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ABSTRACT 

Teaching requires both knowing and doing. This dissertation helps bridge between 

research on teacher knowledge and research on teaching practice by conceptualizing the ways in 

which teachers draw on their knowledge when enacting specific teaching practices. Recent 

research on mathematical knowledge for teaching has specified different domains of teachers’ 

knowledge, but has focused less on how teachers use what they know in teaching. Similarly, 

several teaching practices have been found to matter for student learning, yet researchers have 

not adequately delved into the knowledge and work entailed in carrying out these practices.  

To investigate teachers’ knowledge use in practice, this study of eight Algebra II teachers 

focused on the content of rational expressions and equations and two foundational practices in 

mathematics teaching – selecting examples and explaining. Data were collected through 

classroom observations and interviews simulating the two teaching practices. Analyses probed 

the knowledge used in enacting each practice.  

One finding of this study is a description of components of the practice of selecting 

examples and the knowledge teachers draw on in enacting them. For instance, teachers sequence 

examples and draw on nuanced understandings of differences across a set of mathematical 

examples. Second, different categories of explanations were seen and teachers’ knowledge use 

varied by explanation type. Third, across both practices, the knowledge teachers drew on when 

enacting the practices was associated with differences in how teachers enacted the practice. For 

example, teachers drew on a broader range of knowledge types when giving mathematical 

reasoning explanations than when giving procedural explanations. The research also shows the 
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complexity of knowledge use when enacting teaching practices. For example, during a single 

explanation, one teacher drew on common and specialized content knowledge, knowledge of 

content and students, and pedagogical knowledge. 

The findings contribute to theoretical understandings of how teachers use knowledge in 

teaching by conceptualizing the ways in which teachers draw on their mathematical knowledge 

for teaching when enacting specific teaching practices. For instance, they better specify types of 

specialized content knowledge used in practice. This work also has implications for mathematics 

teacher education and the methods used to study teacher knowledge in practice. 
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CHAPTER 1: INTRODUCTION 
 
I begin this dissertation with a vignette from a mathematics classroom to highlight the 

intertwined knowledge and practice demands of teaching. In particular, I focus on the crucial 

work of selecting and using examples and of explaining mathematical ideas and procedures. The 

following episode comes from Mr. Baker’s Algebra II class. Mr. Baker is in the middle of a unit 

on rational expressions and equations. In the current lesson, he is introducing ways to simplify 

rational expressions. During the previous two lessons, Mr. Baker has discussed approaches to 

graphing rational equations with his students. Later in the unit, the class will cover adding and 

subtracting rational expressions, solving rational equations, and rational inequalities.  

Inside the Everyday Work of Teaching Mathematics 

After having students graph a rational equation in groups and working through several 

problems from the homework, Mr. Baker tells students, “You’ve done this before”. He then 

displays the fraction 2+3
2+5

 on a PowerPoint slide. Mr. Baker has chosen to introduce the new 

material with a simple and familiar example. “Let’s consider this good old-fashioned fraction. 2 

plus 3 over 2 plus 5. What is this?” he asks. When he hears the correct answer of five sevenths 

from students, the answer is added on the board 2+3
2+5

=
5
7

. Mr. Baker responds, Five sevenths? 

Okay, maybe we need to slow down a bit. So let's look at this and you'll notice we have some 2s 

in common. If we reduce those 2s, what are we going to get?” As he asks this, his PowerPoint 

shows the fraction a second time and with the click of a button, slashes appear crossing out both 

of the 2s. At this point, he chooses to emphasize that “when we reduce we are dividing, we are 
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not cancelling. I'm not getting rid of the 2s and making them 0s. I'm dividing and making them 

1s.” Above and below the crossed out 2s, 1s appear on the PowerPoint. When students answer 

that they get “four sixths,” Mr. Baker asks if the two fractions are equivalent and establishes 

that because they are not equivalent, they are “not allowed” to reduce the 2s in this case.  

Choosing this simple example, which is familiar to students, enables Mr. Baker to explain 

a complex idea to students in a way that makes the new idea seem less complex. In particular, 

students might know that they cannot reduce the 2s in the first fraction, but by clearly 

demonstrating this mistake, they might see in a little more detail why this is an error. Further, 

students can remember a concrete example of the problems that arise when common terms in a 

fraction are incorrectly reduced.  

To use this example, Mr. Baker might be drawing on knowledge of students’ prior 

experiences with fractions. He might be using his own knowledge of the connections between 

fractions and rational expressions to connect a common error students make when simplifying 

rational expressions to a simpler fraction problem, where the error is more obvious to students. 

He might also be drawing on knowledge of the importance of showing errors to students to 

prevent them from happening in the future.  

Mr. Baker goes through a similar process with the fraction 2×3
2×5

, getting 6
10

 for the 

unreduced fraction and 3
5

 for the reduced fraction. Because the two fractions are equal, the 

class decides they are allowed to divide the numerator and denominator by 2. At this point, Mr. 

Baker introduces the definition of factors. “What are factors? Things that you multiply. And 

things being a very mathematical term. We love things, right? But I like to just say things 

because they're things. What are things? They could be numbers. They could be variables. They 
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could be polynomials. They could be matrices. They could be things. If you multiply them, they're 

factors.” 

A student jokingly asks, “What about water bottles?”  

Mr. Baker’s response emphasizes the importance of multiplication in his definition, “if 

you multiply water bottles, they’re factors.” Mr. Baker’s lesson continues with a definition of 

terms and a discussion of what it means to simplify. He goes on to use several additional 

examples in the lesson, starting with x
2 − 2x
x − 2

 and 2x
2 −18

3− 2x − x2
. (Mr. Baker 3-27-15)   

As with the first problem he used, Mr. Baker has selected a simple example that is 

familiar to students. In doing so, he is able to demonstrate simplifying a rational expression by 

reducing common factors. He is also sequencing problems to increase in mathematical 

complexity, from a simple fraction problem, to a rational expression that requires factoring out a 

greatest common factor, to a rational expression that requires more complex factoring of 

quadratics. 

In this part of his lesson, Mr. Baker might again be using knowledge of students’ prior 

experiences with fractions. When giving his definition of factors, he might be drawing on 

knowledge of different types of mathematical objects, such as matrices, functions, and numbers 

and the properties and structure they share. Mr. Baker might also be drawing on pedagogical 

knowledge of the importance of giving students a range of mathematical cases for which a 

definition holds.  

What Mr. Baker is doing in this vignette is common across the practice of teaching 

mathematics. Mathematics teachers are always choosing and using examples; they are also 

always explaining or supporting students to explain. Examples and explanations can be seen to 

be the bread and butter of teaching mathematics. As can be seen in this brief glimpse of Mr. 
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Baker’s lesson, there is much more to selecting an example and giving an explanation than might 

appear on the surface. In particular, being aware of the underlying goal can help teachers be 

strategic both in their selection of examples and in how they give explanations. The examples 

teachers select and how they explain mathematical concepts and procedures facilitate student 

learning. Selecting examples and giving explanations are thus key aspects of the work teachers 

do to help students develop deeper understanding of the content. 

In addition to highlighting the work of teaching mathematics, this brief episode also 

underscores how much teaching depends on knowing. Mr. Baker has to draw on a range of 

knowledge, including knowing what factors are, and knowing about students’ prior experiences 

with fractions. In teaching, what teachers do relies on what they know. Teachers draw on 

knowledge of students when selecting examples that are appropriate for their students based on 

their prior mathematics learning. When giving an explanation, they rely on their knowledge of 

important mathematics concepts and common student misconceptions to decide what to 

emphasize. In short, what teachers know and how they know and use it is integral to the work of 

teaching. 

Background 

As the vignette demonstrates, teaching is knowledge-intensive work. What teachers do in 

the classroom engages them in challenges whose management depends on what they know and 

how they think about the content (Schoenfeld, 2010). Overall in teaching, teachers are likely 

drawing on a range of knowledge types, including knowledge of content, knowledge of 

pedagogy, knowledge of students, and pedagogical content knowledge (Ball & Bass, 2003; Ball, 

Thames, & Phelps, 2008; Shulman, 1986). For example, when selecting examples, teachers use 

knowledge when they consider what they want an example to demonstrate mathematically and 
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how a set of examples will demonstrate the important features of a mathematical concept or 

procedure. They might also consider how accessible the example is for students based on their 

prior knowledge, as well as how the example will be implemented during instruction. When 

giving an explanation, a teacher likely uses knowledge of key mathematical ideas in the lesson 

and connections between mathematical ideas, including those with which students are already 

familiar or will learn in the future. For example, when explaining slope, a teacher might consider 

students’ prior experiences with the coordinate plane; connections between slope, the coordinate 

plane, and variables; and the types of situations in which students will be asked to apply the 

concept of slope. Further, in adjusting an explanation in the moment based on students’ 

responses and questions, teachers are likely drawing on knowledge of student thinking and 

nuanced understandings of the mathematics.  

However, we do not know much about how teachers draw on different kinds of 

understanding when enacting particular teaching practices, such as selecting examples and giving 

explanations, and how they are using different kinds of understanding to carry out the practice. 

Given that teaching is knowledge-intensive as well as relational and contingent work (Lampert, 

2001), part of understanding the work of teaching is to see how teachers draw on knowledge 

when enacting particular teaching practices. Knowing more about the work of teaching, can 

position teacher educators to better prepare teachers with the knowledge and skills needed to 

enact different teaching practices.  

There have been strong efforts over the past three decades to better understand teacher 

knowledge. Beginning with Shulman’s (1986) proposal of a broader knowledge base for 

teaching, which shifted the focus of the field towards subject-specific pedagogical knowledge, 

researchers have sought to investigate the knowledge needed for teaching particular subject 
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matter areas. This broader knowledge base is important, but what is perhaps even more important 

is how teachers use their knowledge in teaching. Knowledge is only of value if it is both usable 

and used. In particular, teachers’ knowledge can only impact student learning if teachers actually 

use this knowledge in teaching. For example, as a mathematics student, I could easily factor 

complex polynomials. However, that knowledge by itself would not have enabled me to teach 

high school students to factor quadratics. In my methods course, I learned about the importance 

of using a range of examples for a particular topic. However, knowing to selecting a range of 

examples, without selecting them with a particular purpose in mind, would not have supported 

my students’ learning. Rather, in my own teaching, when I taught students to factor quadratics, I 

drew on a range of knowledge. This included knowledge of students’ prior experiences with 

greatest common factors and the distributive property, as well as a nuanced understanding of 

how to describe the patterns I looked for when I factored a problem. Only when I drew on this 

deeper knowledge of what students’ knew and of how to decompose my own knowledge could I 

explain this content to my students. This example underscores the importance of teachers’ broad 

and nuanced knowledge in teaching and how they must draw on it in practice. 

Despite increasing clarity about teacher knowledge, little is known about what teachers 

draw on and how they use what they know in teaching.  This dissertation investigates how 

teachers use knowledge when enacting two teaching practices, selecting examples and giving 

explanations.  

These two practices were chosen to study how teachers use knowledge in teaching 

because they enable teachers to take their knowledge and convert it into something that can be 

communicated with students who do not yet understand the mathematics. For instance, when 

teachers select examples, their mathematical understanding is used to choose problems that can 
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convey particular mathematical ideas. They are also likely drawing on understandings about 

teaching, learning, and students. Similarly, in giving an explanation, teachers are directly 

communicating their mathematics knowledge to students. Because these two practices are 

instances of teaching that require teachers to use their knowledge, they are therefore opportune 

sites for investigating how teachers draw on their knowledge in teaching. They are also 

important practices in mathematics teaching. 

Explanations and examples are foundational to the teaching of mathematics. They are 

ubiquitous. As teachers create access to mathematical content and practice, they explain ideas, 

they show how to carry out procedures, and they model and name. Teachers choose examples to 

begin a lesson and they come up with others in the course of lessons. Teachers’ explanations 

convey the meaning and importance of mathematical ideas (Leinhardt, 2010). Examples, chosen 

to make visible key features of a concept or procedure, or unpack an idea, can –– when selected 

and used well –– help make content more accessible (Leinhardt, 2001). During instruction, 

teachers also elicit explanations from students and support them in learning to construct and 

critique them. In this sense, explanations are also a part of mathematical practice. 

Examples are an integral part of mathematics teaching because teachers illustrate 

concepts or procedures in order to help students see their meaning. Examples are used on a daily 

basis to teach, practice, and reinforce concepts and procedures. For instance, a teacher might 

show several linear equations when introducing the concept of slope. Examples might be 

selected for a range of purposes, including to reinforce general cases of a concept, or to 

demonstrate exceptional mathematical cases for which students need to think differently about a 

problem than they would about other related problems. Examples might be sequenced to increase 

in complexity or to present a range of problem types to students. Given the impact examples can 
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have on the content that is taught, the teaching practice of selecting examples is a critical 

component of mathematics teaching.  

Like examples, explanations are embedded in the daily work of a mathematics classroom. 

In high school mathematics classrooms, 95% of teachers explain mathematical ideas to their 

whole class at least once each week (Banilower et al., 2013). Teachers give explanations when 

introducing a new concept (e.g. what slope is), solving a problem (e.g. how to finding the slope 

of a line), or remediating a student’s misconception (e.g. confusing the x and y coordinates in the 

slope formula). Explanations must be mathematically accurate, presented at a level that students 

can understand, and anticipate or respond to student conceptions, misconceptions, and responses. 

Due to these requirements for explanations, the teaching practice of giving explanations is 

another critical component of mathematics teaching.  

Both teaching practices of selecting examples and giving explanations involve advance 

planning but both must also be responsive to interactions with students during class. These two 

practices overlap in teaching in that examples are a necessary part of teachers’ explanations of 

mathematics. Mathematical ideas must be exemplified in some way in order to be shared with 

students. For example, the concept of slope holds little meaning without concrete examples such 

as graphs, equations, or mountains. Further, these examples must be explained to make clear the 

important features of the mathematical object a teacher is exemplifying (Leinhardt, 2001). A key 

difference between the two practices of selecting examples and giving explanations is that 

explanations involve a sort of improvisation in that they happen in the moment and must also be 

responsive and adapt to student responses as they occur. Although a teacher may select an 

example mid class in response to student understanding, once selected, the example itself is not 

an improvisation.  
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Despite their centrality in mathematics teaching, much remains unspecified and tacit 

about the two practices of selecting examples and giving explanations. Each is used frequently, 

for a range of purposes, and must be thoughtfully carried out to be effective. A good explanation 

does not happen by chance; instead, it is deliberate on the part of the teacher (Leinhardt, 2010). 

This further supports the notion that mathematics teaching is skillful work (Ball & Forzani, 

2009). However, we do not know what is involved in carrying out the practices of selecting 

examples of giving explanations. Given that teaching is skillful deliberate and knowledgeable 

work, a better understanding of these two practices and the knowledge used in enacting them is 

important. In particular, if the work involved and the knowledge used in selecting examples and 

giving explanations are more clearly specified, teachers can be better prepared to give effective 

explanations and select appropriate examples. This dissertation aims to extend research on these 

two teaching practices by better specifying what they entail. Further, it aims to extend research 

on teacher knowledge by describing the knowledge teachers draw on when carrying them out. In 

doing so, it also contributes to a better understanding of how teachers use knowledge in practice. 

There has been a great deal of research on mathematics teachers’ knowledge at the 

elementary level (e.g. Ball et al., 2008; Turner & Rowland, 2008). For example, Ball, Thames 

and Phelps’ (2008) mathematical knowledge for teaching outlines several domains of knowledge 

used in teaching. However, there have been considerably fewer studies of secondary 

mathematics teachers’ knowledge (e.g. McCrory, Floden, Ferrini-Mundy, Reckase, & Senk, 

2012). In addition to investigating the knowledge teachers use in enacting particular teaching 

practices, this dissertation contributes specifically to this understanding at the secondary level. 

Compared to elementary mathematics teachers, it is often assumed that secondary mathematics 

teachers possess the mathematics knowledge needed to teach because they have taken several 
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college level mathematics courses. However, research has shown that these teachers can also 

lack important knowledge for teaching (Knuth, 2002). While secondary mathematics teachers do 

often have stronger content knowledge because of the many mathematics courses they take, 

knowledge of mathematics is different than knowledge for teaching mathematics. It is important 

to more clearly define what this knowledge is and how it is used in teaching.  

A study of secondary mathematics teaching could be focused on any number of 

mathematics topics. In this dissertation, I focus on rational expressions and equations. The topic 

of rational expressions and equations was selected because it has several features that may make 

teachers’ knowledge and reasoning more visible than they would be with other topics. First, 

rational expressions and equations involve a range of representations, including algebraic 

expressions and equations, graphing, and word problems. This range of representations is a rich  

territory across which teachers’ knowledge has more opportunity to vary. Second, rational 

expressions and equations is a topic that grows conceptually more complex throughout the high 

school mathematics curriculum and is foundational for later mathematics in calculus. For 

instance, in Algebra I, students are introduced to the concept of asymptotes. Asymptotes are a 

simple example of limits, which are an integral component of calculus. The complexity can be 

mediated both by a teacher’s personal understanding of the topic and the decision to teach it in 

either a more conceptual or more procedural manner. Third, as compared to other topics, rational 

expressions and equations, and its more conceptual aspects in particular, are an area where 

teachers may vary in their own understanding. For example, although describing that division by 

0 is undefined can be given as a rule, understanding why it is undefined requires deeper 

conceptual knowledge. In addition to this, the ability to teach it procedurally or in a way that 

highlights important conceptual understanding provides an interesting space to see how teachers 
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manage the balance between procedural and conceptual teaching. Fourth, due to its challenging 

conceptual nature, rational expressions and equations is a topic students often have trouble 

learning, so it provides opportunities to see how teachers reason around student difficulties. 

Finally, compared to other content areas, such as linear or quadratic equations, there is little 

research on rational expressions and equations. 

Given all of the above, rational expressions and equations is a strategic site for the study 

of how teachers think and reason about content in the context of teaching. It is also a good match 

for the practices of giving explanations and selecting examples. In particular, the conceptual 

complexity requires careful selection of examples and structuring of explanations. There are 

many nuances that can be highlighted through examples and explanations. For example, a 

common student misconception when simplifying rational expressions is that a single term in the 

numerator can reduce with a single term in the denominator. This holds for monomial 

numerators and denominators, however it will not work for more complex rational expressions. 

Finally, the range of representations and levels of complexity allow for a broad range of example 

types and features from which teachers can select examples. 

Study Design 

In summary, this study seeks to explore the complex relationship between mathematical 

knowledge for teaching and classroom teaching practices. It does so by looking at how teachers 

think mathematically in the context of carrying out the teaching practices of selecting examples 

and giving explanations. I have one main research question and four sub-questions: 

• What mathematical knowledge for teaching is entailed by the instructional practices of 

selecting examples and giving explanations? 

1. What kinds of work do teachers do in carrying out these two teaching practices? 



 12 

2. What mathematical knowledge for teaching do teachers draw on in carrying out 

these two teaching practices? 

3. How do teachers use this mathematical knowledge for teaching and reasoning in 

doing this work? 

4. Are there differences across the two practices? How are these differences in 

knowledge and reasoning related to the demands/work of the practices 

themselves? 

To answer these questions, this dissertation considers how Algebra II teachers enact the 

teaching practices of selecting examples and giving explanations and the knowledge they draw 

on in doing so. It is a qualitative case study of eight teachers, which used classroom observations 

and interviews focused on the two teaching practices within the mathematical content of rational 

expressions and equations.  

Contributions of the Study 

In further explicating the knowledge and reasoning mathematics teachers use in the 

practices of selecting examples and giving explanations, this study seeks to contribute to the 

broader knowledge base around teacher knowledge and teaching practices. A better 

understanding of teacher knowledge and practices can help in refining and developing 

frameworks of mathematical knowledge for teaching secondary mathematics, of secondary 

mathematics teaching practices, and of how mathematical knowledge for teaching is entailed in 

mathematics teaching practices.  

In addition to the empirical contributions, this study contributes to methods of studying 

teaching with a focus on how knowledge and practice come together in the activities of teaching. 

It does so by examining teaching across the settings of classroom observations and interviews 
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probing teachers’ knowledge and reasoning. This adds to research that has focused primarily on 

classroom observations. 

This study also stands to inform teacher education. Defining the components of selecting 

examples and giving explanations can facilitate teaching and learning of these practices by pre-

service teachers.  Further, knowing particular types of knowledge needed for carrying out these 

teaching practices and the ways knowledge is used in these practices can inform the way teachers 

are prepared, both in content and methods courses and in classroom placements. Defining the 

knowledge and practices needed for teaching can also allow certification tests to better measure 

the knowledge and practices that actually matter in teaching, leading to more qualified and 

capable teachers entering the field. Similarly, this knowledge might be used to refine 

professional development. 

Organization of the Dissertation 

This dissertation is organized into six chapters. Chapter 1 frames the research problem, 

provides an overview of the study, and outlines this dissertation. In Chapter 2, I review relevant 

literature on mathematics teacher knowledge, teaching practices, selecting examples, giving 

explanations, and rational expressions and equations. The methods of the study are described in 

Chapter 3. Chapters 4 and 5 present the results of my analysis. Chapter 4 presents findings 

related to the practice of selecting examples. In Chapter 5, I present findings related to the 

practice of giving explanations, looking at the intersection of practice and knowledge use, across 

both the interviews and classroom observations. Finally, in Chapter 6, I look across the practices 

to consider implications of the study and directions for future research.  
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

Knowledge and practice are inextricably intertwined. Yet, there are many challenges in 

studying them simultaneously and in conceptualizing the interplay between them. In this 

dissertation, I aim to better understand how mathematics teachers use knowledge in practice. To 

that aim, in this chapter I review what is known about mathematics teacher knowledge and about 

teaching practice. By “what is known,” I mean the ways in which knowledge and practice have 

been investigated, as well as what has been learned from this work.  

I begin with mathematics teacher knowledge and review how it has been conceptualized 

and studied, what is “known” about teacher knowledge as a result of this work, and what remains 

unknown. Next, I take a similar look at teaching practice, reviewing its conceptualization, 

research findings, and remaining questions. In this section, I also discuss the two focal practices 

of my study, selecting examples and giving explanations. Finally, I conclude this chapter by 

reviewing the content area my study focuses on, rational expressions and equations. 

Mathematics Teacher Knowledge 

Although it is accepted in the field that teacher knowledge matters for student learning, 

proof of this connection has been elusive. Much of the early work connecting teachers to student 

learning investigated teachers’ degrees, number of mathematics courses taken, and other proxy 

measures of knowledge. Overall, there was no consistent relationship between these measures of 

knowledge and student learning. More recent work puts this research into greater perspective. In 

particular, there have been important distinctions made about the types of knowledge teachers 
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use in teaching and the mathematical knowledge learned in advanced mathematics courses. This 

early work was focused on mathematics knowledge and not on the mathematics knowledge used 

in teaching.  

In his AERA presidential address, Shulman proposed a broader knowledge base for 

teaching, which was specific to the subject being taught. Within this knowledge base for 

teaching, several domains of knowledge were hypothesized, including three related to content: 

content knowledge, curricular knowledge, and pedagogical content knowledge (PCK). He coined 

the term “pedagogical content knowledge” (PCK) to refer to the “special amalgam of content and 

pedagogy that is uniquely the province of teachers, their own special form of professional 

understanding” (Shulman, 1987, p. 8). Pedagogical content knowledge, which resides at the core 

of expert teaching, is a teacher’s ability to turn content knowledge into pedagogically powerful 

forms that can be adapted to students’ varying abilities, prior knowledge, and backgrounds. 

Within pedagogical content knowledge, Shulman included includes “the ways of representing 

and formulating the subject that make it comprehensible to others” and “the conceptions and 

preconceptions that students of different ages and backgrounds bring with them to the learning of 

those most frequently taught topics and lessons” (1986, p. 9). This proposal of a broader 

knowledge base for teaching, that differed across content areas and included pedagogical content 

knowledge, induced a shift in research of mathematics teachers’ knowledge. His ideas acted as 

an impetus for researchers in education to investigate the knowledge teachers need to teach 

particular subject matter. 

Over the past 20 years, there have been many advances in understanding mathematics 

teacher knowledge. Several of these advances build on Shulman’s conceptualizations of teacher 

knowledge. Compared to early research on teacher knowledge, this more recent research is more 
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closely tied to teaching in that it is focused on knowledge for teaching mathematics, as opposed 

to mathematics knowledge more generally. Even with this more specific focus, the research 

varies greatly with respect to how closely it is tied to practice and how knowledge has been 

conceptualized and studied. In this section, I review several programs of research on 

mathematics teachers’ knowledge. In doing so, I focus on the programs’ conceptualizations of 

knowledge, as well as the methods used in their work, which are greatly influenced by their 

conceptualizations. After reviewing these different programs, I discuss more broadly what has 

been learned from this more instructional view of teacher knowledge and what remains 

unknown. 

How Has Teacher Knowledge Been Studied and Conceptualized? 

Learning Mathematics for Teaching. The Learning Mathematics for Teaching project 

has investigated mathematical knowledge for teaching (MKT), defined as the knowledge needed 

to carry out the work of teaching. Their framework represents the efforts of Ball and colleagues 

to create a practice-based theory of mathematical knowledge for teaching based on Shulman’s 

(1986) conception of pedagogical content knowledge and his initial efforts to define the 

knowledge needed for teaching. A noticeable distinction of this framework from earlier 

frameworks is the domain of specialized content knowledge, mathematical knowledge unique to 

the work of teaching. In investigating the knowledge demands of the tasks of teaching, Ball and 

colleagues found that several tasks of teaching required teachers to use mathematical knowledge 

distinct from knowledge of pedagogy or student thinking.  

The LMT framework hypothesizes six distinct domains of knowledge, organized within 

the larger categories of pedagogical content knowledge and subject matter knowledge. Within 

pedagogical content knowledge are the domains of knowledge of content and students (KCS), 
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knowledge of content and teaching (KCT), and knowledge of content and curriculum. KCS is 

knowledge of students’ conceptions (both correct and incorrect) of mathematics and is used to 

anticipate student thinking while planning instruction and to evaluate errors or the mathematical 

understanding in student work. KCT is the knowledge needed to teach particular content. It 

includes the ways of teaching particular mathematics topics that best enable student learning, 

sequencing of tasks and examples, and how content will be presented. Knowledge of content and 

curriculum (KCC) remains less developed than the other PCK sub-domains, but is thought to 

include knowledge of standards and benchmarks, and sequencing of topics within and across 

grades (Ball & Bass, 2009; Ball et al., 2008). 

Although the categories contained in pedagogical content knowledge are reflective of 

categories earlier hypothesized by Shulman, the LMT work extends beyond Shulman’s initial 

work on subject matter knowledge. Subject matter knowledge encompasses the other three 

subdomains in the LMT framework, Common Content Knowledge (CCK), Specialized Content 

Knowledge (SCK), and Horizon Content Knowledge (HCK). CCK is common to other 

professionals in mathematically intensive fields, where mathematics is used in similar ways to 

how it is used in teaching. Unlike CCK, SCK is unique to teachers. Other mathematics 

professionals use mathematics in a compressed and finalized form, but teachers must be able to 

interpret, understand, and share the uncompressed versions of mathematics knowledge that their 

students are learning and using. To do so, they must decompose their own mathematical 

knowledge. Knowing mathematics in these multiple uncompressed forms and mapping between 

them is a subset of mathematical knowledge unique to teachers and supports the mathematical 

tasks of teaching, including evaluating student work and conceptions (Ball & Bass, 2009; Ball et 

al., 2008).  
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Although CCK is common across others in mathematically intensive fields, using this 

mathematics knowledge may not require an understanding of the structure of mathematics. 

However, in addition to teaching students particular mathematics ideas, teachers introduce 

students to the discipline of mathematics and prepare them for future mathematics learning. To 

do this, teachers must possess knowledge that exists at the mathematical horizon of students’ 

learning. They must know how the mathematics they teach relates to mathematics students have 

learned and will learn in the current course and in courses much later in their education. They 

must also convey disciplinary practices and values to students. This knowledge is all considered 

to be a part of Horizon Content Knowledge (HCK). Ball and Bass (2009) hypothesize that HCK 

consists of four types of knowledge: (1) knowledge of the areas of mathematics surrounding 

current classroom instruction; (2) knowledge of the structure of and major ideas in the discipline 

of mathematics; (3) knowledge of common mathematics practices; and (4) knowledge of 

important mathematical values. HCK is unlikely to be taught to students, but it provides a needed 

perspective for teachers by enabling them to situate the mathematics they are teaching within the 

larger framework of the discipline and students’ future mathematics learning (Ball & Bass, 

2009). 

The LMT project conducted an analysis of the work of teaching by identifying the places 

in teaching where teachers would draw on their knowledge and hypothesizing the knowledge 

teachers might use at those points (Ball & Bass, 2003; Ball et al., 2008). To do so, the group 

relied on an extensive collection of records of teaching practice and the multidisciplinary 

expertise of research group. The group also developed items to assess teachers’ knowledge. The 

items reflected a range of content, tasks of teaching, and hypothesized types of knowledge 

needed to enable student learning. Using quantitative methods, these items were used to better 
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understand the structure of mathematical knowledge for teaching. The results, obtained through 

the use of factor analysis and item response theory, suggested content knowledge varies by 

mathematical domain and different types of knowledge exist, including CCK, SCK, and KCS 

(Hill, Schilling, & Ball, 2004). 

Knowledge for Algebra Teaching. The Knowledge for Algebra Teaching (KAT) 

framework (McCrory et al., 2012) also focuses on how knowledge is used in practice. It is 

unique in that is contains not only types of mathematical content knowledge, but also 

mathematical uses of knowledge in teaching. Within this framework, the work of teaching is 

seen as interactions between types of knowledge and uses of knowledge in teaching around 

particular mathematical content. The mathematical content knowledge dimension consists of 

three categories: Knowledge of School Algebra, Knowledge of Advanced Mathematics, and 

Mathematics-for-Teaching Knowledge. Knowledge of School Algebra contains the content 

typically taught in high school algebra courses (I and II). Mathematical knowledge extending 

beyond school algebra, particularly from college level mathematics courses, is considered 

Knowledge of Advanced Mathematics, which provides teachers with mathematical breadth and 

depth. Unlike the first two categories, Mathematics-for-Teaching Knowledge is mathematical 

knowledge used by teachers that is not used in other mathematically proficient domains. 

Mathematics-for-Teaching Knowledge includes knowing the affordances of each solution 

method for a particular problem and is also used to interpret the mathematics in student work.  

The second dimension of the KAT framework, mathematical uses of knowledge in 

teaching addresses how teachers use mathematical knowledge in ways different than others. In 

particular, using mathematical knowledge in teaching involves the three practices of 

decompressing, trimming, and bridging. Decompressing allows teachers to share sophisticated 
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mathematical ideas with students, who often cannot immediately understand them in their 

complex mathematical forms, by unpacking implicit pieces of knowledge and exposing 

underlying mathematical ideas. For example, a teacher might decompress the many 

interpretations of a word, such as the word solve in the context of the directions of a problem. 

The practice of trimming involves adjusting the level of detail or mathematical rigor to make 

mathematical ideas accessible to students at their given levels of understanding. When trimming, 

teachers must include considerations about maintaining mathematical integrity and avoiding 

simplifications that will lead to future misconceptions. Finally, bridging, involves making 

connections across different areas of mathematics to see the discipline as an integrated, 

connected whole. Teachers bridge between different topics and instructional materials and 

between their advanced mathematical knowledge and the mathematics they teach (McCrory et 

al., 2012).  

In conceptualizing mathematics teacher knowledge, researchers used many artifacts of 

classroom instruction, including textbooks, teacher interviews, and teaching videos. In each 

analysis, the goal was to draw inferences about the knowledge teachers would need to teach 

Algebra based on each of the data sources. The textbook analysis looked for variation in how 

topics were treated across books. The variety showed the importance of teachers’ ability to make 

connections across different representations of the same mathematics. Teacher interviews 

focused on student difficulties in learning algebra and helped discern the ways teachers use 

mathematical knowledge that are unique to teaching. Finally, in the video analysis, researchers 

considered both what the teacher did and what the teacher could have done. They then made 

conjectures about the teacher’s knowledge based on what they decided to do (McCrory et al., 

2012).  
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The Knowledge Quartet. The knowledge quartet presents a different way of looking at 

knowledge use in practice. This framework was developed based on observations of teachers and 

has been used to observe pre-service teachers (Turner & Rowland, 2011). While it was initially 

developed for elementary teachers, the framework has recently been tried at the secondary level 

(Rowland, Jared, & Thwaites, 2011). The framework is used to categorize parts of mathematics 

lessons of specific mathematical content based on teachers’ particular mathematics knowledge 

(Rowland et al., 2011).  

The knowledge quartet is made up of four dimensions of teachers’ knowledge, 

foundation, transformation, connection, and contingency. Foundation includes teachers’ 

mathematical knowledge and understanding, pedagogical theory, and beliefs about mathematics 

as a discipline. Teachers possess foundation knowledge, but may or may not use it in teaching. 

Transformation, the second dimension involves the knowledge used in transforming one's own 

knowledge in ways that will enable students’ learning. This dimension of knowledge is often 

used in choosing examples. The third dimension of the knowledge quartet, connection, involves 

considering coherence and mathematical connections across lessons. It is used in sequencing 

examples and instruction. Finally, the fourth dimension of contingency is knowledge used in 

responding to unexpected events during instruction. The quality of a teacher’s response depends 

on the knowledge available to them (Turner & Rowland, 2011).  

COACTIV. The COACTIV framework assumes CK is a necessary precursor for PCK. 

However, these constructs are distinct and researchers have aimed to determine their individual 

effects on instruction and student achievement. In particular, they hypothesize that the effects of 

PCK and CK on student achievement are mediated by three attributes of instructional quality: the 

cognitive level of classroom activities, the alignment of these activities with the curriculum, and 
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teachers’ support for individual learning. Within this model, CK is conceptualized as knowing 

curricular content at a profound, conceptual level. PCK includes three components: (1) 

“knowledge of mathematical tasks as instructional tools”, which enables teachers to select and 

use tasks in their teaching in ways that are mathematically powerful for students; (2) “knowledge 

of students’ thinking and assessment of understanding”, including common misconceptions and 

strategies; and (3) “knowledge of multiple representations and explanations of mathematical 

problems”, which support students’ construction of mathematical understanding (Baumert et al., 

2010, p. 142). 

Mathematics Teachers’ Specialized Knowledge. A group of researchers at the 

University of Huelva, Spain propose a model of mathematics teachers’ knowledge based on 

challenges they see in Ball et al.’s (2008) MKT framework (Carrillo, Climent, Contreras, & 

Muñoz-Catalán, 2013; Montes, Aguilar, Carrillo, & Muñoz-Catalán, 2013). Their model focuses 

on specialized knowledge unique to mathematics teachers, as opposed to general pedagogical 

knowledge or general mathematical knowledge. This knowledge is called Mathematics 

Teachers’ Specialized Knowledge (MTSK). The framework is not based on classroom 

observations, but instead is a proposed theoretical model that can later be tested in practice 

(Carrillo et al., 2013).  

Within the MTSK framework there are six sub-domains, three each in the areas of subject 

matter knowledge and pedagogical content knowledge. Instead of delineating subject matter 

knowledge categories based the group of people who might possess them, mathematical 

knowledge is categorized by attributes of the knowledge itself. Within subject matter knowledge 

are: (1) Knowledge of topics, including concepts, procedures, and underlying mathematical 

meanings; (2) Knowledge of the structure of mathematics, including the larger structure of 
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mathematical knowledge and concepts in the discipline and structure within concepts, 

connections between ideas related to the same concept and of the same concept across different 

grade levels; and (3) Knowledge about mathematics, which includes the ways of working and 

generating knowledge within the discipline.  

The three topics within pedagogical content knowledge are: (1) Knowledge of features of 

learning mathematics, how students think and react when working on mathematical tasks; (2) 

Knowledge of mathematics teaching, which is used in choosing examples and representations; 

and (3) Knowledge of mathematics learning standards, which include not only knowledge of the 

curriculum a teacher is using and the standards for student learning at each grade level, but also 

the larger standards developed from research and used on national achievement tests (Carrillo et 

al., 2013; Montes et al., 2013). 

