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ABSTRACT

Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites

by

Nicholas A. Fasanella

Chair: Associate Professor Veera Sundararaghavan

Epoxy-composites are widely used in the aerospace industry. In order to

improve upon stiffness and thermal conductivity; carbon nanotube additives

to epoxies are being explored. This dissertation presents multiscale modeling

techniques to study the engineering properties of single walled carbon nan-

otube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently

functionalized systems. Using Molecular Dynamics (MD), thermomechanical

properties were calculated for a representative polymer unit cell. Finite El-

ement (FE) and orientation distribution function (ODF) based methods were

used in a multiscale framework to obtain macroscale properties.

An epoxy network was built using the dendrimer growth approach. The

epoxy model was verified by matching the experimental glass transition tem-

perature, density, and dilatation. MD, via the constant valence force field

(CVFF), was used to explore the mechanical and dilatometric effects of adding

pristine and functionalized SWNTs to epoxy. Full stiffness matrices and lin-

ear coefficient of thermal expansion vectors were obtained. The Green-Kubo

method was used to investigate the thermal conductivity as a function of tem-

perature for the various nanocomposites. Inefficient phonon transport at the
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ends of nanotubes is an important factor in the thermal conductivity of the

nanocomposites, and for this reason discontinuous nanotubes were modeled in

addition to long nanotubes.

To obtain continuum-scale elastic properties from the MD data, multiscale

modeling was considered to give better control over the volume fraction of

nanotubes, and investigate the effects of nanotube alignment. Two methods

were considered; an FE based method, and an ODF based method. The FE

method probabilistically assigned elastic properties of elements from the MD

lattice results based on the desired volume fraction and alignment of the nan-

otubes. For the ODF method, a distribution function was generated based on

the desired amount of nanotube alignment; and the stiffness matrix was calcu-

lated. A rule of mixture approach was implemented in the ODF model to vary

the SWNT volume fraction. Both the ODF and FE models are compared and

contrasted. ODF analysis is significantly faster for nanocomposites and is a

novel contribution in this thesis. Multiscale modeling allows for the effects of

nanofillers in epoxy systems to be characterized without having to run costly

experiments.
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CHAPTER 1

Introduction

Carbon nanotubes (CNTs) have been researched extensively in the last 20 years because of
their outstanding mechanical [1–3], electrical [4–6] and thermal properties [7, 8]. Due to
these exceptional properties and very high aspect ratios, forming CNT-polymer nanocom-
posites has become an attractive option to improve the properties of the polymer. This work
will focus in particular on single walled carbon nanotubes (SWNTs). SWNTs are an atom
thick single layer of graphene with a cylindrical structure and an elastic modulus around 1
TPa [9]. Atomistic simulation methods allow the effects the effects of nanoparticles in a
composite system to be characterized without running costly experiments.

Polymer-matrix composite materials are widely used in aerospace, automotive, marine
and other high-performance applications due to their high specific strength, high specific
stiffness, fatigue resistance, and ease of manufacturing. Thermoset polymers are the most
predominant type of matrix system, and epoxies specifically are preferred for aerospace
grade components due to their superior mechanical properties and resistance to environ-
mental degradation due to moisture. The thermomechanical properties of nanocomposites
are highly dependent on the interface between the CNT and epoxy. It is experimentally
difficult to characterize this interface, making molecular modeling an essential tool for
relating molecular interfacial structure to bulk thermomechanical properties. In Chapter
2, Molecular Dynamics (MD) was used in order to explore the effects on the mechani-
cal and dilatometric properties by adding pristine and covalently functionalized SWNTs to
crosslinked polymers. MD allows for the effects of mechanical and thermal loading to be
isolated and visualized in regions of interest where it may not be possible with experiments.

Epoxies are generally limited to low temperature applications, and this is in part due
to their low thermal conductivity of ∼.24 W/mK at room temperature [10]. It is of great
interest to improve the heat conduction in epoxies in order to remove excess heat, and
boost reliability and performance. CNTs have very high thermal conductivity, with SWNTs
having a thermal conductivity of 1750-5800 W/mK [8, 11] and high aspect ratios. For this
reason, SWNTs were investigated as an additive to improve the thermal conductivity of the

1



epoxy via the formation of functionalized and pristine SWNT-polymer nanocomposites.
Inefficient phonon transport between nanotubes at discontinuities (i.e. the nanotube ends)
is an important factor in the thermal conductivity of SWNT-epoxy nanocomposites, and so
discontinuous nanotubes were modeled to study this. In Chapter 3, MD was used to study
the use of the Green-Kubo integral of the heat flux autocorrelation function to model the
full 3D thermal conductivity of SWNT-epoxy nanocomposites.

Molecular Dynamics has a well-known length scale problem, with the dimension of the
sides of the MD lattice in Chapters 2 and 3 being ∼40 Å. Even with periodic boundary
conditions, ways to upscale the simulations to better compare with continuum results are
desired. To this achieve this, multiscale modeling was considered in Chapter 4 to give bet-
ter control over the volume fraction of SWNT. Multiscale modeling also allowed the effects
of SWNT alignment to be considered, and this was done in Chapter 5. Two different mul-
tiscale approaches were used; a Finite Element based method, and an ODF based method.
For the Finite Element method, elements were probabilistic assigned elastic properties from
the MD lattice results based on the desired volume fraction of nanotubes, and the alignment
of the nanotubes. For the ODF method, an orientation distribution function was generated
for the desired amount of nanotube alignment, and the stiffness matrix was calculated. To
vary the volume fraction of nanotubes, a rules of mixture approaches was implemented
in the ODF approach. Multiscale modeling allows for the effects of nanofillers in epoxy
systems to be better characterized on a contiuum-level without having to run experiments.

The problems outlined above can be broken down into a few major categories: Atom-
istic modeling for thermomechanical properties, atomistic modeling for thermal conductiv-
ity, and multiscale modeling for elastic properties of SWNT-epoxy nanocomposites. Rel-
evant experimental and computational literature is reviewed for the thermomechanical re-
sults in Section 1.1, thermal conductivity in Section 1.2, and multiscale modeling in Section
1.3. The goal of this thesis is to create methods that allow the effects of nanofillers in a poly-
mer network to be characterized without having to run physical experiments. SWNT-epoxy
systems are studied in this this work, but the methodology is applicable to any number of
various fillers and polymers.

1.1 Thermomechanical Properties of CNT-Polymer Nanocom-
posites

There have been a numerous experimental studies on the effects to mechanical properties
or thermal dilatation from adding SWNTs to various polymers. To fully take advantage of
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the mechanical and thermal properties of carbon nanotubes, attempts have been made to
functionalize the nanotubes. Functionalization allows for better dispersion and interfacial
bonding of the carbon nanotube to the polymer matrix, and has shown to give significantly
improved mechanical properties [12–21]. Polyacrylonitrile (PAN) fibers were created con-
taining 10 wt% SWNTs, which saw a 100% improvement in tensile modulus, reduction
in thermal shrinkage, and increased glass transition temperature of 40◦ C over control
fibers, indicating strong interaction between PAN and SWNTs [22, 23]. In [24], SWNT-
polyacrylonitrile (PAN) composite films were created which show massive reduction in the
coefficient of thermal expansion (CTE) above and below the glass transition temperature
(Tg), and large raises in tensile strength (80%) and Young’s modulus (300%) at 40 wt%
SWNT when compared to pure PAN. In [25], fluorinated SWNTs are used to evaluate the
effect of nanotube sidewall functionalization on the mechanical properties of polyethlene
composites. It was seen that the fluorination disrupts the larger SWNT rope structure and
allows covalent bonding to occur between the polyethylene and SWNT; increasing interfa-
cial characteristics and mechanical properties over pure SWNT-polyethylene composites.
In [26] and [27], polypropylene-CNT composites were investigated. In [26], polypropylene
containing 0.8 wt% SWNT exhibits faster crystallization rate compared to pure polypropy-
lene, but does not show improvements in mechanical properties due to poor dispersion.
In [27], SWNTs were added, and the maximum increase in mechanical properties was
seen at 0.75 wt%, with an increase of 39% in Young’s modulus and 27% in yield strength
over neat polypropylene. This study demonstrated that for effective reinforcement, good
nanotube dispersion is necessary. It was seen in [28] that the elastic modulus and yield
strength of SWNT-PMMA composite fibers increased with nanotube loading and draw ra-
tio, even up to high loadings of 8 wt% SWNT. A significant increase in the impact strength
was seen in [29] by adding CNTs, though very little increase in the elastic modulus was
seen for either SWNTs or MWNTs. In [30], the elastic modulus increased with increasing
SWNT loading, with a maximum increase of a 90% for purified SWNT-PMMA with 2
wt% SWNTs. In [31] large increases in Young’s modulus, toughness and tensile strength
were seen at 0.1 wt% doped SWNT over pristine PMMA, though pristine SWNTs show
very little improvement due to defects in the samples.

Chemical functionalization allows for efficient load transfer between the fillers and ma-
trix in the composite. Geng et. al showed that SWNT-poly(ethyele oxide)(PEO) compos-
ites with improved uniformity and dispersion can be formed using chemically function-
alized carbon nanotubes, with significant enhancement of the mechanical properties. A
300% increase in the Young’s modulus and yield strength over pure PEO, was obtained
at a nanotube loading of 1 wt% [21]. In [20], composites of poly(vinyl alcohol) (PVA)
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containing pristine and functionalized nanotubes were tested in tension. It was found that
the mechanical properties of these nanocomposite were significantly improved compared
to the polymer, with a maximum increase of 55% in the modulus and yield strength for a
5 wt% SWNT, functionalized SWNT-PVA composite. Functionalization allowed for good
distribution of the nanotubes in the matrix, and good interfacial bonding between the func-
tionalized carbon nanotubes and hosting polymer matrix, leading to increased strength.
Functionalized SWNT-PVA composites are also investigated in [19], where it is seen func-
tionality improves uniformity and dispersion of the SWNTs. In another study, significant
improvements were seen in the mechanical properties for SWNT/PVA composites, with
the tensile strength and Young’s modulus continuing to increase with increasing wt%, and
the highest measured values were a 43% improvement in Young’s modulus over neat PVA,
and a 55% improvement in yield strength [20]. In [32], the thermal expansion is measured
for various vol% of SWNT in poly(vinylidene fluoride) (PVDF). The coefficient of ther-
mal expansion continues to decrease at higher vol%, with the minimum value being a 35%
decrease over neat PVDF at 49 vol% SWNT. These experiments demonstrate the potential
of CNTs, especially functionalized CNTs, as reinforcement agents in nanocomposites.

Of most relevance to this work, there have been numerous experiments where SWNTs
have been added to form composites with various epoxies, and the thermomechanical prop-
erties of the subsequent nanocomposite have been calculated. In [33], the role of nonionic
surfactant in improving the interfacial interaction in CNT-epoxy composites was consid-
ered. The epoxy used is bisphenol A epoxy resin with hydroxylated polyamine hardener
H-917. With the surfactant, Tg increased from 63◦C to 88◦C, and the elastic modulus in-
creased by more than 30% with 1 wt% CNT. Without the surfacant, the pure nanotubes have
only moderate effects on thermomechanical properties. In [17], covalent functionalization
of SWNTs via an optimized H2S4/70% HNO3 acid treatment and subsequent fluorination
to epoxy EPON 862 (DGEBA) with curing agent EPI-CURE W was considered. The func-
tionalized nanotubes were shown to be well dispersed in the composite, and the elastic
modulus and the tensile strength were increased by 30% and 18% over neat epoxy, respec-
tively. The pristine SWNT-epoxy fracture surfaces showed nonuniform dispersion, and
sliding of SWNTs in the epoxy matrix, and therefore composites showed little improve-
ment in mechanical properties over neat epoxy. In [13], functionalization of a SWNT and
EPON 862 (DEGBA) with curing agent EPI-CURE W was studied. Functionalization was
accomplished via the reaction of terminal diamines with alkylcarboxyl groups attached
to SWNTs during the course of a dicarboxylic acid acyl peroxide treatment. The result-
ing covalently functionalized system showed large improvements in mechanical properties
over neat epoxy, with a 65% increase in elastic modulus for 4 wt% SWNT and a 25% in
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yield strength for 1 wt% SWNT. In [14], functionalized and pristine SWNT-epoxy systems
were studied, where the epoxy was EPON 862 (DEGBA) with curing agent EPI-CURE
W. Functionalization of the SWNTs was done by grafting epoxy polymer curing agent,
EPI-W to the SWNTs through diazotization. At 0.5 wt% SWNTs, the elastic modulus
of the functionalized system was enhanced by 24.6%, while the pristine SWNT system
improved by only 3.2% over neat epoxy. In [34], composites of SWNT and Epoxiber-
20 with IB-72 were studied, where Epoxiber-20 is a low viscosity epoxy resin formed by
condensation between Bisphenol A and Epichlorhydrin. After purifying and dispersing
the SWNTs, an improvement of up to 16.3% was seen at 0.1 wt% SWNT. Functionalized
and non-functionalized SWNT-epoxy composites were studied in [12] where the epoxy
resin is EPIKOTE 862 resin (DEGBA), with curing agent EPIKURE W. Improvements of
27% in Young’s modulus and 17% in tensile strength were seen, however these were less
than expected and the authors suggest improved dispersion and prevention of the curling
of SWNTs may be necessary to fully realize the potential of SWNT and epoxy nanocom-
posites. In [35], an Epon 862 based composite with curing agent DETDA was mixed with
CNTs functionalized via covalent and noncovalent bonding approaches. The coefficient of
thermal expansion (CTE) was reduced by up to 52% below Tg for nanocomposites with
a 1 wt% loading of SWNTs. Above Tg however, the CTE increases substantially due to
phonon modes vibration and Brownian motion of the SWNTs. In [16], functionalization of
SWNT was again explored by grafting epoxide onto single-walled carbon in order to better
integrate the SWNT into the epoxy. Mechanical testing demonstrated an increased Young’s
modulus by 60% and yield strength by 40% at 1 wt% SWNT relative to neat epoxy, showing
that load transfer from the epoxy to the SWNT was achieved via epoxide-grafting. In [18]
plasma fluorinated SWNTs were used to react with a primary aliphatic amine in order to
create functionalized SWNT-epoxy composites. This caused crosslinking to occur between
the epoxy and amino-functionalized SWNTs, leading to an improvement in mechanical
strength with respect to samples prepared with pristine nanotubes. In [36], nanocomposites
of SWNT-epoxy resin with aligned nanotubes were created by a solution casting technique
and subsequent stretching of the semi-dried mixture along one direction at a draw-ratio
of 50. The epoxy used in this study was a bisphenol-A type epoxy resin (E51) and hard-
ener N,N-dimethylbenzylamine (BDMA). Higher electrical conductivity and mechanical
properties were demonstrated along the stretched direction than perpendicular to it, with
improvements of 103% in Young’s modulus and 164% in tensile strength in the stretch
direction over neat epoxy. In [15], m-chloroperbenzoic acid-epoxidized CNTs were used
to form composites with epoxy resin Epon 862. The epoxidized CNTs-modified epoxy
composites showed a 50% increase in the Young’s modulus and 32% improvement in the
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tensile strength with 1 wt% loading when compared to neat epoxy. In [37], the thermal
dilatation was measured of .25 wt% carboxylated SWNTs without covalent functionaliza-
tion. The epoxy resin was diglycidyl ether of bisphenol A (DGEBA) with hardener Aradur
HY 956. The addition of the SWNTs reduced the linear coefficient of thermal expansion
by 29%. In [38], SWNT-epoxy composites with a very high nanotube loading of up to
39.1 wt% were fabricated, where the epoxy was diglycidyl ether of bisphenol-A (DGEBA)
with a mixed curing agent consisting of a room temperature curing agent (molar ratio of
2:1 of triethylenetetramine to O,O’-bis(2-aminopropyl)polypropyleneglycol 2000) and a
high temperature curing agent (p-diaminodiphenylsulfone, DDS). The mechanical proper-
ties were enhanced greatly due to the incorporation of SWNTs, with the Young’s modulus
increasing by 408% and the tensile strength by 183% when compared to neat epoxy.

Molecular Dynamics has been used previously to analyze the elastic properties of vari-
ous polymer-SWNT systems such as polyethylene [39,40]. In [39], classical MD was used
to study the thermal expansion and diffusion characteristics of SWNT-polyetlene compos-
ites using Brenner’s potential for intra-nanotube interactions, and van der Waals forces
for polymer-nanotube interface. It was found Tg, as well as the CTE and diffusion coef-
ficients for the composite increased relative to pure polyethylene. In [41], a comparison
was made between the mechanical response of SWNT/polyethylene composites with con-
tinuous nanotubes replicated via periodic boundary conditions, and composites containing
discontinuous nanotubes. Both composites are loaded along, and transverse to the axis of
the nanotube, and it was found that the continuous nanotube system showed an increased in
stiffness along the nanotube direction relative to neat polyethylene, though no substantial
improvement in the transverse direction was seen. The discontinuous system did not show
improvement over the polymer in either direction, and the authors believe this to be due to
the low aspect ratio of SWNTs. In [42], the compliance matrix was generated for short and
an infinite carbon nanotubes embedded into a polyethylene matrix. Two different models
were employed, and both gave similar results due to the lack of bonding between matrix
and SWNT; the first used Brenner’s potential for the whole system, and second Brenner’s
potential for the nanotube, but a united-atom potential for the polyethylene matrix. The
infinite nanotubes gave substantial improvement in stiffness properties along the nanotube
direction, while the short nanotubes produced improvements of ∼100%, but substantially
less than that of the infinite tubes. Neither system produced a substantial improvement
over neat polyethylene in the direction transverse to the SWNT. In [40] MD was used to
investigate the interfacial characteristics of SWNT-polyethylene composites. The interface
strength was described by the critical interfacial shear stress (CISS) and the steady inter-
facial shear stress (SISS) as function of the MD simulation model size, sliding velocity of
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CNTs, radius of CNTs, and polymer chain length. It was found that the CISS and SISS
decrease as the CNT radius increased, and increase as the polymer chain length increased.
In [43], a SWNT (10,10) was added to two amorphous polymers, poly(methyl methacry-
late) (PMMA) and poly(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]
(PmPV) with different volume fractions. A constant-strain energy minimization method
was used to calculate elastic moduli of the composite system along, and transverse to the
nanotube axis. It was seen that the modulus along the nanotube axis increased with in-
creasing volume fraction of SWNT of up to 28% for both composites. Increases in the
transverse direction were minor for all volume fractions considered. In [44], mechani-
cal properties of adding a SWNT to poly (phenylacetylene) (PPA) were investigated via
the AIREBO potential for interaction between carbon atoms in the SWNT, Lennard-Jones
potential for interactions between PPA and the SWNT, and the AMBER potential for inter-
actions between PPA atoms. It was once again seen that the longitudinal Young’s modulus
along the nanotube direction is improved drastically, However, transverse moduli did not
see significant improvement relative to pure polymer.

The results of [41–44] demonstrates that functionalization is likely necessary to strengthen
the interface and impart the properties of the SWNT to the polymer in the direction trans-
verse to the SWNT, as well as in the direction along the nanotube for discontinuous tubes,
as the van der Waal interactions are insufficient for load transfer. To take full advantage of
the mechanical and thermal properties of the SWNTs, experimental attempts described ear-
lier have covalently functionalized the nanotube to the epoxy [12–21]. A few studies have
used MD to investigate the effects of covalent bonding on SWNT-polyethylene systems.
In [45], the interfacial sliding of a SWNT chemically bonded to a chain of polyethylene was
simulated. The functionalization results in higher interfacial shear strengths and higher in-
terfacial viscosities than in the non-bonded composite, demonstrating better incorporation
of the nanotube into the polymer network. In [46], changes in the bulk elastic proper-
ties due the addition SWNT to polyethylene with and without covalent functionalization
were considered. For 1% volume fraction of SWNT, chemical functionalization causes the
Young’s and shear moduli of the random composites, and the longitudinal Young’s modu-
lus of the aligned composites to reduce by 11%. When the nanotube length is held fixed
at 400 nm, and various nanotube volume fractions are considered, functionalizion causes
the Young’s and shear moduli of the random, and the longitudinal Young’s modulus of
the aligned composites to reduce by 12%. However, functionaliation caused the transverse
Young’s modulus and the transverse shear modulus of the aligned composites to increase
by up to 45%. This study highlights one of the potential drawbacks of functionalization, as
chemical bonding to the nanotube creates defects and may decrease the inherent stiffness
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of the SWNT.
Epoxies have an amorphous structure and building complex crosslinked molecular con-

figurations with realistic properties is challenging, and so attempts to study the thermome-
chanical properties of SWNT-epoxy systems via Molecular Dynamics are limited. Liang
et. al used MD to study the molecular interactions between a (10,10) SWNT and EPON
862 (DGEBF) resin and EPI-CURE W (DETDA) curing agent [47]. They found that the
Epon 862 resin and DETDA molecules both have attractive interactions with a (10,10)
SWNT. The aromatic ring planes of both Epon 862 and DETDA molecules try to align
towards the surface of the SWNT and wrap around it, and so good wetting properties were
predicted between the (10, 10) SWNT and Epon 862 resin/DETDA agent. Gou et. al.
expanded this work and studied affinities between a (10, 10) SWNT and two epoxy sys-
tems, EPON 862/EPI-CURE W curing agent (DETDA) and DGEBA (diglycidylether of
bisphenol A)/diethylenetriamine (DETA) curing agent. In agreement with [47], they found
that EPON 862 and DETDA had strong attractive interactions with a (10,10) SWNT. It was
seen DGEBA also had a strong attractive interaction, and conversely, DETA had a repulsive
interaction [48]. In [49], interfacial bonding strength was calculated for a composite con-
sisting of EPON 862 epoxy resin and EPICURE W curing agent embedded with a (10,10)
SWNT. This was done via a pullout test, where the interfacial shear strength between the
nanotube and the cured epoxy resin was calculated to be up to 75 MPa. The authors indicate
this may be sufficient for effective stress transfer from the epoxy to the SWNT. However,
other simulations directly measuring the mechanical results of SWNT-polymer composites
have not shown this to be true for composites lacking functionalization [41–44]. Zhu et. al
studied SWNT-EPON 862 composites, and found stress-strain relations in the longitudinal
direction, parallel to the nanotube, for continuous nanotubes that span the entire simulation
cell and become infinite with periodic boundary conditions applied, as well as discon-
tinuous CNTs. They found that the long, continuous CNTs greatly enhance the Young’s
modulus in the longitudinal direction (∼1000%) over neat epoxy. The short, discontionous
CNTs show a much smaller improvement of 20% compared to neat epoxy [50]. Mohan
et. al. predicted the effects of carbon vacancy defects on the Young’s modulus of a SWNT
and EPON 862 crosslinked with DETDA composite using MD [51]. For a composite with
7-12 wt% SWNT, two carbon vacancy defects in the SWNT reduces the Young’s modulus
by 13-18%, while four carbon vacancy defects in the SWNT reduced the Young’s modulus
of the composite by 21-30%. To the author’s knowledge, there had not previously been
MD simulations of SWNT-epoxy nanocomposite systems that were able to extract the bulk
elastic properties of the system by calculating the full elastic stiffness matrix.

Molecular scale simulations provide the ability to isolate the effects of the SWNT on the
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composite system in greater detail than experimentation. Epoxies have an amorphous struc-
ture and building complex crosslinked molecular configurations with accurate properties is
challenging [52]. Using an amorphous crosslinked structure that has been experimentally
verified [53], MD will be used in Chapter 2 to obtain full elastic stiffness matrices and ther-
mal expansion vectors for pristine SWNT and covalently functionalized SWNT composite
systems. The effects of randomly oriented SWNT-epoxy composites were simulated by
rotating and averaging the properties in every direction [54, 55].

1.2 Thermal Conductivity of CNT-Polymer Nanocompos-
ites

MD has been used previously to study the thermal conductivity of simpler systems, such
as metals, ionic salts and non-crosslinked amorphous polymers [56–58]. It is difficult to
create accurate models for crosslinked polymers, and only recently has MD been used to
study the thermal conductivity of these systems [59,60]. Thermal conductivity is generally
calculated using equilibrium or non-equilibrium MD approaches. For equilibrium MD,
the Green-Kubo method is used, which relates fluctuations of the thermal current to the
thermal conductivity via the fluctuation-dissipation theorem [61]. For non-equilibrium MD
(NEMD) methods, a long slab of polymer is constructed and a difference in temperature
is established between a heat source and a sink at the ends of the slab, and the flux is
calculated. The epoxy in this study is built using the dendrimer growth approach which
builds a cubic unit cell, and so is well suited for the Green-Kubo method. A comparison
between the equilibrium Green-Kubo approach and NEMD method for an epoxy model
built using multi-step crosslinking, found the two methods result in comparable values of
thermal conductivity [59].

MD studies of SWNT-polymer composites to this point have focused on the inter-
facial thermal conductance or resistance of SWNT-polymer systems. Shenogin et. al
studied the effects of functionalization on the transverse thermal transport properties of a
SWNT/octane system using equilibrium MD. It was found that functionalization via chem-
ical bonding greatly reduced the SWNT-matrix interfacial thermal resistance, and approxi-
mately doubled the effective composite conductivity. However, they found that the addition
of chemical bonding to the SWNT reduced the intrinsic tube conductivity [62]. Clancy and
Gates used MD to study the effects of functionalization on the interfacial thermal resistance
of a SWNT and bulk non-crosslinked poly(ethylene vinyl acetate) composite by grafting
linear hydrocarbon chains to the surface of the SWNT. They found the interfacial thermal
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resistance decreased as the degree of functionalization (grafting density) and chain length
of the grafted linear hydrocarbon chains increased. An analytic model using the calcu-
lated interfacial thermal resistance was used to obtain the effective thermal conductivity of
the composite, which saw very large increases in thermal conductivity, approaching 100
W/mK for high grafting densities (.12 Å2) of long nanotubes (100 µm) with high volume
fractions (5%), and greater than 10 W/mK for many other combinations [63]. Huxtable
et. al combined MD and experiments on a CNT-Octane system and found the thermal con-
ductivity of the composite to be restricted by a low interfacial thermal conductance (∼12
MW/m2K), leading to results much lower than predicted at a given volume fraction con-
sidering the SWNT’s intrinsic thermal conductivity [64]. Xu and Buehler used MD to show
that the thermal resistance at the junctions of two CNTs can be reduced by modifying the
interfacial molecular structure via polymer wrapping of polyethylene chains to improve the
matching of phonon spectra and phonon mode coupling, and found improvements of up to
40% in thermal conductivity [65]. Alaghemandi et. al studied a composite of CNTs and
polyamide-6,6 using reverse non-equilibrium MD and found that the thermal conductivity
of the composite increased slightly parallel to the nanotube and decreased perpendicular to
the nanotube. They concluded that the high interfacial thermal resistances, in the absence
of chemical modification or any other alteration, hinders heat transfer from the polymer to
the nanotubes [66]. Varshney et. al. used non-equilibrium MD to investigate the interfa-
cial thermal conductance in functionalized CNT-epoxy composite system for crosslinked
and non-crosslinked systems. The interfacial thermal conductance was 20% higher for the
crosslinked system, due to reduction in volume and increased structural rigidity during cur-
ing. The increase in interfacial thermal conductance was shown to be linear with increasing
degree of functionalization for both systems [67]. SWNTs that span the entire MD cell be-
come infinite when periodic boundary conditions are applied. This, or the use of NEMD
methods, has limited all of the aforementioned studies, with exception of Alaghemandi
et. al., to measuring the conductivity/resistance perpendicular to the nanotube axis. These
studies have identified the interfacial thermal resistance as the primary reason for lower
than expected increases in the composite thermal conductivity [62, 65, 66].

