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Abstract 

 

 Advertising wields the power to change the way we see and experience the world and 

how we perceive those around us. Though marketing practices have long been characterized by 

information asymmetry, with individuals unable to see the extent to which data describing them 

is held by various organizations nor how it is used, recent developments have intensified this 

arrangement. For both firms and individuals, the personalization of online advertising content is 

justified by increased efficiencies. Marketers benefit from cost savings by reducing expenditure 

wasted on reaching individuals who fall outside the target audience, providing better return on 

advertising investment. Individuals benefit from advertising personalization by encountering 

marketing content they are measurably more likely to be interested in, filtering the cacophony of 

advertising marketers seek to distribute to different audiences. And yet the opaque processes by 

which advertising content is selectively presented online prevents individuals from making 

reasonable judgments about contemporary media systems and practices. In light of these 

challenges, in this dissertation I investigate how today’s evolving, digital marketing system 

organizes interaction between marketers and individuals. Three empirical studies are presented 

offering insights into how marketers envision their audiences, how audiences envision marketing 

practices, and, together, how each have come to understand and use the data, information, and 

communication technologies that now bind them together. In the first study, using participant 

observation I examine the nature and dynamics of third-party personal data available to 
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marketers on digital ad-buying platforms. In the second study, drawing on a series of focus 

groups I uncover how individuals reason about advertising personalization, focusing on the 

mental models people rely on when interacting with advertising they perceive to be personalized. 

In the third study, across four experiments I examine the causal influences of transparency and 

trust on how individuals make judgments about personalized advertising. Viewed together, 

findings from this work may be of interest to marketing managers who rely on advertising 

personalization techniques, designers and developers of technologies leveraging consumer data 

collection, policymakers who oversee advertising and digital privacy matters, and academic 

researchers in the fields of communication, marketing, management, public policy, and human-

computer interaction.
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Chapter 1 

 Introduction  

 

Consider the following hypothetical scenario. John is an accountant. He lives in 

Minneapolis. Last year around this same time, along with his partner, John spent a week in 

Tuscany. A dream vacation on all accounts. In fact, on a wall in the couple’s home office hangs a 

small framed photograph from the trip depicting the two predictably “supporting” the notorious 

tower in Pisa. But today, while sitting at his computer before heading off to work, John skims a 

friend’s post on a social media platform, reading about her troubles with her boss. Scrolling on, 

interspersed between friends’ updates about politics and toddler photos, John glances at an 

advertisement in his social media news feed: CHEAP FLIGHTS to Italy! Briefly, his mind 

wonders. He looks up at the photograph on the wall from his trip and then back at the 

advertisement on the computer screen. He wonders whether he is seeing this ad because of the 

Tuscany trip he took, or if it is simply a coincidence? He wonders if other people looking at their 

news feed on this same platform are also seeing this ad, or is it just him? Maybe his partner, 

eager to take another trip, has been looking up flights on this shared computer. But would that 

affect the ads appearing in John's own news feed? He is not sure. He then recalls previously 

seeing an ad in on this platform for a local barbershop just down the street. So there must be a 

way to show ads to people according to where they live, right? He concludes, yes, it wouldn’t 

make sense if everyone else around the world using this same social media platform saw the 
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local barbershop’s ads. But what about the advertisement currently in front of him, for flights to 

Italy? Is everyone else in Minneapolis also seeing this ad? He scrolls on. 

If this example were real, the ad for flights to Italy would probably be the result of 

information linked to John and stored across multiple company databases. These data would 

indicate that John (1.) traveled from Minneapolis to Pisa via British Airways seated in economy 

class between 8-14 months ago, flagging him as having an above average likelihood to purchase 

economy class airfare to Italy in the future, and (2.) charged $269.47 to his credit card at 

Ristorante All' Acquacotta, an amount causing a customer relationship management system to 

also flag John as a “big spender,” as this amount is three times the average bill recorded at 

Ristorante All' Acquacotta in the previous year (thus meeting the system’s automatic threshold 

for the “big spender” designation). Had John only one of these two flags, he would not have seen 

the personalized advertisement for flights to Italy, but he has both.  

From John’s vantage point he questions but is unable to determine why he is seeing this 

particular advertisement, but a marketer placing the ad would know. This fictitious example 

demonstrates the commonly experienced phenomenon of information asymmetry in personalized 

online advertising (Nissenbaum, 2010, p. 36-50). The disparity between who can understand the 

advertising process and who cannot affects fundamental aspects of our everyday experiences and 

wellbeing. It affects what we can see or know about the data that describes us and what we know 

about the other side: digital marketing and data aggregation. 

 Recent developments in marketing have resulted in an increasing integration between 

information gleaned from our online behaviors, as recorded by a range of techniques including 

web cookies and more persistent tracking mechanisms, with information about our otherwise 

offline behaviors. This has also contributed to information asymmetry, often of an unknowable 
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character and proportion. This itself is not necessarily a problem. However, the ways this 

unevenness is leveraged can be problematic. As others have noted (Turow, 2011), personalized 

advertising wields the power to change the way we see and experience the world and how we 

perceive those around us. For these reasons, investigating advertising personalization can help 

scholars, practitioners, policymakers, and consumers better understand the impact of increasingly 

personalized media experiences on contemporary life. 

 

Challenges Posed by Consumer Data Collection and Advertising Personalization  

 The existence of information asymmetry between marketers and consumers can limit 

consumer autonomy, degrade privacy (Fischer-Hübner et al., 2011), grant marketers undue 

influence over consumers (Calo, 2014), and jeopardize fairness in the marketplace (Culnan & 

Armstrong, 1999; Barocas, 2014). Alternatively, digital content personalization benefits 

consumers when it provides content in which individuals are measurably more likely to be 

interested. Yet there is also reason to believe the opaque process by which content is 

algorithmically-curated and selectively presented prevents online audiences from making 

reasonable judgments about media systems and practices.  

 Another source of problems for consumers is the rapid pace at which content 

personalization techniques change as information and communication technologies advance. For 

example, by the time awareness of internet tracking cookies entered the popular imaginary, 

marketers had moved on to newer methods of tracking consumer behavior online. Further, the 

use of opaque consumer data collection practices, combined with the challenge for individuals to 

understand an excess of methods and technologies that enable personalization, makes it 

unrealistic to expect most people to sufficiently understand and make informed decisions about 
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this process. In effect, this precludes many individuals from exerting agency among the 

multitude of web-based platforms and services they use (e.g., social media, e-commerce, search 

engines). 

 Naturally, as personalized digital content becomes even more prominent it is likely that 

this public understanding of personalized advertising practices will also grow. However, 

increased awareness of personalization in advertising has also been associated with increased 

disapproval of this practice (e.g., Turow et al., 2009, 2015; Kim et al., 2015). Therefore, 

progression of public knowledge on this issue could lead to serious problems for marketers who 

hope to rely on personalized digital advertising given its many benefits. 

 The opportunities posed by new abilities to collect consumer data and put these data to 

use for curating advertising content also create new problems for marketing firms and other 

technology companies. Insofar as personal data collection for ad personalization is perceived to 

be objectionable by consumers and regulators, firms employing these methods will incur an 

indirect economic challenge given the vital need to maintain trust with their customers and 

regulators. This is a serious challenge, as most of the web has evolved from its early origins, 

primarily serving universities and governments, to instead being organized around market forces 

and the dynamics of consumer needs and private enterprise (Greenstein, 2015). Today, many of 

the most popular services of what is now a commercial web rely on a revenue model that offers 

products and services at no monetary cost in exchange for consumers’ time, attention, and 

personal data (Hoegg, Martignoni, Meckel, & Stanoevska-Slabeva, 2006).  

 Some measures of public opinion also signal that consumers increasingly disapprove of 

how their personal data is collected, used, rented, and sold for marketing purposes (e.g., Turow, 

Hennessy, & Draper, 2015). It stands to reason then that consumers may find products and 
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services known to employ these data collection practices to be less desirable and to be avoided 

when possible. 

 In another signal that companies may face a coming personal data collection backlash, in 

2011 the World Economic Forum (WEF) launched its ongoing, multi-year initiative Rethinking 

Personal Data. To date, the WEF project has included a series of studies and subsequent reports 

calling for reform in how firms collect and use personal data in light of the potential negative 

economic impacts, most notably due to loss of consumer trust. Central to this initiative is 

combatting current consumer data practices that appear to be undermining the trust individuals 

have in firms and other organizations who collect and put to use consumer data in ways 

individuals would prefer they did not. The WEF initiative calls attention to the great economic 

possibilities linked to advances in how digital personal data can be put to use for firms, 

governments, and individuals, while also noting the contentious and aggressive nature with 

which firms, including marketers, now aggregate personal data and often with little regard for 

consumer preference. One of the specific prescriptions from the WEF project is to develop new 

ways to increase trust between consumers and organizations in regards to personal data by 

simply making consumers more aware of how these practices work. A recent WEF report 

concluded that, “An information differential exists between institutions and individuals, creating 

a crisis of trust that results from uses of data being inconsistent with user expectations and 

preferences,” offering that, “Context-aware data usage is a key element in restoring this trust” 

(WEF, 2014, p. 1). Similarly, another report issued the year prior, titled The Internet Trust 

Bubble (2013), included results from a global survey of 11,000 Internet users reporting that a 

majority believe they put their privacy at risk when going online, have mixed feelings about 

sharing their data with third parties (p. 10), and reported that personal data was routinely 
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collected about them online but without their understanding of who was collecting this data and 

for what purpose, all leading to reduced trust in the organizations with which people must 

routinely interact (p. 37). 

 

Contribution of the Dissertation 

 In light of these challenges posed by consumer data collection and the personalization of 

advertising on the internet, this dissertation examines how individuals and marketers try to make 

sense of one another. Marketers’ goals in these interactions with consumers are somewhat 

straightforward. These include influencing individuals, brand building, and encouraging 

purchases through the use of advertising messages and other marketing techniques. When it 

comes to interaction with marketers through advertisements, the goals of individual consumers 

vary considerably by person, context, time, and many other factors. Additionally, individuals’ 

goals for interaction with advertising messages are less focused and less consistent compared to 

the goals of marketers during these interactions. For example, in one instance an individual 

might actively seek information about a product of interest from a advertisement they happen to 

encounter, a message which has been selectively delivered to them by marketers based on what 

is known about them. In another moment, this same person might seek to avoid advertising 

completely, instead hoping to minimize at all costs the amount of time and attention they allot to 

advertising messages. Accordingly, the practice of advertising, including personalized digital 

advertising, can be both useful and inconvenient to consumers. To investigate the dynamics of 

trust, transparency, and mutual understanding between marketers and consumers within these 

frequent, digitally-mediated interactions, this dissertation presents three empirical studies. The 

overarching goal of this work is to better understand important dimensions of recent frictions 
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brought about by consumer data collection and personalized advertising, generally, along with 

some of the specific practices used to support advertising personalization today. 

 

Chapter Outline 

This chapter (Chapter 1) introduced the dissertation. I presented the problem, offered a 

brief rationale for pursuing this work, and below I mention the specific research questions that 

have been explored in this work. As noted, this dissertation consists of three self-contained 

empirical studies, each of which is detailed in its own chapter. Though these three studies are 

largely independent of one another, they do follow a logical as well as chronological progression 

and are discussed accordingly. 

 In Chapter 2, I offer the context from which the dissertation proceeds. Although each of 

the subsequent three studies includes its own literature review, this chapter is intended to provide 

helpful background information for the reader by summarizing overarching literature, 

information, and examples relevant to the three studies of the dissertation. Chapter 2 does not 

present new work but rather is intentionally descriptive in nature. It also provides a foothold for 

the reader unfamiliar with the topic under investigation. 

 In the first study (Chapter 3), I focus on how marketers, systems designers, and suppliers 

of consumer data have imagined, classified, and offered up internet users and their corresponding 

consumer data for use in personalized online advertising. I explored this phenomenon not by 

posing questions to these different groups of people themselves but instead by placing myself in 

the shoes of the marketer. I examined first-hand the system for advertising personalization these 

individuals, together, have created. As the primary technological innovation of this system is in 

its affordances related to personal data rather than, for instance, the content of advertisements 



	 8 

themselves, I focus on the character and dynamics of the personal data now supporting 

advertising personalization.  

 Theoretically, in Study 1 I draw on and extend three key ideas from the literature related 

to digital privacy, consumer data, and advertising personalization. First, I leverage the notion of 

digital enclosure, as developed by Andrejevic. Second, I rely on Nissenbaum’s heuristic known 

as contextual integrity. Third, I draw upon the notion of information asymmetry, a concept others 

scholars working in related areas have similarly noted. Together, these ideas supply the 

theoretical guidance and thrust of Study 1. Methodologically, Study 1 is a mixed-methods 

investigation in which I take on the position of a marketer. It combines participant observation 

with a short series of computational advertising tests. My participant observation revealed a new 

synthesis of consumer data that includes the implications of a wide range of information now 

readily available to marketers for selectively presenting ads online to some individuals and not 

others. For the computational tests, I bought online ads just as a marketer might. These tests 

explored the dynamics of consumer data as used in real-time auctions for online publisher 

inventory.  

 As this study provided the entry point into the subsequent two studies and my broader 

dissertation project, Study 1 was primarily exploratory. For Study 1, I posed the following two 

questions: 

 
What is the character of the personal data made available to marketers by third-party 
data providers for personalizing online advertisements? 
 
How do the dynamics of real-time bidding impact the ability of marketers to personalize 
advertising for certain audiences over others? 
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In Studies 2 and 3 I shift my focus away from examining the marketer’s perspective and 

toward individuals, researching how ordinary people reason about advertising personalization.  

 In the second study (Chapter 4), I uncover how individuals think about advertising 

personalization. Theoretically, I focus on the role played by mental models in everyday life, 

especially during interactions with digital advertising. This focus on mental models extends work 

most commonly found in studies of Human-Computer Interaction (HCI), including those 

pioneered by Norman (1983) and since taken up for much broader application. This study 

complements recent research studying how individuals reason about algorithms online (Eslami et 

al., 2015, 2016). It also builds on a larger body of scholarship that seeks to understand the 

function and importance of the invisible mental models users and designers develop in response 

to using and designing technological systems. As mental models are theorized to influence just 

how successful individuals’ interactions with products and systems can be, in Study 2 I extend 

this work from HCI into contemporary advertising studies, as few in this field have considered 

the role played by mental models in consumers’ interactions with advertising. Methodologically, 

in this qualitative study I draw on six focus groups I conducted with adults. The purpose of these 

focus groups was to generate themes and insights that address the following three questions: 

 
How do people reason about personalized advertising? 
 
What mental models do individuals develop in response to their experiences with 
personalized advertising? 
 
How useful are these mental models in assisting individuals in their interactions with 
advertising personalization? That is, how well do they predict individuals’ encounters 
with personalized advertising? 
 
 

 In the third study (Chapter 5), I aimed to leverage the tight control and internal validity of 

experiments to determine what factors might be influencing the way consumers make judgments 
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about the costs and benefits of personalization. Study 3 draws its theoretical basis from recent 

empirical findings pointing towards negative effects of transparency on consumer judgments 

about advertising personalization. I also employ theories related to trust, both in the general form 

of social trust—that is trust in other people—as well as more specific feelings of trust as 

expressed towards advertising and other media artifacts. Further, following the work of Reeves 

and Nass (1996), I briefly explore the compatibility between how individuals relate to other 

people and how they relate to new media artifacts, including personalized ads and web platforms 

that deliver personalized ads. In Study 3, I explored the following related questions: 

 
How does transparency in personalized advertising affect individual preference for 
personalization, privacy concerns, trust in advertisements, and trust in the web platforms 
that deliver personalized advertising? 
 
Similarly, how does social trust affect preferences for advertising personalization, trust 
in advertisements, and trust in the web platforms that present advertising? 
 
 

 Finally, in Chapter 6, I briefly conclude by summarizing and synthesizing the results 

from the three studies reported in Chapters 3, 4, and 5. As stated earlier, these three studies are 

intended to be self-contained. However, across all three, I examine how today’s evolving digital 

marketing system organizes interaction, aiming to do so such that these investigations might 

compliment one another. In doing so, I provide insights into how marketers envision their 

audiences, how audiences envision marketing practices, and, together, how each have come to 

understand and use the data, information, and communication technologies that now bind them 

together. 

 Broader implications of this work and findings from the three studies are likely to be of 

interest to marketing managers and other practitioners who rely on personalization strategies and 

techniques in delivering targeted advertising, designers of technologies for personal data 
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collection and marketing analytics, and those policymakers in the U.S. and around the world who 

oversee advertising practices along with governance of privacy and consumer data. Each of these 

stakeholder groups might benefit from the empirical work presented in this dissertation by 

gaining further understanding of how the recipients of personalized advertising, that is 

consumers, think and act.  
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Chapter 2 

Context of the dissertation studies 

 

 This chapter details background information helpful for understanding the context from 

which the three empirical studies in the dissertation emerged. The aim is to call attention to the 

conditions under which this larger research project takes place. As such, the chapter is 

intentionally descriptive, presenting no new work and minimal analysis of existing work. 

Instead, relevant examples and context are presented. I trace recent developments in technology 

and business practices that have contributed to some of the challenges currently faced by both 

marketers and consumers in light of personal data collection and efforts to personalize 

advertising. Most of these challenges surround efforts to customize advertisements in ways 

marketers find practical and highly effective, efforts consumers at times deem undesirable. As I 

attempt to show in this chapter, striking an appropriate balance in this regard has been 

challenging for both marketers and consumers. A better understanding of the context as 

presented in this chapter will provide the unfamiliar reader with necessary background 

information while also serving to situate the dissertation project in the contemporary moment.  

 

Internet Expansion 

 In the U.S., the daily lives of most individuals include using internet-connected products 

and services. This is the result of relatively high adoption rates for broadband internet (67%) 

(Horrigan & Duggan, 2015) and smartphones (64%) (Smith, 2015), along with steady growth 
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over the past 10 years in the adoption of social media and social networking platforms, with most 

American adults (65%) now using at least one social media or social networking site (Perrin, 

2015). In particular, mobile internet connectivity permits the constant tethering of individuals 

both to networked information and to other people. For instance, a 2013 study reported 

smartphone users had their devices with them everyday of the week and for nearly all of their 

waking hours, with most (79%) checking their smartphone within 15 minutes of waking up in the 

morning (International Data Corporation, 2013). An increasingly internet-connected populace, 

one gradually more and more dependent on web services for accomplishing routine tasks, recalls 

a similar shift in the U.S. towards daily dependence on electricity just a century prior (Nye, 

1992). 

 This array of online platforms and services that serve to connect people and information 

now support diverse activities for economic, civic, and social good (Benkler, 2006; Castells, 

2013; Rainie & Wellman, 2012; Zuckerman, 2013). Accompanying these activities are numerous 

enduring challenges, issues that far predate the web’s existence. These social issues are altered 

and in some cases amplified by the internet’s unique affordances. For instance, complications 

related to freedom of expression, normative notions of privacy, access to information, and the 

quality of news and other media, these and other problems persist, perhaps unsurprisingly, in 

today’s online space. The digital environment is one full of opportunities and ills alike. 

 The challenges of online interaction have attracted the attention of academic researchers, 

many of whom use the internet as an object through which to investigate matters of broad social 

importance (Dutton, 2013). It is now commonplace for scholars in many traditional disciplines, 

such as sociology, psychology, and anthropology, to take up internet-related social problems. In 

addition to this, the web has also birthed, strengthened, and/or coalesced new sub-fields and 
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specific lines of inquiry, such as human-computer interaction, internet studies, digital studies, 

new media, computer-mediated communication, computer supported cooperative work, and the 

study of online communities. Linking all of these efforts are the interactions between individuals 

and computing technologies, tools which today almost always depend in some way on the 

connective capacities of the internet. Rarely do we think of computing without simultaneously 

conjuring the internet. 

 

Digital Consumer Data & Marketing 

 Entwined in many internet-related social issues is the rise of digital information 

emanating from and corresponding to individuals, often referred to as personal information or 

personal data.1 Increasingly-inexpensive digital storage has supported not only the basic actions 

and interoperability of the web but also the broader trend towards digitally recording and sorting 

accounts of human behaviors (Gandy, 1993). The result is that web’s default is one of 

remembering rather than one of forgetting. Further, ubiquitous computing supports ubiquitous 

records of information about individuals and their behaviors (Lyon, 2014). From routine server 

logs, essential for proper maintenance and security, to more elective monitoring activities, like 

third-party tracking cookies, digital information corresponding to individuals and their actions is 

increasingly abundant. This data has shown to be quite valuable, creating vast economic benefit 

(Deighton & Johnson, 2013, 2015), while also causing controversy (Electronic Privacy 

Information Center, 2016). 
																																																								
1 As used in this dissertation, “personal data” refers to data (or information) emanating corresponding to people, as 
opposed to less person-centered forms of data (e.g., average rainfall in a given city, quarterly earnings for a 
business). In practice, the personal-ness of personal data proceeds along a spectrum rather than existing as a binary 
distinction (the city a person lives in vs. one’s home street address). Further, within this realm of personal data, 
sensitivities also differ considerably by the corresponding person whom the data describes. For instance, one 
individual may consider his or her sexual orientation, religion, or current geo-location to be quite sensitive data, and 
seek to maintain its privacy, whereas another person may not classify these same types of data as sensitive 
whatsoever, sharing them freely and publically without hesitation. 
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 This current, somewhat constant production of digital personal data endows a diversity of 

opportunities and obstacles (SINTEF, 2013). For opportunities, digital personal data has fast 

become a valuable asset across commerce, government, and personal life.2 In the commercial 

sector, activities linked directly or indirectly to the generation, collection, storage, sale, trade, 

and use of personal data have spurred innovations leading to substantial economic impact and 

immense wealth. Most notably, Silicon Valley’s more recent ventures, less silicon-driven and 

more data-driven, exemplify this shift towards inventing and extracting new economic value 

from social information (Rao & Scaruffi, 2013). 

 From search engines to social media and social networking sites to nearly all activities of 

commercial media, digital publishing, and content distribution, these domains and many of the 

corresponding firms that operate in this space rely heavily on the monitoring and subsequent 

monetization of human behavior. The resulting “consumer data”3 provide key information goods, 

commoditized in various forms, that are necessary for many online platforms to function. As a 

result, personal data fuels much of the commercial web. This is achieved largely through 

financing from online advertising revenue and often specifically the creation, distribution, and 

analysis of custom internet audiences available for personalized advertising (Crain, 2013). And 

these activities show little sign of slowing. In terms of revenue, personal-data driven internet 

advertising maintains a steady historical climb. This ascent is the joint product of moving ad 

																																																								
2 In addition to being an asset, personal data and specifically its proper storage and protection also exists as a 
liability for many organizations. This is seen in the costs and risks associated with securing potentially sensitive 
personal data from unauthorized access. In the US, 2014 was a particularly costly year for data security breaches 
with notable events for Sony Pictures, JPMorgan Chase, Apple (iCloud), Target, and Home Depot. For further 
information, see http://www.networkworld.com/article/2861023/security0/worst-security-breaches-of-the-year-
2014-sony-tops-the-list.html 
3 Whether the individual whose data is in question is referred to as an individual, user, person, or consumer is of 
little consequence for the questions explored in this dissertation. This distinction is more reflective of disciplinary 
tradition and/or intended audience: marketing and legal scholars tend to invoke “consumer,” whereas those in 
computing, systems design, and information studies are concerned with “users.” Communications scholars often  
simply call human beings “people” with “audiences” perhaps a close second. I use all of these terms interchangeably 
in this work. 
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dollars from traditional broadcast and print media to buying ads on website and apps. This is 

evidenced, for example, in the rather dramatic 17% compound annual growth rate in online 

advertising revenue seen over the past 10 years, a measure that has persisted despite only 3% 

growth in U.S. gross domestic product during this same period (PwC US & IAB, 2016).  

 Despite incredibly low unit costs for any individual variety of personal data, in the 

aggregate elements such as internet users’ keyword searches, page visits, clicks, likes, shares, 

purchases, and other online behaviors contribute substantial value and support substantial online 

enterprises.4 Additionally, and increasingly difficult to decouple from online data, personal data 

corresponding to “offline” consumer activities augments and adds further value to information 

originating online, resulting in more detailed consumer profiling. Thus, copious amounts of 

personal data are now pursued by firms across countless touch points with consumers and users. 

 At the same time, commercial activities surrounding personal data creation, collection, 

and monetization have not come without criticism. From regulatory attention (e.g., Federal Trade 

Commission, 2016) and legislative attention (Interactive Advertising Bureau, 2016) to pushback 

from civil society and consumer protection groups (e.g. EFF, EPIC, CDT), commercial activities 

leveraging individuals’ social data have come under considerable scrutiny in recent years.5 For 

instance, debates over the proper custodianship of digitized information (Vaidhyanathan, 2011), 

power imbalances linked to digital surveillance (Andrejevic, 2007), reductions in personal 

privacy (Solove, 2008), and related dangers of consumer profiling (Turow, 2011), each of these 

																																																								
4 Values vary by data type, but at the individual unit this type of personal information might cost on the order of 
pennies or more likely fractions of a penny, as in the case of renting personal data from a third-party data provider to 
distribute a single online advertising impression. However, the volume of web activity (e.g., page loads) makes these 
pennies add up amounting to sizable revenue streams. In the aggregate, individual ad impressions sold for next to 
nothing support technology firms with multi-billion dollar annual revenues (e.g. Google, Facebook, Twitter). 
5 For an example of ongoing efforts on digital privacy, see the advocacy work by the Electronic Frontier Foundation 
(EFF), available at http://eff.org/issues/privacy 
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have emerged as pressing concerns for the future of personal data aggregation, digital marketing 

and advertising, and the broader commercial web. 

 Further, when it comes to figuring out ways to extract economic value from digital 

personal data, we may only be in the early days of this practice with many areas of commerce 

thus far only scratching the surface (Greenstein, 2014). Expansion of economic activities that 

leverage and monetize this class of personal/social information may amplify current tensions 

associated with consumer monitoring. At the same time, these activities also have potential to 

spur and sustain new areas of commerce. For instance, just 20 years ago few would have 

speculated that so many firms with multi-billion dollar valuations could be economically 

sustained and profitable solely by surveilling, recording, and selling information about what 

people do while on their computers (e.g., websites visited, search queries conducted, items 

“liked”). Yet, today, monetizing these digital traces of human behavior and attention now 

supports some of the world’s largest and most influential global firms. Despite this success of 

digitization and social data, it remains to be seen how exactly the interests of firms and 

consumers will come into alignment when it comes to the specific practices through which 

personal data is monetized.6 To illustrate how consumer data and other items are transferred 

between different entities in the current digital environment, Fig. 2.1 contains a simplified 

representation of key components anchoring these processes.7  

 

																																																								
6 One indicator may be the amount of consumer protection activity that emerges in the years to come advising and/or 
restricting how firms use information about individuals. In the U.S. this is likely to come from the Federal Trade 
Commission (FTC), though the White House has also been active in this area in recent years too (e.g., White House, 
2012). 
7 Some firms function in multiple roles. For instance, Facebook is both a publisher and operates its own ad 
exchange. Microsoft is both an advertiser and runs its own an ad exchange, too. Google serves as a publisher, runs 
an ad exchange, and is also an advertiser itself. Most sizable consumer facing firms would occupy a position at the 
advertiser node, as these companies tend to engage in some form of advertising online. 
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Figure 2.1. Simplified representation showing key components and flows of internet advertising 
processes (adapted from Yuan et al., 2012).  
 

 What is clear, as indicated by adoption and usage rates, is that individuals locate 

incredible value in the many free-to-use yet commercially-oriented online tools, services, and 

platforms—platforms that for the most part are financially dependent on the collection and 

monetization of users’ personal data and corresponding advertising revenues. This includes the 

most popular social networking and social media sites (e.g. Facebook, Twitter, Instagram, 

Snapchat, LinkedIn), search engines (e.g. Google, Bing, Yahoo, Baidu), multi-media and content 

sharing platforms (e.g. YouTube, Flickr, Tumblr), and online journalism outlets (CNN.com, 

HuffingtonPost.com, TheGuardian.com). Further, opportunities for firms to collect personal data 

are expanding, evidenced by increases in overall internet and social media use, along with the 

shift towards cloud-based consumer services (Anderson & Rainie, 2012). Each of these trends in 

adoption of internet-enabled technologies also indicates expansion of these platforms’ 
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corresponding personal data collection activities; the volume, variety, and velocity at which 

personal data is generated and collected remains on the rise.  

 Efficiently monetizing personal data at scale, for instance, by auctioning off sponsored 

search engine results (simultaneously generating related clickstream and at times purchase data), 

has supplied the digital marketing goose that layeth golden eggs. For example, consider internet 

giant Google whose co-founders were credited with inventing a new “magical” source of 

advertising revenue in creating AdWords (Auletta, 2010). The company provides one of the most 

prominent examples of innovation in monetizing consumer attention online, the revenue from 

which has lead to numerous additional advances in interactive computing and connectivity for 

Google along with other firms as well. 

 In addition to birthing tech giants, monetizing consumer information via the web has also 

given rise to numerous non-consumer facing firms, companies that specialize in supporting 

different needs within the much larger digital marketing supply chain. Many of these non-

consumer facing firms specializing in consumer data (e.g. Acxiom, Datalogix, Epsilon, 

Experian) supply various forms of personal information about individuals to marketers, financial 

institutions, and governments, provided as a paid service. These firms are sometimes 

unaffectionately referred to as “data brokers.” Positioned between consumer facing web firms 

(e.g., Google, Twitter, Facebook, LinkedIn) and consumers are now a multitude of non-

consumer facing firms most of which are sustained by ancillary revenues from providing 

marketers with access to personal data which can be used to selectively target advertisements 

towards consumers and put to additional uses. 

 For both consumer facing and non-consumer facing firms, efforts to monetize personal 

information involve observation and recording of behaviors in many forms. This ranges from 
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tracking both overt communications and activities of web users to more surreptitious forms of 

personal data collection, from both of which further inferences can be drawn. Messages and 

activity in private channels (e.g. email, instant messages), on mixed public/private platforms (e.g. 

posting on social media), and in public view (e.g. commenting on a blog), each of these 

communicative acts might generate information that feeds into a firm’s larger pool of personal 

data, data to be later used for various audience segmentation and advertising personalization 

efforts. 

 For these more overt online actions, tracking these behaviors often occurs from firms 

collecting user-generated text (e.g., emails, SMS and other text/chat messages, forum 

comments), which is later sorted and data-mined for insights. Additionally, non-textual 

expressions contribute a wealth of personal data as well. Mouse clicks, touchscreen taps, 

upvotes, downvotes, “liking” and “favoriting” content, choosing star ratings for a particular 

digital (e.g. Netflix film) or physical product (e.g. product on Amazon.com), answers on multiple 

choice “personality tests”— these social signals along with countless others, at times, are tracked 

by firms, analyzed, and put to use in various ways, sometimes for audience segmentation leading 

to personalized advertising . Additionally, for more surreptitious behavioral monitoring, many 

other innovative forms of online observation are routinely deployed, the data from which often 

makes its way into user profiles and marketing databases. Examples include recording the “hover 

time” that a person’s mouse cursor actively hovers over an online ad before clicking or not 

clicking on the ad. Similarly, the seconds or milliseconds one spends paused to look at a unit of 

advertising or organic content while scrolling through a social media newsfeed are recorded to 

derive additional insights about the viewer. On their own, metrics like mouse cursor hover time 

or the amount of time paused on an item while scrolling in a newsfeed are not particularly 
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valuable, however, when these are compared from one internet user to another (or to the average) 

these subtle traces can be become very revealing and insightful to marketers and others.  

 For instance, consider the person found to spend above average time “parked” in their 

mobile newsfeed whenever the content currently in view is sports-related. Most likely, this 

person is more interested in sports compared to someone who whizzes past content categorized 

as sports-related, and on and on. While these behaviors may not alert themselves to consumers in 

the way clicking on an ad might, these subtle signals can be equally powerful indicators of 

personality or interest for marketers to tap into. When considering how most online actions (and 

inactions) can now be unobtrusively measured by firm to derive insights about the corresponding 

internet user, the interactive web (or “web 2.0”) emerges as an extraordinary tool for studying, 

segmenting, and profiling consumers.  

 Together, these numerous overt and not-so-overt communicative acts performed with 

computers, tablets, smartphones, and emerging wearable devices routinely supply a wealth of 

transactional social data that can be used to support contemporary marketing efforts. The 

resultant personal data can also be packaged, analyzed, and re-packaged, and later rented and 

sold as valuable products in their own right. In this way, nearly all behavior conducted in 

connection with a web browser, mobile app, or increasing number of devices contributing to the 

so-called “Internet of Things” (IoT) lends itself to automated observation and the creation of 

personal data and user profiles. For marketers, more recently this has presented the growing 

challenge of determining exactly which behaviors are worth monitoring and recording and which 

are not, as the volume of opportunities to aggregate these digital traces now far exceeds the 

capability and practicality of attempting to record all available signals. 
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 Although the personal data-driven, online marketing system has grown in technical 

complexity in recent years, many of the information flows remain but with the addition of new 

components including a range of personal data management and analytics platforms and new 

ways to leverage consumer data to selectively target advertisements. Nearly a decade ago, 

Ashworth and Free (2006, p. 111, Fig. 1) demonstrated the exchange model in online marketing 

that had emerged in response to networked computing along with the relative sophistication with 

which marketers collect and connect consumer data across many seemingly-disparate digital 

systems. Since this time, increases in broadband and mobile internet adoption have completely 

transformed how and when consumer data is collected, thereby altering the frequency as well as 

intimacy with which marketers and consumers interact in this environment. 

 Additionally, more recently the online advertising space has also experienced an 

acceleration in time as well, undergoing a dramatic shift allowing nearly all of these activities to 

occur on-the-fly, in so-called real-time. The result is an arrangement of sophisticated computing 

systems, databases, networks, and connections that allow live auctions for both internet users’ 

attention and online publishers’ inventory—events that take place in the time it takes for a web 

page or mobile app to load content. These advances permit marketers to leverage audience 

segmentation data and compete in live auctions for the opportunity to send a single ad 

impression to a single individual based on known and estimated audience attributes. This 

represents a monumental shift away from pre-purchasing online ad space at predetermined prices 

and in bulk quantities. This practice of buying and selling ad space and audience attention live 

typically falls under the catch all term of “real-time bidding” (RTB). Zhang, Yuan, Wang (2014) 

depict the components of a common RTB configuration (Fig. 2.2), though arrangements vary. 

Nonetheless, these technological innovations support more efficient buying and selling of online 
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advertising space and have expanded the abilities of marketers to selectively present 

advertisements to specific audiences.  

 

 
Figure 2.2. Real-time bidding process (from Zhang, Yuan, & Wang, 2014). 
 
 

 Incorporating live auctions at the level of individual audience members has also opened 

up new ways for marketers to test the effectiveness of varying their ad campaign’s parameters 
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(e.g., creative content, audiences targeted, web properties used), at a very granular level, and in 

real-time. This allows, among other things, rapid A/B testing granting immediate feedback into 

the performance of targeted ad campaigns. Additionally, some RTB ad-buying tools also provide 

automated or semi-automated selection of campaign parameters based on their performance, 

meaning marketers can test vast numbers of slightly different ad campaigns before these 

platforms automatically shift one’s budget towards spending more on those campaigns that 

perform the best and less on poor performers. Overall, the affordances of RTB systems permit 

marketing managers to make strategic decisions about advertising that were not possible under 

the previous scheme of buying and selling online ad space at predetermined rates, volumes, and 

times. 

 

State Surveillance vs. Commercial Surveillance 

 A challenge when assessing issues linked to advertising personalization is the inseparable 

relationship between commercial surveillance of individuals for purposes of segmentation and 

targeting in the marketplace and states monitoring individuals for counter-terrorism efforts. In 

just the past few years this entanglement has intensified and become more apparent to the public 

through a number of high-profile revelations concerning state surveillance efforts, especially 

those leveraging popular web platforms already designed to generated detailed information and 

record about their users (Schneier, 2015).8 

																																																								
8 Numerous disclosures about state surveillance of internet-enabled communications followed the landmark 
revelations made by Edward Snowden in 2013 concerning the U.S. National Security Agency’s (NSA) domestic 
spying programs. The intertwining commercial and government surveillance was most apparent in revelations 
detailing the NSA’s PRISM program, under which nine major internet companies (Microsoft, Skype, Google, 
YouTube, Yahoo, Facebook, Apple, AOL, PalTalk) were secretly providing their users’ confidential 
communications data to the NSA. 
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 For instance, in the case of the popular social media company Facebook, the company 

stores detailed profiles about its users based on activity generated on Facebook and from tracking 

which other sites users visit while logged in to the platform. It is not difficult to imagine why this 

type of detailed user data, created and typically reserved for consumer profiling and marketing 

purposes, would be of great interest to governments too given what is can reveal. Notably, and 

illustrating a unique dependency of state intelligence on commercial surveillance, most of the 

state surveillance practices that have come under fire in recent years would not be possible 

without the detailed monitoring of consumers that technology companies already engage in for 

purposes of content personalization including targeted online advertising. 

 Additionally, other state surveillance programs revealed in recent years have relied on 

even more aggressive efforts by directly and secretly tapping into the digital infrastructure of 

communications firms at various points, in some cases unbeknownst to these companies 

themselves. The result is a continual wiretap (or datatap) copying all communications and other 

personal information traveling through a company’s network at a given node.9 

 Both this direct copy-intercept strategy and those arrangements where firms knowingly 

comply with requests for data have gained extreme negative attention in U.S. and around the 

world in recent years (Greenwald, 2014). As a result, civil liberties groups to even politicians 

																																																								
9 One of the most damning examples of the U.S. government using this technique, secretly tapping a 
communications firm’s network and copying all user traffic, was the NSA’s top secret “Room 641A” located inside 
one of the world’s busiest internet switching hubs in San Francisco. This small room was found to contain secretly-
installed specialized internet routing equipment that copied web traffic including various private communications 
sending them to NSA servers. This secret program was unknown to internet users and apparently to most AT&T 
employees who worked at this site. Eventually, AT&T technician Mark Klein who worked in the building reportedly 
grew suspicious of the room which was said to have no doorknob and to be inaccessible even to staff working in the 
building. Klein eventually discovered and revealed the existence of this secret room to the public. He later served as 
the subject of a 2006 U.S. federal class action lawsuit filed by the EFF (Hepting v. AT&T). The case was eventually 
dismissed in 2009 when a federal judge cited an incompatibility of the class action suite with the U.S. Foreign 
Intelligence Surveillance Act (FISA).  
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have called for new privacy protections from these forms of state surveillance on digital 

platforms. 

 

Marketing’s Personal Data Problem 

 While collection and use of consumer data has posed challenges for consumers and 

governments, it has also greatly complicated marketing management activities. For many firms 

this has meant shifting focus and resources towards tighter integration between IT and customer 

relationship management (CRM) resources. Elevating these challenges to the c-suite level, 

the increasingly common position of Chief Data Officer (CDO) signals this shift (Arthur, 2013). 

Further, within firms this change means greater emphasis on using insights gleaned from large-

scale customer datasets and analytics when making strategic business decisions rather than 

relying on intuition alone. 

 Certainly, marketing has been one of the largest beneficiaries of the internet’s growing 

ability to generate, store, and transfer various forms of digital personal data. For firms, though 

personalized advertising is the most prominent way of leveraging user profile data to selectively 

present content, the affordances of personal data go well beyond advertising, allowing for 

activities such as differential pricing in e-commerce,10 data-driven personalized product 

recommendations, and custom arrangements of organic vs. sponsored content on social media, 

news sites, and other commercial platforms that support dynamic content.  

 This move towards automation and data-driven content in the broader media landscape is 

further evidenced by who or rather what is now responsible for much of the curation (or 

gatekeeping) on the most popular digital media platforms: algorithms. Models designed to 

																																																								
10 To date, firms using personal data-based price discrimination in e-commerce have employed a mix of first- and 
third-degree price discrimination. These tactics attempt to leverage a consumer’s individual reservation price. For 
further information see Hannak, et al. (2014), U.S. Council of Economic Advisers (2015), and Stevenson (2015). 
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predict who will click on a particular ad or read a public relations story are not the work of 

traditional “ad men” (and ad women) acting on hunches. Rather, these activities are increasingly 

supported by curation algorithms developed by engineers, data scientists, and statisticians who 

have become central to the function of online media including digital marketing. 

 Though the maturation of consumer data collection practices has been a boon to 

marketers, this shift has not been completely welcomed by consumers. Pushback from consumer  

includes objections linked to perceived invasions of personal privacy and notions “creepy” 

targeted advertising practices (Ur et al., 2012). What a marketer may view as simply more 

accurate ad personalization a consumer may view as getting a little too personal. Further, when 

customized content breaches expectations for privacy and appropriate use of personal 

information, this form of over-personalization has been known to backfire, producing the exact 

opposite of the intended marketing effect, causing resistance rather than persuasion (White, 

Zahay, Thorbjørnsen, & Shavitt, 2008; Malheiros et al., 2012). 

 Left on its current course, marketing’s personal data problem may be on track to undercut 

its numerous recent advances in audience segmentation, prediction, and customized advertising. 

In particular, marketers are often compelled to pursue more and more granular data about 

specific individuals as not pursuing these readily available data may amount to opportunity costs. 

At the same time, measures of US public opinion indicate that consumers regularly disapprove of 

certain types of data collection and how these data are used (Pew, 2014), especially when they 

think marketers and advertisers are on the other end (GfK, 2014). Thus, there is trust deficiency 

which, to date, few on the marketer side have taken steps to address. As a result, when it comes 

to how data is to be collected and used in the commercial setting, the relationship between 

marketers and consumers has been strained. 
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 This relationship is complicated by the fact that data-driven personalized advertising is 

the great subsidizer of consumers’ access to most digital information and online content delivery. 

In this arrangement, online tools and services are offered by firms to users free of charge. This 

includes most search engines, cloud-based email and chat clients, video sharing websites, and 

nearly all social media platforms. As a result, typically more tangible economic values are 

absent. Instead, either knowingly or unknowingly, users exchange their personal information, 

and more often the ability to allow advertisers to mine this data and show them advertisements, 

for the opportunity to use a tool, platform, or other online service. The resulting exchange often 

legally rests on the condition of accepting a firm’s terms of service (ToS). Invariably, these ToS 

include stipulations that users grant rather wide permissions to firms to collect and use various 

information about them. Often this permission includes information gleaned while using the 

platform itself as well as information obtained from any third-party companies. The result of the 

“free” model employed by many popular online services is that users are often data-paying 

customers, with personal data transferred to firms in place of traditional monetary exchange.11 In 

light of this, some have suggested users be financially compensated by firms that rely on 

collecting and using their personal information (e.g., Wu, 2015), though this idea has failed to 

gain much traction. 

 

Public Opinion on Personal Data & Trust 

 In recent years in the U.S., there have been abundant efforts to gauge public opinion on 

digital privacy and personal data use. While this work is usually not capable of providing 

explanations as to why people are concerned about this topic, results from probing the public 

																																																								
11 Free as in no financial cost to the recipient, not in the unbounded sense of this term (e.g., gratis vs. libre). See: 
https://en.wikipedia.org/wiki/Gratis_versus_libre 
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suggest a degree in misalignment between the efforts of marketers and some preferences of 

consumers when it comes to how personal data is collected and used. 

 Among these efforts, one of the most prolific contributions comes from a decade of 

related public opinion studies on this topic led by Joseph Turow at the University of 

Pennsylvania’s Annenberg School for Communication (see Turow et al., Americans, Marketers, 

and the Internet: 1999-2012). Consistently, this work has reported that Americans say they are 

concerned about their privacy in the digital marketing context, while at the same time also 

revealing consumers are relatively uninformed and misinformed about the practices, 

technologies, and legal protections that accompany marketing-related personal data activities. 

These attempts to gauge consumers’ opinions and  knowledge in this area have been levied in a 

recurring indictment of the marketing industry over its personal data-driven collection practices 

and, at times, seeming disregard for what consumers at least say they prefer when it comes to 

data collection.  

