller

Figure 5.8: Precompensation in the iteration domain: The feedback control in the
iteration domain interpretation of ILC makes it clear that aggressive learning might
amplify disturbances. When the controller does not have an integrator, i.e. Q 6= I,
the precompensator K can be used to partially recover the tracking performance.

decreasing values of δ, which is expected. Note that δ values are much lower compared

to their simulated values, which is due to the fact that the experimental perturbations

are limited to several different weights as opposed to the random perturbations of the

simulation scenarios.

5.7.3 Precompensation in the Iteration Domain

Perfect tracking is an infeasible objective when the system to be controlled is subject

to unknown iteration varying disturbances and/or, when the additive uncertainty is

high in magnitude. As such, depending on the magnitude of uncertainties, minimizing

the measure ϕ can be taken as an objective of primary importance over the steady

state performance. This approach has not been explored much in the ILC literature.

To be precise, while plenty of publications have studied how to reduce the absolute

error, not much work has been done to quantify the relative error ẽk in the presence

of iteration varying effects. For certain applications (e.g. manufacturing), precision is
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Figure 5.9: Experimental verification of precompensated norm optimal ILC,
with we = 10, wu = 0.0025, and w∆u = 1. Precompensation leads to an order of
magnitude decrease in the norm of the error r − yk as k →∞.

arguably more important than accuracy, and repeatable errors are preferred. When

this is the case and perfect tracking is infeasible or undesirable due to large uncer-

tainties, and/or iteration varying effects, we propose precompensation in the iteration

domain (see Figures 5.8) as an ad hoc fix to recover tracking performance: Pole place-

ment methods typically change DC gains of systems, which are commonly recovered

through precompensation, and this idea can be easily extended to ILC systems. One

simple choice for the precompensator K is given by inverting the nominal steady state

reference to output matrix given in (5.17),

K = (P̄ (I − (Q− LP̄ ))−1L)−1,

which is verified experimentally: Figure 5.9 shows that precompensation results in

approximately an order of magnitude improvement in tracking, i.e. an order of magni-

tude decrease in the norm of the error r − yk. Moreover, the precompensated system

maintains stability in the presence of perturbations, as can be seen in Figure 5.10.
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Figure 5.10: Experimental verification of precompensated norm optimal ILC subject
to mass perturbation sequence S with we = 10, wu = 0.0025, and w∆u = 1. Precom-
pensation leads to more than an order of magnitude decrease in the norm of the the
error r − yk as k →∞, and does not affect robust stability.

5.8 Conclusion

In this chapter, we scrutinized the stability and convergence properties of ILC systems

subject to trial to trial uncertainty. We formulated the system to be controlled as a

linear input-output map in an abstract Banach space setting to ensure the generality

of our analysis, assuming bounded uncertainties in all process parameters; including

the input-output operator, the feedback response, reference, noise, disturbance and

initial conditions. We showed that when a linear update law is designed to be robust

over the set of possible maps P , linear discrete time methods can be employed directly

to show the system exhibits desirable properties such as asymptotic stability and

boundedness. Moreover, we investigated how the design of the operators Q and L

affects the convergence properties of iteration varying systems. We showed that an

iteration varying system converges to 1) a bounded neighborhood of a nominal system

if the uncertainties are bounded, and, 2) the nominal system itself if the uncertainties

are convergent. Further we argued for employing an optimization based approach

to ILC design to improve predictability in iteration varying systems. Our analysis
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was supported by simulation results, along with experimental verification on a linear

motion control stage.

It turns out that robust ILC methods, which are well studied in the literature, can

be applied directly to iteration varying systems. The results are quite strong in terms

of their generality and the lack of limiting assumptions apart from linearity. A further

direction to pursue is the study of optimal ILC strategies with structured (time invari-

ant, higher order etc.) perturbations under discrete or continuous frameworks, with

or without feedback. A disturbance rejection problem has been considered in [123]

via l1 norm minimization, and an H∞ minimization problem for HOIM based plants,

references, disturbances has recently been considered in [121]. We expect the initial

results of this chapter, along with some of the work in [121, 123] to pave the way for

future research in iteration varying systems in ILC.
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CHAPTER 6

From ILC to 2D Systems: Exponential

Stability of Nonlinear Differential

Repetitive Processes

In this chapter, we will extend the notion of learning through repeated trials to

2D dynamic systems, and take the first steps towards synthesizing multidimensional

control algorithms for a variety of applications, by deriving necessary and sufficient

exponential stability conditions for repetitive processes. The development of a stability

theory for these classes of systems will help in the generalization of the learning

paradigm for a plethora of applications, along the feedback in the iteration domain

interpretation of ILC.

Recall from the earlier chapters that repetitive processes are systems where the

dynamics at trial k is affected by the output history y0, y1, . . . , yk. Specifically, repet-

itive processes are 2D dynamic systems that arise in the modeling of engineering

applications, in which information propagation occurs along two axes of independent

variables. These processes are characterized by a sequence of passes with finite length

that act as forcing functions on the dynamics of future passes [2], hence the name mul-

tipass. On an abstract level, recursive algorithms for one dimensional (1D) dynamic

systems can be treated as repetitive processes; e.g. iterative solutions to nonlinear

optimal control problems [2, 124, 125], iterative nonlinear inversion [23], iterative es-

103



timation and control design [63], or the constructive proof of the Picard-Lindelöf

theorem. In the application space, typical examples to these classes of systems in-

clude long wall coal cutting [126, 127], metal rolling [128, 129], or AM systems such

as LMD [29, 30, 130]. We also note that as we have mentioned before, ILC can be

thought of as a special class of repetitive processes [2, 12], wherein the pass to pass

dynamics are induced through the construction of a recurrence relation that updates

the feedforward input using past data. The application of 2D systems theory based

ILC synthesis can be found as early as 1990s [67, 131, 132], while repetitive process

based ILC laws have been experimentally verified in recent years [2, 133,134].

y0

y1

y2

y3 = Γ((x3)init, y2, ω3)

Position (Time)

H
ei

gh
t

Figure 6.1: AM systems as repetitive processes: The substrate topography determines
the initial output y0. The operator Γ maps the initial state (x3)init and input ω3

of pass 3 (in layer dynamics), along with the prior pass profile y2 (layer to layer
dynamics), to pass profile y3. The layer to layer dynamics is affected by physical
phenomena such as heat transfer and material curing.

An example to the repetitive process paradigm is the generic AM system demon-

strated in Figure 6.1. In this setup, the material profile at pass 3 is determined by

the operator Γ comprising the in layer and layer to layer dynamics. In the ideal case,

the layer to layer dynamics would be a discrete integrator along the pass domain.

A more concrete example can be found in [29], wherein a height dependent model

taking heat transfer from prior layers into account is developed, and in [130], which

presents a repetitive process control strategy through a control oriented model, for

the LMD process. A less rigorous treatment of the repetitive process interpretation

of AM is given in [135], which models edge shrinking in ink jet printing through a 2D

discrete convolution like formula, albeit in three dimensions.
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The control oriented modeling and linear repetitive process control approach to

the LMD process in [130] is the primary motivator of this chapter: The developed

model in [130] consists of static nonlinearities, while the controlled process is assumed

to be locally stable around its linearized equilibrium. Indeed, nonlinear analysis of

these systems has not been studied in much detail, and current literature on repetitive

processes and 2D systems theory is predominantly on linear stability and performance

analysis, and control synthesis (see [2,136,137] and references therein). On the other

hand, the need to develop rigorous stability tests in the nonlinear systems context

has been highlighted only very recently. Among these works, [138] presents Lyapunov

theorems for nonlinear Roesser models evolving in the domain N2, with extensions to

the stochastic case given in [139], and a 2D Lyapunov function approach is employed

to prove exponential stability of systems described by a differential repetitive process

(DRP) in [140]. As a secondary motivation, in the ILC literature, it has been noted

that nonlinear update laws have not been extensively researched, save for adaptive

laws for locally Lipschitz plants, and a systematic theory of nonlinear ILC is an open

question [8, 31, 33].

With these issues in mind, in this chapter, we establish a DRP analogue of the

well known result that exponential stability of a nonlinear 1D feedback system is

equivalent to the exponential stability of the linearized dynamics. The results of this

chapter are an extension of our prior work in [41], in which we show that exponential

stability of a time invariant DRP can be verified by the stability of its linearization,

along with two small gain conditions. With respect to [41], our contribution can be

summarized as follows:

1. The problem statement is relaxed to allow for time varying processes; linear

stability theory is extended to the linear time varying (LTV) case.

2. The stability requirement in the time domain is bypassed by adopting a small

signal existence, uniqueness, and boundedness condition.
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3. The exponential stability definition is modified to be more in line with its 1D

counterpart.

4. The finite time aspect of the problem is utilized to remove the H∞/L1 small

gain conditions.

5. 2D Lyapunov equation based theorems are interchanged with abstract Lyapunov

theorems on the function space, which are developed by treating the model as

a discrete system on a Banach space.

The Lyapunov theorems mentioned above are then used to show that a DRP is ex-

ponentially stable if and only if its corresponding linearization is stable, an analogue

of the well known result that the exponential stability of a nonlinear one dimensional

(1D) system is equivalent to the exponential stability of the linearized dynamics.

Moreover, we show that the exponential stability of a linear DRP is equivalent to

the spectral radius of the state matrix D̄ being uniformly less than 1 over the inter-

val [0, T ], strengthening the findings of [41].

The rest of the chapter is organized as follows: Section 6.1 gives the necessary

background and introduces the style of notation to be used. Section 6.2 introduces

state space representations of DRPs, establishes the key Lipschitz property of the

nonlinear operator, and states formal stability definitions. In Section 6.3, we develop

Lyapunov like theorems for these classes of systems. Stability theory for linear systems

is extended to the time varying case in Section 6.4. Our main result, which establishes

equivalence in terms of exponential stability between a DRP and its linearization, is

presented in Section 6.5. Applications of this result to Picard iterations and ILC is

discussed in Section 6.6. An illustrative example is given in Section 6.7 through an

ILC system. Concluding remarks are given in Section 6.8. In the hope of improv-

ing readability, proofs of certain technical results are given in Appendices B.1, B.2,

and B.3.
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6.1 Background and Preliminaries

We start by giving a concise background on linear repetitive processes and introducing

our style of notation for clarity of exposition. Two basic inequalities that will be used

in the rest of this chapter are also proven.

6.1.1 Notation

We use R to represent real numbers, R+ its nonnegative subset, N nonnegative in-

tegers, and C complex numbers. The spectral radius of a linear operator is denoted

by ρ(.). The identity and zero operators are denoted as I and 0, respectively. For a

real vector, ‖.‖2 is the 2 norm; in the rest of the chapter ‖.‖ will denote any of the

equivalent norms in the real space. Lp is the space of measurable functions on the

compact interval [0, T ] with finite Lp norm, p ∈ [1,∞]. We will also make use of c0,

the space of all real sequences of given size that converge to 0.

6.1.2 Linear Repetitive Processes in Banach Space

A general abstract model of a linear repetitive process assumes an underlying Banach

space structure [2], and can be thought of as the discrete counterpart of the abstract

inhomogeneous Cauchy problem in infinite dimensional systems [141]. In particular,

we assume that the output at pass (or iteration) k, denoted yk, is a vector in a closed

subspace YT of a complete function space Y , where T <∞ denotes the duration or

length of the pass profile. Then, yk+1 = LTyk + ωk+1 for all k ∈ N, where LT , L|YT

is the restriction24 of the bounded linear operator L, and ωk ∈ YT is a vector that

represents the effect of initial conditions, disturbance, noise, and the control input.

In this work, we will study operators like L that are not necessarily linear, and are

described by differential equations, hence differential repetitive processes. In the rest

24Here, we also restrict the codomain of L to YT via some truncation like operation.
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of the chapter, we will drop the subscript T from YT for convenience.

6.1.3 Useful Inequalities

The inequalities below will be of use for convergence analysis; note that the expo-

nential convergence parameters 2/(1− a) ≥ 1 and (1 + a)/2 ∈ (0, 1) are continuous

increasing functions of a on (0, 1).