Experimentally, there have been a number of studies investigating the potential increase
in thermal conductivity from adding SWNTs to epoxy. These studies have generally shown
a monotonic increase in the effective thermal conductivity as the loading of nanotubes in-
creases when considering weight fractions of SWNTs. Gojny et. al studied SWNT-epoxy,
DWNT-epoxy and MWNT-epoxy composites, and the effects of functionalization on the
DWNT and MWNT nanocomposites where the epoxy is a modified DGEBA-based resin
(L135i) with amine hardener (H137i) [68]. A 20% increase in thermal conductivity was
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seen at 0.5 wt%, though they found results to be limited due to strong phonon bound-
ary scattering at the CNT interfaces, as well as scattering at lattice defects. Biercuk et
al. studied epoxy samples, Epon 862 epoxy resin and Ancamine 2435 dimethane-amine,
with 1 wt% SWNT and saw a 125% increase in thermal conductivity at room tempera-
ture, and a 70% increase at 40 K. [69]. Liu and Fan showed that for 2 wt% CNT (95%
multi-wall), chemical modification can reduce the interfacial thermal impedance in CNTs-
plydimethylsiloxanerubber nanocomposites, but have negative effects on the thermal con-
ductivity of the CNT itself [70]. At higher nanotube loading, 3 wt% SWNT, Choi et. al saw
thermal conductivity increase by up to 300% over neat epoxy (Thixotropic/PR2032 epoxy
resin). They found the effective thermal conductivity can be further enhanced another 10%
via magnetic alignment [71]. At 10% SWNTs by volume in a epoxy-SWNT composite,
where the epoxy was Epon 828 with crosslinker EpiKure 3234, Byring et. al. saw up to
64% improvement in thermal conductivity [72]. The reviewed literature does not show the
existence of a thermal peculation threshold, where thermal transport properties are dras-
tically increased at a certain CNT loading, even at very high nanotube loading. This is
in stark contrast to the electrical conductivity of CNT/epoxy composites where orders of
magnitude increases are seen at the electric percolation threshold, which for SWNT-epoxy
composites is only 0.05 wt% SWNT [73]. Experimental results have yielded results far
lower than what one would estimate from a rule of mixtures calculations given the high
inherent CNT thermal conductivity.

Thus far, experimental results have not seen the improvements in thermal conductivity
simulations have predicted possible, and inefficient phonon transport between nanotubes is
likely the limitation [74]. The ends of the SWNT are discontinuities, and the phonon mean
free path is approximately 0.5 µm for SWNTs at room temperature [75]. It can therefore
be expected phonon scattering will be significant at the free ends for nanotubes shorter than
this length. Previous MD studies have been limited to calculating the interfacial thermal
resistance or conductivity due to the lack of a free boundary. This will prevent bound-
ary scattering, and the only scattering mechanism will be phonon-phonon interactions. In
Chapter 3, equilibrium MD simulations were performed on the an epoxy model created
using the dendrimer growth approach. Functionalized and pristine nanotube-epoxy com-
posites were created for various nanotube lengths, and the thermal conductivity of the sys-
tems was calculated via the Green-Kubo formulation in 3D. Covalent functionalization was
explored to improve the interfacial thermal conductivity, though it was expected to decease
the inherent SWNT conductance [62]. The methods used to create the material systems
are given in detail in Section 2.3. For systems with short-range pair interactions, such as
the Lennard-Jones or embedded atom potential, the heat flux expression in the integrand
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of the Green-Kubo is well know. Electrostatic forces between partial charges on atoms in
crosslinked systems lead to long range interactions. Hence, the per-atom energy to com-
pute the heat flux vector in the case of long range interatomic interactions is calculated on a
periodic domain using the standard or mesh-based particle-particle-particle-mesh (PPPM)
Ewald methods [76]. In Section 3.2, ’k-space’ or ’reciprocal’ modeling of electrostatic
energy is explored. Results with and without this long range correction are shown and
compared with experiments, along with the nanocomposite results. To the author’s best
knowledge, this study was the first time MD was used to study discontinuous nanotubes
in epoxy composites to factor in the nanotube end effects to the thermal conductivity of
SWNT-epoxy nanocomposites [77, 78].

1.3 Multiscale Modeling of Polymer-Based Nanocompos-
ites

Molecular Dynamics has well-known limitations regarding time scale and length scales.
The time step of an MD simulation are typically on the order of femtoseconds. It is defined
by the fastest motion in the system and vibrational frequencies are up to 3000 cm−1, corre-
sponding to period on the order of 10 fs [79]. The limiting factor of the length scale is the
number of atoms that can be included in the simulation, on the order of 103-108 atoms, and
this is on the order of 10-100 nanometers [79]. To address these issues, multiscale modeling
techniques have been formulated to solve for the continuum properties of SWNT-polymer
nanocomposites.

A number of different approaches have been implemented by various researchers to
model SWNT-polymer nanocomposites. Li and Chou examined the effect of interfacial
load transfer on the stress distribution in a CNT-polymer composites. A SWNT was mod-
eled on an atomstic scale using the molecular structural mechanics method they created.
The polymer matrix was treated as a continuum, and the Finite Element method was
adopted for modeling its deformation [80]. Namilae and Chandra also studied interfacial
properties and developed a hierarchical multiscale methodology to link Molecular Dynam-
ics and the Finite Element method through atomically informed cohesive zone model pa-
rameters. The developed methodology was used to study the effect of interface strength on
the stiffness of the CNT-based composite via pullout tests [81]. Li and Chou later modeled
of the compressive behavior of CNT-polymer composites. The buckling forces of SWNT-
polymer composites at different nanotube lengths and diameters are computed by assuming
the CNT and polymer matrix interact via van der Waals interactions at the interface. The re-

12



sults indicate that continuous nanotubes most effectively enhance the composite’s buckling
resistance [82]. Liu et. al. used a multiscale approach to study the effect functionalization
of CNTs has on the damping characteristics of SWNT-polymer composites. The interfa-
cial shear strength between the SWNT and epoxy was calculated via pull out test. The
strength values obtained from MD were then applied to a micromechanical damping model
of an RVE of a SWNT-epoxy composite under cyclic loading, showing functionalization
increases interfacial shear strength [83].

Seidel and Lagoudas calculated the effective elastic properties for CNT reinforced com-
posites through a variety of micromechanics techniques. The effective properties of CNTs
were calculated via a composite cylinders micromechanics technique, and these effective
properties were then used in the self-consistent and Mori-Tanaka methods to obtain effec-
tive elastic properties of composites consisting of aligned single or multi-walled carbon
nanotubes embedded in a polymer matrix [84]. Spanos and Kontos developed a multi-
scale Monte Carlo and Finite Element model for the effective elastic properties of SWNT-
polymer nanocomposites. This models allowed for non-uniform dispersion and distribution
of SWNT in polymers to be factored into the macroscopic behavior of the nanocompos-
ites via a multiscale homogenization approach [85]. Tserpes et. al used a multiscale RVE
for modeling the tensile behavior of CNT-reinforced composites to integrate nanomechan-
ics and continuum mechanics. Isolated CNTs were modeled using a progressive fracture
model based on the modified Morse potential, and FE was used for modeling the matrix
and building the RVE. Stiffness was calculated for a unidirectional nanotube/polymer com-
posite using the RVE [86]. Ionita used multiscale modeling via atomistic and mesoscale
simulations to study SWNT-epoxy composites. The models were used to determine the
effects of diameter and weight fraction of SWNTs on thermomechanical properties. The
Young’s modulus, glass transition temperature and solubility parameter of the composites
were calculated via MD, and the dissipative particle dynamics method and Flory-Huggins
theory was employed to predict SWNT-epoxy morphologies [87]. Yang et. al. developed
a sequential multiscale bridging model to characterize the CNT size effects and weak-
ened bonding effects at the interface of CNT-polyproplyene composites using MD and
continuum micromechanics. Using the proposed multiscale model, the elastic modulus
for nanocomposites at various volume fractions and CNT sizes was estimated [88]. They
later investigated a nonlinear two-step multiscale modeling approach for the elasoplastic
behavior of a CNT-polymer composite via MD simulations and a continuum nonlinear mi-
cromechanics based on the secant moduli method. The imperfect interface between the
CNT and polymer and the interphase formed by the adsorbed polymer molecules to the
surface of CNT were considered. It was found that the weakened interface and polymer-
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densified interphase both play important roles the elastoplastic behavior, and they cancel
each other out according to the CNT volume fraction [89].

In Chapter 4, multiscale modeling approaches via molecularly informed Finite Element
and ODF-based models are used to calculate the effective elastic properties of functional-
ized and pristine SWNT-epoxy composites at various volume fractions of SWNTs. As the
literature above highlights, multiscale approaches for effective properties of SWNT-epoxy
systems are limited, and no one has yet considered functionalized systems. In Chapter 5,
the effects of varying nanotube alignment are considered for the pristine and functionalized
SWNT-epoxy nanocomposites via a multiscale framework, for the first time in literature.
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CHAPTER 2

Thermomechanical Modeling

The thermomechanical properties of nanocomposite materials are highly dependent on the
interface between the epoxy and the CNT. It is experimentally difficult to characterize this
interface, and therefore molecular modeling is a useful tool for linking molecular interfacial
structure to bulk thermomechanical properties. In this chapter, MD was used in order to
explore the effects on the mechanical and dilatometric properties by adding pristine and
covalently functionalized SWNTs to crosslinked polymers. MD allows for the effects of
mechanical and thermal loading to be isolated and visualized in regions of interest where
it may not be possible with experiments. Epoxies have an amorphous structure, which
makes building complex crosslinked molecular configurations with accurate properties is
challenging [52]. Using an amorphous crosslinked structure that has been experimentally
verified [53], MD was used to obtain full elastic stiffness matrices and thermal expansion
vectors for pristine SWNT-epoxy and covalently functionalized SWNT-epoxy composite
systems. The effects of randomly oriented nanotube/epoxy composites was simulated by
rotating and averaging the properties in every direction.

2.1 Overview of Molecular Dynamics

Molecular Dynamics (MD) is a simulation technique that predicts the time evolution of
a system of interacting particles, such as atoms or molecules. [90–94] The particles are
given a realistic set of initial conditions, positions, and velocities, such that particles are in
physically feasible positions (i.e no overlapping atoms). The motion of an individual atom
is determined through interactions with other particles in the system, commonly contained
in an interaction potential, which will be discussed at length in Section 2.1.1. MD is a
deterministic method; the evolution of the system is completely determined from the given
initial positions and velocities, aside from uncertainty introduced via computational errors.
For each time step, the velocities and positions of each atom are obtained, though it gener-

15



ally is macroscopic properties of materials that are primary of interest, and not the motion
of individual atoms. Statistical distribution functions are used to describe the configura-
tions generated by the simulation, and so MD can also be viewed as a statistical mechanics
method. In statistical mechanics, macroscopic thermodynamic quantities of interest can be
computed, in an average sense, by averaging over all of the configurations, as shown below
as a function of position (r) and momentum (p) for quantity A:

〈A〉r,p =

∫
p

∫
r

A(r, p)P (r, p)drdp. (2.1)

Eq. 2.1 is known as the ensemble average of quantity A, where P is a probability density
determined by the selected fixed macroscopic properties, or ensemble. Instantaneous values
of a property are based on the position and velocity at a given time, and will fluctuate
around the ensemble average. For N particles, a thermodynamic ensemble contains 6N -
dimensional phase space (r,p) data subjected to some thermodynamic constraint (i.e. fixed
energy and volume for an NV E ensemble). If all possible configurations of velocity and
position of an ensemble are considered, the ensemble average will yield the true value of a
bulk property. MD is often used to find time-averaged macroscale quantities, shown below
for A:

〈A〉t =
1

τ

∫ τ

0

A
[
r(t),p(t)

]
dt. (2.2)

The ergodic hypothesis states that an ensemble averaged over many configurations, or a
phase space ensemble, will be equivalent to an average over time of a single configuration,
or a time ensemble.

〈A〉r,p = 〈A〉t. (2.3)

This is generally valid provided the simulation is run long enough to generate sufficient
configurations, and the trajectory is able to cover all of phase space.

The evolution of a system in time is found by solving Newton’s equations of motion for
all the particles. For a particle i, the equation of motion is given as:

miai = mi
d2ri
dt2

= Fi(ri, ..., rn), (2.4)

where Fi is a function of position of the other particles in the simulation. For N particles,
N trajectories need to be computed. In any MD simulation, it is required to be able to
model how the particles interact, via the force term in Eq. 2.4. It is also necessary to have
methods for analyzing the data to calculate the desired properties.
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The basic steps of any MD simulation are as follows: first the system needs to be
initialized by selecting permissible initial positions and velocities. Next, the forces on all
the particles are computed, and Newton’s equations of motions are integrated. These steps
take up the bulk of the simulation. Finally, it it necessary to compute averages of the
measured quantities. If there are N total atoms in a system, the force acting on the ith atom
can be obtained from an interatomic potential, U(r1, r2, ..., rN), which is a function of the
positions of all other atoms as follows:

Fi = −∇iU(r1, r2, ..., rN). (2.5)

2.1.1 Interatomic Potential

In constructing an interatomic potential, electrons are treated classically, and the atoms in-
teract via a prescribed analytical model. This has the advantage of allowing longer simula-
tion times with more particles over ab initio (quantum) methods, but means the potentialss
are often limited to the applications they were constructed for. An interatomic potential
should be able to accurately capture the nature of the bonding (i.e covalent bonding, metal-
lic bonding, ect., and be able to replicate experimental results for macroscopic quantities of
interest. For a system containing N interacting atoms, the potential energy can be divided
up into various terms depending on single atoms, pairs of atoms, atom triplets, and so on:

U =
∑
i

v1(ri) +
∑
i

∑
j>i

v2(ri, rj) +
∑
i

∑
j>i

∑
k>j>i

v3(ri, rj, rk) + ... . (2.6)

The summation for the higher order terms is restricted such that counting bonds more than
once is prevented. The first term in Eq. 2.6 is the one-body term, which takes into account
the effects of an external field. The second term is known as the pair potential, and generally
contributes the most towards the total potential energy. It describes the interaction between
two particles, and depends on the magnitude of the distance between the two particles, rij .
The third team in Eq. 2.6 is an angular term that describes triplets of particles. These
terms depend on the orientations of the three atoms, and are very important for covalent
systems [95]. Higher order terms or many-body potentials are typically negligible due to
their low contributions to the total potential energy.

In order to accurately fit various bonding scenarios, a number of different modeling ap-
proaches are used for different types of systems. The most simple potential is the Lennard-
Jones potential, also known as the 12-6 potential, which is a pair potential for van der Waals
interactions that works well for noble gases:
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v2 = 4ε
[( σ
rij

)12

−
( σ
rij

)6]
, (2.7)

where ε is the depth of the well and σ is the distance of the repulsive wall from the origin.
The first term in Eq. 2.7 is a strong repulsive term due to electron overlap as atoms get
too close together. The second term is an attractive term that arises from dipole-dipole
interactions.

For ionic materials, it is necessary to include long-range interactions [90]. This is
generally done by summing short-range and long-range terms to describe the interactions
between the ions. A Coulomb charge-charge potential is commonly used to describe the
attractive long-range interactions, and a repulsive term is added to keep the atoms from
getting too close together:

v2 =
qiqj

4πεorij
+ Aeβrij , (2.8)

where q1 and q2 are charges on ions 1 and 2 respectively, εo is the permittivity of free space,
and r12 is the separation distance of ions 1 and 2. The first term is the Coulomb potential,
which will be attractive if the ion is of opposite charge, and the second term is the repulsive
term.

While the simple potentials discussed earlier work well for certain systems, they do not
for metal or covalent systems. Pair potentials are insufficient for metals due to the nature
of metallic bonding, where valence electrons are shared by the metal ions in the material
and bonding is non-directional. The embedded atom method is a multibody potential used
to model metallic systems, where every atom is viewed as being embedded in a pool of
delocalized electrons. Unlike Lennard-Jones and ionic systems, the bonding in covalent
systems is highly directional, meaning they have orientational preferences. Covalent bonds
are formed by atoms sharing electrons, forming a strong chemical bond. There is an overlap
of electron clouds of the two atoms bonded, and same electrons fill the valance shells of
both atoms [96]. This leads to an angular dependence, thus making a three-body term very
important for nearest neighbors. Additionally, covalent bonds are short-ranged and are very
stiff along the bond direction. An example of a covalent potential is the Stillinger-Weber,
often used for Silicon [95], where the two body term in Eq. 2.6 is:

v2(ri, rj) =

(Br−4
ij − A)e

1
rij−1 if rij < a

0 if rij ≥ a,
(2.9)

where the Br−4
ij term is a repulsive term, and the A term is an attractive term. As r ap-
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proaches 0, v2 will diverge as r−4, and as r approaches a, v2 will go to zero as e
1

rij−1 . The
three-body term, which is essential due the orientation dependence of covalent bonds, is
given as:

v3(ri, rj, rk) = λe

[
γ

rij−a
+ γ
rik−a

](
cos θijk +

1

3

)2
. (2.10)

Here, it is seen that Eq. 2.10 will go to zero if θijk =109.47, which is the minimum energy
for tetrahedral bonding. The total expression give five parameters for fitting experimental
data: A, B, a, λ and γ.

2.1.2 Integration Schemes

With initial conditions and the interatomic potential defined, the equations of motion can be
solved numerically via a number of different integration schemes. The resulting solutions
are the position and velocities of all atoms as a function of time, ri(t) and vi(t). For a
system with N atoms, 3N 2nd order differential equations given by Eq. 2.4 need to be
solved. Finite difference approaches are used in order to solve these equations step-by-
step. Given the relevant dynamic information at time t, such as molecular velocities and
positions, the dynamic information is then found at later time, t+ δt. The time interval, δt,
is chosen such that an acceptable amount of accuracy is achieved, and is generally much
smaller than the time a particle takes to travel its own length [90]. Ideally, the integration
scheme should posses certain attributes such as: the ability to satisfy conservation laws
for energy and momentum, time reversibility, allow for a long time step (δt), run fast, and
require small amounts of memory. In practice, not all these attributes are required and
many popular integration schemes do not satisfy all of them.

The most simple, widely used finite difference algorithm to solve Eq. 2.4 is the Verlet
method [97, 98]. It solves the positions at the next time step r(t+ δt) based on the current
positions r(t), accelerations a(t), and the position at the previous time step, r(t− δt):

r(t+ δt) = 2r(t)− r(t− δt) +
d2r
dt2

δt2 +O(δt4). (2.11)

The velocities do not appear in Eq. 2.11, as they have been canceled out by summing the
Taylor expansion about r(t):

r(t+ δt) = r(t) +
dr
dt
δt+

1

2

d2r
dt2

(δt)2 +
1

6

d3r
dt3

(δt)3 +O(δt4) (2.12)
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r(t− δt) = r(t)− dr
dt
δt+

1

2

d2r
dt2

(δt)2 − 1

6

d3r
dt3

(δt)3 +O(δt4). (2.13)

From Eq. 2.12 and 2.13, it can be seen that Eq. 2.11 is a third order method, even though it
does not contain third order derivatives, and that it is time-reversible. As shown, the error
due to truncation is of the order δt4. The velocities can be extracted from the old and new
positions, and are important for energy calculations. The error for the velocities however,
is of the order δt2. The expression for velocity is:

v(t) =
r(t+ δt)− r(t− δt)

2δt
+O(δt2). (2.14)

Some improvements have been made to the Verlet method, and a very common scheme
is known as the ”Velocity Verlet” algorithm, which calculates positions, velocities and
accelerations at time t [99]. The error is of the same basic order than the original Verlet
method, but has less error due to round off. The expressions for position and velocity are
given respectively as:

r(t+ δt) = r(t) +
dr
dt
δt+

1

2

d2r
dt2

δt2 (2.15)

v(t+ δt) =
dr(t)

dt
+

1

2

[
d2r(t)

dt2
+

d2r(t+ δt)

d(t+ δt)2

]
. (2.16)

There are numerous integration schemes, and another well-known Verlet-like method is
the ”leap frog” scheme. Additionally, higher order schemes that allow longer time steps
or better accuracy at the expense of memory requirements are sometimes used. These em-
ploy higher order derivatives, and a popular type of higher order algorithm are ”predictor-
corrector” schemes [98,100,101]. In general, these work by predicting values for position,
velocity and acceleration at time t+ δt using data at time t, evaluating forces at time t+ δt,
and correcting the predicted positions, velocities, and forces based on the evaluation step.

For finite difference based integration algorithms, error can be broken down into two
distinct categories: round-off errors and truncation errors [93]. Round-off errors result from
computer implementation of an algorithm. Truncation errors are inherent to the algorithm
and result from errors created by the finite difference method, such as the where the Taylor
expansion is truncated. These errors, no matter how small, will lead to exponential diver-
gence from the true trajectory over time. This is known as the Lyapunov instability [91].
This can be more formally formulated by considering the position of a particle N at time t:

ri(t) = f
(

rn(0),pN(0); t
)
, (2.17)
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where r and p are position and momentum, respectively. If the initial conditions are per-
turbed slightly by an amount ε this gives:

rp(t) = f
(

rn(0),pN(0) + ε; t
)
. (2.18)

So, if ∆t is defined as ri(t)− rp(t), ∆t will only be linear in ε for a short time period. For
longer time periods:

|∆r(t)| ∼ ε exp(λt), (2.19)

where λ is the Lyapunov exponent, and represents the exponential divergence of the two
trajectories with time. This is not a huge issue for Molecular Dynamics, as typically MD is
used for statistical predictions and the trajectories are close enough for meaningful results.

2.1.3 Periodic Boundry Conditions

Molecular Dynamics simulations are typically limited in how many atoms they can contain,
O(103−108), which is far below the number of atoms seen in a continuum, which is on the
order of Avogadro’s numberO(1023). This means that an unrealistically high percentage of
the atoms in an MD simulation will lie on the surface or subsurface, where atoms are known
to behave differently. To alleviate surface effects and better model a continuum, periodic
boundary conditions (PBCs) are often used [92]. In practice, an MD simulation using PBCs
will have one primary cell, which is then replicated infinitely in space to create a lattice.
The movement of particles within every cell is identical. This can be better illustrated
pictorially, where Fig. 2.1 shows 2D PBCs where the yellow cell is the primary cell. The
blue particles are the particles from the primary cell, and the red particles are the repeated
images. Different shapes represent different particles. It can be seen that particles are free
to move across the boundary into a different cell, and when this happens an equivalent
particle will enter the vacated cell, keeping the number of atoms fixed in a cell. The use
of PBCs eliminates surface atoms by having no walls or barriers at the boundary of the
primary cell. Potential energy in the primary cell is given as:

UPC =
1

2

NPC∑
i

NPC∑
j 6=i

u(roij). (2.20)

Eq. 2.20 does not factor in interactions across the cell boundaries, so if interactions are
long enough, the above expression will not be accurate. In this case, the image atoms must
also be counted:
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UPC =
1

2

∑
α

NPC∑
i

α∑
j 6=i

u
(
|ri − (rj + Lα

)
, (2.21)

where α is a vector which specifies the periodic cell (α = 0 is the primary cell), i des-
ignates an atom within the box selected, and j sums over all the other particles. A 2D
example of α is shown in Fig. 2.2. The potential energy of each image of an atom, m, are
identical. If particle m is assumed to be in the primary cell, and m′ is in an image cell (in
2D), α = (1, 1), then the potential energy for m and m′ are:

Um =
1

2

∑
α

Nα∑
j 6=i

u
(
|rom − (roj + Lα

)
, (2.22)

Um′ =
1

2

∑
α

Nα∑
j 6=i

u
(
|r(1,1)
m − (roj + Lα

)
. (2.23)

It is known that r(1,1)
m = rom , and therefore Um = U ′m, and likewise Fm = F ′m. Therefore,

the forces, energy and other quantities of interest need only be evaluated over the particles
in the primary cell. PBCs need to be used carefully however, and it is important that a
simulation cell is large enough such that a given particle will not interact with its own
image particles. In practice, interactions are usually truncated by a given cut-off radius, rc,
and so the length of the cell, L, needs to satisfy rc ≤ L

2
as shown in Fig. 2.3.
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L 

L 

Figure 2.1: PBCs shown where main cell is the yellow box, original particles are shown in
blue, and periodically repeated particles are shown in red.

L 

L 
α = (0,0) α = (1,0) α = (-1,0) 

α = (-1,1) α = (0,1) α = (1,1) 

α = (-1,-1) α = (0,-1) α = (1,-1) 

Figure 2.2: 2D example of using α to select a periodic image, where the primary cell is in
yellow.
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rc 
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L 

Figure 2.3: For periodic boundry conditons to be used, the simulation cell must be large
enough such that the interaction cut-off radius satisfies rc ≤ L

2
.

2.1.4 Ensembles

MD makes heavy use of statistical mechanics to find average macroscopic properties of
interest from the microscopic states that are distributed by an ensemble [102]. Some of the
most commonly used ensembles consist of the microcanonical (NV E) ensemble, canonical
ensemble (NV T ), and isothermalisobaric ensemble (NPT ). The microcanonical ensemble
is an isolated, adiabatic system where the number of particles (N ), the size of the simulation
cell (V ) and the total energy (E) are held fixed. The canonical ensemble is isothermal using
a thermostat to control the temperature (T). The number of particles (N ), and the size of the
simulation cell (V ) are also held constant. The isothermalisobaric ensemble is, as the name
implies, isobaric and isothermal. A thermostat and barostat are used to control temperature
and pressure, respectively. The number of particles (N ), pressure (P ), and temperature
(T ) are held constant. There are several methods in order to control temperature in an MD
simulation that can be broken down to: stochastic methods, velocity re-scaling methods,
and extended system methods [90]. Stochastic methods include the Andersen thermostat,
which uses impulses on random particles to change their velocity in order to maintain a
desired temperature [103]. Velocity re-scaling methods, such as the Berendsen thermostat,
couple the system with a constant temperature heat bath in order to adjust velocities such
that a constant temperature is maintained [104]. Extended system methods, such as the
Nosé and Nosé-Hoover thermostats, which consider a heat bath by adding an artificial
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variable with a ”mass”, determining the coupling between the system and the heat bath, and
a velocity, which acts time-scaling parameter [105–107]. These thermostats are among the
most accurate and commonly used methods for constant temperature Molecular Dynamics.

2.2 Materials

Diglycidyl ether of bisphenol A (DGEBA) is the epoxy chosen for this study. The epoxy
molecules were crosslinked with curing agent 3-3’ diamino diphenyl sulfone (DDS). The
structure of the epoxy and the amine can be seen in Figs. 2.4a and 2.4b, respectively. Each
epoxide has a crosslinking functionality of one towards the amine curing agents. The epoxy
monomer has two epoxide (oxirane ring) groups leading to a total functionality of two.
Each amine group has a functionality of two towards epoxy molecules. The DDS monomer
has two amine groups for a total functionality of four. A typical amine stoichiometric ratio
for synthetic epoxy is approximately 2:1 or 33.3 mol% amine. The polymer is formed by
bonding of the epoxide group in DGEBA and the amine groups in the DDS. To form a
crosslink, the primary amine group reacts with the epoxide group, creating a bond between
the terminal carbon of the epoxide group and the nitrogen of DDS. The carbon-oxygen
bond breaks between the terminal carbon and the oxygen from the epoxide, and forms
and alcohol (-OH) link. The crosslinked structure seen in Fig. 2.5a can undergo another
reaction with a different epoxy molecule, forming the final crosslinked structure seen in
Fig. 2.5b.

(a) (b) 

Figure 2.4: a. Chemical structure of epoxy resin, Diglycidyl ether of bisphenol A
(DGEBA). b. The amine monomer diamino diphenyl sulfone (DDS). Brackets give the
notation for R and R* in Fig. 2.5.
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c points

Figure 2.5: Epoxy-amine cross-linking through reaction of epoxide group and amine group

2.3 Material Modeling

A major hurdle in creating accurate models for molecular simulation of industrial grade
epoxies is attaining realistic crosslinking densities, where a conversion percentage of 70-
95% is typically seen when measured through Near-Infrared (NIR) Spectroscopy [108]. A
number of approaches have been used to build polymer networks with greater than 70%
crosslink conversions. The majority of these approaches can be characterized based on
whether unreacted monomer mixtures are crosslinked all-at-once (one-step) or over time
(multi-step). For one-step crosslinking, sites are first randomly selected and then pairs of
sites within a capture radius are crosslinked together [109, 110]. One-step methods lead to
artificially high network strains. In multi-step crosslinking, every reactive pair that satis-
fies a length criteria are crosslinked iteratively, with equilibration and the length criteria in-
creasing with every iteration [111]− [112]. Multi-step methods prevent and relieve network
strains, but they are computationally expensive. A new method was introduced by Chris-
tensen in 2007 to build epoxy networks using a ‘dendrimer’ growth approach [52, 113].
In this method, the thermoset resin is modeled by starting with a single monomer and
then crosslinking a second layer of monomers around it. In the next step, a third layer
of monomers are crosslinked to the second layer. In this way, generations (layers) of
monomers are added to a seed structure that grows in size at every pass. An example is
shown in Fig. 2.6, where on the left the seed structure is shown in red, with a second layer
in blue. The subsequent images show a third and fourth layer being grown to the seed struc-
ture in green and orange, respectively. The principal advantages of the dendrimer growth
method are the complete avoidance of artificial network strain during curing and the low
computational cost of the growing procedure.
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Figure 2.6: Dendrimer growth process: left image shows initial seed in red and a second
layer in blue. A third and fourth layer shown in green and orange are subsequently grown.

