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ABSTRACT 

 

Designing Accurate and Low-Cost Stochastic Circuits 

by 

Te-Hsuan Chen 

Chair: John P. Hayes 

 

Stochastic computing (SC) is an unconventional computing approach that 

processes data represented by pseudo-random bit-streams called stochastic numbers (SNs).  

It enables arithmetic functions to be implemented by tiny, low-power logic circuits, and is 

highly error-tolerant. These properties make SC practical for applications that need 

massive parallelism or operate in noisy environments where conventional binary designs 

are too costly or too unreliable. SC has recently come to be seen as an attractive choice for 

tasks such as biomedical image processing and decoding complex error-correcting codes. 

Despite its desirable properties, SC has features that limit its usefulness, including 

insufficient accuracy and an inadequate design theory. Accuracy is especially vulnerable 

to correlation among interacting SNs and to the random fluctuations inherent in SC’s data 

representation. This dissertation examines the major factors affecting accuracy using 

analytical and experimental approaches based on probability theory and circuit simulation, 

respectively.  We devise methods to quantify the error effects in stochastic circuits by 

means of probabilistic transfer matrices and Bernouilli processes. These methods make it 

possible to compare the impact of errors on conventional and stochastic circuits under 

various conditions. We then analyze correlation in detail and show that correlation-induced 
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errors can be reduced by the careful insertion of delay elements, a de-correlation technique 

called isolation.  Noting that different logic functions can have the same stochastic behavior 

when constant SNs are applied to their inputs, we show how to partition logic functions 

into stochastic equivalence classes (SECs). We derive a procedure for identifying SECs, 

and apply SEC concepts to the synthesis and optimization of stochastic circuits. While 

addition, subtraction and multiplication have well-known and simple SC implementations, 

this is not true for division. We study stochastic division methods and propose a new type 

of stochastic divider that combines low cost with high accuracy. Finally, we turn to the 

design of general stochastic circuits and investigate a desirable property of SNs called 

monotonic progressive precision (MPP) whereby accuracy increases steadily with bit-

stream length. We develop an SC design technique which produces results that are accurate 

and have good MPP. The dissertation concludes with some ideas for future research. 
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CHAPTER 1  

Introduction 

 

Stochastic computing (SC) is a computing paradigm that provides an alternative to 

computing with conventional binary numbers. Its distinguishing feature is that numbers are 

represented by random bit-streams that can be interpreted as probabilities. This unusual 

number representation scheme enables SC to perform low-cost, low-power and error-

tolerant computing. SC has recently attracted the attention of researchers interested in 

applications such as decoding modern error-correcting codes, biomedical image processing, 

and neuromorphic networks. This chapter introduces SC and its applications. It also 

discusses the challenges that motivate our research. 

1.1 Motivation 

The steadily increasing density of integrated circuits (ICs) allows billions of 

components and complex applications to be packed into small, portable devices. At the 

same time, it introduces some new design challenges to deal with power and energy 

consumption. Consequently, a great deal of attention is being paid to low-power design, 

especially for battery-powered applications [27][54]. 

A growing applications area with very strict power budgets is the so-called Internet 

of Things (IoT). IoT refers to large networks of electronic devices with sensors, processors 

and their associated software embedded in physical objects like buildings and vehicles.  

Unlike conventional computing platforms that are directly accessible by users, such as 

desktop computers or smartphones, IoT devices are often deployed in physical 

environments that are hard to reach, a problem that heightens the importance of low power  
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(a) (b)
 

Figure 1.1: An example of edge detection to convert (a) a greyscale image of a corridor 

with an obstacle into (b) a high-contrast image. 

consumption [11] [25]. To illustrate, long lifetime water quality sensors in reservoirs, forest 

fire detectors, and chemical leakage detectors in rivers all require low-power designs. To 

be able to deploy them in large and noisy physical environments, these devices must be 

robust, and the cost per device must be very low [25].  

Another class of extremely power-sensitive applications are electronic biomedical 

implants. Examples here include retinal implants for the visually impaired, heart-rhythm 

monitors, and nerve implants to help paralyzed people perform basic tasks. For instance, 

retinal implants acquire and process images to extract information that can be used by the 

brain. One such image-processing task is edge detection, which generates a high-contrast 

black-and-white image highlighting the boundaries or edges of objects. For visually 

impaired people who can only distinguish very bright from very dark features, this 
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processed image can make obstacle detection, avoidance, and the like possible; see Figure 

1.1.  

The ability of massive parallelism to enhance performance at low cost is also 

important in biomedical devices like retinal implants for several reasons. A typical retinal 

implant chip contains a large array of sensors, one per pixel, and each sensor requires some 

processing capability, ideally a dedicated pixel processor [65][66]. As there may be 

thousands of pixels, the pixel processors must be tiny in size and have extremely low power 

needs.  They should also be fast enough to process data or images in real-time. Figure 1.2 

illustrates how edge detection can be performed by an array of pixel processors. For a 

certain standard edge-detection method (the Roberts cross algorithm [37]), a moving 

average of light intensity zi,j  is computed on a window of size 2  2 surrounding each pixel 

xi,j  according to the relatively complex arithmetic formula 

 𝑧𝑖,𝑗 = |𝑥𝑖,𝑗 − 𝑥𝑖+1,𝑗+1| + |𝑥𝑖,𝑗+1 − 𝑥𝑖+1,𝑗| (1.1)  

 

x1,1 x1,2

x2,1 x2,2

Pixel

processor

x1,2 x1,3

x2,2 x2,3

Pixel

processor

xi,j Pixel

processor

x1,1 x1,2

x2,1 x2,2

xi,j

... ...

z1,1 z1,2

zi,j

z1,1

z1,2

zi,j

...

...
...

...

... ...

...

 

Figure 1.2: Edge detection using an array of pixel processors and a four-pixel window. 
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A small processor implementing Equation (1.1) and using conventional hardware designs 

is unlikely to meet the size and power constraints imposed by a retinal implant. However, 

as we will see later, a design based on stochastic computing can easily do so [3]. 

Since implantation of biomedical devices requires invasive surgery, they must have 

long lifetime and very small size [43]. The size requirement also renders high-capacity 

batteries to ensure long-term operation impractical. Moreover, because human tissues like 

the retina are very sensitive to temperature, if a biomedical implant dissipates too much 

power, vital organs can suffer heat damage. To avoid such problems, extremely low-power 

and small-size circuits are critical. In addition, implanted devices must be robust and 

insensitive to environmental noise [19]. 

Many approaches have been proposed to achieve some or all of the foregoing 

design goals, but each has its own limitations. For example, low-power semiconductor 

techniques, such as transistors with multiple threshold voltages and oxide thicknesses, 

reduce power consumption but they require special manufacturing processes that increase 

IC area and delay [84]. One promising technology that addresses all these issues is 

stochastic computing (SC), which is the subject of this dissertation. In SC, numbers are 

represented by random bit-streams which are interpreted as probabilities. For instance, the 

number 0.25 is represented by the bit-stream X = 0010100001000010 which contains four 

1s and has length N = 16. If bits are randomly sampled in this bit-stream, then the 

probability of seeing a 1 in any position is 0.25. This probability is easily estimated by 

counting the number of 1s in X and dividing it by the bit-stream length N. As we will see, 

within the framework of SC, this unusual number representation scheme has the potential 

to produce small, low-power, low-cost, and error-tolerant circuits. Furthermore, these 

circuits can be built using standard digital logic manufacturing methods. 

1.2 Stochastic Computing 

 As noted above, SC operates on random bit-streams using conventional logic 

circuits; we will refer to such circuits as stochastic circuits. The data value associated with 
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a logic signal (wire) x in a stochastic circuit is the probability 𝑝𝑋 of seeing a 1 on x, i.e., x’s 

signal probability. If a stream X of random bits, called a stochastic number (SN), is applied 

to x in some N-bit time-frame (window) W,  then X’s numerical value pX is defined to be 

the frequency of 1s in W. Hence, when X contains N1 1s, 𝑝𝑋 is approximated by N1/N, 

which we denote by 𝑝̂𝑋. In general,  𝑝̂𝑋 ≈  𝑝𝑋 , and the precision of this approximation tends 

to increase with N. For instance, when N is 4, 8, and 16, the bit-streams 0101, 01011010 

and 1010011001010011 are some of the many possible representations of  𝑝𝑋 = 1/2. Note 

that 𝑝̂𝑋 represents the measured value when N bits are collected, while 𝑝𝑋 is the theoretical 

or “exact” value of interest. To approximate a bit-stream’s value we can also sample some 

part of it. For example, if we reduce N from 16 to 8 bits, we change X from 

1010011001010011 to 10100110, but pX is unchanged. However, reducing Y = 

1001001101001010 from 16 to 8 bits introduces an error of |7/16 – 4/8| = 1/16. 

SC can also process arbitrary (real) numbers if they are suitably approximated and 

scaled to lie in the unit interval [0, 1].  To handle signed numbers, it is common to interpret 

the numerical value of a bit-stream X as 2𝑝𝑋 − 1, in which case the SN format is called 

Table 1.1: Numerical values of an N-bit bit-stream X in the unipolar and bipolar formats. 

Bit-stream X No. of 1s N1 

Numerical value No. of bit-streams  

with the same  

numerical value 
Unipolar pX Bipolar 2pX – 1 

0 0 0 … 0 0 0 0 0 −1 1 

0 0 0 … 0 0 1 

0 0 0 … 0 1 0 

⋮ 

1 0 0 … 0 0 0 

1 1/N 2/N – 1 N 

⋮ ⋮ ⋮ ⋮ ⋮ 

0 0 0 … 1 1 1 

⋮ 

1 1 1 … 0 0 0 

N/2 0.5 0 
𝑁(𝑁 –  1)⋯ (𝑁/2 +  1)

𝑁/2 (𝑁/2 −  1)⋯1
  

⋮ ⋮ ⋮ ⋮ ⋮ 

1 1 1 … 1 1 1 N 1 1 1 
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bipolar, and the effective number range becomes [−1, 1]. The basic format in which X’s 

numerical value is taken to be 𝑝𝑋 is called unipolar. Table 1.1 summarizes the numerical 

values of unipolar and bipolar SNs for different bit-streams of length N. For instance, the 

bit-stream 000…001, in which there is only one 1, has the value 1/N in unipolar format. 

On the other hand, the same bit-stream is interpreted as 2/N – 1 if it is bipolar. Table 1.1 

also shows that SC has a highly redundant encoding format that allows multiple bit-streams 

to represent the same 𝑝𝑋 value. To illustrate, in addition to 000…001, the bit-streams 

000…010,  000…100, …, and 100…000 also have the same numerical values, 1/N and 

2/N – 1, in the unipolar and bipolar formats, respectively. 

Simple logic operations applied to bit-streams can perform useful arithmetic 

operations on their probability values.  Figure 1.3a–b shows stochastic circuits for unipolar 

multiplication and addition. The two-input AND gate performs the multiplication 𝑝𝑋1 ×

𝑝𝑋2  on two N-bit bit-streams X1 and X2 in N clock cycles because the output z is 1 if and  

x1

0

1

(b)(a)

Multiplexer
AND gate

z

pZ = (pX1 + pX2)/2

pZ = pX1 ×  pX2

x1

x2

z

pR =0.5

x2

XNOR gate
NOT gate

(d)(c)

x1

x2

z x1 z

 

Figure 1.3: A selection of components for stochastic computing: (a) unipolar multiplier, 

(b) unipolar and bipolar scaled adder, (c) bipolar multiplier, and (d) bipolar negater. 
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only if both x1 and x2 are 1 in the same cycle. Note that for high accuracy, the input bit- 

streams X1 and X2 must be statistically independent (uncorrelated) and sufficiently long to 

provide acceptable precision, issues we will discuss in detail later. 

Addition is implemented by a two-way multiplexer (MUX) in the scaled form 

0.5(𝑝𝑋1 + 𝑝𝑋2) which ensures that the sum always lies in the probability interval [0, 1]. 

The idea behind the MUX-based adder is that the output z randomly receives half its bits 

from X1 and half from X2, so the number of 1s at z is the average number of 1s in X1 and 

X2. The selection of the input bits to be transferred to the output is controlled by applying 

to the MUX’s select input a stochastic number R of constant value pR = 0.5, i.e., a purely 

random sequence of 0s and 1s.  R can also be seen as the source of the scaling factor in the 

sum. 

In the bipolar format, an XNOR gate performs multiplication (Figure 1.3c), while 

a MUX continues to act as a scaled adder. The output z of the MUX is then the scaled sum 

2𝑝𝑍 − 1 = 0.5 ((2𝑝𝑋1 − 1) + (2𝑝𝑋2 − 1)). Bitwise inversion of an SN X via a NOT gate 

(Figure 1.3d) negates X’s numerical value in the bipolar format thus: (2𝑝𝐹 − 1) =

−(2𝑝𝑋1 − 1). Subtraction is easily implemented by combining a multiplexer and a NOT 

gate. In Figure 1.3 (and in the rest of this dissertation), circuit wires and the signals 

(Boolean variables) they carry  are denoted by small letters x, y, z,…; bit-streams or SNs 

are denoted by capital letters X, Y, Z,…, and their numerical values are denoted by pX, pY, 

pZ, etc. 

Number conversion circuits are necessary at any interface between standard binary 

circuits and stochastic circuits. Figure 1.4a shows a typical binary-to-stochastic converter 

that generates a 2k-bit SN X with the value 𝑝𝑋 = 𝐵/2
𝑘 from a k-bit binary integer B. This 

converter is called a stochastic number generator (SNG). An SNG contains a comparator 

that compares B with a random number and generates a 1 when B is larger than the random 

number. SC typically requires many randomness sources that can produce independent bit-

streams with prescribed probability values. A simple binary counter (Figure 1.4b) converts  
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Figure 1.4: Number converters (a) binary-to-stochastic and (b) stochastic-to-binary. 

an SN to a conventional binary number as the numerical value of the SN depends solely 

on the number of its 1s. The bit-stream length N is selected based on accuracy and precision 

considerations. If N is chosen to be 2k for some k, as is often the case, then X is considered 

to have k-bit precision, i.e. the same precision as a k-bit binary number B. For instance, bit-

streams 0101, 01011010 and 1010011001010011 are three of the many possible SNs 

representing X = 0.5, with 2-, 3- and 4-bit precision, respectively. This notion of precision 

means that 2k bits suffice for X to represent B exactly. 

To achieve k-bit precision, bit-streams of length 2k or more are required, so high 

precision SC is difficult to achieve and requires long computational times. This fact, as 

well as the rapidly decreasing cost and increasing speed of conventional binary circuits, 

caused a loss of interest in SC shortly after it was first proposed back to 1960s [30][69][76]. 

A few attempts of building stochastic computers were made around that time, and they 

revealed the aforementioned drawbacks of SC. 

However, SC has recently made a come-back as an attractive choice for 

applications requiring very small, low-power and low-cost hardware [2]. Several studies 

also have shown the success of applying SC to tasks such as image processing [3][57].  

Because of the simplicity of SC computing units, massive parallelism becomes feasible. 

For example, we can simply use a large number l of AND gates to speed up multiplication 

l times and still have a very small multiplier. Massive parallelism of this kind makes SC 

extremely suitable for applications performing the same computation iteratively with 

different groups of inputs such as the retinal implants discussed earlier. Using SC, the 
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implant’s many pixel processors can be made so small that even when they are replicated 

thousands of times, they have relatively low power consumption. 

Another application that can benefit from SC’s massive parallelism is the design of 

bio-inspired neuromorphic networks [15][16][46][77]. These are special-purpose 

computing systems that can potentially contain enormous numbers of small, highly 

interconnected processors called neurons. Messages are passed between the neurons, and 

a neuron is activated when a combination of its inputs exceeds some threshold [78].  All 

the neurons have essentially the same structure, so neuromorphic networks also tend to 

repeat the same computation on many different neurons with different message sets. Since 

the neurons must be small and low-power, SC is a good candidate for implementing large-

scale neuromorphic networks. Another fact that make SC suitable to neuromorphic 

networks is the similarity between biological neural signals and stochastic numbers. 

Biological neurons communicate by means of noisy voltage spikes which loosely resemble 

bit-streams [81]. Furthermore, the frequency or rate of the spikes in a spike train encodes 

information (although the precise encoding scheme is not understood). Hence, because of 

the way it encodes information and its ability to realize massive parallelism, SC has great 

potential for building circuits that connect natural and artificial neural networks. 

The first of the recent wave of successful applications of SC was to decode low-

density parity-check (LDPC) codes, a class of error-correcting codes that enable data to be 

transmitted over a noisy transmission channel at rates close to the theoretical maximum 

(the Shannon limit) [33]. Decoding LDPC codes requires many complex probability 

computations, which make it difficult to implement in practice. Equation (1.2) shows one 

such computation called node updating. 

 𝑝𝑍  =  
𝑝𝑋 × 𝑝𝑌

𝑝𝑋 × 𝑝𝑌 + (1 − 𝑝𝑋) × (1 − 𝑝𝑌)
 (1.2)  

Figure 1.5 shows a sequential stochastic circuit that computes the arithmetic function 

defined by Equation (1.2) [67]. This small component is called an update node and was  
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Figure 1.5: Update node for LDPC decoder. 

designed for an LDPC decoder employing SC. An equivalent circuit using conventional 

(weighted-binary) arithmetic circuits contains hundreds of gates, as opposed to just a few 

gates in the stochastic implementation. Similarly, a stochastic edge detector realizing 

Robert cross formula of Equation (1.1) is much smaller than an equivalent circuit using 

conventional arithmetic circuits; it will be investigated in detail in Section 2.6. 

SC can also tolerate soft errors caused by environmental noise. Because of its 

inherently redundant encoding scheme which we discussed earlier, soft errors of the bit-

flip type have little effect on the value of an SN. For example, a single bit-flip occurring in 

an N-bit SN changes the output value by 1/N, a relatively small error, whose significance 

diminishes as N increases.  Furthermore, if the errors are bidirectional, e.g., if 0-to-1 and 

1-to-0 bit-flips are equally likely, then the errors tend to cancel one another. This suggests 

that stochastic computing can outperform binary in certain applications [21][22]. 

The main advantages of SC can be summarized as follows. Mainly because of its 

pseudo-random number representation, SC enables small and low-power computing units 

using standard logic circuits. It is also extremely suitable for applications that need massive 

parallelism because the cost of the computing units is so low. Their inherently redundant 

number encoding format makes SNs less sensitive to environmental noise. On the other 

hand, SC has some disadvantages which we consider in the next section. 
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1.3 Research Challenges 

Despite its recent successful applications, SC has several features that limit its 

usefulness. For instance, the need for many number conversion circuits offsets the 

advantage of SC’s small computing units [28][67]. SC’s long computational time and 

precision limitations make SC impractical to use for general-purpose computation [8]. Bit-

stream length tends to grow exponentially as precision requirements increase. Inaccuracies 

caused by random bit fluctuations [31], and awkward scaling requirements [31] also make 

SC less desirable. 

SC requires statistically independent or uncorrelated inputs to generate accurate 

results [23][31]. In other words, the bit-patterns of SNs that are being processed together 

should be unrelated.  The effect of correlation on accuracy is illustrated by the example in 

Figure 1.6. The input bit-streams to the AND-gate stochastic multiplier all have the same 

numerical value 𝑝𝑋𝑖 = 0.5. In Figure 1.6a, the two input streams X1 and X2 have very  

different bit-patterns reflecting a uniform, random-like distribution of their bits; in this case, 

X1 and X2 are intuitively uncorrelated. In Figure 1.6b, on the other hand, X1 and X2 have 

identical bit-patterns, implying they are highly correlated. If x1 = 0 (1), then x2 = 0 (1) and 

the input bit-patterns 01 and 10 never occur; hence, 𝑝𝑋̅1𝑋̅2 = 𝑝𝑋1𝑋2 = 0.5  and 𝑝𝑋̅1𝑋2 =

𝑝𝑋1𝑋̅2 = 0. The output probability 𝑝𝑍 is 0.25 for Figure 1.6a and 0.5 for Figure 1.6b. Thus, 

instead of the accurate result 𝑝𝑍 = 𝑝𝑋1 × 𝑝𝑋2 = 0.25,  Figure 1.6b produces a highly 

inaccurate value 𝑝𝑍 = 0.5. SNs that have become unduly correlated are commonly re-

randomized or de-correlated by converting them back to binary numbers and regenerating  

x1

x2
z

(b)(a)

01100011

10100101 00100001

x1

x2
z

01100101

01100101 01100101

 

Figure 1.6: Stochastic multiplication with (a) uncorrelated inputs, and (b) highly 

correlated inputs. 
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independent versions of  the SNs by means of expensive number converters like those in 

Figure 1.4. The impact of (de) correlation on accuracy has received little attention, and 

designing efficient stochastic circuits that achieve guaranteed accuracy levels in the 

presence of correlation is by no means easy. 

Error tolerance is another aspect of SC which is not well understood; SC is known 

for its tolerance to soft errors, but a full and systematic analysis of this property has not been 

done. Yet another SC’s research challenge is formalizing the design requirements of 

stochastic circuits. For example, the circuit in Figure 1.5 computes a complex and useful 

arithmetic function, but systematic ways to design sequential stochastic circuits like it are 

unknown. It is also unclear, for example, whether other stochastic circuits exist that can 

perform the same arithmetic function as that of Figure 1.5 with greater accuracy or at lower 

cost. Another problem of SC is that while addition, subtraction and multiplication have 

simple and well-known SC implementations, this is not true for an operation as basic as 

division. As a result, a stochastic divider is conspicuously absent from the basic SC 

component set in Figure 1.3, and division is usually avoided or approximated in SC design. 

These issues all suggest that finding a general theoretical framework for designing 

stochastic circuits is essential for achieving low-cost and accurate SC designs. 

1.4 Dissertation Outline 

When designing computation circuits, many requirements and constraints need to 

be considered: power consumption, area cost, computation speed or run-time, and the 

accuracy of the results. Because stochastic circuits are constructed from simple logic 

circuits, they are usually small and low-power. Computation time is related to the required 

precision, but very high precision results are not always necessary. Furthermore, stochastic 

circuits can operate at very high clock speed, which can mitigate the computing time 

problem. Achieving results of acceptable accuracy is probably the most important and least 

understood aspect of SC. Accuracy is therefore the main focus of this dissertation, which 

is divided to two major parts: (1) accuracy analysis and (2) accurate design. Chapters 2 and 
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3 cover the analysis of factors affecting SC’s accuracy, while Chapters 4-6 discuss the 

design of accurate stochastic circuits.  

Chapter 2 introduces an analysis framework to evaluate the impact of soft errors on 

stochastic circuits. This framework is based on a well-developed probabilistic transfer 

matrix (PTM) algebra [53] which is well suited to analyzing signal probabilities in SC. A 

PTM is a matrix in which element Eij is a real number in the interval [0, 1] that denotes the 

conditional probability of producing output j in response to input i. As discussed earlier, 

correlation among interacting bit-streams is also a key factor affecting accuracy. We use 

PTM algebra to analyze the impact of correlation on SC accuracy in Chapter 3. 

Next, we move to the design of accurate stochastic circuits. Chapter 4 presents a 

new way of classifying stochastic circuits, namely the stochastic equivalence class (SEC). 

Based on the SEC concept, we develop a general stochastic circuit synthesis method and 

area-cost optimization algorithms. These algorithms can reduce the area cost of stochastic 

circuits while keeping their accuracy unchanged. Chapter 5 reviews known stochastic 

division methods and presents a new and more efficient divider design. This design uses 

standard stochastic number representations and has better accuracy than previous designs. 

We tackle the issue of inaccuracy due to random fluctuations in Chapter 6. We present a 

general design method that generate exact results when bit-stream lengths are properly 

chosen. This method also addresses the reduction of SC’s long computation times. Finally, 

Chapter 7 draws some conclusions and discusses some directions for future work. 
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CHAPTER 2  

Accuracy and Soft Errors  

 

The previous chapter pointed to accuracy as one of the major challenges facing SC. 

The factors affecting SC negatively including environmental noise, fluctuation of its 

sources of randomness, and correlation among interacting SNs. This chapter addresses the 

impact on accuracy of soft errors due to noise and random fluctuations. We first develop a 

mathematical framework for the analysis in terms Bernoulli random variables (RVs) and 

probabilistic transfer matrices (PTMs). Bernoulli RVs are widely employed in probability 

studies [80] and are well-suited to analyzing SN sources.  PTMs are specifically intended 

for analyzing the probabilistic properties of logic circuits such as reliability or soft-error 

rate [53].  We present a case study in real-time image processing, which shows that 

stochastic circuits can outperform conventional ones under severe error conditions. The 

material presented here has been published in [22] and includes contributions by Armin 

Alaghi. 

2.1 Soft Errors 

Non-deterministic behavior is becoming common in digital circuits implemented 

using conventional CMOS transistors or novel nanotechnologies that can potentially 

replace CMOS [12]. Because of their small physical size, these circuits are easily affected 

by manufacturing defects and by transient errors due to environmental noise called soft 

errors, both of which tend to be probabilistic in nature. For example, carbon nanotube field-

effect transistors (CNFETs), an emerging alternative to CMOS, exhibit behavioral 

variations that are difficult to identify and control [79].  Methods of designing circuits that 
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tolerate errors are also of increasing interest. Von Neumann took the first steps in designing 

reliable circuits using unreliable switches in the 1950s [82]. Since then, many error-tolerant 

design techniques have been proposed, ranging from error-correcting codes [59], to 

replication of hardware, software and/or data [49][71]. Most of these approaches impose 

high circuit overhead, and tend to be used only in the most cost-insensitive applications.  

The ability of stochastic circuits to tolerate soft errors has long been recognized 

[31], but it has never been thoroughly analyzed. Under extremely noisy conditions, this 

property may even allow stochastic circuits to generate more accurate results than 

conventional circuits. In [74], a soft-error analysis of SC circuits is carried out which, 

however, is limited to bit-flips occurring in the circuit’s input data; the stochastic circuits 

themselves are assumed to be fault- or error-free. In this chapter, we attempt to provide a 

more general error analysis for stochastic circuits, especially in the presence of high error 

rates such as are encountered in avionics or spacecraft instrumentation [32]. 

2.2 Probability Model 

To obtain a better understanding of SC, especially with regard to its error behavior, 

probability theory is useful. A stochastic number X is a bit-stream carrying a probability 

value pX where 1 denotes success and 0 denote failure. A stochastic number can therefore 

be viewed as a set of samples from a real-valued random variable (RV) with a Bernoulli 

distribution in which the probability of success is pX [80].  Since probabilistic behavior can 

be easily modeled and analyzed in terms of Bernoulli RVs, we now use these RVs to give 

a formal definition of a stochastic number that abstracts away from bit-stream formatting 

issues: a stochastic number X is a Bernoulli random variable with parameter pX.  

When dealing with RVs, we usually need to sample them in order to estimate their 

values. This sampling process is, in fact, a very basic form of stochastic computing. For 

instance, assume that the AND-gate multiplier of Figure 1.3a has two input SNs X and Y 

with known values pX and pY, but the output is an SN Z of unknown value pZ. Stochastic 

computation with this circuit involves generating samples for X and Y and measuring the 
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success rate at z, and thus estimating pZ. The expected rate of success at z can be calculated 

by the expected value operator denoted 𝔼[𝑍].  Consequently, 

𝑝𝑍 = 𝔼[𝑍] = 𝔼[𝑋 × 𝑌] = 𝔼[𝑋] × 𝔼[𝑌] = 𝑝𝑋 × 𝑝𝑌 

assuming X and Y are independent RVs. For example, if pX = 0.2 and pY = 0.3, then pZ = 

0.06, which is the expected rate of success at z. In practice, the success rate is affected by 

random fluctuations of the data, and usually has a different value 𝑝̂𝑍, which we refer to as 

the estimated value, in contrast with the exact value 𝑝𝑍. The estimated value 𝑝̂𝑍 is obtained 

by sampling the circuit/RV N times and recording the number N1 of 1s appearing at the 

output; this yields 𝑝̂𝑍 = 𝑁1/𝑁. For example, if the RV Z, with the expected value pZ = 0.3, 

is sampled 8 times, one possible outcome is 01100000, and the resulting estimate is 𝑝̂𝑍 = 

2/8 = 0.25.  

In general, 𝑝̂𝑍  can be any of the 2𝑁  different bit-streams derived from random 

sources, which allows  𝑝𝑍 and  𝑝̂𝑍  to differ, sometimes significantly, from one another. 

This difference between 𝑝𝑍 and 𝑝̂𝑍 is considered to be an error caused by randomness in 

the bit-stream representation of 𝑝𝑍. Such random-fluctuation errors are usually measured 

by the mean square error (MSE) 𝐸𝑍 = 𝔼[(𝑝̂𝑍 − 𝑝𝑍)
2]. In the case of the Bernoulli RV’s of 

interest here, we have the MSE of the RV Z [80] 

 𝐸𝑍 = 𝑝𝑍(1 − 𝑝𝑍)/𝑁 (2.1)  

This equation implies that the MSE of an SN estimate can be reduced by increasing the 

number of samples i.e., the bit-stream length N. Also note that 𝐸𝑍 is a function of 𝑝𝑍 and 

N only, implying that no matter what the circuit is (whether the AND of Figure 1.3a or any 

other circuit), once the expected rate of success 𝑝𝑍 at the output is calculated, we can use 

Equation (2.1) to calculate its MSE. 

Besides the random fluctuations inherent in the selection of a particular bit-stream 

to represent Z in a stochastic circuit C, various non-deterministic physical phenomena  
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Figure 2.1: Circuit models for a stochastic multiplier with a bit-flip error e affecting its 

output: (a) internal or built-in error, and (b) externally injected error. 

associated with C itself and its environment affect the sampling process and distort the 

expected values of Z. It is convenient to lump such effects into a bit-flip error e that occurs 

with some probability pe. For example, it is often assumed in the literature [10] that e causes 

bit-flips in Z, which affect 0s and 1s with equal probability pe. Whatever the error behavior 

assumed, two basic questions should be addressed: How do we model the impact of e on 

z, and how do we introduce e into a previously error-free stochastic circuit C? First, we 

assume the error e to be a Bernoulli RV with parameter pe (the bit-flip rate), so it can be 

treated like another SN associated with C. Given this assumption, the circuit’s fault-free 

output z then changes to an erroneous function z*, as illustrated in Figure 2.1a for the AND-

gate stochastic multiplier. For simulation purposes, it is convenient to have a mechanism 

for injecting the error in a way that flips the normal signal z with probability pe, resulting 

in the erroneous output z*. Figure 2.1b shows how to do this by inserting an XOR gate with 

input e into C’s output line. For example, a bit-flip rate of pe = 0.05 with input values pX = 

0.2 and pY = 0.3 changes the expected success rate at the output of the AND multiplier from 

0.06 to 0.104.  An analytical method of calculating the expected value pZ* and its MSE will 

be developed later.  