 Other surveys report similar findings regarding consumers’ somewhat low approval for 

the marketing and advertising industry when it comes to how its members collect and use 

personal data. When asked, a consistent majority of American adults voice concerns about these 

practices. For instance, among a representative sample of Americans adults, a 2014 survey 

conducted by the Pew Research Center reported a vast proportion of Americans (91%) say they 

feel they have lost control over how personal information is collected and used by companies, 

with most (64%) saying they believe the government should do more to regulate how advertisers 

collect and use their personal data (Madden, 2014). At the same time, and further illustrating the 

growing predicament for marketers and others who rely on user data for their business practices, 

this same survey found only a small proportion of people (36%) reported “appreciating” the way 
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web services can operate more efficiently by accessing individuals’ personal data and only about 

half (55%) said they are willing to share personal information with companies in exchange for 

free online products and services. This study also reported that individuals find some types of 

personal data that internet companies collect more sensitive than others, lending additional 

support to notions of context-based information expectations and norms, or contextual integrity 

(Nissenbaum, 2010). 

 Similarly, in 2016 the annual TRUSTe U.S. Consumer Privacy Index found nearly all 

(92%) U.S. Internet users reported being worried about their online privacy, few (31%) saying 

they understand how firms share their personal information with other organizations, the 

majority (68%) expressing concern over not knowing how firms are using their personal 

information, and only around half of people (56%) saying they trust companies to do these things 

appropriately (TRUSTe, 2016). Numerous opinion surveys on this topic are published all the 

time with most reporting similar trends, revealing members of the public at least claim to be 

concerned about which data is collected, how, and by whom. 

 Viewed together, these measures of public attitude signal a degree of unease on the part 

of consumers regarding various forms of personal data activities by marketers. It appears 

Americans are not pleased with the current state of social data collection that occurs online, 

which many feel occurs beyond both their full knowledge or their control. While the nuances of 

exactly how concerned individuals are is debatable, most people report being concerned about 

data privacy, in some cases objecting to common collection practices by marketers and third-

parties. And this trend is commonly known by marketers and policymakers alike. Though the 

implications of these public concerns have yet to be determined. 
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 One dynamic that complicates attempts to gauge public opinion in this area is the 

difficulty in decoupling consumer use of a platform or tool with informed consent to the way it 

functions behind the scenes. That is, the act of using a particular online product or service is 

different from knowing about and approving of how it works technically or conceptually. The 

overarching narrative emerging in recent years from these studies of public opinions about 

digital privacy is that individuals are displeased with how their personal information is collected 

and used by marketers and other organizations including the government. At the same time, an 

parallel explanation and rebuttal to these concerns is that despite saying they are concerned the 

majority of people do very little as far as maintaining privacy best practices or other strategies to 

reduce personal data collection. This contradiction is summed in the title of The New York Times 

story reporting results from the 2014 Pew Research Center’s survey on digital privacy, 

“Americans Say They Want Privacy, but Act as if They Don’t” (Nov. 12). This argument relies 

on a “revealed preference” logic, claiming individuals’ decisions to use online services that rely 

heavily on personal data collection indicate peoples’ true preferences, regardless of what they 

say they prefer .12 Applied to problems associated with consumer data collection and advertising 

personalization, this revealed preference counter-argument asserts that marketplace behavior, in 

this case electing to use certain web services and agreeing to their terms of service, is a better 

indicator of actual preferences than what people report in opinion surveys. 

 While there may be some truth to this revealed preference explanation, at the same time, 

the absence of viable alternatives also negates the traditional logic of revealed preference, as 

abstaining from those online tools and platforms that collect personal data is either impossible or 

																																																								
12 Introduced by economist and Nobel Laureate Paul Samuelson (1938), under revealed preference to observe action 
is to understand preference, as opposed to say asking people what they want. For a criticism of revealed preference 
theory, see Wong (1978). 
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impractical in most cases.13 Effectively, this abstention would amount to not using the internet. 

Further, abstaining from actively using web services also does not prevent one from having their 

personal information distributed online in other ways. Consider, for example, being “tagged” by 

name and at a specific location in a photograph uploaded by someone else to a social media 

platform. Further, abstaining from online activity does nothing to limit personal data collection at 

the many offline points of entry that also feed into the marketing data ecosystem (e.g., credit card 

transactions). Simply not using the internet, directly or indirectly, is not an option for most 

individuals. 

 Additionally, other studies have shown consumers do not hold marketers and advertisers 

in high regard when it comes to issues of trust, especially whether or not to trust firms to use and 

protect personal data in ways consumers deem appropriate. For example, among a representative 

sample of Americans, a 2014 survey by GfK reported substantial concerns by consumers over 

how personal data is used online, with respondents especially skeptical of how marketers and 

advertisers use their personal data (GfK, 2014). Respondents were asked: How much do you trust 

marketers and advertisers with regard to how your personal data is handled? 64% of Americans 

said they either don’t really trust them or don’t trust them at all, with just 25% saying they trust 

them mostly or trust them completely.14 Moreover, the GfK survey also asked respondents to rate 

different kinds of organizations for how much people trust them to use personal data in 

acceptable ways. Of over 20 types of organizations and industries rated, the marketing and 

advertising industry was the least trusted (see survey results in Fig. 2.3). 

																																																								
13 To date, alternatives to (free) online platforms that collect and monetize personal data are very limited. Often they 
cost users additional time and/or money while usually failing to offer the same level of benefits compared to more 
mainstream platforms that do collect personal data about users. For instance, consider the differences in affordances 
and functionality between social networking sites Facebook (http://facebook.com) vs. Ello (https://ello.co) or 
between search engine Google (http://google.com) vs. Duck Duck Go (https://duckduckgo.com/). 
14 The remaining 11% responded either “don’t know” or failed to respond to this question. 
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Figure 2.3. The 2014 Survey on Data Privacy and Trust (from GfK). 
 

 

 This relatively low trust in marketers and advertisers extends beyond the U.S. as well. In 

a similar global survey conducted by the World Economic Forum (2012), marketers and 

advertisers also ranked dead last in a rating of organizations trusted to protect personal data. 

Researchers asked respondents, To what extent do you trust the following institutions to protect 

your personal data... The proportion of respondents who said they trusted the institution in 

question was as follows: banks and financial institutions (61%), those providing health and 

medical services (55%), government authorities (53%), internet service providers (45%), 

telephone companies (44%), mobile phone operators (44%), search engine companies (40%), 
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shops and department stores (39%), companies that provide social networking services (37%), 

online marketers and advertisers (28%).15 In the U.S. and around the world, people appear 

skeptical that marketers and advertisers will use personal information in ways consumers find 

acceptable. 

 Many of today’s internet technology firms are also now indebted to a revenue model that 

hinges on these firms’ abilities to ensure users that whatever personal data is collected will be 

used appropriately. Highlighting the crux of this arrangement, in Google’s 2012 annual letter to 

its shareholders Google co-founder and current CEO of  parent company Alphabet Larry Page 

stressed that central to this business model shared by Google and many other internet companies 

was maintaining two key ingredients among the firm’s user base: love and trust (Page, 2012). 

For the latter, firms relying on a personal data exchange business model have grown in number 

and popularity, though from opinion surveys it appears levels of trust in how firms use personal 

data have not kept in step. Additionally, and as noted previously, this friction is compounded by 

the many revelations of wide-reaching government surveillance programs, such as those 

operating in the U.S. and U.K., which have relied extensively on leveraging personal data 

extracted from activities on popular web platforms. This has likely furthered strained levels of 

trust consumers feel towards internet companies and marketers operating in this heavily 

surveilled environment.  

 

Resistance to Personal Data Collection 

 Another way to consider user preferences related to consumer data collection and 

advertising is to simply look at individuals’ efforts to resist these practices while still using 

																																																								
15 Refers to percent that answered 5, 6, or 7 on 7-point Likert scale measuring trust in organizations ranging from 
Distrust them a great deal (1) to Trust them a great deal (7). 
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internet services. General strategies for individual resistance include, for instance, changing 

one’s privacy settings on a platform to be more strict with what is shared and with whom, as the 

defaults tend to be more aggressive about data collection and sharing rather than less. 

Additionally, in recent years a number of tools and services intended to help consumers avoid 

online observation and tracking have emerged. Examples include DeleteMe (justdelete.me), 

which offers web directory of around 350 personal data collectors with corresponding URLs for 

where to attempt to remove one’s user profile and/or opt out of data collection from each 

corresponding firm.16 Similarly, Safe Shepherd (safeshepherd.com) offers a paid service that uses 

a combination of human intervention and automated monitoring to remove individuals’ personal 

data from websites and marketing databases. The company claims, “Safe Shepherded constantly 

scans the internet and private databases, looking for your personal information. When we find a 

company publicizing or selling your personal information, we submit an opt-out request on your 

behalf, which deletes your record.” (SafeShepherd, 2016)  

 To date, one of the most centralized efforts for avoiding consumer data collection online 

is the proposed HTTP standard known as Do Not Track (DNT). This technical standard allows 

one’s web browser to send a signal to a website whenever requesting content, requesting that the 

visitor not have the upcoming web session and corresponding personal data tracked. To date, the 

make or break weakness of the DNT standard is that compliance by websites and additional data 

aggregators operating in the background on websites is completely voluntary. Thus, the decision 

of each individual company and the decisions of additional services operating behind the scenes 

on each company’s website, dictate whether DNT requests are honored or not.17 So far the 

																																																								
16 The service DeleteMe also ranks each firm on the technical difficulty users should expect to encounter when 
attempting to remove themselves from that company’s records: Easy, Medium, Hard, and Impossible. 
17 As this is an evolving standard, its functionality is likely to change. For a more thorough explanation of Do Not 
Track see: http://donottrack.us/ 
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incentives for compliance have been unclear and many popular web platforms (e.g., Facebook, 

Yahoo!, Google) simply ignore DNT requests when loading content and identifying visitors. A 

further blow to DNT followed a 2015 petition by a consumer watchdog group to the FCC, in 

which the Commission issued a response ruling offering that websites were permitted to ignore 

DNT requests (FCC, 2015). 

 Other approaches to resist consumer data collection and/or personalized online ads 

include various web browser extensions that proactively block ads and/or attempts by websites to 

utilize cookies, tags, tracking pixels, beacons, and other technologies intended to record internet 

users’ behaviors. Examples of these extensions include Ghostery, Privacy Badger, 

DoNotTrackMe, DisconnectMe, NotScripts, and Track Me Not. 

 Some of these services have become quite popular. For instance, in 2014 the Ghostery 

(ghostery.com) browser extension boasted having some 40 million users (Ghostery, Press 

Release, 2014). Once installed, Ghostery not only blocks many of the most common tracking 

objects on the web but also provides the option to show users which sites are attempting to track 

them. Though, and perhaps ironically, the company plays a dual role in this environment by also 

selling data collected about its users to firms and organizations seeking to improve their website 

performance, a practice which some have argued represents a conflict of interest (Simonite, 

2013). 

 Beyond these basic tools are more robust methods that can prohibit or limit the way data 

about web users are collected. One prominent example is the Tor web browser (torproject.org).  

Rather than requesting web content directly like most browsers, this privacy-enhancing 

technology does so by bouncing web requests through a distributed network of internet relays in 

effort to avoid various user tracking mechanisms employed by firms and governments. 
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 The previous examples of efforts to evade data collection and targeted online ads 

represent only a portion of these techniques; new tools emerge in this space all the time. 

 Similar to the results from public opinion surveys on this topic, the many efforts and tools to 

counter online observation by marketers, data aggregators, and others signal a degree of 

consumer awareness and related concern over the data collection practices of firms. Several of 

these tools for evading data collection now report millions of regular users, pointing to their 

transition beyond niche use (i.e., by a small group of paranoid, privacy conscious consumers) 

and towards more mainstream adoption. Overall, each of these tools of resistance pose problems 

to the otherwise free flow of personal data on the web, though their broader impact on marketing 

activities remains to be seen. 

 

Advertising Personalization 

 Finally, to understand why marketers and others go to what might appear to be extreme 

lengths in efforts to observe, record, and analyze consumers, online and offline, it can be helpful 

to look at the effects of personalization in advertising.18 Fundamentally, ads directed at audiences 

thought to possess certain attributes are generally more efficient in that they have a higher 

likelihood of influencing recipients than ads delivered en masse. This illustrates the key 

marketing tenant of segmentation. 

 Additionally, the relative ease of measuring digital advertising response rates now 

supports a growing body of research into the persuasiveness of personalized messaging 

																																																								
18 Examining the effects of personalized advertising supports Neuman’s (2010) prescription for those invested in the 
study of communication to, “focus on the conditions under which persuasive methods persuade and conditions under 
which they do not.” Questions regarding the relative effectiveness of personalized messaging to persuade consumers 
are not addressed in this dissertation. However, the notion that personalized advertising is known to be generally 
more effective (more persuasive) than mass advertising is central to the studies presented in this work. 
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techniques (e.g., Häubl & Murray, 2003; Graepel, Candela, Borchert, & Herbrich, 2010; Tucker, 

2013). Research in this area brings together marketing “science” and social psychology to locate 

more effective advertising strategies as they relate to using media to exert measurable influence 

on consumers. Research questions in this area consider, for instance, whether a message is more 

persuasive when appealing to a viewer based on different types of known or estimated 

information about that individual. And it is logical that message personalization efforts would 

tend to be more persuasive compared to more generalized messaging (e.g., Manchanda, Dubé, 

Goh, & Chintagunta, 2006; Shatnawi, & Mohamed, 2012; Farahat & Bailey, 2012; Lambrecht & 

Tucker, 2013). 

In cases of overt forms of message personalization researchers have demonstrated, for 

instance, that injecting a viewer’s name into a visual advertisement simply makes it more 

effective (e.g. Hey Barbara! Check out these shoes!). This kind of personalization is shown to 

result in higher attention and message recall compared to non-personalized messages (Howard & 

Kerin, 2004; Kampe, Frith, & Frith, 2003), offering marketers plenty of reasons to pursue 

personalization strategies. Similarly, digitally blending an image of a viewer’s face with the face 

of a another person, and then using the final blended face on a model in an advertisement, has 

also been shown to increase favorable ad response in the experimental setting (Samat et al., 

2013). This area of experimental research, referred to as “facial similarity manipulation” 

(DeBruine, 2002, 2004, 2005) has also shown to be effective at influencing voter behavior when 

merging an image of an individual’s face with that of previously unknown political candidates 

(Bailenson, Iyengar, Yee, & Collins, 2009). Given advances in image processing, computing, 

and real-time analytics, these far out examples from the experimental setting may signal future 

directions for personalized advertising. 
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 Much of the work on the persuasiveness of personalized communications sheds light on 

the power of customizing messages towards groups of audiences and even towards specific 

people. These findings also call attention to some of the ethical problems faced by marketers.19 

These include personalized advertising techniques some consumers may find unacceptable when 

using personal data that that feels invasive to tap into known consumer vulnerabilities. Assessing 

this emerging ethnical dilemma for marketers, legal scholar Calo (2014) carries advertising 

personalization techniques to their logical extreme. He illustrates how emerging personalization 

techniques in marketing may result in new forms of consumer manipulation, where firms could 

use real-time personal data to exploit the cognitive limitations of individuals. For instance, Calo 

argues marketers will have to decide whether they will exploit decision fatigue in consumers 

given new ways of measuring an individual’s state of mind based on their recent activity. An 

example might be showing a certain advertisement to someone only upon gleaning that person 

has just made a series of complicated or emotional decisions and is less likely to resist 

something. Calo concludes that we may be approaching a dangerous tipping point in behavioral 

advertising where the ability to derive rather sophisticated insights from consumers’ personal 

data, in real-time, may create marketing situations where consumers are manipulated rather than 

innocently persuaded. In the U.S., individuals have legal protections from certain forms of undue 

influence, where one party exerts an unfair level of influence over another party, though it 

remains unclear when these protections would apply in the case of highly personalized 

advertising techniques seeking to use various personal data to exploit consumer vulnerabilities.20  

																																																								
19 Ethical considerations are of course not new to marketing. For instance, amplified by Vance Packard's (1957) 
book The Hidden Persuaders, concerns over consumer manipulation via “subliminal messaging” in advertising 
emerged in the US post-World War II. For a review of these concerns and impacts on advertising regulation, see 
Nelson (2008). 
20 Sometimes referred to as undue persuasion, see http://legal-dictionary.thefreedictionary.com/undue+influence 
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 The previous examples offer just a glimpse into the type of work on advertising 

personalization currently under development and designed to improve message reception through 

leveraging in some cases detailed information about consumers. Given the direct applications of 

this research in the marketplace, incentives for conducting this type of applied marketing science 

are high. Additionally, while findings in this area sometimes become public via published 

research papers and reports, for private firms conducting this type of work often results go 

unpublished for reasons of competitive advantage.21 Still, the published work in this area points 

toward the same overarching result: increasing message personalization, through a great number 

of techniques, tends to boosts the effectiveness of the resulting advertising appeal.22 In short, 

personalized communications are more effective. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

																																																								
21 This is not a criticism of unpublished industry research findings but simply an effort to highlight what we do not 
know (that there are unknown knowns). As with research in any sector, not just in marketing, findings from studies 
financed by private industry may need to stay private to maintain trade secrets for competitive advantage. 
22 For explicit personalization, prior work indicates that when a viewer is aware of the amount of information used 
to tailor a message and finds this to be too much or inappropriate, this can backfire resulting in an over-
personalization effect and corresponding negative response (e.g., White, Zahay, Thorbjørnsen, & Shavitt, 2008). 
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Chapter 3 

Third-Party Personal Data and Personalized Advertising Up Close and Personal 

 

 This chapter presents Study 1, the first of three studies completed for the dissertation. For 

Study 1, I took on the role of a marketer, drawing from participant observation to examine first-

hand the nature and dynamics of third-party personal data currently available to marketers on 

digital ad-buying platforms. This methodology was selected to provide a unique view into to the 

consumer data used to target ads on websites and apps towards people possessing specific 

attributes. Two main contributions are offered. First, based on my observations of a large number 

of third-party data available to marketers for ad personalization on several platforms, I synthesize 

some of the characteristics of audience targeting data currently in use. This serves both to 

illustrate and complicate the notion of digital enclosure advanced by Andrejevic (2007). Upon 

assessing the form of these data, I then assess their function. To do so, I executed a series of 

online advertising campaigns myself to measure the popularity of specific audience attributes 

from the marketer’s point of view as determined by the results from these real-time ad auctions. 

These advertising tests suggest that some types of personal data are more popular for ad 

personalization models, and therefore more expensive as well. By taking on the perspective of 

the marketer, I assess advertising personalization up close. While the three studies in the 

dissertation are self-contained, my experiences conducting Study 1 informed many of questions 

and design decisions in Studies 2 and 3.  
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INTRODUCTION 

 Recently, a variety of new challenges surrounding digital personal data in the new media 

environment have emerged. This applies to both the collectors of digital personal data, typically 

firms, governments, and increasingly individuals themselves (e.g., quantified self), as well as the 

individual consumers who supply these data in their various forms. One promising site for 

exploring challenges associated with personal data is today’s digital marketing environment. In 

light of how personal data has been commoditized and perhaps fetishized by marketers while 

simultaneously, at times, challenged and resisted by regulators and consumer alike, digital 

marketing supplies a fertile yet fraught site of inquiry. Further, given the prominence of 

personalized advertising today on most internet-enabled platforms, from social media platforms 

to search engines to ecommerce portals, the link between consumer data and digital marketing 

has become quite central to a range of business operations supporting the commercial web. 

 This study brings together related ideas from communications, media studies, and 

marketing to explore the following questions: What is the nature of the personal data made 

available by third-party data providers to marketers for personalizing online advertisements? 

How do the dynamics of real-time bidding impact the ability of marketers to personalize 

advertising for certain audiences over others? Given the nature of these personal data and how 

they function, what are the broader implications for marketers and internet users interacting in 

this new digital enclosure? 

 To address these questions I temporarily assumed the position of the marketer. This 

participant observation method of inquiry, directly taking up the activity under investigation, has 

proven effective in prior work examining a range of sociocultural phenomena, such as labor 

(Ehrenreich 2001), immigration (McDermott, 2006), and policing (Bright, 2015), to name a few. 
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Similarly, this study leverages an embedded researcher approach to explore the social 

phenomenon of personalized online advertising in the emerging digital marketing ecosystem, 

specifically examining the presence and dynamics of third-party personal data made available to 

marketers. Taking on the perspective of the marketer was necessary due to the data in question, 

which exists beyond public view, yet is more or less in plain sight for marketers when using 

today’s popular digital ad-buying platforms. Exploring this phenomenon from the perspective of 

the marketer provided necessary access into this world, a unique opportunity to peek across an 

information asymmetry.  

 I delivered pro bono marketing management services to a non-profit client who was 

seeking to drive traffic to their organization’s website. This client was aware of my research 

interests and the primary purpose of the study, agreeing to the unique research/services 

arrangement due to it being mutually beneficial. I draw on two years of experience acting in this 

researcher/service provider role. During this time, I operated a series of online ad campaigns in 

which I interacted with consumer databases, interfaces, and ad-buying platforms directly to take 

an up-close look at digital marketing’s relationship to personal data. I observed and used 

multiple online ad exchanges, networked computing systems that allow for the buying and 

selling of online ad space and internet users’ attention through the practice known as real-time 

bidding. To buy and place ads in front of internet users, I used multiple industry-leading 

demand-side platforms—web interfaces that allow marketers to bid for and buy online ad space 

in live auctions, one impression at a time, targeting individuals by various audience attributes. 

Part one of this study assesses the nature and variety of personal data currently made available to 

marketers by third-party data providers across a variety of real-time ad-buying platforms. This 

analysis presents and discusses the character of personal data, its various origins, and ways to 
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leverage these data to limit or exclude different audiences when running online ad campaigns. 

Then, to illustrate a sample of these observed personal data in action, part two of this study 

reports comparative results from a longitudinal series of targeted ad-buying tests on real-time 

bidding ad-buying platforms. This latter portion examined the relative demand for and 

desirability of different audiences, as identified by personal data made available to marketers, 

based what marketers bid and pay to reach different groups of people online. 

 This work builds upon three related concepts used to explain power dynamics in today’s 

increasingly expansive new media environment. The first is information asymmetry, an 

imbalance regarding what is visible to different parties in a system; in this study when individual 

internet users cannot see precisely which personal data organizations collect (Schwartz, 2004; 

Stefanone et al., 2015) nor how it is used (Pasquale, 2015). The second is the notion of a digital 

enclosure, an interactive realm wherein each action and transaction generates information about 

itself and its corresponding communicator (Andrejevic, 2007). Finally, I draw on the concept of 

contextual integrity, a privacy heuristic popularized by Nissenbaum (2010), which claims the 

existence and prevalence of context-relative information norms. Together, these related ideas 

provide the conceptual basis from which this work proceeds. Based on first-hand observations 

along with results from a series of ad-buying tests, I conclude that real-time bidding advertising 

platforms are the logical extension of the emerging digital enclosure and that these 

sociotechnical configurations encourage and deepen information asymmetry between marketers 

and internet users while upending notions of contextual integrity.  
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RELATED LITERATURE 

Information Asymmetry 

 One product of the digital enclosure is persistent expansion of the information asymmetry 

between marketers and consumers. In the most basic sense, information asymmetry occurs when 

one party does not know what another party knows; an imbalance of who knows what in a 

multiparty situation. In the case of personal data asymmetry, this imbalance typically 

corresponds to which data one party collects and/or stores describing the attributes of another 

party who is unable to see, know, alter, correct, or otherwise exert control over these data. In this 

case the disadvantaged party is an individual unable to fully know the extent to which data 

describing them is held by an organization, who in this case is the advantaged party. This 

organization might be a marketing firm, an employer, or a government agency, for instance. 

 In marketing, industry practices have long been characterized by information asymmetry. 

For example, enabled by early computer databases containing information about individuals and 

households, the advent of direct mail marketing in the late 1980s and early 1990s normalized a 

system where attributes of consumers were surreptitiously collected and stored out of sight of the 

consumer, then later used to determine who received or did not receive various promotional 

materials in the postal mail. This practice continues today and the personal attributes used to 

target direct mail range from mundane (e.g., owners of SUVs) to off-putting (i.e., a promotion 

inadvertently addressed to “Daughter Killed in Car Crash”) (Merrick, 2014). 

 During the late 1990s and throughout the 2000s, the combination of large scale database 

systems, plummeting costs of computer storage, and widespread adoption of the Internet by U.S. 

households pushed the amount of consumer data collected to new levels. The technical and 

economic groundwork for what would become asymmetry at an entirely new scale was laid in 
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the early days of the web. As Crain (2014) points out, the dotcom internet bubble not only 

contributed to the development of a commercial web but also brought with it significant 

investment in new media firms. These companies were then able to parlay this momentary power 

to solidify longer term, wide-spread demand among marketers for purchasing online advertising. 

 As the web matured, so too did the advertising technology underpinning it. Much of this 

development helped marketers to better target online ads towards specific groups of people (e.g., 

sports enthusiasts, coupon clippers) and unique individuals (e.g., visitors to a specific product’s 

URL). Pointing to a longer history in the persistent pursuit of personal data by commercial firms, 

Stole (2014) notes that during this period companies such as Yahoo!, Google, and Facebook 

discovered how personal data held significant commercial value for advertisers, prompting these 

and other Internet technology companies to design new protocols and systems to surreptitiously 

track Internet users (p. 130). 

 These changes, and specifically the new personal data collection infrastructure they 

established, allowed marketers to tailor ads towards individuals in new ways. However, 

individuals had no effective way to see these data, how or when they were collected or used, or 

know much else about the process as it unfolded. The result was the formation of information 

asymmetry on an unprecedented scale with marketing and technology companies on one side 

amassing personal data and internet users on the other side.  

 A disparity has emerged between what personal data is stored on the servers of various 

marketing and third-party data firms and what individuals are able to see about themselves along 

with how, when, and where these data are utilized (Crain, 2016). For instance, consider a 

targeted online ad shown in a web browser or mobile application. Oftentimes, this ad was 

delivered to a person based on some combination of verified and/or estimated personal data 
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originating from any number of individual transactions or behaviors. However, given the 

complexity of data sharing agreements by marketing firms and third-party data providers, 

typically it is impossible to conclusively determine the origin of the data used to personalize this 

ad. This unevenness points to what Dixon (2010) conceptualizes as today’s “one-way mirror 

society,” a world where individuals do not fully know what personal data about them exists, 

where, or how it is used. Central to this perceived information asymmetry is that the extent of the 

asymmetry cannot be known, as even knowing the extent of the asymmetry would require the 

ability to aggregate and see one’s consumer data across an unknown number of organizations.   

         Noting the associated power relationship this imbalance erects, Andrejevic (2007) 

questions this personal data asymmetry, asking, “At what point does the amount of information 

available to advertisers constitute a form of power over consumers, especially in a context 

wherein consumers have very little knowledge about what information marketers have and how 

they are using it?” (p. 131). The benefit of looking to asymmetry in the case of personal data 

driven marketing is not simply to locate imbalance, as asymmetry on its own is not necessarily 

consequential, but rather to gauge whether this particular asymmetry results in a meaningful 

imbalance of power. 

 

The Digital Enclosure 

 Enclosure provides a way to conceptualize the current state of personal data collection 

now routine when using digital products and services. Andrejevic (2007) offers the notion of a 

digital enclosure as “an interactive realm wherein every transaction and interaction generates a 

information about itself” (p. 2). Importantly, in its use for personalized advertising, typically 

information describing the corresponding person who initiated the transaction is also present as 
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opposed to anonymous behavioral data. Andrejevic describes this enclosure as both a process as 

well as a physical, though largely invisible, system.  It is the act of the sum of technologies 

monitoring and recording data describing humans and their behavior, resulting in an always-

changing archive of consumer data. The digital enclosure is also the product of combining the 

longtime surveillance interests of firms and governments with the relatively recent abilities of 

enterprise computing systems, databases, and personal computing devices to generate, capture, 

and preserve signals linked to individual human behavior. 

 Notably, the digital enclosure is also flexible. Rather than beholden to any technical 

format, type of data (e.g., prior purchases, geolocation, online browsing history), or set of 

systems contributing data to the enclosure (e.g., point-of-sale, GPS, internet cookies), it is largely 

agnostic to the type of behavior or data it captures. This flexibility opens the door to many new 

additions of data types and sources all the time, with ability to capture being the lone 

prerequisite.  

 

Contextual Integrity 

 Though the affordances of the digital enclosure are indeed helpful for marketers seeking 

to selectively present advertisements, consumers are not always pleased with data aggregation. 

One explanation describing why individuals at times reject how their personal data is collected 

and/or put to use is the privacy heuristic known as contextual integrity. Popularized by 

Nissenbaum (2010), this somewhat common-sense theory claims individuals hold consistent 

expectations, linked to the social context in which the data is collected and/or used, regarding 

what constitutes appropriate or inappropriate collection and use of personal data.  
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 Nissenbaum offers the framework of contextual integrity as an analytic lens describing 

appropriate privacy boundaries for data use. What exactly constitutes appropriate under this 

concept depends wholly on context-relative expectations, or simply norms. In this way, varying 

contexts or social situations (e.g., the privacy of one’s home, during an interaction with a health 

services provider, in a retail transaction with a company), these different contexts are thought to 

systematically and consistently conjure different expectations from individuals for how personal 

data ought to be collected or not collected, used or not used. At its core, contextual integrity 

maintains that each context and sub-context are accompanied by predictable end-user 

expectations. In this way, contextual integrity is primarily as a heuristic, as Nissenbaum claims, 

“for determining, detecting, or recognizing when a violation [of informational norms] has 

occurred” (2010, p. 148). 

  

Marketing & Advertising Efforts 

The marketing industry is a key stakeholder in determining how digital personal data are 

used and regulated. One can better understand this relationship as it relates to personal data 

governance by looking to the fundamental interests and functions of marketing. Among the 

operations of a firm, marketing is fairly porous blending into and through many other business 

functions (Webster, 1992). Accordingly, the term can be somewhat challenging to bound or 

define. In business, marketing efforts aim to encourage sales in a product or service, whether 

successful or unsuccessful. The American Marketing Association defines marketing as “the 

activity, set of institutions, and processes for creating, communicating, delivering, and 

exchanging offerings that have value for customers, clients, partners, and society at large” 

(American Marketing Association, 2013). 
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 Similarly, Silicon Valley marketing pioneer Regis McKenna offered the following 

definition, “marketing is everything and everything is marketing” (McKenna, 1991). This all-

encompassing picture of marketing, as not only part but the most important part of a business’s 

operation, illustrates an enduring concept and topic of interest stating that it is not so much what 

someone is selling but rather how it is sold in the hearts and minds of audiences (e.g., Packard, 

1957; Williams, 1980; Cohen, 2003). Further, this distance between inherent value and perceived 

value, and later subsequent consumer demand, demonstrates the value added marketing through 

branding and persuasive advertising. 

 

Models & Mixes  

 To better understand its functions, one way to separate the various activities that fall 

under marketing’s umbrella is through various marketing models. These models, or frameworks, 

delineate the practice into its component parts. For instance, McCarthy’s (1964) classic “Four Ps 

of Marketing,” while simplistic, categorizes nearly all activities associated with an organization’s 

total marketing effort, including: Product, Price, Place, and Promotion. In this case, Product 

refers to the tangible good or intangible service being offered. Price is the cost charged to those 

purchasing the product. Place, sometimes also referred to as distribution, is where buyers look 

for and ultimately obtain the product. Finally, Promotion encompasses the many ways product 

information is communicated to potential customers, especially the use of advertising (Anderson 

& Taylor, 1995). The Four P’s remain one of the most popular ways to illustrate what marketing 

is and is not concerned with within a firm’s total operations. 

 Another common tool for understanding marketing’s pursuits is through sequential 

process models. One of the most popular is the three-stage Segmentation, Targeting, and 
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Positioning (STP) model (Dibb & Simkin, 1991). In this case, segmentation refers to the act of 

dividing up potential customers into specific groups, such as those with similar demographic, 

psychographic, or behavioral attributes. Next, once potential customer groups have been 

identified, targeting comprises researching and selecting which group(s) are the most attractive 

to market the product towards. Typically, though not always, determining the most attractive 

segments is based on which groups would be most profitable as potential customers given 

estimated demand. Finally, positioning encompasses all attempts at influencing how selected 

target customers perceive the product, especially efforts towards branding and encouraging 

purchases including advertising. From the Four Ps to STP to countless other strategic models and 

mixes, these tools illustrate how marketing interests and activities can often be separated, always 

with the hope of bringing them back together more effectively and efficiently to better influence 

brand perception and purchasing behavior. Indeed, van Waterschoot and Thomas Foscht (2010) 

argue that the concept of a marketing mix, a panoply of different activities working towards a 

common sales goal, is inherent to any marketing situation. Throughout its history, the state of 

strategic marketing has developed alongside successive schools of thought (Shaw & Jones, 

2005). These ways of thinking include specification for how to parse the total marketing effort 

into discrete interests and how to locate the proper combination of strategic ingredients (Borden, 

1964). 

 

Advertising Return on Investment 

 Of all marketing activities, the fourth P, Promotion, via advertising tends to be the most 

conspicuous to consumers. With the majority of marketing efforts taking place beyond the view 

of the general public (e.g., pricing, consumer research, econometric modeling), advertising 
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represents the conspicuous outcropping of this much larger set of activities all designed to 

encourage sales. 

 Within advertising, a central concern of marketing departments is to limit spending on 

advertising and, conversely, to maximize financial return on any purchased advertising media. 

Return on advertising investment provides a metric to gauge correspondence between advertising 

expenditure and consumer spending that can be linked in some way to particular advertising 

effort. Similarly, the popular quip by retail pioneer John Wanamaker is rooted in this concern 

with return on advertising investment, in which he remarked, “Half the money I spend on 

advertising is wasted; the trouble is I don't know which half” (Rawson & Miner, 2005, p. 6), an 

attribution problem that demands substantial attention as well. 

 Two of the most significant advancements in improving marketer’s ability to calculate 

return on advertising investments have come in the ways online ad space is purchased and, 

subsequently, the way audience response to digital ads is tracked. For the latter, this effort has 

become its own topic of research for providers of digital advertising services. From early metrics 

such as click-through-rate (CTR) to the current more sophisticated state of cross-device tracking, 

where not only clicks but ad impressions are tracked and eventually triangulated with purchase 

data and across multiple devices belonging to the same individual, the state of advertising 

response measurement has changed drastically in the past decade. This has allowed new kinds of 

observation into consumer behavior, along with how to better influence this behavior (Schiff, 

2015). In the U.S., for instance, efforts to deploy and improve cross-device tracking capabilities 

have been accompanied by concerns from privacy rights groups (Rotenberg, Barnes, & Gartland, 

2015) and scrutiny by regulators (Federal Trade Commission, 2015). 
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 For innovations on the ad-buying side, one of the most substantial changes arising in the 

early days of the web was the use of auctions to price digital advertising space sold by 

publishers. A popular early example of auctioning digital ad space is Google’s AdWords 

program (Marvin, 2015). On the AdWords platform marketers place bids to buy specific 

keywords (e.g., “hotels”) or phrases (e.g., “luxury hotels”) hoping to win the auction so that their 

text-based ads appear in Google’s search results whenever users query these words or phrases. In 

the case of Google’s wildly successful and pioneering program, introducing the use of a second-

price auction where the winner pays only the price of the second highest-bidder helped to 

completely shift the way digital ad space was purchased and also how attribution was assessed. 

Later came more dynamic “live” auctions for ad space and the solidification of publisher-

agnostic RTB platforms. One of the principal features of these platforms is their reduction in 

advertising costs to marketers because each ad impression is bid upon individually and in real-

time rather than paying in bulk. This is to provide marketers with a way to reduce ad spending by 

paying only the current rate based on supply and demand, bringing a new efficiency to the 

purchasing process and providing a means for boosting return on advertising investment. RTB 

platforms also afford a range of targeting and delivery options based on integration with various 

components such as third-party audience data providers.  

 

Real-Time Bidding Platforms 

 A closer look at how RTB functions illustrates this colossal shift in how ads are bought 

and sold online in recent years. Prior to RTB, in the past two decades personal computing has 

disrupted the state of advertising in its own remarkable ways. Advertisers have followed 

audiences as individuals have increased time spent consuming media on computers, tablets, and 
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smartphones. Today, online display advertising is purchased in a variety of ways. For example, 

advertisers still pre-purchase groups of online audiences in bulk with publishers then 

contractually obligated to serve a number of ad impressions to a predetermined audience of a 

specified composition (i.e., based on demographics like location or age). The popularity of some 

websites and aps, and their resulting demand from advertisers, allow their owners to sell this 

high-end advertising real estate at premium prices (e.g., NYTimes.com “above the fold” banner 

ad). Combining these concepts of selective audience and selective publisher inventory, in recent 

years more automated mechanism for buying and selling online ad space through RTB platforms 

have emerged. As the name suggests, RTB systems provide a way for advertisers and publishers 

to buy and sell online ad space, one ad impression at a time, in “real time” auctions, which takes 

place as webpage or app is loading. Increasingly, the integration of RTB systems with third-party 

data providers allows digital advertisements to be displayed to particular individuals at a 

particular time based on rather endless combinations of personal data (Iyer, Soberman, & Villas-

Boas, 2005).  

 From start to finish online ad networks leveraging RTB require complex technical, 

business, and legal arrangements. The firms that supply the component parts of these networks 

must act in concert with one another, similar to a stock market with the ad network acting as a 

digital matchmaker, connecting on one end marketers who have advertising messages they wish 

to send to people and on the opposite end people capable of receiving these ads.  

 While specific ad network configurations vary, most often the RTB process is supported 

by linking up combinations of firms supplying front-end software for marketers to use directly, 

databases, servers, and internet networks. One way to understand all the moving parts is through 

the four major interests of RTB, those belonging to: internet users, marketers, publishers, and 
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proprietors of ad exchanges (Yuan et al., 2012). In this case, publishers are any organization with 

digital advertising space that they wish to sell to marketers. Again, marketers encompasses any 

organization wishing to buy this ad space sold by the publishers in order to distribute ads to 

internet users. Finally, for internet users, the largely invisible component among these players is 

the ad exchange itself. The ad exchange plays the crucial role of digital, real-time matchmaker 

and has its own array of discrete sub-parts, which are discussed in further detail below. 

 The common software and integrated networking components integral to an RTB system 

include a demand-side platform, a supply-side platform, a data management platform, an ad 

exchange, and an ad network. Each component is effectively connected to each other component, 

either directly or through other components in the system. Yuan et al. (2012) offers a 

comprehensive explanation for how these components function with great parsimony to achieve 

an operational RTB system, a system of systems so to speak. 

 In this study, I primarily interacted with the digital enclosure through what is known as a 

Demand-Side Platform (DSP). A DSP is a networked computing platform typically accessible to 

marketers through a web browser and DSPs work on behalf of the marketer. Often, a single DSP 

will be connected to multiple online ad exchanges, data management platforms (DMP), ad 

networks, and supply-side platforms (SSP). Importantly for this study, most DSPs allow their 

user, typically a marketer seeking to build and execute personalized advertising campaigns 

online, to leverage third-party audience databases for purposes of strategically targeting ad 

campaigns. The third-party data these systems supply are usually linked to specific individuals 
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through unique identifiers, allowing ads to be shown to certain people believed to possess 

specific attributes.23 

 While interest vary, the most prominent example of competing interests in this system are 

those between marketers, who wish to pay as little as possible to rent online advertising space 

and, opposite to marketers in the system publishers, who hope to charge as much as possible for 

this space. This clear difference is in addition to the diverse interests belonging to proprietors of 

ad exchanges and ad networks, each caught somewhere in between marketers and publishers, 

along with the best interests of internet users. 

Also of note is that many firms provide multiple services under one roof, for instance, 

providing both DSP and DMP tools to marketers. The synergies from offering multiple services, 

given an individual firm’s vantage point on industry dynamics and its own in-house data and 

infrastructure, make this an attractive approach yet not one without potential conflicts of interest. 

 Most of the individual components in an RTB system exist in multiple iterations. For 

instance, rather than a single DSP connected to a single SSP connected to a single ad network, 

and so on, more common is for multiple DSPs to be connected to multiple SSPs and multiple 

third-party data providers, along with various other middleware components, all linked up, 

unevenly, yet working together in real time across multiple ad networks and ad exchanges. In 

this regard, most components of an RTB system are capable of scaling up, down, over, across, 

and through, allowing for an unlimited number connections and combinations of each 

component. 

 It might be easy to overlook the achievement of this system of systems intended to 

optimize marketing efficiency and digital ad targeting while balancing various competing 

																																																								
23 Or not shown to certain people, as in the case of negative (blacklist-style) online ad targeting. Some online ad 
campaigns target those who have not purchased a specific brand (e.g., Folgers) or product (e.g., Folgers Black Silk 
Ground Coffee), for example. 
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interests. This technical and organizational feat of RTB working around the clock is somewhat 

remarkable, as it represents an always-on coordination effort among global internet connections, 

networks, servers, marketers, clients, publishers, internet users, and other organizations and 

interests; a vast marketing machine of sorts. 

 The bulk of RTB activities take place behind the scenes, with millions of transactions and 

connections taking place each second, mostly out of sight for various users of different parts of 

the system. In this way, most RTB processes function primarily on a need to know basis for each 

other part in the system. For example, if an impending ad impression is signaled but the audience 

member does not meet the criteria pre-specified my a marketer for her campaign that is currently 

“live” on a DSP, she is typically not notified of this “impression opportunity” as it is irrelevant to 

her campaign. Similarly, billions of ad auctions are facilitated by an ad exchange across 

countless web publishers selling ad space each day, but only a small fraction of these 

transactions are made visible to any one publisher selling their ad space through an SSP 

connected to this ad exchange. Similar firm-to-firm, or component-to-component information 

asymmetries exist in such a system. For internet users, aside from seeing the end product—a 

particular advertisement displayed to them on a particular website or app—the entire RTB 

infrastructure and underlying processes take place entirely out of sight. This vast system of 

systems works in real-time to get the right ad in front of the right person at the right time.   

 With many parts acting together the RTB process functions sequentially as follows and 

the entire process typically occurring in less than 100 milliseconds (DoubleClick, 2013). First, an 

internet user visits a web page or launches a mobile app. Then, in the milliseconds before the 

page or app loads an upcoming impression is announced to all connected ad networks and their 

component parts. Ad exchanges query all standing bids from marketers seeking to buy ad space 
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to place a particular ad impression before an Internet user across each of the connected ad 

networks and parts. Next, information about this potential ad impression is sent through the 

connected networks, indicating the website or mobile app hosting the ad and (importantly for the 

present study) any known or estimated information about the individual who is about to view the 

webpage or mobile application and the ad delivered from the winning bidder. The latter is where 

third-party data providers enter to play a key role offering up and selling the desired audience 

segmentation information about the audience member who has initiated the request to load 

content on a website or app, that spark which began the process. 

 Once all information about the publisher’s inventory and potential viewer of the ad are 

collected, the auction takes place. All preset bids matching this sent criteria are evaluated and the 

winner is determined. The auction winner’s ad is then routed to the publisher’s ad space on the 

corresponding website or app and the impression is delivered to the Internet user. The ad buying 

and selling process now concludes, at which point a host of follow-up analytics begin. These 

include the generation of new cookie data to be used in recording to whom the ad was serviced, 

capturing the relatively rare event that the viewer clicked on the ad, and a range of other less 

common measures that might go into effect, like the duration in seconds the viewer’s mouse icon 

hovered over the ad, potentially valuable information especially in the case of a viewer actively 

hovering but not clicking on the ad.  

 Originating from this dynamic buying and selling process, globally billions of these 

micro-auctions take place every day all across the online marketing ecosystem. While not all ad 

impressions are sold via RTB, the proportion of ad inventory purchased programmatically has 

grown rapidly in recent years. For instance, estimates report around 70% of all online display ads 

are now bought and sold programmatically in RTB exchanges (eMarketer, 2016).  
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 Visibility into these systems that organize personal data for advertising personalization is 

unequally distributed. The result is a straightforward information asymmetry. On one side, 

marketers who use many of today’s popular online ad-buying tools are presented with an 

assortment of third-party personal data. This data is made available for targeting ads at internet 

users thought to possess certain attributes as identified usually by third-party data providers, 

though sometimes marketers bring their own customer data into the system. Many times, third-

party audience targeting data is provided by specialty business-to-business firms with no 

consumer facing presence, sometimes referred to as “data brokers” (Crain, 2016). Examples of 

prominent data brokers include companies Acxiom, Datalogix, Epsilon, and Experian. Most 

internet users are not familiar with the firms that provide detailed third-party audience data to 

marketers. Typically, individuals have no reason or opportunity to come into contact visible with 

data brokers directly, as these firms’ customers are marketers not individuals. 