The ‘dendrimer’ growth approach was used to build the epoxy network in Materials
Studio [114] containing 36 amine groups and 71 epoxy groups, as seen in Fig. 2.7. The
system contains 4601 atoms and is sufficiently complex to accurately capture the amor-
phous nature of the polymer. All simulations in this work are performed under periodic
boundary conditions, and the Consistent Valance Force Field (CVFF) [115] potential was
used for bonded and non-bonded interactions in LAMMPS [116]. This force-field has been
used in previous studies to accurately predict thermodynamic properties of epoxy [59, 60].
75% of available epoxy sites were crosslinked, which is representative of many structural
epoxies. To verify the accuracy of the initial dendrimer structure; the dilatometric curve
simulated by MD has been compared to experimental results, and the full elastic stiffness
matrix was generated by conducting tensile and shear tests via MD to verify the structure
is isotropic.
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Figure 2.7: The dendrimer structure of epoxy after energy minimization.

Equilibration of the structure was necessary, as the initial density of the dendrimer, seen
in Fig. 2.8, is far too low due to the growth process. To achieve density convergence, the
annealing protocol shown in Table 2.1 was followed. The structure was further optimized
during the ”Minimization” step via a sequence of energy minimization and annealing. This
was done by first minimizing the energy via conjugate gradient (CG) for 10000 iterations.
Next, MD was then performed over several annealing cycles using an NPT ensemble.
Dynamics was first performed well above Tg (600 K and 1 atm) for 500 ps. Dynamics was
then run well below Tg (1 K and 1 atm) for 500 ps, followed by CG. After ten cycles, the
potential energy was sufficiently minimized such that density converged to within 0.5%
across consecutive annealing steps. Progressive density convergence is shown in Fig. 2.9,
and final density of 1.17 g/cc at 1 atm and 1 K was obtained after convergence.
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Figure 2.8: Initial epoxy structure after dendrimer growth approach.

Table 2.1: Annealing protocol for equilibrating the epoxy structure [117].

NVT for 50 ps at 650 oK (Equilibration)
NPT for 50 ps at 650 oK and 0.1 GPa (Initial compaction)
NVT for 50 ps at 500 oK (Equilibration)
NPT for 50 ps at 500 oK and 0.25 GPa (Additional compaction)
NVT for 50 ps at 450 oK (Equilibration)
NPT for 50 ps at 400 oK and 0.0001 GPa (Reduce to 1 atm)
NVT for 50 ps at 300 oK (Equilibration)
NPT for 50 ps at 300 oK and 0.0001 GPa (Equilibration)
Minimization until density within < 0.5% across consecutive steps
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Figure 2.9: Density showing convergence after energy minimization and annealing

To build the CNT/Epoxy nanocomposites, a vacancy was created in the epoxy by mov-
ing atoms radially outward from a chosen point, and an single-walled armchair nanotube
(4,4) was inserted in the space. Moving atoms caused many bonds to be displaced from
their equilibrated length, so the same minimization process ran previously via a sequence
of conjugate gradient (CG) minimization and dynamics above and below Tg was used to
minimize potential energy until the density converged. Images of the equilibrated struc-
ture can be seen normal to the nanotube direction (x-y plane) in Fig. 2.10, and along the
nanotube (x-z plane) in Fig. 2.11. A functionalized SWNT-epoxy composite was created
by covalently bonding the nanotube to the DDS molecule. One of the four functional sites
of the DDS was attached to the SWNT, as shown in Fig. 2.12. The other functional sites
react with the epoxide, as shown earlier in Fig. 2.5. The degree of crosslinking for the
epoxy is unaffected, as sites that were previously not reacted with the epoxy were selected
to bond covalently to the nanotube. Again, minimization was performed via a sequence of
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the conjugate gradient (CG) minimization and annealing until the density was seen to con-
verge. The functionalized system containing four covalent bonds to the epoxy can be seen
in Fig. 2.13b. Experimentally, carbon nanotubes with amino groups covalently bonded to
their side walls have been prepared by use of fluorinated SWNTs [17, 18, 118, 119].

Figure 2.10: Pristine SWNT and epoxy nanocomposite after reaching equilibrium in x-y
plane.
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Figure 2.11: Pristine SWNT and epoxy nanocomposite after reaching equilibrium in x-z
plane.

Figure 2.12: Nanotube functionalization to amine and subsequent crosslinking to epoxy.
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Figure 2.13: Functionalized SWNT and epoxy nanocomposite.

2.4 Model Verification

Tension (x, y and z directions) and shear tests (xy, yz and xz in the positive and negative
directions) were performed via MD to obtain the stiffness matrices at various temperatures.
Strains were applied and the stress was averaged over three samples. These results were
used to solve for the 36 constants in the elastic stiffness matrix. The epoxy was verified to
be isotropic by rotating the resulting stiffness matrix in all directions, using the transforma-
tion law for a fourth-order tensor, as shown in Fig. 2.14. Rotation tensors were chosen such
that they took into account all independent rotations of a transversely isotopic system when
accounting for symmetries. The isotropic properties of epoxy can be seen in Fig. 2.15.
These were obtained using a strain rate of 106 1

s
, however the deformation was only applied

once every 1000 time steps. This leads to an effective strain rate of 103 1
s
, and allowed the

system 500 time steps to relax before stress data was collected and averaged. It has been
measured experimentally that for a DGEBA-DDS resin system with an 80% degree of cur-
ing, the tensile elastic modulus is 3.1 GPa at room temperature (300 K) [120]. Additionally,
for tests in compression at room temperature and quasi-static loading rates, a Poisson’s ra-
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tio of 0.37 has been measured experimentally [121]. The Young’s modulus and Poisson’s
ratio at 300 K are found to be 3.0 GPa and 0.35 respectively, which compares well with
the experimental results and show the relaxation steps allow for quasi-static results to be
obtained.
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Figure 2.14: Variation of elastic properties by rotating with respect to the x-axis.
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Figure 2.15: Young’s modulus and shear modulus for epoxy model.
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The thermal expansion coefficient for the neat epoxy was obtained via an NPT simu-
lation. The change in cell length with varying temperature was plotted with an experimen-
tally measured dilatometric curve in Fig. 2.16 [122]. The MD calculated data is seen to
be in very good agreement with the experimental curve. The linear coefficient of thermal
expansion (CTE) between -50oC to 150oC was measured to be 54.4 ± 2.7 µ/oC from this
figure, with error bars shown later in Fig. 2.25. Thermal expansion at higher temperatures
was plotted in Fig. 2.17 to show the glass transition temperature, which falls within the
experimental range of 425-495 K for DGEBA/DDS [122].
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Figure 2.16: MD calculation of thermal expansion is superposed with an experimentally
measured dilatometric curve reported in [122].
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Figure 2.17: Thermal expansion for neat epoxy showing the glass transition temperature.

2.5 Results

2.5.1 Elastic Results

Similar to epoxy, tension and shear tests were run for the pristine and covalently functional-
ized SWNT-epoxy composite systems to obtain the full stiffness matrices. Both nanocom-
posite systems were found to be transversely isotropic and the properties of the pristine
SWNT-epoxy system and the covalently functionalized SWNT-epoxy systems are seen in
Table 2.2 and Table 2.3, respectively. As expected, both systems see dramatically increased
stiffness in the nanotube direction Ezz, demonstrated in Fig. 2.18a due to the inclusion of
the nanotube. By comparing the properties of the covalently functionalized SWNT-epoxy
composite to that of the pristine SWNT-epoxy composite, it is seen that the functionalized
nanocomposite becomes much more stiff in the direction transverse to the nanotubes (Exx),
demonstrated in Fig. 2.18b, and highlighted in Fig. 2.19. It can be readily seen here that
the directions transverse to the nanotube show substantial improvement due to functional-
ization (40% at 1 K), where the pristine nanotube system only sees minor improvements
in transverse stiffness due to van der Waals effects (7% at 1 K) over neat epoxy [24]. It is
worth noting that functionalization causes sp3 hybridization carbon sites on the sidewalls
of the nanotube, and this lowers the stiffness of the composite system along the nanotube
(Ezz), as seen in Tables 2.2 and 2.3. It has been shown theoretically, however, that even a
high degree of functionalization on the sidewall of the SWNT will only decrease the me-
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chanical strength by 15% [123]. There are negligible differences in the in-plane Poisson’s
ratio (vxy) between the functionalized and non-functionalized systems. There is a clear re-
duction in the out of plane Poisson’s ratio (νzx), meaning that there will be less contraction
in the plane of isotropy (x-y) when the system is pulled along the nanotube direction (z)
due to the nanotube functionalization. Finally, the shear modulus in the z-direction, (Gxz)
has noticeably increased due to the covalent bonding to the SWNT. The mechanical prop-
erties of discontinuous nanotubes was also studied, and the results are shown in Section
2.5.6

Figure 2.18: Tension tests in the a. z-direction, along the nanotube direction and b. plane
of isotropy (x-y) perpendicular the nanotube direction.
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Temperature (K) Exx(GPa) Ezz(GPa) νxy νzx Gxz(GPa)

1 7.2 72 0.49 0.32 2.4

50 6.2 71 0.52 0.32 2.1

100 5.9 70 0.54 0.36 2.0

150 5.1 70 0.55 0.36 1.7

200 4.7 69 0.59 0.37 1.5

250 3.7 68 0.67 0.40 1.3

300 2.7 68 0.75 0.43 .87

350 2.0 67 0.75 0.45 .77

Table 2.2: Material properties: pristine SWNT-epoxy composite.

Temperature (K) Exx(GPa) Ezz(GPa) νxy νzx Gxz(GPa)

1 9.4 70 0.49 0.30 3.3

50 8.7 69 0.50 0.30 2.9

100 8.0 69 0.54 0.31 2.8

150 6.6 68 0.54 0.31 2.5

200 6.0 67 0.57 0.32 2.2

250 4.9 66 0.58 0.35 1.8

300 4.0 66 0.63 0.38 1.6

350 3.0 65 0.67 0.38 .86

Table 2.3: Material properties: covalently functionalized SWNT-epoxy composite.
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Figure 2.19: Elastic modulus in the plane of isotropy for the composite systems and neat
epoxy (fully isotropic).

A tension test in the plane of isotropy (x-y), where each atoms was colored by its
per-atom stress at various strain levels, is shown for the covalently functionalized SWNT-
epoxy nanocomposites in Fig. 2.20a, and for the pristine SWNT-epoxy nanocomposite in
Fig. 2.20b. MD results are statistical, and so the stress evolution of an individual atom
is meaningless. However, when considering the stresses of every atom in the system at
lower strain levels, the high stress (red) and low stress (blue) atoms tend to cancel, where
at higher strain levels there are less low stress (blue) atoms. When averaging over all
of the atoms and accounting for the volume, the average stress increases linearly with
increasing strain. Fig. 2.20a shows that at higher strains, the atoms bonding the epoxy to the
nanotube experience higher average stresses, demonstrating that stress is being transferred
to the nanotube, leading to the higher stiffness levels seen in Fig. 2.19 when comparing
the covalently functionalized SWNT-epoxy nanocomposite to the pristine SWNT-epoxy
nanocomposite.
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Figure 2.20: Atoms colored by high stress (red) and low stress (blue) at various strain
levels for the a. covalently functionalized SWNT-epoxy nanocomposite and b. pristine
SWNT-epoxy nanocomposite.
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2.5.2 Thermal Expansion Results

The thermal expansion vectors were found via MD for the SWNT-epoxy composite sys-
tems. The thermal expansion in the plane of isotropy (x-y) and nanotube (z) directions
for the SWNT-epoxy composite with pristine nanotubes are shown in Fig. 2.21. Since the
structure is transversely isotropic, the results in the x and y directions are identical and the
linear CTE was measured to be 55.3 ± 5.1 µ/oC, which approximately the CTE of neat
epoxy. This result is expected since there was no functionalization to the nanotube, so the
epoxy is free to expand in the x-y plane. The expansion in the z-direction was found to
be 6.9 ± 1.4 µ/oC, where the thermal expansion was constrained by the nanotube, which
has a longitudinal coefficient of thermal expansion of -1.2 µ/oC [124]. For the covalently
functionalized SWNT-epoxy composite, the thermal expansion in the plane of isotropy (x-
y) and nanotube (z) directions can be seen in Fig. 2.22. There is a negligible effect of the
covalent bonding for thermal expansion in the x-y plane. However, even with only four
covalent bonds, the thermal expansion was reduced to 4.3 ± 1.2 µ/oC in the nanotube
direction. This represents a 42% reduction when compared to the pristine SWNT-epoxy
composite.
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Figure 2.21: Thermal expansion for pristine SWNT-epoxy nanocomposites along the
SWNT (z-direction) and transverse to the nanotube (x-y plane).

41



−50 0 50 100 150
−4

−2

0

2

4

6

8

10
x 10

−3

Temperature (oC)

∆
L

i

L
i

 

 
i=x=y:  α = 54.8 ± 5.0 µ/oC

i=z:  α = 4.3 ± 1.2 µ/oC

Figure 2.22: The thermal expansion for the covalently functionalized SWNT-epoxy
nanocomposites along the SWNT (z-direction) and transverse to the nanotube (x-y plane).

2.5.3 Equivalent Isotropic System

To create an isotropic composite epoxy system, the effects of randomly oriented nanotubes
in the epoxy were explored. To achieve this, the stiffness tensor and thermal expansion
vector were rotated and averaged over all possible orientations using the ODF model, which
will be discussed in detail in Section 4.2.1. The resulting system was isotropic and so can
be compared with epoxy, done for the Young’s modulus in Fig. 2.23, shear modulus Fig.
2.24, and the linear CTE in Fig. 2.25. Adding randomly oriented nanotubes results in
a very large increase in the elastic modulus for both the functionalized nanotube epoxy
composite (200% increase at 1 K) and pristine nanotube epoxy composite (180% increase
at 1 K) when compared to neat epoxy. The coefficients of thermal expansion were seen to
be reduced by 30% to 39.3± 2.0 µ/oC for the pristine SWNT-epoxy composite system and
32% to 37.2± 1.4 µ/oC for the covalently functionalized SWNT-epoxy composite system.
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Figure 2.23: Young’s modulus for an isotropic, pristine SWNT-epoxy composite, an
isotropic, functionalized SWNT-epoxy composite and neat epoxy.
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Figure 2.24: Shear modulus for an isotropic, pristine SWNT-epoxy composite, an isotropic,
functionalized SWNT-epoxy composite and neat epoxy.
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Figure 2.25: Thermal expansion for an isotropic, pristine WWNT/epoxy composite, an
isotropic, functionalized SWNT-epoxy composite and neat epoxy.

2.5.4 Error

For all of the MD results shown in this Chapter, three different equilibrated structures
were averaged, and properties for each structure were averaged across multiple time steps.
This leads to two different types of uncertainty due to averaging: time step averaging and
sample-to-sample averaging. For the thermal expansion results, the variances for both
sources of error are summed and the resulting standard deviations lead to the range of
values reported. For the transversely isotropic thermal expansion in Figs. 2.21 and 2.22,
the cell length in the plane of isotropy and nanotube directions were used to calculate
the linear coefficient of thermal expansion. For the thermal expansion of the equivalent
isotropic systems, seen in Fig. 2.25, volume data was used to calculate the linear coefficient
of thermal expansion. This leads to a smaller standard division than if the individual cell
lengths were multiplied and their variances combined. The magnitude of the standard
deviations show that the cumulative effects of the error due to averaging is small.

2.5.5 Experimental Comparison

Experimentally, it has been found that covalent functionalization of the SWNT to the epoxy
will increase the tensile modulus when compared to neat epoxy [17, 18]. Pristine nan-
otube and epoxy composite systems show a lesser improvement in mechanical properties
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than functionalized nanotubes due a lack of interfacial bonding across atomically smooth
carbon nanotube surfaces [12–14] Functionalization allows the load to be transferred to
the nanotube from the polymer matrix and prevent slipping between the nanotube and the
polymer [125]. It is important to note that the MD results shown here thus far represent a
material with a very high weight percentage of nanotubes (8 wt% SWNT) with perfectly
dispersed, continuous nanotubes due to periodic boundary conditions. Multiscale model-
ing will be used in Chapters 4 and 5 to reduce the wt%, or volume fraction of the SWNTs,
and discontinuous nanotubes will be investigated in Section 2.5.6. Studies have shown
that an increasingly large wt % of nanotubes continues to increases the modulus of poly-
mer/SWNT composites [13, 20, 70]. In particular, Zhu et. al saw a ∼30% increase with
1 wt% functionalized SWNT in a EPON 862 and Curing Agent W system, and a ∼70%
increase with 4 wt% SWNT [13]. Wang et. al showed an increase of 60% in the modulus
with just a 1 wt% nanotubes that are covalently functionalized [16]. It has been shown
at very high loading of non-covalently functionalized SWNTs, 20.5 wt% and 39.1 wt%,
tensile modulus increases by 166% and 408% respectively [38].

Pizzutto et.al. measured the thermal dilatation of .25 wt% carboxylated single-walled
carbon nanotubes without covalent functionalization. In the linear region of 25o C to 65o C,
the linear CTE was measured to be 62 µ/oC for the neat epoxy, and 44 µ/oC for the SWNT-
epoxy composite [37]. Adding in the SWNTs reduced the linear CTE by 29%. For the MD
simulation of the pristine SWNT-epoxy system, as seen in Fig. 2.25, the linear coefficient
of thermal expansion has decreased from 55.2 µ/oC for the neat epoxy to 39.1 µ/oC, a
similar reduction of 30%. Wang et al. studied functionalized SWNT-epoxy composites,
and in the linear region of 50o C to 120o C, saw reduction in thermal expansion from 60
µ/oC for pure epoxy to 40 µ/oC for oxidated SWNTs with covalent functionalization, a
reduction of 33% [35]. This is very similar to the 32% reduction seen for the functionalized
SWNT-epoxy composite in this study. A summary of experimental comparisons to the MD
results for thermal dilatation is shown in Fig. 2.26.
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2.5.6 Discontinuous SWNTs

When the SWNT spans the entire simulation cell, the use of periodic boundary conditions
leads to the creation of an essentially infinite nanotube, which is shown in Fig. 2.27a,
where two periodic cells are shown in the y and z directions. Realistically, the ends of the
nanotubes interact with the epoxy, and for this reason, nanotubes that do not span the entire
cell were also created using this same method, and the equilibrated structure in Fig. 2.27b
shows epoxy filling in the space between the periodic nanotubes. The elastic properties
of a few different discontinuous systems were studied. The nanotube that spans the entire
simulation cell contained 15 ’repeat units’, so nanotubes with only 11 and 13 ’repeat units’
were investigated. Pristine and functionalized SWNTs were investigated, and the resulting
transversely isotropic properties can be seen in Tables 2.4-2.7. It is clear from these results
that the reduction of the nanotube length leads to a massive reduction in stiffness along the
SWNT axis (z-direction). The effects of discontinous nanotubes on the elastic properties
will be further studied in Chapters 4 and 5.
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Discontinuous Nanotubes

(a) (b)

Figure 2.27: Two periodic cells are shown in the z-direction and y-direction to show nan-
otube spacing for a. SWNTs that span the entire cell that effectively become infinite and b.
discontinuous SWNTs that span 11/15 of the cell.

Temperature (K) Exx(GPa) Ezz(GPa) νxy νzx Gxz(GPa)

1 6.8 8.2 0.38 0.33 3.1

50 6.2 7.3 0.40 0.34 2.7

100 5.8 6.3 0.39 0.35 2.6

150 5.9 6.0 0.39 0.35 2.2

200 5.0 5.8 0.40 0.36 2.0

250 4.5 4.5 0.40 0.39 1.6

300 3.8 4.5 0.42 0.40 1.4

350 3.4 3.1 0.41 0.40 1.2

Table 2.4: Material properties: pristine SWNT-epoxy composite, 11 repeat units.
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Temperature (K) Exx(GPa) Ezz(GPa) νxy νzx Gxz(GPa)

1 6.7 8.2 0.37 0.33 3.1

50 6.1 7.3 0.41 0.35 2.6

100 5.8 6.4 0.41 0.36 2.5

150 5.3 6.1 0.40 0.34 2.2

200 4.8 5.7 0.41 0.36 2.0

250 4.5 4.7 0.41 0.38 1.6

300 3.8 4.2 0.47 0.39 1.4

350 3.3 3.5 0.48 0.37 1.3

Table 2.5: Material properties: pristine SWNT-epoxy composite, 13 repeat units.

Temperature (K) Exx(GPa) Ezz(GPa) νxy νzx Gxz(GPa)

1 8.1 7.5 0.30 0.34 3.3

50 7.0 6.6 0.35 0.34 3.0

100 6.5 6.3 0.32 0.35 2.8

150 5.4 5.8 0.33 0.35 2.6

200 5.0 4.8 0.35 0.37 2.4

250 4.5 4.1 0.38 0.36 2.0

300 3.7 3.7 0.41 0.38 1.6

350 3.4 3.2 0.41 0.36 1.4

Table 2.6: Material properties: functionalized SWNT-epoxy composite, 11 repeat units.

48



Temperature (K) Exx(GPa) Ezz(GPa) νxy νzx Gxz(GPa)

1 8.2 8.0 0.31 0.35 3.5

50 7.4 7.5 0.32 0.37 3.2

100 7.0 6.7 0.32 0.35 2.8

150 6.1 5.8 0.35 0.35 2.5

200 5.0 5.4 0.36 0.34 2.2

250 4.5 5.3 0.35 0.36 1.9

300 3.8 4.5 0.36 0.36 1.6

350 3.4 4.0 0.38 0.34 1.4

Table 2.7: Material properties: functionalized SWNT-epoxy composite, 13 repeat units.

2.6 Conclusions

Molecular Dynamics was used to analyze the thermal and mechanical properties of SWNT-
epoxy nanocomposites created by adding functionalized and pristine carbon nanotubes to
epoxy. The epoxy model was built using a ‘dendrimeric’ growth approach, which was veri-
fied by obtaining the correct density, showing the system to be isotropic, and by comparing
the thermal expansion to experiments. The change in the mechanical and thermal expan-
sion properties was studied along and perpendicular to the nanotube for both epoxy/SWNT
nanocomposites, and the full stiffness matrices and thermal expansion vectors were ob-
tained. As expected, there was a large increase in stiffness along the nanotube direction for
both the pristine SWNT-epoxy and functionalized SWNT-epoxy composites. The direction
transverse to the nanotube saw a 40% increase in stiffness due to covalent functionaliza-
tion over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase
due to van der Waals effects. The thermal expansion along the nanotube was significantly
decreased due to the negative coefficient of thermal expansion of a SWNT. An additional
42% reduction in thermal expansion in the direction of the nanotube was realized for the
covanently functionalized SWNT-epoxy composite when compared to the pristine SWNT-
epoxy composite. The thermal expansion transverse to the nanotube showed negligible
change compared to the neat epoxy for both nanocomposite systems. The stiffness matrices
and thermal expansion vectors were rotated over every possible configuration to simulate
the effects of an isotropic system consisting of randomly oriented nanotubes in the epoxy.
The equivalently isotropic nanocomposite systems showed substantial improvements over
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the neat epoxy in terms of higher stiffness (200% for the covalently functionalized SWNT-
epoxy composite) and lower thermal expansion (32% reduction for the covalently func-
tionalized SWNT-epoxy composite). The reduction in thermal expansion was verified by
comparison with experiments.
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CHAPTER 3

Thermal Conductivity

Despite their wide use in aerospace grade materials, epoxies are generally limited to low
temperature applications, and this is in part due to their low thermal conductivity of ∼.24
W/mK at room temperature [10]. It is of great interest to improve the heat conduction
in epoxies in order to remove excess heat, and boost reliability and performance. Carbon
nanotubes (CNTs) have very high thermal conductivity, with single wall carbon nanotubes
(SWNTs) having a thermal conductivity of 1750-5800 W/mK [8, 11] and high aspect ra-
tios. For this reason, SWNTs were investigated as an additive to improve the thermal
conductivity of the epoxy via the formation of functionalized and pristine SWNT/polymer
nanocomposites. Inefficient phonon transport between nanotubes at discontinuities (i.e.
the nanotube ends) is an important factor in the thermal conductivity of SWNT-epoxy
nanocomposites. For this reason, the discontinuous nanotubes outlined in Section 2.5.6 are
studied in addition to long SWNTs. The Green-Kubo integral of the heat flux autocorrela-
tion function was used via MD to model the full 3D thermal conductivity of SWNT-epoxy
nanocomposites.

3.1 Materials

The same epoxy and amine system described in Section 2.2 was used in this chapter;
diglycidyl ether of bisphenol A (DGEBA) crosslinked with curing agent 3-3’ diamino
diphenyl sulfone (DDS). The ‘dendrimer’ growth approach was used to build the epoxy
network in Materials Studio shown previously in Fig. 2.7. The network contained 36
amine groups and 71 epoxy groups, leading to a total of 4601 atoms. In Section 2.4, the
system was shown to be sufficiently complex to accurately capture the amorphous nature
of the polymer by matching the dilatometric curve to experimental results, matching the
experimental glass transition temperature, verifying the structure was isotropic by gener-
ating the full elastic stiffness matrix, and obtaining the proper density. All simulations in
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this Chapter are performed under periodic boundary conditions, and the Consistent Valence
Force Field (CVFF) [115] potential was used for bonded and non-bonded interactions in
LAMMPS [116]. CVFF has been used in previous studies to accurately predict thermody-
namic properties of epoxy [59, 60]. 75% of available epoxy sites were crosslinked, which
is realistic for many structural epoxies.

The structure was equilibrated via a sequence of energy minimization and annealing.
The dendrimer structure was optimized by minimizing the energy via conjugate gradient
(CG) minimization for 10000 iterations. Next, MD was used to anneal the structure using
an NPT ensemble. Dynamics was first performed well above glass transition temperature
(600 K and 1 atm) for 500 ps. Next, dynamics was run well below Tg (1 K and 1 atm)
for 500 ps, followed by CG. After ten cycles, the density converged to within 0.5% across
consecutive annealing steps. A density of 1.17 g/cc at 1 atm and 1 K was obtained after
convergence. SWNT-epoxy nanocomposites were built by creating a vacancy in the epoxy
by radially moving atoms outward and inserting a SWNT (4,4) into the space. Moving
atoms caused bonds to displaced from their equilibrated length, so it was necessary to
equilibrate the structure via the same annealing process ran previously via a sequence of
CG minimization and dynamics above and below Tg.

Functionalization of the SWNT-epoxy composites was achieved by creating a covalent
bond between the SWNT and the amine. The DDS molecule contains two amine groups,
one of which was bonded to the SWNT. As seen previously Fig. 2.12, the nanotube is
attached to the DDS, and the functional sites bond with the epoxide. Functional sites that
were previously unreacted were chosen to bond to the SWNT, so this method of function-
alization did not effect the epoxy’s degree of crosslinking. Again, bonds were displaced
from their equilibrium length so equilibration was performed via a sequence of the con-
jugate gradient (CG) minimization and annealing until the density was seen to converge.
The functionalized system contains four covalent bonds, and the equilibrated structure was
seen previously in Fig. 2.13. When the nanotube spans the entire cell, the use of periodic
boundary conditions leads to the creation of an infinite nanotube, shown in previously in
Fig. 2.27a, where two periodic cells are shown in the y and z directions. Realistically,
nanotubes are not infinite and so end effects are important. For this reason, nanotubes that
do not span the entire cell were also created using this same method, and the equilibrated
structure in Fig. 2.27b shows epoxy filling in the space between the periodic nanotubes.
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3.2 Green-Kubo Method for Predicting Thermal Conduc-
tivity

The Green-Kubo method is an equilibrium MD approach that calculates the thermal con-
ductivity (K) from the fluctuations of the heat current along a direction, Jx, via the fluctuation-
dissipation theorem [61, 126]. The thermal conductivity is given by:

K =
V

kBT 2

∫ ∞
0

〈Jx(t)Jx(0)〉dt, (3.1)

where V and T are the volume and temperature of the system respectively, and kB is the
Boltzmann constant. 〈Jx(t)Jx(0)〉 is the heat current auto correlation function (HCACF).