Claim 6.1. Let a , {ak+1}∞k=0 and b , {bk+1}∞k=1 be real nonnegative sequences,

where b is bounded, such that ak+1 = rak + bk+1 for some r ∈ (0, 1) for all k ∈ N.

Then, lim supk→∞ ak ≤ (1/(1− r)) lim supk→∞ bk, and therefore b ∈ c0 implies a ∈ c0.

Proof. Boundedness of a is readily verified as r is Schur. Taking limit superiors of both

sides of the equality, lim supk→∞ ak ≤ r lim supk→∞ ak + lim supk→∞ bk, since r > 0

and both sequences are positive. Rearranging this yields the desired result. �

Claim 6.2. Let a ∈ (0, 1). Then the sequence {kak−1}∞k=0 is exponentially convergent

and

kak−1 ≤ 2

1− a

(
1 + a

2

)k
, ∀k ∈ N.

Proof. Consider the alternative statement

2a

1− a

(
1 + a

2a

)k
− k ≥ 0, ∀k ∈ N,

which can be proven by induction: The inequality is true for k = 0. Then, one can

show that the increase in the left side of the inequality from k to k + 1 is nonnegative

for every k ∈ N, since (1 + a)/(2a) > 1. �
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6.2 State Space Formulation of DRPs

Throughout this chapter we will study systems of the form

ẋk+1(t) = f(xk+1(t), yk(t), t),

yk+1(t) = g(xk+1(t), yk(t), t),

(6.1)

for all t ∈ [0, T ] and k ∈ N, for some T ∈ R+. The vectors xk(t) ∈ Rn and yk(t) ∈ Rm

represent the state and output, respectively. Note that it is also necessary to specify

boundary conditions y0 and x(0) , {xk+1(0)}∞k=0 to uniquely determine the solution.

In this model, we ignore any exogenous inputs since our goal is to study Lyapunov

stability, whose definition will be made precise later.

By concatenating the passes (e.g. letting x(τ) , xk(t) where τ = t+ kT ), it is

also easy to see that the model of (6.1) resembles hybrid systems with memory [142]:

Here, T plays the role of delay, with the flow condition t(τ) ∈ [0, T ] and the jump

condition t(τ) ∈ {T}, where the timer variable t is subject to the flow ṫ(τ) = 1 and

jump t+(τ) = 0, a la sample and hold control systems. Similarly, the index k(τ) ∈ N

is subject to k̇(τ) = 0 and k+(τ) = k(τ) + 1. The main differences of this formulation

as compared to hybrid systems with memory are, 1) the existence of the output

equation y(τ) = g(x(τ), y(τ − T ), t), 2) the fact that the delay occurs via the output

as opposed to the state, in both the output and state equations, and 3) the arbitrary,

time (iteration) varying nature of the jump equation x+(τ) = xk+1(0). To define

stability, we will impose a specific structure on this equation, i.e. x(0), as we shall see

in the following sections. See [2] for DRP modeling of delay differential equations.

6.2.1 The Nonlinear Operator over the Finite Horizon

Before proceeding with further analysis, we will look at the properties of the sys-

tem (6.1) as an input-state and input-output operator over the time interval [0, T ]:
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Interchanging yk with u, xk+1 with χ, and yk+1 with w, we consider

χ̇(t) = f(χ(t), u(t), t),

w(t) = g(χ(t), u(t), t),

(6.2)

for all t ∈ [0, T ]. The input u resides in Y , the space of continuously differentiable

functions on [0, T ]. We will impose the following assumptions on the nonlinear sys-

tem (6.2) that maps the pair (χ(0), u) to χ and w:

Assumption 6.1. The nonlinear system (6.2) satisfies the following conditions:

1. The functions f and g vanish at the origin uniformly in time. That is

f(0, 0, t) = 0, g(0, 0, t) = 0∀t ∈ [0, T ].

2. There exists δ > 0 such that for every (χ(0), u) satisfying ‖χ(0)‖+ ‖u‖L∞ < δ,

there is a unique integral curve χ of (6.2), and χ(t) which is contained in a

bounded open connected set X for all t ∈ [0, T ].

3. There exists a compact set Y ⊂ Rm that contains the origin in its interior

such that f and g are continuously differentiable in Z , cl(X)× Y × [0, T ],

where cl(X) is the closure of X.

Assumption 6.1 is a relatively mild constraint on the system that bypasses the

stability requirement in the time domain. One way of ensuring this is to enforce

input to state stability over an infinite horizon, or the notion of finite time uniformly

bounded energy bounded state [143] stability, so that the trajectories of the differential

equation are within a compact set.

We note that since 0 is an equilibrium of the differential equation, the set X must

contain the origin. Without loss of generality, we will also assume that δ is small

enough so that χ(0) ∈ X and u(t) ∈ Y for all t ∈ [0, T ] when ‖χ(0)‖+ ‖u‖L∞ < δ.
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We denote by Γx the mapping (u, χ(0)) 7→ χ, and by Γy the mapping (u, χ) 7→ y.Then

the nonlinear operator Γ can be defined so that

(w, χ) = Γ(u, χ(0)) , (Γy(u,Γx(u, χ(0))),Γx(u, χ(0))).

Now, we can show Lipschitz continuity of the operator Γ.

Lemma 6.1. The nonlinear differential equation Γx in (6.2), is locally Lipschitz with

respect to (χ(0), u). That is, there exists a constant L1 such that if χi is the integral

curve of (6.2) corresponding to (χi(0), ui), for all i ∈ {1, 2},

‖χ1 − χ2‖L∞ ≤ L1(‖u1 − u2‖L∞ + ‖χ1(0)− χ2(0)‖),

when ‖χi(0)‖+ ‖ui‖L∞ < δ, for all i ∈ {1, 2}.

As an immediate corollary, we have the following:

Corollary 6.1. The input-output operator (6.2), πy ◦ Γ, where πy is the standard

projection onto Y, is locally Lipschitz with respect to (χ(0), u). That is, there ex-

ist positive constants L2 and δ̄ such that if wi is the output of (6.2) corresponding

to (χi(0), ui), for all i ∈ {1, 2},

‖w1 − w2‖L∞ ≤ L2(‖u1 − u2‖L∞ + ‖χ1(0)− χ2(0)‖)

when ‖χi(0)‖+ ‖ui‖L∞ < δ̄, for all i ∈ {1, 2}.

6.2.2 Boundary Dependent Stability Definitions

We will now lay out definitions of stability for DRPs. First, we need the following

norm to characterize exponential initial state sequences for exponential stability.
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Definition 6.1. Let b , {bk+1}∞k=0 be a sequence of real vectors of given size. The

exponential λ (eλ) norm of b is defined as ‖b‖eλ , supk∈N λ
−k‖bk+1‖, for all λ ∈ (0, 1].

We leave it to the reader to verify that eλ, the space of all sequences with finite eλ

norm, is precisely the vector space of sequences that converge exponentially to 0 with

rate faster than or equal to − ln(λ); i.e. the geometric convergence factor has to be

smaller than or equal to λ. The e1 norm, on the other hand, is precisely the sup

norm. Note that eλ ⊂ c0 ⊂ e1 ≡ l∞, for all λ ∈ (0, 1). Given any κ ∈ N, the eλ norm

also has the property

‖bκ‖eλ ≤ λκ‖b‖eλ , (6.3)

where bκ , {bk+1}∞k=κ. In addition ‖.‖eλ2 ≤ ‖.‖eλ1 when 0 < λ1 ≤ λ2 ≤ 1.

Definition 6.2. The (origin of the) DRP (6.1) is said to be

1. (Lyapunov) stable, if for all ε > 0 there exists a scalar δ1 ∈ (0, ε) such that

‖y0‖L∞ + ‖x(0)‖e1 < δ1 =⇒ ‖yk‖L∞ < ε, ∀k ∈ N,

2. asymptotically stable, if it is Lyapunov stable and there exists δ2 > 0 such

that ‖y0‖L∞ + ‖x(0)‖e1 < δ2 and x(0) ∈ c0 implies ‖yk‖L∞ → 0,

3. exponentially stable, if it is asymptotically stable, and there exists δ3 > 0 and

continuous increasing functions K : (0, 1)→ [1,∞) and γ : (0, 1)→ (0, 1) such

that ‖y0‖L∞ + ‖x(0)‖eλ < δ3, implies

‖yk‖L∞ ≤ K(λ)γ(λ)k(‖y0‖L∞ + ‖x(0)‖eλ), (6.4)

for all k ∈ N and λ ∈ (0, 1).

The motivation for the above definitions of stability is threefold:
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1. The trajectories of the system will be affected by two different boundary con-

ditions; the initial output vector y0 and the initial state sequence x(0).

2. Since 0 is an equilibrium solution for (6.2), which is Lipschitz with respect

to (χ(0), u), it is straightforward to show that the stability notions above trans-

late directly to the state trajectory. For example, if the system is stable,

given ε/(2L1) > 0 there exists a δ1 > 0 such that ‖y0‖L∞ + ‖x(0)‖e1 < δ1 im-

plies ‖yK‖L∞ < ε/(2L1) for all k ∈ N. Without loss of generality, we can choose

these scalars so that δ1 < ε/(2L1) < δ, where δ is the radius from Lemma 6.1

such that Lipschitz continuity holds. It follows that

‖xk+1‖L∞ ≤ L1(‖x(0)‖+ ‖yk‖L∞) < ε, ∀k ∈ N.

3. For exponential stability, the dependency of the performance on the convergence

speed λ of x(0) is expressed via the functions of K and γ, which are continuous

and increasing to be physically meaningful. In addition, the right hand side

of (6.4) scales linearly with the norm of the boundary (y0,x(0)), which is more in

line with the corresponding definition for 1D systems, in contrast with [41,140].

The definitions above also show the crucial difference between repetitive processes

and 2D mixed continuous-discrete time systems [136, 137]; the latter covers the case

where T =∞ and studies the trajectory of the real vector yk(t) over N× R+, whereas

we are concerned with the trajectory of the function yk over N. In linear repetitive

process theory, the gap between these two topics are bridged via the notion of stabil-

ity along the pass [2], which requires the stability parameters to be T independent,

and translates to linear time invariant DRPs as the state space representation be-

ing Hurwitz. Although this property is desirable in experimental implementations

or numerical simulations, as stated in Assumption 6.1 we forgo this requirement for

theoretical purposes. Moreover, it is not clear how the time dependent functions f, g
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can be extended to the positive real line for a given system where T is a priori known

and fixed, making the issue of stability along the pass somewhat complicated. For

a more detailed discussion of the relationship between repetitive processes and 2D

systems theory, we invite the readers to consult [2].

We will say that the system is globally asymptotically (exponentially) stable

if δ2 (δ3) can be chosen to be arbitrarily large. We will also be considering the

case where x(0) = 0. In the rest of the chapter, we will refer to any such DRP as a

zero initial state (0-i.s.) system or process. The 0-i.s. system will be defined to be Lya-

punov, asymptotically, or exponentially stable if the notions defined above hold for

the case of x(0) = 0; obviously the 0-i.s. system is (asymptotically/exponentially) sta-

ble if the actual system is (asymptotically/exponentially) stable. Also note that (6.4)

is necessary and sufficient for 0-i.s exponential stability.

6.3 Lyapunov Theorems for DRPs

In this section we develop Lyapunov like theorems to assess the stability of 0-i.s.

processes. The notion of a weak Lyapunov function [144], wherein the continuity

assumption is weakened to continuity at the origin along with an annulus condition,

which guarantees that the function is bounded away from 0, will be adapted to our

case. Here we will omit the term weak and refer to such mappings as Lyapunov

functionals. The exponential stability theorem at the end of the section will be used

later to prove our main result. However, for completeness, we also present Lyapunov

stability and asymptotic stability theorems.