In addition to random fluctuations and soft errors, the accuracy of SC can also be 

affected by correlated SNs. For instance, the AND gate shown in Figure 1.3a will not be 

an accurate multiplier if its inputs X and Y are correlated. Since interacting signals are not 

independent, 𝔼[𝑋 × 𝑌] ≠ 𝔼[𝑋] × 𝔼[𝑌] and the resulting SN Z has the property 

𝑝𝑍 = 𝔼[𝑍] = 𝔼[𝑋 × 𝑌] ≠ 𝔼[𝑋] × 𝔼[𝑌] = 𝑝𝑋 × 𝑝𝑌 
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The correlation between X and Y, determines the corresponding MSE. For example, if X 

and Y are the same bit-stream, they are highly positively correlated and the MSE will be 

(𝑝𝑋
2 − 𝑝𝑋)

2. Such correlation errors have been investigated in [23] and will be discussed 

in detail later in Chapter 3. 

2.3 Probabilistic Transfer Matrices (PTMs) 

A convenient tool for analyzing the probabilistic behavior of logic circuits is the 

probabilistic transfer matrix (PTM) and its associated algebra [53]. PTMs were introduced 

at the University of Michigan to analyze the reliability of conventional logic circuits.  

Although their practical use may be limited by the fact that PTM size grows exponentially 

with circuit size, this is less of a problem with stochastic circuits, however, which typically 

consist of just a handful of gates.  

In the PTM formulation, the behavior of an n-input m-output combinational circuit 

is represented by a 2n × 2m zero-one matrix whose rows correspond to all input combinations 

and whose columns correspond to all output combinations. This matrix, which is referred 

to an ideal transfer matrix (ITM), is a slightly modified truth table. For instance, a two-input 

AND gate has the ITM 

 𝐽AND = [

1 0
1 0
1 0
0 1

] (2.2)  

where the rows correspond to xy = 00,01,10,11 and the columns correspond to z = 0,1. A 

general PTM is obtained from the ITM by allowing the entry in row r and column c to 

become any real number in the interval [0, 1] that denotes the conditional probability of 

producing output c in response to input r. In the AND gate’s ITM 𝐽AND shown in Equation 

(2.2), the top row tells us that in response to the input xy = 00, the AND produces output z 

= 0 with probability 1, and output z = 1 with probability 0.  
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Another basic arithmetic operation, addition, must be done approximately (by an 

OR gate, for example) or else the result must be scaled to ensure that it lies between 0.0 and 

1.0, as required for probabilities. A common solution is the scaled addition 𝑝𝑍 =

0.5(𝑝𝑋1 + 𝑝𝑋2) performed by the multiplexer of Figure 1.3b, whose ITM is  

 𝑀MUX = [

1 0
0.5 0.5
0.5 0.5
0 1

] (2.3)  

Observe that the multiplexer’s select input carries a constant SN R with probability value 

0.5 that affects the entries, but not the size, of 𝑀MUX. Because R is an SN, it must be 

generated by a stochastic number generator (SNG) like that of Figure 1.3c and so has a 

significant impact on hardware cost. 

 By choosing suitable probability values, PTMs can be constructed to represent a 

remarkably wide range of error scenarios [53]. For example, the effect of a bit-flip error e 

with rate 𝑝𝑒 on the output of the AND gate model in Figure 2.1a, is represented by the PTM 

 𝑀AND = [

1 − 𝑝𝑒 𝑝𝑒
1 − 𝑝𝑒 𝑝𝑒
1 − 𝑝𝑒 𝑝𝑒
𝑝𝑒 1 − 𝑝𝑒

] (2.4)  

   pe0      1 – pe0

   pe1      1 – pe1

   pe2      1 – pe2

1 – pe3     pe3          

(b)(a) (c)

1   0   0   0

0   0   0   1
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1   0
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1   0
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1   0   0   0

0   0   1   0

0   1   0   0
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Figure 2.2: Representative PTMs: (a) NAND gate with four distinct input-dependent bit-

flip error rates, (b) NAND gate with its first input stuck-at-1, (c) fanout wiring network 

with two output branches, and (d) swap or crossover gate that switches the order of two 

wires. 
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Input-dependent bit-flips can be modeled by associating a different 𝑝𝑒 value with every row.  

Observe that a PTM must satisfy the stochastic requirement that all entries in each row add 

up to 1, and that the ITM is just the PTM for the error-free case. 

Circuit PTMs can be manipulated by means of a well-defined algebra which loosely 

resembles linear algebra. Every element of a circuit C is representable by a PTM that 

describes C’s logic function and error status; see Figure 2.2. PTMs can be combined in two 

basic ways corresponding to the two basic circuit interconnection structures, series and 

parallel.  The PTM of two circuits C1 and C2 connected in series is the ordinary matrix 

product of their PTMs, i.e., M1 × M2. The PTM of two circuits connected in parallel is the 

tensor product of the PTMs, denoted M1  M2.  In the tensor product, each element of the 

first matrix M1 is multiplied by the entire second matrix M2, which leads to rapid growth in 

matrix size. A wire corresponds to a 2 × 2 PTM; its ITM case is simply the 2 × 2 identity 

matrix. A signal is represented by a 1 × 2 row vector [p0  p1], where p0 and  p1 are the 

probabilities of the signal  being 0 and 1, respectively. Signal vectors may be treated as a 

special kind of PTM, and can be manipulated with the same basic PTM operations.  

The PTM of an SN X is processed like a signal vector because we treat it as an RV 

with a Bernoulli distribution and a parameter pX denoting the expected probability that a bit 

of X is 1. For PTM analysis, X is written as the 2-element row vector MX = [1  pX     pX]. The 

joint probability distribution of two uncorrelated SNs X and Y is given by their tensor 

product 𝑀𝑋⊗𝑀𝑌, which evaluates to the 4-element vector 

 
𝑀𝑋𝑌 = 𝑀𝑋⊗𝑀𝑌

= [(1 − 𝑝𝑋)(1 − 𝑝𝑌)  (1 − 𝑝𝑋)𝑝𝑌 𝑝𝑋(1 − 𝑝𝑌)  𝑝𝑋𝑝𝑌] 
(2.5)  

The entries of MXY are the probabilities of the input combinations x1x2 = 00,01,10,11. For 

example, consider again the faulty AND-gate multiplier of Figure 2.1a with pX = 0.2,  pY = 

0.3, and pe = 0.05. To determine the probability of getting a 1 at the gate’s output, the input 
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vectors, namely, MX = [0.8   0.2] and MY = [0.7   0.3] are formed first. These vectors are 

then combined via the tensor product of Equation (2.5) 

 𝑀𝑋𝑌 = 𝑀𝑋⨂𝑀𝑌 = [0.56 0.24 0.14 0.06] (2.6)  

to give the probabilities associated with all four possible input combinations. The resulting 

input vector is multiplied by the PTM of the error-affected AND gate to obtain the circuit’s 

output vector. 

𝑀𝑍∗ = 𝑀𝑋𝑌 ×𝑀AND = [0.56 0.24 0.14 0.06] × [

0.95 0.05
0.95 0.05
0.95 0.05
0.05 0.95

] = [0.896 0.104] 

From this, we conclude that 𝑝𝑍∗, i.e., the probability of getting a 1 at z*, is 0.104. Note that 

the PTM 𝑀AND of the AND gate implicitly incorporates the bit-flip error, so there is no need 

for the XOR gate of Figure 2.1b, as is also the case in Equation (2.4). 

2.4 Impact on Stochastic Numbers 

Consider a stochastic number X with the expected value 𝔼[𝑋] = 𝑝𝑋. In a noisy 

environment, if X is affected by bit-flip error e with expected value 𝑝𝑒, the SN becomes 

𝑋∗ = 𝑋⊕ 𝑒. We therefore have 

 𝑝𝑋∗ = 𝔼[𝑋∗] = 𝑝𝑋 + 𝑝𝑒(1 − 2𝑝𝑋) (2.7)   

Besides the expected value of  𝑋∗, we are interested in 𝐸𝑋∗, the mean square error 

of 𝑋∗, which denotes the average error occurring in a stochastic circuit, i.e., the average 

difference between the estimated value 𝑝̂𝑋∗ and the exact value 𝑝𝑋.  

𝐸𝑋∗ = 𝔼[(𝑝̂𝑋∗ − 𝑝𝑋)
2] 
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Note that 𝐸𝑋∗ reflects both the random fluctuations of the bit-stream representation and the 

error e due to bit-flips. As mentioned earlier,  𝑋∗ is a Bernoulli RV defined by its expected 

value, so using only Equation (2.7), we should be able to find 𝑝𝑋∗  and hence 𝐸𝑋∗ 

analytically. Assuming the estimated value 𝑝̂𝑋∗ = 1/𝑁∑ 𝑋𝑖
∗𝑁

𝑖=1  obtained by summing N 

independent samples of  𝑋∗, we obtain 

 

𝐸𝑋∗ = 𝔼[(𝑝̂𝑋∗ − 𝑝𝑋)
2] = 𝔼[𝑝̂𝑋∗

2 + 𝑝𝑋
2 − 2𝑝𝑋𝑝̂𝑋∗]

= 𝔼[𝑝̂𝑋∗
2 ] + 𝔼[𝑝𝑋

2] + 𝔼[−2𝑝𝑋𝑝̂𝑋∗]

=
𝑁2𝑝𝑋∗

2 + 𝑁𝑝𝑋∗(1 − 𝑝𝑋∗)

𝑁2
+ 𝑝𝑋

2 − 2𝑝𝑋𝑝𝑋∗

= (𝑝𝑋∗ − 𝑝𝑋)
2 +

𝑝𝑋∗(1 − 𝑝𝑋∗)

𝑁
 (2.8)    

The first term in Equation (2.8) is the difference between the expected values of X and  𝑋∗, 

and its only cause is the bit-flip e. The second term is a random-fluctuation error that 

diminishes with increasing n. We can re-write 𝐸𝑋∗ in terms of 𝑝𝑋 and 𝑝𝑒 by substituting 

Equation (2.7) into Equation (2.8) thus: 

𝐸𝑋∗ = 𝑝𝑒
2(1 − 2𝑝𝑋)

2 +
1

𝑁
[𝑝𝑋(1 − 𝑝𝑋) + 𝑝𝑒(1 − 𝑝𝑒)(1 − 4𝑝𝑋(1 − 𝑝𝑋))] 

Observe that the MSE error depends on both 𝑝𝑋  and 𝑝𝑒 . For sufficiently large N, 𝐸𝑋∗ 

becomes 0 when 𝑝𝑋 = 1/2, while it becomes 𝑝𝑒 for 𝑝𝑋 = 1. 

In a similar way, we can analyze the effect of bit-flip errors on conventional (non-

stochastic) binary numbers. An m-bit binary number B affected by independent and 

identically distributed bit-flips on each bit becomes B*, which can potentially be any m-bit 

number with some probability. The error of B* and its probability of occurrence depend on 

the number of bit-flips mbf. To find the MSE 𝐸𝐵∗ in this case, we calculate the weighted 

average error over all possible B* values.   
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Figure 2.3: MSE of a stochastic and a binary number in the presence of bit-flips 

calculated using analytical and simulation methods: (a) for different values of pe, and (b) 

for different values of pX. 

𝐸𝐵∗ = ∑(𝐵𝑖
∗ − 𝐵)2𝑝𝑒

𝑚𝑏𝑓(1 − 𝑝𝑒)
𝑚−𝑚𝑏𝑓

2𝑚

𝐵𝑖
∗=0

 

Using the above equations, we compare the effect of bit-flips on a 5-bit binary 

number and an SN of length 32 whose precision is also 5 bits. Figure 2.3a shows the MSEs 

𝐸𝑋∗ and 𝐸𝐵∗ at different bit-flips rates. Initially, the SN has a higher error due to its random 

fluctuations. However, as pe increases, SN outperforms the binary number with respect to 

error tolerance. Figure 2.3b shows the MSEs 𝐸𝑋∗  and 𝐸𝐵∗  at different values of pX; the 

MSEs in this case are averaged over several bit-flip rates ranging from pe = 0.001 to 0.25. 

As can be seen, 𝐸𝑋∗ is approximately 50% less than 𝐸𝐵∗. These analytical results are also 

confirmed in Figure 2.3 by Monte Carlo simulation. 

2.5 Impact on Stochastic Circuits 

A key feature of our error analysis is the use of PTMs to estimate the impact of 

errors on stochastic behavior. PTMs can be used to calculate the probability distribution of 

all output combinations of a stochastic circuit C. Given specific input signal probabilities, 

the input vector is multiplied by the PTM of the circuit C to obtain the output probabilities. 
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For example, consider again the AND gate Figure 1.3a which multiplies two SNs pX and 

pY, and has output error 𝑝𝑒. Generalizing Equation (2.6) gives the 1 × 4 input vector 

𝑀𝑋𝑌 = [(1 − 𝑝𝑋)(1 − 𝑝𝑌) (1 − 𝑝𝑋)𝑝𝑌 𝑝𝑋(1 − 𝑝𝑌) 𝑝𝑋𝑝𝑌] 

Now, consider two cases: first, the AND gate is error-free, and second, it contains 

the error e defined by the PTM in Equation (2.4). In the error-free case, the output vector is   

𝑀𝑋𝑌 × 𝐽AND = [1 − 𝑝𝑧 𝑝𝑍] = [1 − 𝑝𝑋𝑝𝑌 𝑝𝑋𝑝𝑌] 

indicating that the probability of output 1 is  𝑝𝑋𝑝𝑌. If error e is present, then using 𝑀AND 

from Equation (2.4), the output becomes 

𝑀𝑋𝑌 ×𝑀AND = [
(1 − 𝑝𝑒)((1 − 𝑝𝑋)(1 − 𝑝𝑌) + (1 − 𝑝𝑋)𝑝𝑌 + 𝑝𝑋(1 − 𝑝𝑌)) + 𝑝𝑒𝑝𝑋𝑝𝑌

𝑝𝑒((1 − 𝑝𝑋)(1 − 𝑝𝑌) + (1 − 𝑝𝑋)𝑝𝑌 + 𝑝𝑋(1 − 𝑝𝑌)) + (1 − 𝑝𝑒)𝑝𝑋𝑝𝑌
]

T

 

where T denotes matrix transposition (used to save space). This implies that the expected 

value of the output is 𝑝𝑍∗ = 𝑝𝑒((1 − 𝑝𝑋)(1 − 𝑝𝑌) + (1 − 𝑝𝑋)𝑝𝑌 + 𝑝𝑋(1 − 𝑝𝑌)) + (1 −

𝑝𝑒)𝑝𝑋𝑝𝑌. The MSE 𝐸𝑍∗ can now be calculated from Equation (2.8). 

We can readily generalize the above technique to arbitrary stochastic circuits to 

analyze their stochastic behavior under single or multiple errors. First, generate the PTMs 

and ITMs for each individual logic or wiring gate. Then, apply the ordinary and tensor 

products repeatedly to calculate the PTM and ITM for the entire circuit [53]. Again, if the 

circuit has n inputs and m outputs, its final PTM and ITM will both be 2n × 2m matrices.   

Besides using the PTM method to analyze the behavior of a stochastic circuit in the 

presence of errors, we can employ gate-level circuit simulation to achieve the same goal.  

As in Figure 2.1, we inject the bit-flips into a gate via an XOR gate that flips the output 

signal z of C with probability pe, resulting in a new erroneous signal z*. For a circuit 

containing multiple gates, the error is injected into every gate. 
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Figure 2.4: Stochastic circuits for the scaled addition pZ = 0.5 (pX1 + pX2): (a) majority-

based, (b) multiplexer-based, (c) majority-based with error injection, and (d) multiplexer-

based with error injection. 

Consider, for example, the stochastic realization of scaled addition. This operation 

can be implemented either by a majority circuit or a multiplexer [1], as shown in Figure 

2.4a–b. The special input r receives a constant SN of value 0.5. The corresponding circuits 

with XOR gates added for error injection are shown in Figure 2.4c–d. To focus on the 

behavior of the computational hardware (the logic gates) in the presence of errors, we 

assume the data sources are not affected by errors. 

Figure 2.5 presents error data obtained by PTM analysis and circuit simulation for 

the three basic gate types AND, OR and NOT, as well as the scaled adder circuits of Figure 

2.4. The error rates of all gates are assumed to be the same ( 𝑝𝑒1 = 𝑝𝑒2 = 𝑝𝑒3 = 𝑝𝑒4 = 𝑝𝑒), 

but they are generated from independent random sources. We simulated the circuit with and 

without the added XOR gates to get the expected error-free values and the values affected  
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Figure 2.5: MSE at the outputs of representative stochastic circuits in the presence of soft 

errors calculated using analytical and simulation methods. 

by soft errors. The MSE is given by 𝐸𝑍∗ = 𝔼[(𝑝̂𝑍∗ − 𝑝𝑍)
2].  As Figure 2.5 shows, the 

analytical and simulation results are quite consistent.  

We also constructed PTMs MMAJ and MMUX for the circuits of Figure 2.4a–b level 

by level from the PTMs of their component gates, including wiring gates, according to the 

method of [53].  In high-level symbolic form, we obtain the PTM expressions 

𝑀MAJ = (𝐹2𝐹2𝐹2)(𝐼𝑠𝑤𝑎𝑝𝑠𝑤𝑎𝑝𝐼)(𝐴𝑁𝐷2𝑝𝑒𝐴𝑁𝐷2𝑝𝑒𝐴𝑁𝐷2𝑝𝑒)(𝑂𝑅3𝑝𝑒) 

𝑀MUX = (𝐼𝐹2𝐼)(𝐼𝑁𝑂𝑇𝑝𝑒𝐼𝐼)(𝐴𝑁𝐷2𝑝𝑒𝐴𝑁𝐷2𝑝𝑒)(𝑂𝑅2𝑝𝑒) 

Fully expanded, MMAJ and MMUX become 8 × 2 matrices, which we derived from the above 

equations with the aid of GNU Octave [35]. The ITMs JMAJ and JMUX for the two circuits, 

which have 𝑝𝑒 = 0, take the form 

𝐽MAJ = [
1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1

]
T

 

𝐽MUX = [
1 1 1 0 0 0 1 0
0 0 0 1 1 1 0 1

]
T
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When errors are present, the 0-1 entries of JMAJ and JMUX must be replaced by complex 

polynomial expressions involving the variable pe to obtain MMAJ and MMUX in expanded 

form.  

Knowing both the erroneous PTMs and the ITMs, we can calculate the 

corresponding MSEs; see Figure 2.5. Again, the analytical results confirm the circuit 

simulations. In other words, both circuit simulation and PTM manipulation are valid 

methods for estimating soft-error effects in stochastic circuits. These results also show that 

when multiple errors are present, the errors accumulate. Hence, when the error rate is low, 

the multi-gate adders have worse MSE than single gates. When the error rate is high, for 

example, near 0.5, the behavior of all the circuits tends to appear random, so that they all 

have approximately the same MSE. 

2.6 Case Study: Image Edge Detection 

As noted in Section 1.2 in connection with retinal implants, edge detection is a 

fundamental operation in image processing and computer vision. Its goal is to identify 

significant local changes of intensity in digital images. Stochastic edge detectors have been 

shown to be significantly smaller, faster, more power-efficient, and more noise-tolerant than 

conventional ones in real-time image processing; see Figure 2.6 [3]. These designs, which 

are based on the Roberts cross edge-detection algorithm [37] of Equation (1.1), compute a 

moving average across a pixel window of size 2 × 2 for each pixel 𝑝𝑋𝑖,𝑗 at row i and j of the 

image, and generate the stochastic output value 𝑝𝑍𝑖,𝑗  

 𝑝𝑍𝑖,𝑗 = 0.5 (|𝑝𝑋𝑖,𝑗 − 𝑝𝑋𝑖+1,𝑗+1| + |𝑝𝑋𝑖+1,𝑗 − 𝑝𝑋𝑖,𝑗+1|) (2.9)  

Note that the stochastic implementation of Equation (2.9) requires the scaling factor 0.5 to 

perform the addition, and takes advantage of certain correlation properties of stochastic  
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Figure 2.6: Edge detectors: (a) stochastic and (b) conventional. 

numbers. An XOR gate z = x ⨁ y with uncorrelated (independent) inputs performs the 

function 𝑝Z = 𝑝𝑋(1 − 𝑝𝑌) + (1 − 𝑝𝑋)𝑝𝑌. However, if SNs X and Y are highly correlated 

with maximum overlap of 1s, the XOR gate’s function becomes  𝑝𝑍 = |𝑝𝑋 − 𝑝𝑌|, which 

allows Equation (2.9) to be realized by two XOR gates and a multiplexer as shown in Figure 

2.6a [3]. Assuming 5-bit precision, Figure 2.6b shows the corresponding binary design 

which contains several large arithmetic blocks, including addition, subtraction and absolute-

value circuits. The stochastic edge detector is about two orders of magnitude smaller than 

the conventional design. 

We now use PTMs to analyze the behavior of these circuits under noisy conditions. 

The effect of a bit-flip rate of 𝑝𝑒 on the output of every gate in the circuits is represented by 

a suitable PTM. Suppose the PTMs for the stochastic and conventional edge detectors are 

Msc and Mconv, respectively. For each pixel and its 2 × 2 window, we generate the 

corresponding input vectors Min and M′in for the stochastic and conventional edge detectors, 

respectively. The result of the edge-detection operation is then calculated as Min × Msc and 

M′in × Mconv. In this example, we assume that 5-bit precision is required, so the bit-stream 

length is 25 = 32 for the stochastic design. We do not consider any additional circuits that 

might be needed for number conversion between the binary and stochastic formats. 
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Figure 2.7: MSE of stochastic and conventional edge-detection circuits in the presence of 

soft-errors. 

Figure 2.7 compares the MSEs of the stochastic and conventional designs. As 

expected, when the error rate is low, the stochastic circuit is more affected by random 

fluctuation errors and performs worse than the conventional one. However, as the error rate 

increases, the MSE of the conventional design increases rapidly. When the error rate is very 

high, all the signal values become essentially random in both designs, so the MSEs coverage 

to the same value. Note that this result is consistent with the results shown in Figure 2.5. 

Figure 2.8 compares the output image quality of the two edge detectors of Figure 

2.6 in the presence of errors injected into them to simulate the impact of soft errors on the 

edge-detection hardware. It shows that when noise causes the output of the conventional 

circuit to become almost unrecognizable (at around pe = 2%), the stochastic circuit still 

produces acceptable results. In this experiment, noise is injected to demonstrate the fault-

tolerant behavior of the stochastic circuits. Together, these two experiments show that when 

the conventional design fails to produce recognizable results, stochastic computing can 

produce good results in the presence of severe noise that affects both the input image and 

the edge-detection circuit. 
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Figure 2.8: Comparison of stochastic and conventional edge detection for various soft-

error rates (bit-flips percentages) in the edge-detection circuits: (a) 0.1%, (b) 0.5%, (c) 

1% and (d) 2%. 

2.7 Summary 

We have presented a quantitative study of error tolerance that considers multiple 

error effects, and accounts for the inherent fluctuations in stochastic data, as well as 

externally induced bit-flip errors affecting the data-processing circuits. We successfully 

used two complementary approaches: algebraic analysis with probabilistic transfer 

matrices (PTMs), and Monte Carlo circuit simulation. The algebraic analysis is more 

accurate than the simulation approach, but has the disadvantage of being infeasible for 

large circuits. Since stochastic circuits are very simple by nature, the algebraic approach is 

generally applicable to them, and is hence preferred. The simulation approach gives 

reasonably accurate results, and is feasible for circuits of any reasonable size. Our 

experimental results show that stochastic circuits have far better error tolerance than 

conventional binary circuits, especially at higher error rates. 
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CHAPTER 3  

Correlation 

 

The effect of soft errors and random sources on the accuracy of SC was examined 

in the previous chapter. This chapter presents our research on analyzing and controlling the 

impact of signal dependence or correlation on accuracy. Interacting bit-streams are normally 

required to be independent or uncorrelated. For example, an AND gate performs 

multiplication accurately only if it input SNs are highly uncorrelated; see Figure 1.6  As 

stochastic signals pass through the levels of a circuit and interact with one another, 

correlations among them tend to increase. Unfortunately, maintaining adequate 

independence among such signals is costly and not well understood. The goal of this chapter 

is to quantify the impact of correlation on the accuracy in SC, and to evaluate the major 

known methods of reducing correlation or, equivalently, maintaining accuracy over multiple 

computational steps. To this end, we develop a general analytic framework for SC based on 

PTM algebra. This work has been published previously in [23].  

3.1 Analysis Framework 

Accuracy-versus-time concerns and the need to generate many uncorrelated 

randomized inputs have long prevented the widespread use of SC. Our understanding of 

how correlation affects stochastic circuits is still mainly qualitative, and only a few attempts 

have been made to quantify it and analyze its properties. Alaghi and Hayes introduced the 

SC correlation (SCC) measure [4], while Ma et al. have analyzed aspects of variance 

propagation in stochastic circuits when inputs are uncorrelated [62]. It is well-known that 

correlation can be reduced by the introducing special circuits to re-randomize SNs that have 
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become correlated, but the impact of re-randomization circuits on accuracy and hardware 

cost has not been studied.   

As Chapter 2 shows, PTMs and their associated algebra constitute a powerful tool 

for analyzing complex stochastic behavior. This chapter develops a general PTM-based 

framework for quantitatively analyzing the impact of correlation on the accuracy of 

stochastic circuits. As discussed in Section 2.2, we can treat an SN X as an RV with a 

Bernoulli distribution and a parameter pX denoting the expected probability that a bit of X is 

1. We also discussed the PTM analysis of combinational circuits in Section 2.3. For example, 

if 𝑝𝑋1 = 0.6 and  𝑝𝑋2 = 0.3, Equation (2.5) becomes 𝑀𝑋1𝑋2 = [0.28    0.12    0.42    0.18]. 

With input distribution 𝑀𝑋1𝑋2 and JAND of Equation (2.2), an AND gate z = x1x2 generates 

the output distribution 

 𝑀𝑍 = 𝑀𝑋𝑌 × 𝐽AND = [0.28    0.12   0.42   0.18] [

1 0
1 0
1 0
0 1

] = [0.82  0.18] (3.1)  

We now extend that discussion to sequential circuits because in addition to re-

randomizing SNs, another correlation-reduction approach is to isolate correlated SNs by 

deriving SNs from delayed versions of a single random sequence [31]. This approach inserts 

delay elements called isolators into parts of a circuit that need their correlation reduced.  

Isolators are used to shift SNs relative to one another so that correlated bits no longer overlap.   

A D-type flip-flop suffices to implement an isolator; when inserted into a wire carrying a 

signal x, it delays x by one clock cycle. This, of course, has the effect of making a 

combinational circuit sequential. Stochastic circuits containing sequential components have 

received little attention. 

To illustrate the extension of PTM to sequential circuits, consider the JK flip-flop in 

Figure 3.1. The input combinations JK = 01 and 10 set the flip-flop’s state  𝑄+ to 0 and 1, 

respectively. JK = 00 leaves the state unchanged at 𝑄+ = 𝑄, while JK = 11 toggles the flip- 
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Figure 3.1: JK flip-flop performing the stochastic operation pZ = pX1 / (pX1 + pX2). 

flop, making 𝑄+ = 𝑄̅. Therefore, 𝑝𝑄+ = 𝑝00𝑝𝑄 + 𝑝10 + 𝑝11(1 − 𝑝𝑄), where 𝑝00,, 𝑝01 and 

𝑝11 denote the probability of JK = 00, 10 and 11, respectively.  Now 𝑝𝑧 = 𝑝𝑄+ = 𝑝𝑄 when 

the flip-flop is in steady-state, so it is easily seen that 𝑝𝑍 = (𝑝10 + 𝑝11) (1 − 𝑝00 + 𝑝11)⁄ . 

With 𝑝𝑋1 = 𝑝𝐽 = 𝑝10 + 𝑝11, 𝑝𝑋2 = 𝑝𝐾 = 𝑝01 + 𝑝11, and 𝑝00 + 𝑝01 + 𝑝10 + 𝑝11 = 1 , the 

output z has the probability 𝑝𝑍 = 𝑝𝑋1 (𝑝𝑋2 + 𝑝𝑋2)⁄ . This approximates the basic division 

operation  𝑝𝑍 = 𝑝𝑋1 𝑝𝑋2⁄  when the dividend 𝑝𝑋1  is small. However it becomes very 

inaccurate when the divisor 𝑝𝑋2 is small. The probabilistic behavior of sequential circuits 

can also be analyzed by PTMs when pseudo-inputs to represent current state variables are 

introduced. With the three inputs x1x2Q, the (transposed) ITM for the JK flip-flop is  

 𝐽JK = [
1 0 1 1 0 0 0 1
0 1 0 0 1 1 1 0

]
T

 (3.2)  

whose entries are next-state values z = Q+.  

This chapter presents a PTM-based framework for quantifying the impact of 

correlation on the accuracy of stochastic circuits. It addresses the two most practical of the 

known methods for reducing correlation, namely regeneration and isolation. The results 

provide formulas for calculating or bounding numerical accuracy, and so have the potential 

to increase the application range of SC. They also demonstrate that the isolation method of 

reducing correlation offers major advantages in improving accuracy at relatively low cost. 
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3.2 Representation 

Many application-dependent measures of the statistical similarity between bit-

streams have been proposed [26]. The standard definition used in communication theory is 

 𝜌(𝑋1, 𝑋2) =
𝑎𝑑 − 𝑏𝑐

√(𝑎 + 𝑏)(𝑎 + 𝑐)(𝑏 + 𝑑)(𝑐 + 𝑑)
 (3.3)  

and is known as Pearson correlation. Here a denotes the number of overlapping 1s, b is the 

number of overlapping 1s of X1 and 0s of X2, c is the number of overlapping 0s of  X1 and 

1s of  X2, and d denotes the number of overlapping 0s. Pearson correlation is designed so 

that 𝜌 = +1 or −1 implies that X1 and X2 are identical or complementary, respectively. For 

example, with X1 = 01100011 and X2 = 10100101 as in Figure 1.6a, we have a = b = c = d 

= 2 and 𝜌(𝑋1, 𝑋2) = 0. If two bit-streams are highly correlated, such as X1 = X2 = 0110 

0101 in Figure 1.6b, then a = d = 4, b = c = 0 and 𝜌(𝑋1, 𝑋2) = 1. 

Pearson correlation is unsuited to our needs, however. Instead, we use the SC 

correlation (SCC) measure from [4], which was specifically designed for SC. With the 

notation introduced above for 𝜌, SCC is defined as follows. 

 𝑆𝐶𝐶(𝑋1, 𝑋2) =

{
 

 
𝑎𝑑 − 𝑏𝑐

𝑁 ∙ min(𝑎 + 𝑏, 𝑎 + 𝑐) − (𝑎 + 𝑏)(𝑎 + 𝑐)
    if 𝑎𝑑 > bc

𝑎𝑑 − 𝑏𝑐

(𝑎 + 𝑏)(𝑎 + 𝑐) − 𝑁 ∙ max(𝑎 − 𝑑, 0)
         otherwise

 (3.4)  

where N = a + b + c + d denotes the bit-stream length. 