For an isotropic material, a scalar conductivity is obtained by averaging across all three
directions. For neat epoxy in the present study, the following formula is employed where
the factor of three in the denominator arises due to the averaging across the x, y, and z
directions:

K =
V

3kBT 2

∫ tc

0

〈J(t)J(0)〉tsdt. (3.2)

In the above expression, J is the heat current vector, tc stands for the finite correlation
time over which the integration is carried out, and ts is the sampling time for which the en-
semble average for computing HCACF is accumulated. Since the nanocomposite systems
are not isotropic, it is not possible to average over all three directions and so the thermal
conductivity is calculated for each direction individually.

The heat current vector is defined in a number of different ways [127]. It is most
commonly defined as:

J =
1

V

d

dt

N∑
i=1

riei, (3.3)

where, ri and ei are the position vector and total energy of atom i, respectively. The
summation is done over the total number of atoms in the system, N . The energy of atom i,
ei, is obtained by summing the potential energy (PE) and kinetic energy (KE):

ei =
1

2
mi‖vi‖2 + U i, (3.4)

where mi and vi are the mass and velocity of atom i, respectively. U i is the potential
energy of atom i. It is dependent on the form of interaction potential (including bonded
and non-bonded interactions) used in the simulations. In the CVFF potential, the total
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energy is computed as a sum of pair interactions (Upair), Coulombic interactions (Ucoulomb),
energies that accounts for changes in bond lengths (Ubond), bond angle (Uangle), dihedral
angle (Udihedral), and improper dihedral angle (Uimproper) in the following form:

U = Upair + Ucoulomb + Ubond + Uangle + Udihedral + Uimproper. (3.5)

The per-atom energy (U i) is computed by averaging the energy contributions and dis-
tributing an equal portion to each the atom the interaction set. For example, a quarter of the
dihedral energy is assigned to each of the four atoms in the dihedral term:

U i =

[
1

2

Np∑
n=1

Upair(r
i, r2) +

1

2

Nb∑
n=1

Ubond(r
i, r2) +

1

3

Na∑
n=1

Uangle(r
i, r2, r3)

]

+

[
1

4

Nd∑
n=1

Udihedral(r
i, r2, r3, r4) +

1

4

Ni∑
n=1

Uimproper(r
i, r2, r3, r4 +

1

2

Nc∑
n=1

Ucoulomb(r
i, r2)

]
.

(3.6)

The first term in the above expression is the pairwise energy contribution, where n goes
over the Np atoms neighboring atom i, and ri and r2 are the positions the two atoms in
the pairwise interaction. The second term is a bond contribution of similar form for the Nb

bonds containing atom i. The third, fourth, and fifth terms are expressions for theNa angle,
Nd dihedral, and Ni improper interactions, respectively, that atom i is part of. The sixth
term, Ucoulomb, is the contribution from long-range Coulombic interactions and are handled
differently using the standard or PPPM Ewald methods described in the next section.

Substituting Eq. 3.4 in Eq. 3.3 and differentiating with respect to time, the microscopic
heat current vector J is obtained as:

J(t) =
1

V

N∑
i=1

viei +
N∑
i=1

Si.vi. (3.7)

The first term is the diffusive part of the heat current which is caused by motion of atoms.
The second term is the interaction part of the heat current which represents the transfer of
energies due to interatomic interactions, where Si is the per atom stress tensor. For the
CVFF potential, Si is given by the following expression, where a and b iterate over the
values x, y , and z to generate the 6 components of the symmetric tensor:
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V Siab =

[
1

2

Np∑
n=1

(riaF
i
b + r2

aF
2
b) +

1

2

Nc∑
n=1

(riaF
i
b + r2

aF
2
b) +

1

2

Nb∑
n=1

(riaF
i
b + r2

aF
2
b)

]

+

[
1

3

Na∑
n=1

(riaF
i
b + r2

aF
2
b + r3

aF
3
b) +

1

4

Nd∑
n=1

(riaF
i
b + r2

aF
2
b + r3

aF
3
b + r4

aF
4
b)

]

+

[
1

4

Ni∑
n=1

(riaF
i
b + r2

aF
2
b + r3

aF
3
b + r4

aF
4
b)

]
. (3.8)

In the first three terms, F i and F 2 are the forces resulting from two atoms interacting.
Similarly, there are forces due to the angle, dihedral, and improper interactions of atom
i. The above stress tensor contains only the virial terms and does not include the kinetic
energy contribution.

3.2.1 Computation of Long Range Coulombic Interactions

In crosslinked polymers, there are long range interatomic interactions due to electrostatic
forces between partial charges on atoms. In this case, the energy contribution per atom
required for the computation of the heat current vector is more conveniently calculated
on a periodic domain using the standard or mesh-based PPPM Ewald methods. In these
methods, a ’real-space’ component of electrostatic energy is computed within a small cut–
off distance, beyond which the slow decay is modeled using the ’k-space’ or ’reciprocal’
part, which decays with the inverse distance. The Ewald expression for potential energy
Ucoulomb and its contribution to the stress tensor are computed in this section. In the Ewald
approach, the electrostatic potential energy of a neutral distribution of N atoms with point
charges qi can be written as [128]:

4πε0Ucoulomb =
1

2

N∑
i=1

N∑
j=1
j 6=i

qiqj
rij

=
1

2

N∑
i=1

N∑
j=1
j 6=i

qiqj
rij

erfc(κrij) +
2π

V

∑
k 6=0

exp(k2/4κ2)

k2

N∑
i=1

N∑
j=1
j 6=i

qiqj exp(ik.rij).

(3.9)

In Eq. 3.9, ε0 is the electric permittivity of free space, and rij = |rj − ri| is the distance
between charges i and j. The complimentary error function of the distance, erfc(κrij)
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is multiplied by a convergence factor κ, and the second term on the right-hand side is the
Fourier expansion of the difference between the first term and the full electrostatic potential
energy. The Fourier expansion in terms of wave vectors kα = 2πnα

L
(α = x,y,z) is used

where L is the periodic box size. The k-space part of the electrostatic potential energy and
the stress tensor, in addition to a sum over wave vectors k, contains double sums over all
pairs of atoms i, j; i 6= j. Observing that rij = rj − ri, this double sum can be written as
a single sum over N charges which speeds up the computation N -fold [129]:

N∑
i=1

N∑
j=1
j 6=i

qiqj exp(ik.rij) =
N∑
i=1

qi exp(ik.ri)
N∑
j=1

qj exp(−ik.rj)−
N∑
i=1

(qi)
2

= Θ(k)Θ(−k)−
N∑
i=1

(qi)
2. (3.10)

Here, S(k) is the structure factor given as Θ(k) =
∑N

i=1 qi exp(ik.ri). The sum of the
squared charges is subtracted because the first term on the right-hand side contains the self–
interaction term with i = j. With the use of the transformation Eq. 3.10, the expression for
the electrostatic potential energy is:

4πε0Ucoulomb =
1

2

N∑
i=1

N∑
j=1
j 6=i

qiqj
rij

erfc(κrij)−
κ

π1/2

N∑
i=1

(qi)
2 +

2π

V

∑
k 6=0

exp(k2/4κ2)

k2
Θ(k)Θ(−k).

(3.11)

The subtracted term ( κ
π1/2 )

∑N
i=1(qi)

2, corresponding to i=j, is the contribution due to self-
interaction. The per atom version of the potential energy contribution is calculated using a
per atom structure factor Θi(k), defined as Θi(k) = qi exp(ik.ri), as follows:

4πε0(U i)coulomb =
1

2

N∑
j=1
j 6=i

qiqj
rij

erfc(κrij)−
κ

π1/2
(qi)

2 +
2π

V

∑
k 6=0

exp(k2/4κ2)

k2
Θi(k)Θ(−k).

(3.12)

The elements of the Coulombic part of the stress tensor are obtained by the differentiation
of Eq. 3.11 with respect to components of rij . The resulting electrostatic part of the stress
tensor (Sab)coulomb is given as follows, where a and b take on values x ,y, and z to generate
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the 6 components of the symmetric tensor [130]:

4πε0V (Sab)coulomb =
1

2
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ij
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]
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(
1
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1
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)
kakb

]
Θ(k)Θ(−k),

(3.13)

where δαβ is the Kronecker symbol. The per atom stress tensor is computed using the per
atom structure factor as:

4πε0V (Sab)
i
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2
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rijarijb
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2
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[
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]
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k 6=0

exp(k2/4κ2)

k2

[
δab − 2

(
1

k2
+

1

4κ2

)
kakb

]
Θi(k)Θ(−k).

(3.14)

The PPPM solver employs the same approach as the standard Ewald approach described
above except that atomic charges are mapped to a 3D mesh and fast Fourier transforms
(FFTs) are used to compute the structure factors, and is more accurate [131].

3.3 Results

3.3.1 Sampling and Correlation Times

A preliminary convergence study was done using a Lennard-Jones/Coulomb interaction
cutoff of 12.5 Å to find the necessary sampling and correlation times. The structures were
equilibrated at the temperature being studied for 0.5 ns, followed by further equilibration
and collection of heat current data used for calculation of the autocorrelation function. A
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correlation time of 8 ps was initially used, and the sampling interval was taken as the size
of the time step (1 fs). Convergence of the HCACF at 298K and 1 atm for neat epoxy
at various sampling times is shown in Fig. 3.1. Sampling times longer than 0.8 ns were
carried out but showed no significant further convergence of the HCACF. Fig. 3.1b shows
a zoomed in section of Fig. 3.1a, and here it can be seen that the variation in the HCACF is
very small at 0.8 ns for neat epoxy. The effect of temperature on the HCACF convergence
for a sampling time of 0.8 ns is shown in Fig. 3.2a. Even at higher temperatures, such
as 423 K, good convergence of the HCACF was seen. Fig. 3.2b shows the convergence
error for the HCACF by comparing the value at the current sampling time with the HCACF
value at a sampling time of 0.1 ns. As the time step exceeds 0.8 ns, the error flattens
out and the HCACF converges. Fig. 3.1 and Fig. 3.2 show that a correlation time of
8 ps and a sampling time of 0.8 ns are sufficient for convergence of the HCACF in the
temperature range of interest for neat epoxy. For the pristine and functionalized SWNT-
epoxy nanocomposites, a correlation time of 16 ps is used because the HCACF did not
show sufficient convergence for a correlation time of 8 ps. Convergence of the HCACF for
the pristine SWNT-epoxy nanocomposite and functionalized SWNT-epoxy nanocomposite
are shown in Fig. 3.3 and Fig. 3.4, respectively. Here, sampling times of 0.032 ns to 1.6
ns are compared. Convergence is seen to occur by 1.6 ns in Fig. 3.3b and Fig. 3.4b for
the pristine SWNT-epoxy nanocomposite and functionalized SWNT-epoxy nanocomposite,
respectively. This convergence study allowed the necessary correlation and sampling times
to be determined for the various systems investigated.

Figure 3.1: a. HCACF for neat epoxy at T = 298K, P = 1 atm at different sampling times.
b. Zoomed HCACF for neat epoxy at T= 298K, P = 1 atm to show convergence
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Figure 3.2: a. Zoomed in HCACF of neat epoxy for sampling time of 0.8 ns at various
temperatures and P = 1 atm. b. Convergence of HCACF at various temperatures and P = 1
atm.

Figure 3.3: a. HCACF of pristine SWNT-epoxy nanocomposite at T= 298K, P = 1 atm. b.
Zoomed HCACF of pristine SWNT-epoxy nanocomposite at T= 298K, P = 1 atm to show
convergence.
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Figure 3.4: a. HCACF of functionalized SWNT-epoxy nanocomposite at T= 298K, P = 1
atm. b. zoomed HCACF of functionalized SWNT-epoxy nanocomposite at T= 298K, P =
1 atm to show convergence.

3.3.2 Thermal Conductivity of Epoxy

Thermal conductivity for the epoxy as a function of temperature with and without long
range corrections is shown in Fig. 3.5. The data labeled ’No Long Range Correction’ was a
real–space algorithm and therefore did not include any long range Coulombic interactions.
The red line, labeled ’With Long Range Correction’ included the ’k-space’ component
electrostatic energy. The free parameters such as the grid size, and convergence accelera-
tion factor are determined by specifying an accuracy value [132]. Here, an accuracy value
was taken as 10−4, meaning the error will be 1/10000 of the force two unit point charges
with a 1 Å separation exert on one other. Due to oscillations in the thermal conductivity
results, all the reported values of thermal conductivity were averaged over 0.2 ns. Both
measures of thermal conductivity, with and without long-range electrostatic forces have
virtually identical slopes. However, at room temperature the PPPM method matches the
experimental value of epoxy, while the LJ–cutoff overestimates it by approximately 50%.
Fig. 3.6a shows the convergence of thermal conductivity to 0.24 W/mK for a PPPM simu-
lation, which is in excellent agreement with experimental values for DGEBA-based epoxy
at room temperature [10, 59, 60]. Sampling times as long as 3.2 ns have been investigated,
but due to the numerical integration of the HCACF in the thermal conductivity calculation,
there will be a steady drift after convergence. This is shown in Fig. 3.6b, where conver-
gence occurred between 0.8 ns and 1.4 ns. As the sample time moves past the converged
region, the thermal conductivity is seen to steadily drift upwards away from the converged
value.
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Figure 3.5: Thermal conductivity for neat epoxy with and without long range electrostatic
interactions for various temperatures at P=1 atm.

(a)                                                                                      (b) 

Figure 3.6: a. Convergence of the thermal conductivity at T= 298K, P = 1 atm. b. Drift
in thermal conductivity at T= 298K, P = 1 atm due to numerical integration of HCACF at
larger sampling times.

3.3.3 Thermal Conductivity of Nanocomposites

Fig. 3.5 shows the necessity of including long range interactions; and how they allow
the thermal conductivity to accurately capture experimental values. The PPPM method
was used to calculate the thermal conductivity of pristine and functionalized SWNT-epoxy
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nanocomposites. The first system investigated was an isolated SWNT that spanned the
entire simulation cell. The thermal conductivity of a nanotube of length 36.89 Å with
the application of periodic boundary conditions making the SWNT effectively infinite is
shown in Fig. 3.7. As expected, the nanotube shows decreasing thermal conductivity
with increasing temperature [133]. Compared to many studies, the thermal conductivity
of the nanotube along the nanotube length is significantly lesser [8, 11]. It has been seen
previously that there is a length dependence in the thermal conductivity of nanotubes even
with periodic boundary conditions [134]. Longer nanotubes allow additional modes with
smaller wave vectors. Smaller wave vectors are longer lived than the higher frequency
modes due to a lower probability of Umklapp scattering, and generally have higher group
velocities, leading to an increased thermal conductivity [134].
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Figure 3.7: Thermal conductivity for a SWNT of length 36.89 Å with periodic boundary
conditions applied for various temperatures at P = 1 atm.

The thermal conductivity in the plane perpendicular to the nanotube (x-y) for both the
pristine and functionalized nanocomposites systems, compared with neat epoxy is shown
in Fig. 3.8. The pristine SWNT-epoxy nanocomposite’s thermal conductivity does not
show much variation with temperature, and is reduced by 27% at room temperature in the
x-y plane when compared to isotropic neat epoxy. This reduction is due to there being less
degrees of freedom per unit volume available for heat transport, since this occurs predomi-
nately in the polymer and is therefore hindered by the inclusion of the nanotube [66]. The
van der Waal forces are inefficient in thermal transport across the SWNT-epoxy interface,
and most of the heat flux occurs in the polymer because heat transfer is slow through the
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hallow tube. The thermal conductivity of the functionalized SWNT-epoxy system shows a
stronger temperature dependence, and is greater than that of neat epoxy over the entire tem-
perature range, with a 64% improvement at room temperature. The increase in the thermal
conductance in the interface direction is due to an improved thermal coupling between the
SWNT and the epoxy. The creation of sp3 hybridization defects in functionalization creates
scattering sites for phonons along the SWNT, allowing energy to be transferred from the
epoxy to the SWNT.
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Figure 3.8: Thermal conductivity in the directions perpendicular the nanotube axis (x-y
plane) for functionalized and pristine SWNT-epoxy nanocomposites compared with neat
epoxy.

The thermal conductivity parallel to the nanotube (z-direction) for the pristine SWNT-
epoxy and functionalized SWNT-epoxy nanocomposites are shown in Fig. 3.9 and Fig.
3.10. Fig. 3.9 shows very large improvements along the nanotube direction for the pris-
tine SWNT-epoxy system over neat epoxy, much more so than the functionalized system.
The pristine SWNT-epoxy system demonstrates a thermal conductivity along the SWNT
direction equivalent to that of an isolated nanotube, as demonstrated above in Fig. 3.7. The
functionalized SWNT-epoxy system showed significant improvement (∼700%) over neat
epoxy in the nanotube direction, as seen in Fig. 3.10, but a whole order magnitude lesser
than that of the pristine SWNT-epoxy system. Experimenents and simulations have shown
that the defects to the nanotube introduced by functionalization decrease the inherent tube
thermal conductivity, since they act as scattering points for thermal energy. [62, 70]. For
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this reason, it is clear that in regards to overall system thermal conductivity there is a trade-
off between the greater improvements along the nanotube direction for the pristine SWNT
system, and the improvements perpendicular to the SWNT for the functionalized SWNT
system. Shenongin et. al proposed that functionalization is only useful for SWNT-epoxy
composites containing shorter aspect ratio nanotubes, because reduction in tube conduc-
tance is greater in higher aspect ratio SWNTs. [62]

220 240 260 280 300 320 340 360 380 400 420

Temperature (K)

0

5

10

15

20

25

30

35

40

45

50

T
he

rm
al

 C
on

du
ct

iv
ity

 (
W

/m
K

)

Pristine Nanotubes
Functionalized Nanotubes

Figure 3.9: Thermal conductivity along the nanotube axis (z-direction) for the pristine
SWNT-epoxy nanocomposites compared to functionalized nanocomposite
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Figure 3.10: Thermal conductivity along the nanotube axis (z-direction) for the function-
alized SWNT-epoxy nanocomposite compared to neat epoxy.

As discussed previously, experimental data has not matched the improvements pre-
dicted by simulations, with the likely limitation being inefficient phonon transport between
nanotubes. In realistic systems, nanotube ends act as phonon scattering sites, and so discon-
tinuous nanotubes were modeled in this study. This was done by creating nanotubes that did
not span the entire simulation cell length. Periodic boundary conditions were still applied,
but there is epoxy in-between the nanotubes as shown earlier in Fig. 2.27b. SWNTs of that
span 11/15 of the simulation cell, and 13/15 of the simulation cell were considered. While
these are very short SWNTs, they allowed the end effects to be investigated as desired. The
results for the short nanotubes compared to the infinite systems and neat epoxy, perpendic-
ular to the nanotube axis (x-y plane), and along the nanotube axis (z-direction) in the tem-
perature range of 248-348 K are shown in Fig. 3.11 and Fig. 3.12, respectively. From Fig.
3.11, it is seen that the discontinuous functionalized nanotubes have only a slight reduction
in thermal conductivity when compared to the infinite, functionalized SWNT-epoxy sys-
tem, and the nanotubes spanning 11/15 and 13/15 of the cell show an improvement of 42%
over neat epoxy. The discontinuous SWNT-epoxy systems display higher thermal conduc-
tivity compared to the infinite system, and both discontinuous systems are approximately
equal to the thermal conductivity of isotropic neat epoxy. This further illustrates that heat
transfer to the epoxy perpendicular to the pristine nanotube was poor, and the discontinuous
nanotubes allow a larger path, and more epoxy per unit volume for the heat flux to travel
around the nanotube. The results along the nanotube axis in Fig. 3.12 show that for the
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discontinuous nanotubes there is great improvement over neat epoxy, 103% and 115% for
the 11/15 and 13/15 cell length pristine SWNT-epoxy systems, and 91% and 103% for the
11/15 and 13/15 cell length functionalized SWNT-epoxy systems. However, gains in ther-
mal conductivity are significantly less than that of the infinite, functionalized SWNT-epoxy
system. The infinite pristine SWNT-epoxy system is not shown because it yet another order
of magnitude greater. This shows that including SWNT end effects drastically lowers the
prediction of the thermal conductivity of the SWNT-epoxy nanocomposites. It is further
demonstrated that there is a trade-off between the greater improvements along the nanotube
direction for the pristine SWNT system, and the improvements perpendicular to the SWNT
for the functionalized SWNT system, towards the overall system thermal conductivity.
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Figure 3.11: Thermal conductivity in the temperature range of 248-348 K in the direc-
tions perpendicular to the nanotube axis for the various short and infinite SWNT-epoxy
nanocomposites studied.
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Figure 3.12: Thermal conductivity in the temperature range of 248-348 K along the nan-
otube axis for the various short and infinite SWNT-epoxy nanocomposites studied. Epoxy-
Pristine SWNT (infinite) is omitted since its average value is 38.6 W/mK in this temperature
range.

3.3.4 Equivalent Isotropic Results

To simulate an equivalent isotropic system consisting of randomly oriented nanotubes, the
thermal conductivity tensors are rotated and averaged over every possible orientation ac-
counting for symmetry using the ODF method described later in Section 4.2.1, and the
results are shown in Fig. 3.13 for the various nanocomposites. It is highlighted here that
for the discontinuous SWNTs, the functionalized system showed a greater improvement in
thermal conductivity. The improvements along the nanotube axis are essentially equiva-
lent for the discontinuous pristine and functionalized SWNT-epoxy systems, so the thermal
conductivity perpendicular to the SWNT axis being significantly improved by functional-
ization makes that system superior. However, for the infinite systems, the pristine SWNT-
epoxy composite showed much greater improvement, with an equivalent isotropic thermal
conductivity of 13 W/mK. For the long nanotubes, there was a huge reduction in inherent
tube conductivity via functionalization. It is expected that the end effects will be of lesser
importance for long nanotubes that extend beyond the length of the phonon mean free path,
and so inclusion of these effects in the long nanotubes studied is of less importance. This
suggests a certain length where the optimum improvement in thermal conductivity transi-
tions from functionalized to pristine SWNTs.
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Figure 3.13: Thermal conductivity of an equivalent isotropic systems created by rotating
thermal conductivity tensor over all possible orientations. Epoxy-Pristine SWNT (infinite)
is omitted since its equivalent isotropic thermal conductivity is 13 W/mK.

3.3.5 Experimental Comparisons

Calculating the equivalent isotropic systems allows a comparison to be done with exper-
iments, since the majority of work has been done with randomly oriented SWNTs. Fig.
3.14 shows the MD results for discontinuous SWNT-epoxy composites at the two different
mass fractions compared with experimental data at various mass fractions. [72]. The curve
shown is from the effective medium theory fit to the experimental data. Both sets of data
were normalized by the value of neat epoxy. The discontinuous nanotubes that span 11/15
and 13/15 of the simulation cell account for mass fractions of 0.06 and 0.07 respectively.
The trend shown by increasing the mass faction is in excellent agreement with the exper-
imental data. This confirms that modeling the end effects of the SWNTs is essential to
obtaining a realistic prediction of thermal conductivity.
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Figure 3.14: Experimental comparison of discontinuous, pristine SWNT-epoxy composite
results at a given mass fraction [72].

The MD data points in Fig. 3.14 can be expanded over a larger range of mass fractions
by combining the ODF model with the parallel (Voigt) and series (Reuss) rule of mixtures,
which again will be discussed in much more detail in Section 4.2.1. This was done in Fig.
3.15 for the pristine, discontinuous nanotubes for the parallel model in green and the series
model in red. The rule of mixtures results were calculated for each of the two MD points
using both models, and those results were averaged and plotted along with the normalized
experimental data points from [72]. The figure shows that the multiscale ODF model can
allow the MD calculations, which are very limited in the range of possible mass fractions,
to be inexpensively extrapolated over a wide range of mass fractions that match up well
with experimental results.
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Figure 3.15: ODF parallel and series models of discontinuous, pristine SWNT-epoxy com-
posite results based on the MD results, compared to experimental results at a given mass
fraction [72].

3.4 Conclusions

The thermal conductivity of crosslinked epoxy and SWNT-epoxy nanocomposites was in-
vestigated using MD via the Green-Kubo integral of the heat current auto correlation func-
tion. The epoxy network was built using the dendrimer growth approach, and the inclusion
of long-range Coulombic interactions via a ’k–space’ component of electrostatic energy
allows the thermal conductivity to match the experimental value of .24 W/mK at room
temperature. The use of non-equilibrium methods and periodic boundary conditions had
limited many previous studies to calculating interface thermal conductance. In this study,
thermal conductivity was calculated in the plane perpendicular to the nanotube, as well
as along the nanotube direction. For the pristine, long SWNT-epoxy system, the thermal
conductivity along the nanotube direction is equivalent to that of an isolated SWNT, but
in the plane perpendicular to the nanotube there is a reduction of 27% when compared
to neat epoxy. The functionalized, long SWNT-epoxy system showed a very large in-
crease along the nanotube axis (∼700%), though it is an order of magnitude less than that
displayed by the pristine SWNT-epoxy system. The plane perpendicular to the nanotube
shows a 64% improvement in thermal conductivity at room temperature when compared
to neat epoxy. Inefficient phonon transport between nanotubes at the ends is an impor-
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tant factor in the thermal conductivity of SWNT-epoxy nanocomposites, and for this rea-
son discontinuous nanotubes were investigated. The discontinuous nanotubes showed a
large improvement over neat epoxy along the nanotube axis: 103%–115% for the pristine
SWNT-epoxy, and 91%–103% for the functionalized SWNT-epoxy systems. The discon-
tinuous, functionalized systems also showed a 42% improvement in the plane perpendicular
to the nanotube walls, while the discontinuous, pristine SWNT-epoxy systems display no
improvement over epoxy. The thermal conductivity tensor was rotated over all possible
orientations to allow for experimental comparison, and the results are in excellent agree-
ment for the discontinuous, pristine SWNT-epoxy nanocomposite. For the short nanotubes
investigated, functionalization provides greater improvement in overall composite conduc-
tivity than pristine nanotubes. For the long nanotubes investigated, the massive increase in
the thermal conductivity along the tube boosted composite conductivity much greater than
the added improvements in the plane perpendicular to the nanotube due to functionaliza-
tion when considering deterioration of the inherent tube conductivity. These simulations
demonstrate there is a SWNT length threshold where the best improvement for a composite
system with randomly oriented nanotubes would transition from functionalized SWNTs to
pristine SWNTs.
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CHAPTER 4

Multiscale Modeling of Nanocomposites

Molecular Dynamics has a well-known length scale problem, with the dimension of each
side of the MD lattice described in Chapter 2 being ∼40 Å. Even with periodic boundary
conditions, ways to upscale the simulations to better compare with continuum results are
desired. To this achieve this, multiscale modeling was considered to give better control over
the volume fraction of SWNT, and allow the effects of nanotube alignment to be studied.
Two methods were used: a finine element based method, and an ODF based method. For
the Finite Element method, which is described in more detail in Section 4.1, elements
were probabilistically assigned elastic properties from the MD lattice results based on the
desired volume fraction and alignment of the nanotubes. NIST code NISTIR 6269 was
used to run the Finite Element analysis [135]. For the ODF method, described in detail in
Section 4.2, an orientation distribution function was generated for the desired amount of
nanotube alignment, and the stiffness matrix was calculated. To vary the volume fraction
of nanotubes, a rules of mixture approaches was implemented.

4.1 FEM Multiscale Method

4.1.1 Overview of the Finite Element Method

The Finite Element method is formulated using a variational method which requires a func-
tional, which is an integral expression implicitly containing the governing differential equa-
tion, to exist for the problem being solved. This integral expression is often referred to as
the weak form of a differential equation, while the governing differential equations with the
boundary conditions is considered the strong from. The strong form requires that its con-
ditions are true at every point, while the weak form only requires that these conditions are
satisfied in an average sense [136]. The Finite Element method is based on an approximate
version of the weak form of the governing differential equation plus boundary conditions.
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Described below is an energy approach for elastic problems to derive the Finite Element
governing equations [136, 137]. To do this, the principle of stationary potential energy
is applied to the functional for potential energy, Πp. The principle of stationary potential
energy dictates that at equilibrium, the potential energy is minimized: dΠp = 0.

