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ABSTRACT 

 

 

Growing concerns about energy consumption increase the demand for lightweight vehicles. 

One of the most efficient solutions is to use multi-material structures. As a solid-state process, 

friction stir welding (FSW) is promising for joining dissimilar materials, such as aluminum alloy 

to steel. However, the processing window for achieving successful joints between these two 

materials is still narrow. Besides, a large axial welding force is required when steel is involved in 

the stirring nugget. In order to address these challenges, a material softening phenomenon, electro-

plastic effect (EPE) is proposed to be incorporated into the process. With a high density electrical 

current applied during the traditional FSW, steel will be softened and reach a better compatibility 

with aluminum, which can enhance joint quality and reduce welding force.  

In this research, first, the literature of EPE on various materials is systematically reviewed 

and a hypothesis is proposed for understanding the principles and mechanisms of the softening 

effect from electrical current. The effectiveness of EPE is then evaluated on one type of advanced 

high strength steel, TRIP 780/800 steel. High-density electrical pulses are applied during tensile 

tests. The effect of inevitable Joule heating is compared with EPE by applying pulses with higher 

current density but shorter duration, which generates about the same temperature increase. By 

measuring the volume fraction of the retained austenite after tensile tests, the applied current is 

shown to retard the martensitic transformation of TRIP steel.  
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Second, friction stir welding of Al 6061 to TRIP steel is comprehensively studied, which 

provides insights into this dissimilar material welding process and also experimental data for 

validation of the following developed thermo-mechanical models. Experiments are performed at 

various welding conditions, including different tool-rotation speeds, welding speeds and the 

relative tool position with respect to the two materials. The effects of process parameters on the 

joint microstructure evolution are analyzed based on the mechanical welding force and the 

temperature measured during the welding process. Intermetallic compound (IMC) layer of FeAl 

or Fe3Al with thickness of less than 1 μm is formed at the Al–Fe interface in the advancing side. 

Three failure modes are identified during tensile tests. The maximum joint strength can reach 85% 

of the base aluminum alloy.  

Third, in addition to the experimental study, analytical and numerical models are developed 

for friction stir welding of dissimilar materials. The transient plunge stage and the stable welding 

stage are studied separately. For the plunge stage, a field variable   is introduced to identify 

regions of steel and aluminum, and to define the generalized material properties. Conservation 

equations are developed at the interface between the two materials to account for the 

discontinuities. Numerical implementations are performed in the FEA software ABAQUS/Explicit. 

The stable welding stage is modeled based on Eulerian formulation with multiple phase flow 

theories. Velocity, pressure and temperature fields are shared among the two materials and material 

properties are averaged based on their volume fractions. The corresponding numerical analysis is 

performed in the CFD software FLUENT from ANSYS. 

Finally, a hybrid electrically assisted FSW process is studied by applying high-density 

electrical currents to the FSW process. The corresponding experimental system is designed and 

developed. The plunge stage of FSW is studied on aluminum alloy Al 6061 and TRIP 780 steel 
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respectively. An effective reduction of the axial welding force can be obtained with good 

repeatability. The associated Joule heating is considered from an additional preheating test, which 

indicates that besides thermal softening, approximately 2/3 of the force reduction comes from 

direct electrical softening. During the hybrid FSW process for joining Al 6061 to TRIP steel, the 

axial welding force can also be consistently reduced under various welding conditions, which is a 

synergic result of both electro-plastic effect and Joule heating. Regarding the joint microstructure, 

the electrical current can enhance the formation of thin IMC layer and micro-interlock structures 

at the Al-Fe interface. 
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CHAPTER 1  

INTRODUCTION 

 

 

1.1 Background and motivation 

Growing concerns about energy saving and environmental preservation increase the demand 

for lightweight vehicles. Considerable volumes of advanced high-strength steel (AHSS) sheets 

have been used for automotive parts, which meet the objective of both weight reduction and 

crashworthiness enhancement. AHSS, including Dual Phase (DP) steel, Transformation Induced 

Plasticity (TRIP) steel, Complex Phase (CP) steel and Martensitic steel (MART), has prominent 

mechanical properties of high strength and work hardening rate, which are obtained through their 

multiple phase microstructure [1]. However, further weight reductions of 30% or more are not 

achievable with exclusive dependence on the use of thinner steel sheets. Multi-material vehicle 

structures are an effective alternative [2], which necessitates the development of a reliable, 

efficient and economical technique for joining dissimilar materials. One of the typical desirable 

pairs is aluminum alloy and advanced high strength steel, which are highly difficult to weld 

together due to their great differences in physical and mechanical properties [3]. Moreover, the 

large amount of brittle intermetallic compounds (IMC) formed during traditional fusion welding 
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process will severely deteriorate the joint quality and initiate a fast rupture under applied stress [4-

8].  

 Friction stir welding (FSW), which was first developed by The Welding Institute (TWI) in 

1991 [9], shows its superiority as a solid-state process compared with traditional fusion welding. 

FSW consists of plunge, dwell and welding stages [10]. Plunge stage is the initiating phase of the 

whole process where the rotating FSW tool is gradually submerged into the workpiece until 

reaching the target depth. During the following dwell stage, the tool is then held rotating at this 

position to soften and preheat the workpiece. The final welding stage is where the tool translates 

along the weldline and finishes the whole joint. Not only can FSW significantly avoid 

solidification related problems, such as oxidization, shrinkage, porosity, and hydrogen solubility 

[11], but also its associated lower temperature can effectively inhibit intermetallic compound (IMC) 

layer formation, which makes it a promising solution for dissimilar material joining. However, 

since the materials are subjected to severe plastic deformations under a high strain rate, large 

welding force in both axial and welding directions is consequently involved, especially during 

plunge stage. This leads to significant tool wear issues and raises the demand of refractory tool 

materials for welding high melting temperature materials [12-14]. Furthermore, a high stiffness 

machine equipped with strong clamping fixtures is generally required.  

Several studies have been carried out for FSW of aluminum alloys to mild steels [15-23] and 

demonstrated FSW as a promising solution for achieving reliable joints between these two 

materials. However, the processing window for achieving successful dissimilar material joints was 

still small. Besides, these works primarily focused on joint property evaluation and microstructure 

analysis, particularly at the Al-Fe interface. Few analytical or numerical models were developed 
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for the dissimilar material FSW process, which took into consideration the two materials in the 

weld nugget.  

Electro-Plastic Effect (EPE) is the material softening phenomenon induced by high density 

electrical current during plastic deformation. It was reported that beyond the inevitable electrical 

resistance heating, moving electrons themselves could dynamically reduce the material 

deformation resistance without substantial temperature increase [24]. The electrical current was 

provided either continuously [25-30] or in the form of high-density pulses [31-35]. Previous 

literatures indicated that the electrical current could facilitate dislocation motion [36] and influence 

dynamic recrystallization [37], phase transformation [25, 38-40] as well as the kinetics of 

intermetallic compound formation and growth [41]. It can be observed that all of these phenomena 

are involved in the dissimilar FSW process. Moreover, the interfacial layer is crucial for the quality 

of dissimilar material joints. It is therefore expected that the application of electrical current can 

help improve traditional FSW process in the aspects of both reducing welding force and enhancing 

joint quality. 

In this study, first the effectiveness of EPE will be verified on one type of advanced high 

strength steel, TRIP 780/800 steel. A comprehensive study on traditional FSW of dissimilar Al 

6061 to TRIP steel will be then performed through both experimental and model analysis. Finally, 

the high density electrical current will be incorporated into FSW process for the potential benefits 

of welding force reduction and joint quality enhancement. 

 

1.2 Research objectives 

This research aims to provide a fundamental understanding of FSW for dissimilar aluminum 

alloy to TRIP steel and improve the process through electro-plastic effect. The specific objectives 

are summarized as the following:  
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(1) Understanding softening mechanisms of electro-plastic effect (EPE): Literature on EPE 

will be systematically reviewed. An electrically assisted tensile testbed will be developed 

for the measurement of mechanical behavior of TRIP steel under different pulse conditions. 

Stress strain relationship under the effect of electrical current will be modeled. 

Microstructure analysis, including both optical microscopy and X-Ray Diffraction (XRD), 

will be carried out for further insight of the electro-plastic effect on TRIP steel.  

(2) Experimental study of friction stir welding of dissimilar Al 6061 to TRIP steel: Friction 

stir welding experimental system will be developed based on a CNC machine, which can 

measure welding force and temperature during the process. Various welding conditions 

will be investigated, including different tool rotating speeds, weld speeds and relative tool 

position with respect to the two materials. Macrostructure and microstructure analysis will 

be performed on the cross sections of weld specimens and particularly at the Al-Fe joint 

interface. Joint quality will be evaluated with mechanical tensile tests. Relationships 

between process parameters, joint microstructure and joint strength will be established.   

(3) Theoretical and numerical modelling of the dissimilar material FSW process: The transient 

plunge stage and steady state welding stage will be modeled separately. Based on multiple 

phase flow theories, analytical formulations will be developed considering two material 

properties in the weld nugget, which will be further implemented into corresponding Finite 

Element Analysis software for solutions. The models will be validated through comparison 

with the experimental results regarding welding force, temperature and material 

distribution, which helps provide a further understanding of the process and future 

optimization of process parameters. 
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(4) Investigation of the electrically assisted FSW process: An electrically assisted FSW system 

will be designed and implemented, which can maintain a high electrical current density in 

the weld nugget surrounding the moving FSW tool. The optimal configuration of electrodes 

will be determined based on numerically analyzed electrical current distribution. Effects of 

electrical current will be investigated first on the plunge stage for the two materials, Al 

6061 and TRIP steel, separately. The influence of Joule heating will be assessed based on 

preheating tests. Finally, the electrical current will be applied for the entire dissimilar 

material FSW process. Welding force and temperature will be compared between 

traditional and the electrically assisted conditions. Microstructure analysis on the Al-Fe 

joint interface will also be performed to evaluate the electrical effects on joint quality.  

If reliable joints of dissimilar materials can be obtained through this hybrid electrically 

assisted FSW process, future improvements of automobile structures with optimal material 

combinations will be possible. Prospective benefits will cover broad fields of aerospace, 

automobile, marine engineering and so on.  

 

1.3 Thesis outline 

The rest of this dissertation is organized as follows.  

In Chapter 2, the literature of electro-plastic effect is systematically reviewed and a 

hypothesis is proposed for understanding the underlying mechanisms of this phenomenon. Its 

effectiveness is then verified on one type of advanced high strength steel, TRIP steel, by applying 

pulses with different current densities and durations.  Microstructure analysis is performed to 

understand involved phase transformation process. This chapter is based on paper “Experimental 
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Study of Electro-Plastic Effect on Advanced High Strength Steels”, by X. Liu, S. Lan and J. Ni, 

published in Materials Science and Engineering: A.  

In Chapter 3, friction stir welding of aluminum alloy to advance high strength steel is 

experimentally studied. Effects of various welding parameters, including tool rotating speed, 

welding speed and tool position on welding force and temperature are investigated, which are 

further related to the microstructure evolution and joint quality. This chapter is based on paper 

“Analysis of Process Parameters Effects on Friction Stir Welding of Dissimilar Aluminum Alloy 

to Advanced High Strength Steel”, by X. Liu, S. Lan and J. Ni, published in Materials & Design; 

paper “Experimental Investigation on Joining Dissimilar Aluminum Alloy 6061 to TRIP 780/800 

Steel through Friction Stir Welding”, by X. Liu, S. Lan and J. Ni, published in ASME Journal of 

Engineering Materials and Technology. 

In Chapter 4, theoretical and numerical models of the dissimilar material friction stir welding 

process are developed based on multiple phase flow theories. Plunge and welding stages are 

considered separately. This chapter is based on paper “Thermal Mechanical Modelling of the 

Plunge Stage during Friction Stir Welding of Dissimilar Al 6061 to TRIP 780 Steel” by X. Liu, S. 

Lan and J. Ni, published in ASME Journal of Manufacturing Science and Engineering; paper 

“Thermomechanical Modeling on Friction Stir Welding of Aluminum Alloy 6061 to TRIP Steel” 

by X. Liu, G. Chen, Z. Feng and J. Ni, submitted to International Journal of Machine Tools and 

Manufacture. 

In Chapter 5, the electrically assisted friction stir welding process is studied. The 

experimental system is designed and developed. Welding force, temperature and joint 

microstructure are compared between traditional friction stir welding process and electrically 

assisted conditions. This chapter is based on paper “Electrically assisted friction stir welding for 
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joining Al 6061 to TRIP 780 steel” by X. Liu, S. Lan and J. Ni, published in Journal of Materials 

Processing Technology. 

In Chapter 6, the contributions of this dissertation are summarized and possible future works 

are proposed. 
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CHAPTER 2  

ELECTRO-PLASTIC EFFECT ON TRIP 780 ADVANCED HIGH 

STRENGTH STEEL 

 

 

2.1 Literature review 

Electro-Plastic Effect (EPE) is a material softening phenomenon induced by high density 

electrical current during plastic deformation. It was first discovered by Troitskii and Likhtman [42] 

in 1963 when they used 1MeV electrons to irradiate the Zn crystals and reported a reduced flow 

stress, which was beyond the resistance heating effect. Earlier studies of this phenomenon were 

conducted mainly by the Troitskii research group and Conrad research group. In their works, 

various types of pure metal were treated with excessively high density current pulses (in the order 

of 103 A/mm2) of ultra-short pulse duration (in the order of 10-4 s [31, 32]). Plastic flow stress 

dropped immediately as the pulse was applied but returned quickly to the original stress stain 

profile after stopping the current. Metals investigated included Nb, Al, Cu, Fe, Pb, Sn, Ti  and so 

on [33-36]. Higher current density reduced deformation resistance to a larger extent. Recent studies 

from Roth research group and Tang research group concentrated more on metal alloys, including 

Mg alloys [25], Ti alloys [26], Al alloys [43], Cu alloys [28, 29] and steels [44]. Besides, the 
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electrical power source was switched to longer pulses or continuous form but with small current 

magnitude. Similar to the results under high density current pulses, work softening phenomenon 

occurred for these alloys when current density reached a threshold value. Furthermore, an 

appropriate series of pulses helped improve ductility. Xu et al. [37] showed the elongation of AZ31 

Mg alloy at a high strain rate was increased through electrical pulsing treatment and attributed the 

cause to be the electrically assisted dynamic recrystallization. Salandro et al. [45] showed a similar 

result on the improvement of ductility for Al alloy 5052 and 5083 and one typical stress strain 

curve is shown in Figure 2-1.  

 
Figure 2-1 Stress strain curve for Al5052 with electrical pulsing treatment (Copied from Salandro et 

al., 2010, Journal of Manufacturing Science and Engineering, Vol. 132, pp. 051016. [45]) 
 

Several theories have been proposed to interpret the underlying mechanism of this Electro-

Plastic Effect. Regarding pure metals, since their plastic deformation is basically involved with 

movement, entanglement and multiplication of dislocations, the effectiveness of EPE was due to 

the contribution of electron facilitated dislocation motion [32, 46]. According to this theory, 

momentum of the moving electrons can be transferred to dislocations, which accelerated their 

movement and modified their arrangement. Explanation of EPE on alloys was more sophisticated. 



10 
 

Kuang et al. [47] compared electro-plastic rolling with warm rolling for AZ31 Mg alloy and 

showed the electrical current results in a more frequent twinning behavior in certain directions. 

Apart from effects on dislocations, electrically induced recrystallization and phase transformation 

[41] both contributed to the reduction of deformation resistance. Conrad et al. [48] showed the 

electrical current could reduce the temperature and increase the rate of recovery and 

recrystallization for Cu and Al. Xu et al. [49] did electro-plastic rolling of AZ31 Mg alloy and also 

observed dynamic recrystallization at a relatively low temperature. Similar phenomenon was again 

reported for pure α-Ti [50] and aluminum alloy Al 7475 [51].   

 
Figure 2-2 Dissolution of β precipitate in AZ91 Mg alloy under electrical pulse treatment with 

different frequencies: (a1)Non-EPT; (a2) 204 Hz-EPT; (a3) 309 Hz-EPT (Copied from Zhang et al., 
2012, Journal of Surface Engineered Materials and Advanced Technology, Vol. 2, pp. 16-21. [25]) 

 

Zhang et al. [25, 40] reported that with electrical pulse treatment, the dissolution of β 

precipitate in AZ91 Mg alloy was achieved at a lower temperature and much faster rate, as shown 

in Figure 2-2. It was interpreted that the electrical current provided an additional Gibbs free energy 

term, which resulted the reversed thermodynamic phenomenon. A similar reverse phase 

transformation was also observed in a Zn-Al alloy by Zhu et al. [38]. In order to model and predict 

the electro-plastic effect, Bunget et al. [52-54] introduced a characteristic parameter called 

Electroplastic Effect Coefficient (EEC) from the aspect of energy. The EEC was defined as the 

ratio of the amount of the applied electrical power towards plastic deformation over that towards 

resistive heating, which quantified the efficiency of electrically assisted manufacturing processes.  
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2.2 Further discussion on electro-plastic effect 

The electro-plastic effect is still a controversial topic in research communities, which is 

primarily due to the resistance heating that inevitably occurs with the passage of current. In this 

study, a hypothesis for mechanisms of electro-plastic effect on metals is tentatively proposed as 

the followings:  

The high density electrical current can heat up local strengthening sites due to their high 

electrical resistance, which promotes dislocations to bypass these obstacles without temperature 

increase of the bulk material.  

Plastic deformation for metals is based on the movement of dislocations. Strengthening is 

essentially to add obstacles to materials to inhibit this motion. There are primarily four types of 

strengthening mechanisms:  

(1) Work hardening: Interference between dislocations make themselves to be obstacles for the 

motion of each other. During plastic deformation, multiplication of dislocations will 

aggravate this effect and generate dense tangles, subboundaries and cell boundaries, which 

further strengthen the material. 

(2) Boundary hardening: Typical boundaries include grain boundaries and phase boundaries. 

Grain boundary separates grains with different crystallographic orientations, which therefore 

is a highly disordered region and impenetrable to dislocations. Similarly, phase boundaries 

separate different phases and the local discontinuities will also impede dislocation motion. 

(3) Solution hardening: For either substitutional or interstitial solute atoms, they will generally 

distort the solvent lattice and result in a local stress field. This will interact with the stress 

field associated with dislocations and therefore restrict their movement.  



12 
 

(4) Precipitation hardening: Precipitates are basically second phase particles in the size of 

nanometer scales. Coherent precipitates strengthen the material in a similar way to that as 

solution hardening. As the precipitate size increases, mismatch coherency strain energy 

increases and leads to more strengthening effects. Incoherent precipitates have a mismatch 

interface with the base material. Dislocations need to either cut through or bow around them 

during plastic deformation. 

All the above strengthening mechanisms are from disturbances in crystal structure. At these 

sites, the probability for moving electrons to collide with the lattice atoms is much higher than that 

to linearly pass through and conduct electrical current. Collision will transfer the kinetic energy of 

electrons into vibrational energy of atoms. These are manifested as larger local resistance and 

therefore higher temperature increase. As the plastic deformation occurs, the highly vibrated atoms 

directly assist dislocation to bypass these local strengthening obstacles. On the other hand, the bulk 

material region still remains at relatively low temperature due to their lower electrical resistance. 

For short pulses, the temperature difference between local strengthening sites and bulk material 

can be more significant since less amount of time is allowed for heat conduction to homogenize 

temperature field.  

There are several evidences from literature that help support this hypothesis. Electro-plastic 

effect was hardly observable in the elastic range [55]. Since elastic deformation is related to 

stretching or compressing atomic bonds, local temperature increase at material strengthening sites 

can only expand limited number of atoms, which contributes to negligible amount of elastic strain 

and therefore little softening effect.   

Regarding work hardening, study of EPE on pure titanium showed that the effect was more 

significant at later stage of plastic deformation [31]. Yao et al. [56] studied electrically assisted 
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wire-drawing for austenite stainless steel. Similarly, the decrement of drawing force was closely 

related to the accumulated drawing strain. Salandro et al. [57] compared the effect of electrical 

pulses on Al 5083 in the cold worked H32 condition and annealed condition. Reduction of flow 

stress was higher in the former one. Similar experiments were also performed on Al 2024 alloys 

with different heat treatments [58]. The T351 condition, which include solution plus cold work, 

showed higher stress drop than the T4 condition, which is only solution treatment with natural 

aging. A larger plastic strain or cold work condition is related to higher dislocation density in 

materials, these observed phenomena therefore indicate EPE is more effective with more 

dislocations. 