A key property of SCC is that the correlation between 𝑋1and 𝑋2 is not dependent on 

their probability values. In other words, when the values of two SNs are different, as long 

as they have maximum/minimum overlap of 1s and 0s, they consistently have the SCC value 

+1/1.  For example, suppose X1 = 10110010 and X2 = 10100000, so whenever 𝑋2 has a 1 
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bit, the corresponding position of 𝑋1 is also 1. Then SCC(X1, X2) = +1 and we can say that 

𝑋1and 𝑋2 have the maximum similarity, but 𝜌(𝑋1, 𝑋2) = 0.577 does not reflect this.  

SCC can be further used to model the probabilistic behavior of a circuit whose inputs 

are correlated. For a two-input stochastic circuit with output 𝑍(𝑋1, 𝑋2), 

 

𝑝𝑍∗(𝑝𝑋1 , 𝑝𝑋2)

= {

(1 + 𝑆𝐶𝐶) × 𝑍0(𝑝𝑋1 , 𝑝𝑋2) − 𝑆𝐶𝐶 × 𝑍−1(𝑝𝑋1 , 𝑝𝑋2)   if 𝑆𝐶𝐶 < 0

(1 − 𝑆𝐶𝐶) × 𝑍0(𝑝𝑋1 , 𝑝𝑋2) + 𝑆𝐶𝐶 × 𝑍1(𝑝𝑋1 , 𝑝𝑋2)      otherwise 
  

 
(3.5)  

where 𝑍0(𝑝𝑋, 𝑝𝑌), 𝑍−1(𝑝𝑋 , 𝑝𝑌) and 𝑍+1(𝑝𝑋, 𝑝𝑌) are the circuit functions when SCC is 0, 

1 and +1, respectively. For example, the AND gate performs multiplication when SCC is 

0, so 𝑍0(𝑝𝑋1 , 𝑝𝑋2) = 𝑝𝑋1 × 𝑝𝑋2 . With SCC = 1 and +1, we have 𝑍−1(𝑝𝑋1 , 𝑝𝑋2) =

max(𝑝𝑋1 + 𝑝𝑋2 − 1, 0) and 𝑍+1(𝑝𝑋1 , 𝑝𝑋2) = min(𝑝𝑋1 , 𝑝𝑋2) [4]. Thus correlation can be 

viewed as a function-changing phenomenon.  

As demonstrated in Section 3.1, PTMs can represent correlated signals. The 4-

element vector V giving the joint distribution of two uncorrelated signals 𝑋1 and 𝑋2 can be 

easily computed via the tensor product. V cannot be computed so easily when 𝑋1 and 𝑋2 

are correlated. To understand the impact of correlation on accuracy,   a new way to compute 

the joint distribution of two bit-streams is needed, which we now develop.  

Consider input bit-streams 𝑋1 and 𝑋2 whose PTMs are 𝑉𝑋1 = [1 − 𝑝𝑋1 𝑝𝑋1] and 

𝑉𝑋2 = [1 − 𝑝𝑋2 𝑝𝑋2],  respectively. Let 𝑉in = [𝑝00 𝑝01 𝑝10 𝑝11].  When 

𝑆𝐶𝐶(𝑋1, 𝑋2) = 0, the input vector 𝑉in is  

 
𝑉0 = 𝑉𝑋1⨂  𝑉𝑋2

= [(1 − 𝑝𝑋1)(1 − 𝑝𝑋2) (1 − 𝑝𝑋1)𝑝𝑋2 𝑝𝑋1(1 − 𝑝𝑋2) 𝑝𝑋1𝑝𝑋2] 
(3.6)        
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When 𝑆𝐶𝐶(𝑋1, 𝑋2) = 1, maximum overlap of the bit-streams is assured. If  𝑝𝑋1 ≥ 𝑝𝑋2 ,  

𝑥1𝑥2 = 01 can never occur and the probabilities of 𝑥1𝑥2 being 00, 10 and 11 are 1 − 𝑝𝑋1, 

𝑝𝑋1 − 𝑝𝑋2 and 𝑝𝑋2 , respectively. We can therefore express the input vector as 

 𝑉+1 = {
[1 − 𝑝𝑋1 0 𝑝𝑋1 − 𝑝𝑋2 𝑝𝑋2]  if 𝑝𝑋1 ≥ 𝑝𝑋2
[1 − 𝑝𝑋2 𝑝𝑋2 − 𝑝𝑋1 0 𝑝𝑋1]    otherwise

 (3.7)  

or, equivalently, 

 
𝑉+1 = [1 − max(𝑝𝑋1 , 𝑝𝑋2) max(0, 𝑝𝑋2 − 𝑝𝑋1) 

                                             max(0, 𝑝𝑋1 − 𝑝𝑋2) min(𝑝𝑋1 , 𝑝𝑋2)] 
(3.8)        

Example 3.1: For example, let 𝑝𝑋1 = 0.9, 𝑝𝑋2 = 0.2 with the bit-streams X1 = 1111111110 

and X2 = 1100000000. We then have 𝑉+1 = [1 − 0.9 0 0.9 − 0.2 0.2] =

[0.1 0 0.7 0.2].                                                                                                               

When 𝑆𝐶𝐶(𝑋1, 𝑋2) = −1 , minimal overlap occurs, and 𝑥1𝑥2 = 11  will never 

appear if 𝑝𝑋1 + 𝑝𝑋2 ≤ 1. On the other hand, 𝑥1𝑥2 = 00 will never appear if 𝑝𝑋1 + 𝑝𝑋2 ≥ 1. 

Therefore, we need to consider these two cases separately.  

 𝑉−1 = {
[1 − (𝑝𝑋1 + 𝑝𝑋2) 𝑝𝑋2 𝑝𝑋1 0]       if 𝑝𝑋1 + 𝑝𝑋2 ≤ 1

[0 1 − 𝑝𝑋1 1 − 𝑝𝑋2 𝑝𝑋1 + 𝑝𝑋2 − 1]     otherwise
 (3.9)  

Example 3.2: Let 𝑝𝑋1 = 0.6, 𝑝𝑋2 = 0.2 with X1 = 1111110000 and X2 = 0000000011. 

Since 𝑝𝑋 + 𝑝𝑌 = 0.8 < 1,   

𝑉−1 = [1 − (0.6 + 0.2) 0.2 0.6 0] = [0.2 0.2 0.6 0] 

With 𝑝𝑋1 = 0.8, 𝑝𝑋2 = 0.3, X1 = 1111111100 and X2 = 000000011. Hence, we have 𝑝𝑋1 +

𝑝𝑋2 = 1.2 > 1, therefore 𝑉−1 = [0 0.2 0.7 0.1].                                                           
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Generalizing to arbitrary values of SCC, the input vector V is a linear combination 

of 𝑉0, 𝑉−1, and 𝑉+1 given by the following theorem. 

Theorem 3.1: Let X1 and X2 be SNs with probabilities 𝑝𝑋1 and 𝑝𝑋2 , respectively, and 

correlation 𝑆𝐶𝐶(𝑋1, 𝑋2). Their joint distribution VSCC(X1, X2) is  

 𝑉𝑆𝐶𝐶 = {
(1 + 𝑆𝐶𝐶) × 𝑉0 − 𝑆𝐶𝐶 × 𝑉−1  if 𝑆𝐶𝐶 < 0     
(1 − 𝑆𝐶𝐶) × 𝑉0 + 𝑆𝐶𝐶 × 𝑉+1  otherwise      

 (3.10)  

where V0, V+1 and V-1 are  the joint distributions when SCC = 0, +1 and –1, and  given by 

Equations (3.6), (3.7) and (3.9), respectively.  

Note that if the correlation measure is 𝜌(𝑋1, 𝑋2) defined by Equation (3.3), the joint 

distribution of X1 and X2 cannot be easily formulated as in Equation (3.10). In fact, we 

cannot even specify 𝑉+1 and 𝑉−1, because 𝑉+1 and 𝑉−1 are defined only when 𝑝𝑋1 = 𝑝𝑋2 

and 𝑝𝑋2 = 1 − 𝑝𝑋1. 

3.3 Impact on Stochastic Circuits 

Next we examine the impact of correlation on three basic operations: addition, 

division and multiplication. We also use PTMs to show that scaled addition and approximate 

division are correlation-insensitive.  

Figure 1.6 shows that uncorrelated input signals are important for accurate stochastic 

computing. However, not all SC circuits are vulnerable to correlation. For example, the 

results of the multiplexer-based stochastic adder (Figure 2.4b) are accurate even when the 

inputs are correlated [4]. Note that the same scaled addition can be implemented by a 

majority gate realizing z = MAJ(x1, x2, r); see Figure 2.4a. The majority-based adder must 

also be correlation-insensitive because its PTM MMAJ = MMUX; see Equation (2.3) for MMUX.  

Addition is sometimes approximated by an OR gate since 𝑝Z = 𝑝𝑋1 +

𝑝𝑋2− 𝑝𝑋1𝑝𝑋2 𝑝𝑋1 + 𝑝𝑋2  when 𝑝𝑋1and 𝑝𝑋2are small; this is “saturated” addition [31]. It 
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may provide acceptably accurate results when the input probabilities are very low.  

However, it is sensitive to correlation, and saturated addition is little used.   

Using PTMs, we can show that the accuracy of the approximate divider in Figure 

3.1 is unaffected by correlation among its inputs. Again, let 𝑉in = [𝑝00 𝑝01 𝑝10 𝑝11]. 

Since the divider is a sequential circuit whose next state Q+ depends on the current state Q, 

we have the effective input vector  𝑉in⨂[1 − 𝑝𝑄 𝑝𝑄]. The corresponding output vector is  

𝑉out = [1 − 𝑝𝑄+ 𝑝𝑄+] = (𝑉in⨂[1 − 𝑝𝑄 𝑝𝑄]) × 𝐽JK 

and 𝑝𝑄+ = 𝑝00𝑝𝑄 + 𝑝10(1 − 𝑝𝑄) + 𝑝10𝑝𝑄 + 𝑝11(1 − 𝑝𝑄). Now 𝑝𝑧 = 𝑝𝑄+ = 𝑝𝑄 when the 

flip-flop is in steady-state, so it is easily seen that 𝑝𝑍 =
𝑝10+𝑝11

1−𝑝00+𝑝11
. Again, using 𝑝𝑋1 = 𝑝10 +

𝑝11, 𝑝𝑋2 = 𝑝01 + 𝑝11, and 𝑝00 + 𝑝01 + 𝑝10 + 𝑝11 = 1, we  conclude that  𝑝𝑍 =
𝑝𝑋1

𝑝𝑋1+𝑝𝑋2
 

always holds. The LDPC update node in Figure 1.3e is another example showing that the 

JK flip-flop is correlation insensitive, while its inputs are negatively correlated with  SCC  

=  1.  

SC multiplication is strongly affected by correlated inputs, as illustrated by Figure 

1.6. This error may be analyzed as follows. Let Z and Z* represent the exact and erroneous 

multiplication results. Clearly, 𝑝𝑍(𝑝𝑋, 𝑝𝑌) = 𝑝𝑥 × 𝑝𝑦, but when correlation is present,  

 

𝑝𝑧∗(𝑝𝑋, 𝑝𝑌)

= {
(1 + 𝑆𝐶𝐶) × 𝑝𝑋𝑝𝑌 − 𝑆𝐶𝐶 × max(𝑝𝑋 + 𝑝𝑌 − 1,0)   if 𝑆𝐶𝐶 < 0
(1 − 𝑆𝐶𝐶) × 𝑝𝑋𝑝𝑌 + 𝑆𝐶𝐶 × min(𝑝𝑋 , 𝑝𝑌)        otherwise      

 
(3.11)  

The mean-square error (MSE) 𝐸𝑍∗ is the average difference between the estimated value 

𝑝̂𝑍∗ and the exact value 𝑝𝑍 squared, so 𝐸𝑍∗ = 𝔼[(𝑝̂𝑍∗ − 𝑝𝑍)
2], where 𝔼 is the expectation 

operator. Note that 𝑝̂𝑍∗ = 1/𝑁∑ 𝑍𝑖
∗𝑛

𝑖=1  is obtained by summing N independent samples of 

Z*, so   
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𝐸𝑍∗ = 𝔼[(𝑝̂𝑍∗ − 𝑝𝑍)
2] = 𝔼[𝑝̂𝑍∗

2 + 𝑝𝑍
2 − 2𝑝𝑍𝑝̂𝑍∗]

= 𝔼[𝑝̂𝑍∗
2 ] + 𝔼[𝑝𝑍

2] + 𝔼[−2𝑝𝑍𝑝̂𝑍∗]

=
𝑁2𝑝𝑍∗

2 + 𝑁𝑝𝑍∗(1 − 𝑝𝑍∗)

𝑁2
+ 𝑝𝑍

2 − 2𝑝𝑍𝑝𝑍∗

= (𝑝𝑍∗ − 𝑝𝑍)
2 +

𝑝𝑍∗(1 − 𝑝𝑍∗)

𝑁
 (3.12)  

Therefore, in the AND multiplier case, the MSE is  

 

𝐸𝑍∗

= {
𝑆𝐶𝐶2(𝑝𝑋𝑝𝑌 −max(𝑝𝑋 + 𝑝𝑌 − 1,0))

2 +
𝑝𝑍∗(1 − 𝑝𝑍∗)

𝑁
  if 𝑆𝐶𝐶 < 0

𝑆𝐶𝐶2(𝑝𝑋𝑝𝑌 −min(𝑝𝑋, 𝑝𝑌))
2 +

𝑝𝑍∗(1 − 𝑝𝑍∗)

𝑁
                 otherwise 

 
(3.13)  

The second term 𝑝𝑍∗(1 − 𝑝𝑍∗) 𝑁⁄  of each expression in Equation (3.13) is the random 

fluctuation error. If the bit-stream length N is very big, as is usually the case, then random 

fluctuation can be ignored.  The first terms in Equation (3.13) are the errors due to  

 

Figure 3.2: MSE of the AND multiplier calculated by analysis (A) and simulation (S) for 

various combinations of pX,  pY  and SCC. 
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Figure 3.3: Circuit model S for correlation analysis; the triangles are the fan-in cones seen 

on backtracing from Z1, …, Zl and Z. 

correlation, and they indicate that the MSE increases quadratically with SCC. Figure 3.2 

plots the MSE of the AND multiplier assuming N = 256. The results are obtained from the 

analysis “A” in Equation (3.13) and circuit simulation “S”. This figure shows that the 

analytical and simulation results are very close. 

Now we generalize the foregoing analysis to the k-input stochastic circuit S of Figure 

3.3. It consists of two cascaded sub-circuits S1 and S2 with k and l inputs, respectively. Since 

correlation is defined between two signals we first discuss the case when S2 is a two-input 

circuit with inputs z1, z2, i.e. l = 2, and output z. The internal signals z1 and z2 may be 

correlated because z1 and z2 are derived from common inputs. The case when l > 2 will be 

discussed later in this section. 

Theorem 3.2: Let Z1 and Z2 be SNs with probabilities 𝑝𝑍1 and 𝑝𝑍2 , respectively, and 

correlation 𝑆𝐶𝐶(𝑍1, 𝑍2). If S2 is a stochastic circuit with inputs  Z1 and Z2  and output Z  as 

shown in Figure 3.3, the MSE of Z is  

 

𝐸𝑍∗

= {
𝑆𝐶𝐶2 (𝑍0(𝑝𝑧1 , 𝑝𝑧2) − 𝑍−1(𝑝𝑧1 , 𝑝𝑧2))

2

+
𝑝𝑍∗(1 − 𝑝𝑍∗)

𝑁
      if 𝑆𝐶𝐶 < 0

𝑆𝐶𝐶2 (𝑍0(𝑝𝑧1 , 𝑝𝑧2) − 𝑍1(𝑝𝑧1 , 𝑝𝑧2))
2

+
𝑝𝑍∗(1 − 𝑝𝑍∗)

𝑁
    otherwise      

 
(3.14)  
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where 𝑆𝐶𝐶 = 𝑆𝐶𝐶(𝑍1, 𝑍2) ,  𝑝𝑧∗  is given by Equation (3.5), and  𝑍0(𝑝𝑧1 , 𝑝𝑧2) , 

𝑍−1(𝑝𝑧1 , 𝑝𝑧2) and 𝑍+1(𝑝𝑧1 , 𝑝𝑧2) are the circuit functions of S2 with SCC = 0, 1 and +1, 

respectively. 

We can use Theorem 3.2 and the PTM algebra to estimate the accuracy of a 

stochastic circuit like Figure 3.3. The main steps are as follows:  

1. Calculate the PTMs of S1 and S2, namely 𝑀𝑆1 and 𝑀𝑆2. 

2. Use Equation (3.10) to obtain the joint distribution Vin for the primary inputs x1, 

x2, …, xk.  

3. Calculate  𝑉𝑍1𝑍2 = 𝑉in ×𝑀𝑆1. 

4. Use  𝑉𝑍1𝑍2 and Equation (3.4) to get 𝑆𝐶𝐶(𝑍1, 𝑍2). 

5. Calculate 𝑍0(𝑝𝑧1 , 𝑝𝑧2), 𝑍+1(𝑝𝑧1 , 𝑝𝑧2) and 𝑍−1(𝑝𝑧1 , 𝑝𝑧2) by multiplying each of 

Equations (3.6), (3.8) and (3.9) by 𝑀𝑆2. 

6. Determine the MSE  𝐸𝑍∗ from Equation (3.14). 

Example 3.3: Figure 3.4 illustrates error estimation for a small stochastic circuit. The PTM 

for sub-circuit S2 is 𝑀𝑆2 = 𝑀AND and the PTM for S1 is  

𝑀𝑆1 = [

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1

]

𝑇

 

Assuming the inputs are independent with probability 0.5,  

𝑉in = [1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8] 

we get 

𝑉𝑍1𝑍2 = 𝑉in ×𝑀𝑆1 = [1/8 1/8 1/8 5/8] 



42 

 

x1

x2 z

x3

z1

z2

S1 S2

x1

x2
z

x3

S3 S4

y

x2

(a)

(b)

S1 S2

 

Figure 3.4: Stochastic circuits affected by correlation due to re-convergent signals. The 

target arithmetic functions are: pZ1 = pX1 + pX2 – pX1 × pX2, pZ2 = pX2 + pX3 – pX2 × pX3, pZ = 

pZ1 × pZ2 and pY = pZ × pX2. 

Note that 𝑉𝑍1𝑍2  implies 𝑝𝑍1 = 𝑝𝑍2 = 0.75  and 𝑆𝐶𝐶(𝑍1, 𝑍2) = 1/3 . Since 𝑀𝑆2 = 𝑀AND  , 

we have 𝑍0(𝑝𝑋1 , 𝑝𝑋2) = 𝑝𝑋1 × 𝑝𝑋2 , 𝑍−1(𝑝𝑋1 , 𝑝𝑋2) = max(𝑝𝑋1 + 𝑝𝑋2 − 1,0)  and 

𝑍+1(𝑝𝑋1 , 𝑝𝑋2) = min(𝑝𝑋1 , 𝑝𝑋2) .  Therefore, we conclude that  𝑝𝑍∗ = 0.625  and 𝐸𝑍∗ =

3.90625 × 10−3 +
0.234375

𝑁
, where N is the bit-stream length.                                              

This example shows that the accuracy can be increased by increasing the bit-stream 

length N when N is small. However, as long as N is adequate, increasing N will not 

necessarily improve accuracy since the MSE is eventually dominated by the correlation 

error. With N = 256, the MSE of Z will be 𝐸𝑍∗ = 4.822 × 10
−3. Comparing this to the case 

when SCC = 0, the MSE = 9.613×104 and the accuracy loss is mainly due to random 

fluctuations. The MSE calculated by circuit simulation is 4.77×103, which is consistent 

with the analysis.  

Next, we show how to quickly approximate the MSE of a circuit like Figure 3.3 

when its inputs z1 and z2 are correlated. For large n, Equation (3.12) is approximated by 



43 

 

𝐸𝑍∗ ≅ (𝑝𝑍∗ − 𝑝𝑍)
2 . To calculate 𝑝𝑍∗ − 𝑝𝑍 , assume the joint distribution of z1 and z2 is 

𝑉𝑍1𝑍2
∗ = [𝑝00 𝑝01 𝑝10 𝑝11].  Therefore, the marginalized probabilities are 𝑀𝑍1 =

[𝑝00 + 𝑝01 𝑝10 + 𝑝11]  and  𝑀𝑍2 = [𝑝00 + 𝑝10 𝑝01 + 𝑝11] , i.e., 𝑝𝑍1 = 𝑝10 + 𝑝11  and 

𝑝𝑍2 = 𝑝01 + 𝑝11. If z1 and z2 are uncorrelated, their joint probability distribution should be 

 𝑉𝑍1𝑍2 = 𝑀𝑍1 ⊗𝑀𝑍2, so 

 𝑉𝑍1𝑍2 = [𝑝00 + 𝑝01 𝑝10 + 𝑝11]⨂[𝑝00 + 𝑝10 𝑝01 + 𝑝11] (3.15)  

Because the expected output distribution is 𝑉𝑍 = [1 − 𝑝𝑍 𝑝𝑍] = 𝑉𝑍1𝑍2 ×𝑀𝑆2  while the 

erroneous output distribution is  𝑉𝑍
∗ = [1 − 𝑝𝑍∗ 𝑝𝑍∗] = 𝑉𝑍1𝑍2

∗ ×𝑀𝑆2 , the error 𝑝𝑍∗ − 𝑝𝑍 

can be calculated as follows:  

  𝑉𝑍∗ − 𝑉𝑍 = [𝑝𝑍 − 𝑝𝑍∗ 𝑝𝑍∗ − 𝑝𝑍] = 𝑉𝑍1𝑍2 ×𝑀𝑆2 − 𝑉𝑍1𝑍2
∗ ×𝑀𝑆2

= (𝑉𝑍1𝑍2
∗ − 𝑉𝑍1𝑍2) × 𝑀𝑆2 (3.16)  

Since 𝐸𝑍∗ ≅ (𝑝𝑍∗ − 𝑝𝑍)
2, we can estimate 𝐸𝑍∗ by averaging the square of each element in 

Equation (3.16). 

Example 3.4: Continuing the example in Figure 3.4, we have 

𝑉𝑍1𝑍2
∗ − 𝑉𝑍1𝑍2 = [1/8 1/8 1/8 5/8] − ([2/8 6/8] ⊗ [2/8 6/8])

= [1/16 −1/16 −1/16 1/16] 

Multiplying  𝑉𝑍1𝑍2
∗ − 𝑉𝑍1𝑍2by the PTM of S2 yields  

(𝑉𝑍1𝑍2
∗ − 𝑉𝑍1𝑍2) × 𝑀𝑆2 = [−1/16 1/16] 

Therefore, 𝐸𝑍∗ ≅
1

2
((−

1

16
)
2

+ (
1

16
)
2

) = 3.90625 × 10−3. In other words, when N is big 

enough, the MSE is dominated by the correlation error, which is not a function of N.         
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We can further generalize the foregoing approximation method to the case where S2 

has l > 2 inputs.  

Theorem 3.3:  For the stochastic circuit S in Figure 3.3, let 𝑉in be the joint probability 

distribution for the k primary inputs X1, X2, …,Xk. Let 𝑉𝑍1𝑍2…𝑍𝑙
∗ = 𝑉in ×𝑀𝑆1, and let 𝑀𝑍1, 

𝑀𝑍2 ,…,𝑀𝑍𝑙 be the  PTMs for Z1, Z2, …,Zl generated by marginalizing their joint distribution 

𝑉𝑍1𝑍2…𝑍𝑙
∗ . Define 𝑉𝑒 = 𝑉𝑍1𝑍2…𝑍𝑚

∗ − 𝑉𝑍1𝑍2…𝑍𝑙  where 𝑉𝑍1𝑍2…𝑍𝑙 = 𝑀𝑍1 ⊗𝑀𝑍2 ⊗…⊗𝑀𝑍𝑙 . 

The MSE of Z is approximated by 

 𝐸𝑍∗ ≅ 𝐴𝑣𝑔 ((𝑉𝑒 ×𝑀𝑆2). ^2) (3.17)  

where “. ^2” is the element-wise square operation and Avg denotes the average of the matrix 

elements. 

3.4 De-correlation Methods 

Throughout the SC literature, the basic way to (re) randomize a pair of correlated 

SNs is the following two-step technique we call regeneration. First, convert at least one of 

the SNs X to binary form B, and second, use an SNG like that of Figure 1.3d  to regenerate 

X from B. Stochastic-to-binary conversion simply requires a counter to sum the 1-bits of X.  

px
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Figure 3.5: Multiplier used as a squarer (a) with one SNG and a stochastic isolator; (b) 

with two SNGs. 
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The use of a new random source in the SNG ensures statistical independence and satisfies 

Equation (3.15). However, since a counter and an SNG are required for each regenerated 

signal, the hardware cost of regeneration is very high. 

Another, less common correlation-reduction approach is to derive SNs from delayed 

versions of a single random sequence.  This is based on an observation of Gaines [31] that 

a statistically independent version of a Bernoulli sequence may be obtained by delaying it 

by one or more clock cycles.  As mentioned in Section 3.1, the delay is implemented by so-

called isolators in the form of D-type flip-flops (DFFs). Figure 3.5 shows stochastic circuits 

to compute the square function pX × pX = pX
2 using an AND gate combined with (a) a single 

SNG and an isolator DFF, and (b) a pair of independent SNGs. Note that if the input SNs 

of the multiplier are not isolated or independently generated, the AND gate will not compute 

(pX)2,  as demonstrated by Figure 3.5b. 

Compared to regeneration, a stochastic isolator is much cheaper. However, the 

relative effect of the two randomization methods on accuracy is unclear, and does not appear 

to have been studied before. To gain insight into this question, we simulated the two squarer 

designs of Figure 3.5 using Octave and N = 256. The results in Table 3.1 indicate that the 

MSE of the isolator design (Figure 3.5a) is higher by a factor of 1.6 on average than that of 

the regeneration design (Figure 3.5b). This implies that the squarer is affected by auto- 

correlation in its input bit-stream X, i.e., the cross-correlation of X with itself at different  

Table 3.1: Mean square error (MSE) of two stochastic squarer designs. 

pX 

(MSE at output z ) × 10-4 

Simulated results Analytical results 

Isolator design 

(Figure 3.5a) 

Regeneration design 

(Figure 3.5b) 
Equation (3.19) 

(𝒑𝑿)
𝟐(𝟏 − (𝒑𝑿)

𝟐)

𝑵
 

0.2 1.97 1.41 1.98 1.50 

0.4 8.00 5.50 8.06 5.25 

0.5 12.1 7.42 11.84 7.32 

0.6 15.7 8.90 15.13 9.00 

0.8 16.2 9.05 15.56 9.00 
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Figure 3.6: Reducing correlation in the circuit of Figure 3.4a (a) by regeneration, and (b) 

by isolation. 

clock cycles. In this study, we consider the delayed signals as new SNs, so we allow 

correlation to include auto-correlation. The simulations also show that regeneration 

produces results very close to the analytical value for zero correlation. 

As seen earlier, the accuracy of the circuit in Figure 3.4a is affected by correlation 

between 𝑍1  and 𝑍2  due to their shared input X2. Figure 3.6 applies the two correlation-

reducing methods to Z1 and Z2.  Figure 3.6a uses regeneration with Z2, while Figure 3.6b 

places an isolator in Z2. Figure 3.7 shows the simulation results for the MSEs of all the 

circuits in Figure 3.4 and Figure 3.6. They indicate that stochastic isolation works just as 

well as regeneration. In fact, the isolator results are a little better, because random 

fluctuation errors accumulate when SNs are regenerated. In addition, the isolator’s area cost 

is far less than that of regeneration. More importantly, the regenerating circuits require the 

computation to be paused to count the number of 1s, and the useful progressive precision 

property [2] will likely be lost. 
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Figure 3.7: MSEs for the circuits of Figure 3.4a and Figure 3.6 obtained by simulation. 

The squarer in Figure 3.5a generates a 1 when two consecutive 1s appear in the input 

bit-stream. Hence, the probability of seeing a 1 at the output z at clock cycle t depends on 

the output at t  1. The squaring operation can be represented by 𝑧𝑡 = 𝑥𝑡−1 × 𝑥𝑡. This time 

dependency has a great impact on the MSE at z because our previous analysis assumes that 

the value of the SN Z has no time dependency. Consider a sequence of Bernoulli RVs 𝑋1, 

𝑋2, …, 𝑋𝑁 with parameter pX and let 𝑅 = ∑ 𝑋𝑡−1𝑋𝑡
𝑁
𝑡=2 . Klotz [47] showed that the variance 

of R is 

 

𝑉𝑎𝑟(𝑅) = (𝑁 − 1)𝑝𝑋
2(1 − 𝑝𝑋

2)

+ 2𝑝𝑋
3(1 − 𝑝𝑋) [(𝑁 − 2) −

9

(1 − 𝑝𝑋)
] 

(3.18)  

Since the bit-stream length is N – 1, the value of the SN Z is 𝑅/(𝑁 − 1). Therefore,  

 𝐸𝑍∗ =
𝑝𝑋

2(1 − 𝑝𝑋
2)

𝑁 − 1
+
2𝑝𝑋

3(1 − 𝑝𝑋)

(𝑁 − 1)2
[(𝑁 − 2) −

9

1 − 𝑝𝑋
] (3.19)  

Equation (3.19) is consistent with our simulation results. 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1 10 100 1000 10000

M
e

a
n

-s
q

u
a
re

 e
rr

o
r

SN length N

Figure 3.4a
(Original)

Figure 3.6a
(Regeneration)

Figure 3.6b
(Isolation)



48 

 

px

z
D

m

m

r1
x

D D...

...C
 

Figure 3.8: Stochastic circuit to generate z = xr with a single SNG. 

When isolators are used to implement more general power functions such as 𝑥3, 𝑥4, 

etc., the error analysis becomes much more complicated. We therefore propose a simple 

way to find an upper bound on the MSE. 

Theorem 3.4: Suppose a single SNG and r  1 isolators are used to implement  z = 𝑥𝑟 as 

shown in Figure 3.8. For large n, the MSE at z satisfies  𝐸𝑍∗ < 𝜎2 × 𝑟, where 𝜎2 is the MSE 

when the function is implemented by r independent SNGs. 

This theorem is easy to justify. For example, when r = 2, by substituting SCC = 0 

into Equation (3.13), we can conclude that the MSE is inversely proportional to the SN 

length N when the inputs are uncorrelated. If we separate the output bit-stream into two sub-

streams generated in even and odd clock cycles, we get 𝑧2𝑖 = 𝑥2𝑖−1 ∙ 𝑥2𝑖 and 𝑧2𝑖+1 = 𝑥2𝑖 ∙

𝑥2𝑖+1 for 𝑖 = 1,2… ,𝑁/2.  Now 𝑧2𝑖 and 𝑧2𝑖+1 form two bit-streams of length 𝑁/2 that do 

not depend on their previous values. Since the output of a squarer is a combination of 𝑧2𝑖 

and 𝑧2𝑖+1, the worst-case MSE of the squarer is equivalent to that caused by reducing the 

SN length in half. Similarly, for the  𝑥𝑟  function, the worst-case MSE is the same as 

reducing the SN length by 1/r, which means the MSE is increased by a factor of r. 