A mapping F : V → R, where V is a vector space equipped with the norm ‖.‖V ,

is said to satisfy the annulus condition if F (0) = 0, and there exists β > 0 such

that σF (α) , inf{F (v) : v ∈ V , α ≤ ‖v‖V ≤ β} > 0 for all α ∈ (0, β).

Note that in finite dimensional spaces, continuity of V implies the annulus condi-
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tion since the annulus is compact. As this is not the case for infinite dimensions, the

annulus condition is rather necessary for our problem. In the following discussion, we

will study the stability properties of the system (6.1) with 0-i.s., as a discrete non-

linear dynamical system of the form yk+1 = Γ0(yk), where Γ0(.) , πy(Γ(., 0)), i.e. the

input-output operator described by (6.2) with χ(0) = 0. Consequently, a Lyapunov

functional for (6.1) with 0-i.s. will be a mapping V : Y → R that 1) is continuous

at 0, 2) satisfies the annulus condition, and 3) has a negative semidefinite differ-

ence ∆V (y) , V (Γ0(y))− V (y).

Theorem 6.1. The nonlinear DRP (6.1) with 0-i.s. is stable if and only if it has a

Lyapunov functional V : Y → R.

Proof. By Corollary 6.1, the mapping Γ0 is continuous around 0. As a result, the

proof extends from the finite dimensional case via theorems 1 and 2 of [144] without

any modifications; since the finite dimensional aspect of the problem is not used in

the proofs of these results. �

Theorem 6.2. The nonlinear DRP (6.1) with 0-i.s. is asymptotically stable if it has

a Lyapunov functional V : Y → R so that (−∆V ) satisfies the annulus condition.

Proof. Let V be a Lyapunov functional for (6.1) with 0-i.s. By Theorem 6.1, the

system is stable. Now assume in addition that −∆V satisfies the annulus condi-

tion. We will prove by contradiction that the origin is attractive, so assume the

opposite. Select ε > 0 such that the annulus condition for −∆V holds in the ε ball.

Let δ1 > 0 be small enough so that ‖y0‖L∞ < δ1 implies ‖yk‖L∞ < ε. Then for ev-

ery δ2 ∈ (0, δ1) there is a y0 with ‖y0‖L∞ < δ2 so that the sequence {yk}∞k=0 does

not converge to the origin. This means that there exists a ε̄ ∈ (0, ε) such that for

all N we have a κ ≥ N so ε̄ ≤ ‖xκ‖L∞ < ε. By the annulus condition, this implies

that V (yκ) ≥ σV (ε̄) > 0. Furthermore, since ∆V satisfies the annulus condition it is

negative definite, thus V (yk) is a decreasing sequence and by the monotone conver-
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gence theorem V (yk)→ V ∗ ≥ σV (ε̄). Note that this also means V (yk) ≥ σV (ε̄) for

all k ∈ N since the sequence is nonincreasing. By the annulus condition, the supre-

mum of ∆V on the annulus with radii ε̄ and ε is strictly negative. Thus for any κ

that satisfies ‖yκ‖L∞ ≥ ε̄, V (yκ+1) ≤ V (yκ)− σ−∆V (ε̄). But this means that V must

eventually become smaller than σ(ε̄), contradicting our assumption that for all N

there exists a κ ≥ N so ‖yκ‖L∞ ≥ ε̄. �

Theorem 6.3. The nonlinear DRP (6.1) with 0-i.s. is exponentially stable if and

only if there exists V : Y → R and positive scalars c1, c2, c3, with c2 > c3 such that V

satisfies

1. c1‖y‖L∞ ≤ V (y) ≤ c2‖y‖L∞, and

2. ∆V (y) ≤ −c3‖y‖L∞,

in a neighborhood of the origin.

Proof. Sufficiency is rather obvious through some algebraic manipulations and is

therefore omitted. For necessity, assume that the system is exponentially stable,

then there exists K > 1, δ3 > 0 and γ ∈ [0, 1) so that ‖Γk0(y)‖L∞ ≤ Kγk‖y‖L∞ holds

for all y ∈ Y with ‖y0‖ < δ3. Let N be an integer such that KγN < 1. Define

V (y) ,
N−1∑
i=0

‖Γi0(y)‖L∞ ≥ ‖y‖L∞

for all y ∈ Y with ‖y‖L∞ < δ3, which implies

∆V (y) = V (Γ0(y))− V (y) = ‖ΓN0 (y)‖L∞ − ‖y‖L∞ ,
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for all y ∈ Y with ‖y‖L∞ < δ3. By exponential stability, it follows that

V (y) ≤ K
1− γN

1− γ
‖y‖L∞ ,

∆V (y) ≤ −(1−KγN)‖y‖L∞ ,

for all y ∈ Y with ‖y‖L∞ < δ3. Finally, we note that

(1−KγN) < 1 < K
1− γN

1− γ
,

to conclude the proof. �

6.4 Stability of LTV Differential Processes

In this section we will focus on systems where f and g are linear with respect to

their first two arguments for fixed t∈ [0, T ], and relax the continuous differentiability

assumption to that of continuity; i.e. we will look at LTV differential processes of the

form

ẋk+1(t) = A(t)xk+1(t) +B(t)yk(t),

yk+1(t) = C(t)xk+1(t) +D(t)yk(t),

(6.5)

for all t ∈ [0, T ] and k ∈ N, where A,B,C,D are continuous real matrices of appro-

priate size.

6.4.1 0-i.s. Stability and the Spectral Radius

Similar to the nonlinear case, given the LTV system (A,B,C,D), we denote by Gx

the state response to the input and the initial condition, and by Gy the mapping from

the input and the state to the output. The LTV operator G is defined so that

(w, χ) = G(u, χ(0)) , Gy(u,Gx(u, χ(0))), Gx(u, χ(0)),
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and the 0-i.s. output response G0(.) , πy(G(., 0)). As before, we first con-

sider the 0-i.s. system, which can be described by the discrete dynamical sys-

tem yk+1 = G0yk on Y . We have the following claim about LTV operators like G0:

Claim 6.3. Any LTV input-output operator represented by continuous state matrices

over a finite time horizon is bounded with respect to the Lp norm, for all p ∈ [1,∞].

Claim 6.3 makes some intuitive sense since linear systems do not have finite escape

time; the formal proof of this argument is given in Appendix B.2. As such, we will

expand the space Y to L∞, and more generally Lp. Moreover, as G0 is bounded and

linear, it is continuous, and the results of previous section can be used to assess the

stability of the 0-i.s. system. However, as the readers can guess, the stability problem

is much simpler for the linear system, and exponential stability can be conveniently

expressed as a spectral radius condition:

Theorem 6.4. The 0-i.s. system is exponentially stable (in Lp) if and only if the

spectrum of G0 is contained in the interior of the open unit circle.

Proof. This follows from Gelfand’s spectral radius formula ρ(G0) = limk→∞ ‖Gk
0‖

1/k
Lp

and is omitted for brevity. �

Remark 6.1. In general, the condition ρ(G0) < 1 is sufficient for asymptotic stability,

whereas ρ(G0) ≤ 1 is necessary [145]. This issue is circumvented in [2] (page 44), by

requiring asymptotic stability to be a local property around a nominal operator.

6.4.2 Computation of the Spectral Radius

The computation of the spectral radius will be similar to the procedure outlined for

the time invariant case in [2]. Let Pz(t) , zI −D(t), where z ∈ C and consider the
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operator (zI −G0) which maps u to η, given by

χ̇(t) = A(t)χ(t) +B(t)u(t),

w(t) = C(t)χ(t) +D(t)u(t),

η(t) = zu(t)− w(t),

which yields

χ̇(t) = A(t)χ(t) +B(t)u(t),

η(t) = −C(t)χ(t) + Pz(t)u(t).

(6.6)

for all t ∈ [0, T ]. If |z| > supt∈[0,τ) ρ(D(t)), then

χ̇(t) = (A(t) +B(t)P−1
z (t)C(t))χ(t) + P−1

z (t)η(t),

u(t) = P−1
z (t)(C(t)χ(t) + η(t)),

for all t ∈ [0, τ), where τ ∈ (0, T ). Thus, (zI −G0) is invertible if

|z| > α , max
t∈[0,T ]

ρ(D(t)).

In addition, this also implies (zI −G0)−1 is bounded (in Lp) by the bounded inverse

theorem. Hence, the spectrum is contained within a closed disk of radius α.

Otherwise, given any ε > 0, let z ∈ C be a number such that Pz(t) is singular for

some t ∈ [0, T ) and |z| > α− ε. Such a z exists since the spectral radius of D varies

continuously. Define s , min{t ∈ [0, T ] : det(Pz(t)) = 0}, and set η(t) = ϕ1(t− s),

where ϕ is orthogonal to the range of Pz(s), and 1(.) is the Heaviside step function.

Assume that there exists a u ∈ L∞ that achieves η almost everywhere. Obviously,

the input u = 0 and state χ = 0, almost everywhere on [0, s). Define

µ(t) , ‖ϕ− Pz(t)u(t) + C(t)χ(t)‖2, ∀t ∈ [s, T ].
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By (6.6), µ = 0 almost everywhere on [s, T ]. Moreover, since χ is continuous25

by (6.6), χ(s) = 0. Now let Ψ be an orthogonal projection matrix, onto the span

of ϕ. Using the reverse triangle inequality, by orthogonality we have

µ(t) ≥
√
‖ϕ−ΨPz(t)u(t)‖2

2 + ‖(I −Ψ)Pz(t)u(t)‖2
2 − ‖C(t)χ(t)‖2,

and thus

µ(t) ≥ ‖ϕ−ΨPz(t)u(t)‖2 − ‖C(t)χ(t)‖2 ≥ ‖ϕ‖2 − (‖ΨPz(t)u(t)‖2 + ‖C(t)χ(t)‖2) ,

for all t ∈ [0, T ]. Clearly, µ(s) ≥ ‖ϕ‖2. In addition, since Pz, C, χ are continu-

ous, χ(s) = 0, and ΨPz(s) = 0,

sup
τ∈[s,t)

(‖ΨPz(τ)‖2 + ‖C(τ)χ(τ)‖2) ,

can be made arbitrarily small as t approaches s from the right. Consequently, given

any u ∈ L∞, the essential supremum of ‖C(τ)χ(τ)‖2 + ‖ΨPz(τ)u(τ)‖2 can be made

arbitrarily small almost everywhere on [s, t) as t approaches s from the right. But

then, µ(t) ≥ ς > 0, almost everywhere on [s, t) for some t > s and constant ς,

contradicting the fact that µ = 0. It follows that (zI − G0) is not surjective and

thus (zI − G0)−1 does not exist. In other words, there exist spectral values of G0

within the open ball of radius α, arbitrarily close to the closed disk of radius α.

Therefore, ρ(G0) = maxt∈[0,T ] ρ(D(t)).

6.4.3 Stability under Nonzero Initial States

Let H , πx ◦G be the natural response of the LTV system to initial conditions,

where πx is the canonical projection onto the space of the state trajectory. Then the

25See [146], page 48, for the case of piecewise continuous u; and [147], theorem II.4.6 for the case
of integrable u.
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solution of (6.5) can be given as

yn = Gn
0y0 +

n∑
i=1

Gn−i
0 Hxi(0), n ∈ N.

Now if ρ(G0) > 1, by Gelfand’s spectral radius formula, there exist scalars M > 0

and ζ ∈ (0, 1) such that ‖Gk
0‖L∞ ≤Mζk for all k ∈ N. Therefore,

‖yk‖L∞ ≤Mζk‖y0‖L∞ +M‖H‖L∞
k∑
i=1

ζk−i‖xi(0)‖, (6.7)

for all k ∈ N, where H is bounded due to the finite time assumption26. If ‖x(0)‖e1 is

finite, we have

‖yk‖L∞ ≤M
(
ζk‖y0‖L∞ + ‖H‖‖x(0)‖e1

∑k
i=1 ζ

k−i
)

= M
(
ζk‖y0‖L∞ + ‖H‖L∞‖x(0)‖e1 1−ζk

1−ζ

)
≤M max

{
1,
‖H‖L∞

1−ζ

}
(‖y0‖L∞ + ‖x(0)‖e1) ,

for all k ∈ N. Thus, the LTV system is stable. Now assume in addition x(0) ∈ c0,

and consider the partial sum in the second term of the right hand side of (6.7),

Sk ,
k∑
i=1

ζk−i‖xi(0)‖ ≥ 0, ∀k ∈ N.