First, a functional for the potential energy for an elastic body is needed in order to carry
out the Finite Element method. The total potential energy is a combination of the strain
energy from the elastically deformed body, U , and energy of the applied loads, Ω:

Πp = U + Ω. (4.1)

The total strain energy for an elastic body is found by integrating the strain energy density,
written here in the absence of initial stresses and strains, over the volume of the material:

U =
1

2

∫
{σ}T{ε}dV =

1

2

∫
{ε}T [E]{ε}dV, (4.2)

where {ε} = {εx εy εz γxy γyz γxz} is an array of strains, and [E] is the 6x6 the constitutive
matrix that relates stress, {σ} to strain {ε}.

The applied loads, or work potential, can be written as:

Ω = −
∫
{u}T{F}dV −

∫
{u}T{T}dS +

∑
i

{ui}T{Pi}, (4.3)

where {u} is the displacement vector, {F} represents the body forces, and the term contain-
ing it is integrated over the volume. {T} represents the surface traction, and is integrated
over the surface the traction is applied. The last term, {ui}T{Pi} is due to point loads
applied at point i, and so {ui} is the displacement at that point. For the Finite Element
formulation, it will be assumed these loads are applied at nodes, where {di} is the dis-
placement vector of node i. Eqs. 4.2 and 4.3 are general expressions for an elastic body,
and this domain is discretized into finite elements with specified degrees of freedom. The
global potential energy is then a summation of energies of all the elements, e:

Πp =
∑
e

1

2

∫
Ve

{ε}T [E]{ε}dV−
∑
e

∫
Ve

{u}T{f}dV−
∑
e

∫
Ae

{u}T{T}dA+
∑
i

{di}T{Pi}.

(4.4)
In a typical problem solved using Finite Elements, there are numerous degrees of

freedom, Di, and our potential energy is a function of these degrees of freedom, Πp =

Πp(D1, D2, ..., Dn). Applying the principle of stationary potential energy yields:
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dΠp =
∂Πp

∂D1

dD1 +
∂Πp

∂D2

dD2 + ...+
∂Πp

∂Dn

dDn = 0. (4.5)

For any zero or nonzero value of dD1, dD2, dDn, then dΠp = 0 for the principle of
stationary energy to hold, and so it is required that all ∂Πp

∂Di
must go to zero, and so for

i = 1, 2, .., n:

∂Πp

∂Di

= 0 (4.6)

.
In the Finite Element method, Eq. 4.6 is solved for the various degrees of freedom,

which are determined by the type of finite element chosen. Hexahedron elements, or
”brick” elements are used in this formulation, and can be seen in Fig. 4.1. This element
contains three degrees of freedom for every node: x-displacement (u), y-displacement (v),
and z-displacement (w). The origin of the element is in the bottom left corner, giving u, v
and w a range of 0 to 1. This is different than the usual convention, where formulations in
natural coordinates typically have ξ, η, and ζ range from -1 to 1 [137,138]. The 3D location
of each node inside a specific element can be seen in Table 4.1, where the node numbers
correspond to Fig. 4.1. With the given coordinates, the eight shape functions obtained for
the hexahedron element are:

N1 = (1− x)(1− y)(1− z)

N2 = x(1− y)(1− z)

N3 = xy(1− z)

N4 = (1− x)y(1− z)

N5 = (1− x)(1− y)z

N6 = x(1− y)z

N7 = xyz

N8 = (1− x)yz.

(4.7)

The hexahedron elements are sometimes referred to as ”trilinear” elements, since the shape
functions consists of the product of three linear functions. The displacements are deter-
mined at the nodes, and are interpolated linearly over the element using the shape func-
tions:

{u} = [N]{d}, (4.8)
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where {u} is the displacements interpolated over an element, [N] is a matrix of the shape
functions from Eq. 4.7, and {d} is a vector of the nodal displacements. For the hexahedron
element, expanding Eq. 4.8 yields:


u

v

w

 =

 N1 0 0 N2 0 0 N3 0 0 ...
0 N1 0 0 N2 0 0 N3 0 ...
0 0 N1 0 0 N2 0 0 N3 ...





u1

v1

w1

u2

v2

w2

...
w8



. (4.9)
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Figure 4.1: Hexagonal element with node labeling.
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Node Number u v w

1 0 0 0

2 1 0 0

3 1 1 0

4 0 1 0

5 0 0 1

6 1 0 1

7 1 1 1

8 0 1 1

Table 4.1: The location of each node in 3D for a given element, where the node numbers
correspond to Fig. 4.1.

Ultimately, strain is needed for Eq. 4.2, and this can be obtained using the shape func-
tions for individual elements and the vector of the nodal displacements, {d} via the strain-
displacement matrix, [B]:

{ε} = [∂][N]{d} = [B]{d}. (4.10)

From Eq. 4.10, where [N] is the matrix of shape functions shown in Eq. 4.8, and [∂] in 3D
is given as:

[∂] =



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x


. (4.11)

From the strain-displacement matrix and the constitutive matrix, [E], the stiffness matrix
for a single element is defined as:

[ke] =

∫
Ve

[B]T [E][B]dV. (4.12)

In the FE routine applied here, the integral to calculate stiffness matrix is evaluated using
Simpson’s rule. No term integrated is higher than quadratic in x, y, or z, and therefore
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applying Simpson’s rule gives an exact solution. It is now possible to write the strain
energy, previously formulated in Eq. 4.4, in terms of the stiffness matrix and the nodal
displacements:

Ue =
1

2
{d}T [ke]{d}. (4.13)

With the expression for Ue in Eq. 4.13, the strain energy for a single element is known, and
can be summed to give the global strain energy, U . This, combined with the nodal values
of the applied loads, Ω, will yield the global potential energy. Shape functions are used to
distribute the body forces into elemental body forces, fe, and surface forces into elemental
traction forces, Te, from Eq. 4.4 to obtain:∫

Ve

{u}T{f}dV = {d}T{fe} (4.14)

∫
Ae

{u}T{T}dA = {d}T{Te}. (4.15)

In order to link the local energy to the global energy, a global number scheme is used
for every node in the mesh. Every node is part of eight different elements, and is given a
global number according to the following [135]:

m = nx · ny · (k − 1) + nx · (j − 1) + i, (4.16)

where nx, ny, and nz are the total number of nodes in the x, y and z directions respectively.
The global location of the node is represented by i, j and k. For an example of a single
element, the node labeled ”3” in Fig. 4.1 would have i = 1, j = 1, k = 0. The range of i
will therefore go from 0 to nx with intervals of 1, and similarly j and k will go to ny and
nz, respectively.

From Eq. 4.16, every node will have a global value, and it is possible to keep track of
nodes with respect to their surrounding elements. The elemental matrix values ke, fe, Te

can be assembled using the global numbering scheme to obtain the global potential energy,
Πp:

Πp =
1

2
{D}T [K]{D} − {D}T{F}, (4.17)

where [K] is the global stiffness matrix assembled from all the elemental stiffness matrices,
and {D} is the global displacement vector. {F} is the global force vector obtained by
combining and assembling the elemental body force terms, traction terms, and applying
the point forces at the proper location of the force vector.
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4.1.2 Finite Element Periodic Boundary Conditions

Periodic boundary conditions are enforced within the global force term, {F}. The displace-
ment field for the periodic structure can be written as [139]:

D = ε̄x + D∗, (4.18)

where ε̄ is the global strain tensor of the periodic structure, and so ε̄x is a displacement
field. As usual, D is nodal displacements, and D∗ is a periodic function between repeated
units cells. Using this, the displacement of any boundary nodes on two opposite sides of a
repeated cell can be written as:

D+
j = ε̄x+

j + D∗j (4.19)

D−j = ε̄x−j + D∗j , (4.20)

where the subscript j indicates a matching pair of boundary nodes. The difference between
the two equations yields the periodic boundary condition, where j will be iterated over of
all pairs of matching nodes along a boundary:

D+
j − D−j = ε̄(x+

j − x−j ). (4.21)

In order to enforce this condition, a number of methods are commonly used such as the
elimination method, Lagrange multiplier method, and penalty method [139–141]. The
elimination method was used here, which reduces the number of unknowns in the system,
and works by replicating the nodal displacements on one boundary to the corresponding
opposite boundary:

D+
j = D−j + ε̄(x+

j − x−j ). (4.22)

The condition in Eq. 4.22 is to be enforced on the boundary nodes, and this is done by
first breaking the displacement vector into parts for the internal nodes and boundary nodes:

D =

 Dn

Db
+

Db
−

 , (4.23)

where the subscript n designates internal displacements not subjected to these boundary
conditions. The superscript b designates a boundary node, while the subscripts + and −
are used to specify a positive or negative node displacement. This can be used to break up
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Eq. 4.17 into:

Πp =
[

Dn Db
+ Db

−

] Knn Kn+ Kn−

K+n K++ K+−

K−n K−+ K−−


 Dn

Db
+

Db
−

−[ Dint D+
i D+

i

] Fn
Fb+
Fb−

 .
(4.24)

Next, applying Eq. 4.6 for equilibrium, and substituting Eq. 4.22 to enforce the boundary
condition, given in the current labeling system as Db

+ = Db
− + ε̄(xb+ − xb−):

[
Knn Kn+ + Kn−

K+n + K−n K++ + K+− + K−+ + K−−

][
Dn

Db
−

]

−

[
Fn - Kn+

(
Db
− + ε̄ (xb+ - xb−)

)
Fb+ + Fb− - (K++ + K−+)

(
Db
− + ε̄ (xb+ - xb−)

) ] = 0. (4.25)

Clearly, the reduction method gets its name from the fact it reduces the number of un-
knowns to be solved in the system. This can be written in a more shorthand notation as:

[K∗]{Q∗} = {F∗}, (4.26)

where [K∗], {Q∗}, {F∗} are the modified stiffness matrix, displacement vector and force
vector, respectively. The modified stiffness matrix is non-singular. For all of the boundary
nodes, the nodal displacements are substituted from the negative boundary to the positive
boundary. This reduces the size of the stiffness matrix, displacement vector, and force
vector; where the force vector includes the terms to enforce the boundary condition.

4.1.3 Minimization

The conjugate gradient method was used to minimize Eq. 4.17 [136, 142]. Conjugate
gradient is used solve [A] {x} ={b}, and can be used to minimize an equation of the form
of Eq. 4.17:

f(x) =
1

2
{x}T [A]{x} − {x}T{b}, (4.27)

where as f(x) gets smaller, the value of x that will minimize the equation is approached.
The gradient of Eq. 4.27 is:
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{g} = [A]{x} − {b} (4.28)

So, the residual, {r}, is equal to the negative of the gradient and represents the direction of
steepest descent for a given value of {x}. Search directions, {p}, that are conjugate to one
another and close to directions of steepest descent are used. The constraint of conjugate
search directions means that {p}Tm[A]{p}n = 0 when m 6= n. The next position, xi+1, will
be given based on the current position, xi, as:

{x}i+1 = {x}i + αi{p}i where αi =
{r}Ti {r}i
{p}Ti [A]{p}i

. (4.29)

The iteration stops when {x} is close enough to the actual value such that there is no
significant further relaxation of stresses within an element.

4.1.4 Multiscale Model

We use the Finite Element method in conjunction with Molecular Dynamics to create a
multiscale model. One of the primary benefits of this method is that it allows the vol%
or wt% of the SWNTs to be controlled, and generate much more realistic cases than were
possible with Molecular Dynamics alone. This was done by assigning a desired percentage
of elements with the mechanical properties of neat epoxy, which is isotropic and therefore
has no orientation effects. The molecular-scale data from Chapter 2 was input to individual
elements and then FE analysis was carried out. The microstructures for the SWNT-epoxy
nanocomposite yielded the full elastic stiffness matrix for the multiple configurations tested
including short and infinite, functionalized and pristine SWNTs. For a random oriented
composite, every element was assigned the stiffness matrix corresponding to a random
nanotube orientation. This can be illustrated in Fig. 4.2. The left part of the image shows
a 2D example with 8x8 elements, and so 81 total nodes. The right image shows that each
of the elements being assigned the elastic properties of the MD lattice, represented by the
green boxes, at a random nanotube orientation. The orientation of the nanotubes being
assigned can be controlled, and as such the effects of nanotube alignment can be studied.
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Figure 4.2: Left: 8x8 2D finite elements with 81 total nodes. Right: Each element is
randomly assigned the elastic properties of a SWNT-epoxy lattice orientation.

For all configurations, every element was assigned a transversely isotopic C-matrix,
which exhibits hexagonal symmetry. This was done probabilistically according to the de-
sired nanotube distribution. The complete orientation space was represented by discretiz-
ing Rodrigues space, accounting for HCP symmetries, which will be described in detail in
Section 4.2.2. Due to the symmetry, 50 of the 111 nodes in Rodrigues space shown in Fig.
4.3a are independent, as indicated by the red nodes in Fig. 4.3b. These nodes are assigned
weights based on the symmetry and sampling volume in orientation space, shown in Fig.
4.4. In Fig. 4.5, the colors indicate the nodes that are equivalent. Center nodes ’2’ and ’94’
are equivalent, along with ’47’ and ’111’, ’36’ and ’110, ect. The exact weight per node
depends on how many equivalent nodes exist, and the volume weightage, q, of the node in
the normalization constraint.
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Figure 4.3: a. Discretized hexagonal region used to span all of orientation space. b. Inde-
pendent nodes in Rodrigues space are marked in red.
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Figure 4.4: Weights for the 50 independent nodes for hexagonal symmetry in Rodrigues
space.
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(a) (b) 

Figure 4.5: Equivalent nodes are represented by matching colors.

The probability of any orientation in a random composite occurring is given by nor-
malizing Fig. 4.4 by the total value of the weights. This yields the probability distribution
that will be used to assign elements their orientation. For a truly random distribution, the
frequency that each of the 50 independent orientations, corresponding to Fig. 4.3b, will
occur according to this probability distribution. When extra epoxy elements are added, the
SWNT-epoxy elements follow the same probability distribution, but scaled accordingly.
For example, if 50% neat epoxy are used, a given node has a 50% chance of being assigned
a neat epoxy node, and the probability of being assigned any given orientation is 1

2
of the

probabilities resulting from normalizing the weights shown in Fig. 4.4. This method can
be used to study the effects of nanotube alignment, and this will be done in Chapter 5.

4.2 ODF Multiscale Method

The orientation distribution function (ODF) was used to represent the alignment of SWNTs
in SWNT-epoxy composites. The ODF for SWNT-epoxy composites was represented over
the Rodrigues space discretely by implementing a Finite Element technique. ODFs rep-
resenting random nanotube orientation are considered in this Chapter. ODFs represent-
ing fully aligned orientation are considered in Chapter 5 in order to study the effects of
SWNT alignment. The SWNT-epoxy lattice obtained from molecular dynamics was used
in conjunction with the ODF to generate an effective macroscopic stiffness matrix. The
SWNT-epoxy lattice is transversely isotropic, and therefore contains hexagonal symmetry,
and so the fundamental region of the hexagonal crystal system was used when sampling
over orientation space.
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4.2.1 ODF for SWNT-Epoxy Nanocomposites

Alignment of the nanotubes was represented using the ODF, which describes local densi-
ties of SWNTs over orientation space. The ODFs are defined by parametrizations for lattice
rotations; here the hexagonal closed packed crystal geometry was used for the transversely
isotropic composites. Commonly used representations include Euler-angles [143], and
angle-axis representations, of which the most frequently used is the Rodrigues parametriza-
tion [144]. Discrization techniques are needed in order to convert the continuous orienta-
tion space into a finite degrees of freedom to optimize the material properties. The popular
discritization techniques can be broken up into two major categories: global basis based
representations and Finite Element based. The majority of schemes use global basis based
representations via spherical harmonics [143, 145–147]. Finite Element based approaches
represent the ODF by discritizing Rodrigues space via polynomial shape functions that are
defined locally over an element [148, 149]. This technique allows any ODF to be repre-
sented by the nodal values of the Finite Element grid. This means that the dimensionality
of the space is equal to the total independent nodes in the ODF discretization. The rela-
tionship between texture and properties is through linear homogenization relationships for
both Fourier and Finite Element spaces. The Finite Element representations are accurate
when sharp gradients are present, where as global basis functions lack local support and
therefore would require a large number of terms to accurately capture sharp textures. Finite
Element quadrature based integration techniques allow for volume averaged properties to
be easily computed.

4.2.2 Modeling in Rodrigues Space

The complete orientation space of a nanotube-epoxy system can be reduced to a smaller
subset; the fundamental region. The fundamental region a subset of orientation space such
that all orientations are uniquely represented accounting for symmetries. The fundamental
region for the hexagonal symmetry group used results in a structure shown in Fig. 4.6. The
12 lateral faces forming the prismatic volume are given by symmetries about the 〈0001〉 (c–
axis) axis and the 〈1000〉 family of axes. The surface of the fundamental region is formed by
bounding planes that can be grouped into pairs, where the planes of each pair are equivalent
due to symmetry, as shown in Fig. 4.6 [151]. Every orientation is uniquely represented
within the fundamental region by a coordinate, g, which is the parametrization for the
rotation (eg. Euler angles, Rodrigues vector, etc.). The local density of SWNT alignment
over the fundamental region is given by the ODF, A(g). The ODF at an orientation g,
assuming that the ODF is a continuous function in the fundamental region, is defined as:

84



A(g) = lim
δ→0

vf (Rδ)∫
Rδ
dg

, (4.30)

where vf (Rδ) is the volume fraction of nanotubes that have orientations that occur within
volume Rδ.
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Figure 4.6: Fundamental region for HCP crystals using Rodrigues parameterization.

The Finite Element ODF representation uses parameterizations for the SWNT-epoxy
lattice rotation, which together with the HCP crystal symmetry define the problem domain.
While the most common method of representing textures is through the use of Euler angles,
here the axis-angle characterization of the orientation space proposed by Rodrigues was
used [143, 148, 150]. The axis-angle characterization is based on the unique association
of an orientation with an axis of rotation, n, and a rotation angle, θ, about the axis. The
Rodrigues’ parametrization, r, is scaled as r = ntan( θ

2
). A proper rotation, R, relates

the lattice orientation to a reference orientation. The rotation can given in terms of the
Rodrigues paramrization as:

R =
1

1 + r.r
(
(I(1− r.r) + 2(r⊗ r + I× r)

)
(4.31)

The ODF, A, contains the local density of nanotubes over the fundamental region. If
a section of the fundamental region is designated as <∗, then the volume fraction of nan-
otubes in that section is given as vf (<∗) =

∫
<∗ Adv. The ODF is normalized to unity

over the fundamental region. The volume element is given as dv =
√
detgr1dr2dr3, and is

scaled by
√
detg = cos4(θ/2), since the orientation space is non-Euclidean, where g is the
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metric for the space. Given the orientation-dependent property for a single nanocomposite,
χ(r, t), any equivalent macroscropic property can be expressed as a value or expectation
value by:

< χ >=

∫
R
χ(r, t)A(r, t)dv (4.32)

4.2.3 Property Representation and Optimization in Rodrigues Space

Matrix representation of several properties of the ODF are possible due to the Finite El-
ement discretization of the orientation space, and the Finite Element integration schemes
via Gauss quadrature. The ODF is discretized into N independent nodes with Nelem fi-
nite elements and Nint integration points per element. As mentioned earlier, the ODF is
normalized to unity over the fundamental region, and this can be written as a constraint:

∫
R
Adv =

Nelem∑
n=1

Nint∑
m=1

A(rm)wm|Jn|
1

(1 + rm · rm)2
= 1, (4.33)

where A(rm) is the value of the ODF at the nth integration point possessing global coor-
dinate rm of the nth element, wm is the integration weight of the mth integration point,
and |Jn| is the Jacobian determinant of the nth element. This can be written as a linear
constraint:

qint
T
Aint = 1, (4.34)

where qinti = wi|Ji| 1
(1+ri·ri)2 , and Ainti = A(ri). Each i corresponds to a combination of

(n,m), i = 1, . . . , Nint × Nelem. A system with multiple nanotube-epoxy lattices can be
expressed in a linear form if the orientation-dependent property for a single lattice, χ, (r)

is known:

< χ >=

∫
R
χ(r)A(r)dv =

nel∑
n=1

nint∑
m=1

χ(rm)A(rm)wm|Jn|
1

(1 + rm · rm)2
. (4.35)

Similar to Eq 4.33, this can be written to as an equivalent linear equation in the ODF:

< χ >= pint
T
Aint, (4.36)

where pinti = χ(ri)wi|Ji| 1
(1+ri·ri)2 and Ainti = A(ri), i = 1, . . . , Nint ×Nelem.

The symmetry of the ODF is an additional constraint that must be considered. Orienta-
tions on each pair of planes in the fundamental region are equivalent under the symmetries.
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The HCP fundamental region was shown in Fig. 4.6, and symmetries exist about the 〈0001〉
(c–axis) axis and the 〈1000〉 family of axes [151]. This symmetry is not represented by the
space of ODF values at the integration points of the FE mesh. To enforce the symmetry
conditions, a reduced set of nodes; independent nodal points, are used rather than the in-
tegration points. Independent nodal points are obtained by accounting for the symmetry
conditions at the boundary of the ODF. To convert the independent nodal values, Anode, to
the integration point values,Aint, a matrix of the shape functions,H , is used:

Aint = HAnode (4.37)

Due to symmetry in fundamental region,Anode is sufficient to describe the ODF. The linear
ODF constraint from Eq. 4.34 can now be written in terms of a modified qnodeT = qint

T
H

as:

qnode
T
Anode = 1,Anode ≥ 0. (4.38)

Eq. 4.38 means that the complete set of all possible ODFs is a hyperplane in the space
of independent nodal values, called the ‘material plane’. Likewise, Eq. 4.36 can now be
written in terms of a modified pT ≡ pintTH to specify properties:

< χ >= pTA. (4.39)

When more than one property is being calculated, p will be a matrix. The ODF must be
positive, and this constrains the nodal values of the ODF to being positive as well, A ≥ 0.
In summary, the space of all possible ODFs is subjected to three constraints: normalization,
positiveness and symmetry.

4.2.4 ODF for Randomly Oriented Nanotubes

ODFs can be constructed to represent a fully random composite, fully aligned composite,
and various percentages of aligned nanotubes with the rest being random. In this Section,
randomly oriented nanotubes are considered, and alignment will be considered in Chap-
ter 5. The ODF indicates the probability of finding a given SWNT orientation within a
macroscopic sample. This is an alternative method to using the Finite Element multiscale
method described in Section 4.1.4, and is less computationally expensive. The direction of
preferable nanotube alignment was chosen to be the z-direction, or the < 001 > direction.
So, for increasing amounts of nanotube alignment, there will be more SWNT aligned in the
z-direction. To visually represent the nanotube orientation, pole figures were used. Pole
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figures are a stereographic projections representing the orientation distribution function.
Only the z-axis, or < 001 > axis is plotted, so with increasing alignment it is expected the
< 001 > pole figure will show a higher intensity of nanotubes aligned in that direction.
Likewise, the < 100 > and < 010 > pole figures will show an increasing intensity for
SWNTs perpendicular to those directions. In this Section, a random orientation is desired,
so none of the pole figures should indicate any orientation being preferential. The < 001 >

< 100 > and < 010 > pole figures are shown in Figs. 4.7a, 4.8a, and 4.8b, respectively.
They all show that there is no orientation preference and and that all orientations are equally
represented. The scale of the legend is determined by the case of maximum alignment. The
cross section of the ODF is shown in Fig. 4.7b, and again shows that the desired random
ODF has been achieved.

(a) (b) 

Figure 4.7: a. < 001 > pole figure and b. cross-section of the ODF for 0% SWNT
alignment.
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Figure 4.8: a. < 100 > and b. < 010 > pole figures for 0% SWNT alignment.

4.2.5 Varying Volume Fraction of SWNT

One limitation of the ODF method compared to the Finite Element multiscale method is
that this approach does not allow for direct control over the volume fraction of the SWNT.
The orientation-dependent property obtained from Eq. 4.39 will have the same volume
fraction as the representative SWNT-epoxy lattice, which is the microscopic basis for the
ODF. In order to vary the volume fraction, bounding methods using the parallel and series
rule of mixtures models were used to find the upper and lower bounds on the composite
elastic properties based on energy methods [152,153]. The parallel, or Voigt, model where
uniform strain in both phases is considered gives the composite stiffness matrix, C ε̄:

C ε̄ = C1V1 + C2V2, (4.40)

where C1 and C2 are the stiffness matrices of materials 1 and 2 respectively. V1 and V2 are
the volume fractions of material 1 and 2, and so a constraint is that V1 + V2 = 1. If in-
stead, uniform stress in both phases is considered, this will yield the composite compliance
matrix, Sσ̄, for the series or Reuss model:

Sσ̄ = S1V1 + S2V2. (4.41)

The compliance matrix is the inverse of the stiffness matrix, and so in terms of the stiffness
matrix, Eq. 4.41 can be written as:
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C σ̄ =
(
C−1

1 V1 + C−1
2 V2

)−1

. (4.42)

Eqs. 4.40 and 4.42 can be shown to be upper and lower bounds though the theorem of
minimum potential energy and theorem of complementary energy, respectively. The strain
energy stored in a material over volume is given as:

U =
1

2

∫
V

σiεidV. (4.43)

In the elastic region, where the stress and strain states are assumed to be macroscopically
uniform, stress can be written in terms of strain by the stiffness matrix, Cij: σi = Cijεj .
Similarly, strain can be written in terms of stress via the compliance matrix, Sij , εi = Sijσj .
This allows Eq. 4.43 to be written in terms of just strain or stress:

U =
1

2

∫
V

(Cijεj)εidV =
1

2

∫
V

σi(Sijσj)dV (4.44)

For the upper bound uniform strain is assumed, ε̄, in both of the materials. If the applied
strain is required to only satisfy compatibility and the displacement boundary conditions,
thus allowing the stress to be discontinuous, the actual energy (U ) is less than or equal to
the elastic strain energy (U ε̄):

U ≤ U ε̄. (4.45)

Using Eq. 4.48 in terms of strain, Eq. 4.45 can be expanded as such:

1

2

∫
V

(Ceff
ij εj)εidV ≤

1

2

∫
V

(C ε̄
ijεj)εidV, (4.46)

where C ε̄
ij is the stiffness from the assumed strain state, and Ceff

ij is the actual stiffness of
the composite. This gives that the actual stiffness is less than the stiffness of the assumed
strain state.

Ceff
ij ≤ C ε̄

ij (4.47)

For the lower bound, uniform stress σ̄, is assumed in both of the materials. If an applied
stress is required to only satisfy equilibrium and the traction boundary conditions, thus
allowing the strain to be discontinuous, the actual energy (U ) is less than or equal to the
elastic strain energy (U σ̄)

U ≤ U σ̄. (4.48)
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Using Eq. 4.48 in terms of strain, Eq. 4.48 can be expanded to obtain:

1

2

∫
V

σi(S
eff
ij σj)dV ≤

1

2

∫
V

σi(S
σ̄
ijσj)dV, (4.49)

where Sσ̄ij is the compliance from our assumed stress states, and Seffij is the actual stiff-
ness of the composite. This yields the relation that the actual compliance is less than the
compliance of the assumed stress state, giving an upper bound on compliance:

Seffij ≤ Sσ̄ij. (4.50)

In terms of stiffness, this yields the lower bound:

Ceff
ij ≥ C σ̄

ij. (4.51)

Putting this all together in terms of Eqs. 4.40 and 4.42, the effective composite stiffness
matrix, Ceff , lies between the uniform strain state of the parallel model and uniform stress
state of the series model:

(
C−1

1 V1 + C−1
2 V2

)−1

≤ Ceff ≤ C1V1 + C2V2. (4.52)

4.2.6 Multiscale Modeling

In calculating the effective macroscopic properties, homogeneity for the stress and strain
tensors was assumed. So, the ensemble averages for stress, < σij >, and strain, < εij >,
from all the microscopic lattices are related by an effective macroscopic stiffness or com-
pliance matrix:

< σij >= Ceff
ijkl < εij > (4.53)

< εij >= Seffijkl < σij > . (4.54)

The ODF methods allows the macroscopic properties to be calculated from a single mi-
croscopic lattice for random nanocomposites, and nanocomposites with preferred orienta-
tions. Two methods are used to find the upper bound and the lower bounds for the effective
macroscopic stiffness matrices. The upper bound method, known as the Voigt approxima-
tion [154, 155], assumes that all the strain to be constant in all of the lattices, or equal to
the ensemble average. Therefore, the strain is required to satisfy compatibility and the dis-
placement boundary conditions, but the stress is not required to satisfy equilibrium or trac-
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tion boundary conditions. Using the ODF, the elastic constants are calculated via weighted
integration over all orientations, where the weighting function is the ODF describing the
nanotube orientations. From Eq. 4.32 and Eq. 4.53, a value for Ceff

ijkl can be found. The ori-
entation dependent property here is the stiffness matrix for a single lattice, Cijkl(r) where
the Rodrigues parametrization is r, and the ODF for the desired nanotube orientation is
given by A:

< Cijkl >=

∫
R
Cijkl(r)A(r)dv. (4.55)

This expectation value is the upper bound, or Voigt approximation:

CV
ijkl =

∫
R
Cijkl(r)A(r)dv for εij = constant. (4.56)

This is the same as the parallel model for stiffness shown in Eq. 4.40, where the 50 inde-
pendent orientations from Fig. 4.3b are averaged over in Rodrigues space.