 Data brokers identify, classify, and tag internet users through a multitude of tactics, such 

as syncing internet cookies across time and web properties, accessing individuals’ account 

profile information, leveraging data sharing agreements with other firms, conducting consumer 

surveys, and integrating records from online and offline financial transactions, to name a few. As 

individuals go about their routine use of websites and apps, along with conducting many offline 

activities that now generate digital records as well, they are effectively “tagged” as having 

certain attributes. Identifiers associated with unique individuals or households populate databases 

providing the basis of user profiles containing specific attributes ranging from one’s 

race/ethnicity, income, and family status to which brands of toothpaste and clothing they most 

often purchase. 
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 On the other end, internet users are unable to see this cornucopia of personal data 

describing them and existing across multiple data brokers’ databases, the volume of user profiles 

associated with them, nor the exact contents of any profile. The result is a virtual wall defining 

differential visibility, or information asymmetry, for marketers and internet users. This 

asymmetry presents accessibility issues for investigators studying the technical, social, and 

policy issues linked to personal data, digital marketing practices, and the dynamics of 

personalized advertising and RTB. Therefore, to understand the nature of these data and how 

they function in practice, I attempted to step through the information asymmetry by temporarily 

taking on the role of the marketer. 

 

OVERVIEW OF RESEARCH 

 Employing a hands-on, embedded approach was key to accessing and using RTB 

technology and beginning to understand the unique properties and affordances of current data-

driven advertising platforms. For instance, to access these systems requires an up-front financial 

cost, sometimes referred to as a “minimum media spend,” which varies based on the DSP used. 

A typical minimum might be around $1,000/year or so. In addition to financial commitment, 

partnering with a platform results in a commitment to bid in live auctions for online ad space, 

which, when successful, results in winning a proportion of the ad auctions and delivering ads to 

(anonymous, in this case) internet users.  

 To achieve this, after gaining institutional review board approval, in early 2014 I initiated 

a partnership with a non-profit public health organization in the U.S. This particular organization 

was selected so that all financial costs incurred from buying ad space on RTB platforms would in 
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effect be donated to this prosocial non-profit (i.e., as opposed to providing free ad buys and 

services to a for-profit company). 

 Leaders from the partner organization provided me with wide latitude to execute a series 

of online ad campaigns using their existing visual media. This included sidebar and banner 

display ads used in the organization’s previous advertising efforts, which were then optimized in 

size for either desktop or mobile devices. The only restriction imposed by the non-profit client 

organization was that the ads be delivered to Americans. For this reason, web traffic for all ad 

campaigns was confined to that from the U.S. as determined by IP address. 

 Given the relative opacity of the personal data marketing ecosystem, for scholars most 

work addressing questions about this environment has been levied from a distance, at times 

favoring what might be possible in lieu of directly observing phenomena. Documented examples 

have been relatively uncommon. The result is a tendency to err on the side of speculation or even 

constructing worst case scenarios for how personal data could exist, how firms might share data 

with one another, or how marketers may be operating in light of abstract data possibilities (e.g., 

Calo, 2014). 

 Certainly, imagining dystopic scenarios in light of what might be possible can be a 

helpful exercise to stimulate critical thinking, user-centered design, and improved guidelines or 

regulations. And in some cases this “self-preventing philosophy” can be fruitful in preempting 

and curbing harms that would have otherwise emerged (Pasquale, 2015, p. 16-17). However, 

rooted in what if rather than what is, this dystopic-possibilities approach has its limitations. One 

such drawback is the continual production and reification of a discrepancy between potential 

problems and actual ones, or between how things may function and functionality. 
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 Taking a different approach, for this study I relied on participant observation to gain an 

up-front, first-hand look at the viscera of today’s digital enclosure.24 In doing so, I aimed to 

answer the following related questions. What types of third-party personal data are currently 

made available to marketers through RTB ad-buying platforms? And what is the nature of these 

data? That is to say, in addition to observing what data are available to marketers for targeting 

ads online, what are the commonalities, origins, and nuances of these data? 

 To answer these initial questions, from 2014-2016 I explored several DSPs first-hand and 

documented my experiences. As the DSP is the marketer’s primary interface with the other 

technical platforms, first- and third-party personal data, and the other players including audiences 

in an RTB system, using DSPs to buy ads provided both the entry point to this ecosystem as well 

as my primary site of inquiry. As noted, DSPs aggregate, integrate, mix, and match data from 

multiple data providers. This integration effort makes it possible to use a DSP to access many 

different firms’ sources of third-party personal data. For the DSPs tested, this approach involved 

creating a user account and then, upon using the platform, observing its degree of integration 

with various data brokers, noting the types of personal data they provide for advertisement 

targeting, and how these data function in practice when used in online ad campaigns.25  

 For this study and to effectively target ad impressions for the non-profit client, initially 

several DSPs were evaluated. They were compared to one another weighing relative strengths 

and weaknesses, such as ease of use, integration with the ad exchanges and ad networks (to 

maximize the reach of ads), publisher inventory, customer support, and integration with a variety 

																																																								
24 I refrain from calling the approach I took for this study “ethnographic,” per say, as I was not immersed in an 
environment for a extended period but rather participated in a specific activity off and on over several years. I did 
this in the attempt to gain an insider’s (emic) perspective and as required by the questions posed in this work. 
25 Some DSPs geared towards marketers with relatively large advertising budgets proved inaccessible due to either 
high minimum buy-in costs and/or interval spending restrictions (i.e., daily or monthly spending minimums 
exceeding my research budget). 
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of prominent third-party data brokers. The purpose in seeking a single DSP integrated with a 

variety of components on each level in the RTB system was to offer a more comprehensive first-

hand assessment of the personal data currently available for targeting online ads while remaining 

agnostic towards any specific integrated company (e.g., data broker) as well as towards the DSP 

itself, which provided a window into the personal data ecosystem while functioning the same as 

similar DSPs. 

 In mid 2014, a single DSP was selected to carry out the goals of this study. At this time 

this particular platform was integrated with only 5 third-party data brokers. By 2016, the number 

had grown to around 40. This growth reflects the maturation and widespread adoption of RTB 

systems, including organizational and technical integration of more players and components. For 

marketers, middlemen, and publishers, these increased connections and data sharing agreements 

correspond to a win-win-win scenario. In particular, for marketers this evolution means more 

third-party data and audiences are accessible from a single point of entry into the RTB system. 

Additionally, as each data broker offers a somewhat unique blend of audience targeting data, this 

large number of data suppliers offered a tremendous, and usually overwhelming, volume and 

variety of targeting options in my observations. 

 I returned to this DSP regularly between 2014 and 2016 to observe which third-party 

audience personal data appeared in the targeting options and to execute actual ad campaigns for 

the non-profit client. I documented thousands of examples of personal data made readily 

available on this platform, on some occasion using these data to target the non-profit group’s 

healthy living advertisements at specific internet users.  

 While exploring third-party personal data accessible to marketers through various DSPs, 

the most apparent quality of these data is their varying specificity and granularity, or just how 
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personal these personal data are. This varies tremendously ranging from extremely broad (e.g., 

Interested in Attire, Downloaders, Holiday Shoppers) to the oddly specific (e.g., the brand of 

toilet paper someone purchased in the past 7 days ). To make sense of these similarities and 

differences, in the next section I discuss these data in detail. My aim is to make clearer their 

nature, locating how they are derived, organized, and presented to marketers by various data 

brokers across different DSPs. Due to the sheer volume, variety, and granularity of these data, 

the findings below describe only a small fraction of the consumer data I observed available for 

use in online advertising personalization. 

 Again, the most startling characteristic of the personal data provided to marketers through 

third-party data brokers is the utter extent of the data, seemingly unbounded in depth, scope, and 

granularity. Upon exploring this environment it quickly became clear to me that any effort to 

comprehensively document all these data would be incomplete. Therefore, after spending time in 

this environment observing and documenting many examples of third-party personal data, I 

aimed to synthesize what I found. The next section in Part 1 describes this synthesis, some of the 

more salient characteristics and the nature of these data, and limited examples of along with how 

they are presented to marketers for personalizing online ads. Additionally, many of the 

categories and features identified tend to overlap rather than present discretely (i.e., the ability to 

use shopping data, temporal data, and Boolean modifiers, at times all together).  

 

Part 1: Exploring the Nature of Third-Party Personal Data 

Personal Data Origins 

 Given the variety of third-party personal data available, it can be difficult to know where 

to begin. One foothold is to recall that all personal data made available to marketers have an 
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origin, the original source or spark of the data. Examining this consumer data revealed some of 

the most common origins are past purchases for goods and services, perceived interest in and/or 

intent to purchase certain goods and services in the future, socioeconomic indicators and 

classifications, life events triggers and categories, technically-derived information about 

computer networks and devices, data taken from public records, media consumption, behavior on 

social media sites, user-supplied data from online and offline account profiles, and self-report 

data from online and offline surveys, among others. 

 

Products & Services Data 

Past Purchases  

 In terms of the volume of data observed, the most abundant as well as the most granular 

were data corresponding to prior purchases of products and services. As past behavior is a strong 

indicator of future purchase behavior, the fact that third-party data providers make this 

information available to marketers and in abundant detail is perhaps unsurprising. At times, past 

purchase data observed were accompanied by metadata indicating their origins. Other times no 

origin was cited. 

Of note for past purchase data observed, the majority of third-party providers did not 

specify the origin of the data. This is not surprising, as data brokers have declined to cite their 

sources even upon the demands of an investigation by U.S. Congress (U.S. Senate, 2013). Often 

these firms cite proprietary needs to protect trade secrets, which in some cases include how and 

where they collect, rent, or buy information about consumers. Most providers of customer data I 

observed did so without indicating the particular origin, though some did indicate this such as 

which major credit card company was supplying which data. Nevertheless, it appears to be up to 
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the marketer to determine the trustworthiness or reliability of the data and how much confidence 

to place in its targeting abilities, likely determined by its measured performance in ad campaigns. 

With some providers naming their sources explicitly and others leaving this ambiguous, I was 

confronted by a sense of uncertainty when not able to see the origin only because some providers 

did specify this. When this origin metadata was included, the sources varied considerably. Past 

purchase data with cited sources included that from credit card transaction records provided 

directly from credit card companies themselves, from named brick-and-mortar retailers’ point-

of-sale systems (their cash registers), from named retailer’s shopper rewards cards, from specific 

ecommerce sites as well as third-party cookie data from these sites, and taken customer self-

report in online and offline surveys, among others. 

Additionally, temporal indicators accompanied some but not all of these prior purchase 

data (e.g., purchased during past 30 days). These time-based signals separated certain data 

brokers’ offerings from others based on the freshness of the monetary transaction. In some cases, 

the time period modifiers were well-tuned to the product (e.g., purchased vehicle: (make/model): 

5 or more years ago). This alignment of many of the time-based modifiers with the available 

product types illustrates an important compatibility issue when combining data brokers’ 

offerings; where some data can be compounded well with some modifiers but not others. 

Conceptually, it also illustrates the human hand in the curation of some third-party personal data 

offerings, as a record of an individual purchasing, for instance, organic milk in the past 30 days 

is likely useful in a much different way than a record of this same purchase made 5 or more years 

ago. Similarly, the longer period between purchasing vehicles for most consumers appears to 

influence, logically so, the accompanying modifiers made available for vehicle data for ad 

targeting (e.g., purchased 5 or more years ago), for example. Personal data options observed for 
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targeting individuals based on time since past purchase of a particular consumer good or service 

ranged from 7 days (e.g., grocery items) to multiple decades (e.g., cars, homes, and other major 

purchases). 

 

Future Purchases 

 Closely related to prior purchase data, another notable class of data observed was data 

labeled as “interested in…”, “intent to purchase…”, and similar labels indicating the specific 

product or good listed corresponding not to prior transaction but that there was reason to believe 

an individual was likely to purchase the item in the future.  

 Although less common than in the case of past purchase data, future anticipated purchase 

data was at times accompanied by an origin. Usually this was a reference to online browsing 

activity, indicating that the data broker was inferring a potential purchase based on which 

websites or apps a corresponding individual had visited. The fuzzy connection between web 

activity and future purchases is likely validated in its effectiveness on occasion, likely better than 

(chance). Still, it is worth noting that much intent to purchase data that did cite an origin appears 

to be based on the murky association between the wide variety of online content many internet 

users consume and the comparatively small number of purchases actually made.  

 Additionally, some of the future purchase intent personal data was also accompanied by a 

time-based modifiers, such as “likely to purchase: next 30 days” followed by various options for 

goods and services (e.g., motorcycle). Personal data corresponding to consumer goods and 

services referenced prior offline and online transactions for these items as well as individuals’ 

perceived interest in and/or intent to purchase items in the future. Similarly, current ownership 

data for certain items pointed to the present (e.g., owns: boat or home owner: adjustable rate 
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mortgage). In this way much of the personal data linked to specific or general products and 

services purchased or potentially purchased was also anchored to a specific temporality. When 

present, this time dimension modifier offers marketers an additional layer of sophistication when 

targeting ads based on either a person’s past, present, or anticipated future consumer behavior.    

  

Products & Services 

 Upon examining targeting data associated with products and services, a reasonable 

conclusion is as follows: with minor exceptions, such as certain health procedures or illicit goods 

and services, if something can be purchased it is likely made available to marketers for ad 

targeting. Most consumer goods and services have a corresponding presence in third-party data 

providers’ offerings. 

 One distinction within products and services transaction or potential transaction data is 

specificity of the item. Often this division is whether a specific item is captures versus a type of 

product or service. For instance, more general types of products available from past purchase or 

intent to purchase data include tires, apparel, socks, lipstick, cookies, organic food, toaster, 

major appliances, sporting equipment, cellular telephone services, renter’s insurance, and so on. 

If it exists and can be purchased, most likely there is a corresponding data category available for 

targeting ads to corresponding internet users. In the case of such general product targeting, like 

past purchase of “apparel.” the usefulness to marketers of these and similar high-level categorical 

purchase data is unclear. One explanation might be demonstrated effectiveness when combined 

into a model with other data, where the rationality of the inputs (purchased apparel AND owns 

boat AND opens SMS messages from marketers) is justified by success when applied to a 
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campaign. In this way what may appear in isolation as an odd personal data offering by a data 

broker may be a key ingredient in a highly effective ad-targeting model. 

On the other end of goods and services third-party targeting data are specific items. 

Similar to general categories, the vastness and granularity of these data is impressive. For 

instance, nearly all products one can envision being sold in any variety of retail stores have 

corresponding data made available by data brokers for online ad targeting. 

A quick thought experiment helps in grasping the extent of this consumer goods data 

made available for ad targeting. First, consider nearly all categories of items that can be 

purchased either in a brick-and-mortar store or on an ecommerce site (e.g., electronics, clothing, 

household cleaning supplies, frozen food, canned soup, cereal, toothpaste). This list is of course 

endless but provides a placeholder. Then, for each category considered, try to think of the top 5 

to (in some cases) +100 brands that sell products within that product category. Then, further 

subdividing, for each brand consider any varieties of this item manufactured by this brand. To 

provide just two examples: Purchased: Past 7 Days: Grocery: Crackers: Keebler: Club (vs. 

...Keebler: Townhouse) or Purchased: 3 or More Years Ago: Automobile: Luxury: BMW: 6 

Series (vs. …BMW: 7 Series), and so on.  

Location of purchase was also a common variety of targeting data made available. In this 

instance rather than targeting ads based on categories or specific products or services within 

these categories, records of where people shop supplied a related (likely-linked) variety of 

personal data. For example, “shops at” data was available for a large list of retail stores, 

including specific grocery and retail stores (e.g., Wal-Mart, Target, Kroger, Kohl’s, Macy’s). 

Similar to product and goods data, categories of stores where individuals make purchases were 

also available for ad targeting (e.g. Shops at: Big Box Stores). 



	 70 

Viewed together, we can see much of the consumer decision process captured in third-

party data related to products and services. From initial interest in a product and evaluating 

purchase decision (e.g., reading about it on a website) to making a final purchase decision (e.g., 

which product) and corresponding place of distribution (e.g., which retailer), many signals in this 

process are now captured within the digital enclosure, repackaged and made available to 

marketers as new digital data goods themselves. 

By far, the most extensive third-party personal data observed was that linked to purchase 

or purchase intent for products and services. This self-referential data is logical in an 

environment designed to distribute advertisements encouraging purchase of additional products 

and services. Looking beyond proportionality in these personal data, a number of other 

categories and varieties of personal data were also observed, each made available to marketers 

for personalizing online advertisements. 

 

Activity Data 

A grouping of personal data available from numerous providers was activity- or event-

generated data. Like products and services data, these data ranged from incredibly general to 

highly specific. Activity and event-based data corresponding to regular activities captured by the 

digital enclosure (e.g., Leisure Activities: Nightclubs & Dancing), along with discrete events 

(e.g., Tweets about: [enter brand name]) including events anchored in time, the data for which 

appear to “expire” at some point given their classifications (e.g., Recently Single). 
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Charitable Donations 

One example of activity-based data observed was personal data about individuals’ 

charitable donations. For instance, data corresponding to whether an individual does or does not 

make financial contributions to environmental, religious, and many other types of non-profit 

groups was available for ad targeting. As was the ability to target those who make charitable 

donations to conservative or liberal political causes. While these data are financial in nature, they 

are distinct from products and services given the lack of connection to a particular item but rather 

connection to a cause or ideology.  

 

Leisure Activities  

Another set of activities observed as captured by the digital enclosure and made available 

by data brokers were individuals’ leisure activities. As with data about goods and services 

procured, these activity data ranged from general (e.g., Outdoor Activities) to highly specific 

(e.g., Goes camping frequently). Similarly, individuals who visit casinos were available for ad 

targeting, including in some cases the specific location of one’s gambling activity (e.g., Gambles 

in Las Vegas, Nevada). Internet users who regularly visit movie theaters were also available for 

targeting ads towards along with incredibly specific combinations of this type of activity data 

(e.g., Went to Movie Theater with Church Group).  

 

Network, Application, & Device Data 

One of the most concrete and arguably accurate forms of personal data made available to 

marketers I observed on DSPs was that emanating automatically from networks, software 

applications, devices, or combinations of these. Internet service providers and mobile carriers are 
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typically identifiable through the range of IP addresses they issue to internet users or from 

specific hardware (e.g., an AT&T exclusive smartphone), making the network a person is 

currently using trivial to detect (e.g., Time Warner Cable, Comcast, Charter, Verizon, T-Mobile, 

Cricket, Boost Mobile). Across DSPs and data brokers observed, the ability to target audiences 

based on network providers was widespread.  

 Similarly, software applications and the devices they run on also provide automated data 

to servers as they communicate back and forth, data which is made available to marketers for 

general (e.g., operating system) or highly specific (e.g., smartphone model) targeting. Some of 

these data are required for proper information exchange and optimizing how content is presented 

(e.g., desktop vs. mobile browser). I observed data brokers providing this automated device and 

software for discriminating ads based on whether someone was using a mobile or desktop 

computer, Wi-Fi or mobile phone data, the particular operating system in use (e.g., iOS, 

Android, Windows, Ubuntu), web browser (Internet Explorer, Safari, Chrome) and browser 

version (e.g., IE v6, IE v7, etc.), and, in the case of mobile device traffic, the exact model being 

used to access content (e.g., Samsung Galaxy S7 Edge, Apple iPhone 6 S Plus). 

 Another form of device-generated personal data offered by data brokers for ad targeting 

corresponded to the type of apps already installed on an internet user’s device. This type of data 

tended to contain broad categories of apps installed (e.g., Medical Apps, Trivia Game Apps) 

rather than specific apps (e.g., My Cancer Coach, Trivia Crack). This app data allows marketers 

to target individuals not only based on the specific website or app they are currently using, but 

also which apps they have installed and assumedly expressed some interest in that genre or topic. 

 As people access web content on various networks, using different software, and on 

desktop and mobile devices, these automatically generated personal data are revealed to 
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publishers and various middleman, including data brokers who later make this technically-

oriented information available on DSPs for use in targeting ads.  

 

Additional Data Features & Considerations 

Individuals vs. Households 

 For some of the data brokers examined, and for subsets of their data, I found they 

included metadata describing whether an attribute was linked to a single individual vs. a 

household. Though this was not usually specified. When present, however, this distinction might 

be a crucial determinant in electing to use this targeting criterion. For instance, one’s living 

arrangement and household size directly impacts the specificity and effectives of using 

household-level data. For those living alone, whose household attributes correspond to individual 

attributes, this person- vs. household-level data might be identical and the distinction 

inconsequential. Yet, for say a family of four composed of two parents and two children all 

living together, or an apartment filled with co-habituating college roommates, this data 

distinction could be incredibly consequential for marketing efficiency. This is in addition to 

concerns for privacy, with postal address at times bearing different sensitivities than data 

associated with a unique person identifier.  

This distinction between household and individual determines how addressable the 

corresponding targeted advertisement might be, and applies to most of the previously discussed 

examples and origins of these data. It also impacts just how intimate the data broker’s database is 

with different kinds of personal data linked to either individuals or groups of people. 

For marketers, personal data associated with a particular four-person household identified 

by say street address, IP address, or other household identifier might be considered noisy when 
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seeking to target only that family member who has managed to earn his household a particular 

label in a data broker’s system (e.g., Seeking Professional Services: Legal Counsel). Hampering 

marketing efficiency, in the previous four-person household example the marketer might be 

wasting, on average, 75% of her ad buys which reach the wrong family members—those not 

currently seeking legal services. 

 As with many other features of these data described below, addressing an isolated 

individual who is thought to possess an attribute vs. addressing an individual associated with a 

household where she or another member of the home posses a particular attribute, impacts many 

other considerations for the how we might think about these data, such as how sensitive, 

controversial, or accurate it is. Important for considerations of addressability, in my observations 

more often than not data brokers did not specify whether individual targeting data were derived 

associated with individuals vs. households. While attributes are assumed to correspond to the 

individual-level given the nature of certain data (e.g., Gender: Female), for others, when this 

distinction is not made it is less clear (e.g., Interests: Education: College Admissions). 

Nevertheless, when this individual vs. household metadata was present, these indicators provided 

a potentially crucial distinction for the corresponding personal data. 

 

Modifiers  

 As noted, some personal data observed provided finer granularity and cues about 

accuracy through the presence of various modifier options. In some instances, modifiers were 

separate from corresponding data and able to be applied in addition to a targeting criterion 

(Frequently Purchased: Excedrin or Frequently Purchased: Tylenol). In other cases the modifier 

was essentially hard-linked to its corresponding data, with the two unable to be separated 
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(Frequent Purchasers of Frozen Dinners). Regardless, these enhancement data were most often 

used to assign either a temporal component and/or to reveal the intensity or potential accuracy of 

certain data. In some cases data modifiers served as a prefix to indicate the origin or nature of the 

targeting data (e.g., Tweeted About: Movies; Reads Webpages About: Dieting & Exercise). 

 Time-based modifiers corresponded to the past, present, and future behaviors and 

attributes of internet audiences. For instance, these modifiers looked backwards (e.g., Over 12 

months ago: Purchased: Sports Car; In past 7 days: Purchases made at: Trader Joes; Recent 

transaction for: Audiobooks). They also looked to the current moment (e.g., Owns: Boat; 

Present Home Value: >$1,000,000; Current Cash Savings: <$500). Finally, these temporal data 

modifiers looked into the future (e.g., In the Market for: Automobile: Used: Compact; Highly 

likely to purchase in the next 30 days: Cellular Phone). 

 Some of the future-oriented temporal modifiers were quite ambiguous, with a lack of 

metadata to explain their freshness and leading to questions of about accuracy. For instance, it is 

unclear exactly or roughly how long a person is "in the market for" a specified item, which 

probably depends heavily on the item itself (e.g., automobile vs. shoes). This modifier attribute 

could be short-lived or may reach far into the future. It may become inaccurate when a 

corresponding purchase is eventually made, especially if no parallel signal indicating purchase is 

ever captured. Alternatively, this attribute of being in the market would over time fade away for 

the internet user as her interest wanes. In this way, some personal data stored by data brokers has 

a definite shelf life, though in my observations this duration was not rendered clear for the 

marketer’s vantage point. 

 Additionally, some temporal modifiers revealed the dynamic nature of these data, in 

many cases constantly changing and requiring automated updating as perceived time-linked 
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attributes continually come and go. In this regard the freshness of certain personal data is 

presented by data brokers as a feature (e.g., In past 30 days), likely to be used or not used by 

marketers depending on the product being advertised, as in the case of time-linked targeting data 

indicating an internet user’s purchase "In Past 7 Days" of a new home vs. Frosted Mini-Wheats. 

 Other modifiers indicated or added different levels of accuracy or intensity in the 

corresponding data. For example, the following modifiers instilled varying levels of confidence 

when attached to corresponding targeting data: Interested in:, Searched for:, Liked on Social 

Media:, Watched: (TV programs), Declared:, Verified:, Likely:, Highly Likely:.  

 From time-based modifiers along with those signaling confidence or intensity in their 

attached personal data, a key affordance of many data available on DSPs is the ability to 

combine one or more data items to produce more specific targeting criteria. Typically modifiers 

act as simple Boolean operations, in this case requiring the presence of two or more items 

simultaneously to produce a positive result—a particular internet user. 

  

Boolean Logic 

 Boolean logic is key to how DSPs and integrated third-party data can be leveraged in ad 

targeting. This applies not only in the previous case of adding a modifier to an existing type of 

data but for a range of other operations that dramatically alter the capabilities of third-party 

personal data. Most DSPs observed provided user-friendly integration of AND, OR, and NOT 

Boolean operators to allow combinations of personal data resulting in more sophisticated 

targeting. Use of the AND/OR operators in the context of targeting by data allows for complex 

and in theory unlimited combinations (e.g., (Parent OR Grandparent) AND (Frequent Shopper: 

Wal-Mart)). 
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 Perhaps the most notable feature here is the ability to use negation, where a negative 

operator allows marketers to NOT deliver an ad to anyone thought to posses a particular attribute 

(e.g., NOT: Lifestyle: Religious People). More likely than negative targeting alone is to use 

exclusion statements in combination with inclusion statements to increase likelihood of reaching 

one’s target audience (e.g., Past Charitable Donors: International Aid Efforts AND NOT: 

Lifestyle: Religious People). 

 Regardless the case, as endless combinations of personal data using Boolean operators is 

possible, the ability to exclude audiences based on data broker offerings is a powerful yet 

perhaps overlooked feature of these platforms and in critical discussions about ad targeting in 

general. Though the accuracy of targeting data is always in question, still the ability to 

systematically exclude many of those people thought to possess specific non-target attributes 

represents a break from prior ad-buying processes. That is to say, even though buying ads during 

specific radio or television programming or appearing in certain magazines or newspapers 

always decreases the odds that certain people who do not typically consume these media will be 

exposed to the advertising messages they contain, this method does not systematically exclude 

these non-target audiences from receiving this advertising. 

Yet the affordances of Boolean logic when using DSPs to executive online ad campaigns, 

specifically via the exclusionary NOT operator, signal a marked shift in the ability to exclude 

unwanted audiences when conducting advertising. In some applications this exclusionary 

capability might raise concerns over fairness (e.g., NOT Income: <$500,000) or even social 

discrimination (e.g., NOT Ethnicity: African American). At the same time, this targeting 

affordance and the efficiencies it offers could lead to decreased costs associated with executing 

online campaigns ultimately improving a marketer’s return on advertising investment.  
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PART 2: Exploring the Dynamics of Third-Party Personal Data 

 In addition to assessing the nature of third-party personal data and exploring the resulting 

information asymmetry, I further examined how these data function when put to use by 

marketers. Noting the character of data provides insights into what is captured in the digital 

enclosure and how it can be put to use by marketers to personalize online advertisements. 

Examining the functionality of these data adds an additional layer of understanding regarding 

their broader implications in the digital marketing environment. For instance, if utilizing these 

personal data lead to more democratic outcomes, we might ascribe a net benefit to their 

underlying systems and the activities of marketers. Alternatively, if these data appear to reinforce 

existing disparities, this could bring its own set of new challenges. 

One way to explore the personal data available on RTB platforms for ad targeting is to 

look at how popular certain data are compared to others. In this case, popularity provides a direct 

proxy for which personal data and corresponding people or audiences marketers target ads 

towards more than others. As the financial costs of advertising largely determine who gets to 

send promotional messages to whom, when, and where, in addition to what these costs reveal 

about who is targeted, the pricing dynamics of the emerging advertising ecosystem warrant 

further attention. Therefore, it stands to reason if some consumer segments are easier to reach 

than others, due to being in less demand and/or less expensive at auction, this may have both 

positive and negative implications linked to consumer vulnerability and the type of advertising in 

question such as political ads, ads for products and services, or prosocial public service ads. 

Accordingly, I examined the market-based audience costs on RTB advertising systems and 

considered the following: How do supply and demand forces in real-time bidding ad networks 

impact audience pricing at the level of individual traits?  
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 To explore the bidding component of the RTB phenomenon, I conducted a series of tests 

assessing differential pricing for online advertisements when targeted towards single-trait 

audiences identified by third-party data providers. Audiences were segmented by one of the 

following: gender, level of education, income, U.S. political affiliation, or relationship status. 

From the existing partnership with a non-profit organization, their healthy living ads supplied the 

promotional media and ad campaigns. I purchased online display ad space for delivering the 

healthy behavior ads on 30 prominent U.S.-oriented websites. These publishers (websites) were 

selected due to their immense popularity based on comScore (comscore.com) traffic rankings. 

The websites included a variety of the most popular websites for news, entertainment, e-

commerce, general information, and other highly prominent websites based on web traffic 

originating in the U.S. (by total monthly visitors). Ad space was bid upon using third-party 

audience data from multiple providers. Bids were placed from the single DSP which accessed 

multiple industry-leading ad exchanges and ad networks. 

 Of importance to the present study with respect to ad impression bidding and pricing is 

how the auction component functions in RTB, specifically how winning bids are determined and 

charged to the marketer (see diagram in Ch. 2, Fig. 2.2, Real-Time Bidding Process).26 As noted, 

typically, RTB systems use so-called “second price” auctions to determine the cost charged to a 

winning marketer and, conversely, what is paid to the publisher of the ad (Edelman, Ostrovsky, 

Schwarz, 2007). Under this scheme the highest bidder pays only the price of the second highest 

bidder, or sometimes a fraction of one cent more, rather than paying their actual maximum 

																																																								
26 Different RTB systems use slightly different flavors of second price auctions and not all platforms specify to users 
which is used, though the logic is unchanged in that the winner only pays the same or slightly more than the second 
highest bidder not the winner’s original bid amount. Whether a platform uses a standard Vickery auction scheme or 
Generalized Second Price option is inconsequential to the present study. More importantly, the integration of second 
price auctions in RTB systems facilitates the design of this study, which relies on a fixed maximum bid amount used 
across all campaigns reported, allowing for comparison of win/loss ratios within categories (demographics). 
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amount bid. The subtle brilliance of the second price auction is its ability to instill confidence in 

buyers who are assured they are never paying more than their closest competitor is willing to 

pay. For example, a maximum bid level of $20.00 (per 1,000 ad impressions) would win ad 

impressions at a wide range of auction prices almost always paying below this $20.00 bid 

amount (divided by 1,000 in this example) and a different price for each impression. The 

amounts paid depend almost entirely on the other marketers’ maximum bids.27 This competition 

is the central conceptual thread knitting together the components of ad exchanges via real-time 

bidding. Additionally, to provide more robust assessment of the dynamics of these data, 

accounting for any seasonal variation or timing anomalies, identical ad-buying test campaigns 

were executed at three time points during April, July, and December of 2014. Additional ad 

campaigns were tested and executed for the non-profit client. For a straightforward example, I 

present results from these three months in 2014. Results were merged across the three time 

points to provide a longitudinal view of pricing dynamics. 

 Additionally, by using an assortment of ad networks and ad exchanges, resultant auction 

data was not specific to any particular company’s network (e.g., Google, Facebook, Yahoo!, 

OpenX) but instead reflective of the much broader network of ad networks and exchanges and, 

therefore, characteristic of the RTB space more generally. 

 All bids were limited to U.S. web traffic and all auctions operated under a generalized 

second-price scheme as previously described. In total, for all tests during the three time periods I 

																																																								
27 There are a number of technical details beyond the scope of this chapter that prevent RTB ad-buying from being 
purely auction driven, including mechanisms to prevent all ad impressions from being sold at the current best-
available second price. As there are times when doing so would favor one party in the system too heavily over 
another (e.g., a marketer buying ads vs. a publisher selling ad space). For instance, “price floors,” degree of “session 
depth,” and “waterfalling” each influence how bids are evaluated in different RTB scenarios. For further 
explanation, see http://adexchanger.com/data-driven-thinking/real-time-bids/ and http://adexchanger.com/the-sell-
sider/the-programmatic-waterfall-mystery/ 



	 81 

competed in >200,000 RTB ad auctions. The bids, which were all placed at the same consistent 

dollar amount, were successful on ~45,000 occasions for an overall RTB win rate of 22.5%. 

 Using a consistent bid amount, win rates can be compared using Pearson chi-squared 

goodness of fit tests. Expected values for the proportion of successful bids for each trait were 

computed using an assumption of equality within that category. Essentially, this test imposes the 

assumption that categorical outcomes will be similar; that is, that the distribution of outcomes 

among a category (i.e., in this case Democrats vs. Republicans) will be equal even though the 

number of observations for each likely differ. 

 Below, I briefly summarize the results from this series of ad-buying tests. Results are 

compared only within each group (e.g., gender) to locate differential demand and pricing for 

these categories, as comparison among levels in different categories (e.g., female vs. Republican) 

will always result in statistical differences. Instead, I was interested in whether within the 

categories tested, whether certain attributes were in greater demand by other marketers, which 

would be apparent by the relative difficulty and corresponding price of winning ads targeted at 

each attribute within a category (e.g., Democrats vs. Republicans). 

 

Results 

 For ads targeted by gender, the proportion of bids won differed significantly between 

females and males, χ² (1) = 41.43, p < .001, with males more difficult to win at auction than 

females. Ads targeted by education level also differed significantly, χ² (2) = 2787.29, p < .001, 

with those believed to hold a high school diploma or college degree in higher demand than those 

estimated to have an advanced degree. Targeting by income differed significantly, χ² (4) 

=742.67, p < .001, with the lowest income individuals (<$25K) in less demand and easier to win 
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than middle ($25K-$60K, $60K-$75K, $75K-100K) and upper ($100K+) income consumers. 

Democrats were significantly more difficult to win than Republicans, χ² (1) = 225.72, p < .001. 

Finally, the proportion of successful bids differed significantly when targeting by relationship 

status, χ² (4) = 4755.31, p < .001, with those labeled single or married substantially more 

difficult to win than those thought to be divorced, engaged, or widowed. All differences 

observed were significant and highly unlikely due to chance.  

 This test over three-time points offers just one characterization of today’s online attention 

marketplace. The main observation from these tests is that certain audiences, as identified and 

segmented by individual traits provided by third-party personal data suppliers, were shown to 

consistently be more costly and therefore difficult to reach with targeted online advertisements 

than others. This is inherent to the real-time bidding system, where the bid process inflates the 

costs of certain audiences over others as a direct product of different bids placed by marketers, 

illustrating supply and demand pricing dynamics of RTB platforms. Across these ad campaigns, 

differential audience pricing was located within each of the categories targeted with the healthy 

living ads, including: gender, income, level of education, political affiliation, and relationship 

status. 

 

DISCUSSION  

 Based on observations of an array of personal data offerings made available to marketers 

for personalize ads, from a multitude of third-party data providers on different ad-buying 

platforms, I found compelling evidence for what scholars sometime speculate about but less 

often provide tangible evidence towards, the existence of a grand digital enclosure. Andrejevic 

(2007) describes, “…when we go online, we generate increasingly detailed forms of 
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transactional information that become secondary information commodities: information that may 

eventually be sold to third parties or used by marketers for targeted advertising campaigns” (p. 

2). Part one of this study located and synthesized just some of these information commodities in 

the context of personalized advertising. The digital enclosure appears to be vast, alive, and well. 

Few have contested this is the case, yet first hand examinations into the nature of these consumer 

data have been largely absent. I have aimed to present and synthesize some of these data in 

efforts to provide a clearer picture of the information asymmetry that many believe to 

characterize the interactions between online systems and consumers today. 

 Additionally, the way in which these data are available in plain view and ready access to 

marketers, yet typically unknown to many consumers, further erects and exacerbates information 

asymmetry. Many of the data located in my observations do not originate online, that is they 

come from many “offline” sources, such as in-store purchases, tracked by credit card 

transactions, shopper reward cards, and sophisticated couponing (e.g., those mailed to 

households with unique identifiers, later matched to households when redeemed). This 

availability of consumer data from a multitude of non-online sources call into question the notion 

of contextual integrity. Understanding online ads as being delivered in the context of online 

behavior, it would seem a great many of the forms of consumer data I observed might violate 

current notions of contextual integrity. That is to say, consumers may not expect that data 

corresponding to their activities such as the type of job they have, the number of children they 

have, and which charitable or political causes to which they make financial donations would later 

be used to selectively show or not show them a particular advertisement on the internet. Yet, it 

appears this is the case. 
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 In part two of this study, I conducted a series of tests in which I bought advertisements 

targeted at specific attributes in a selected group of examples. The results from these tests, 

repeated at three time points over different months during the same calendar year, illustrated the 

way in which attributes become more or less expensive to target based on supply-and-demand 

and also how much other marketers are currently paying when bidding to show ads to these 

audiences. Certainly, this simplistic example only suggests differential pricing and does not 

necessarily indicate that the attributes that were more difficult to win in my testing are always 

more costly and difficult to target. 

 A further caveat when interpreting the outcomes from part two of this study is that these 

real-world ad buying tests are unable to account for audience size within each category tested, 

which is also likely to have an impact. A hypothetical example helps to illustrate this limitation. 

Consider the category of gender: If we knew there were only half as many females as males 

using the internet, then we would expect ad auctions for female audience members to occur 

roughly half as often as those for male audiences. As marketers set bids for audiences ahead of 

the auctions themselves (prior to an audience member loading a web page or app), these bids by 

multiple marketers are essentially sitting and waiting for the same targets, in this example for 

female internet users to visit certain web pages or apps. Thus, given equivalent demand, the 

nature of the second-price auction would effectively drive up the price for females given the 

limited supply. In this case, if there really were half as many female as male internet users, 

marketers would expect to pay a premium for them compared to males; that is, if they are 

attempting to target females and males at the same frequency, which may not be the case. 

Despite this possible effect of audience size, or perhaps an effect of over/under supply for a 

particular trait given its relative demand from marketers, the outcome of differential pricing 
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remains just that: differential. Some attributes become more or less costly than others. This 

difference is the result of both marketers willing to pay more for certain audiences and the 

relative number of internet users possessing this attribute (e.g., male, Democrat, single, etc.). The 

amount of variance in pricing that could be attributed to audience size is not accounted for by the 

method used to examine relative audience values in the current study. However, despite 

underlying explanations for why it is more costly to reach people with some attributes compared 

others, in these tests targeting certain audiences within a given category (e.g., relationship status: 

married vs. divorced) was more expensive than others due to supply-and-demand affordances of 

a real-time bidding. 

 Overall, policymakers interested in understanding the degree to which online 

environments offer a level playing field might take note of these differences. In the aggregate, 

systematic differences in individual attribute pricing may affect the degree to which more 

broadly targeted ad campaigns send advertising messages to certain groups and not others. 

Consider the case of setting a maximum bid to conserve your marketing budget, which then has 

the secondary effect of limiting the exposure of your advertisements to those who are less 

expensive due to being in lower demand by other marketers. Or, similarly, consider the context 

of online political advertising, where the ability to target more easily young or old, rich or poor, 

liberals or conservatives, could favor one political candidate over another in the aggregate. At the 

same time, a similar advantage emerges for targeting ads that promote, for instance, predatory 

products and services or, conversely, advertisements that promote healthy behaviors, as in the 

case of the ad campaigns used in the current study. If more advertisers are in competition for a 

particular audience, thus willing to set higher bid prices for that segment, then consumers 

possessing this trait (e.g., household income > $100K) become more difficult (expensive) to win 
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at auction when attempting to deliver targeted promotional messages. The opposite holds true 

when considering less desirable consumer segments who by being in lower demand are therefore 

easier to win at auction under RTB supply and demand pricing conditions. Additionally, though 

not likely to be the case in my empirical tests, if the unevenness of these effects were to meet the 

criteria for disparate impact, then the proprietors of these systems may incur legal liabilities 

related to providing means for prohibited forms of social discrimination. Due to a range of legal, 

commercial, and technical reasons, locating potential harms embedded in these technical 

arrangements, like social discrimination, has not been easy (Stevenson, 2014). Importantly, each 

of these previous considerations correspond to understudied dynamics of proprietary user data, 

algorithms, and systems that operate beyond the view of the audience members whose lives these 

processes impact. 

 

CONCLUSION 

 Overall, I find ample evidence for the presence of the digital enclosure. While every 

transaction and interaction may not generate information that ends up in a data broker’s 

repository located in some far off data center, it seems a great proportion do. Records of these 

transactions, along with derived and inferred consumer attributes based on these records, are 

exchanged in a marketplace for consumer data and internet user attention. Initially, it was a 

perceived information asymmetry linked to advertising personalization systems that prompted 

my up close inquiry reported in this study. In attempting to further understand and explain this 

phenomenon both to myself and others, I attempted to step through the one-way mirror that often 

characterizes the interactions between marketers and consumer on the web. The result is a 

documented information asymmetry, supporting, to some degree, the criticisms levied by 
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scholars and advocates in recent years regarding the digital enclosure and the degree to which 

consumer data persists outsider the view of those individuals it describes. 

 In locating worthy research problems related to marketing, Shugan (2003) calls for 

academic researchers to engage in studies of interest beyond the academy; that we might aim to 

appeal to a variety of external audiences in addition to scholarly interests. He identifies 15 

stakeholder groups to consider who influence or are influenced by marketing related research, 

including: policy makers, marketing practitioners, members of the news media, and consumers, 

among others. By taking on the vantage point of the marketer and analyzing digital consumer 

data and advertising personalization from the inside, so to speak, I hope this study might engage 

several of these audiences who otherwise may not have adequate information from which to 

form opinions nor be in conversation with one another about this topic given the opacity with 

which the these systems operate. 
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Chapter 4 

It acts like it knows me: How consumers think about personalized online advertising 

 

 In this chapter I present a study drawing from a series of focus groups I conducted with 

adults to examine how individuals reason about advertising personalization. I set out to explore 

the mental models people rely on for interacting with online advertising in their daily lives, in 

particular advertising they believe has been personalized for them. Prior work examining 

consumers’ perceptions of advertising has mainly focused on what people think about the act of 

advertising, gauging public opinions about advertising in general or advertising on specific forms 

of media. The result is that we know a great deal about what people think about advertising. 

Instead, we might gain additional insights by exploring not only what people think but also how 

they think about various advertising practices. Given the prominence of personalized advertising 

today, primarily delivered through websites and apps, this study seeks to understand how 

individuals reason about online ad personalization by exploring consumers’ mental models of 

this process. In doing so this article builds on established work investigating mental models in 

human-computer interaction, applying and extending this line of inquiry into contemporary 

advertising studies. Based on observations from a half dozen focus groups with adults in the U.S. 

and U.K., it appears consumers may have fairly coherent and even consistent mental models of 

how online advertising personalization is achieved. Similarly, the common parts these models 

lack may also reveal important insights about how consumers may not be thinking about ad 
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personalization, absences that could be equally important in understanding how people reason 

about this everyday online experience. 