Regarding boundary hardening, Siopis and Kinsey [59] studied EPE on pure copper and 

showed that finer grain size distribution required smaller threshold current density to initiate EPE. 

In addition, under the same current density, finer grains corresponded to higher reduction of flow 

stress. Fan et al. [60] did experiments on the 70/30 brass and reported similar results. More 

importantly, they directly observed melting of local grain boundaries for tensile specimens 

subjected to high electrical current. However, they did show that a higher temperature increase 

was also associated with refined grain distribution.  

Regarding solution hardening, the drop of flow stress from EPE increases with greater 

amount of alloying. Based on Kiryanchev et al. [61], adding Cd element into Zn crystal structure 

increased the softening effect by tens of percent in the plastic range. For titanium, an increasing 

concentration of interstitial impurities similarly resulted in a larger flow stress drop with 

application of same amount of electrical current [34]. Dzialo et al. [29] also showed the 

phenomenon by increasing Zn content in Cu matrix.  
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Regarding precipitation hardening, Andrawes et al. [27] applied a continuous direct current 

on aluminum alloy Al 6061 with different aging conditions. The reduction of flow stress in the 

peak aged T6511condition was larger than the overaged conditions. Since precipitates coarsening 

occurs and the number of precipitates is reduced in the overaged condition, the EPE is more 

effective with finer distribution of precipitates.  

In this chapter, Electro-Plastic Effect on one type of Advanced High Strength Steels (AHSS), 

TRIP 780/800 steels is investigated. Uniaxial tensile tests are carried out under different current 

densities and pulse durations. Stress strain relationship, ductility and microstructure are analyzed 

to identify the underlying mechanisms. X-Ray Diffraction method is employed to quantify the 

volume fraction of retained austenite near the fracture region and therefore determine the extent of 

phase transformation. Optical microscopic analysis is also performed for qualitative observation 

of phase and grain size distribution. 

 

2.3 Experimental study of electro-plastic effect on TRIP steel 

2.3.1 Electrically assisted tensile test setup 

Uniaxial tensile tests were performed on a MTS 810 material testing system at a nominal 

strain rate of 5×10-3/s. The electrical pulses were provided by Lincoln Electric Power Wave 455 

source and the magnitude of the current was adjusted for different current densities. The current 

densities referred to here represent the initial current density prior to deformation. The cross-

sectional area decreases as the uniaxial straining continues and therefore the actual current density 

increases during the process. The maximum difference between nominal and true current density 

was only about 8% before necking. The nominal current density was therefore employed for 

analyzing experimental results. 
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A detailed view of the experimental arrangement was shown in Figure 2-3. The electricity 

entered the lower copper electrodes, passed through the specimen and exited at the top copper 

electrodes. The copper electrodes and tensile specimen were electrically insulated from the grips 

of the tensile machine by mica sheets. The grips were hydraulically tightened to ensure close 

contact between the specimen and copper electrodes. Slots were milled onto the mica sheets to 

avoid potential sliding between the tensile specimen and mica sheets. In order to minimize 

temperature increase from Joule heating, forced air cooling was implemented during entire tests. 

The tested material of TRIP 780/800 was provided by the United States Steel Corporation. 

Dog bone tensile specimens were prepared by waterjet machining. Surface temperature in the 

middle of the tensile specimen was measured by a type-K thermal couple, as shown in Figure 2-4. 

Test conditions and corresponding highest measured temperature are listed in Table 2-1.  

 
Table 2-1 Process conditions for the electrically assisted tensile test 

Experimental Conditions  1 2 3 4 5 6 7 8 
Current density (A/mm2) 0 7.4 11.4 15.3 15.3 22.2 25.7 29.7 
Pulse duration (s) 0 4 4 4 1 1 1 1 
Pulse period (s) 0 10 10 10 10 10 10 10 
Highest temperature (ºC) 24 28 36 61 30 41 56 61 

 
 

  
Figure 2-3 Experimental setup for the electrically assisted tensile test 
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Figure 2-4 Dimensions of the tensile test specimen (unit: mm) 
 

Joule heat from electrical current is generated inside the tensile specimen. Although forced 

air cooling can suppress temperature increase on the surface, the internal region of the specimen 

might still remain at a higher temperature. In order to verify the efficacy of forced air cooling, a 

multiphysical finite element model considering both resistance heating and heat transfer was 

developed in COMSOL software. The necessary material parameters are listed in Table 2-2. Since 

forced air cooling essentially changes the heat transfer conditions on surface boundaries, different 

heat transfer coefficients were substituted into the model until the calculated temperature matches 

the measured result. The heat transfer coefficient was then determined to be 50 W/(m2 K). Figure 

2-5 shows the temperature distribution on the cross sectional area denoted as A-A in Figure 2-4. 

The current density in (a) is 15.3A/mm2
 with the pulse duration of 4 seconds. The temperature 

difference is less than 0.5 ºC inside the workpiece. The current density in (b) is 29.7 A/mm2
 with 

the pulse duration of 1 second. Similarly, the temperature difference is less than 0.4 ºC. 

Accordingly, the temperature can be considered homogeneously distributed over the tensile 

specimen under forced air cooling. 

Metallurgical samples were sectioned near the fracture surface using a slow speed diamond 

wafer blade with coolant applied in the meantime. The samples were mechanically ground with 

320, 600 and 800 grit papers and subsequently polished with 3μm, 1μm diamond suspensions and 
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finally 0.03μm colloidal silica suspension. Very low force was applied during cutting, grinding 

and mechanical polishing to minimize additional stress induced transformation of retained 

austenite. The surfaces were then cleaned with soap solution, water and ethanol and dried 

immediately under forced air. XRD measurements were performed using the Rigaku Miniflex X-

ray diffractometer with Cu-Kα radiation. The range of diffraction was selected from 40º to 85º 

with a scanning speed of 0.1º/step and a 10 seconds dwell time. The diffraction patterns were 

analyzed using the whole pattern fitting program of the MDI JADE software. 

 
Table 2-2 Material properties for TRIP 780/800 (25 ºC) 

Property Name Value Unit 
Heat capacity at constant temperature Cp 500 J/(kg K) 
Thermal conductivity k 16.2 W/(m K) 
Electrical conductivity σ 5.36x106 S/m 
Density ρ 8027 Kg/m3

 

 
Figure 2-5 Temperature distribution on the specimen cross section based on FEA calculation (a) 15.3 

A/mm2
 and 4s; (b) 29.7 A/mm2

 and 1s. 
 

2.3.2 Mechanical behavior of TRIP steel under various pulse conditions 

Figure 2-6 (a) shows the material tensile behavior under a current density of 15.3 A/mm2 

with pulse length of 4 seconds. A total of 4 pulses were applied during the deformation at true 
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strains of 0.049, 0.095, 0.140 and 0.182 respectively and the pulse location and length is marked 

in the figure. The applied pulses produced stress drops of approximately 70MPa, 95MPa, 115MPa 

and 90MPa respectively. The softening phenomenon is more effective at a larger strain except the 

final pulse. During the last pulse, necking occurred and small cracks were generated along the edge 

of the specimen, which could change the current distribution over the cross sectional area and 

result in an opposite trend. Similar to EPE results from literature, the flow stress dropped 

immediately when the current was applied and then returned back after the current was stopped. 

Work hardening resumed until the next pulse was applied and the plastical flow stress dropped 

again. Apart from the reduction of flow stress, the ultimate strain also increased under this pulse 

condition. In this work, the nominal stress/strain values are transformed into true stress/strain 

values using the following set of equations without separately considering the condition after 

necking: 

  1T n n     (2-1)

  ln 1T n    (2-2)

Figure 2-6 (b) shows the true stress-strain curves corresponding to 4 pulses applied at the 

same strains as in Figure 2-6 (a) but with higher current density of 29.7 A/mm2 for 1 second. The 

reduction of flow stress was approximately 120MPa, 205MPa, 285MPa and 265MPa at each pulse, 

which is twice as large as those under the current density of 15.3 A/mm2. Similarly, the stress drop 

was larger at higher strain except the last pulse due to necking. However, the improved ductility 

was not obvious in this case.  

Temperature increase from electrical Joule heating will affect the measured stress strain 

curve from both aspects of thermal expansion and thermal softening. From the temperature 

measurement result, the highest temperatures on the workpiece under these two electrical 
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conditions were around the same value of 61 ºC. Assuming the stress drop in the condition of 

15.3A/mm2 results purely from thermal effects, the additional stress drop in the condition of 29.7 

A/mm2 should therefore come from direct electrical softening, which demonstrates the existence 

of electro-plastic effect on this TRIP steel.  

 

 
Figure 2-6 True stress and true strain curves under different test conditions: (a) 15.3 A/mm2 with 4s 

(b) 29.7 A/mm2 with 1s 
 

To further consider the thermal effects, the stress drop associated with thermal expansion is 

calculated for each test condition based on the following equation: 
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th E T      (2-3)

where   is the thermal expansion coefficient and is set as 10 x 10-6 /ºC based on literature 

[62-64]. In each test condition, the total stress drop from electrical current, the stress drop from 

thermal expansion and the difference between these two are listed in Table 2-3. The stress drop is 

overall much more significant in the shorter pulse conditions. 

Table 2-3 Stress reduction under each test condition 
Experimental Conditions  1 2 3 4 5 6 7 8 

Current density (A/mm2) 0 7.4 11.4 15.3 15.3 22.2 25.7 29.7 

Pulse duration (s) 0 4 4 4 1 1 1 1 

Highest temperature (ºC) 24 28 36 61 30 41 56 61 

Total Stress reduction from 
electrical current   (MPa) 

N/A 10 31 93 40 102 178 218 

Stress reduction due to thermal 
expansion th  (MPa) N/A 8 24 74 12 34 64 74 

th    (MPa) N/A 2 6 19 28 68 114 144 

 
Since the highest temperature under all experimental conditions in this study is much smaller 

compared to the material melting point, the empirical power law constitutive model is adopted to 

describe the variation of flow stress:   

 nK   (2-4)

where ߪ is the true stress, K is the strength coefficient,   is the true plastic strain and n is the strain 

hardening exponent which correlates with the strain hardening rate. Materials with a higher n value 

can gain more strength under the same strain. Coefficients of K and n were obtained by fitting 

curves to the experimental data points where electrical pulses were applied. The fitted curves are 

interpreted as the true stress obtained under the same pulse condition at different strains. Results 

are shown in Figure 2-7 and the fitted coefficients are shown in Figure 2-8, where the vertically 

aligned two points represent the conditions of same current density of 15.3 A/mm2 but with 
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different pulse durations. Both the strength coefficient K and the strain hardening exponent n 

decrease as current density increases and the trend is more obvious at higher current density. In 

Figure 2-7, the curve under the current density of 7.4 A/mm2 basically coincides with the original 

stress strain curve while a distinct stress drop occurs when the current density reaches 11.4 A/mm2. 

This implies that the threshold current density to induce EPE for this TRIP steel is in between these 

two values. Another phenomenon is that under the same current density of 15.3 A/mm2, different 

pulse durations result in almost overlapped stress-strain curves despite that the temperature is about 

30 ºC higher under longer pulses. 

 
Figure 2-7 Power law constitutive model fitted from experimental results 
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Figure 2-8 (a) Strength coefficient K as a function of current density; (b) Strain hardening exponent 

n as a function of current density 
 

2.3.3 Microstructure analysis 

The excellent mechanical properties of both enhanced strength and formability for TRIP 

steel arise from its multiple phase microstructure. TRIP steel typically consists of a ferritic matrix 

with the dispersion of bainite, retained austenite and possible small amount of martensite. 

Appropriate heat treatment including intercritical annealing and subsequent austempering enables 

retention of metastable austenite at room temperature [65]. During plastic deformation, strain 

induced phase transformation from retained austenite into martensite occurs [66], which enables a 

large work hardening rate and relatively higher ductility. Since the martensitic transformation is 

closely related to the mechanical behavior of TRIP steel, X-ray Diffraction (XRD) analysis is 

applied to quantitatively determine the volume fraction of retained austenite. The measured 

diffraction patterns of tensile specimens from different test conditions are shown in Figure 2-9. 

The peaks associated with austenite, especially the A-220 peak are distinguished when no 
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deformation occurs. Near the fractured surface from non-electrically assisted tensile condition, the 

A-220 peak is hardly visible. On the other hand, with the application of electrical current this 

austenite peak can be regained and higher current density can preserve the peak to a greater extent.  

 
Figure 2-9 XRD diffraction patterns of the fractured specimen : (a) Original material; (b) Fractured 
region without current; (c) Fractured region with 15.3A/mm2 for 1 second; (d) Fractured region with 

22.2A/mm2 for 1 second 
 

 
Figure 2-10 Volume fraction of retained austenite under different test conditions 
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In X-ray diffraction patterns, volume fractions of different phases are proportional to the 

integrated intensity of corresponding peaks. The volume fractions of retained austenite under 

different tensile test conditions are accordingly calculated and compared in Figure 2-10. In order 

to separate the effect of Joule heating on phase transformation, another series of specimens are 

treated with same pulse conditions without plastic deformation. The results on the volume fraction 

of retained austenite are also shown in Figure 2-10. Purely static resistance heating with the 

maximum temperature of 61 ºC has negligible effect on the kinetics of martensitic transformation. 

However, when the electrical pulses are applied simultaneously during plastic deformation, the 

volume fraction of retained austenite can be increased. Moreover, greater amount of austenite can 

be retained under a higher current density. The vertical line at the current density of 15.3 A/mm2 

showed that longer pulse duration retarded the martensitic transformation to a larger extent. With 

further increasing the current density, the extent of retarded transformation becomes saturated 

since the quantity of the retained austenite in fractured specimens approaches that of the original 

material. In other words, a high enough current density is possible to fully restrain martensitic 

transformation during plastic deformation of TRIP steel. 

The suppressed martensitic transformation under electrical current can be considered from 

thermodynamic principles. Figure 2-11 [67] is a schematic illustration of the Gibbs free energies 

of austenite and martensite near the equilibrium temperature 0T  , where the Gibbs free energies 

for these two phases are equal. sM  is the martensite transformation start temperature, which 

corresponds to the minimum free energy driving force '

Ms
G  . In the temperature range above sM  

and below 0T , martensite cannot form spontaneously due to insufficient driving force [68]. 

However, if an external mechanical force supplies additional energy U’, which satisfies 
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1

' '

T Ms
G U G         (2-5)

martensitic transformation is then possible. As the temperature increases from sM , higher 

mechanical force is required as a consequence of the reduced thermomechanical driving force. 

When the temperature reaches sM  , the required mechanical force exceeds the yield strength of 

austenite matrix and plastic deformation occurs. Accordingly, the temperature region of 

s sM T M    is called stress-assisted transformation regime while the region of 0sM T T    is 

generally referred to as strain-assisted transformation regime [69]. During electrically assisted 

tensile tests, the reduced plastic flow stress accordingly reduced the external work provided by 

mechanical force, which helps justify the retarded martensitic transformation. In particular, under 

the same current density of 15.3 A/mm2, longer pulses preserved larger amount of austenite since 

a longer strain range is associated with reduced flow stress, which results in less amount of input 

mechanical energy.  

 
Figure 2-11 Gibbs free energy of martensite and austenite as a function of temperature (Copied from 

Curtze et al., 2009,  Materials Science and Engineering: A, Vol. 507(1), pp. 124-131. [70]) 
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2.4 Summaries and conclusions 

In this chapter, first a hypothesis on the softening mechanisms of electro-plastic effect is 

proposed based on reported material behaviors from various literature. The high density electrical 

current can heat up local strengthening sites due to their intrinsic higher electrical resistance, which 

promotes dislocations to bypass these obstacles without temperature increase of the bulk material.  

Second, electro-plastic effect has been experimentally investigated on one group of 

Advanced High Strength Steels (AHSS), TRIP steel. The applied current densities range from 

7.4A/mm2 to 29.7A/mm2 with the pulse duration of 1 or 4 seconds. Increasing the current density 

from 15.3A/mm2 to 29.7A/mm2 and shortening the pulse length from 4s to 1s can generate a larger 

stress drop under approximately same temperature increase. This helps demonstrate the 

effectiveness of EPE on TRIP steel. Further microstructure analysis showed the electrical pulses 

can retard the martensitic phase transformation process involved in plastic deformation of TRIP 

steel.  
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CHAPTER 3  

 FRICTION STIR WELDING OF DISSIMILAR ALUMINUM 

ALLOY 6061 TO TRIP 780 ADVANCED HIGH STRENGTH 

STEEL 

 

 

3.1 Literature review 

Several studies were carried out on friction stir welding of aluminum alloy to steel sheets. 

Uzun et al. [15] reported the joint strength between Al 6013-T4 and 304 stainless steel with the 

thickness of 4mm reached approximately 70% of the base aluminum alloy. Ghosh et al. [16] did 

FSW of pure Al to 304 stainless steel and the maximum joint strength was 82% of Al. The presence 

of Fe3Al was observed. Equiaxed and finer grains in the stirring zone indicated the involved 

dynamic recrystallization process. Tanaka et al. [18] welded Al 7075-T6 to mild steel with the 

thickness of 3 mm. Tool rotational speed varied from 400 to 1200 rpm under the welding speed of 

100 mm/min. The highest tensile strength they achieved was 333 MPa, which was about 60% of 

the base aluminum alloy. Moreover, they reported an exponentially increasing relationship 

between the interface strength and the reducing thickness of intermetallic compound (IMC) layer, 

which had the composition of FeAl3. Lee et al. [19] did experiments on FSW of Al 6056-T4 to 304 
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stainless steel with the thickness of 4 mm under the rotational speed of 800 rpm and welding speed 

of 80 mm/min. The thin intermetallic compound (IMC) layer of 250 nm thickness was analyzed 

through transmission electron microscopy (TEM) and identified to be FeAl4. Chen and Kovacevic 

[21] joined Al 6061 to AISI 1018 steel with the thickness of 6mm. Local melting of aluminum 

occurred, and shearing off of steel platelets encompassed by IMC layers of Fe4Al13 and Fe2Al5 was 

observed in the weld nugget. The local partially melted aluminum was also reported by Jiang et al. 

[22] when they studied the same pair of dissimilar materials with the same thickness. Intermetallic 

compounds were found not only in the segregated steel clusters inside the nugget but also along 

the interface between base steel and the nugget. Their compositions were identified to be Fe2Al5 

and Fe4Al13. The extent of IMC reaction varied with location, and more steel was consumed at a 

distance closer to aluminum alloy.  

Movahedi et al. [7] did friction stir lap joining between Al 5083 and St -12 mild steel. They 

reported that the joint quality would not be degraded by an intermetallic compound layer with a 

thickness of less than 2 μm. Similar conclusions were again suggested by Lee et al. [71]. The 2 μm 

IMC layers with the composition of Fe3Al or Fe4Al13 was reported to contribute to the joint strength. 

Yilmaz et al. [72] concluded that an IMC layer was necessary for the Al-Fe interface strength, but 

cracks were easily initiated and propagated if the IMC layer reached a certain thickness. This 

statement was further verified by Bozzi et al. [73] when they studied friction stir spot welding of 

Al 6016 to IF-steel and reported that fractures were likely to be generated through the hard IMC 

tangles when the thickness of IMC layer was greater than 8 μm. In their studies, FeAl2, Fe2Al5 and 

FeAl3 were observed at different positions using TEM analysis. Chen et al. [23] did a parametric 

study of FSW on Al 6061-T651 to SS400 steel with the thickness of 6mm. They indicated that 

rotational and traverse speed were relatively significant FSW process parameters compared with 
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the tool tilt angle or pin diameter. Furthermore, lower rotational speed and transverse speed 

increased joint toughness. The maximum tensile strength they reached is 76% of the base Al alloy. 

Kimapong and Watanabe [74] did FSW lap joint on Al 5083 to SS400 mild steel and reported a 

maximum shear strength of about 77% of the Al base material. FeAl, FeAl3 and Fe2Al5 were found 

at interfaces obtained from welding conditions of different tool tilt angles. Chen et al. [75] 

suggested that the Zn coating on steel could improve the weldability of Al and steel through 

promoting the formation of Al-Zn low melting point eutectic structure. They also reported in 

another study [76] on FSW lap joining that the thickness of IMC layer increased from 7.7 μm to 

58.1 μm with decreasing welding speed, which substantially affected the joint strength. The 

composition was identified to be mainly Fe2Al5 and Fe4Al13. Watanabe et al. [77] did FSW of Al 

5083 to A36 mild carbon steel with the thickness of 2mm. The maximum tensile strength was 

about 86% compared with the base Al alloy, which was achieved by shifting the tool into 

aluminum side and leaving 10% of the pin cross sectional area in the steel region. The fracture 

path of the tested tensile specimens was along the interface between Al matrix and Fe fragments. 