Similarly, the lower bound method, known as the Reuss approximation [154, 155], as-
sumes that all the stress to be constant in all of the lattices, or equal to the ensemble average.
Therefore, the stress is required to satisfy equilibrium and the traction boundary conditions,
but the strain is not required to satisfy compatibility or displacement boundary conditions.
As before, from Eq. 4.32 and Eq. 4.54, Seffijkl can be obtained. The orientation dependent
property here is the compliance matrix for a single lattice, Sijkl(r):

< Sijkl >=

∫
R
Sijkl(r)A(r)dv. (4.57)

This expectation value is the Reuss approximation, which is an upper bound for compli-
ance:

SRijkl =

∫
R
Sijkl(r)A(r)dv for σij = constant (4.58)

This is the same as the series model for stiffness shown in Eq. 4.42, except the 50 indepen-
dent orientations were averaged over in Rodrigues space from Fig. 4.3b. By inverting the
compliance to obtain the stiffness matrix, the Reuss approximation gives a lower bound for
stiffness:

CR
ijkl = (SRijkl)

−1. (4.59)
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4.3 Results

For randomly oriented nanotubes, two multiscale approaches were used to obtain the elas-
tic properties of the nanocomposites. The Finite Element approach, described in Section
4.1 was the first method used. Depending on the percentage of neat epoxy units, elements
were probabilistically assigned with the elastic properties of a SWNT-epoxy nanocompos-
ite from Chapter 2 at a random orientation, or with the elastic properties of neat epoxy. The
second approach was described in Section 4.2. An ODF for randomly oriented composites
was generated, and using the results of Chapter 2, the stiffness matrix was calculated. The
Voigt and Reuss models were used to find the upper and lower bounds of the stiffness ma-
trix for the randomly oriented composite at the volume fraction of the MD cell using Eqs
4.56 and 4.59, respectively. The volume fraction of the Molecular Dynamics cells can be
found in table 4.2. The volume of all the cells was around 52,000 Å3, and the effective
radius of the SWNT was taken as the midpoint between the equilibrium edge of the edge
of the SWNT, and the edge of the epoxy, as shown in Fig. 4.9. In order to vary the volume
fraction of SWNT, a rule of mixtures approach described Section 4.2.5 was implemented.
The parallel rule of mixtures was used in conjunction with the upper bound of the randomly
oriented nanocomposite and neat epoxy to find the upper bound value at various volume
fractions of nanotubes using Eq. 4.40. Similarly, the series rule of mixtures was used with
the lower bound of the randomly oriented nanocomposite and neat epoxy to find the lower
bound value at various volume fractions of nanotubes using Eq. 4.41.

Repeat Units Nanotube Length (Å) Volume of SWNT (Å3) Volume Fraction of SWNT

11 27.05 1623 3.1%

13 31.97 1918 3.7%

15 36.89 2213 4.3%

Table 4.2: Volume fraction of SWNT in MD nanocomposite cells.
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Figure 4.9: Effective radius of the SWNT in volume fraction calculations is shown in green.

The results in this Section were plotted as a function of neat epoxy units out of conve-
nience due to the nature of the formulation. While the volume fraction of SWNT is truly
the quantity of interest, this method is equivalent. The exact volume fraction of SWNTs
can be calculated as:

ΦSWNT = (1− Φneatepoxy) ∗ ΦMDlattice, (4.60)

where Φneatepoxy represents the volume fraction of neat epoxy units, and ΦMDlattice was
given in Table 4.2; and will be equal to 0.031 for nanocomposites with 11 repeat unit
SWNTs, 0.037 for nanocomposites with 13 repeat unit SWNTs, and 0.043 for systems
with 15 repeat unit (infinite) SWNTs.

4.3.1 Multiscale Results for Various SWNT-Epoxy Nanocomposites

4.3.1.1 Pristine SWNT-Epoxy (11 Repeat Units)

The multiscale results for the Young’s modulus and shear modulus of the isotropic, ran-
domly oriented, discontinuous, pristine SWNT-epoxy system with 11 repeat units are re-
ported in this section. The Finite Element results, ODF upper bound, and the ODF lower
bound for the Young’s modulus vs. percentage of neat epoxy units at various temperatures
are seen in Figs. 4.10a, 4.11a, and 4.12a, respectively. The results superimposed for the
various methods are plotted in Fig. 4.13a. The Finite Element results shows a near linear
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decrease as the percent of epoxy units increases, and the ODF upper bound results in a
linear decrease due to the parallel model. The ODF lower bound shows a non-linear but
similar trend due to the use of the series model. As expected, the modulus decreases with
increasing temperature. The slopes essentially result from MD results for a single lattice of
pure epoxy (the result at 100% of neat epoxy) and the equivalent isotropic result of a single
lattice of the nanocomposite at the given temperature, and so some minor inconsistencies
for various temperatures is to be expected. For the shear modulus, the Finite Element re-
sults, ODF upper bound, and the ODF lower bound are seen in Figs. 4.10b, 4.11b, and
4.12b, respectively. The superimposed results are plotted in Fig. 4.13b. The same trends
are seen for the shear modulus as for the Young’s modulus for the isotropic system. For
both the Young’s modulus and shear modulus, the Finite Element results are in between the
upper bound and lower bound ODF results, and closer to the upper-bound results. For the
randomly oriented, pristine, SWNT-epoxy system with 11 repeat units; the Finite Element
results, ODF upper bound, and the ODF lower bound all give very similar results in the
temperature range of 1 K - 350 K investigated.

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

Figure 4.10: Finite Element results for the a. Young’s modulus and b. shear modulus vs.
% of neat epoxy for the pristine nanocomposite (11 repeat units) at various temperatures.
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Figure 4.11: ODF upper bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the pristine nanocomposite (11 repeat units) at various temperatures.
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Figure 4.12: ODF lower bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the pristine nanocomposite (11 repeat units) at various temperatures.
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Figure 4.13: Comparison of the ODF upper bound, lower bound and Finite Element results
for the a. Young’s modulus and b. shear modulus vs. % of neat epoxy units seen in Figs.
4.10, 4.11 and 4.12.

4.3.1.2 Functionalized SWNT-Epoxy (11 Repeat Units)

The multiscale results for the Young’s modulus and shear modulus of the isotropic, ran-
domly oriented, discontinuous, functionalized SWNT-epoxy system with 11 repeat units
are reported in this section. The Finite Element results, ODF upper bound, and the ODF
lower bound for the Young’s modulus vs. percentage of neat epoxy units at various tem-
peratures are seen in Figs 4.14a, 4.15a, and 4.16a, respectively. The results superimposed
for the various methods are plotted in Fig. 4.17a. Much like the pristine system, the Fi-
nite Element results shows a near linear decreases as the percent of epoxy units increases,
and the ODF upper bound results shows a linear decrease. The ODF lower bound shows a
non-linear but similar trend due to the use of the series model. As expected, the modulus
decreases with increasing temperature. For the shear modulus, the Finite Element results,
ODF upper bound, and the ODF lower bound are seen in Figs. 4.14b, 4.15b, and 4.16b,
respectively. The superimposed results are plotted in Fig. 4.17b. The same trends are seen
for the shear modulus as for the Young’s modulus in the equivalent isotropic system. For
both the Young’s modulus and shear modulus, the Finite Element results are in between the
upper bound and lower bound ODF results, and closer to the upper-bound results. For the
randomly oriented, functionalized, SWNT-epoxy system with 11 repeat units; the Finite
Element results, ODF upper bound, and the ODF lower bound all give very similar results
in the temperature range of 1 K - 350 K investigated.
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Figure 4.14: Finite Element results for the a. Young’s modulus and b. shear modulus
vs. % of neat epoxy for the functionalized nanocomposite (11 repeat units) at various
temperatures.
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Figure 4.15: ODF upper bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the functionalized nanocomposite (11 repeat units) at various temperatures.
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Figure 4.16: ODF lower bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the functionalized nanocomposite (11 repeat units) at various temperatures.
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Figure 4.17: Comparison of the ODF upper bound, lower bound and Finite Element results
for the a. Young’s modulus and b. shear modulus vs. % of neat epoxy units seen in Figs.
4.14, 4.15 and 4.16.
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4.3.1.3 Pristine SWNT-Epoxy (13 Repeat Units)

The multiscale results for the Young’s modulus and shear modulus of the isotropic, ran-
domly oriented, discontinuous, pristine SWNT-epoxy system with 13 repeat units are re-
ported in this section. The Finite Element results, ODF upper bound, and the ODF lower
bound for the Young’s modulus vs. percentage of neat epoxy units at various temperatures
are seen in Figs. 4.18a, 4.19a, and 4.20a, respectively. The results superimposed for the var-
ious methods are plotted in Fig. 4.21a. For the shear modulus, the Finite Element results,
ODF upper bound, and the ODF lower bound are seen in Figs. 4.18b, 4.19b, and 4.20b
respectively. The superimposed results are plotted in Fig. 4.21b. The Young’s modulus and
shear modulus show similar trends to the system with 11 repeat units, with the Finite Ele-
ment results lying in between the upper and lower ODF bounds. For the randomly oriented,
pristine, SWNT-epoxy system with 13 repeat units; the Finite Element results, ODF upper
bound, and the ODF lower bound all give very similar results in the temperature range of 1
K - 350 K investigated.
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Figure 4.18: Finite Element results for the a. Young’s modulus and b. shear modulus vs.
% of neat epoxy for the pristine nanocomposite (13 repeat units) at various temperatures.
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Figure 4.19: ODF upper bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the pristine nanocomposite (13 repeat units) at various temperatures.
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Figure 4.20: ODF lower bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the pristine nanocomposite (13 repeat units) at various temperatures.
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Figure 4.21: Comparison of the ODF upper bound, lower bound and Finite Element results
for the a. Young’s modulus and b. shear modulus vs. % of neat epoxy units seen in Figs.
4.18, 4.19 and 4.20.

4.3.1.4 Functionalized SWNT-Epoxy (13 Repeat Units)

The multiscale results for the Young’s modulus and shear modulus of the isotropic, ran-
domly oriented, discontinuous, functionalized SWNT-epoxy system with 13 repeat units
are reported in this section. The Finite Element results, ODF upper bound, and the ODF
lower bound for the Young’s modulus vs. percentage of neat epoxy units at various tem-
peratures are seen in Figs. 4.22a, 4.23a, and 4.24a, respectively. The results superimposed
for the various methods are plotted in Fig. 4.25a. For the shear modulus, the Finite Ele-
ment results, ODF upper bound, and the ODF lower bound are seen in Figs. 4.22b, 4.23b,
and 4.24b respectively. The superimposed results are plotted in Fig. 4.25b. The Young’s
modulus and shear modulus show similar trends to the system with 11 repeat units, with
the Finite Element results lying in between the upper and lower ODF bounds. For the
randomly oriented, functionalized, SWNT-epoxy system with 13 repeat units; the Finite
Element results, ODF upper bound, and the ODF lower bound all give very similar results
in the temperature range of 1 K - 350 K investigated.

102



(a) (b)

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9
E

 (
G

P
a

)
T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9
E

 (
G

P
a

)
T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9
E

 (
G

P
a

)
T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

Figure 4.22: Finite Element results for the a. Young’s modulus and b. shear modulus
vs. % of neat epoxy for the functionalized nanocomposite (13 repeat units) at various
temperatures.
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Figure 4.23: ODF upper bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the functionalized nanocomposite (13 repeat units) at various temperatures.
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Figure 4.24: ODF upper bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the functionalized nanocomposite (13 repeat units) at various temperatures.

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

1

2

3

4

5

6

7

8

9

E
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

0 10 20 30 40 50 60 70 80 90 100

% of neat epoxy units

0.5

1

1.5

2

2.5

3

3.5

G
 (

G
P

a
)

T = 1 K

T = 50 K

T = 100 K

T = 150 K

T = 200 K

T = 250 K

T = 300 K

T = 350 K

Figure 4.25: Comparison of the ODF upper bound, lower bound and Finite Element results
for the a. Young’s modulus and b. shear modulus vs. % of neat epoxy units seen in Figs.
4.22, 4.23 and 4.24.
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4.3.1.5 Pristine SWNT-Epoxy (Infinite)

The multiscale results for the Young’s modulus and shear modulus of the isotropic, ran-
domly oriented, continuous, pristine SWNT-epoxy system are reported in this section. The
Finite Element results, ODF upper bound, and the ODF lower bound for the Young’s mod-
ulus vs. percentage of neat epoxy units at various temperatures are seen in Figs. 4.26a,
4.27a, and 4.28a, respectively. The results superimposed for the various methods for T = 1
K, T = 200 K and T = 350 K are plotted in Fig. 4.29a. Unlike the discontinuous systems,
the Finite Element results for the continuous system do not show a near linear relation for
the Young’s modulus with varying percentages of neat epoxy units. Here, the modulus
decreases more rapidly with increasing amounts of epoxy when compared to the discon-
tinuous systems. Due to the nature of the parallel model, the ODF upper bound continues
to show a linear response. Likewise, the lower bound shows a non-linear response similar
to the discontinuous systems due to the series model. For the shear modulus, the Finite
Element results, ODF upper bound, and the ODF lower bound are seen in Figs. 4.26b,
4.27b, and 4.28b respectively. The superimposed results for the various methods at T = 1
K, T = 200 K and T = 350 K are plotted in Fig. 4.29b. Both the Young’s modulus and shear
modulus decrease with increasing temperature, and all temperatures show similar trends.
The Finite Element results lie in the middle of the ODF upper bound and lower bound,
which have a significantly wider range than the discontinuous systems. This is due to the
extremely high stiffness in the nanotube direction leading to a large variation when averag-
ing the stiffness matrix over all orientations for the equivalent isotropic systems calculated
via the Voigt and Reuss models. The limits of the ODF models in conjunction with a rule
of mixtures approach are seen here, as they give a very large range of possible values, es-
pecially at higher percentages of SWNTs. The average of the two results, however, would
line up well the Finite Element model. For higher temperatures, the Finite Element result
is closer with the lower bound result, where as at higher temperatures it is very close to the
average between the two bounds.
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Figure 4.26: Finite Element results for the a. Young’s modulus and b. shear modulus vs.
% of neat epoxy for the pristine nanocomposite (infinite) at various temperatures.
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Figure 4.27: ODF upper bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the pristine nanocomposite (infinite) at various temperatures.
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Figure 4.28: ODF lower bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the pristine nanocomposite (infinite) at various temperatures.
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Figure 4.29: Comparison of the ODF upper bound, lower bound and Finite Element results
for the a. Young’s modulus and b. shear modulus vs. % of neat epoxy units seen in Figs.
4.26, 4.27 and 4.28.

4.3.1.6 Functionalized SWNT-Epoxy (Infinite)

The multiscale results for the Young’s modulus and shear modulus of the isotropic, ran-
domly oriented, continuous, functionalized SWNT-epoxy system are reported in this sec-
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tion. The Finite Element results, ODF upper bound, and the ODF lower bound for the
Young’s modulus vs. percentage of neat epoxy units at various temperatures are seen in
Figs. 4.30a, 4.31a, and 4.32a, respectively. The results superimposed for the various meth-
ods for T = 1 K, T = 200 K and T = 350 K are plotted in Fig. 4.33a. Similar to the infinite,
pristine system, the Finite Element results for the functionalized system show a non-linear
relationship for the Young’s modulus with varying percentages of neat epoxy units. Due
to the nature of the parallel and series models, the ODF upper bound continues to show a
linear response, and the lower bound shows a non-linear response, similar to the discontin-
uous systems. For the shear modulus, the Finite Element results, ODF upper bound, and
the ODF lower bound are seen in Figs. 4.30b, 4.31b, and 4.32b respectively. The super-
imposed results for the various methods at T = 1 K, T = 200 K and T = 350 K are plotted
in Fig. 4.33b. Both the Young’s modulus and shear modulus decrease with increasing
temperature, and all temperatures show similar trends. The Finite Element results lie in
the middle of the ODF upper bound and lower bound, which have a wide range due to the
high stiffness in the nanotube direction, causing a large variation in the equivalent isotropic
stiffness matrix calculated by the Voigt and Reusss models. This results in large bounds
from the ODF models in conjunction with a rule of mixtures approach, especially at higher
percentages of SWNTs. The average of the two results, however, would line up well the
Finite Element model. For higher temperatures, the Finite Element result is closer with the
lower bound result, where as at higher temperatures it is very close to the average between
the two bounds.
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Figure 4.30: Finite Element results for the a. Young’s modulus and b. shear modulus vs.
% of neat epoxy for the functionalized nanocomposite (infinite) at various temperatures.
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Figure 4.31: ODF upper bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the functionalized nanocomposite (infinite) at various temperatures.
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Figure 4.32: ODF lower bound for the a. Young’s modulus and b. shear modulus vs. % of
neat epoxy for the functionalized nanocomposite (infinite) at various temperatures.
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Figure 4.33: Comparison of the ODF upper bound, lower bound and Finite Element results
for the a. Young’s modulus and b. shear modulus vs. % of neat epoxy units seen in Figs.
4.30, 4.31 and 4.32.

4.3.2 Compare Systems

In this section, the Finite Element results for various randomly oriented nanocomposite
systems are compared with one another. Two different plotting techniques are used to vi-
sualize the results: elastic properties vs. temperature at a fixed volume fraction of SWNTs,
and elastic properties vs. volume fraction at fixed temperature. In section 4.3.2.1, the plots
show results for the Young’s modulus and Poisson’s ratio vs. temperature for constant vol-
ume fractions of 0, 0.3, 0.6, and 0.9 of neat epoxy units. In section 4.3.2.2, results for the
Young’s modulus and Poisson’s ratio vs. volume fraction for constant temperatures of 1 K,
100 K, 200 K and 300 K are shown.

4.3.2.1 Fixed Volume Fraction

Here, the volume fractions are held fixed for a given plot, and property vs. temperature
are plotted for a given volume fraction of neat epoxy units, with the remaining units be-
ing a randomly oriented SWNT-epoxy lattice. A volume fraction of 0 of neat epoxy units
means that the volume fraction of SWNT is the same as the MD lattice used for the vari-
ous systems. A volume fraction of 1 neat epoxy units would represent neat epoxy, which
the mechanical properties over a range of temperatures can be found in Fig. 3.13. Here,
volume fractions of 0, 0.3, 0.6 and 0.9 of neat epoxy units are considered for the various
nanocomposite systems. The exact volume fraction of SWNT can be calculated using Eq.
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4.60.
For all volume fractions of neat epoxy units, the systems where the nanotube spans the

MD cell demonstrate the highest stiffness and least amount of lateral contraction through-
out the entire temperature range. The functionalized SWNT case shows higher stiffness
than the pristine SWNT, and shows a lesser or equal lateral contraction compared to the
pristine system over the entire temperature range. For the systems where the nanotube
does not span the entire MD cell, the functionalized systems show higher stiffness than
the pristine systems. Additionally, systems with the longer nanotube demonstrate higher
stiffness for the functionalized system. For the pristine, discontinuous systems the change
in length makes no appreciable difference. The improvement due to functionalization for
the discontinuous systems is less appreciable at higher temperatures, and around 200 K the
systems begin to converge. All the composite systems demonstrate improved stiffness at
all volume fractions relative to neta eopxy over the temperate range considered. However,
as expected, as the percentage of neat epoxy units increases, the various systems begin to
converge and move closer the to neat epoxy values. The lateral contraction of the discon-
tinuous systems is approximately equal to that of neat epoxy, though the small range of
values makes the data appear somewhat noisy.
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Figure 4.34: Finite Element results for the a. Young’s modulus and b. Poisson’s ratio vs.
temperature for the various randomly oriented nanocomposite systems studied.
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30% Neat Epoxy Units
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Figure 4.35: Finite Element results for the a. Young’s modulus and b. Poisson’s ratio vs.
temperature for the various randomly oriented nanocomposite systems studied.
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Figure 4.36: Finite Element results for the a. Young’s modulus and b. Poisson’s ratio vs.
temperature for the various randomly oriented nanocomposite systems studied.
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Figure 4.37: Finite Element results for the a. Young’s modulus and b. Poisson’s ratio vs.
temperature for the various randomly oriented nanocomposite systems studied.

4.3.2.2 Fixed Temperature

Here, the temperatures are held fixed for a given plot, and an elastic property vs. volume
fraction of neat epoxy units are plotted for a given fixed temperature. One subtracted by
the volume fraction of neat epoxy gives volume fraction of units of the randomly oriented
SWNT-epoxy lattice. The temperatures considered are 1 K, 100 K, 200 K, and 300 K, and
the volume fraction of neat epoxy units is varied from 0 to 1. The Young’s modulus and
Poisson’s ratio are plotted.

For all temperatures, the systems where the nanotube spans the MD cell demonstrate
the highest stiffness and least amount of lateral contraction for the entire volume frac-
tion range until unity. The functionalized, infinite SWNT system displays higher stiffness
than the pristine, infinite SWNT systems. The functionalized and pristine infinite sys-
tems show a very similar trend for lateral contraction at low temperatures, but continue
to diverge at higher temperatures, with the functionalized result consistently being lower.
For the systems where the nanotube does not span the entire MD cell, the functionalized
systems shows higher stiffness than the pristine systems. Additionally, systems with the
longer nanotube demonstrate higher stiffness for the functionalized system. For the pris-
tine, discontinuous system, the change in length makes no appreciable difference. As the
temperature increases, the discontinuous systems begin to collapse on one another. All
the composite systems demonstrate improved stiffness at all volume fractions of SWNT

113



relative to neat epoxy, and so a volume fraction of unity gives the lowest stiffness over all
temperatures. The Poisson’s ratio plots demonstrate at low temperatures the continuous
nanotubes display the least lateral expansion, followed by the functionalized, discontinu-
ous systems. The pristine discontinuous systems show the most lateral contraction. At 100
K, the discontinuous, pristine system with a SWNT spanning 13/15 of the cell length has
a larger Poisson’s ratio than neat epoxy. At 200 K and 300 K, both the pristine, discontin-
uous systems have a larger Poisson’s ratio than neat epoxy, and the functionalized system
with the nanotube that spans 11/15 is approximately equal to that of neat epoxy. At 300
K, the functionalized system that spans 13/15 of the cell has a smaller Poisson’s ratio than
the infinite, pristine system. The infinite, functionalized system continues to show the most
resistance to lateral contraction.
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Figure 4.38: Finite Element results for the a. Young’s modulus and b. Poisson’s ratio vs.
volume fraction for the various randomly oriented nanocomposite systems studied.
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Figure 4.39: Finite Element results for the a. Young’s modulus and b. Poisson’s ratio vs.
volume fraction for the various randomly oriented nanocomposite systems studied.
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Figure 4.40: Finite Element results for the a. Young’s modulus and b. Poisson’s ratio vs.
volume fraction for the various randomly oriented nanocomposite systems studied.
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300 K
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Figure 4.41: Finite Element results for the a. Young’s modulus and b. Poisson’s ratio vs.
volume fraction for the various randomly oriented nanocomposite systems studied.

4.4 Conclusions

In this Chapter, the multiscale methods used to calculate the elastic properties of SWNT-
epoxy nanocomposites were reviewed. The Finite Element approach, described in Section
4.1 was the first method used. Depending on the percentage of neat epoxy units, elements
were probabilistically assigned with the elastic properties of a SWNT-epoxy nanocompos-
ite from Chapter 2 at a random orientation, or with the elastic properties of neat epoxy.
The second approach, an ODF based model, was described in Section 4.2. An ODF for
randomly oriented composites was generated, and using the results of Chapter 2 the stiff-
ness matrix was calculated. The Voigt and Reuss models were used to find the upper and
lower bounds of the stiffness matrix for the randomly oriented composite at the volume
fraction of the MD cell using Eqs 4.56 and 4.59, respectively. In order to vary the volume
fraction of SWNT, a rule of mixtures approach described Section 4.2.5 was implemented.
The parallel rule of mixtures was used in conjunction with the upper bound of the randomly
oriented nanocomposite and neat epoxy to find the upper bound value at various volume
fractions of nanotubes. Likewise, the series rule of mixtures is used with the lower bound
of the randomly oriented nanocomposite and neat epoxy to find the lower bound value at
various volume fractions.

Results for randomly oriented, equivalently isotropic, composites were shown in this
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Chapter. For all of the various nanocomposite systems studied, the Finite Element results,
ODF upper bound, and ODF lower bound were calculated and compared as a function of
volume fraction of neat epoxy for various temperatures in Section 4.3.1. In Section 4.3.2,
the Finite Element results for the various, randomly oriented nanocomposite systems were
compared with one another. Two different plotting techniques were used to visualize the
results, elastic properties vs. temperature at a fixed volume fraction of SWNTs, and elastic
properties vs. volume fraction at a fixed temperature. In Section 4.3.2.1, the results for the
Young’s modulus and Poisson’s ratio vs. temperature for constant volume fractions of 0,
0.3, 0.6, and 0.9 neat epoxy units were plotted. In Section 4.3.2.2, results for the Young’s
modulus and Poisson’s ratio vs. volume fraction for constant temperatures of 1 K, 100 K,
200 K and 300 K were plotted.
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CHAPTER 5

Modeling Aligned Nanocomposites

In this Chapter, the effects of nanotube alignment are considered. The results shown were
obtained using two different multiscale methods; the Finite Element and ODF based meth-
ods described in Chapter 4, using the MD lattice results for a single SWNT-epoxy unit
from Chapter 2. The application of these methods leads to five different multiscale re-
sults, though only three turn out to be independent. The Finite Element model described
in Section 5.1, directly leads to a solution where the percentage of alignment and volume
fraction of SWNT can be controlled, since the elemental stiffness matrices can be assigned
the properties of one of the MD SWNT-epoxy nanocomposite lattices at any orientation, or
that of neat epoxy. In Section 5.2, the ODF method is used to generate macroscopic up-
per and lower bound results for systems with fully aligned SWNTs, fully random SWNTs,
and systems where a desired percentage of nanotubes are aligned and the rest are ran-
dom. These systems all contain the same volume fraction of SWNT as the MD SWNT-
epoxy lattice, and to vary the volume fraction, rule of mixtures approaches were employed.
This ultimately leads to four different results for each SWNT-epoxy system: upper and
lower bounds via two-phase and three-phase approaches. In the two-phase model, the up-
per bound and lower bound stiffness matrices were obtained from the ODF for a desired
amount of alignment, and were used in conjunction with the parallel and series rule of mix-
tures approaches to obtain upper and lower bound stiffness matrices for various amounts
of alignment, and volume fractions of SWNTs. In the three-phase model, the calculation
of new stiffness matrices for a given amount of alignment was unnecessary, and rule of
mixture approaches were applied to the fully aligned and fully random nanocomposites via
the ODF model, along with neat epoxy. This leads to upper and lower bound macroscopic
stiffness results for various amounts of alignment and volume fraction of nanotubes, where
the only required inputs are the stiffness matrices for the fully random nanocomposite, fully
aligned nanocomposite, and neat epoxy. The percentage of alignment and nanotube vol-
ume fraction are controlled by the rule of mixtures. It was shown in Section 5.2.1.3 that
for only one preferential alignment, the 2-phase and 3-phase results give nearly identical
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results, and so only the less computationally expensive 3-phase ODF model results were
plotted.