Knowledge within a framework of learning to teach. Peressini et al. (2004) use a 

situated perspective to propose a conceptual framework of learning to teach, within which they 

define three domains of teachers’ knowledge, which, they claim, are all intertwined in teaching. 

Their framework includes one category of mathematics content knowledge in addition to the 

category of mathematics specific pedagogy, which they consider to be a refinement of Shulman’s 

PCK. Within this category are selecting mathematical tasks and using mathematical discourse in 

the classroom. The third framework domain is professional identity, which affects how teachers 

view and respond to problems of practice. This category is reflective of the situated perspective 

used in their framework. While the domains of mathematics content knowledge and mathematics 

specific pedagogy are less well-defined than in other, more recent frameworks, the framework’s 

perspective of knowledge as situated provides a useful lens through which to view teacher 

knowledge.  
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Mathematics-for-teaching. Davis and Simmt (2006) focus on mathematics-for-teaching, 

which signals “the distinct character of teachers’ subject matter knowledge” (p. 294). Like Ball 

and Bass (2003), Davis and Simmt believe the mathematical content knowledge needed for 

teaching is “a serious and demanding area of mathematical work” that differs from the 

mathematics their students will learn and further stipulate that much of this knowledge is tacit 

(2006, p. 295). In this sense, they do not focus on the mathematical demands of teachers’ work 

and the multitude of knowledge embedded in practice, like Ball and colleagues do. They instead 

recognize teachers’ practices as “embodied and enacted understandings” of mathematical content 

knowledge (2006, p. 316). Teachers’ practice can therefore be used as a lens to interpret their 

tacit mathematical content knowledge.  

Davis and Simmt ground their research in complexity science, which “prompts attention 

toward several dynamic, co-implicated, and integrated levels […] rather than isolated 

phenomena” (2006, p. 296). In their description of mathematics-for-teaching, they therefore do 

not distinguish between the individual and the collective. Complex systems are represented 

through nested categories. The layers are not easily distinguishable, but the timescale and 

number of participants increase moving from the inner to the outer layers. Davis and Simmt’s 

model of mathematics-for-teaching contains 4 nested layers, where an individual’s subjective 

understanding unfolds within the broader dynamics of classroom collectivity, or shared 

knowledge within a classroom. In a geometry course, these might include standards for reasons 

in proofs. This classroom collectivity is nested in curriculum structures, which is encompassed 

by formal mathematical objects. The inner two layers are both categories of knowing, while the 

outer two layers are categories of knowledge. While knowing can vary across individuals and 

classrooms, knowledge is shared by larger populations and is therefore more stable than 
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knowing. This model is different from others as it does not define particular types of knowledge, 

but rather looks at nested levels of mathematical knowledge and how teachers’ knowledge is 

imbedded within larger organizers of mathematical knowledge, like curriculum, and larger 

mathematical objects defined by the discipline of mathematics. While this model provides a 

perspective on how student and teacher knowledge in the classroom is nested within disciplinary 

knowledge of mathematics, it does not define mathematics teacher knowledge, making it a poor 

fit for research involving items designed to assess teachers’ knowledge. 

A framework of knowledge development. Silverman and Thompson (2008) focus not 

on the knowledge embedded in the work of teaching, but on how this knowledge is developed 

within individual teachers, giving their framework a qualitatively different focus than many of 

the others. Further, they view mathematical knowledge for teaching not as particular pieces of 

knowledge, but rather as an underlying conceptual structure formed by a network of 

mathematical understandings, “that carry through an instructional sequence, that are foundational 

for learning other ideas, and that play into a network of ideas that does significant work in 

students’ reasoning” (P. W. Thompson, 2008, p. 46). The belief underscoring this framework is, 

that for a teacher to be able to develop complex mathematical conceptual structures in her 

students, she must first posses them herself (P. W. Thompson, Carlson, & Silverman, 2007). 

Using this frame, mathematical knowledge for teaching is defined as the knowledge enabling 

teachers to develop these conceptual structures in their students (Silverman & Thompson, 2008). 

In summary, while there are numerous frameworks of mathematics teachers’ knowledge, 

some frameworks contain similar domains of knowledge. Many frameworks often include and 

build on Shulman’s content and pedagogical content knowledge. However, there are differences 

in how different domains of teachers’ knowledge are conceptualized. For example, some of the 
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frameworks describe knowledge based on those who possess and use that knowledge (e.g. 

teachers vs. mathematicians), whereas other frameworks focus on aspects of the knowledge (e.g. 

knowledge about mathematics vs. mathematical facts). The frameworks also vary in the methods 

used to conceptualize them and the degree to which these conceptualizations are practice-based. 

For example, the LMT framework was developed by analyzing occasions in teaching where 

knowledge might be used. The Silverman and Thompson framework is a more theoretical 

conceptualization of knowledge. 

What Has Been Learned About Teacher Knowledge? The many studies of teacher 

knowledge have led to important results. First, many components of teacher knowledge have 

been empirically validated, including CCK, SCK, and KCS (Hill et al., 2004). A later validity 

study using cognitive interviews1 confirmed the distinction between content knowledge (CCK 

and SCK combined) and KCS (Hill, Dean, & Goffney, 2007). Second, mathematical knowledge 

for teaching has been differentiated from knowledge held by mathematicians (Ball, Lubienski, & 

Mewborn, 2001; Hill et al., 2007). A study comparing teachers and mathematicians found that 

while teachers used knowledge of content and students as the main justification on 40.5% of the 

KCS items, mathematicians did so only on 1.8% of the items, and non-teachers on 15.5%, 

indicating that this knowledge is distinctive of teachers (Hill et al., 2007).  

Finally, while it was considered obvious that teacher knowledge matters for student 

learning, until recently this relationship remained unproven. In the past 10 years, teacher 

knowledge has been shown to matter for student learning. Further, this link was made not with 

proxy measures of knowledge, but rather using a measure of teachers’ knowledge (Hill, Rowan, 

                                                
1 In a cognitive interview, participants are asked additional questions while taking a survey to 
ascertain if the survey is being interpreted as intended. Cognitive interviews are recommended as 
a method of understanding how participants understand and answer surveys (Desimone & Le 
Floch, 2004). 
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& Ball, 2005). While mathematical content knowledge, as measured by the MKT items, was 

significantly associated with a higher increase in student achievement, years of teaching 

experience and methods and content courses were not. Additionally, there was only a small 

correlation between math content knowledge and both years of teaching experience and math or 

methods courses taken, indicating that the MKT items may be a better measure of teachers’ 

knowledge that directly impacts student learning (Hill et al., 2005).  

In a study using multilevel structural equation models, the COACTIV group also linked 

teacher’s knowledge to student achievement. To measure teachers’ knowledge, the group 

developed a separate assessment for each of PCK and CK based on findings of earlier factor 

analysis, which indicated two separate constructs within teachers’ knowledge. The PCK 

assessment was open ended and included questions in three dimensions: (1) identifying multiple 

solution paths; (2) recognizing student solution strategies and misconceptions; and (3) 

knowledge of mathematical representations and explanations. The CK assessment was a paper-

based test where all items required mathematical reasoning or proof. Student knowledge was 

assessed using the PISA assessment and test on the standard curriculum. The model also 

included three measures of instruction: (1) the curricular level of tasks, measured by coding 

assignments and assessments the teachers used; (2) a measure of instructional quality based on a 

student rated scale; and (3) classroom management. They found that while teachers’ PCK and 

CK both affect student achievement, PCK has a larger effect. Further, the effects of PCK and CK 

were mediated by attributes of instructional quality. In particular, PCK affects the cognitive level 

of classroom activities, the alignment of these activities with the curriculum, and teachers’ 

support for individual learning. However, CK was only found to have an effect on the curricular 

level of tasks. While it is PCK that has the greater effect on student learning, the model was 
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created with the underlying assumption that CK is a necessary precursor for PCK (Baumert et 

al., 2010). 

Overall, these studies show that teacher knowledge can be measured and is not strongly 

dependent on coursework or experience. This knowledge is different than knowledge possessed 

by other mathematically proficient professionals. Further teacher knowledge contains distinct 

dimensions, both pedagogical and mathematical in nature. Most importantly, teacher knowledge 

does matter for student learning. Having reviewed what the field has learned about teacher 

knowledge, I now discuss what remains to be understood about mathematics teachers’ 

knowledge.  

What Remains Unknown About Mathematics Teachers Knowledge? 

Over the past 25 years, there have been many advances in our understanding of 

mathematics teachers’ knowledge. However, many questions still remain. I focus next on two 

questions that remain about mathematics teachers’ knowledge. First, how do teachers use their 

knowledge in doing the work of teaching? Second, how do teachers learn to use knowledge in 

teaching and how is this knowledge developed over time?  

How do teachers use their knowledge in teaching? While these efforts do take a more 

practice-based approach to studying teacher knowledge, there is still a level of hypothesizing 

distancing them from the knowledge teachers actually use in their classroom teaching. We also 

do not know how teachers use their knowledge in enacting the work of teaching. This is 

particularly true at the secondary level, where there has been less research on mathematics 

teacher knowledge. In this dissertation, I aim not to hypothesize about the knowledge teachers 

might need for the work they are doing, but to look at the knowledge teachers actually use in 
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doing this work. In doing so, I look both at what this knowledge is and how teachers draw on it 

in teaching.  

Looking at teachers’ knowledge from a situated perspective further highlights the 

importance of looking at how teachers use their knowledge in practice. From a situated 

perspective, embedded within knowledge are fundamental links to the situations in which it was 

learned and is used (Brown, Collins, & Duguid, 1989; Greeno, 1997). Further, the embedded 

contexts within tasks can improve the efficiency with which that task is completed if key features 

of the context are constant. For example, mathematicians may immediately determine the 

strategy needed in a proof, yet not able to explain how they knew that particular strategy would 

work. 

Like knowledge and tasks, teaching is situated, in content, students, and classroom 

settings (Greeno, 1998). Putnam and Borko (2000) argue based on Ball’s (1997) claim that 

students’ knowledge is linked to the contexts in which it is learned and used, that teachers’ 

“professional knowledge is developed in context, stored together with characteristic features of 

the classrooms and activities, organized around the tasks that teachers accomplish in classroom 

settings, and accessed for use in similar situations” (Putnam & Borko, 2000, p. 13). In this view, 

teacher knowledge is inextricably linked to the contexts, tasks, and practices of teaching. Further, 

teachers may be better able to use their knowledge for teaching in settings and events that have 

features in common with teaching than in unrelated settings and events. It seems then, that 

teachers’ knowledge is not only situated in particular contexts, but also varies across teaching 

and non-teaching situations. 

Several studies have documented teachers whose enacted mathematical knowledge in 

practice differed from the understanding they displayed in research interviews. Interestingly, 
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there is no consistent pattern to these differences. Some teachers have stronger and broader 

mathematical understanding in classroom contexts than they do in interviews (Hodgen, 2011), 

while others do not use their documented strong mathematical knowledge in the context of 

teaching to provide explanations to students, explicitly connect multiple representations, and 

interpret student work (Borko et al., 1992; Ma, 1999; P. W. Thompson & Thompson, 1994). In 

other cases, teachers may possess different conceptions of a mathematical concept in and out of a 

classroom setting (Peressini et al., 2004). Given the differences in mathematics teachers’ 

knowledge across teaching and non-teaching situations, it is necessary to study teacher 

knowledge as closely to the work of teaching as possible.  

Other unknowns about mathematics teacher knowledge. A second area that remains 

unknown is how teacher knowledge develops and how teachers learn to draw on their knowledge 

while learning to teach. However, understanding this development is contingent on a strong 

conceptualization of what this knowledge is and how teachers enact their knowledge in doing the 

work of teaching.  

In order to investigate how teachers use knowledge in practice, I have chosen to focus on 

specific teaching practices. In the next section, I review research on teaching practices and then 

focus specifically on my chosen practices, selecting examples and giving explanations. 

Teaching Practices 

Lampert (2010) gives four distinct meanings of the word practice that are used in 

education research. First, practice is the opposite of theory. Second, practice is the carrying on of 

a profession, such as the practice of teaching. Third, practicing as rehearsing in preparation for a 

future performance. For example, novice teachers often practice components of a lesson and 

receive feedback before teaching students. Finally, teaching practices are the particular tasks and 
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routines teachers use in carrying out their work. For example, in teacher education there has been 

work on core or high leverage practices, which are considered to be important for beginning 

teachers. It is this final meaning that I draw on in this study. In the next section I discuss the 

ways teaching practices have been conceptualized and studied.  

How Are Practices Studied and Conceptualized? 

 Over the past decade, there has been a renewed interest in practice. The recent 

focus on teaching practice has taken a few different forms. First, there has been a focus in 

teacher education on core or high leverage practices, which have the greatest impact on student 

learning (Ball & Forzani, 2009; Grossman, Hammerness, & McDonald, 2009). The renewed 

interest in practice has also taken a second form, that of research focused on particular types of 

teaching. For example, understanding the work involved in equitable mathematics teaching or 

inquiry based learning, and how these types of teaching require consideration and knowledge of 

mathematics in relation to the specific pedagogy. 

In the first focus on practice, many groups of researchers have curated sets of practices 

that are most important for beginning teachers as they enter their own classrooms. In curating 

these collections of practices, teacher educators and researchers considered both the knowledge 

and practice demands of teaching, particularly for novice teachers. For example, Ball, Sleep, and 

colleagues (Ball, Sleep, Boerst, & Bass, 2009) discuss the criteria they used for selecting high-

leverage practices for mathematics teacher education. They focused on practices that were 

frequently occurring in teaching, enabled important mathematical work, were aimed to helping 

all students learn, and could be used within a variety of instructional approaches. They had other 

considerations due to the context constraints of teacher education, including the accessibility of 

the practices for novices at their current and future ability levels, in both teacher education 
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courses and field placements, and the ability of the practice to be teachable. From this work, and 

others, lists of practices have been created. A few of these practices are leading a group 

discussion, explaining and modeling content, practices, and strategies and learning about 

student understanding (Ball et al., 2009; Grossman et al., 2009). In addition to curating these sets 

of practices, much of this work has also considered how novices can be taught these practices 

(Ball et al., 2009; Grossman et al., 2009). In science, researchers have shown that novices are 

able to enact these practices as they become beginning teachers (J. Thompson, Windschitl, & 

Braaten, 2013). 

In the second focus on teaching practices, researchers have investigated the impact of 

particular practices. Research has shown that particular practices do matter for student learning. 

Some of these practices include cognitively guided instruction (Carpenter & Fennema, 1992), 

eliciting and interpreting student thinking (Sleep & Boerst, 2012), and particular classroom 

discourse practices (Hiebert & Wearne, 1993; O’Connor, 1998; Sherin, 2002). Other lines of 

research have shown that collections of practices matter (e.g. Grossman et al., 2010). While there 

is research on a few specific teaching practices that have been shown to matter for student 

learning, overall teaching practices are under researched. In the next section, I discuss some of 

the areas where the field still lacks understanding around teaching practices. 

What Remains Unknown About Teaching Practice? 

Given the progress that has been made on teaching practice research, there are several 

important directions for future work. First, although different lists of core or high-leverage 

practices have been developed, we do not know which of these practices matter most for student 

learning. Second, for many of the practices, the components have not been identified empirically 

and it is unknown if particular components are more or less important for the practice to be 
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successful. Finally, the field lacks understanding of how teachers use knowledge in enacting 

these practices.  

First, there have been several efforts to delineate lists of core or high-leverage practices 

and to focus in on a few specific practices. These efforts have identified several practices that are 

important for mathematics instruction and many other practices that are thought to be important. 

These lists range in length, and while some practices overlap, there are also differences across 

the lists. Across these lists, we lack an understanding of which practices are most important, both 

for novices learning to teach and for student learning. More careful study of the individual 

practices is needed to better understand how they matter in mathematics teaching. 

Second, there are many teaching practices that are important for student learning, yet we 

are only beginning to understand the components of a few of these practices. A better 

understanding of the components of teaching practices is important not because the pieces matter 

by themselves, but because understanding the pieces enables greater understanding of the 

practice as a whole. Further, it will allow for greater emphasis on the most important components 

in teacher education.  

A third area of teaching practice that remains understudied is how teachers draw on 

knowledge when they enact teaching practices. Given that teachers’ knowledge matters for 

student learning, and instruction also matters, research is needed to understand how teachers use 

knowledge in enacting particular teaching practices.  

This dissertation investigates two specific teaching practices, selecting examples and 

giving explanations. In the next section I review what is known about each of these two 

practices.  
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Selecting Examples 

Examples are a critical component of mathematics instruction. In mathematics 

classrooms they are used on a daily basis to teach, practice, and reinforce concepts and 

procedures. Examples serve and can be selected for a range of purposes, such as to reinforce 

general cases of a concept, or to demonstrate exceptional mathematical cases, where students 

need to think differently about the problem than they would about other related problems. They 

can be sequenced to increase in complexity or to present a range of problem types to students. 

Examples are specific cases of mathematics concepts and procedures, from which 

students can build a general understanding (Watson & Mason, 2002). In addition to conceptual 

and procedural examples, examples can also be used for application and reinforcement of 

underlying ideas (Mohamed & Sulaiman, 2010). “For learning to occur, several examples are 

needed, not just one; the examples need to encapsulate a range of critical features; and the 

examples need to be unpacked, with the features that make them an example clearly identified” 

(Leinhardt, 2001, p. 347). Selecting examples to meet all of these criteria is a complex task, in 

which teachers draw on many types of knowledge. Because examples are so important to the 

everyday teaching and learning of mathematics, selecting examples is a foundational practice of 

the work of teaching mathematics.  

Researchers have also looked at teachers’ considerations for the examples they chose. 

Zodik and Zaslavsky (2008) give six types of considerations teachers use when selecting 

examples. First, teachers might start with an example that is simpler or already familiar to 

students. Second, teachers select examples that focus on common student errors. Third, teachers 

select examples that focus on the relevant mathematics being discussed. Fourth, when creating 

examples during teaching, teachers may try to show an example’s generality by selecting values 



 35 

randomly. Fifth, teachers may choose to show unusual cases. Finally, although a less common 

consideration, teachers also select examples that minimize unnecessary mathematical work. 

Despite the importance of examples in classroom instruction, there is much left to 

understand about how teachers select examples. In studying pre-service elementary teachers’ 

selection and use of examples, Rowland and colleagues (2003) identified three common 

mistakes: (1) using examples that obscure the role of the variable they are meant to highlight; (2) 

using randomly generated examples, when purposefully selected examples would be more 

effective; and (3) using an example for a particular procedure when a different procedure is more 

appropriate for that example.  

Mason and Pimm (1984) discuss that challenges that arise in using specific examples to 

teach a more general concept. Although a teacher is able to see the general mathematical idea 

underlying a specific example, students may only be able to see the specific example. Students 

may therefore learn something about the example, but miss the key mathematical generalization 

the example was meant to provide. Zaslavsky (2010) describes additional challenges teachers 

face when using instructional examples. For example, when using random values to make an 

example generic, the random values chosen can obscure the generality. There may also be a 

difference between what the teacher is using the example to exemplify and what features of the 

example students pay attention to. 

Despite knowing about the considerations teachers make when selecting examples and 

the challenges that can arise when using examples, little is known about how teachers carry out 

the actual practice of selecting examples. Given the important role that examples play in 

mathematics classroom instruction and learning, and the many issues that can arise when 

examples are implemented, we need to better understand how teachers select their examples. 
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Further, teachers’ use of examples are thought to reflect their knowledge base (Zaslavsky, Harel, 

& Manaster, 2006). To fully understand teachers’ selection of examples, it is therefore necessary 

to pay attention to the knowledge teachers use in doing this work.  

In terms of their use in classroom instruction, “the generation or selection of examples is 

a fundamental part of constructing a good explanation” (Leinhardt, 2001, p. 347). I now turn to a 

discussion of research on explanations. 

Giving Explanations 

The second practice I investigate is giving explanations. When referring to explanations, I 

rely on Leinhardt’s (2001, 2010) instructional explanations. Explanations are a particular 

practice that occurs in classrooms and are shared between a teacher and their students. They are 

ubiquitous in mathematics classrooms. At the high school level, 95% of a nationally 

representative sample of teachers reported giving an explanation to their class at least once a 

week (Banilower et al., 2013). Explanations are integral to the work of teaching, and inextricably 

linked to content. Instructional explanations also convey information about dispositions toward 

mathematics and how it is done, and norms of mathematical work in a classroom (Schoenfeld, 

2010). Unlike selecting examples, explanations must be responsive to students in the moment 

(Leinhardt, 2001, 2010). 

Studies also suggest that good explanations might affect student learning. This is 

suggested from a case study of one elementary teacher across one unit (Leinhardt, 1987) and 

through a comparison study of expert and novice teachers (Leinhardt, 1989). In the comparison 

study, the expert teachers were chosen based on their high student learning gains and there were 

significant differences across the explanations given by the two groups of teachers.  
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Leinhardt (2001, 2010) distinguishes between four types of explanations: common 

explanations, disciplinary explanations, self-explanations, and instructional explanations. 

Common explanations occur in everyday life in response to naturally arising inquiries. 

Disciplinary explanations build on common disciplinary knowledge and values. They are used to 

answer questions of importance in the discipline. Self-explanations are given to oneself and are 

used in learning at many levels, including memory, meaning, and understanding.  

In contrast to common, disciplinary, and self-explanations, instructional explanations 

have the explicit purpose of teaching content to learners, causing them to differ from other types 

of explanations. In addition to those given by teachers, instructional explanations can be given by 

students, textbooks, and other instructional resources. The purpose of an instructional 

explanation is to teach something to someone who does not yet know it. As such, features of 

instructional explanations are unique in that, “implicit assumptions need to be made explicit, 

connections between ideas need to be justified, representations need to be explicitly mapped, and 

the central query that guides the explanatory discussion must be identified” (Leinhardt 2010, p. 

3).  

Instructional explanations can be given by a teacher or come about as part of a purposeful 

classroom discussion involving students. In my analysis, I consider students’ contributions to be 

a part of the explanations. In mathematics, instructional explanations can be prompted by or 

given about contexts; procedures; representations; properties, such as distributivity; and ways of 

working in the discipline, such as boundary cases and types of proofs (Leinhardt, 2001).  

Instructional explanations usually contain several components. First, they begin with a 

sense of query around the object (concept or procedure) that will be explained, thereby 

prompting the explanation. Second, an instructional explanation usually includes an example of 
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the focus of inquiry. Third, the explanation includes a discussion of the focus connecting it to 

important mathematical ideas or principles. Finally, the explanation includes discussion of the 

bounds or limits of the concept or procedure, including when it does and does not apply and how 

it differs from similar concepts or procedures (Leinhardt, 2001). 

Leinhardt (2001, 2010) describes instructional explanations as an interrelated system of 

goals, actions, and knowledge. The goals of an explanation include: establishing the query or 

problem; connecting the discussion to other relevant knowledge; carefully developing examples; 

discussing the limitations of the concept or procedure; identifying the central ideas; and 

discussing potential errors. When giving an explanation, teachers’ actions include selecting 

examples and representations, identifying key features, and making connections. To give an 

instructional explanation, teachers need the knowledge to accomplish the goals of the 

explanation, which also includes how to convey the knowledge to students. 

Much of the current understanding about explanations is based on comparison studies of 

expert and novice teachers (e.g. Leinhardt, 1987, 1989) or demonstrates challenges teachers have 

in giving explanations (e.g. Borko et al., 1992; P. W. Thompson & Thompson, 1994). However, 

given the prevalence of explanations in mathematics teaching and the impact explanations can 

have on student learning, more attention must be paid to the practice of giving explanations. 

Likewise the ways teachers draw on knowledge in giving explanations is understudied. With this 

dissertation, I aim to better understand the work teachers do and the knowledge they use in 

giving explanations.  

By taking a practice-based view of teacher knowledge, I take the viewpoint that 

knowledge in inextricably tied to the contexts of practice. In this view, mathematics content can 

be seen as one component of the context. In this dissertation, I have chosen to focus on the 
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mathematics content of rational expressions and equations at the Algebra II level. In the next 

section I review literature on this topic.  

Rational Expressions and Equations 

While there has been a great deal of research on other mathematics topics in the algebra 

curriculum, such as linear and quadratic equations, rational expressions and equations are 

understudied. This is in spite of the presences of rational expressions and equations in national 

standards (National Governors Association Center for Best Practices and the Council of Chief 

State School Officers, 2010).Ruhl and colleagues (2011) documented several different types of 

errors made by students when simplifying a rational expression by incorrectly reducing terms. 

Constanta (2012) also found that students made errors resulting from difficulties differentiating 

terms and factors. Further, a mismatch was found between the errors teachers predict students 

will make and the errors students do make. 

In a study of pre-calculus college students, students had greater difficulty solving 

algebraic rational expression problems than they did on similar rational expressions containing 

only numbers (Yantz, 2013). Further, a weak correlation was found between students’ ability to 

solve a numeric item and their ability to solve a similar algebraic item for only one problem set. 

No correlation was found for the other types of problems, suggesting that the students in the 

study did not see underlying mathematical relationships between similar numeric and algebraic 

problems.  

The Intersection of Knowledge and Practice 

Although the work on teaching practice implicitly considers teachers’ knowledge and the 

work on teacher knowledge is practice-based, there is much left to understand about the 

relationship between teachers’ knowledge and their teaching practice. Many researchers have 
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recognized the deep connections between knowledge and practice, yet it is inherently 

challenging to investigate their relationship. There has therefore been little research on the 

relationship between teachers’ MKT and their instructional practices. One exception is a recent 

study by Steele and Rogers (2012) investigating the relationship between mathematical 

knowledge for teaching and two teachers’ classroom teaching practices around proof. Through 

an exploratory study of one beginning and one experienced teacher, they describe how 

positioning can mediate teachers’ MKT and their instruction. Positioning entails the various roles 

teachers, students, and outside others take on with respect to the mathematical object being 

taught, in this case proof and its various roles. This study found that positioning can mediate the 

relationship between teachers’ MKT and their classroom teaching practice. Of note is that this 

study looked specifically at mathematical knowledge for teaching proof, which was categorized 

as common and specialized content knowledge (CCK and SCK) in the LMT framework (Ball et 

al., 2008).  

The field has made great progress in recent years in each of the areas of mathematics 

teacher knowledge and teaching practices. However, much remains unknown about these two 

areas individually, and about their intersection. In particular, although many teaching practices 

have been clearly articulated and are viewed as skillful work, the field lacks understanding of the 

knowledge demands of these practices. Similarly, the field has developed a greater understanding 

of the types of knowledge teachers use in teaching. Yet, it does not yet know how teachers draw 

on this knowledge in carrying out the work of teaching, including enacting particular teaching 

practices. In addition, the field lacks methods for studying the intersection of knowledge and 

practice.  
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My Contribution to Research on Teacher Knowledge and Practice 

My dissertation contributes to research in mathematics education on teacher knowledge 

and teacher practice in four ways. First, it is focused specifically on the knowledge teachers use 

in practice. By using classroom observations with pre- and post-observation interviews to 

address the knowledge teachers are using in their lessons, this research moves closer to the work 

of teaching than other studies have been able to.  

The second contribution this dissertation makes to the field of mathematics teacher 

knowledge is methodological. Although knowledge is situated, researching classroom teaching 

through observations of instruction is more challenging than other types of research due to time 

and other constraints. By looking at teachers’ knowledge in both classroom and cognitive 

interview settings, this study explores the degree to which mathematics teachers’ knowledge and 

teaching practices, which are situated in practice, can be studied in an interview through situation 

based items. 

Third, it aims to understand components of two ubiquitous practices that have not been 

the focus of such close study. In this study, I focus on the teaching practices of selecting 

examples and giving explanations. These two practices are foundational in mathematics teaching 

as they are used on a daily basis in mathematics classrooms. When presenting content, teachers 

must exemplify the concept or idea through examples. Similarly, teachers convey the meaning, 

importance, and use of mathematics content through explanations.  

Forth, this dissertation looks at how knowledge is used in enacting specific practices, at 

both the practice and component level. By looking at both the teaching practices by themselves 

and in conjunction with teacher knowledge, I aim to delineate the components of enacting each 

practice and their knowledge demands. 
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CHAPTER 3: METHODS 

Introduction 

My study seeks to explore the complex relationship between mathematical knowledge for 

teaching and classroom teaching practices. It does so by looking at how secondary teachers think 

mathematically when selecting examples and giving explanations, which are both fundamental to 

the daily work of mathematics teaching.  

I selected these two practices because they each serve a range of purposes and involve 

multiple domains of knowledge, including specialized content knowledge, knowledge of content 

and students, and knowledge of content and teaching. Examples are used to present new concepts 

and procedures, and for practice and reinforcement. They can be chosen to present a range of 

cases or to increase in mathematical complexity. Like examples, explanations serve a range of 

purposes for mathematics teachers. They may be given to a whole class while introducing a new 

topic, to a small group while working on practice problems, or to individual students to 

remediate a misconception. Some essential features of explanations are that they must be 

mathematically accurate, at a level that students can understand, and responsive to students in the 

moment.  

In addition to the individual features of each practice, these two practices were selected 

together because they differ on one key aspect, explanations involve a sort of improvisation in 

that they happen in the moment and must also be responsive and adapt to student responses as 

they occur. Although a teacher may select an example mid class in response to student 

understanding, once selected, the example itself is not an improvisation. These two practices also 



 43 

overlap in teaching in that examples often require explanations and multiple examples can be 

sequenced as part of a larger explanation.  

I investigated these practices within the context of secondary mathematics teaching, 

specifically, rational expressions and equations. Rational expressions and equations involve a 

range of mathematical representations and problem types, including algebraic expressions and 

equations, graphing, and word problems. It is a topic that grows conceptually more complex 

from its introduction in Algebra I through later use in calculus and requires a careful balance 

between conceptual and procedural knowledge. The broad range of conceptual and procedural 

knowledge and representation types are fruitful for this study.  

Research Questions 

To investigate the relationship between teachers’ mathematical knowledge for teaching 

and how they select examples and give explanations, my main research question is: What 

mathematical knowledge for teaching is entailed by the instructional practices of selecting 

examples and giving explanations? To answer this question, I ask four sub-questions: 

1. What kinds of work do teachers do in carrying out these two teaching practices? 

2. What mathematical knowledge for teaching do teachers draw on in carrying out these two 

teaching practices? 

3. How do teachers use this mathematical knowledge for teaching and reasoning in doing 

this work? 

4. Are there differences across the two practices? How are these differences in knowledge 

and reasoning related to the demands/work of the practices themselves? 
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Mathematics Content: Rational Expressions 

As previously described, this study is focused on rational expressions and equations at the 

Algebra II level. Within rational expressions and equations, I selected three subtopics to focus 

on:  

1. Finding discontinuities in and graphing rational equations 

2. Simplifying rational expressions, including those involving multiplication and division 

3. Solving rational equations and word problems using rational equations 

The classroom observations occurred during the teaching of these subtopics and the 

interview items were based on these subtopics. The three subtopics were selected to address the 

full scope of mathematics in rational expressions and equations and provide a range of 

mathematical content, representations, and example types. Keeping the three subtopics constant 

across the classroom observations allowed for depth across the mathematics that was observed.  

Data Collection 

To investigate the relationship between teachers’ mathematical knowledge for teaching 

and how they select examples and give explanations, I conducted a qualitative case study of high 

school Algebra II teachers (Maxwell, 2004). Teachers participated in classroom observations and 

interviews where they were engaged in the practices of selecting examples and giving 

explanations. These two methods of data collection were chosen to complement each other. 

Classroom observations document authentic work of teaching, while interviews can allow for 

additional insight into participants’ in-the-moment knowledge and reasoning.  

Participants 

The aim of this study was to understand teachers’ knowledge use and practice when 

selecting examples and giving explanations. This is a question of what teachers do and the 
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knowledge they use in everyday high school mathematics teaching. I therefore aimed to recruit 

everyday high school mathematics teachers. In doing so, I looked for teachers who were 

currently teaching Algebra II, which included a unit on rational expressions and equations. No 

other selection criteria were used. Given this selection criterion, what is seen in this data is likely 

what is regularly occurring in high school mathematics classrooms. However, I do not claim that 

the data show how these practices should be carried out in mathematics teaching, or that they 

demonstrate the best ways of doing so. In addition, because this is an analysis of the work of 

teaching and the knowledge teachers use, it does not evaluate teachers or judge the explanations 

they gave or their selection of examples. 

To recruit participants, I contacted approximately 200 teachers and several district 

contacts via e-mail. From this recruitment, ten teachers participated in the study. Because two of 

the teachers had never taught Algebra II, they are not included in the data analysis presented 

below. The eight Algebra II teachers each taught the topic rational expressions and equations 

during the year of the study with at least one of their classes. Additional information on teachers’ 

gender, certification, and education can be seen in table 3.1. The teachers had between 3 and 26 

years of teaching experience. All of the teachers had taught rational expressions and equations at 

least twice and half of the teachers had taught rational expressions and equations at least 15 

times. Participants’ years of teaching experience, approximate years of teaching rational 

expressions and equations, and school type can be seen in table 3.2.  
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Table 3.1: Teachers’ Certification and Degrees 

Participanta Gender 
Mathematics 
Certification Bachelor's Degree Master's Degree 

Ms. Allen Female Secondary 
Mathematics 

Mathematics and 
Teacher Certification None 

Mr. Baker Male Secondary 
Mathematics 

Mathematics 
Education Teaching 

Mr. Clark Male Secondary 
Mathematics 

Statistics and 
Mathematics 

Educational 
Specialist in 
Educational 
Leadership 

Mrs. Dayton Female Secondary 
Mathematics 

Mathematics and 
Education Pure Mathematics 

Mr. Johnson Male Secondary 
Mathematics 

Mathematics 
Education 

Educational 
Technology 

Mrs. Kelly Female Secondary 
Mathematics Civil Engineering 

Educational Studies 
with Teacher 
Certification 

Mrs. Stone Female Secondary 
Mathematics 

Mathematics 
Education Teaching 

Mr. Zimmer Male Secondary 
Mathematics 

Mathematics and 
Teacher Certification None 

a. All names are pseudonyms. 
 

Table 3.2: Participants’ Teaching Experience and Current School Type 

Participant 
Years of Teaching 
Experience 

Approximate Years of Teaching 
Rational Expressions and Equationsa School Type 

Ms. Allen 5 2 Public High School 
Mr. Baker 19 19 Public High School 
Mr. Clark 21 21 Public High School 
Mrs. Dayton 23 >15 Public High School 
Mr. Johnson 22 3 Public High School 
Mrs. Kelly 3 2 K-12 Charter School 
Mrs. Stone 26 15 - 18 Public High School 
Mr. Zimmer 3 3 Public High School 
a. The larger numbers are estimates and several participants mentioned teaching rational 
expression and equations multiple times in some years. 
 
Interviews 

I conducted individual interviews with each teacher participant. In the interviews, 

participants were presented with classroom situations and asked to take on the role of the teacher 

in the classroom. The interviews allowed for more detailed information about teachers’ in-the-
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moment knowledge and reasoning than would be visible through an observation because the 

teachers were able to talk about their thinking while engaging in the teaching practices. This 

method of data collection enabled me to probe more deeply for the ways in which teachers think 

about and engage in the practices of giving explanations and selecting examples and the 

knowledge resources they use in doing so. 

In this section, I begin by describing my process for writing, piloting, and revising the 

interview items. I then describe the interviews I conducted with participants using the items. The 

interviews also included additional questions about participants’ teaching and education 

backgrounds. 

Item writing, piloting, and reviewing. I created interview items to address the two 

practices of selecting examples and giving explanations because there were no existing items. 

The goal in writing the items was to create items that approximate the work of teaching so that 

teachers’ teaching practice, knowledge, and reasoning could be investigated outside of a 

classroom context. Each item presented a classroom situation and asked the participant to take on 

the role of the teacher in that situation. They were either asked to select examples for teaching a 

particular topic or plan and give a short explanation of a particular concept or procedure. There 

were three focal content subareas, reflective of the content subareas described above. There were 

two items focused on each of the first two content subareas (finding discontinuities in and 

graphing rational equations, and simplifying rational expressions), one addressing selecting 

examples and the other addressing giving explanations. For the content subarea of solving 

rational equations and word problems using rational equations, I chose to create items on both 

solving rational equations and solving word problems using rational equations because it was 

unclear how often word problems were included in units on rational expressions and equations. 