IMCs with the composition of FeAl and FeAl3 were reported at the upper region of the weld 

interface. 

All the aforementioned studies selected either mild steel or austenite stainless steel, both of 

which had a relatively low yield strength. Few open literatures discussed FSW of aluminum alloy 

to advanced high strength steels (AHSS), which is more desirable in lightweight vehicle structures. 

In this chapter, the feasibility of using FSW to join Al 6061 to TRIP 780 / 800 steel is investigated 

and effects of different process parameters are analyzed. Welding force and temperature are 

measured during the process. Macrostructure and microstructure analysis is performed on joint 

cross sections, which are further related to the measured welding force and temperature under 
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different welding conditions. Finally, the joint tensile strength is evaluated and failure modes are 

analyzed based on different joint macrostrucutures. 

 

3.2 Study of FSW of Al 6061 to TRIP 780/800 steel  

3.2.1 Experimental configuration 

Figure 3-1 (a) is a schematic illustration of the experimental setup and Figure 3-1 (b) shows 

a more detailed cross-sectional view perpendicular to the weld line. Chemical compositions and 

mechanical properties of the aluminum alloy Al6061-T6511 are listed in Table 3-1, where UTS 

stands for ultimate tensile strength and YS is the yield strength.  

 
 

 
Figure 3-1 Schematic illustration of the FSW experimental configuration: (a) Overview; (b) Cross-

sectional view perpendicular to the weld line (Unit: mm) 
 

Table 3-1 Chemical composition and mechanical properties of the Al6061-T6511 alloy 
Chemical composition (wt%) Mechanical properties (MPa) 

Si  Mg Fe Cr Cu Zn Ti  YS  UTS  

0.60 1.00 0.35 0.42 0.27 0.12 0.08 245 283 
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The FSW tool used in this study comprises a conically tapered non-threaded pin. Detailed 

dimensions of the tool are shown in Figure 3-2. During all the experiments, the FSW tool is shifted 

towards aluminum side to reduce the large amount of heat generated from plastic deformation of 

steel, which is likely to melt aluminum and create various weld defects [15]. On the other hand, if 

the tool is shifted to aluminum to a much larger distance, effective bonding between the two 

materials can hardly be achieved due to insufficient steel in the weld nugget. The parameter of tool 

offset is therefore introduced and defined as the distance between the tool axis and the faying 

surface of the two materials. Larger tool offset means that the tool is more into aluminum and the 

joint strength can be expected to be improved by optimizing the value of tool offset. 

Since certain fraction of the FSW tool remains immersed in steel region to actually stir both 

materials together, the FSW tool will be subjected to severe frictional conditions and needs to be 

made of refractory materials such as tungsten carbide [78], tungsten-rhenium [79], Si3N4 [80] and 

polycrystalline cubic boron nitride (PCBN) [81]. In this study, tungsten carbide with 10% cobalt 

was used for its combined properties of high hardness, relatively good fracture toughness and much 

lower cost compared with PCBN. 

 
Figure 3-2 Detailed dimensions of the FSW tool (Unit: mm) 

 



32 
 

 
Figure 3-3 Weld top surface with steel placed at (a) Retreating side; (b) Advancing side 

 

Below the workpiece is a replaceable backing plate made of mild steel, where four holes 

with diameter of 1mm were drilled for mounting thermocouples. Type K thermocouples are 

located symmetrically to the weld line and can measure the temperature of the workpiece back 

surface at distances of 1 mm and 5 mm away from the abutting edge. The workpiece and 

replaceable backing plate were assembled onto a specially designed fixture, which was further 

mounted onto a dynamometer, Kistler 9255B. The dynamometer can measure the mechanical 

welding force in both the axial direction, Fz and the direction along joint line, Fx. All FSW 

experiments were performed on a high stiffness M.S. Machining Center with displacement control. 

Since the processing condition is unsymmetrical with regard to weldline during FSW, effects 

of relative positions of the two materials were investigated. In Figure 3-3 (a), steel is placed in the 

retreating side, where the tool rotating speed is opposite to the welding direction. On top of the 

weld surface, a clear interface between the two materials can be observed, which is associated with 

surface cracks. On the other hand, when steel is placed in the advancing side where tool rotating 



33 
 

speed is the same as welding speed, a well stirred weld surface can be obtained, as shown in Figure 

3-3 (b). This can be explained from the movement of material in the wake of the tool. Due to the 

tool rotating motion, steel and aluminum moves in the same direction but at different rates. At 

approximately same temperature rise, the intrinsic softer properties of aluminum yields a much 

better plastic flow behavior compared with that of steel. With steel placed in the retreating side, as 

the tool passes by, steel tends to be pushed towards aluminum. However, an effective bonding can 

hardly be achieved due to the poor flowability of steel. When steel is placed in the advancing side, 

aluminum can then be effectively pressed against steel to obtain reliable joints. Therefore, steel 

was placed in the advancing side in all following experiments. 

Three levels of rotational speeds were initially attempted. Acceptable joints could hardly be 

obtained under the lowest level of 600rpm regardless of choices of other parameters. A visible 

groove adjacent to the joint line existed on aluminum top surface, as shown in Figure 3-4, which 

suggests material leakage from weld nugget. This defect is likely to be caused by insufficient heat 

generation rate associated with the low rotational speed.  

 
Figure 3-4 Weld samples obtained from rotating speed of 600 rpm 
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In the following studies, only the two higher levels of rotational speed, 1200rpm and 

1800rpm were investigated under three levels of welding speed and two levels of tool offset. The 

welding conditions are listed in Table 3-2, where R, v and Offset are abbreviations for rotational 

speed, welding speed and tool offset respectively. Each condition was repeated three times for 

welding force and temperature measurement and two times for tensile tests. In plunge stage, the 

plunging speed was 10 mm/min. Based on the workpiece thickness and FSW tool pin length, the 

total plunge depth was selected as 1.3mm, where the starting position is defined as the pin end 

surface touches workpiece top surface. 

Dimensions of the dogbone tensile specimens were designed according to the ASTM: E8 

standard and the welded area was located near the center, as shown in Figure 3-5. The specimens 

were obtained by milling process, as shown in Figure 3-6. Tensile tests were performed on a MTS 

Insight 10 tensile machine at a strain rate of 10-3/s. Microstructural analysis on joint cross sections 

was performed with optical microscopy (OM) and Scanning Electron Microscopy (SEM). X-Ray 

diffraction (XRD) analysis and Energy Dispersive Spectrometry (EDS) techniques were also 

applied for the determination of the Al-Fe interfacial layer composition. 

Table 3-2 Process parameters studied in FSW of Al 6061 to TRIP steel  
FSW 

condition 
Rotational speed (R): 

rpm 
Welding speed (v): 

mm/min 
Tool offset 

(Offset) : mm 
1 1200 30 1.03 
2 1200 60 1.03 
3 1200 90 1.03 
4 1200 30 1.63 
5 1200 60 1.63 
6 1200 90 1.63 
7 1800 60 1.03 
8 1800 90 1.03 
9 1800 120 1.03 
10 1800 60 1.63 
11 1800 90 1.63 
12 1800 120 1.63 
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Figure 3-5 Tensile specimens with the weld in the center (Unit: mm) 

 

 
Figure 3-6 Milling process to obtain tensile specimen from the weld 

 

3.2.2 Force and temperature measurement 

3.2.2.1 Mechanical welding force 

Typical curves of the axial and traverse forces experienced by FSW tool during the whole 

process are shown in Figure 3-7. During the plunge stage where the rotating tool pin was gradually 

inserted into workpiece, the axial force Fz increased rapidly in the beginning until it arrived at an 

intermediate plateau, which continued for a short period, and then increased again until it reached 

the peak value when the tool shoulder started abrading against the workpiece top surface. In the 

subsequent dwell stage where the tool was held rotating in position, axial force Fz decreased a little 

and translational force Fx remained negligible. Finally during the welding stage where the tool 

translated along the weld line, Fz further decreased and gradually arrived at a stable value. Fx 
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increased instantaneously due to the translational motion of the tool and after certain period of 

fluctuations also reached a stable value.  

Compared with the works of Trimble et al. [82], Soundararajan et al. [83] and Park [84] on 

FSW of aluminum alloys, there are three distinct features of the force curves for FSW of aluminum 

alloy to steel. First, during the plunge stage of same aluminum alloy, the axial force curve increased 

in the beginning and then decreased before it increased again to the final peak. This temporary 

force decrease was generally considered from the aspect that as the tool pin gradually moved into 

the workpiece, the heat generated by plastic deformation and friction would reach an overshoot 

level where material was greatly softened. As a consequence, the required force for pushing the 

pin further in was reduced. On the other hand, as the tool is plunged into aluminum alloy and steel, 

the volume of the pin immersed in the steel side continuously grows larger due to its cone geometry. 

The surplus heat from friction and plastic deformation is then consumed to deform the extra steel. 

Accordingly, during dissimilar plunge stage, the axial force curve increases in the beginning and 

reaches a short intermediate plateau. This plateau was quickly broken when the tool shoulder 

started contacting top surface of the workpiece. 

 
Figure 3-7 Typical axial and traverse forces on the FSW tool during the whole process 
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Second, when joining similar aluminum alloys, axial force Fz can be reduced by 35%~60% 

[82, 84] during welding stage whereas no more than 20% reduction is observed when joining Al 

to TRIP steel. Third, the translational moving force Fx, which is the force required for translating 

FSW tool along weld line, is negligible when welding aluminum. In contrast, Fx is much larger 

when welding aluminum to TRIP steel. The second and third differences can both be interpreted 

based on the fact that TRIP steel possesses much stronger mechanical properties, which make it 

more difficult to be confined within the weld and stirred along the joint line.  

The mechanical welding force exerted onto the FSW tool depends on different process 

conditions for displacement controlled FSW process. In order to evaluate their effects, three 

characteristic values were selected for quantitative comparison of the force curves. The first one 

is the peak axial force Fz during plunge stage. The second and third values are the stable axial force 

Fz and translational moving force Fx during welding stage. Figure 3-8 compares the effects of tool 

rotational speed and tool offset on the peak axial force during plunge stage. Higher rotational speed 

and tool offset can effectively reduce axial force for initiating the process. Raising the rotational 

speed can increase the material shear strain rate and the relative velocity between the pin surface 

and material, which therefore promotes both plastic and frictional heat generation rate. Smaller 

volume of the pin in the stronger steel side can also reduce the required axial force to plunge the 

tool into the workpiece.  

Figure 3-9 compares the stable axial force Fz during welding stage under different values of 

welding speed, rotational speed and tool offset. Overall Fz increases slightly with the traverse 

welding speed whereas the relationship is weak in the range of the studied welding speeds. On the 

other hand, larger rotational speed and tool offset can effectively reduce axial force, which suggests 
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that the required pressure for confining the material within the weld as the tool translates can be 

reduced in these conditions. 

 
Figure 3-8 Effects of rotational speed and tool offset on the peak force Fz during plunge stage 

 

 
Figure 3-9 Effects of process parameters on the axial force Fz during welding stage 

 

Translational moving force Fx during steady-state welding stage under different sets of 

process parameters is compared in Figure 3-10. In the studied range of the welding speed, its 
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effects on Fx is small. Higher rotational speed can reduce Fx but the influence is not as significant 

as that for Fz. Increase tool offset can also efficiently reduce Fx. However, if the tool offset 

increases too much, the joint quality may deteriorate due to insufficient amount of steel in the weld 

nugget.     

 
Figure 3-10 Effects of process parameters on lateral moving force Fx during welding stage 
 

 
Figure 3-11 Schematic illustration of the force distribution on FSW tool (Side view parallel to the 

weld line) 
 

A schematic illustration of the force distribution on FSW tool during the process is shown 

in Figure 3-11. Axial force comes from two parts: the surface of the pin and the shoulder. Each of 
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them consists of force components from aluminum and steel regions. The total area of shoulder 

surface is denoted as As, the end surface area of pin as Apz and the periphery surface area of pin as 

Apx. Area fractions of aluminum on shoulder surface, pin end surface and pin periphery surface are 

denoted as fs,  fpz, and fpx respectively. The following equations can then be established: 
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where ( )x
fsF  represents the frictional force on the shoulder and ( )x

ppF  is the deformation resistance 

of plasticized material exerted on the pin.   is the frictional coefficient and   is the flow stress, 

which is a function of temperature, strain and strain rate. It can be shown in the following session 

that higher rotational speed can elevate the temperature in the nugget, which therefore reduces the 

stress terms in equation (3-1) and accordingly the axial force. Values of sf , pzf , pxf are determined 

by the parameter of tool offset. Larger tool offset means higher values for these three variables, 

which implies aluminum deformation stress occupies a greater portion of the total Fx and Fz and 

therefore the forces can be reduced.  

The welding speed v in the following shows an insignificant effect on the maximum 

temperature during the process. The influence of welding speed on strain rate can be compared 

with that of rotational speed by calculating the ratio between the average material moving speed 

induced by tool rotation and that induced by translation: 
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where sr  is the tool shoulder radius, R is the rotational speed and v is the welding speed. After 

substituting the lowest rotational speed of 1200 rpm, the highest welding speed of 120mm/min and 

the shoulder radius of 6.35mm into this equation, the ratio is 900. This indicates that the strain rate 

of the material is primarily determined by the rotational speed. Welding speed in the studied range 

affects stress distribution to a smaller extent, and the axial and translational moving force is 

accordingly slightly affected. 

 

3.2.2.2 Temperature measurement 

Figure 3-12 compares the temperature distribution under different welding speeds with the 

rotational speed of 1800 rpm and the tool offset of 1.63 mm. The Y axis represents the peak 

temperature recorded at this position during the entire welding process. As described in the 

experimental configuration, the four temperature measuring points are symmetric to the abutting 

edge. Since FSW tool is shifted more into Al side during all experiments, the thermocouples are 

asymmetric with regard to the tool, which helps explain the result that the temperature at 1 mm 

position in Al side is slightly higher than that in steel side. The welding speed in the studied range 

has an insignificant effect on the temperature distribution in Al side. Similar results were also 

reported by Barnes et al. [79]. Smaller welding speed can slightly increase the temperature in steel 

side, which can be considered from the aspect of thermal history. Figure 3-13 shows the effect of 

welding speed on thermal history at 1mm position in Al side under the same condition as in Figure 

3-12. Smaller welding speed can directly extend the high temperature period and reduce heating 

and cooling rate. Heat generated in Al side can accordingly have a longer time to be conducted 

into steel and raise the temperature. Similar results regarding the effect of welding speed on 
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temperature distribution are shown in Figure 3-14, where a smaller rotational speed of 1200 rpm 

is applied.  

 
Figure 3-12 Temperature distribution under different welding speeds (1800 rpm; tool offset 1.63mm) 

 

 
Figure 3-13 Thermal history at 1mm position in Al side under different welding speeds (1800 rpm; 

tool offset 1.63mm) 
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Figure 3-15 shows the effects of different rotational speeds on the temperature distribution. 

Temperature in both aluminum and steel sides is higher under a larger rotational speed. This 

conclusion is consistent regardless of welding speeds.   

 
Figure 3-14 Temperature distribution under different welding speeds with rotational speed of 1200 

rpm and tool offset of 1.63mm 
 

 
Figure 3-15 Temperature distribution under different rotational speeds (Tool offset: 1.63mm) 
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3.2.3 Joint quality evaluation 

3.2.3.1 Macroscopic analysis on joint cross section 

A typical optical macro-image of the weld cross section perpendicular to the abutting edge 

is shown in Figure 3-16, which reveals a good quality joint containing neither visible pores nor 

cracks. Three features can be extracted for characterizing advancing side, retreating side and weld 

nugget respectively. In the advancing steel side, a tilted interface between aluminum and steel can 

be observed and the inclination angle, which is defined as the angle between the vertical direction 

and the direction of this interface, is larger than the original cone angle of the tool pin. This could 

be explained from the aspect of heat distribution. Large amount frictional heat will be generated 

at the interface of tool shoulder and workpiece top surface. Top region of the weld therefore 

receives greater amount of both conduction heat and plastic deformation heat associated with the 

larger pin radius. The elevated temperature can therefore reduce the steel deformation resistance 

to a larger extent and promote the penetration of stirred over aluminum into steel side.  

 

 
Figure 3-16 Macrostructure of the cross section perpendicular to the weld line (1800 rpm, 

60mm/min, tool offset of 1.63mm) 
 

The effect of different welding speeds on the inclination angle of this interface is shown in 

Figure 3-17. In the condition of the lowest welding speed of 30mm/min in (a), the Al-Fe interface 

still preserves a linear morphology. As the welding speed increases to 60mm/min in (b), the 
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interface started to show certain degree of curvature and a higher inclination angle can be observed 

in the upper region. The highest welding speed of 90mm/min in (c) leads to a distinct curved shape 

and the interface is even more flat in the top region. Based on the results of previous session, the 

length of thermal cycle is directly reduced under a larger welding speed. This results in less amount 

of frictional heat being conducted downward and accordingly a more nonuniform temperature 

distribution in the weld nugget, as also reported by Leitao et al [85]. The difference of steel flow 

stress between top and bottom region will be larger and lead to a more curved interface geometry. 

 

 
Figure 3-17 Effect of welding speed on the inclination angle of Al-Fe interface in the advancing side 

(1200 rpm; tool offset 1.63mm): (a) 30; (b) 60; (c) 90 mm/min 
 

In order to evaluate the effects of other process parameters on the inclination angle, including 

rotational speed and tool offset, this Al-Fe interface in the advancing side was linearly fitted and 

the average angle was calculated for each welding condition. Figure 3-18 shows that larger welding 

speed can consistently increase the inclination angle regardless of the values of the other process 

parameters. Higher rotational speed generally results in a smaller angle, which suggests that the 

nonuniform temperature distribution due to larger welding speed can be ameliorated. On the other 

hand, the influence of the tool offset depends on other process parameters. Overall, smaller tool 

offset increases the inclination angle of the interface. This could be attributed to the involvement 
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of larger fraction of steel and its lower thermal conductivity, which increases the temperature 

gradient. 

 
Figure 3-18 Effects of welding parameters on the inclination angle of Al-Fe interface in steel side 

 

The second feature of the macrostructure for joint cross section is the occurrence of a 

continuous steel strip embedded in the aluminum matrix in the retreating side, as shown in Figure 

3-16. This illustrates the pattern of material flow during this FSW process: A continuous steel strip 

is peeled off from the base TRIP steel side and extruded into the aluminum matrix. In the advancing 

side, the materials from aluminum region has been stirred over and pushed against steel. Vertical 

force exerted by the pin of FSW tool tends to press this part of aluminum and steel downward, 

which is restricted by the backing plate when they reached the bottom of the nugget. Since total 

length of the pin is less than the thickness of the workpiece, the materials at the bottom of 

advancing side therefore can be squeezed and move horizontally into aluminum side through the 

“strait”formed by the end surface of the pin and the backing plate. The softer properties of 

aluminum matrix make it easier for the TRIP steel to penetrate. TRIP steel will tend to follow the 

flow of aluminum in the retreating side once being transported through the “strait”. According to 



47 
 

Guerra et al. [86] and Colligan [87], the materials tend to be carried away and deposited in the 

wake of the pin as the tool continuously moves forward.  

In addition, the geometry of the steel strip suggests an upward motion, which can be 

explained as the followings: As shown in the curved Al-Fe interface in the advancing side, the top 

region of the weld has a higher temperature and smaller flow stress than the bottom. Relatively 

larger amount of materials is able to move backward and the materials in the bottom will then try 

to occupy this available space from the tool pressure. Accordingly, materials tend to flow upward. 

Similar results regarding the upward motion were reported by Reynolds [88] and Coelho et al. [89]. 

This steel strip was initially expected to be beneficial and serve as a strengthening rib for the softer 

aluminum matrix. However, its contribution to joint quality closely depends on its interface with 

the surrounding aluminum matrix, which will be discussed in details with tensile test results. 

The third feature for the macrostructure of the joint cross section is related to the nugget 

region. From Figure 3-16, particles with various sizes and morphologies are scattered around in 

the weld nugget. A series of SEM images were then taken at different positions for further 

examinations. Figure 3-19 shows that these particles are steel fragments embedded in the 

aluminum matrix. More importantly, all of them are encompassed with an intermetallic layer, 

which implies reactions instead of simply mixing between these sheared off steel platelets and 

aluminum matrix. Furthermore, particles of intermetallic compounds (IMC) in addition to steel 

fragments are also visible. They generally have much smaller sizes, which are around 2–5 μm for 

the largest dimension. These IMC particles are possibly generated from reactions between 

originally sheared off steel particles and aluminum matrix. These steel particles are completely 

consumed due to their small sizes. During tensile tests, fracture occurs at other regions instead of 

the weld nugget, which indicates these particles are acceptable for static strength. However, they 
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are potentially harmful for other applications and especially can serve as the initiation sites for 

fatigue cracks.  