Then, it is easy to verify Sk+1 = ζSk + ‖xk+1(0)‖ ≥ 0 for all k ∈ N, so Sk → 0 by

Claim 6.1. Therefore, we can conclude by (6.7) that yk → 0 if x(0) ∈ c0 and ρ(G) < 1.

Finally, we consider the case where x(0) ∈ eλ. From (6.7)

‖yk‖ ≤Mζk‖y0‖L∞ +M‖H‖L∞‖x(0)‖eλ
k∑
i=1

ζk−iλi−1

≤M
(
ζk‖y0‖L∞ + ‖H‖L∞‖x(0)‖eλkλ̄k−1

)
26See the proof of Claim 6.3 to verify that the relevant state transition matrix is bounded.
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where λ̄ , max{ζ, λ}, so by Claim 6.2

‖yk‖ ≤Mζk‖y0‖L∞ +M‖H‖L∞‖x(0)‖eλ
2

1− λ̄

(
1 + λ̄

2

)k
,

and since ζ ≤ λ̄ < (1 + λ̄)/2 < 1,

‖yk‖L∞ ≤

KG(λ̄)︷ ︸︸ ︷
M max

{
1,

2‖H‖L∞
1− λ̄

}
×(1 + λ̄)/2︸ ︷︷ ︸
γG(λ̄)


k

(‖y0‖L∞ + ‖x(0)‖eλ), ∀k ∈ N. (6.8)

Noting that KG(max{ζ, λ}) and γG(max{ζ, λ}) defined in (6.8) are both continuous

and increasing in λ, we can conclude the system to be exponentially stable.

The findings of the section can be summarized as follows:

Theorem 6.5. For the LTV DRP (6.5), the following are equivalent:

1. ρ(G0) = maxt∈[0,T ] ρ(D(t)) < 1.

2. The 0-i.s. system is globally exponentially stable.

3. The system is globally exponentially stable.

Remark 6.2. Note that the analysis of Section 6.4.3 extends directly to any Lp norm

topology since the spectrum of G0 is contained in a closed disk of radius

max
t∈[0,T ]

ρ(D(t))

regardless of the choice of Lp norm. Therefore, maxt∈[0,T ] ρ(D(t)) < 1 implies global

exponential stability in Lp.
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6.5 Linearized Stability of DRPs

In this section, we will establish the equivalence between exponential stability of a

nonlinear DRP of the form (6.1) with that of its linearization. The linearization

of (6.1) will mirror that of the 1D case, in other words, we will be linearizing the

differential operator (6.2) as is typical in feedback control. This will be done as

follows: Since f and g are continuously differentiable,

χ̇(t) = Ā(t)χ(t) + B̄(t)u(t) + b(χ(t), u(t), t)︸ ︷︷ ︸
f(χ(t),u(t),t)

, (6.9)

and

w(t) = C̄(t)χ(t) + D̄(t)u(t) + d(χ(t), u(t), t)︸ ︷︷ ︸
g(χ(t),u(t),t)

, (6.10)

for some continuous functions b and d, as

Ā(t) ,
∂f

∂χ
(0, 0, t), B̄(t) ,

∂f

∂u
(0, 0, t),

C̄(t) ,
∂g

∂χ
(0, 0, t), D̄(t) ,

∂g

∂u
(0, 0, t),

are continuous. Consequently, the linearization of (6.1) will be defined as the follow-

ing 2D system:

˙̄xk+1(t) = Ā(t)x̄k+1(t) + B̄(t)ȳk(t),

ȳk+1(t) = C̄(t)x̄k+1(t) + D̄(t)ȳk(t),

(6.11)

for all t ∈ [0, T ] and k ∈ N, with boundary conditions x̄(0) = x(0) and ȳ0 = y0.

6.5.1 Asymptotics of the Nonlinear Perturbations

Let fi be the i-th output of f . Since f is continuously differentiable in Z and f

vanishes at the origin uniformly in time, i.e. f(0, 0, t) = 0, by the multivariable mean

value theorem, there exists a point (ξ∗i , υ
∗
i ) on the line segment connecting (ξ, υ) to
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the origin such that

fi(ξ, υ, t) =

[
∂fi
∂ξ

(ξ∗i , υ
∗
i , t)

∂fi
∂υ

(ξ∗i , υ
∗
i , t)

]ξ
υ

 ,
in a neighborhood of the origin in Rn × Rm. Equivalently,

fi(ξ, υ, t) =

[
Āi(t) B̄i(t)

]ξ
υ


+

[(
∂fi
∂ξ

(ξ∗i , υ
∗
i , t)− Āi(t)

) (
∂fi
∂υ

(ξ∗i , υ
∗
i , t)− B̄i(t)

)]ξ
υ


︸ ︷︷ ︸

bi(ξ,υ,t)

,

where Āi and B̄i are the i-th rows of Ā and B̄, respectively, and bi is the i-th output

of b. Now let qi , ∂fi/∂ξ. The function qi is continuous in Z because f is continuously

differentiable in Z. Hence, by the Heine-Cantor theorem, qi is uniformly continuous

in Z. Therefore, for all ε > 0 there exists δo > 0 such that

‖(ξ, υ)‖ < δo, =⇒ ‖qi(ξ, υ, t)− Āi(0, 0, t)‖ < ε,

for every (ξ, υ, t) ∈ Z, since qi(0, 0, t) = Āi(0, 0, t). Using similar arguments for the

other partial derivatives ∂fi/∂υ, ∂gi/∂ξ, ∂gi/∂υ, we can conclude that for all ε > 0

there exists δO > 0 satisfying

‖(ξ, υ)‖ < δO, =⇒ ‖(b(ξ, υ, t), d(ξ, υ, t)‖ < ε‖(ξ, υ)‖, ∀(ξ, υ, t) ∈ Z. (6.12)
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6.5.2 L∞ Asymptotics of the Linearization Error

Next, let us consider the LTV system defined by the matrices Ā, B̄, C̄, D̄:

˙̄χ(t) = Ā(t)χ̄(t) + B̄(t)ū(t),

w̄(t) = C̄(t)χ̄(t) + D̄(t)ū(t),

(6.13)

for all t ∈ [0, T ], where χ̄(0) = χ(0). The 0-i.s. input-output operator Ḡ0 and the

initial state response operator H̄ will be defined for this system as in Section 6.4.

Subtracting (6.13) from (6.9) and (6.10)

˙̃χ(t) = Ā(t)χ̃(t) + B̄(t)ũ(t) + b(χ(t), u(t), t),

w̃(t) = C̄(t)χ̃(t) + D̄(t)ũ(t) + d(χ(t), u(t), t),

where χ̃(t) , χ(t)− χ̄(t), w̃(t) , w(t)− w̄(t), and similarly ũ(t) , u(t)− ū(t). De-

fine the mapping ϕ so that

(ϕ(χ, u))(t) = (b(χ(t), u(t), t), d(χ(t), u(t), t)).

Then the output error w̃ is given by

w̃ = Ḡ0ũ+ Ω(ϕ(χ, u)), (6.14)

where Ω represents the L∞ stable input-output response of an LTV system with the

state matrices (
A,

[
I 0

]
, C,

[
0 I

])
.

The following lemma will define the asymptotic behavior of ϕ with respect to (u, χ(0)).
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Lemma 6.2. For all ε > 0, there exists δ∗ > 0 such that

‖u‖L∞ + ‖χ(0)‖ < δ∗, =⇒ ‖ϕ(χ, u))‖L∞ ≤ ε(‖u‖L∞ + ‖χ(0)‖).

6.5.3 Necessary and Sufficient Conditions for Exponential

Stability

We first assume that the 0-i.s. linear system is exponentially stable so ‖Ḡk
0‖L∞ ≤ M̄ ζ̄k

for all k ∈ N, for some M̄ ≥ 1, ζ̄ ∈ (0, 1). With this, let N ∈ N such that M̄ ζ̄N < 1.

We will need the following result:

Lemma 6.3. There exist scalars δfh > 0 and Lfh ≥ 1 so that ‖y0‖L∞ + ‖x(0)‖e1 < δfh

implies

‖yk‖L∞ < Lfh(‖y0‖L∞ + ‖x(0)‖e1)

for all k ∈ {0, 1, . . . , N − 1}.

Proof. The proof follows easily from Lipschitz continuity of πy ◦ Γ (Corollary 6.1) and

is omitted for brevity. �

Proposition 6.1. The nonlinear system is exponentially stable if its linearization is

exponentially stable.

The proof of this proposition is rather involved and as such given in Appendix B.3

for a more compact presentation. To establish the converse of this result, we will

follow an indirect route that is much easier compared to a direct proof. Specifically,

we will show that nonlinear exponential stability implies linear exponential stability

for the 0-i.s case. This will allow us to finalize our main result by aid of Theorem 6.5,

as the reader can see in Figure 6.2.

Proposition 6.2. The linearization of the nonlinear system is 0-i.s. exponentially

stable if the nonlinear system is 0-i.s. exponentially stable.
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supt∈[0,T ] ρ(D̄(t)) < 1

ȳk+1 = Ḡ0ȳk e.s.System (6.11) e.s.

System (6.1) e.s. yk+1 = Γ0(yk) e.s.

ı ı0 ı̄0

Linear Stability

Figure 6.2: Implication diagram for exponential stability (e.s.): The linear exponential
stability diagram was stated in Theorem 6.5, where the dashed implication arrows
were established by proving the solid ones. For the nonlinear case, implications ı, ı0
are proven in Proposition 6.1. Proving implication ı̄0 will close the loop and allow us
to conclude the dotted implication arrows.

Proof. Let V be the Lyapunov function from Theorem 6.3. Then

c1‖y‖L∞ ≤ V (y) ≤ c2‖y‖L∞ ,

and the difference of V with respect to the linear operator Ḡ0 is

∆V (y) = V (Ḡ0y)− V (y)

= (V (Ḡ0y)− V (Γ0(y))) + (V (Γ0(y))− V (y))

≤ (V (Ḡ0y)− V (Γ(y)))− c3‖y‖L∞ ,

for some positive c1, c2, c3, with c2 > c3, since the nonlinear DRP is exponentially

stable, around the origin. The function V is Lipshitz because it is a sum of Lipschitz

functions; Γi0 is Lipschitz for any i ∈ N. Therefore, there exists a positive scalar LG

such that

|V (Γ0(y))− V (Ḡ0y)| ≤ LG‖Ḡ0y − Γ0(y)‖L∞ ,

around the origin. Furthermore, from (6.14),

Ḡ0y − Γ0(y) = Ω(ϕ(Γx(y, 0), y)).
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Hence, for any ε > 0, by Lemma 6.2, there exists δ∗ > 0 so that ‖y‖L∞ < δ∗ implies

|V (Γ0(y))− V (Ḡ0y)| ≤ ε‖y‖L∞ ,

and therefore for any c̄3 ∈ (0, c3), there exists a δ̄3 > 0 so that ‖y‖L∞ ≤ δ̄3 implies

∆V (y) ≤ (V (Ḡ0y)− V (Γ(y)))− c3‖y‖L∞ ≤ c̄3‖y‖L∞ .

�

With this, we can state our main result, which summarizes the findings of Theo-

rem 6.5 and Propositions 6.1 and 6.2 as given below:

Theorem 6.6. For the nonlinear DRP (6.1) and its linearization (6.11), the following

are equivalent:

1. The condition maxt∈[0,T ] ρ(D̄(t)) < 1 holds.

2. The 0-i.s. DRP (6.11) is globally exponentially stable.

3. The DRP (6.11) is globally exponentially stable.

4. The 0-i.s. DRP (6.1) is exponentially stable.

5. The DRP (6.1) is exponentially stable.

6.6 Applications: Picard Iterations and ILC

We now present two applications of Theorem 6.6.