Table 3.2: MSEs of some power functions. 

pX 
(MSE at z) ×10-4:  simulation / upper bound) 

x2 x3 x4 

0.2 0.520/ 0.75 0.117 / 0.233 0.0234 / 0.0624 

0.4 2.17  / 2.62 1.04  / 1.76 0.520  / 0.974 

0.5 3.29  / 3.66 2.13  / 3.20 1.35    / 2.29 

0.6 4.01  / 4.5 3.67  / 4.96 2.87    / 4.41 

0.8 4.22  / 4.5 6.69  / 7.32 8.36    / 9.45 
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Theorem 3.4 suggests that power functions are a worst case for MSE when isolators 

are used.  In more typical cases like the example of Figure 3.4, correlation is caused by re-

convergent signals and isolators can be effective because independent inputs that are not 

shared in common, such as x1 and x3, introduce randomness into later signals. 

Table 3.2 summarizes the MSEs for three power functions implemented by a single 

SNG and one or more stochastic isolators. The results are generated by simulation for 

various input probabilities. The corresponding MSE upper bounds are computed using the 

inequality in Theorem 3.4, namely. 𝐸𝑍∗ < 𝜎2 × 𝑟. The results show that the upper bounds 

provide good estimates of the corresponding MSEs. 

3.5 Summary 

This chapter has addressed a key problem of SC, namely, how to manage 

computational inaccuracy due to correlation. We showed that PTMs can play a very helpful 

role in the analysis. We developed a systematic method to compute the joint probability 

distribution of signals given their correlation. We also provided a method based on PTMs 

and the SCC correlation metric to evaluate the accuracy of a stochastic circuit. An 

approximation depending only on PTMs for quick estimation of accuracy was also derived 

to cover the complex case of correlation among multiple signals. Finally, the two most 

common correlation-reducing  methods, regeneration and isolation,  were evaluated, 

leading to the conclusion that  stochastic isolators are effective for reducing correlation, 

thereby improving computational accuracy at relatively low cost. 
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CHAPTER 4  

Design of General Stochastic Circuits 

 

Chapters 2 and 3 analyze key factors affecting the accuracy of SC. We now move 

to another major challenge facing SC: development of a general framework for designing 

accurate stochastic circuits. Despite significant recent results, important aspects of SC’s 

theoretical foundations remain to be discovered. We begin with the observation that every 

combinational stochastic circuit realizes a function of the form f(X) = f(XV;XC), where XV 

and XC denote inputs with SNs of variable and constant probability, respectively. Two 

functions f1(XV;XC) and  f2(XV;XC) are  equivalent if they have the same stochastic behavior; 

this leads naturally to the notion of stochastic equivalence classes (SECs). We show that 

while conventional synthesis focuses on finding the best circuit to implement a given 

arithmetic function F, stochastic circuit optimization requires finding the best logic function 

f in its SEC that realizes F. We present an algorithm ESECS (Extended SEC-based Synthesis) 

to solve this problem, along with supporting experimental data. ESECS shows the 

computational richness of SC and leads to significant cost reductions compared to prior 

design methods. A preliminary version of this chapter’s content appears in [24]. 

4.1 Stochastic Equivalence 

Despite the successful application of stochastic circuits in several important domains, 

most previous SC designs are ad hoc and non-optimal, or else their optimality is 

undetermined. Recently, some general design methodologies have been proposed, which 

significantly enrich SC theory. Qian et al. present a general synthesis method employing a 

design style termed ReSC (Reconfigurable SC Architecture) [74], which is based on the  
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Figure 4.1: Two implementations of scaled addition: (a) a multiplexer (MUX), and (b) an 

equivalent majority circuit (MAJ).  

theory of Bernstein polynomials [74]. Alaghi and Hayes describe a synthesis technique that 

exploits the relation between stochastic behavior and spectral transforms [1][7]. In [86], 

Zhao and Qian give another polynomial-based synthesis method. As we demonstrate later, 

these methods do not always lead to optimal designs. 

The following interesting observation is made in [1]: two logic circuits can 

implement the same stochastic function even though their Boolean functions and design 

costs are quite different. Figure 4.1 illustrates this for scaled addition. The first circuit 

(Figure 4.1a) is the usual multiplexer design of Figure 1.3b, but the second (Figure 4.1b) 

realizes the majority function.  However, when one input r has the constant SN 0.5 applied 

to it, both designs implement the same stochastic function 𝑝𝑍 = 0.5(𝑝𝑋1 + 𝑝𝑋2) . This 

unexpected property provides a new viewpoint on stochastic circuit optimization, which we 

explore in this chapter. In particular, we generalize the equivalence illustrated by Figure 4.1 

to that of a stochastic equivalence class (SEC), investigate the properties of SECs, and apply 

them to the synthesis and optimization of stochastic circuits. We show that SECs define a 

rich set of arithmetic functions for building stochastic circuits. Unlike conventional 

synthesis methods where the target logic functions are fixed a priori, our approach searches 

the SECs for the best functions to meet the design goals.   
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We next recall some relevant properties of Boolean functions (BFs) [40]. The 

weight 𝑤(𝑓)  of a BF 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is the number of its minterms or, equivalently,  

𝑤(𝑓) = 𝑓(0,… ,0,0) + … + 𝑓(1,… ,1,0) + 𝑓(1,… ,1,1). For example, the AND function  

𝑓(𝑥1, 𝑥2) = 𝑥1  𝑥2  and the OR function  𝑔(𝑥1, 𝑥2) = 𝑥1  𝑥2  have 𝑤(𝑓) = 1  and 

𝑤(𝑔) = 3, respectively. Using the canonical disjunctive form, we can write 

 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =⋁ 𝑘𝑖  ⋀ 𝑚𝑖

2𝑛−1

𝑖=0
 (4.1)  

where the ki’s are 0-1 constants called discriminants and the mi’s are minterms of the form 

𝑥̃𝑖,1 ∧ 𝑥̃𝑖,2 ∧ …∧ 𝑥̃𝑖,𝑛, with 𝑥̃𝑖,𝑗 = 𝑥𝑖,𝑗 or 𝑥̅𝑖,𝑗  denoting  the j-th literal of  mi [6][40]. With this 

notation, 𝑤(𝑓) can be expressed as  

 𝑤(𝑓) =∑ 𝑘𝑖
2𝑛−1

𝑖=0
 (4.2)  

where ki’s are the 0-1 constants in Equation (4.1). The different operator symbolism of 

Equations (4.1) and (4.2) stresses the fact that they specify Boolean and arithmetic 

functions, respectively. 

A k-literal cube is an AND product of 𝑘 ≤ 𝑛 literals over 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. For 

instance, 𝑥̅1 𝑥2 𝑥3  is a 3-literal cube. The positive cofactor 𝑓𝑥𝑖(𝑋) of f with respect to xi 

is the BF 𝑓(𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛) with xi set to 1, i.e., 𝑓(𝑥1, … ,1, … , 𝑥𝑛). Similarly, the negative 

cofactor𝑓𝑥̅𝑖(𝑋) is 𝑓(𝑥1, … ,0, … , 𝑥𝑛).  The cofactor 𝑓𝑐 with respect to a cube c is the result 

of successive cofactorings of f with respect to all literals in c. For example, the cofactor of 

𝑓(𝑥1, 𝑥2, 𝑥3) = (𝑥1𝑥2)  (𝑥2𝑥3)  (𝑥3𝑥1)  with respect to the cube 𝑐 = 𝑥1  𝑥̅2  is 

𝑓(1,0, 𝑥3) = (1  0)  (0  𝑥3)  (𝑥3  1) = 𝑥3.  

Traditionally, the probability pF of 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)  is defined as 𝑤(𝑓)/2𝑛,  which 

is the probability of f = 1 if the input vector X =  x1 x2 xn is randomly chosen from the 2n 

possible input vectors [68]. This is often called “signal probability” in digital design. The 
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definition was originally motivated by random test-pattern selection, so it assumes that the 

probability of input xi being 1 is 0.5. In stochastic circuits, inputs can be assigned arbitrary 

probability values. As introduced in Chapter 1, a stochastic number (SN) Z is a sequence 

of N bits, each of probability pz, appearing on some line z. The value of Z is taken to be pZ 

in the basic (unipolar) version of SC. Given Z, pZ can be estimated by counting the 1s in Z. 

The accuracy of this estimate increases with the length of Z. In stochastic circuits like those 

of Figs. 1 and 2, each input xi has probability 𝑝𝑋𝑖denoting the numerical value of some N-

bit SN 𝑋𝑖, either a constant or a variable, being applied to that input line in a window of N 

clock cycles.  

As each input xi can carry an arbitrary probability value 𝑝𝑋𝑖, we can generalize the 

definition of the probability pf  as follows: 

 

𝑝𝐹(𝑋) =  𝑓(0,… ,0,0)(1 − 𝑝𝑋1)… (1 − 𝑝𝑋𝑛−1)(1 − 𝑝𝑋𝑛)    

+ 𝑓(0,… ,0,1)(1 − 𝑝𝑋1)… (1 − 𝑝𝑋𝑛−1)𝑝𝑋𝑛 +⋯

+  𝑓(1,… ,1,1)𝑝𝑋1…𝑝𝑋𝑛−1𝑝𝑋𝑛 

(4.3)  

When each 𝑝𝑋𝑖 = 0.5,  𝑝𝐹(𝑋) is the (signal) probability 𝑤(𝑓)/2𝑛. 

Equation (4.3) specifies an n-variable arithmetic function of the form 

𝐹(𝑋1, 𝑋2, … , 𝑋𝑛) whose inputs are n unipolar SNs and whose underlying logic function is 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛).  We refer to F as the stochastic function or behavior of f. For any input 

combination of SNs, F evaluates to  𝐹(𝑝𝑥1 , 𝑝𝑥2 , … , 𝑝𝑥𝑛) =  𝑝𝐹 . For example, when f is 

AND and n = 2, Equation (4.3) implies 

 
𝑝𝐹(𝑋) = 𝑓(0,0)(1 − 𝑝𝑋1)(1 − 𝑝𝑋2) + 𝑓(0,1)(1 − 𝑝𝑋1)𝑝𝑋2

+ 𝑓(1,0)𝑝𝑋1(1 − 𝑝𝑋2) + 𝑓(1,1)𝑝𝑋1𝑝𝑋2 = 𝑝𝑋1𝑝𝑋2 
(4.4)  

demonstrating that AND implements stochastic multiplication. Equation (4.4) can also be 

concisely expressed as follows [6]. 
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Theorem 4.1: The stochastic function realized by the Boolean function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is 

 𝑝𝑓(𝑋) =∑ 𝑘𝑖𝑀𝑖

2𝑛−1

𝑖=0
 (4.5)  

where 𝑀𝑖 = 𝑀̃𝑖,1𝑀̃𝑖,2… 𝑀̃𝑖,𝑛 and 𝑀̃𝑖,𝑗 = 𝑝𝑥𝑖,𝑗 if the corresponding minterm mi of Equation 

(4.1) has  𝑥̃𝑖,𝑗 = 𝑥𝑖,𝑗; 𝑀̃𝑖,𝑗 is 1 − 𝑝𝑥𝑖,𝑗 if 𝑥̃𝑖,𝑗 = 𝑥̅𝑖,𝑗. 

If the SNs are interpreted as bipolar, then 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) will implement a different 

arithmetic function 𝐺(𝑝𝑥1 , 𝑝𝑥2 , … , 𝑝𝑥𝑛) because the numerical values of interest become 

2𝑝𝑋𝑖 − 1  instead of 𝑝𝑋𝑖 .  For instance, bipolar multiplication requires 𝐹(𝑝𝑋1 , 𝑝𝑋2) =

(2𝑝𝑋1 − 1)(2𝑝𝑋2 − 1), which is obtained from Equation (4.4) when f is XNOR. We will 

distinguish between unipolar and bipolar stochastic behavior as the need arises.  

Stochastic circuits require randomness sources that can produce independent input 

bit-streams with prescribed probability values as discussed in Section 1.2. Figure 1.4a 

shows a typical stochastic number generator (SNG) that converts a k-bit binary integer B 

to a 2k-bit stochastic bit-stream X with the value 𝑝𝑋 = 𝐵/2𝑘. The bit-stream length N = 2k 

is selected based on accuracy considerations. The random (actually pseudo-random) 

number source is typically a linear feedback shift register (LFSR). LFSR sequences have 

a uniform distribution of 0s and 1s, so an LFSR provides a SN R of constant value pR = 

0.5. Constants of other probability values can be derived in various ways from R [38][73]. 

Prior SC work generally assumes that only random sources producing the constant value 

0.5 are available as inputs to a stochastic circuit. 

This chapter is concerned with the stochastic behavior of combinational logic 

functions and circuits intended for SC. We partition the n inputs X into two subsets: XV 

denoting s variable inputs, and XC denoting t constant inputs, where s + t = n. For example, 

the multiplier of Figure 1.3a has 𝑋V = (𝑥1, 𝑥2) and XC = , whereas the adder of Figure 



55 

 

1.3b has 𝑋V = (𝑥1, 𝑥2) and XC = r with pR = 0.5. With the foregoing  assumptions, we can 

now define the notion of the stochastic equivalence of Boolean functions.   

Definition 4.1: Let 𝑓(𝑋) = 𝑓(𝑋V; 𝑋C) be a BF, where XV and XC partition X into variable 

and constant inputs, respectively. Let K denote a set of constant probability values assigned 

to XC. Two BFs 𝑓 and 𝑔 defined on 𝑋 are stochastically equivalent (SE) with respect to K, 

denoted 𝑓 ≡𝐾 𝑔, if 𝑝𝑓(𝑋V; 𝐾) = 𝑝𝑔(𝑋V; 𝐾). When values in K are all 0.5, we simplify 

𝑓 ≡𝐾 𝑔 to 𝑓 ≡ 𝑔.                                                                                                                  

Example 4.1: The circuits of Figure 4.1 have 𝑋 = (𝑥1, 𝑥2, 𝑥3) with 𝑋V = (𝑥1, 𝑥2) and 

𝑋C = (𝑥3) = (𝑟), and realize the BFs  𝑧1 = 𝑥1𝑥̅3 + 𝑥2𝑥3 and  𝑧2 = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1, 

(From here on, we adopt the more compact sum-of-products (SOP) notation for BFs.) 

Equation (4.5) with 𝑝𝑋3 = 0.5 , makes  𝑝𝑍1  = 𝑝𝑍2 = 0.5(𝑝𝑋1 + 𝑝𝑋2) , and z1 ≡ z2. In 

contrast, 𝑝𝑍1(𝑥1, 𝑥2; 0.25) ≠ 𝑝𝑍2(𝑥1, 𝑥2; 0.25), so 𝑧1 ≢𝐾 𝑧2 where K = (0.25).                       

Definition 4.1 applies equally to the unipolar and bipolar cases, but the functions 

that are SE will be different. Zhao and Qian make use of a different type of equivalence 

among stochastic functions, based on a priori knowledge of the interchangeability of 

stochastic variables [86]. They note that when two or more stochastic variables have the 

same probability, they can be switched. For example, logic functions that realize stochastic 

functions 𝑝𝑧1 = 0.5 (𝑝𝑥1 + (1 − 𝑝𝑥2))  and 𝑝𝑧1 = 0.5 ((1 − 𝑝𝑥1) + 𝑝𝑥2)  are equivalent 

when 𝑝𝑥1 = 𝑝𝑥2 . 

Definition 4.1 also allows two Boolean functions to be SE with several sets K of XC 

values. For example, 𝑓 = 𝑥1𝑟1𝑟2 + 𝑥2𝑟̅1𝑟̅2  and 𝑔 = 𝑥1𝑟̅1𝑟̅2 + 𝑥2𝑟1𝑟2  are BFs with 𝑋V =

(𝑥1, 𝑥2) and 𝑋C = (𝑟1, 𝑟2). If 𝐾 = (0.5, 0.5), meaning 𝑝𝑟1 = 𝑝𝑟2 = 0.5, then f and g are SE, 

since   𝑝𝑓 = 𝑝𝑔 = 0.25(𝑝𝑥1 + 𝑝𝑥2). If   K = (0.25, 0.75), then f and g are still SE, in this 

case, with 𝑝𝑓 = 𝑝𝑔 = 0.1875(𝑝𝑥1 + 𝑝𝑥2). It’s possible to generalize Definition 4.1 to 

allow BFs to be SE even if their K’s have different sizes. For simplicity, as well as 
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consistency with both the prior literature and the nature of LFSR-based random sources 

discussed above, we will assume throughout that SE BFs have K’s of the same size and 

that all K values are 0.5. 

If XV = , then f produces an output of constant probability determined by K. If XC 

= ,  then 𝑓 ≡ 𝑔 only when f = g. To check for stochastic equivalence when XC  ≠ , we 

make use of the following result.  

Theorem 4.2: Two BFs 𝑓 and 𝑔 defined on 𝑋 = 𝑋V; 𝑋C are SE if and only if 𝑤 (𝑓𝑐𝑖(𝑋)) =

𝑤 (𝑔𝑐𝑖(𝑋)) for all s-literal cubes ci on 𝑋V, where 𝑠 = |𝑋V|. 

Proof: Let 𝑋V = (𝑥1, 𝑥2, … , 𝑥𝑠)  and 𝑋C = (𝑥𝑠+1, 𝑥𝑠+2 , … , 𝑥𝑠+𝑡) . Let 𝑀𝑓  and 𝑀𝑔  be the 

sets of minterms that define 𝑓 and g, respectively. Let CV be the set of all s-literal cubes on 

𝑋V, and let CC be all t-literal cubes on 𝑋C. Let 𝑐𝑖 denote an s-literal cube on 𝑋V, and let 𝑐𝑗 

denote an t-literal cube on 𝑋C . Let 𝑝𝑐𝑖 be the probability of cube 𝑐𝑖  and 𝑓𝑐𝑖(𝑋) be the 

cofactor of 𝑓 with respect to 𝑐𝑖. Since 𝑝𝑥𝑖 = 0.5, for all 𝑥𝑖 ∈ 𝑋C,  𝑝𝑐𝑗 = ∏ 𝑝𝑥𝑖𝑥𝑖∈𝑋C
= 0.5𝑡 

for all 𝑐𝑗 ∈ 𝐶C. Therefore,  

𝑝𝑓(𝑋) = ∑ 𝑝𝑐𝑖 × 𝑝𝑐𝑗
𝑐𝑖∈𝐶V;𝑐𝑗∈𝐶C;𝑐𝑖∙𝑐𝑗∈𝑀𝑓   

= ∑ 𝑝𝑐𝑖 × ∑ 𝑝𝑐𝑗
𝑐𝑗∈𝐶C;𝑐𝑖∙𝑐𝑗∈𝑀𝑓   𝑐𝑖∈𝐶V  

= ∑ 𝑝𝑐𝑖 × 0.5
𝑡 × 𝑤 (𝑓𝑐𝑖(𝑋))

𝑐𝑖∈𝐶V  

 

Similarly, 

𝑝𝑔(𝑋) = ∑ 𝑝𝑐𝑖 × 0.5
𝑡 × 𝑤 (𝑔𝑐𝑖(𝑋))

𝑐𝑖∈𝐶V

 

(1) If: To show that 𝑤 (𝑓𝑐𝑖(𝑋)) = 𝑤 (𝑔𝑐𝑖(𝑋)) implies 𝑓 ≡ 𝑔. 
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𝑝𝑓(𝑋) = ∑ 𝑝𝑐𝑖 × 0.5
𝑡 × 𝑤 (𝑓𝑐𝑖(𝑋))

𝑐𝑖∈𝐶V  

= ∑ 𝑝𝑐𝑖 × 0.5
𝑡 × 𝑤 (𝑔𝑐𝑖(𝑋))

𝑐𝑖∈𝐶V

= 𝑝𝑔(X) 

so by definition, 𝑓 ≡ 𝑔. 

(2) Only if: To show that if 𝑓 ≡ 𝑔, then 𝑤(𝑓𝑐(𝑋)) = 𝑤(𝑔𝑐(𝑋)). Let  𝑝𝑓 ≡ 𝑝𝑔 . Since 

𝑝𝑓(𝑋) = ∑ 𝑝𝑐𝑖 × 0.5
𝑡 × 𝑤 (𝑓𝑐𝑖(𝑋))

𝑐𝑖∈𝐶V  

 

and 

𝑝𝑔(𝑋) = ∑ 𝑝𝑐𝑖 × 0.5
𝑡 × 𝑤 (𝑔𝑐𝑖(𝑋))

𝑐𝑖∈𝐶V

 

we conclude  that  

∑ 𝑝𝑐𝑖 × 𝑤 (𝑓𝑐𝑖(𝑋))

𝑐𝑖∈𝐶V  

= ∑ 𝑝𝑐𝑖 ×𝑤 (𝑔𝑐𝑖(𝑋))

𝑐𝑖∈𝐶V

 

Each 𝑐𝑖 ∈ 𝐶V  is an s-literal cube implying it contains exactly s literals, so no 𝑐𝑖 can be 

covered by any other cube c in CV. Furthermore, no 𝑐𝑖 can be covered by ⋃ 𝑐𝑐∈𝐶V,𝑐≠𝑐𝑖
, 

which means 𝑐𝑖 is not covered by the union of other cubes. This property implies 𝑝𝑐𝑖 cannot 

be generated by a linear combination of pc’s for  𝑐 ≠ 𝑐𝑖 . Since each 𝑝𝑐𝑖  is unique,  

𝑤 (𝑓𝑐𝑖(𝑋)) = 𝑤 (𝑔𝑐𝑖(𝑋)).                                                                                                     

The relation f (𝑋V; 𝑋C ) ≡ g(𝑋V; 𝑋C)   for some  𝑋V; 𝑋C  defines an equivalence 

relation that partitions the BFs into classes we call stochastic equivalence classes (SECs).  

Example 4.2: Continuing Example 4.1, 𝑧2 has |𝑋V| = s = 2, and the corresponding 2-literal 

cofactors are 𝑧2𝑥̅1𝑥̅2
(𝑋) =  0, 𝑧2𝑥̅1𝑥2

(𝑋) =  𝑥3,  𝑧2𝑥1𝑥̅2
(𝑋) =  𝑥3 and 𝑧2𝑥1𝑥2

(𝑋) =  1, with 
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weights 0, 1, 1 and 2, respectively. Note that 𝑧2𝑥1𝑥̅2
(𝑋) =  1 has the weight 2 because 

𝑧2𝑥1𝑥̅2
(𝑋) has only one input x3 and both 𝑧1𝑥1𝑥̅2

(𝑥3 = 0) and 𝑧1𝑥1𝑥̅2
(𝑥3 = 1) are 1. The 

cofactors of 𝑧1 are  𝑧1𝑥̅1𝑥̅2
(𝑋) =  0, 𝑧1𝑥̅1𝑥2

(𝑋) =  𝑥3, 𝑧1𝑥1𝑥̅2
(𝑋) =  𝑥̅3 and 𝑧1𝑥1𝑥2

(𝑋) = 1 

with weights 0, 1, 1 and 2, respectively. Hence, 𝑤 (𝑧1𝑐(𝑋)) = 𝑤 (𝑧2𝑐(𝑋)) for all 2-literal 

cubes on 𝑋V, implying that  𝑧1 ≡ 𝑧2. These are two members of an SEC 𝔽ADD that turns 

out to have a total of four members.                                                                                    

Clearly, an SEC 𝔽 can be characterized by the stochastic function 𝑝𝐹(𝑋) common 

to all its members. With the input partition 𝑋 = 𝑋V; 𝑋C, n = s + t, and 𝑝𝑋𝑖 =  0.5 for all 

constant inputs, Equation (4.5) becomes:  

𝑝𝐹(𝑋) =∑ 𝑘𝑖𝑀𝑖

2𝑛−1

𝑖=0
=∑ 𝑘𝑖𝑀̃𝑖,1𝑀̃𝑖,2… 𝑀̃𝑖,𝑛

2𝑛−1

𝑖=0

=∑ (𝑘𝑖𝑀̃𝑖,1𝑀̃𝑖,2…𝑀̃𝑖,𝑠)(𝑀̃𝑖,𝑠+1…𝑀̃𝑖,𝑠+𝑡)
2𝑠+𝑡−1

𝑖=0
 

which implies 

 𝑝𝔽(𝑋) = 𝑝𝐹(𝑋) = 0.5
𝑡∑ 𝑘𝑖𝑀̃𝑖,1𝑀̃𝑖,2… 𝑀̃𝑖,𝑠

2𝑠+𝑡−1

𝑖=0
 (4.6)  

because 𝑀̃𝑖,𝑠+1 = ⋯ = 𝑀̃𝑖,𝑠+𝑡 = 0.5. When multiplied out, Equation (4.6) takes the form 

of a multilinear polynomial (MLP) in the 𝑝𝑋𝑖,𝑗’s. (A polynomial is multilinear if it is linear 

in each of its variables).  

Example 4.3: To illustrate, consider the scaled add functions of Example 4.2 with MUX 

𝑧1  representing their SEC 𝔽ADD. Writing 𝑧1 as a sum of minterms (Equation (4.1)), we get  

𝑧1 = 𝑥1𝑥2𝑥̅3 + 𝑥1𝑥̅2𝑥̅3 + 𝑥1𝑥2𝑥3 + 𝑥̅1𝑥2𝑥3 

With  𝑋C = 𝑥3, and 𝑝(𝑥3) = 𝑝(𝑥̅3) = 0.5, Equation (4.6) implies 
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𝑝𝔽ADD(𝑋)  = 𝑝𝑧1 = 0.5(𝑝𝑋1𝑝𝑋2 + 𝑝𝑋1(1 − 𝑝𝑋2) + 𝑝𝑋1𝑝𝑋2 + (1 − 𝑝𝑋1)𝑝𝑋2)

= 0.5𝑝𝑋1 + 0.5𝑝𝑋2 

which is scaled addition in its usual MLP form.                                                                    

Theorem 4.1 and Theorem 4.2 suggest a way to express an SEC 𝔽 in terms of its members’ 

common weight sets. 

Theorem 4.3:  Let 𝔽 be an SEC defined on 𝑋 = 𝑋V; 𝑋C where 𝑠 = |𝑋V| and   𝑡 = |𝑋C|. 

Then 𝑝𝔽(𝑋) is given by  

 𝑝𝔽(𝑋) = 0.5
𝑡∑ 𝑤𝑖𝑀̃𝑖,1𝑀̃𝑖,2… 𝑀̃𝑖,𝑠

2𝑠−1

𝑖=0
 (4.7)  

where 𝑤𝑖 = 𝑤 (𝑓𝑐𝑖(𝑋)) and the  𝑀̃𝑖,𝑗’s are as defined as in Theorem 4.1, but with respect 

to XV rather than X.  

Proof: Rewriting Equation (4.6), yields 

 

𝑝𝔽(𝑋)  = 0.5
𝑡∑ ∑ 𝑘𝑖∗

2𝑡−1

𝑗=0
𝑀̃𝑖∗,1𝑀̃𝑖∗,2… 𝑀̃𝑖∗,𝑠

2𝑠−1

𝑖=0

= 0.5𝑡∑ (∑ 𝑘𝑖∗
2𝑡−1

𝑗=0
) 𝑀̃𝑖∗,1𝑀̃𝑖∗,2… 𝑀̃𝑖∗,𝑠

2𝑠−1

𝑖=0
 

(4.8)  

where 𝑖∗ = 𝑖 ∙ 2𝑡 + 𝑗 . 𝔽’s member f has weights of the form 𝑤𝑖 = 𝑤 (𝑓𝑐𝑖(𝑋)) =

∑ 𝑘𝑖∗
𝑗=2𝑡−1
𝑗=0  where 𝑘𝑖∗ is the 𝑖∗-th 0-1 coefficient for f defined by Equation (4.1). Also, the 

𝑀̃’s in Equation (4.8) are as defined in Theorem 4.1 with respect to X. Therefore, Equation 

(4.8) reduces to (4.7) where 𝑀̃𝑖,𝑗’s are defined with respect to XV rather than X.                 
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Theorem 4.3 provides a canonical representation of an SEC 𝔽. We refer to 𝑝𝔽(𝑋) as 

𝔽’s characteristic function and Equation (4.7) as its characteristic equation. Continuing 

Examples 4.2 and 4.3, Equation (4.7) specifies 𝔽ADD as follows: 

𝑝𝔽𝐴𝐷𝐷(𝑋) = 0.5(0 ∙ (1 − 𝑝𝑥1)(1 − 𝑝𝑥2) + 1 ∙ 𝑝𝑥1(1 − 𝑝𝑥2)

+ 1 ∙ (1 − 𝑝𝑥1)𝑝𝑥2 + 2 ∙ 𝑝𝑥1𝑝𝑥2) = 0.5𝑝𝑥1 + 0.5𝑝𝑥2  

Observe that Equations (4.6) and (4.7) express a stochastic function in two distinct ways: 

one derived from the discriminants, i.e., the  ki’s, and minterms of X, and the other derived 

from the weights and s-literal cubes of X, which are minterms of XV. 

Because different Boolean functions in the same SEC 𝔽 have different 

discriminants, Equation (4.6) which uses discriminants does not provide a canonical 

representation for 𝔽. Equation (4.7) is canonical, however, and enables efficient stochastic 

equivalency checking. 

Theorem 4.4: The Boolean functions defined on 𝑋 = 𝑋V; 𝑋C where |𝑋V| = 𝑠 and |𝑋C| =

𝑡, have  (2𝑡 + 1)2
𝑠
 SECs. 

Proof: Since |𝑋V| = 𝑠 , there are 2𝑠  s-literal cubes on |𝑋V| , each corresponding to a 

cofactor 𝑓𝑐(𝑋). From Theorem 2, we know that two functions f and g are stochastically 

equivalent if and only if 𝑤(𝑓𝑐(𝑋)) = 𝑤(𝑔𝑐(𝑋)) for all c. Now consider the possible values 

of 𝑤(𝑓𝑐(𝑋)). Since |𝑋c| = 𝑡, we have 𝑤(𝑓𝑐(𝑋)) ∈ {0,1, … , 2
𝑡}. Therefore, 𝑤(𝑓𝑐(𝑋)) has 

2𝑡 + 1 possible values. Since there are 2𝑠 s-literal cubes, their weights can be any integers 

between 0 to 2𝑡 . There are (2𝑡 + 1)2
𝑠

 possible combinations of weights, implying 

(2𝑡 + 1)2
𝑠
 SECs.                                                                                                                

Theorem 4.5: The size of an SEC   is ∏ (
2𝑡

𝑤𝑖
)2𝑠−1

𝑖=0 .  
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Proof: Since |𝑋V| = 𝑠 , |𝑋V|has 2𝑠  s-literal cubes ci, each corresponding to a cofactor 

𝑓𝑐𝑖(𝑋).  The number of combinations of the possible cofactors with respect to ci is (
2𝑡

𝑤𝑖
) 

because ci is a t-input Boolean function with weight wi. Therefore, the total number of 

combinations of stochastically equivalent functions, i.e., the size of the SEC 𝔽, is 

∏ (
2𝑡

𝑤𝑖
)2𝑠−1

𝑖=0 .                                                                                                                          

Clearly, the maximum size of an SEC is ( 2𝑡

2𝑡−1
)
2s

. If 𝑤(𝑓𝑐(𝑋)) = 𝑘  for some s-

literal cube c, the number of possible 𝑓𝑐’s is (2
𝑡

𝑘
). Since the maximum value of (2

𝑡

𝑘
) is 

( 2𝑡

2𝑡−1
) , the largest SEC is the class of all s-literal cubes c on |𝑋V|  with 

weight 𝑤(𝑓𝑐(𝑋)) is 2
𝑡−1. Hence, there will be ( 2𝑡

2𝑡−1
) combinations for all s-literal cubes, 

and ( 2𝑡

2𝑡−1
)
2𝑠

 SE functions. 