 
Figure 3-19 Particles in the weld nugget: IMC particles and steel fragments encompassed by IMC 

layer 
 

A commonly observed weld discontinuity for FSW of similar aluminum alloys is the 

“wormhole” defect,  which is a void that exists at the root of advancing side [90]. On the contrary, 

during FSW of dissimilar steel and aluminum in this study, the advancing side always exhibits a 

continuous interface without porosity or cracks. However, discontinuities can occur in the 
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retreating side as shown in Figure 3-20, which is always associated with the stirred over steel strip. 

Since the motion for this portion of steel is upward, the compressing interaction between aluminum 

matrix and the steel strip is relatively weak. Besides, the coefficient of thermal expansion for 

aluminum is much higher than that of steel, aluminum tends to shrink more during cooling, which 

promotes the formation of defects even if the weld is continuous at high temperature. 

 
Figure 3-20 Void defect in retreating side (1800rpm, 120mm/min and tool offset of 1.63mm) 
 

3.2.3.2 Al-Fe interface 

In order to examine the metallurgical bonding conditions in the advancing side, scanning 

electron microscopy (SEM) was employed for higher magnified views. Figure 3-21 shows SEM 

images of the Al–Fe interface under different welding speeds, where the rotational speed is kept 

at 1200 rpm and tool offset is kept at 1.03 mm. A distinct interfacial layer with a different color 

from either steel or aluminum can be observed, which indicates a newly formed phase of 

intermetallic compounds (IMC). The intermetallic layer has a relatively smooth boundary in the 

dark aluminum side compared with the wavy morphology of the boundary in the bright steel side. 

Despite these coarse boundaries, the overall thickness of this interface layer becomes smaller as 

the welding speed increases. The relationship between interlayer thickness and welding speed is 
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consistent regardless of variations of other parameters, as shown in Figure 3-22 where a higher 

rotational speed of 1800 rpm and larger tool offset of 1.63 mm are applied.  

 

 
Figure 3-21 Al-Fe interface in the advancing side (1200 rpm: tool offset 1.03mm) under different 

welding speeds: (a) 30mm/min; (b) 60mm/min 
 

Growing kinetics of this interlayer was further quantitatively studied by measuring its 

thickness under different sets of process parameters. Considering the unsmooth morphology near 

steel side, measurements are taken at three different subareas of each interface and in each subarea 

three peaks and valleys of the wavy boundary are selected. Average values of thickness t is plotted 

with respect to welding speeds v in logarithm scale as shown in Figure 3-23. A linear dependence 

of ln(t) on ln(v) can be observed. By further calculating the fitted slope, relationships between 

layer thickness t and welding velocity v under different rotational speeds and tool offsets are 

summarized in Table 3-3. The thickness is either proportional to the reciprocal of velocity or the 

square root of the reciprocal of velocity. Since the duration of welding stage for the same welding 

length is inversely proportional to v, this inverse relationship or inverse parabolic relationship 

between the thickness and the welding speed can be approximately interpreted as linear or 

parabolic relationship between the thickness and time. According to Bouche et al. [91], the growth 

of the intermediate phases follows linear kinetics if it is governed by chemical reactions. If the rate 
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determining step is interdiffusion, the growth rate follows parabolic relationship. Based on Table 

3-3, in the condition of 1200 rpm rotational speed and 1.03 mm tool offset, the linear relationship 

between the thickness and the reciprocal of velocity indicates a reaction controlled interphase 

growth. On the other hand, the rate determining step in other three process conditions is more 

likely to be diffusion. Furthermore, the wavy morphology occurs at the steel-intermetallic 

boundary instead of the aluminum-intermetallic boundary, which indicates the diffusion of iron 

atoms is a slower step compared with the diffusion of aluminum atoms.  

 
Figure 3-22 Al-Fe interface in the advancing side (1800 rpm, tool offset 1.63mm) under different 

welding speeds: (a) 60mm/min; (b) 90mm/min 
 

Table 3-3 Dependence of the interlayer thickness t ( m ) on the welding speed v (mm/min) 

 Tool offset: 1.03mm Tool offset: 1.63mm 

Rotational speed: 1200 rpm 
1

t
v

  
1

t
v

  

Rotational speed: 1800 rpm 
1

t
v

  
1

t
v

  
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Figure 3-23 Relationships between the interlayer thickness t and welding speed v under different tool 

offsets and rotational speeds: (a) 1200 rpm; (b) 1800 rpm 
 

 
Figure 3-24 XRD patterns of the intermetallic layer in the advancing side under different process 

conditions 
 

The composition of the IMC layer is identified with X-Ray diffraction (XRD) analysis and 

the results are shown in Figure 3-24. The most likely existed phases are determined based on the 
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figure of merit (FOM) values calculated from the XRD analysis software JADE. The welding 

speed v has no influence on the type of IMC that is going to form. Furthermore, only under the 

condition where rotational speed is 1200 rpm and tool offset is 1.03 mm can the FeAl phase be 

generated. Fe3Al is formed under all other conditions, which are in agreement with the results of 

above kinetic analysis.  

 

3.2.3.3 Relationship between process parameters and the Al-Fe interface 

The formation and growth of intermetallic compound at the interface of dissimilar materials 

basically contain three stages [92]. The first stage involves the formation of solid solution through 

atomic diffusion at the interface. IMC will start to nucleate in the second stage when it is 

thermodynamically more favorable at corresponding temperature and pressure combinations. In 

the third stage, solute atoms will continue to diffuse into the stabilized IMC nucleus for it to grow 

gradually. Several studies were conducted regarding the interlayer formation and growth between 

molten Al and solid Fe [91, 93-96]. According to their studies, Fe2Al5 and FeAl3 are more likely 

to be formed in the temperature range of 700 ºC to 900 ºC. On the other hand, IMC with lower 

aluminum composition, basically FeAl and Fe3Al, can only be formed at a higher temperature of 

over 1000 ºC. The Al-Fe phase diagram  under atmospheric pressure is shown in Figure 3-25 [97]. 

The formation of Fe3Al occurs at the temperature of about 550 ºC through a peritectoid reaction 

while FeAl is formed through a peritectic reaction under a much higher temperature of around 

1245 ºC. Based on the temperature measurement results in the previous session, the highest 

temperature at the back surface of the workpiece is around 500 ºC, which indicates a potentially 

high temperature gradient within the workpiece. Besides temperature, the effects of high pressure 

raised by the mechanical welding force during FSW also need to be taken into consideration for 
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the formation of FeAl and Fe3Al intermetallics. It was reported in [98] that an increase in pressure 

could promote the formation of interface layer at lower temperature under constant diffusion time. 

Furthermore, during FSW, materials near the pin are subject to severe plastic deformation at a high 

strain rate. It is suggested that short-circuiting along static and moving dislocations, grain 

boundaries and cracks generated during deformation can enhance diffusion [99] and facilitate IMC 

nucleation by providing heterogeneous nucleation sites.  

Above discussions show that the formation and growth of IMC layers depend closely on 

temperature, mechanical welding force and material deformation status, all of which are 

determined by process parameters. According to the previous temperature and welding force 

measurement results, higher rotational speed can effectively increase the temperature in the weld, 

reduce welding force in both vertical and lateral directions. In addition, it also increases the 

material strain rate, which should be positively correlated with the velocity of the corresponding 

points on the tool. Therefore higher rotational speed can enhance the diffusion process and promote 

the formation of greater amount of IMC.  

Welding speed in the studied range has an inappreciable effect on either temperature 

distribution or mechanical welding force along both tool axial direction and weld direction. As a 

result, it could hardly affect diffusion or IMC reaction process and consequently the composition 

of the IMC layer. However, the extended high temperature period associated with lower welding 

speed allows for longer diffusion time, which results in the formation of thicker IMC layers. 

Smaller tool offset means larger fraction of steel is involved in the stirring process and react with 

aluminum, which will increase the interlayer thickness. It has been shown that under the lower 

rotational speed of 1200 rpm and smaller tool offset of 1.03 mm, FeAl is formed at the interface, 

which is different from the Fe3Al obtained under all other conditions. The smaller tool offset is 
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shown to increase welding force along both axial and welding directions and can therefore elevate 

the pressure in weld nugget, which contributes to IMC reaction. However, the relatively low 

temperature resulting from the lower rotational speed retards further diffusion of iron atoms into 

the initially formed IMC layer with the composition of FeAl. As a result, FeAl can hardly be 

transformed into Fe3Al and leaves as the interlayer composition under the lower rotational speed 

of 1200 rpm and smaller tool offset of 1.03 mm. For other conditions, temperature is higher and 

allows for the formation of Fe3Al. 

 
Figure 3-25 Al-Fe phase diagram under atmospheric pressure (ASM Alloy Phase Diagram 

Database, ASM International 2006, Diagram No. 904096) 
 

3.2.3.4 Tensile strength and failure modes 

Three types of failure modes occurred during tensile tests, as shown in Figure 3-26. The first 

two are related to the embedded steel strip. In Figure 3-26 (a), the steel strip penetrates the top 
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surface of the aluminum alloy in the retreating side. In this condition, the fracture path follows the 

inside boundary, marked as position 2 in Figure 3-16. This greatly deteriorates the joint quality 

and results in the lowest strength among the three failure modes, which is around 57% of the base 

aluminum alloy.  

The most frequently encountered failure mode is shown in Figure 3-26 (b), where the steel 

strip is submerged beneath the workpiece top surface and the crack is initiated and propagated 

along the outside boundary, which is marked as position 1 in Figure 3-16. The corresponding 

tensile strength is around 79% of the base aluminum alloy.  

Figure 3-26 (c) corresponds to the most satisfying failure mode where the fracture occurred 

in the heat affected zone of aluminum and the necking phenomenon can be observed. This 

condition results in the highest joint strength of 240MPa, which is about 85% of the base Al alloy. 

The Al 6061 sheets used in this study have been subjected to the T6 heat treatment, which is a 

peak aging process. A distribution of fine precipitates is achieved in the aluminum matrix from 

this process, which results in the highest strength with regard to the aging time. The loss of strength 

at the heat affected zone after welding is therefore caused by over-aging and coarsening of these 

precipitates.  

During all the tensile tests, the fracture path is generally away from the original faying 

surfaces of the two materials. Furthermore, no cracks are generated in the weld nugget or the Al-

Fe interface in the advancing side, which indicates a relatively stronger strength in these two 

regions compared with the regions near the extruded steel strip.  
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Figure 3-26 Three failure modes: (a) Cracks at the inside boundary of steel strip; (b) Cracks at the 

outside boundary steel strip; (c) Failure in the aluminum heat affected zone  
 

In order to understand the underlying mechanisms of these observed failure modes, a series 

of SEM images were taken at various locations along the Al-Fe interface. Figure 3-27 shows the 

cross-section of the joints that fractured at the outside boundary of steel strip during tensile tests. 

The IMC layer exists at the Al-Fe interface in the advancing side as well as along the inside 

boundary of steel strip. Moreover, the thickness of this intermetallic (IMC) layer is less than 1µm. 

On the other hand, no intermetallic layer can be distinguished on the outside boundary of the steel 

strip, which means there is either no intermetallic or the thickness of this layer is in a much smaller 

nanometer scale. 

The fracture of the tensile specimens along the outside boundary of the steel strip can 

therefore be attributed to two reasons: (1) The hook geometry of the stirred over steel strip 

generates a locally high stress state, which exceeds the aluminum/steel bonding strength and 

initiates the crack; (2) The bonding strength between aluminum and steel with no intermetallic or 

intermetallic layer with thickness in nanometer scale is relatively weak compared with that from 

intermetallic layer with submicron thickness. This is especially true if the stress from the applied 
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tensile load is uniformly distributed along the Al-Fe interface in the advancing side, outside 

boundary and inside boundary of the steel strip. The contribution of intermetallic compound to 

joint quality is closely related to its thickness and composition. A slight increase of the thickness 

of the IMC layer is likely to rapidly deteriorate the joint quality due to its brittle mechanical 

properties. Besides, the aluminum riched intermetallic compounds, such as Fe2Al5 and FeAl3 are 

more brittle than iron riched ones, such as Fe3Al and FeAl. Even under the same small thickness, 

the former one can be detrimental to joint strength.  

 
Figure 3-27 Al-Fe interface of the joint section with fracture path along the outside boundary of steel 

strip 
 

For comparison, the cross section of the necking specimen is also analyzed using SEM and 

the results are shown in Figure 3-28. In this case, sheared off steel fragments are distributed with 

much smaller sizes and could hardly be recognized with the lower magnification optical 
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microscope. The presence of intermetallic layer can be observed along the Al-Fe interface not only 

in the advancing side but also at the stirred over steel strip. The vortex structure at the tip of the 

steel strip can be regarded as micro-interlocks between steel and aluminum, which is likely to 

enhance the interfacial strength. Elemental mapping through Energy Dispersive Spectrometry 

(EDS) analysis has also been conducted for the Al-Fe interface both at the tip of steel strip and in 

the advancing side. The results are shown in Figure 3-29 and Figure 3-30 respectively. These 

concentration profiles again revealed the interdiffusion of aluminum and iron atoms across the 

interface. 

 

 
Figure 3-28 Al-Fe interface of the joint section for the necking specimen 

 

Based on the EDS spectrum analysis, atomic percent of aluminum and iron are calculated at 

the Al-Fe interface and the results are listed in Table 3-4. The atomic ratio between aluminum and 
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iron is much higher at the tip of the steel strip than that in the advancing side. By comparing the 

measured atomic ratio at the Al-Fe interface with the atomic ratio of possible Al-Fe intermetallic 

compounds in the phase diagram, Al2Fe or Al13Fe4 are likely to exist at the tip of steel strip while 

Fe3Al is the more likely intermetallic phase at the advancing side, which is also consistent with 

the previous results from XRD analysis.  

 
Figure 3-29 Elemental mapping of in the advancing side (Position 1 in Figure 3-28) 

 

 
Figure 3-30 Elemental mapping at the tip of the steel strip (position 4 in Figure 3-28) 

 
 

Table 3-4 Elemental distribution at different locations along Al-Fe interface (at. %) 

Position 
Tip of steel strip (Position 4 in Figure 

3-28) 
Advancing side (Position 1 in Figure 

3-28) 
Al Fe Al Fe 

1 60.07% 35.41% 24.41% 75.59% 
2 76.83% 20.08% 24.70% 73.25% 
3 67.66% 30.31% 25.63% 72.12% 
 

A small crack at the inside boundary of steel strip can be noticed in Figure 3-28, which could 

probably either be induced during the tensile loading or formed during the welding process. In 

both scenarios, this small crack shows to sustain the tensile loading stress before the actual crack 

initiated at the heat affected zone of aluminum. 
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3.3 Summaries and conclusions 

In this Chapter, friction stir welding of Al 6061 alloy to TRIP 780 / 800 steel has been 

experimentally studied under various process conditions. Joint strength and microstructure have 

been related to the measured mechanical welding force and temperature distribution. Higher 

rotating speed and larger tool offset can elevate the overall temperature in the weld and reduce the 

required axial and lateral welding force, which accordingly influence the composition of the 

formed IMC layer in the advancing side. Under a low rotational speed and small tool offset, FeAl 

is formed instead of Fe3Al, which is formed under all other conditions. Welding speed in the 

studied range has an insignificant effect on mechanical welding force, temperature distribution or 

material strain rate and is not a sensitive factor for the IMC layer composition. However, higher 

welding speed can reduce the thermal cycle length and the interlayer thickness. A stirred over steel 

strip embedded in the aluminum can be observed on the weld cross section. Three failures modes 

were identified. Except necking and fracture in aluminum side, the other two are related to the 

outside and inside boundaries of this stirred over steel strip. The Al-Fe adhering interface on the 

outside boundary of the stirred over steel strip was shown to be the most vulnerable location of the 

weld.  
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CHAPTER 4  

THERMO-MECHANICAL MODELING ON FRICTION STIR 

WELDING OF DISSIMILAR MATERIALS 

 

4.1 Literature review 

In order to further understand the mechanisms and process physics involved in friction stir 

welding of Al 6061 to TRIP steel, both analytical and numerical models need to be developed. 

Current FSW models focus primarily on joining same materials and can generally be categorized 

into three types: thermal models, thermal-mechanical models based on solid mechanics or fluid 

mechanics. In thermal modeling works, the heat input was approximated through various methods 

and applied at the tool workpiece interface for the prediction of the temperature profile [100-104]. 

Khandkar et al. [105] assumed a uniform shear stress distribution and calculated the heat 

generation based on the measured torque and machine power. Inverse analysis is another method 

to determine the heat input and other thermal parameters, including heat transfer coefficient at the 

workpiece bottom surface [103, 106, 107] and heat partition between tool and workpiece [102]. 

The calculated temperature distribution can then be applied for residual stress prediction [108] and 

additional decoupled thermal-mechanical analysis [103, 109].  
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To further understand the process, including material flow, stress and strain distribution, 

fully coupled thermal-mechanical models need to be developed. Challenges exist primarily in three 

aspects: First, the substantial degree of material deformation during plunge stage of FSW can 

easily cause element distortion and subsequent program divergence. Second, constitutive models 

for the material mechanical behavior under combined conditions of high temperature, large strain 

and high strain rate are generally inaccurate [110]. Third, the thermal and mechanical conditions 

at the tool-workpiece interface and the workpiece-backing plate interface are difficult to define 

[111, 112].  

One group of the coupled thermal-mechanical models is based on solid mechanics theories 

under Lagrangian formulation, which enables the simulation of the entire FSW process, including 

plunge, dwell and welding stages. Trimble et al. [82] presented a 3D model based on the finite 

element package DEFORM to predict axial, translational welding forces and torque during FSW 

of Al 2024 plates. Johnson-Cook constitutive law was applied and the two aluminum sheets were 

treated as a whole block. Yu et al. [113] applied the Johnson-Cook material failure model into 

ABAQUS/Explicit to dynamically remove the over distorted elements. Mandal et al. [114] adopted 

a pure Lagrangian approach to maintain the mesh integrity and solve for the force and temperature 

during plunge stage of Al 2024 alloy with ABAQUS/Explicit. Schmidt et al. [115] used the 

Arbitrary Lagrangian Eulerian (ALE) remeshing technique in ABAQUS and predicted void 

formation in the weld. Hossfeld et al. [116] used the Couple Eulerian Lagrangian (CEL) method 

in ABAQUS and modeled the workpiece with Eulerian formulation. Johnson-Cook constitutive 

law was also used and the model was validated with measured force and torque from experiments. 

The shape of the plasticized zone and the presence of void correlated well with the experiments. 

Guerdoux et al. [117] implemented adaptive remeshing in the Forge3 FE software and used 
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Hansel–Spittel equation as the constitutive model. The condition at tool and workpiece boundary 

was simulated with the Norton’s friction law instead of the classical Coulomb’s friction law. Their 

calculated welding force and torque compared well with experimental results. The surface flash 

and void formation were also predicted.  

The other branch of the coupled thermal-mechanical modeling of FSW is based on Eulerian 

formulation. Materials are treated as non-Newtonian fluids with high viscosities and flow through 

the fixed mesh. The fluid model can not consider elastic response of the material and is mainly 

applicable for steady state welding stage. However, the problem of excessive element distortion 

can be avoided. Ulysse [118] developed a thermal governing equation and applied a visco-plastic 

constitutive model to determine the equivalent viscosity. Axial and translational welding forces 

were then calculated under different welding conditions. Colegrove et al. [119] modeled material 

flow field and the heat generation associated with a threaded FSW tool in FLUENT. The over 

predicted temperature was believed to be caused by the non-slip assumption at the tool-workpiece 

interface as well as inaccurate material model near the solidus temperature. Nandan and Debroy 

[120-124] derived a series of mechanical and thermal governing equations. The variable of 

slipping coefficient was additionally introduced to describe slipping condition at the tool-

workpiece interface. The value of this parameter was expressed with an empirical exponential 

relationship based on the distance to the tool center, which further determined the friction 

coefficient. Heat generation was given by the sum of frictional heat due to slipping and viscous 

heat due to sticking. A good agreement of the temperature profile was achieved and the material 

flow field, including strain, strain rate and velocity distribution was analyzed. Liechty and Webb 

[112] further studied the slipping phenomenon and applied a shear boundary condition at the 

tool/workpiece interface in FLUENT. The flow field and temperature matched well with 
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experiment and the maximum material velocity was estimated to be only 9% of the tool rotating 

speed. Chen et al.[125, 126] also applied a dynamic shear stress boundary at the tool contact area, 

which revealed an asymmetrical material flow pattern and also significant difference between tool 

and material velocity. Wang et al. [127] modified the material constitutive model by forcing flow 

stress to be zero near solidus temperature. They also assumed a constant ratio between the fully 

sticking area and the entire tool shoulder surface. If the material was outside the prescribed radius, 

fully slipping condition was assigned. A more reasonable estimate of heat generation was reported 

based on this approach.  