 

INTRODUCTION 

 Advertising researchers have advocated for increased public knowledge of advertising 

practices to enhance consumers’ understanding of how persuasive mechanisms work. For 

instance, recently investigators have examined the viability of various advertising education 

interventions such as those coming as early as elementary school (e.g., Nelson, 2016). These 

efforts highlight a conviction few in the field would contest: consumer knowledge of advertising 

mechanisms is important in furthering public understanding of advertising, and that overall this 

is a worthy goal. Further, this conviction crosscuts the various stakeholders and interests in the 

field. Practitioners, academics, and policymakers all stand to benefit from greater public 

understanding and engagement with advertising, though each in different ways. Therefore, it 

follows that insights into how ordinary people think about advertising practices should benefit 

each of these stakeholder groups in informing them about how best to interact with their various 

constituents, whether they be consumers, students, or citizens generally. 

Most research on consumer perceptions of the now well-established construct 

advertising-in-general have focused on what consumers think about advertising, but less 

commonly on how they think about advertising. This distinction can be subtle, yet important 

particularly as these two lines of inquiry, along with associated behavioral implications, are not 

the same. This void is likely more pronounced when it comes to more recent developments in the 

state of the art, such as the rise of digital advertising messages that can be tailored towards 

individual viewers using consumer data and in fairly sophisticated ways.  
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 This study draws on a series of focus groups with U.S. and U.K. adult consumers to 

explore how individuals think about one process among today’s much larger contemporary 

advertising practice—personalized online advertising. In doing so, this article builds on previous 

work theorizing the impact of mental models. Prior work on mental models has primarily been 

relegated to studies of human-computer interaction, a line of inquiry the current study extends 

into contemporary advertising studies in which inquiry into consumers’ mental models of 

advertising process itself have been largely absent. The rationale for this union of scholarship, 

between what we know about people’s invisible mental models and consumers’ perceptions of 

advertising, is twofold. 

First, and perhaps obvious, an increasing proportion of consumers’ interactions with 

advertising are inseparable from their interactions with computers. Advertising and digital 

advertising are now largely synonymous; marketing strategy has become digital strategy. 

Moreover, the marriage of advertising and networked computing extends to “offline” marketing 

channels too, as evidenced in promotion of brand’s social media accounts and campaign hashtags 

now prominent in television commercials, magazine ads, radio spots, and roadside billboards 

(i.e., the text “Follow us on Instagram @Starbucks” appearing at the bottom of a printed 

newspaper advertisement).  

Second, advertising researchers have routinely cited the need for more cross-disciplinary 

approaches to advance the field (e.g., Rotted & Taylor, 2009). While this appeal for cross-

disciplinarity is far from unique to advertising studies, given the increasing embeddedness of 

advertising in consumers’ online experiences, the field is particularly well suited for this kind of 

cross-pollination drawing from human-computer interaction. Connecting these areas of 

scholarship, advertising’s ongoing inquiry into consumer perceptions and human-computer 



	 91 

interaction’s emphasis on the mental models of systems employed by “users,” reflects both the 

need as advertising researchers to go where the field has taken many of us—to studies of 

computer-mediated advertising. This type of cross-disciplinarity might result in new insights by 

leveraging existing bodies of knowledge from other domains instead of struggling to reinvent 

them.  

 

RELATED LITERATURE 

Public Perceptions of Advertising 

 Given the attention advertising research has given to studying advertising itself, we may 

know more about how the public feels about this practice than most other components of 

contemporary society. Similar inquiry has taken place across the globe as well including the 

U.K. (O'Donohoe, 1995), across Europe (Petrovici & Marinov, 2007), in Asia (Tsang, Ho, 

Liang, 2004), and elsewhere (Yu, 2011).  

This line of inquiry tends to examine either perceptions of advertising generally or 

perceptions of advertising when delivered across specific channels. The later include studying 

public attitudes about advertisements on the radio (Sayre, 1939), television (Derbaix & Pecheux, 

2003), and the internet (Schlosser, Shavitt, & Kanfer, 1999), among other media. Further, as 

society-level attitudes are not static and thought to evolve over time, the constant need for 

updating this understanding of public attitude accompanies new generations of people and 

emerging media technologies. 

Examinations of public perception of advertising typically serve a range of interests, too. 

As consumers’ perceptions of advertising are thought to impact subsequent attitudes toward 

specific products and services advertised (Mittal, 1994), practitioners benefit from understanding 
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how ads may be pre-judged and how ads are received irrespective of the ad content. Other 

motivations are to inform policymaking and to more efficiently and effectively regulate the 

advertising industry itself.  

With some exceptions (e.g., Shavitt, Lowrey, & Haefner, 1998), public sentiment towards 

advertising tends to be more negative than positive in many parts of the world, with consumers 

wary of the practice of advertising itself. The picture is muddied, however, as in addition to 

attitudes being more negative than positive they also tend to be highly mixed. For example, 

consumers express both an appreciation for the utility of advertising, which provides a means of 

obtaining information about products and services of interest, while simultaneously voicing a 

distaste for the perceived moral or cultural degradation also often associated with contemporary 

advertising (Pollay & Mittal, 1993). Consumers have been known to assign negative 

personifications to advertising in general, for instance, envisioning the practice as a con-man, 

seducer, or evil therapist (Coulter, Zaltman, & Coulter, 2001). Analyses attempting to 

understand public distaste for advertising have looked to demographic (Alwitt & Prabhaker, 

1994) and psychographic (Dutta-Bergman, 2006) explanations, though these potential 

explanatory factors are not found in a consistent pattern. In addition to common negative 

sentiments expressed toward advertising more specifically, prior work has shown that overall 

consumers tend to be distrustful of advertising as well (Boush, Friestad, & Rose, 1994; Soh, 

Reid, & King, 2007; Soh, Reid, & King, 2009). Complicating this understanding, public 

perceptions of advertising are multi-dimensional comprised of attitudes toward the institution of 

advertising along with toward the specific instruments used by advertisers, for instance, when 

using certain media or persuasive techniques (e.g., Muehling, 1987; Andrews, 1989). This multi-

dimensionality, combined with a conflicting perception that advertising is at times very useful 
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and at times harmful or dangerous, provides a rich albeit slippery means through which to further 

examine the contemporary everyday experience of advertising. 

 In the online context, negative attitudes toward online advertising appear even more 

pronounced than those toward advertising that is delivered on older media channels (i.e., 

newspapers, radio, television). The many ways consumers seek to avoid online advertising also 

indicates a degree of displeasure felt towards internet advertising that outpaces avoidance of 

advertising delivered on other forms of media (e.g., Seyedghorban, Tahernejad, & Matanda 

2015). At the same time, perceptions of advertising delivered on mobile devices and within video 

games have produced mixed reactions, with consumers turned off by unsolicited ads delivered on 

mobile phones, such as those received via text message (Peters, Amato, & Hollenbeck, 2007), 

though largely apathetic rather than angry towards in-game advertisements (Lorenzon & Russell, 

2012). Consumers also express even greater privacy concerns over targeted advertising on 

mobile devices than that on non-mobile devices, in some cases advocating for tighter restrictions 

on advertising delivered on mobile phones (Okazaki & Hirose, 2009). Finally, personalized 

online advertising can conjure a unique form of resistance by consumers due to its perceived 

privacy violations mixed with the perceived relevance personalization affords (e.g., Gigya, 

2015), thus tapping similar yet distinct factors from those underlying attitudes toward advertising 

messages delivered en masse.  

 

Mental Models 

 One strategy for understanding how individuals think about a multi-part system like the 

one supporting personalized online advertising is to explore the mental models people develop in 

response to using this system. A mental model is a representation of a system or process inside a 
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person’s head explaining how it works in the so-called real world, or simply an abstraction of 

something real. Importantly, mental models do not necessarily represent how something actually 

works, only how a person believes it works (McDaniel, 2003). This distinction is paramount 

when considering and probing the impact of these abstractions. Similarly, a mental model need 

not be very detailed, complex, nor correct in order to be highly effective, as its purpose is to 

reduce complexity and thereby allow individuals to better comprehend and take advantage of 

how a process or system functions. In this regard mental models can be best understood as tools 

for reduction that intentionally suppress details rather than seeking to catalogue each and every 

one. 

        Early efforts to understand end-users’ mental models in human-computer interaction is 

seen in the work of Norman (1983), who describes the mental model as a naturally evolving 

understanding reflecting one’s beliefs about a system, acquired through observation, instruction, 

and/or inferences, and which enables its user to predict the operation of the system (p. 7, 12-13). 

Prediction is often a key feature of a mental model, upheld by some as the single criterion of an 

effective mental model. Norman also stresses that mental models are always incomplete, 

unstable, and unscientific and exhibit porous boundaries (1983, p. 8). Generally, mental models 

are thought to play important roles in the ways humans interact with the world. This is despite 

being relatively difficult to articulate or document in most cases. 

 

The Role of Mental Models 

 The role of mental models in problem-solving tasks is now a well-studied activity. For 

instance, instructional techniques that rely on explaining and depicting how an unfamiliar device 

works using visual diagrams have been shown to facilitate device operation much more 
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efficiently than techniques that rely solely on repeated practice (Kieras & Bovair, 1984; Fein, 

Olson, & Olson, 1993). In the case of using diagrams to influence mental model construction, 

simplified visual representations, such as those of the human circulatory system (Butcher, 2006) 

have been shown to be more effective at learning than more complex representations, with 

diagrams in general improving a person’s ability to connect and comprehend complex concepts 

(Fiore, Cuevas, & Oser, 2003). While much of the work on knowledge- and skills-transfer 

investigating mental model development has focused on structural or spatial mental models, such 

as describing how a device works or how electricity gets from a power plant to one’s toaster, 

others have demonstrated the vital role played by mental models in temporal reasoning as well 

(Schaeken, Johnson-Laird, & d'Ydewalle, 1996). 

        Mental models tend to differ among people considerably as well. Prior research on 

mental models has revealed domain experts tend to possess more informative and effective 

mental models than non-experts. For example, experienced pilots were found to possess more 

effective mental models of invisible flight control procedures compared to the models possessed 

by novice pilots, which also lead to superior performance in a flight simulator compared to those 

with less understanding of these invisible processes (Bellenkes, Wickens, & Kramer, 1997). 

Similarly, scientists tend to exhibit higher-order mental models compared to non-scientists, a 

difference shown to directly influence applied reasoning and approaches to problem solving 

about complexity and/or invisible processes (Jacobson, 2000). Similar links between mental 

models and differing task performance between experts and non-experts has been shown in other 

domains (Acton, Johnson, & Goldsmith, 1994; Hsu, 2006; Al-Diban, 2008). 

That experts would exhibit more information-rich and arguably more technically-accurate 

mental models when compared to non-experts is of course unsurprising. Similarly, it is logical 
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that an expert in a given process or system would then be able to invoke these more effective 

mental models and perform better on measured tasks compared to non-experts. For researchers, 

locating these distinctions between the mental models and subsequent performance levels of 

experts and novices can further explain the role played by these abstractions in learning about 

and understanding invisible processes and systems. It also sheds light on some of the ways in 

which the structural, ordinal, and/or temporal organization of a person’s ideas can impact 

decision-making (Hester et al., 2012; Mumford et al., 2012; Barrett et al., 2013). 

 

Models in Human-Computer Interaction 

 In studies of human-computer interaction, there is enduring interest in analyzing the role 

of mental models and assessing how end users’ understanding of computing systems (e.g., 

software, hardware architecture) are formed and how mental models function in everyday use. 

This includes, for example, investigating the role of ordinary people’s mental models of 

information retrieval systems (Borgman, 1986), how hypertext works (Marchionini & 

Schneiderman, 1988; Gray, 1990), locating information online (Brandt & Uden, 2003; Zhang, 

2008; Dinet & Kitajima, 2011), and how the internet works (Thatcher & Greyling, 1998). 

For developers of human-computer interaction systems, mental models have also been 

shown to have great influence on the strategies of computer programmers in software 

development (Storey, Fracchia, & Müller, 1999), highlighting the role of mental models on both 

ends of a system. That is, in its initial design and later during its use. In general, the line of 

research into the mental models of system developers ultimately aims to improve usability for 

end users. In the current study the ends user is simply an internet user who is a de facto consumer 

of personalized online advertisements.  
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Human-computer interaction researchers and designers have gone to great lengths to 

understand mental models. This is because it is generally accepted in this domain that ill-

conceived or unnecessarily complex mental models developed by end users may inhibit system 

use and, further, that optimizing users’ mental models minimizes barriers to the user experience. 

This notion of mental model optimization for end users involves encouraging models that are 

minimally complex, or only as complex as absolutely necessary to facilitate system prediction 

and use. This simple model strategy favors reduction whenever additional details in one’s mental 

model do not directly enhance the use of the corresponding system. Principally, this upholds the 

underlying goal of mental models—to reduce complexity. Importantly for this concept as it 

relates to this study, all individuals who interact with a system will develop, and over time refine, 

their mental models of that system. This process is automatic and unavoidable. This is true both 

for the designers of a system and the users of that system, though the current study focuses on 

end users, or consumers of online ads. 

        Finally, another type of mental model, distinct from that of the designer(s) and end user, 

is the mental model that designers/engineers anticipate users will develop to aid in using a tool 

or system. This is mental model once removed, so to speak, and might be best understood as the 

mental model developers project onto system users, projections that have been shown to have 

substantial implications for designers themselves and the artifacts that result from their efforts 

(Agre, 1995; Bardini & Horvath, 1995).  

 Key to each of these types of models is the idea that end-users’ mental models need not 

be the same as those of system experts, which logically tend to better reflect how a system 

functions, nor the same as the models experts project onto end users. And this idea of a model’s 

accuracy differs from a model’s effectiveness. For instance, investigation into users’ mental 
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models has shown that a “wrong” mental model can be just as effective in helping someone 

operate a system as a “correct” mental model (e.g., Kempton, 1986). 

 

Model Accuracy 

 Finally, the notion of a mental model’s correctness highlights a crucial point for any 

investigation examining end users’ mental models. The accuracy of one’s mental model of 

anything is largely irrelevant. For instance, an end-user might have a much simpler mental model 

of system than its designer simply because that is what is most effective for each person. Yet, 

each of these individuals’ mental models would be wrong in very important ways and neither can 

be fairly described in terms of their “accuracy” but rather only their effectiveness. Thus, 

attempting to evaluate a person’s mental model on the basis of how similar it is to some perfect, 

ideal model misses the point. As the statistician George Box (1979) offered, "All models are 

wrong but some are useful." Accordingly, mental model effectiveness often hinges on relative 

utility including ability to predict, not accuracy, which is largely immeasurable and, in “situated 

action” often irrelevant (Suchman, 1987; 2007). Thus, a mental model of a system that strays 

very far from how that system actually functions (e.g., technically, physically, organizationally) 

can be quite useful, regardless of how it goes about eliminating complexity.  

 Extending these theories and concerns into advertising flows somewhat naturally, given 

the growing synergy between digital advertising and consumers interaction with personal 

computing devices. In this case, the end user is simply the consumer of an advertising message, 

whereas those behind the curtain in human-computer interaction, the “designer,” could be any 

number of players including the marketing practitioner or a brand needing to advertise its 

products or services. Both of these “designers” of advertising interaction may benefit from 
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considering the unseen mental models consumers develop in response to advertising 

technologies and practices.  

 

METHODS 

Study Design 

 To explore how consumers think about personalized online advertising, six one-hour 

focus groups were conducted with U.S. and U.K. adult participants in 2015 and 2016. Four of the 

group interviews were held in Chicago and two in London. I moderated all focus groups myself. 

Additionally, for two of the groups, a paid research assistant was also present who took notes and 

occasionally interjected follow-up questions of participants. The focus groups ranged in size 

from five to eight people and there were a total of 38 participants across the six groups. The 

University of Michigan Institutional Review Board approved this study and all participants 

signed informed consent forms prior to participating. At the conclusion of each session 

individuals were paid $60-$70 in cash (depending on the location) in exchange for their 

participation. 

The decision to collect data through focus group interviews (e.g., as opposed to one-on-

one interviews) was motivated by the technical nature of personalized online advertising and the 

relatively opaque processes that combine to support this everyday practice, such as third-party 

consumer data collection, cookie matching, and real-time bidding operations. Therefore, by 

allowing participants to build conversations off of one another’s previous stated experiences and 

ideas, rather than in the isolation of a single interviewer-interviewee setting, participants’ 

comments helped others acclimate to the topic more quickly rather than relying solely on 

interviewer prompts. Footholds for entering the conversation at times emerged organically. In 
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this way, the group discussions allowed participants to conjure, compare, and contrast their own 

experiences with others out loud, something not afforded by isolated one-on-one interviews. 

Compared to a series of individual in-depth interviews piloted for this study, the focus group 

atmosphere elicited a richer discussion and a wider set of ideas due to interactivity. At the same 

time, the usual shortcomings of focus groups limited what could be learned during these 

sessions, primarily that not all participants are comfortable expressing divergent opinions 

amongst a group of complete strangers and some individuals are less articulate in general when 

made to speak in front of a group compared to one-on-one conversation. 

The focus groups consisted of several activities including a word association exercise 

where participants generated lists of terms they associate with personalized online advertising, a 

drawing exercise where participants sketched a picture depicting how online ad personalization 

works, and a larger oral discussion between participants about advertising personalization. There 

was no attempt to analyze group dynamics or the nuances of participant interactions. Participants 

were encouraged to discuss their ideas and opinions with one another and not just the moderator, 

which they often did. However, the particular group dynamics as they relate to the questions 

posed to participants were outside the interests of this study and these participant interactions 

were not examined. In this way, the sessions served as group interviews to study individual 

beliefs, but not conversation dynamics as they relate to personalized advertising. 

Additionally, in pilot one-on-one interviews conducted for this study, it became clear that 

participants needed to be acutely aware of the scope of the topic prior to discussion. As people’s 

experiences with advertising tend to occur across many channels (e.g., billboards, print, 

television, internet), along with the increasing convergence of integrated marketing 

communications on these channels, focusing group members on personalized online advertising 



	 101 

required a brief introduction and set of examples aimed to ensure participants were on the same 

page about the topic. To do so, at the beginning of the focus group participants were told the 

topic of the discussion was “personalized online advertising,” which was equated with “targeted 

online advertising,” as this concept is also commonly referred to. These two terms (personalized 

and targeted) were used interchangeably by participants, though effort was made to steer the 

conversation towards “personalization” in online advertising rather “targeting,” as the latter has 

been shown to have negative connotation. Participants were informed that the discussion was 

only concerned with their experiences with ads on website and apps that they believe had been 

personalized in some way for them. 

Most groups followed the same basic sequence: a moderator introduction of the topic 

including presentation of a few visual examples of personalized online advertisements, a word 

association exercise, a drawing exercise, and a broader discussion. At the conclusion of these 

activities a secondary follow-up discussion proceeded about how consumer data is used. The 

results from this discussion will appear in a separate research report. 

The rationale for expanding the focus groups beyond oral discussion, adding the word 

association and drawing tasks, stems from prior work which demonstrated that administering 

supplementary tasks before, during, or at the conclusion of focus groups can enhance primary 

data collection efforts expanding what can be learned from the verbal component of a session 

(e.g., Cresswell, 2002; Yoder & Lopez, 2013; Fahey, Verstraten, & Meyers, 2014). Overall, all 

participant activities and question ordering was intended to draw out individuals’ ideas by 

providing minimal moderator explanations especially early on in the discussions.  

Professional transcriptionists in Chicago and London transcribed the focus groups 

verbatim. Transcriptions of the six focus groups served as the primary source of data along with 
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lists from the word association exercise and the set of drawings created by participants. First, 

prior to analyzing the transcription text, video and audio recordings from all focus groups were 

reviewed in full during long undisturbed periods. As the focus groups were held across two years 

time, this provided a refreshment step prior to analyzing the transcripts, drawings, and other 

notes. This review also helped to put the different groups’ ideas into conversation with one 

another. Then, all transcribed text was manually unitized separating individual ideas that were 

spoken consecutively during longer responses from participants (Morgan, 1997, p.120). Once 

unitized, a first pass of coding proceeded. Rather than imposing predefined themes, an emergent 

coding scheme was used with labels, categories, and themes growing directly out of manifest 

content (Creswell, 2007; Berkowitz, 1997). Themes were then revised, combined, and 

condensed. This was followed by a second round of reviewing and in some cases re-coding the 

unitized text under the revised coding scheme. During this second and final round of coding, 

repeated themes were noted to distinguish the most salient ideas expressed by participants. 

Following final coding of the transcription text, each of the audio-video recordings were 

reviewed in full once again in effort to confirm, reject, and otherwise update the themes 

generated based on unitized text. Manual unitization of transcripts, all coding, and theme 

generation was performed using the NVivo (v.11) software platform (qsrinternational.com). 

In addition to analyzing transcripts, all word association lists were later analyzed by 

manually grouping individuals’ lists as one of the following: negative, neutral, conflicted, and 

other. This cursory analysis provided insights into participants’ initial reactions prior to the more 

substantive group discussion. 

For the participant drawings, these were analyzed and coded as well. An initial pass of 

analysis simply included displaying all 38 drawings laid out next to one another to scan for 
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visual similarities and differences. After spending extended time with the drawings laid out next 

to one another on multiple occasions, a closer analysis was performed of the various symbols, 

connections, and text annotations. Similarities and differences in structure, symbols/items, 

activities, players, and interests, were noted. Additionally, key absences in the drawings of 

different components that support personalized online advertising were noted. 

Overall, themes and conclusions were generated through an iterative data analysis 

process (Bogdan & Biklin, 1998), taking into account the video recordings and transcribed 

dialogue of the focus groups along with the word associations and drawings generated by 

participations. As is common in exploratory qualitative studies, an emergent and interpretive 

framework was used in this analysis, arriving at relevant understandings, explanations, or 

theories rather than attempting to test a priori hypotheses (Lofland, Snow, Anderson, & Lofland, 

2005).  

 

Participants 

Local market research firms in London and Chicago recruited participants from the 

general adult population. In both cities, the one-hour sessions were held at professional focus 

group research facilities. Using market research firms to recruit and provide space for conducting 

focus groups has been successful in similar studies that incorporate focus groups in multiple 

locations (e.g., Humphreys & Wilken, 2014). For recruitment, potential participants had to be 

age 18 or older and fluent in conversational English. Additionally, potential participants were 

eliminated if they reported ever working in the media industry (including marketing, advertising, 

journalism, or market research). Finally, potential recruits who reported participating in any kind 

of focus group in the previous two years were also eliminated in effort to avoid any potential 
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“professional” research subjects. While no strict demographic quotas were used, the individual 

groups were filled by balancing gender, age, education, and income among successful recruits in 

efforts to make groups as diverse as possible. The resulting focus groups were relatively diverse 

along these criteria (e.g., sessions were balanced among gender, age, income, etc.). 

Among the participants, 18 were female and 20 were male. The number of participants in 

each of the following ranges was as follows, age 18-25: 5, 25-34: 11, 35-44: 8, 45-54: 9, 55-74: 

5. The income for participants (UK converted to USD) was <$25K: 6, $25-50K: 15, $50-75K: 9, 

$75-100K: 6, >$100K: 2. Participants’ highest level of education completed (UK converted to 

US equivalent) was high school diploma: 10, some college: 7, associate’s degree or vocational 

training: 5, four-year college degree: 11, post-graduate degree: 5. The participants’ race/ethnicity 

was as follows, White: 21, Black: 8, Hispanic/Latino: 3, Asian: 3, Other race/ethnicity: 3.  

Participants were not aware of the topic of the session until arriving at the focus group 

facility. The participant “no-show” rate was relatively low with 38 of the 40 (95%) recruited 

participants attending. One participant arrived seven minutes late and was allowed to participate. 

Participants were provided with light refreshments during the group interviews and were not 

permitted to leave the room. The execution of the groups was without disruption and, likely due 

to the relatively non-sensitive nature of the topic, participants were fairly talkative and 

conversational. No participants exited the focus groups prematurely. Though one participant 

expressed feeling moderately distressed immediately afterwards after learning about types of 

consumer data collection described by other participants that she found to be invasive. All focus 

groups were audio and video recorded. For several of the groups, one or more participants stayed 

after their session was over to ask questions, voluntarily electing to continue discussing the topic. 

These post-session, ad-hoc conversations were not recorded and are not included in this analysis. 
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Educative Authenticity 

For the last five minutes of each focus group, participants were asked to complete a brief, 

four-question feedback form asking them to rate the quality of the session, how to improve the 

session, and their comfort level. Participants were encouraged not to identify themselves on their 

forms. All but one participant reported they felt completely comfortable during the session. On 

the quality of the group, all participants rated the group as being either “excellent” or “very 

good” (response options: excellent, very good, good, fair, poor). 

The feedback form also included the open-ended question, “Do you feel you learned 

anything during the focus group? If so, would you tell us one or two things you learned about 

that were not familiar to you prior to the focus group?” This provided a way to try to gauge so-

called “educative authenticity” (Means Coleman, 2000, p. 278), where research participants are 

exposed to ideas or perspectives different from their own and learn something new as a result of 

participating in academic research. Lincoln and Guba (2000) describe educative authenticity as a 

secondary research goal for academic researchers where participants gain a “raised level of 

awareness” (p. 180) about the research topic, thereby benefiting from their participation beyond 

any monetary incentives paid. For this question on the feedback form, nearly all participants 

reported multiple items they learned during the focus group. Most responses related to gaining an 

improved understanding of how personal data is collected and how online advertisements are 

personalized. The focus groups appear to have been educational for the majority of participants. 

 

DATA & ANALYSIS 

 Following a word association exercise and drawing exercise, participants engaged in a 

discussion based on a set of questions. This discussion was moderator-led using a “funnel-based” 
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focus group interview. This technique begins with less structured discussion and proceeds to 

more specific probing of focus group participants (Morgan, 1997, p. 41). The list of moderator 

entry-point questions appears in online Appendix A. This group discussion occupied the bulk of 

the focus group time and broader themes emerging from the focus group discussions, including 

mental models observed to be in use by participants, are described later in the Findings section 

below. Additionally, as participants also engaged in a brief word association task and created a 

drawing, these data are first detailed before presenting broader findings. 

 

Word Associations Task 

 Following a brief introduction of the topic, participants were first asked to think about 

their recent encounters with online advertising on websites and apps and to specifically think 

about experiences where they may have received advertisements that were personalized or 

targeted for them online. They were then instructed to write down five words that came to mind 

when they think about “personalized online advertising.” After a moment for reflection and time 

to write several words, participants were asked to share a few of the words they wrote down and 

why. The words participants generated appear in Appendix B. 

 

Negative Sentiment 

 The most common sentiment expressed in word associations in response to the phrase 

“personalized online advertising” was negative, captured in various valances. For instance, one 

participant with negative associations wrote: fraud, hidden persuasion, seduction, dishonesty, 

deletion. Two others listing primarily negative words included the lists: presumptuous, 

predatory, sloppy algorithm, targeted and stalking, too much frequency, everywhere, annoying, 
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competitive, respectively. Additionally, two others wrote: annoying, interruption, distraction, 

irrelevant, sales pitch, time waster and repetitive, annoying, money grab, invasive, disingenuous, 

smart, respectively. 

This generally negative attitude towards personalized (or targeted) online advertising was 

unsurprising as skepticism and negatives attitudes toward advertising in general are well 

documented in the literature (Pollay & Mittal, 1993; Coulter, Zaltman, & Coulter, 2001; Alwitt 

& Prabhaker, 1994; Dutta-Bergman, 2006; Boush, Friestad, & Rose, 1994; Soh, Reid, & King, 

2007; Soh, Reid, & King, 2009). Though notably, most of the completely negative lists have 

little to do with the “personalized” component and appear to reveal negative feelings towards 

either advertising in general (seduction, sales pitch) or perhaps towards online advertising 

generally (annoying, interruption) but not necessarily personalization or targeting. From this 

blurring we might conclude, logically, that participants were not thinking about personalized 

online advertising as a substantively different activity than either advertising in general or 

perhaps (non-personalized) online or digital advertising. It is logical that these concentric 

advertising processes would stimulate similar associations with broader parent concepts 

including reactions to advertising in general. 

 

Neutral Sentiment 

 Less common than negative sentiment words were participant lists containing neutral and 

in some cases positive associations with personalized online advertising. For example, a 

participant with a neutral word association list wrote: sports, interests, economics, family, 

politics. Another participant included: pics, words, wording, innovation.  
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Again, given negative sentiment typically associated with advertising in general, a 

somewhat global distaste for online “pop-up” ads, and reported privacy concerns by many in the 

U.S. (Madden, 2014) and U.K. (TRUSTe, 2015), the lack of overtly positive words in 

participants’ lists reflects prior attitudinal measures on this topic. For most consumers the notion 

of personalized (or targeted) online advertising does not conjure blissful feelings; this was the 

case for most participants across all focus groups.  

 

Conflicted Reactions 

 While simplistic, this exercise captured one of the key tensions repeatedly expressed by 

participants in later dialogue and discussed in further detail later: participants’ frustration at both 

“aggressive” consumer data collection practices and at online ads they perceived as targeted that 

are irrelevant to their interests. This sentiment is somewhat contradictory, which many have 

described as the “personalization-privacy paradox” (Awad & Krishnan, 2006), the benefits for 

consumers of personalized content appear in contradiction with the information required for 

personalization and the privacy invasions some associate with relinquishing this information. 

 This conflicted position of the participants on the topic of personalized (or targeted) 

online advertising is seen in individual participant’s words that, in the context of online 

advertising, included positive and negative sentiment words in the same list. For instance, two 

participants wrote: inundated, useful, helpful, scary, indifferent and privacy, selling, interest, 

smart, scary, respectively. Two other participants with somewhat conflicting reactions listed: 

annoying, in the way, not needed, too many, convenient and inspired, economic, convenient, 

persistent, annoying, respectively. 
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Though the word association lists were overall more negative than positive, two 

important dynamics illustrate the heterogeneous sentiment many participants expressed towards 

personalized online advertising. First, not all lists were composed of all negative words and not 

all lists were negative; yet some lists were completely negative and others completely positive. 

This alone signals these different consumers’ diverse associations and reactions to personalized 

online advertising. Second are the individual participants who themselves, within a short five 

word list, included both clearly positive and clearly negative sentiment words (helpful and 

scary). This points to a different diversity of thought. or conflictedness, at the individual level, 

signaling that, consciously or unconsciously, some participants were considering the tradeoffs of 

personalized advertising as they described the process. Further, even many of the mostly 

negative or mostly positive sentiment word lists included at least one contradicting or indifferent 

word, revealing confliction among most of the participants’ initial reactions to the concept of 

personalized online advertising. Overall, the responses to this task point to a more mixed or 

nuanced perception of personalized advertising than purely positive or purely negative 

associations with this concept. 

 

Drawing Task 

 Also early on in the focus groups, following the word association task and a brief warm-

up discussion, participants were asked to draw a picture depicting “how personalized online 

advertising works” on a single sheet of paper. Positioning this exercise prior to more in-depth 

discussions about how participants believed this process works was intended to minimize the 

degree to which participants’ comments influenced one another’s drawings. They were given 

five minutes to create their drawing and told they should be prepared to discuss it aloud with the 
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group afterwards. Not all participants elected to show their drawings to the others, but most 

participants described them aloud even if not revealing their sketches visually. 

Previous work aiming to solicit and examine individuals’ mental models has also relied 

on simply asking participants to make drawings describing how a given process and/or system 

works. For instance, to investigate how individuals think about and navigate hypertext in online 

environments, Gray (1990) asked participants to draw pictures of how hypertext works and later 

made conclusions form these drawings. Further, this draw-me-a-picture method has been used in 

a number of studies to investigate how individuals think about systems and processes which they 

cannot see, such as how electricity is generated and gets into an appliance in one’s home 

(Devine-Wright & Devine-Wright, 2009). More closely related to the current study, this drawing 

technique has been used to study individuals’ understandings of how systems inherent to 

personalized online advertising work, including computers in general (Denham, 1993), databases 

(Kerr, 1990), and the internet (Thatcher & Greyling 1998; Zhang, 2008; Dinet & Kitajima, 

2011). Notably, this rendering technique is imperfect. Ad-hoc drawings of a system or process 

may differ from how the creators of these drawings actually think of and approach that same 

system or process. Hence, it remains a lossy method of extracting information as individuals may 

not be readily aware of the mental models they use. The challenge of accurately depicting and 

documenting individuals’ mental models is well established (e.g., Norman, 1983). Yet, and as 

prior studies have shown, this method is promising for gaining a glimpse into the “pictures inside 

people’s heads” so to speak. Nevertheless, this activity was used to gain insights into consumers’ 

mental models and how they think about how online content personalization is achieved. 

The research goal of this sketching activity was to get a glimpse of participants’ mental 

models describing how personalized online advertising works, albeit a fuzzy or impartial 
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snapshot. Thereby illustrating to some degree how consumers might be thinking about this 

highly technical and somewhat opaque process of online ad personalization. Participants were 

given five minutes to create their drawings. They were told in advance they would need to 

discuss their completed drawings aloud with the group and assured they were not being 

evaluated on their artistic merits, but to do their best in drawing how advertising personalization 

works. Still, when discussing their drawings a common opening statement by participants was to 

remark about how “bad” or “wrong” their drawing was before proceeding to discus it with the 

group.  

When analyzing drawings, similarities and differences in drawing structure, the distinct 

symbols/items included (referred to here as “nodes”), activities, and players were identified. 

Additionally notably absences, or simply what was not present in the sketches that perhaps could 

have been given the many ways in which online advertising personalization occurs, were also 

considered. The following section provides an overview of these commonalities. For example 

purposes, four participants’ drawings appear in Fig. 4.1 below. The complete set of all the 

participants drawings appears in Appendix C. 
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Figure 4.1. Example drawings of personalized online advertising created by participants. 

 

Structure 

 The majority of participants provided a drawing resembling a common flowchart-style or 

network diagram. These basic drawings were typically composed of distinct items (or nodes) 

contained by boxes or circles and connected to one another by lines (or edges). Among these 

common node-edge diagrams, three styles or subtypes were observed each similar yet different 

in important ways. These included a basic linear model, a linear cycle model, and an 

interconnected model. 
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Figure 4.2. Three styles of network diagrams drawn by participants. 

 

Basic Linear Model. In this case, the representations depicted personalized online advertising 

through a very rudimentary linear process. This style of drawing used lines or arrows to show 

progression from an origin point to future nodes in the network to typically the final node, the 

personalized ad itself.  

Figure 4.3. Example of a basic linear model drawn by a participant. 

 

Linear Cycle Model. In addition to the most basic linear process diagram, some participants 

drew cyclical process models, resembling more iterative or repetitive processes. In these cases 

the models still tended to have a beginning and end, but with additional lines and arrows 



	 114 

indicating the process returned to its original starting point. This notion of a linear cycle 

illustrates how some participants considered the ongoing nature of personalization processes 

through a distinct set of events in sequence, yet cycling back on itself as the process repeats. 

 

 

Figure 4.4. Example of a linear cycle model drawn by a participant. 

 

Interconnected Model. The third type of network diagram depicted an interconnected model. 

As it sounds, the interconnected model contains many nodes connected to multiple other nodes, 

with a web of connections appearing in place of a single sequence of one node to the next. 

Interconnected model drawings corresponded to some of the most elaborate depictions of the ad 
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personalization process. For instance, some participant drawings with interconnected nodes in 

effect described what marketers refer to as “cross-device tracking” where a single consumer is 

identified across multiple devices, such as her laptop, tablet, and smartphone, in order to collect 

more accurate consumer data for ad personalization (Dıaz-Moralesl, 2015). 

 

 

Figure 4.5. Example of an interconnected model drawn by a participant. 

 

Nodes 

 With the majority of participants across all focus groups sketching and labeling 

something resembling a network diagram, with the labeled components often connected by lines. 

Additionally, many of the nodes connected by lines were also similarly labeled, pointing towards 
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further consistency among participants’ mental models. Among various types of nodes technical 

artifacts were common in the drawings. Most often individuals drew one or more personal 

computing devices as the point of origin in their drawing, especially for those sketching a linear 

process model. These nodes were labeled computer, laptop, PC, tablet, phone, smartphone, 

which provided a common origin for participants. Other technical nodes appearing included 

those labeled as search engine, database, website, web browser, network, server, script, app, 

cookies, and search/browsing history, among others. 

 Participants often drew lines connecting the nodes in their sketches, including lines with 

and without arrowheads. Arrowed lines signal how some participants perceived a directional 

flow of activities, from one to the next, shaping the ad personalization process. Some direction 

was one-way, with arrows appearing on one end and still others connected items using two-way 

arrows, indicating processes flowing in multiple directions, often back-and-forth between nodes. 

This two-way flow indicating more cyclical or iterative processes, was less common with most 

connecting nodes revealing a basic ordering of events. 

 

Players 

 Among nodes appearing in participants’ models, many corresponded to specific people or 

organizations that play a role in the process of generating and personalizing ads. Key players 

commonly appearing in drawings included the participants themselves, companies advertising a 

product or service, internet technology firms including providers of search engines and social 

media platforms, companies specializing in (online) personal data collection, and generic 

conceptions identified, for instance, simply as marketers or advertisers. 
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Among the commercial players included, it was common for participants to label 

individual nodes as corresponding to specific firms. A small group of named companies 

appeared repeatedly in participants’ drawings suggesting the dominance of these firms in 

participants’ thinking about personalized online advertising and the way some consumer facing 

firms with substantial market share stand in as synonymous with their category in the system 

(i.e., “Facebook” = social media, “Amazon” = ecommerce). Companies appearing repeatedly in 

participants’ drawings included Amazon, Apple (iPhone, iPad, etc.), Facebook, Google, Twitter, 

and Yahoo. Additionally, though unnamed, several additional players were included in 

individuals’ drawings. These included nodes labeled as advertising gurus, marketing companies, 

media minions, and retail outlets, for example. 

 

Activities 

 The various symbols, artifacts, nodes, connections, and other items appearing on 

participants’ drawings typically described a set of discrete activities leading up to the delivery of 

a personalized advertisement. These events were most often linear and sequential in their 

depiction. In addition to the popular decision to draw an end point of the personalized ad 

delivery, the most common activity to depict was some type of deliberate action on the part of an 

internet user that set the process in motion. Among these, most included the act of using a search 

engine, which typically served as the origin of the entire process. For instance, participants 

depicted and labeled activities and nodes in their drawings as “search products online,” “what I 

search,” “flower pot search,” “recent Google searches,” “computer/app searching,” and so on. 

This reliance on consumer initiated activities, such as using a search engine, to impact the ad 
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personalization process demonstrates the active role individuals may feel they have in instigating 

this type of tailored advertising.  

 

Absences 

 While trying to accurately discern what is not present is perhaps a fool’s errand, two 

related activities (or nodes) were conspicuously absent from participants’ drawings. The first is 

any mention of actions or data resulting from activities taking place offline, events that marketers 

routinely use to personalized online advertisements for consumers. This offline-originating data 

includes, for instance, that generated by purchases in brick and mortar stores and captured by 

point-of-sale systems, rewards cards, and credit card companies, all of which are commonly used 

in segmenting consumers and personalizing online advertisements. Instead, participants 

commonly referenced their online behaviors and the presences of “databases” such as those 

depicted as connected with lines from a laptop or smartphone in their drawing. Yet participants 

appear to be thinking these databases and the data they contain are relegated to consumers’ 

online activities. While uncommon, a few exceptions to online activity data included single 

references to a bank account, library books, age, and gender.  

 The second notable absence is more process-oriented: most participants drew process 

diagrams beginning with a consumer taking a deliberate and online action (e.g., performing an 

internet search), which later determined the content of the tailored ad this person received. This 

was almost universal across the drawings. However, this neglects a substantial proportion of 

online advertisements personalized for consumers. As most personalization (or targeting) is not 

the product of retargeting, which makes up only a fraction of all attempts to personalize online 

ads using consumer data. On this absence, notably participants’ drawings commonly revealed 
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some familiarity with social media platforms and that they play a role in the process of online ad 

personalization. However, it appears the role of social media platforms, for instance, was not 

perceived by participants as providing the personalization and delivery of uninitiated tailored ads 

as these platforms tend to do based on conclusions made about users from other online behavior 

(e.g., likes, comments, sharing posts) as well as pairings with offline data. As noted, while 

accuracy of an individual’s mental model is neither the a requirement nor a goal to be pursued, 

these two absences highlight ways in which consumers may not be thinking about online 

personalization processes, in light of how these processes sometimes work. (These two absences 

are further discussed below in the notion of an Online Only World and a Self-Catalyst Mental 

Model.) 

 

FINDINGS 

 A set of themes, metaphors, personifications, and broader mental models emerged from 

participants’ responses. These findings are discussed in detail below. I first discuss six personas 

emerging from how participants described personalized online advertising practices. Then, I 

discuss some additional themes observed also emerging from ways individuals discussed ad 

personalization. Finally, I discuss two mental models participants appear to be relying on when 

reasoning about online ad personalization—the Self-Catalyst Model and the Eye of Providence 

Model. Based on the shortcomings of these observed models, I offer a third prescriptive mental 

model that may provide a more useful way for people to think about online ad personalization. I 

refer to this proposed model as the Broken Clock Model. 
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Personifications Identified 

 When describing online ad personalization, in some instances participants personified 

targeted online ads directly: “They want to get you. They want to grab you” (P26). Similarly, 

other times participants described different personalized ad processes as exerting a human-like 

agency (e.g., utilizing deception), invoking metaphors linked to a number of human behaviors 

(e.g., getting “hustled” by someone). This personification and use of metaphor revealed a 

number of insights for how participants reasoned about online ad personalization. 

The link between metaphor and mental model development is well established; with 

individuals at times relying on metaphors to connect knowledge within larger mental models 

(van der Veer et al., 1990). Other times a metaphor provides the necessary foundation on which a 

mental model is established (Rupietta, 1990). Further, the selection of appropriate metaphors is 

thought to be crucial in developing effective mental models of how things work (Carroll & 

Thomas, 1982), especially because “people develop new cognitive structures by using metaphors 

to cognitive structures they have already learned” (p. 109). Which metaphors someone invokes 

in response to a system drastically affects their success when trying to take advantage of it (p. 

110). For these reasons, in this study I take seriously the personas and metaphorical 

understandings held by participants to better understand how they reason about online ad 

personalization. 

Reflecting overall negative attitudes toward advertising in general, nearly all of the ways 

participants personified and deployed metaphorical language about ad personalization were tied 

to unwanted behaviors (e.g., oppression, harassment, trickery). Here, I present six personas 

identified based on how participants described their thinking about online ad personalization.  
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Dictator 

 Some participants described online ad personalization and accompanying data collection 

practices as though consumers are captives living under the rule of an oppressive dictator: 

“We’re being tracked. We might as well put a thing around our necks and be done with it” (P5). 

Participants described how they feel unable to break free: “There’s no privacy nowadays 

anyway, so you do things, like go on Google, type someone’s name and address in, and [a photo 

of their house] comes up. You can’t escape. So worrying about a bit of privacy? [...] You can’t 

let it bother you because you can’t escape it. That’s how it is” (P10). And participants felt they 

had no choice but to live under this rule of this regime: “Do you really have a choice? If you 

want to use Facebook, for example, can you say, ‘I don’t want them to collect that information?’ 

(P34). Feeling they had little autonomy also influenced some people’s preferences for 

personalization: “Given that [marketers are] going to take that information anyway, I would 

prefer the personalized version [of online ads] because it relates more to me” (P23). 

Participants discussed personalization and consumer data collection as instilling 

conditions under which they were unhappy but had little recourse. Some considered ways to 

escape this oppressive rule including the drastic option of disconnecting entirely from digital 

communications and internet-connected devices: “You can always disconnect yourself from the 

internet and get a normal phone [...]. You haven’t got to be part of it. [...] if you’re not happy 

with the internet or your phone, your iPhone, get a basic phone and just don’t be on the internet” 

(P10). Although not using the internet at all is unviable for most people today, leaving this 

escape route an unlikely option for consumers who discussed data collection and ad 

personalization with terms describing conditions of an oppressive regime. 
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Hustler 

I found some participants feel they are being cheated out of money they should be 

entitled to based on the way marketers and others profit from consumers’ attention and actions 

online: “I think, from [the marketer’s] point of view, it’s actually smart. You know, it’s a smart 

hustle. It’s a hustle. Yeah, that’s what it is. The whole system is a hustle” (P20). Participants who 

thought data collection and advertising personalization processes were hustling money away 

from them, some articulated feeling left out of the financial transactions in this system: “I feel 

like it makes money off of your interests without your permission. […] I’m not getting any money 

off of it. Because they are making money off of [me] I guess a part of me feels like it’s a business 

operation where I’m involved and I’m not a part. Not a member who has a voice” (P9). 

