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ABSTRACT

Management of a Chronically Ill Population: An Operations Approach to Liver
Cancer Screening

by

Elliot Lee

Chair: Mariel Lavieri

We study how to perform medical surveillance of a population living with a chronic

disease from an operations perspective. Our approach to the screening problem is the

first to combine aspects of patient specific risk factors, heterogenous disease progres-

sion, as well limited screening resources shared by the population. Using clinical data

from liver cancer as a motivating example, we (1) provide a new characterization of

individualized risk for liver cancer through a nested case-control match study, then

(2) demonstrate the utility of that individual biological information in screening de-

cisions through the design and testing of reinforcement learning techniques, and then

(3) model the problem as a family of restless bandits to gain structural insights into

the problem, as well as derive an optimal policy to screen patients. Ultimately, we

provide novel methods of screening a chronically ill population which are superior to

current practice by adopting principles from a broad spectrum of operations methods.
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CHAPTER I

Introduction

1.1 Background

Chronic diseases, such as cancer, heart disease, and diabetes make up 7 of every

10 deaths in the United States (National Center for Health Statistics (2016)). The

U.S. National Center for Health Statistics defines a chronic disease as a disease that

lasts 3 months or more, and cannot be prevented by vaccines nor cured by medication

(National Center for Chronic Disease Prevention and Health Promotion (2015)). The

CDC estimates that chronic diseases make up 86% of all healthcare spending (Centers

for Disease Control (2016)). Due to this overwhelming burden, American healthcare

has been forced to change its focus from traditional reactive care of acute illnesses to

the preventative care of chronic illnesses.

The nature of preventative care proposes new challenges to clinicians. Commonly,

a large population might be living with a chronic illness, but only a fraction of those

diseases might lead to adverse events. Each patient’s disease progresses uniquely,

and this requires a simultaneous surveillance of the population. Furthermore, this

surveillance can often be expensive and limited in availability. This poses a new

sequential decision making problem that combines challenges of personalized medicine

with resource allocation.

1



1.2 Motivation

Separate elements of this problem have been studied in isolation. The medical

community has begun to investigate the relationships between biological information

and a patient’s risk to provide the opportunity for personalized medicine (Lok et al.

(2009)). The operations research community has started to design medical decision

making policies which tailor surveillance to optimize a single patient’s health outcomes

(Zhang et al. (2012), Underwood et al. (2012), Maillart et al. (2008)). However,

in order to address the modern challenges of American healthcare, it still remains

to incorporate these separate elements into a single, unifying framework for disease

surveillance, where resources are both shared and limited.

We investigate the problem of hepatocellular carcinoma (HCC) screening as a pro-

totypical example of a medical decision making problem with these challenges. There

is a clear opportunity for improvement in the setting of HCC screening. The current

recommended screening protocol in the United States is to screen all at-risk patients

once every six months (Bruix and Sherman (2005)). This is a clearly inefficient pol-

icy, as it (1) treats all patients equally, and (2) does not take resource usage into

account. The basic motivation behind this work was that incorporating individual

disease progression, as well as constraints of limited resources, should improve the

efficiency of screening.
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Figure 1.1: Overview of dissertation chapters.

Figure 1.1 gives an overview of the components of this thesis, and how they are

organized in this dissertation. In Chapter II, we describe how we characterized and

quantified each patient’s individual risk for HCC. In Chapter III, we provide model-

free algorithms to guide screening decisions. Chapter IV describes an analytical model

for the HCC screening problem, as well as a tractable and optimal policy for this

model. Lastly, we conclude with remarks and avenues for future work in Chapter V.

We now proceed to provide further details of the work accomplished in each chap-

ter.

1.3 Chapter II: Characterizing Disease Progression

Chapter II seeks to understand how a patient’s individual characteristics influ-

ence their progression to HCC. There are many known risk factors for HCC (Lok

et al. (2009)), such as age, race, and smoking status. One risk factor, known as the

alphafetoprotein (AFP), is particularly controversial. The AFP is a plasma protein

mainly found in human fetuses, and whose exact function is still unknown (Tomasi Jr

(1977)). Several studies point towards its usefulness in monitoring the health of a

patient’s liver (Johnson (2001), Colli et al. (2006)) but due to its noisy nature, the

most recent standardized guidelines have advocated against the usage of AFP in diag-
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nostic decisions (Bruix and Sherman (2005)). Prior to our study, the AFP remained

a vaguely useful, but underutilized source of information.