Example 4.4: Consider the 16 two-variable functions 𝑓(𝑋) = 𝑓(𝑥1; 𝑟1) with 𝑋V = 𝑥1 and 

𝑋c = 𝑟1. They form nine SECs and the size of the largest class is ( 21

21−1
)
21

= 4. All the 

SECs and their stochastic behavior for both the unipolar and bipolar formats are listed in 

Table 4.1. The stochastic behaviors can be interpreted as arithmetic functions in various 

ways, some of which are potentially useful. For example, the class-2 functions implement 

𝐹 = 0.5𝑝𝑋1 , which can be seen as multiplication by 0.5 or division by 2. This F also 

performs the scaling operation seen throughout Table 4.1, as well as in stochastic addition 

(Figure 4.1).                                                                                                                          

    The preceding example illustrates the fact that every logic function, including the 

simplest kind, implements one or more non-trivial arithmetic operations that may be 

exploited in SC design. A class-8 function in Table 4.1, for instance, performs three 

elementary arithmetic operations on bipolar SNs: decrement (subtract 1), divide by 2, and 
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change the sign. Remarkably, the SC hardware for this consists of just an OR gate and an 

inverter. 

Table 4.1 reveals some other interesting properties of SECs. First, functions in the 

same class can be generated by replacing some or all variables in 𝑋C by their complements, 

or by other variables in 𝑋C. This is to be expected because all their probabilities will be the 

same, namely 0.5. Second, a new SEC is generated by complementing all the functions in 

a given SEC.  For example, functions in class 2 are the complements of those in class 8. 

We also see that the largest SEC must contain the degenerate one-variable functions 

𝑓(𝑋) = 𝑟𝑖, where 𝑟𝑖 ∈ 𝑋C. 

Table 4.1: All SECs for the 2-variable logic functions f(x1; r1) with XV = x1 and XC = r1. 

Class Size 

Logic 

functions 

f 

Stochastic behavior F Arithmetic interpretation A 

Unipolar 

 p 

Bipolar  

2p  1 
Unipolar Bipolar 

1 1 0 0 1 Constant 0 
Constant 

1 

2 2 x1r1, x1r1' 0.5px1  0.5[(2px1  1) 1]  
Scale = 

Multiply by 0.5 

Decrement 

and scale 

3 1 x1 px1 2px1  1 Identity Identity 

4 2 x1'r1, x1'r1' 0.5(1  px1) 0.5[(2px1  1) + 1] 
Complement 

and scale 

Increment, 

scale and 

negate 

5 4 

r1,  

x1'r1 + x1r1', 

x1'r1' + x1r1, 

r1' 

0.5 0 Constant 0.5 Constant 0 

6 2 
x1 + r1,  

x1 + r1' 
0.5(px1 + 1)  0.5[(2px1  1) + 1] 

Increment and 

scale 

Increment 

and scale 

7 1 x1' 1  px1 (2px1 – 1) 

Complement 

(with respect 

to 1) 

Negate 

8 2 
x1' + r1,  

x1' + r1' 
1 – 0.5px1 0.5[(2px1  1) 1] 

Scale and 

complement  

Decrement, 

scale and 

negate 

9 1 1 1 1 Constant 1 Constant 1 
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4.2 SEC-based Synthesis 

As Table 4.1 illustrates, an SEC identifies a set of logic functions 𝔽 that have the 

same stochastic behavior or, equivalently, implement the same arithmetic function A. A 

basic question in stochastic circuit synthesis is therefore: Given a desired arithmetic 

function A, what is the corresponding SEC 𝔽 whose stochastic behavior is A? Prior design 

methods like those of [1][7][74] try to determine just one member f of 𝔽, and then focus 

on f’s implementation and optimization in some preferred design style. 

We now address a more fundamental question: Which of the many functions {fi} 

in 𝔽 are most likely to lead to optimal designs in terms of area cost? We make the following 

general assumptions: 

1. A cell library L is available that includes components needed to implement A. 

Any functionally complete set of logic gates will do, but other well-defined arithmetic 

components such as MUX are helpful.  For bipolar SC, a basic L might include NOT (for 

negation), OR (for logical completeness with NOT), XNOR (for multiplication), and MUX 

(for scaled addition). 

2. Area cost is measured literal count + term count in an (optimal) SOP expression 

for each fi.  This cost measure is widely used in practice, for example by the two-level 

optimization program espresso [14]. While area-optimal stochastic circuits are not 

necessarily two-level, they have few levels, an important consideration when processing 

long bit-streams. Fewer levels are also desirable because of the signal correlation build-up 

occurring as bit-streams propagate through multiple levels.  

Our preliminary method SECS (SEC-based Synthesis) for stochastic circuit design 

was presented in [24]. It requires an initial Boolean function f to identify the SEC for a 

given A. Several approaches to finding f are considered by SECS, including direct 

mapping, which tries to map an expression E for A directly to a stochastic circuit C using 

components from L. This process is analogous to technology mapping in conventional logic  
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Figure 4.2: Direct-mapped implementation of Example 4.5. 

design. Since it is composed of standard logic elements, it can be analyzed by Boolean 

algebra to determine its output function f.  Note, however, that not every arithmetic function 

has a corresponding f  [7]. 

Example 4.5: Suppose we are given the target arithmetic expression 𝐸 = −0.25(𝑋1 +

𝑋2), the cell library L = {NOT, OR, XNOR, MUX}, and employ bipolar SNs.  E maps 

directly into the circuit of Figure 4.2, which specifies the initial Boolean function of the 

form 𝑓(𝑥1, 𝑥2; 𝑟1, 𝑟2, 𝑟3).  The MUX computes 0.5(𝑋1 + 𝑋2),  which the XNOR then 

multiplies by 0.5. The bipolar form of 0.5 requires a px value satisfying  2px – 1 = 0.5, i.e., 

px = 0.75. This is provided by the OR gate, whose stochastic behavior is 𝑝𝑟2 + 𝑝𝑟3 −

 𝑝𝑟2𝑝𝑟3 . Finally, the NOT gate changes the sign.  From Figure 4.2 we get  

 𝑓 = 𝑥1𝑟̅1𝑟̅2𝑟̅3 + 𝑥2𝑟1𝑟̅2𝑟̅3 + 𝑥̅1𝑟̅1𝑟2 + 𝑥̅2𝑟1𝑟2 + 𝑥̅1𝑟̅1𝑟3 + 𝑥̅2𝑟1𝑟3 (4.9)  

which has cost 26. Later we will see that f’s SEC contains functions of much lower cost 

than f.                                                                                                                                    

The SECS algorithm [24] maps a given arithmetic function A to a logic function f* 

that has a low-cost implementation of A.  It can use essentially any SC synthesis method, 

such as the direct mapping approach of Example 4, to find an initial or “base” f with the 

desired stochastic behavior A. After f is found, its weights are calculated to identify its SEC 

𝔽. Then SECS systematically explores 𝔽 for equivalent functions of lower cost using a 

search-based procedure SECO (SEC-based Optimization). If the SEC is small enough,  
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1. Given an arithmetic function A(X1,X2,...,Xs), identify some 

    SEC   by either of the following methods: 

     (A) Generate a base stochastic circuit implementing an

           SEC-member f by direct mapping,  spectral 

           transformation (STRAUSS), ReSC, etc. Then 

           compute the wi = w(fci) for all s-literal cubes ci of f. 

     (B) SECI: Use the first step of STRAUSS to format the 

           target function A as an MLP F(X1,X2,...,Xs) and then

           compute the weights wi s directly.

             is defined by these w(fci) s.  

2. Determine an optimal member of   by either of the

    following two procedures: 

    (A) SECO: Using Theorem 4.2, search for a set of 

          (possibly all) representative functions g that are  

          stochastically equivalent to f. Evaluate the cost of each 

          g via a logic optimization tool such as espresso. Retain  

          (and eventually return) f*, a lowest-cost g.  

    (B) SECM: Divide the stochastic function optimization

          problem into two steps. First, reduce the literal count 

          in XV by mapping the problem to finding an exact

          cover with minimal cost. Then use a vertex-coloring

          algorithm to find and assign stochastic constants. 
 

Figure 4.3: Overview of the extended SEC-based algorithm ESECS to determine a low-

cost stochastic circuit. 

SECO searches the entire SEC. The implementation cost of each function examined by 

SECO can be measured by any convenient logic optimization tool; we chose espresso [14]. 

We now present an enhanced version of SECS called ESECS (Extended SECS), 

which is summarized in Figure 4.3. ESECS is the same as SECS except for the addition of 

the new procedures SECI and SECM in Steps 1(B) and 2(B), respectively. SECI (Stochastic 

Equivalence Class Identification) allows ESECS to find an SEC directly without generating 

a base design f; see Figure 4.4. The target arithmetic function 𝐴(𝑋V)  is first approximated 

by an MLP 𝐹(𝑋V) . This is done by using a Taylor series expansion for 𝐴(𝑋V)  and 

replacing non-linear terms by linear terms [7]. Next, using Theorem 4.3, SECI calculates 

weights 𝑤𝑖
∗ = 𝑤∗(𝑓𝑐𝑖) = 𝑎 ∙ 𝐹(𝐾𝑖) where a is the smallest positive integer such that all 

coefficients in 𝐹∗(𝑋1, 𝑋2, … , 𝑋𝑠) = 𝑎 ∙ 𝐹(𝑋1, 𝑋2, … , 𝑋𝑠)  are integers. 𝐾𝑖  is a set of 0-1 

constants (𝑘𝑖,1, 𝑘𝑖,2, … , 𝑘𝑖,𝑡), where 𝑘𝑖,𝑗 = 1 if the corresponding j-th literal in cube ci is  
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1. Given an MLP F(XV) where XV = x1,x2,...,xs, find a 

    smallest positive integer a such that all coefficients in 

    F
*
(XV) = a   F(XV) are integers.

2. Calculate wi*  = w*(fci) = F
*
(Ki) where Ki is a set of 0-1

    constants Ki = (ki,1, ki,2,  , ki,t, ). ki,j = 1 if the

    corresponding j-th literal in cube ci is xi,j ; ki,j is 0 when the

    literal is x i,j. 

3. Repeat step 2 for all wi* s. If the minimum value of wi* s is 

    negative, shift the values by wi = wi* - min(wi*) to make 

    sure all weights are positive or zero. Otherwise, wi = wi*.

4. The SEC   is defined by wi s, |XV| = s and |XC| = t

    where s is the numbers of A s inputs and t is the smallest

    integer such that 2
t
   max(wi).

 

Figure 4.4: Overview of SECI used by ESECS to identify an SEC for a given MLP. 

𝑥𝑖,𝑗 ; 𝑘𝑖,𝑗  is 0  when the literal is 𝑥̅𝑖,𝑗 . We also need to make sure all the weights are 

nonnegative integers. This is done by shifting the values of wi
*’s by adding b = |min(𝑤𝑖)| 

when min(𝑤𝑖) < 0  and b = 0, otherwise. The resulting SEC realizes 0.5𝑡 ∙ (𝑎 ∙

𝐹(𝑋1, 𝑋2, … , 𝑋𝑠) + 𝑏). Shifting and scaling are necessary for SC to process numbers that 

are negative or outside the unit interval, respectively.  

Example 4.6: Consider the arithmetic function 𝐴(𝑋1, 𝑋2)  with MLP 𝐹𝐴(𝑋1, 𝑋2) =

0.3𝑋1 − 0.4𝑋2.With a = 10, we have 𝐹∗(𝑋1, 𝑋2) = 3𝑋1 − 4𝑋2. In addition, 𝑤0
∗ = 0, 𝑤1

∗ =

−4, 𝑤2
∗ = 3, and 𝑤3

∗ = −1. Since the minimum value of wi is 4, we shift the weights by 

b = |4| to get 𝑤0 = 4, 𝑤1 = 0, 𝑤2 = 7, and 𝑤4 = 3. Equation (4.7) then implies that  

𝑝𝐹∗ = 0.5
3(4(1 − 𝑝𝑋1)(1 − 𝑝𝑋2)) + 7(𝑝𝑋1(1 − 𝑝𝑋2) + 3𝑝𝑋1𝑝𝑋2) 

                              = 0.53 ∙ (3𝑝𝑋1 − 4𝑝𝑋2 + 4)                                                                        

As summarized in Figure 4.3, ESECS takes an arithmetic function as its input. The 

minimization methods used in conventional CAD tools such as espresso cannot find the 

optimal design directly because the inputs of these CAD tools are Boolean functions, not 

arithmetic functions or stochastic equivalence classes. However, as indicated in Figure 4.3,  
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Figure 4.5: Edge detectors: (a) stochastic, (b) conventional [3]. 

the conventional tools can be used in Step 2A to evaluate and weed out larger designs in 

the SEC. 

Before we turn to the general task of optimizing a new stochastic function, we 

consider the problem of checking the optimality of a known design implementing some 

function 𝑓(𝑋V; 𝑋C). The idea is to examine all BFs stochastically equivalent to f and 

compare their costs. This is feasible when n = s + t is small, or when f is amenable to proof 

by induction. 

Example 4.7: The stochastic circuit in Figure 4.5a is taken from [3], and implements the 

Roberts Cross function for edge detection in images using a four-pixel window. It 

computes the function  

 𝑍𝑖,𝑗 = 0.5 × (|𝑋1 − 𝑋2| + |𝑋3 − 𝑋4|) (4.10)  

provided the input SNs meet certain correlation conditions; these conditions do not affect 

SEC membership. As noted in Section 2.6, this stochastic edge detector requires x1 and x2 

to have maximum overlapping of 1s so that the XOR gate serves as an absolute-subtracter 

|X1 – X2|. Similarly, x3 and x4 need to have maximum overlapping of 1s. ESECS makes no  
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Figure 4.6: Cost of the equivalent edge-detector functions. 

assumptions about input correlation, although in most SC circuits, primary inputs are 

required to be uncorrelated. ESECS works on both correlated and uncorrelated inputs. The 

stochastic edge detector’s area cost is less by a factor of about 100 than that of the 

conventional, non- stochastic implementation of Equation (4.10) in Figure 4.5b. Note that 

the total number of logic inputs is only five, far less than the 32 or so in Figure 4.5b. Also, 

the stochastic design has far fewer logic levels. The BF realized by the stochastic design 

has the optimal SOP form,  

𝑓edge = 𝑥̅1𝑥2𝑟̅1 + 𝑥1𝑥̅2𝑟̅1 + 𝑥̅3𝑥4𝑟1 + 𝑥3𝑥̅4𝑟1 

and has cost 16. The variable inputs 𝑥1, 𝑥2, 𝑥3 and 𝑥4 denote light intensity and define XV. 

The remaining input  𝑟1 is a constant of probability 0.5 and defines XC. The SEC for 𝑓edge 

contains 256 functions. However, we only need to evaluate half of them because the cost 

of  𝑔 ≡ 𝑓 is the same as that of f when g is formed by complementing inputs in XC. For 

example, 𝑓1 = 𝑥1𝑟̅1 + 𝑥2𝑟2 and 𝑓2 = 𝑥1𝑟1 + 𝑥2𝑟̅1 with XC = (r1) are SE, and f2 is formed by 

complementing r1 in f1. Since f1 and f2 have the same structure, their literal cost is the same, 

and we only need to evaluate one of them.  Figure 4.6 shows the cost of these 128 functions 

as computed by ESECS. Since the lowest cost is 16, this experiment confirms the optimality 

of the original edge-detector design.                                                                                      

We performed a similar optimality check on the special SNG called a weighted 

binary generator (WBG) presented in [38]. Like the conventional SNG of Figure 1.4a, the  
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Figure 4.7: Cost of the equivalent 2-bit WBG functions. 

WBG in Figure 5.2 maps a k-bit binary number 𝑥1𝑥2…𝑥𝑘 to a 2k-bit SN FWBGk. Unlike the 

conventional SNG, however, which directly compares X with a k-bit pseudorandom 

number R, a WBG composes the output SN from k non-overlapping SNs W1,W2,…,Wk 

derived from R that have probability 𝑝𝑊𝑖
= 0.5𝑖, and ORs them to form the sum  𝑝𝐹WBG𝑘

=

∑ 0.5𝑖𝑝𝑋𝑖
𝑘
𝑖=1 . The WBG has the advantage of generating an SN whose value is exactly that 

of X. A detailed discussion of the WBG design will be provided later in Sections 5.1 and 

6.1. 

Example 4.8: A 2-bit WBG implements 𝑓WBG2 = 𝑥1𝑟1 + 𝑥2𝑟̅1𝑟2, where 𝑥1, 𝑥2 ∈ 𝑋𝑉 and 

𝑟1, 𝑟2 ∈ 𝑋𝐶. The cost of fWBG2 is 7. Figure 4.7 shows the results of searching (half) the 

corresponding SEC. It confirms the optimality of the original design, but it also finds 

alternative functions that have the same cost, such as 𝑓𝑊𝐵𝐺2
∗ = 𝑥1𝑟1 + 𝑥2𝑟̅1𝑟̅2 . These 

functions are obtained by permuting or complementing variables in XC.                            

In the examples so far, we have been able to exhaustively search the SEC defined 

by a small base function.  We now describe two ways to handle larger functions: induction 

when the target function has a well-defined recursive form, and guided search for less 

structured cases. Suppose a BF can be expressed as 

𝑓𝑠(𝑥1, 𝑥2, … , 𝑥𝑠; 𝑋C) =  𝑓𝑠−1(𝑥1, 𝑥2, … , 𝑥𝑠−1; 𝑋C) + ℎ𝑠(𝑥𝑠; 𝑋𝐶) 
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We can try to prove the optimality of small cases and then generalize them to larger ones. 

ESECS may be used to check the optimality of fs-1 and hs. If both are optimal, fs must be 

optimal as the cost of fs is the sum of the costs of fs-1 and hs. 

To illustrate, consider the class of k-bit WBGs. We showed by exhaustive SEC 

search that 𝑓WBG2 is an optimal function. Assume 𝑓WBG𝑛 is also optimal when k = n. Then 

𝑓WBG𝑛 = 𝑥1𝑟1 + 𝑥2𝑟̅1𝑟2 + 𝑥3𝑟̅1𝑟̅2𝑟3 +⋯+ 𝑥𝑛𝑟̅1𝑟̅2… 𝑟̅𝑛−1𝑟𝑛 

and let its cost  be costn. For k = n + 1, we have 

𝑓WBG𝑛+1 = 𝑥1𝑟1 + 𝑥2𝑟̅1𝑟2 + 𝑥3𝑟̅1𝑟̅2𝑟3 +⋯+ 𝑥𝑛𝑟̅1𝑟̅2… 𝑟̅𝑛−1𝑟𝑛 + 𝑥𝑛𝑟̅1𝑟̅2… 𝑟̅𝑛 

= 𝑓WBG𝑛 + 𝑥𝑛+1𝑟̅1𝑟̅2… 𝑟̅𝑛𝑟𝑛+1 

Therefore, the cost of 𝑓WBG𝑛+1 is costn+1 = costn + (n + 2 + 1) as we have an additional 

term, and the literal count of 𝑥𝑛+1𝑟̅1𝑟̅2… 𝑟̅𝑛𝑟𝑛+1 is n + 2. Suppose there exists some other 

function 𝑓WBG𝑛+1
∗ ≡ 𝑓WBG𝑛+1.For the input combination 𝑥1𝑥2…𝑥𝑛 = 00…0 , we have 

𝑝𝐹WBG𝑛+1
∗ = 0.5𝑛+1𝑝𝑥𝑛+1, which  needs at least n + 1 stochastic constants and one variable 

𝑥𝑛+1 to generate it.  Hence, the cost of 𝑓WBG𝑛+1
∗  must be at least costn + n + 2 + 1, implying 

𝑓WBG𝑛+1  is one of the optimal functions. Since 𝑓WBG2  is optimal, we conclude that all 

𝑓WBG𝑛’s are optimal.  

4.3 Search-based Optimization 

To speed up the search process when dealing with functions or circuits with many 

variables, SECO incorporates a guided search heuristic; see Figure 4.8. Again, assume the 

initial stochastic function f is defined on X = XV;XC, and note that  𝑓 = ∑ 𝑐𝑖𝑓𝑐𝑖𝑐𝑖∈𝐶V
 where 

CV is the set of all s-literal cubes. SECO first calculates the weight of f’s cofactor with 

respect to ci, and then generates and sorts by cost all functions that have the same weight, 

as lines 16-18 show. This process is repeated for all 𝑐𝑖’s. In lines 15-19, Fci denotes the 

function space that is searched by the for loop starting in line 14. For small cases like  
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1    Input: f(XV;XC) or           // |XV| = s and |XC| = t

2              W = (w1, w2, ...)   // wi = w(fci), weights of f s SEC  
3    Output: The lowest cost f* in f s SEC  
4    Initialization:   //Initially make f the result 

5       If input is f

6            f* = f; 

7            cost_f* = espresso(f*); 

8            For all s-literal cubes ci on XV

9                Compute wi = w(fci);   // fci is cofactor of f wrt ci

10     else 

11         f* = ɸ;

12         cost_f* =  ;

13  Search SEC   for the lowest-cost member

14      For all s-literal cubes ci on XV

15          Generate set of functions Fci on XC with weight wi;

16          For all g in Fci 

17              cost_g = espresso(f);

18          Sort functions in Fci by cost;     // Give higher priority to 

19      Construct  E by combining Fci s;   //    locally optimal functions  

20      While E is not empty and search time limit is not reached 

21          Select a function g in E; 

22          If cost_f* > cost_g 

23              f* = g;                  

24              cost_f* = cost_g;   // Keep the lower-cost function

25          E = E – g;

26      Return f* ;
 

Figure 4.8: Procedure SECO used by ESECS to find a lowest-cost member of an SEC. 

Examples 4.6 and 4.6 this for loop searches F𝑐𝑖  completely and usually finishes in a 

reasonable time, given that stochastic circuits are often quite small. 

For large circuits, F𝑐𝑖 denotes a sampled subset of the entire function space.  Next 

the SEC is constructed using the sorted sets of functions equivalent to 𝑓𝑐𝑖. In other words, 

members in the SEC with lower-cost cofactors are evaluated first, as they are locally 

optimal. The costs of the SEC members are then calculated and the lowest-cost member is 

kept. SECO repeats the cost evaluation until the entire SEC has been examined, or else a 

search time limit is reached. 
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Example 4.9: Consider the polynomial function   

𝐹̂(𝑋1, 𝑋2) = 0.4375 − 0.125(𝑋1 + 𝑋2) − 0.5625𝑋1𝑋2 

defined in [1]. The corresponding BF generated by the spectral transform method (later 

called STRAUSS [7]) is  

 

𝑓(𝑥1, 𝑥2; 𝑟1, 𝑟2, 𝑟3, 𝑟4)

= 𝑟̅1𝑥̅1𝑥̅2 + 𝑟̅2𝑟̅3𝑥̅1𝑥̅2 + 𝑟̅2𝑟̅4𝑥̅1𝑥̅2 + 𝑟1𝑟2𝑥1𝑥2 + 𝑟1𝑟3𝑥1𝑥2

+ 𝑟1𝑟4𝑥1𝑥2 

(4.11)  

where 𝑋V = (𝑥1, 𝑥2) and 𝑋C = (𝑟1, 𝑟2, 𝑟3, 𝑟4) and f’s cost is 29. It is stated in [1] that the 

cost of Equation (4.11) is about 60% that of the ReSC-style [74]. Nevertheless, SECO finds 

a function 

𝑓∗ = 𝑟̅1𝑥̅1𝑥̅2 + 𝑟̅2𝑟̅3𝑥̅1𝑥̅2 + 𝑟̅2𝑟̅4𝑥̅1𝑥̅2 + 𝑟1𝑟2𝑥1𝑥2 + 𝑟3𝑟4𝑥1𝑥2 

with  f *  f  and cost 24, a further 17% reduction.                                                                   

As Figure 4.3 suggests, ESECS can serve as a complete, self-contained technique 

for stochastic circuit synthesis.  The input is a desired stochastic (arithmetic) function A 

and a cell library L that can implement A. The target SEC is identified by either SECI or an 

initial Boolean function f that realizes A found by direct mapping or some other stochastic 

circuit synthesis method. ESECS then searches the target SEC for a function f* that has 

minimal cost. 

Example 4.10: Returning to Example 4.5, the target function was 𝐴 = −0.25(𝑋1 +

𝑋2). Equation (4.9) defines a cost-26 function 𝑓(𝑥1, 𝑥2; 𝑟1, 𝑟2, 𝑟3) obtained by direct 

mapping from A. Application of SECO to f’s SEC produces an equivalent function 𝑓∗ =

𝑥̅1𝑟1 + 𝑥̅2𝑟2 + 𝑟1𝑟2  whose cost is just 9, a 65% reduction. The number of stochastic 

constants is also decreased, which may reduce the logic needed to generate stochastic 

constants.                                                                                                                             
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SECO’s computational complexity depends on the size of the SEC as indicated by 

Theorem 4.5. We used a symmetry property of SECs to reduce the search space in half (see 

Example 4.7), and this defines the worst-case scenario of SECO. If the SEC is searched 

exhaustively, ∏ (
2𝑡

𝑤𝑖
)2𝑠−1

𝑖=0 /2 functions need to be evaluated. This complexity is still high, 

which usually makes finding a strict optimum infeasibleas in most CAD problems. 

SECO uses a time limit parameter to prevent the explosion of search complexity and deliver 

a best-effort result under a given time budget. Later in this section, we provide 

experimental results showing that, even with a limited search, SECO can reduce area cost 

significantly. 

To evaluate SECO more broadly, we performed experiments on randomly 

generated functions f(𝑋V; 𝑋C). For various values of s = |XV| and t = |XC|, a hundred 

functions were randomly generated and their average minimum cost was calculated. Figure 

4.9 summarizes the results for two representative s,t configurations; we tried many other  

36

41

46

51

56

0 500 1000

18

23

28

33

38

0 500 1000

s = 4, t = 2 s = 2, t = 4

Cost Cost

No. of functions No. of functions  

Figure 4.9: Average minimum cost of functions found by SECO (blue) and random 

sampling (red). 
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s,t pairs, and all gave similar results. The X-axis is the number of equivalent functions 

evaluated, while the Y-axis is the average minimum cost. These results suggest that design 

cost can be reduced substantially even when a relatively small part of the SEC is evaluated.  

Figure 4.9 shows that an average cost reduction of 40% is achieved when a thousand 

stochastically equivalent functions are sampled. The run-time mainly depends on the 

search time limit set in line 20 of Figure 4.8, which was two minutes in our experiments. 

Figure 4.9 also compares SECO with random sampling of the SEC functions. As 

the set of weights is a canonical representation of an SEC (Theorem 4.3), we randomly 

generate a set of integer weights to obtain each sample SEC. SECO gives higher priority 

to SEC members that are locally optimal. This heuristic can reduce the cost significantly, 

and tends to outperform the random sampling approach. 

Again, we performed experiments on randomly generated functions f(𝑋V; 𝑋C). For 

various values of s = |XV| and t = |XC|, a hundred functions were randomly generated and 

then optimized by SECO to evaluate the average area cost reduction. Our experimental 

results show that SECO scales well to relatively large input sizes and achieves higher cost 

reduction for functions with larger |XC|; see Figure 4.10. Because of this, SECO is suitable 

for high-accuracy stochastic circuit optimization. The accuracy of a stochastic circuit is  

 

Figure 4.10: Average area cost reduction achieved by SECO. 
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affected by various factors including |XC|, which is determined when a base stochastic 

circuit or an SEC is selected in Step 1 of ESECS. A large |XC| is necessary when a more 

accurate real number is synthesized. Due to the nature of the LFSR-based random sources 

discussed earlier, real numbers are approximated by expressions of the form  ∑ 1/2𝑖. For 

example, if the arithmetic function 𝑝𝐹 = 0.3𝑝𝑋1  is needed, the coefficient 0.3 must be 

approximated as it cannot be generated directly. If only one stochastic constant ri is present, 

we can only have the weak approximation  𝑝̂𝐹 = 0.5𝑝𝑋1 implying the error |𝑝̂𝐹 − 𝑝𝐹| = 

0.2𝑝𝑋1. More stochastic constants are needed to achieve a better approximation of the target 

arithmetic function. Two stochastic constants reduce the error to 0.05𝑝𝑋1 , and so on. 

STRAUSS or other known SC synthesis methods may be used to handle this constant 

number approximation. In general, higher-accuracy synthesis needs more stochastic 

constants, implying that SECO can improve the synthesis process significantly. 

4.4 Cover-based Optimization 

As an alternative to search procedures like SECO, we propose a synthesis approach 

for stochastic circuits that is roughly analogous to two-level minimization in conventional 

logic design [14]. 

Theorem 4.3 states that a function f from an SEC with  𝑋 = 𝑋V; 𝑋C  is defined by 

the weights of the function for all s-literal cubes on 𝑋V. This suggests representing f by its 

weights in tabular forma weight tablesimilar to a truth table or a Karnaugh map. 

Concepts such as implicant can then be extended from Boolean to stochastic functions in 

a natural way, so that stochastic logic design becomes an implicant covering problem 

resembling classical two-level minimization. 

Example 4.11: Figure 4.11a is a truth table (TT) for all four members of the SEC that 

realizes the scaled addition function 0.5(𝑝𝑋1 + 𝑝𝑋2). If we abstract away the XC constant 

r1, we can represent each function, and therefore the entire SEC, by the weight table (WT) 

defined on 𝑋V = (𝑥1, 𝑥2) appearing in Figure 4.11b. Each entry of the WT is the weight of  
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 x1 x2 r1 f g h i 

0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 

2 0 1 0 0 0 1 1 

3 0 1 1 1 1 0 0 

4 1 0 0 0 1 1 0 

5 1 0 1 1 0 0 1 

6 1 1 0 1 1 1 1 

7 1 1 1 1 1 1 1 

(a) 

 

x1 x2 𝔽 

0 0 0 

0 1 1 

1 0 1 

1 1 2 

(b) 

Figure 4.11: Truth table for the SEC of the BFs realizing stochastic addition; (b) weight-

table representation. 

the corresponding 2-literal cube on 𝑋V in the original TT. For example, 𝑥1𝑥̅2 is defined by 

TT rows 2-3, and each function in the SEC has both a 0 and a 1 in the corresponding two 

output columns, making 𝑥1𝑥̅2’s weight 0 + 1  = 1. Similarly, rows 6-7 give the weight of 

𝑥1𝑥2 as 2. In this way, the TT of Figure 4.11a reduces to the simpler form of Figure 4.11b. 