Similarly, another participant voiced feeling he got “played” by personalized ads, which he 

found unnecessary: “I’d rather them not pester me with ads coming up. […] If I want to pick 

something and buy something, I’ll go and look for it myself. I don’t really need [marketers] to 

keep playing me as I’m looking [online], as I’m maybe just reading up on something” (P6). 

 Similarly, some participants exhibited awareness of ways marketers earn money from 

clicks on personalized ads and selling customer data, leading them to feel cheated out of 

something that was rightfully theirs: “But [the data is] about you, so shouldn’t you have 

ownership? I don’t want [marketers] to have it […] so I would say the ownership is mine 

because it’s about me” (P5). Others had similar expectations but were more forgiving of 

marketers. Still they felt they should receive some money too: “I want a cut out of it. [...] 

Because, at the end of the day, we’re giving [marketers] information and they’re pocketing. 

They’re selling on our information. […] Give me a percentage of what I buy online [...] 10% or 

something. It [should] come back to me if they want my data” (P6). Though many of these 
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practices result in free online services, it appears some consumers feel they are caught up in a 

hustle, an exchange of money, personal information, and time spent viewing personalized ads. 

 

Presumptuous Stranger 

 One tension articulated by participants was feeling as though personalized online ads 

presumed they “knew” the participant when in fact they did not really know participants. When 

inferred customer attributes and interests were wrong, and ads were based on this, some 

participants were offended. 

This you don’t know me sentiment was mainly based on experiences where participants 

thought ads had been targeted at them and were deemed irrelevant: “I find it a bit ridiculous 

because I always get adverts that aren’t anything to do with me, but it’s my tablet. It’s like diet 

pills. I never diet. […] it’s totally irrelevant when they think it is relevant” (P38). For others, the 

practice of retargeting simply contributed to feelings of ads “acting” like they knew them: “I go 

into my Yahoo [account] every day, but I also go online and look at sales. And so on the days 

that I just may look in my Yahoo, Macy’s [ads] or something may pop up on the side that I may 

have looked at yesterday or two days ago. It acts like it knows me.” (P33) 

Other participants were put off by the audacity of tailored ads to suggest any products 

whatsoever: “If I want to go shopping for something, I know how the Internet works. I know 

where Amazon is. I know where eBay is. [...] I don’t need a ‘Hey! You probably would like this’ 

ad. It’s presumptuous” (P12).  

Generally, participants expressed dissatisfaction with the inability of marketers or 

personalized ads to know them to the degree they desired. For some this included wishing 

marketers knew them less: “I don’t want [marketers] to know me that well” (P9). Yet others 
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were disappointed with the superficial nature of the connection: “It might be targeted but there’s 

no personal relationship there between us.” (P1). 

 

Stalker 

 Participants commonly described feeling “stalked” all over the internet by personalized 

ads. Some described feeling smothered by tailored ads; just needing a break, but unable to get 

away from ads that steadfastly followed them wherever they went: “I can be at home. I can be on 

my cell phone. I could be at work, on a trip or something, and it’s following me everywhere. It 

never gives me a break” (P33). 

Participants also portrayed ad personalization as unable to distinguish between genuine 

affection and being uninterested: “If I look something up on Amazon. [then] I go to a different 

website. That same product that I looked up, the next couple days, is popping up in an ad. And I 

just took a look at it. That’s it. Just took a look at it. And all of a sudden it’s stalking you for the 

next two days” (P37). Others saw personalized ads as unable to take a hint, not realizing when 

participants were no longer interested: “it’s happens for days and days. I wouldn’t mind if I 

searched today for shoes, tomorrow [saw] another [ad]. That’s fine, you know, but it’s 

continuous, over and over. I looked it up like two months ago. Like, get over it!” (P2) and “I 

looked up [online information about grad] school like twice, and it wasn’t even for me. So, 

relax” (P2). Participants saw their months-old web queries for goods and services or ‘just taking 

a look’ at a product page as insufficient grounds for the marketer to continuing pursuing a 

relationship. Participants described feeling harassed by personalized ads: “I’m trying to do 

something and you are in my way and your harassing is annoying” (P33). Overall, some 
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participants expressed feeling like they were victims of stalking, generally when receiving 

repeated ads for items they were not interested in. 

 

On Again Off Again Lover 

 Many participants described enjoying the relevant advertisements afforded by online 

personalization at times and being distraught by personalization at other times; they seem to like 

personalized ads, on occasion or for a while, and then wish them to go away on other occasions: 

“sometimes when [personalized ads are] asking me to buy something, it frustrates me and 

annoys me because it’s[violating] my privacy. But other times, I’m a musician, so sometimes 

[personalized ads] will say ‘here’s some production techniques about writing music’ […] I quite 

like that because I guess it’s easier to access information that way.” (P34). This on again off 

again way of thinking, enjoying the free benefits of personalization sometimes and at other times 

being turned off by this same functionality was repeatedly voiced by participants in different 

ways: “maybe you were checking [online] for a bank. And here’s some bank ads or some credit 

cards ads. It’s like, ‘God, leave me alone.’ Just because I looked up something. […] [I] can go 

both ways because I’m always looking for a deal. […] If it’s a deal it’s a deal.” (P26). These 

conflicted perceptions led some participants to view the practice as simply “tolerable,” 

acknowledging their inconsistent feelings towards online ad personalization: “It’s like a kind of 

love-hate relationship. We’ll tolerate it. It’s tolerable” (P18).  

 

Eavesdropper 

 At times, participants’ thoughts around having their every behaviors “stalked” during the 

ad personalization process bordered on paranoia. In multiple focus groups different participants 
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mentioned they believed their smartphones listen to their ambient environment, monitor the 

content of any conversations they might have, and later show them personalized ads based on 

this eavesdropping. As one participant, who felt advertising personalization technology was 

eavesdropping on his life, put it: “You will be talking in a conversation with somebody, and I 

think your phone could, you know… And then you will look at it and [ads on your phone] will be 

like what you were talking about or something you were watching on TV. Maybe your phone 

could hear it or something. It might pick up from where they could hear your phone” (P18). “To 

make sure I understand correctly, the phone could be listening to your conversation or to your 

television to personalize the ads you see?” (moderator). “Yeah. Yes. While it’s not even on” 

(P18). 

While this way of reasoning about how online ads are personalized may sound like 

conspiracy theory at first glance, it may stem from first hand experience where participants 

consciously connect ambient audio to the tailored ads they receive. In 2016 the U.S. Federal 

Trade Commission issued a warning to mobile app developers using the SilverPush audio 

beacons framework, which turns a smartphone’s microphone on when not in use to pick up 

background audio (FTC, 2016). SilverPush uses this background audio to create a hidden list 

containing the television programs that a smartphone owner watches, or at least the programs 

one’s phone has been in the audible presence of, and this data is then sold to marketers for 

advertising purposes. Thus, the eavesdropper conceptualization of ad personalization may stem 

from these actual participants’ experiences, real or perceived, of personalized advertising 

received on their mobile phones  
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Themes Identified 

 In addition to personas identified, a number of additional themes and metaphors emerged 

from participants’ descriptions and drawings of online ad personalization. These broader themes 

are described below. 

 

Personification of Personalized Advertising 

 As revealed in the personas described in the previous section, one overarching theme 

emerging from discussions was the tendency expressed by respondents to discuss personalized 

advertising behaving in human-like ways. The resulting personifications, many of which took on 

negative characters (e.g., hustler, stalker, dictator) provided participants with a way to relate their 

understandings of ad personalization practices that they feel exist but often cannot see 

themselves, such as the collection of personal information by eavesdropping marketers. 

 Notably, these personifications often went beyond simply being negative. Participants 

described ad personalization acting in cunning ways, not only exhibiting unfavorable behavior 

but relying on intentionally deceptive maneuvers behind the scenes, as though marketers were 

scheming to harm the participants in some way. While not the case across the board, that some 

participants perceived personalized advertising as full of intentionally harmful processes 

illustrated a rather surprising degree of negativity and lack of trust some participants associated 

with personalized marketing and advertising techniques. Along these lines, one participant 

thought about advertising personalization as though “he” was a type of scheming little man 

living inside her computer: “You are looking up something and all of a sudden, the computer, 

whoever is back in there, that little man, he’s thinking, ‘Oh, I’m going to invade her privacy and 

put this on there and put that on there and put that on there…’ And then what if someone else 
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used your computer? And now they are getting your ads for the things that you looked up” (P26). 

In this example, prior experience somehow led the participant to envision a “little man” who 

intentionally thinks of ways to harm her, including how to invade her privacy by tracking her 

online so “he” can later deliver a revealing and embarrassing personalized ad to someone else 

with whom she shares her computer.  

 

Online-Only World 

 One way of thinking about ad personalization emerging from participant comments and 

drawings is the Online-Only World. In this way of thinking the online world is everything; that is 

to say, there are few if any activities or corresponding consumer data that play an active role in 

the ad personalization process that do not also originate online. Thus, the online world is the only 

environment under consideration given this understanding. For example, in the participants’ 

drawings, in addition to including the use of search engines other activities appearing in the 

drawings were mainly confined to visiting particular websites, using and installing apps, 

generating and having one’s web browsing history analyzed, liking and sharing content on social 

media, making purchases on ecommerce sites, sending or receiving emails, providing online 

account profile information, and other online activities. However, there was little to no mention 

by participants in their drawings nor in the group discussions of offline-originating activities or 

corresponding consumer data that influence how ads get personalized online. This includes, for 

instance, credit card data, data from customer loyalty cards, or demographic and socioeconomic 

data, all of which are commonly used to personalized online ads. Similarly, the Online-Only 

World way of thinking about ad personalization is consistent with the environment in which the 

ad itself is received. To include mechanisms, players, or data contributing to online ad 
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personalization that are not overtly linked to using the web might introduce a rupture, or a 

violation to the Online-Only World that most participants appear to be living in when reasoning 

about how online ads become personalized. 

 

Unprotected Protected Classes 

 When reasoning about how ad personalization does (and does not) work, participants 

imposed erroneous legal restrictions regarding what types of consumer data are permitted to be 

use to personalize ads online. This resulted in some people operating as though unprotected 

classes of data were actually protected, with marketers prohibited from using them to personalize 

ads online: “They’re not able to collect really personal data, are they? […] it’s illegal, therefore, 

the stuff they’re going to store and know is going to be somewhat generic, albeit personalized, 

but it’s not going to be how much you earn per year” (P3). Similarly, though consumer financial 

information including income is incorporated in online advertising personalization schemes, 

other participants invoked imagined consumer protections regarding the use of financial 

information: “for advertising, the type of information they’re going to want to advertise 

something to you is not necessarily that personal. It’s not like they’re looking at your specific 

bank details. They’re just looking at the types of things you’re buying” (P16). Going along with 

these erroneous restrictions, some participants who invoked protections imagined a 

comprehensively regulated system, while also expressing doubts: “I would say [marketers] must 

be policed heavily, [...] and I would imagine they are, but that may be a very naïve thought” (P3). 

Though some participants expressed the exact opposite: “I don’t believe [marketers are] policed 

heavily. I think it’s a free-for-all at the moment” (P6). 
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These unprotected protected classes of data revealed how some consumers think about ad 

personalization under an inflated sense of consumer protection that, in ways described by 

participations, does not exist in the U.S. nor in the U.K. Still, this erroneous assumption is not 

surprising, as previous studies have found that consumers tend to dramatically overestimate legal 

restrictions on personal data use in commerce (e.g., Hoofnagle & King, 2008). Similarly, given 

the number of companies most consumers interact with online, understanding one’s individual 

protections on a firm by firm basis has been shown to be highly impractical (McDonald & 

Cranor, 2008). In the related context of social media curation algorithms, individuals have been 

found to invoke self-serving understandings of these mechanisms, however, self-defeating 

understandings have also been observed (Eslami et al., 2015; Eslami et al., 2016). Though, once 

again, consumers’ misunderstandings of how processes actually work do not necessarily render 

them ineffective (e.g., Kempton, 1986).  

 

Transparency & Unseen Chefs 

 In describing how online ad personalization works, participants often discussed their 

inability to know or see the process. Some articulated the role played by transparency and trust in 

response to the black box nature of ad personalization. One participant likened trusting marketers 

to use customer data to personalize ads in ethical ways as being the similar to the type of trust 

relationship one has with an unseen chef when dining in a restaurant when the kitchen is out of 

sight for the customers and, importantly to his understanding and conjuring this metaphor, of 

unknowable cleanliness: “It’s like trusting a chef to cook you a meal. [...] You can’t always 

(think) ‘Oh, what if that information… ?’ or ‘What if I get poisoned when I go to a restaurant?’ 

It’s that kind of thing. You don’t know how dirty the kitchen is. It’s the same” (P28). 
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The unseen chef metaphor revealed another way of reasoning about online ad 

personalization. That personalization occurs in a black box, with many activities taking place out 

of sight. This means the consumer must trust that those operations occurring inside this black 

box (or restaurant kitchen) occur in ways the consumer would approve of if they could they see 

inside. This association with a lack of transparency characterized many participants’ experiences 

with personalized online advertising and was commonly associated with a feeling of 

disempowerment expressed in relation to data aggregators. These were common sentiments 

voiced by participants across the focus groups.  

 

Responsibility & Taxi Drivers 

Similarly, trust was also invoked in comparing marketers appropriate use of data when 

personalizing ads to trusting a taxi driver: “if someone is driving you somewhere, what if his 

driving is bad and he crashes? I’m just comparing it [to personalized advertising] really” (P28). 

In both cases, trusting the unseen chef and the unknown taxi driver, the notion of the service 

provider relationship brings up a potentially fruitful metaphor not only for how consumers might 

on occasion think more creatively about this arrangement, but also the associated set of 

expectations for acceptable behavior in any successful transaction with an unseen or unfamiliar 

service provider. Key to these service relationships is often trust, which may weigh heavily in 

how some consumers are reasoning about the broader online ad personalization process and their 

relationships with marketers and other collectors of personal data. 
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Mental Models Identified 

Personas and themes identified from the focus group interviews and drawing exercises 

point to common ways participants expressed thoughts and feelings towards ad personalization. 

Related to these outcomes, and providing further insights into how individuals think about 

personalized advertising, overall participants appear to be relying on two mental models to 

facilitate their expectations and predictions when encountering online ads they believe have been 

personalized for them. These are the Self-Catalyst Model and the Eye of Providence Model. 

These models are commensurate rather than competitive with one another, although 

contradictory mental models are not uncommon. However, these models appear to be used, at 

times, in concert with one another while employing one is no requirement for possessing the 

other and some participants comments indicated they relied on only one not both. The Self-

Catalyst Model and Eye of Providence Model are described below. 

 

Self-Catalyst Mental Model 

 The first overarching mental model emerging from both the drawings and understandings 

voiced by participants is what I will call the Self-Catalyst Model. First, many of the drawings 

depicted online advertising personalization as a process that participants themselves set in 

motion through discrete and deliberate action. Most often, this action included searching for a 

product on a website or app. Then, as participants responded to questions and dialogued with one 

another, often they recalled experiences where they received ads online they inferred had been 

personalized based on a discrete act they themselves initiated. 

The notion of the consumer providing a catalyst, and one they are aware of for that 

matter, which directly sets the process of ad personalization in motion is consistent with the most 
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common end point in participants’ drawings—not only a personalized ad but one that was the 

specific result of a subset of advertising personalization known as “retargeting” or sometimes 

“remarketing.” Retargeted ads are simply those generated for consumers based directly on their 

specific prior actions, most often linked directly and overtly to a specific webpage(s) one has 

visited or terms entered into a search engine (ReTargeter, n.d.). For retargeting, the domination 

concept appearing in many of the drawings and when participants described their experiences 

with personalized advertising, the link between a specific catalyzing event on the part of the 

consumer and the specific content of the resulting personalized ad is often strong and direct. For 

example, visiting the URL for a specific blouse on an ecommerce website and later seeing a 

personalized ad for that exact blouse on another website’s ad space. Thinking stemming from the 

use of this Self-Catalyst Model of ad personalization was very common among focus group 

participants and appears to dominate these individuals think about this process.  

This self-catalyst way of thinking is opposed to, for instance, having one’s interests and 

personality assessed by an advertiser, social media platform, or algorithm over any longer period 

of time with these attributes assigned to a user profile gradually and later used to selectively 

present ads to viewers. Then, regularly and casually, seeing personalized ads across websites and 

apps based on this consumer profile data. Or, alternatively, seeing personalized online ads based 

on ones socioeconomic status or based on data from offline activities that advertisers use for ad 

personalization (e.g., job title, automobile, grocery purchases). Instead, as drawn by participants, 

the Self-Catalyst Model suggest advertisers leverage more discrete consumer behaviors to tailor 

ads. This way of thinking conceives as personalization as directly reactionary to online behavior. 

This Self-Catalyst Model of reasoning about ad personalization is also notable as it both 

represents, and somewhat accurately, a common way online advertising personalization is 
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achieved while at the same time differs considerably from how a substantial portion of online ads 

are personalized. That is to say, many online ads exhibiting some form of selective targeting 

towards specific audiences are not the product of retargeting based, such as that based on URLs 

visited or search engine queries. While these activities do stimulate personalized ads, on 

occasion, they represent only a fraction of personalized advertising as oftentimes ads are 

selectively presented, or personalized, for viewers based on ad campaigns targeted towards 

individuals tagged as possessing a specific consumer attribute. For instance, this includes ads 

based on income or interests expressed over time, rather than retargeting and personalization 

based on a live, catalyzing action on the part of the consumer. 

Yet, it is completely logical that consumers would most readily reason about advertising 

personalization using the most visible way this process manifests. That is, under retargeting 

savvy consumers connect the invisible dots between their previous recent behavior and the 

current ad in front of them. Still, the popularity of the Self-Catalyst Model in participants’ 

reasoning suggests consumers may be thinking very narrowly about online advertising 

personalization given the scope of retargeting among the broader targeting of ads online using a 

number of additional data and approaches. 

   

Eye of Providence Mental Model 

 The second mental model participants commonly appeared to be using to reason about 

how online ad personalization works is the Eye of Providence Model. In their study of “folk 

theories” of how the Facebook algorithm works, Eslami et al. (2016) found participants 

operating on the assumption that the popular social media platform was not only all-powerful but 

also all-knowing, aware of every possible detail and capable of using this information to its own 
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advantage and/or that of its users. The authors term this folk theory the Eye of Providence 

Theory after the concept in many religious traditions of God’s all-seeing eye constantly watching 

over everyone and at all times. 

 Similarly, focus group participants in the current study appear to also rely on an Eye of 

Providence mental model when reasoning about how online ad personalization functions. 

Repeatedly, in describing their experiences with online advertising and their specific 

expectations for ad personalization, individuals projected an all-seeing omniscience onto a 

singular system both capable of and responsible for knowing all possible details of individuals’ 

lives, even including invisible desires and preferences—a monotheistic vision of an all-knowing 

system. 

 For instance, participants commonly voiced being annoyed by ads they (rightly) 

perceived as personalized for them under retargeting schemes when they had already purchased a 

product yet continued to receive personalized ads for this same item. Repeatedly, participants 

were dismayed that ad personalization systems failed to take note that they had purchased an 

item online or in a store and therefore were no longer in the market for this product. In this way, 

participants appeared to rely on an Eye of Providence mental model in expecting that some 

singular, all-knowing system not only existed but was able to keep track all of their purchases 

made online or offline. In expecting this singular ad personalization system to somehow stay 

apprised of all of one’s purchases, as not to continue delivering ads for products that were no 

longer being considered for purchase, is somewhat remarkable when considering what this 

would require. For instance, this would necessitate a system that monitored the variety of places 

individuals can make purchases along with those made with cash and/or in the absence of 
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purchase tracking mechanisms such as loyalty cards. Accordingly, the Eye of Providence Model 

observed in use by many participants predicts an omniscient system tracking all purchases. 

 In the case of participants expressing disappointment when the Eye of Providence Model 

often led them to view ad personalization as failing by continuing to show ads for items they had 

already purchased, this way of reasoning about personalized advertising is of course ambitious. 

Yet one can imagine a time in the not so distant future when improvements in tracking 

technology keep retargeted ads in step with purchases more effectively. In this way, in part, the 

Eye of Providence Model may become more useful if ad personalization becomes more 

intelligent. Though the assumption that personalized advertising will only become more and 

more accurate in the future is a contested notion (e.g., Searls, 2012, p. 21-42). 

 Further, participants expectations when invoking the Eye of Providence Model extended 

to technological capabilities that were ambitious beyond simply tracking all of one’s purchases. 

Participants also expected online advertising personalization technologies to know and act on 

participants’ unseen desires (e.g., knowing whether a particular internet search query was related 

to their own interests or conducted for someone else such as a relative of theirs). In this way, 

individuals projected capabilities onto ad personalization platforms that might allow them to act 

on invisible and largely unknowable user preferences—further suggesting consumers at times 

ascribe a God-like omniscience to this system, where the all-seeing eye penetrates beyond what 

can be learned through data analysis alone. Participants also described being annoyed when their 

variable, day-to-day levels of interest in specific products were not accompanied by 

corresponding response in the ads they were shown. This is despite these interests levels being 

invisible and unexpressed, information only an all-knowing being or system might possess and 

be able to act upon. 
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 Additionally, participants invoked the Eye of Providence Model in expecting that ad 

personalization systems were capable of determining whether items they had previously read 

about online or purchased were for themselves or for other people. For instance, a participant 

described dissatisfaction that his shopper rewards card might give him physical or digital 

coupons related to purchased he had made for his mother not himself. Participants reasoned with 

these expectations of omniscience and were then disappointed that the all-seeing eye had failed 

to properly account for nuanced differences.  

 Ascribing omniscience or at least a form of high intelligence to ad personalization 

systems, another participant expressed being disappointed when she began seeing ads on her 

smartphone that were clearly targeted towards children after her niece installed a children’s game 

on the participant’s smartphone: "All my advertisements after that were, literally, little kid things 

for like a month. It was terrible. I had to delete that app" (P2). This line of reasoning expects 

advertising technology to operate at an all-knowing level, for instance, capable of distinguishing 

between which software has been installed for oneself versus others and to personalize ads 

accordingly discerning this level of detail among individual desire and preferences, which are 

often unseen desire and preferences.  

 Overall, employing the Eye of Providence Model results in user expectations for a type of 

perfect personalization, where the advertisements one receives are perfectly tailored towards 

one’s unique and dynamic interests, even those unexpressed or unseen, while simultaneously 

knowing and honoring one’s expectations perfectly, for instance, for which consumer data will 

be collected under which circumstances and how this data is used or not used to selectively 

present advertising content. While the goal of perfect personalization is noble, it is more an ideal 

to aspire towards. In this way, invoking the Eye of Providence Model and expectations for 
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perfect personalization can be more damaging than useful. Further, rather than experiencing 

perfect personalization, the most notable outcome expressed by participants employing the Eye 

of Providence Model was disappointment. As mental models are useful insomuch as they are 

good at predicting the operation of a system, the way in which Eye of Providence thinking was 

often observed alongside experiences when advertising personalization failed to live up to this 

omniscience suggests this is not a very effective mental model in terms of its usefulness. The 

Eye of Providence Model often led participants astray. In this regard, though it appears quite 

popular it is not very useful. 

 

A Proposition: The Broken Clock Mental Model 

 Based on the mental models of advertising personalization participants appear to be 

relying on, perhaps more useful than the narrow Self-Catalyst Model and somewhat the inverse 

of the Eye of Providence Model, is what I will describe as the Broken Clock Model. This Broken 

Clock Model of advertising personalization is completely prescriptive, as it does not come from 

participant descriptions but rather is proposed as a potential solution and replacement for the 

mental models observed in use by participants, models which appear to often leave individuals 

disappointed when reasoning about and interacting with advertising online. 

 The key deficiency common to the Self-Catalyst Model and Eye of Providence Model, as 

observed in how participants use these models, is the severely limited ability of these 

constructions to live up to the primary function of mental models: prediction. Both of these 

models are problematic for those relying on them due to the infrequency with which they help 

consumers predict how ad personalization will function. Instead, both are highly likely to 

disappoint people due to their weak predictive power. In expressing these models, through 
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drawings and spoken dialogue, participants appear to be routinely disappointed by the lack of 

parity between outcomes these models lead them to predict (e.g., anticipating one’s unseen 

desires) and their lived experiences with online advertising. A more effective model would better 

predict these experiences while leaving its users with less disappointment. 

 Of the two, the Self-Catalyst Model appears to be more useful, or perhaps simply less 

harmful, than the Eye of Providence model. The former is correct, occasionally, and when it does 

accurately predict the outcome of personalized advertising, as in the case of seeing an ad for a 

particular swimsuit after earlier in the day searching for this style of swimsuit using a search 

engine, it predicts this outcome very well and its users are not disappointed. At the same time, 

the applicability of the Self-Catalyst Model is very narrow, corresponding to just a portion of the 

many mechanisms by which online advertisements become personalized. Therefore, it will often 

disappoint its user if this is the expectation for how all personalized advertising works not just 

occasions of retargeting. Additionally, and as discussed previously, the Eye of Providence Model 

is also often ineffective in accurately predicting outcomes, typically leaving its users with 

mismatched expectations between what is possible and how marketers actually collect and cross 

reference consumer data for use in advertising personalization. As there is no such singular all-

knowing omniscient system supporting ad personalization, the Eye of Providence Model elevates 

expectations of this system to a God-like level only promising to disappoint its users when 

failing to live up to the expectations and predictions it invokes. 

 An alternative to these two largely unsatisfactory mental models some individuals appear 

to construct and rely would be to use a mental model with lower, more realistic expectations for 

how well various processes within the system function. Though perhaps bleak at first glance, a 

model defined by low expectations could end up being quite useful if it could predict what 
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appear to be somewhat negative experiences with ad personalization, including disapproval with 

some of the ways consumer data is collected along with dissatisfaction when ads that are deemed 

by consumers to be personalized are also deemed inaccurate based on not matching individuals’ 

expressed or unseen interests. In this regard, a low expectations mental model of ad 

personalization, where the model predicts ads to be personalized yet only on occasion to an 

individual’s liking, may be more effective than the observed Self-Catalyst Model or Eye of 

Providence Model employed by participants in this study. 

 Therefore, a proposed mental model for reasoning about online advertising 

personalization is the Broken Clock Model. As it goes, broken clocks are seldom right, correct 

exactly two times each day. Accordingly, their owners and any others who happen to use them 

come to develop low expectations for their performance, as these clocks accurately predict the 

time on the rare occasion, though usually fail to do so. For example, the owner of a broken clock 

may happen to glance up at the clock at the exact moment when the time it shows is indeed 

accurate. Therefore, the clock does not always fail. In fact, it sometimes works just as one 

expects a clock to work by indicating the correct time. When used, the Broken Clock Model 

would lead its users to expect personalized ads to usually, most often, miss the mark. This means 

not being matched exactly or even closely towards one’s interests. In this way the Broken Clock 

Model might be very accurate at predicting outcomes. 

 Similarly, this proposed model might also be useful in predicting not only the end 

product of advertising personalization—the ads themselves—but also its user’s experiences with 

consumer data collection practices necessary to support personalization, activities focus group 

participants also voiced repeated disappointment with based on their understandings of how 

consumer data collection either does or show work. For instance, the Broken Clock Model would 
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lead its user to predict website and apps to be aggressive in their collection and use of consumer 

data, at times tracking behaviors that individuals would prefer were not tracked. Similarly, in this 

sense, employing this model would lead individuals to expect and predict mobile apps, for 

instance, to require access to many types of data from one’s smartphone such as location, 

contacts, camera, microphone, searches, and other data even when it is unclear why the app 

would need many of these items to function properly. Invoking the Broken Clock Model for 

these data collection activities linked to ad personalization further aids users in expecting a 

system that does not always work as one might wish, while sometimes doing so. 

 Finally, and importantly, the Broken Clock Model occasionally succeeds in predicting ad 

personalization not only for the previously described negative experiences but also on those 

occasions when individuals are well-pleased with personalize ads—similar to those times when 

one happens to glance up at the broken clock on the wall when the clock “works” in displaying 

the current time, in seeing a well-targeted ad that one not only enjoys but clicks on to make a 

purchase. In this regard, the model is one of low expectations, but not incapable of predicting 

positive experiences in addition to broken ones.  

 Of course, the proposed Broken Clock Model of advertising personalization is not 

without drawbacks. The most notable is that it is rather bleak. It assumes a broken system in the 

sense of a system that will typically fail to deliver advertising content that a person deems to be 

personalized appropriately towards their expressed or unseen interests and/or failing to honor 

expectations for personal data use. In this way, the Broken Clock Model it is quite the opposite 

of the Eye of Providence Model discussed previously, as the former assumes the system typically 

does a poor job in “knowing” the individual to whom it delivers ads. In general, this expectation 

of brokenness is intended to curb disappointment resulting from other models that assume higher 
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levels of ability, such as the all-knowing Eye of Providence Model, and associated expectations 

for perfect personalization. 

 

DISCUSSION 

Contextual Integrity, Online-Only, & Retargeting 

 The Self-Catalyst Model and Eye of Providence Model highlight how consumers may be 

reasoning about online advertising personalization by projecting their own sense of what 

constitutes appropriate online information use by marketers when tailoring ads. This line of 

reasoning observed in many participants’ drawings and discussion points to what Nissenbaum 

(2010) identifies as “contextual integrity,” a heuristic for determining whether context-relative 

information norms have been violated. In the case of personalized advertising, consumers 

experience this phenomenon in the online context. When speaking about the data used to 

personalize advertising, they spoke from the perspective of an Online-Only World and even then 

almost exclusively considered their more overt online behaviors (e.g., typing in terms to a search 

engine) as affecting the customization of the ads they encounter on the web. Therefore, and 

affirming the central thrust of contextual integrity, these individuals expect online advertising 

personalization and its underlying information practices to be confined to what can be learned 

from online behaviors (i.e., as opposed to offline behaviors/data), especially over behaviors like 

visiting a particular product’s URL. This might explain why marketers’ use of customer data 

corresponding to, for instance, a consumer’s web browsing history (e.g., a specific product URL) 

to personalize ads was both the most salient example among focus group participants and 

generally the most permissible, given the similar context of the original behavior and where the 

subsequent personalized ad is viewed. 
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 The other reason why retargeting and the Self-Catalyst Model was so widely popular 

among participants is obvious but is should not go without mention. Retargeting and similar 

personalization processes (e.g., sponsored search results) connect actions stored in consumers’ 

short-term memory, such as visiting a particular product URL, with personalized advertisements. 

This is in contrast with, for instance, highly personalized online ads based on psychographic 

inferences made by a social media platform according to a consumer’s behavior on the platform. 

Instead, retargeting, though arguably only a small proportion of personalized online advertising, 

is the most perceptible and therefore salient way of reasoning about this practice.  

 Additionally, contextual integrity might also explain, in part, why participants failed to 

describe or depict online ad personalization based on offline behaviors and corresponding data, 

for instance, such as their transactions in brick-and-mortar retailers. Further, this offline/online 

connection, though apparently less salient for participants, may lead to violations of contextual 

expectations for appropriate information use, such as delivering online ads for Cheerios based on 

previous cereal purchases at one’s grocery store. For consumers to imagine online ad 

personalization incorporating activities and data not originating online (e.g., occupation, income, 

whether they are a parent or not) might result in dissonance (Festinger, 1962) given that there are 

few ways for people to learn about the use of offline data in online ad targeting. As a result, the 

use of consumer data from sources not originating from online behaviors (e.g., web searchers, 

account profile information) is likely to strain individuals’ expectations for which personal 

information will be used, how, when, and by whom with many peoples’ conceptions of ad 

personalization understandably confined to data emanating from these online behaviors. 
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 Limitations and Future Research 

 The ways individuals think they think about something, and how they describe this, may 

be incorrect, especially when compared to how people behave in the moment. This potential 

distinction highlights the need for examining more situated action (Suchman, 1987; 2007), such 

as in-situ lab experiments or unobtrusive observation of consumers (Webb et al., 1999). Norman 

(1983) highlights the difficulty in discovering and representing individuals’ mental models, 

warning that you can not simply go up to the person and ask them to discover their mental model 

of something (p. 11). He further cautions how attempts seeking to characterize a person’s way or 

reasoning about something may yield erroneous information because people can state they 

believe one thing about a system when in practice they deploy a completely different mental 

model when actually interacting with this very system. 

Similarly, in this study I have attempted to draw out, analyze, and make conclusions 

based on the mental models and other perceptions individuals hold about personalized online 

advertising. But this approach is lossy at best. At worst, it is misrepresentative. As it is 

impossible to extract a person’s actual mental model of how something works. Mental models 

are abstract and, by definition, immaterial. Nevertheless, attempts to gauge and further 

understand the unseen conceptual models people possesses about online personalization may 

provide information directly useful to a range of advertising stakeholders. This includes the 

practitioners and policymakers who influence the development and regulation of different 

technologies and marketing practices, especially, in this case, those that support consumer data 

collection and personalized online advertising. Further, improving how advertising stakeholders 

perceive consumers may benefit consumers indirectly through improved system design and 

regulations. 
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Another limitation of this work is the inability to completely separate attitudes toward ad 

personalization and those toward related practices. Cleanly distinguishing between participants’ 

attitudes toward personalized online advertising, those toward online advertising more generally 

(such as any promotional messages delivered across a digital channel), and those toward the 

institution of advertising itself is challenging, likely contributing some unknown degree of noise 

in the current study. To address this challenge, questions posed to focus group participants and 

follow-up probes were worded to continually steer participants towards thinking specifically 

about “personalized online ads,” but broader feelings about online ads and advertising in general 

were articulated at times when discussing personalization (i.e., annoyance with pop-up ads). The 

second overlap is between the consumer surveillance by marketing firms and citizen surveillance 

conducted by governments. The notion of “big brother” came up in multiple focus groups along 

with some examples of state surveillance in discussions of participants describing how they 

believed their behaviors are constantly monitored by the government (e.g., via state CCTV 

systems). Further, ways of reasoning about government surveillance practices are increasingly 

difficult to separate from customer data collection by marketing firms. And this entanglement 

has only been compounded by the many revelations in recent years of state surveillance tapping 

the customer data of internet, social media, and telecommunications companies (The Guardian, 

2013). 

 Additionally, of immeasurable influence in this work is my positionality and grasp of 

personalized online advertising processes, specifically the impact of my own mental models and 

how I reason about ad personalization myself. This bears influence on the study design, stimuli 

and questions posed to participants including follow-up probes, and overall dynamics of the 

open-ended focus group discussions. Efforts taken to minimize these biases include neutral 
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question wording and care given to the ordering of focus group activities and questions to 

minimize moderator influence. Yet, bias in interpretive work is unavoidable. As Packer (2010) 

argues, investigators need not and further cannot completely eliminate their own subjectivity in 

designing and executing qualitative inquiry (p. 79). Likewise, the aim of this exploratory study 

was not objectivity but rather to provide a rich set of descriptions about consumers’ ideas and 

experiences to tap intimate knowledge of otherwise unexamined beliefs (Lindlof & Taylor, 2011, 

p. 45). The hope is that any conclusions presented will stimulate other researchers and 

practitioners to explore related questions and/or triangulate these conclusions using approaches 

more suited toward testing the themes I have identified (i.e., using surveys or experiments). 

Finally, findings from focus group interviews do not lend themselves to generalizability 

and no attempt to do so has been made for the broader populations in the U.S. or U.K. 

Additionally, regarding participants sampled, this study relies on focus group interviews with 

residents of global media hubs, London and Chicago, whose experiences with advertising could 

differ widely compared to those in more rural areas, even in these same countries let alone in 

other parts of the world. While this (potential for) variance is unknown, there is no cause to 

believe individuals living in dense urban environments reason in substantively different ways 

about personalized online advertising systems than others. Though this remains an empirical 

question and beyond the scope of this work. As for groups conducted in the U.S. versus those in 

the U.K., no substantive differences were observed between participants in these different 

countries. The most notable distinction was participants’ use of different national chains when 

discussing experiences with brands (e.g., Walgreen’s vs. Sainsbury’s) though of no noticeable 

consequence for how participants described related experiences. And even then a small set of 

media technology companies (e.g., Google, Facebook, Twitter) entered into and dominated 
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responses from both sides of the pond, highlighting the multinational influence of these firms. 

Future work might seek to leverage comparison among urban vs. rural, along socioeconomic 

difference and other demographics, or between countries generally especially as either 

similarities or differences cross-culturally could prove insightful. 

 

CONCLUSION 

 This study examined consumers’ ways of thinking about how online advertising 

personalization works and how they reason about this process. Based on a set of focus groups 

with adults in the U.S. and U.K., it appears how consumers think about ad personalization is at 

times consistent. Common themes emerged in how they described and depicted this process. 

Participants voiced resistance to personalized advertising practices, often discussed alongside 

broader distaste towards marketers’ attempts to persuade them in any form of advertising. At the 

same time, and somewhat ironically, many participants voicing these negative reactions also 

expressed disappointment that the online ads they perceived to be targeted for them were often 

not accurate enough or not personalized enough. For instance, participants often voiced that 

marketers did not respect their privacy, “stalking” participants across websites and apps, while 

also voicing disappointment that ads they received were not specific enough and clearly did not 

understand their interests very well. 

 In response to the practice of personalized online advertising, in an initial word 

association exercise focus group participants expressed quite varied word lists with some 

providing altogether negative associations, others more neutral, and many others demonstrating 

conflicted feelings about the process, such as describing it as simultaneously “useful” and 

“scary.” While participants’ overall discussions about advertising personalization were also far 
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more negative than positive, participants showed diversity both in attitudes about this process 

and how they reason about ad personalization. Seeking to explore how these same consumers 

think about this practice, when asked to draw a picture depicting how online advertising 

personalization works they offered relatively consistent diagrams both in structure and the 

processes included. Many participants appear to possess a related mental model where through 

deliberate online behaviors they themselves provide the necessary catalyst for online advertising 

personalization, even though this Self-Catalyst Model corresponds to only a fraction of ad 

personalization online. Consumers’ experiences may be more similar than different, impacting 

these corresponding mental models and ways of reasoning about personalization. 

Participants thought about ad personalization often relying on personification and 

metaphor. Some went so far as to consider that marketers were inflicting not only harm on 

consumers through data tracking and personalization but doing so intentionally, as in the case of 

one participant thinking about ad personalization processes as a scheming little man inside of her 

computer invading her personal privacy. Other understandings of ad personalization relied on 

metaphor and seem to assume more neutral intentions on the part of marketers, as in the case of 

the unseen chef with whom consumers must entrust their digital data behind the scenes of ad 

personalization, similar to the way consumers must trust that unseen chefs prepare their food in 

an unseen clean kitchen when dining out. 

 If consumers reason about online advertising from a negative starting point, viewing this 

process as opposed to consumers’ interests, influence of this attitude likely shapes how they 

think about the system itself—either as one that serves consumers’ interests first versus that of 

marketers, or vice versa. Given certain economic realities, consumers have little ability to 

influence directly how this system works. Accordingly, operating with a mental model that 
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predicts advertising personalization as serving the interests of marketers first, and not organizing 

interaction in ways consumers prefer, may actually be a more useful way of reasoning about this 

process, at least for the time being. This may sound bleak but it may also be the most useful way 

of approaching and predicting the function of the current imperfect system that supports online 

ad personalization. 

 Overall, the themes, personas, and metaphors identified correspond to how participants 

described online ad personalization. The value in any mental model, regardless of how close it 

resembles that of an expert, is how useful it is. Participants in the series of focus groups revealed 

two distinct, yet commensurate, mental models that appeared to be in widespread use among 

these individuals. These are what I have termed the Self-Catalyst Model and, borrowing from the 

related phenomenon described by Eslami et al. (2016), the Eye of Providence Model. 

Additionally, given the degree to which both of these mental models appear to disappoint their 

users, I have proposed the alternative Broken Clock Model of online advertising personalization 

as a way to mitigate current expectations in this context. Advertising practitioners and 

researchers might take note of the ways participants in this study appear to be thinking about 

advertising personalization, including the use of a number of personifications of this process 

(e.g., hustler, stalker, presumptuous stranger) along with reasoning that they themselves provide 

the catalyst in this process governed by all-knowing system both of which lead to missed 

expectations for consumers. 
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Chapter 5 

The trouble with transparency: Experimental evidence for the negative effects of 

transparency on trust and preference for personalized advertising 

 

 In this chapter I present four experiments I conducted to examine the relationships 

between transparency, trust, and consumer preference for personalized advertising. Experiments 

one and two varied participants’ levels of awareness regarding how ads are personalized online 

by altering transparency in this process, while experiments three and four varied participants’ 

levels of social trust. Similar or identical outcome measures were used cross the four 

experiments to examine the possible effects of transparency and social trust on concepts of 

interest such as preference for advertising personalization along with individual trust in ads, 

websites, and apps. Viewed together, results from all four experiments point towards a quagmire 

for marketers. Across the board, greater transparency about some of the ways online ads are 

personalized for individuals appears to diminish their support for this practice, while at the same 

time increased social trust appears to do nothing to improve how ad personalization is perceived 

nor the degree to which consumers trust online advertising and the websites and apps that deliver 

personalized content including advertisements. Marketing practitioners and policymakers should 

take note as findings point towards possible consumer backlash, including reduced trust in 

marketing and digital environments generally, when some of the practices currently supporting 

online advertising personalization are made more transparent.  
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INTRODUCTION 

 Increasingly, marketers have championed the practice of using detailed information about 

individuals to create advertising content that has been personalized, to varying degrees, and 

delivered to consumers through web browsers and, more recently, in mobile apps as well 

(Sherbin, 2012). This effort parallels the development of the commercial internet (Greenstein, 

2015), routinely spurred forward by the need to store information about its users. Examples 

include the invention of the “persistent client state object,” or internet cookie, to facilitate online 

shopping carts and the completion of multi-page web forms (Schwartz, 2001). It also follows 

advances in information technology and associated synergies with consumer data collection 

efforts resulting in a new nexus of business interests linking developers of commercial websites 

and apps, third-party data providers, and marketing services and other media companies. 

 This move towards personalization in online advertising comes as no surprise, too, given 

that audience segmentation and the use of personalized messaging is highly effective. The use of 

personalized appeals to consumers in advertising, both when viewers are aware and not aware of 

the personalization, tends to be more persuasive compared to general appeals (e.g., Kampe, Frith, 

& Frith, 2003; Lambrecht & Tucker, 2013; Shatnawi & Mohamed, 2012). Hence, marketers and 

others with shared business interests including most of the web’s most popular platforms and 

services providers (i.e., for social media, email, search, photo/video sharing) go to tremendous 

effort and expense to personalize advertisements for consumers delivered on these websites and 

apps. 

 More broadly, personalized content on web platforms comes in many forms, including 

online advertisements but also extending to discounts, product recommendations, e-commerce 

prices, and assorted organic content on social media platforms. Each of these examples can be 
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selectively presented and tailored towards individuals using combinations of verified and 

estimated consumer data. Thus, a considerable amount of the content appearing online is now 

personalized, to some degree, for the consumer. Complicating this matter, following the path 

already entrenched by social media platforms (e.g., Facebook.com) and recently enabled by 

advances in third-party native advertising platforms (e.g., Sharethrough.com), more traditional 

websites and apps have also begun to integrate and intersperse personalized organic and editorial 

content with personalized advertising. As a result, not only is the line between editorial, organic, 

and marketing content increasingly fuzzy online, so too is distinguishing between which content 

has been selectively presented, or personalized, for an individual viewer versus that delivered en 

masse. For internet users this distinction between which content is and is not personalized for 

them is increasingly impossible to make. At least, this distinction is difficult to make with much 

confidence.  