In all the above mentioned analysis, FSW process was studied for joining same material. 

Limited amount of open literature discussed the modeling of FSW for dissimilar materials. Fratini 

et al. [128] developed a single block model with DEFORM-3D for joining aluminum alloys 

AA7175-T73511 to AA2024-T4. Their simulation started with one material and an instantaneous 

phase transformation was triggered right before the tool plunged into the material. This 

transformation was then frozen for the rest of computation process and the two materials were 

therefore treated as two phases of one single material. Material flow and residual stress of the weld 

were then computed based on this model. Al-Badour et al. [129] employed the CEL algorithm of 

ABAQUS to simulate FSW of dissimilar Al6061-T6 and Al5083-O aluminum alloys. Control 

volume approach was applied for analyzing the workpiece region while the tool was modeled as a 

rigid Lagrangian body. Tool and workpiece interaction was described with Coulomb’s friction 

model and the frictional coefficient was set at 0.8. The model was validated by comparing 

predicted temperature and material distribution with experimental findings. A featured pin profile 

was shown to enhance material mixing and reduce volumetric defects based on the analysis from 

model. Li et al. [130] described the concept of Functionally Graded Material (FGM) and 
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introduced the parameter of distribution coefficient to model the material field in the weld nugget. 

The rule of mixture was then adopted for averaging material properties. Simulation of the steady 

state welding process was conducted in ABAQUS with user defined subroutine DFLUX for 

modeling the moving heat source. The model was validated through the comparison of residual 

stress. Idagawa et al. [131] developed a computational fluid dynamics model based on COMSOL 

for simulating the temperature distribution and thermal history during stable welding stage of Al 

6061 and AISI SAE 1020 steel. Their heat generation model was based on studies from Nandan 

and Debroy [120-124]. However, no material distribution was given. 

Few of these literatures discussed the underlying physical principles of FSW of dissimilar 

materials. Considering the different nature of plunge and welding stages, they will be modeled 

separately in this chapter. Analytical formulations for each stage are developed first, which are 

then implemented into corresponding numerical analysis software. Axial welding force, 

temperature and material distribution are compared with experimental results for model validation.  

 

4.2 Plunge stage study 

4.2.1 Analytical formulations 

Figure 4-1 shows a schematic illustration of the plunge stage during friction stir welding 

process. A field variable   is proposed for the identification of the two materials at different 

regions. The value of  can be assigned to workpiece as a predefined field before the calculation. 

In this study,   is set to 1 for aluminum and 0 for steel zone. Based on this, one set of governing 

equations can be applied to both the Al 6061 and TRIP steel bulk regions. As for the interface, 

local instant formulations of binary phase flow based on the works of Ishii [132, 133] are adopted 

for developing conservation equations. The whole model is finally completed with thermal and 

mechanical boundary conditions as well as the workpiece initial states. A general flow chart of the 
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formulation and computation of the model is shown in Figure 4-2. The feature of steel fragments 

embedded in the weld nugget is not considered in modeling plunge stage. 

 

 
Figure 4-1 Schematic illustration of the material field assignment for plunge stage modeling 
 

 
Figure 4-2 General modelling flow chart for plunge stage of FSW of dissimilar materials 
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4.2.1.1 Governing equations for the bulk material region 

The governing equations for bulk material regions are developed based on the works of 

Ulysse [118] and Debroy et al. [121]. However, there are two major differences between their 

formulations and the model developed here. Firstly, the models of both Ulysse and Debroy focused 

on the steady state welding stage, which means all the variables remain constant with regard to 

time. On the other hand, the transient nature of plunge stage requires the preservation of time 

dependent terms in the mathematical equations. Accordingly, the conservation equations of mass, 

momentum and energy are given by: 

Mass: ( )=0v
t

 


 
 

(4-1)
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Energy: 
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In the mass and momentum equations,  is the material density, v


 is the velocity field, T is 

the temperature field, p is the hydrostatic pressure and 


 is the deviatoric stress tensor. The 

relationship between the hydrostatic pressure, deviatoric stress tensor and the total stress tensor 


 

is given by: 

 pI  
 

 (4-4)

 
1

3 iip    (4-5)

In this study, the Von-Mises equivalent strain rate is employed and the strain rate tensor is 

determined from the velocity field: 
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Regarding material constitutive law, the Johnson-Cook model is applied, which is widely 

used in modeling FSW [110]. The equivalent stress is determined from equivalent strain, strain 

rate and temperature by:  

 0
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where A, B, C, n, m are material parameters and the values can be found from literature. 

In the energy conservation equation, q


 is the heat flux and can be determined from the 

temperature gradient according to the Fourier equation: 

  Tq k T  


 (4-9)

where k  is the material thermal conductivity and its value depends on the temperature. 

Since there is no external heat input such as resistance or laser heating, the body source term 

of bq  in the energy equation is set to be zero:  

 0bq   (4-10)

The second difference between the formulations of Ulysse [118], Debroy et al. [121] and the 

model developed in this study is related to the involved two materials in the weld nugget. In order 

to account for that, the field variable   is introduced. Generalized material properties are then 

defined and listed in Table 4-1. With this method, one set of governing equations and constitutive 

material models is applicable for both materials despite their different physical and mechanical 

properties. It should be noted that the purpose of field variable   is to mathematically identify the 
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two materials at different regions, which is different from the purpose of volume fraction.   can 

only take values of 0 or 1 and the generalized material properties correspond to either steel or 

aluminum. No averaging is considered in the formulations for plunge stage. 

 
Table 4-1 Generalized material properties defined with field variable   

 

4.2.1.2 Governing equations for the Al-Fe interface 

The conservation equations developed above can hardly be applied to the dissimilar material 

interface due to the spatial discontinuities. Binary phase flow theories based on the works of Ishii 

[132, 133] are therefore considered in this study. The interfacial conservation equation for a 

general quantity  is developed first in the integral form and the corresponding control volume iV  

is shown in Figure 4-3.  
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Figure 4-3 Control volume of the Al-Fe interface for conservation equation derivations 

 

The control volume iV  consists of two surfaces kA  in each phase and they are connected by 

a wall surface i , which is perpendicular to kA  and has a thickness of  . In the following 

derivations, subscript i  represents quantities related to interface and subscript k  corresponds to 

quantities in each phase. The intersection between the wall surface i  and the interface of the two 

materials form a closed curve iC . kn


 is the outward unit normal vector of surface kA  and n


 

corresponds to surface i . The conservation equation for a general quantity   can therefore be 

derived for this control volume: 
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(4-11)

where the left hand side represents the accumulation of the quantity   in the control volume. The 

first term on the right hand side of the equation represents the fluxes of  from the surface of each 

phase. The second term corresponds to the flux from the wall surfaces and the last term describes 

generation of   from the body source. Since the interface of the two phases is not necessarily 

stationary during the process, moving velocity of the interface has been included in the above 

equation (4-11) and is denoted as iv


. The flux due to convection is then determined by the relative 

i
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velocity of each phase with regard to the interface. In order to transform the conservation equation 

from the integral form into the differential form, its variables are first integrated and averaged in 

the thickness direction, which can reduce the volume integration into the surface integration, as 

shown in the following: 

 
2

1

[( ) ]
i k i i

a s k k i k k k a a sA A C A
k

d
dA n v v j dA n j dC dV

dt
     



              
 (4-12)

where a s  is the average value of   in the thickness direction, as expressed by:  

 
1

2
a s d




   


   (4-13)

Next, the surface transport theorem [134] is applied on the left side term of the equation to 

move the differential operator into the integrand, as shown in the following: 

 { ( ) }
i i

s
a s a s a s s iA A

d d
dA v dA

dt dt
          

 (4-14)

where sd

dt
 is the convective derivative with the surface velocity iv


, s  is the surface divergence 

operator. The term on the left hand side is then in consistent form with almost every term on the 

right. Furthermore, the line integration term on the right hand side can also be changed into the 

area integration with the application of surface Green’s theorem and associated coordinate 

transformations [135], as shown in the following: 

 ln ,A (t )
i i

n l
a aC A

n j dC g j dA
 

    
 (4-15)

where lnA , g and tn
 are relevant metric tensors due to coordinate transformation from Cartesian 

into a general coordinate system and then into the coordinate system of curved surface for the 

interface. ,(...)  is the corresponding differentiation operation in the curved surface coordinate 

system [136]. 
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After this transformation, every term in equation (4-12) is in surface integral form. The 

differential form of the governing equation can therefore finally be obtained by removing the 

integration operator: 
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(4-16)

Based on this general expression, the corresponding conservation equations can be derived 

by replacing   with mass, momentum and energy. Considering the experimental results in chapter 

2 that the Al-Fe interface at weld cross section is a relative simple geometry, the metric tensors for 

coordinate transformation can be set to identity. Since the thickness of the interface is relatively 

small and generally in the order of microns [137], its associated mass and momentum are assumed 

to be negligible. Besides, heat generation due to the formation of intermetallics is also not 

considered for its relatively small magnitude compared with the major thermal effect related to 

material plastic deformation and friction. Eventually, the three conservation equations can be 

derived as: 

Mass: 
2 2

1 1

( ) 0k k k k i
k k

m n v v
 

    
  

 (4-17)

Momentum: 
2

1

{ ( ) } 0k k k i k k k
k

n v v v n  


            
 (4-18)

Energy: 
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 (4-19)

In the momentum equation, k
 is the stress tensor in each phase at the interface boundary. 

  is the interfacial tension between the two materials, which is a function of temperature. 
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According to Girifalco and Good [138], the interfacial tension between two materials can be 

approximated by the surface tension of each material based on the following equation: 

 12 1 2 1 2(T) (T) (T) 2 (T) (T)         (4-20)

where   is a parameter depending on different binary systems and varies around the regular value 

of 1 [138]. The surface tension for aluminum and steel at different temperatures can be found from 

literature and listed in Table 4-2. 

 
Table 4-2 Surface tension for aluminum and steel at different temperatures 

Surface tension (Unit: N/m) Value References 

Aluminum  0.737 [139] 

Steel 1.84 - 0.0004(T - 1823) [140] 

 
In the energy conservation equation, vkc , kT , kq


 are the heat capacity, temperature and heat 

flux of each phase at the interface boundary, which can be calculated from the previous section for 

the bulk material region. ae is the interfacial energy, which can similarly be determined by the 

surface energy of each phase through the following equation [138]: 

 12 1 2 1 2(T) (T) (T) 2 (T) (T)e e e e e     (4-21)

 

4.2.1.3 Boundary conditions 

Boundary conditions are considered at three contact surfaces, i.e., workpiece/tool, 

workpiece/backing plate and the interface of the two materials. The friction between workpiece 

and tool will provide a heat flux as a thermal boundary condition and can be calculated based on 

the following equation: 
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 bf h T fdq f v pdA  (4-22)

where Tv  is the magnitude of the tool velocity determined from the combined motion of plunge 

and rotation. p  is the pressure component of the total stress tensor at the corresponding contact 

positions, which can be determined based on equation (4-4). f  is the frictional coefficient and is 

set at a constant value of 0.3. This is typical of what has been published in the literature [111, 141]. 

Besides, it also results in the best match between numerical calculated force and experimental 

measurement. The generated frictional heat will be partitioned between tool and workpiece and 

the partition coefficient hf  can be determined by [121]: 
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 (4-23)

where   is the field variable for identification of specific material at different positions as 

described in the previous section. Subscript T stands for material properties for the FSW tool. 

The thermal boundary condition at the workpiece bottom surface is basically the heat transfer 

into the backing plate. The heat conducted from workpiece into the backing plate is equal to the z-

component of the heat flux in the workpiece at its bottom surface. This amount of heat will increase 

the internal energy of the backing plate, which can be approximated by multiplying its heat 

capacity with the temperature change. The relationships are given by the following equation, where 

subscript b represents properties of the backing plate: 
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 (4-24)

Regarding the interface of the two materials, temperature equilibrium and non-slip 

conditions are assumed [133], as expressed by:  

 1 2T T  (4-25)

 1 2t tv v
 

 (4-26)

Finally, the thermal boundary condition at the remaining surface of the workpiece is 

considered from the aspect of heat transfer into the environment, which is given by the following 

equation. The field variable   is also included to account for the different transfer coefficients in 

aluminum and steel regions and aT  is the ambient temperature: 

   (1 )a Al Fe aBoundary
q k T h h T T        (4-27)

 

4.2.2 Numerical implementation in ABAQUS 

An overview of the finite element model is shown in Figure 4-4, which is developed based 

on the ABAQUS/Explicit program. According to the temperature measurement results from 

preliminary experiments, temperature increase on the top surface of workpiece is negligible at 

points located 25mm away from the weldline. To reduce the computational scale, only the central 

part of the workpiece with the total dimensions of 50mm x 50mm x 1.4mm is modeled in the FEA 

analysis. The mesh is graded such that the element distribution is refined in the plunge area, 

especially at the Al-Fe interface, the region near the periphery of the pin and the bottom region of 

the workpiece. Besides, since the tool is shifted to aluminum, the mesh in the aluminum side is 

also generally finer than that in steel side. A total of 133518 elements are meshed on the workpiece 
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and the element type is C3D8RT. Average size of the elements in the center of the workpiece near 

the bottom surface is around 0.05x0.05x0.05 mm. Parameters of the Johnson-Cook constitutive 

model for Al 6061 and TRIP steel are listed in Table 4-3 and other physical properties are listed 

in Table 4-4. Dirichlet boundary conditions are applied at the lateral surfaces of the workpiece, 

where all the displacement degrees of freedom are fixed. These fixed boundaries are approximately 

located at the same clamping positions of the workpiece during experiments. Initial temperature 

of the workpiece is set at room temperature.  

The tool is modeled as rigid body with the thermal degree of freedom. Geometry of the tool 

is the same as the tool used during the FSW experiments, as described in Chapter 3. Plunge speed 

of 10 mm/min is assigned on the tool and the plunge depth is set at 1.3mm, both of which are the 

same as the experimental configurations described in Chapter 3. Two tool offset conditions, 

1.63mm and 1.03mm, are numerically investigated under the same tool rotational speed of 

1200rpm.  

 
Figure 4-4 Overview of the mesh on the workpiece 
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Table 4-3 Material parameters in Johnson-Cook models for Al 6061 and TRIP 780 steel 
Material A B n C m Tm (K) 
Al 6061 [142]  245 121 0.23 0.002 1.34 855 
TRIP 780 [143] 780 1429 0.79 0.014 0.76 1673 
 

Table 4-4 Physical properties of Al 6061 and TRIP 780 steel 
Material Density 

(kg/m3) 
Thermal 
conductivity 
(W/m-K) 

Specific heat 
(J/Kg-K) 

Thermal 
expansion 
(µm/K) 

Al 6061 [84] 2667 210 1100 28 
TRIP 780 [120, 124] 7860 60 500 10 
 

4.2.3 Results and discussion 

Different values of friction coefficients at tool-workpiece interface are investigated in the 

initial numerical analysis. In the condition with tool offset of 1.03mm, the friction coefficient of 

0.3 yields the best agreement between the experimental measurements and numerical calculations 

on the axial plunge force, as shown in Figure 4-5. The force increases in the beginning, reaches a 

short plateau and then increases again till the final plunge depth. The force reduces a little after the 

final peak, which is related to the dwell stage where the tool is held rotating at the same position 

without further moving into the workpiece. In the experimental measurements, the force finally 

drops down, which is due to the retraction of the tool and this stage is not included in the numerical 

analysis. However, discrepancies between the measured and calculated force curves exist in two 

regions. First is in the beginning of the plunge action, where the predicted force increases much 

faster than experimental observations. One possible reason is related to the transition from elastic 

deformation to plastic deformation. During experiments, the stiffness of the workpiece is actually 

the equivalent stiffness of the entire experimental system, including the machine itself and the 

fixtures below the workpiece. On the other hand, during simulation the elastic deformation can 
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only come from the workpiece material, which induces plastic deformation to occur at an earlier 

stage and increases the axial force faster. 

Second, in the final stage, the numerical result over-estimates the axial force compared with 

experimental results. This deviation contains both numerical and experimental sources. From the 

numerical perspective, the material mechanical behaviors approximated by Johnson-Cook 

constitutive model predicts a much higher flow stress particularly at large plastic strains, where 

the actual material might already fail and the flow stress reduces significantly. From the 

experimental perspective, under the severe shear action of the tool, certain amount of materials 

was peeled off and formed chips around the tool. Falling out of these material chips from the 

plunge zone was observed during experiments, which reduced the axial force to plunge the tool 

further into the workpiece.  

 
Figure 4-5 Comparison of axial plunge force between experimental and numerical results with tool 

offset of 1.03mm 
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Figure 4-6 compares the axial plunge force between the experimental and numerical results 

in a larger tool offset condition of 1.63mm. Overall, the simulated force curve also agrees well 

with experimental measurements, except in the beginning and final parts, which is similar to the 

smaller tool offset condition. The overestimated axial force was also reported by Mandal et al. in 

their studies [114]. Comparing these two conditions of different tool offsets, the numerical analysis 

reveals a higher axial force under smaller the tool offset condition, where the tool is less shifted to 

aluminum side and more amount of steel is deformed in the weld zone. This result is also consistent 

with the experimental observations. 

 
Figure 4-6 Comparison of axial plunge force between experimental and numerical results with tool 

offset of 1.63mm 
 

Figure 4-7 shows the material distribution at different plunge depths with tool offset of 

1.03mm. The cross section is placed in the center of the FSW tool and perpendicular to the abutting 

edge of the two materials. As the tool moves downward, steel material below the end surface of 

the pin is squeezed into aluminum side. In the meantime, certain amount of aluminum is stirred 
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over from the rotating action of the pin and pushed towards steel in the periphery of the pin. At the 

end of the plunge stage, a fraction of steel is embedded in the aluminum side in the bottom region 

of the workpiece, which shows resemblance to the macrostructure of the cross sections from a 

continuous weld, as shown in Chapter 3. 

 

 
Figure 4-7 Material distribution at different plunge depths under tool offset of 1.03mm 

 

Figure 4-8 shows the material distribution at different planes below the workpiece top 

surface. The z value is zero at weld top surface and more negative as the plane approaches weld 

bottom surface. In front of the pin, aluminum is stirred towards steel due to the rotation motion. 

At the back, steel is extruded into aluminum matrix.  
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Figure 4-8 Material distribution at different planes below workpiece top surface (Tool offset: 

1.03mm) 
 

In the condition of a larger tool offset condition of 1.63mm, material distribution at the cross 

section perpendicular to weld top surface is shown in Figure 4-9. Similarly, as the tool moves 

downward, certain amount of aluminum is stirred over and pushed into steel side in the periphery 

of the pin. This results in a larger inclination angle of Al-Fe interface compared with the cone 

angle of the pin, which is similar to the experimental observations of weld cross section. On the 

other hand, since the fraction of steel in the stirring zone is relatively small, steel is only slightly 

squeezed towards the aluminum side near the bottom surface and cannot flow into the aluminum 

region. The corresponding material distribution at different planes below weld top surface is shown 

in Figure 4-10. 
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Figure 4-9 Material distribution at different plunge depths under tool offset of 1.63mm 

 

 
Figure 4-10 Material distribution at different planes below workpiece top surface (Tool offset: 

1.03mm) 
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4.3 Welding stage study 

4.3.1 Analytical formulations  

4.3.1.1 Assumptions 

The steady state welding stage is modeled in the Eulerian formulation, where materials flow 

into the computational domain with the prescribed welding speed while the tool stays at the same 

location with only the rotational motion. Solid state metals are treated as non-Newtonian fluids 

with high viscosities. Accordingly the flow field belongs to laminar regime and the viscosity is a 

function of temperature and strain rate. Aluminum and steel are treated as different phases. Based 

on the topology of phase distribution, multiple phase flow can be categorized into two general 

groups: separated flow and dispersed flow. In the former one, different phases are continuous and 

separated by a clearly-defined interface. The latter group corresponds to flow of discrete phases, 

such as bubbles, droplets and particles, in a continuous primary phase. According to experimental 

observations of weld cross section macrostructure in Chapter 3, both aluminum and steel are 

basically continuous. Only a small amount of steel or intermetallic compound particles are 

dispersed in the aluminum matrix. However, the quantity and sizes of these particles are small, 

which are neglected in the current model for simplification. The dissimilar FSW process is 

therefore modeled as a separated multiple phase flow problem.  