 48 

This yielded eight total items. See table 3.3 for more detail on the teaching practice and content 

subarea addressed by each item. The interview items can be seen in Appendix 2. 

Table 3.3: Teaching practices and content subarea focus for each interview item. Bold text 
indicates the specific area of the item. 
Item # Teaching Practice Content Subarea 
1 Selecting examples Finding discontinuities in and graphing rational equations 
2 Selecting examples Simplifying rational expressions 

3 Selecting examples 
Solving rational equations and word problems using rational 
equations 

4 Giving explanations 
Finding discontinuities in and graphing rational equations (of 
the form ! = !

!!! + !) 
5 Giving explanations Simplifying rational expressions 

6 Giving explanations 
Solving rational equations and word problems using rational 
equations 

7 Selecting examples 
Solving rational equations and word problems using rational 
equations 

8 Giving explanations 
Solving rational equations and word problems using rational 
equations 

 

After drafting the items, they were revised several times based on feedback from other 

researchers. I then conducted pilot interviews and revised the items further based on the pilot 

interviews. Pilot interviews were conducted with other graduate students in mathematics 

education, all of whom were former teachers. These participants were selected because they had 

experience teaching the content of rational expressions and equations (at the high school or 

college level) or high school mathematics (but not necessarily rational expressions and 

equations). There were seven pilot participants and they each piloted different numbers of items. 

The items were revised during and after the pilot process to make them more realistic to the work 

of teaching, as well as clearer and less time consuming. More detailed information about how the 

items were revised can be seen in Appendix 3. 

Teacher interviews. The interviews ranged from approximately one hour and twenty 

minutes to two hours. Each interview was video and audio recorded and all artifacts (copies of 
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the items with participants’ written work) were collected. The full protocol can be seen in 

Appendix 1. Most participants were presented with all of the items, but due to time constraints, 

three participants did not complete the final 1-2 items.  

In the interviews, I asked each participant about their background and teaching 

experiences. Participants were also asked about their experiences with the two practices during 

their teacher preparation and any professional development they participated in. A few of the 

participants recalled discussing selecting examples during their teacher preparation and one 

participant recalled discussing explanations. None of the participants had participated in 

professional development around either selecting examples or giving explanations. Participants’ 

experiences with the topics of selecting examples and giving explanations during their teacher 

education and professional development can be seen in table 3.4. Participants reported using a 

wide range of sources and resources for the examples and explanations they use in their teaching, 

including textbooks, colleagues, and the internet. The resources used by each participant can be 

seen in table 3.5. Because the interviews were specifically focused on rational expressions and 

equations, I asked participants about the topics included in their regularly taught unit. All 

participants reported that their unit included graphing rational equations; simplifying rational 

expressions; and solving rational equations. Most teachers also included finding discontinuities 

in rational equations in their unit. While a few teachers reported that their unit included using 

rational equations to solve word problems, other teachers said they included few or no word 

problems. The topics included in each participant’s unit can be seen in table 3.6. 
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Table 3.4: Participants' encounters with selecting examples and giving explanations during their 
teacher education and professional development. Participants were asked if they discussed either 
practice during their teacher preparation and if they had participated in professional development 
focused on either practice 
 Teacher Education Professional Development 

Participant 
Selecting 
Examples 

Giving 
Explanations 

Selecting 
Examples 

Giving 
Explanations 

Ms. Allen Yes  No No No 
Mr. Baker No No No No 
Mr. Clark No No No No 
Mrs. Dayton No No No No 
Mr. Johnson No No No No 
Mrs. Kelly Yes Yes No No 
Mrs. Stone Maybe No No No 
Mr. Zimmer No No No No 
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Table 3.5: Sources and resources used by participants when selecting examples of planning explanations 

Participant 

Current 
textbook 
and related 
resources 

Other 
textbooks 

Colleagues Make up 
own 
problems 

Internet 
resources 

Problem 
generating 
software 

Teaching 
experience 

Own 
experience 
as a student 

Resources 
from 
research 
projects 

Graphing 
software 

Ms. Allen     X X   X X 
Mr. Baker X X X X   X    
Mr. Clark X   X   X X   
Mrs. Dayton X X X   X X    
Mr. Johnson   X X  X X X   
Mrs. Kelly X  X X X      
Mrs. Stone X X X    X    
Mr. Zimmer X  X  X   X X  
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Table 3.6: Topics included in each participant’s unit on rational expressions and equations 

Participant 

Finding 
discontinuities 
in rational 
equations 

Graphing 
rational 
equations 

Simplifying 
rational 
expressions 

Adding and 
subtracting 
rational 
expressions 

Multiplying 
and dividing 
rational 
expressions 

Solving 
rational 
equations 

Using 
rational 
equations to 
solve word 
problems 

Rational 
Inequalities 

Inverse 
Variation 

Joint 
variation 

 

Ms. Allen X X X X X X X     
Mr. Baker X X X X X X X X    
Mr. Clark  X X X X X   X   
Mrs. Dayton X X X X X X Some     
Mr. Johnson X X X X X X      
Mrs. Kelly X X X X X X Some     
Mrs. Stone  X X X X X Not much  X X  
Mr. Zimmer X X X X X X Not much     
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Classroom Observations 

The classroom observations allowed me to observe the teaching practices as they were 

carried out in teaching. The pre- and post-observations interviews provided additional insight 

into the knowledge and reasoning teachers used in carrying out these practices during teaching, 

including the changes they made during the lesson.  

Five of the teachers were observed one to three times while teaching lessons on rational 

expressions. This number was chosen to provide a range of data from the observations while 

keeping data collection and analysis manageable. All observed lessons were classified within the 

three subtopics described above: (1) Finding discontinuities in and graphing rational equations; 

(2) Simplifying rational expressions, including those involving multiplication and division; and 

(3) Solving rational equations or solving word problems using rational equations. See table 3.7 

for the lesson topics for each observed lesson by teacher. Two of the observations, both of the 

same teacher were not included in the analysis because the observations did not contain any 

instances of whole class explanations. 

Table 3.7: Lesson Topics for Each Observed Lesson by Teacher 
Participant Observation 1 Observation 2 Observation 3 

Mr. Baker Graphing rational 
equations 

Simplifying rational 
expressions Solving rational equations 

Mr. Clark Graphing rational 
equations 

Simplifying rational 
expressions Solving rational equations 

Mr. Johnson Graphing rational 
equations 

Graphing rational 
equations  

Mrs. Stone Solving rational equations   
 

In addition to the classroom observation, teachers participated in pre- and post-

observation interviews for each lesson. All observed lessons were video recorded and the 

interviews were audio recorded. Artifacts from each lesson, such as lesson plans, PowerPoint 
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slides, and student worksheets were collected. A few of the teachers also provided copies of 

student homework or assessments, which will be used in a future study.  

I conducted pre-observation interviews either the day before or the day of the 

observation, once teachers had planned their lesson. The pre-observation interview focused on 

the teacher’s decisions about the lesson in three areas: the teacher’s overall plans for the lesson, 

the examples the teacher planned to use, and the explanations they planned to give. Questions on 

the overall lesson plan included lesson goals, parts of the lesson the teacher anticipated might be 

more challenging for students, and how the lesson fit into the current unit. In addition to being 

asked about the specific examples they planned to use, teachers were asked where the examples 

came from, why they were selected or created, and how the examples were related to the overall 

lesson goal. Finally, with respect to their explanations, teachers were asked the extent to which 

the explanations were planned out, the key components they planned to include, where their 

explanations came from, and what they thought about while planning their explanation. See 

Appendix 4 for the full interview protocol.  

After the lesson, I selected four segments of each lesson that were part of an explanation 

or showed an example being used. I created a short video clip of each segment, and these clips 

were used in the post-observation interview. I conducted the post-observation interviews as soon 

after the observation as they could be scheduled. For some observations, it was possible to do the 

post observation interview later in the day. Most of the nine post-observation interviews were 

scheduled within a week, with two taking place over a week later. Each post-observation 

interview began by asking the teacher to share their thoughts on the lesson. I then asked each 

teacher about their examples and explanations, how they were similar to or different from what 

they had planned, and what they might do differently if they were to teach this lesson again in 
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the future. During the rest of the interview, teachers were shown the video clips of their teaching 

and asked about their thoughts and decisions at that point in the lesson. Depending on the content 

of the video clip, the questions focused on the explanation being given, the example that was 

used, or both. See Appendix 5 for the full interview protocol. 

Data Analysis 

The data analysis looked at the components of each teaching practice and the knowledge 

teachers used in enacting each practice. Portions of the interviews, where participants gave 

explanations and selected examples were professionally transcribed, as were the pre- and post-

observation interviews. I used a grounded theory approach to data analysis (Corbin & Strauss, 

2008). Coding was an iterative process (Miles & Huberman, 1994) and took different paths for 

each of the practices. As mentioned above, not all of the data collected were included in the 

analyses. Table 3.8 shows the subset of data used for each analysis. Two additional teachers 

participated in the interviews, but their data were not included in the analysis because they did 

not teach Algebra II at the time of the study. In addition, the two word problem interview items, 

one of which was focused on selecting examples and one on giving explanations, were not 

included in either of the analyses because several of the teachers were not shown these two items 

due to interview time constraints. In addition, several of the teachers did not include word 

problems in their unit on rational expressions and equations and were therefore less familiar and 

comfortable discussing their teaching of this content. In the two sections that follow which detail 

the different analyses, I describe in more detail how I decided which data to use.  
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Table 3.8: Data Used in Analyses  
Teaching 
Practice Data Source Data Collected Total Collected Group for Analysis 

Selecting 
Examples Interviews 

Video and artifacts 
from interview 

3-4 items per 
teacher for 10 
teachers 

3 items per teacher 
for 8 teachersa, b 

Giving 
Explanations 

Classroom 
Observations 

Video and artifacts 
from instruction 
Pre- and post-
observation interviews 

11 observations 
across 5 teachers 

Video and artifacts 
from 9 observations 
across 4 teachersc 

Giving 
Explanations Interviews 

Video and artifacts 
from interview 

3-4 items per 
teacher for 10 
teachers 

3 explanations per 
teacher for 4 
teachersb, d  

a. Two teachers were not included in the analysis because they did not rational expressions and 
equations at the time of the study. 
b. The word problem item was not included because not all teachers had time for the item in their 
interviews. 
c. Two observations were not included because they did not contain any instances of whole class 
explanations. 
d. Interview data were included only for teachers who were also observed. 
 

Selecting Examples 

Although the intention was to look both at how teachers select examples in their actual 

teaching practice and in interview settings, the classroom observation data, as well as the pre- 

and post-observation interviews, were not used in the final analysis. Many of the teachers had 

taught the same content before. In the observations, because they were familiar with teaching the 

content and had materials prepared from previous years, the teachers were not selecting new 

examples for their lessons in the unit. It is challenging to observe the practice of selecting 

examples when teachers are not selecting new examples for their lessons, but are instead using 

examples from a previous year or course. The analysis focused instead on the interview items, 

where participants were asked to select new examples for particular purposes within the unit of 

rational expressions and equations. These interview items provided the opportunity to observe 

participants engage in the practice of selecting examples for content they were familiar with. 
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Unlike the classroom observations, participants engaged in the full work of selecting examples 

instead of starting with a set of examples they had used the previous year and modifying the set 

as needed. 

I began the selecting examples analysis by open coding components of the practice of 

selecting examples and of the knowledge teachers drew on in carrying out the practice. When 

identifying the knowledge teachers drew on, I used the lens of mathematical knowledge for 

teaching (Ball et al., 2008). I developed two sets of codes from the open coding, one for 

components of the practice and another for knowledge and then applied them iteratively to 

sections of the transcript. Codes were clarified and modified, and additional codes were added as 

needed.  

For the final coding, segments of transcript were coded based on the component(s) of the 

practice the teacher was enacting. Although in some cases more than one practice component 

applied to a particular transcript segment, the segments were split so that as few components as 

possible applied to each segment. Often, this was only one component. Segments ranged from 

part of a sentence to several paragraphs in length. On a second pass through the transcripts, each 

segment was also labeled with all of the knowledge types the teacher was drawing on in that 

segment.  

After all of the transcripts were coded for both components of the practice and 

knowledge, I looked for patterns across teachers in the components of the practice they enacted 

and the knowledge they drew on. To do this, I first analyzed the components of the practice. In 

particular, I looked at frequencies of different components of the practice in three ways: overall, 

by teacher, and by item. I also created a table to see the frequencies of co-occurrences of 

components of the practice, which were few. Second, I focused on the knowledge codes, looking 
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at the frequencies of different types of knowledge overall, by teacher, and by item. I also looked 

at co-occurrences of knowledge codes. Third, I looked at the types of knowledge teachers drew 

on when enacting different components of the practice using a table that showed the frequencies 

of each type of knowledge for each component of the practice. Finally, I looked at tables 

showing the frequencies of each type of knowledge for each component of the practice for each 

individual teacher. Many of the numbers in these tables were small. Although these data are 

likely too fine-grained and specific to the individual teacher to be analyzed closely, I used these 

tables not to draw new conclusions, but to look for patterns confirming those seen in the larger 

data set.   

The aim in this analysis was to look closely at the practice of selecting examples to begin 

to understand the work involved in carrying it out. Similarly, I aimed to understand the kinds of 

knowledge teachers used in doing this work. My findings suggest that there are different patterns 

in how teachers carry out this practice and the knowledge they draw on in doing so. However, 

the data is not large enough to support statistical testing of these patterns. Future work with a 

larger data set may be able to determine if these patterns and differences are statistically 

significant. I did not include this in my study design because my focus was on better 

understanding the work of selecting examples and not on differences across teachers.  

Giving Explanations 

My initial attempts at analyzing the practice of giving explanations were focused on 

creating a coding scheme of components of the practice and then a second coding scheme 

focused on the knowledge teachers used. While an initial coding scheme was created, it was 

challenging to apply to the transcripts of the explanations because multiple components of the 

practice could be applied to most parts of the transcript. The same was true of the knowledge 
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teachers used in their explanations. Having so many components of the practice apply to each 

part of the transcript made an analysis of how teachers were enacting these components and their 

knowledge use unfeasible. While looking and trying to code the transcripts, I noticed different 

patterns in what parts of the mathematics teachers explained and the mathematical depth of these 

explanations. The final analysis focused on the types of explanations teachers gave and the levels 

of mathematical reasoning they included. 

The classroom observation data provided a large set of explanations to analyze. In 

contrast, while there were 110 explanations across the nine classroom observations, each teacher 

gave only three explanations in the interview. Given the large difference in quantity for teachers 

who were and were not observed, I chose to only look at the interview explanations for the four 

teachers who were also observed during their classroom instruction. I wanted to give depth to the 

analysis and be able to see larger patterns in how teachers give explanations. For teachers who 

were not observed, three explanations was too small of a sample size compared to the other 

teachers, who had anywhere from 15 to 45 classroom explanations to analyze. In addition, 

including the interview data for these four teachers allowed me to compare how the teachers’ 

explanations in the interview setting compared to the explanations they gave during classroom 

instruction. 

Analysis of the explanations began by marking explanations in the transcript and labeling 

their purpose. A segment of the transcript was considered one explanation if there was one 

instructional purpose for the entire segment. Purposes included how to find the domain of a 

function, how to simplify a rational expression, and how to graph a rational equation given 

known values. Explanations ranged in length from a sentence to several pages. For each of the 
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interview items, each participant’s entire response to the prompt, not including any follow up 

questions, was considered one explanation.  

After all of the explanations were marked, explanations were categorized based on the 

level of mathematical depth they contained. The explanation categories are described in greater 

detail in chapter 5. I looked for patterns in the types of explanations given by each teacher in 

both the interview and their observations. Two of the explanation types, procedural explanations 

and mathematical reasoning explanations, were looked at more closely to better understand the 

knowledge teachers drew on in giving the explanations. Of the four explanation categories, 

procedural explanations have the lowest level of reasoning while still being mathematically 

correct. In contrast, mathematical reasoning explanations contained the highest level of 

reasoning. These two types of explanations were both looked at to see if expected differences 

occurred in the knowledge teachers drew on in giving each type of explanation. In particular, it 

was expected that teachers would draw on a wider range of knowledge when giving 

mathematical reasoning explanations and that they might not draw on specialized content 

knowledge when giving procedural explanations. The types of explanations, frequencies of 

explanation type by teacher, and patterns seen in teachers’ knowledge use across these two types 

of explanations are described in Chapter 5.  
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CHAPTER 4: THE PRACTICE OF SELECTING EXAMPLES 
 
I begin this chapter by presenting two cases of teachers selecting examples. I then discuss 

components of the practice of selecting examples. In this section, I describe the components I 

found and look at patterns in how teachers enact different components of the practice. In the 

third section, I focus on teachers’ knowledge use while selecting examples. I both describe the 

knowledge on which teachers seemed to draw and look at patterns in knowledge use. In the 

fourth section, I look at the relationship between components of the practice of selecting 

examples and the knowledge on which teachers draw in enacting the practice. In the fifth and 

final section of this chapter, I look at differences across how teachers select examples and the 

knowledge they draw on in doing so.  

Cases of Teachers Selecting Examples 

In this section, I present two cases from my study of teachers selecting examples for a 

specific purpose. These two cases are included to show some of the different things teachers did 

when selecting examples. In the first case, Mrs. Kelly selected examples to demonstrate different 

types of discontinuities (Example Item 1). In the second case, Mr. Zimmer selected examples to 

teach solving rational equations (Example Item 3). The full prompts for each interview item can 

be seen in Appendix 2. 

Mrs. Kelly and Finding Discontinuities: A Case of Demonstrating Specific Mathematical 

Ideas 

After reading the prompt asking her to select examples to demonstrate different types of 

discontinuities, Mrs. Kelly immediately mentioned three different mathematical cases she would 
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show students and the order in which she would use them, “They've seen what the graph for a 

rational function looks like, so I would probably start with asymptotes first and then holes, and 

then combine the two.” For her first example, showing an asymptote, Mrs. Kelly created the 

problem y = 3
x − 4

, which is an example of a vertical asymptote. She also wanted her example to 

show the new content without distracting students with other mathematics and created this 

problem with a constant numerator and a linear denominator “because then we're just looking at 

discontinuities instead of having to involve factoring also.”  

For her second example, Mrs. Kelly selected the problem y = x
2 −8x +12
x − 2

, which has a 

hole, or removable discontinuity. It also requires students to factor the numerator before they can 

simplify the fraction. She discussed how she would use the problem with her students to bring up 

the mathematical concept of holes.  

So they have to factor and then realize that once they've canceled out factors that it's 
linear but there's this problem with the denominator so then we can talk about what 
would happen in that space, and we can talk about how there's a hole there. 

Finally, Mrs. Kelly selected the problem y = x
2 +5x +6
x2 − x −12

 as an example of an equation 

with both types of discontinuities, holes, which divide out, and asymptotes, which do not. She 

wanted students to “see what happens when you had to cross something out like you had 

discontinuity, there's like a hole and then you had an asymptote.” When asked what problem she 

might use if she were to pick a fourth example, Mrs. Kelly said she “would probably do one with 

two asymptotes” and decided on the problem y = 2
x2 − 4

. 

She summarized her overall selection as, “I would do one with asymptotes, one with 

holes, one with both and then probably start talking about two asymptotes.” Each of Mrs. Kelly’s 
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examples was selected to match a particular type of problem she wanted to show students. She 

also sequenced these problems in a specific order, first using an example that has an asymptote, 

then one that has a hole, and finally showing an example with both an asymptote and a hole.  

Mr. Zimmer and Solving Rational Equations: A Case of Common Student Misconceptions 

After reading the prompt asking him to select examples to teach solving rational 

equations, Mr. Zimmer spent about a minute and a half looking over the set of problems and said 

he would use problems (a) [ 2

8 15
3 3

x x
x x x
− +

=
− −

], (b) [ 2
x +3

−
1
x
=
1
4x

], and (c) 26 [

3
x2 −7x +10

+ 2 = x − 4
x −5

]. Mr. Zimmer said he chose each of the problems “based on what 

problems my students run into” and more generally described that he selects problems by 

anticipating what students will have difficulty with or have struggled with in the past. He said he 

would start with problem (c), then use problem (b), and end with problem (a) and talked about 

the problems in that order when he described why he selected each of them.   

When talking about problem (c), Mr. Zimmer began by describing the two methods he 

has shown students for solving rational equations:  

Sometimes we get a common denominator and then kinda go through and cross multiply. 
Sometimes we find a common denominator, but use it to reduce or cancel out all of my 
denominators. That's what I've gone with recently, is just find something we could 
multiply straight across by everything. 

Although he wasn’t entirely sure that problem (c) would lead to a quadratic equation, he selected 

it because,  

When they end up with a quadratic left, they don't know what to do with it. […] I would 
use that so that when it ends being a quadratic, they still see ok it's a quadratic we can 
still solve it, just like we’ve done before and not get the sense that every problem is going 
to be a linear equation that we end up with. 
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Mr. Zimmer selected problem (b) because he has seen students have difficulty 

differentiating the factors of x and x+3, “Sometimes I’ll have students want to multiply this [the 

term 1
x

] by 3.” He went on to clarify that students would think they do not need a factor of x in 

the least common denominator because x is part of the factor x+3. Students would therefore use 

the least common denominator of 4(x+3) and when multiplying by the term 1
x

, they would 

incorrectly reduce the xs in the terms x and 4(x+3). 

Finally, Mr. Zimmer selected problem (a) because the denominator of the second 

fraction, 3-x has a negative x, which is something students typically struggle with, “They 

typically having a lot of trouble dealing with that. They don't know to switch it and then factor 

out the negative.” After deciding to use problem (a) as the last problem, he also mentioned that 

he would not start with a problem where students can solve using cross multiplication because, 

Sometimes I get nervous about cross multiplying and that they're just going to resort to 
that every time. Showing them that this method exists and they kind of transfer over and 
use it here [on problems with three different terms]. 

In selecting examples, Mr. Zimmer picked problems that would bring common student 

misconceptions and errors up before students could make the errors themselves. Like Mrs. Kelly, 

he also sequenced the problems, but his purpose in sequencing was focused on preventing 

student misconceptions. In particular, he saved the proportion problem for last because he did not 

want his students to misapply cross multiplication to other problems.    

These two cases demonstrate some of the things teachers did when selecting examples, 

including sequencing problems, thinking about common student misconceptions, and thinking 

about pieces of mathematics that are part of the larger purpose or goal of the lesson. In the next 

section, I describe the different things teachers did when selecting examples.  
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Components of the Practice of Selecting Examples and Teachers’ Enactments of the 

Components 

In this section, I discuss the components of the practice of selecting examples. I then look 

at patterns in how teachers enact these components. This analysis is based on teachers’ responses 

to the selecting examples items in the interview. 

Components of the Practice of Selecting Examples 

The components of the practice of selecting examples can be seen in table 4.1. As 

discussed in the Chapter 3, these components were developed based on what the teachers did 

when they selected examples in the interviews. Below I describe each component with a few 

examples from the data.  

Table 4.9: Components of the Practice of Selecting Examples 
Components of Selecting Examples 
Thinking about the end goal 
Thinking about pieces of the end goal (components, sub goals, or scaffolds) 
Thinking about common student errors or places where they will have difficulty or success, both 
broadly and within a specific problem 
Noticing a subset of problems with a particular characteristic and deciding they fit a new sub 
goal  
Noticing a subset of problems with a particular characteristic and deciding not to use that type of 
problem 
Finding problem(s) that match a particular feature or (sub) goal, or picking one of a subset of 
problems with a particular characteristic 
Looking at a set of problems for interesting features in the set 
Evaluating the features of a problem, including comparing to one or more other problems 
Creating or modifying a problem to match a desired (sub) goal 
Sequencing problems 
Describing how the problem will be used with students (e.g. what they would point out, how to 
get students to notice features, etc.) 
Solving a problem 
 

Thinking about the end goal. Each of the interview item prompts discussed a lesson 

goal before asking teachers to select examples for that purpose. The first interview item asked 
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teachers to select examples to demonstrate different types of discontinuities. The goal of the 

second problem was for students to be able to simplify rational expressions, including those 

involving multiplication and division. The third interview item goal was for students to be able to 

solve rational equations. The full prompts for each interview item can be seen in Appendix 2. 

Several of the teachers discussed an overall goal that they wanted students to learn from a 

particular lesson. For example, when responding to the prompt asking her to select examples to 

teach simplifying rational expressions, including those involving multiplication, Ms. Allen said, 

“The goal of learning to multiply and divide polynomials is really understanding the structure of 

reducing. Not so much the action of the multiplying and dividing because multiplying and 

dividing is a cover phrase for factor and cancel” (Ms. Allen Example Item 2). Similarly, when 

responding to the prompt asking the teacher to select examples to introduce students to different 

types of discontinuities, Mr. Clark stated that, “The main purpose for me is to make sure they 

understand the bottom needs to be equal to 0” (Mr. Clark Example Item 1). For the same 

interview item, Mrs. Stone stated, “Our goal is just simplifying” (Mrs. Stone Example Item 1). 

References to the end goal were similar across the three interview items. Two teachers more 

frequently discussed the end goal, while others did so infrequently or not at all. 

Thinking about pieces of the end goal (components, sub goals, or scaffolds). All of 

the teachers also talked about particular pieces of the larger goal that they saw as important or 

planned to address. This sometimes took the form of components or sub goals. After reading the 

first interview item, which asked teachers to select example to teach different types of 

discontinuities, but before looking at any of the problems, Mr. Zimmer listed several sub goal, 

“I'm thinking about horizontal asymptotes. I'm also thinking about holes and having something 

that would reduce to be one. I'm also thinking about multiple vertical asymptotes” (Mr. Zimmer 
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Example Item 1). Holes and asymptotes are two common types of discontinuities and addressing 

them would likely be sub goals for this topic. In some cases, teachers discussed sub goals as 

scaffolds to be used in teaching the particular topic. For example, when prompted to select 

problems to teach solving rational equations, Mrs. Stone mentioned that she wanted a problem 

that was a proportion and another where one of the three terms was a constant, with a 

denominator of 1. 

Thinking about common student errors or places where they will have difficulty or 

success, both broadly and within a specific problem. As they were selecting examples, the 

teachers all thought about common student errors and places where they might struggle, as well 

as places where the students were likely to have success. This occurred both within specific 

problems. For example, when evaluating the problem x2 − 25
x2 −10x + 25

, Mrs. Stone was focused on 

a common student misconception: 

You see a 25 in the numerator and denominator […] This is a common mistake that kids 
have. They don't factor. They see things that are similar and they go “Oh, I can cancel.” 
So they want to eliminate. In [this problem] they would just cross out the 25s. “Those are 
the same. If I cancel out the x squared I have 1 over negative 10x” and they're done with 
the question. (Mrs. Stone Example Item 2) 

In the misconception Mrs. Stone describes, students often see and reduce common terms, which 

is not mathematically valid, instead of first factoring the problem and then reducing common 

factors.  

Teachers also made broader comments about students’ errors and places where they 

would have difficulty or success. For example, when deciding what types of factoring she 

wanted to include in examples for simplifying rational expressions, Mrs. Kelly commented that, 

“Most of my students can factor smaller things really quickly” (Mrs. Kelly Example Item 2). She 
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chose to include problems where the factoring was less complex to put the focus on the new 

content of simplifying. 

Noticing a subset of problems with a particular characteristic and deciding they fit a 

new sub goal. When looking at the resource of problems given with a particular interview 

prompt, some of the teachers noticed a particular type of problem. They then decided that this 

problem types was something that they wanted to show their students. For example, when 

prompted to select examples to teach solving equations, both Mr. Baker and Mrs. Dayton noticed 

several problems where two rational expressions were set equal and decided that they wanted to 

include an example where students can cross multiply. These problems are different than the rest 

of the problems in the set, which cannot be solved using cross multiplication. When prompted to 

select examples for simplifying rational expressions, Mr. Zimmer noticed a set of problems 

where the factoring only involved greatest common factors, with either a binomial in the 

numerator and a monomial in the denominator, or the reverse. He then decided to include one of 

each type. 

Noticing a subset of problems with a particular characteristic and deciding not to 

use that type of problem. Similar to the previous component, teachers noticed a particular type 

of problem. However, instead of deciding to show the problem to their students, they decided 

they did not what to show students a problem with that particular characteristic. For example, 

when prompted to select examples to teach solving rational equations. Mr. Clark noticed the set 

of equations that could be solved using cross multiplication and decided not to include one of 

them. He did so because, “My kids are going to misuse it [cross multiplication] and so I almost 

treat those as two different problems, the way I've always taught that” (Mr. Clark Example Item 
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3). He did not want his students to mis-apply the cross multiplication procedure to problems 

where it would not work and instead chose to teach cross multiplication as a separate topic. 

Finding problem(s) that match a particular feature or (sub) goal, or picking one of a 

subset of problems with a particular characteristic. In this component of the practice, after 

naming a particular sub goal, or type of problem, teachers looked for one or more problems that 

matched the sub goal. Alternately, teachers also picked one problem out of a subset with a 

particular characteristic. In some cases, they had particular reasons for focusing in on a specific 

problem. For instance, after describing her criteria for a first example for simplifying rational 

expressions, Mrs. Kelly decided on a particular problem. Her criteria included an example where 

the factoring was easier, so that students would be able to focus on the simplifying. 

It might be something like [problem] 21 where it's not too difficult factoring but they'll 
factor, they'll be able to see there's common factors. So x squared plus 7x plus 12. Or x 
squared minus 6x minus 27. Because then they could factor. (Mrs. Kelly Example Item 2) 

In other cases, teachers just chose a problem that met the overall goal without much 

consideration of the particular features of the problem. For example, after Ms. Allen decided that 

she wanted a rational equation where one of the terms was a constant, the interviewer asked 

which problem she would pick. Ms. Allen responded that she would pick 5
x2 + x − 2

=
1
x + 2

+1 , 

“for no reason. I have no good reason to choose that over the others. Just picking one” (Ms. 

Allen Example Item 3). This problem did have a constant term, which met the criterion she 

discussed, however other problems also met this criterion but differed from the problem she 

picked in other ways. 

Looking at a set of problems for interesting features in the set. A few of the teachers 

looked more broadly across a set of problems for interesting features instead of selecting a 

particular type of problem or sub goal ahead of time. These features included numbers or 
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expressions likely to bring out common student misconceptions or require a specific type of 

factoring, or even which answers “are good outcomes” (Mr. Johnson Example Item 2). These 

teachers looked across the set after first reading the prompt to find problem features that stood 

out and the also looked across the set of problems after selecting a few problems, “looking for 

something that provides a new twist” or “looking for a skill that I might not have caught” (Mr. 

Clark Example Item 2). 

Evaluating the features of a problem, including comparing to one or more other 

problems. When evaluating the features of a problem, teachers were focused on the particular 

features of one problem, although they did often compare that problem to other problems that 

were similar in some way. For example, when evaluating the problem 2− x
x2 − 4

, Mrs. Stone 

commented that she liked the problem because the factors “have the reverse order, the opposites, 

the 2 minus x and x minus 2” (Mrs. Stone Example Item 2). When prompted to select examples 

to teach solving rational equations, Mrs. Kelly compared problem 9 [ 482x
x

+ = ] with problem 

27 [ 12
x2 + x − 20

=
2x +6
x +5

−3 ], which both contain terms with a denominator of one, before 

deciding on problem 27.  

I'd probably do [problem] 9, because I liked that it was, the solving, you have to solve a 
quadratic. […] I thought there was probably a better one. Let me see. I might do 
something like [problem] 27 actually. I think [problem] 9, I wouldn't want to do 
[problem] 9 because it's really, they're already had to multiply by a binomial and then this 
would feel like I'm going backwards because they're multiplying, the common 
denominator is really easy to find. (Mrs. Kelly Example Item 3) 

After multiplying to clear the fractions, both problems result in a quadratic equation. Mrs. 

Kelly decided on problem 27 instead of problem 9 because the work of clearing the fractions was 

a bit more complex in problem 27. In problem 9, to clear the fractions, students would only need 
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to multiply x+2 by x, which involves multiplying a single term by a binomial. Because they 

would have already done more complex multiplication in a previous example Mrs. Kelly picked, 

she decided that this would be moving the difficulty level in the wrong direction. 

Creating or modifying a problem to match a desired (sub) goal. When selecting 

examples, a few of the teachers made up their own problems instead of selecting problems from 

the problem set provided. For example, Mr. Baker created his own problems to teach 

discontinuities, starting with the problem y = 2
x +1

 and later using the problem y = x2 − 4
x2 +3x + 2

, 

which were not on the list of problems. “So the first thing I would probably do is look at a 

function where we're just looking at maybe a basic 2 over x plus 1 where we just have one 

vertical asymptote” (Mr. Baker Example Item 1). He later described another problem he would 

use, which he created: 

I might give them a function where it's maybe say x squared minus 4 over x squared plus 
3x plus 2, where now suddenly there's a factor that reduces, so not only are we looking at 
discontinuities with asymptotes, we're looking at a hole in the graph, a removable 
discontinuity. (Mr. Baker Example Item 1) 

Teachers also modified problems from the set, picking a problem they liked and then adjusting 

particular values. For example, Mrs. Dayton decided to modify the problem 2
x +3

+
1
x
=
1
4x

. 

“Maybe have, rather than x plus 3, an x, and a 4x, I might have an x plus 3, an x, and an x plus 3 

for the denominator” (Mrs. Dayton Example Item 3). In the modified version of the problem, the 

least common denominator would only have two factors, x+3 and x. I was therefore less complex 

than the given problem, which would have a least common denominator with three factors. 

Sequencing problems. When picking their examples, teachers explicitly talked about 

how they would use the examples to develop larger mathematical ideas, this included discussing 

the order in which they would use their examples. For example, Mr. Zimmer said he would use 
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the problem 3x
2 + 21x −90

3x2 +31x +10
 as his first example for simplifying rational expressions “because I 

like the idea of them seeing breaking, writing it down into factors, and then using that same idea 

to break these down” (Mr. Zimmer Example Item 2). Mr. Baker discussed how he would 

sequence problems to teach solving rational equations.  

Here I would probably start with maybe something similar to number 14 [ 1
3
+
x
6
=
20
x  

], 

but I would maybe include integers in all the denominators to begin with just because it 
essentially becomes a linear equation with fractions. We did that back in the beginning of 
class where we talk about we have fractions, they don't like fractions, we get rid of the 
fractions. We multiply, use the property of equality to multiply and get rid of the fraction, 
so I might start out with a problem like that where it's something they're familiar with, 

and then all of the sudden I would come to something like number 17 [ 2
x
+
2
2x

= 3 ] where 

now here are some variables. Let's do the same thing with the variables. (Mr. Baker 
Example Item 3) 

For these problems, Mr. Baker chose to start with something that would be familiar to students, 

an example with no variables in the denominators, which simplifies to a linear equation. He then 

would move to a similar example that is more complex because the fractions did have variables 

in the denominators. 

Describing how the problem will be used with students (e.g. what they would point 

out, how to get students to notice features, etc.). As they selected examples to use, some of the 

teachers talked in great detail about how they would use the problem with their students. This 

included things they might point out to students and patterns they would like students to see. For 

example, when prompted to selecting examples to teach solving rational equations, Mrs. Dayton 

described how she would work through the problem x
3
+
x2

2
=
1
6

 with students. “The first step 

that I have them do is, ‘What's the common denominator?’ And set it up like that. Say, ‘Okay, 
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the common denominator is 6. Now, what did you multiply by to go from here to here?’” (Mrs. 

Dayton Example Item 3). 

Solving a problem. While deciding which problems to use with students, a few of the 

teachers solved the problems, or worked through part of the problem to be able to see some of 

the problem’ features. For instance, Ms. Allen factored all of the problems in the set for the 

interview item on finding discontinuities.  