 In advertising, personalization is further justified by the increased efficiencies for both 

marketers and individual audiences. Firms benefit from cost savings by reducing advertising 

expenditure wasted on audience members who fall outside the target audience, while at the same 

time offering better return on investment whenever personalized messages, discounts, and/or 

prices increase favorable response from this targeted group (Goldfarb, 2014; Evans, 2009; Lin, 

Ke, & Whinston, 2012). Of course, market segmentation and tailoring marketing 

communications towards anticipated audience attributes has long been used to achieve better 

results in advertising (Plummer, 1974; Wedel & Kamakura, 1998) and, similarly, to extract 

greater consumer surplus using various forms of price discrimination (Ekelund, 1970; Varian, 

1989; Elmaghraby & Keskinocak, 2003).28 However, the maturation of high-speed computer 

																																																								
28 The study emphasizes the marketing phenomena of advertising personalization (sometimes called targeted 
advertising), rather than, for instance, focusing on audience segmentation, with segmentation being a broader 
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networks and online advertising technology combined with expanded offerings to marketers 

from data brokers have been a windfall for many marketing efforts centered on data-driven 

digital ad personalization (Deighton & Johnson, 2013, 2015).  

 For consumers, personalization of content (organic, editorial, or promotional) provides a 

means of filtering a cacophony of digital content pushed, pulled, and streamed across the 

websites and apps. The aim is to deliver more relevant information to consumers. For 

promotional content, personalized advertising messages are generally upheld as providing more 

relevant product information compared to mass delivery or even context-based online 

advertising.  

 To achieve online content personalization, marketers rely on opaque consumer data 

collection practices. This lack of transparency in how online ads are personalized is justified in 

the name of competition, with consumer data and proprietary personalization algorithms 

constituting trade secrets. As a result, internet users are usually unaware of both the degree to 

which the online content they see differs from what others see and, equally important, unaware 

as to which information about them has been used to perform the personalization. A general lack 

of transparency characterizes the process from the consumer’s point of view. As daily use of 

interactive media continues to increase for many populations, largely in the form of time spent 

using smartphones and tablets, automated content personalization practices including highly 

targeted advertising techniques may pose new challenges for both marketers and consumers.  

																																																																																																																																																																																			
activity under which ad personalization exists. The emphasis on personalization rather than segmentation reflects 
recent advances in marketing, particularly how consumer data at the individual level is used to determine online 
marketing content in a way that exceeds traditional notions of simply dividing audiences into groups based on a 
shared attribute. Today, many forms of personalized advertising are not based on broad group identity segmentation 
(e.g., one’s age, income, location) but combinations of these and actions linked to specific people (e.g., purchasing a 
specific item online or in a store). Of course, advertising personalization and market segmentation are two sides of 
the same coin, but this minor distinction and the move by marketers towards adverting based on discrete behavior 
motivates the focus on personalization. 
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 Exploring these challenges, this study reports results from four experiments examining 

consumer response to the online advertising personalization. The following research questions 

are considered: Under what conditions do consumers prefer and trust personalized advertising 

and when do consumers trust the websites and apps that deliver these messages? For instance, 

does being more aware of how online ads and other content are personalized for individuals 

using consumer data affect how they feel about this practice? If so, then what underlying social 

factors might be contributing to these perceptions? For instance, does feeling more or less 

trusting towards other people increase or decrease support for advertising personalization? And 

how does this “real world” trust, that is social trust in other people, affect other forms of 

individual trust in the online environment, such as trust in online advertising and trust in the web 

platforms that deliver personalized online ads? Overall, the individual influences of these two 

factors—transparency in personalized advertising and social trust—are examined. 

 The first two experiments reported, Experiments 1 and 2, test the effects of transparency 

in personalized online advertising assessing if heightened awareness of these practices affects 

consumer trust in personalized advertising, trust in commercial websites and apps, online privacy 

concern, personal data control self-efficacy, opposition to consumer data collection, and stated 

and revealed preference for personalized advertising messages. The second two experiments 

reported, Experiments 3 and 4, investigated the influence of social trust (that is, trust in other 

people and faith in humanity in general) similar outcome measures previously tested in 

Experiments 1 and 2. Examining the impact of social trust on these outcomes may supply 

insights into how this broader form of trust might impact more specific and actionable forms of 

consumer trust, such as trust in advertising and trust in commercial web platforms. While much 

is known of consumer privacy preferences (e.g., Rainie & Duggan, 2015), far less is understand 
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about individual preferences for the growing number of activities that depend on these privacy-

arousing data collection activities, such as the personalization of online content, including 

advertising. 

 

RELATED LITERATURE 

Trust 

 In marketing research consumer trust is understood to be a key component necessary for 

creating value, through the exchange of goods and services, and for maintaining consumer 

loyalty (Sirdeshmukh, Singh, & Sabol, 2002). More broadly, trust typically refers to a 

directional, multi-dimensional construct functioning in-between two or more parties and rooted 

in expectations held by the trustor, one who trusts, for what constitutes acceptable interaction, 

behavior, or attitude by the trustee, one who is trusted. Levels of trust between parties do not 

always match and can differ considerably, in addition to being variable over time. Negative 

considerations often accompany trust as well, such as consideration of risk, harm, 

embarrassment, and/or costs. 

 Trust is often thought of either as a process or as a discrete quantity, or both. While many 

have attempted to define trust, there is no agreed upon definition of trust in the literature. For 

instance, Khodyakov (2007) opts for a process definition, offering that trust is “a process of 

constant imaginative anticipation of the reliability of the other party’s actions based on 1) the 

reputation of the partner and the actor, 2) the evaluation of current circumstances of action, 3) 

assumptions about the partner’s actions, and 4) the belief in the honesty and morality of the other 

side” (p. 126). Similarly, Rousseau, Sitkin, Burt, Camerer (1998) conducted a cross-disciplinary 

review of scholarship on trust, synthesizing the most common uses of the term in academic 
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inquiry and arriving at their own definition of trust, “a psychological state comprising the 

intention to accept vulnerability based upon positive expectations of the intentions or behavior of 

another” (p. 395). Consideration of vulnerability on the part of the trustor and reputation on the 

part of the trustee are especially pertinent to the topic of online advertising given the potential 

sensitivities surrounding some forms of personal data used by marketers to selectively target ads 

towards consumers, as well as how a firm’s reputation impacts consumer adoption of its products 

or services.  

 Another common distinction in the literature on trust is to treat interpersonal trust, the 

trust from one person to another person (Simpson, 2007), differently than trust individuals have 

towards an organization, the trust from one person to an organization (Tan & Thoen, 2000). 

Further, both of these forms of trust have been examined and treated differently from trust 

between two or more organizations (Burchell & Wilkinson, 1997).29  

 

Trust in Online Environments 

 In online environments, trust is assumed to be a necessary precondition for consumer 

adoption and sustained use of digital products and services (Mutz, 2005; Beldad, de Jong, & 

Steehouder, 2010). However, this precondition is challenged by recent online marketing 

practices, where consumers are often unaware of the actors they are being called upon to trust, at 

times with quite sensitive consumer data, when adopting and using web-based technologies such 

as social media platforms, search engines, cloud-based email services, and most commercial 

websites and apps, most of which surreptitiously collect consumer data in the background during 

regular use. Still, consumer trust has deep roots in nearly all areas of commerce and remains a 

																																																								
29 There is scant investigation into the fourth and final combination of these directional person/organization trust 
distinctions—organizations trust towards persons—which for that reason is not included in this list. 
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key concept in understanding business transactions, with theoretical and empirical work 

continually finding trust to be a key facilitator of consumer- and business-to-business 

interactions (Macaulay, 1963; Fox, 1974; Husted, 1989; Burchell & Wilkinson, 1997; Kim & 

Kim, 2005; Weisberg, Te'eni, & Arman, 2011).    

 Additionally, emphasis on trust as a major driver and facilitator of transactions extends to 

the type of non-traditional consumer-to-business relationships that characterize today’s popular 

business model used by many web platforms—free use in exchange for personal data. Under this 

business model, consumers (or “users”) supply their personal information to firms, at times 

knowingly and often unknowingly, in exchange for using no-cost online products and services, 

such as social media sites, cloud based email, search engines, and, more recently, operating 

systems (e.g., Windows 10). While this “free” relationship complicates traditional knowledge of 

how consumer-to-business transactions function, it is likely that the role of trust is not 

diminished in these arrangements only different. This should be the case, as regardless of 

specific context, trust is typically considered key for a healthy and functioning society (Schneier, 

2012). That is, trust should be important in understanding online consumer behavior, even when 

money is not technically exchanged, because trust is simply important to people in general. 

 Beyond online environments, general social trust is thought to be highly impactful in the 

way individuals go about their daily lives. General social trust is often understood as the trust an 

individual feels toward their fellow humans or simply faith in humanity. The scholarly literature 

is full of efforts to understand this type of broad trust, for which there is an unsurprising degree 

of overlap with interpersonal trust—the variety of trust felt toward specific groups or even 

specific people (Rotter, 1971; Rotter, 1980; Hinde & Groebel, 1991; Zaheer, McEvily, & 

Perrone, 1998).  
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 Previous work in this area has also found various conceptions of trust to be crucial factors 

in determining, for instance, willingness of consumers to conduct financial transactions with 

firms in both online and offline (brick and mortar) settings (Hoffman, Novak, & Peralta, 1999; 

Chen & Dhillon, 2003; Petrovic et al., 2003; Paakki, 2008; Beldad, De Jong, & Steehouder, 

2010). Similarly, beyond financial transactions, forms of trust have also been shown to play vital 

roles in interactions between users and online systems more broadly (e.g., Li, Valacich, & Hess, 

2014), pointing to the possible wide application of trust in facilitating user preference for other 

digital decision making. 

 

Trust and The Media Equation  

 In a large body of work by Reeves and Nass (1996), the researchers discovered a strong 

connection between the way people treat one another and how they act towards computers and 

various forms of media and media technologies. For instance, people routinely act politely 

towards inanimate media artifacts, including computers, and also ascribe thinking linked to 

human stereotypes (e.g., based on gender) to computers and other media technologies just as 

they would in “real life” social situations. The researchers call this connection “the media 

equation” in reference to their overall theory, which posits that “media = real life.” This equation 

represents their conclusion that there is little distinction in how people relate to other people and 

how they relate to media and media technologies including computers.  

Relying extensively on experimental methods, Reeves and Nass attribute the inability of 

humans to react differently to non-human media and technology to the slow pace of human 

biological evolution. In particular, after repeatedly failing to locate differences in how humans 

behave towards artifacts and towards other people, Reeves and Nass arrived at the conclusion 
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that the human brain has failed to evolve at the same pace as media technologies (1996, p. 12-

13). Consequently, they claim, this makes people inept at treating media differently than they 

treat fellow human beings. 

If this is the case, that is, if the social rules that apply in human interaction transfer rather 

directly to how individuals treat computers and media, and if these dynamics are universal such 

that “the media equation applies to everyone” (p. 252) and does not just apply to rare occasions 

(p. 253), then, consistently, there should be little to no difference in how people respond to others 

versus how they respond to media technologies. In the case of trust, under the media equation the 

way humans express trust towards people should exhibit correspondence in trust towards media. 

That is to say, social trust should equal media trust, or to borrow the notation from the media 

equation, media (trust) = real life (trust). 

 

Third-Party Trust Online 

 Further, there are shortcomings to be noted regarding how trust has been studied and 

reported in the literature in light of the way firms, particularly non-consumer facing firms, often 

operate out of the view of consumers in many digital environments. Most work theorizing the 

role of trust in web-based, consumer-to-firm interactions has not accounted for the range of 

actors that accompany the bulk of online transactions today. Instead, in the online context, 

theorizing the role of trust has primarily been limited to examinations where the trustor is aware 

of both the transaction taking place (e.g., how and when personal data is collected) and the 

trustee on the other end (Beldad, de Jong, & Steehouder, 2010). This focus on known (or first-

party) entities may seem obvious or even necessary. But it is problematic for understanding how 

trust functions today given the range of third-party players that facilitate online interactions and 
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influence content. Simplistic understandings of online trust, that only take into account what are 

primarily transparent transactions between known trustor-trustee relationships, do not allow for 

understanding the role of integral third-party actors and their impacts on user trust and desire for 

content personalization. This is mostly because consumer awareness of the range of firms 

involved (e.g., third-party data brokers) in personal data transactions varies considerably. This 

makes investigating the influence of third-parties (parties who are often largely unobservable) on 

individual trust challenging. Further, considering only activities and trustees that consumers are 

readily aware of may profoundly limit current conceptions of online trust. The numerous 

information asymmetries that characterize the use of the web today have now complicated 

traditional vectors of trust online. Further, how digital marketing technologies and practices often 

function without the user (trustor) fully aware of the interacting firm’s (trustee’s) presence, nor 

the nature of many underlying transactions linked to users’ personal data, has not been 

considered in assessing trust online. That is to say, consumers transact with a multitude of firms 

often without ever knowing about these transactions nor the firms who conduct them. Yet these 

transactions are just as real and tangible as their first-party counterparts and constitute 

relationships (e.g., social, legal, ethical) between consumers and firms despite how aware or 

unaware consumers are of these activities. 

 Prior work examining trust online has been largely limited to, for example, examining 

internet users’ trust towards websites or apps used for e-commerce (Chen & Dhillon, 2003), 

news (Bucy, 2003), or social networking sites (Valenzuela, Park, & Kee, 2009). This type of 

online trust corresponds to trust by an individual towards a known entity and typically known 

activities. A trustee might be the proprietor of a website or app, the website or app itself 

(platform or digital object), or the type of content a website or app distributes (e.g., online news, 
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product reviews, posts on social media). As a result, current understandings of trust online are 

mainly built on analyses of trust relationships between parties who are cognizant of one another 

and almost always specifically where the trustor (user/consumer) is cognizant of the trustee 

(firm). While this is not surprising, this straightforward approach to the study of trust in online 

environments is now overly simplistic given the current landscape and technical architecture of 

most commercial platforms, especially those that support marketing content personalization. 

Almost without exception, third parties operate in the background of most online services and/or 

push and pull personal data acting in concert with platforms. As a result, most work on trust in 

the online setting fails to account for the influence of a number of non-consumer facing actors 

that now accompany most online interactions, particularly those involving online behavioral 

monitoring and data sharing for marketing purposes, as well as individuals’ varying levels of 

awareness of these additional unseen trustees.  

 Additionally, the role of context is commonly cited as a key explanatory mechanism in 

determining appropriate flows of personal information, manifest in the heuristic for privacy 

violation referred to as “contextual integrity” (Nissenbaum, 2010). The distinction between 

original context and unintended- or out-of-context personal data use has also been linked to 

Internet users’ privacy expectations (Martin, 2012, 2015). It is anticipated that individuals 

primarily associate targeted advertising on websites and apps with the website or app that is 

displaying the ad, commonly referred to in online advertising practices as contextual targeting. 

Therefore, use of information about one’s family members, income, relationship status, and 

purchases in physical stores, for instance, to selectively present advertisements online are likely 

perceived as out-of-context uses of this consumer information. As these data are not typically 

thought to be essential for interaction with most websites and apps. However, despite the role 
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played by context in how consumers react to uses of information that describe them, it stands to 

reason that trust—being the social and economic lubricant it is—may alleviate some of these 

concerns commonly associated with out-of-context use of personal data, as is common in 

personalized online advertising. 

 

Transparency in Advertising Personalization 

Findings describing the effects of transparency in online advertising are scarce. However, 

recent experimental work by Kim et al. (2015) suggests consumer preference for how personal 

data is used to tailor online ads is nuanced. Researchers found that, depending on the source of 

the consumer data used (first- vs. third-party), providing greater transparency in the ad 

personalization process backfired when using third-party consumer data. This resulted in 

individuals reacting less favorably towards advertisement that were known to have been 

personalized when consumers were aware of how the ad personalization was achieved (e.g., first- 

vs. third-party data). Kim et al. also found that individual preferences for personalization varied 

depending on whether consumers believed online ads had been personalized for them based on 

their own user-provided information (i.e., information users entered on their account profiles, 

such age or interests) vs. information that a website claimed had been inferred about them (i.e. 

inferred age or inferred interests). Researchers found nuanced shifts in participants’ perceptions 

of online ads when informing them that they were seeing (an identical) online ad to buy artwork 

either because of their stated interest in oil paintings vs. an example stating the website had 

inferred they were interested in oil paintings. Revealing that an ad was based on inferred 

interests proved less persuasive than ads said to be generated from participants’ stated interests.  
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Similar findings have been observed in the U.S. in public opinion surveys, however, 

these studies lack the degree of control and internal validity afforded by experimental methods 

(Mutz, 2011). For instance, in a survey of Americans researchers found people to be more 

opposed to online advertising personalization than favor it (Turow et al., 2009). Interestingly, in 

the majority of cases, researchers also found that informing survey respondents about some of 

the techniques used by marketers to personalize online ads including personal data collection 

across websites and apps lowered respondents approval of personalized advertising.  

 Additionally, outside the adverting context and in regards to having one’s behavior 

predicted generally, Ybarra et al. (2010) found that individuals exhibited an aversion to being 

predicted especially when they thought they were going to be predicted by a competitive rather 

than a friendly entity. As attitudes toward advertising are generally negative and consumers 

skeptical of marketing messages overall, marketing activities that aim to predict consumers’ 

interest may be perceived as coming from a competitive rather than cooperative source. This 

might further explain some of the reason why, at times, participants express distrust and negative 

attitudes towards advertising personalization, reporting they prefer not to have ads personalized 

based on information about them. Other problems attributable to the lack of transparency in 

personalization may be linked to confusion, as consumers appear to express conflicting attitudes 

and responses in describing preferences whether they wish to have ads personalized or not. 

Accordingly, individuals often describe personalized advertising in ways that signal conflicted or 

unsettled preferences for this practice, for instance, as “useful,” “smart,” “scary,” and “creepy,” 

all at the same time (Ur et al., 2012).30 Further, given their common link to consumer data, 

																																																								
30 I also observed these conflicting descriptions of personalized advertising when running focus groups on this same 
topic, as discussed in Chapter 4. 
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preferences for ad personalization may be related to privacy preferences, which have been shown 

to be incredibly malleable (Acquisti, John, & Loewenstein, 2013). 

 

OVERVIEW OF RESEARCH 

 Four experiments were conducted to examine the relationships between transparency, 

trust, and consumer preference for personalized advertising. Experiments 1 and 2 varied 

participants’ levels of awareness regarding how ads are personalized online, or simply altered 

transparency of this ad personalization process, while Experiments 3 and 4 varied participants’ 

levels of social trust. Similar outcome measures were used across the four experiments to 

examine the possible effects of transparency and social trust on concepts of interest, including 

preference for advertising personalization and trust in advertisements, websites, and apps. 

 In the two transparency experiments, Experiments 1 and 2, participants were asked to rate 

how acceptable they found different types of consumer data marketers routinely use to 

selectively target, or personalize, advertisements across websites and apps. In the first 

transparency experiment, using a within-groups repeated-measures design, all participants were 

asked to evaluate the practice of advertising personalization, generally doing so before and after 

engaging with examples of consumer information used by marketers to personalize ads online 

which provided the manipulation. In the second transparency experiment, using a two-group 

between-subjects design, this time half the participants engaged with examples of consumer 

information used by marketers to personalize ads online while those in a control group did not. 

This served to examine the effect of ad personalization transparency on several outcomes beyond 

those investigated in the first transparency experiment, including individual trust in websites and 

apps as well as both stated and revealed consumer preference for personalized advertising. 
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Participants in Experiment 1 came from an undergraduate participant pool (N = 412) while those 

in Experiment 2 were recruited on MTurk (N = 1,558). 

  In the two trust experiments, Experiments 3 and 4, with each using a three-group 

between-subjects design, participants’ levels of social trust were manipulated. Both experiments 

used the identical social trust manipulation. In this manipulation, participants in one group were 

made to feel more trusting towards other people, those in a second group less trusting towards 

other people, and a third control group whose participants were not manipulated. This served to 

examine the effects of social trust on several outcomes of interest previously explored in the 

transparency experiments, including stated and revealed preference for personalized advertising, 

online privacy concern, and trust in websites and apps. Participants in Experiment 3 (N = 1,181) 

and Experiment 4 (N =883) were both recruited on MTurk. 

 For comparative purposes, in parts these experiments employ identical or very similar 

outcome measures. Some measures correspond to previously validated scales, such as those for 

online privacy concern (Buchanan et al., 2007) and trust in online firms (Bhattacherjee, 2002). 

Additionally, as some of the novel measures developed for this study appeared to be effective in 

tapping constructs of interest (though others less so), an ancillary contribution of this study is the 

creation of multiple new measures related to advertising personalization; that is, novel scales 

appearing effective in the reported experiments offer an initial step to assess their validity, 

though further testing is needed to gauge their effectiveness. 

 

 

 

 



	 166 

EXPERIMENTS 1 & 2 

The Effect of Transparency on Consumer Attitudes Toward Advertising Personalization 

 Given the general lack of transparency for internet users into which of their consumer data 

is used to personalize the online advertisements they see, combined with relatively low levels of 

awareness on the part of internet users for how marketers use these data to selectively present ads 

on many popular websites and apps today, in Experiments 1 and 2 the following research 

question is posed: 

 
How does increasing awareness about ad personalization effect preferences for 
personalized advertising and perceptions of web platforms that deliver personalized 
advertising? 
 
 

Accordingly, Experiment 1 tests the following four hypotheses: 

 
H1: Increased transparency in online advertising personalization practices will decrease  
       stated preference for online advertising personalization.  
 
H2: Increased transparency in online advertising personalization practices will increase  
       opposition to consumer data collection.  
 
H3: Increased transparency in online advertising personalization practices will decrease  
       consumer data control self-efficacy. 
 
H4: Increased transparency in online advertising personalization practices will increase  
       online privacy concern.   
 
 

 Then, using a more robust experimental design to replicate selected results from 

Experiment 1 (H1) and further assess the effects of increased transparency on not only stated 

preference but also revealed preference for ad personalization, in addition to trust, Experiment 2 

tests the following three hypotheses: 
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H1: Increased transparency in online advertising personalization practices will decrease  
       stated preference for online advertising personalization. (repeated in Experiment 1) 
 
H5: Increased transparency in online advertising personalization practices will decrease  
       revealed preference for online advertising personalization.  
 
H6: Increased transparency in online advertising personalization practices will decrease  
       trust in commercial websites and apps.  
 

 

Manipulation of Transparency in Advertising Personalization 

 In Experiments 1 and 2, the manipulations involved increasing participants’ awareness 

about the use of consumer data to personalize online advertisements, thereby introducing greater 

transparency in how this process functions. Importantly, to ground these experiments in 

contemporary marketing practices, for their respective (similar) manipulations it was important 

to present participants with types of personal data currently used to personalize online 

advertisements, as opposed to fictitious examples. This decision was made to maximize the 

likelihood that any effects of the manipulations—of increasing transparency in how online 

advertising personalization works—would be directly linked to and consistent with current 

marketing practices. This is noteworthy because in Experiments 1 and 2 it would be far simpler 

to achieve significant outcome effects by simply using much more sensationalist manipulations 

employing examples of personal data that are likely to be the most inflammatory to participants. 

Instead, to increase the external validity of the designs, the manipulations for online ad 

transparency in Experiments 1 and 2 reflect current targeted advertising practices. In Experiment 

1, participants were asked to rate 75 examples of personal data all of which came directly from 

current ad-buying web platforms located in a prior observational study (as reported in chapter 3 

on real-time bidding ad-buying platforms). These varieties of consumer information presented to 

participants in Experiment 1 are readily available to marketers for delivering personalized ads 
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across websites and apps. Experiment 2 uses a similar manipulation but instead, for efficiency, 

reduces the number of examples of consumer data participants rate from 75 to only 15, along 

with using a between-subjects design. Further, consumers are typically unaware that many of 

these kinds of personal data are used to selectively present advertisements online and, when 

aware of some of these examples, tend to think narrowly about data corresponding to prior 

websites visited and search engine queries (as previously discussed in chapter 4, based on 

findings from focus groups). Therefore, asking participants to rate these data provides a way to 

measure the effects of increased awareness of online advertising personalization practices, as it 

is reasonable to think this awareness can be easily increased due being relatively low to begin 

with for most participants. Additionally, due to its between-subjects design, Experiment 2 

included a manipulation check the results of which also lend support to the similar manipulation 

used in Experiment 1. These manipulations are presented in detail in their respective experiments 

below. 

 

Experiment 1 

Participants 

A survey experiment was administered online during the fall of 2013 and spring of 2014 

to students enrolled in a communications course at a large Midwestern university (N = 412). 

Participants received partial course credit in exchange for their participation. Among 

participants, 72% were female and the average age was 19 (SD = .85). The sample consisted 

primarily of participants identifying as Caucasian (79%), Asian American (11%), and Bi-

racial/Multi-racial (5%). Participants also identified as Catholic (27%), Christian (27%), Jewish 

(26%), and no religion/other (20%).  
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Design and Procedures 

 A within-subjects repeated measures survey experiment was administered to anonymous 

participants through a web browser. The experiment examined the effects of increased 

transparency in online ad personalization on stated preference for advertising personalization, 

online privacy concern, data control self-efficacy, and opposition to consumer data collection. 

Survey questions measuring these outcome variables were asked twice: once before participants 

completed a manipulation survey, which asked them to rate the acceptability of various types of 

consumer data for use in online advertising, and once again after taking the survey.  

 The consumer data rating exercise supplying the manipulation asked participants to rate 

75 different examples of personal data. As discussed previously, the examples of consumer data 

rated by participants in this manipulation survey were taken from current ad-buying interfaces. 

All participants were asked a set of questions related to the outcome measures both before and 

after rating the 75 types of consumer data. Additionally, prior to rating the examples of consumer 

data, participants were asked first shown a brief prompt to explain the ratings exercise and also 

to underscore that participants were being asked to rate examples of data currently used by 

marketers to personalize online ads (e.g., that the examples were real and not made up). 

Participants were first prompted: 

 
For each type of information, indicate how acceptable it is to you for marketers to use 
this information to personalize the online ads you see.   
 
Note: These types of information are currently used by marketers to determine who sees 
which ads online.  
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Participants were then repeatedly asked the same question appearing below while varying the 

example of consumer data in each question. All 75 examples of consumer data rated by 

participants appear in Appendix D. Participants were asked, for instance: 

 
You see an online ad based on: grocery products you’ve purchased 
 

Response options for all consumer data acceptability questions were: totally unacceptable, 

unacceptable, slightly unacceptable, neutral, slightly acceptable, acceptable, perfectly 

acceptable. The 75 short questions were presented in randomized order and across five pages of 

15 examples each during in the survey experiment. Additionally, due to the large number of 

questions, at the top of each of the five pages of questions respondents were shown the identical 

prompt from earlier to remind them they were to choose how acceptable or unacceptable they 

found it to be for marketers to use each type of data to personalized the ads they see online and, 

importantly, that these examples they were rating were currently used by marketers to selectively 

present online advertising. Responses to these 75 items supplied the manipulation rather than 

questions of primary interest to the experiment.  

 Scores on the pre- and post-survey questions measuring stated preference for ad 

personalization, online privacy concern, opposition to consumer data collection, and consumer 

data control self-efficacy were compared using paired samples t-test to indicate whether the 

manipulation—rating the 75 examples of consumer data for acceptability in ad personalization—

had a corresponding effect on these measures of interests. Scales for all outcomes measures are 

described in detail in Appendix E.  
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Results 

Descriptive Statistics 

As expected, there was strong correlation between individuals’ responses to identical pre-

test/post-test questions asked before and after rating the 75 examples of consumer data. Scores 

for stated preference for personalized advertising before (M = 4.66, SD = 1.18) and after (M = 

4.37, SD = 1.17) were correlated, r(407) = .64, p < .001. Levels of online privacy concern were 

also correlated before (M = 5.59, SD = 1.08) and after (M = 5.59, SD = 1.15) rating the consumer 

data examples, r(406) = .65, p < .001. Likewise, consumer data control self-efficacy was 

correlated before (M = 3.49, SD = 1.46) and after (M = 3.36, SD = 1.37) the manipulation, r(409) 

= .45, p < .001, as was opposition to consumer data collection before (M = 5.19, SD = 1.16) and 

after (M = 5.38, SD = 1.11) rating the examples of consumer data, r(407) = .56, p < .001. This 

correlation between pre-test/post-test measures suggests internal validity, increasing confidence 

in conclusions based on subsequent tests for experimental effects from the paired samples t-test 

when using a within-subjects repeated measures experimental design (Warner, 2013, p. 908). 

For responses to the survey where participants rated the 75 types of consumer data as 

acceptable or unacceptable for use in advertising personalization, which supplied the 

experimental manipulation, participants were consistent in their ratings. That is, individual 

responses were internally consistent across the 75 items (α = .97). Taken as a 75-item scale of 

sorts, measuring acceptability of all the examples rated, individual participant responses were 

highly reliable. Though as Cortina (1993) cautions, Cronbach’s alpha will be inflated given a 

large enough number of items, as was likely the case with 75 questions. Regardless, while 

participants’ approval ratings for the 75 data examples were internally consistent, still, the 

average rating for the 75 items combined from each participant did vary (M = 3.94, SD = .87). 
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As expected, participants did not find the consumer data examples to be overwhelmingly 

acceptable. At first glance, the average combined rating for all 75-items of 3.94 (7-point scale) 

hovering around the midpoint may appear rather forgiving towards marketers’ use of these 

varieties of consumer data to personalize online ads. However, closer inspection reveals that 

among the 75-items participants rated, 21 of these 75 examples of consumer data had a median 

rating of 3 or less corresponding to either slightly unacceptable, unacceptable, or totally 

unacceptable for these 21 of the items rated. This disapproval for some examples of consumer 

data—even among a college student experimental sample most likely to be on average more 

accepting than the general population—illustrates the sometimes contentious nature of using 

these types of data to personalize online advertisements. Again, as all examples rated by 

participants came from current online ad-buying platforms, meaning these consumer data options 

are currently available in one form or another for ad targeting, practitioners and policymakers 

might take note of the disapproval voiced by participants, in some cases quite strongly (e.g., 

totally unacceptable), of what amount to everyday uses of consumer data in online advertising.  

 

Experimental Effects 

Despite strong correlation between all pre-test/post-test measures, examining the 

experimental effects of increased participant awareness of consumer data use in ad 

personalization reveals effects on stated preference for personalized advertising and opposition 

to consumer data collection, confirming H1 and H2. First, for personalized advertising stated 

preference, after rating the acceptability of the 75 types of consumer data participants were less 

likely to say they wanted the online ads they see to be personalized for them, t(408) = -5.81, p < 

.001, d = -.41. Increased awareness of consumer data use in personalized online advertising 
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appears to diminish support for this practice. Second, increasing awareness of advertising 

personalization also caused participants to assert greater opposition to consumer data collection, 

t(408) = 3.36, p < .001, d = .23. Similar to causing lower support for personalization, injecting 

transparency in this process also caused participants to be more resistant to the underlying data 

collection activities necessary for some ad personalization efforts to function. Both of these 

findings suggest that informing consumers about some of the ways consumer data is used by 

marketers to personalize online ads, and thereby injecting greater transparency in the ad 

personalization process, is detrimental to how consumers feel about these personalization 

practices. Simply stated, alerting individuals to some of the ways ads are personalized causes 

them to disapprove of online ad personalization at greater rates.  

When examining if participants felt more or less empowered to control how their 

personal information is used by marketers after seeing how this data is used, differences between 

pre-test/post-test scores only approached but did not reach significant differences: t (410) = -

1.73, p = .08, d = -.12. Therefore, Experiment 1 failed to reject the null hypothesis for H3. 

Despite inconclusive results, participants’ responses for this measure did change in the negative 

direction, indicating, as anticipated, they may have felt less in control of their data rather than 

more after rating the 75 types of consumer data. Additional testing is needed to determine 

whether ad personalization transparency, and specifically greater openness about consumer data 

use in ad targeting, effects consumer data control self-efficacy. Additionally, as no established 

scales for consumer data control self-efficacy could be located, this represents an opportunity for 

scale development to measure this construct that may be of additional interest to researchers 

studying related problems in marketing, interface design, privacy, and public policy issues. 
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Finally, despite being less inclined to receive personalized advertising online and more 

opposed to consumer data collection upon rating the 75 types of consumer data, this 

manipulation had no measurable effect on participants’ online privacy concerns, t(407) = 0, p = 

1.00. Thus, Experiment 1 failed to reject the null hypothesis for H4. Though, contrary to the other 

dependent measures, which were likely less established constructs for participants prior to 

entering the experiment than privacy concern, the absence of an effect on online privacy concern 

could in part be attributable to the unique characteristics of the sample. Unlike the other three 

experiments reported in this study, the sample for Experiment 1 was composed entirely of 

college undergraduate students. Additional testing on a more diverse sample may yield an effect 

of transparency on online privacy concern. This remains as an empirical question requiring 

additional study. In addition to sample characteristics that may nuance effects on privacy 

concern, Experiment 1 also relied on a single-item measure for online privacy concern, which 

may also have suffered from measurement insensitivity. For these reasons, when designing 

Experiment 3 examining the effects of social trust (reported below) a validated 16-item scale 

tapping online privacy concern, developed by Buchanan et al. (2007), was used instead of this 

single-item measure used in Experiment 1. 

 

Experiment 2 

Participants 

A survey experiment was administered online during the spring of 2016 to anonymous 

participants recruited through MTurk (N = 1,558). Participants were paid the federal minimum 

wage rate at the time of their participation ($7.25/hour) prorated for the estimated time to taken 

to complete the survey. Among participants, 47% were female. Participants were diverse in their 
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age: 18-24 (11%), 25-29 (22%), 30-34 (21%), 35-44 (23%), 45-54 (12%), 55-64 (8%), 65-74 

(2%), 75-84 (<1%). Participants were relatively well-educated as highest level of education 

achieved was: less than high school diploma (1%), high school diploma or GED (12%), 

technical, trade or vocational training beyond high school (4%), some college or Associate’s 

degree (33%), bachelor’s degree (35%), post-graduate training or professional degree (14%). 

Participant annual income was distributed as follows: <$25K (24%), $25-50K (30%), $50-75K 

(23%), $75-100K (11%), $100-150K (9%), >$150K (3%). The sample consisted primarily of 

participants identifying as Caucasian (79%), in addition to Black/African American (6%), 

Asian/Asian American (5%), Hispanic/Latino (4%), and Bi-racial/Multi-racial (2%).31  

Additionally, the MTurk platform allows requesters to only show tasks to MTurk 

participants based on their country of residence, using taxpayer information from the MTurk 

participant’s account profile. This allows requesters to specify that MTurk respondents come 

only from the U.S., for instance. For all participants recruited through MTurk, this US-only 

specification was selected. Additionally, the Qualtrics online survey platform has its own built-in 

location metadata tool that determines a survey respondent’s country of origin based on their IP 

address. Despite specifying US-only respondents on MTurk, the platform allowed a small 

proportion of participants to complete the survey from an IP address originating in a country 

outside the US according to Qualtrics. This discrepancy could be due to a number of unknowable 

factors including fraudulent MTurk accounts, legitimate MTurk account holders from the US 

who happened to be traveling outside the US at the time of completing the task, or the use of a 

VPN or other IP address proxy while completing the task. Nonetheless, to provide a more robust 

screening for participants only from the US, a two-tiered check was used. This involved first 

limiting the survey to US-only MTurk accounts and later, after data collection, removing any 
																																																								
31 Where these numbers do not add to 100% this is due to the rounding error. 
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responses originating from an IP address outside the U.S. In this way, nearly all responses are 

likely to be from U.S. residents. This process was applied to all three samples recruited on 

MTurk for Experiments 2, 3, and 4. 

 

Design and Procedures 

 A two-group, between-subjects survey experiment was administered to anonymous 

participants through a web browser. This experiment examined the effects of increased 

transparency in online ad personalization on stated preference for advertising personalization, 

revealed preference for advertising personalization, and trust in commercial website and apps. 

 For those in the experimental group, survey questions measuring these outcome variables 

were asked following a manipulation, which asked this half of the participants to rate the 

acceptability of various types of consumer data for use in online advertising. The other half of 

the participants, those in the control group, were directed straight to the questions for the 

dependent variable measures. 

Similar to the manipulation used in Experiment 1, in Experiment 2 half the participants 

rated examples of consumer data as acceptable/unacceptable for marketers to use to personalize 

online ads. This supplied the manipulation for Experiment 2. Additionally, and differing from 

Experiment 1, the list of examples of consumer data rated by participants was shortened from 75 

items to 15 items. These 15 items were manually curated from the original longer list attempting 

to create a diverse yet much shorter set of examples of consumer data for participants to rate. 

Additionally, an exploratory factor analysis of participant ratings for the original 75 data items, 

though not reported in detail here, revealed these items to load intuitively among coherent 

categories of consumer data. For instance, financial-related examples among the 75 items 



	 177 

presented to participants (e.g., credit card type, loan balances, income) clustered on a single 

factor fairly well, as did many other examples of data within the 75 items, which revealed 

categories or factors present in this long list (e.g., demographics, online activity, media 

consumption). The presence of intuitive factors and corresponding redundancy among 

participant responses to the 75-items provided further support for the creation of the shorter, 

largely representative 15-item manipulation. 

Also similar to Experiment 1, in Experiment 2 all examples of consumer data rated by 

participants were taken from current ad-buying interfaces. This decision connected the 

manipulation and its effects with today’s marketing practices in efforts to increase the external 

validity of the experimental design and any potential findings. 

 For those in the experimental group, this short 15-question survey asked participants how 

acceptable they found various types of personal data to be when used by marketers to personalize 

the advertisements they see on websites and apps.  

Those in the experimental group completing the manipulation survey were first prompted 

as follows: 

For each type of personal information listed below, indicate how acceptable or 
unacceptable it is to you for marketers to use this information to personalize the online 
advertisements you see. 
 
0 = This type of information is not at all acceptable for marketers to use to personalize 
the online advertisements I see. I do not want this. 
 
10 = This information is completely acceptable for marketers to use to personalize the 
online ads I see. I want this.  
 
 

Then, participants in this experimental group were asked to individually rate how acceptable or 

unacceptable they found it to be for marketers to use different categories of personal information 

to selectively present ads to them online. The 15 categories of consumer information used by 
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marketers to personalize online advertisements were presented to participants in randomized 

order. For each consumer data example, participants were asked the following question, for 

instance: 

How acceptable or unacceptable is it to you for marketers to use the following 
information to personalize the online advertisements you see? Your Precise Geographic 
Location (GPS latitude and longitude) 
 
 
The complete wording for each of the 15 questions, along with ratings for each of the 

consumer information categories are reported in Table 1 and category averages are compared in 

Fig. 5.1. For each question participants used an 11-point slider tool to indicate their individual 

acceptability rating for each type of consumer information, positioning the slider between 0 (not 

at all acceptable) and 10 (completely acceptable), inclusive.  

 Additionally, completing this survey not only supplied the manipulation for Experiment 2 

but also provided an economical way to collect nearly 800 responses describing how consumers 

feel about having various types of data used to personalize ads online. Though designed as the 

experiment’s manipulation, this survey’s responses were not without value in their own right. 

Results from the manipulation survey itself offer insights about the degree to which individuals 

feel differently about different types of personal information used by marketers to selectively 

present online ads. Therefore, able to be viewed as an independent, embedded study, responses 

from the manipulation survey are reported in the n independent descriptive statistics below. 

 Outcome measures in Experiment 2 were stated preference for online advertising 

personalization, revealed preference for online advertising personalization, and trust in 

commercial websites and apps. The between-subjects design also facilitated a manipulation 

check to test whether those in the experimental group were more aware of online advertising 

personalization after rating the 15 types of consumer data at the beginning of their experiment 
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compared to those in the control group who did not take this manipulation survey at the 

beginning. This 5-item scale was developed to assess the internal validity of the transparency 

manipulation and questions were asked to respondents in the experimental and control groups. 

Individual questions examined the degree to which participants believed online ads were 

personalized for viewers, asking about both the frequency of ad personalization and the 

proportion of ads online that are personalized for individuals. It was expected that those in the 

experimental group, who should have an increased awareness of ad personalization practices 

after rating the 15 examples of consumer data used to target ads, would correspondingly believe 

the degree to which ads were personalized online was greater than those in the control group.  

 Scores on the outcome measures of stated and revealed preference for advertising 

personalization and trust in commercial websites and apps were all compared between those in 

the experimental group and those in the control group. Independent samples t-tests were used to 

assess whether the manipulation—rating the 15 examples of consumer data—had a 

corresponding effect on these outcome measures. Further details describing the manipulation 

check and all scales used for the outcome measures appear in Appendix E. 

 

Results 

Descriptive Statistics 

Participants in the experimental group rated the 15 examples of consumer information at 

the start of the experiment and those in the control group did not. For the half of the participants 

who rated these examples, on average they rated some categories of consumer information as 

more acceptable for marketers to use to personalize online advertisements and deemed other 

varieties less acceptable. Participants were reliable in their ratings of the consumer data. That is, 
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individual responses were internally consistent across the 15 items (α = .92). Taken as a 15-item 

scale measuring overall acceptability of all 15 examples rated, individual participant responses 

were highly reliable. On the 11-point scale with 0 as not at all acceptable and 10 as completely 

acceptable the overall average for the 15 items was relatively low (M = 3.22, SD = 2.08). 

Further, a closer inspection of these ratings reveals a median rating of 4 or less for 12 of 

the 15 examples of consumer data rated by participants. This places the majority of examples 

rated by participants towards the bottom third of the 11-point scale towards the end of not at all 

acceptable. Thus, strong opposition to the examples of consumer data rated was revealed. 

Additionally, disapproval expressed by participants in Experiment 2 appears much greater than 

the disapproval expressed by the college student sample in Experiment 1 who rated the larger 

(75-item) list of consumer data examples. Nonetheless, participants in Experiment 2 appear 

highly unfavorable towards having these examples of consumer data used to selectively present 

the ads they see online.  
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Table 1 

Responses to manipulation survey completed by experimental group in Experiment 2. 

 
How acceptable or unacceptable is it to you for marketers to use the following information to 
personalize the online advertisements you see? Your… 
 
  M SD 

    
…Family Members' Personal Information 
 

 0.87 1.97 

…Credit Card Transactions 
 

 1.20 2.20 

…Current Financial Debt (loans, credit card  
   balances, etc.) 
 

 1.22 2.16 

…Financial Net Worth 
 

 1.75 2.56 

…Annual Income 
 

 2.11 2.72 

…Place of Employment 
 

 2.38 2.88 

…Precise Geographic Location (GPS latitude  
   and longitude) 
 

 3.70 3.42 

…Relationship Status (single, in relationship,    
      engaged, married, divorced, widowed) 

 

 3.84 3.31 

…Vacation Locations 
 

 3.84 3.30 

…In-Store Purchase History 
 

 3.91 3.40 

…Social Media Activity 
 

 4.03 3.32 

 …Online Purchase History 
 

 4.08 3.33 

…Ethnicity 
 

 4.26 3.44 

…Automobile (make and model) 
 

 4.56 3.21 

…Gender 
 

 6.60 3.10 

 
Notes. Items were asked in randomized order. 0 = not at all acceptable, 10 = completely 
acceptable. N = 774. 
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 Of the 15 categories rated by participants, broad types of financial information, such as 

one’s income or debt, appear to be thought of as less acceptable for marketers to use for 

personalizing online advertisements compared to other kinds of information, such as one’s 

gender or activity on social media platforms. Additionally, and unsurprisingly, information about 

one’s family members was rated as highly unacceptable for marketers to use in ad 

personalization. These differences in consumer approval are similar to what others have found 

when exploring individuals’ differential willingness to disclose different types of personal 

information (e.g., Milne et al., 2015).  