5.1 Finite Element Multiscale Method for Aligned SWNTs

The Finite Element multiscale method used here is essentially the same as the one described
earlier in Chapter 4.1. It is done by by inputting molecular-scale data to individual elements
and then carrying out the FEM analysis. The elastic stiffness matrices obtained from the
MD lattice of the epoxy and the SWNT-epoxy nanocomposites systems were assigned to
Finite Element elements based on the desired distribution and loading of SWNTs. In Sec-
tion 4.1.4, the desired distribution of SWNT was randomly oriented, and so using evenly
spaced points over Rodrigues space, all orientations were given an equal probability of
being assigned when accounting for symmetry. For the case of aligned nanotubes, the
probability is broken up into three portions: the neat epoxy units, the aligned nanotubes,
and the random nanotubes. First, the percentage of neat epoxy elements is considered; the
probability of an element being assigned neat epoxy is just the percentage desired divided
by 100. Next, the alignment is considered, and a given orientation is picked and elements
are assigned a probability based on the percentage of alignment desired. This done by
first subtracting the probability of a neat epoxy node, and then multiplying the remaining
probability by the percentage of alignment desired:

Paligned = (1− Pneat epoxy) ∗
% alignment

100
(5.1)

Finally, the probability of a node being assigned a non-aligned orientation is based on the
remaining probability left to achieve unity after subtracting out the neat epoxy and aligned
probabilities. The non-aligned nanotubes are considered to be random, and therefore will
continue to be assigned following the same distribution as shown earlier in Fig. 4.4. Since
the orientation chosen as the ”aligned” direction still appears in the ”random” nanotube
probability, there will be more than just the assigned alignment percentage in that direction.
This is done to keep the random portion truly ”random”, since leaving out the orientation
used for the alignment direction would cause a bias in the ”random” portion. This means
an additional percentage of nanotubes in a given direction exist over what was explicitly
assigned. As an example, if a composite has 50% neat epoxy units and then 30% nanotube
alignment, the probability of a node being assigned as neat epoxy is Pneat epoxy = 0.5.
Then to achieve the 30% alignment, using Eq. 5.1 we find Paligned = 0.15. So, then
the probability of a nanotube being assigned a random orientation is Prandom = 0.35.
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Therefore probability of being assigned a given orientation within the ”random” portion is
Prandom multiplied by the probability of that orientation occurring according to distribution
shown previously in Fig. 4.4. So, if ”Orientation 1” is picked as the alignment direction,
we expect 15% of tubes to be aligned in that direction from Paligned, plus an additional
Prandom ∗ Pweights(Orientation 1), which gives an additional 1.5% of nanotubes aligned
in ”Orientation 1” from the ”random” portion.

5.2 ODF Method for Aligned SWNTs

In Chapter 4.2, ODFs were constructed to represent a fully random composite. Here, the
effects of nanotube alignment was considered by generating ODFs for fully aligned com-
posites, and various percentages of nanotube alignment with the remainder being random.
The ODF indicates the probability of finding a given SWNT orientation within a macro-
scopic sample. The direction of preferential nanotube alignment was chosen to be the
z-direction, or the < 001 > direction. So, for increasing amounts of nanotube alignment
there will be more SWNTs aligned in the z-direction. To visualize this, pole figures are
shown for various orientations as well as a cross-section of the ODF. The pole figures for
the < 001 > direction and a cross section of the ODF for random composites, and pole
figures for the < 100 >, < 010 > directions are seen in Figs. 5.1 and 5.2 for 0% align-
ment, Figs. 5.3 and 5.4 for 30% alignment, Figs. 5.5 and 5.6 for 60% alignment, and Figs.
5.7 and 5.8 for 100% alignment. Since the nanotubes alignment direction is the < 001 >

direction, the pole figures for the < 100 > and < 010 > directions are the same, save for
a shift of 90◦. Only the pole for the z-direction, < 001 > is plotted, so intensity of poles
(SWNTs) aligned for the < 001 > pole figures increases with increasing percentage of de-
sired nanotube alignment. Likewise, the intensity of poles (SWNTs) perpendicular to the
< 100 > and < 010 > increases with increasing amounts of desired nanotube alignment
for the < 100 > and < 010 > pole figures. The ODF images show the same trend, where
all orientations start out equally represented. As the desired alignment increases; a specific
orientation, in this case alignment in the z-direction, become increasingly represented until
it is the only orientation present for full alignment.
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(a) (b) 

Figure 5.1: a. < 001 > pole figure and b. cross section of the ODF for 0% SWNT
alignment.

Figure 5.2: a. < 100 > and b. < 010 > pole figures for 0% SWNT alignment.
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(a) (b) 

Figure 5.3: a. < 001 > pole figure and b. cross section of the ODF for 30% SWNT
alignment.

Figure 5.4: a. < 100 > and b. < 010 > pole figures for 30% SWNT alignment.
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(a) (b) 

Figure 5.5: a. < 001 > pole figure and b. cross section of the ODF for 60% SWNT
alignment.

Figure 5.6: a. < 100 > and b. < 010 > pole figures for 60% SWNT alignment.

123



(a) (b) 

Figure 5.7: a. < 001 > pole figure and b. cross section of the ODF for 100% SWNT
alignment.

(a) (b) 

Figure 5.8: a. < 100 > and b. < 010 > pole figures for 100% SWNT alignment.
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5.2.1 Aligned Muliscale Model

5.2.1.1 2-phase model

The macroscopic stiffness properties for the aligned nanocomposites via the ODF method
are calculated in two different ways. For the first method, which is called the 2-phase
method, an ODF is generated where a desired percentage of nanotubes are aligned and the
rest are randomly oriented. The ODFs were plotted for various percentages of alignment in
the pole figures in Section 5.2. The macroscopic C-matrix was calculated using the Voigt
and Reuss formulations for the maximum and minimum values, respectively. In order to
control the volume fraction of SWNT, the rule of mixtures approaches outline in Section
4.2.5 were applied. The series and parallel models were used in conjunction with the Reuss
and Voigt model, respectively, to yield the minimum and maximum stiffness matrix for
nanocomposite with a controllable amount of alignment and volume fraction of SWNTs.
The two phases in the rule of mixtures calculations were the SWNT-epoxy nanocomposites
for a given percentage of alignment, and neat epoxy. This method is more flexible in terms
of specific alignment distribuitions, and will allow for various orientational preferences to
be studied, such as the case of nanotube bundles. This method can also be used to find
optimal configurations of SWNTs.

5.2.1.2 3-phase model

The second method does not require the calculation of a new ODF for specific percentages
of alignment, and therefore runs faster. Instead, the ODF for fully random nanocomposites,
or 0% alignment, used in Chapter 4 and seen in Figs. 5.1 and 5.2, is used in conjunction
with the fully aligned case, or 100% alignment, seen in Figs. 5.7 and 5.8. The maximum
and minimum macroscopic stiffness matrices have been previously calculated via the Voigt
and Reuss models, and they are used in conjunction with the parallel and series rule of
mixtures models to obtain the maximum and minimum macroscopic stiffness matrix, where
the volume fraction of SWNTs and nanotube alignment can be controlled. The rule of
mixture equations for the maximum and minimum macroscopic stiffness mixtures can be
seen in Eqs 5.2 and 5.3, respectively:

Cmax
3phase = VepoxyCepoxy + ValignedC

V
aligned + (1− Vep − Valigned)CV

random (5.2)
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Cmin
3phase =

1

Vep/Cep + Valigned/CR
aligned + (1− Vepoxy − Valigned)/CR

random

, (5.3)

where the superscripts V and R indicate if the stiffness matrix was calculated via the Voigt
or Reuss formulation. The three phases in the rule of mixtures calculations are: the SWNT-
epoxy nanocomposites for a fully aligned composite, the SWNT-epoxy nanocomposites for
a fully random composite, and neat epoxy. This method is limited to the case where there
is only one orientation preferably orientated, and the 2-phase should be used if there are
multiple.

5.2.1.3 Comparison of 2-phase and 3-phase Models

For the case explored here of one preferential orientation, it is expected the 2 and 3-phase
models should theoretically give the same results. This is because because the calculation
of the upper and lower bound stiffness and compliance matrices via Eqs. 4.56 and 4.59 is
the same principle as the parallel and series mixtures approaches from Eqs. 4.40 and 4.42.
In practice, there are a few differences that can occur from the way the problems were ex-
pressed. The 3-phase model was formulated like the Finite Element method, described in
5.1, where the probability was broken up into three parts: the neat epoxy units, the aligned
nanotubes, and the random nanotubes. The random portion was taken to still follow the
weights from Fig. 4.4, as to not have any orientational preference. This means the orien-
tation chosen as the ”aligned” direction still appears in the ”random” nanotube probability,
so there will be more than just the assigned alignment percentage in that direction. For
this reason, an additional percentage of nanotubes in a given direction exist over what was
explicitly assigned. When the 2-part cases were run, the percentage aligned is exactly the
assigned amount of nanotubes aligned in that direction, and the other phase (neat epoxy)
does not contain any of that orientation. These, therefore, will only be the same if the
additional alignment due to the ”random” portion in the FE and 3-part models was input
as the desired alignment for the 2-part method. The other possible limitation is due to the
Finite Element discretization of the orientation space for the 2-part method. A mesh with
111 nodes, 50 of which were independent was considered, and some error could be caused
by interpolation of the ODF. This error could be minimized by further refining the mesh.
A comparison of the 2-part and 3-part for the pristine SWNT-epoxy system with 11 repeat
units is shown in Fig. 5.9 for the calculation of Exx. It is seen here that the results are
virtually identical. For this reason, for the rest of the dissertation the ODF results presented
will be from the 3-part method since it is more computationally efficient. It is also more
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suitable for a direct comparison to the FE method since the percentages of alignment are
calculated in the same way.
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Figure 5.9: Comparison of Exx calculated for the 2-part and 3-part ODF methods vs. % of
SWNT alignment at various % of neat epoxy units and 300 K.

5.3 Aligned Results for the Various Multiscale Methods

For the results in this Section, one of the transversely isotropic properties was plotted
against the percentage of alignment of SWNTs for a fixed amount of neat epoxy units.
Results are calculated for each of the MD lattice configurations: the discontinuous sys-
tems; pristine SWNT-epoxy with 11 and 13 repeat units, functionalized SWNT-epoxy with
11 and 13 repeat units, and the funtionalized and pristine systems where nanotube the
nanotube spans the entire lattice and was effectively infinite. This was done for fixed per-
centages of neat epoxy units from 0% to 100% in 10% intervals. For each system, Exx,
Ezz, Gxz, νxy, νxz are plotted for each of methods outlined: the Finite Element method,
and the ODF upper and lower bounds. The results of the various multiscale methods are
compared for each nanocompsite system. Finally, the Finite Element results of the various
nanocomposite systems are compared with varying alignment for fixed amounts of neat
epoxy units.

5.3.1 Pristine SWNT-Epoxy (11 Repeat Units)

For the pristine SWNT-epoxy system with 11 repeat units, the results of the Finite Element
multiscale model are shown in Section 5.3.1.1, the 3-phase ODF upper bound in Section

127



5.3.1.2, and the 3-phase ODF lower bound in Section 5.3.1.3. All of the multiscale methods
at 0%, 30%, 60% neat epoxy units are compared with neat epoxy (100% epoxy units) in
Section 5.3.1.4. As expected, all of the methods show a decreasing value of Exx when
the percentage of alignment of SWNT in the z-direction increases. From the comparison
figure, Fig. 5.19, it is clear the three multiscale models give very similar results, with
larger differences occurring when there is more epoxy units and therefore a smaller volume
fraction of SWNTs. The Finite Element results lie in the middle of the ODF bounds, but
much closer to the upper bound. The value of Ezz increases with increasing alignment of
nanotubes in the z-direction. For all percentages of neat epoxy units, the Finite Element
results lie between the ODF upper and lower bound values, best seen in Fig. 5.20a, and
closer to the upper bound value. For Gxz, which results from applying stress in the z-
direction which acts on a plane normal to the equivalent x or y-directions, the models are
essentially constant for varying alignment of nanotubes, and demonstrate decreasing values
when the volume fraction of SWNTs was reduced. The Finite Element results fall between
the upper bound and lower bounds of the ODF model, seen in 5.20b. At all percentages of
alignment, νxy was increased in the plane of isotropy relative to neat epoxy, meaning there
will be more contraction in the y-direction when the system is pulled in the x-direction,
or vice versa since the x and y-directions are equivalent. For the various percentages of
neat epoxy, the Finite Element model results lies within the upper and lower ODF bounds,
shown in Fig. 5.21a. Lastly, for the out of plane Poisson’s ratio, νzx, the nanocomposite
starts out with a higher value relative to neat epoxy, and then reduces below neat epoxy
around 10% alignment for all models. This value represents the amount of contraction that
will occur along the z-direction when there is a tensile load in the plane of isotropy (x-y).
The ODF upper and lower bounds are flipped, with the lower bound being higher than the
upper bound for both the ODF models. The ODF models bounds the Finite Element model
at lower percentages of neat epoxy units. At higher percentages, the Finite Element result
lies a bit below the ODF upper bound, though they generally agree very closely, best shown
in Fig. 5.21b.
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5.3.1.1 Finite Element
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Figure 5.10: Finite Element results for the variation of Exx with respect to % SWNT align-
ment at various % of neat epoxy units and 300 K.
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Figure 5.11: Finite Element results for the variation of a. Ezz and b. Gxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.12: Finite Element results for the variation of a. νxy and b. νxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.

5.3.1.2 ODF Upper Bound
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Figure 5.13: ODF upper bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.

130



(a) (b)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

ν
x
y

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.38

0.385

0.39

0.395

0.4

0.405

0.41

ν
x
y

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 10

Percent of SWNTs aligned in z-direction

0.36

0.365

0.37

0.375

0.38

0.385

0.39

ν
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.33

0.34

0.35

0.36

0.37

0.38

0.39

ν
x
z

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 10

Percent of SWNTs aligned in z-direction

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

ν
x
y

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

Figure 5.14: ODF upper bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.15: ODF upper bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.
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5.3.1.3 ODF Lower Bound
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Figure 5.16: ODF lower bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

ν
x
y

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.38

0.385

0.39

0.395

0.4

0.405

0.41

ν
x
y

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 10

Percent of SWNTs aligned in z-direction

0.36

0.365

0.37

0.375

0.38

0.385

0.39

ν
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.33

0.34

0.35

0.36

0.37

0.38

0.39

ν
x
z

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 10

Percent of SWNTs aligned in z-direction

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

ν
x
y

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z
 (

G
P

a
)

0% neat epoxy units

10% neat epoxy units

20% neat epoxy units

30% neat epoxy units

40% neat epoxy units

50% neat epoxy units

60% neat epoxy units

70% neat epoxy units

80% neat epoxy units

90% neat epoxy units

100% neat epoxy units

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

Figure 5.17: ODF lower bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.18: ODF lower bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.

5.3.1.4 Compare Methods
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Figure 5.19: Comparison of the methods used to calculate the variation of Exx with respect
to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.20: Comparison of the methods used to calculate the variation of a. Ezz and b.
Gxz with respect to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.21: Comparison of the methods used to calculate the variation of a. νxy and b. νxz
with respect to % SWNT alignment for various % of neat epoxy units at 300 K.

5.3.2 Functionalized SWNT-Epoxy (11 Repeat Units)

For the functionalized SWNT-epoxy system with 11 repeat units, the results of the Finite
Element multiscale model are shown in Section 5.3.2.1, the 3-phase ODF upper bound in
Section 5.3.2.2, and the 3-phase ODF lower bound in Section 5.3.2.3. All of the multiscale
methods at 0%, 30%, 60% neat epoxy units are compared with neat epoxy (100% epoxy
units) in Section 5.3.2.4. All of the methods give a decreasing value of Exx when the
percentage of alignment of SWNT in the z-direction increases, and when the percentage of
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epoxy units increases. From the comparison figure, Fig. 5.31, the Finite Element results
lie within the bounds of the ODF method. For Ezz, the models show a decreasing value of
Ezz for increased number of nanotubes aligned in the z-direction, which is an unexpected
result. The Finite Element results for varying alignment are bounded by the ODF model
and follow the same trend. To explain this: the first thing to point out is that, as seen from
comparing Figs. 5.22 to 5.23a, 5.25 to 5.26a, and 5.28 to 5.29a, the values of Exx and
Ezz are comparable, with Exx actually being higher. This is due to the boost in Exx due to
functionalization, and the corresponding degradation inEzz. The fact that bothExx andEzz
decrease with increasing alignment seems to be an artifact of the effective averaging of the
stiffness matrix, where the values of C(1, 1) and C(3, 3) increase for random composites at
the expense of the shear and off-diagonal terms. The initial transversely isotropic stiffness
matrix given by MD is:

CMD =



7.60 4.94 4.80 0 0 0
4.94 7.60 4.80 0 0 0
4.80 4.80 7.37 0 0 0

0 0 0 1.59 0 0
0 0 0 0 1.59 0
0 0 0 0 0 1.33


.

For the fully random case with no alignment, rotation via the Voigt model yields: CV (1, 1) =

CV (2, 2) = CV (3, 3) = 7.65 and CV (4, 4) = CV (5, 5) = CV (6, 6) = 1.43. The lower
bound via the the Reuss method leads to: CR(1, 1) = CR(2, 2) = CR(3, 3) = 7.63 and
CR(4, 4) = CR(5, 5) = CR(6, 6) = 1.42. So, from this trend it is expected Gxz will in-
crease relatively rapidly with increased alignment to compensate for the decreased Exx and
Ezz at full alignment, and this is the case for the Finite Element model (Fig. 5.23b), ODF
upper bound (Fig. 5.26b), and ODF lower bound (Fig. 5.29b) A comparison of the three
methods was plotted in Figs. 5.32a and 5.32b for Ezz and Gxz, respectively.

For the in-plane Poisson’s ratio νxy, all of the models show the composites have a
reduced value relative to neat epoxy for fully random SWNTs, and then at a certain align-
ment percentage cross neat epoxy, and so there will be more contraction in the y-direction
when the system is pulled in the x-direction, or vice versa since the x and y directions are
equivalent relative to neat epoxy. The Finite Element model, Fig. 5.24a, shows a linearly
increasing νxy response with increasing alignment, with all percentages of neat epoxy units
crossing the epoxy value by 10% alignment. The ODF models show νxy increasing lin-
early, and crossing the value of neat epoxy at 10% for the upper bound, and 5% for the
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lower bound. A comparison for all the methods is shown in Fig. 5.32a. The out of plane
Poisson’s ratio, νzx, gives the amount of contraction that will occur along the nanotube
direction when there is a tensile load in the plane of isotropy (x-y). The ODF models show
νzx to be below the neat epoxy value, and linearly decreasing with increasing alignment.
For the Finite Element model in Fig. 5.24b, all amounts of epoxy and alignment are above
the neat epoxy value, though the magnitude of increase is small, with a 2% maximum from
100% to 0% neat epoxy units. This result, while somewhat surprising, does make sense
since the FE model predicts stiffness in the plane of isotropy to be higher than that of the
nanotube direction. A comparison for all the methods for νzx is shown in Fig. 5.32b.

5.3.2.1 Finite Element
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Figure 5.22: Finite Element results for the variation of Exx with respect to % SWNT align-
ment at various % of neat epoxy units and 300 K.
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Figure 5.23: Finite Element results for the variation of a. Ezz and b. Gxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.24: Finite Element results for the variation of a. νxy and b. νxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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5.3.2.2 ODF Upper Bound
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Figure 5.25: ODF upper bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.26: ODF upper bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.27: ODF upper bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.

5.3.2.3 ODF Lower Bound
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Figure 5.28: ODF lower bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.29: ODF lower bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.30: ODF lower bound for the variation of a. νxy and b. νxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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5.3.2.4 Compare Methods
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Figure 5.31: Comparison of the methods used to calculate the variation of Exx with respect
to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.32: Comparison of the methods used to calculate the variation of a. Ezz and b.
Gxz with respect to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.33: Comparison of the methods used to calculate the variation of a. νxy and b. νxz
with respect to % SWNT alignment for various % of neat epoxy units at 300 K.

5.3.3 Pristine SWNT-Epoxy (13 Repeat Units)

For the pristine SWNT-epoxy system with 13 repeat units, the results of the Finite Element
multiscale model are shown in Section 5.3.3.1, the ODF upper bound in Section 5.3.3.2,
and the ODF lower bound in Section 5.3.3.3. All of the multiscale methods at 0%, 30%,
60% neat epoxy units are compared with neat epoxy (100% epoxy units) in Section 5.3.3.4.
For Exx and Ezz, a similar trends to the pristine SWNT-epoxy system with 11 repeat units
was seen for the three models. Exx decreases with increasing alignment, and all the models
give very close results, with the ODF models being very close to one another and tightly
bounding the Finite Element result, seen in Fig. 5.43. Ezz andGxz increase with increasing
alignment, and the Finite Element model is bounded by the ODF model, shown in 5.44a
and 5.44b, respectively. At all percentages of alignment, there is an increased νxy in the
plane of isotropy relative to neat epoxy, meaning there will be more contraction in the
y-direction when the system is pulled in the x-direction, or vice versa since the x and y
directions are equivalent. Once again, the ODF model bounds the Finite Element model at
all percentages of neat epoxy, shown in 5.45a. All the models initially show an increased
νzx when compared to neat epoxy, before eventually being equal at somewhere between
40-70% alignment for the various models, shown in Fig. 5.45b, where systems with more
epoxy units reach the neat epoxy value with less percentage alignment. The transition
occurs between 40-50% for the Finite Element model, and around 50-70% for the ODF
upper and lower bounds. The upper and lower bounds have flipped roles for the ODF
results. The Finite Element model generally shows the least amount of contraction along
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the nanotube direction when a tensile load is applied in the plane of isotropy (x-y), and
crosses the neat epoxy value at the lowest percentage of alignment.

5.3.3.1 Finite Element
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Figure 5.34: Finite Element results for the variation of Exx with respect to % SWNT align-
ment at various % of neat epoxy units and 300 K.
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Figure 5.35: Finite Element results for the variation of a. Ezz and b. Gxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.36: Finite Element results for the variation of a. νxy and b. νxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.

5.3.3.2 ODF Upper Bound
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Figure 5.37: ODF upper bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.38: ODF upper bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.39: ODF upper bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.
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5.3.3.3 ODF Lower Bound
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Figure 5.40: ODF lower bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.41: ODF lower bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.42: ODF lower bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.

5.3.3.4 Compare Methods

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

E
xx

neat epoxy
0% neat epoxy units
30% neat epoxy units
60% neat epoxy units
Finite Element
ODF max
ODF min

Figure 5.43: Comparison of the methods used to calculate the variation of Exx with respect
to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.44: Comparison of the methods used to calculate the variation of a. Ezz and b.
Gxz with respect to % SWNT alignment for various % of neat epoxy units at 300 K.

(a)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

G
x
z
 (

G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.375

0.38

0.385

0.39

0.395

0.4

0.405

0.41

x
y

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

(b)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

x
y

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x
y

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

x
y

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

x
y

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

x
y

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

E
z
z

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

G
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

G
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0

10

20

30

40

50

60

70

E
z
z

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

G
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

E
z
z

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0

10

20

30

40

50

60

70

E
z
z

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

G
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

x
y

neat epoxy

0% neat epoxy units

30% neat epoxy units

60% neat epoxy units

Finite Element

ODF max

ODF min

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.35

0.36

0.37

0.38

0.39

0.4

0.41

v
x
z

Figure 5.45: Comparison of the methods used to calculate the variation of a. νxy and b. νxz
with respect to % SWNT alignment for various % of neat epoxy units at 300 K.

5.3.4 Functionalized SWNT-Epoxy (13 Repeat Units)

For the functionalized SWNT-epoxy system with 13 repeat units, the results of the Finite
Element multiscale model are shown in Section 5.3.4.1, the ODF upper bound in Section
5.3.4.2, and the lower bound in Section 5.3.4.3. Comparisons between the three models at
0%, 30%, 60% and 100% neat epoxy units are given in Section 5.3.4.4. This system shows
the most prominent effects of the nanotubes among the discontinuous systems, with the in-
plane, νxy, and out-of-plane, νxz, Poisson’s ratios being smaller than the neat epoxy value
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for all volume fractions and alignment of SWNT. The various methods all give a decreasing
value of Exx when the percentage of alignment of SWNT in the z-direction increases, and
when the percentage of epoxy units increases. The Finite Element model lies within the
narrow bonds of the ODF model, shown in Fig. 5.55. Unlike the functionalized system
with 11 repeat units, all of the models show an increasing value of Ezz with increasing
alignment. Similar to Exx, the Finite Element result is tightly bounded by the ODF results,
except at lower amounts of alignment seen in 5.56a. All the models show increasing Gxz

with increasing alignment, and the three models display the similar trends they did relative
to one another for Ezz, shown in Fig. 5.56b. As mentioned earlier, all of the models
have a reduced νxy value relative to neat epoxy at all volume fractions of SWNT and all
alignments, with lower values for less alignment and higher amounts of SWNTs. The
Finite Element model shows an initially small increase in νxy before the slope increases
at higher alignments. Due to this non-linear relationship between νxy and alignment, the
Finite Element model is not bounded well by the ODF method, seen in Fig. 5.57a. The
ODF model shows increasingly widening bounds at higher percentages of neat epoxy units.
The magnitude of νxz is reduced with increasing alignment for all the models. In Fig.
5.57b, the Finite Element is in good agreement with the ODF model. For the functionalized
nanocomposite with SWNTs with 13 repeat units, the amount contraction transverse to the
tension direction is reduced for all loading directions.

5.3.4.1 Finite Element
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Figure 5.46: Finite Element results for the variation of Exx with respect to % SWNT align-
ment at various % of neat epoxy units and 300 K.
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Figure 5.47: Finite Element results for the variation of a. Ezz and b. Gxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.48: Finite Element results for the variation of a. νxy and b. νxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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5.3.4.2 ODF Upper Bound
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Figure 5.49: ODF upper bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.50: ODF upper bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.51: ODF upper bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.

5.3.4.3 ODF Lower Bound
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Figure 5.52: ODF lower bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.53: ODF lower bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.54: ODF lower bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.
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5.3.4.4 Compare Methods
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Figure 5.55: Comparison of the methods used to calculate the variation of Exx with respect
to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.56: Comparison of the methods used to calculate the variation of a. Ezz and b.
Gxz with respect to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.57: Comparison of the methods used to calculate the variation of a. νxy and b. νxz
with respect to % SWNT alignment for various % of neat epoxy units at 300 K.

5.3.5 Pristine SWNT-Epoxy (Infinite)

For the pristine SWNT-epoxy system with nanotubes that span the entire lattice, becom-
ing effectively infinite with periodic boundary conditions applied, the results of the Finite
Element multiscale model are shown in Section 5.3.5.1, the ODF upper bound in Section
5.3.5.2, and the ODF lower bound in Section 5.3.5.3. Comparisons between the three mod-
els at 0%, 30%, 60% and 100% neat epoxy units are given in Section 5.3.5.4. The massive
differences in stiffness between the nanotube direction and the plane of isotropy leads to
very large bounds for the ODF models.

For Exx, as expected, all the models show a decreasing value for increasing amounts of
alignment. The Finite Element model decreases close to linear with increasing alignment,
in Fig. 5.58, and at full alignment is close to the Young’s modulus of neat epoxy (100%
epoxy units). With all of the nanotubes aligned in the z-direction, it logical the x and y di-
rections would not see any increase in stiffness. The ODF upper bound, in Fig. 5.61, shows
a greater than linear decrease in stiffness in the x and y-directions with increasing align-
ment. All of the systems converge towards the neat epoxy value at 100% alignment. For
the ODF lower bound, shown in Fig. 5.64, with 50% or less neat epoxy units, Exx initially
increases with increasing alignment, and then begins to decrease sharply. This decrease
happens earlier and more steeply at low percentages of neat epoxy units, though only the
systems with 0% and 10% neat epoxy units ever go below the value of neat epoxy. For
systems with 50% or less neat epoxy units, the stiffness increases with increasing amounts
of epoxy units, and the opposite is true for systems with greater than 50% neat epoxy units.
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The systems with greater than 50% neat epoxy units show a linearly increasing response
with the amount of alignment.