How Teachers Enact Components of the Practice of Selecting Examples 

The percent of segments where teachers were carrying out each practice component can 

be seen in table 4.3. The aggregated values by interview item can be seen in table 4.2. The four 

most frequent components of the practice of selecting examples were (1) evaluating the features 

of a problem, including comparing to one or more other problems, (2) sequencing problems, (3) 

thinking about pieces of the end goal (components, sub goals, or scaffolds), and (4) thinking 

about the end goal. 
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Table 4.10: Frequencies of Each Component of the Practice of Selecting Examples by Item and 
Overall 
 Item 

 1 2 3 All 
Component of the Practice n % n % n % n % 

Thinking about the end goal 7 4.8 6 3.4 7 4.5 20 4.2 
Thinking about pieces of the end goal (components, sub 
goals, or scaffolds) 30 20.5 27 15.3 33 21.0 90 19.0 

Thinking about common student errors or places where they 
will have difficulty or success, both broadly and within a 
specific problem 

14 9.6 30 16.9 25 15.9 69 14.6 

Noticing a subset of problems with a particular characteristic 
and deciding they fit a new sub goal  0 0.0 4 2.3 2 1.3 6 1.3 

Noticing a subset of problems with a particular characteristic 
and deciding not to use that type of problem 0 0.0 0 0.0 5 3.2 5 1.1 

Finding problem(s) that match a particular feature or (sub) 
goal, or picking one of a subset of problems with a particular 
characteristic 

11 7.5 14 7.9 19 12.1 44 9.3 

Looking at a set of problems for interesting features in the set 3 2.1 3 1.7 1 0.6 7 1.5 
Evaluating the features of a problem, including comparing to 
one or more other problems 46 31.5 38 21.5 23 14.6 107 22.6 

Creating or modifying a problem to match a desired (sub) 
goal 10 6.8 15 8.5 11 7.0 36 7.6 

Sequencing problems 33 22.6 37 20.9 23 14.6 93 19.7 
Describing how the problem will be used with students (e.g. 
what they would point out, how to get students to notice 
features, etc.) 

14 9.6 17 9.6 23 14.6 54 11.4 

Solving a problem 2 1.4 0 0.0 6 3.8 8 1.7 
Total number of segments 146 177 157 480 
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Table 4.11: Frequencies of Each Component of the Practice of Selecting Examples by Teacher 
 Participant 

 Ms. Allen Mr. Baker Mr. Clark Mrs. 
Dayton 

Mr. 
Johnson Mrs. Kelly Mrs. 

Stone 
Mr. 

Zimmer 
Component of the Practice n % n % n % n % n % n % n % n % 

Thinking about the end goal 7 9.3 0 0.0 7 9.6 1 1.4 1 1.7 0 0.0 3 4.8 1 3.2 
Thinking about pieces of the end goal (components, 
sub goals, or scaffolds) 8 10.7 9 23.7 7 9.6 22 31.4 15 25.9 17 23.6 9 14.3 3 9.7 

Thinking about common student errors or places 
where they will have difficulty or success, both 
broadly and within a specific problem 

15 20.0 3 7.9 11 15.1 5 7.1 7 12.1 7 9.7 12 19.0 9 29.0 

Noticing a subset of problems with a particular 
characteristic and deciding they fit a new sub goal  1 1.3 2 5.3 0 0.0 1 1.4 0 0.0 0 0.0 1 1.6 1 3.2 

Noticing a subset of problems with a particular 
characteristic and deciding not to use that type of 
problem 

0 0.0 0 0.0 3 4.1 1 1.4 1 1.7 0 0.0 0 0.0 0 0.0 

Finding problem(s) that match a particular feature or 
(sub) goal, or picking one of a subset of problems 
with a particular characteristic 

6 8.0 2 5.3 5 6.8 12 17.1 6 10.3 4 5.6 7 11.1 2 6.5 

Looking at a set of problems for interesting features 
in the set 0 0.0 0 0.0 5 6.8 0 0.0 1 1.7 0 0.0 0 0.0 1 3.2 

Evaluating the features of a problem, including 
comparing to one or more other problems 18 24.0 6 15.8 22 30.1 7 10.0 5 8.6 14 19.4 23 36.5 12 38.7 

Creating or modifying a problem to match a desired 
(sub) goal 5 6.7 7 18.4 0 0.0 3 4.3 12 20.7 7 9.7 2 3.2 0 0.0 

Sequencing problems 5 6.7 11 28.9 12 16.4 12 17.1 15 25.9 23 31.9 12 19.0 3 9.7 
Describing how the problem will be used with 
students (e.g. what they would point out, how to get 
students to notice features, etc.) 

10 13.3 8 21.1 5 6.8 14 20.0 5 8.6 8 11.1 1 1.6 3 9.7 

Solving a problem 3 4.0 0 0.0 0 0.0 0 0.0 0 0.0 5 6.9 0 0.0 0 0.0 
Total number of segments 75 38 73 70 58 72 63 31 
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When aggregated by interview item or by teacher, the teachers thought about pieces of 

the end goal more often than they thought about an overall end goal, with the exception of Mr. 

Clark, who thought about both equally. Looking at teachers’ selection of examples on the 

individual interview items, there were 6 instances on particular interview items where a teacher 

thought about the end goal and pieces of the end goal with the same frequency, and on interview 

item 2, which prompted teachers to select examples for simplifying rational expressions, Mr. 

Clark thought about the end goal more often than he did pieces of the end goal.  

When aggregated by question, the frequencies of teachers’ enactments of different 

components of selecting examples were overall similar. There was a difference in how often 

teachers evaluated the features of a problem, including comparing to one or more other 

problems. They did so in 31.5% of transcript segments for the first interview item, 21.5% of 

transcript segments for the second interview item, and 14.6% of transcript segments for the third 

interview item. There were differences in how often different components of selecting examples 

were enacted across teachers. These differences will be discussed later in the chapter. 

Teachers’ Knowledge Use When Selecting Examples 

Similar to the last section on components of the practice of selecting examples, I begin 

this section by discussing the different types of knowledge teachers use in selecting examples. I 

then present overall findings about the types of knowledge teachers used. 

Knowledge Codes 

In creating the knowledge codes, I went through several of the participants’ responses to 

each interview item. I looked at each segment that was labeled with one or more practice codes 

and labeled the domain of knowledge being used and then described what that knowledge was. 

From this initial coding, I created a set of knowledge codes. Each code is contained within an 
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MKT domain, however some domains have multiple codes. The codes and their corresponding 

domain of MKT, are listed in table 4.4. In the sections that follow, which are organized by MKT 

domain, I describe each code and provide examples from the data.   

Table 4.12: Knowledge Codes Used to Analyze the Practice of Selecting Examples 
MKT Domain Specific Code 

CCK Knowledge of how to carry out a procedure 
Knowledge of mathematical ideas 

SCK 

Recognizing nuanced differences/ subsets within a larger set of problems that 
others would group as one set 
Knowledge of simple problems that show a more complex idea  
Knowledge of multiple procedures (ways) to solve a problem 
Recognizing artificial patterns in problems 

KCT 

Knowledge of how to strategically sequence examples for a purpose  
Knowledge of how a simple example can be used to help students learn a more 
complex idea  
Knowledge of how examples and the values used in them should not 
demonstrate an artificial pattern 
Knowledge of how errors can be used for particular purposes 

KCS 
Knowledge of common student errors or misconceptions, areas were students 
may struggle with the mathematics, or information students commonly forget 
Knowledge of students’ strengths and abilities 

KCC Knowledge of the curriculum, including past and future learning 
Incorrect 
Knowledge 

Knowledge that is mathematically incorrect  

 

Common Content Knowledge (CCK). There are two knowledge codes within the 

domain of CCK, knowledge of how to carry out a procedure and knowledge of mathematical 

ideas. These two categories represent the distinction between knowing pieces of mathematics 

knowledge and knowing how to apply knowledge to solve a problem or carry out a procedure. 

Participants demonstrated knowledge of how to carry out a procedure when they solved the 

mathematics problems or described how they would talk about a procedure with students. For 

instance, when discussing how she would use the problem 1
2x

+
3
2x2

=
1
6x  

with students, Mrs. 
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Kelly drew on knowledge of the process of multiplying a rational equation by the least common 

denominator.  

On this one, when I tell them we're going to multiply both sides, or the whole equation by 
6x squared we can talk about, ‘Okay, if I'm doing 6x squared times 3x, and dividing it by 
6x squared, those 6x squareds are going to disappear because we're taking out that factor, 
we're dividing 6x squared by itself and that's 1.’ (Mrs. Kelly Example Item 3)  

In this quote, Mrs. Kelly demonstrates knowledge of the procedure for solving a rational 

equation. 

Teachers frequently used knowledge of mathematical ideas while selecting examples. 

They demonstrated this knowledge by talking about specific mathematics concepts, such as end 

behavior, the zero-product property, or proportions. For example, on the first interview item, 

which asked teachers to select examples to demonstrate different types of discontinuity, several 

teachers specifically mentioned that they would want to show both vertical asymptotes and holes 

to students. Both vertical asymptotes and holes are types of discontinuities and would therefore 

fit the prompt. 

Specialized Content Knowledge (SCK). There are four different categories within the 

domain of SCK. The first code is recognizing nuanced differences/ subsets within a larger set of 

problems that others would group as one set. Teachers demonstrated this knowledge when they 

talked about breaking a topic down into different types of problems, with different features, that 

range mathematical difficulty. For example, when responding to the prompt to select examples 

for solving rational equations, Mr. Clark saw equations where two rational fractions were set 

equal as distinct from equations where the sum of two rational expressions is equal to a third 

rational expression, because the first set of equations can be solved using cross multiplication. 

He therefore taught them separately, “I almost treat those as two different problems, the way I've 
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always taught that” (Mr. Clark Example Item 3). Others might see all of these problems as 

rational equations. 

The second code within the domain of SCK is knowledge of simple problems that show a 

more complex idea. Several teachers were able to name simple problems that showed a more 

complex idea. For example, when responding to the prompt to select examples for simplifying 

rational expressions, Mr. Baker talked about the problems 2+3
2+5

 and 2•3
2•5

 as simple rational 

expressions that can be simplified. Both of these fractions are rational expressions. However, 

because they do not have variables in their denominators, they are also problems that are simpler. 

This knowledge code is included in the domain of SCK because it is mathematics knowledge 

unlikely to be used by anyone besides teachers.  

The third code within the domain of SCK is knowledge of multiple procedures (ways) to 

solve a problem. In their interviews teachers occasionally mentioned multiple methods of solving 

equations. These distinctions between methods of solving rational equations might be less visible 

to others than they are to teachers working with students. For example, when responding to the 

prompt to select examples for solving rational equations, Mr. Zimmer described two different 

methods he has taught for solving rational equations. “Sometimes we get a common denominator 

and they go through and cross multiply. Sometimes we find a common denominator, but use it to 

reduce or cancel out all the denominators” (Mr. Zimmer Example Item 3). In both cases, all of 

the fractions are multiplied by the common denominator to reduce the fractions. However, in 

once case the fractions are first changed to have common denominators. Ms. Allen also 

discussed the method of getting a common denominator before multiplying by the common 

denominator over one to clear the fractions. In addition, she mentioned an additional method she 
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has elected not to use, where two of the fractions are combined and the problem can then be 

solved using cross multiplication. 

The fourth code within the domain of SCK is recognizing artificial patterns in problems. 

Two teachers mentioned artificial patterns that they wanted to avoid in their examples. Artificial 

patterns are derived sets of cases that show a pattern that is not mathematically valid and does 

not hold in other instances. For example, when factoring x2 + 4x + 4 into (x + 2)(x + 2) , a student 

might assume that all equations of the form x2 + a2x + a2  factor as (x + a)(x + a) , however 

x2 + a2x + a2 = (x + a)(x + a)  only when a=2. Mr. Johnson discussed that he is “always careful to 

change the signs, change the numbers” so that there are no artificial patterns in his examples and 

that he tries to avoid numbers like “2s and 4s and 1s and things that are always going to be the 

same” (Mr. Johnson Examples Item 1). This knowledge code is included in the domain of SCK 

because it is about mathematics ideas and values in each problem. However, consideration of 

these artificial patterns is likely something unique to the work of teaching. 

Knowledge of Content and Teaching (KCT). Within the domain of KCT, there are four 

knowledge codes. The first code is knowledge of how to strategically sequence examples for a 

purpose. Teachers frequently discussed how they would sequence the examples for several 

purposes. These purposes included introducing only one type of discontinuity at a time when 

showing students different types of discontinuities, starting with the most complex problem, and 

having problems increase in mathematical complexity. For example, when responding to the 

prompt to select examples to demonstrate different types of discontinuities, Mrs. Kelly selected a 

first example that focused students in on the idea of discontinuities, instead of a problem that 

would require complex factoring and take the focus off of the discontinuity. “I might start with 

something like 3 over x minus 4 because then we're just looking at discontinuities instead of 
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having to involve factoring also” (Mrs. Kelly Example Item 1). When selecting a first example 

for solving rational equations, Mr. Zimmer decided on 3
x2 −7x +10

+ 2 = x − 4
x −5

 to avoid starting 

with cross multiplication, which students would be likely to misapply to other problems. 

“Sometimes I get nervous about cross multiplying and that they're just going to resort to that 

every time. Showing them that this method exists and they try to transfer over and use it here [on 

a problem where the method does not work]. I would be hesitant to start with this one for that 

reason” (Mr. Zimmer Example Item 3). He chose not to start with an example where students 

could use cross multiplication because if it was the first thing they learned, he thought they 

would try to use cross multiplication to solve problems that cannot be solved using that method. 

The second code in this domain is knowledge of how a simple example can be used to 

help students learn a more complex idea. Several teachers mentioned that they would start a new 

topic using an example that was already familiar to students. Given the content of rational 

expressions, many of these examples involved fractions with integer denominators. These 

fractions are examples of rational expressions, but because they do not have variables in their 

denominators, they are also just fractions, which students have seen before and are familiar with. 

For instance, when prompted to select examples to teach simplifying rational expressions, Mr. 

Baker discussed how he would start with the simpler, familiar problems 2+3
2+5

 and 2•3
2•5

 to 

demonstrate the difference between factors and terms. Although this code is related to the SCK 

code of knowledge of simple problems that show a more complex idea, it is included in the 

domain of KCT because it is knowledge of the pedagogical purpose and value of using such an 

example, and not knowledge of a simpler mathematics problem.  
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The third KCT code is knowledge of how examples and the values used in them should 

not demonstrate an artificial pattern. Two teachers explicitly mentioned that they thought about 

incorrect patterns that students might inadvertently draw from a series of problems when 

selecting examples for a particular purpose. According to Mr. Johnson, “I don't want students to 

ever see artificial patterns so I'm always careful to change the signs, change the numbers so it 

doesn't seem like oh yeah, every time those are all positive, oh that's a coincidence so I don't 

want that to happen” (Mr. Johnson Example Item 3). When selecting examples, Mr. Johnson was 

careful to avoid choosing problems where students might make see patterns that do not actually 

exist. Although this code is related to the SCK code of recognizing artificial patterns in 

problems, it is included in the domain of KCT because it is knowledge of the pedagogical 

importance of avoiding artificial patterns across a set of examples.  

The fourth code within the domain of KCT is knowledge of how errors can be used for 

particular purposes. A few teachers mentioned explicitly showing students errors so that 

students are aware of the error. When discussing how she would use a problem with students, 

Mrs. Kelly mentioned “Then I'd even do something like make a mistake on this problem […] so 

the kids can stop and say like, ‘Oh, no that's wrong.’ So they can figure out where I went wrong 

also” (Mrs. Kelly Example Item 3). In this quote, Mrs. Kelly shows that she knows to use errors 

in her teaching for the purpose of having students identify and understand the error, potentially 

preventing students from making it in the future. 

Knowledge of Content and Students (KCS). Within the domain of KCS, there are two 

codes, both of which are about knowledge of what students know and often do. The first is 

knowledge of common student errors or misconceptions, areas were students may struggle with 

the mathematics, or information students commonly forget. Frequently during the interviews, 



 83 

teachers described common student errors and misconceptions, as well as places where they 

thought students might struggle with the mathematics. Several teachers mentioned the common 

error of reducing terms in a rational expression or equation, instead of factors. Teachers also 

mentioned that students often misapply the method of cross multiplication to problems where it 

is not applicable, or have difficulty recognizing how to factor particular types of quadratics, such 

as those with a leading coefficient or the difference of squares. All of these are common student 

difficulties that arise in the content area. 

The teachers also demonstrated knowledge of students’ strengths and abilities, the second 

code in the domain of KCS. In particular, teachers demonstrated knowledge of particular skills 

that their students were able to do. When discussing how students would solve the problem 

y = x
2 +5x +6
x2 − x −12

, Mr. Clark commented that he liked that the denominator was factorable. “That's 

something that my guys can handle and they understand the Zero Product Property” (Mr. Clark 

Example Item 1). Mrs. Kelly said that her students “would have already done addition and 

subtraction, so they would know how to find a common denominator” (Mrs. Kelly Example Item 

3). These are both examples of teachers showing knowledge of the abilities their students would 

have in this topic. 

Knowledge of Content and Curriculum. (KCC) There was only one code for the 

domain of KCC. Occasionally teachers mentioned knowledge of what students had learned in 

other years, what they learned earlier that school year, or what they would learn in a future 

course. For example, when discussing the examples she would pick in response to the prompt on 

solving rational equations, Mrs. Stone mentioned that students learned the concept of equivalent 

fractions in elementary school. This shows knowledge of what students had already learned. Mr. 
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Clark also discussed that removable discontinuities are a calculus concept. This shows 

knowledge of what students would continue to learn in the future. 

Incorrect Knowledge. The final knowledge code was that of incorrect knowledge. On a 

few occasions, participants demonstrated mathematical errors or incorrect knowledge. For 

example, Ms. Allen discussed that extraneous solutions to rational equations always come from 

problems where one of the rational expressions is not fully reduced before solving. Such a 

problem will result in an extraneous solution, often in addition to the original solutions. 

However, extraneous solutions also exist in problems where the rational expressions have no 

common factors, such as 2

10 4 5
2 2x x x x

+ =
− −

. Thus, Ms. Allen demonstrated incorrect 

mathematics knowledge. 

Teachers’ Knowledge Use 

Having described each of the knowledge codes, I now look at how their frequencies in 

the data. In this section, I discuss the types of knowledge teachers used in solving the interview 

items. I also look at patterns in knowledge use across the three interview items. Finally, I look at 

types of knowledge that were frequently used together. In addition to differences across the 

interview items, there were differences in the frequency with which they used particular types of 

knowledge. These differences will be discussed in greater detail in the final section of this 

chapter.  

Types of Knowledge Used. Table 4.5 shows the number of segments that were coded as 

each type of knowledge as well as the percent of total segments for each interview item and all of 

the interview items. Table 4.6 shows the same information aggregated by teacher. All of the 

teachers used both types of common content knowledge (knowledge of how to carry out a 

procedure and knowledge of mathematical ideas) on each interview item. Overall, the teachers 
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demonstrated knowledge in the domains of KCS, KCT, and SCK across the majority of the 

interview items. With the exception of Ms. Allen on the second interview item, all of the 

teachers recognized nuanced differences/ subsets within a larger set of problems that others 

would group as one set on each of the interview items. Similarly, with the exception of Mr. 

Baker on the first and third interview items, all of the teachers drew on knowledge of common 

student errors or misconceptions, or places students generally struggle. All of the teachers drew 

on knowledge of sequencing for a purpose on each interview item, with the exception of Mr. 

Johnson on item 1. 
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Table 4.13: Frequencies of Each Knowledge Code by Item and Overall 
  Item 

  1 2 3 All 
MKT 
Domain Specific Code n % n % n % n % 

CCK Knowledge of how to carry out a procedure 64 43.8 82 46.3 52 33.1 198 41.3 
Knowledge of mathematical ideas 88 60.3 69 39.0 37 23.6 194 40.4 

SCK 

Recognizing nuanced differences/ subsets 
within a larger set of problems that others 
would group as one set 

73 50.0 75 42.4 71 45.2 219 45.6 

Knowledge of simple problems that show a 
more complex idea  0 0.0 11 6.2 5 3.2 16 3.3 

Knowledge of multiple procedures (ways) to 
solve a problem 1 0.7 1 0.6 7 4.5 9 1.9 

Recognizing artificial patterns in problems 4 2.7 0 0.0 0 0.0 4 0.8 

KCT 

Knowledge of how to strategically sequence 
examples for a purpose  37 25.3 57 32.2 54 34.4 148 30.8 

Knowledge of how a simple example can be 
used to help students learn a more complex 
idea  

0 0.0 11 6.2 5 3.2 16 3.3 

Knowledge of how examples and the values 
used in them should not demonstrate an 
artificial pattern 

4 2.7 0 0.0 0 0.0 4 0.8 

Knowledge of how errors can be used for 
particular purposes 0 0.0 0 0.0 2 1.3 2 0.4 

KCS 

Knowledge of common student errors or 
misconceptions, areas were students may 
struggle with the mathematics, or information 
students commonly forget 

15 10.3 43 24.3 25 15.9 83 17.3 

Knowledge of students’ strengths and abilities 11 7.5 7 4.0 11 7.0 29 6.0 

KCC Knowledge of the curriculum, including past 
and future learning 1 0.7 3 1.7 3 1.9 7 1.5 

Incorrect 
Knowledge Knowledge that is mathematically incorrect  2 1.4 0 0.0 3 1.9 5 1.0 

 Total number of segments 146 177 157 480 
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Table 4.14: Frequencies of Each Knowledge Code by Teacher 
  Participant 

  Ms. Allen Mr. Baker Mr. Clark Mrs. 
Dayton 

Mr. 
Johnson Mrs. Kelly Mrs. 

Stone 
Mr. 

Zimmer 
MKT 
Domain Specific Code n % n % n % n % n % n % n % n % 

CCK 
Knowledge of how to carry out a 
procedure 30 40.0 27 71.1 33 45.2 22 31.4 28 48.3 24 33.3 15 23.8 19 61.3 

Knowledge of mathematical ideas 38 50.7 22 57.9 30 41.1 25 35.7 27 46.6 21 29.2 15 23.8 16 51.6 

SCK 

Recognizing nuanced differences/ 
subsets within a larger set of problems 
that others would group as one set 

15 20.0 22 57.9 37 50.7 39 55.7 28 48.3 39 54.2 29 46.0 10 32.3 

Knowledge of simple problems that 
show a more complex idea  0 0.0 5 13.2 0 0.0 1 1.4 2 3.4 7 9.7 1 1.6 0 0.0 

Knowledge of multiple procedures 
(ways) to solve a problem 1 1.3 0 0.0 3 4.1 1 1.4 1 1.7 2 2.8 0 0.0 1 3.2 

Recognizing artificial patterns in 
problems 0 0.0 0 0.0 0 0.0 2 2.9 2 3.4 0 0.0 0 0.0 0 0.0 

KCT 

Knowledge of how to strategically 
sequence examples for a purpose  6 8.0 12 31.6 21 28.8 36 51.4 19 32.8 33 45.8 17 27.0 4 12.9 

Knowledge of how a simple example 
can be used to help students learn a 
more complex idea  

0 0.0 5 13.2 0 0.0 1 1.4 2 3.4 7 9.7 1 1.6 0 0.0 

Knowledge of how examples and the 
values used in them should not 
demonstrate an artificial pattern 

0 0.0 0 0.0 0 0.0 2 2.9 2 3.4 0 0.0 0 0.0 0 0.0 

Knowledge of how errors can be used 
for particular purposes 1 1.3 0 0.0 0 0.0 0 0.0 0 0.0 1 1.4 0 0.0 0 0.0 

KCS 

Knowledge of common student errors 
or misconceptions, areas were students 
may struggle with the mathematics, or 
information students commonly forget 

22 29.3 3 7.9 11 15.1 8 11.4 9 15.5 6 8.3 11 17.5 13 41.9 

Knowledge of students’ strengths and 
abilities 1 1.3 2 5.3 6 8.2 4 5.7 2 3.4 7 9.7 7 11.1 0 0.0 

KCC Knowledge of the curriculum, 
including past and future learning 1 1.3 1 2.6 1 1.4 0 0.0 0 0.0 1 1.4 3 4.8 0 0.0 

Incorrect 
Knowledge 

Knowledge that is mathematically 
incorrect  3 4.0 0 0.0 1 1.4 0 0.0 1 1.7 0 0.0 0 0.0 0 0.0 
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 Total number of segments 75 38 73 70 58 72 63 31 
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Knowledge Use by Item. When comparing teachers’ knowledge use across the three 

interview items, teachers drew on similar knowledge. However, there were two noticeable 

differences across the interview items. First, teachers more frequently drew on knowledge of 

student errors and struggles on interview item 2. Teachers demonstrated this knowledge on 

24.3% of the transcript segments for interview item 2, compared to 10.3% of the transcript 

segments for interview item 1 and 15.9% of the transcript segments for interview item 3. Second, 

the teachers demonstrated both knowledge of a simple problem that shows a complex idea and 

knowledge of how a simple example can be used to help students learn a more complex idea on 

interview items 2 and 3. However, none of the teachers demonstrated this knowledge on the first 

interview item. 

Co-occurrences of Knowledge. The teachers drew on multiple types of knowledge for 

each interview item. Each teacher demonstrated knowledge in at least four categories for each 

interview item, with some teachers demonstrating up to ten categories on one item. Some types 

of knowledge co-occurred frequently. Table 4.7 shows how frequently different pairs of 

knowledge co-occurred in the same segment. Both of the categories within CCK, knowledge of 

how to carry out a procedure and knowledge of mathematical ideas, co-occurred with all of the 

other types of knowledge, except for the KCT code of showing errors for a purpose, which was 

only used twice. In addition, in 81.8% of instances where teachers drew on the KCT knowledge 

of how to strategically sequence examples for a purpose, they also recognized nuanced 

differences/ subsets within a larger set of problems that others would group as one set. 

There were two pairs of knowledge codes that overlapped completely: (1) knowledge of 

simple problems that show a more complex idea and knowledge of how a simple example can be 

used to help students learn a more complex idea, and (2) recognizing artificial patterns in 
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problems and knowledge of how examples and the values used in them should not demonstrate 

an artificial pattern. These two pairs of knowledge completely overlapped because when teachers 

described using a simple example or avoiding artificial patterns, they both demonstrated the 

specialized mathematics knowledge of the simple example or possible artificial pattern, and the 

pedagogical knowledge recognizing the impact on student learning that such examples or 

artificial patterns can have.
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Table 4.15: Co-occurrences of Knowledge Codes. All numbers are percentages, with the exception of the totals. 
 CCK SCK KCT KCS KCC 
 

K
now

ledge of how
 to carry out a 

procedure 

K
now

ledge of m
athem

atical ideas 

R
ecognizing nuanced differences/ 

subsets w
ithin a larger set of problem

s 
that others w

ould group as one set 

K
now

ledge of sim
ple problem

s that 
show

 a m
ore com

plex idea 

K
now

ledge of m
ultiple procedures 

(w
ays) to solve a problem

 

R
ecognizing artificial patterns in 

problem
s 

K
now

ledge of how
 to strategically 

sequence exam
ples for a purpose 

K
now

ledge of how
 a sim

ple exam
ple 

can be used to help students learn a 
m

ore com
plex idea 

K
now

ledge of how
 exam

ples and the 
values used in them

 should not 
dem

onstrate an artificial pattern 

K
now

ledge of how
 errors can be used 

for particular purposes 

K
now

ledge of com
m

on student errors 
or struggles 

K
now

ledge of students’ strengths and 
abilities 

K
now

ledge of the curriculum
, 

including past and future learning 

Knowledge of how to carry out a procedure -- 65.5 44.3 43.8 66.7 25.0 31.1 7.0 25.0 0.0 43.4 51.7 42.9 
Knowledge of mathematical ideas 64.1 -- 42.5 31.3 22.2 25.0 30.4 5.0 25.0 0.0 33.7 31.0 57.1 
Recognizing nuanced differences/ subsets within a larger 
set of problems that others would group as one set 49.0 47.9 -- 12.5 0.0 50.0 81.8 2.0 50.0 0.0 22.9 31.0 28.6 

Knowledge of simple problems that show a more 
complex idea  3.5 2.6 0.9 -- 0.0 0.0 2.7 16.0 0.0 0.0 2.4 3.4 28.6 

Knowledge of multiple procedures (ways) to solve a 
problem 3.0 1.0 0.0 0.0 -- 0.0 0.0 0.0 0.0 0.0 3.6 6.9 0.0 

Recognizing artificial patterns in problems 0.5 0.5 0.9 0.0 0.0 -- 1.4 0.0 100.0 0.0 2.4 0.0 0.0 
Knowledge of how to strategically sequence examples 
for a purpose  23.2 23.2 55.3 25.0 0.0 50.0 -- 4.0 50.0 0.0 15.7 13.8 14.3 

Knowledge of how a simple example can be used to help 
students learn a more complex idea  3.5 2.6 0.9 100.0 0.0 0.0 2.7 -- 0.0 0.0 2.4 3.4 28.6 

Knowledge of how examples and the values used in 
them should not demonstrate an artificial pattern 0.5 0.5 0.9 0.0 0.0 100.0 1.4 0.0 -- 0.0 2.4 0.0 0.0 

Knowledge of how errors can be used for particular 
purposes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- 1.2 0.0 0.0 

Knowledge of common student errors struggles 18.2 14.4 8.7 12.5 33.3 50.0 8.8 2.0 50.0 50.0 -- 24.1 28.6 
Knowledge of students’ strengths and abilities 7.6 4.6 4.1 6.3 22.2 0.0 2.7 1.0 0.0 0.0 8.4 -- 0.0 
Knowledge of the curriculum, including past and future 
learning 1.5 2.1 0.9 12.5 0.0 0.0 0.7 2.0 0.0 0.0 2.4 0.0 -- 
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Total number of segments 198 194 219 16 9 4 148 16 4 2 83 29 7 
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The Intersection of Knowledge Use and Practice: What Knowledge Do Teachers Use in 

Enacting Different Components of the Practice of Selecting Examples? 

In this section, I look at the intersection of knowledge and practice to examine the 

knowledge teachers draw on as they enact different components of the practice of selecting 

examples. This analysis looks across all of the teachers to see what knowledge is used within 

each component of the practice. I focus on four findings. First, teachers drew on multiple types 

of knowledge in enacting each component of the practice of selecting examples. The second 

finding considers the use of common and specialized content knowledge when enacting different 

components of selecting examples. The third finding considers teachers’ use of knowledge of 

how to strategically sequence examples for a purpose when enacting difference components of 

the practice. The fourth finding focuses on the knowledge teachers use when enacting the 

component of thinking about common student errors or places where they will have difficulty or 

success, both broadly and within a specific problem. 

Multiple Types of Knowledge 

Overall, teachers drew on a range of knowledge when enacting each component of the 

practice of selecting examples. The frequency with which teachers drew on knowledge when 

enacting each component can be seen in table 4.8. For each component, the teachers collectively 

drew on at least 5 different types of knowledge. For example, across all of the instances of 

evaluating the features of a problem, including comparing to one or more other problems, 

teachers demonstrated eight different types of knowledge, including knowledge of how to carry 

out a procedure, knowledge of mathematical ideas, recognizing nuanced differences/ subsets 

within a larger set of problems that others would group as one set, knowledge of common 

student errors or struggles, and knowledge of students’ strengths and abilities. In the rest of this 
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section, I focus on patterns that emerged in the types of knowledge teachers drew on when 

enacting specific components of the practice of selecting examples. 
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Table 4.16: Occurrences of Knowledge Codes Within Each Component of the Practice of Selecting Examples. All numbers are 
percentages, with the exception of the totals. 

 

Thinking about the end goal 

Thinking about pieces of the end goal 

Thinking about com
m

on student errors or 
places w

here they w
ill have difficulty or 

success 

N
oticing a subset of problem

s w
ith a particular 

characteristic and deciding they fit a new
 sub 

goal  

N
oticing a subset of problem

s w
ith a particular 

characteristic and deciding not to use that type 
of problem

 

Finding problem
(s) that m

atch a particular 
feature or (sub) goal, or picking one of a subset 

of problem
s w

ith a particular characteristic 

Looking at a set of problem
s for interesting 

features in the set 

Evaluating the features of a problem
, including 

com
paring to one or m

ore other problem
s 

C
reating or m

odifying a problem
 to m

atch a 
desired (sub) goal 

Sequencing problem
s 

D
escribing how

 the problem
 w

ill be used w
ith 

students 

Solving a problem
 

Knowledge of how to carry out a procedure 35.0 38.9 40.6 50.0 40.0 20.5 14.3 57.0 55.6 24.7 75.9 100.0 
Knowledge of mathematical ideas 40.0 45.6 31.9 16.7 20.0 18.2 71.4 57.0 61.1 32.3 68.5 25.0 
Recognizing nuanced differences/ subsets within a larger 
set of problems that others would group as one set 15.0 70.0 23.2 66.7 80.0 70.5 57.1 62.6 66.7 66.7 9.3 12.5 

Knowledge of simple problems that show a more complex 
idea  0.0 6.7 1.4 0.0 0.0 0.0 0.0 0.9 16.7 4.3 9.3 0.0 

Knowledge of multiple procedures (ways) to solve a 
problem 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.0 0.0 

Recognizing artificial patterns in problems 0.0 2.2 1.4 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 
Knowledge of how to strategically sequence examples for 
a purpose  10.0 47.8 13.0 16.7 20.0 38.6 0.0 29.0 41.7 79.6 13.0 12.5 

Knowledge of how a simple example can be used to help 
students learn a more complex idea  0.0 6.7 1.4 0.0 0.0 0.0 0.0 0.9 16.7 4.3 9.3 0.0 

Knowledge of how examples and the values used in them 
should not demonstrate an artificial pattern 0.0 2.2 1.4 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 

Knowledge of how errors can be used for particular 
purposes 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 

Knowledge of common student errors or misconceptions, 
areas were students may struggle with the mathematics, or 
information students commonly forget 

5.0 5.6 82.6 16.7 20.0 2.3 14.3 18.7 0.0 4.3 18.5 0.0 
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Knowledge of students' strengths and abilities 0.0 3.3 23.2 16.7 0.0 2.3 0.0 4.7 2.8 1.1 11.1 12.5 
Knowledge of the curriculum, including past and future 
learning 0.0 2.2 1.4 0.0 0.0 0.0 14.3 0.0 2.8 0.0 5.6 0.0 

Total number of segments 20 90 69 6 5 44 7 107 36 93 54 8 
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Common and Specialized Content Knowledge 

Teachers drew on both components of CCK, knowledge of how to carry out a procedure 

and knowledge of mathematical ideas, as well as the specialized content knowledge of 

recognizing nuanced differences/ subsets within a larger set of problems that others would group 

as one set when enacting each of the components of the practice of selecting examples. However, 

there are differences in which types of knowledge were used more frequently across different 

components of the practice. Knowledge of how to carry out a procedure was most frequently 

used when teachers enacted the practice components of solving a problem (100%), describing 

how the problem will be used with students (e.g. what they would point out, how to get students 

to notice features, etc.) (75.9%), evaluating the features of a problem, including comparing to 

one or more other problems (57.0%), and creating or modifying a problem to match a desired 

(sub) goal (55.6%). When enacting the following practices, teachers drew most frequently on 

knowledge of mathematical ideas: looking at a set of problems for interesting features in the set 

(71.4%), describing how the problem will be used with students (e.g. what they would point out, 

how to get students to notice features, etc.) (68.5%), creating or modifying a problem to match a 

desired (sub) goal (61.1%), and evaluating the features of a problem, including comparing to one 

or more other problems (57.0%).  

Teachers recognized nuanced differences/ subsets within a larger set of problems that 

others would group as one set more than 50% of the time when enacting each component of the 

practice except describing how the problem will be used with students (9.3%), solving a problem 

(12.5%), thinking about the end goal (15.0%), and thinking about common student errors or 

places where they will have difficulty or success, both broadly and within a specific problem 

(23.2%), They most frequently recognized these nuances when enacting the components of 
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noticing a subset of problems with a particular characteristic and deciding not to use that type of 

problem (80.0%), finding problem(s) that match a particular feature or (sub) goal, or picking one 

of a subset of problems with a particular characteristic (70.5%), and thinking about pieces of the 

end goal (components, sub goals, or scaffolds) (70.0%).  