In conventional design, an implicant i is a cube containing one or more minterms 

of a BF f. We say i implies f  if f  takes the value 1 whenever i is 1. Each implicant has a 

cost equal to its literal count, and two-level synthesis tries to find a set of implicants with 

minimal cost that cover each minterm of f. We define a stochastic implicant I as a set of 

one or more s-literal cubes on Xv of a stochastic function 𝐹(𝑋V; 𝑋C).  The stochastic 

implicant I thus covers one or more s-literal cubes in F’s WT. It stochastically implies F if 

F also takes the value 1 with a non-zero probability whenever I is 1. This non-zero 

probability is 0.5𝑡 times the number of s-literal cubes covered by I. A stochastic prime 

implicant is a stochastic implicant that cannot be covered by a larger (one with fewer 

literals) stochastic implicant. Figure 4.12a shows the WT for the stochastic edge detector 

of Figure 4.5a. In this example, 𝑥̅1𝑥2 , 𝑥1𝑥̅2 , 𝑥̅3𝑥4  and 𝑥3𝑥̅4  are the stochastic prime 

implicants. 
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 x1x2 
x3x4 00 01 11 10 

00 0 1 0 1 

01 1 2 1 2 

11 0 1 0 1 

10 1 2 1 2 
 

      
xi,jx i+1,j

+1

x'i,jxi+1,j

+1

x1x2 x1x2

x3x4 x3x4

 
   

(a)  (b) 

Figure 4.12: (a) Weight table in K-map format, and (b) implicant covering graph for the 

edge detector in Figure 4.5a. 

The stochastic synthesis procedure SECM (SEC-based Mapping) is based on these 

ideas and Theorem 4.3, which indicates how the characteristic function of an SEC is 

formulated in terms of sub-cube weights. SECM is described in Figure 4.13. It starts by 

identifying all stochastic implicants and prime implicants. This is done by changing all 

non-zero cell values in the WT to 1, a process called “projecting” the WT. All cells in the 

projected weight table (PWT) have 0-1 values, as in a K-map. Implicants in the PWT are 

stochastic implicants for the WT. PWTs allow us to use conventional synthesis methods to 

find stochastic (prime) implicants.  Next, SECM solves a covering problem for the WT 

whose goal is to find a set of stochastic implicants that cover every s-literal cube ci exactly 

wi times; we call this the WT covering problem and its solution the WT cover. A similar 

covering problem called the λ-cube intersection problem, can be found in [75] but its goal 

is different from ours. 

For example, the stochastic edge detector requires four stochastic prime implicants 

{𝑥̅1𝑥2, 𝑥1𝑥̅2, 𝑥̅3𝑥4, 𝑥3𝑥̅4} to ensure each 4-literal cube ci of weight wi is covered exactly wi 

times; see Figure 4.12a. If the weight of cube 𝑥̅1𝑥2𝑥3𝑥4 were 2 instead of 1, we would need 

to add an extra stochastic implicant 𝑥̅1𝑥2𝑥3𝑥4 to make sure the cube is covered by exactly 

two stochastic implicants. The WT cover would then become 

{𝑥̅1𝑥2, 𝑥1𝑥̅2, 𝑥̅3𝑥4, 𝑥3𝑥̅4, 𝑥̅1𝑥2𝑥3𝑥4}.  
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1    Input: W = (w1, w2, ...)   // wi = w(fci), weights of an SEC  
2    Output: A low cost f* in SEC  
3    Initialization:  

4        f* = ɸ;

5    Generate a member f* of the SEC   by finding   s lowest- 

6    cost cover 

7        For all wi in W   // Project SEC   to a Boolean function fp
8           If wi == 0 

9              ki = 0; 

10         else ki = 1;

11      fp (x1, x2,  , xs) = ˅(ki ˄ mi);   // fp is a Boolean function 

12                                                    //    represented by Equation (4.1)

13      I = implicants(fp);   // I is a set of implicants of fp 

14                                    //    found by tools such as espresso

15      C = wt-cover(I, W);   // Use methods such as mixed-integer

16                                       //    linear programming to find the lowest-    

17                                       //    cost WT cover C = (c1, c2, ...) 

18      V = C;   // Construct the vertex V and edge E for  the coloring

19                   //    problem; WT cover C is the vertices V = (v1, v2, ...)

20      For all pairs of vi and vj in V                                       

21         If vi and vj cover the same s-literal cube

22              E = E + (i, j);   // (i, j) in E indicates an edge in vi and vj

23      A = vertex-coloring(V, E);   // A = (a1, a2, ...) is the assignment

24                                                 //    of colors using binary encoding

25      f = circuit-mapping(C, A);   // Map the stochastic circuit to a 

26                                                 //    two-level SOP design by 

27                                                 //    f = ˅(ai˄ci) where v is OR and

28                                                 //    ˄ is AND 

29      f* = two-level-optimization(f);   // Optimize the circuit again

30      Return f*;                                 //    by conventional optimizer
 

Figure 4.13: Procedure SECM used by ESECS to generate a low-cost stochastic circuit. 

We use literal count to measure the cost of stochastic implicants. The cost of a WT 

cover is the sum of costs of its stochastic implicants. Note that the WT cover and its 

associated cost are not always unique. The problem of interest then is to find a WT cover 

(if any) with lowest cost.  

A solution to the minimum-cost WT covering problem reduces the literal costs of 

the stochastic variables XV. The next step of SECM targets minimizing the cost associated 

with the stochastic constants XC. These constants need to be assigned to the stochastic 

implicants to ensure the characteristic function values fall within the unit interval. The SNs 
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generated by stochastic implicants are uniformly scaled.  To map the characteristic function 

to a two-level SOP design, we must ensure the bit-streams generated by scaled stochastic 

implicants have non-overlapping 1s. This requirement enables the OR gate at the output 

stage of an AND-OR circuit to perform exact addition of the type seen in the WBG [38].  

When two stochastic implicants only cover different s-literal cubes, they produce bit-

streams with non-overlapping 1s; otherwise, we need to take special measures.   

The method we propose to meet the foregoing non-overlapping 1s requirement is 

to formulate and solve it as a graph coloring problem. A valid coloring is an assignment of 

colors to each vertex of a graph such that no edge connects vertices of the same color. Each 

stochastic implicant in a WT cover is a vertex of the proposed graph. An edge connects 

two vertices if the corresponding stochastic implicants intersect. For example, in the 

stochastic edge detector with WT cover  {𝑥̅1𝑥2, 𝑥1𝑥̅2, 𝑥̅3𝑥4, 𝑥3𝑥̅4} , both stochastic 

implicants 𝑥̅1𝑥2 and 𝑥3𝑥̅4 cover the cube  𝑥̅1𝑥2𝑥3𝑥̅4. We therefore connect vertices 𝑥̅1𝑥2 

and 𝑥3𝑥̅4, as shown in Figure 4.12b, to form an implicant covering graph G.  To distinguish 

bit-streams with non-overlapping 1s, we use different colors. The problem of interest now 

becomes the following coloring problem: Find a valid coloring of G with the minimum 

number of colors. This ensures that the number of bit-streams used is minimal. Clearly, for 

the stochastic edge detector graph in Figure 4.12b, two colors suffice.  

The bit-streams with non-overlapping 1s serve as scale factors, and all have the 

same probability. One simple way to generate them using a minimum number of stochastic 

constants ri is binary encoding. This technique assigns a unique pattern of 1s and 0s in 

normal binary sequence to each color of a valid coloring. AND gates are then used to 

generate the required bit-streams. The AND gates’ i-th input is 𝑟̅𝑖 or 𝑟𝑖 if the corresponding 

i-th bits of their patterns are 0 or 1, respectively. In general, t stochastic constants can 

generate 2𝑡  such bit-streams corresponding to 𝑟̅1… 𝑟̅𝑡−1𝑟̅𝑡 , 𝑟̅1… 𝑟̅𝑡−1𝑟𝑡 , 𝑟̅1…𝑟𝑡−1𝑟̅𝑡 ,  …, 

𝑟1…𝑟𝑡−1𝑟𝑡. For example, to obtain four bit-streams, we can use two stochastic constants r1 

and r2 and generate the bit-streams by 𝑟1𝑟2, 𝑟1𝑟̅2, 𝑟̅1𝑟2 and 𝑟̅1𝑟̅2. When k bit-streams (colors) 

are needed, we must use at least |𝑋C| = 𝑡 stochastic constants, where 2𝑡 ≥ 𝑘. The final BF  
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 x1x2 

x3x4 00 01 11 10 

00 0 2 1 1 

01 1 3 2 2 

11 1 2 0 1 

10 2 3 1 2 
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x1x3

 
   

(a)  (b) 

Figure 4.14: (a) Weight table in K-map format for Example 12, and (b) its implicant 

covering graph. 

is mapped to an SOP expression in which the OR gate performs exact addition and the 

scaling factors are multiplied by stochastic implicants using AND operations. For example, 

the stochastic edge detector needs only two colors, so we can use one stochastic constant 

r1, and assign r1 and 𝑟̅1  to produce the desired BF 𝑧𝑖,𝑗 = 𝑟1𝑥1𝑥̅2 + 𝑟1𝑥̅1𝑥2 + 𝑟̅1𝑥3𝑥̅4 +

𝑟̅1𝑥̅3𝑥4 or 𝑧𝑖,𝑗 = 𝑟̅1𝑥1𝑥̅2 + 𝑟̅1𝑥̅1𝑥2 + 𝑟1𝑥3𝑥̅4 + 𝑟1𝑥̅3𝑥4. Each can be implemented with two 

XOR gates and one 2-to-1 multiplexer, as in Figure 4.5a. 

Example 4.12: Figure 4.14a shows the WT for an SEC whose WT cover found by SECM 

is {𝑥̅1𝑥2 ,𝑥1𝑥̅2 , 𝑥̅3𝑥4 ,𝑥3𝑥̅4, 𝑥̅1𝑥3 ,𝑥2𝑥̅3} . The corresponding implicant covering graph is 

shown in Figure 4.14b, and requires at least four colors for a valid coloring. Therefore, we 

need two stochastic constants 𝑟1 and 𝑟2 to generate four bit-streams with non-overlapping 

1s using  𝑟̅1𝑟̅2, 𝑟1𝑟̅2, 𝑟1𝑟̅2, and 𝑟1𝑟2. The final BF obtained is 𝑧𝑖,𝑗 = 𝑟̅1𝑟̅2𝑥1𝑥̅2 + 𝑟̅1𝑟̅2𝑥̅1𝑥2 +

𝑟1𝑟̅2𝑥3𝑥̅4 + 𝑟1𝑟̅2𝑥̅3𝑥4 + 𝑟̅1𝑟2𝑥̅1𝑥3 + 𝑟1𝑟2𝑥2𝑥̅3.                                                                      

SECM divides stochastic circuit optimization into two sub-problems, so its 

complexity reduces from handling a single (s + t)-input circuit to handling two smaller 

circuits with s and t inputs, respectively. It maps the synthesis problem to the vertex 

coloring and the covering problems, which can be solved by standard algorithms. The 

complexity of SECM is therefore ultimately determined by the complexity of the solvers 

used. As the run-time and the computation resources of circuit optimization grow 

exponentially with the circuit input size, SECM scales better than SECO. For example, for  
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Figure 4.15: Average area cost reduction achieved by SECM. 

the stochastic edge detector, SECO needs to optimize up to 128 5-input BFs to obtain a 

result, whereas SECM only has to optimize one 4-input and one 1-input BF. 

Using SECM, we repeated the experiment performed with SECO and summarized 

in Figure 4.15. The corresponding average literal cost reduction achieved by SECM is 

shown in Figure 4.15. Unlike SECO whose area cost reduction is mainly determined by 

|XC|, SECM performs well as |XV| increases. This is because by using linear programming, 

SECM ensures that the cost of the WT cover on XV is minimal. The second step of SECM 

minimizes the number of stochastic constants |XC|, not literal counts over XC. Therefore, 

SECM can achieve greater literal cost reduction as the number of stochastic variables 

increases. SECO performs better as |XC| increases because when |XV| is fixed, a larger |XC| 

provides more stochastically equivalent functions to be sampled and searched, and 

therefore increases the chance of finding a lower-cost design. For example, in the extreme 

case where |XC| = 0, there is no stochastically equivalent function, so SECO cannot achieve 

any area cost reduction.  

Figure 4.16 compares SECO and SECM by the difference of average area cost 

reduction when SECO is replaced by SECM. The Y-axis shows (average area cost 

reduction by SECM − average area cost reduction by SECO), so positive values indicate  
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Figure 4.16: Average area cost reduction when SECO is replaced by SECM. 

that SECM outperforms SECO.  It can be seen that SECO outperforms SECM only when 

the input sizes are small, as SECO can then search the SEC entirely to get a global optimum. 

However, as explained earlier, as |XV| increases, SECM outperforms SECO. Therefore, 

SECO seems preferable for smaller designs, while SECM works better for larger ones. 

4.5 Summary  

The usual starting point of conventional logic synthesis is a Boolean function f(X) 

to be realized. This is not necessarily the case in stochastic computing, however, where 

many equivalent Boolean functions of varying area cost can satisfy the problem 

specification. We have shown that partitioning the inputs X between variables XV and 

constants XC leads to a useful concept of stochastic equivalence among Boolean functions. 

We derived some basic properties of stochastic equivalence classes (SECs) and showed 

them to be helpful for understanding and implementing stochastic circuit synthesis and 

optimization. We proposed ESECS, an SEC-based synthesis algorithm for stochastic 

circuits. ESECS contains three main procedures: SECI identifies an SEC for the target 

arithmetic function; SECO optimizes a known stochastic circuit by searching its SEC; and 

SECM generates a low-cost stochastic circuit in a fashion similar to classical two-level 
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design. We have presented experimental data which show the ESECS approach can check 

the optimality of existing SC designs, and produce new SC designs of relatively low cost. 
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CHAPTER 5  

Design of Dividers 

 

The preceding chapter examined the design of combinational stochastic circuits that 

realize polynomials, which only require addition, subtraction and multiplication. While 

these operations have extremely simple stochastic implementations, this is not true for 

division. Most currently known stochastic dividers employ sequential circuits whose 

accuracy, convergence properties, etc., are unsatisfactory or not well understood. As a 

result, division is usually avoided or approximated in SC design. This chapter first reviews 

and analyzes in depth the existing approaches to stochastic division. It then proposes a 

novel division technique called CORDIV (correlated division) that exploits correlation 

between the input parameters. CORDIV is based on two key observations: (1) the 

conditional probability 𝑝𝑋1|𝑋2  of X1 given X2 naturally defines the stochastic division 

operation 𝑝𝑋1𝑋2 𝑝𝑋2⁄ ,and (2) X1 and X2 can be correlated to efficiently transform this 

operation to  𝑝𝑋1 𝑝𝑋2⁄ . We then present a CORDIV-based divider which has area cost far 

lower than that of conventional stochastic dividers, while achieving better accuracy.  

CORDIV is compatible with conventional unipolar and bipolar SN formats, unlike some 

stochastic dividers that achieve similar area cost by using alternative SN representations. 

5.1 Stochastic Dividers 

Stochastic division was first discussed by Gaines, who pioneered SC back in 

the1960s [31]. He noted that an approximate form of division is achieved by a simple JK 

flip-flop circuit (Figure 3.1). As shown in Section 3.1, the JK flip-flop’s output z has the 

probability  𝑝𝑍 = 𝑝𝑋1 (𝑝𝑋1 + 𝑝𝑋2)⁄ . This approximates 𝑝𝑍 = 𝑝𝑋1 𝑝𝑋2⁄  when the dividend 
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𝑝𝑋1  is small. However, the approximation becomes inaccurate when the divisor 𝑝𝑋2  is 

small. Nevertheless, because of its simplicity, the JK flip-flop divider has been successfully 

applied to the design of the update node used by LDPC decoding; see Figure 1.5 [67]. 

To implement 𝑝𝑍 = 𝑝𝑋1 𝑝𝑋2⁄  more accurately, Gaines proposed using an opamp-

like sequential component called an ADDIE (ADaptive DIgital Element), one form of 

which is an up-down counter with feedback [31].  The ADDIE makes an estimate 𝑝̂𝑍 of  

𝑝𝑋1 𝑝𝑋2⁄  in binary form, and uses an SNG to generate the stochastic form of 𝑝̂𝑍. Since 𝑝̂𝑍 ≅

𝑝𝑍 = 𝑝𝑋1 𝑝𝑋2⁄ , the product  𝑝𝑋2𝑝̂𝑍 should equal 𝑝𝑋1.  

Figure 5.1a shows the unipolar version of the ADDIE-based divider, which 

calculates  𝑝̂𝑍 dynamically [31]. When 𝑝𝑋1 > 𝑝𝑋2𝑝̂𝑍, 𝑝̂𝑍 is less than 𝑝𝑍 and the counter is 

incremented. When 𝑝𝑋1 < 𝑝𝑋2𝑝̂𝑍  ,  𝑝̂𝑍 > 𝑝𝑋1 𝑝𝑋2⁄   and the counter is decremented. Its 

output z is fed back to an AND gate which performs the multiplication 𝑝𝑋2𝑝̂𝑍. The dividend 

SN X1 with numerical value  𝑝𝑋1 is connected to the Up control of the counter, and the 

product 𝑝𝑋2𝑝̂𝑍 is sent to the Down line. The counter thus accumulates the value 𝑝𝑋1 −

𝑝𝑋2𝑝̂𝑍, and the required division 𝑝̂𝑍 = 𝑝𝑋1/𝑝𝑋2  is completed when the overall system is in 

equilibrium. As the counter’s value is estimated by SNs that fluctuate randomly, the binary 

form of  𝑝̂𝑍 is also a random number. Gaines noted that the variance of 𝑝̂𝑍 is inversely 

proportional to the number of states 2k in the counter, since the binary form of 𝑝̂𝑍 changes 

value by 1/2k when the Up and Down signals are different. This 1/2k factor defines an error 

bound for Gaines’ ADDIE-based design. An SN Z generated by combinational SC circuits 

has a variance pZ(1 – pZ)/N, where N is the bit-stream length, so Z can have arbitrarily small 

variance given an arbitrarily long bit-stream. However, this is not the case for the ADDIE-

based designs, as we will show in Section 5.3. 

Figure 5.1b gives the bipolar version of Gaines’ ADDIE-based divider. It requires 

some non-trivial modifications to compute 2𝑝𝑍 − 1 = (2𝑝𝑋1 − 1) (2𝑝𝑋2 − 1)⁄ . Since 

bipolar SNs may be negative, 𝑋1 > 𝑋2𝑍̂ does not always imply 𝑍̂ < 𝑋1 𝑋2⁄ ; the sign of X2 
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Figure 5.1: Gaines’ ADDIE-based (a) unipolar and (b) bipolar stochastic dividers [31]; 

(c) equivalent circuit for Figure 5.1b. 

affects the result of comparison between 𝑍̂  and 𝑋1 𝑋2⁄ . Similarly, 𝑋1 < 𝑋2𝑍̂  does not 

guarantee 𝑍̂ > 𝑋1 𝑋2⁄ . To reduce the uncertainty caused by signed numbers, the divider of 

Figure 5.1b compares 𝑋1𝑋2 and 𝑋2
2𝑍̂, instead of 𝑋1 and 𝑋2𝑍̂. Assuming the divisor 𝑋2 will 

not be zero, 𝑋2
2 is always positive, so 𝑋1𝑋2 > 𝑋2

2𝑍̂ implies 𝑋1 𝑋2⁄ > 𝑍̂. On the other hand, 
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Figure 5.2:  (a) The k-bit weighted binary generator (WBG) of SNs [38] and (b) its 

symbol. 
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Figure 5.3: Ananth’s ADDIE-based unipolar stochastic divider. 

𝑋1𝑋2 < 𝑋2
2𝑍̂ indicates 𝑍̂ > 𝑋1 𝑋2⁄ . Note that Gaines’ original bipolar divider in Figure 

5.1b can be simplified to the equivalent circuit shown in Figure 5.1c. 

In a little-noticed patent on stochastic processor design, Ananth [9] describes 

another ADDIE-based divider (Figure 5.3) in which the SNGs of Figure 1.4a are replaced 

by special SNGs called weighted binary generators (WBGs), originally due to Gupta and 

Kumaresan [38]. As depicted in Figure 5.2, a WBG converts a k-bit binary number 

𝑥1𝑥2…𝑥𝑘  to a (unipolar) SN FWBGk of length 2k with essentially no error. FWBGk is 

guaranteed to have the value 𝑝𝐹WBG𝑘
= ∑ 0.5𝑖𝑝𝑋𝑖

𝑘
𝑖=1  after 2k bits have been generated. 
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Unlike a conventional SNG, which depends on number comparison, the WBG decomposes 

the output probability 𝑝𝐹WBG𝑘
 into k SNs W1, W2,…,Wk with probabilities 𝑝𝑊𝑖

= 0.5𝑖, for  

i = 1,2,…,k. The output FWBGk is formed by combining these k SNs via an OR gate, as 

shown in Figure 5.2. For example, a 3-bit LFSR generates three bit-streams 𝑟1 =

01110010 , 𝑟2 = 10111000 , and 𝑟3 = 01011100 , which give 𝑤1 = 01110010 , 𝑤2 =

10001000 , and 𝑤3 = 00000100 . A binary number x1x2x3 = 011 representing 0.375 

generates an SN 𝐹WBG𝑘 = 1000 1100. Note that the 1s in the Wi’s are non-overlapping, 

so they are effectively added by the OR gate in Figure 5.2. 

Example 5.1: Figure 5.4 illustrates the behavior of the unipolar ADDIE-based divider in 

Figure 5.1a. The size k of the counter is 4, so the maximum number the counter can hold 

is 15. The initial value of the counter is set to 8, which is half the range of the counter. To 

demonstrate the worst-case convergence of the counter, we choose 𝑝𝑋1 = 0 and 𝑝𝑋2 = 1, 

so ideally the output 𝑝𝑍 = 𝑝𝑋1 𝑝𝑋2⁄  and the value stored in the counter are both 0. The X-

axis in Figure 5.4 represents clock cycles; the blue and red lines are the binary values stored 

in the counter and the probability of the output SN Z. This example shows that the counter 

converges to the desired value 0 at the 53rd clock cycle, while the output bit-stream has  

probability 0.151.                                                                                                                  

 

Figure 5.4: Convergence behavior of Gaines’ unipolar ADDIE-based divider in Figure 

5.1a with k = 4, pX1 = 0 and pX2 = 1. 
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Several alternative SN formats have been proposed that aim to simplify division. 

Gaines describes a single-line format with infinite range, where an SN Z on line z has the 

numerical value 𝑝𝑍/𝑞𝑍  with 𝑞𝑍  denoting 1 − 𝑝𝑍  [31]; the same representation was 

rediscovered later by Min et al. [64].  This ratio format allows the reciprocal of a number 

to be calculated by a NOT gate. If the input x1 and output z of the NOT gate have values 

𝑝𝑋1 𝑞𝑋1⁄  and 𝑝𝑍 𝑞𝑍⁄ , respectively, then  𝑝𝑍 𝑞𝑍⁄ = 𝑞𝑋1 𝑝𝑋1⁄ . The ratio format enables a 

relatively simple divider design based on a JK flip-flop, as depicted in Figure 5.5a. Here 

𝑝𝐽 = 𝑝𝑋1𝑞𝑋2  and 𝑝𝐾 = 𝑞𝑋1𝑝𝑋2 , so 𝑝𝑍 = 𝑝𝑋1𝑞𝑋2 (𝑝𝑋1𝑞𝑋2 + 𝑞𝑋1𝑝𝑋2)⁄ , leading to 𝑝𝑍 𝑞𝑍⁄ =

(𝑝𝑋1 𝑞𝑋1⁄ )/(𝑝𝑋2 𝑞𝑋2⁄ ).   
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Figure 5.5: Gaines’ basic components for the ratio format: (a) divider, (b) multiplier and 

(c) adder [31]; Min et al.’s (d) divider, (e) multiplier and (f) adder [64]. 
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Example 5.2: : The SNs X1 = 00110000 and X2 = 10011100 with 𝑝𝑋1 = 2/8  and 𝑝𝑋1 =

4/8 have numerical values 1/3 and 1, respectively. For the divider in Figure 5.5a, we have 

J = 00100000 and K = 10001100, which yield Z = 00110000 with  𝑝𝑍 = 2/8. Z’s value is 

1/3, which is the result of the division (1/3)/1.                                                                            

While the ratio format simplifies division, it complicates other SC operations, 

notably multiplication and addition. Figure 5.5b shows a ratio multiplier where 𝑝𝐽 =

𝑝𝑋1𝑝𝑋2 and 𝑝𝐾 = 𝑞𝑋1𝑞𝑋2 . Since 𝑝𝑍 = 𝑝𝐽 (𝑝𝐽 + 𝑝𝐾),⁄  we have the output probability 𝑝𝑍 =

𝑝𝑋1𝑝𝑋2 (𝑝𝑋1𝑝𝑋2 + 𝑞𝑋1𝑞𝑋2)⁄  and 𝑝𝑍 𝑞𝑍⁄ = (𝑝𝑋1 𝑞𝑋1⁄ ) × (𝑝𝑋2 𝑞𝑋2⁄ ) , which implements 

multiplication. Similarly, when 𝑝𝐽 = 𝑝𝑋1𝑞𝑋2 + 𝑞𝑋1𝑝𝑋2 and 𝑝𝐾 = 𝑞𝑋1𝑞𝑋2 , the output z has 

𝑝𝑍 = (𝑝𝑋1𝑞𝑋2 + 𝑞𝑋1𝑝𝑋2) ((𝑝𝑋1𝑞𝑋2 + 𝑞𝑋1𝑝𝑋2) + 𝑞𝑋1𝑞𝑋2)⁄ , yielding the add operation 

𝑝𝑍 𝑞𝑍⁄ = (𝑝𝑋1 𝑞𝑋1⁄ ) + (𝑝𝑋2 𝑞𝑋2⁄ )  illustrated in Figure 5.5c. A similar set of SC 

components for the ratio format is found in Min et al. [64]; see Figure 5.5d–f. They present 

components based on a MUX and a D-type flip-flop and generalize the adder and multiplier 

to m SNs. For m = 2, however, their multiplier, adder and divider are logically equivalent 

to Gaines’ JK-based designs in Figure 5.5a–c. 

Canals et al. recently presented a two-line SN format that employs the ratio of two 

bipolar SNs XN and XD [18].  In this encoding scheme, an SN’s numerical value is 𝑋 =

𝑋N 𝑋D⁄ = (2𝑝𝑋N − 1) (2𝑝𝑋D − 1)⁄ ,  and the bipolar SC devices in Figure 1.3 serve as 

computational building blocks. Multiplication takes the form 𝑍 = 𝑋1𝑋2 =

(𝑋1N𝑋2N) (𝑋1D𝑋2D)⁄ . Since 𝑋𝑖N and 𝑋𝑖D are bipolar SNs, the result Z represented by ZN 

and ZD is calculated by two bipolar multiplications, 𝑍N = 𝑋1N𝑋2N  and 𝑍D = 𝑋1D𝑋2D . 

Division is implemented by a relatively simple multiplication step 𝑍 = 𝑋1 𝑋2⁄ =

(𝑋1N𝑋2D) (𝑋1D𝑋2N)⁄  where 𝑍N = 𝑋1N𝑋2D  and 𝑍D = 𝑋1D𝑋2N . On the other hand, 

addition becomes significantly more complicated: 𝑍 = 𝑋1 + 𝑋2 = (𝑋1N 𝑋1D⁄ ) +

(𝑋2N 𝑋2D⁄ ) = (𝑋1N𝑋2D + 𝑋1D𝑋2N) (𝑋1D𝑋2D)⁄ . Note that while bipolar multiplications 

can be performed without scaling, the standard bipolar adder (Figure 1.3b) can only realize 
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the scaled addition 𝑍 = 0.5(𝑋1 + 𝑋2). This makes the SN format of Canals et al. [18] less 

attractive than Gaines’ ratio format, where the adder can be realized without scaling as in 

Figure 5.5c.  

Ratio formats are not only incompatible with the simple conventional SN formats, 

but have other, less obvious, limitations. Conventional unipolar and bipolar SNs are very 

tolerant of errors.  Each bit of X has the same weight, and flipping a few bits of X has little 

effect on 𝑝𝑋 or 2𝑝𝑋 − 1. However, if X  denotes a ratio p/q, then a bit-flip affecting q can 

have a very large impact on X’s value. The ratio format also increases the inherent 

redundancy of SNs, since the value represented by p/q is the same as that of  kp/kq for any 

k. 

Summarizing the foregoing discussion, the JK flip-flop-based design performs 

approximate division at low area cost using the standard, and relatively simple, unipolar 

SN format. (A bipolar version of this division approach is not discussed in [31].)  ADDIE-

based designs implement the desired division operation 𝑋1 𝑋2⁄  directly, but they have large 

area overhead due to the presence of an SNG and a counter, whose size limits the 

achievable accuracy. Gaines’ ratio format provides a simple divider but the corresponding 

adder and multiplier are much bigger than the corresponding components of Figure 1.3. 

Compared to Gaines’ ratio-format divider, the divider proposed by Canals et al. has slightly 

less area because basic stochastic components can be used, but like Gaines’ ratio format, it 

too is incompatible with the standard SN formats. 

The previously proposed dividers all have at least one of the following 

shortcomings: they replace X1/X2 by a related but approximate form of division; they 

employ a nonstandard SN format; or they have relatively high cost in terms of area, 

accuracy or error tolerance. The CORDIV scheme introduced next attempts to avoid these 

disadvantages by providing a true divider of low cost and high efficiency. 
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5.2 CORDIV Method 

The proposed new division method takes advantage of the fact that the conditional 

probability of X1 given X2 is the quotient of the probability of the joint event  X1X2 and the 

probability of X2 [80]; in other words, 

 𝑝𝑋1|𝑋2 = 𝑝𝑋1𝑋2 𝑝𝑋2⁄  (5.1)  

If X1 and X2 are SNs that are correlated by having the maximum number of overlapping 1s 

for the values they denote, and 𝑝𝑋1 < 𝑝𝑋2, then  𝑝𝑋1𝑋2 = 𝑝𝑋1.  In that case, Equation (5.1) 

reduces to 

 𝑝𝑋1|𝑋2 = 𝑝𝑋1 𝑝𝑋2⁄  (5.2)  

which is the target division operation. Hence, to compute 𝑝𝑋1 𝑝𝑋2⁄ , we only need evaluate 

the probability of 𝑋1|𝑋2, which is the probability of X1 = 1 given that X2 = 1 with the 

specified correlation  property.   This  𝑋1|𝑋2  is another SN Z constructed by taking a bit 

from X1 whenever the corresponding X2 bit is 1. This construction is the basis of CORDIV. 

Note that the correlation-based operations take place entirely inside the divider so that no 

special correlation requirements are imposed on the input-output parameters. Moreover, 

the correlation-based operations only need one random number generator, so the area cost 

is lower than that of a typical divider, which requires two SNGs to provide independent 

SNs representing X1 and X2. 