6.6.1 Picard Iterates with Varying Initial Conditions

The Picard-Lindelöf theorem guarantees the existence and uniqueness of the solu-

tion x∗ of the differential equation ẋ(t) = f(x(t), t) with initial condition x∗(0) = x∗0
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for small T . The existence of this solution is proven by a recursive process, whose

convergence is shown by the contraction mapping theorem. These iterates can be

expressed as the DRP

ẋk+1(t) = f(yk(t), t), xk+1(0) = x∗0

yk+1(t) = xk+1(t),

for all t ∈ [0, T ] and k ∈ N. The time varying transformation

(xk(t), yk(t)) 7→ (xk(t)− x∗(t), yk(t)− x∗(t))

translates the equilibrium to 0, uniformly in time:

ẋk+1(t) = f(y
k
(t), t), xk+1(0) = 0

y
k+1

(t) = xk+1(t),

with f(χ, t) , f(χ+ x∗(t), t)− ẋ∗(t), for all t ∈ [0, T ] and k ∈ N. This resulting sys-

tem satisfies continuous differentiability assumptions around the new equilibrium

since the fixed point x∗ is twice continuously differentiable by virtue of f being contin-

uously differentiable. Now, we can conclude that Picard iterates form an exponentially

stable DRP when y0 − x∗ and x(0)− x∗0 are small enough. One implication of this

result is that the iterates converge to x∗ for every x(0) with x(0)− x∗0 ∈ c0, e.g. for

nonconstant initial state sequences that converge to x0, when the boundary conditions

are sufficiently close to the equilibrium.
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6.6.2 ILC with Static Nonlinear Update Laws

The second application of Theorem 6.6 addresses the ILC problem of iteratively con-

structing the input u∗ given a desired output ydes so

ẋ∗(t) = f(x∗(t), u∗(t), t),

ydes(t) = g(x∗(t), u∗(t), t),

for all t ∈ [0, T ]. We consider the ILC system, where l satisfies l(0, t) = 0,

ẋk+1(t) = f(xk+1(t), uk+1(t), t),

yk+1(t) = g(xk+1(t), uk+1(t), t),

uk+1(t) = uk(t) + l(ek(t), t),

and ek , yk − ydes, for all t ∈ [0, T ] and k ∈ N. This static (in time) update law is

based on the internal model principle in the iteration domain, and guarantees perfect

tracking in the limit for all achievable ydes when stable. Following a transformation

akin to the one for Picard iterates, details of which are skipped, we can rewrite the

system as

ẋk+1(t) = f(xk+1(t), uk(t), ek(t), t),ek+1(t)

uk+1(t)

 =

g(xk+1(t), uk(t), ek(t), t),

uk(t) + l(ek(t), t)

 ,
with

g(χ, u, θ, t) , g(χ+ x∗(t), u+ u∗(t) + l(θ, t), t)− ydes(t),

for all t ∈ [0, T ] and k ∈ N. Note that e0 depends on u0, so (e0, u0) cannot be ar-

bitrarily chosen, and therefore it is difficult to derive necessary exponential stability
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conditions. Nevertheless, by taking the appropriate partials and letting

D(t) ,
∂g

∂u
(x∗(t), u∗(t), t), L(t) ,

∂l

∂θ
(0, t),

for all t ∈ [0, T ], the system is exponentially stable if

max
t∈[0,T ]

ρ


D(t)

I

[L(t) I

] = max
t∈[0,T ]

ρ(I + L(t)D(t)) < 1,

where the equality can be verified via simple eigenvector manipulations, with the

equivalent condition being maxt∈[0,T ] ρ(I +D(t)L(t)) < 1 for square systems. The

significance of this result stems from the following:

1. The stability condition is consistent with the monotonic convergence condition

for single input single output systems given in [55]. For multiple-input multiple-

output systems, it is much simpler than the integral condition in [55] and easily

computable.

2. It shows that the error term in the learning function l must be replaced with

its n̄-th derivative for a vector relative degree n̄ system, and the desired output

should be sufficiently smooth, in line with [148].

3. It shows that initial condition errors affect the tracking error continuously, and

perfect tracking can be achieved asymptotically (exponentially) when the initial

condition errors vanish asymptotically (exponentially), as per [40, 103].

4. As opposed to the conventional norm based conditions, which rely on the time

weighted norm,27 this is the first spectral radius based stability condition in

the nonlinear ILC literature, which is naturally less conservative. In addition,

27This norm is equivalent to the L∞ norm in finite time and is the L∞ norm of the exponential
weighting of a function.
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Figure 6.3: Limit cycle of the unforced oscillator with the damping Ξ(t) = 4 (dotted
black line), and the learned state trajectory of the time varying actuated oscillator
after 30 trials (solid blue line).

to the best of our knowledge, it is among the first studies of ILC from a lo-

cal perspective, so that nonlinear time varying update laws can be considered

for locally continuously differentiable systems in lieu of adaptive laws, without

resorting to saturation [143].

5. In [9], the authors note “ILC designs using discrete-time linearizations of non-

linear systems often yield good results when applied to the nonlinear systems”.

The condition we have found verifies that linearization is indeed a valid strategy

with continuous proportional or derivative type ILC algorithms.

To close this section, we note that the same methodology can be used to derive

spectral stability conditions when the input is Q filtered; i.e. the update law is of

the form uk+1(t) = Q(t)uk(t) + l(ek(t), t), which is known to be a stabilizing factor

against numerical errors in ILC algorithms.
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Figure 6.4: Evolution of ‖ek‖L∞ .
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Figure 6.5: The learned output signal after 30 trials.

6.7 Illustrative Example

Consider the actuated Van der Pol oscillator in normal form with a time varying

damping coefficient:

q̇1(t) = q2(t),

q̇2(t) = −q1(t) + Ξ(t)(1− (q1(t))2)q2(t) + u(t),

y = q1(t),
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where the damping coefficient Ξ(t) > 0, and t ∈ [0, 2]. The unforced oscillator is

well known to have an unstable equilibrium at the origin for all constant Ξ(t) > 0;

the trajectory of the unforced system with Ξ(t) = 4 is plotted in Figure 6.3. Our

objective is to track the desired reference ydes(t) = 0.1 cos(2πt). As the oscillator has

relative degree 2, we consider the update law

uk+1(t) = uk(t)− (ÿk(t)− ÿdes(t)), ∀t ∈ [0, T ], k ∈ N.

Then it is easy to verify that this update law is stable since

ÿ(t) = q̇2(t), ∂q̇2(t)/∂u(t) = 1.

Indeed, for Ξ(t) = 4 + 0.5 sin(2π(10t)), Figure 6.4 shows that the tracking error is

exponentially decreased when u0 = 0 and the initial conditions are randomly chosen

to exponentially converge to (ydes(0), ẏdes(0)) = (0.1, 0) with convergence rate λ (also

randomly chosen) and eλ norm less than 0.1. The learned state trajectory after 30

trials is shown in contrast to the limit cycle of the system in Figure 6.3, the learned

output signal tracks the desired output with very high precision as can be seen in

Figure 6.5, without any stabilizing feedback.

6.8 Conclusion

In this chapter, we addressed the problem of finding necessary and sufficient expo-

nential stability conditions for a class of nonlinear repetitive processes. Assuming

existence, uniqueness and boundedness of the integral curves of the associated vector

fields for small signals and initial conditions, we showed Lipschitz continuity of the

nonlinear operator in finite time. Based on this, we developed Lyapunov stability

theorems for DRPs treated as nonlinear recursion in the input space. In the sequel,
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we approximated the system as an LTV system, and showed that the approximation

error is o(yk) in the L∞ norm as yk tends to 0. Using this asymptotic property, along

with the Lyapunov theorems, we showed that a DRP is exponentially stable if and

only if the state matrix D̄ is uniformly Schur over the time interval [0, T ].

As an aside, we would like to point out two issues. First, the necessary and

sufficient exponential stability condition of this chapter extends easily to discrete

repetitive processes under similar assumptions. As a matter of fact, the analysis can

be more or less followed in the same manner, since the time domain dynamics were

used insofar as proving boundedness/Lipschitz/asymptotic properties of the pass to

pass operator. Second, the asymptotics (6.12) of the nonlinear perturbations show

that it is indeed possible to find a similar result for L2 exponential stability28. When

a system is L∞ stable, we can guarantee that an L2 analogue of Lemma 6.2 holds

for small (in L∞) boundaries. Then, because L∞ stability implies Lp stability in the

linear case (Remark 6.2), we can go through similar analysis as before to reach the

desired result.

To our knowledge, the work presented here is the first systematic study of stability

for nonlinear repetive processes. The findings of the chapter are especially important

since local stability is the precursor to global stability. The comprehensiveness of

these results are reflected in the fact that they tie in the various existing results

from nonlinear ILC analysis via a single framework. We hope that the analysis

presented in the chapter will pave the way for further research on nonlinear repetitive

processes, such as extensions to different classes of systems and the corresponding

control strategies.

28Convergence is obvious since ‖.‖L2 ≤ T
√
m‖.‖L∞ . Instead, we are interested in a bound of the

form (6.4).
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CHAPTER 7

Conclusion

In this dissertation, we laid out foundational material for classical ILC and pointed

out research directions to relax the fundamental invariance assumption and to come

up with a systematic and practical framework to encourage widespread use of ILC

in experimental settings. In particular, in Chapter 4, we investigated the use of L1

AC in an ILC setting and how it enabled us to utilize an aggressive ILC design for

fast convergence, all the while maintaining monotonic behavior in the time-iteration

domains under time varying uncertainties and disturbances. While we assumed it-

eration invariance for the analysis, we saw in simulations that the combined L1-ILC

scheme exhibited stable behavior with comparatively small transients. This encour-

aged us to investigate the basic stability analysis of iteration varying systems, which

has not been extensively studied in the literature. Our technical analysis, simulation

studies, and experimental results in Chapter 5 show that iteration varying systems

are guaranteed to be stable when ILC update laws are designed to be robust, which

can be done using existing methods from the literature. Further, when uncertainties

converge in the iteration axis, convergence to a nominal system can be guaranteed,

a result demonstrating the power of ILC over standard feedforward synthesis. As a

next step to the signal space approach adopted in the analysis of iteration varying

systems, we shifted the focus of our work to repetitive processes in Chapter 6, and

showed that the exponential stability of a nonlinear system, its linearization, and the
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uniform Schur stability of the relevant linear state space matrix are equivalent. We

utilized this result to analyze local stability of Picard iterations with nonconstant

initial states, as well as nonlinear ILC algorithms. Our findings were supported by

simulation studies on the model of an actuated Van der Pol oscillator with time vary-

ing damping, where it was shown that an ILC algorithm using the second derivative

of the error can asymptotically find an input signal to uniformly track a sinusoidal

reference without any stabilizing feedback.

The work presented in Chapters 4 to 6 is partially based on the following publi-

cations:

� B. Altin and K. Barton.“Exponential Stability of Nonlinear Differential Repeti-

tive Processes with Applications to Iterative Learning Control”. In: Automatica

(2016), revised and resubmitted.

� B. Altin, J. Willems, T. Oomen, and K. Barton. “Iterative Learning Control of

Iteration Varying Systems via Robust Update Laws with Experimental Imple-

mentation”. In: Control Engineering Practice (2016), under review.

� B. Altin and K. Barton. “On Linearized Stability of Differential Repetitive

Processes and Iterative Learning Control”. In: Decision and Control (CDC),

2015 IEEE 54th Annual Conference on. Dec. 2015, pp. 6064-6069.

� B. Altin and K. Barton. “Learning Control of Linear Iteration Varying Sys-

tems with Varying References through Robust Invariant Update Laws”. In:

American Control Conference (ACC), 2015. June 2015, pp. 4880-4885.

� B. Altin and K. Barton, “Robust iterative learning for high precision motion

control through L1 adaptive feedback,” in Mechatronics, vol.24, no. 6, pp.