 In addition to the differences in how often each knowledge type was used across different 

components, there were differences in which type of knowledge teachers drew on most heavily 

within each component. For several components of the practice, teachers drew more frequently 

on both areas of CCK than they did on the specialized content knowledge of recognizing 

nuanced differences/ subsets within a larger set of problems that others would group as one set. 

These practice components include thinking about the end goal, thinking about common student 

errors or places where they will have difficulty or success, both broadly and within a specific 

problem, and describing how the problem will be used with students. For example, when 

describing how the problem will be used with students, teachers drew on knowledge of how to 

carry out a procedure 75.9% of the time and knowledge of mathematical ideas 68.5% of the time, 

yet they only recognized nuanced differences/ subsets within a larger set of problems that others 

would group as one set 9.3% of the time. 

For several practice components, including thinking about pieces of the end goal 

(components, sub goals, or scaffolds), finding problem(s) that match a particular feature or (sub) 

goal, or picking one of a subset of problems with a particular characteristic, and sequencing 

problems, the opposite was true. Teachers more frequently recognized nuanced differences/ 

subsets within a larger set of problems that others would group as one set, compared to drawing 

on knowledge of how to carry out a procedure or of mathematical ideas. For example, when 

carrying out the practice component of finding problem(s) that match a particular feature or (sub) 
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goal, or picking one of a subset of problems with a particular characteristic, teachers recognized 

nuanced differences/ subsets within a larger set of problems that others would group as one set 

70.5% of the time, yet drew on knowledge of how to carry out a procedure 20.5% of the time and 

knowledge of mathematical ideas only 18.2% of the time. 

For a few of the practice components, there were larger differences between the 

frequencies with which teachers drew on each of the types of common content knowledge. For 

the two practice components involving noticing a subset of problems with a given feature and 

deciding to include or exclude them, teachers most frequently used the specialized content 

knowledge of recognizing nuanced differences/ subsets within a larger set of problems that 

others would group as one set, followed by knowledge of how to carry out a procedure, and drew 

even less frequently on knowledge of mathematical ideas. There were only a few instances 

overall of each of these practice components. For example, when teachers noticed a subset of 

problems with a particular characteristic and decided not to use that type of problem, they 

recognized nuanced differences/ subsets within a larger set of problems that others would group 

as one set 80% of the time, drew on knowledge of how to carry out a procedure 40% of the time, 

and drew on knowledge of mathematical ideas 20% of the time. When looking at a set of 

problems for interesting features in the set, teachers drew on knowledge of mathematics ideas 

71.4% of the time, recognized nuanced differences/ subsets within a larger set of problems that 

others would group as one set 57.1% of the time, and drew on knowledge of how to carry out a 

procedure only 14.3% of the time. Finally, as might be expected, when solving problems, 

teachers drew on knowledge of how to carry out a procedure 100% of the time, but infrequently 

drew on knowledge of mathematical ideas and the specialized content knowledge of recognizing 

nuanced differences/ subsets within a larger set of problems that others would group as one set. 
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Knowledge of How to Sequence Examples Strategically 

 Teachers drew on knowledge of how to sequence examples in ways that were strategic 

for a particular purpose when enacting each of the practice components except for looking at a 

set of problems for interesting features in the set. As might be expected, teachers drew on this 

knowledge most often when they were sequencing problems. In addition to this component of 

the practice, teachers also drew on knowledge of how to strategically sequence examples 

frequently when enacting other practice components. They drew on this knowledge 47.8% of the 

time when they were thinking about pieces of the end goal (components, sub goals, or scaffolds), 

41.7% of the time when they were creating or modifying a problem to match a desired (sub) 

goal, and 38.6% of the time when they were finding problem(s) that match a particular feature or 

(sub) goal, or picking one of a subset of problems with a particular characteristic. 

Knowledge Used When Enacting the Component of Thinking About Common Student 

Errors or Places Where They Will Have Difficulty or Success 

When enacting the practice of thinking about common student errors or places where 

they will have difficulty or success, both broadly and within a specific problem, teachers drew 

heavily on knowledge of common student errors or misconceptions, areas were students may 

struggle with the mathematics, or information students commonly forget. They used this 

knowledge 82.6% of the time. Although they also drew on knowledge of students’ strengths and 

abilities, they did so far less often, only 23.2% of the time, which is also how often they 

recognized nuanced differences/ subsets within a larger set of problems that others would group 

as one set. When enacting this practice, teachers drew on the common content knowledge areas 

of how to carry out a procedure 40.6% of the time and mathematical ideas 31.9% of the time.  
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Differences Between Teachers in Their Knowledge Use When Enacting Different 

Components of the Practice of Selecting Examples 

As mentioned earlier, there were variations across teachers both in terms of the 

components of the practice of selecting examples they enacted and the knowledge they drew on 

in doing so. Looking at both sets of data together, three different patterns of selecting examples 

and drawing on knowledge emerged. In particular, Mr. Baker and Mrs. Kelly were focused on 

key mathematical ideas in their lesson and were least focused on student misconceptions. Ms. 

Allen and Mr. Zimmer were most focused on selecting examples that would address and prevent 

common student misconceptions. Mr. Clark and Mrs. Stone fell somewhere in the middle. In the 

subsections that follow, I describe these patterns in more detail and discuss the frequencies with 

which different teachers enacted different practice components and drew on different knowledge 

in doing so. I draw both on tables discussed earlier in the chapter, which each look at two of the 

three dimensions of knowledge, practice, and teachers. I also look at all three variables together 

by looking at differences in individual teacher’s knowledge when enacting a particular practice 

component. The number and frequency of segments coded with each component of the practice 

of selecting examples are shown in table 4.3 in the first section of this chapter. The number and 

frequency of segments that received each knowledge code can be seen in table 4.6 in the second 

section of this chapter. Several additional tables in this section show frequencies of knowledge 

used by each teacher and of co-occurrences of practice components for each teacher when 

enacting different components of the practice.  

Mr. Baker and Mrs. Kelly: Focusing on Key Mathematical Ideas 

The first pattern is seen in the practice components enacted and the knowledge drawn on 

by Mr. Baker and Mrs. Kelly. Overall, Mr. Baker and Mrs. Kelly were focused on the key 
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mathematical ideas and sub goals they planned to discuss and were least focused on student 

misconceptions. In terms of the components of the practice that they enacted, these two teachers 

did not think about an overall end goal, but they did each think about pieces of the end goal 

(components, sub goals, or scaffolds). Mr. Baker did so in 23.7% of the marked segments in his 

transcripts and Mrs. Kelly did so in 23.6% of the marked segments in her transcripts (see table 

4.3). They each thought about pieces of the end goal more frequently than four of the other 

participants, but less frequently than Mrs. Dayton and Mr. Johnson. Both Mr. Baker and Mrs. 

Kelly had the highest frequencies for the practice of sequencing problems, which they did in 

28.9% and 31.9% of their marked transcript segments, respectively (see table 4.3). As might be 

expected, Mr. Baker and Mrs. Kelly drew on knowledge of how to strategically sequence 

examples for a purpose more frequently than some of the teachers (31.6% and 45.8%, 

respectively, see table 4.6). However, Mrs. Dayton drew on this knowledge more frequently than 

both Mr. Baker and Mrs. Kelly, and Mr. Johnson did so more frequently that Mr. Baker. Mr. 

Baker and Mrs. Kelly both recognized nuanced differences/ subsets within a larger set of 

problems that others would group as one set more frequently than several of the other teachers. 

Mr. Baker drew on this knowledge 57.9% of the time and Mrs. Kelly drew on this knowledge 

54.2% of the time, which was less than only one other participant, Mrs. Dayton at 55.7% (see 

table 4.6). 

Table 4.9 shows each individual teacher’s knowledge use for the practice component of 

thinking about pieces of the end goal. It also shows co-occurrences of the practice component of 

sequencing examples. When enacting the practice component of thinking about pieces of the end 

goal, Mr. Baker and Mrs. Kelly had the highest co-occurrence frequency of sequencing 

problems. Mr. Baker sequenced problems in 66.7% of the transcript segments in which he was 
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thinking about pieces of the end goal and Mrs. Kelly did so in 58.8% of the segments where she 

was thinking about pieces of the end goal (see table 4.9). Both Mr. Baker and Mrs. Kelly also 

more frequently drew on knowledge of how to strategically sequence examples for a purpose 

when they were thinking about pieces of the end goal compared to the other teachers. They did 

so during 44.4% and 58.8% of the segments in which they were thinking about pieces of the end 

goal, respectively (see table 4.9). Only Mrs. Dayton had a higher frequency; she drew on 

knowledge of how to strategically sequence examples for a purpose during 86.4% of the 

segments where she was thinking about pieces of the end goal (see table 4.9). In addition, when 

enacting the practice component of thinking about pieces of the end goal, Mr. Baker recognized 

nuanced differences within a larger set of problems that others would group as one set 88.9% of 

the time, more than any of the other teachers (see table 4.9).  
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Table 4.17: Frequencies of Each Knowledge Code or Co-occurring Practice Component Used When Carrying Out the Practice 
Component of Thinking About Pieces of the End Goal by Teacher 
 Participant 

 Focusing on Key 
Mathematics Ideas     Focusing on Common 

Student Misconceptions 

 Mr. Baker Mrs. Kelly Mrs. 
Dayton 

Mr. 
Johnson 

Mrs. 
Stone Mr. Clark Ms. Allen Mr. 

Zimmer 
Component of the Practice or Knowledge Code n % n % n % n % n % n % n % n % 
Sequencing problems 6 66.7 10 58.8 7 31.8 4 26.7 2 22.2 3 42.9 1 12.5 0 0.0 
Recognizing nuanced differences/ subsets within a 
larger set of problems that others would group as one 
set 

8 88.9 11 64.7 17 77.3 11 73.3 6 66.7 6 85.7 4 50.0 0 0.0 

Knowledge of how to strategically sequence 
examples for a purpose  

4 44.4 10 58.8 19 86.4 4 26.7 2 22.2 3 42.9 1 12.5 0 0.0 

Knowledge of common student errors or 
misconceptions, areas were students may struggle 
with the mathematics, or information students 
commonly forget 

0 0.0 0 0.0 1 4.5 1 6.7 0 0.0 0 0.0 2 25.0 1 33.3 

Total number of segments 9 17 22 15 9 7 8 3 
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Mr. Baker and Mrs. Kelly show similar patterns for the practice component of 

sequencing problems. Table 4.10 presents teachers’ knowledge use for the practice component of 

sequencing problems. It also shows co-occurrences of the practice component of thinking about 

pieces of the end goal. When sequencing problems, Mr. Baker and Mrs. Kelly also enacted the 

practice component of thinking about pieces of the end goal more frequently than all of the other 

teachers (54.5% and 43.5% respectively), with the exception of Mrs. Dayton, who did so in 

58.3% of the segments in which she sequenced problems (see table 4.10). In addition, when 

sequencing problems, Mr. Baker recognized nuanced differences within a larger set of problems 

that others would group as one set 81.8%  of the time, more than all of the other teachers except 

for Mr. Clark, who did so 83.3% of the time when he was sequencing problems (see table 4.10).  



 106 

Table 4.18: Frequencies of Each Knowledge Code or Co-occurring Practice Component Used When Carrying Out the Practice 
Component of Sequencing Problems by Teacher 
 Participant 

 Focusing on Key 
Mathematics Ideas     Focusing on Common 

Student Misconceptions 

 Mr. Baker Mrs. Kelly Mrs. 
Dayton 

Mr. 
Johnson 

Mrs. 
Stone Mr. Clark Ms. Allen Mr. 

Zimmer 
Component of the Practice or Knowledge Code n % n % n % n % n % n % n % n % 
Thinking about pieces of the end goal (components, 
sub goals, or scaffolds) 

6 54.5 10 43.5 7 58.3 4 26.7 2 16.7 3 25.0 1 20.0 0 0.0 

Recognizing nuanced differences/ subsets within a 
larger set of problems that others would group as one 
set 

9 81.8 15 65.2 8 66.7 10 66.7 8 66.7 10 83.3 2 40.0 0 0.0 

Knowledge of common student errors or 
misconceptions, areas were students may struggle 
with the mathematics, or information students 
commonly forget 

0 0.0 1 4.3 1 8.3 0 0.0 0 0.0 0 0.0 1 20.0 1 33.3 

Total number of segments 11 23 12 15 12 12 5 3 
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 One interesting feature of Mr. Baker and Mrs. Kelly’s practice is that they less frequently 

engaged in the practice component of thinking about common student errors or places where 

they will have difficulty or success, which occurred 7.9% of the time for Mr. Baker and 9.7% of 

the time for Mrs. Kelly. Only Mrs. Dayton engaged in this component less, 7.1% of the time (see 

table 4.3). Both Mr. Baker and Mrs. Kelly drew on knowledge of common student errors or 

struggles less frequently than all of the other teachers (7.9% and 8.3% respectively, see table 

4.6). What is most interesting is that while they did not have the highest frequencies for drawing 

on knowledge of students’ strengths and abilities, they were the most balanced of the teachers in 

drawing on knowledge of both errors/struggles and strengths. In fact, Mrs. Kelly was the only 

teacher to more frequently draw on knowledge of students’ strengths and abilities (9.7%%) than 

on knowledge of student errors or struggles (8.3%, see table 4.6). 

These results are echoed when looking specifically at the knowledge teachers used and 

practice components that co-occurred with the practice component of thinking about common 

student errors or places where they will have difficulty or success. Table 4.11 shows frequencies 

of knowledge used by each teacher and of co-occurrences of practice components for each 

teacher when enacting the practice component of thinking about common student errors or places 

where they will have difficulty or success. When enacting this practice, Mrs. Kelly had the 

highest frequency of drawing on knowledge of students’ strengths (71.4%) and the lowest 

frequency of drawing on student errors or places where they may struggle (57.1%, see table 

4.11). She was also the only teacher to think about students’ strengths more frequently than 

common student errors or difficulties. When enacting the practice component of thinking about 

common student errors or places where they will have difficulty or success, Mr. Baker had the 
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third highest frequency of drawing on knowledge of students’ strengths and abilities, 33.3% (see 

table 4.11). 
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Table 4.19: Frequencies of Each Knowledge Code or Co-occurring Practice Component Used When Carrying Out the Practice 
Component of Thinking About Common Student Errors or Places Where They Will Have Difficulty or Success by Teacher 
 Participant 

 Focusing on Key 
Mathematics Ideas     Focusing on Common 

Student Misconceptions 

 Mr. Baker Mrs. 
Kelly 

Mrs. 
Dayton 

Mr. 
Johnson 

Mrs. 
Stone 

Mr. 
Clark Ms. Allen Mr. 

Zimmer 
Component of the Practice or Knowledge Code n % n % n % n % n % n % n % n % 
Knowledge of common student errors or 
misconceptions, areas were students may struggle 
with the mathematics, or information students 
commonly forget 

3 100.0 4 57.1 4 80.0 6 85.7 8 66.7 8 72.7 15 100.0 9 100.0 

Knowledge of students’ strengths and abilities 1 33.3 5 71.4 1 20.0 1 14.3 5 41.7 3 27.3 0 0.0 0 0.0 
Total number of segments 3 7 5 7 12 11 15 7 
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Despite more frequently engaging in the practice components of thinking about pieces of 

the end goal and sequencing problems, and recognizing nuanced differences/ subsets within a 

larger set of problems that others would group as one set, both Mr. Baker and Mrs. Kelly 

engaged in the practice component of finding problem(s) that match a particular feature or (sub) 

goal, or picking one of a subset of problems with a particular characteristic less frequently than 

all of the other teachers. Mr. Baker engaged in this practice component 5.3% of the time and 

Mrs. Kelly 5.6% of the time (see table 4.3). Similarly, Mr. Baker and Mrs. Kelly less frequently 

evaluated the features of a problem, including comparing to one or more other problems, than 

some, but not all of the other teachers. They did so 15.8% and 19.4% of the time, respectively 

(see table 4.3). 

Although they evaluated the features of a problem less frequently than the other teachers, 

when enacting this practice component, Mr. Baker and Mrs. Kelly also enacted the practice 

component of sequencing problems more frequently than any of the other teachers. When 

evaluating the features of a problem, Mr. Baker also sequenced problems 50.0% of the time and 

Mrs. Kelly did so 14.3% of the time. These values can be seen in table 4.12, which presents 

teachers’ knowledge use for the practice component of sequencing problems. It also shows co-

occurrences of the practice component of thinking about pieces of the end goal. In addition, 

when evaluating the features of a problem, Mr. Baker and Mrs. Kelly recognized nuanced 

differences within a larger set of problems that others would group as one set more frequently 

than any of the other teachers (100.0% and 85.7% of the time, respectively, see table 4.12), and 

drew on knowledge of how to strategically sequence examples more frequently than most of the 

other teachers. Mr. Baker did so most often (83.3%), Mr. Johnson did so 80% of the time, and 

Mrs. Kelly did so 50.0% of the time (see table 4.12). Finally, when evaluating the features of a 
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problem, Mr. Baker was the only teacher who did not draw on knowledge of student errors and 

Mrs. Kelly drew on this knowledge less than several of the other teachers (14.3%, see table 

4.12).
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Table 4.20: Frequencies of Each Knowledge Code or Co-occurring Practice Component Used When Carrying Out the Practice 
Component of Evaluating the Features of a Problem by Teacher 
 Participant 

 Focusing on Key 
Mathematics Ideas     Focusing on Common 

Student Misconceptions 

 Mr. Baker Mrs. Kelly Mrs. 
Dayton 

Mr. 
Johnson 

Mrs. 
Stone Mr. Clark Ms. Allen Mr. 

Zimmer 
Component of the Practice or Knowledge Code n % n % n % n % n % n % n % n % 
Thinking about common student errors or places 
where they will have difficulty or success 

0 0.0 1 7.1 1 14.3 0 0.0 3 13.0 0 0.0 3 16.7 6 50.0 

Sequencing problems 3 50.0 2 14.3 0 0.0 0 0.0 2 8.7 2 9.1 0 0.0 0 0.0 
Recognizing nuanced differences/ subsets within a 
larger set of problems that others would group as one 
set 

6 100.0 12 85.7 3 42.9 3 60.0 16 69.6 12 54.5 7 38.9 8 66.7 

Knowledge of how to strategically sequence 
examples for a purpose  

5 83.3 7 50.0 1 14.3 4 80.0 6 26.1 7 31.8 0 0.0 1 8.3 

Knowledge of common student errors or 
misconceptions, areas were students may struggle 
with the mathematics, or information students 
commonly forget 

0 0.0 2 14.3 1 14.3 1 20.0 4 17.4 1 4.5 4 22.2 7 58.3 

Total number of segments 6 14 7 5 23 22 18 12 
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Finally, in terms of other knowledge they each drew on when selecting examples, both 

Mr. Baker and Mrs. Kelly drew on knowledge of content and curriculum, which not all of the 

teachers used. They also more frequently drew both on knowledge of simple problems that show 

a more complex idea and knowledge of how a simple example can be used to help students learn 

a more complex idea. Mr. Baker drew on each of these types of knowledge 5 times, while Mrs. 

Kelly did so 7 times. Only three other teachers also drew on these two types of knowledge and 

only did so once or twice (see table 4.6). 

Two other participants, Mrs. Dayton and Mr. Johnson were similar in some ways to Mr. 

Baker and Mrs. Kelly. Mrs. Dayton engaged in the practice component of thinking about 

common student errors or places where they will have difficulty or success and drew on 

knowledge of students’ strengths and abilities with the same frequently as Mr. Baker and Mrs. 

Kelly. Mr. Johnson engaged in this practice component slightly more frequently that Mr. Baker 

and Mrs. Kelly, and drew on knowledge of students’ strengths and abilities slightly less 

frequently (see tables 4.3 and 4.6). Both Mrs. Dayton and Mr. Johnson drew on knowledge of 

common student errors or struggles more frequently than Mr. Baker and Mrs. Kelly. Mrs. Dayton 

and Mr. Johnson both drew on knowledge of how to strategically sequence examples for a 

purpose as much as, or more frequently than Mr. Baker and Mrs. Kelly. Finally, Mrs. Dayton 

recognized nuanced differences/ subsets within a larger set of problems that others would group 

as one set as frequently as Mr. Baker and Mrs. Kelly, while Mr. Johnson did so less frequently 

(see table 4.6). 

Despite the similarities, Mrs. Dayton and Mr. Johnson’s enactments of components of the 

practice of selecting examples and knowledge used were different enough in some of the 

components that they were not included in the same group. Mrs. Dayton and Mr. Johnson each 
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engaged in the practice component of thinking about the end goal once. Compared to Mr. Baker 

and Mrs. Kelly, they also more frequently thought about pieces of the end goal. They more 

frequently enacted the component of finding problem(s) that match a particular feature or (sub) 

goal, or picking one of a subset of problems with a particular characteristic. In addition, they less 

frequently enacted the components of evaluating the features of a problem and sequencing 

problems (see table 4.3). Neither Mrs. Dayton nor Mr. Johnson drew on knowledge of content 

and curriculum. Finally, although both Mrs. Dayton and Mr. Johnson drew on knowledge of 

simple problems that show a more complex idea and knowledge of how a simple example can be 

used to help students learn a more complex idea, they did so less frequently than Mr. Baker and 

Mrs. Kelly (see table 4.6). 

Compared to Mr. Baker and Mrs. Kelly, when enacting the component of thinking about 

pieces of the end goal, Mrs. Dayton had a lower co-occurrence frequency of sequencing 

problems, yet when sequencing problems, she had a higher co-occurrence frequency of thinking 

about pieces of the end goal (see tables 4.9 and 4.10). In addition, when thinking about pieces of 

the end goal, Mrs. Dayton also drew on knowledge of how to strategically sequence examples 

for a purpose (see table 4.9). This suggests differences in Mrs. Dayton’s knowledge and practice 

compared to Mr. Baker and Mrs. Kelly. In particular, that when she was thinking about pieces of 

the end goal, she was sequencing mathematical ideas that would be used in problems and not 

sequencing specific problems.  

Mr. Johnson enacted the practice component of evaluating the features of a problem less 

frequently than Mr. Baker and Mrs. Kelly. However, when enacting this component, he drew on 

knowledge of how to strategically sequence examples for a purpose more frequently than all of 

the other teachers except Mr. Baker. Mr. Johnson drew on this knowledge during 80% of the 
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transcript segments in which he was evaluating the features of a problem and Mr. Baker did so 

83.3% of the time when enacting the practice component (see table 4.12).  

Overall, Mr. Baker and Mrs. Kelly were focused on the key mathematical ideas they 

wanted to get across in their lesson. In doing so, they also were least focused on student 

misconceptions and thought about students’ strengths more proportionately than any of the other 

teachers.  

Ms. Allen and Mr. Zimmer: Focusing on Common Student Misconceptions 

The second pattern that emerged can be seen in the practice components enacted and the 

knowledge drawn on by Ms. Allen and Mr. Zimmer. Ms. Allen and Mr. Zimmer were most 

focused on selecting problems that would surface common student misconceptions and were less 

focused on the key mathematical ideas they might discuss for a particular topic. Both Ms. Allen 

and Mr. Zimmer enacted the practice component of thinking about common student errors or 

places where they will have difficulty or success more frequently than any of the other teachers. 

Ms. Allen did so 20.0% of the time and Mr. Zimmer did so 29.0% of the time (see table 4.3). 

They drew on knowledge of common student errors or misconceptions more frequently than any 

of the other teachers (Ms. Allen did so 29.3% of the time and Mr. Zimmer did so 41.9% of the 

time), and also drew on knowledge of students’ strengths and abilities less frequently than any of 

the other teachers. Ms. Allen drew on this knowledge once and Mr. Zimmer did not demonstrate 

it at all (see table 4.6). In addition, both Mr. Zimmer and Ms. Allen enacted the practice 

component of evaluating the features of a problem more frequently than several of the other 

teachers. Ms. Allen did so 24.0% of the time and Mr. Zimmer did so 38.7% of the time, more 

than any of the other teachers (see table 4.3).  
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As might be expected, both Ms. Allen and Mr. Zimmer drew on knowledge of common 

student errors or places where they may struggle every time they enacted the practice component 

of thinking about common student errors or places where they will have difficulty or success. 

Neither of them drew on knowledge of students’ strengths and abilities when enacting this 

practice component (see table 4.11). In addition, when enacting the practice components of 

thinking about pieces of the end goal, sequencing problems, and evaluating the features of a 

problem, Ms. Allen and Mr. Zimmer drew on knowledge of common student errors or struggles 

more frequently than all of the other teachers. For each of the three practices, Ms. Allen drew on 

this knowledge at least 20% of the time and Mr. Zimmer did so at least 33.3% of the time (see 

tables 4.9, 4.10, and 4.12). Similarly, when enacting the component of evaluating the features of 

a problem, Ms. Allen and Mr. Zimmer had the highest frequencies of co-occurrence of the 

practice component of thinking about common student errors or places where they will have 

difficulty or success (16.7% for Ms. Allen and 50.0% for Mr. Zimmer, see table 4.12). 

Compared to the other teachers, Ms. Allen and Mr. Zimmer less frequently engaged in 

practice components that involved breaking down the content the examples were intended to 

address. Both Ms. Allen and Mr. Zimmer enacted the practice component of thinking about 

pieces of the end goal (components, sub goals, or scaffolds) less frequently than the other 

teachers, with the exception of Mr. Clark. Ms. Allen thought about pieces of the end goal 10.7% 

of the time, Mr. Zimmer did so 9.7% of the time, and Mr. Clark did so 9.6% of the time (see 

table 4.3). Ms. Allen and Mr. Zimmer also engaged in the practice of sequencing less frequently 

than all of the other teachers (6.7% and 9.7%, respectively, see table 4.3). In terms of the 

knowledge related to breaking down the content, Ms. Allen and Mr. Zimmer drew on knowledge 

of how to strategically sequence examples for a purpose and recognized nuanced differences/ 
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subsets within a larger set of problems that others would group as one set less frequently than 

any of the other teachers. Mr. Zimmer drew on knowledge of how to strategically sequence 

examples for a purpose 12.9% of the time and Ms. Allen did so 8.0% of the time (see table 4.6). 

Mr. Zimmer recognized nuanced differences/ subsets within a larger set of problems that others 

would group as one set 32.3% of the time and Ms. Allen did so 20.0% of the time (see table 4.6). 

When enacting the practice component of thinking about pieces of the end goal, Ms. 

Allen and Mr. Zimmer had the lowest frequencies of drawing on knowledge of how to 

strategically sequence examples for a purpose and recognizing nuanced differences within a 

larger set of problems that others would group as one set. Mr. Zimmer did not draw on either 

type of knowledge when enacting this practice. Ms. Allen drew on knowledge of how to 

strategically sequence examples for a purpose in 12.5% of the instances in which she thought 

about pieces of the end goal. Other teachers did so between 22.2% and 86.4% of the time. 

Similarly, Ms. Allen recognized nuanced differences within a larger set of problems that others 

would group as one set in 50% of the instances in which she thought about pieces of the end 

goal, while other teachers did so between 64.7% and 88.9% of the time (see table 4.9). Similarly, 

Ms. Allen had the lowest frequencies of drawing on these two types of knowledge when enacting 

the practice component of evaluating features of a problem (33.3% for recognizing nuanced 

differences within a larger set of problems that others would group as one set and 38.9% for 

knowledge of how to strategically sequence examples for a purpose, see table 4.12). Mr. Zimmer 

had the second lowest frequency (8.3%) of drawing on knowledge of how to strategically 

sequence examples for a purpose when enacting the practice component of evaluating the 

features of a problem (see table 4.12). Ms. Allen and Mr. Zimmer also had the lowest 
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frequencies of recognizing nuanced differences within a larger set of problems that others would 

group as one set when enacting the practice component of sequencing problems (see table 4.10). 

Overall, Ms. Allen and Mr. Zimmer were most focused on student errors and preventing 

those errors. They most frequently thought about common student misconceptions or places 

where they would struggle or succeed. In doing so, they frequently drew on knowledge of 

student errors and misconceptions, but infrequently drew on knowledge of student strengths. 

Compared to the other teachers, they less frequently thought about pieces of the end goal and 

sequenced examples.  

Mr. Clark and Mrs. Stone 

The third pattern that emerged can be seen in the practice components enacted and the 

knowledge drawn on by Mr. Clark and Mrs. Stone. These two teachers were generally between 

Mr. Baker/Mrs. Kelly and Ms. Allen/Mr. Zimmer in terms of their frequencies enacting different 

components of the practice of selecting examples and drawing on particular types of knowledge. 

Both Mr. Clark and Mrs. Stone thought about the end goal frequently. Mr. Clark did so during 

9.6% of the time, more than any other participant, and Mrs. Stone did so 4.8% of the time when 

selecting examples (see table 4.3). Mr. Clark also thought about pieces of the end goal 

(components, sub goals, or scaffolds) 9.6% of the time, less than any other participant. Mrs. 

Stone thought about pieces of the end goal 14.3% of the time, which was more frequent than 

both Ms. Allen and Mr. Zimmer, but much less frequent than the other teachers (see table 4.3). 

Both Mr. Clark and Mrs. Stone were in the middle in terms of their frequency of recognizing 

nuanced differences/ subsets within a larger set of problems that others would group as one set. 

However, their frequencies of 50.7% and 46.0%, respectively, were closer to those of Mr. Baker 

and Mrs. Kelly than to those of Ms. Allen and Mr. Zimmer (see table 4.6). 
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Despite his overall lower frequency of thinking about pieces of the end goal, when Mr. 

Clark enacted this practice, he had the second highest frequency of recognizing nuanced 

differences within a larger set of problems that others would see as one set (85.7%). Only Mr. 

Baker had a higher frequency (88.9%, see table 4.9). Mrs. Stone’s frequency of drawing on this 

knowledge when enacting the practice component of thinking about pieces of the end goal was in 

the middle of the other teachers.  

Mr. Clark and Mrs. Stone enacted the practice component of thinking about common 

student errors or places where they will have difficulty or success more frequently than Mr. 

Baker and Mrs. Kelly, but less frequently than Ms. Allen and Mr. Zimmer (see table 4.3). They 

also drew on knowledge of common student errors or struggles more frequently that Mr. Baker 

and Mrs. Kelly, but less frequently than Ms. Allen and Mr. Zimmer. Mrs. Stone drew on 

knowledge of students’ strengths and abilities more frequently than any of the other teachers 

(11.1% of the time) and, with the exception of Mrs. Kelly (9.7%), Mr. Clark drew on this 

knowledge more frequently than the rest of the teachers (8.2%, see table 4.6). With the exception 

of Mr. Zimmer (38.7%), both Mr. Clark and Mrs. Stone enacted the practice component of 

evaluating the features of a problem more than all other teachers. They did so 30.1% and 36.5% 

of the time, respectively (see table 4.3). 

When enacting the practice component of thinking about common student errors or 

places where they will have difficulty or success, Mrs. Stone and Mr. Clark were more balanced 

than most of the other teachers in their use of knowledge of students’ strengths and abilities 

compared to their use of knowledge of common student errors or places where they may struggle 

(see table 4.11). In addition, Mrs. Stone had the second highest frequency of drawing on 
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students’ strengths and abilities (41.7%) when enacting the practice component of thinking about 

common student errors or places where they will have difficulty or success (see table 4.11). 

Mr. Clark enacted the practice component of sequencing problems 16.4% of the time and 

Mrs. Stone did so 19% of the time (see table 4.3). They engaged in this practice more frequently 

than Ms. Allen and Mr. Zimmer, and less frequently than Mr. Baker and Mrs. Kelly. Similarly, 

Mr. Clark and Mrs. Stone drew on knowledge of how to strategically sequence examples for a 

purpose more frequently than Ms. Allen and Mr. Zimmer, and less frequently than all of the 

other teachers. Both Mr. Clark and Mrs. Stone also drew on knowledge of the curriculum (see 

table 4.6). 

When enacting the practice components of thinking about pieces of the end goal and 

evaluating the features of a problem, Mr. Clark and Mrs. Stone’s frequencies of recognizing 

nuanced differences within a larger set of problems that others would group as one set were in 

the middle of the other participants (see tables 4.9 and 4.12). However, when enacting the 

component of sequencing problems, Mr. Clark more frequently recognized nuanced differences 

within a larger set of problems that others would group as one set than any of the other teachers 

(he did so in 83.3% of the instances in which he enacted the practice). Mrs. Stone’s frequency for 

using this knowledge when sequencing problems was in the middle of the other teachers (see 

table 4.10). 

Overall, Mr. Clark and Mrs. Stone were similar to Ms. Allen and Mr. Zimmer in some 

ways and similar to Mr. Baker and Mrs. Kelly in others. They frequently thought about the end 

goal and drew on knowledge of students’ strengths and abilities. They also more frequently 

evaluated the features of different problems than any of the other teachers.  
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Summary 

In this chapter, I sought to better understand the complex practice of selecting examples. 

In doing so, I described the components of the practice of selecting examples and the knowledge 

teachers drew on in enacting those components. I then looked at the knowledge teachers drew on 

when enacting particular components. Finally, I discussed patterns across teachers as they 

selected examples and the knowledge they drew on in doing so. 

The four most frequently enacted components of the practice of selecting examples are 

evaluating the features of a problem, sequencing problems, thinking about pieces of the end goal, 

and thinking about common student errors or places where they will have difficulty or success. 

When selecting examples, teachers most frequently drew on common content knowledge, both 

knowledge of how to carry out a procedure and of mathematical ideas, and the specialized 

content knowledge of recognizing nuanced differences/ subsets within a larger set of problems 

that others would group as one set. Teachers also frequently drew on knowledge of how to 

strategically sequence examples for a purpose. When selecting a set of examples for a particular 

purpose, teachers drew on multiple domains of knowledge. Across the set of explanations, at 

least four different types of knowledge occurred when enacting each component.  

Patterns emerged across the teachers in the components of the practice the enacted and 

the knowledge they drew on in selecting examples. Compared with the other teachers, Ms. Allen 

and Mr. Zimmer more frequently thought about common student errors or places where students 

would have difficulty or success. They more frequently drew on knowledge of common student 

errors and infrequently drew on knowledge of students’ strengths. They also sequenced problems 

less frequently than all of the other teachers and thought about pieces of the end goal less 

frequently than all but one of the other teachers. This suggests that they were selecting examples 
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to surface common misconceptions, or places where they thought students might have difficulty, 

instead of focusing their examples on key mathematical ideas, or sub goals in the lesson, which 

was more frequently seen among the other teachers.  

In contrast to Ms. Allen and Mr. Zimmer, two other teachers did the opposite. Mr. Baker 

and Mrs. Kelly sequenced problems more frequently than all of the other teachers and thought 

about pieces of the end goal more frequently than several of the other teachers. They were the 

only two teachers who did not think about a more general end goal and thought about common 

student errors or places where students would have difficulty or success less frequently than all 

but one other teacher. This suggests that they were selecting examples based on key 

mathematical ideas, or sub goals in the lesson, instead of focusing solely on demonstrating 

common student misconceptions. It further suggests that they had a good understanding of the 

key mathematical ideas of the lesson, not just the overall end goal, as well as how to sequence 

them for students.  

In short, both Ms. Allen and Mr. Zimmer appeared to be selecting their examples with the 

purpose of avoiding common misconceptions. In contrast, Mr. Baker and Mrs. Kelly appear to be 

focused on the mathematical goals of the lesson. In particular, they are focused not on an 

overarching goal, such as solving rational equations, but on smaller pieces of the goal that can be 

approached with individual problems. For example, instead of focusing on an overarching goal 

of selecting problems to teaching solving rational, they saw the goal as a sequence of different 

features of increasing mathematical complexity, and selected examples to match those individual 

features.  
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CHAPTER 5: THE PRACTICE OF GIVING EXPLANATIONS 
 
In this chapter, I look at the practice of giving explanations. I begin with two cases of 

teachers giving explanations and then discuss what I considered an explanation in the data. Next, 

I describe the four categories of explanations, with examples of each type. I then focus on two 

categories of explanations and look at the knowledge teachers demonstrated when giving 

explanations of each type. Finally, I look at patterns in the types of explanations given and 

knowledge used across teachers. 