We retrospectively analyzed patient data from the Hepatitis C Antiviral Long-

Term Treatment against Cirrhosis (HALT-C) clinical trial. We performed a nested

case-control matched study to find which patient characteristics correlated with the

screening outcome of developing HCC.

We identified a statistically significant relationship between a patient’s alphafe-

toprotein trends, and their risk of developing HCC. This relationship allowed us to

translate past AFP observations into information that could be taken advantage of

in future periods. The key to our discovery was to consider patterns of AFP over

time, as opposed to only the most recent observation. In particular, (1) the rate of

AFP rise over time, and (2) the fluctuations in AFP over time both proved to be

more indicative of a patient’s risk for HCC than the current AFP level alone. We

found that incorporating the standard deviation of AFP and rate of AFP rise along

with patient-specific risk factors improved the prognostic accuracy to an area under

the receiver operating-characteristic curve (AUROC) of 0.81, compared to 0.76 when

using the most recent AFP alone.

With a quantified relationship between AFP patterns and patient risk, we had

discovered a key relationship that could be exploited. We now had the means to

translate past AFP observations into predictions of HCC, which would allow us to

make advantageous surveillance decisions in the future.

Key contributions:

� We quantify the AFP as a prognostic factor for HCC. (1) Rate of rise of AFP,

and (2) fluctuations in AFP are much stronger predictors of HCC than the most

recent level of AFP alone.

� We calibrate and validate our models with large clinical trial data.
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� This work was published in Clinical Gastroenterology and Hepatology (Lee et al.

(2012a)).

1.4 Chapter III: Reinforcement Learning Based Policies

Given the groundwork laid in Chapter II, in Chapter III we study how to allocate

constrained screening resources across a population at risk for developing a disease

by utilizing past AFP observations. The goal of this model is to increase the number

of positive screening detections over a finite horizon using limited resources. The

fundamental challenge is that a patient’s risk of developing the disease depends on

his/her AFP dynamics. However, knowledge of these dynamics must be learned over

time. This greatly complicates the decision of how to allocate screening resources.

In Chapter III, we designed three classes of reinforcement learning policies de-

signed to address the problem of simultaneously gathering and utilizing information

across multiple patients. Reinforcement learning enjoys the advantages of making no

assumptions about the system being tested, treating patients and their underlying

disease as a “black box”. With less assumptions, we were able to study the broader

picture of the screening problem, albeit without any guarantees of optimality.

To test these newly designed policies, we created a case study based upon the

screening for Hepatocellular Carcinoma (HCC). In this case study, a simulation was

built which could gauge the performance of any hypothetical screening policy upon

historical patient data. The purpose of this simulation was two-fold: Firstly, although

we designed the mathematical structure of each reinforcement learning policy, the val-

ues of each policy’s parameters remained open-ended. We employed the Indifference

Zone Method (Dudewicz and Dalal (1975)) to optimize these parameters through sim-

ulation. Secondly, the resulting tuned policies were then tested within the simulation

to gauge their performance, and to compare them against current practice.

We found that the best performing policy enjoyed a 8.6% increase in performance

5



over current practice, while using the same amount of resources. Alteratively, the

same best performing policy demonstrated a 16.5% reduction in screening costs, while

detecting the same number of early stage cancers as current practice. Lastly, we

conclude this chapter by studying how the benefits of learning-based screening policies

differ across various levels of resource scarcity.

Key contributions:

� We provide proof of concept that current practice is vastly suboptimal; it can

be outperformed by utilizing individual biological information.

� We establish that our problem is essentially a learning problem, as demonstrated

by the success of reinforcement learning algorithms.

� The work presented in this chapter was published in Lee et al. (2012b) (simu-

lation model) and Lee et al. (2012a) (reinforcement learning model).

1.5 Chapter IV: Restless Bandit Based Policies

In Chapter IV, we remain in the problem setting of a screening clinic where

each patient’s disease evolves stochastically, and there are limited screening resources

shared by the population. Building upon the success of learning approaches in Chap-

ter III, we model the problem as a family of restless bandits, with each patient’s disease

progression evolving as a partially observable Markov Decision Process (POMDP).

We chose to model this problem as a POMDP to undertake a more rigorous and

analytic approach to the screening problem.