549-561, 2014.

� B. Altin and K. Barton, “L1 adaptive control in an iterative learning control
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framework: Stability, robustness and design trade-offs,” in American Control

Conference (ACC), 2013, 2013, pp. 6697-6702.

� B. Altin and K. Barton, “L1 adaptive control in an iterative learning control

framework for precision nanopositioning,” in Proc. of the ASPE Spring Top.

Meet., vol. 55, 2013, pp. 88-93.

It is argued in an Automatica paper [18] that “Since a non-causal approach is

the only viable route for ILC, future work should investigate the benefits of non-

causal ILC versus conventional feedback control,”. While we agree that the ability

to consider noncausality is a strong aspect, ILC is a highly valuable technique that

complements the limitations of traditional feedback such as finite bandwidth even in

the causal case. Indeed, real life solutions are in essence a combination of different

methodologies and seek to exploit the best of different worlds, and the results of

Chapter 5 make a strong case for the value of ILC for iteration varying systems. In

this sense, it would be beneficial for the ILC community to consider ILC as per the

common interpretation of feedback control in the iteration domain, and expand the

scope of ILC research towards repetitive processes and multidimensional systems in

general, as discussed in Chapter 6.

While there are still many interesting questions specific to ILC and the refer-

ence tracking problem, it is our belief that repetitive processes and multidimensional

systems will provide the generality needed to broaden the impact of ILC research.

Indeed, it was shown in Chapter 6 that the Picard iterations, a method of utmost im-

portance in the study of differential equations, can be readily modeled and analyzed

as a nonlinear time varying repetitive process. On the application side, development

of advanced control algorithms for nonlinear systems would open the door for the

repetitive process control paradigm to be implemented on a variety of physical sys-

tems, with guaranteed performance and robustness bounds, and could revolutionize

AM technology by significantly improving throughput and precision.
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As mentioned before, the existing literature on repetitive processes are predomi-

nantly on linear systems, and hence there is a plethora of research directions that can

be pursued to further our understanding of such systems. Extension of the theory to

different classes of systems, for example, delay or partial differential equations (i.e.

multidimensional in layer dynamics) are interesting problems that can have signifi-

cant impact. More immediate questions that should be answered include estimation

of the region of attraction, derivation of global stability conditions, and computation

of finite dimensional Lyapunov functions, along with their counterparts for trial (it-

eration) varying systems. On the other hand, it is also important for researchers to

apply the theoretical results in simulation or experiments to physical systems to push

the boundaries of this relatively new control paradigm.
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APPENDIX A

Supplemental Material for Chapter 4

The following sections lay out supplemental material related to chapter 4. The nota-

tion is consistent with that of chapter 4 unless otherwise stated.

A.1 Intermediate Technical Results

In this section we present some results that are helpful towards evaluating system

uncertainties and establishing the relationship of Lemma 4.2. These will be used to

show the existence and stability of the feedback operators. In the following discus-

sion, F1 : V1 → V2, F2 : V2 → V1 are operators, where V1 and V2 are vector space.

We first give a generalization of the L1 norm condition which ensures that the

objective of the L1 AC problem is well defined. While we assume that the inverse

exists, the argument is valid regardless of its existence if we think of it as a feedback

interconnection. Note that for linear systems, the condition ‖F2F1‖ ≤ φ2 < 1 guar-

antees the existence of the inverse shown in Lemma 2.1. This is a special case of the

small gain theorem [44, page 218].

Lemma A.1. Assume V1, V2 to be endowed with norms such that ‖F1‖ ≤ φ1 < ∞

and ‖F2F1‖ ≤ φ2 < 1. Then, ‖F1(I + F2F1)−1‖ ≤ φ1(1− φ2)−1.

Proof. Let ζ, ξ ∈ V be the input and output vectors of I + F2F1; respectively.

Since ‖F2F1‖ ≤ φ2 < 1, we have ‖ξ‖ ≥ ‖ζ‖ − ‖F2F1‖‖ζ‖ ≥ (1 − φ2)‖ζ‖ by the
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reverse triangle inequality. Hence, ‖(I + F2F1)−1‖ ≤ (1 − φ2)−1. The result then

follows by submultiplicativity. �

Let F1 ∈ Cm×n, F2 ∈ Cn×m. A generalization of the identity

(I + F1F2)−1 = I − F1(I + F2F1)−1F2

to linear operators is given as follows.

Lemma A.2. Let F1, F2 be linear operators. Then, (I +F1F2)−1 exists if and only

if (I + F2F1)−1 exists. Moreover,

(I + F1F2)−1 = I − F1(I + F2F1)−1F2,

(I + F2F1)−1 = I − F2(I + F1F2)−1F1.

Proof. Assume I+F1F2 is invertible. Then, (I+F2F1)(I−F2(I+F1F2)−1F1) = I by

direct computation, which shows that I−F2(I+F1F2)−1F1 is an inverse of I+F2F1.

By interchanging F1 and F2, we can show the converse statement, thus completing

the proof. �

The following shows that the L1 norm of a system bounds its induced Lp norm.

Lemma A.3. [44, page 200] Let F (s) be a stable causal SISO LTI system. Then for

every input signal ζ ∈ Lpe, p ∈ [1,∞], the output ξ ∈ Lpe and we have

‖ξτ‖Lp ≤ ‖F (s)‖L1‖ζτ‖Lp .

A.2 Proofs of the Main Results

Proof of Lemma 4.2. Let ζ ∈ Lm2e, ξ ∈ Ln2e be the input and output sig-

nals; respectively. Then, by Lemma A.3, ‖(ξk)τ‖L2 = ‖(
∑m

l=1 fkl ∗ ζl)τ‖L2 ≤
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∑m
l=1 ‖fkl‖L1‖(ζl)τ‖L2 , where ∗ denotes convolution. Let

δk ,

[
‖fk1‖L1 ‖fk2‖L1 . . . ‖fkm‖L1

]T
,

ε ,

[
‖(ζ1)τ‖L2 ‖(ζ2)τ‖L2 . . . ‖(ζm)τ‖L2

]T
,

so by the Cauchy-Schwarz inequality

m∑
l=1

‖(fkl)τ‖L1‖(ζl)τ‖L2 = δTk ε ≤ ‖δk‖2‖ε‖2 ≤ ‖δk‖1‖ε‖2.

Moreover, ‖δk‖1 ≤ ‖F (s)‖L1 and ‖ε‖2 = ‖ζτ‖L2 by definition, which imply

‖(ξk)τ‖L2 ≤ ‖F (s)‖L1‖ζτ‖L2 .

Thus, ‖ξτ‖L2 ≤
√
n‖F (s)‖L1‖ζτ‖L2 . Then by Theorem 4.1, ‖F (s)‖∞ ≤

√
n‖F (s)‖L1 .

�

Proof of Theorem 4.4. By the Cauchy-Schwarz inequality,

|θTG(jω)| ≤ ‖θ‖2‖G(jω)‖2 ≤ θM2‖G(s)‖∞, ∀ω ∈ R.

Note that θM2 =
√
nθM , so by Lemma 4.2, we have

‖θTG(s)‖∞ ≤ θM2‖G(s)‖∞ ≤ θM1‖G(s)‖L1 < 1.

Let Gθ(s) ,
θTG(s)

1−θTG(s)
, which implies H̄(s) = H(s)(1 +Gθ(s)). By Lemma A.1,

|Gθ(jω)| ≤ ‖Gθ(s)‖∞ ≤
θM2‖G(s)‖∞

1− θM2‖G(s)‖∞
= κ, ∀ω ∈ R.
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Assume there exists µ ∈ [0, 1) such that

|Q(jω)(1− L(jω)H̄(jω))| ≤

|Q(jω)||(1− L(jω)H(jω))|+ κ|Q(jω)||L(jω)||H(jω)| ≤ µ,

for all ω ∈ R. But then, this is equivalent to (4.9). �

Proof of Lemma 4.4. We extend L1 to include complex transfer functions and note

that the inverse Laplace transform of 1/(s+ p) is e−pt1(t), which implies

∥∥∥∥ 1

s+ p

∥∥∥∥
L1

=
1

<(p)
, ∀p : <(p) > 0.

Without loss of generality, assume m = n− 1. Then we have,

‖F (s)‖L1 ≤
∥∥∥∥ 1

s+ pn

∥∥∥∥
L1

n−1∏
k=1

∥∥∥∥s+ zk
s+ pk

∥∥∥∥
L1

≤ 1

<(pn)

n−1∏
k=1

1 +
|zk|
<(pk)

+
|pk|
<(pk)

.

Now the assumption arg(pk) ∈ [ψ, 2π − ψ] implies that 1/<(pk) → 0 as |pk| → ∞

and |pk|/<(pk) is bounded for pk 6= 0. It follows that 1 + |zk|/<(pk) + |pk|/<(pk)

is O(1) for k = 1, 2, . . . , n− 1. Since 1/<(pn)→ 0, the result follows. �

Proof of Theorem 4.7. The proof follows the same ideas of Theorem 4.4. We first

show that the L2 gain of WGm is less than 1 due to the L1 norm condition. Note

that W is made up of 3 cascaded systems (4.16) with the first one being LTI. The

readers can therefore easily verify Ψ , M2‖T (s)ATGm(s)‖∞ to be an upper bound

on the induced L2 norm of WGm. From Lemma 4.2 and the equality θM1 =
√
nθM2

it follows that Ψ ≤ M‖Gm(s)‖L1 < 1. Since the L2 gain of WGm is less than 1,

it follows that I − WGm is invertible with L2 gain less than 1 − Ψ by Lemmas 2.1

and A.1.
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Let Gmθ , (I−C)(I−WGm)−1WHxm, where Hxm is Hxm(s) in operator notation.

It follows that an upper bound on the L2 gain of Gmθ is

M2‖T (s)ATHxm(s)‖∞‖1− C(s)‖∞
1−M2‖T (s)ATGm(s)‖∞

,

which is equal to κmtv by definition. Moreover, by Lemma A.2, the mapping H̄m

from vi to yi is given by H̄m = Hm(I + Gmθ). Now let Q, L be Q(s) and L(s) in

operator notation; respectively. Assume there exists µmtv ∈ [0, 1) such that,

‖Q(I − LH̄m)‖L2 ≤ ‖Q(I − LHm)‖L2 + κmtv‖QLHm‖L2

≤ µmtv .

But then, this is equivalent to (4.29) by Theorem 4.1. �

Remark A.1. The existence of (I −WGm)−1 can also be proven by M‖Gm(s)‖L1 < 1

or any norm that satisfies the small gain condition. This property would be useful if

it cannot be shown that the L2 gain is less than the L1 norm. For instance, if the

inequality ‖F (s)‖L1 < 1 is true, but ‖F (s)‖∞ < 1 is not necessarily true,

‖(I − F (s))−1‖∞ ≤
√
n/(1− ‖F (s)‖L1),

by Lemmas 4.2 and A.1. Obviously, this would lead to a more restrictive robust

convergence condition.
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A.3 L1 Adaptive Output Feedback Controller Def-

initions

We list the variables that are used in Section 4.4 below. The readers can refer to [117]

for the original definitions, we provide several modifications to account for the addition

of vi(t) in the adaptive controller.

ρ1 ,
|kg|‖Hxm(s)C(s)‖L1‖r‖L∞ + ‖Hxm(s)‖L1‖vi‖L∞ + ‖Gm(s)‖L1(‖σm‖L∞ +Mρ2)

1− ‖Gm(s)‖L1M
,

where ρ2 , ‖xref2‖L∞ ; and xref2(t) is defined according to

ẋref2(t) = Amxref2(t), xref2(0) = x̂in.