What Does it Mean to Give an Explanation? 

In this section, I present two cases from my study of teachers giving explanations. In the 

first case, Mr. Clark explains to students why cross multiplication works using the problem 

4
x
=
9
7

. In the second case, Mr. Baker explains how to find the x-intercepts of a function and why 

the function f (x) = 1
x −1

 has no x-intercepts. I then discuss what I considered to be an 

explanation in my analysis. 

Case 1: 

Mr. Clark: Since you've seen it before in Algebra I, the bottoms come to the tops, on 
the other side. Cross multiplying ends up doing that. Why does it work? In algebra, aren't 
we supposed to do something to both sides of the equation? Well, what are we doing? 
We're not doing anything to both sides of the equation. We're just taking stuff and 
moving it around. It's magic. Yes, that's not even math right now, it seems like it's just 
cheating. 

What you're actually doing is not magic. But, let's assume to start this problem, I multiply 
both sides by x, what would be the final result? On the left, what would happen? The xs 
cancel, don't they? Didn't I just do something to both sides? That's one of our algebra 
rules, right? Multiplying both sides by x, those cancel. Didn't this x kind of magically 
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move up there? What's the next thing I'm going to multiply both sides by? 4, no. 7. Very 
good. When I multiply both sides by 7, these cancel, and so the 7 came up here, and the x 
came up there. 

That's really what you're doing. Cross multiplying is just multiplying both sides by two 
different things at the same time, and being too lazy to write down what they were. 

Student: The first way is easier, though. 

Mr. Clark: The first way's easier, right? Totally agree. That's why we do it that way. 
But, it's helpful to understand why it works. In fact, here's what's even more clever, ready 
for blow my mind time? I would like you to take note of this, 7x, do you see that little 
expression that's on both sides right now, even though that's in the wrong order, do you 
see that 7x? Look at those two fractions that you see at the beginning of the problem. 
How does 7x have to do with those two fractions? 

Student: Common denominator. 

Mr. Clark: Oh. If I told you to give me the LCD [least common denominator] of those 
two fractions that you see, what would it be? 

Student: 7x. 

Mr. Clark: 7x. Put it on both sides, that is going to be the rule for this section, as we 
get more complex. Find the lowest common denominator, multiply both sides by it. Cross 
multiplying is just a fast version of doing exactly that. You don't have to write all of it 
down, you can just cross multiply because you're all smart, and whatever, but the point of 
the matter is that you should have an idea of what you're doing. (Mr. Clark 4-30-15 Lines 
40 – 79) 

Mr. Baker and x-intercepts: An explanation of no x-intercepts 

Mr. Baker: Next, intercepts, intercepts, also known as? 

Student: Zeros. 

Mr. Baker: Zeros, there we go. x-intercepts for the zeros. To review, how do we find 
the zeros of a function? 

Student: Set it equal to 0. 

Mr. Baker: Set it. 

Student: The function. 

Mr. Baker: The function. Set the function equal to zero. Don't use your its’s and the’s. 
We want to set f of x equal to zero. 
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Student: Just multiply it by x minus 1. 

Mr. Baker: Here is the thing we don't have to do that. When is a fraction going to 
equal 0?  

Student: When the top equals 0. 

Mr. Baker: When the numerator is 0. A fraction is going to equal 0 when our 
numerator is equal to 0. 0 divided by a number, 0 divided by anything. 

Student: 0. 

Mr. Baker: Anything divided by 0? 

Student: [inaudible 00:03:40]. 

Mr. Baker: Bad, the world explodes right. Bad. In this case we want the numerator 
equal to zero. Let's set the numerator equal to 0. 1 is never going to equal. 1 will never 
equal 0, so what does that tell us? This has no x-intercepts, no x-intercepts. What's that? 

Student: Ah, no, no, no. 

Mr. Baker: Because 1 is a constant. 

Student: Yeah. 

Mr. Baker: There is no variable. I can't turn a 1 into a 0. (Mr. Baker 3-25-15 Lines 43 
– 87) 

What is Considered an Explanation? 

As demonstrated by the vignette at the beginning of this dissertation, explanations are an 

integral part of mathematics teaching. Drawing on Leinhardt’s (2001) instructional explanations, 

I consider explanations to be instances in which the teacher is communicating mathematics 

content to students. This content can include mathematical concepts or procedures, as well as 

information about the discipline of mathematics and how mathematics is conducted within the 

discipline. These explanations may be completely teacher led, or may include student 

participation through questions. Although the teachers are giving explanations about 

mathematics, the explanations in my data are not looked at as purely mathematical explanations. 

It would be expected that these explanations are mathematically accurate and contain 
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mathematical reasoning. However, the purpose of these explanations is not to make a 

mathematical claim, but instead to communicate mathematics with students. A purely 

mathematical explanation would not consider this implied pedagogical purpose.  

Although explanations can be more broadly thought of as answering the question of why 

within a specific domain (Leinhardt, 2001), in my data, not all of the explanations contain 

discussion of an underlying why. In some instances, the teachers shared information, but did not 

discuss the underlying mathematical reasoning of why or how. For example, in some instances, 

teachers talked through the steps of a procedure, but did not discuss why these steps were valid 

or why they accomplished a particular goal. I consider this to be an explanation because the 

teacher is communicating knowledge of the procedure and how to carry it out to students.  

When distinguishing explanations within the classroom observation data, I identified 

instances of explanations based on the purpose of the explanation being given. By purpose I 

mean the main piece of mathematics the teacher was sharing with students. For example, a 

teacher might explain how to solve a particular rational equation, the definition of the word 

domain, or why reducing terms in a rational expression is not mathematically valid. Some 

explanations were short in length. For example, at the beginning of a lesson on removable 

discontinuities, Mr. Johnson explained what discontinuity means. “Discontinuity means 

something discontinues. It goes along, goes along, goes along and then it stops, right? 

Discontinued” (Mr. Johnson 4-2-15 Lines 24 – 25). He went on to mention that discontinuities 

are a fundamental idea in Calculus, but the entire explanation was only a few sentences in length. 

Other explanations were significantly longer, taking fifteen or more minutes. For 

example, Mr. Baker’s explanation of how to graph a rational equation based on some known 

pieces of information was one of the longer explanations. In it, he described how to use the 
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intercepts and asymptotes of a rational function, which the class had already found, to begin to 

graph the rational function. He then described how to pick different values for x that could be 

substituted into the equation to find additional coordinate points that are part of the graph. Using 

these additional points, Mr. Baker showed students how to reason using the known information 

to sketch in the rest of the graph. Each of these pieces could potentially be considered an 

explanation by itself. However, Mr. Baker’s overall purpose was to show students how to graph 

the rational equation. Each of these components can therefore be seen as contributing to the 

larger purpose and therefore form one explanation. 

After splitting the observation transcripts into explanations, there were 110 explanations 

across the 9 observations. Each of the interview prompts gave a single purpose. Teachers’ 

responses to each prompt were therefore considered a single explanation. Four teachers 

responses to the three prompts yielded 12 explanations from the interviews. The distribution of 

explanations by teacher for the observations and interviews can be seen in table 5.1. In the next 

section, I describe how I categorized these explanations. 

Table 5.21: Number of Explanations Given by Teacher for Classroom Observations and 
Interviews 

 Observation Explanations Interview Explanations Total Explanations 
Teacher 1 2 3 Total   

Mr. Baker 15 11 9 35 3 38 
Mr. Clark 19 14 12 45 3 48 

Mr. Johnson 9 6 -- 15 3 18 
Mrs. Stone 15 -- -- 15 3 18 

Total -- -- -- 110 12 122 
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Categorizing Explanations 

In this section, I begin by describing each of the four types of explanations. I then look at 

patterns in the types of explanations each teacher gave in their observed lessons and during the 

interviews. 

Categories 

As described above, the instances of explanations in the data correspond to the teacher 

communicating mathematics to students. However, these explanations contained varying 

amounts of mathematical reasoning. In analyzing these explanations, I began by looking at the 

reasoning in each explanation. Explanations were categorized into one of four groups, which are 

ordered from least to most mathematical reasoning; problematic, procedural, superficial 

reasoning, and mathematical reasoning. Brief descriptions of each type of explanation are given 

in table 5.2 below. Given the lengths of many of the explanations, one explanation could 

potentially fit into multiple categories. Each explanation was placed into only one category. This 

was determined based on the purpose of the explanation and the way that component of the 

explanation was explained. 
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Table 5.22: Explanation Types 
Explanation Type Description 
Problematic Explanations which are imprecise, confusing, or mathematically 

incorrect 
Procedural Explanations which go through procedural steps and do not provide 

any reasoning about why the procedure is carried out the way it is 
Superficial Reasoning Explanations which contain some superficial reasoning by  

(1) describing conditions when something happens instead of why it 
happens; or  
(2) using short hand descriptions without discussion of deeper ideas 
(these short hand descriptions may reference deeper ideas) 

Mathematical Reasoning Explanations that contain deep mathematical reasoning explaining the 
why or how underlying a mathematical concept or procedure 
The deep explanation is about the purpose of the explanation, other 
parts of the explanation may provide more superficial reasoning or be 
procedural  
Explanations are also responsive to students 

 

Problematic explanations. Explanations were categorized as problematic for three 

reasons. First, a problematic explanation might be imprecise. For example, when explaining what 

a rational function is, one teacher described rational functions as related to fractions. He then 

stated, “a rational function means we've got a top and a bottom” (Mr. Clark 4-15-15 Line 556). 

Although it is true that rational functions are fractional equations with polynomials in the 

numerator and denominator, top and bottom are not mathematically precise terminology. Instead, 

for the explanation to be considered precise, the teacher could have used the terms numerator and 

denominator. 

Second, explanations were labeled as problematic when they would be confusing from 

the perspective of a student. For example, when discussing the domain and range of the function 

y = −4
x

, one teacher described the domain and range as the same. While the domain and range in 

this case are both all real numbers except zero, domain and range are two distinct concepts. 

Domain is the set of values that the independent variable, x, can be and range is the set of values 
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that the dependent variable, y, can be for the given function. Because the domain and range 

correspond to different variables, they are often different sets of values. By describing them as 

the same, students may believe the domain of any rational function will be the same as the range 

of the function, which would be a misconception. 

Finally, explanations were labeled as problematic if they were mathematically incorrect. 

For example, when explaining how to graph the equation y = 2
x −3

− 4 , a student asked how the 

2 affected the graph. The teacher responded that they did not need to do anything with the 2, but 

that it would matter if the value were negative. This is not correct. For an equation of the form 

y = a
x − h

+ k , when the value of a is negative, the graph of the equation is reflected over the x-

axis. However, other values of a affect the graph by stretching or shrinking it. 

Seven of the 110 explanations given during the classroom observations were categorized 

as problematic. In some cases, when a longer explanation contained an instance of problematic 

terminology or a small mathematical error, which was not directly related to the purpose of the 

explanation, it was labeled as one of the other categories based on the part of the explanation 

focused on the overall purpose. None of the interview explanations were categorized as 

problematic. 

Procedural explanations. Explanations were tagged as “procedural” if the steps of a 

procedure were shown or worked through, but without reasoning about why the procedure works 

or is carried out the way it is. For example, near the end of her lesson on solving rational 

equations, Mrs. Stone solved the problem 2
x −3

=
1

x2 − 2x −3
 with students after they had an 

opportunity to try the problem on their own: 
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Mrs. Stone: Your least common multiple being the x minus 3 and the x plus 1. On the 
left, we end up with a 2x plus 2. On the right, we end up with a 1. Does negative one half 
work? 

Student: Yeah, no. 

Mrs. Stone: No, yes? 

Student: Yeah. 

Mrs. Stone: Yes. What can we not have for an answer? 3? Or a negative 1 for this guy. 
[Points to the denominator of the second fraction.] (Mrs. Stone 3-26-15 Lines 466 – 480) 

In this explanation, Mrs. Stone briefly talked through some of the steps of the procedure 

and showed the steps on the board, but did not explain why any of the steps were carried out. 

Although, Mrs. Stone does ask students if the answer works, there is no explanation of why 3 

and -1 being restricted values means that the answer of − 1
2

 works. She might have explained 

that the only restricted values are 3 and -1, which cause one of the denominators to be 0. Since 

the final answer is neither of those values, − 1
2

 is a valid solution. She might also have suggested 

students check the answer to make sure it is correct. Because she talked through steps of the 

procedure but did not discuss why the steps were used, this explanation was categorized as 

procedural. Out of 110 explanations teachers gave during the classroom observations, 38 were 

categorized as procedural. Only one of the interview explanations was labeled as procedural. 

Superficial reasoning explanations. Superficial reasoning explanations contained some 

amount of reasoning, but this reasoning did not address the mathematical why or how underlying 

the content being explained. Explanations were categorized as superficial reasoning for two 

reasons. First, the teacher explained the conditions in which a mathematical phenomenon 

happens instead of why it happens. For example, when explaining how to graph 
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f (x) = 1
2(x +3)

− 2 , Mr. Johnson uses the equation of the general form of a rational equation, 

y = a
x − h

+ k , to explain how the values of a, h, and k affect the graph. Before this explanation, 

Mr. Johnson had discussed with students how the values of a, h, and k in the general forms of 

different functions shift and stretch the graph of the parent function. 

Mr. Johnson: So, the question here is a. What does a stand for in this expression? 
[Student], what have you got? 

Student: The stretch or shrink. 

Mr. Johnson: So let's write that down, stretch or shrink. Thanks boss. What about this 
denominator x minus h? What does it tell us [Student]? 

Student: Horizontal shift 

Mr. Johnson: Boss, this is a horizontal shift, yeah! This is what moves this function 
horizontally, left to right. Nice boss. Horizontal shift. The reason that I thought that that 
was a big deal that I said that like that was because a lot of times we get confused 
because really, when we actually make this line from this, what's the line going to look 
like? When we draw the line on the graph. I see somebody's doing that thing with their 
hand to show it. What are they doing? What's the line going to look like. Hey, [Student]. 

Student: Vertical 

Mr. Johnson: Yeah. It's going to be a vertical line. That was what [student] was doing, 
this thing going up or down with his hand. That means [Student] has a thing, it's a 
horizontal shift, and not get that confused with a vertical line, so that's why I was 
impressed with that. This one over here, the last one, k? What's that, [Student]? 

Student: Vertical shift. 

Mr. Johnson: And that's the vertical shift. So vertical shift. (Mr. Johnson 4-2-15 Lines 
149 - 175) 

In this quote explains that the h value causes a horizontal shift in the graph, and that the 

related line on the graph is vertical. In doing so, Mr. Johnson is describing the conditions that 

cause the graph to shift. However, he does not give a mathematical explanation as to why the h 
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value causes the graph to shift or why the related line is vertical. The explanation was therefore 

categorized as superficial reasoning. 

Second, explanations were labeled as superficial reasoning when teachers used short hand 

descriptions that could potentially reference deeper ideas, but did not discuss the deeper ideas. 

For example, Mr. Baker frequently referred to division by zero being undefined as, “We cannot 

divide by 0. Cannot divide by 0, the world ends” (Mr. Baker 3-25-15 Line 37). By itself, this 

statement might be considered problematic. However, in the context of this lesson, Mr. Baker 

repeatedly used this phrase to signify that division by 0 is undefined, making it a short hand 

description that references the mathematical idea that division by 0 is undefined, but does not 

explain why. This explanation was therefore categorized as superficial reasoning. Out of the 110 

explanations teachers gave during the classroom observations, 52 were categorized as superficial 

reasoning. Eight of the twelve interview explanations were categorized as superficial reasoning. 

Mathematical reasoning explanations. Deep mathematical reasoning occurred in 13 of 

the 110 explanations given during the classroom observations and three of the twelve interview 

explanations. These explanations provide mathematical reasoning addressing the underlying why 

or how of a mathematical concept or procedure. After solving the rational equation 3
u+ 2

=
1
u− 2

with his students, Mr. Baker explained why students must check for extraneous solutions when 

solving rational equations. His explanation was categorized as a mathematical reasoning 

explanation. He explained: 

Anytime we change the type of equation, we have to check for extraneous solutions 
because there may be situations where we solve this equation and that solution is not a 
solution to the original equation. We said, using the multiplication property of equality, 

the equations are going to be equivalent. The solutions to this [ 3
u+ 2

=
1
u− 2

] will be the 

solutions to this equation [3u−6 = u+ 2 ]. That is true, but sometimes we get more 
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solutions. That's why we have to check, because we're changing the type of equation (Mr. 
Baker 3-31-15 Lines 156 – 161). 

This explanation was categorized as mathematical reasoning because the teacher provided a 

mathematical explanation about why extraneous solutions occur when solving rational equations. 

In particular, extraneous solutions can occur when the form of the equation is changed. Although 

this could have been explained in more detail, because Mr. Baker gave a mathematical reason 

about why extraneous solutions occur when solving rational equations, this explanation was 

categorized as mathematical reasoning. In particular, he drew on the multiplication property of 

equality, which students were familiar with. If Mr. Baker had instead said that extraneous 

solutions occur when solving rational equations, the explanation would have been categorized as 

superficial reasoning.  

For an explanation to be coded as mathematical reasoning, the focus of the explanation 

needed to be explained in mathematical detail. However, other parts of the explanation might 

contain superficial reasoning or be procedural in nature. These explanations are labeled 

mathematical reasoning because the underlying why or how of the mathematics is addressed. 

However, this label does not imply that the explanation of the underlying why or how is 

mathematically complete. Mathematical reasoning explanations are also attuned and responsive 

to students. In particular, the mathematics is discussed at a level that is appropriate for students 

in the class. In the explanation above, Mr. Baker drew on the multiplication property of equality, 

making his explanation mathematically accurate and, because his students had knowledge of this 

property, accessible for students. 

Differences Across Teachers 

There were differences across teachers in terms of the types of explanations they gave 

during their classroom teaching and during the interviews. The number and frequency of each 
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type of explanation by teacher for both the classroom observation and interview explanations can 

be seen in tables 5.3 and 5.5. Table 5.4 provides the category given to each explanation given 

during the interview.  

Table 5.23: Frequency of Explanation Types During Classroom Observations by Teacher 

   
Explanations of Each Type 

   

Problematic Procedural Superficial 
Reasoning 

Mathematical 
Reasoning 

Teacher Observations 
Total 
Explanations n % n % n % n % 

Mr. Baker 3 35 0 0.0 5 14.3 21 60.0 9 25.7 
Mr. Clark 3 45 7 15.6 27 60.0 11 24.4 0 0.0 
Mr. Johnson 2 15 0 0.0 1 6.7 10 66.7 4 26.7 
Mrs. Stone 1 15 0 0.0 5 33.3 10 66.7 0 0.0 
Total 9 110 7 6.4 38 34.5 52 47.3 13 11.8 
 

Table 5.24: Explanation Types for Interview Explanations 

 
Explanation 

Teacher 
Graphing a Rational 

Equation 
Simplifying a Rational 

Expression 
Solving a Rational 

Equation 
Mr. Baker Superficial Reasoning Mathematical Reasoning Mathematical Reasoning 
Mr. Clark Superficial Reasoning Superficial Reasoning Superficial Reasoning 
Mr. Johnson Superficial Reasoning Superficial Reasoning Mathematical Reasoning 
Mrs. Stone Procedural Superficial Reasoning Superficial Reasoning 

 

Table 5.25: Frequency of Interview Explanation Types by Teacher 
  Interview Explanations of Each Type 

 Problematic Procedural Superficial 
Reasoning 

Mathematical 
Reasoning 

Teacher! n! %! n! %! n! %! n! %!
Mr. Baker 0 0.0 0 0.0 1 33.3 2 66.7 
Mr. Clark 0 0.0 0 0.0 3 100.0 0 0.0 
Mr. Johnson 0 0.0 0 0.0 2 66.7 1 33.3 
Mrs. Stone 0 0.0 1 33.3 2 66.7 0 0.0 
Total 0 0.0 1 11.1 8 88.9 3 33.3 
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All of the teachers gave at least one explanation that was labeled as procedural and 

several explanations that included superficial reasoning. In both the interview and observation 

settings, only Mr. Baker and Mr. Johnson gave explanations that were categorized as 

mathematical reasoning. Mr. Clark was the only teacher who gave problematic explanations. 

There were also differences in the amount of explaining done by each teacher during one 

observation. This was not always a function of how many discrete explanations were given.  

Several of Mr. Johnson’s explanations were long, and he therefore gave fewer explanations per 

observed lesson. Mr. Clark and Mrs. Stone gave, on average, more explanations in one observed 

lesson than Mr. Baker and Mr. Johnson. 

Explanations given in the interviews were more frequently categorized as superficial 

reasoning or mathematical reasoning than were the explanations given during observations of 

classroom instruction. These explanations potentially include stronger reasoning because they 

were the only explanation the teacher gave about a specific concept or procedure. In contrast, 

during classroom instruction, teachers’ explanations across one lesson frequently covered similar 

content, where a teacher might not provide significant depth on the same concept or procedure 

multiple times. During several of the classroom observations, when a teacher gave several 

explanations about the same concept or procedure, the first explanation contained deeper 

reasoning than the subsequent explanations. This is perhaps because the teacher focused on why 

or how a procedure worked in their initial explanation to expose students to the underlying 

mathematical reasoning, but in later explanations focused instead on students’ ability to execute 

the procedure. 

There were no problematic explanations given during the interviews and only one 

procedural explanation. Although each teacher only gave three explanations during the 
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interviews, the types of explanations they gave in the interviews were all types of explanations 

seen in the observations. For example, Mr. Johnson’s interview explanations were categorized as 

superficial reasoning and mathematical reasoning. He gave both of these types of explanations 

during his observed lessons. I now look specifically at the patterns in each teacher’s 

explanations. 

Mr. Clark. The majority of Mr. Clark’s classroom explanations (60%) were categorized 

as procedural. Several of his classroom explanations (24.4%) were categorized as superficial 

reasoning. In contrast, all three of Mr. Clark’s interview explanations were labeled as superficial 

reasoning, perhaps because they were all explanations in which a new mathematical idea or 

procedure is being introduced and he therefore included more explanation of the underlying 

mathematics he was discussing.  

When teaching, Mr. Clark tended to introduce a topic using superficial reasoning and 

then give several shorter explanations where he worked through similar examples with students. 

For example, in his lesson on graphing rational equations, Mr. Clark’s first explanation of the 

lesson provided some reasoning about what happens to the graph of  as x approaches 

infinity:    

Mr. Clark:  Is there someone that can remember why does it make sense that as we go 
this way, the graph gets closer and closer and closer to the x-axis, but it doesn't appear to 
hit the x-axis. Think about the equation. 

Student: Because x is always getting bigger, so the denominator is getting bigger. 

Mr. Clark: He said as x is getting bigger, think about what's happening with this 
fraction. If x is 1, what's y? What's 3 divided by 1? 

Student: 3. 

Mr. Clark: 3, normal, but as x gets huge, what happens? 3 over a thousand, 3 over a 
million, right? It's going to get really tight. It won't hit 0. (Mr. Clark 4-15-15 Lines 42 – 
55) 

y = 3
x
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This explanation was categorized as superficial reasoning because Mr. Clark explained that for 

this equation, dividing 3 by larger and larger values of x will cause the graph to get close to the 

x-axis, but will never be 0 based on the pattern of numbers he discussed. In doing so, he gave a 

reason for what happened, but he did not go beyond the pattern and address the mathematics 

underlying why this happened. In particular, that as x approaches infinity, 3 is being divided by 

larger and larger numbers. 3
x

 will therefore get smaller and smaller and approach 0, but will 

never reach it, causing the asymptote at y=0. Later in the lesson, several of his explanations 

consisted of finding the asymptotes from the equation, drawing them, and then sketching in the 

shape of the graph. However, how the graph approaches the asymptotes and why it does not 

touch them were not discussed during these explanations. These explanations were therefore 

categorized as procedural. 

Mr. Clark was the only teacher to give explanations that were categorized as problematic. 

In several of these explanations, this was due to imprecise language. For example, when 

introducing rational functions, Mr. Clark mentioned that the beginning of the word rational is 

ratio and should get students thinking about fractions and division. He then stated, “a rational 

function means we've got a top and a bottom. That's all that's saying. There should be a top and a 

bottom to it” (Mr. Clark 4-15-15 Lines 556 – 557). A more precise definition might have used 

the terms numerator and denominator. 

Some of Mr. Clark’s other explanations, which were categorized as procedural or 

superficial reasoning, also contained imprecise language. For example, he used the term “de-

foil” when talking about factoring a quadratic. “Foil” is an acronym used to help students 

remember how to distribute when multiplying two binomials, but is not a verb. “De-foil” is not a 

mathematical phrase. However, in these cases, the imprecise language was not directly related to 
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the main purpose of the explanation. Instead, the explanation was categorized based on other 

features of the explanation more closely related to the explanation’s purpose, such as greater 

mathematical detail or superficial reasoning. 

Mrs. Stone. The majority of Mrs. Stone’s explanations (66.7%) contained superficial 

reasoning. For example, when explaining why students need to check for extraneous solutions 

when solving rational equations, Mrs. Stone explains that extraneous solutions arise when you 

get a solution that x cannot equal and that they are caused by violating rules. Two rules she might 

be referring to are that the denominator of a fraction cannot be 0, or that you cannot take the 

logarithm of a negative number.  

Remember an extraneous solution when we go and do the mathematics part of this, 
sometimes what we're doing with of different things like multiplying both sides or 
dividing both sides […] that mathematically it seems to make sense, but we're violating 
rules when dealing with functions. When you go back to plug in the original question, it 
doesn't really make any sense. For instance when we did logarithms, we had questions 
where maybe it was something like the log of I don't know, 2x. We came out with an 
answer that x was equal to a negative 4. We plugged it back in and we said that doesn't 
work because you can't take a logarithm with negative numbers. That was extraneous, 
like we talked about. We're doing the same thing when we deal with rational expressions. 
Anytime we have to deal with things like xs in denominators, think about what we did 
with asymptotes, restricted domains, when there are certain values that x cannot be equal 
to. We just have to go back and double check to make sure we're not having a problem 
with that. (Mrs. Stone 3-26-15 Lines 109 - 128) 

One third of Mrs. Stone’s explanations were categorized as procedural and she was the 

only teacher of the four to give a procedural explanation during the interview. The types of 

explanations Mrs. Stone gave during the interview were consistent with the types of explanations 

she gave during her observed lessons. The majority of Mrs. Stone’s procedural explanations 

during her observed lesson were given when solving a problem that students had already tried on 

their own. Like Mr. Clark, these explanations frequently came after similar explanations on the 

same content, which often contained more reasoning.  
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Mr. Johnson. The majority of Mr. Johnson’s explanations (66.7% of both the observed 

classroom explanations and the interview explanations) contained superficial reasoning. He gave 

one procedural explanation during an observed lesson, and the rest of his explanations were 

categorized as mathematical reasoning. Mr. Johnson’s explanations were often long, using a 

single problem in great detail to focus in on a concept. 

In his lessons, Mr. Johnson placed an emphasis on reasoning. The majority of his 

explanations were structured as a string of questions for students, which frequently included 

why. For example, “Why did we draw a line at that point? […] What is it about this value, 

negative 3, that forces us to put a vertical line over there?” (Mr. Johnson 4-2-15 Lines 283 – 

285), “Why are we setting it equal to 0” (Mr. Johnson 4-2-15 Line 537), and “Why is negative 4 

a discontinuity?” (Mr. Johnson 4-14-15 Line 126). 

Some of his explanations included deeper mathematical reasoning, including an 

explanation of why the function f (x) = x
2 − 2x −8
2x2 −8x

 has a hole, or removable discontinuity, at -4 

and not a vertical asymptote. Before this explanation, Mr. Johnson had only discussed vertical 

asymptotes with students and had not introduced holes. 

Mr. Johnson: So what's going on with the 4, what happened to the 4? Chief? 

Student: In the calculator it canceled out the x minus 4 

Mr. Johnson: It did, that's right. The calculator said no no no, don't do that. The 
calculator said just get rid of those because that can be divided. But wait a minute, hold 
on a second, isn't it true still though, that if we put in 4 we'll still have an undefined 
function? Isn't that right, yeah. […] I blew up the graph and this is what the graph looks 
like. Look what's over there at 4. What's that? 

Student: Oh it's a hole. 

Mr. Johnson: That's a hole. That's what we actually call a hole. A hole is the second type 
of discontinuity. So let me write over here, second type of discontinuity is what's known 
as a hole. What happens with a hole is that because the function divides out that factor 
there's no need for a vertical asymptote. However, as the function travels along and it hits 
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the point 4, all the sudden what happens to the function. Here's the function, right there. 
What happens when the 4 gets in here. (Makes alarm noise) Right, it's an error. As soon 
as it passes through the hole to the other side, everything's cool. So it jumps over that 
hole. It's an inconsistency in the smooth function. (Mr. Johnson 4-2-15 Lines 759 – 782) 

This explanation was categorized as mathematical reasoning because Mr. Johnson discusses the 

mathematics underlying why a hole occurs in the graph at x=4 because there is a common factor 

of x-4 in the numerator and the denominator. In particular, although the common factor can be 

reduced for most values of x, when x is 4, both of the factors are 0, making the function 

undefined. There is therefore a discontinuity, but only at that point, causing a hole in the graph. 

Other explanations included reasoning that was more superficial. For example, when 

asking students what will make a function undefined, Mr. Johnson explained that the 

denominator of the function f (x) = x
2 − 2x −8
2x2 −8x

 cannot be 0, but did not explain why a 

denominator of 0 causes the function to be undefined. This explanation came out of a discussion 

of how to find the vertical asymptotes by looking for the values that x cannot be. 

Mr. Johnson: So when a function is undefined, like if I have a function n divided by? 
What would make it undefined? 

Student: 0 

Mr. Johnson: Yeah, that's all I need to know. Right, it was what would make the 
denominator 0? (Mr. Johnson 4-2-15 Lines 417 – 422) 

By explaining that a function is undefined when the denominator is 0, Mr. Johnson is giving a 

condition for when functions are undefined instead of addressing the underlying reasoning. This 

explanation was therefore labeled as superficial reasoning and not mathematical reasoning. 

Mr. Baker. The majority (60.0%) of Mr. Baker’s explanations during his classroom 

observations were categorized as superficial reasoning, and 25.7% were categorized as 

mathematical reasoning. Two of the three explanations Mr. Baker gave during the interview 

contained mathematical reasoning and the third contained superficial reasoning. Only a few 
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(14.3%) of his classroom explanations were procedural. Like the other teachers, Mr. Baker’s 

procedural explanations often occurred when working through a problem similar to a previous 

example that was explained with more reasoning.  

Mr. Baker’s explanation of how to solve a rational equation using the problem z
2

3
−
z
6
=1 

was categorized as mathematical reasoning.  

Mr. Baker: Why? I'm just going to multiply everything by 6, just because. That's our 
favorite explanation. Do we have a property? 

Student: Yes, the identity property. 

Mr. Baker: Not the identity, the identity property is what we used yesterday when we 
multiplied by one. This is an equation, so it's a property of ... 

Student: Equality. 

Mr. Baker: Equality. What property of equality allows us to multiply both sides of an 
equation? 

Student: Multiplication property of equality. 

Mr. Baker: Wow […], great job. Great memory. We're going to use the multiplication 
property of equality alright and we're going to multiply both sides by 6. Multiplication 
property of equality. If a is equal to b, then a times c is equal to b times c. Are these 
fractions ... Is the value of this equation, are these fractions going to be the same as those 
fractions? 

Students: Yes. 

Mr. Baker: Are we keeping it, are we keeping them equal? Is 6 times z over z squared 
over 3, equal to z squared over 3? 

Students: No. 

Mr. Baker: No, they're not. This is not equivalent to that. What we're doing is we're 
making the equation equivalent because, what is our goal here? 

Student: To get rid of the fractions. 

Mr. Baker: To solve for z. Yesterday, we wanted to have one equivalent fraction. We 
wanted to make sure the fraction was always the same, had the same value. This is 
completely different. We're solving. I'm able to multiply by z or multiply by 6 because 
I'm not concerned about keeping each fraction equal. I want to keep the equation equal 
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and this is still equivalent. Still going to have an equivalent fraction, so when we do this, 
we're going to distribute and everything is going to get multiplied by 6. (Mr. Baker 3-31-
15 Lines 27 – 67) 

This explanation was labeled as mathematical reasoning because Mr. Baker discussed the 

underlying mathematics properties that allowed students to multiply to eliminate the 

denominators. He also differentiated between simplifying expressions, where the value of the 

expression must be maintained, and solving an equation, where equality must be preserved. 

Knowledge Used by Teachers When Giving Explanations 

In this section, I describe the different types of knowledge used by teachers as they gave 

explanations categorized as procedural and explanations categorized as mathematical reasoning. 

I begin with the procedural explanations. 

Knowledge Used in Procedural Explanations 

When giving procedural explanations, teachers drew primarily on common content 

knowledge. However, knowledge of content and students and specialized content knowledge 

were seen in a few of the explanations. Other types of knowledge were not seen. See table 5.6 for 

frequencies of knowledge use in the procedural explanations. Below I describe the ways in 

which teachers used common content knowledge, knowledge of content and students, and 

specialized content knowledge when giving procedural explanations. 

Table 5.26: Types of Knowledge Used in Procedural Explanations by Teacher  

 
Knowledge Type 

Teacher 
Common Content 

Knowledge 
Knowledge of Content 

and Students 
Specialized Content 

Knowledge 
Mr. Baker 5 0 0 
Mr. Clark 27 7 3 
Mr. Johnson 1 0 0 
Mrs. Stone 6 0 0 
Total 39 7 3 
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Common content knowledge. Teachers drew on common content knowledge in all of 

the procedural explanations. As might be expected, they most often drew on knowledge of how 

to carry out a procedure. Teachers drew on knowledge of a wide range of procedures, including 

finding the domain of a function, finding the intercepts of a function, shifting the asymptotes of 

the graph of a basic rational function, factoring, simplifying a rational expression, and solving a 

rational equation. 

On occasion, teachers demonstrated knowledge of mathematical concepts and ideas, 

including asymptotes, domain, and the distributive property. For example, early in his lesson on 

graphing rational equations, Mr. Baker defined domain as “all xs such that our denominator does 

not include 0” (Mr. Baker 3-25-15 Lines 153-154). Later in his lesson, Mr. Baker explains how 

to find the domain of the rational function g(x) = x2 −9
x2 − x − 2

. In this procedural explanation, Mr. 

Baker draws on knowledge of the concept of domain and references the earlier definition, “Do 

exactly what our definition states. If our denominator does not equal 0, set your denominator to 

not equal 0. Simple as that. Factor and what can x not equal?” (Mr. Baker 3-25-15 Lines 346-

348). 

Knowledge of content and students (KCS). In seven of the procedural explanations, 

which were all given by the same teacher, Mr. Clark, the teacher demonstrated KCS by 

mentioning a common student error or misconception. All of these explanations were given by 

the same teacher, Mr. Clark. Although in these cases, Mr. Clark said that the error or 

misconception was incorrect, he did not explain why it was incorrect. For example, after a 

student gave the correct answer of 2
x

when simplifying the fraction 8
4x

, Mr. Clark brought a 

common misconception to his students’ attention. When simplifying a fraction that ends up with 
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a simple numerator and a more complex denominator, students sometimes move the expression 

in the denominator into the numerator. For example, an answer of 1
x +5

 might become x+5. 

“What I worry about is people come up with the answer of 2x. Somehow magically the answer 

floats to the top. I don't know why this occurs” (Mr. Clark 4-17-15 Lines 39-40). 

Specialized content knowledge (SCK). There was some evidence of SCK in three of the 

procedural explanations, all given by Mr. Clark. However, these instances show only small 

pieces of SCK, compared to the wider range of SCK demonstrated in the mathematical reasoning 

explanations. Two particular types of SCK knowledge were used in the procedural explanations.  