Regarding the interfacial tension between the two phases, its significance can be evaluated 

based on the value of the Capillary number Ca , which is defined by: 

 
st

U
Ca




  (4-28)

where   is the viscosity, st  is the surface tension and U is the free stream velocity, which can be 

approximated as the welding speed. For steel and aluminum near their melting temperature, st  is 
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generally in the order of 1 N/m [144-146]. The equivalent viscosity for aluminum and steel near 

the weld zone of FSW, which will be discussed in the following session, can be calculated to be 

in the order of 106 Pa·s. Accordingly, the Capillary number is much larger than 1, which indicates 

that the effect of interfacial tension is insignificant compared with that of the high viscous flow 

stress of materials [147]. The interfacial tension is therefore neglected in the welding stage model. 

Regarding intermetallic compound formed at Al-Fe interface, the thickness of this layer is only 

around 1 μm according to the experimental results in Chapter 3. Therefore, generation and 

corresponding influence of intermetallic compounds are also not considered to reduce 

computational complexity and improve numerical convergence. 

 

4.3.1.2 Governing equations 

The most critical parameter for mechanical properties of fluid is the viscosity. According to 

its definition, viscosity is given by the shear stress divided by the shear strain rate: 

 






 (4-29)

On the other hand, material constitutive laws are generally obtained from uniaxial tensile 

tests and the equation is given by effective normal stress and strain. In order to establish the 

relationship between shear stress and strain with the effective normal stress and strain, a pure shear 

stress state is considered. The corresponding principal stresses and principal strains are: 

 1  , 2   , 3 0   (4-30)

 1 2

  , 2 2

    , 3 0   (4-31)

Accordingly, the von Mises effective normal stress can be determined based on the following 

equation: 
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      2 2 2
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2 1

9 3
e                 (4-33)

Therefore, the equivalent viscosity can then be given by the effective normal stress and 

effective normal strain rate with the following relationship: 
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e

e
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

 (4-34)

The same relationship was also reported in [118, 121]. During friction stir welding, materials 

are subject to combined conditions of severe plastic deformation, high strain rate and temperature. 

The material constitutive model developed by Sheppard and Wright [148], which takes into 

consideration the dynamic recovery and recrystallization process, is employed in this study: 

 
    1/21/n 2/n

1
ln 1e

Z Z

A A
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             
       

 (4-35)

where Z is the Zener Hollomon Parameter, which depends on temperature and strain rate as the 

following equation: 

 exp def
e

Q
Z

RT
  

  
 

  (4-36)

As described in the assumptions, the dissimilar FSW process belongs to separated multiple 

phase flow category and the two materials are not interpenetrating to each other. One of the 

prevalent methods for solving this type of problems is the volume of fluid (VOF). In this method, 

another spatially continuous variable k  for volume fraction of phase k is introduced for 

describing phase distribution. Velocity v


, temperature T  and pressure p  fields are shared among 

different phases. Material properties are averaged based on the volume fraction k  in each unit 
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cell. Corresponding conservation equations of mass, momentum and energy can therefore be 

derived as [147]: 

Mass:  
2

1

( )=k k jk kj
k

v m m 


    
 

 
(4-37)

Momentum: ( )v v p   
    

 (4-38)

Energy:   = - ( )k k k bc Tv q pI v q                 
     

 (4-39)

where 


 is the vector differential operator and is given by: 

 = i j k
x y z

  
  

    
 (4-40)

The mass conservation equation is basically for determining the volume fraction of different 

phases in each Eulerian element, which accordingly tracks the position of Al-Fe interface. Since 

there are only two phases involved, only the volume fraction of either aluminum or steel needs to 

be computed. The remaining one can then be determined based on the fact that the sum needs to 

be unity. 

In the momentum governing equation,   is the material density averaged by volume fraction, 

as given by: 

 
2

1

= k k
k

  

  (4-41)




 is the shear stress tensor, which can be calculated by the velocity gradient and averaged 

viscosity: 

   Tv v   
    

 (4-42)
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where viscosity of each phase can be determined based on equation (4-34) and symbol   

represents the tensor product operation.  

In the energy equation, heat flux q


 is given by temperature gradient and average thermal 

conductivity as the following: 

 q K T  


, where 
2

1

= k k
k

K K

  (4-44)

Regarding the body heat source, since there are no external energy supplies, such as 

resistance or laser heating, bq  is set to be zero. The viscous heating due to plastic deformation is 

already included in the energy equation (4-39).   

 

4.3.1.3 Boundary conditions 

To complete the model, appropriate boundary conditions need to be established. The most 

critical one is for the coupled thermal-mechanical interface between workpiece and tool. From 

mechanical aspect, FSW tool exerts a rotation motion onto the material and a partial 

sliding/sticking condition occurred at the contact area. To describe this interaction, there are 

generally two approaches. In the first approach, a constant rotating velocity is imposed onto the 

material, which can be either the tool rotating speed, i.e., non-slip condition, or a constant ratio of 

the tool rotating speed [118]. In the second approach, a frictional shear stress is applied in the same 

direction as the tangential velocity of the tool. Material velocity is then determined by the relative 

magnitude of applied frictional stress and material viscous flow stress [112]. In this study, first a 

constant rotating velocity boundary is investigated. Based on literature [112, 118], a non-slip 

condition would predict a much higher temperature. Considering the strong deformation resistance 

of steel, a high slipping rate between material and the tool is anticipated. Therefore, the material 
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velocity is tentatively assumed to be only 10% of that of the tool in the initial investigation of the 

constant rotating velocity boundary condition. After that, a shear stress boundary condition is 

applied. The empirical friction model developed by Maekawa et al. [149, 150] for describing tool-

chip interfacial condition during machining process is employed, which is given by: 

 

1

1 exp

n n

f
b e

e

p
m

m


 



         
    

 (4-45)

where e  is the equivalent shear flow stress of the stirred material and can be calculated according 

to the equivalent material flow stress from equation (4-32). p  is the local pressure. f  is the 

frictional coefficient. m  is the friction factor and n  is the sensitivity factor, both of which are 

material related constants. 

 

 
Figure 4-11 Relationship between frictional shear stress and pressure for TRIP steel 

 

Figure 4-11 shows the relationship between frictional shear stress and pressure according to 

equation (4-45) for steel. If the pressure is relatively low compared with the material flow stress, 

the friction law basically follows the Coulomb’s model and the frictional stress is linearly 
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proportional to the pressure. This represents the slipping condition. If the pressure is relatively 

high compared with the material flow stress, the frictional stress then approaches the material flow 

stress with a correction factor, which represents the sticking condition. This friction model 

therefore can capture both slipping and sticking conditions. The dominant condition depends on 

the relative magnitude of material flow stress and the applied pressure. 

In the thermal aspect, the amount of heat input at the tool contacting area is a summation of 

frictional heat from aluminum and steel based on their relative volume fractions. The heat can be 

calculated as: 

  Al Al Fe Fe
tool h Al b h Fe b toolq f f v v     

 
 (4-46)

where v


 is the calculated material velocity and toolv


 is the assigned tool velocity based on the 

rotating speed and radius. Al
hf  and Fe

hf  are the heat partition coefficients between tool and 

workpiece for aluminum and steel respectively, which can be determined from the followings 

[121]: 
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where subscript T represents physical properties of the FSW tool. 

The thermal boundary condition between backing plate and workpiece is simplified as 

equation (4-49). The amount of heat loss through conduction is approximated as the product of 

heat transfer coefficient and the temperature difference between the workpiece bottom surface and 

the backing plate: 
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   b Al Al Fe Fe bq h h T T     (4-49)

Heat dissipation from the top surface of the workpiece to the environment is also expressed 

with the same equation as (4-49), where the heat transfer coefficients take a smaller value. Side 

surfaces of the workpiece are set at constant room temperature considering the large heat 

dissipation from workpiece into the clamping fixtures during experiments.  

 

4.3.2 Numerical implementations  

The geometry of the FSW tool is represented as a hole in the computation domain of the 

workpiece, as shown in Figure 4-12. The 0.1mm plunge depth of tool shoulder is also included 

and tool geometry is the same as the experimental configuration in Chapter 3. Structured mesh is 

generated from the ICEM software to improve calculation accuracy and efficiency. Considering 

the complex interactions between tool and workpiece as well as interfacial conditions between the 

two materials, the mesh is greatly refined adjacent to the tool region and original interface of the 

two materials, as shown in Figure 4-13. The entire workpiece, which has a length of 110mm in the 

welding direction, width of 100mm and thickness of 1.4mm, contains a total number of 654480 

elements. 

 
Figure 4-12 Workpiece computational domain where tool geometry and the shoulder plunge depth 

are carved out 
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Related equations in the analytical analysis in the previous session are written in user-defined 

functions (UDF) and implemented into the FLUENT software. The parameter of tool offset 

described in the experimental configuration in Chapter 3, is incorporated into the model through 

assigning distribution of the materials as they flow into the computation domain. Corresponding 

parameters in the material constitutive relationships of Al 6061 and TRIP steel are listed in Table 

4-5. Besides, values of material constants for the friction model are given in Table 4-6. 

 

 
Figure 4-13 Structured mesh on the workpiece 

 

Three welding conditions are investigated in the numerical analysis. The baseline condition 

consists of rotating speed of 1800 rpm, welding speed of 60mm/min and tool offset of 1.63mm. In 

the second case, the effect of tool position is studied and the tool offset is reduced to 1.03mm such 

that the tool is less shifted to aluminum. In the third condition, the welding speed increases to 

120mm/min while other parameters remain the same as the base scenario. Numerical convergence 

is assumed when material and temperature fields cease to change with further iterations. 

 
Table 4-5 Material constants of the constitutive model in equations (4-35) and (4-36) 

Material  defQ  A n   

Al 6061 [151] 196.835 kJ/mol 6.26x1015 5.06 5.3x10-3 
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TRIP steel [152] 387.840 kJ/mol 1.066 x1014 4.40 8.7x10-3 
 

Table 4-6 Material constants of the friction model in equation (4-45) 
Material 

f  m n 

Al 6061 [112] 0.57 0.95 1.7 
TRIP steel [153] 1.60 0.90 1 

 
 

4.3.3 Results and discussion  

4.3.3.1 Velocity boundary at tool-workpiece interface 

Material distribution on the top surface of workpiece calculated with velocity boundary 

condition is shown in Figure 4-14. A swirling phenomenon of the two materials exists in the tool 

region. This simulation result is inevitable based on the assumption that steel and aluminum have 

the same rotating velocity at the tool-workpiece boundary. On the contrary, experimental results 

of material distribution in Chapter 3 show that steel is hardly stirred in the weld zone. The 

estimated temperature distribution is shown in Figure 4-15. Near the tool center, the temperature 

is around 1500 ºC, which approaches the melting temperature of steel and is much higher than the 

experimental measurement results in Chapter 3. This can again be explained from the assumed 

velocity boundary condition that steel is rotating at a constant speed. Steel has a high viscous flow 

stress, which generates a large amount of plastic deformation heat and results in an overestimated 

temperature profile. Based on this initial investigation, the velocity boundary condition shows to 

be inappropriate for modeling FSW of dissimilar materials, particularly when analysis of material 

distribution is desired. In the following studies, shear stress condition is applied at the tool-

workpiece interface. 
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Figure 4-14 Material distribution on workpiece top surface calculated from velocity boundary 

condition (steel is colored in blue) 
 

 
Figure 4-15 Temperature distribution on workpiece top surface calculated from velocity boundary 

condition (Unit: K) 
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4.3.3.2 Frictional shear stress boundary at tool-workpiece interface 

4.3.3.2.1 Welding condition I: rotating speed 1800rpm, welding speed 60mm/min and tool 

offset of 1.63mm 

In the welding condition with rotating speed of 1800rpm, welding speed of 60mm/min and 

tool offset of 1.63mm, the material distribution calculated from frictional shear stress boundary 

based on equation (4-45) is shown in Figure 4-16. On the weld cross section perpendicular to the 

weldline, the material field shows a good agreement with experimental macrostructure 

observations, as provided in Figure 3-16. A tilted Al-Fe interface exists in the advancing side. In 

addition, a chunk of steel strip is embedded in the bulk aluminum matrix in the retreating side.  

 

  
Figure 4-16 Material distribution on (a) Workpiece top surface; (b) A-A section perpendicular to 

weldline (1800rpm, 60mm/min and tool offset 1.63mm, steel is colored in blue) 
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In order to understand the mechanisms for the formation of this feature, the calculated 

material flow fields at different depths below the workpiece top surface are shown in Figure 4-17. 

The white circle indicates the diameter of the shoulder surface of the FSW tool. As steel materials 

enter into the deformation region, they split into two branches. In the advancing side away from 

the center, the steel simply extrudes around the pin. For the steel fraction adjacent to aluminum, it 

is stirred over and rotates with aluminum. However, as this branch of steel flows past the tool, the 

rotating motion can hardly be maintained and this branch of steel is not capable of merging back 

with the original branch. This results in the embedded steel structure when viewed at cross sections 

perpendicular to weldline. Besides, simulation results show that the volume fraction of the rotating 

steel branch is larger near the top surface and smaller near the bottom, which leads to an inverted 

triangular morphology of the embedded steel from cross sectional view. In this welding condition 

of a relatively large tool offset, the pin is basically surrounded by a thin layer of aluminum. Near 

workpiece bottom, the steel material can be pushed to directly touch the pin front surface in 

advancing side. The rectangular distribution of the arrows near the bottom surface is due to the 

mesh structure since the arrows are drawn at positions of each element. The flow field, which is 

represented by the directions of the arrows, still shows the curved features.  
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Figure 4-17 Velocity field at different depths colored by material distribution (1800rpm, 60mm/min 

and tool offset 1.63mm) 
 

Figure 4-18 shows magnitude of material velocity distribution at the tool contact area. In the 

advancing side and bottom surface of the pin, materials basically flow at the welding speed instead 

of rotating with the tool. Furthermore, even in the rotating zone, the maximum velocity is only 

around 0.09m/s. On the other hand, under rotating speed of 1800rpm, tangential velocity on the 

tool varies linearly from 0 to 1.2m/s in the radial direction. This significantly smaller material 

velocity from numerical calculation indicates that slipping condition prevails the entire tool contact 

region, which is also consistent with numerical analysis results from Liechty and Webb [112]. 
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Figure 4-18 Material velocity field (Unit: m/s) at the tool contact region (1800rpm, 60mm/min and 

tool offset 1.63mm) 
 

Temperature distributions on the workpiece top and bottom surfaces are shown in Figure 

4-19. The temperature value calculated from the shear stress boundary is much more reasonable 

compared with that from the velocity boundary. A larger heat-affected-zone exists in aluminum 

side as a consequence of its higher thermal conductivity. In the center of pin bottom surface, the 

temperature is relatively low. This can be attributed to the diminishing velocity of both material 

and tool in this center area, which leads to a lower heat generation rate. Besides, the thickness of 

the workpiece is the smallest beneath pin bottom surface, which is only 0.1mm. This makes heat 

transfer at the backside of workpiece a more influential factor and further decreases the 

temperature.  
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Figure 4-19 Temperature distribution (Unit: K): (a) Top surface; (b) Bottom surface (1800rpm, 

60mm/min and tool offset 1.63mm) 
 

Since a steady state welding stage is assumed, the thermal history at one point can be 

obtained by extracting the temperature profile along the line that is parallel to the welding direction 

and passes that point. Figure 4-20 (a) compares the calculated thermal history at 1mm position in 

aluminum side with the thermocouple measured results from Chapter 3, where four thermocouples 

are embedded in the backing plate and placed symmetrically at distances of 1 mm and 5 mm to the 

original interface of the two materials. Two peaks occur in the numerical calculated thermal history, 
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which is due to the localized low temperature region beneath the pin bottom surface as shown in 

Figure 4-19 (b). Similarly, experimental results also present the two-peak feature in the thermal 

history curve, which shows agreement with numerical analysis. On the other hand, the peak 

temperature value is slightly overestimated. The calculated thermal history at the 5mm position in 

steel side agrees well with the experimental measurement, as shown in Figure 4-20 (b). Since this 

location is away from pin center and avoids the local low temperature region, the temperature 

increases as the tool approaches and then decreases after the tool passes by, which is generally 

observed in most thermal history measurements. In addition, due to the relatively small thermal 

conductivity of steel, the peak temperature is much lower at this relatively distant location.  

  

 
Figure 4-20 Validation of thermal history on the bottom surface: (a) 1mm position in aluminum side; 

(b) 5mm position in steel side  
 

Figure 4-21 compares the maximum temperature recorded by the thermocouples during the 

entire welding process with the calculated temperature at the corresponding four locations. Overall 

the predicted temperature distribution is qualitatively in agreement with the experimental 

measurements. Regarding the two spots located symmetrically 1mm to the abutting edge, the 

maximum temperature in aluminum region is slightly larger than that in steel region. This can be 
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attributed to the offset of the tool into aluminum, which results in the heat source located closer to 

the 1mm position in aluminum side and accordingly a higher temperature. Regarding the two 

measurement spots located 5mm to the abutting edge, the higher temperature in aluminum region 

is primarily due to its larger thermal conductivity compared with steel. On the other hand, the 

temperature values obtained from numerical analysis are larger than experimental findings. In the 

numerical perspective, this deviation can be generated from the approximated material properties 

and simplified heat transfer boundary conditions. In the experimental perspective, the 

thermocouples are embedded in the backing plate, which leads to heat dissipation and the measured 

temperature is likely to be lower than the actual temperature on the workpiece bottom surface.  

 

 
Figure 4-21 Validation of temperature distribution on bottom surface  

 

4.3.3.2.2 Welding condition II: rotating speed 1800rpm, welding speed 60mm/min and tool 

offset of 1.03mm 

In order to further verify the developed model, a smaller tool offset condition was studied. 

The calculated material distribution is shown in Figure 4-22. Since the FSW tool is less shifted 
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into aluminum side in the smaller tool offset condition, larger amount of steel is involved in the 

weld nugget from the view of the workpiece top surface. Similar to the condition of larger tool 

offset, an embedded steel strip in aluminum side exists in weld cross sections. The volume of this 

embedded steel strip is relatively larger than the larger tool offset condition. Material flow fields 

at different depths below the workpiece top surface are shown in Figure 4-23. Similarly, the inflow 

steel is separated into two branches as it enters into the stirring zone. The rotating branch cannot 

finish the full circle movement to merge back with the original inflow of the steel. This branch is 

therefore embedded in the aluminum side after the tool passes by. The width of this steel branch 

is larger on higher planes closer to top surface, which results in an inverted triangle geometry in 

the cross sectional view. In this smaller tool offset scenario, the pin is basically surrounded by 

steel. The rotating branch of steel can move towards original inflow branch to a larger distance, 

which allows aluminum to touch only a small portion of the pin rear boundary.  

 
Figure 4-22 Material distribution in the condition of a smaller tool offset 1.03mm: (a) Workpiece top 

surface; (b) A-A section perpendicular to weldline 
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The magnitude of material velocity distribution at tool contact region under this smaller tool 

offset condition is shown in Figure 4-24. Similarly to the larger tool offset condition, materials in 

advancing side and at pin bottom surface are basically flowing past the tool at the welding speed. 

In retreating side, steel and aluminum are rotating at a much smaller speed compared with that of 

the tool. On the other hand, the overall material velocity is slightly smaller compared with that in 

the larger tool offset condition, which can be attributed to the involvement of larger amount of 

steel. 

 
Figure 4-23 Velocity field at different depths colored by material distribution in the condition of a 

smaller tool offset 1.03mm 
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Figure 4-24 Material velocity field (Unit: m/s) at the tool contact region in condition of a smaller tool 

offset 1.03mm 

 
Figure 4-25 Temperature distribution (Unit: K) in the condition of a smaller tool offset 1.03mm: (a) 

Top surface; (b) Bottom surface 
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Temperature distribution on workpiece top and bottom surfaces are shown in Figure 4-25, 

which is also very similar to the profile in the larger tool offset condition both qualitatively and 

quantitatively. The high temperature region in aluminum side is larger than that in steel side. 

Compared with experimental results, the estimated temperature on bottom surface is again 

relatively higher, as shown in Figure 4-26. 