 

  
 
Figure 5.1. Average approval ratings of consumer data use in Experiment 2 (N=774). 
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Experimental Effects 

After the measures of stated preference for ad personalization and website-app trust were 

conducted, but prior to the revealed preference measure at the very end of the survey, a 

manipulation check was employed to assess the degree to which rating the consumer data 

examples had been effective in increasing awareness of online advertising personalization among 

those in this experimental group. The manipulation was found to be effective. As anticipated, 

those rating the examples of consumer data scored higher on the awareness of advertising 

personalization scale M = 6.01, SD = 1.58) than those in the control group (M = 5.59, SD = 1.09), 

t(1548) = 7.34, p < .001, d = .26. This difference is shown in Fig. 5.2. These results from the 

manipulation survey reported for Experiment 2 demonstrate how consumers find certain types of 

personal information more or less acceptable, and likely more or less sensitive for using in 

marketing.  
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Figure 5.2. Manipulation check for Experiment 2. The effects of completing the manipulation 
survey on awareness of online advertising personalization. Group differences were significant, 
t(1548) = 7.34, p < .001, d = .26, indicating the manipulation was effective. 
 

 

Examining the experimental effects of increased awareness of consumer data use in ad 

personalization reveals a negative effect on each of the outcome measures. Similar to Experiment 

1 but this time using a between-groups rather than within-groups experimental design, in 

Experiment 2 participants who rated examples of consumer data used in ad targeting said they 

preferred to receive personalized advertising less (M = 3.25, SD = 1.58) than those in the control 

group (M = 3.48, SD = 1.59), t(1556) = -2.89, p < .01, d = -.10, once again confirming H1. 

Transparency in this process appears to diminish stated preference for online advertising 

personalization. 

Additionally, Experiment 2 examined the effects of transparency in ad personalization on 

revealed preference for personalized advertising. As described, this was assessed using a novel 

0

1

2

3

4

5

6

Aw
ar

en
es

s 
of

 A
dv

er
tis

in
g 

Pe
rs

on
al

iz
at

io
n

Control Condition

Experimental Group



	 185 

measure where at the end of the survey participants were given the option of revealing three ads 

for books they believed to be personalized for them and whether they clicked on these faux-

personalized ads. Participants who rated the examples of consumer data used in ad 

personalization were less likely to choose to see the ads they believed had been generated 

uniquely for them and to click on these “personalized” ads (M = .26, SD = .32) compared to 

those in the control group (M = .29, SD = .33), t(1555) = -2.12, p = .03, d = -.08, confirming H5. 

Thus, in addition to diminishing stated preference for ad personalization, increasing transparency 

in this process also negatively impacted revealed preference for ad personalization. A heightened 

awareness of ad personalization practices caused participants to decline the opportunity to see 

personalized advertising and reduced the rate at which participants clicked on the ads they 

believed had been generated uniquely for them. 

Finally, the effects of increased awareness of ad personalization practices on participants’ 

trust in commercial websites and apps were examined. Participants who rated the examples of 

consumer data expressed lower levels of trust in websites and apps (M = 2.58, SD = .79) 

compared to those in the control group (M =2.70, SD = .74), t(775) = -2.18, p = .03, d = -.11, 

confirming H6. Individuals who rated the 15 examples of consumer data for use in online ad 

personalized were less trusting of commercial websites and apps.32  

 

 

 

																																																								
32 As respondents were paid by the minute and due to the sufficiently large sample in Experiment 2, the scale for 
website-app trust was only asked of half the participants in the control group and half the participants in the 
experimental group. The results for this measure indicate there was still sufficient power to detect a difference (p = 
.03) in website-app trust. This is despite making only about half as many comparisons (N = 775) for this measure as 
was possible for the other dependent measures (N = 1,555). Overall, this budget-based decision proved 
inconsequential for the results. 



	 186 

Discussion of Experiments 1 & 2  

 In Experiments 1 and 2, the effect of increased transparency in advertising 

personalization was examined. In Experiment 1, awareness of some of the ways marketers 

personalize online advertisements lead participants to be more opposed to consumer data 

collection. Similarly, in Experiments 1 and 2, providing transparency into how consumer data is 

used to personalize ads online diminished participants’ stated preference for personalized 

advertising. In Experiment 2, increasing awareness of ad personalization practices also caused 

participants to feel less trusting towards commercial websites and apps and exhibit lower levels 

of revealed preference for personalized advertising. 

Viewed together, Experiments 1 and 2 both found that transparency in how online ads are 

personalized diminished preference for advertising personalization. Again, this finding is similar 

to results reported in recent work by Kim et. al (2015) previously mentioned, who found 

informing people about how ads had been personalized caused individuals to select non-

personalized ads when given the choice between the two. Additionally, and extending the work 

of these researchers, Experiment 2 also found increased awareness of how ads are personalized 

negatively impacted trust in commercial websites and apps. This finding suggests that when 

consumers are aware of some of the ways ads are personalized online they become less trusting 

of the websites and apps that often deliver these messages. This finding is important as, over 

time and as they are used more commonly, practices in use by marketers gradually become 

known to consumers. 

Consider, for instance, the way many consumers today are likely aware that providing 

detailed contact information “for a chance to win a vacation” will likely result in unsolicited 

offers. This assumed knowledge would not have been the case when marketers begin using this 
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prize entry bait-and-switch technique. However, over time, consumers became more cognizant of 

this practice, awareness that grows out of media coverage, personal experiences (e.g., being 

called upon entering one’s information for such a sweepstakes), and socialization with others. A 

similar example is seen in the more recent case of the online advertising practice referred to as 

re-targeting, where visiting a webpage results in seeing ads for the product or service originally 

viewed but later on and across other websites. This practice, as with bait-and-switch prize entry, 

has entered popular understanding over time. Similarly, if over time consumers become more 

aware of other ways advertisements are personalized online, this heightened awareness would 

appear to pose a problem for marketers and the websites and apps they use to generate and 

deliver personalized advertising. As the results from Experiment 2 suggest consumer awareness 

of these practices directly reduces trust individuals express towards web platforms. 

This is also an important finding because, generally speaking, information transparency 

in the online environment tends to be taken for granted as a net positive. And few would argue 

that it is good nor permissible to impede consumer education when it comes to how marketers 

attempt to persuade consumers. Consider, for instance, consumer backlash against marketing in 

the 1950s-1960s linked with overreactions to so-called “subliminal advertising,” a practice 

thought by some of the public to be in use extensively by marketers at the time (Packard, 1957; 

Nelson, 2008). Granting consumers access to and accurate information about how they are being 

persuaded is now viewed as imperative under advertising education best practices and general 

marketing ethics. Nevertheless, in the digital era and in a time of advertising automation and 

personalization beyond anything imaginable in the 1950s and 1960s, simply revealing to 

consumers some of the ways consumer data is used to personalize the online ads they see appears 
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to backfire. As people are less likely to prefer personalized ads and less likely to trust websites 

and apps upon learning how these media artifacts operate under the hood.  

Further, as Experiments 1 and 2 demonstrated negative impacts of increased transparency 

in advertising personalization on both stated and revealed preference for personalized advertising 

while at the same time diminishing the trust consumers feel towards the media and media 

technologies that deliver personalized advertising, marketing policymakers and practitioners 

should especially take note given the push for greater transparency in these areas. Findings in 

Experiments 1 and 2 may encourage marketers to reconsider best practices and how techniques 

typically unseen to consumers might be better communicated to them. It could be that simply 

educating consumers about how these practices work would cause people to perceive these 

activities as more favorable not less. If this is the case, negative reactions to these practices may 

simply be a response by consumers who are confronted with information that contradicts their 

current understandings, the effect of surprise rather than genuine opposition. That is to say the 

less amazed consumers are when seeing how advertising personalization works under the hood, 

and perhaps the more aware they are made of the benefits of personalization (e.g., encountering 

irrelevant content less frequently), the more they may simply find this practice favorable. 

Further, improving transparency in these commercial processes—activities that usually leverage 

opaque algorithms dependent on detailed consumer data as inputs—is now viewed as being 

squarely in the interest of the public given seemingly-ubiquitous personal data (e.g., The White 

House, May 2016). 

 

 

 



	 189 

EXPERIMENTS 3 & 4 

The Social Trust Digital Disconnect? 

Experiments 1 and 2 demonstrated negative impacts of increased transparency in 

advertising personalization on both stated and revealed preference for personalized advertising 

while at the same time diminishing the trust consumers feel towards the media and media 

technologies that deliver personalized advertising. These findings further motivate investigation 

into the potential underlying factors leading consumers to be generally resistant to ad 

personalization when more aware of how this process works. Based on work demonstrating the 

importance of trust in facilitating online social and commercial interactions (Beldad, de Jong, & 

Steehouder, 2010) along with the general understanding that social trust in particular is key to 

successful human interaction in networked society (Petrovic et al., 2003), one reason for this 

resistance might be that consumers simply do not trust marketers to act in individuals’ best 

interests whenever using varieties of detailed personal information to personalize online 

advertising. If this is the case, then increasing trust on the part of consumers might alleviate 

apprehension on the part of consumers to allow marketers to use granular consumer data to 

selectively present advertising. Additionally, as Reeves and Nass (1996) posited under their 

Media Equation that “media = real life,” humans react to media and media technologies just as 

they react to other people. It follows then that altering how trusting consumers feel towards other 

people should correspondingly affect how trusting they feel towards media, including 

commercial websites, apps, and advertisements. Similarly, if this link between trust “in real life” 

connects to digital actors and artifacts, then it stands to reason that increasing social trust may 

also alleviate reservations about personalized online advertising causing individuals.  
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 Additionally, if trust in other people has a direct spillover effect into how individuals feel 

towards digital actors and artifacts, then increasing or decreasing social trust should 

correspondingly influence online privacy concerns as the connection between privacy and trust is 

well established (Luo, 2002). 

 Given each of these possibilities, in Experiments 3 and 4 the following research questions 

were explored: 

How does increasing and decreasing consumers’ levels of social trust affect feelings 
toward personalized advertising practices and those web platforms that deliver 
personalized advertising?  
 
 

Accordingly, Experiment 3 tested the following 10 hypotheses:33 

H7a: Increased social trust will increase stated preference for online content  
         personalization.  
 
H7b: Decreased social trust will decrease stated preference for online content  
         personalization.  
 
H8a: Increased social trust will increase revealed preference for surreptitiously- 
         personalized online content. 
 
H8b: Decreased social trust will decrease revealed preference for surreptitiously- 
         personalized online content. 
 
H9a: Increased social trust will increase revealed preference for overtly-personalized  
         online content. 
 
H9b: Decreased social trust will decrease revealed preference for overtly-personalized  
         online content. 
 
H10a: Increased social trust will increase trust in commercial websites and apps. 
 
H10b: Decreased social trust will decrease trust in commercial websites and apps. 
 
H11a: Increased social trust will decrease online privacy concerns. 
 
H11b: Decreased social trust will increase online privacy concerns. 

																																																								
33 Because increasing vs. decreasing levels of social trust may produce incongruent effects on the outcome 
measures, all hypotheses were tested in both directions. This resulted in the three-group experimental design. 
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Then, as a follow-up experiment to Experiment 3, Experiment 4 also tested the following eight 
hypotheses: 
 

H10a: Increased social trust will increase trust in commercial websites and apps.  
          (repeated in Experiment 3) 
 
H10b: Decreased social trust will decrease trust in commercial websites and apps. 
          (repeated in Experiment 3) 
 
H12a: Increased social trust will increase stated preference for online advertising   
         personalization. (variation of H7a) 
 
H12b: Decreased social trust will decrease stated preference for online advertising  
         personalization. (variation of H7b) 
 
H13a: Increased social trust will increase revealed preference for online advertising  
         personalization. (variation of H8a and H9a) 
 
H13b: Decreased social trust will decrease revealed preference for online advertising  
         personalization. (variation of H8b and H9b) 
 
H14a: Increased social trust will increase trustworthiness of example advertisements. 
 
H14b: Increased social trust will increase trustworthiness of example websites/apps. 
 
 
 

Manipulations in Experiments 3 and 4 

 Experiments 3 and 4 were both three-group between-subjects experiments and used the 

identical social trust manipulation. In both cases, participants were randomly assigned to either a 

positive (increased) social trust condition, negative (deceased) social trust condition, or a control 

group. Within their respective experiments, the three groups were equivalent in size. 

Additionally, a manipulation check appeared near the end of the experiments to assess the 

effectiveness of attempting to make participants feel more or less trusting towards other people. 

Both the manipulation and the manipulation check came from a related study by Mutz (2005), 

which found experimental evidence for the effect of social trust on stated intent to use e-
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commerce, though only among individuals who had never before used e-commerce. Wording in 

the manipulation and manipulation check was minimally modified for added clarity and to 

account for inconsistency in the original vignettes. 

  

Positive Social Trust Cue 

 For the positive social trust manipulation, participants read the following four short 

vignettes describing a selected portion of a report by Reader’s Digest, modified slightly for 

consistency in the manipulation. The vignettes were presented across four pages (four paragraphs 

below, each shown on a new page). Respondents were instructed that reading the vignettes 

carefully was necessary to answer the remaining questions in the survey. 

 
In a recent study done by Reader’s Digest magazine, its employees purposely dropped 
thousands of wallets each containing $50 in cash and an identification card with a name 
and phone number, so that the finder would have no trouble returning the wallet—
presuming the finder wanted to return it. The wallets were left on sidewalks and benches, 
in front of office buildings, discount stores, and churches, in parking lots and in 
restaurants. Then observers watched and waited to see what would happen. 
 
Reader’s Digest repeated this test in big cities and small towns across the United States, 
and then all over the world, to see how many people would keep the wallet with the 
money, and how many would do the right thing and try to return it. Interestingly, the 
overwhelming majority of people who found the wallets tried to return them to the owner. 
Surprised by the honesty of so many people, Reader’s Digest interviewed many of them. 
Some who handed back the wallets cited their religious beliefs as what compelled them to 
act. Others pointed to their upbringing and the emphasis their parents put on honesty. 
 
Mary, a little girl in a pink floral dress, found a wallet on a bench in a Seattle park. She 
ran to her father, Yong Cha, who immediately handed it back to her. “You must take this 
to someone who can help find the owner,” he said. The nine-year-old took her dad’s 
hand and they walked to the park’s office. “Honesty is the most important thing a child 
can learn,” Cha said. 
 
Time and again, around the U.S. and all over the world, even those who possibly could 
use an extra $50 often turned it in. Consider Dirk Engel, who works as a restaurant 
waiter in Keokuk, Iowa. After handing in the wallet, he said, “I put in long hours and I 
know how hard people work to earn that much money.” 
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Then, immediately after reading the positive trust text vignettes in the survey experiment, 

on the next page of the survey participants were asked to respond to a set of reinforcement 

questions intended to further increase levels of social trust. As these questions served only to 

strengthen the positive social trust manipulation, participants responses were discarded. 

Participants in this group were asked the following questions: 

Do you think positive news stories like the Reader's Digest experiment get the kind of 
news attention they deserve, or does the news tend to overemphasize the bad things that 
people sometimes do to each other? 
 

 Response options were: 
 

Good things that people do get the attention they deserve in the news. 
The news puts too much emphasis on the bad things people sometimes do. 
 

 Then, participants in this group were asked: 
 
Why is it that people often go out of their way to help a total stranger? 
 
For each of the explanations below, indicate whether you think it is part of why people 
act this way by selecting Yes or No. 
 
People often go out of their way to help a total stranger because of...  [followed by] 
 
...parental emphasis on moral values in children’s upbringing. 
...a cultural practice of treating others the way they would want to be treated themselves. 
...feeling a connection with fellow humans, even complete strangers. 
...religious beliefs that emphasize an ultimate reward or punishment for actions while on 
earth. 
...schools’ emphasis on codes of good conduct.  
...human nature. 

 
 Response options were: Yes, No. 
 

 

Negative Social Trust Cue 

 For the negative social trust manipulation, participants in this group read the following 

four short vignettes describing a selected portion from the same report by Reader’s Digest, 
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modified slightly for consistency in the manipulation. The vignettes were presented across four 

pages (four paragraphs below, each shown on a new page).) and respondents were instructed that 

reading the vignettes carefully was necessary to answer remaining questions in the survey. 

 
In a recent study done by Reader’s Digest magazine, its employees purposely dropped 
thousands of wallets each containing $50 in cash and an identification card with a name 
and phone number, so that the finder would have no trouble returning the wallet—
presuming the finder wanted to return it. The wallets were left on sidewalks and benches, 
in front of office buildings, discount stores, and churches, in parking lots and in 
restaurants. Then observers watched and waited to see what would happen. 
 
Reader’s Digest repeated this test in big cities and small towns across the United States, 
and then all over the world, to see how many people would keep the wallet with the 
money, and how many would do the right thing and try to return it. Disappointingly, a 
large number of the wallets simply vanished, with no effort ever made by their finders to 
return them to the rightful owner listed on the identification card. 
 
Even when the wallets were found by people who didn’t appear to need the money at all, 
many kept them anyway. For example, in an upscale resort town, a well-dressed woman 
in stiletto heels was walking hand in hand with her daughter. The woman stooped over to 
grab the wallet. With the young girl looking on silently, the mother removed the cash and 
placed the money in her pocket. She then sat the empty wallet back on the ground and 
they continued walking. 
 
And then there was the man who pulled his luxury car up to the entrance of a palace in 
London, who jumped out and snatched the wallet. Back in the car, he picked through the 
wallet carefully, removing only the cash before driving through the palace gates never to 
be heard from again. On another occasion, at least two apparently devout Christians 
who kept the wallets made the sign of the cross after picking them up and noticing the 
cash. The money, they must have decided, was heaven-sent, despite the identification 
card of the owner. Overall, the Reader’s Digest study confirmed that many people of all 
sorts of backgrounds can be untrustworthy when they think no one is watching. 
 
 

As with the positive social trust manipulation, immediately after reading the negative 

trust text vignettes, on the next page of the survey participants were asked to respond to a set of 

reinforcement questions intended to further reduce levels of social trust. As these questions 
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served only to strengthen the negative social trust manipulation, participants responses were 

discarded. Participants in this negative social trust group were asked the following questions: 

Do you think news stories like this one from the Reader's Digest experiment, which reveal 
how people often behave badly when they think nobody is watching, teach people a 
valuable lesson? 
 
Response options were: 
Stories revealing people behaving badly teach people a valuable lesson.  
Stories revealing people behaving badly do NOT teach people a valuable lesson. 
  
 

Then, participants in this group were asked: 
 
Why do many people tend to be untrustworthy when they think nobody is watching? 
 
For each of the explanations below, indicate whether you think it is part of why people 
act this way by selecting Yes or No. 
 
People tend to be untrustworthy because... [followed by:] 
 
...of not enough emphasis on moral values in the school 
...of a cultural emphasis on wealth and consumption 
...people benefit financially from being dishonest 
...of absentee parents due to many single-parent families 
...of not enough emphasis on religion in the family 
...of human nature 
 
Response options were: Yes, No. 
 
 
 

Control Condition 

Experiments 3 and 4 also each included a third control group. Participants randomly 

assigned to this condition did not read the short vignettes nor answer the corresponding short set 

of reinforcement questions. Instead, following the consent page in the survey, participants in the 

control group proceeded directly to the first set of questions measuring the dependent variables.  

Additionally, pilot testing revealed that participants read these manipulation vignettes and 

answered the list of questions afterward so quickly that there was no need to add an additional 
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vignette for the control conditions, as differential survey fatigue was a non-issue. While some 

advocate for strict parity in this design the case against parity is equally compelling. As any text 

read by the control condition would have had its own effect on participants, which could not be 

accounted for in this design and further justifying use of an unaffected control group in the purist 

sense. Results from the manipulation checks in both Experiments 3 and 4 provide further, post-

hoc support for this experimental design decision. 

 

Experiment 3 

Participants 

A survey experiment was administered online during the spring of 2016 to anonymous 

participants recruited through MTurk (N = 1,181). Participants were paid the federal minimum 

wage rate at the time of their participation ($7.25/hour) prorated for the estimated time to taken 

to complete the survey. Among participants, 45% were female. Participants were diverse in their 

age: 18-24 (14%), 25-29 (20%), 30-34 (19%), 35-44 (23%), 45-54 (12%), 55-64 (9%), 65-74 

(3%). Participants were relatively well-educated as highest level of education achieved was: less 

than high school diploma (<1%), high school diploma or GED (12%), technical, trade or 

vocational training beyond high school (4%), some college or Associate’s degree (33%), 

bachelor’s degree (36%), post-graduate training or professional degree (15%). Participant annual 

income was distributed as follows: <$25K (26%), $25-50K (30%), $50-75K (22%), $75-100K 

(11%), $100-150K (8%), >$150K (4%). The sample consisted primarily of participants 

identifying as Caucasian (78%), in addition to Black/African American (7%), Asian/Asian 

American (6%), Hispanic/Latino (5%), and Bi-racial/Multi-racial (3%).34  

 
																																																								
34 Where these numbers do not add to 100% this is due to the rounding error. 



	 197 

Design and Procedures 

 A three-group between-subjects survey experiment was designed to examine the causal 

influence of social trust on stated preference for online content personalization, revealed 

preference for surreptitiously-personalized online content, revealed preference for overtly-

personalized online content, trust in commercial websites and apps, and online privacy concern. 

As previously described, participants were randomly assigned to equally sized groups 

corresponding to either positive social trust, negative social trust condition, or a control group. 

For revealed preference for content personalization, individuals were assessed in their 

choices of which short videos they chose to watch given a series of selections between two 

videos, one of which was personalized based on information about the participant. In the first 

half of the video selections presented to respondents, the personalized video was not pointed out. 

In the second half of participants’ video selections, the personalized video options were 

explicitly indicated to them. This additional split in revealed preference for content 

personalization was designed to assess whether social trust influenced revealed preference for 

personalization differently when participants were and were not aware that one of the options had 

been recommended for participants based on information about them, as related work has 

demonstrated that being aware of content personalization can influence its desirability (Kim et 

al., 2015). This additional nuance to the videos options questions resulted in two separate 

measures of revealed preference for online content personalization, one for surreptitious 

personalization and one for overt personalization.  

 Scores on these outcome measures were compared using one-way ANOVA to examine 

whether increasing or decreasing social trust in participants had a substantial effect on stated and 

revealed preference for content personalization, trust in websites/apps, and online privacy 
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concern. Additionally, a manipulation check measuring levels of social trust was used to assess 

the effectives of the manipulation. Scales for all outcomes measures are described in detail in 

Appendix E.  

 

Results 

A manipulation check was employed to assess the effectiveness of the social trust cues at 

the beginning of the experiment. The manipulation was found to be effective across the three 

groups. Those in the positive social trust condition exhibited elevated levels of social trust (M = 

.95, SD = .42) compared to those in the control group (M = .87, SD = .43). Those in the negative 

social trust condition expressed decreased levels of social trust (M = .70, SD = .42) compared to 

the control group. These observed differences in levels of social trust between the three groups 

were highly significant, F(2, 1178) = 34.98, p < .001, η2 = .06, attesting to internal validity of the 

experimental treatments. 

Additionally, and further underscoring the effectiveness of the manipulation in 

Experiment 3, the effect on participants levels of social trust was twice that observed by Mutz 

(2005) in the study for which she developed this social trust manipulation and corresponding 

manipulation check measuring increased/decreased levels of social trust.35 Notably, Mutz still 

found a significant effect of social trust on consumers’ stated intent to use ecommerce. Though 

this effect was only detectable among a subgroup, those who had never made an online purchase. 

Nonetheless, for Experiment 3, for participants in the positive and negative experimental groups 

																																																								
35 For instance, effects detected in the manipulation check reported by Mutz (2005) were sufficiently present, F(2, 
814) = 12.63, p < .001, η2 = .03, yet apparently less effective than those observed here in Experiment 3. There is 
likely a ceiling effect on the degree to which social trust can be influenced using this technique and one should 
proceed with caution when comparing effect sizes for manipulations. Interestingly, the sample in Mutz’s study was a 
probability sample of the U.S. population recruited by Knowledge Networks (Menlo Park, CA) while I recruited 
participants in Experiment 3 from MTurk. Determining whether MTurk recruits are more easily influenced 
compared to a general population sample, as these results suggest, would require further investigation. 
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levels of social trust were momentarily increased or decreased, respectively. These differences 

are shown in Fig. 5.3 below. 

 

Figure 5.3. Manipulation check for Experiment 3. The effects of the social trust cues on levels of 
social trust in participants. Group differences were significant, F(2, 1178) = 34.98, p < .001, η2 = 

.06, indicating the manipulation was effective.  
 

 

Upon determining the social trust manipulations were effective, assessing the effects on 

the dependent variables revealed somewhat surprising results for Experiment 3. Across the 

board, altering how trusting participants felt towards other people had no significant effects on 

how trusting they felt towards commercial websites and apps, online privacy concern, nor 

revealed preference for surreptitiously- and overtly-personalized content.  
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Despite the conceptual link of trust between trust directed at other people and trust 

directed at websites and apps, no corresponding effect was observed in either direction. Altering 

how trusting participants feel towards other people had no causal effect on how trusting they 

found commercial websites and apps to be. Comparing the group mean differences using 

ANOVA, differences in trust towards websites-apps between individuals feeling increased social 

trust (M = 2.88, SD = .78), the control group (M = 2.97, SD = .77), and those feeling decreased 

social trust (M = 2.91, SD = .70), were not significant, F(2, 1178) = 1.32, p > .05, thus failing to 

confirm H10a and H10b. 

Similarly, levels of social trust had no significant effect on individuals’ reported online 

privacy concerns when comparing the positive trust (M = 2.95, SD = .90), control (M = 2.90, SD 

= .90), and negative trust groups (M = 2.97, SD =.89), F(2, 1178) = 0.78, p > .05, failing to 

confirm H11a and H11b. Notably, this apparent lack of effect of social trust on online privacy 

concern, and when using a validated 16-item scale (Buchanan et al., 2007) for this construct, is 

highly counterintuitive given both commonsense expectations and empirical associations 

between privacy and trust (e.g., Luo, 2002). Additional work examining the relationship between 

social trust and privacy concern is warranted. 

Neither of the revealed preference for content personalization measures were 

significantly different among the social trust conditions either. Group differences for revealed 

preference for surreptitiously-personalized content among the positive social trust (M = .86, SD = 

.19), control (M = .87, SD = .19), and negative social trust conditions (M = .86, SD = .18) were 

not significantly different, F(2, 1176) = 0.32, p > .05, failing to confirm H8a and H8b. Nor were 

differences between positive (M = .90, SD = .18), control (M = .91, SD = .15), and negative (M = 
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.90, SD = .17) conditions for the measure used to assess revealed preference for overtly-

personalized content, F(2, 1176) = 0.62, p > .05 failing to confirm H9a and H9b. 

Besides the manipulation demonstrating clear effects on how trusting participants felt 

towards other people, as identified in the manipulation check, the only outcome on which social 

trust had a significant effect was the measure of stated preference for online content 

personalization and this effect was in the direction opposite of that hypothesized. This measured 

effect is likely to be spurious given it did not occur in step with the three differing levels of trust, 

as the control condition (M = 2.73, SD = .95) and negative social trust group (M = 2.73, SD = 

.88) reported identical mean scores on this measure, which were both higher than those in the 

positive social trust condition (M = 2.58, SD = .86) for this stated preference for online content 

personalization measure. F(2, 1178) = 3.64, p = .03, η2 = .01. It addition to the effect detected 

most likely being spurious, the extremely small effect size suggest this relationship, if real, is 

unlikely to be of substantial interest. Thus, H7a and H7b were not confirmed, exhibiting 

significant differences counter to those hypothesized but with mixed differences out of step with 

a complete opposite effect with control and negative trust conditions scoring higher than those in 

the positive social trust condition. Given this result, the possible counterintuitive effect of social 

trust on stated preference for personalization warrants further examination, which occurred in 

follow-up Experiment 4 reported below. 

Overall, Experiment 3 failed to locate the hypothesized effects on stated and revealed 

preference for online content personalization. Perhaps more interestingly, the experiment also 

failed to detect an effect of social trust on two concepts that have much greater logical support 

for being linked to social trust. That is trust in websites and apps and online privacy concern. 

Social trust appeared to have no effect on these two outcomes. 
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Experiment 4 

Participants 

A survey experiment was administered online during the spring of 2016 to anonymous 

participants recruited through MTurk (N = 883). Participants were paid the federal minimum 

wage rate at the time of their participation ($7.25/hour) prorated for the estimated time to taken 

to complete the survey. Among participants, 52% were female. Participants were diverse in their 

age: 18-24 (15%), 25-29 (23%), 30-34 (20%), 35-44 (21%), 45-54 (12%), 55-64 (8%), 65-74 

(1%), 75-84 (<1%), over 85 (<1%). Participants were relatively well-educated as highest level of 

education achieved was: less than high school diploma (1%), high school diploma or GED 

(11%), technical, trade or vocational training beyond high school (4%), some college or 

Associate’s degree (36%), bachelor’s degree (36%), post-graduate training or professional 

degree (13%). Participant annual income was distributed as follows: <$25K (25%), $25-50K 

(31%), $50-75K (21%), $75-100K (11%), $100-150K (8%), >$150K (4%). The sample 

consisted primarily of participants identifying as Caucasian (78%), in addition to Black/African 

American (5%), Asian/Asian American (7%), Hispanic/Latino (5%), and Bi-racial/Multi-racial 

(2%).36  

 

Design and Procedures  

 A three-group between-subjects survey experiment was designed to examine the causal 

influence of social trust on stated and revealed preference for online advertising personalization, 

trustworthiness of simulated advertisements, trustworthiness of simulated websites/apps, and 

trust in commercial websites and apps. As previously described, participants were randomly 

																																																								
36 Where these numbers do not add to 100% this is due to the rounding error. 
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assigned to equally sized groups corresponding to either positive social trust, negative social trust 

condition, or a control group. 

 Scores on these outcome measures were compared using one-way ANOVA to examine 

whether increasing or decreasing social trust in participants had a substantial effect on preference 

for online advertising personalization, trustworthiness of simulated advertisements, 

trustworthiness of simulated websites/apps, and trust in commercial websites and apps. 

Additionally, a manipulation check measuring levels of social trust was used to assess the 

effectives of the manipulation.  

 Experiment 3 failed to locate a significant effect of increased or decreased social trust on 

the outcomes as measured. Therefore, to further probe whether social trust might impact these 

outcomes, Experiment 4 was designed to be very similar to Experiment 3 while using modified 

measures for many of the outcomes previously examined. Experiment 4 used the identical social 

trust manipulation and manipulation check used in Experiment 3, resulting in the same three-

group between-subjects design with participants randomly assigned to conditions of positive 

social trust, negative social trust, and a control condition. However, for the dependent variables, 

this time rather than measuring preference for content personalization broadly, a measure that 

also included advertising, instead stated and revealed preference for personalized advertising was 

assessed specifically. 

Additionally, six simulated online advertisements and websites/apps containing these ads 

were used to measure trustworthiness in actual ads and actual websites/apps, rather than solely 

relying on traditional question-answer scales that require an additional level of abstraction. 

Instead, participants were presented with six different online display ads across six different 

websites/apps and asked to evaluate how trustworthy they found these example ads and example 
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websites/apps to be. This more situated measure was conducted in addition to the validated 7-

item scale used previously in Experiment 3 which also measures trust in commercial websites 

and apps. As Experiment 3 failed to locate causal influence of social trust even on this scale 

measuring trust in websites and apps, the additional example ads and websites/apps were added 

in efforts to further reject or confirm the link between social trust and trust in digital media 

artifacts (i.e., and further investigate nuances of The Media Equation put forth by Reeves & 

Nass, 1996). In this case examining trust in example ads and trust in example websites and apps 

presented to participants in their relation to trust consumers feel towards other people. 

 Finally, this time to measure revealed preference in personalized advertising, the identical 

measure previously used in the transparency Experiment 2 was implemented. This measure was 

placed at the very end of the survey experiment asking respondents whether they wished to see 

ads for three books that had been selected just for them (personalized) and, then, whether 

participants who elected to see these faux-personalized ads then clicked on them or not.  

  

Results 

A manipulation check was employed to assess the effectiveness of the social trust cues at 

the beginning of Experiment 4. The manipulation was found to be effective across the three 

groups. Those in the positive social trust condition exhibited elevated levels of social trust (M = 

.96, SD = .40) compared to those in the control group (M = .79, SD = .44). Those in the negative 

social trust condition expressed decreased levels of social trust (M = .70, SD = .42) compared to 

the control group. These observed differences in levels of social trust between the three groups 

were highly significant, F(2, 880) = 30.28, p < .001, η2 = .06, signifying a degree of internal 

validity for the experimental treatments. Similar to Experiment 3, in Experiment 4 the effect size 
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on participants’ levels of social trust was double that reported in the original study (Mutz, 2005) 

for which this manipulation and manipulation check were developed. In Experiment 4, for 

participants in the positive and negative experimental groups, momentarily, levels of social trust 

were successfully increased or decreased, respectively. These differences are shown in Fig. 5.4. 

 

Figure 5.4 Manipulation check for Experiment 4. The effects of the social trust cues on levels of 
social trust in participants. Group differences were significant, F(2, 880) = 30.28, p < .001, η2 = 

.06, indicating the manipulation was effective.  
 

 

After checking that the social trust manipulations were effective, assessing the effects on 

the dependent variables in Experiment 4 once again revealed somewhat surprising results, 

though less surprising given results of Experiment 3. Manipulating how trusting participants felt 
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towards other people had no significant effects on how trusting they felt towards commercial 

websites and apps, how trustworthy they found example ads and example websites and apps, and 

participants’ stated and revealed preference for personalized online advertising. 

  Again, despite both measures commonly rooted in trust, no effect was observed in either 

direction when examining the impact of social trust on participants’ trust in commercial websites 

and apps. Comparing the group mean differences using ANOVA, differences were not 

significant between individuals with increased levels of social trust (M = 2.84, SD = .68), those 

in the control group (M = 2.92, SD = .72), and those feeling decreased social trust (M = 2.81, SD 

= .61), when assessing trust in commercial websites and apps, F(2, 586) = 1.24, p > .05, thus 

failing to confirm H10a and H10b.   

Altering social trust also had no corresponding effect on participants’ stated preference 

for personalized online advertising online, as seen when comparing the positive trust (M = 3.26, 

SD = 1.60), control (M = 3.48, SD = 1.66), and negative trust groups (M = 3.35, SD = 1.60), F(2, 

761) = 0.46, p > .05, failing to confirm H12a and H12b. 

The revealed preference for personalized advertising measure—identical to that used in 

Experiment 2 which did locate an effect of transparency on this measure of revealed 

preference—was not significantly different among the social trust conditions in Experiment 4. 

Group mean differences for this measure of revealed preference for advertising personalization 

among the positive social trust (M = .29, SD = .32), control condition (M = .26, SD = .30), and 

negative social trust conditions (M = .31, SD = .34) were not significantly different, F(2, 880) = 

1.83, p > .05, failing to confirm H13a and H13b.  

 Finally, after failing to locate an effect of social trust in Experiment 3 on hypothesized 

relationships of interests (e.g., privacy concern, trust in web platforms), for Experiment 4 two 
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additional measures we developed to assess more embedded (applied) measures of trust in ads 

and trust in websites and apps displaying ads. For these, example media were shown to 

participants who were asked to rate how trustworthy they found ads embedded on websites/apps 

along with the trustworthiness of the websites/aps themselves. Despite the logical link to trust, 

there was no measurable effect of altered social trust on how trustworthy participants found these 

example ads and websites/apps. Those in the increased social trust group (M = 2.61, SD = .73), 

control condition (M = 2.62, SD = .77), and decreased social trust condition (M = 2.59, SD = .74) 

did not differ significantly in how trustworthy they rated the example advertisements framed by 

website or apps, F(2, 880) = 0.20, p > .05. Nor did those in the positive (M = 3.23, SD = .74), 

control (M = 3.11, SD = .75), or negative trust groups (M = 3.17, SD =.77) rate the example 

websites and apps as more or less trustworthy based on these groupings and respective 

manipulations, F(2, 880) = 1.75, p > .05. Thus, Experiment 4 did not confirm H14a and H14b 

despite using more situated measures as they relate to the context of personalized online 

advertising. It appears feeling more or less trusting towards other people has little to no effect on 

the degree to which participants felt ads and websites/apps they viewed were trustworthy or not.  

Besides the manipulation demonstrating clear effects on how trusting participants felt 

towards other people, as identified in the manipulation check, none of the additional outcome 

variables exhibited a significant difference in step with the three social trust levels when 

analyzing group means using ANOVA. 

Overall, Experiment 4 failed to locate the hypothesized effects of social trust on concepts 

presented, many of which were previously tested in Experiment 3 using different measures. 

Repeatedly finding no effects of social trust on a range of outcomes, some of which would seem 

to overlap conceptually with trust towards other people (e.g., trustworthiness of simulated ads, 
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websites, and apps) is once again surprising. Thus, Experiment 4 further suggests that people 

may not feel towards these media technologies as they do towards other people in the way 

previous work has suggested (e.g., Reeves & Nass, 1996) or that these mappings between 

“media” and “the real world” are more nuanced than previously suggested. Implications of 

Experiments 3 and 4 are further discussed below. 

 

Discussion of Experiments 3 & 4 

After locating a negative effect of increased awareness of ad personalization practices in 

Experiments 1 and 2—the apparent effect of transparency in advertising personalization—on 

both stated and revealed preference for advertising personalization, opposition to consumer data 

collection, and trust in commercial websites and apps, Experiments 3 and 4 explored whether 

social trust might explain some of the underlying reasons for locating negative effects of 

transparency in the first two experiments. If seeing how ads are sometimes personalized has a 

corresponding negative effect, it stands to reason that consumers may be reacting negatively 

towards marketing practices because they do not trust marketers and/or do not trust the tools and 

technologies used to collect consumer data and put this to use in advertising personalization on 

the web. This potential lack of trust, similarly, could negatively impact consumers’ desire for 

personalization if individuals are thinking about advertising and web platforms in ways they are 

thinking about people. 

However, despite Experiments 3 and 4 both being effective at increasing and decreasing 

measurable levels of social trust in respondents, no corresponding effect related to stated or 

revealed preference for personalization was seen in either experiment. Further, neither 

Experiment 3 nor Experiment 4 detected a measurable effect of social trust levels on how 



	 209 

participants felt towards personalized content. This was despite attempts in Experiment 4 where 

constructs from Experiment 3 were maintained (e.g., stated and revealed preference for 

personalization) while varying the measures used to assess these concepts. This repetition was 

done in an effort to continue examining possible effects of social trust using alternative 

measurements in case Experiment 3 had failed to locate effects due to measurement insensitivity.  

Still, even when deploying alternative measures for both stated and revealed preference 

for personalization in Experiment 4, there was no measurable impact of increased/decreased 

social trust on participants’ preferences for ad personalization. Somewhat ironically, using 

multiple measures across repeated experiments appears to have triangulated a type of null effect 

of social trust on these outcomes of interest, rather than doing so in favor of the stated 

hypotheses. There two experiments found no causal influence of trust towards other people on 

preference for online content personalization, including the personalization of online advertising. 

Further illustrating this disconnect between how trusting individuals feel towards other 

people and the trust individuals feel towards those artifacts these people create (e.g., online ads, 

websites, and apps), in both Experiments 3 and 4, when looking at group means (e.g., via 

ANOVA) there was no measurable impact of increased/decreased social trust on participants’ 

levels of trust in commercial websites and apps nor on how trustworthy participants deemed 

examples of online advertisements and the example websites/apps displaying these ads. 

Across the board, as seen in Experiments 3 and 4, there were no substantial effects of 

social trust on individuals’ desire for personalized content nor the degree to which they found 

advertisements, websites, and apps to be trustworthy. The lack of measurable influence of social 

trust on outcomes of interest goes against the original hypotheses, which predicted that 

participants’ levels of trust in people would spill over not only into their trust in advertisements 
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and the web platforms these ads are displayed on, but also into individuals’ stated and revealed 

desire to have these web platforms personalized the ads and other content they deliver to 

consumers. However, this does not appear to be the case as measured in Experiments 3 and 4. 

This observed lack of connection between how people feel about other people and how 

they feel about the artifacts people produce, goes against an understanding of behavior that 

conceives the two as tightly coupled. In their pioneering work on how people treat computers 

and media objects, Reeves and Nass (1996) theorized that people not only project human-like 

characteristics onto media technologies but also treat them very similar to how they treat other 

people. For example, individuals were found to act in accordance with human social norms when 

interaction with computers, acting polite towards computers in the way we might act politely 

towards other people as not to offend them. Based on “a great deal of evidence,” Reeves and 

Nass concluded, “we have found that individuals’ interaction with computers, television, and 

new media are fundamentally social and natural, just like interactions in real life.” (p. 4-5, 

emphasis original). Under this understanding, one’s feelings toward media artifacts, which would 

include digital advertisements along with websites and apps displaying them, are thought to exist 

just as they do in real life. 

But do feelings such as trust toward real life individuals extend to feelings about real life 

media artifacts? Based on these results, it appears this is not always the case. This is 

demonstrated in Experiments 3 and 4, where individuals were clearly and measurably moved to 

feel more or less trusting towards other people yet they displayed no measurable and 

corresponding change in how much they trusted different media artifacts examined, including 

digital ads, websites, and apps. Reeves and Nass go on to argue that rules for how individuals 

interact with one another, “from the world of interpersonal interaction, and from studies about 
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how people interact with the real world … apply equally well to media” (p. 5). While people 

may treat computers politely, and in many cases respond to them socially and naturally, as 

Reeves and Nass argue, it could be a mistake to assume this is always the case. Though the null 

results from Experiments 3 and 4 only suggest that no effect was observed and do not necessarily 

refute The Media Equation. 

Of course, this complication and incompatibility of a complete offline/online unity, at 

least in the case of social trust and trust in artifacts, remains both preliminary and inconclusive. 

Though a range of experimental best practices were used in Experiments 3 and 4, along with 

repeating the social trust experiment using modified measures of these same constructs, further 

in-depth investigation of many other social concepts and media contexts is needed to arrive at 

any broader conclusions regarding the ability or inability for emotional or psychological 

constructs to map neatly from people to things. It may be that sometimes “people treat 

computers, television, and new media like real people and places” (Reeves & Nass, 1996). 

Further, while Reeves and Nass posit their theory as universally applicable claiming it 

applies automatically and with nearly all forms of media (p. 252-253), they also momentarily 

concede that people are “quite capable of thinking their way around it” (p. 7), treating media and 

technologies not as they treat other people. The researchers claim doing so requires substantial 

cognitive effort and is difficult to sustain, and that when people break free from The Media 

Equation they typically reverting back to relying on automatic processes that support this idea, 

media = real life. 

It may be the case that social trust does not affect how individuals feel towards websites, 

apps, and personalized advertising because, for this specific media technology, individuals’ 

preexisting attitudes toward advertising are too well established to be altered by current levels of 
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social trust. If this is the case, perhaps Reeves and Nass were correct in their totalizing theory 

under the caveat that sometimes people expend the resources to think their way around The 

Media Equation. It may be the case that people, generally suspicious of advertising-related 

activities, are simply expending the extra effort to treat personalized advertising differently than 

how they feel towards other people. 

Additionally, several measures were developed specifically for these experiments as there 

were no existing scales available, such as multiple measures of stated and revealed preference for 

online advertising personalization and the awareness of personalized advertising scale. In 

particular, some of the measures developed rely on multiple moving parts, so to speak, as in the 

case of the revealed preference for personalization measures in Experiment 3 where participants 

selected between videos they had no reason to believe had been personalized for them, but 

effectively included a personalized option based on real participant data including demographic 

information participants entered at previous points in the survey, the U.S. state from which they 

were completing the survey (derived on-the-fly by a participant’s IP address), and detecting 

participants’ computer operation systems using HTTP request data. Similarly, in Experiments 2 

and 4, a revealed preference for personalized advertising measure was developed and “hidden” at 

the end of the survey. This measurement observed whether participants clicked a button to see 3 

book recommendations they believed had been personalized for them based on their previous 

survey responses. And then, additionally, whether or not they clicked on the “personalized” ads 

for these books upon being informed this would take them to books’ corresponding Amazon.com 

pages (which it did). This question effectively measured click-through-rates for personalized ads 

as a revealed preference. All of these measures and all scales used, both validated measures from 
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previous studies as well as those developed for the current experiments, are described in detail in 

Appendix E.  

 

GENERAL DISCUSSION 

 As consumers’ levels of awareness are generally low and variable, failing to incorporate 

the multitude of additional actors operating below the surface for most web transactions severely 

limits our ability to understand trust in today’s online context. Yet this is essential for 

understanding why consumers trust or prefer online personalization, where numerous third-

parties complicate established notions of consumer-firm trust and challenge traditional 

understandings of consumer-firm relationships. 