The correlation property of interest is best understood in terms of the SCC (SC 

correlation) metric introduced in Section 3.2 [4]. The SCC of two SNs X1 and X2 is defined 

in Equation (3.4). 𝑆𝐶𝐶(𝑋1, 𝑋2) = 1 implies X1 and X2 have maximum overlap of 1s and 0s, 

as required for Equation (5.2) to hold.  
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Example 5.3: The SNs X1 = 1001010000000000 and X2 = 1001110000010000 have 

𝑆𝐶𝐶(𝑋1, 𝑋2) = 1. Hence, 𝑍 = 𝑋1|𝑋2=11010, yielding 𝑝𝑋1|𝑋2 = 3 5⁄ , which is equivalent 

to  𝑝𝑋1 𝑝𝑋2⁄ = (3 16⁄ ) (5 16⁄ )⁄ .                                                                                           

X1 and X2 have a consistent bit-stream length N, but that is not the case for the SN 

𝑍 = 𝑋1|𝑋2, as Example 5.3 illustrates. The length of Z varies with the number of 1s in X2. 

CORDIV therefore includes a “padding” method to extend the length of Z to N. It employs 

an l-bit padding memory to store  l  ≥ 1 bits of 𝑍 = 𝑋1|𝑋2, which it subsequently inserts 

into Z to make the latter’s final length equal to N. The padded N-bit SN is denoted by 𝑍̂ 

and the bits in 𝑍̂  generated when x2 is 1 and 0 are called effective and padded bits, 

respectively. A similar number length mismatch can also be found in conventional binary 

arithmetic. For example, k-bit precision binary division using a sequential shift-and-

add/subtract circuit may need to pad the result to k bits with trailing 0s when the remainder 

reaches zero within k clock cycles. On the other hand, if the divider needs more than k 

clock cycles to generate an exact result, the output is truncated to k bits. While binary 

numbers are padded by leading or trailing 0s, the CORDIV quotient Z is padded with 

random bits that have the same probability as Z. 

Figure 5.6 shows the basic CORDIV design when l = 1. The select signal of the 

MUX is controlled by x2, generating the conditional SN 𝑍 = 𝑋1|𝑋2, so that 𝑝𝑍̂ = 𝑝𝑋1 𝑝𝑋2⁄  

when x2 = 1. When x2 is 0, the output bit  𝑧̂ is the previous result bit stored in the D-type 

flip-flop (DFF), which has the probability 𝑝DFF = 𝑝𝑋1 𝑝𝑋2⁄ . Therefore, the MUX outputs 

𝑝𝑍̂ = 𝑝𝑋2 × 𝑝𝑋1 𝑝𝑋2⁄ + (1 − 𝑝𝑋2) × 𝑝DFF = 𝑝𝑋1 𝑝𝑋2⁄ . The CORDIV divider also contains 

two comparators and a random number generator.  To ensure that  𝑆𝐶𝐶(𝑋1, 𝑋2) = 1, the 

SNGs generating X1 and X2 share a common random number source [4]. This configuration 

guarantees that whenever x1 is 1, x2 is also 1, given the binary form of 𝑝𝑋1 ≤ 𝑝𝑋2. Note that 

like the ADDIE-based designs, the results of CORDIV saturate to the largest representable 

number, namely 1, when  𝑝𝑋1 > 𝑝𝑋2. 
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Figure 5.6: Basic design for a CORDIV stochastic divider. 

Example 5.4: Continuing with Example 5.3, if X1 = 1001010000000000 and X2 = 

1001110000010000, the CORDIV divider of Figure 5.6 computes  𝑍̂ = 

1111011111100000 with  𝑝𝑍̂ = 10 16⁄ = 0.625, which is a good approximation to 𝑝𝑍  =

 0.6.                                                                                                                                        

A padding memory of size l > 1 can be realized in several ways. It can simply be 

an l-bit shift register that stores l consecutive bits in 𝑍̂. The MUX in Figure 5.6 selects the 

signal from the D-type flip-flop when a bit in the SN X2 is 0. If X2 has long runs of 

consecutive 0s, the padded SN 𝑍̂ will repeatedly copy the bit-stream stored in the shift 

register. To avoid such repetition, the divider should have a larger l-bit padding memory 

when X2 has many consecutive 0s. However, a large padding memory may add significantly 

to cost as l increases. Later, we will see that for short SNs, a larger l is not usually 

preferable, as l clock cycles are needed to “warm up” and fill the padding memory with 

effective bits. 
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Figure 5.7: Design for a bipolar CORDIV stochastic divider. 

The CORDIV design can also be extended to bipolar division at the cost of 

additional logic to handle signed numbers. Gaines’ ADDIE-based bipolar divider in Figure 

5.5b uses a squaring operation to ensure the two SNs being compared have the same sign. 

A bipolar CORDIV divider only needs an additional MUX to perform scaling and two 

XORs to process the sign of the output SN; see Figure 5.7. This bipolar design takes 

numbers using sign-magnitude binary representation and generates the results of division 

in bipolar representation. 

The padding memory can also be realized by an l-bit register R whose bits can be 

randomly read. This requires extra random number sources to uniformly select a bit from 

R and send it to the MUX. This improves the randomness of the output SN Z as new random 

sources are introduced. However, the output accuracy remains the same since every bit in 

the padding memory has the same probability. The new random sources also significantly 
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increase the area cost. We therefore use the simpler shift-register approach in our 

experiments. 

5.3 Experimental Results 

Next, we compare the accuracy of the ADDIE-based stochastic dividers covered in 

Section 5.2 with that of the proposed CORDIV approach. Stochastic dividers using 

alternative SN formats are not considered because they are incompatible with standard SN 

formats and are rarely used. We also compare the results generated by the various dividers 

with the corresponding exact analytic values. To quantify accuracy, we use mean-square 

error (MSE), so high MSE indicates an inaccurate computation. 

We first compare the padded n-bit SN 𝑍̂ to the conditional SN 𝑍 = 𝑋1|𝑋2, which 

only includes effective bits. The padded N-bit SN 𝑍̂ is generated by the design of Figure 

5.6. We randomly sample 1,000 pairs of 𝑝𝑋1 and 𝑝𝑋2 values in the unit interval [0,1] to  

 

Figure 5.8: Accuracy comparison between the unpadded conditional SN 𝑍 = 𝑋1|𝑋2 

(blue) and the padded SN 𝑍̂ (red). 
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Figure 5.9: Accuracy of the CORDIV divider for different sizes of the padding memory. 

generate the SNs X1 and X2. This experiment is repeated for different bit-stream lengths N. 

Figure 5.8 shows the result of this comparison. The X-axis represents the input precision k 

corresponding to the bit-stream length N = 2k. The Y-axis is our accuracy measure MSE. 

Since 𝑍̂ only consists of effective bits, its accuracy is better than the padded Z, as expected. 

However, the results indicate that the difference between Z and 𝑍̂ is very small, implying 

that padding has very little impact on accuracy.  

Although the unpadded SN 𝑍 = 𝑋1|𝑋2 is more accurate, its length changes with X2. 

This property makes the unpadded Z less attractive as it cannot interact directly with other 

n-bit SNs. Figure 5.9 illustrates the effect on MSE of varying the size of the l-bit padding 

memory. Again, 1,000 pairs of 𝑝𝑋1 and 𝑝𝑋2 values are randomly sampled to generate X1 

and X2. The output SN 𝑍̂ is obtained by the proposed padding method, and the experiment 

is repeated for different bit-stream lengths N = 2k. The results show that accuracy is 

essentially unaffected by the size l of the padding memory when N is large. However, for 

shorter bit-streams, larger padding memories perform worse than smaller ones due to the 

fact that the padding memory needs at least l clock cycles to fill with effective bits.  

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 3 5 7 9 11 13 15 17 19

M
S

E

1-bit

2-bit

4-bit

8-bit

32-bit

64-bit

k (Bit-stream length N = 2k)



98 

 

 

Figure 5.10: Accuracy of the CORDIV divider for different values of 𝑝𝑋2. 

For all values of l, the accuracy of 𝑍̂ converges to the same value, so the baseline design   

(l = 1), which has lowest cost, is preferred. 

As noted in Section 5.2, the padded SN 𝑍̂ has fewer effective bits when the divisor 

𝑋2 has fewer 1s. We evaluate the accuracy of the proposed CORDIV stochastic divider 

with different values of the divisor 𝑝𝑋2 . Figure 5.9 shows that a 1-bit shift-register is 

sufficient, so we only consider the design in Figure 5.6. The simulation results in Figure 

5.10 demonstrate that, as expected, smaller 𝑝𝑋2 has worse accuracy. Lower MSE can be 

achieved by increasing the bit-stream length N.  

The accuracy of the ADDIE-based dividers in Figures 5.1a and 5.3 is evaluated in 

a similar fashion. The data in Figures 5.11 and 5.12 show the accuracy of these designs is 

bounded by the counter size, as discussed in Section 5.2. Unlike CORDIV, the MSE of the 

ADDIE-based dividers cannot be made arbitrarily small by increasing bit-stream length. 

Compared to Gaines’ approach, replacing the SNGs by WBGs improves the accuracy, but  
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Figure 5.11: Accuracy of Gaines' ADDIE-based divider as counter size k varies. 

 

 

Figure 5.12: Accuracy of Ananth's ADDIE-based divider as counter size k varies. 
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Figure 5.13: Accuracy comparison between CORDIV, and Ananth’s and Gaines’ dividers 

with 5- and 6-bit counters. 

the results for k = 3 and 4 indicate that the accuracy improvement slows down as bit-stream 

length increases. 

Figure 5.13 is a summary comparison of the CORDIV stochastic divider (Figure 

5.6) and Ananth’s and Gaines’ dividers with 5- and 6- bit counters. CORDIV clearly has 

the best accuracy. Its average MSE is 3.39×10-4, a more than 10x improvement over the 

other designs’ average MSEs 3.3×10-3, 6.296×10-3, 2.3847×10-2, and 1.4069×10-2. 

Moreover, CORDIV needs only 1.5 SNGs (one random number source and two 

comparators), one D-type flip-flop, and one MUX, while the ADDIE-based dividers have 

3 SNGs (or 3 WBGs), an AND gate, and a k-bit counter. Table 5.1 shows the approximate 

gate counts of the various dividers with and without including input SNGs. It can been seen 

that CORDIV is significantly smaller than the others. 
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Table 5.1: Area comparison between CORDIV, and Ananth’s and Gaines’ dividers with 

5- and 6-bit counters. 

Gate count CORDIV Gaines5 Gaines6 Ananth5 Ananth6 

Including input SNGs 201 629 751 512 625 

Excluding input SNGs 9 435 520 396 478 

5.4 Summary 

Division has long been the “missing operation” in SC applications, reflecting the 

lack of accurate, low-cost implementations handling standard (unipolar or bipolar) formats. 

We have addressed this problem with a new approach, CORDIV, which is built on the 

relation between conditional probability and bit-stream correlation. CORDIV also 

incorporates a novel padding technique to make the input and output bit-streams the same 

length. Compared to earlier SC dividers, CORDIV uses less area and is significantly more 

accurate. It shows that correlation can be a design parameter for division whose role, 

especially in larger arithmetic systems, deserves further study.   

 



102 

 

CHAPTER 6  

Monotonic Progressive Precision 

 

Chapters 1-5 mostly discussed accuracy and design aspects of SC separately. We 

now consider them together and present a novel SC design technique called ASCoMPP 

(Accurate Stochastic Computing with Monotonic Progressive Precision). This general-

purpose design technique implements any stochastic arithmetic function with high 

accuracy. We first prove that very accurate results are obtained when the random numbers 

used to generate interacting SNs are carefully sampled. The sampling process ensures that 

accuracy increases steadily with bit-stream length, a very desirable property we term 

monotonic progressive precision (MPP). We further show how simple counting sequences 

can achieve good MPP at relatively low cost. Finally, we present analytical and 

experimental data which demonstrate that, with appropriate bit-stream types and lengths, 

ASCoMPP produces results that are both highly accurate and have good MPP. 

6.1 Exact Stochastic Computing 

The inaccuracy of SN-based computation has long been considered a major factor 

limiting SC to low-precision applications. However, it is known that for multiplication and 

certain bit-stream formats, accurate or even exact SNs can be produced. Gupta and 

Kumaresan noticed that the inaccuracy due to random fluctuations can be essentially 

eliminated by deriving SNs from pseudonoise (PN) sequences [38]. A kth-order PN 

sequence (also called an m-sequence) is a bit-stream of maximum period 2k – 1 generated 

by certain types of k-bit LFSRs. PN sequences pass many randomness tests and their theory 

is well understood [36]. A free-running LFSR goes through all its 2k – 1 states (the all-0 
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state is missing) in a deterministic but random-like order. Note the similarity to a free-

running k-bit binary counter, which is also deterministic but goes through all 2k states. 

As introduced in Section 5.1, the SNG proposed in [38] is a weighted binary 

generator (WBG). It converts a k-bit binary number 𝑥1𝑥2…𝑥𝑘 to a (unipolar) SN X of 

length 2k – 1 with an extremely small error due the missing state which makes the numbers 

of 0s and 1s slightly different. An LSFR is easily modified to include the all-0 state and 

eliminate this error. Although Gupta and Kumaresan do not include the all-0 state in their 

design, in the rest of the chapter, we assume that LFSRs have been modified in this way. 

The SN X from a WBG is guaranteed to have the exact value of 𝑝̂𝑋 = 𝑝𝑋 =

∑ 0.5𝑖𝑥𝑖
𝑘
𝑖=1  after 2k bits have been generated. As discussed above, the (modified) LFSR 

goes through every possible state. Therefore, each stage or flip-flop ri of the LFSR produces 

a bit-stream Ri with equal numbers of 0s and 1s. Hence Ri is the source of an SN of length 

2k with the exact value 𝑝𝑅𝑖 = 0.5. Unlike the standard SNG of Figure 1.4a, which relies on 

number comparison, the WBG decomposes the SN generated by the LFSR into k SNs W1, 

W2,…,Wk with probabilities 𝑝𝑊𝑖
= 0.5𝑖 , for  i = 1,2,…,k. The WBG’s output SN X is 

formed by combining these k SNs via an OR gate, as shown in Figure 5.2. Suppose, for 

example, the WBG contains a 3-bit LFSR that generates the three bit-streams 𝑅1 =

01110010,  𝑅2 = 10111000,  and 𝑅3 = 01011100,  which make 𝑊1 = 01110010, 

𝑊2 = 10001000, and 𝑊3 = 00000100. If a binary number x1x2x3 = 011 representing 

0.375 is applied to the WBG, it outputs  𝑋 = 10001100, an exact SN representation of the 

binary input. Since the 1s in the Wi’s are always non-overlapping, they are added exactly 

by the OR gate in Figure 5.2. Note that if a unmodified LFSR is used, so the all-0 state is 

excluded, the LFSR generates  𝑅1 = 0111001,    𝑅2 = 1011100,   and   𝑅3 = 0101110. 

The output SN then becomes 𝑋 = 1000110,  which has the  small  error |3/7 – 3/8| = 3/56. 

Using WBGs, Gupta and Kumaresan also demonstrated that not only can SNs be 

generated accurately, but they can be accurately multiplied in SC fashion [38]. The idea is 

to use two WBGs to generate two exact SNs X and Y, and then use a stochastic multiplier 



104 

 

y1 y2    yk  

y

rk+1

...

...

...

rk+2

r2k

...

...

...

x

r1

...

...

...

r2

rk

2k
-b

it
 L

FS
R

...

...

xk     x2x1  
...

f

wx1
w1

w2

wk

wk+1

wk+2

w2k

wx2

wxk

wy1

wy2

wyk

 

Figure 6.1: The k-bit exact stochastic multiplier [38]. 

(an AND gate) to compute 𝑝𝐹 = 𝑝𝑋 × 𝑝𝑌 . As Figure 6.1 illustrates, instead of two 

individual k-bit LFSRs, the two WBGs share a single 2k-bit LFSR. This configuration 

ensures that 𝑋 and 𝑌 have exact values when their bit-stream length is 22k. As X and Y are 

generated by two disjoint sets of independent SNs (R1, R2, …, Rk) and (Rk+1, Rk+2, …, R2k), 

they are statistically independent or uncorrelated. From the definition of independence of 

two SNs [44], we see that the two 22k-bit binary sequences X = (X(1), X(2), . . . , X(22k)) 

and Y = (Y(1), Y(2), . . . , Y(22k)) satisfy 

 

∑𝑋(𝑖)𝑌(𝑖)

22𝑘

𝑖=1

=
∑ 𝑋(𝑖)22𝑘

𝑖=1 × ∑ 𝑌(𝑖)22𝑘

𝑖=1

22𝑘
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As both 𝑝𝑋 = 𝑝̂𝑋 = ∑ 𝑋(𝑖)22𝑘

𝑖=1 22𝑘⁄  and 𝑝𝑌 = 𝑝̂𝑌 = ∑ 𝑌(𝑖)22𝑘

𝑖=1 22𝑘⁄  are exact, the result of 

ANDing X and Y has 𝑝̂𝐹 = ∑ 𝑋(𝑖)𝑌(𝑖)22𝑘

𝑖=1 22𝑘⁄ = ∑ 𝑋(𝑖)22𝑘

𝑖=1 × ∑ 𝑌(𝑖)22𝑘

𝑖=1 22𝑘 × 22𝑘⁄ =

𝑝̂𝑋 × 𝑝̂𝑌 = 𝑝𝑋 × 𝑝𝑌 = 𝑝𝐹 . Since 𝐸𝐹 = 𝔼[(𝑝̂𝐹 − 𝑝𝐹)
2] = 0  always holds, the multiplier 

gives exact results. 

Example 6.1: A 2-bit version of the multiplier of Figure 6.1 has a 4-bit LFSR and generates 

the bit-streams shown in Table 6.1 when the binary forms of X and Y are both 11, 

representing 0.75. We then have ∑ 𝑋(𝑖)22𝑘

𝑖=1 = ∑ 𝑌(𝑖)22𝑘

𝑖=1 = 12 and ∑ 𝑋(𝑖)𝑌(𝑖)22𝑘

𝑖=1 = 9. As 

k = 2 in this example, we find 9 = (12×12)/24, implying the estimated value of F, 𝑝̂𝐹 =

9/16, which is exactly the result of 0.75 × 0.75.                                                                   

Despite its successful use to produce an accurate stochastic multiplier, this design 

approach has not been extended to other arithmetic operations.  We propose such an 

extension here to any stochastic arithmetic function that is realizable by a Boolean logic 

circuit. It is well-known [1][7] that every Boolean function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) maps to a 

unique stochastic function 𝑝𝐹(𝑝𝑋1 , 𝑝𝑋2 , … , 𝑝𝑋𝑛),  as specified by Equation (4.3). For 

example, if f is the two-input AND function, then Equation (4.3) implies 

Table 6.1: Bit-streams for the exact 2-bit multiplication of Example 6.1. 

Line l Bit-stream on l Numerical value 

r1 

r2 

r3 

r4 

1010 1111 0000 1100 

0101 1110 0001 1001 

1011 1100 0011 0010 

0111 1000 0110 0101 

8/16 

8/16 

8/16 

8/16 

wx1 

wx2 

wy1 

wy2 

1010 1111 0000 1100 

0101 0000 0001 0001 

1011 1100 0011 0010 

0100 0000 0100 0101 

8/16 

4/16 

8/16 

4/16 

x 

y 

1111 1111 0001 1101 

1111 1100 0111 0111 

12/16 

12/16 

f 1111 1100 0001 0101 9/16 
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𝑝𝐹(𝑝𝑋1 , 𝑝𝑋2) = 𝑓(0,0)(1 − 𝑝𝑋1)(1 − 𝑝𝑋2) +  𝑓(0,1)(1 − 𝑝𝑋1)𝑝𝑋2

+  𝑓(1,0)𝑝𝑋1(1 − 𝑝𝑋2) +  𝑓(1,1)𝑝𝑋1𝑝𝑋2  = 𝑝𝑋1𝑝𝑋2 

It is not true, however, that every arithmetic function is a stochastic function 

directly implementable by a logic circuit. For example, the unscaled sum 𝐹 = 𝑋 + 𝑌 

cannot be realized because the value of F can fall outside the unit interval [0,1] which is 

the range of (unipolar) SNs. Several recent studies of stochastic circuit synthesis [1][7][74] 

have addressed this issue. They show that by introducing new stochastic constants, un-

synthesizable arithmetic function can be approximated or scaled to make them realizable. 

The scaling of addition by 0.5 in a multiplexer is an obvious example. To simplify our 

discussion, we only consider arithmetic functions that can be realized directly by logic 

circuits. 

Let B be an m-variable Boolean function f(x,y,…,z) that realizes the stochastic 

function 𝐹(𝑝𝑋 , 𝑝𝑌, … , 𝑝𝑍). For example, f could be AND and F could be multiply.  
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Figure 6.2:  ASC design for exact implementation of F(pX, pY, …, pZ). 
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Figure 6.2 shows the proposed method called ASC (Accurate Stochastic Computing), a 

preliminary version of the aforementioned ASCoMPP method for exact computation of F. 

The SNs representing pX, pY, …, pZ  are 2mk-bit  sequences generated by m separate k-bit 

WBGs fed by an mk-bit (modified) LFSR. The stochastic behavior F of B is 𝑝𝐹 =

𝐹(𝑝𝑋 , 𝑝𝑌, … , 𝑝𝑍). The following theorem asserts that, when the full 2mk-bit input sequences 

are applied, the output bit-stream representing 𝑝𝐹 is such that  𝑝̂𝐹 = 𝑝𝐹, i.e., the estimated 

value of F is exact. 

Theorem 6.1: Let X, Y, …, Z be m SNs generated by  m WBGs with m k-bit independent 

inputs, x1x2…xk, y1y2…yk, …, z1z2…zk using the ASC design of Figure 6.2.  Let B be the 

Boolean function f(x,y,…,z) that realizes the stochastic function 𝐹(𝑝𝑋, 𝑝𝑌, … , 𝑝𝑍).  The 

estimated value 𝑝̂𝐹 of the output SN F when the bit-stream length N = 2mk is exact, and is 

given by 

𝑝̂𝐹 = 𝑝𝐹 = 𝐹(𝑝𝑋, 𝑝𝑌, … , 𝑝𝑍) 

where 𝑝𝑋 = ∑ 0.5𝑖𝑥𝑖
𝑘
𝑖=1 , 𝑝𝑌 = ∑ 0.5𝑖𝑦𝑖

𝑘
𝑖=1 , …, 𝑝𝑍 = ∑ 0.5𝑖𝑧𝑖

𝑘
𝑖=1 . 

Proof: Let SN X = (X(1), X(2), …, X(2mk)), so that 𝑝̂𝑋 = ∑ 𝑋(𝑖)2𝑚𝑘

𝑖=1 2𝑚𝑘⁄ ,   𝑝̂𝑌 =

∑ 𝑌(𝑖)2𝑚𝑘

𝑖=1 2𝑚𝑘 ,⁄  and 𝑝̂𝑍 = ∑ 𝑍(𝑖)2𝑚𝑘

𝑖=1 2𝑚𝑘⁄ . The output bit-stream F = (F(1), F(2), ... , 

F(2mk)) has the numerical value 𝑝̂𝐹 = ∑ 𝐹(𝑖)2𝑚𝑘

𝑖=1 2𝑚𝑘⁄ .  Now 𝐹(𝑖) = 𝑓(𝑋(𝑖), 𝑌(𝑖),

… , 𝑍(𝑖)). As X, Y, …, and Z do not share common random sources, all pairs of them are 

statistically independent or uncorrelated. The stochastic behavior of the Boolean function 

B with independent inputs can be characterized as some function of the input signal 

probabilities, 𝑝𝑋, 𝑝𝑌,…, and 𝑝𝑍, i.e. 𝑝𝐹 = 𝐹(𝑝𝑋, 𝑝𝑌, … , 𝑝𝑍).                                                 

Without loss of generality, we single out X for discussion, and show that when the 

bit-stream length is 2mk, the estimated value 𝑝̂𝑋 = ∑ 𝑋(𝑖)2𝑚𝑘

𝑖=1 2𝑚𝑘⁄  will be 𝑝𝑋 =

∑ 0.5𝑖𝑥𝑖
𝑘
𝑖=1 . Let SN X* = (X*(1), X*(2), …, X*(2k)) be a 2k bit-stream generated by the WBG 

design of Figure 5.2, so that 𝑝̂𝑋∗ = ∑ 𝑋∗(𝑖)2𝑘

𝑖=1 2𝑘⁄ . The WBG ensures the estimated value 
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is exact, i.e. 𝑝̂𝑋∗ = ∑ 0.5𝑖𝑥𝑖
𝑘
𝑖=1 = 𝑝𝑋. This is not obvious as the pseudo-random inputs of 

X’s WBG do not come from a k-bit (modified) LFSR; instead, they come from an mk-bit 

(modified) LFSR. Since r1r2…rk repeat every pattern 2mk-k times, the number of 1s in X will 

be 2mk-k times of the number of 1s in X*.  Therefore, we have 

𝑝̂𝑋 =
1

2𝑚𝑘
∙ ∑ 𝑋(𝑖)

2𝑚𝑘

𝑖=1

=
1

2𝑚𝑘−𝑘 ∙ 2𝑘
∙ (2𝑚𝑘−𝑘 ∙∑𝑋∗(𝑖)

2𝑘

𝑖=1

) =
1

2𝑘
∙∑𝑋∗(𝑖)

2𝑘

𝑖=1

=∑0.5𝑖𝑥𝑖

𝑘

𝑖=1

= 𝑝𝑋 

Similarly, we have 𝑝̂𝑌 = 𝑝𝑌, …, 𝑝̂𝑍 = 𝑝𝑍. In other words, the SNs X, Y, …, Z are exact 

when bit-stream length is 2𝑚𝑘. Since  

𝑝̂𝐹 =
1

2𝑚𝑘
∙ ∑ 𝐹(𝑖)

2𝑚𝑘

𝑖=1

=
1

2𝑚𝑘
∙ ∑ 𝑓(𝑋(𝑖), 𝑌(𝑖),… , 𝑍(𝑖))

2𝑚𝑘

𝑖=1

= 𝐹(∑𝑋(𝑖)

2𝑚𝑘

𝑖=1

2𝑚𝑘⁄ ,∑𝑋(𝑖)

2𝑚𝑘

𝑖=1

2𝑚𝑘⁄ ,… ,∑𝑋(𝑖)

2𝑚𝑘

𝑖=1

2𝑚𝑘⁄ )

= 𝐹(𝑝̂𝑋, 𝑝̂𝑌, … , 𝑝̂𝑍) 

we have 𝑝̂𝐹 = 𝐹(𝑝̂𝑋 , 𝑝̂𝑌, … , 𝑝̂𝑍) = 𝐹(𝑝𝑋, 𝑝𝑌, … , 𝑝𝑍) = 𝑝𝐹, which indicates that the output 

SN F is exact, 𝐸𝐹 = 𝔼[(𝑝̂𝐹 − 𝑝𝐹)
2] = 0 when the bit-stream length is 2mk.                          

The preceding proof is illustrated by Table 6.1 of Example 6.1. When the binary 

input x1x2 = 11 representing 0.75 is sent to a 2-bit WBG to generate the SN X*, the bit- 

stream length is 22  = 4 and the number of 1s in X* is 3. This gives the exact result 𝑝̂𝑋∗ =

3/4. Using an ASC design, a 2-bit multiplication operation requires a 4-bit LFSR so the 

length of X is 24. As Table 6.1 shows, r1r2 is used to generate X*, and all possible 

combinations of r1r2 repeat 2(42)
 = 4 times, so the number of 1s in X is four times that in 

X*. Therefore, we get the exact result 𝑝̂𝑋 = 12/16 = 𝑝̂𝑋∗ = 3/4 . Similarly, 𝑝̂𝑌  is also 

exact when the bit-stream length is 16. Since the interacting SNs X and Y do not share a 
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random source, i.e. no ri is used more than once, X and Y are independent and the AND 

gate realizes multiplication. Hence,  𝑝̂𝐹 = 𝑝̂𝑋 × 𝑝̂𝑌 = 3/4 × 3/4 = 9/16.  

Example 6.2: Consider the function 𝑓 = 𝑎1𝑏1𝑟̅ + 𝑎2𝑏2𝑟, which implements the scaled 

inner-product operation 𝐹 = 0.5(𝐴1𝐵1 + 𝐴2𝐵2) when 𝑝𝑅 = 0.5. The corresponding ASC 

design has five SNs, A1, A2, B1, B2 and R. Note that the stochastic constant R is a special 

case whose WBG is simply a pass-through wire. Let the precision k be 2.  The size of the 

LFSR is 4 × 2 + 1 = 9, indicating that the bit-stream length needed for an exact result is 29 

= 512.                                                                                                                                    

The operation of a conventional SNG can be seen as a Monte Carlo sampling 

process [5]. It is also helpful to view ASC in terms of Monte Carlo sampling, where the 

samples are mk-bit vectors from an m-dimensional space S whose axes are the input 

variables of B in Figure 6.2. Each axis is divided in two by the value of its variable, so that 

S can be partitioned into 2m blocks. A block represents B’s minterms or maxterms in a 

fashion similar to a Karnaugh map, but the blocks need not be the same size. Let MB denotes 

the blocks corresponding to the minterms of B, so MB represents the cases when B’s output 

f is 1. It is not hard to see that the stochastic value of f is given by 

𝑝𝐹 = (𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑀𝐵)/(𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆)  

The estimated 𝑝̂𝐹  can be obtained by sampling points in S. 

𝑝̂𝐹 = (𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑀𝐵) (𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)⁄  

which is a typical Monte Carlo approach. With ASC, the samples are generated by an mk-

bit (modified) LFSR. When the LFSR traverses a full cycle of its states, the entire space S 

is uniformly sampled, and 𝑝̂𝐹is accurate to mk-bit precision, making  𝑝̂𝐹 = 𝑝𝐹. 

Example 6.3: Consider again the exact stochastic multiplier of Figure 6.1 with the AND 

function f = xy. Its sample space S has two dimensions x and y, as depicted in Figure 6.3.  
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Figure 6.3: The sample space S of the 2-bit exact stochastic multiplier in Example 6.3.  

Each axis is partitioned into two sub-spaces according to the corresponding probability 

values pX and pY. Figure 6.3 shows the case when pX = 0.75 and pY = 0.5, represented by 

blue and red rectangles, respectively.  The red rectangle comprises the cases where y = 1 

and blue rectangle indicates where x = 1. These partitions ensure that whenever a point is 

sampled, the probability of falling into the red (or blue) rectangle is pX = 0.75 (or pY = 0.5) 

as its area is 0.75x (or 0.5x) the overall area. Since the LFSR r1r2r3r4 is viewed as the 

sample source, the dots in Figure 6.3 indicates the sample points. The correspondence 

between these sample points and x values is given explicitly for pX = 0.75 by Table 6.1; the 

correspondence between the sample points and y values is obtained similarly for pY = 0.5. 