Let ρ , ρ1 + ρ2 and

∆̄ , ∆m +M

(
ρ+ γ̄

‖C(s)‖L1
1− ‖Gm(s)‖L1M

)
,

where γ̄ > 0 is arbitrary. Let

β1 , β01
‖C(s)‖L1

1−‖Gm(s)‖L1
M
, β2 , β02 + β01ρ,

β3 ,
λmax(Pm)
λmin(Zm)

β1, β4 , 4∆̄2 + λmax(Pm)
λmin(Zm)

β2,

where

β01 , 4∆̄M (dθ/θM1 + ‖Am‖L1 + ‖bm‖L1M) ,

β02 , 4∆̄
(
dσm +M‖bm‖L1

(
‖C(s)‖L1

(
|kg|‖r‖L∞ + ∆̄

)
+ ‖vi‖L∞ + ∆m

))
.
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The transient bounds of the controller are given by

γ0 ,

√
αβ4

Γcλmin(Pm)

γ1 , γ0
‖C(s)‖L1

1− ‖Gm(s)‖L1M
,

γ2 , γ1M‖C(s)‖L1 + γ0

∥∥∥∥ C(s)

cToHxm(s)
cTo

∥∥∥∥
L1
,

where co ∈ Rn is arbitrary such that cToHxm(s) is minimum phase and has relative

degree 1.

A.4 Criticisms of L1 Adaptive Control

L1 AC theory has received significant criticism from the adaptive control community

despite successful implementations on many practical systems, including safety criti-

cal flight control systems [149]. To date, several prominent members of the adaptive

control community have expressed their doubts towards the theory in several publi-

cations, such as [150–153]. Reference [150] is of particular importance, where it was

noted that L1 AC offers “no benefits in terms of robustness, performance, or bounds

that suggest useful trade-offs”, and raises the following issues about the theory:

1. The insertion of the input filter deteriorates tracking performance.

2. The use of an input filter deteriorates stability margins.

3. The recommended use of high adaptive gains has a negative effect on robustness,

and causes numerical instability.

In response to some of the claims raised in an earlier version of [150], a document

clarifying the main properties of L1 AC [154] has been published online by Naira

Hovakimyan. Based on our reading of [150,154] and other material on L1 AC theory,

we respond to the above claims as follows:
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1. It is true that the input filter deteriorates tracking performance in terms of

the MRAC “desired system”. As a matter of fact the bounds establishing

tracking performance in L1 AC are stated in terms of the uncertain “reference

model”, which describes the performance-robustness trade-off and helps bridge

the gap between adaptive control and robust control. However, it is correctly

pointed out in [150] that the control objective stated in [155], “to design an adap-

tive controller to ensure that the system output y(t) follows a given reference

signal r(t) with quantifiable transient and steady-state performance bounds”, is

not achievable. It seems that this is a misstatement on the authors’ part, since

the objective of MRAC and therefore L1 AC is (partial) model following, not

reference tracking.

2. The claim in [150] that filtering deteriorates robustness margins seem to be

due to the fact that the considered controller has a filtered MRAC structure,

which corresponds to the simplest L1 AC architecture, that of systems with

unknown pole locations. While is true that the robustness properties of con-

ventional MRAC for unknown pole locations is deteriorated by filtering, the

correct L1 AC architecture for the unmodeled dynamics scenario in [150] is pre-

sented in [154], where parametric uncertainty in the input gain is considered. It

is shown in [110,154] through a theoretical proof and numerical simulations that

for this architecture, as opposed to conventional MRAC, the time delay margins

of L1 AC are uniformly bounded away from zero, independent of the estima-

tion gain. A secondary claim made by the authors of [150] is that the L1 AC

architecture for input uncertain systems requires the knowledge of unmodeled

dynamics for the design of its filtering structure, as seen in equation (2.130)

of [110]. However, upon careful reading, it can be observed that the filter de-

fined in equation (2.130) of [110] is for analysis purposes only, and is not used

in the implementation of the controller.
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3. As the authors of [150] mention, the use of high adaptive gains may cause nu-

merical issues and can lead to chatter, as shown in [150,154]. Nevertheless, as a

result of the filtering structure, the high frequency content of the estimate does

not propagate to the control channel. Moreover, since the time delay margins

of L1 AC are uniformly bounded away from zero, the adaptation gain can be

safely increased to track the reference model arbitrarily closely, thereby increas-

ing the predictability (and hence “robustness”, in some sense) of the system.

In experimental implementations, this adaptation rate is bounded above by

practical concerns, as detailed in [110,149] through flight control systems.

Another criticism towards the theory appears in [152, 153], where it is suggested

that there exist scalar LTI systems and reference models such that the L1 stability

condition cannot be be satisfied, under the assumption that the bandwidth of the

filter should be lower than that of the reference model. It is argued in an online

document [156] that this assumption is not justified, on the grounds that “the filter

acts as an additional actuator”, and “if its dynamics are slower than the plant, this

will limit both the performance and the robustness of the closed-loop system”. Hence,

the stability condition can be satisfied by selecting a sufficiently high bandwidth filter.

Finally, it has been recently suggested that “adaptation is unnecessary” in L1 AC

in some sense, since L1 AC approximates linear controllers: It is shown in [151–153]

that for a simple class of L1 AC algorithms, the control signal converges to that of

a proportional-integral controller as the perturbation term due to adaptation tends

to zero. This controller is implementable since it does not require the knowledge

of the unknown parameters. Building on these works, [157] analyzes the issue of

implementability for parametrized linear controllers in state space form. It is also

interesting to note that this issue is studied in detail in [158] in a different fashion,

where it is shown by algebraic manipulations that for a number of cases the limiting L1
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controllers29 are indeed implementable under certain conditions, and often resemble

known architectures like disturbance observers. Hence, by increasing the adaptation

gain, the system approximates an implementable closed loop arbitrarily closely. For

example, consider the reference model of Section 4.3 in the Laplace transform domain,

extended to time varying uncertainties:

xref(s) = Hx(s)(uref(s) + ηref(s)),

yref(s) = H(s)(uref(s) + ηref(s)),

uref(s) = C(s)(kgr(s)− ηref),

where ηref(s) is the Laplace transform of θT (t)xref(t), and the feedforward input is

omitted. Then, since ηref(s) = yref(s)/H(s) − uref(s), it follows by simple manipula-

tions that

uref(s) =
C(s)

1− C(s)

(
kgr(s)−

yref(s)

H(s)

)
=

C(s)

1− C(s)
kgr(s)−

C(s)

(1− C(s))H(s)
yref(s).

Also observe that an equivalent state feedback controller can be found in a similar

manner by considering a left inverse HL
x (s) of Hx(s):

uref(s) =
C(s)

1− C(s)

(
kgr(s)−HL

x (s)xref(s)
)

=
C(s)

1− C(s)
kgr(s)−

C(s)

1− C(s)
HL
x (s)xref(s).

Note that for the above output feedback control law to be realizable, the relative

degree of C(s) should be greater than or equal to that of H(s). As such, the limiting

controller for the L1 architecture may not always be implementable for systems with

relative degree greater than 1: For the L1 controller of Section 4.5, the equivalent

controller is not implementable since the relative degree of the plant is 3, while the

29That is, the reference model controllers.
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relative degree of C(s) is 1. Hence, in order to consider an L1 equivalent LTI con-

troller, we would have to limit our attention to filters with relative degree of at least 3.

Whether a lower relative degree has structural benefits from a performance-robustness

standpoint is an open question; indeed, it has been pointed out that the constrained

optimal design problem of the filter is nonconvex, and hard to address [110].

It is noted in [158] that while the limiting controllers make explicit use of the sys-

tem inverse, the adaptive architectures approximate the inverse, and this property is

essential in extending the methodology to nonlinear systems and also accommodating

various known hardware constraints like saturation and delay [159]. In [160], linear

state feedback L1 AC is analyzed and it is shown that as the adaptive gain goes to

infinity, the limiting controller is recovered in a local sense, regardless of unmodeled

dynamics and signals. Whether this property holds in a large region of operation30,

or with more complex L1 AC architectures is an open question. As such, L1 archi-

tectures may be useful in the compensation of unmodeled dynamics and exogenous

signals. In addition, the study of the limiting behavior of different classes of L1 AC

architectures may aid in the synthesis of robust, high performance controllers for

highly uncertain systems [159,160]. These problems require further attention.

30It is shown in [160] that despite the algebraic equivalence, the L1 controller and the linear
controller have different disturbance rejection characteristics
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APPENDIX B

Supplemental Material for Chapter 6

The following sections lay out supplemental material related to chapter 6. The nota-

tion is consistent with that of chapter 6 unless otherwise stated.

B.1 Proofs of Technical Results

Proof of Lemma 6.1. We begin by defining the set

Ȳ , {u ∈ Y : u(t) ∈ Y, ∀t ∈ [0, T ]},

and note that for any u ∈ Ȳ , f̄(ξ, t) , f(ξ, u(t), t) is continuous in t ∈ [0, T ] for

all ξ ∈ X since f is continuous in Z. Moreover, as f is continuously differentiable, it

is also Lipschitz on the compact set Z. That is, there exists a constant Lf such that

‖f(ξ1, υ1, τ1)− f(ξ2, υ2, τ2)‖ ≤ Lf‖(ξ1, υ1, τ1)− (ξ2, υ2, τ2)‖,

for all (ξ1, υ1, τ1) and (ξ2, υ2, τ2) in Z. In turn, this implies that

‖f̄(ξ1, t)− f̄(ξ2, t)‖ ≤ Lf‖ξ1 − ξ2‖,

for all ξ1, ξ2 ∈ X and t ∈ [0, T ], and any u ∈ Ȳ , so f̄(ξ, t) is Lipschitz with respect to ξ,

uniformly over time and the space of inputs. Now consider χ̇i(t) = f(χi(t), ui(t), t),
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where the initial conditions and inputs satisfy the inequality ‖χi(0)‖+ ‖ui‖L∞ < δ,

for all i ∈ {1, 2}. By Assumption 6.1, the integral curves of both systems reside

in X. In addition, f̄i(ξ, t) , f(ξ, ui(t), t) is continuous in t ∈ [0, T ] for all ξ ∈ X,

and Lipschitz with respect to ξ on X × [0, T ], for all i ∈ {1, 2}. Define the func-

tion f̃(ξ, t) , f̄2(ξ, t)− f̄1(ξ, t), and rewrite the two systems as

χ̇1(t) = f̄1(χ1(t), t),

χ̇1(t) = f̄1(χ2(t), t) + f̃(χ2, t).

(B.1)

Since f is Lipschitz on Z, as in the previous case where we showed that f̄ is Lipschitz

with respect to its first argument, it follows that ‖f̃(ξ, t)‖ ≤ Lf‖u1(t)− u2(t)‖ for

all (ξ, t) ∈ X × [0, T ]. As u1, u2 ∈ Ȳ , this also means that

‖f̃(ξ, t)‖ ≤ Lf‖u1 − u2‖L∞ < M,

for some M , for all (ξ, t) ∈ X × [0, T ] and u1, u2 ∈ Ȳ since Y is compact. Now, (B.1)

satisfies all assumptions of theorem 3.4 of [44], which states that

‖χ1(t)− χ2(t)‖ ≤ ‖χ1(0)− χ2(0)‖eLf t + ‖u1 − u2‖L∞(eLf t − 1), ∀t ∈ [0, T ],

and therefore

‖χ1 − χ2‖L∞ ≤ L1(‖χ1(0)− χ2(0)‖+ ‖u1 − u2‖L∞),

where the Lipschitz constant L1 = eLfT . �

Proof of Corollary 6.1. Since g is continuously differentiable, it is also Lipschitz in Z.