The three models show an increasing Ezz as more nanotubes are aligned in the z-
direction, which is to be expected. As was the case with Exx, the large differential in
stiffness in the plane of isotropy and the nanotube direction lead to very large bounds. The
Finite Element model, Fig. 5.59a, and the ODF upper bound, 5.62a, show a linear response
for Exx vs. alignment. The ODF lower bound, Fig. 5.65a initially shows a close to linear
response with increasing alignment, before showing a faster increase in stiffness. From the
comparison figure, Fig. 5.68a, it is clear ODF method bounds the Finite Element method,
though with a very wide margin.

For Gxz, all of the models show a close to linear response with increasing amount of
alignment. The Finite Element model, Fig. 5.59b, and ODF models, 5.62b and 5.65b,
show a decreasing magnitude with the amount of alignment. A comparison figure for Gxz

is shown for 0%, 30%, 60% neat epoxy units in 5.68b. The models all show an increasing
magnitude of νxy with increasing alignment, and the contraction in the plane of isotropy
from loading within the plane becomes greater than that of neat epoxy between 0 and 25%
alignment, seen in Fig. 5.69a. For νxz, or the contraction in the z-direction due to a tensile
load in the plane of isotropy, the presence of the SWNTs in the z-direction cause this value
to decrease with increasing alignment, which can be seen in Fig. 5.69b. The magnitude of
νxz is below neat epoxy’s Possion’s ratio for all amounts of alignment and SWNT volume
fraction for the Finite Element model, the ODF upper bounds, and all of the ODF lower
bound except for less than 10% alignment.
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5.3.5.1 Finite Element
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Figure 5.58: Finite Element results for the variation of Exx with respect to % SWNT align-
ment at various % of neat epoxy units and 300 K.
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Figure 5.59: Finite Element results for the variation of a. Ezz and b. Gxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.60: Finite Element results for the variation of a. νxy and b. νxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.61: ODF upper bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.62: ODF upper bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.63: ODF upper bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.
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5.3.5.3 ODF Lower Bound
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Figure 5.64: ODF lower bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.65: ODF lower bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.66: ODF lower bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.

5.3.5.4 Compare Methods
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Figure 5.67: Comparison of the methods used to calculate the variation of Exx with respect
to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.68: Comparison of the methods used to calculate the variation of a. Ezz and b.
Gxz with respect to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.69: Comparison of the methods used to calculate the variation of a. νxy and b. νxz
with respect to % SWNT alignment for various % of neat epoxy units at 300 K.

5.3.6 Functionalized SWNT-Epoxy (Infinite)

For the functionalized SWNT-epoxy system with nanotubes that span the entire lattice,
therefore becoming effectively infinite with periodic boundary conditions applied, the re-
sults of the Finite Element multiscale model are shown in Section 5.3.6.1, the ODF upper
bound in Section 5.3.6.2, and the lower bound in Section 5.3.6.3. Comparisons between
the three models at 0%, 30%, 60% and 100% neat epoxy units are given in Section 5.3.6.4.
While the difference in stiffness between the nanotube direction and plane of isotopy is not
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quite as large as the pristine, infinite system, due to improvements in stiffness in the direc-
tion transverse to the SWNT and degradation to the SWNT, there is still a large difference,
leading to large bounds for the ODF method.

For Exx, very similar trends are seen here as for the pristine/infinite system. As ex-
pected, all of the models show higher values compared to the pristine system at equal
alignment and volume fractions due to the nanotube functionalization. A decreasing value
for increasing amounts of alignment is observed, and unlike the pristine system, the value
of Exx never goes below the Young’s modulus of neat epoxy for any volume fraction or
percentage alignment in any of the models due to the nanotube functionalization, seen in
Fig. 5.79. The Finite Element results lie roughly in the middle of the ODF bounds. The
models show an increasing Ezz as more nanotubes are aligned in the z-direction, which
is to be expected. Again, the functionalized, infinite system shows very similar trends as
the pristine, infinite system described earlier. The Finite Element model, and ODF lower
bound show greater than linear gains in Ezz with increasing SWNT alignment. The ODF
upper bound, Fig. 5.74a gives a linear response for Exx vs. alignment, and shows the
largest prediction for stiffness with alignment. From the comparison figure, Fig. 5.80a, it is
clear the ODF method bounds the Finite Element method, though with a very wide margin.

For Gxz, all of the models show a close to linear response with increasing amount of
alignment. Much like the pristine system, the Finite Element model, and ODF models
show a decreasing magnitude with increasing amounts of alignment. A comparison figure
for Gxz is shown for 0%, 30%, 60% neat epoxy units in Fig. 5.80b. The models display
an increasing magnitude of νxy with increasing alignment, and contraction in the plane of
isotropy with from load within the plane becomes greater than that of the Poisson’s ratio of
neat epoxy between 5% and 40% alignment, seen in Fig. 5.81a. For νxz, or the contraction
in the z-direction due to a tensile load in the plane of isotropy, the presence of the SWNTs
in the z-direction causes this value to decrease with increasing alignment, which can be
seen in Fig. 5.81b. The magnitude of νxz is below neat epoxy’s Possion’s ratio for all
amounts of alignment and SWNT volume fraction for all three models, unlike the pristine,
infinite system.
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5.3.6.1 Finite Element
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Figure 5.70: Finite Element results for the variation of Exx with respect to % SWNT align-
ment at various % of neat epoxy units and 300 K.
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Figure 5.71: Finite Element results for the variation of a. Ezz and b. Gxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.72: Finite Element results for the variation of a. νxy and b. νxz with respect to %
SWNT alignment at various % of neat epoxy units and 300 K.

5.3.6.2 ODF Upper Bound
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Figure 5.73: ODF upper bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.74: ODF upper bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.75: ODF upper bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.
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5.3.6.3 ODF Lower Bound
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Figure 5.76: ODF lower bound results for the variation of Exx with respect to % SWNT
alignment at various % of neat epoxy units and 300 K.
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Figure 5.77: ODF lower bound results for the variation of a. Ezz and b. Gxz with respect
to % SWNT alignment at various % of neat epoxy units and 300 K.
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Figure 5.78: ODF lower bound results for the variation of a. νxy and b. νxz with respect to
% SWNT alignment at various % of neat epoxy units and 300 K.

5.3.6.4 Compare Methods
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Figure 5.79: Comparison of the methods used to calculate the variation of Exx with respect
to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.80: Comparison of the methods used to calculate the variation of a. Ezz and b.
Gxz with respect to % SWNT alignment for various % of neat epoxy units at 300 K.
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Figure 5.81: Comparison of the methods used to calculate the variation of a. νxy and b. νxz
with respect to % SWNT alignment for various % of neat epoxy units at 300 K.

5.4 Compare Systems

In this section, the various nanocomposite system’s elastic properties are compared with
one another. Here, the effects of the discontinuous nanotubes and functionalization the
macroscopic stiffness properties can be seen. For the sake of brevity, only the Finite Ele-
ment model results were plotted in this section. This model was chosen because it almost
always lied within the bounds of the ODF model. All of the nanocomposite systems are
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plotted together for a given property, and then just the discontinuous systems are plotted
since the systems with the continuous (infinite) nanotubes often give results an order of
magnitude larger. An elastic property is plotted vs. percent of SWNTs aligned in the z-
direction for various amounts of epoxy units: 0% in Section 5.4.1, 30% in Section 5.4.2,
60% in Section 5.4.3, and 90% in Section 5.4.4, corresponding to volume fractions that can
be calculated via Eq. 4.60, repeated here:

ΦSWNT = (1− Φneatepoxy) ∗ ΦMDlattice, (5.4)

where Φneatepoxy represents the volume fraction of neat epoxy units, and ΦMDlattice was
given in Table 4.2, and will be equal to 0.031 for nanocomposites with 11 repeat unit
SWNTs, 0.037 for nanocomposites with 13 repeat unit SWNTs, and 0.043 for systems
with 15 repeat unit (infinite) SWNTs. The tests in this section were all run at 300 K. All of
the results for varying amounts of epoxy units show similar trends, and it is logical that the
results would scale since these are calculated by assigning more elements with the elastic
properties of neat epoxy.

For Exx, the systems with continuous (infinite) SWNTs show the greatest improvement
for low amounts of alignment. The functionalized, infinite system has the greatest value
of Exx at all alignments, where the pristine, infinite system goes below the discontinuous
systems around 70% alignment in the z-direction, and converges to the neat epoxy value
around 95% alignment. This results make intuitive sense; when there are long, infinite
nanotubes still aligned in the plane of isotropy (x-y), or even have a component of their
stiffness in that direction, this will lead to large improvements in stiffness. For the func-
tionalized system, even in the case with full alignment, there is still some effect of the
nanotube due to the covalent bonding. For the pristine system, the nanotubes clearly have
no effect in the stiffness in the plane of isotropy when they are not aligned in that direction.
For the discontinuous systems, the functionalized system with 13 repeat units shows the
largest improvements in Exx, where the functionalized system with 11 repeat units shows
the second highest value at low amounts of alignment, but it drops off the most with in-
creasing alignment. The two discontinuous, pristine nanotube results show very similar
trends with decreasing Exx values for increasing alignment.

The systems with the continuous nanotubes show substantially greater improvements
for Ezz than the discontinuous systems, and this is not surprising with there being no in-
teraction between the epoxy and SWNT at the end of the nanotube. The pristine, infinite
system shows slightly higherEzz at very high amounts alignment due to some deterioration
of the SWNT due to the covalent bonding to the nanotube. However, for up to 50% align-
ment for the 0% neat epoxy units, and up to 70% alignment for the 30%, 60% and 90% neat
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epoxy units, the functionalized system shows a higher Ezz value, as the improvements due
to functionalization of the non-aligned tubes outweighs the deterioration of the nanotube
properties for the aligned nanotubes. Compared to the continuous systems, the discontin-
uous systems show modest improvements over the elastic modulus of neat epoxy due to
their small aspect ratios. At all percentages of neat epoxy units, the pristine systems give
the best improvements for Ezz. The functionalized system with 13 repeat units increases
with a slightly lesser slope as the pristine, discontinuous systems, and starts out at a lower
value. The functionalized system with 11 repeat units shows a decreasing trend for Ezz
with alignment, and this was addressed in Section 5.3.2. These somewhat odd trends can
be attributed to the high value ofGxz and relatively low values ofEzz at 300 K compared to
the other discontinuous systems, as show in Tables 2.4-2.7. The averaging of the stiffness
matrix therefore leads to an improvement in Ezz for a random system. This does tell that
functionalization on a very short nanotube can have very negative effects on the SWNT’s
stiffness and contribution to the composite, and indeed the direction perpendicular to the
nanotube sees greater stiffness improvements due to its covalent bonds to the SWNT than
the direction the nanotube is actually aligned.

The continuous (infinite) systems show a decreasing Gxz with increasing alignment.
Gxz represents stress in the z-direction acting on a plane normal to the equivalent x or
y-directions. For the infinite nanotubes, The direction the SWNT is aligned is very stiff,
and so it makes intuitive sense that increasing alignment in the z-direction would cause
a decreasing shear modulus Gxz. For the pristine, infinite system it becomes equal with
neat epoxy’s shear modulus around 70-80% alignment for all of percentages of neat epoxy
units, and then goes below the neat epoxy value. For the functionalized, infinite system,
even at 100% alignment, there is an increase in Gxz due to the covalent bonding, which
decreases with increasing amount of neat epoxy units. At 90% neat epoxy units; a 5% for
Gxz was seen, and at 0% neat epoxy units, an improvement of 56% was seen. The discon-
tinuous, functionalized systems all show slight increases of Gxz with increasing alignment,
while the pristine systems stay fairly close to constant. The functionalized system with 11
repeat units showed the largest slope with increasing alignment of all the systems, and that
correlated to an improvement of 40% over neat epoxy at 0% alignment and 55% at 100%
alignment for 0% neat epoxy units. The improvement becomes lesser at higher amounts of
neat epoxy units. So, this make it clear that there is not a substantial effect of alignment
on Gxz for the discontinuous nanotubes, and this is because there is a much less dramatic
difference in the nanotube direction and the directions perpendicular to the nanotube, as
evidenced in Tables 2.4-2.7.

All of the systems show increasing in-plane Poisson’s ratio, νxy with increasing align-
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ment, with the magnitudes decreasing for increasing amounts of neat epoxy units. The
continuous (infinite) SWNT composites showed a greater than linear increase, with the
pristine system being greater than that of the functionalized system. The discontinuous
systems showed a near linear increase in νxy with increasing alignment. Like the continu-
ous SWNTs, the discontinuous, pristine systems displayed a higher magnitude of νxy than
the discontinuous, functionalized systems. This value represents the amount of contraction
in the y-direction when the system is pulled in the x-direction, or vice versa since the x and
y directions are equivalent. Therefore, it makes intuitive sense that less nanotubes laying,
or containing a component, in the plane of isotropy due to increased alignment would lead
to more contraction. Likewise, the results agree with the expectation that for a given align-
ment, the functionalized system would show less contraction because there is still some
effect of the nanotubes aligned in the z-direction within the plane of isotropy due to the
covalent bonds.

The systems generally show decreasing νxz for increasing amounts of alignment, with
the exception being the discontinuous, functionalized system with 11 repeat units, which
is essentially constant. The continuous (infinite) systems show a very large dependence
on alignment. For lower amounts of neat epoxy units, these systems have a substantially
smaller νxz than the Poisson’s ratio of neat epoxy for all values of alignment. Even at
90% neat epoxy units, νxz goes below the neat epoxy value at around 15% alignment.
This value represents the amount of contraction that will occur along the z-direction when
there is a tensile load in the plane of isotropy (x-y). So, as expected, more nanotubes
aligned in the z-direction will cause the composite to contract less due to a tensile load
in the plane of isotopy. The same logic applies to the discontinuous systems, except there
is much smaller difference in stiffness between the nanotube direction and the directions
perpendicular to the nanotube, so the effects are substantially lesser. This is most evident
for the funtionalized system with 11 repeat units, where the degradation of stiffness along
the nanotube direction, and improvement in the direction perpendicular to the nanotube
lead to comparable values for each direction, and so νxz stays constant.
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5.4.1 0% Epoxy Units
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Figure 5.82: Variation of Exx with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 0% epoxy units at 300 K.
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Figure 5.83: Variation of Ezz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 0% epoxy units at 300 K.
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Figure 5.84: Variation of Gxz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 0% epoxy units at 300 K.
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Figure 5.85: Variation of νxy with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 0% epoxy units at 300 K.
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Figure 5.86: Variation of νxz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 0% epoxy units at 300 K.
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Figure 5.87: Variation of Exx with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 30% epoxy units at 300 K.
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Figure 5.88: Variation of Ezz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 30% epoxy units at 300 K.
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Figure 5.89: Variation of Gxz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 30% epoxy units at 300 K.
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Figure 5.90: Variation of νxy with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 30% epoxy units at 300 K.
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Figure 5.91: Variation of νxz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 30% epoxy units at 300 K.
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5.4.3 60% Epoxy Units
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Figure 5.92: Variation of Exx with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 60% epoxy units at 300 K.
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Figure 5.93: Variation of Ezz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 60% epoxy units at 300 K.
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Figure 5.94: Variation of Gxz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 60% epoxy units at 300 K.
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Figure 5.95: Variation of νxy with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 60% epoxy units at 300 K.
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Figure 5.96: Variation of νxz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 60% epoxy units at 300 K.
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Figure 5.97: Variation of Exx with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 90% epoxy units at 300 K.
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Figure 5.98: Variation of Ezz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 90% epoxy units at 300 K.
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Figure 5.99: Variation of Gxz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 90% epoxy units at 300 K.
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Figure 5.100: Variation of νxy with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 90% epoxy units at 300 K.

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
z
z

(G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

3

3.2

3.4

3.6

3.8

4

4.2

E
z
z

(G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

E
z
z

(G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

2.8

2.85

2.9

2.95

3

3.05

E
z
z

(G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.1

1.2

1.3

1.4

1.5

1.6

G
x
z

(G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

G
x
z

(G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1

1.05

1.1

1.15

1.2

1.25

G
x
z

(G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

1.04

1.05

1.06

1.07

1.08

1.09

1.1

G
x
z

(G
P

a
)

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

ν
x
y

pristine SWNT (11 units)

pristine SWNT (13 units)

pristine SWNT (infinite)

functionalized SWNT (11 units)

functionalized SWNT (13 units)

functionalized SWNT (infinite)

neat epoxy

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

ν
x
y

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

ν
x
y

pristine SWNT (11 units)

pristine SWNT (13 units)

pristine SWNT (infinite)

functionalized SWNT (11 units)

functionalized SWNT (13 units)

functionalized SWNT (infinite)

neat epoxy

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.34

0.36

0.38

0.4

0.42

0.44

0.46

ν
x
y

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

ν
x
y

pristine SWNT (11 units)

pristine SWNT (13 units)

pristine SWNT (infinite)

functionalized SWNT (11 units)

functionalized SWNT (13 units)

functionalized SWNT (infinite)

neat epoxy

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ν
x
z pristine SWNT (11 units)

pristine SWNT (13 units)

pristine SWNT (infinite)

functionalized SWNT (11 units)

functionalized SWNT (13 units)

functionalized SWNT (infinite)

neat epoxy

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

ν
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ν
x
z

pristine SWNT (11 units)

pristine SWNT (13 units)

pristine SWNT (infinite)

functionalized SWNT (11 units)

functionalized SWNT (13 units)

functionalized SWNT (infinite)

neat epoxy

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

ν
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ν
x
z

pristine SWNT (11 units)

pristine SWNT (13 units)

pristine SWNT (infinite)

functionalized SWNT (11 units)

functionalized SWNT (13 units)

functionalized SWNT (infinite)

neat epoxy

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.34

0.35

0.36

0.37

0.38

0.39

0.4

ν
x
z

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.25

0.3

0.35

0.4

ν
x
z

pristine SWNT (11 units)

pristine SWNT (13 units)

pristine SWNT (infinite)

functionalized SWNT (11 units)

functionalized SWNT (13 units)

functionalized SWNT (infinite)

neat epoxy

0 10 20 30 40 50 60 70 80 90 100

Percent of SWNTs aligned in z-direction

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

ν
x
z

Figure 5.101: Variation of νxz with respect to % of SWNT alignment in the z-direction for
a. all and b. discontinuous nanocomposite systems studied for 90% epoxy units at 300 K.

5.5 Conclusions

In this Chapter, aligned nanotube results were considered for the various nanocompos-
ite systems at variable amounts of neat epoxy units. The Finite Element and ODF-based
multiscale methods were used to generate the results. The Finite Element model was per-
formed by assigning the elemental stiffness matrices elastic properties from MD SWNT-
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epoxy nanocomposite lattices at a desired orientation, or of neat epoxy. This directly led
to solutions where the percentage of alignment and volume fraction of SWNT could be
controlled. The ODF method was used to generate macroscopic upper and lower bound
results via the Voigt and Reuss models for systems with fully aligned SWNTs, fully ran-
dom SWNTs, and systems where a desired percentage of nanotubes are aligned and the
rest are random. These systems all contain the same volume fraction of SWNT as the MD
SWNT-epoxy lattice, and to vary the volume fraction rules of mixtures approaches were
employed. In the two-phase model, the upper bound and lower bound stiffness matrices
calculated via the ODF for a desired amount of alignment are used in conjunction with the
parallel and series rule of mixtures approaches to obtain upper and lower bound stiffness
matrices for various amounts of alignment and various volume fractions of SWNTs. In the
three-phase model, the calculation of new stiffness matrices for a given amount of align-
ment was unnecessary, and rule of mixture approaches were applied to the fully aligned and
fully random nanocomposites via the ODF model, along with neat epoxy. This leads to five
total model results, though it was shown the 2-phase and 3-phase are essentially equivalent
for the special case of only one preferential orientation.

Section 5.3 outlined how the various multiscale models compare for the different nanocom-
posite systems. In general, the Finite Element model was well bounded by the ODF model.
Section 5.4 showed how the results for the various nanocomposite systems compare for
a given method, where the Finite Element model was selected. This model was chosen
because it almost always lied within the bounds of the ODF model. The elastic properties
were compared at various amounts of epoxy units at 300 K and 1 atm. Functionalization
led to larger improvements relative to neat epoxy for Exx at a given SWNT length due to
the fact that even for high amounts of SWNT alignment in the z-direction, the nanotube
still effects the direction transverse to it due to covalent bonding. For Ezz, despite dete-
rioration in inherent SWNT stiffness due to functionalization, the functionalized, infinite
system showed greater values than the pristine system except at very high percentages of
alignment. This shows that the improvements due to functionalization of the non-aligned
tubes often outweigh the deterioration of the nanotube properties. For the discontinuous
systems: the pristine systems gave higher values of Ezz. The discontinuous, functionalized
system with 11 repeat units displayed a decreasing Ezz with increasing alignment, telling
that functionalization on a very short nanotube can have negative effects on the SWNT’s
stiffness and contribution to the composite; and indeed the direction perpendicular to the
nanotube saw greater stiffness improvements due to its covalent bonds to the SWNT than
the direction the nanotube was actually aligned.

For the infinite systems, increasing amounts of alignment in the z-direction will cause
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a decreased shear modulus Gxz. Covalent bonding led to improvements in Gxz, where
even in a fully aligned case all directions showed improved stiffness compared to neat
epoxy. There were only minor change in Gxz for various alignments for the discontinu-
ous systems, because there is a much less dramatic difference in the stiffness between the
nanotube direction and the directions perpendicular to the nanotube. All of the systems
show increasing νxy, and decreasing νxz with increasing alignment. Less nanotubes in the
plane of isotropy, leads to more contraction in the plane of isotropy when loaded in that
direction, and less contraction in the z-direction. The pristine systems show higher magni-
tude of νxy than the functionalized systems, since the functionalization allowed stiffness of
the nanotube to be imparted in the plane of isotropy even with increasing alignment. The
discontinuous systems showed a much lesser effect of νxz than the infinite systems, since
the stiffness increase along the SWNT direction was significantly lesser.
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CHAPTER 6

Conclusions

6.1 Summary

This dissertation showed results for multiscale modeling techniques of epoxy-SWNT com-
posite. In Chapter 1, the problem was outlined and the relevant computational and experi-
mental literature was reviewed. The main body of the thesis was divided into four sections:
atomistic modeling for thermomechanical properties, atomistic modeling for thermal con-
ductivity, multiscale modeling for elastic properties of random SWNT-epoxy nanocompos-
ites, and multiscale modeling for elastic properties of aligned SWNT-epoxy nanocompos-
ites.

Chapters 2 and 3 focus on Molecular Dynamics modeling of epoxy-based nanocompos-
ites with continuous and discontinuous nanotubes. Continuous nanotubes span the entire
MD lattice and therefore become infinite with the application of periodic boundary con-
ditions. The epoxy model was built using a ‘dendrimeric’ approach that was verified by
matching the experimental density, glass transition temperature, and thermal expansion.
In Chapter 2, MD was used to analyze the thermomechanical properties of pristine and
functionalized SWNT-epoxy nanocomposites. In Chapter 3, thermal conductivity of func-
tionalized and pristine SWNT-epoxy nanocomposites was investigated using MD via the
Green-Kubo integral of the heat current auto correlation function. In epoxies, there are
long range interatomic interactions due to electrostatic forces, and this was modeled via
a k-space approach. The discontinuous nanotube systems allowed the end effects to be
investigated.

Chapters 4 and 5 focused on multiscale modeling for the elastic properties of the
SWNT-epoxy nanocomposites. Two multiscale approaches were implemented: a Finite
Element based approach, and an orientation distribution function based approach. The Fi-
nite Element approach probabilistically assigned elements with the elastic properties of a
SWNT-epoxy nanocomposite from Chapter 2 at a given orientation, or the elastic proper-
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ties of neat epoxy, depending on the desired volume fraction and alignment of the SWNTs.
For the ODF-based method, ODFs for randomly oriented through fully aligned composites
were generated, accounting for symmetry. Using results of Chapter 2 in conjunction with
stiffness and compliance based approaches, upper bounds and lower bounds for the macro-
scopic stiffness matrices were obtained. In order to vary the volume fraction of SWNT,
rule of mixtures approaches were implemented. Nanocomposites with randomly oriented
nanotubes, creating an equivalent isotropic system, were investigated in Chapter 4. Chapter
5 focuses on the effects of SWNT alignment on the mechanical properties.

6.2 Concluding Remarks

From the MD results, the addition of SWNTs to epoxy led to large improvements in stiff-
ness for the continuous nanotube systems, up to 200% for randomly oriented nanotubes,
and more moderate improvements for the discontinuous systems. Large reductions in ther-
mal expansion were seen, up to 32%, that were able to be experimentally verified. For the
short nanotubes investigated, functionalization provided greater improvement in overall
composite thermal conductivity than pristine nanotubes. For the long nanotubes investi-
gated, the massive increase in the thermal conductivity along the tube boosted composite
conductivity much greater than the added improvements in the plane perpendicular to the
nanotube due to functionalization when considering deterioration of the inherent tube con-
ductivity. The simulations demonstrated there is a SWNT length threshold where the best
improvement for a composite system with randomly oriented nanotubes would transition
from functionalized SWNTs to pristine SWNTs.

From the multiscale modeling results for equivalently isotropic systems; for all volume
fractions of neat epoxy units, the systems where the nanotube spans the MD cell demon-
strated the highest stiffness and least amount of lateral contraction from 1-350 K. For both
the continuous and discontinuous systems, functionalized SWNTs showed higher stiffness
than the pristine SWNTs, suggesting that functionalization of SWNTs improves the elas-
tic properties regardless of nanotube length. From the aligned nanotube results yielding
transversely isotropic results; despite deterioration in inherent SWNT stiffness due to func-
tionalization, the functionalized, infinite system displayed greater values for Ezz than the
pristine system except at very high percentages of alignment. This demonstrated that the
improvements due to functionalization of the non-aligned tubes often outweigh the deterio-
ration of the intrinsic nanotube stiffness. The discontinuous, functionalized system with 11
repeat units gave a decreasing Ezz, telling that functionalization on a very short nanotube
can have negative effects on the SWNT’s stiffness and its contribution to the composite;
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and indeed the direction perpendicular to the nanotube saw greater stiffness improvements
due to its covalent bonds to the SWNT than the direction the nanotube was actually aligned.

6.3 Future Work

The modeling techniques used are physics based, and therefore several future directions
exist to extend the work to a number of systems of interest:

• Cure Conversion: The degree of curing has been shown to have large effects on the
thermal, tensile, and fracture properties of epoxies [156,157]. CNTs, especially those
that have undergone surface modification, have been shown to alter curing behavior
[158]. Therefore, it is important to model these effects for increased accuracy and
improved generality for CNT-epoxy nanocomposites.

• Degree of Functionalization and Bond Distribution: Experimentally, techniques
have been developed to increase the degree of functionalization to overcome the in-
solubility of CNTs [159]. It has been shown in this thesis that functionalization has
counteracting effects on the macroscopic thermomechanical properties by degrading
the inherent tube stiffness and conductivity, but increasing that of the surrounding
polymer. Expanding the current models to study the effects of the degree of func-
tionalization and the covalent bond distribution will allow the optimum values to be
found.

• Effects of Varying the Diameter, Chirality, Number of Walls, and Ends of the
CNTs: CNTs come in many different forms, and each can have vastly different ther-
momechanical properties. Parameters that can be changed include: the number of
walls of the CNT, the diameter of the tube, the chirality, or the chiral angle between
hexagons and the tube axis, and the geometry of the ends (i.e nanotubes with and
without capped ends). For example, chirality has a massive effect on the band-gap
SWNTs, even with identical diameters [160]. The SWNT length was shown in this
thesis to have large effects on the thermomechanical properties. To improve the
generality of the model and optimize for a variety of different applications, a larger
variety of CNTs should be considered.

• Inclusion of Various Nanofillers: There have been numerous studies on other types
of nanofillers to improve mechanical, electrical and thermal properties; such as buck-
yballs, graphene, metal nanopaticles, clay nanoplatelets, ect. [161]. Some of these
fillers may lead to more desirable results than CNTs for certain applications.
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• Effects of CNT bundling: SWNTs form bundles during their production, and it can
be hard to achieve uniform dispersion of nanotubes since they are attracted to each
other by weak van der Waals forces [162]. Using the ODF model, bundles CNTs
can be considered by dictating multiple preferential CNT orientations representing
bundles.

Applying the experimentally verified techniques used in this dissertation to various nanocom-
posite systems can allow materials to be designed and tailored to specific applications with-
out having to run physical experiments.
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