 Many of these consumer-to-firm trust relationships are difficult to pinpoint, with those in 

a third-party trustee position often obscured. These relationships are also multi-faceted. For 

example, an individual may have high trust towards the definitions that appear on Merriam-

Webster.com (content) and also feel great trust towards this website/company (publisher), while 

at the very same time feel very low levels of trust towards the numerous data tracking companies 

(e.g., data brokers, marketing firms, social media companies) that Merriam-Webster permits to 

operate under the hood. In this example trust is complicated by third-parties who monitor and 

track the behavior of site visitors through placement of third-party cookies on a visitor’s 

computing device and use of other, more persistent tracking mechanisms.37 Therefore, what it 

																																																								
37 A number of browser extensions allow end users to get a glimpse of these third-party partner sites’ activities. 
Popular examples include Lightbeam for Firefox (https://www.mozilla.org/en-US/lightbeam/) and Ghostery for 
Chrome, Firefox, Safari, and Opera, along with different iOS and Android app-based versions on mobile devices 
(https://www.ghostery.com/en/). I conducted a quick test using Lightbeam (v.1.2.1), visiting Merriam-Webster.com, 
which revealed 61 third-party consumer tracking companies operating on this site’s homepage. Of these 61 
companies were a handful of well-known firms (Facebook.com, DoubleClick/Google, Yahoo). However, most 
companies detected were not those commonly known to most people (e.g., adexcite.com, adnxs.com, 
spotexchange.com, openx.net, mathtag.com, change.com, powerlinks.com, adtech.de, ru4.com, bidswitch.net). 
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means to trust Merriam-Webster.com (or similarly Facebook, Google, Twitter, etc.) is far less 

straightforward than our current understandings of online trust are capable of explaining. 

 As noted, for these types of convoluted, multi-tiered trust relationships existing between 

consumers and various first- and third-party firms, generally, consumers are relatively unaware 

of the volume or nature of the transactions that occur between themselves and these firms, nor 

the presence of most of these firms with whom they transact. This lack of awareness is 

exacerbated by the frequency of these transactions, which typically occur each time a webpage 

or mobile app loads new content. In some cases, monitored behavior transactions take place 

when content has already loaded on webpage, such as recording the length of time internet users 

hover their mouse cursor over an ad on a desktop. Additionally, in the many cases when there is 

no active clicking in agreement to terms of service, many of these transactions are still governed 

by formal and legal agreements covered under all-encompassing privacy policies effectively 

granted by consent by use. In the E.U. this consent is typically governed by an initial click on 

websites to accept its respective personal data collection scheme. Though in the U.S. this is not 

the case, where most often the act of accessing content on a particular website is viewed as 

consenting to its subsequent data collection practices.  

 On the other hand, in the case of today’s online marketing system this trustor/trustee 

asymmetry is not limited to consumers. For instance, while a particular data broker would 

technically know about its transactions with internet users (by nature of recording them), under 

the current ad exchange model this data broker may not be aware of the particular advertiser(s) to 

which it rented a consumer’s information. In this case, the monetary transaction between first- 

and third-party firms is obscured by the system itself. As a result, and perpetuating asymmetries 

within this system, a data broker is aware of some but not all of the parties it transacts with in 
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this example. Similarly, while Internet users are often aware of a portion of their interactions 

with NYtimes.com, OverStock.com, or Facebook.com for instance,38 most consumers are 

oblivious to their many interactions with numerous other firms whom these consumer facing 

sites partner with and permit to monitor website visitors (or app users) for marketing purposes.    

 Whether or not an unknown entity in these type of web transactions (e.g., data broker) is 

a trustee or not becomes more of a semantic difference than a substantive one, as relationships 

exist despite varying degrees of awareness. In the current study, examining trust relationships 

between consumers and entities they may or may not be fully aware of is intentional, with the 

proposed studies leveraging this varying degree of awareness and trust on the part of the user.  

 When it comes to actually using computing systems, pioneering studies in human-

computer interaction drawing from situated action have taken for granted the role of trust in the 

adoption and use of these interactive systems (e.g., Suchman, 1987). Situated action approaches 

have not fully considered the complexities surrounding trust, proceeding as though an individual 

who decides to use a system has already decided to trust this system. Yet the two are different. 

Individuals adopt and use systems they do not fully understand nor necessarily trust all the time. 

This point is key to the current investigation of trust as it functions in online marketing systems. 

Further, the dichotomy of in-context vs. out-of-context has been used to explain how 

individuals evaluate whether information about them has been used appropriately or not. 

Nissenbaum (2010) conceptualizes this phenomenon through the notion of contextual integrity; a 

heuristic for evaluating if an instance or ongoing practice of personal information use aligns with 

the expectations (i.e., for privacy, redistribution, granularity) of the individual who the 

																																																								
38 Even with these types of consumer facing groups (not including the non-consumer facing firms they partner with), 
users are largely unaware of many of their interactions with firms that occur surreptitiously. For instance, when 
logged in to Facebook, the company and its partners track Facebook users’ activities across non-Facebook websites. 
This means Facebook users are frequently and somewhat continually transacting personal data back to Facebook 
when using the web, even when not actively using the Facebook website or app. 
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information describes, or whether this use of their information violates what are theorized as 

context-relative information norms. 

For instance, most people would affirm the contextual integrity of an interaction with 

their doctor when she mentions one’s prior or chronic medical conditions or even family medical 

history based on information in one’s medical chart. Similarly, a bank teller might discuss one’s 

balances from various loans, investments, or savings accounts. As the bank employee’s 

knowledge of this type of personal information is not only necessary for the bank to function but 

is expected by consumers given the context. Though necessity is not always a requirement, as in 

the examples of the doctor’s office and bank, for maintaining information norms. For instance, a 

person’s roommate would likely be intimately familiar with his drug store purchases due to 

sharing a medicine cabinet, despite not needing to know this information for the apartment to 

function. In this way, context provides a powerful means of setting information expectations 

regardless of information requirements. These and many other information expectations are 

fairly obvious. However, far less clear is the question, what constitutes appropriate information 

use in marketing. 

 

Future Work 

Building on these results, future work might further investigate the effects of 

transparency and trust on preference for advertising personalization in many additional ways. For 

example, two key questions left unanswered by these studies related to the nuances of different 

specific forms of trust and also what might be learned from conducting this type of experimental 

testing but using more naturalistic or embedded study designs to examine situated practices. 

First, what is the effect of more specific forms of trust, such as trust in commercial website and 
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apps, on consumer preference for personalization? From a recent related study surveying 

American adults (Stevenson & Pasek, 2015), we know these constructs are moderately 

correlated. However, the causal role played by trust in commercial entities (versus generalized 

social trust) in developing preference for personalization remains unknown. Understanding these 

concepts, which are likely to have more overlap than with social trust, could be especially 

helpful for marketers and systems designers. A simple modification of the third experiment could 

shed light on this question, manipulating trust in firms to examine its effects personalization. 

Another question stimulated by this work but remaining unaddressed relates to more situated or 

embedded effects of transparency in advertising personalization transparency on consumer 

reception to ads themselves. Are consumers more or less likely to be persuaded, or perhaps 

persuaded differently, when they are more or less aware of how the ad in front of them has been 

personalized? Though this genre of applied persuasion research is well studied in marketing and 

advertising, to date there is little published work documenting the specific effects of transparency 

in the use of consumer data for generating ads online. As more and more consumers consume 

media through online channels, and as many of the ads distributed on these channels are 

selectively presented to viewers based on information about them, further understanding of the 

dynamics of personalization should benefit marketers and consumers in reaching their respective 

goals. 

 

CONCLUSION 

Together, the empirical studies I have reported examine the relationships between trust, 

transparency, and preference for personalized content including advertising, in addition to related 

factors of secondary interest, privacy concern, data control self-efficacy, approval of various 
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consumer data categories for use in personalized advertising. The aim has been to execute these 

individual studies and experiments successively and so they are in conversation with one 

another, with each study motivating the next. How factors such as awareness of how media we 

use function under the hood and social trust affect more specific forms of trust such as trust in 

websites and apps and trust in online ads, along with preference for personalization of these ads 

and other content, are important insomuch as we know that the ways individuals think about 

advertising—both its content and form—directly influence consumer response to attempts at 

advertising persuasion. This alone should motivate marketers to try to further understand not just 

how consumers feel about advertising personalization but how these positions impact reactance 

to marketing messages. This is in addition to the implications for consumers and policymakers, 

who should take note of the relatively low levels of approval and trust in ads, websites, and apps 

when consumers are made more aware of how these processes go about personalizing content. 

As demonstrated in Experiments 1 and 2, arousing consumer awareness about how 

consumer data is used to personalize online ads, or simply increasing transparency in this 

process, appears to diminish several constructs most marketers would logically uphold as worthy 

of pursuing in the digital era: trust in commercial websites and apps along with both stated and 

revealed preference for personalized advertising. As marketing messages are routinely 

personalized, often using person-specific consumer data, establishing trust and consumer 

preference for these practices seems vital to successful interactions and relationships between 

marketers, web platforms, and consumers. However, as the studies here have illustrated, being up 

front about precisely which consumer data is collected and how it is used for targeting online ad 

campaigns appears to diminish consumer trust and support for this ubiquitous practice. This 

should be troubling for marketers, as trust is often considered a key ingredient in facilitating 
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successful interactions. And no marketer or web platform intends for its audiences or user base to 

disapprove of its standard practices. Yet, in the case of online advertising personalization, when 

consumers are more aware of how consumer data is used they disapprove of related activities 

including ad personalization. 

One remedy for the trouble with transparency might be for marketers to pursue novel 

ways of establishing better trust with consumers. So that consumers, upon finding less reason to 

be concerned about how data describing them is used to personalize ads and more reason to trust 

marketers in this regard, may increase in desire to receive content selectively presented to them 

based on what marketers and other entities know about them. For measures to increase social 

trust, regrettably, as reported in Experiments 3 and 4, increasing social trust appears ineffective 

at improving consumers’ trust in websites, apps, and advertisements and how trustworthy they 

find actual ads and websites/apps, along with having apparently no bearing on individuals’ stated 

or revealed preferences for ad personalization. This is unfortunate given the apparent reactions 

by consumers to increased transparency in online ad personalized, as reported in Experiments 1 

and 2. This suggests that marketers should be on the look out for alternative ways to improve 

both consumer trust and preference for advertising personalization. As improving trust in people 

in general appears to have no corresponding uplift on how consumers feel about the technical 

artifacts (ads, websites, apps) these same people create. 

Finally, the concepts examined in these studies, especially those linked to consumer 

preference, are anything but static. Rather, they are likely to change in some way over time. This 

likely change over time may work for or against the interests of marketers and web platforms 

that use detailed consumer data for personalized advertising. First, working against these 

interests, over time, naturally more consumers will become cognizant of (consumer data/ how ad 
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personalization functions). If this is the case, this could signal trouble for marketers and 

proprietors of online platforms that deliver personalized advertising. Second, and contrary to the 

previous problem posed by time, it would be a mistake to interpolate the negative effects of 

transparency very far out into the future. Preferences, and especially those as nuanced as 

preference for consumer data privacy and personalized (vs. non-personalized) advertising on the 

internet, are likely to change over time. Thus, in this instance, as more consumers naturally 

become more aware of different consumer data practices and the ways advertising 

personalization is achieved online, these same people may come to accept or even prefer these 

practices more. This remains a possibility, especially as these practices become not only more 

widely known in the popular imaginary but simply normative. This history of media technologies 

suggests consumers can be highly resistant to adoption only to reverse their preferences after 

some time. The same may be the case for automated advertising personalization that relies on 

rather detailed consumer data. Therefore, there is reason to believe that time may simply 

alleviate problems for marketers associated with greater consumer awareness of ad 

personalization practices rather than expand them. In the meantime, and in the absence of a 

crystal ball, it would serve marketers to take consumer preferences, both stated and revealed, 

seriously. For now, for marketers to ignore the advertising and personal data use preferences of 

consumers may be to the peril of both groups. 

 

 
 
 
 
 
 
 
 



	 221 

 
 
 
 
 

Chapter 6 

Conclusion 

 

 Nearly 40 years ago, commenting on what he observed to be a loss of human agency in 

response to the growing complexity of technology, Langdon Winner (1977) concluded, 

 
“…members of the technological society actually know less and less about the 
fundamental structures and processes sustaining them. The gap between the realities of 
the world and the pictures individuals have of that world grows ever greater. For this 
reason, the possibility of directing technological systems toward clearly perceived, 
consciously chosen, widely shared aims becomes an increasingly dubious matter” 
(p. 295-296).  
 
 

 I share Winner's concern that as technologies of everyday life grow more complex we are 

less able to fully grasp how these important parts of our lives function. However, while the 

problem of directing complex sociotechnical systems towards mutually beneficial outcomes 

might seem daunting, complexity alone does not necessarily prevent people from understanding 

how technologies and processes work. At least, it should not.  

 The findings presented in this dissertation point towards another possibility. One where 

those involved in building and maintaining a system of rather astounding sophistication, capable 

of delivering precise communications to people possessing very specific attributes by parsing 

and matching vast quantities of data and in real time, have also done a very poor job at showing 

individuals the impressive way this system works. In some cases, this is intentional obfuscation, 

as when system designers deploy user interfaces and policies that exacerbate information 
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asymmetry with the consumer. More than anything, this business strategy is likely caused by a 

fear of the consumer. Fear that allowing individuals to peek inside today’s advertising machinery 

will result in backlash rather than awe. I suspect awe may actually be possible. However, 

because the marketer's default has been secrecy for so long, the targets recoil. As observed across 

the three studies presented in this dissertation, whenever individuals, myself included, gain the 

occasional glimpse into some of the ways advertising personalization works, they are often 

surprised, displeased, and even shocked. Were this system more open and transparent to begin 

with, I suspect people might instead come to appreciate the tremendous lengths marketers and 

others go to in efforts to try to get our attention and sway our thinking. 

 

Summary of Dissertation 

 The three studies in this dissertation examined the many efforts on the part of marketers 

to selectively present digital advertisements to individuals. 

 In the first study (Chapter 3), I took on the role of the marketer to gain an up close look at 

the character and dynamics of consumer data as it functions in advertising personalization. 

Examining real-time bidding interfaces, I found the volume, variety, and granularity of third-

party consumer data available to marketers to be nothing short of dizzying. Quite simply, if you 

can imagine a type of consumer data, it likely exists, in some cases with stunning specificity. In 

this study, I synthesized just a snippet of the variety of consumer data available for advertising 

personalization that I observed while using real-time bidding ad-buying platforms. Further 

inquiry might explore how these data are used by marketers and how they are not. From my 

vantage point, I primarily assessed what is possible but had no way to determine what is most 

common via this research design. I also reported results from a series of tests which found that, 
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in a number of examples, personalized advertising pushes and pulls on some audience attributes 

more than others. These results also warrant further inquiry, as some have pointed to the 

potential for social discrimination when members of protected classes experience content 

personalization or other algorithmically-determined outcomes.  

 In the second study (Chapter 4), I spoke with consumers in focus groups to explore how 

people imagine and reason about advertising that they believe has been personalized for them. 

Findings from this study demonstrate the generally negative associations with personalized 

advertising. I further explored the possible mental models that people rely on when interacting 

with online advertising today. I interrogated some of the shortcomings of these models, which 

seem to be at times quite ineffective in that they leave people disappointed. If our mental models 

are indeed the most useful when they provide a basis for action that allow us to achieve our goals 

with a technological system, then it appears consumers’ mental models of personalized 

advertising might not be very good. This might explain the widespread negative opinions about 

many consumer data collection practices. Teaching web users different mental models 

demonstrating how advertising personalization works may prove to mitigate some of the 

problems faced by consumers and marketers alike. 

 Finally, in the third study (Chapter 5), I reported results from four experiments that 

examine the interplay and effects of transparency and trust on how consumers feel about 

advertising personalization. Across the board, greater transparency about some of the ways 

online ads are personalized for individuals appears to diminish their support for this practice. As 

mentioned earlier, this may simply be due to the backlash of being confronted with information 

one finds surprising rather than truly objectionable. Or, these objections may be enduring. 

Further study might examine whether the effects of transparency are momentary or whether 
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awareness over time about how ad personalization functions leads to more sustained opposition 

to these practices. Marketing practitioners and policymakers should take note, as findings point 

towards a consumer backlash, including reduced trust in marketing and digital environments 

generally.  

 In light of this, what is one to make of the present state of advertising personalization? 

the ways in which marketers envision consumers? and how consumers perceive these attempts to 

persuade them? Across all three studies I repeatedly found the notion of information asymmetry 

relevant and compelling. The view from the consumer’s perspective is so limited that it appears 

any glimpse into how advertising personalization functions wakens perceptions of the 

asymmetry itself. One possible solution might be for marketers to take the lead in chipping away 

at the information asymmetry they have themselves created. Efforts to educate the public about 

matters deemed to be of current cultural importance (e.g., healthy eating, anti-smoking, exercise) 

are common. Thus, marketers might take a page from the public health playbook and seek to 

educate consumers about the digital processes in which consumers and data describing them are 

routinely involved. In doing so, it stands to reason that “the gap between the realities of the 

world and the pictures individuals have of that world” might be reduced. 
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Appendix A 

Focus group moderator question guide 

(Chapter 4) 

 

Note. Given the open-ended nature of the focus group discussions, not all questions below were 

asked of all participants in each focus group. 

 
 
Please take a minute or so to write down five words that come to mind when you think about 
personalized online advertising. 
 
Try to think back about a time or two when you noticed an ad online, this could be on a website, 
in a mobile app, anywhere on the internet where you noticed advertising. What happened? 
Where was the ad shown? What else comes to mind? 
 
Do you think this ad you saw was generated uniquely for you? That it had been personalized for 
you in some way? 
 
For the advertisements you see on websites and apps, would you say you expect these ads to be 
personalized for you? Why or why not? 
 
How would you say it feels to you to have advertisements personalized for you, based on 
information about you? 
 
Can anyone recall a time when you saw an online ad and then either clicked on the ad to get 
more information or used it to make a purchase?  
 
In the past, would you say you’ve found personalized online ads to be useful? Ether ones you’ve 
clicked on or used to help make a purchase or just the ones you have viewed but didn’t click on? 
 
Generally, would you say you want the online ads you see to be personalized just for you? Or, 
would you say you would prefer to see non-personalized ads online? (similar to the type of ads 
you see when watching live television, which are typically the same for everyone watching at that 
time and not personalized for you) 
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Do you enjoy seeing online ads that are relevant to your interests, background, habits, etc.? 
 
Do you believe advertisers have your best interests in mind when it comes to creating ads 
personalized for you individually? Why or why not? 
 
Was there anything that came up during today’s discussion that was surprising to you? 
 
Is there anything from our discussion you would like myself or someone else to try to clarify? 
 
Is there anything else that comes to mind that you would like to say today? 
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Appendix B 

Participant word associations for personalized online advertising 

(Chapter 4) 

 
 

abundant economic(s)* millennials scroll 
age everywhere money search 
aggressive eye catching money grab seduction 
aggravating family needs selling 
algorithm fraud not ideal simple 
annoying** free not needed sloppy 
appealing frustration nuisance smart* 
assuming garbage overkill spend 
avoid helpful* persistent sporadic 
basic hidden persuasion personal* sports 
business ignoring pics stalking* 
busy in the way politics target age group 
car indifferent predatory targeted 
competitive information presumptive time waster 
confusion innovation privacy* too many 
constant inspired profile too much frequency 
consumer interest(s)* profiling truth 
convenient* interference quizzical understand 
cool interruption random unnecessary 
curious intruding repetitive* unreal 
deletion inundated resource useful* 
dishonesty invasive sale user specific 
disingenuous inventive sales pitch word/wording 
distraction irrelevant/not relevant scary  
    

 
  * Term appeared in 2-3 participants’ lists. 
** Term appeared in 7 participants’ lists. 
Some participants wrote less than 5 terms. 
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Appendix C 
 

Participant drawings of personalized online advertising 
 

(Chapter 4) 
 
 
 

Note. Some participants wrote their real names in various places on their drawings, typically 

when labeling items (i.e., Fred’s data, Mildred’s Facebook account). Where present these 

identifying marks have been removed resulting in blank spaces (white rectangles) in a few of the 

drawings below. 
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Appendix D 

Manipulation for experiment 1  

(Chapter 5) 

 

 In Experiment 1, all participants completed the following 75 question manipulation 

survey in a web browser. These 75 questions were presented in randomized order to participants. 

Differences between measurements taken before and after completing this survey are reported in 

the results section of Experiment 1. For the manipulation participants were initially prompted, 

and then again after completing every 15 questions, with the following message: 

For each type of information, indicate how acceptable it is to you for marketers to use 
this information to personalize the online ads you see.   
 
Note: These types of information are currently used by marketers to determine who sees 
which ads online.  

 
 

Then, all questions appeared in the following format:  

You see an online ad based on:  [example of consumer data] 

Response options for each question were: totally unacceptable, unacceptable, slightly 
unacceptable, neutral, slightly acceptable, acceptable, perfectly acceptable. 

 
 
All 75 examples of consumer data rated by participants in Experiment 1 for acceptable use in 
online advertising personalization appear below. 
 
You see an online ad based on:   
 

whether you use online dating services or not 

your gender 
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your web browser (e.g. Mozilla Firefox, Internet Explorer, Google Chrome, Safari) 

the temperature of the city in which you are currently located * 

the age of your computer 

the age(s) of the people in your immediate family 

whether you have been to a casino recently or not 

the type(s) of news you consume (e.g. political news, international news, sports news, 
 entertainment news) 
 
health care products you have purchased 

the type of music you listen to 

the age of your mobile device 

the charitable organizations to which you have made a donation 

the combined value of any financial securities you own (e.g. stocks, bonds) 

current street traffic conditions for the city in which you are located 

the content of the website you are currently viewing 

bank(s) with which you have an account(s) 

your health insurance provider 

the type(s) of movies you watch 

grocery products you have purchased 

your political leaning (e.g. conservative, liberal, independent) 

beauty products you have purchased 

the type of pet(s) you own 

personal care or hygiene products you have purchased 

countries to which you are planning on traveling in the near future 

your computer's operating system (e.g. Windows, Mac OS X, Ubuntu) 
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your sexual orientation 

your activity on other mobile apps 

your hobbies or recreational interests 

the type(s) of magazine(s) to which you subscribe (print or digital editions) 

your zip code 

the make and model of your automobile (e.g. Honda Accord, Ford Focus, Toyota Prius, 
 BMW 3 Series) 
 
whether you are a parent or not 

your ethnicity or race 

your age 

the type of home in which you live (e.g. apartment, condo, single-family home) 

your level of education (e.g. high school diploma, some college, college degree, 
 advanced degree) 
 
your telephone number's area code 

words or phrases you have searched for online (e.g. your searches on Google.com, 
 Bing.com, Yahoo.com) 
  
your relationship status (e.g. single, engaged, married, divorced, widowed) 

countries to which you have recently traveled 

your precise geographic location (latitude and longitude) 

which credit card(s) you have (e.g. Visa, Visa Signature, MasterCard, 
 MasterCard Platinum) 
 
whether you frequently eat at fast food restaurants or not 

whether you or your partner are pregnant (expecting a child) or not 

your place of employment 

whether you use coupons in a physical store (e.g. grocery store) or not 



	 270 

the quantity of online connections (e.g. friends, followers, colleagues) on your social 
 networking or social media accounts 
 
which internet service provider (ISP) you are using 

today's U.S. stock market performance (e.g. NASDAQ Composite, Dow Jones Industrial 
 Average, S&P 500, etc.) * 
 
content you post via your social networking or social media accounts 

the type of mobile phone you own (e.g. basic phone, feature phone, smartphone) 

the language(s) you speak 

the type of video game(s) you play 

items you have purchased online (e.g. from a website)  

the type(s) of television programs you watch 

the type of device you are using to access the internet (e.g. personal computer, tablet, 
 smartphone) 
 
the weather conditions for the city in which you are currently located (e.g. sunny, 
 overcast, rain, snow) * 
 
the city, state, country in which you live 

today's average Air Quality Index (AQI) across the ten largest US cities * 

whether you rent or own your place of residence 

your activity on other websites 

the type of restaurant(s) at which you most frequently eat 

the specific retail store(s) at which you shop 

the amount of content you share online 

your household income 

the balance of any loans you have (e.g. auto loan, student loan, personal loan) 

the current calendar season (e.g. spring, summer, autumn, winter) * 
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the video game console(s) you use 

household products you have purchased 

items you have purchased offline (e.g. in a physical store) 

the content of the mobile app you are currently using 

financial investment company(s) with which you have an account(s) 

the number of people in your immediate family 

who you are connected to online (e.g. friends, followers, colleagues) on your social 
 networking or social media accounts 
 
your mobile device's operating system (e.g. iOS, Android, Windows Phone, Blackberry) 

 
 

* These five items do not correspond to personal data but simply data more generally and 
were included to measure response to online ad customization based on data not specific to 
the viewer per say. 
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Appendix E 

Dependent measures for all experiments 

(Chapter 5) 

 

Social Trust. A measure of social trust provided the manipulation check in Experiment 3, 

described below. Sometimes referred to as generalized social trust, this measure consists of 

seven items including questions taken directly from the social trust scale of the standard General 

Social Survey and World Values Survey. This 7-item scale was used as the manipulation check 

in a related study by Mutz (2005), which also supplies the manipulation used in Experiment 3. 

Participants were asked the following five binary response questions: Would you say that most of 

the time people try to be helpful, or that they are mostly just looking out for themselves?, Do you 

think most people would try to take advantage of you if they got a chance, or would they try to be 

fair?, Generally speaking, would you say that most people can be trusted or that you can’t be too 

careful in dealing with people?, Which statement comes closer to your views, even if neither is 

exactly right? (Human nature is basically bad, and you can’t be too careful in your dealings with 

people.) versus (Human nature is basically good, and people can be trusted), Which statement 

comes closer to your views, even if neither is exactly right? (People benefit in the long run if they 

are honest and fair in their dealings with others) versus (Many people get ahead by being 

dishonest and unfair in their dealings with others.) Participants were also asked to respond to the 

following two items: Most people in this society are trustworthy and When they face temptations, 

people are not very honest, with response options: strongly agree, somewhat agree, somewhat 
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disagree, strongly disagree. All seven responses were coded so that a higher score pointed 

towards higher trust response, which were then averaged resulting in the Social Trust measure.  

 
Website-App Trust. Participants were assessed on how much they trust the commercial websites 

and apps with which they interact. Importantly, this measure taps trust in commercial firms’ (as 

opposed to all organizations’) websites and apps. It is a slight modification of the validated 

Individual Trust in Online Firms scale previously developed by Bhattacherjee (2002) to better 

match the construct of interest to the current studies. Bhattacherjee’s trust in online firms 

measure differs in two notable ways from that used in the studies reported here. First, the original 

scale was developed using specific internet firms rather than online firms in general as is used in 

the current studies. Second, to more directly tap trust in the digital platforms themselves on 

which consumers encounter personalized online advertisements (the Twitter App), rather than 

trust in these platforms’ parent organizations (e.g., Twitter) questions were modified asking 

respondents to “consider the commercial websites and apps that you use...” at the beginning of 

each question. In this way, website-app trust as used in these studies taps individual trust in 

commercial web platforms generally, rather than trust in a specific internet company or in a 

specific website/app. Additionally, for each of the questions, item-specific response options were 

used in place of Bhattacherjee’s generic Likert response options. (As demonstrated by Pasek & 

Krosnick, 2010, item-specific response options tend to be more effective than generic Likert 

scales.) Participants were first prompted: For the questions below, consider the commercial 

websites and apps that you use, which includes those owned and operated by a company. Then, 

they were asked seven questions. Each of these questions began with the phrase: For the 

commercial websites and apps that you use… followed by each of the following taken directly 

from the original scale validated by Bhattacherjee: ...how fair are they in the way they use 
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information about you? (not at all fair, a little fair, somewhat fair, very fair, extremely fair); 

…how often do they act in your best interests? (never act in my best interests, rarely act in my 

best interests, sometimes act in my best interests, often act in my best interests, always act in my 

best interests); …how fair are their Terms of Service (ToS) agreements? (not at all fair, a little 

fair, somewhat fair, very fair, extremely fair); …to what extent are they receptive to your wishes? 

(not at all receptive to my wishes, a little receptive to my wishes, somewhat receptive to my 

wishes, very receptive to my wishes, extremely receptive to my wishes); …how fair are they in the 

way they interact with you? (not at all fair, a little fair, somewhat fair, very fair, extremely fair); 

…how often do they try to address your concerns? (never try to address my concerns, rarely try 

to address my concerns, sometimes try to address my concerns, often try to address my concerns, 

always try to address my concerns); …how trustworthy are they? (not at all trustworthy, a little 

trustworthy, somewhat trustworthy, very trustworthy, extremely trustworthy). The seven 

responses were coded so that a higher score pointed towards a higher trust response, which were 

then averaged resulting in the Website-App Trust measure. 

 
Personalized Advertising Awareness. A measure of heightened awareness of advertising 

personalization practices supplied the manipulation check for Experiment 2 described below. A 

5-item scale was developed to assess awareness of personalized online advertising linked in 

response to confronting some participants with information about personalization and the use of 

consumer data to selectively present ads. Participants were asked to respond to the following 

three items: On the Internet, different people receive different advertisements when accessing the 

same website/app at the same time; Advertisements appearing on websites/apps are personalized 

for each viewer; Advertisements appearing on websites/apps are randomly generated for each 

viewer. Response options for these three items were: never, very rarely, rarely, sometimes, most 
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of the time, almost always, always. The third item was reverse coded, so that all three questions 

tapped increased awareness of advertising personalization. Participants were also asked to 

respond to two related estimation questions: In your estimation, what percent of advertisements 

appearing on websites/apps have been personalized for the viewer?; In your estimation, what 

percent of advertisements appearing on websites/apps are randomly generated for the viewer? 

Response options for these two questions were: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80%, 90%, 100%. The latter question was reverse coded, so that both estimation questions 

tapped heightened awareness of advertising personalization, using proportion of ads personalized 

as proxy for heightened awareness about personalization. Responses from all five questions were 

averaged resulting in the measure of Personalized Advertising Awareness. 

 

Stated Preference for Personalized Advertising. Preference for personalized advertising was 

assessed using multiple measures capturing participants’ stated and revealed preferences for 

receiving personalized (vs. non-personalized) online advertising. Stated preference was assessed 

using a 3-item scale, which asked participants the following questions: Indicate how much you 

agree or disagree with the following statement: I would prefer to see advertisements on websites 

and apps that have been personalized for me using information about me, rather than random or 

generic ads. (strongly disagree, disagree, somewhat disagree, somewhat agree, agree, strongly 

agree); To you individually, how acceptable do you find this practice of personalized online 

advertising, where marketers use information about you to determine which ads you receive? 

(totally unacceptable, unacceptable, slightly unacceptable, slightly acceptable, acceptable, 

perfectly acceptable); In general, do you favor OR oppose having online advertisements 

personalized for you using information about you? (strongly favor, favor, somewhat favor, 
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somewhat oppose, oppose, strongly oppose). The last item was reverse coded, so that all items 

pointed towards stronger preference for personalized advertising. Responses to the three items 

were averaged to generate the Stated Preference for Personalized Advertising measure.39 

 

Revealed Preference for Personalized Advertising. In addition to asking participants whether 

they preferred personalized advertising online, a measure of revealed preference was developed. 

As what participants think they prefer and actually prefer may differ. When used this measure 

was placed at the very end of the experiments immediately following demographic questions. 

This positioning was intended to maximize arousal in participants regarding their personal 

information. First, participants were prompted with the statement: Based on your answers to 

some of the previous questions in this survey, we've selected 3 books for you that you might be 

interested in. This was followed by the question: Would you like to see these books? response 

options: Yes, show me the books, (which was scored as 1); No, thanks., (scored as 0). Participants 

who chose to see the three books were then shown a new prompt, which appeared directly above 

three images of book covers: If you would like to visit one of the book's Amazon.com product 

pages, where it is available for purchase, click on the book's cover below. If you do not want to 

look at any of the books that have been selected for you based on some of your answers in this 

survey, just proceed to the next page to end the survey. Though participants were told the books 

had been selected for them based on their survey responses, the same three books were shown to 

all participants regardless of their previous answers. Participants who clicked on one or more of 

the “personalized” book advertisements received a score of 1 and those who did not click on any 

																																																								
39 In Experiment 1, only two of the three items were used for this scale. Yet the outcome was significant for group 
differences at p < .001 just as in Experiment 2, which used all three items and a similar manipulation to Experiment 
1. Thus, there is no reason to believe that the 2-item version measured substantively different response than the 3-
item version given the construct of interest (stated preference for personalized advertising). 



	 277 

of the book ads shown received a score of 0. The two scores from revealing/not revealing the 

books and clicking/not clicking on the ads were averaged resulting in the revealed preference for 

personalized advertising measure. 

 

Stated Preference for Personalized Content. A 6-item scale from a prior national survey 

(Stevenson & Pasek, 2015) was used to assess stated preference for online content 

personalization. Similar to the stated preference for personalized advertising measure used 

before, this scaled tapped how personalized said they wanted various kinds of online media in 

addition to advertisements (news, social media, prices). As not all people are familiar with the 

practice of personalizing ads let alone news, social media, and prices, participants were first 

prompted with the following statement: Some websites and apps personalize the content you see 

using information about you. This means the content you see differs from what others see. 

Information used to personalize what you see on websites and apps includes, but is not limited 

to, things like which websites you've visited or which apps you've used, your age, income, 

marital status, race/ethnicity, political affiliation, or location, purchases you've made online or 

in a store, which device or software you are using to access the Internet. As this prompt 

contained abundant information about some of the ways online personalization is achieved, the 

prompt and subsequent questions were positioned in the experiment after the revealed 

personalization preference questions, as not to influence these related measures. Following the 

brief prompt about what content “personalization” refers to, participants were asked: Indicate 

how personalized you would like each of the following 6 items below when you see them on 

websites or apps. This was followed by the following six items presented in randomized order: 

advertisements for products and services; political advertisements; discounts on products and 
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services; news stories; friends' social media posts; prices of products and services. Response 

options for all six were: not at all personalized, a little personalized, somewhat personalized, 

very personalized, extremely personalized. Responses to the six types of online media were 

averaged to produce the measure stated preference for personalized content. 

 

A note about the two measures of revealed preference for personalized content: These two 

measures were developed for Experiment 4—revealed preference for surreptitiously-

personalized content and revealed preference for overtly-personalized content (described below 

in detail). Each measure contained four items. Each item consisted of two short 15-second video 

clips, only the titles of which were shown to participants when making their selections. As 

participants did not watch the videos until the very end of the survey and after all dependent 

variable measures were asked, there was no “contamination” of participants’ responses due to 

which videos they selected to watch and later watched. (Additionally, all participants, regardless 

of their selections, watched the same videos at the end of the survey, as described in the debrief 

form.) For each pair of video titles, participants were asked to select which one of the two videos 

they wanted to watch later on during the experiment. As participants were made to believe they 

had to watch each video selection later in the experiment and in order to receive payment, their 

selections represent a revealed preference. They were choosing what they would have to watch 

in the very near future, during the experiment. Also, both video titles for each question appeared 

directly above an image of an interface of a popular online video player to further emphasize that 

participants were choosing between videos that they would watch. This complimented the 

instructions that had already been stated. For all eight pairs of videos in these two different 

measures, one of the two videos was personalized for the participant in that its title included 
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information corresponding to a specific attribute about the participant (either participant’s 

gender, age, location, or operating system). The other video title in the pair did not include 

information related to the participant, corresponding to the non-personalized option. Importantly 

for these two measures (for surreptitiously- and overtly-personalized content) not to contaminate 

one another, the four surreptitiously-personalized video pairs were always presented before the 

overtly-personalized ones. This was to avoid arousing participants about content personalization 

when measuring preference for surreptitiously-personalized content, the questions for which 

needed to be asked prior to measuring revealed preference for overtly-personalized content, as 

the latter always included a label above one of the options in each pair indicating one of the 

videos was “Personalized for you based on...” In this way, only after making their selections for 

content they had no reason to suspect had been personalized for them did respondents select 

which videos to watch from the overtly-personalized pairs of video titles. 

 

Revealed Preference for Surreptitiously-Personalized Content. Participants chose one video 

from each of the following four pairs of videos based only on seeing the videos’ titles: Fitness 

Advice for Men vs. Fitness Advice for Women; Health Tips for People Under 30 vs. Health Tips 

for People Age 30 and Over; Advice for Weekend Road Trips West of the Mississippi River vs. 

Advice for Weekend Road Trips East of the Mississippi River; Computer Security Tips for 

Windows Users vs. Computer Security Tips for Mac Users. For the gender- and age-related video 

pairs, whether participants selected the personalized video title containing information 

corresponding to them or not was determined by prior responses to questions asking participants 

to indicate their age range and gender identity included in a short set of demographic questions 
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asked at the very beginning of the experiment.40 For the location- and operating system-based 

videos, which one of the two videos in these pairs corresponded to the participant was 

determined using the Qualtrics survey platform. This platform provides the option to receive 

metadata describing the rough location (determined by a survey respondent’s IP address) and 

HTTP “user agent,” which includes, among other technical information, the respondent’s 

operating system. In this case, the Qualtrics-supplied US state was used to determine whether 

participants were taking the survey in a state east or west of the Mississippi River, which was 

used to score whether respondents selected the weekend road trips video for the half of the 

country in which they were taking the survey, and presumably lived. For the video relating to 

one’s operating system, this was extracted from the HTTP user agent string and used to 

determine whether respondents selected the video corresponding to their operating system or not. 

Participants using neither Windows nor Mac operating systems (e.g., Linux) did not have this 

video selection counted in their surreptitiously-personalized revealed preference scores. 

Participants received a score of 1 when they selected the video title that contained information 

corresponding to themselves (e.g., participants in their 20s selecting the video Health Tips for 

People Under 30) and a 0 when selecting the alternative, non-personalized option (e.g., 

respondents completing the survey in New Mexico choosing the video Advice for Weekend Road 

Trips East of the Mississippi River). These scores were summed to produce the measure revealed 

preference for surreptitiously-personalized content. 

 

																																																								
40 Asking demographic questions at the beginning of a survey, or anywhere other than the end for that matter, 
typically goes against best practices that suggest only asking demographic questions at the very end of a survey or 
interview. This is to minimize effects of identity-based priming known to occur when answering questions about 
oneself related to income, race, age, etc. (Jackson, 2009). 
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Revealed Preference for Overtly-Personalized Content. Participants chose one video from each 

of the following four pairs, based again on seeing the videos’ titles. However, in addition to 

seeing the video titles, this time prior to making the four selections participants were given the 

following additional instruction: For the last 4 video selections, 1 of the 2 videos has been 

personalized for you. Meaning 1 of the 2 videos has been selected based on information about 

you. This personalized video is labeled "Personalized for you based on...” Then, for each of the 

last four pairs of videos, in prominent red font appearing above one of the two video’s titles in 

each pair was the label: Personalized for you based on your (gender, age, location, computer 

operating system). Which of the two videos included this label was determined based on 

respondents’ prior answers to the age and gender demographic questions and IP-address derived 

US state and HTTP user agent derived operating system, as previously described. In this way, for 

the overtly-personalized revealed preference measure, the video in each pair corresponding to the 

respondent’s personal information was clearly labeled as personalized for them and based on 

which information. This overt personalization label appeared dynamically based on participant 

information above one of the following titles in each pair: Tips for Men to Succeed at Work-Life 

Balance vs. Tips for Women to Succeed at Work-Life Balance; Financial Tips for People Under 

30 vs. Financial Tips for People Age 30 and Over; Tips for Outdoor Adventures West of the 

Mississippi River vs. Tips for Outdoor Adventures East of the Mississippi River; Time-Saving 

Computer Shortcuts for Windows Users vs. Time-Saving Computer Shortcuts for Mac Users. As 

with the surreptitiously-personalized set of video selections, participants again received a score 

of 1 when selecting the (labeled) personalized option and a 0 when not selecting the personalized 

option for each of the four pairs. These scores were summed to produce the measure revealed 

preference for overtly-personalized content. 
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Online Privacy Concern 1. A single item measure was included to assess individual privacy 

concern when using the internet. Participants were asked: How important is online privacy to you 

personally? Response options were: not at all important, very unimportant, somewhat 

unimportant, neither important nor unimportant, somewhat important, very important, extremely 

important. 

 

Online Privacy Concern 2. A validated 16-item measure developed by Buchanan et al. (2002) 

assessing individual online privacy concern was also used. Participants were asked the following 

questions: Are you concerned… (followed by) ...about online organizations not being who they 

claim they are? ...that you are asked for too much personal information when you register or 

make online purchases? ...about online identity theft? ...about people online not being who they 

say they are? ...that information about you could be found on an old computer? ...who might 

access your medical records electronically? ...about people you do not know obtaining personal 

information about you from your online activities? ...that if you use your credit card to buy 

something on the internet your credit card number will obtained/intercepted by someone else? 

...that if you use your credit card to buy something on the internet your card will be mischarged? 

...that an email you send may be read by someone else besides the person you sent it to? ...that 

an email you send someone may be inappropriately forwarded to others? ...that an email you 

send someone may be printed out in a place where others could see it? ...that a computer virus 

could send out emails in your name? ...about emails you receive not being from whom they say 

they are? ...that an email containing a seemingly legitimate internet address may be fraudulent? 

In general, how concerned are you about your privacy while you are using the internet? 

Response options for all items were: not at all concerned, slightly concerned, moderately 



	 283 

concerned, very concerned, extremely concerned. Responses to these 16 items were averaged to 

produce a measure of online privacy concern, identical that the validated scale from Buchanan. 

 

Opposition to Consumer Data Collection. A single item measure served to tap how opposed 

respondents were to consumer data collection on the internet. Participants were asked: Indicate 

how much you agree or disagree with the following statement: Internet companies collect too 

much of my personal information. Response options were: strongly disagree, disagree, somewhat 

disagree, neither agree nor disagree, somewhat agree, agree, strongly agree. 

 

Consumer Data Control Self-Efficacy. Ryan and Dzewaltowski (2002) define self-efficacy as, 

“the beliefs an individual has about his or her ability to engage in behaviors that lead to expected 

outcomes” (p. p. 491). Applying this notion of self-efficacy to the context of consumer data use 

in personalized advertising, a single item measure was used to gauge the degree to which 

respondents believed they had the ability to control how marketers used their personal 

information to target them with ads online. Participants were asked the following: Indicate how 

much you agree or disagree with the following statement: I can control which types of personal 

information advertisers use to customize the online advertisements I receive. Response options 

were: strongly disagree, disagree, somewhat disagree, neither agree nor disagree, somewhat 

agree, agree, strongly agree. 

 

Trustworthiness of Example Ads. Participants were asked to evaluate how trustworthy they 

found six online ads to be, which were presented within different websites or apps. Prior to rating 

the six ads (and six websites/apps) the following instruction was displayed: Indicate how 
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trustworthy you find the advertisements appearing on the following websites/apps and also how 

trustworthy you find the websites/apps themselves. In each example image, the advertisements 

have been labeled "AD" to distinguish the ad from the website/app on which it appears. For each 

of the six ads, participants were asked: How trustworthy is the advertisement on this website? (or 

“…this app?”). Response options were: not at all trustworthy, a little trustworthy, somewhat 

trustworthy, very trustworthy, extremely trustworthy. The six responses were averaged resulting 

in the trustworthiness of example ads measure. The six ads and websites/apps they were 

displayed within are included below. 

 

Trustworthiness of Example Websites/Apps. In addition to stating how trustworthy participants 

found the example ads, they were also asked to rate how trustworthy they found each of the 

surrounding websites or apps displaying the advertisements. Participants were asked: How 

trustworthy is this website? (or “…this app?”). Response options were: not at all trustworthy, a 

little trustworthy, somewhat trustworthy, very trustworthy, extremely trustworthy. The six 

responses were averaged resulting in the trustworthiness of example ads measure. The six ads 

and websites/apps they were displayed within are included below. 
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