 
Figure 4-26 Temperature distribution validation on workpiece bottom surface in the condition of a 

smaller tool offset 1.03mm 
 

4.3.3.2.3 Welding condition III: rotating speed 1800rpm, welding speed 120mm/min and tool 

offset of 1.63mm 

The developed model is then further evaluated in the condition of a larger welding speed of 

120mm/min. Figure 4-27 shows the calculated material distribution. Increasing welding speed 

enables the branch of steel in advancing side to rotate backward to a further degree, which leaves 

a larger amount of embedded steel from the cross sectional view. The plot of material flow 

behaviors at the tool contact boundary is provided in Figure 4-28. The flow field remains roughly 

unchanged compared with the condition of lower welding speed. Despite the increment of material 
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inflow speed, the maximum velocity magnitude from rotating motion increases by only around 

0.004m/s. 

Figure 4-29 compares experimental measurement and numerical result of the thermal history 

at 1mm position in aluminum side. Similarly, the relatively low temperature in center of pin region 

yields two humps in the thermal history curve, which matches well with the experimental findings. 

In addition, numerical analysis also shows that by increasing the welding speed from 60mm/min 

to 120mm/min, the peak temperature experienced at this position during the whole welding process 

remains basically unchanged. Larger welding speed, on the other hand, can directly reduce the 

length of thermal cycle. Same conclusions are also drawn from the experimental observations in 

Chapter 3. 

  
Figure 4-27 Material distribution in the condition of a larger welding speed 120mm/min: (a) 

Workpiece top surface; (b) A-A section perpendicular to weldline 
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Figure 4-28 Material velocity field (Unit: m/s) at the tool contact region in the condition of a larger 

welding speed 120mm/min 
 

 
Figure 4-29 Validation of thermal history on the bottom surface at 1mm position in aluminum side in 

condition of a larger welding speed 120mm/min 
 

4.4 Summaries and conclusions 

In this chapter, coupled thermal mechanical models of FSW of dissimilar Al 6061 and TRIP 

steel were developed for plunge and stable welding stages respectively. For the plunge stage 

modeling, the field variable   was introduced to identify the regions of steel and aluminum and 
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define the generalized material properties. A separate set of governing equations were also 

developed at the two materials interface to account for discontinuities. The corresponding 

numerical analysis was performed in the FEA software ABAQUS. Overall the calculated axial 

force and material distribution correlated well with experimental results in the two plunge 

conditions with different tool offsets.  

The stable welding stage was modeled based on Eulerian formulation. Multiple phase flow 

theories with volume of fluid method were used for deriving analytical formulations, which were 

further implemented into the FLUENT software for numerical analysis. At the tool-workpiece 

contact interface, a frictional shear stress boundary yielded a much more reasonable material 

distribution compared with the velocity boundary condition. The model can capture the 

macrostructure feature of embedded steel strip in aluminum side, which was experimentally 

observed in the weld cross sections. On the tool contact region, the calculated material velocity 

was significantly smaller than that of the tool, which indicated a prevailing slipping boundary 

condition. The predicted temperature profile and thermal history curves generally agreed well with 

experimental results under different weld conditions. 
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CHAPTER 5  

ELECTRICALLY ASSISTED FRICTION STIR WELDING 

 

 

5.1 Literature review 

The solid state nature brings FSW with several advantages for welding dissimilar materials. 

However, the high welding force demanded for stirring plasticized material in solid state 

exacerbates tool wear issues and raises the requirement for both a high stiffness machine and 

corresponding strong fixture design. Furthermore, based on our previous studies on FSW of Al to 

steel, the processing window for achieving satisfying joints is narrow and joint quality is sensitive 

to welding parameters. The insufficiently plasticized steel intermixed with the nearly melted 

aluminum is likely to generate porosities and other welding defects. Solutions for improving FSW 

and reducing welding force generally fall into two categories. The first one is to develop FSW 

tools with complex geometries made from refractory materials, such as tungsten carbide, tungsten-

rhenium, Si3N4 and polycrystalline cubic boron nitride (PCBN).  Threads and flutes are designed 

on the pin and shoulder surface, which can promote plasticized material flow and reduce stirring 

force as shown by Mishra and Ma [10]. The second category is to explore benefits of hybrid FSW 

process where various types of auxiliary energy are introduced into the original process. Palm [154] 

patented a laser assisted FSW methods where a laser beam was exposed onto the workpiece 
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directly ahead of the rotating FSW tool. Similar studies were carried out by Sun and Fujii [155], 

where defect free joints were achieved under a faster welding speed twice as large as that for 

conventional process. Merklein and Giera [156] studied the laser assisted FSW for steel-aluminum 

tailored blanks and an enhanced weldability was accomplished from the results of both tensile and 

deep drawing tests. An arc enhanced FSW process was proposed by Cao and Kou [157], where 

the workpiece was preheated by an electric arc. Widened processing window was observed. Bang 

et al. [158] applied gas tungsten arc into FSW process for joining dissimilar Al6061 to STS 304 

stainless steel. According to their results, transverse tensile strength could reach 93% of the base 

aluminum alloy and the ductility of the joints was increased with a ductile fracture mode. Park [84] 

developed an ultrasonic assisted FSW process and reported that ultrasonic vibration helped 

eliminate the wormhole defect at the weld root. Grant et al. [159] implemented an induction 

heating system in front of the FSW tool and obtained great amount of load reductions on the tool.  

In addition to the above external energy sources, resistance heating associated with electrical 

current is another type of effective heat input for improving FSW process. Santos et al. [160] 

reported that electrical current could help increase material viscoplasticity in the weld root and 

eliminate potential root defect, which therefore increased welding reliability. Ferrando et al. [161] 

reported an approximately 90% of axial force reduction when electrical current was introduced 

into the stirring zone through the FSW tool. Luo et al. [162] designed and fabricated a new FSW 

tool to carry electrical current into the process. The tool was also equipped with cooling, gas 

shielding, insulation and measurement systems. They studied the electrically assisted FSW process 

for joining magnesium alloy AZ31B, aluminum alloy Al 7075 and other steel alloys including 

2Cr13Mn9Ni4 and Q235B.  
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All these studies considered the benefits of electrical current from the perspective of 

resistance heating. Taking the electro-plastic effect into consideration, Pitschman et al. [163] 

investigated the feasibility of incorporating this phenomenon into FSW process for joining 

aluminum alloy Al 6061 and reported an improvement on welding speed as well as reduction of 

energy consumption. Similar study was also conducted by Potluri et al. [164], where an average 

reduction of 58% of feed force was observed. In both their studies, a hole was predrilled on the 

workpiece to facilitate the plunge stage and the electro-plastic effect was considered primarily 

during the welding stage. However, it is not generally available to prepare a hole on the workpiece 

and significant tool wear can occur during the plunge stage [12-14]. Besides, in most of the above 

electrically assisted processes, electrical current was introduced from the tool. This requires the 

tool to be made of electrically conductive materials and complex insulation system to be installed 

between the tool and FSW machine. Furthermore, the associated resistance heating and electro-

plastic effect can also reduce the tool strength during stirring process and lead to potentially 

premature wear. Other experimental arrangements included stationary connections between 

electrodes and workpiece, such as the one described in [163]. The electrodes were clamped at two 

ends of the weld specimen, which would require narrow specimens to guarantee the high electrical 

current density.  

In this study, a new electrode configuration is developed, which enables a passive 

involvement of the tool in the electrical circuit and sets little restrictions on workpiece dimensions. 

Based on this hybrid FSW testbed, first the electro-plastic effect is investigated for the plunge 

stage of Al 6061 and TRIP steel separately. Then the hybrid friction stir welding process is carried 

out to joining these dissimilar materials together. Mechanical welding force, temperature 
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distribution and microstructure under various process parameters are analyzed and compared 

between conventional and electrically assisted FSW conditions.   

 

5.2 Experimental system development for the electrically assisted FSW process 

5.2.1 Design of the electrically assisted FSW system 

The CAD design of the entire electrically-assisted FSW system is shown in Figure 5-1 and 

the actual experimental system is shown in Figure 5-2. Instead of using the tool as one electrode, 

two copper brushes were added and pressed against the top surface of the workpiece, serving as 

the anode and cathode respectively. The copper brushes are mounted to the spindle holder through 

several brackets, the lengths and positions of which can be adjusted to place the electrodes to an 

optimized position for electrical current distribution. The copper brushes can translate along the 

weld line together with the FSW tool in close proximity. Considering the roughness of the 

workpiece top surface, the two electrodes are preloaded with compressive springs. This helps 

guarantee the electrical conductance as the electrodes slid on the workpiece and addresses the 

concerns of possible spark generation.  

With this configuration, certain amount of electrical current is anticipated to still flow 

through the tool since the tool pin is submerged inside the workpiece during the welding process. 

However, the tool is only passively involved in the circuit and the electrical current would flow 

along the shortest path with the lowest resistance. The voltage of FSW tool under a current of 

560A was measured to be around 3mV when the tool was pressed again the workpiece in the initial 

investigations. This electrical current field can therefore effectively reduce direct resistance 

heating of the tool. Furthermore, insulation issues of the tool can be avoided. Electrical insulation 

of the tool can be extremely difficult since the tool is rotating under a combined condition of high 

stress and temperature. There are few generally available insulation materials that can maintain a 
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good strength at high temperature. Moreover, since the tool is subjected to a large transverse force 

in the welding direction as it translates along the weldline, a slight offset between the tool rotating 

axis and the tool geometry axis can lead to fracture of the tool, especially for tools made of 

relatively brittle materials such as tungsten carbide. If an electrical insulation layer is to be inserted 

between the tool and tool holder, the tool runout needs to be strictly controlled. 

 
Figure 5-1 CAD design of the electrically assisted friction stir welding system 

 

Electrodes are bolted to the leads of the welder, Lincoln Electric Power Wave 455, which 

again serves as the electrical power source. The magnitude of the current is monitored using an 

OMEGA HHM596C multimeter during the process. Insulation between the electrodes and its 

mounting brackets is achieved through mica washers. The bolts are also electrically insulated with 

plastic flanged sleeve bearings, so that both the pressing surface and thread surface are avoided 

from touching the electrodes. Same insulation methods are also applied for the bolts on the 

workpiece clamping fixture. 
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Figure 5-2 Experimental system for the electrically assist FSW 

 
To maximize the current density, steel and aluminum workpieces need to be electrically 

isolated from the backing plate. In this study, thin layer of mica sheet is initially attempted as a 

suitable candidate for insulation materials, which also enables temperature measurement during 

the process. A detailed illustration of the experimental setup is provided in Figure 5-3. Below the 

thin mica sheet is a steel backing plate with three thermocouples embedded inside. The 

thermocouples are submerged 1mm below the top surface of steel and located beneath the original 

Al-Fe interface at the beginning, middle and ending positions of the weld, as shown in Figure 5-3 

(b). Initial attempts with this experimental configuration showed that the insulation mica sheet was 

undesirably bonded to the workpiece bottom surface under the combined conditions of high 

temperature and pressure during FSW process. A small amount of mica fragments were stirred 

into the weld zone and distributed along the Al-Fe interface in the joint cross section, which 

generated visible cracks and substantially deteriorated the joint quality. To address this problem, 

ceramic block is employed as the alternative insulation material between workpiece and backing 

plate. However, due to its intrinsic brittle properties, the ceramic easily gets cracked during 
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experiments and needs to be changed after every four tests on average. Besides, it is difficult to 

drill holes and embed thermocouples in the ceramic block. Accordingly the temperature cannot be 

measured during the process. Based on all these considerations, mica sheets are used as the 

insulation material for the plunge stage study of aluminum and steel. During friction stir welding 

of aluminum to steel, mica sheets are only used for temperature measurement to evaluate the 

relative resistance heating effect of electrical current. Ceramics are used for all the subsequent 

welding force measurement and Al-Fe joint microstructure analysis. 

 

 
 

 
Figure 5-3 Detailed illustration of the experimental setup with mica sheet as the insulation: (a) 

Overview; (b) Thermocouples location  
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5.2.2 Analysis of electrical field distribution 

Due to the unsmooth weld surface finish and possible splash generation, the copper brush 

could hardly slide and maintain reliable electrical contact if placed in the wake of the tool. Based 

on this prerequisite, three schemes of electrodes configuration are proposed and shown in Figure 

5-4. In Figure 5-4 (a), both of the copper electrodes are positioned on the steel side and stay in the 

closest vicinity of each other. This can maximize current density distribution between the two 

electrodes. The underlying intention for this layout is that steel can be greatly softened while 

aluminum remains intact, therefore the two materials are mechanically more compatible during 

the stirring action. However, initial hybrid welding attempts based on this configuration showed 

that the welding force hardly reduced after applying electrical current. Since the majority of 

electrical current stays in the enclosed area of the two electrodes, which is outside the stirring zone 

and contains little plastic deformation, the insignificant force reduction is reasonable.  

 

 
Figure 5-4 Schematic illustration of different electrodes configurations 

 
To guarantee that electrical current flows through the stirring zone, one of the electrodes is 

rearranged to slide on the aluminum side, as shown in Figure 5-4 (b). Corresponding current 

density distribution and associated resistance heating are analyzed with the COMSOL software, 

which helps provide a guideline for optimizing electrodes positions. In the multiphysics model, 

perfect contact is assumed at the faying surface of the two materials as well as the interface 
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between copper electrodes and workpiece top surface. A total current of 560 Amp is applied to the 

electrode on aluminum side and the electrode on steel side is grounded, while other surfaces are 

electrically isolated. Thermal boundary conditions are set with a surface heat transfer coefficient 

of 10W/(m2 K) at the top surface of workpiece and thermal insulation is assumed at the back 

surface based on the low thermal conductivities of either mica or ceramic sheet.  

The calculated current density distribution on the workpiece is shown in Figure 5-5. High 

current density is concentrated in the vicinity of the electrodes. In the tool stirring zone, the current 

density varies approximately from 5A/mm2 to 17A/mm2. This range is relatively small for 

initiating electro-plastic effect, especially in the center region where the largest deformation occurs 

due to the stirring action of the tool pin. Despite the different electrical conductivities of aluminum 

and steel, the electrical field is overall symmetric with respect to the abutting edge. Differences of 

their electrical properties are more evidently in the aspect of Joule heating effect, as shown in the 

temperature distribution in Figure 5-6. The temperature profile is captured at the time spot of 10 

seconds, which is approximately the length of plunge stage during experiments. The larger 

resistivity and smaller thermal conduction coefficient of steel results in an intensively local heating 

on the electrode and its surrounding area. In the tool acting zone in aluminum side, temperature 

varies approximately from 130 °C to 150 °C. Temperature in the tool acting zone on steel side lies 

in between 130°C and 250°C. 
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Figure 5-5 Current density distribution for the electrodes configuration of Figure 5-4 (b) 

 
Figure 5-6 Temperature distribution at 10 seconds for the electrodes configuration in Figure 5-4 (b) 
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Considering the calculated result that the electrical current is more concentrated adjacent to 

electrodes, it is desired to place electrodes closer to the weldline to increase the current density in 

stirring zone. An improved configuration is therefore proposed and shown in Figure 5-4 (c), where 

the electrode on steel side is rearranged to the front of the tool so that it can still slide on the intact 

workpiece surface and at the same time stay as close to the weld line as possible. Corresponding 

locations of the electrodes and current density distribution results are shown in Figure 5-7, where 

A-A cross section coincides with the tool axis plane. Based on this configuration, the current 

density in the pin stirring zone of steel is overall increased while that in aluminum side remains 

roughly unchanged. Besides, the temperature result in Figure 5-8 shows that even though the 

electrode on steel side is still resistance heated to a relatively high value of over 300°C, temperature 

in the center stirring zone where the tool pin directly acts is greatly reduced. Furthermore, the 

actual temperature during experiments should be even lower considering the heat conducted away 

by the entire copper electrode. Based on these investigations, the electrodes layout in Figure 5-4 

(c) is adopted as a relatively optimal configuration for the electrically assisted FSW of Al 6061 to 

TRIP steel in the following studies.  



120 
 

 
Figure 5-7 Current density distribution for the asymmetric electrodes configuration in Figure 5-4 (c) 

 
Figure 5-8 Temperature distribution at 10 seconds for the asymmetric electrodes configuration in 

Figure 5-4 (c) 
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5.3 Plunge stage study for Al 6061 and TRIP steel separately 

5.3.1 Experimental specifications 

In order to investigate the feasibility, potential benefits and appropriate current range for 

applying electricity to friction stir welding process, first the plunge stage was studied on Al 6061 

and TRIP steel separately. In order to further reduce the complexity and uncertainty of current 

distribution at the abutting face of two welding plates, one entire workpiece was used. As described 

before, the insulation between workpiece and steel backing plate was provided by a thin mica sheet 

with the thickness of 0.4mm. The tool spindle speed was set at 1200 rpm and plunge speed was 

10mm/min. In the condition of plunging into aluminum, the tool kept moving until its whole 

shoulder surface was immerged below the workpiece top surface. On the other hand, due to the 

harsh condition associated with stirring steel, the corresponding plunge depth was set to be 0.3mm 

less than that for aluminum and the tool retracted before the shoulder touches the top surface of 

steel. Each test condition was conducted three times for repeatability study.  

Microstructure analysis was performed for steel specimens at transverse cross sections which 

pass through the center of the weld. The specimens were ground and polished according to standard 

metallographic preparation procedures and then further etched with 5% nital solution.   

 

5.3.2 Welding force comparison 

Figure 5-9 shows the typical axial plunge force during plunge stage of Al 6061. The x-axis 

is the tool stroke, which is defined as the distance between the bottom surface of the tool pin and 

the top surface of the workpiece. The axial force is reduced after application of electrical current, 

especially at the later stage of plunge process. The force reduction is not obvious in the beginning, 

which is probably due to the small volume of plastic deformation zone. Initial force increment is 
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primarily generated from deformation of the relatively soft mica sheet as well as the elastic 

displacement of the working table due to the structure stiffness of the machine itself. Since the 

electro-plastic softening is only effective for plastic deformation, the insufficient amount of 

plastically deformed material results in an insignificant force reduction.  

 

 
Figure 5-9 Comparison of axial force for Al6061 with and without current 

 

 
Figure 5-10 Repeatability of the force reduction result for Al6061 

 
 

Similar to the force measurement results from Park [84], Figure 5-9 shows two peaks in the 

axial force curve during the plunge stage of same material. Figure 5-10 presents the repeatability 
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analysis result of these two peak values in the axial welding force. An average force reduction of 

25.6% is obtained for the first peak and 16.2% for the second one after the application of electrical 

current and the results are with a good consistency. 

 

 
Figure 5-11 Comparison of axial force for TRIP 780 steel with and without current 

 

Figure 5-11 shows the typical axial force curves for plunging into steel. In the case of steel, 

a 560A current is attempted initially. However, due to its higher electrical resistance, substantial 

Joule heating effect is observed. Consequently, only a total current of 400A is applied in the 

following experiments. Force reduction is generally observed except in the initial stage. Since the 

plunge depth for steel is smaller than that for Al6061 and the tool shoulder does not touch the top 

surface of steel, only one peak occurs in Figure 5-11, which corresponds to the first peak in Figure 

5-9. Figure 5-12 shows the repeatability results on the value of this peak. An average force 

reduction of 37.5% can be obtained after application of electrical current. 
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Figure 5-12 Repeatability of the force reduction result for TRIP 780 steel 

 

 
Figure 5-13 Comparison of axial force for TRIP 780 steel considering the thermal effect 

 

5.3.3 Microstructure analysis 

Since only the plunge stage is investigated in this study, a keyhole would be left on the 

specimen after extraction of the tool. The specimens are then sectioned at weld center along the 

thickness direction and observed under optical microscope. Figure 5-14 (a) shows an overview of 

half of the cross section of TRIP steel after electrically assisted plunging process. Based on the 

microstructure characteristics, the FSW weld section can be categorized into three zones [10]. The 
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region closest to the tool is the stirring zone (SZ), where fine grains exist due to the involved 

dynamic recrystallization process, which corresponds to Figure 5-14 (b). Next to the SZ is the 

thermal mechanically affected zone (TMAZ) where the materials experience a high temperature 

and large deformation, but the strain is insufficient to induce recrystallization, which generally 

results in relatively large and elongated grain structure. The TMAZ zone is not obvious in this 

plunge section of steel. Beyond the TMAZ is the heat affect zone (HAZ), where the materials only 

undergo thermal cycle and little amount of plastic deformation is involved, which corresponds to 

Figure 5-14 (d).  Figure 5-14 (c) shows the transition region from stirring zone to heat affected 

zone. 