First, in two different explanations, Mr. Clark differentiated between different types of 

problems involving simplifying rational expressions, a distinction that is likely unimportant 

outside of teaching, where the problems might all be seen as similar. When discussing the 

procedure for simplifying rational expressions, Mr. Clark gave his students three steps: (1) 

Factor, (2) Multiply, and (3) Simplify. Partway through the lesson, while explaining how to 

simplify 4x
2

3x
•
9x
8x5

, Mr. Clark mentioned to students that there was nothing to factor, so they 

could move immediately to step two. He then differentiated between the type of problem they 

had worked on at the beginning of class, the type of problem they were currently working on, 

and the type of problem they would work on: “The first set of problems we did, we did step one 

and then three. Now we're going to do step two and three. Eventually, all three” (Mr. Clark 4-17-

15 Lines 430-431). The first set of problems involved simplifying a single fraction that had 

common factors and some of the problems required students to factor a greatest common factor 

out of the numerator or denominator before simplifying. The second set of problems involved 

simplifying the product of two rational fractions, which each had monomial terms in their 
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numerators or denominators. The final set of problems involved simplifying the product of two 

rational fractions, which had more complex polynomials in their numerators and denominators. 

In most cases, the polynomials were linear or quadratic and required factoring a quadratic or 

factoring a greatest common factor before simplifying.  

The second way SCK knowledge was seen in the procedural explanations was when a 

teacher drew on knowledge of two different, nuanced understandings of the relationship between 

a product (e.g. 2x) and its two factors (e.g. 2 and x). This type of knowledge appeared in two of 

the procedural explanations. While simplifying the expression 2x
3x −6

•
2x − 4
x2

, Mr. Clark 

discussed with students how to factor 2x − 4 . After establishing that 2 is a common factor of 

both terms, Mr. Clark factored the binomial by thinking of each of the terms as the product of the 

common factor, 2, and some other unknown value. 

Mr. Clark:  2 times what is 2x? 2 times something is 2x. 

Student: 2 times x. 

Mr. Clark: Yes. 2 times something is negative 4. Negative 2. (Mr. Clark 4-17-15 
Lines 689-694) 

He then provided an alternative way for students to think about the factoring: “Or you can think 

of it like division and you can say 2x divide by 2 is x and negative 4 divide by 2 is negative 2” 

(Mr. Clark 4-17-15 Lines 694-696). In this example, Mr. Clark is demonstrated two different 

understandings of the relationship between the product 2x and its factors 2 and x, one viewing 

the relationship as multiplicative (i.e. 2x = 2 times x) and one viewing a division relationship (i.e. 

2x divided by 2 is x). 
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Knowledge Used in Mathematical Reasoning Explanations  

In the explanations that were categorized as mathematical reasoning, the teachers drew 

on a wide variety of knowledge. They also showed evidence of deep mathematical and 

pedagogical understanding. In the subsections below, I provide examples of teachers’ common 

content knowledge, specialized content knowledge, knowledge of content and teaching, and 

knowledge of content and students. I then provide two examples, which show how the teachers 

drew on multiple domains of knowledge simultaneously during the mathematical reasoning 

explanations. 

Common content knowledge. All of the teachers drew on common content knowledge 

for each of the mathematical reasoning explanations they gave. Compared to the procedural 

explanations, teachers drew on a more extensive range of common mathematical knowledge. In 

every explanation, the teachers drew on mathematical ideas and concepts, such as the 

multiplicative identity, the multiplication property of equality, intercepts, holes, asymptotes, and 

the end behavior of a function. Teachers also drew on knowledge of many different procedures 

in all of the explanations, including factoring, solving a rational equation, graphing an equation 

given known information, and polynomial long division.  

In addition, unlike the knowledge used during procedural explanations, when giving 

mathematical reasoning explanations, teachers also drew on knowledge of connections between 

mathematical ideas, such as how the values in the rational equation y = a
x − h

+ k  affect the graph 

in the same way they affect other parent functions, or the difference between the multiplicative 

identity and the multiplication property of equality. These connections were not present in the 

procedural explanations. For example, in his interview, Mr. Johnson began his explanation of 



 148 

how to graph y = 1
x − 2

+1  by discussing parent functions and transformation more broadly. In an 

explanation of how to solve a rational equation, Mr. Baker differentiated between the 

multiplication property of equality, which was being used to solve the equation and maintains 

equality of an equation, and the multiplicative identity, which maintains the value of an 

expression and is used to simplify expressions. 

Specialized content knowledge. The teachers drew on specialized content knowledge in 

13 of the 16 mathematical reasoning explanations. This knowledge showed up in several 

different forms. First, specialized content knowledge was most frequently seen in the form of 

nuanced mathematical understandings. In particular, the teachers decomposed pieces of 

mathematics to a level that was mathematically appropriate for students and they did so in ways 

that mathematicians might not be able to verbalize. For example, when explaining how to 

simplify the expression x
2 − 2x
x − 2

, Mr. Baker showed a nuanced understanding of terms and 

factors, which he used to help students see what they can and cannot do to simplify the problem. 

This example was the first problem Mr. Baker used that had variables in the denominator. Prior 

to this example, he had used the fractions 2+3
2+5

 and 2×3
2×5

 to show that factors can be reduced, 

but terms cannot. He also defined factors, terms, and rational expressions and discussed what it 

meant to simplify a rational expression. 

Mr. Baker: The fact that those [the 2 and the x in 2x] are multiplied together ... they're 
being multiplied, right? Are they factors? Absolutely. But what is this whole 2x doing? 
don't have any factors. 

Student: It’s being subtracted 

Mr. Baker: It's being subtracted from x squared so that makes the 2x a term. If you're 
adding and subtracting to other things it is a term. Now within that term you can have 
factors, but I cannot reduce any part of this term. Even though those are multiplied 
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together, I can't reduce part of it because that entire 2x is a term being subtracted from x 
squared. So keep that in mind. Same thing with this 2 on the bottom. Same thing with the 
x and the x squared, they're all terms because they're all being added or subtracted. (Mr. 
Baker 3-27-15 Lines 135 – 147) 

Mr. Baker’s nuanced understanding of factors and terms can be seen here when he discusses that 

while the 2 and x in the 2x in the numerator are factors, the 2x as a whole is a term. 

The second way teachers drew on specialized content knowledge was in using a simple 

example to show a more complex idea. In particular, by using a simple example to show a 

complex idea, teachers were demonstrating knowledge of the simpler, related problem. For 

example, Mr. Baker used the problems 2+3
2+5

 and 2×3
2×5

 in his introductory explanation to 

simplifying rational expressions to show students that terms cannot be reduced, but factors can. 

He used the two problems together during both his classroom instruction and his interview. Both 

problems are familiar to students, yet directly address key mathematical ideas involved in 

simplifying rational expressions. Mr. Baker also used the equation z
2

3
−
z
6
=1in his first 

explanation on solving rational equations. The equation has no variables in the denominator and 

is a type of problem students have solved before in previous chapters.  

Finally, teachers drew on specialized content knowledge when they saw nuanced 

differences across different problems that others might see as the same type of problem. For 

example, in his interview, Mr. Baker began his explanation of how to solve a rational equation 

by differentiating between the problem that had just been solved, 2
x
=
5
x −3

 and the new 

problem, 15
x2 −3x

+
2
x
=
3
x −3

. He saw the first problem as part of a subset of proportion problems 
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that could be solved using a different method, cross multiplication, which students were already 

familiar with: 

We just finished solving the equation, the rational equation, 2 divided by x is equal to 5 
over x minus 3. We said the equation when two ratios are set equal to each other, this is a 
proportion and we know that solving a proportion we can cross multiply; solve our 
equation. If we take this one step further and I take that same equation: 2 divided by x is 
equal to 5 over x minus 3, however now I add an extra fraction. Now we have, 15 divided 
by x squared minus 3x. Is this a proportion? Can we solve this using the same methods 
we used over here? No, so let's talk about how we would go about solving this equation. 
(Mr. Baker Explanation Item 3) 

This new problem cannot be solved using cross multiplication because it is not a proportion 

where one fraction is equal to a second fraction. Students would therefore need a new method to 

solve the problem. 

In addition to the different types of SCK already described, teachers might be using SCK 

to pick strategic examples. However, the teachers’ explanations did not reveal how or why they 

selected their examples. It was therefore difficult to determine in many cases if teachers were 

drawing on SCK to pick examples for particular purposes. 

Knowledge of content and students (KCS). Teachers drew on knowledge of content 

and students in just over half (nine out of 16) of the mathematical reasoning explanations. In 

these explanations, KCS was most commonly seen in the form of expected misconceptions or 

difficulties. These misconceptions and difficulties included reducing terms instead of factors, 

confusing the procedure used in simplifying and solving, not using parenthesis when typing 

equations into a calculator, factoring quadratics with a negative leading coefficient, and not 

recognizing factors that differ by a factor of negative 1. For example, after factoring the 

expression 2x
2 −18

3− 2x − x2
 to get 2(x −3)(x +3)

(1+ x)(3− x)
, Mr. Baker asks students, “Is there anything in 

common here that we can reduce? Any common factors?” (Mr. Baker 3-27-15 Lines 245 – 246). 
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He receives mixed answers of no and “3 minus x and x minus 3” and goes on to explain how the 

factors 3-x and x-3 are related and can be reduced by factoring a negative 1 out of one of the 

factors. Students often have difficulty noticing that a term with a negative x can be rewritten by 

factoring out the negative because writing it as –x is as acceptable as writing -1x. They may 

therefore overlook common factors in an expression because the factors do not look the same. 

Knowledge of content and teaching (KCT). Teachers drew on knowledge of content 

and teaching in multiple ways. I focus here on two specific types of KCT of knowledge that were 

visible in teachers’ explanations. First, teachers drew on the KCT knowledge of how a simple 

example can be used to show a more complex idea. For example, as described in the SCK 

section above, Mr. Baker used the equation z
2

3
−
z
6
=1 to begin his lesson on solving rational 

equations. In doing so, he was not only drawing on the SCK knowledge that allowed him to 

create such an example or know that it was a simpler example. He was also drawing on the KCT 

knowledge of how a simple example can be used for the pedagogical purpose of showing a more 

complex idea.  

The second type of KCT visible in teachers’ explanations was knowledge of how to 

strategically use student errors or misconceptions. For example, Mr. Baker began his explanation 

of simplifying rational expressions by deliberately making the error of reducing terms in the 

fraction 2+3
2+5

 to show that the error was wrong: 

Mr. Baker: All right, good. Let's consider this good old fashioned fraction: 2 plus 3 
over 2 plus 5. What is this? 

Students: Five sevenths 

Mr. Baker: Five sevenths? Okay maybe we need to slow down a bit. So let's look at 
this and you'll notice we have some 2s in common. If we reduce those 2s, what are we 
going to get? 
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When we reduce we are dividing, we are not cancelling. I'm not getting rid of the 2s and 
making them 0s. I'm dividing and making them 1s. So if we divide and get a 1, what is 
this going to give us? 

Students: Four sixths. 

Mr. Baker: Four sixths. Are those equivalent? 

Students: No. 

Mr. Baker: No. Four sixths is not equal to Five sevenths. So are we allowed to do 
this? 

Students: No. (Mr. Baker 3-27-15 Lines 38 – 62) 

The error Mr. Baker describes is that of reducing the 2s in the numerator and denominator. 

Because they are terms, they cannot be reduced. This is obvious to students when the fraction has 

two different, non-equivalent values. However, when simplifying a rational expression, such as 

x +3
x +5

, students are very likely to make the error of reducing the xs without seeing why their 

answer is incorrect. Mr. Baker is strategically using the simpler example of 2+3
2+5

 to make the 

error more recognizable by students, who know four sixths and five sevenths are not equivalent.  

In one of his explanations, Mr. Johnson’s strategic use of misconceptions took a slightly 

different form. When introducing removable discontinuities to his students, Mr. Johnson had 

students find the discontinuities and x-intercepts of the equation f (x) = x
2 − 2x −8
2x2 −8x

. Before using 

their calculators to graph the equation, Mr. Johnson asked students where the vertical asymptotes 

and x-intercepts would be. By doing so, he set his students up to expect their graphs to look a 

particular way. When the graph looked different than expected, students were curious about why 

the graph did not match their expectations: 

Mr. Johnson: Where are we going to see vertical asymptotes? Thank you [Student]. Go 
ahead boss, where's one? 
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Student: 0 

Mr. Johnson: There's going to be a vertical asymptote and 0, that's one of our excluded 
values. Where's the other one [Student]? 

Student: 4 

Mr. Johnson: 4, right. So we're going to see vertical asymptotes there because that's 
what would make the function undefined. What about our x intercepts? Where are we 
going to see the function cross the x-axis? Chief? 

[…] 

Student: 4 and negative 2 

Mr. Johnson: 4 and negative 2. Sure that's our solutions. That was what [Student] 
explained, right? That's where the function crosses the x-axis. [Student], what have you 
got, boss? 

Student: You said that the vertical asymptotes were 4 and 0 but how come you have 
two vertical asymptotes? 

Mr. Johnson: Because there were two values here that would make this equal to 0. One 
of them was 4 and the other was 0, so those would both make this 0, which would make 
the function undefined. So we have two. So let's go ahead and graph them and let's look 
for those and see if everything looks right, and we'll know we did it correctly and there it 
is, and here comes the graph. There goes the graph, so what's going on here? What was 
supposed to happen? What do you- do you see an asymptote? Yes, were do you see an 
asymptote? 

Student: At 0 

Mr. Johnson: At 0, right. You can see it at 0. Just like our parent graph. Wasn't there 
supposed to be another asymptote? Where. 

Student: 4 

Mr. Johnson: At 4? There's no asymptote at 4, is there. Hey let's go on the left side of 
this graph. Do you see where the graph kind of crosses the x-axis in the second and third 
quadrants? I don't know if you guys have ever done this with your calculator but we 
talked about how you use your calculator, like check your work and make sure you're 
doing stuff right and everything. A way to understand how things shift. If you change 
different numbers it'll move a little bit and then it kind of gives you an idea of how it 
behaves. 

I'm going to push the trace button, see the trace button right here? I'm going to push the 
arrow to the left and the reason I'm going to do that is because I want to put my trace 
button right over here, I want to put it right there. Because it looks to me like that's where 
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the function crosses the x-axis. If it really is where the function crosses the x-axis, does 
anybody know what that value of x should be if it's right? Maybe I should do this. Does 
anybody know what the value of x should be if it's right? 

Student: Negative 2. 

Mr. Johnson: Negative 2, that was one of our solutions. We had another solution of 4. 
Does it appear to be crossing the x-axis at 4? So we have no x-intercept at 4, and we have 
no vertical asymptote at 4 even though we had both of those answers over here, so there's 
something wrong. (Mr. Johnson 4-2-15 Lines 591 - 654) 

This was coded as KCT because Mr. Johnson is strategically setting students up to expect 

there to be two asymptotes. However, he knows that there will only be one. In doing so, he is 

engaging students to ask why the graph looks different than they would expect. 

Multiple types of knowledge at once. The teachers drew on many domains of 

knowledge, and different pieces of knowledge within those domains, when giving mathematical 

reasoning explanations. Perhaps even more important is that in giving these explanations 

teachers were drawing on many of these different types of knowledge simultaneously. In this 

section, I look closely at two explanations that were categorized as mathematical reasoning to 

describe teachers’ use of multiple different types of knowledge. 

The first example is part of Mr. Baker’s explanation of how to simplify the rational 

expression during his interview. The prompt asked him to explain how to simplify a rational 

expression using the example x2 −16
x2 − x − 20

. 

Let's take a look at our first example that we're going to go over today with our rational 
expressions. We want to reduce x squared minus 16 over x squared minus x minus 20. As 
I know this, as I look at this, the first thing I'm going to see is all the terms.  

In our numerator we have an x squared. That's a term, a negative 16 that's a term, our 
denominator x squared, x, and 20, all terms. As much as you want to, reduce the x 
squared and x squared, as we saw from our first problem, because they are being added to 
a negative 16 and add to a negative x, they are terms and we cannot reduce them. By 
definition, if we want to reduce factors, then what should we do first here? If we want to 
reduce factors, then it would make sense for us to factor each of these polynomials and 
see what product we get.  
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Our numerator of course is the difference of the two squares. We're going to factor that 
into x minus 4 and x plus 4. Our denominator is going to factor as an x minus 5 and x plus 
4. Now that we have things multiplied, and it's something you should know this year, 
within each factor that x is a term and the 4 is a term, so we're still adding terms, but 
together the x minus 4 is being multiplied times the x plus 4, which in turn makes these 
two factors. They're being multiplied. x minus 5 and the x plus 4 are factors, and when we 
reduce we're not going to reduce the xs, and the 4s, and the 5s.  

We're going to reduce the entire factor. As we look from numerator to denominator, we 
want to see any factors that are in common that we can reduce. I'm not a big fan. I don't 
like to cancel. Cancel means we're getting rid of. What we're doing is we are going to 
take these common factors, x plus 4, and I'm going to divide them. x plus 4 over x plus 4 
is 1. I put a 1 here just to remind me that they're not gone, they're not 0s, they're 1s. When 
we divide the common factor out of the problem, we're going to be left with an x minus 4 
over an x minus 5. As much as you want to, as much as you want to reduce those xs, once 
again, that x is being added to a negative 4, x is being added to a negative 5. These are 
terms. We can't reduce terms. We simplified this fraction to its lowest terms by reducing 
the common factors. (Mr. Baker Explanation Item 1) 

In this explanation, Mr. Baker draws on common content knowledge of how to simplify a 

rational expression. When explaining that although the x and 4 are terms, x-4 is a factor, he is 

using the SCK of nuanced understandings of the mathematics. In differentiating between terms 

and factors, Mr. Baker is also drawing on KCS of the common student error of reducing terms, 

which cannot be reduced. Although not seen in this part of his explanation, Mr. Baker also drew 

on SCK of a simpler problem that shows a more complex idea and KCT of how such an example 

can be used to show the complex idea. He did so by beginning his explanation by simplifying the 

fractions 2+3
2+5

 and 2×3
2×5

. With these examples, Mr. Baker also drew on KCS of the common 

misconception of reducing terms and KCT of how an error can be used strategically. 

The second example comes from Mr. Johnson’s explanation of why a hole occurs when a 

rational equation has a common factor in the numerator and denominator. Part of this 

explanation is shown in the above section on KCT. In addition to the KCT knowledge described 

in the previous section, Mr. Johnson drew on the common content knowledge of different types 
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of discontinuities and how to graph a rational function. Later in the same explanation, he 

discussed how the calculator approximates values, “the way the calculator is doing this, very 

interesting, is it's using a principle from calculus” (Mr. Johnson 4-2-15 Lines 700 – 701). In 

doing so, he demonstrated knowledge of mathematical connections. Mr. Johnson also drew on 

KCS when he set students up to expect two vertical asymptotes. This required knowing what 

students know about discontinuities and what they would overlook, specifically that it is 

impossible to have a vertical asymptote and an x-intercept with the same value.  

Summary 

In line with the overall goal of this dissertation, in this chapter, I sought to describe the 

work teachers do when giving an explanation and the knowledge they use in doing so. I did this 

by delineating four categories of explanations, problematic, procedural, superficial reasoning, 

and mathematical reasoning, and then looking more closely at, and comparing, the knowledge 

teachers drew on when giving procedural explanations and mathematical reasoning explanations.  

Explanations containing superficial reasoning were most common, followed by 

procedural explanations. Mathematical reasoning explanations were less frequent. All of the 

mathematical reasoning explanations were given by two of the teachers, and they occurred about 

25% of the time for each of those two teachers. Finally, problematic explanations were the least 

frequent and were all given by the same teacher.  

When giving procedural explanations, teachers drew on common content knowledge, 

most often knowledge of how to carry out a procedure. They also drew on the KCS knowledge 

of common student errors. Finally, teachers drew on two specific types of specialized content 

knowledge, recognizing different types of problems that others would consider the same and 
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nuanced understandings of a mathematical idea (e.g. seeing the relationship between factors and 

their product as a multiplication problem and as a division problem).  

When giving explanations that were categorized as mathematical reasoning, teachers 

drew on common content knowledge, specialized content knowledge, and knowledge of content 

and students. They also drew on the pedagogical knowledge of knowledge of content and 

teaching, which was not seen in the procedural explanations. Teachers also drew on a wider and 

deeper range of knowledge within each domain. For example, in all of the mathematical 

reasoning explanations, teachers drew on common content knowledge of both concepts and 

procedures. When giving mathematical reasoning explanations teachers used multiple domains 

of knowledge simultaneously.  
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CHAPTER 6: DISCUSSION AND CONCLUSIONS 

Teacher knowledge matters for student learning. Yet, understanding how teacher 

knowledge and student learning are linked requires several intermediate steps. One important 

step is understanding how teachers’ knowledge is enacted in teaching. Through a study of eight 

Algebra II teachers focused on the content of rational expressions and equations, this dissertation 

describes how teachers’ knowledge is enacted while carrying out the teaching practices of 

selecting examples and explaining. Findings from this study broadly inform research on teacher 

knowledge and teaching practices, as well as their intersection. These findings also contribute to 

the range of methods used to study teacher knowledge and teaching practices, and provide 

support for looking more deeply at how knowledge is enacted in teaching.  

I begin this chapter with a summary of the findings. In this summary, I discuss how the 

teachers enacted each practice of selecting examples and giving explanations, the different types 

of knowledge they drew on in doing so, and patterns in teachers’ knowledge and practice. In the 

second section, I look across the practices to more broadly discuss the knowledge teachers use in 

practice. I describe the implications of this work in the third section of this chapter, including 

theoretical and methodological implications, as well as implications for teacher education. 

Finally, I conclude this chapter with a discussion of the limitations of this study and areas for 

future research. 

Summary of Findings 

In this section, I begin by reviewing the aims of this dissertation. I then discuss findings 

related to the practice of selecting examples, including components of the practice and 



 159 

knowledge teachers drew on. Next I focus on findings related to the practice of giving 

explanations, specifically the different categories of explanations and the knowledge teachers 

drew on when giving different types of explanations. Finally, I look across the two practices to 

compare how teachers draw on mathematical knowledge for teaching in enacting each practice. 

Study Aims 

This dissertation sought to better understand the work of mathematics teaching by 

looking closely at two teaching practices that are integral to and embedded within the daily work 

of classroom teaching. Although teachers select examples and give explanations throughout 

mathematics teaching, there are many unknowns as to what is entailed in carrying out each of 

these practices and how teachers draw on mathematical knowledge for teaching in carrying out 

each practice. I aimed to investigate these practices through the following research questions: 

• What mathematical knowledge for teaching is entailed by the instructional practices of 

selecting examples and giving explanations? 

1. What kinds of work do teachers do in carrying out these two teaching practices? 

2. What mathematical knowledge for teaching do teachers draw on in carrying out 

these two teaching practices? 

3. How do teachers use this mathematical knowledge for teaching and reasoning in 

doing this work? 

4. Are there differences across the two practices? How are these differences in 

knowledge and reasoning related to the demands/work of the practices 

themselves? 

Despite similar aims for understanding each of the two practices, the analyses of the 

practice of selecting examples and the practice of giving explanations were different. Differences 
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in what is known in the field about these practices, the occurrences of each practice in this study, 

and the practices themselves, including the in-the-moment demands and the simultaneity of 

different components of the practice, led to differences in the analyses of the work involved in 

each practice. In both cases, the analysis sought to better understand what is involved in the work 

of carrying out each practice. For the practice of selecting examples, the analysis focused on 

understanding the components of the practice. For the practice of giving explanations, the 

analysis focused on the different types of explanations mathematics teachers give during whole 

class instruction. Although there were differences in how the practices were analyzed, the 

knowledge used in carrying out each practice was looked at through the same lens of 

mathematical knowledge for teaching. Though the practices were analyzed differently, this does 

not imply that comparisons cannot me made across the practices or that future research must 

analyze each teaching practice separately from other practices. In this study, given what was 

known about each practice already and the specific instances of each practice that comprised the 

data in this study, the analyses of the two practices varied. In the sections that follow, I discuss 

the findings of this study, beginning with the practice of selecting examples. 

Selecting Examples 

The practice of selecting examples is more complex than it may appear. When selecting 

examples, teachers are doing a range of things, from thinking about their goals, sub goals, and 

students, to solving a problem. Most frequently, teachers enacted the following components of 

the practice: evaluating the features of a problem, sequencing problems, thinking about pieces of 

the end goal, and thinking about common student errors or places where they will have difficulty 

or success. 
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When selecting examples, teachers most frequently drew on common content knowledge, 

both of how to carry out a procedure and of mathematical ideas. They also drew on the 

specialized content knowledge of recognizing nuanced differences within a larger set of 

problems that others would group as one set and on knowledge of how to sequence examples 

strategically for a purpose. When responding to each individual interview item, each teacher 

drew on at least four different types of knowledge, with some teachers drawing on several 

additional types of knowledge.  

Different types of knowledge co-occurred frequently. Given the mathematics involved in 

all of the examples and the frequency with which teachers drew on common content knowledge, 

it is logical that CCK co-occurred with almost all of the other types of knowledge at least once. 

Further, there were two pairs of knowledge codes that overlapped completely: (1) knowledge of 

simple problems that show a more complex idea and knowledge of how a simple example can be 

used to help students learn a more complex idea, and (2) recognizing artificial patterns in 

problems and knowledge of how examples and the values used in them should not demonstrate 

an artificial pattern. As discussed in Chapter 4, the two knowledge codes in each pair are linked. 

For example, when teachers described using a simple example to show a more complex idea they 

demonstrated mathematics knowledge of the simple related example and pedagogical knowledge 

of the purpose of using an example and how to do so. These two overlapping pairs of knowledge 

suggest an intrinsic link between pieces of specialized content knowledge and knowledge of 

content and teaching. Specifically, one such link is that knowing specific types of problems that 

are pedagogically powerful is linked to the knowledge that such problems can be used for a 

specific pedagogical purpose. 
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Looking at specific components of the practice of selecting examples, the teachers 

collectively drew on five or more different types of knowledge across all instances of each 

component. Further, there were several types of knowledge that were draw on when enacting 

each component by at least one teacher. These include the common content knowledge of how to 

carry out a procedure and of mathematical ideas, as well as the specialized content knowledge of 

recognizing nuanced differences within a larger set of problems that others would group as one 

set. In addition, knowledge of how to sequence examples strategically was used for every 

component of the practice with the exception of looking at a set of problems for interesting 

features in the set. Taken with the range of knowledge each teacher drew on, and the co-

occurrences of different knowledge codes, this suggests that selecting examples is an important 

site for mathematical work in teaching because it requires teachers to draw on a large range of 

knowledge types simultaneously, and use this knowledge across the different components of the 

practice. I return later to the complexity of teachers’ knowledge use when enacting this practice. 

Giving Explanations 

Explanations were categorized into four groups, ordered from least to most mathematical 

reasoning: problematic, procedural, superficial reasoning, and mathematical reasoning. 

Explanations containing superficial reasoning were most common. Almost half of the 

explanations that occurred during classroom observations were categorized as superficial 

reasoning, as were eight of the 12 interview explanations. Procedural explanations were less 

frequent than superficial reasoning explanations, showing up in just over one third of the 

classroom observation explanations. All of the mathematical reasoning explanations were given 

by two of the teachers, and they occurred about 25% of the time for each of those two teachers. 

Finally, problematic explanations were the least frequent and were all given by the same teacher.  
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Explanations using more reasoning occurred when introducing content that was new to 

students and subsequent examples of the same content often had a lower level of reasoning. 

When introducing an idea for the first time, teachers may want to provide students with an 

understanding of the key features of a mathematical idea, how an idea is related to students’ prior 

mathematics knowledge and experience, how a concept is different than a related concept, or 

why a procedure works. In later explanations of the same content, they may be less likely to use 

the same amount of reasoning because students have already been exposed to the reasons 

underlying the concept or procedure. They may instead be focusing on helping students gain 

fluency with the more procedural elements of the content. Within the content area of rational 

expressions and equations, this often took the form of the teacher explaining a new procedure 

with a detailed explanation of why certain steps are used and what cannot be done. Later in the 

lesson, when going through subsequent examples of the same procedure, the teacher gave less 

reasoning and focused instead on executing the steps of the procedure correctly.  

As might be expected, across both procedural and mathematical reasoning explanations, 

teachers drew on common content knowledge for each explanation. As might also be expected, 

teachers drew on a much wider range of knowledge and showed greater depth of knowledge 

within particular domains when they gave explanations that were categorized as mathematical 

reasoning, compared to when they gave procedural explanations. When giving procedural 

explanations, teachers drew on the domains of common content knowledge, knowledge of 

content and students, and specialized content knowledge. In contrast, when giving explanations 

that were categorized as mathematical reasoning, teachers also drew on knowledge of content 

and teaching. Further, within each of the MKT domains, teachers drew on a wider range of 

knowledge.  
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During the procedural explanations, the common content knowledge drawn on was most 

frequently knowledge of how to carry out a procedure. However, teachers did occasionally draw 

on knowledge of mathematical concepts and ideas. In contrast, when giving mathematical 

reasoning explanations, teachers drew on knowledge of mathematical ideas and of how to carry 

out a procedure during each explanation. This difference supports the distinction between the 

two types of explanations, and might therefore be expected. Procedural explanations are focused 

on working through a procedure, with no explanation about why the procedure is being carried 

out or why the steps of the procedure work. In contrast, mathematical reasoning explanations 

provide deep mathematical reasoning related to the underlying why or how of a mathematical 

concept or procedure. As such, teachers would be expected to draw on knowledge of both 

mathematical ideas and how to carry out procedures. 

Comparing procedural and mathematical reasoning explanations, it might be expected 

that teachers would not draw on specialized content knowledge when giving procedural 

explanations because they are merely going through the steps of a procedure and carrying out a 

mathematical procedure does not require specialized mathematical knowledge. If the teacher 

were to unpack what they were doing to make sense of the procedure for students and help them 

learn to carry it out, the teacher would likely be discussing some reasoning underlying the 

procedure, which would make the explanation a superficial reasoning or mathematical reasoning 

explanation. However, teachers drew on two different types of specialized content knowledge 

when giving procedural explanations, a nuanced understanding of the relationship between a 

product and its factors, and knowledge of nuanced differences within a larger set of problems 

that others would see as the same. The fact that teachers drew on specialized content knowledge 
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when giving a procedural explanation suggests that even when an explanation is procedural, 

there may be something specialized about the work teachers are doing to give that explanation. 

It might be expected that teachers would draw on specialized content knowledge when 

giving mathematical reasoning explanations, as these explanations are attuned to students’ 

mathematical understanding. Giving an explanation that uses mathematical reasoning to students 

requires a teacher to decompose their own knowledge to a level that students can make sense of, 

which is one component of specialized content knowledge. Teachers’ nuanced understandings of 

mathematical concepts were seen throughout the mathematical reasoning explanations.   

In addition to these nuanced understandings, when giving mathematical reasoning 

explanations teachers drew on knowledge of content and teaching, which was not seen in the 

procedural explanations. In particular, when giving mathematical reasoning explanations, 

teachers strategically used errors to show students what not to do. They also used knowledge of 

how to use a simple familiar problem to demonstrate a more complex concept.  

In comparison, teachers did not draw on knowledge of content and teaching during the 

procedural explanations. It is likely that if they had, the explanations would have moved to a 

different category, because when drawing on knowledge of content and teaching during an 

explanation, teachers often went beyond the steps of a procedure and began to reason about the 

mathematics involved, either through a simple related example or using errors. 

Looking at teachers’ use of knowledge of content and students across the two explanation 

types, it is not unexpected that knowledge of content and students was only seen during the 

procedural explanations in the form of mentioning a common error or misconception. Had a 

teacher used the errors in some way, the explanation would likely have moved to a category 

involving reasoning because for an error to be used strategically, the teacher would need to 
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explain in some way why it is an error and would therefore be using reasoning in the 

explanation.  

During the mathematical reasoning explanations, when teachers drew on knowledge of 

content and students, they not only mentioned a common misconception or error, but went into 

some detail about how to avoid the error, or how students might recognize something they might 

otherwise overlook. Further, one teacher even used his knowledge of content and students to 

engage students in a problem by setting them up to expect something that wasn’t there and 

question why it was missing. Specifically, after teaching students about vertical asymptotes, Mr. 

Johnson introduced removable discontinuities by giving his students a problem with both a 

vertical asymptote and a removable discontinuity. Because they had only learned about vertical 

asymptotes, students expected both of the discontinuities to be asymptotes, but when they looked 

at the graph of the equation, they saw that there was only one vertical asymptote. By using his 

knowledge of students and setting the problem up in this way, Mr. Johnson caused his students to 

question what was happening in the equation to cause the graph to differ from their expectations. 

Overall, comparing teachers’ knowledge use across the two types of explanations, as 

might also be expected, the teachers drew on a wider range of knowledge when giving 

mathematical reasoning explanations than they did when giving procedural explanations. 

Further, when giving mathematical reasoning explanations, as described above, within several of 

the domains, the knowledge teachers drew on was more detailed and teachers drew on multiple 

domains of knowledge at once. Given that individual teachers’ explanations varied in type and 

the knowledge they drew on varied across explanations, even of the same content, this study 

suggests that teachers are deciding, either explicitly or implicitly, when to draw on more 



 167 

extensive knowledge in an explanation and go into greater mathematical detail, and when to use 

a straightforward procedural explanation.   

Interpreting the Findings 

In this section, I look beyond the findings related to each practice to more broadly discuss 

the knowledge teachers use in practice. First, I look at how different types of knowledge are 

associated with differences in how teachers enact practices. Second, I look at the complexity of 

teachers’ knowledge use. Third, I focus specifically at the places where specialized content 

knowledge does and does not show up in practice. Finally, I discuss the impact different methods 

can have on studying teacher knowledge and practice. 

Teachers Use Different Types of Knowledge When Enacting the Practices, Which is 

Associated with Differences in How They Enact the Practices 

Across both practices, the knowledge teachers drew on when enacting the practices led to 

differences in how teachers enacted the practice. For example, when selecting examples, teachers 

who drew most heavily on knowledge of student misconceptions were more focused on student 

misconceptions than they were on pieces of the end mathematics goal. In contrast, teachers who 

more frequently drew on knowledge of how to strategically sequence examples for a purpose and 

recognized nuanced differences within a larger set of problems that other would see as one set 

were more focused on pieces of the end mathematics goal than they were on student 

misconceptions.  

The knowledge teachers drew on also influenced the explanations they gave. When 

giving explanations, teachers drew on a broader range of knowledge types when giving 

mathematical reasoning explanations than when giving procedural explanations. As described 

earlier, drawing on this broader range of knowledge might directly impact the type of 
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explanation a teacher gives. For example, if a teacher draws on knowledge of mathematical 

ideas, they are likely discussing those mathematical ideas and their explanation would likely be 

categorized as superficial or mathematical reasoning. Similarly, if a teacher draws on knowledge 

of how a simple problem can be used to show a complex idea, they will likely discuss how the 

simple problem demonstrates the more complex idea. Their explanation would therefore likely 

be categorized as superficial or mathematical reasoning. 

Complexity of Knowledge Use 

In addition to the many types of knowledge teachers used when enacting each practice, 

teachers drew on several types of knowledge simultaneously. This suggests that there is a 

complex relationship between different domains of knowledge and that teachers’ knowledge use 

in teaching is complex and multifaceted.  

Where Does Specialized Content Knowledge Show Up in Practice? 

This dissertation contributes to the field’s understanding of specialized content 

knowledge by identifying places where teachers draw on it in practice. Teachers drew on 

different types of specialized content knowledge when enacting each of the components of the 

practice of selecting examples and when giving mathematical reasoning explanations. 

Unexpectedly, teachers drew on two different types of specialized content knowledge when 

giving procedural explanations. In identifying places where teachers draw on this knowledge, I 

also distinguish several specific types of specialized content knowledge, including recognizing 

nuanced differences within a larger set of problems that others would see as one set, knowledge 

of simple problems that show a more complex idea, and knowledge of multiple procedures to 

solve a problem.  
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Although I was able to identify several types of specialized content knowledge, the most 

frequent type of SCK teachers drew on was nuancing differences in problems that others would 

see as the same. Other types of SCK were infrequent and it is possible that there are other types 

of SCK knowledge that this study did not capture. There might be something about the content 

of rational expressions and equations that makes it more challenging to see specialized content 

knowledge. In particular, most subtopics within rational expressions and equations are taught in 

a specific way. For example, although there are multiple procedures for solving a rational 

equation, they all involve using multiplication to eliminate the fractions. Because there are 

typical ways this content is frequently taught, there may be less opportunities to see how teachers 

draw on knowledge in making decisions about which examples to use and what to emphasize in 

their explanations. It is also possible that the more complex nature of the topic means that 

teachers may have a less robust understanding of the nuances of the content and are therefore 

less likely to have specialized content knowledge related to this topic.  