In other words, there exists Lg such that

‖g(ξ1, υ1, τ1)− g(ξ2, υ2, τ2)‖ ≤ Lg‖(ξ1, υ1, τ1)− (ξ2, υ2, τ2)‖,
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for all (ξ1, υ1, τ1) and (ξ2, υ2, τ2) in Z. Thus, given state-input vector pairs (χi, ui)

and the corresponding output vectors wi, for all i ∈ {1, 2},

‖w1 − w2‖L∞ ≤ Lg(‖χ1 − χ2‖L∞ + ‖u1 − u2‖L∞),

if (χi(t), ui(t)) ∈ cl(X)× Y for all t ∈ [0, T ]. As the composition of Lipschitz maps

is also Lipschitz, and the differential equation in (6.2) is Lipschitz within a δ ball

around 0 ∈ R× Ȳ from Lemma 6.1, it follows that the input-output operator is also

Lipschitz. �

Proof of Lemma 6.2. By Lemma 6.1, since the Lipschitz constant L1 = eLfT > 1, the

following is true:

‖u‖L∞ + ‖χ(0)‖ < δ, =⇒ ‖(χ, u)‖L∞ ≤ L1(‖u‖L∞ + ‖χ(0)‖).

Moreover, by (6.12), for any ε > 0 there exists δO > 0 such that ‖(χ, u)‖L∞ < δO

implies

‖ϕ(χ, u)‖L∞ < (ε/L1)‖(χ, u)‖L∞ .

Therefore, if ‖u‖L∞ + ‖χ(0)‖ < δ∗ < min{δ, δO/L1}, it follows that

‖(χ, u)‖L∞ ≤ L1(‖u‖L∞ + ‖χ(0)‖) < δO,

and consequently

‖ϕ(χ, u)‖L∞ < (ε/L1)‖(χ, u)‖L∞ < ε(‖u‖L∞ + ‖χ(0)‖).

�
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B.2 Discussion of Claim 6.3

As we have assumed no more than continuity of the state matrices for G0, it will suf-

fice to show that G0 is bounded. Since B,C,D are all continuous, they are bounded

on [0, T ], and it is a straightforward matter to show that the multiplication opera-

tors defined by these matrices are bounded with respect to any Lp norm, p ∈ [1,∞].

Therefore it suffices to show that the time varying convolution operator defined by

the corresponding state transition matrix is bounded. Because A is continuous, the

state transition matrix Φ is continuously differentiable with respect to its first and

second arguments on [0, T ]2 (see [146], page 62). As continuity of the partials im-

ply differentiability, it follows that Φ is continuous and therefore bounded on [0, T ]2.

Consequently, for any i, j ∈ {1, 2, . . . , n},

sup
t∈[0,T ]

∫ t

0

|Φij(t, τ)| dτ, sup
τ∈[0,T ]

∫ T

τ

|Φij(t, τ)| dt,

are finite, where Φij is the entry at the i-th row, j-th column of Φ. By theo-

rem 75 of [161], page 306, it follows that the convolution operator is Lp stable for

all p ∈ [0,∞].

Remark B.1. The bounded integral conditions for Lp stability given in [161] is mod-

ified here so that the supremum is taken over t, τ ∈ [0, T ]. This is because the state

transition matrix Φ can be continuously extended to the first quadrant of R2 (the

system is causal) that decays fast enough so the conditions hold over an infinite

horizon.
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B.3 Proof of Proposition 6.1

By (6.14), the output at pass k + 1 can be written as

yk+1 = ȳk+1 + Ḡ0(yk − ȳk) + Ω(ϕ(xk+1, yk)) = H̄xk+1(0) + Ḡ0yk + Ω(ϕ(xk+1, yk))

so

yk = Ḡk
0y0 +

k∑
i=1

Ḡk−i
0 (H̄xi(0) + Ω(ϕ(xi, yi−1))) (B.2)

for all k ∈ N, when the solution exists. Recalling the fact that ‖Ḡk
0‖L∞ ≤ M̄ ζ̄k for

all k ∈ N for some M̄ ≥ 1 and ζ̄ ∈ (0, 1), from (B.2), it follows that

‖yN‖L∞ ≤ M̄ ζ̄N‖y0‖L∞ + max
{
‖H̄‖L∞ , ‖Ω‖L∞

}
×
(
‖x(0)‖e1 + max

i∈{1,2,...,N}
‖ϕ(xi, yi−1)‖L∞

) N∑
i=1

M̄ ζ̄N−i,

therefore

‖yN‖L∞ ≤ M̄ ζ̄N︸ ︷︷ ︸
r1<1

‖y0‖L∞ + M̄
1− ζ̄N

1− ζ̄
max{‖H̄‖L∞ , ‖Ω‖L∞}︸ ︷︷ ︸

r2>0

×
(
‖x(0)‖e1 + max

i∈{1,2,...,N}
‖ϕ(xi, yi−1)‖L∞

)
. (B.3)

The rest of the proof will be divided into three steps:

B.3.1 Lyapunov Stability

This part follows the same basic ideas of lemma 3 of [41]. We take any

ε ∈
(

0,
1− r1

r2

)
,
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where r1 and r2 are defined in (B.3). By Lemmas 6.2 and 6.3, since Lf ≥ 1 there

exist δ∗, δ∗fh satisfying

0 < δ∗fh < min{δfh, δ
∗/Lfh} ≤ δ∗ ≤ ε,

such that ‖y0‖L∞ + ‖x(0)‖e1 < δ∗fh < min{δfh, δ
∗} means

‖yk‖L∞ ≤ Lfh(‖y0‖L∞ + ‖x(0)‖e1) < δ∗ ≤ ε, (B.4)

which in turn implies

‖ϕ(xk, yk−1)‖L∞ < ε/(Lfh + 1)(‖yk‖L∞ + ‖x(0)‖e1) < ε(‖y0‖L∞ + ‖x(0)‖e1),

for all k ∈ {1, 2, . . . , N}. Assume ‖y0‖L∞ < δy ≤ δ∗fh/2 and ‖x(0)‖e1 < δx ≤ ryδy for

arbitrary ry satisfying

ry ∈
(

0,min

{
1,

1− r1 − r2ε

r2(1 + ε)

})
.

The interval above is nonempty since ε < (1− r1)/r2, and if δx belongs to this inter-

val, δx + δy < 2δy ≤ δ∗fh. It follows that,

‖yN‖L∞ ≤ r1‖y0‖L∞ + r2(‖x(0)‖e1 + ε(‖y0‖L∞ + ‖x(0)‖e1))

≤ ‖y0‖L∞(r1 + r2ε) + ‖x(0)‖e1r2(1 + ε),

so ‖yN‖L∞ ≤ δy(r1 + r2ε) + δxr2(1 + ε) = rNδy < δy, where

rN , (r1 + r2ε) + ryr2(1 + ε) < 1.

156



Moreover, by (B.4), ‖yk‖L∞ ≤ ε for all k ∈ {1, 2, . . . , N − 1}. By induction, it follows

that ‖y0‖L∞ < δy and ‖x(0)‖e1 < δx implies ‖yk‖L∞ < ε for all k ∈ N, since δy < ε.

Thus, if

‖y0‖L∞ + ‖x(0)‖ < δ1 = min{δx, δy},

then ‖yk‖L∞ < ε for all k ∈ N. As we can find such a δ1 > 0 for arbitrarily small ε > 0,

we conclude that the nonlinear system is stable.

B.3.2 Asymptotic Stability

From (B.2), we have

yk = Ḡk
0y0 +

k∑
i=1

Ḡk−i
0 (H̄xi(0) + Ω(ϕ(xi, yi−1))) = ȳk +

k∑
i=1

Ḡk−i
0 Ω(ϕ(xi, yi−1)).

Let ε = (1− ζ̄)/(2M̄‖Ω‖L∞). Since the system is stable, by Lemma 6.2 there exists

a positive scalar δ1 so that ‖y0‖L∞ + ‖x(0)e1‖ < δ2 = δ1 implies

lim sup
k→∞

‖yk‖L∞ ≤ εM̄‖Ω‖L∞ lim sup
k→∞

k∑
i=1

ζ̄k−i(‖xi(0)‖+ ‖yi−1‖L∞)

= εM̄‖Ω‖L∞ lim sup
k→∞

k∑
i=1

ζ̄k−i‖yi−1‖L∞︸ ︷︷ ︸
S̄k

, (B.5)

as ȳk → 0, and
∑k

i=1 ζ̄
k−i‖xi(0)‖ → 0 if x(0) ∈ c0, as we have shown before in Sec-

tion 6.4. Now, it is easy to verify that S̄k+1 = ζ̄S̄k + ‖yk‖L∞ , where S̄k is defined

in (B.5). Hence by (B.5) and Claim 6.1

lim sup
k→∞

‖yk‖L∞ ≤
εM̄‖Ω‖L∞

1− ζ̄
lim sup
k→∞

‖yk‖L∞

≤ 1

2
lim sup
k→∞

‖yk‖L∞ ,

157



so lim supk→∞ ‖yk‖L∞ = 0, thus limk→∞ ‖yk‖L∞ = 0. Therefore, the system is asymp-

totically stable.

B.3.3 Exponential Stability

Let xκ(0) , {xk+1(0)}∞k=κ for any κ ∈ N. As we have proved Lyapunov stability,

given ε > 0, by Lemma 6.2 and (B.3), we can find a constant δ3 ∈ {0, δfh} such

that ‖y0‖L∞ + ‖x(0)‖eλ < δ3 implies

‖y(k+1)N‖L∞ ≤ r1‖ykN‖L∞ + r2(λkN‖x(0)‖eλ + ε(‖ykN‖L∞ + λkN‖x(0)‖eλ))

≤ ‖ykN‖L∞(r1 + r2ε) + ‖x(0)‖eλλNr2(1 + ε),

where we use (6.3) along with the inequality ‖.‖e1 ≤ ‖.‖eλ , and r1 and r2 are defined

in (B.3); therefore

‖ykN‖L∞ ≤ (r1 + r2ε)
k‖y0‖L∞ + ‖x(0)‖eλr2(1 + ε)

k∑
i=1

(r1 + r2ε)
k−i(λN)i−1,

for all k ∈ N. Now take any

ε ∈
(

max

{
0,

1− r1 − 2r2

3r2

}
,
1− r1

r2

)
,

so r1 + r2ε < 1. Then, letting λN , max{r1 + r2ε, λ
N}, as before in the linear case of

Section 6.4.3, we can find continuous increasing functions

KN(λN) , max

{
1,

2r2(1 + ε)

1− λN

}
=

2r2(1 + ε)

1− λN
,

γN(λN) ,
1 + λN

2
,

by Claim 6.2, such that ‖y0‖L∞ + ‖x(0)‖eλ < δ3 implies

‖ykN‖L∞ ≤ KN(λN)γN(λN)k(‖y0‖L∞ + ‖x(0)‖eλ),
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and since δ3 ≤ δfh, by Lemma 6.3

‖yk‖L∞ ≤ LfhKN(λN)γN(λN)k̄(‖y0‖L∞ + ‖x(0)‖eλ) + Lfh(λN)k̄‖x(0)‖eλ ,

for all k ∈ N as Lfh ≥ 1, where k̄ ∈ N satisfies k = k̄N + j and j ∈ {0, 1, . . . , N − 1}.

In turn, this means that

‖yk‖L∞ ≤ 2LfhKN(λN)γN(λN)k̄(‖y0‖L∞ + ‖x(0)‖eλ),

for all k ∈ N. Let γ(λ) , (γN(λN))1/N . Then,

‖yk‖L∞ ≤ 2LfhKN(λN)γ(λ)k−j(‖y0‖L∞ + ‖x(0)‖eλ),

hence, as γ(λ) ∈ (0, 1) and j ≤ N − 1,

‖yk‖L∞ ≤

K(λ)︷ ︸︸ ︷
2LfhKN(λN)γ(λ)1−N γ(λ)k(‖y0‖L∞ + ‖x(0)‖eλ), (B.6)

for all k ∈ N. Clearly, γ is continuous and increasing as before, while K defined

in (B.6) is continuous. It remains to show that K is increasing. Noting that

K(λ) = 2Lfh
KN(λN)

γ(λ)N
γ(λ) = 2Lfh

KN(λN)

γN(λN)
γ(λ)

= 2Lfh
2r2(1 + ε)

1− λN
2

1 + λN
γ(λ)

= 8Lfhr2(1 + ε)
γ(λ)

1− λ2
N

,

we can conclude K is also increasing, since (1− λ2
N)−1 is increasing on R+ with respect

to λN .
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