Figure 5-15 shows the plunge section obtained from the non-electrically assisted condition. 

Similarly, Figure 5-15 (b) presents the stirring zone and Figure 5-15 (d) corresponds to the heat 

affected zone. Comparing Figure 5-15 (a) with Figure 5-14 (a), the size of the stirring zone is 

reduced after applying the electrical current. On the other hand, according to previous literature 

[165], the electrical current can help enhance dynamic recrystallization, which therefore should 

result in a larger stirring zone with refined grain size in the electrically assisted plunge condition. 

This difference is most likely due to the associated high temperature from Joule heating of steel, 

which facilitates the growth of the recrystallized grains and results in coarser structure. 
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Figure 5-14 Plunge cross section under electrically assisted condition: (a) Overview; (b) SZ; (c) 

Transition between SZ and HAZ; (d) HAZ 
 

 
Figure 5-15 Cross section from traditional plunge process: (a) Overview; (b) SZ; (c) Transition 

between SZ and HAZ; (d) HAZ 
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5.4 Electrically assisted FSW for joining Al6061 to TRIP steel 

5.4.1 Experimental specifications 

Similar to the FSW configuration described in Chapter 3, steel is placed on the advancing 

side and the FSW tool is unsymmetrically shifted towards aluminum. The investigated welding 

conditions are listed in Table 5-1 and the welding speed was kept at 60mm/min in all the conditions. 

For temperature comparison between electrically assisted and conventional FSW processes, mica 

sheet is used as the insulation material. For mechanical welding force and subsequent Al-Fe 

interface microstructure analysis, ceramic block is used instead as the insulation material. 

 
Table 5-1 Investigated welding conditions for comparison between hybrid and conventional friction 

stir welding processes 
FSW 

condition 
Rotational speed 

(R): rpm 
Welding speed 
(v): mm/min 

Tool offset 
(Offset) : mm 

Input current: 
A 

1 1200 60 1.03 
0 

560 

2 1200 60 1.63 
0 

560 

3 1800 60 1.03 
0 

560 

4 1800 60 1.63 
0 

560 
 
 

5.4.2 Welding temperature and force comparison 

Figure 5-16 shows the thermal history results measured with the three thermocouples located 

below the weld seam, as described in Figure 5-3 (b). A good repeatability of temperature 

measurement can be achieved with this thermocouple configuration. However, insertion of mica 

sheet between workpiece and backing plate provides not only electrical but also thermal insulation. 

The highest temperature measured is less than 100°C, which is far below the actual temperature in 

weld zone. Notwithstanding that, these measurements can still help indicate the relative 
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significance of resistance heating. The thermocouple located below the plunge position, which is 

also the beginning position of the weld, has the highest temperature increasing gradient. This is 

the result of direct heating from friction and plastic deformation in plunge stage. The 

thermocouples located in the middle and end of weld experience a smaller temperature increasing 

gradient, since their initial temperature rise is due to thermal conduction as the tool approaches. 

The peak temperature at the plunge position is smaller than that in welding regions. This can be 

construed from the aspect that the total amount of heat generation in the beginning is smaller 

compared with that in the stable welding stage. This is especially true for electrically assisted 

conditions as the resistance heating will accumulate during the process until an equilibrium has 

reached. In the temperature profile measured by the thermocouple located at the end of the weld, 

a sharp apex can be observed, which is due to the retraction of tool and discontinuation of the 

current. The temperature then gradually drops off following natural cooling of the workpiece.  

Figure 5-17 shows the electrical effects on the thermal history measured by the thermocouple 

located below the beginning position of the weld. In the first ten seconds, which is the period of 

the plunge stage, the effect of electrical current on the temperature profile is not obvious. After 

that, accumulated resistance heating results in an elevated temperature. Peak temperature in the 

non-electrically assisted conditions occurs at around 15s, which is the finishing time spot of the 5s 

dwell stage. In the electrically assisted conditions, the temperature continues to increase after the 

tool starts to translate along the weld seam. Besides, the temperature rise from electrical current is 

more substantial than that caused by varying rotational speed. At this beginning position of the 

weld, the amount of temperature increase due to electrical current is generally independent of tool 

rotating speed and offset.  
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Figure 5-16 Thermal histories measured at the weld beginning, middle and ending position (1800 

rpm; Tool offset: 1.63mm; 560 Amp) 
 

 
Figure 5-17 Comparison of the electrical effect on the thermal history of weld beginning point under 

different rotating speeds and tool offsets 
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Figure 5-18 Comparison of the electrical effect on the thermal history of weld middle point under 

different rotating speeds and tool offsets 
 

Figure 5-18 shows the electrical effects on the thermal history measured by the thermocouple 

located below the middle position of the weld. Similar to measurements at the beginning position 

of the weld, the electrical current raises the temperature and the temperature increase is higher due 

to the accumulation of resistance heating. With tool offset of 1.63mm, the maximum temperature 

increase from electrical current is around 16°C for the larger rotating speed of 1800rpm and 13°C 

for 1200rpm. With tool offset of 1.03mm, the maximum temperature increase is around 17°C for 

1800rpm and 13°C for 1200rpm. The electrical current results in a higher temperature increase in 

the condition of a larger rotating speed. The energy of electrical current can be divided into two 

parts. One is for resistance heating and the rest is for direct material softening, i.e. the electro-

plastic effect. Higher rotating speed corresponds to a larger strain rate, which according to Varma 

and Cornwell [35] weakens the electro-plastic effect. A larger portion of the electrical energy is 

therefore dissipated by resistance heating and results in a higher temperature rise. The effect of 

tool offset on the temperature increase is not obvious despite the fact that steel has a higher 
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electrical resistance and larger amount of steel is involved in the weld zone under a smaller tool 

offset condition. The fraction of electrical energy contributed to direct material softening is 

therefore possible to be increased from a smaller tool offset condition. The thermal history at the 

ending position of the weld, as shown in Figure 5-19, is overall the same as the result of weld 

middle point. 

  
Figure 5-19 Comparison of the electrical effect on the thermal history of weld ending point under 

different rotating speeds and tool offsets 
 

In the following studies, the mica sheet is replaced with ceramic block for welding force 

measurements and joint microstructure analysis. Figure 5-20 compares the axial welding force in 

conventional and electrically assisted FSW processes under various welding conditions. The axial 

force is consistently reduced, especially during the initial plunge stage. Greater amount of force 

reduction is obtained in the condition of a lower rotational speed. It indicates that larger fraction 

of the external electrical energy is attributed to direct material softening, which is consistent with 

the previous temperature measurements. In addition, the force reduction is more significant in a 

smaller tool offset condition. Based on the electrically assisted tensile test results for Al 6061 from 
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Andrawes et al. (2004) and for TRIP steel from Chapter 2, the electro-plastic softening is more 

effective for steel compared with aluminum under the same current density. Since more steel is 

deformed in the stirring zone in the condition of a smaller tool offset, it is reasonable to obtain a 

larger welding force reduction.  

 
Figure 5-20 Axial force comparison under various processing conditions 

 

5.4.3 Effect of the electrical current on the Al-Fe interface evolution 

Considering the above welding force results, the axial force can be reduced in both plunge 

and welding stages, which is likely to affect the corresponding joint microstructure. Therefore for 

each welding condition, two metallurgical samples are prepared by sectioning the welds at the 
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plunge position and in the middle of the weld respectively. Figure 5-21 shows SEM images of the 

Al-Fe interface at the plunge section under a higher rotating speed of 1800 rpm. The top two figures 

correspond to a larger tool offset configuration and the right two correspond to electrically assisted 

conditions. When the tool is shifted more into aluminum, intermetallic compounds (IMC) is 

difficult to identify at some locations of the Al-Fe interface in conventional FSW process. This is 

possibly due to less amount of involved steel and lower pressure in the weld as well as the relatively 

lower temperature in the beginning of the weld. In comparison, continuous existence of IMC layer 

is observed after external current is applied.  

In the smaller tool offset condition, a continuous IMC layer can be found for both 

conventional and hybrid processes, as shown in Figure 5-21 (c) and (d). In the electrically assisted 

condition, a thin slice of steel is connected to the base material and encompassed by an IMC layer. 

This feature is more pronounced at welding sections, as shown in Figure 5-22 (b) and (d). In 

contrast to a smooth IMC layer obtained from traditional FSW process, micro-interlock structures 

where steel and intermetallic compound are intermixed together are obtained after introducing 

electrical current. This micro-interlock feature is believed to be advantageous for joint strength, 

since crack propagation in the brittle IMC region can be effectively restrained by the surrounding 

steel, which has a much higher ductility. Similar structure were also observed by Xiong et al. [166] 

when they did friction stir lap joint between Al 1100 and 1Cr18Ni9Ti stainless steel using a tool 

with a cutting pin feature. Their joint shear strength was reported to be even higher than the base 

aluminum alloy, which was attributed to a thin IMC layer with mechanical bonding from micro-

interlocks at the Al-Fe interface. 
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Figure 5-21 Al-Fe interface at plunge section (1800rpm): (a) Tool offset 1.63mm; (b) Tool offset 

1.63mm with 560 Amp; (c) Tool offset 1.03mm; (d) Tool offset 1.03mm with 560 Amp 
 

 
Figure 5-22 Al-Fe interface at weld section (1800 rpm): (a) Tool offset 1.63mm; (b) Tool offset 

1.63mm with 560 Amp; (c) Tool offset 1.03mm; (d) Tool offset 1.03mm with 560 Amp 
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The effect of current on the size and morphology of the intermetallic compunds at Al-Fe 

interface for the plunge section can be considered from the electromigration effect. Formation and 

growth of the interfacial layer depends on two processes, which are interdiffusion of aluminum 

and iron atoms and reaction of these two elements. Diffusion of atoms can be enhanced with 

application of electrical current. Chen et al. [167] and Conrad et al. [41] expressed the flux of 

atoms driven by electrical current and chemical potential as the following: 

 * ln
zi i i

i i e

D N N
J e j kT

kT x
     

 (5-1)

where the first term represents atomic flux induced by electrical current and the second term 

corresponds to atomic flux driven by composition gradient. iD  is the diffusion coefficient, iN  is 

the mole fraction of each element, T is the temperature, k is the Boltzman constant, *
iz  is the 

effective charge of atom, e is the charge per electron, e  represents material electrical resistivity 

and j is the current density.  

The significance of electric current effects on atom diffusion can be determined by 

comparing magnitudes of the two terms in the parentheses of equation (5-1) [168]. A simplified 

calculation is performed here assuming the composition of the interfacial layer is Fe3Al. For Al 

atom, its concentration at Al/Fe3Al interface and that at the Fe3Al/Fe interface can be approximated 

based on the Al-Fe phase diagram, as shown in Figure 3-25. The temperature is estimated to be 

0.8 of melting temperature of Aluminum and therefore the atomic concentrations of Al atom are 

25% and 24% at the two boundaries. Within the intermetallic layer, which has a thickness of 

around 1 μm, the atomic concentration is assumed to vary linearly. Based on these assumptions, 

the Al atomic flux driven by composition gradient is roughly estimated to be 9.4x10-22/ μm. Similar 

procedure can be performed for Fe and the result is 2.97x10-22/ μm. Based on [169], the effective 
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charge of Al atom in solid solution is in the range of 12 to 30. The electrical resistivity of Fe3Al is 

around 130×10-6 to 155×10-6 Ω-cm [170]. By substituting the current density j with 15A/mm2 and 

averaged material properties into the first term in the parentheses of equation (5-1), the atomic flux 

of Al driven by electrical current is roughly 1.48×10-22/ μm, which is around 16% of the flux driven 

by the composition gradient. For Fe, its effective charge is 2 [169] and the atomic flux driven by 

electrical current is roughly 1.50×10-23/ μm, which is around 5% of that from composition gradient.  

Besides the additional atom flux from electrical field, the associated higher temperature from 

electrical resistance heating can directly increase iD  and therefore the diffusion rate. Moreover, 

the external electrical energy can help reduce the activation energy for reaction, which will further 

enhance the formation and growth of the interlayer. Figure 5-23 and Figure 5-24 show the Al-Fe 

interface at plunge and welding sections under a lower rotating speed of 1200 rpm. Despite an 

overall thinner interfacial layer, the results are similar to that from higher rotating speed conditions. 

 

 
Figure 5-23 Al-Fe interface at plunge section (1200rpm): (a) Tool offset 1.63mm; (b) Tool offset 

1.63mm with 560 Amp; (c) Tool offset 1.03mm; (d) Tool offset 1.03mm with 560 Amp 
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Figure 5-24 Al-Fe interface at weld section (1200 rpm): (a) Tool offset 1.63mm; (b) Tool offset 

1.63mm with 560 Amp; (c) Tool offset 1.03mm; (d) Tool offset 1.03mm with 560 Amp 
 

5.5 Summaries and conclusions 

In this Chapter, an electrically assisted friction stir welding system was designed and 

developed. The FSW tool is only passively involved in the electrical circuit and the system can be 

applied to thin sheet metals of various sizes. Based on this experimental system, plunge stage of 

FSW was studied for both aluminum alloy Al 6061 and TRIP 780 steel respectively. An effective 

reduction of the axial welding force was obtained with a good repeatability. Associated Joule 

heating effect for steel was considered from an additional preheating test. Apart from the thermal 

softening, approximately 2/3 of the force reduction can be attributed to the direct softening from 

electro-plastic effect. The electrical current was then applied to the entire welding process for Al 

6061 to TRIP steel. The axial welding force was consistently reduced under various weld 

conditions. Based on the temperature measurements, the force reduction came from synergic 
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effects of electro-plasticity and Joule heating. The first factor was more significant when the 

rotating speed was small or the tool was less shifted to aluminum. Regarding the Al-Fe interface 

of the welds, the electrical current showed to enhance the formation of the thin intermetallic layer 

and micro-interlock features. 
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CHAPTER 6  

 CONCLUSIONS AND FUTURE WORK 

 

 

6.1 Conclusions 

This research focuses on a hybrid friction stir welding process for joining Al 6061 to TRIP 

steel based on the electro-plastic effect. Works have been performed in four major areas, including 

the study of electro-plastic effect, experimental investigation on FSW of Al 6061 to TRIP steel, 

analytical and numerical modeling of dissimilar FSW process and study of electrically assisted 

FSW for joining Al 6061 to TRIP steel. Major achievements are summarized as follows: 

(1) A hypothesis was proposed for explaining the mechanisms of electro-plastic effect: The high 

density electrical current can heat up local material strengthening sites due to their higher 

electrical resistivity, which promotes dislocations to bypass these obstacles without 

temperature increase of the bulk material.  

(2) The electro-plastic effect was observed on one type of advanced high strength steel, TRIP 

780/800 by varying the electrical current conditions during tensile tests. Based on XRD 

analysis, the electrical pulses showed to retard martensitic phase transformation that is 

associated with the plastic deformation of TRIP steel.  
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(3) Successful joints between Al 6061 alloy and TRIP steel were able to be achieved from friction 

stir welding process, where the steel needed to be placed in the advancing side. The highest 

joint strength reached 85% of the base aluminum alloy and the tensile specimen failed at the 

heat affected zone of aluminum. On the other hand, a stirred over steel strip embedded in the 

aluminum matrix was shown to be detrimental to joint quality. Small steel fragments 

encompassed by intermetallic layer and intermetallic particles were formed in the weld nugget 

due to the stirring action of the tool, which were shown to be acceptable for tensile strength 

but might be harmful for fatigue life. 

(4) A thin intermetallic layer with the thickness of around 1 μm was formed at the Al-Fe interface 

in the advancing side. The composition and thickness of this layer closely depended on the 

weld conditions through the temperature field and welding force. Higher rotating speed 

elevated the overall temperature in the weld and reduced the required axial and lateral welding 

force. Shifting the tool more towards aluminum side also decreased the welding force. 

However, the maximum value of tool offset needed to be controlled for sufficient amount of 

steel in the weld nugget to achieve effective bonding between aluminum and steel. Varying 

welding speed from 30mm/min to 120mm/min under the rotating speeds of 1200rpm and 

1800rpm had an insignificant effect on mechanical welding force or temperature distribution 

but directly changed the length of thermal history and accordingly the thickness of the 

intermetallic layer.  

(5) A model for the transient plunge stage of the dissimilar material friction stir welding process 

can be obtained by: (a) Introducing the field variable   to identify the regions of steel and 

aluminum and define generalized material properties; (b) Developing a separate set of 

conservation equations at the two materials interface to account for the discontinuities. 
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Calculation of the model was performed in the ABAQUS software, which yielded reasonable 

agreement with experimental findings in the aspect of welding force and material distribution; 

(6) A model for the stable welding stage of the dissimilar material friction stir welding process 

can be developed based on Eulerian formulation with multiple phase flow theories and volume 

of fluid method, where the pressure, velocity and temperature fields are shared and material 

properties are averaged based on the volume fraction of different materials. In addition, to 

predict reasonable temperature and material distributions, an appropriate shear stress boundary 

needs to be applied at the tool contact area instead of the velocity boundary condition. The 

developed model captured the macrostructure feature of the embedded steel strip in aluminum 

side, which was experimentally observed in the weld cross sections. The model also revealed 

that the slipping condition prevailed at the tool-workpiece interface.  

(7) The developed electrically assisted friction stir welding system was shown to be capable of 

applying high density electrical current into the FSW process. The axial welding force was 

consistently reduced under various weld conditions, especially during the plunge stage. A 

preheating test showed that apart from thermal effect, approximately 2/3 of the force reduction 

in the plunge stage of TRIP steel was attributed to the electro-plastic softening. Based on 

temperature measurements during welding stage, the force reduction came from synergic 

effects of both electro-plasticity and Joule heating. The relative significance of each factor 

dependent on weld conditions. In addition to reducing the welding force, the electrical current 

enhanced formation of the thin IMC layer and micro-interlock structures at the Al-Fe interface 

of the joints. 
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6.2 Future work 

Reliable and economical dissimilar material joining is always desirable since it enables a 

suitable combination of different materials based on each of their own advantageous properties. 

This work studies the mechanisms and principles of FSW of aluminum alloy to advanced high 

strength steel. Electrical current is further incorporated for process improvement. Some possible 

directions for future research are suggested as followings: 

(1) Despite these indirect supports from literature, further experiment should be performed in 

microscopic scale for direct validation of the hypothesis that explains the underlying principles 

of electro-plastic effect. For example, an in-situ TEM tensile test which can directly observe 

motion of dislocations and other devices that can simultaneously measure the temperature 

distribution.  

(2) Extend the hybrid friction stir welding to friction stir spot welding process. This newly 

developed process can be considered as a combination of resistance spot welding process with 

lower required electrical energy and friction stir spot welding process with smaller welding 

force and faster welding speed. Workpiece of different thickness can be spot welded. A 

schematic illustration of the hybrid friction stir spot welding process compared with traditional 

resistance spot welding is shown in Figure 6-1. 

(3) Incorporate the electro-plastic effect into the material constitutive law for hybrid FSW 

modeling. A modified Johnson-Cook or Sheppard-Wright material model needs to be 

developed with current density as an additional input parameter. During hybrid FSW modeling, 

the electrical field is calculated first, which can be then applied as a predefined field for 

following simulation of the welding process. Alternatively, a multiphysical model which 

couples thermal, mechanical and electrical fields can be developed.  
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Figure 6-1 Schematic illustration of the hybrid friction stir resistance spot welding process 
 

(4) Design and improve friction stir welding tool. In order to eliminate the stirred over steel strip 

as shown in the joint cross sections, the shape and dimensions of the current FSW tool can be 

further improved. On the tool shoulder surface, groove features and a concave shape can be 

applied to preserve the material from splashing out. On the tool pin, threads can be developed 

to help promote material flow in the vertical direction. The radius of pin and shoulder can be 

adjusted to modify the heat generation and the stirring shear force. 

(5) Study interfacial structure for dissimilar material joint strength. As shown in chapter 3, an 

intermetallic compound (IMC) layer with appropriate thickness is likely to improve the joint 

strength. On the other hand, it is anticipated that too much IMC will directly jeopardize joint 

quality. Relationship between thickness and compositions of the IMC layer and the joint 

strength needs to be studied. If possible, these microstructure features can be related to 

macroscopic material parameters for joint strength and failure modes modeling, for example, 

the characteristic strength and toughness in cohesive models. 
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(6) Investigate the corrosive issue of Al-Fe joint. Corrosion has generally been identified for direct 

welds between aluminum and steel. In order for improvements, some protective layer, such as 

adhesives, can be applied before joining the two materials together. Behavior of the joint can 

then be evaluated in a corrosive environment. 
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