The Impact of Different Methods of Studying Teacher Knowledge and Practice 

This dissertation used two different methods for collecting data, as well as different 

methods of analysis for each practice. The interview setting used to study the relationship 

between teacher knowledge and teaching practices provided a different view of these two 

teaching practices than that of a classroom observation. For the practice of selecting examples in 

particular, the interviews made the work teachers do more visible than it often is during 

classroom instruction. By using both methods of interviews and classroom observations, I was 

able to learn about the work of enacting these two practices. In this section, I describe the 

strengths and weaknesses of these two research methods and of the different analysis methods 

used in this study. 
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For both of the practices, the interviews allowed for a more standardized analysis of the 

practice because all of the teachers were selecting examples for the same purpose or giving an 

explanation to meet the same learning objective. This similarity allowed for a closer comparison 

across the teachers. Because the task was held constant, claims about differences in teachers’ 

knowledge use and practice are more robust. In the classroom observations, despite holding 

mathematics content constant, the learning goals varied across teachers and their different 

classes, creating greater variation in the explanations given by different teachers. 

Both sets of interview items asked the participants to take on the role of the teacher in the 

classroom situation described in the item. In the case of selecting examples, this required the 

teacher to talk through their thought process when picking examples. The items focused on 

giving explanations required a bit more of the teachers. In particular, not only were teachers 

asked to talk about their thought process, but they were also asked to then model or perform the 

explanation as if there were students in the room. One challenge that occurred with the 

explanation items is that a few of the teachers tended found giving an explanation with no 

students present to be awkward. On occasion this came across in their explanation and a few 

teachers resorted to telling what they would do and needed to be prompted to explain it like they 

would to students. In contrast, other teachers’ explanations closely mirrored their classroom 

explanations and would have been difficulty for an observer to notice that there were no students 

present. In a few of these cases, teachers even maintained a dialogue in their explanation by 

adding in expected student contributions. Future work might consider how interview items can 

be revised to encourage teachers to give an explanation as though they were talking to a class of 

students.    
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Looking specifically at the methods used for the practice of selecting examples, the items 

set up the practice of selecting examples slightly differently than it might be set up in teaching 

because each item explicitly stated a goal in the prompt. In doing so, the items enabled a view of 

teachers’ selection of examples once they have a specific goal in mind. However, determining 

the goal for a set of examples is likely an important first step when teachers select examples in 

their own teaching.  

The analysis of the practice of selecting examples included describing the different types 

of work teachers do when carrying out this practice. The identified components allowed for a 

comparison of different patterns in how teachers select examples, and represent an important 

contribution to the field’s understanding of how teachers select examples. Although previous 

work has looked at considerations teachers make in selecting examples (e.g., Zodik & Zaslavsky, 

2008), these components describe the work involved in carrying out the practice. These 

components can provide a foundation for decomposing the practice when discussing selecting 

examples in teacher education. They can also be used to cultivate an understanding of how 

teachers develop the practice of selecting examples over time, including which components 

novices carry out more frequently and which more experienced teachers use most often. Further, 

this analysis identified more specific types of knowledge that teachers use in carrying out this 

practice. These specific pieces of knowledge are another step in understanding the knowledge 

teachers use in practice and the specific ways knowledge is drawn on within particular 

components of the work. A similar analysis of other practices might allow for comparisons 

across different practices to determine if there are shared components. Further, this analysis 

might identify patterns in how teachers use knowledge across practices.  



 172 

The analysis of the practice of giving explanations began by splitting the classroom 

observations into explanations based on the overall purpose of the explanation. One contribution 

of this analysis is the way in which the explanations were split. The explanations were then 

categorized based on the type of reasoning involved.   

One take away from this study is that there were few explanations that were deeply 

mathematical. This raises the question of whether this is due to differences in explanations in 

high school mathematics classrooms and explanations within the discipline of mathematics. In 

mathematics teaching, a good explanation requires more than common content knowledge 

because learners are unlikely to understand a mathematical idea in its fully compressed final 

form. Instead, teachers are decomposing mathematical ideas to share the nuances with students, 

requiring them to draw on specialized content knowledge. Despite the use of specialized content 

knowledge in many of the mathematical reasoning explanations, there were often important 

mathematical details that were not addressed. Many things are also “taken-as-shared” (Yackel & 

Cobb, 1996) at the high school level and these taken-as-shared ideas may be covering for more 

complex mathematics.  For example, Mr. Baker frequently referred to division by zero as 

causing the world to end instead of describing it as undefined. In doing so, he is glossing over the 

deeper mathematics underlying why division by zero is problematic, and is teaching this aspect 

of division as a rule without reason. 

In contrast to a high school mathematics explanation, a mathematical explanation might 

require only common mathematics content knowledge, as the audience is not learners, but others 

who are competent in the field. Thus, the nuanced details and reasoning required in a high school 

mathematics explanation are not necessary. Often it is these nuanced details that are taken-as-

shared and therefore not discussed. A future study might look at what it means for something to 
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be explained mathematically and how a mathematical explanation is different than an 

explanation that might be given in a high school mathematics classroom.  

Implications 

This study contributes in three distinct areas. First, from an empirical standpoint, the 

major contribution of this study is a better conceptualization of the teaching practices of selecting 

examples and giving explanations and the mathematical knowledge and reasoning used in 

carrying them out. This conceptualization includes particular components of the work teachers 

do in selecting examples, different types of explanations teacher give, and the types of 

mathematical knowledge they draw on in doing so. Further, conceptualizing teachers’ use of 

mathematical knowledge and reasoning in practice enables the field to ask new questions about 

the development and trajectory of this knowledge, reasoning, and the ability to enact these 

practices. Future research can also build on this knowledge by investigating other teaching 

practices across grade levels and mathematics content. Doing so will provide greater 

understanding of how teachers use mathematical knowledge and reason in doing the work of 

teaching and how their knowledge use and reasoning are or are not dependent on content area 

and grade level. 

In addition, this study shows the influence teachers knowledge can have on their practice 

and how important it is for teachers to have the knowledge needed to enact components of the 

practices. The two teachers who selected examples based most heavily on common student 

misconceptions they wanted to avoid appeared to have a weaker understanding of the key 

mathematical ideas that made up the larger goal in the prompt. This is supported by their less 

frequent recognition of nuanced differences in the set of problems. Because they lacked 

knowledge of the important sub goals underlying the overall mathematical goal of each item, 
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they instead focused their example selection on showing common errors to prevent students from 

making them. However, showing students several errors and discussing why they are 

problematic may leave students with an incomplete knowledge of the important mathematics 

ideas in a lesson. This suggests that to be able to enact these components of the practice, teachers 

need a strong, and nuanced, understanding of the mathematics content. 

The second contribution of this study is to the field of teacher education. Knowing the 

particular types of mathematical knowledge needed for carrying out particular teaching practices 

and the ways knowledge is used in these practices can inform teacher training and education, 

both in teacher education programs and in professional development. This study stands to inform 

content and methods courses individually, by contributing to knowledge that might be taught in a 

content course and teaching practices that might be taught in a methods course. However, and 

perhaps more importantly, this study highlights the interdependent nature of knowledge and 

practice in teaching. It therefore highlights the potential of integrating knowledge and practice in 

teacher education instead of keeping them separate. A greater understanding of the interrelated 

nature of knowledge and practice also affords the opportunity for certification tests to better 

measure the knowledge and practices that actually matter in teaching, leading to more qualified 

and capable teachers entering the field. All of these have the potential to help teachers to provide 

better instruction, thereby improving students’ learning. 

Finally, this study has methodological implications. In particular, it contributes to the 

variety of methods used to study teachers’ mathematical knowledge and reasoning. In a 

classroom setting, teachers must be responsive to the many in-the-moment demands of teaching. 

Classroom observations allow researchers to observe teachers’ practice and how these demands 

affect it. However, because classroom teaching occurs in a “live” setting, with other participants, 
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it is not possible to ask teachers about or record their thinking while teaching. Post observation 

interviews can delve into teachers’ mathematical knowledge and reasoning, but only 

retrospectively. In contrast to these settings, the interviews used in this study offer a setting 

where teachers’ mathematical knowledge and reasoning can be probed as they are used, 

providing access to knowledge otherwise obscured by the demands of classroom teaching. 

However, these interviews are only useful for assessing knowledge use in teaching if we 

understand how teachers’ mathematical knowledge and reasoning during such interviews are 

related to their mathematical knowledge and reasoning while enacting the work of teaching. This 

dissertation contributes to this needed understanding.  

Limitations 

There are three main limitations of this study. First, the sample of teachers is too small to 

make claims about all secondary mathematics teachers. However, there is enough data to better 

understand how the teachers in this study drew on knowledge when selecting examples and 

giving explanations for the content of rational expressions and equations. Further, these findings 

suggest patterns in how the larger population of secondary mathematics teachers might enact 

knowledge within these particular teaching practices.  

The second limitation is the focus on a specific mathematical domain. This limitation has 

two components. First, teachers may draw on different types of knowledge when teaching 

different content areas. This might further vary based on the complexity of the topic, or its 

prevalence in the curriculum. Second, there may be limitations specific to the content of rational 

expressions and equations. Compared to a topic such as linear equations, the content area of 

rational expressions and equations may have more prototypical example types, whereas other 

topics may have more variation in the types of examples used to teach them. For instance, when 
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teaching simplifying rational expressions, all of the teachers who started with a simple, familiar 

problem used a basic fraction simplification example. A content area like linear equations has a 

wider variety of simple familiar problems, such as slope in everyday life or a simple unit rate 

problem. In addition, there is a lack of variation in the procedures used for simplifying rational 

expressions and solving rational equations. There are a few different procedures for solving 

rational equations, but they all involve multiplication to remove the fractions in the problem. 

Other content areas, such as linear equations, have a wider variety of procedures and concepts 

that might be explained, allowing for a wider range of possible explanations. Despite these 

limitations, the data suggest particular patterns in how teachers select examples and give 

explanations for the content of rational expressions and equations, which provides a basis for 

investigating teachers’ knowledge use when enacting these practices in other content areas.  

Finally, the third limitation of this study is the small number of mathematical reasoning 

explanations. Given the wider range of knowledge teachers drew on when giving these 

explanations, a larger number of mathematical reasoning explanations would have enabled a 

more detailed analysis of how teachers enact knowledge when giving explanations. The content 

of rational expressions and equations may have also limited the number of mathematical 

reasoning explanations in some way. However, the data did include some mathematical 

reasoning explanations, which do suggest patterns in how teachers enact knowledge when giving 

these explanations. These patterns can be further investigated in future research. Given the small 

number of mathematical reasoning explanations, it is also possible that there is a category of 

explanations that contain a deeper level of mathematical reasoning than those in the highest 

category of my study. However, my data suggest that such explanations are more rare in 
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secondary mathematics teaching, which may be why an example of such an explanation was not 

captured. 

In addition to the listed limitations, some might say that there is an additional limitation, 

the lack of measurement of participants’ knowledge. The purpose of this study was not to 

measure teachers’ knowledge but to look generally at how teachers draw on knowledge when 

enacting particular teaching practices. The aim was therefore not to investigate the knowledge 

individual teachers hold, but rather the knowledge used in practice. The lack of measurement of 

participants’ knowledge is therefore not a limitation of this study, but rather a purposeful design 

feature of the study.  

Future Research 

 There are two lines of research that can build on this dissertation. The first line is focused 

on developing a more robust conceptualization of teachers’ knowledge use in practice. Building 

on the work of this study, future research might look at the knowledge teachers use when they 

select examples and give explanations within other mathematics content areas and grade levels. 

This would allow for a generalization of teachers’ knowledge use within these two teaching 

practices. In addition, for the practice of giving explanations, additional content areas might 

provide the opportunity to see explanations with deeper mathematical reasoning, perhaps even an 

additional category of reasoning that was not observed in this data. Future research might also 

look beyond these two teaching practices to study how teachers use knowledge when enacting 

other teaching practices, allowing for generalization of knowledge use in practice. In addition to 

broadening the scope of investigation around teachers’ knowledge use when enacting particular 

teaching practices, future research might look at the differences between the knowledge teachers 

hold and the knowledge they use in teaching. Understanding this distinction might begin to 



 178 

answer the question, how can we make teachers’ robust, but tacit knowledge more readily 

available in their teaching practice?  

The second research line that stems from this dissertation looks at the development of 

teachers’ knowledge and ability to carry out teaching practices over time. In particular, future 

research might investigate whether there are particular experiences that can be leveraged to 

develop teachers’ knowledge and ability to carry out teaching practices. It might also investigate 

if there are certain types of knowledge that are most useful and useable for novice teachers. 

Looking at teaching practices, this research might investigate whether there are particular 

teaching practices novices can master earlier on in their training, or if the ability to carry out a 

particular practice enables novices to carry out other practices more easily.  

Conclusion 

Teacher knowledge matters for student learning and teachers draw on their knowledge in 

teaching when enacting teaching practices. This dissertation contributes to the literature by 

describing two foundational practices in mathematics teaching, selecting examples and giving 

explanations, and analyzing the knowledge used in enacting each practice. The findings add to 

theoretical understandings of mathematical knowledge for teaching and mathematics teaching 

practices. This research helps bridge between research on teacher knowledge and research on 

teaching practice by conceptualizing the ways in which teachers draw on their knowledge when 

enacting specific teaching practices. This work also has implications for mathematics teacher 

education and the methods used to study teacher knowledge in practice.  
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APPENDIX 1: INTERVIEW PROTOCOL 

Introduction 
I first want to thank you again for participating in this study.  As you know, the purpose of the 
study is to learn more about the work of teaching and its mathematical demands. We’re not 
really studying you. We are trying to learn about how teachers select examples and give 
explanations. So I am hoping to find out how you do these two practices. I’m really curious 
about how you do these two practices in your teaching. 
 
The purpose of this interview is to gain a better understanding of how secondary mathematics 
teachers think. I will present you with questions and ask you to talk through your reasoning in 
solving them. The responses you provide will only be used by our research group and will not be 
shared with anyone else. If any question makes you feel uncomfortable, feel free to tell me to 
skip it. Also if at any point you decide you don’t want to participate, let me know and we’ll stop.  
 
Before beginning the interview, do you have any questions about the study or what you will be 
doing?  Is there anything else before we get started? 
 
 
Teaching Experience 
1. What courses/ grade levels are you currently teaching? 
 
2. How many years have you been teaching? (If this is not the teacher’s first year, ask about 
other grade levels.) 
 
3. How many years/ times have you taught rational expressions and equations? 
 
4. What topics are included in your unit on rational expressions and equations? 
 
5. What type of credential (or certificate) do you have? When did you earn it? 
 
6. What is your BA/ MA degree in? 
 
7. Do you remember discussing selecting examples or giving explanations in your teacher 
preparation?  
 
8. Have you participated in any professional development about selecting examples or giving 
explanations? 
 
 
Examples and Explanations 
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9. Where do you typically get your examples? Do you generally use examples from a 
curriculum or other resource, or create your own examples? 
 
10. Where do your explanations generally come from? What resources do you use in planning an 
explanation? 
Interview items 
 
The goal of this research is to better understand how teachers select examples and give 
explanations. I will be presenting you with several items, which describe a classroom situation 
and ask you to take on the role of the teacher in that classroom. As you work through each item, I 
ask that you talk aloud through your thinking. At the end of each problem, I may ask follow up 
questions to better understand your thinking. 
 
 
For the example questions: 
 
Possible Probes 

- What order would you use the examples in? Why? 
 
 
For the explanation questions: 
 
The goal of this question is to better understand how teachers plan for and give explanations and 
the knowledge they draw on in doing so. For the purposes of this interview, explaining is not an 
interactive process: While students in a real classroom might participate by asking questions and 
responding to prompts from the teacher, in this interview the explanation is given by the teacher 
without direct student involvement. 
 
While I will be observing your explanation, there will be no students. The goal of this task is to 
understand how teachers plan and give explanations, not how you interact with students. 
Therefore, it is not necessary for you to engage with me during your explanation. While your 
explanation may be different than your actual classroom practice because there are no students 
present, you should still give an explanation that would be appropriate for Algebra II students. 
 
You will have about 8 minutes to plan your explanation. Once you have planned your 
explanation, you will then have 12 minutes to give your explanation. You may use less than the 
12 minutes and it is okay if you do not finish your explanation. My goal is to understand the 
work that teachers do preparing for and giving explanations. I will then ask you a few follow up 
questions about your explanation and your planning process. 
 
Possible Probes 

- What%was%your%goal?%
- Why did you decide to do _______ first?%
- Why did you decide to highlight ______?%
- Why did you decide to show that common error?%
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APPENDIX 2: INTERVIEW ITEMS 

In a unit on rational expressions and equations, you have taught one lesson on graphing rational 

equations of the form y = c
x − h

+ k . In doing so, you have discussed with students what a 

discontinuous graph looks like. For the second lesson in the unit, you want to introduce students 
to different types of discontinuities. You have defined rational expressions as the quotient of two 
polynomials and have defined discontinuities as values where the denominator is zero. You plan 
to work through a few different examples demonstrating different types of discontinuities. What 
are three examples you might use? 
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1. y = 2
x2 − 4

    2. y = 4x
x3 + 2x

    3. y = x
2 +5x +6
x2 − x −12

  

 

4. y = −3x +3
x2 +9     

5. y = x
2 −7x +12
6    

6. y = 3x
2 + 2x
x

 

 

7. y = x +6
x2 −5x

    8. y = x −7
x −7

    9. y = x
2 −8x +12
x − 2  
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In the unit on rational expressions and equations you are introducing simplifying rational 
expressions. Your goal is for students to be able to simplify rational expressions, including those 
involving multiplication and division. What are three examples you would use in your lesson? 
 !
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Simplify the following rational expressions. 

1.
 

2x2 + (4x)2

(3x)3
  2. 42x

2 + 48x
36x2

 3. 10x5

2x3 + 2x2
 4. 8x2

4x2 − 2x  
 5. 2− x

x2 − 4
  

6. 2x − 4
x − 2

 7. x − 4
3x2 −12x

 8. 28
8x −16

 9. x2 −16
x2 − x − 20

 10. x
2 + 2x
x2 − 4

  

11. x +6
x2 +5x −6

 12. 3x −6
x2 −5x +6

 13. x2 + 4x
x2 + 2x −8

 14. x2 − 25
x2 −10x + 25

  

15. 6x2 +18x
2x3 +6x2 −36x

 16. 8x3 −16x2

2x3 − 2x2 − 4x
 17. 5x3 − 20x

x4 +5x3 +6x2
 18. 9x2 +81x

x3 +8x2 −9x
  

19. 3x
2 +3x −6
x2 +3x − 4

 20. x
2 −9x +14
x2 + 2x −8

 21. x
2 +7x +12
x2 −6x − 27

 22. x
2 −5x −14
x2 + 4x + 4   

23. x
2 + 2x −8

3x2 − 2x −8
 24. x

2 +9x +18
x +6

 25. 12x
2 −32x −12

3x2 +10x +3
 26. 2x

2 −3x − 2
x2 −5x +6

  

27. 3x
2 +5x − 2

7x2 +12x − 4  
28. x

3 + 4x2 + 4x
−x2 −5x −6  

29. 3x
4 − x3 + 2x2

6x2 − 2x + 4
 30. x2 +3x − 4

7x3 +7x2 −14x
  

31. −x2 − 2x +8
3x3 +9x2 −30x

 32. x
3 − x2 − 42x

2x2 − 20x + 42
 33. 3x

2 −39x +90
x2 −3x −70  

34. x2 + 2x −80
2x3 − 24x2 +64x

  

35. 3x
2 + 26x −9

5x2 + 40x − 45
 36. 3x

2 + 21x −90
3x2 +31x +10

 37. x
3 +11x2 +18x
x2 + x − 2

 38. 5x
2 −57x +70

2x2 −16x − 40  
 
 
 
 
 
 
 
 
 
 
 
 
  

Answers: 1.
   

2.   3.   4.
  
5.   6. 

  
7.   8.   9. 

  
10. 

  
11. 

  

12. 
  
13. 

  
14.   15.   16. 

  
17.   18.

  
19.   20.   21.   

22. 
  
23.   24.   25. 

  
26.   27. 

  
28. 

  
29.   30.   31. 

  32. 
  
33.   34.   35.   36.   37.   38.  
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In the unit on rational expressions and equations you are introducing solving rational equations. 
Students are familiar with simplifying rational expressions, including those involving 
multiplication and division. They are also comfortable adding and subtracting rational 
expressions. Your goal is for students to be able to solve rational equations, building to the case 
where the sum of two rational fractions is equal to a third rational fraction. What are three 
examples you would use in your lesson? 
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Solve the following rational equations. 

1. 1 5
4x x

=
−

    2. 1
4
x x

x
+

=
−

    3. 4 7
3x x

=
−

  

4. 2 3
3
x x

x
+

=
−

   5. 14
x +5

=
21

3 x +1( )
   6. 

( )
10 15
4 4 1x x
=

+ +
 

7. 2

8 15
3 3

x x
x x x
− +

=
− −

   8. x +3= 54
x

    9. 482x
x

+ =   

10. 561x
x

+ =
    

11. 1
3
+
x
6
=
20
x

   12. 1 18
2 6

x
x

+ =  

13. 3 3 4
3x x

+ =    14. 2 2 3
2x x

+ =    15. x
x +1

= 2− x
x − 2  

16. 2x −3
x −3

− 2 = 12
x +3

   17. 2
x +3

−
1
x
=
1
4x    

18. 3 1 1
2 5x x x
− =

+
 

19. 3
x + 2

−
2
x
=

−6
x x + 2( )    

20. 15
x2 −3x

+
2
x
=
3
x −3   

21. 2

10 4 5
2 2x x x x

+ =
− −

   22. 5
x2 + 2x

+
2
x
=

−1
x + 2    

23. 2

7 2 3
5 2 10x x x x

+ =
− −

   24.  10
x2 − 4

=1− 1
x + 2  

25. 5
x2 + x − 2

=
1
x + 2

+1    26. 3
x2 −7x +10

+ 2 = x − 4
x −5    

27. 12
x2 + x − 20

=
2x +6
x +5

−3
   

28. x
x − 2

+
1
x − 4

=
2

x2 −6x +8
   

 
29. 2

2 8
5 4 9 20

x
x x x x

−
+ =

− − − +  
 30. 

2

3 26
5 3 8 15

x
x x x x

+ =
− − − +

 

  

Answers: 
1.    2.    3.    4.    5.    6.    7. 

   
8. 

    9.    10. 
   

11. 
   

12.    13.    14. 
   

15.     
16.    17. 

   
18.    19. No soln.   20.    21. No soln.   22.    23.    

24. 
   

25. 
   

26. 
   

27.    28. 
   

29. 
   

30. 
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In the unit on rational expressions and equations you are introducing word problems involving 
rational equations. Students are familiar with solving rational equations. Your goal is for students 
to be able to set up and solve word problems using rational equations. What are three examples 
you would use in your lesson? 
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1. Three pipes are filling a pool. Working by itself, pipe A will take 5 days, pipe B will take 6 
days, and pipe C will take 2 days. How long would it take to fill the pool if all three pipes are 
on?  
 
2. Ashley and Callee are planting flowers. Ashley plants flowers four times faster than Callee. If 
they can plant 100 flowers in 30 minutes working together, how long will it take each of them to 
plant 100 flowers working alone? 
 
3. A canoe trip took 8 hours. The trip was 12 miles each way (upstream and downstream). If the 
canoe’s speed in still water is four miles per hour, how fast is the current flowing?  
 
4. A roundtrip flight from Cleveland to Boston took 5 hours. The plane flies at a speed of 300 
miles/hour with no wind. There was no wind on the way to Boston. If the distance between the 
two cities is 720 miles, what was the windspeed on the flight to Cleveland? Which direction was 
it blowing? 
 
5. Suppose one painter can paint the entire house in twelve hours, and the second painter 
takes eight hours. How long would it take the two painters together to paint the house?  
 
6. One pipe can fill a pool 1.25 times faster than a second pipe. When both pipes are opened, 
they fill the pool in five hours. How long would it take to fill the pool if only the slower pipe is 
used? 
 
7. Huckleberry Finn and Tom Sawyer have a raft race down the Mississippi River. They start 
from a dock, race to a buoy that is 300 feet away and return.  Tom makes the round trip in 5 
minutes with a river current of 25 feet/minute downstream. What was his speed in still water? 
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The goal of this question is to better understand how teachers plan for and give explanations and 
the knowledge they draw on in doing so. For the purposes of this interview, explaining is not an 
interactive process: While students in a real classroom might participate by asking questions and 
responding to prompts from the teacher, in this interview the explanation is given by the teacher 
without direct student involvement. 
 
While I will be observing your explanation, there will be no students. The goal of this task is to 
understand how teachers plan and give explanations, not how you interact with students. 
Therefore, it is not necessary for you to engage with me during your explanation. While your 
explanation may be different than your actual classroom practice because there are no students 
present, you should still give an explanation that would be appropriate for Algebra II students. 
 
You will have about 8 minutes to plan your explanation. Once you have planned your 
explanation, you will then have 12 minutes to give your explanation. You may use less than the 
12 minutes and it is okay if you do not finish your explanation. My goal is to understand the 
work that teachers do preparing for and giving explanations. I will then ask you a few follow up 
questions about your explanation and your planning process. 
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In your Algebra II class, you began your introductory lesson in a unit on rational expressions and 

equations by graphing y = 1
x

. In the next lesson, you plan to teach continuity, identifying 

different types of discontinuities from equations and sketching more complex rational functions 
using important points in the graph, such as asymptotes and zeros. In your current lesson, you 

now plan to graph y = 1
x − 2

+1 with your students and want them to be able to graph similar 

equations in the future. Please take 8 minutes to plan your explanation. When you are done, I 
will ask you to give your explanation. 
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You began a unit on rational expressions and equations in your Algebra II class by graphing 
rational equations and using algebraic methods to find and classify discontinuities in rational 
equations. Your goal for today is for students to be able to simplify rational expressions. You 
plan to explain simplifying rational expressions to your students using the following example:

 x2 −16
x2 − x − 20

. Please take 8 minutes to plan your explanation. When you are done, I will ask you 

to give your explanation. 
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In a unit on rational expressions and equations, you have recently covered adding and subtracting 
rational expressions. Your goal for today is for students to be able to solve rational equations. 

You have just completed solving the problem 2
x
=
5
x −3

. You now plan to use the following 

example to explain to your class how to solve a rational equation using the problem 
15

x2 −3x
+
2
x
=
3
x −3

. Please take 8 minutes to plan your explanation. When you are done, I will 

ask you to give your explanation. 
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At the end of a unit on rational expressions and equations, you are beginning a lesson solving 
word problems using rational equations. Your goal is for students to be able to set up and solve 
word problems using a rational equation. You plan to use one of the examples below. Please take 
8 minutes to plan your explanation. When you are done, I will ask you to give your explanation. 
 
• A canoe trip took 8 hours. The trip was 12 miles each way (upstream and downstream). If 
the canoe’s speed in still water is four miles per hour, how fast is the current flowing? 
 
• Suppose one painter can paint the entire house in twelve hours, and the second painter 
takes eight hours. How long would it take the two painters together to paint the house?  
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APPENDIX 3: INTERVIEW ITEM REVISIONS 

Example Problems 

In the pilot interviews, several participants spent extensive time solving all of the 

problems in items 2 and 3. Not only was this very time consuming (in one case a participant 

spent nearly 45 minutes on one of the items), it was also not a realistic representation of the work 

teachers do in selecting examples. A classroom teacher rarely solves all possible examples before 

selecting the ones they plan to use. Rather, classroom teachers frequently select from a larger 

resource of problems, such as a textbook. Many of these resources also include an answer key. 

Items 2 and 3 were further modified to better reflect the resources a teacher would have in their 

daily practice of selecting an example, by including several more examples and an answer key. 

By modifying the item in this way, participants did not solve all of the items. Although some 

participants did solve or partially solve a few of the problems they were deciding between, 

overall they instead focused on the features of the items.  

Item 1 was not revised to include more problems or an answer key because the problems 

do not require extensive time to solve. The problems in item 1 were also designed to provide a 

specific range of choices related to the mathematics content, such as a problem where the only 

discontinuity is removable, and providing answers would have provided the participants with 

information about the potential purpose of each problem, making it more difficult to assess what 

participants based their selection on.  

Problem 3 was revised again after the first few interviews  to better reflect the types of 

problems teachers used in the classroom observations. The revision involved replacing a few 
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problems that were similar in form to other problems with problems where one of the terms in 

the equation was an integer, while the other two terms were fractions with a variable in the 

denominator, such as 10
x2 − 4

=1− 1
x + 2

.  

Explanation Problems 

The pilot testing was used to determine the amount of time needed for participants to plan 

and give the specified explanations. In the interviews, participants were given 8 minutes to plan 

their explanations and 12 minutes to give them. Participants were told that it was fine if they did 

not finish their explanation in the 12 minutes and if the explanations ran long, they were often 

given time to finish them. Participants all had ample time to give their explanations. The 12 

minute time limit was included in the item prompt to constrain the scope of participants’ 

explanations, compared to the scope of a classroom explanation, which might be 30 – 45 minutes 

in length.  
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APPENDIX 4: PRE-OBSERVATION INTERVIEW PROTOCOL 

Introduction   
 

Thank you again for participating in this study and for letting me observe and video record this 
lesson. The purpose of this interview is to find out more about your plans for your next math 
lesson, what you hope to accomplish with your students, and what kinds of things you thought 
about in your planning. I am particularly interested in how you selected the examples and 
planned the explanations you will give in the lesson. 

 
Do you have any questions before we begin? 
 
1. What is today’s lesson about? What are the goals of today’s lesson? 

- Have you taught this lesson or a similar lesson before?  If so, has your previous 
experience influenced your plans for this lesson? 

- What should students be able to do at the end of class? 
 

2. How does this lesson fit into the current unit? 
- Is there anything about the unit that might explain the examples and explanations you’re 

using today? 
 

3. Where did the lesson come from? 
- Can you give me a sense of how much was there (level of detail)? 
- I’m interested in how much materials do or do not help in your planning, would it be 

possible to get a copy of them? 
 

4. Are there parts of the lesson or goal(s) that you expect will be hard (more challenging) for 
students?  
- What did you think about in planning these parts of the lesson? 
- Did this affect the examples you plan to use or explanations you plan to give? 

  
5. I was hoping you could walk me through today’s lesson. What will students do first? 

 
6. How specifically have you determined your examples for today’s lesson?  

- What examples will you be using in today’s lesson?  
o Where did these examples come from? 
o How did you decide on these examples? 

! What were you considering when you decided to use these examples? 
! Why these particular numbers? 
! Is there a particular mathematical idea you are trying to highlight with this 

example? 
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! How are these examples related to your goal or the parts of the lesson you 
expect will be hard for students? 

o Were there other examples you considered using? 
! Why did you decide against using them? 

7. What concepts or procedures will you be explaining in today’s lesson or having your students 
explain? 
- To what extent have you planned how you’re going to explain this?/ Is there a particular 

way you’re thinking of explaining this? 
- What are the key components you plan to include in this explanation? 

o How did you decide to focus on these components? 
- Where did your explanations for these concepts/ procedures come from? 
- What did you think about in creating (deciding on the key components of/ considering 

what would count as an) your explanations? 
- Were there other things you considered including? 
- Why did you decide against including them?  

 
8. Is there anything else about this lesson that you’re particularly thinking about or that I should 

know? 
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APPENDIX 5: POST-OBSERVATION INTERVIEW PROTOCOL 

Introduction 
 

I thought we’d start by having you share your thoughts about the lesson, and I’ll ask some 
follow-up questions as you talk.  After that, we’ll watch a few short clips from your lesson 
together and talk about your thinking and decisions at that point in the lesson.  Does that sound 
okay? 
 
While some of my questions are about your lesson as a whole, I’m focused in particular on your 
examples and explanations. 

 
 
General reactions to lesson 
 
1. Why don’t you start by sharing your thoughts about the lesson. 

(Probes if needed) 
- Did you accomplish what you were hoping to accomplish in today’s lesson? 
- How closely did the lesson match what you were expecting?  Were there any surprises 

for you? 
- Did any of the students do or say anything you didn’t expect or that didn’t seem to make 

sense? Can you describe what happened? 
- Did anything take more or less time than you thought it would? 

 
- Was there anything that felt particularly hard or easy about teaching this lesson? Why do 

you think that was particularly easy? 
- Is there anything you would change about the lesson if you could teach it again? 
 
 

2. What do you think students learned in today’s lesson? How do you know?  Do you think 
some students learned more than others? 
- Was there anything that was difficult for some of your students in terms of the math? 

(Probe for specific details about the mathematics.) Why do you think that was difficult 
for them in terms of the math?  

o Did it shape the examples you used or your explanations? 
 

- And what about the opposite? Were there aspects of the math that you think were 
particularly easy for students? Why do you think that was easy for them?  

o Do you think the examples you picked or the explanations you gave 
contributed to this? 
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3. What do you think of the examples you used? 
- Did the examples you planned to use change during the lesson? 
- Did your examples play out as you expected or did they change during the lesson? 
- Did the examples fit your expectations for the lesson? 

 
- How did you decide to include/ exclude ___ example? 
- Is there a particular mathematical idea you were trying to highlight with ____ example? 
- Why did you choose to use an example that showed _____ (non-example, contradiction, 

etc.)? 
 

- Did you consider other examples/ numbers? Why did you decide on ____? 
- If you were to teach this lesson again, would you use the same examples or would you 

change them?  
o How? What would you add? Which would you not include? 

 
 

4. What do you think of your explanation of _____? 
- What do you think students took away from the explanation? 

 
 

5. Did your planned explanations play out as you expected or did they change during the 
lesson? 
- How did these explanations change?  
- How did you decide to make these changes? What information did you use to make this 

change? 
 

- If you were to teach this lesson again, would you use the same explanations or would you 
change them?  

o How? What would you add? Which would you not include? 
 
5b. If given by student, What did you think of the student’s explanation of ___ ? How 

good/accurate/appropriate was it? 
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Video clips 
 
First clip: As we’ve been talking about, my goal is to understand how teachers select examples 
and give explanations in their teaching. One important part of this work is the thinking that 
happens while the lesson is happening. While this is a really important part of teaching, it is 
difficult to see by observation alone. We’ll watch a clip, I will have you describe what was 
happening at this point in the lesson, and then I’ll ask you some follow up questions. 
 
Later clips: Here is another clip that shows a different part of your lesson. 
 
  [Watch clip.] 
 

1. Can you describe what was happening at this point in the lesson? 
 
2. Do you remember what you were thinking about at this point in the lesson? 
 
3. Why did you decide to use this example/ give this explanation?     
 
 If not mentioned, ask: Did you consider other options? 
 
4. Do you think it accomplished what you had hoped?  How do you know? 
 
5. How did this differ from what you had initially planned? How did you decide to make 
these changes? 
 
6. Would you do anything differently if you were teaching the lesson again? 

 
Possible probes: 
 

Explanations of main mathematical concepts and procedures:  
• What do you think of your explanation for ____? 
• Can you explain why ____ works?   
• What would you say if a student asked why ____? 
• What did you think about the student’s explanation for _____? 
• Why did you decide to mention ____? 
• Was there something you were particularly trying to highlight in your 
explanation? 

 
 

Examples/numbers: 
• How did you decide to use those examples/numbers in the problem? 
• Is there a particular mathematical idea you are trying highlight with the example? 
• Did you consider using other examples/numbers? If so, why? 
• Why do you think that for this particular problem it was important for students to 
see both right and wrong answers? 
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Concluding question 
 
6. Were there any other specific parts of the lesson that you wanted to talk about, or any parts of 

the video you’d like to see? 
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