The AND operation of stochastic multiplication gives an MB which is the intersection of 

the blue and red rectangles, i.e., the purple region. When the bit-stream length is 16, the 

LFSR cycles through all its states, and all the uniformly distributed points shown in Figure 

6.3 are sampled. We then have pF = (Area of MB) / (Area of the whole 2-dimensional space 

S) = 6/16, which is the exact result for 0.75×0.5 = 0.375.                                                   

Example 6.4: Figure 6.4 gives another instance of ASC design, this time to implement the 

2-bit scaled addition 𝐹 = 0.5(𝑋 + 𝑌)  exactly. Figure 6.5 illustrates the corresponding 

sample space S in the manner of Figure 6.3. With x = 11 and y = 10, denoting 0.75 and 0.5, 

respectively, and a stochastic constant pR1 = 0.5, S is partitioned into eight sub-spaces 
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Figure 6.4: Two-bit exact stochastic scaled adder. 
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Figure 6.5: Sample space of the 2-bit stochastic scaled adder in Example 6.4. 

suggested by the blue and red dashed lines. The Boolean function for scaled add is 𝑓 =

𝑥𝑟1̅ + 𝑦𝑟1, so its minterms are r1xy = 010, 011, 101, 111, and form the shaded part MB of 

Figure 6.5. If the bit-stream length is 25 = 32, then pz = (Volume of MB) / (Volume of the 

whole 3-dimensional space) is estimated by 20/32, which is exactly 0.5 × (0.5 + 0.75).     
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6.2 Progressive Precision 

The previous section presented a way to achieve exact results for any stochastic 

arithmetic function.  An exact output SN F is only obtained after the mk-bit LFSR driving 

the computation goes through a maximum-length sequence of 2mk clock cycles. F’s 

accuracy is not guaranteed if the output SN is sampled for fewer clock cycles, e.g., to 

generate a faster, but less precise result. In general, the value of F can fluctuate up and 

down over a wide range as the computation proceeds. This section presents a method 

(ASCoMPP), which ensures that F’s accuracy increases steadily and predictably over time. 

In general, progressive precision (PP) refers to a computation whose results 

improve with more computation time [2]. It implies that the first 2k* bits of a 2k-bit result 

X provide a good approximation to X’s final value. For example the bit-stream X = 

01011100 with pX = 0.5 is approximated well by sampling its first four bits 0101; this 

illustrates “good” progressive behavior since 𝑝̂𝑋∗  = 𝑝𝑋. On the other hand, Y = 00011101, 

also with pY = 0.5, has “bad” progressive behavior because its first four bits 0001 have 

value 0.25, which is a poor approximation to pY.  

Alaghi and Hayes show that SNs with good progressive behavior can be obtained 

by using low-discrepancy sequences as the SNGs’ pseudo-random number sources [5]. To 

measure the quality of PP, they define the bit-error of an n-bit SN X as 𝜀𝑋 = 𝑛 ×

|𝑝̂𝑋∗ − 𝑝𝑋|. An SN is called l-PP if the bit-error of its initial sub-sequence of length 2i is at 

most l for all i [5]. For example, X = 1011111100001111 has the exact value pX = 11/16. 

X’s initial subsequences of length 2, 4, 8, and 16 are 10, 1011, 10111111, and 

1011111100001111, respectively. The corresponding bit-errors are 0.375, 0.25, 1.5, and 0. 

The SN X has 1.5-PP since its maximum bit-error is 1.5. Note that the WBG ensures that 

the bit-error of the SN with length 2k is zero.  

The l-PP metric only considers the PP of an isolated SN. We now propose a 

different PP measure 𝜀𝑋
(𝑖)
 which links the precision values of the input binary number and 
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the output stochastic bit-stream. Intuitively, 𝜀𝑋
(𝑖)
 indicates how far the first 2i

 -bit 

subsequence of SN is from having the expected number of 1s needed for i-bit precision. 

Definition 6.1: Let the 2k-bit stream X = (X(1), X(2),…, X(2k)) be an SN generated from a 

k-bit binary number x1x2…xk. Then, for any 𝑖 ≤ 𝑘, X’s stage-i bit-error is defined as 

 𝜀𝑋
(𝑖)
= 2𝑖 × |𝑝̂𝑋

(𝑖)
− 𝑝𝑋

(𝑖)
| (6.1) 

where 𝑝̂𝑋
(𝑖)
= ∑ 𝑋(𝑗)/2𝑖2𝑖

𝑗=1  and 𝑝𝑋
(𝑖)
= ∑ 0.5𝑗𝑥𝑗

𝑖
𝑗=1 .                                                               

In this definition,  𝑝̂𝑋
(𝑖)

 and  𝑝𝑋
(𝑖)

 are the estimated and expected values of X to i-bit 

precision, respectively. Equation (6.1) can be rewritten in the following equivalent form:  

 

𝜀𝑋
(𝑖)
= |∑𝑋(𝑗)

2𝑖

𝑗=1

−∑ 2𝑖−𝑗𝑥𝑗
𝑖

𝑗=1
| (6.2) 

Equation (6.2) indicates that 𝜀𝑋
(𝑖)

 represents the difference between the number of 1s in the 

first 2i
 -bit subsequence of X and the expected number of 1s needed to specify X with i-bit 

precision. This equation gives a measure of the number of erroneous bits in an SN. 

Example 6.5: Let X  = 1110110011011011 be a 16-bit SN derived from the 4-bit binary 

number x1x2x3x4 = 1011 denoting the decimal number 0.6875.  X’s initial 2-, 4-, 8- and 16-

bit sub-sequences are 11, 1110, 11101100 and 1110110011011011, respectively. Its stage-

i expected estimated, expected and error values derived from Definition 6.1 are as follows: 

i 𝒑̂𝑿
(𝒊)

 𝒑𝑿
(𝒊)

 𝜺𝑿
(𝒊)

 

1 1.0 0.5 1 

2 0.75 0.5 1 

3 0.625 0.625 0 

4 0.6875 0.6875 0 
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The calculations for the case  i = 2 are: 

 𝑝̂𝑋
(2)
= ∑ 𝑋(𝑗)/44

𝑗=1  = 1/4+1/4+1/4+0/4 = 0.75  

 𝑝𝑋
(2)
= ∑ 0.5𝑗𝑥𝑗

2
𝑗=1 = 0.5 × 1 + 0.52 × 0 = 0.5  

 𝜀𝑋
(2)
= 22 × |0.75 − 0.5| = 1 

This implies that if generation of the SN terminates after 2i = 4 bits with X = 1110…, its 

estimated value 𝑝̂𝑋
(2)

, which is 0.11 in binary, has 1 bit less precision than the first i = 2 bits 

of  x1x2, whose value is 0.10.                                                                                                

We now formalize progressive precision in terms of the stage-i bit-error concept. 

Definition 6.2: An 2k-bit SN X = (X(1), X(2),…, X(2k)) generated from a k-bit binary 

number x1x2…xk has monotonic progressive precision (MPP) if the stage-i bit-errors 

decrease monotonically  with i, i.e. 𝜀𝑋
(𝑖+1)

≤ 𝜀𝑋
(𝑖)

 for all i. We say that X has strict MPP if 

𝜀𝑋
(𝑖)
= 0 for all i.                                                                                                                    

The SN X in Example 6.5 has MPP, but not strict MPP. To achieve accurate SC 

with very good progressive precision, we want SNs that have strict MPP because MPP only 

ensures the error bits decrease monotonically while strict MPP ensures exact results to i-

bit precision.  To this end, we re-examine the WBG design of Figure 5.2. A k-bit WBG 

ensures that the stage-k bit-error is always zero, but it does not guarantee strict MPP, or 

even non-strict MPP. For instance, if X is replaced by Y* = 1111011011101010 in Example 

6.5, the expected values are unchanged, but the estimated values become 1, 1, 0.75, and 

0.6875. The corresponding stage-i bit-errors 𝜀𝑋
(𝑖)

 are 1, 2, 1 and 0, so Y does not have MPP.  

This example shows that SNs generated by the WBG design do not always has MPP.  
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The preceding discussion indicates that WBG-based SNs do not necessarily have 

MPP. To achieve MPP, the pseudo-random sequences driving the WPG must be carefully 

chosen. Because the WBG decomposes the output SN generated by the LFSR into k SNs 

W1, W2,…,Wk with probabilities 𝑝𝑊𝑖
= 0.5𝑖, for  i = 1,2,…,k, the output SN has good MPP 

if the Wi’s also have good MPP. A simple method to achieve this is to use ordinary counting 

sequences, as they are low-discrepancy sequences, which have been shown to achieve good 

PP [5]. Although good PP does not always lead to good MPP, ordinary counting sequences 

have patterns of regularly repeating 1s that gives good MPP. This observation suggests 

replacing the LFSR in ASC by a counter, as shown in Figure 6.6, whose accuracy naturally 

tends to increase over time. 

Theorem 6.2: The SN X = (X(1), X(2), . . . , X(2k)) generated by the circuit of Figure 6.6, 

which substitutes a k-bit counter for the LFSR in the WBG of Figure 5.2, has strict MPP.  

Proof:  Since the bit-streams on the  𝑐𝑖’s in Figure 6.6 are counting sequences, the resulting 

SNs Wi and WXi are both exact if their  length is 2i, implying that  ∑ 𝑋(𝑗)/2𝑖2𝑖

𝑗=1 =

∑ 0.5𝑗𝑥𝑗
𝑖
𝑗=1 , i.e., 𝑝̂𝑋

(𝑖)
= 𝑝𝑋

(𝑖)
. Therefore, 𝜀𝑋

(𝑖)
= 2𝑖 × |𝑝̂𝑋

(𝑖)
− 𝑝𝑋

(𝑖)
| = 0 for all i.                    
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Figure 6.6: A k-bit weighted binary SNG with strict MPP. 
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We conclude that replacing a kth-order PN sequence by a k-bit counting sequence 

endows the result with strict MPP. We now generalize this feature to match that of the 

exact stochastic function generator in ASC (Figure 6.2). As m SNs, X, Y, …, Z, are 

interacting to produce F = (F(1), F(2),…, F(2mk)), the stage-i bit-error of F becomes 

𝜀𝐹
(𝑖)
= 2𝑚𝑖 × |𝑝̂𝐹

(𝑚𝑖)
− 𝑝𝐹

(𝑚𝑖)
| 

where 𝑝𝐹
(𝑚𝑖)

= 𝐹(𝑝𝑋
(𝑖)
, 𝑝𝑌
(𝑖)
, … , 𝑝𝑍

(𝑖)
) , which is the result of computing m separate i-bit 

precision SNs. As the m SNs interact, F’s initial sub-sequence length must be 2mi to give 

exact results. For example, Gupta and Kumaresan’s k-bit multiplier generates exact results 

when the output bit-stream length is 22k. 
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Figure 6.7: (a) ASCoMPP design for accurate stochastic computing with strict MPP, and 

(b) its symbol. 
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Theorem 6.3: The 2mk-bit SN F = (F(1), F(2),…, F(2mk)) generated by the ASCoMPP 

circuit in Figure 6.7 has strict MPP. 

Proof: To determine whether strict MPP is present, we need to calculate the numerical 

values of F’s initial sub-sequences of length 2mi for all 1 ≤ 𝑖 ≤ 𝑘. For i = 1, the first 2m 

sequences are generated when cm+1-ckm are all 0. The circuit is then equivalent to one with 

k = 1, so 𝜀𝐹
(1)
= 2𝑚 × |∑ 𝐹(𝑗)/2𝑚2𝑚

𝑗=1 − 𝑝𝐹
(1)
| = 0. Similarly, when i = 2, the initial 22m 

sequences are generated when c2m+1-ckm are zero, and the circuit is equivalent to one with 

k = 2, so 𝜀𝑍
(2)
= 0. Eventually, we get 𝜀𝐹

(1)
= 𝜀𝐹

(2)
= ⋯ = 𝜀𝐹

(𝑘) = 0, indicating that F has 

strict MPP.                                                                                                                               

Example 6.6: Continuing with Example 6.3 and replacing the LFSR in Figure 6.1 by a 

counter in the ASCoMPP fashion, yields the sample sequence shown by the boldface 

numbers inside the cells of Figure 6.8. These numbers indicate the generation order of the 

samples, and Table 6.2 gives the corresponding bit-streams. The output f is 1 if and only if 

the sample points fall in the purple area at the intersection of red and blue rectangles. The 

binary inputs are x1x2 = 11 and y1y2 = 10, so the first and second expected values are 0.25  
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Figure 6.8: Counting sequence of the 2-bit exact stochastic multiplier in Example 6.3.  
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Table 6.2: Bit-streams for the 2-bit multiplication using ASCoMPP. 

Line l Bit-stream on l 
Numerical value 

Initial 16 bits Initial 4 bits 

c1 

c2 

c3 

c4 

0101 0101 0101 0101 

0011 0011 0011 0011 

0000 1111 0000 1111 

0000 0000 1111 1111 

8/16 

8/16 

8/16 

8/16 

2/4 

2/4 

2/4 

2/4 

r1 

r2 

r3 

r4 

0101 0101 0101 0101 

0000 1111 0000 1111 

0011 0011 0011 0011 

0000 0000 1111 1111 

8/16 

8/16 

8/16 

8/16 

2/4 

2/4 

2/4 

2/4 

w1 

w2 

w3 

w4 

0101 0101 0101 0101 

0000 1010 0000 1010 

0011 0011 0011 0011 

0000 0000 1100 1100 

8/16 

4/16 

8/16 

4/16 

2/4 

0/4 

2/4 

0/4 

wx1 

wx2 

wy1 

wy2 

0101 0101 0101 0101 

0000 1010 0000 1010 

0011 0011 0011 0011 

0000 0000 0000 0000 

8/16 

4/16 

8/16 

0/16 

2/4 

0/4 

2/4 

0/4 

x 

y 

0101 1111 0101 1111 

0011 0011 0011 0011 

12/16 

8/16 

2/4 

2/4 

f 0001 0011 0001 0011 6/16 1/4 

and 0.375, respectively. F’s initial 4 and 16-bit sequences are 0001 and 

0001001100010011, respectively. The corresponding stage-i bit-errors are both zero, so F 

has strict MPP.                                                                                                                      

6.3 Case Study 

The inner (dot) product is a useful operation in applications such as image 

processing, digital filter design, and neural networks. The inner product of two vectors A 

= [A1 A2 … An] and B = [B1 B2 … Bn] is A∙B = A1B1 + A2B2 +… + AnBn = ∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1 . In SC, 

addition must be scaled, so the stochastic inner product becomes 

𝐹 = 1/𝑛 (∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1 ). 
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Figure 6.9: Stochastic inner product circuit designed using ASCoMPP. 

This operation can be realized by ASCoMPP to generate SNs with strict MPP; see Figure 

6.9. Note that the n should be a positive power of 2 to ensure 𝑞 = log2 𝑛 is a positive 

integer. These q signals are considered q SNs with a constant probability 0.5 generated by 

1-bit WBGs. Each of the 1-bit WBGs reduces to a wire. As there are q stochastic constants   

and 2n separate k-bit precision stochastic variables, we need a (q + 2nk)-bit counter. The 

first q bits of the counter are assigned to the MUX’s select signal and the rest of bits are 

sent to the ASCoMPP block in Figure 6.9. 

Consider the stochastic inner product 𝐹 = 1/2 (∑ 𝐴𝑖𝐵𝑖
2
𝑖=1 ) where Ai and Bi are SNs 

derived from 4-bit binary numbers. The output bit-stream must have at least 24×4+1 bits to 

generate an exact result with 4-bit precision. The smallest value of the result can be 0.5(24 

× 24 + 0) = 1/217. In this case, when the output bit-stream length is 217, the stage-4 error is 

𝜀𝐹
(4)
= 0. For sequences shorter than 217, the results will still be exact with respect to the 

corresponding expected values, as Theorem 6.3 asserts. 

We used Matlab to simulate the stochastic inner product circuit. The input binary 

numbers A1, B2, B1, B2 were randomly sampled from 0 to 24  1. The values of 𝑝̂𝐹
(𝑖)

, 𝑝𝐹
(𝑖)

 

and 𝜀𝐹
(𝑖)

 were then computed at the  output f  for  i = 1, 2, 3 and 4. The experiment was  
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Figure 6.10: MSE of the stochastic inner products for different bit-streams of length using 

ASC and ASCoMPP designs. 

repeated 1,000 times to compute the MSE. Figure 6.10 shows the simulation results. It 

compares the counter-based approach used by ASCoMPP with the corresponding LFSR-

based ASC design. As expected, all the MSEs in the ASCoMPP design are zero, indicating 

the output SN has strict MPP. However, when the counter and LFSR cycle through all 

possible states, the ASC and ASCoMPP designs both give exact results. 

In the course of this experiment, we observed that the MSEs of the LFSR-based 

ASC approach are strongly affected by the LFSR’s initial state. In other words, the quality 

of ASC’s progressive precision varies with its initial state. To illustrate this, we use the 

simpler Example 6.1.The initial state of r1r2r3r4 = 1010 in Table 6.1 gives the f’s initial 4-

bit sub-sequence 1111, which has larger error compared to r1r2r3r4 = 1111. When r1r2r3r4 

= 1111, f’s 4-bit sub-sequence 1100 gives better accuracy. In Figure 6.10, the initial state 

is assumed to be the all-1s state. 

Because the stochastic inner product circuit designed using ASCoMPP ensures the 

accuracy of the values of initial 24i+1 sequences to i-bit precision, i.e. 𝑝̂𝐹
(𝑖) = 𝑝𝐹

(𝑖)
, these 

values may be smaller than the expected results to 4-bit precision 𝑝𝐹
(4)

. The corresponding 

error can be formulated as 𝑒 = 𝑝𝐹
(4)
− 𝑝̂𝐹

(𝑖) = 𝑝𝐹
(4) − 𝑝𝐹

(𝑖)
. From this, we can find the lower  

0

0.01

0.02

0.03

0.04

0.05

8 256 8192

M
e

a
n

-s
q
u

a
re

 e
rr

o
r

Length of the initial output sequences

ASC

ASCoMPP



121 

 

 

 Figure 6.11: Inner-product MSE for various bit-stream lengths, compared to the expected 

values for 4-bit precision.   

and upper bounds of the mean-square error. The experiment was repeated and the binary 

values of A1, A2, B1, B2 are randomly sampled 1,000 times to compute the MSE. Figure 

6.11 shows the experimental results and the analytical upper and lower bounds derived 

from 𝑒 = 𝑝𝐹
(4) − 𝑝𝐹

(𝑖)
. As expected, the MSE values are not zero, but decrease 

monotonically. This experiment shows the error caused by insufficient bit-stream length of 

the output SN. 

As another case study, we examined a relatively complex stochastic circuit 

generated by the STRAUSS synthesizer [7] to implement the stochastic function 𝑝𝐹 =

0.6875 − 0.6875(𝑝𝑋1 + 𝑝𝑋2) + 1.125𝑝𝑋1𝑝𝑋2. Figure 6.12 illustrates this circuit when it is 

placed in the ASCoMPP framework. Again, we repeat the experiment of comparing MSEs 

for different bit-stream lengths using ASC and ASCoMPP.  The results, shown in Figure 

6.13, are very similar to the inner-product case (Figure 6.11).  This example shows that 

ASCoMPP applies not only to ad-hoc designs, but also to stochastic circuits synthesized by 

systematic methods. The combination of stochastic synthesis and ASCoMPP points to a 

way to achieving accurate results with good progressive precision for any stochastically 

realizable arithmetic function. 
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Figure 6.12: ASCoMPP implementation of pF = 0.6875 – 0.6875 × (pX1 + pX2) + 1.125 × 

pX1 × pX2. 

 

Figure 6.13: MSE of the stochastic circuit of pF = 0.6875 – 0.6875 × (pX1 + pX2) + 1.125 × 

pX1 × pX2 products for different bit-streams of length using ASC and ASCoMPP designs. 

6.4 Summary 

In this chapter, we showed how to obtain both exact results and monotonic 

progressive precision (MPP) in stochastic implementations of general Boolean functions. 

While ASC (Accurate Stochastic Computing) implements any stochastic arithmetic 

function with exact results given a specific bit-stream length, MPP is a desirable property 

whereby accuracy increases steadily with bit-stream length. These ideas, ASC and MPP, 
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are combined in the ASCoMPP (Accurate Stochastic Computing with Monotonic 

Progressive Precision) design approach. With a suitably chosen source of pseudo-random 

input vectors (samples), ASCoMPP-based circuits can perform stochastic computing with 

guaranteed accuracy. We showed how to use an ordinary binary counter to provide the 

sample sequence, which allows ASCoMPP to achieve strict MPP. We presented analytical 

results and experimental results to demonstrate that ASCoMPP provides a novel way to 

achieve accurate results with very good MPP.  
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CHAPTER 7  

Conclusions 

 

This dissertation has addressed a few of the major challenges posed by stochastic 

computing (SC), especially concerning its accuracy and design methodology. We highlight 

our main contributions in this chapter, and then point to some promising directions for 

future research. 

7.1 Summary of Contributions 

Our earlier research on designing a stochastic decoder for convolutional codes [21] 

convinced us of the need for a deeper understanding of the factors influencing the accuracy 

of SC. Accuracy and related issues therefore became the main focus our Ph.D. research. 

We began by investigating the behavior of stochastic circuits under various error conditions 

[22], as reported in Chapter 2. A systematic method based on probabilistic transfer matrices 

(PTMs) was developed for the algebraic analysis of stochastic behavior, complemented by 

circuit simulation. The PTM-based analysis provided some theoretical insights, such as the 

fact that PTM-based analysis is accurate and provides theoretical results for all possible 

input combinations. Circuit simulation, on the other hand, is based on Monte Carlo 

methods whose accuracy depends on its sample size, but simulation is able to handle larger 

circuits. A case study comparing edge-detection circuits implemented by SC and 

conventional approaches was also presented. Our results indicate that, under similar error 

conditions, stochastic circuits provide significantly better error tolerance. 

Chapter 3 addressed another major factor affecting the accuracy of SC, namely 

correlation. SC allows arithmetic operations to be implemented at very low cost, but 
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interacting SNs must usually be statistically independent or uncorrelated to achieve 

acceptable accuracy. We again successfully applied PTMs and circuit simulation to 

quantify correlation-induced errors for the first time. In particular, we used these two 

methods to analyze correlation effects in the basic SC components. We also investigated 

and compared the two most common correlation-reducing methods, regeneration and 

isolation. Regeneration converts SNs back to binary form and introduces new random 

sources to regenerate SNs. Isolation uses delays (D-type flip-flops) to derive multiple 

statistically independent SNs without additional random sources. We derived bounds on 

the accuracy loss due to isolator insertion and compared its hardware cost to that of 

regeneration. We concluded that the isolation method offers significant cost advantages in 

reducing correlation errors.  

After investigating the accuracy analysis aspect of SC, we moved to the design 

requirements of stochastic circuits. Chapter 4 introduced the concept of stochastic 

equivalence classes (SECs), and investigated their properties and applications. We 

observed that the set of inputs X of a Boolean function used in SC can be partitioned into 

two groups XV and XC to which variable and constant SNs, respectively, are applied. This 

implies that many equivalent Boolean functions with different implementation costs have 

the same stochastic behavior. Building on this insight, we constructed a general stochastic 

circuit synthesis method called SECS (SEC-based Synthesis), and an associated search-

based optimization procedure called SECO (SEC-based Optimization) for stochastic circuit 

design [24]. SECO searches the SEC that contains Boolean functions with the desired 

stochastic behavior for a low-cost, preferably minimum-cost, implementation. We were 

also able to use this procedure to verify the optimality several important known stochastic 

circuits. Experimental data obtained via SECO showed that, in many cases, it can 

effectively reduce the cost of a stochastic operation without searching the entire SEC. 

In Chapter 4, we further enhanced SECS to obtain ESECS (Extended SECS) by 

introducing two new SEC-related procedures that provide more flexible synthesis methods. 

The first procedure SECI (Stochastic Equivalence Class Identification) allows ESECS to 
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find an SEC directly, without generating the base design f required by SECS. The same 

chapter presented an alternative to SECO called SECM (SEC-based Mapping). SECM’s 

optimization technique is roughly analogous to the classical two-level minimization 

method in conventional logic design in its use of a weight table similar to a truth table or a 

Karnaugh map. Building on this similarity, we introduced stochastic prime implicants, 

which allow stochastic circuit optimization to be formulated in a fashion similar to the 

covering problem of two-level minimization. Our experimental results show that the two 

optimization methods SECO and SECM complement each other. While SECO works better 

for stochastic circuits with many stochastic constants, SECM achieves higher area cost 

reduction for circuits with more stochastic variables. 

Chapter 5 tackled the difficult problem of designing accurate stochastic dividers. 

Although multiplication and addition have very simple logic circuit implementations, that 

is not the case for division. After reviewing and comparing the known stochastic division 

methods, including a stochastic divider in a long-overlooked patent, we presented a novel 

division technique called CORDIV (correlated division). It is based on the observation that 

the conditional probability 𝑝𝑋1|𝑋2 of X1 given X2 leads naturally the basic division operation 

𝑝𝑋1𝑋2 𝑝𝑋2⁄ . CORDIV is unique in that it deliberately introduces correlation between the 

input parameters X1 and X2 to efficiently transform  𝑝𝑋1|𝑋2  to 𝑝𝑋1 𝑝𝑋2⁄ . We designed 

CORDIV-based dividers for both the unipolar and bipolar SN formats. Their area cost is 

lower than that of previous stochastic dividers, and they achieve much better accuracy.  

Finally, in Chapter 6, we attempted to find ways to satisfy the design requirements 

of high accuracy and low area at the same time. We first demonstrated that any stochastic 

arithmetic function can be implemented with exact results by our ASC (Accurate Stochastic 

Computing) technique. We then showed how very accurate results are obtainable when the 

random numbers used for SN generation are sampled by a process which ensures that 

accuracy increases steadily with bit-stream length. We named this very desirable property 

monotonic progressive precision (MPP). We incorporated this concept into a general-

purpose SC design technique ASCoMPP (Accurate Stochastic Computing with Monotonic 
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Progressive Precision). Finally, we presented analytical and experimental data which 

demonstrate that ASCoMPP is able to produce results that are both highly accurate and 

have good MPP.  

7.2 Directions for Future Work 

In this section, we discuss some open research problems in the SC field and several 

potential extensions of our work.  

Despite the progress that has been made on designing general-purpose 

combinational stochastic circuits, design methods for sequential circuits are either still ad 

hoc or restricted to very specific structures [56]. A preliminary study of the stochastic 

functions realized by sequential circuits can be found in [6]. Although this study sheds 

some light on design requirements, it is mainly limited to a few examples illustrating the 

behavior of sequential stochastic circuits. However, it also suggests to us a possible 

extension of our SEC ideas, since it shows that sequential circuits with different state-

machine structures can implement the same stochastic function. For instance, Figure 7.1, 

taken from [6], illustrates two sequential circuits that implement the same stochastic 

function pZ = (2pX  − 2)/(pX − 2). We observe that such cases can be analyzed by a technique 

called time-frame expansion, which effectively models a sequential circuits by a 

combinational one, and is used for simulating the behavior of a sequential circuit cycle by  
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Figure 7.1: Sequential stochastic circuits implementing pZ = (2pX  − 2) / (pX − 2) [6]. 
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Figure 7.2: Expanded circuits with three time frames for the sequential circuits in Figure 

7.1. 

cycle [17]. Figures 7.2a and 7.2c illustrate the expansion of Figures 7.1a and 7.1b, 

respectively, with three clock cycles. The dashed lines mark the boundaries of different 

time frames. If we add a pair of inverters before and after the time frame boundaries as 

shown in Figure 7.2b, the Boolean function of the expanded circuit is unchanged but, the 

sub-circuit for time frame T2 in Figure 7.2b, can be simplified to that of time frame T2 in  
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Figure 7.3: Stochastically equivalent sequential circuits with different costs. 

Figure 7.2c. This observation suggests a sufficient condition for checking equivalence 

among sequential stochastic circuit, and is a path to further investigation. 

The foregoing observations also bring up the possibility of optimizing sequential 

stochastic circuits by searching their equivalence classes for lower-cost implementations. 

Figure 7.3 shows another example of stochastically equivalent sequential circuits. Their 

equivalence can be explained by time-frame expansion. By adding a pair of inverters before 

and after the time frame boundaries, we have 𝑑̅∗ = 𝑥̅𝑦̅∗ + 𝑦̅∗𝑟. This function is further 

simplified to 𝑑∗ = 𝑥̅𝑦̅∗ + 𝑦̅∗𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑥 + 𝑦∗)(𝑦∗ + 𝑟̅) = 𝑦∗ + 𝑥𝑟̅, which gives the lower-cost 

design of Figure 7.3b. In addition to optimizing combinational and sequential stochastic 

circuits separately, it may even be possible to combine their optimization methods to create 

a more comprehensive technique. 

Another possible direction of future work is integrating CORDIV-based dividers 

with our stochastic circuit synthesis method ESECS. As indicated in Chapter 4, ESECS 

approximates non-linear terms such as 𝑝𝑋/𝑝𝑌 in target arithmetic functions by means of 

multi-linear polynomials; there was no good linear approximation for division. Since 

CORDIV-based dividers uses number representations that are compatible with ESECS, 

such dividers could provide a new synthesis resource to reduce the errors in SC due to poor 

approximation of non-linear terms.  
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Chapter 1 highlighted several applications that require massive parallelism, such as 

image-processing circuits for retinal implants and other biomedical devices. These systems 

typically contains a pixel sensor array, analog or digital pre-processing circuits for noise 

filtering, and high-level image processing circuits [65]. Although a preliminary study on 

stochastic circuits for real-time image processing has been made [3], that work only 

addressed the pixel processing part of a retinal implant. It also seems worthwhile to 

investigate the application of SC to the design of noise filters [60][61] and high-level image 

processing to further increase the performance of retinal implants. Our ESECS and 

ASCoMPP algorithms provide potential approaches to these applications. 

The Internet of Things (IoT) is another promising candidate for SC. As discussed 

in Chapter 1, the IOT is characterized by large networks of sensors and processors that 

have very low cost requirements, strict power budgets, and often incorporate massive 

parallelism. The sensors perform tasks like temperature sensing, liquid flow-rate 

calculation, image and sound recording, pressure measurement, or chemical detection. The 

vast amounts of data they generate are often pre-processed or compressed to extract useful 

information. To illustrate, consider a long-lifetime quality sensor for a water distribution 

system intended to detect pollution via an array of electronic chemical detectors and a 

pattern processor to recognize pollution sources [39]. The sensors are clear candidates for 

SC, as we pointed out in the case of image processing. The pattern-recognition system can 

be expected to involve many linear regression models like 

𝑦(𝑡) =∑ 𝑥𝑖(𝑡)𝛼𝑖 + 𝛽
𝑛

𝑖=1
 

where y(t) is an indicator of water pollution persistence, and the xi’s are prediction variables 

[45]. Since y(t) is defined by a multi-linear polynomial, it can be readily realized by 

stochastic circuits generated by ESECS or similar SC design algorithms. 

In conclusion, stochastic computing has demonstrated great potential to deliver 

low-cost, low-power and fault-tolerant circuit designs. However it continues to have a 
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relatively small range of applications such as image processing, error-correction decoders, 

and neural networks. We hope  that the theory and techniques for SC that are presented in 

this dissertation prove helpful in designing future stochastic circuits, and stimulate the 

development of useful new applications of this important technology.  
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