We derived an optimal policy for this problem, and reduce its structural com-

plexity for ease of understanding, as well as computational complexity. From this

policy, we discussed several managerial insights about what characterizes more effec-

tive screening. Next, we developed a heuristic to approximate this policy for real-

world implementation. In small-scale testing, this heuristic is as accurate as an exact
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solution over 99% of the time, while requiring 30% less computational time.

To calibrate and validate our work, we used two independent datasets: (1) the

HALT-C trial, and (2) patient records from the University of Michigan Hospital,

manually collected by our team with IRB approval (HUM00088566). The former

was used to to train the parameters of the optimal policy, and the latter to build a

computer simulation to act as a testbed for said policy. Over several clinic scenarios

and iterations, we are able to show that our policy detects 22% more early stage

cancers than current practice, while using the same amount of resource expenditure.

This chapter represents the culmination of our work. Not only do we establish an

implementable policy for the medical community, we have contributed a rare example

of a provably optimal solution to a restless bandit problem, thereby laying groundwork

for this method to be used in other application domains.

Key contributions:

� We develop a novel approach to the screening problem which combines (1)

individual biological information, (2) heterogenous disease evolution over time,

and (3) shared and limited resources by the population.

� We derive a provably optimal solution to a restless bandit problem, which typ-

ically can only be solved through approximation.

� We provide an easily implementable form of our policy for use in practice.

� We calibrate and validate our models on two independent datasets.

� The work has been submitted for publication (Lee et al. (2016)).

1.6 Chapter V: Conclusions and Future Work

We conclude this thesis with Chapter V which summarizes this work, both in its

accomplishments, shortcomings, and remaining questions of interest. We discuss po-
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tential areas of implementation for this work, and then suggest three natural avenues

for future research.
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CHAPTER II

Disease Progression

In this chapter, we discovered a relationship between individual patient char-

acteristics and his/her risk of developing HCC. We hypothesized that patterns of

alpha-fetoprotein (AFP) over time might offer prognostic information about HCC

development.

This was a nested case-control study involving subjects from the Hepatitis C An-

tiviral Long-term Treatment against Cirrhosis (HALT-C) trial. 82 patients with HCC

were matched 1:3 to controls without HCC, using bootstrapping to ensure similar

follow-up time in both groups. The independent association with HCC was assessed

for a) standard deviation of AFP, and b) rate of rise of AFP, in a multiple logistic

regression which also included patient-specific risk factors such as age, platelet count,

and smoking status.

In bivariable analysis, all three AFP metrics were associated with HCC develop-

ment. Incorporating the standard deviation of AFP and rate of AFP rise, along with

patient-specific risk factors improved the prognostic accuracy to an area under the

receiver operating curve (AUROC) of 0.81, compared to 0.76 when using the most

recent AFP alone.

This work was published in Clinical Gastroenterology and Hepatology in April 2013

(Lee et al. (2012a)), and has been cited 37 times since then. Beyond establishing a

9



new relationship to be exploited for better informed decision making, it has provided

clinicians with a new model of patient risk.

2.1 Background

Hepatocellular carcinoma (HCC) is now the second leading cause of cancer mor-

tality worldwide (Globocan (2012)). The incidence in the United States is rising, in

part due to the aging cohort of patients with chronic hepatitis C (El-Serag et al.

(2003)). Although numerous treatment options exist, fewer than 50% of patients are

diagnosed at an early enough stage to benefit from curative therapy (Altekruse et al.

(2009)).

Patients with chronic hepatitis C and cirrhosis or advanced fibrosis are a group

at high risk for developing HCC, with an annual incidence of 1-3% (Davis et al.

(2010)). Current guidelines recommend surveillance of HCC with ultrasound and

alpha-fetoprotein (AFP) every six months, but it is well recognized that this strategy

detects only 60% of cases at early stage (Singal et al. (2009)). Therefore, better

surveillance methods are needed.

One limitation of the current surveillance strategy is that each testing interval is

viewed independently, without considering the history of prior testing. For example,

most prior studies on AFP have assessed its performance based on the most recent

value prior to HCC diagnosis, and have not considered any trends over time. In

clinical practice, a rise in AFP is often viewed ominously, though limited data exists

on the predictive value of this trend. A large fluctuation in AFP over time has been

shown in some studies to confer increased risk, though it is unknown whether this

pattern provides incremental prognostic value in addition to other proven risk factors

(Imaeda and Doi (1992)). Therefore, the aim of this study was to determine whether

patterns of AFP over time could be used to improve the accuracy of screening for

HCC.

10



2.2 Description of the Data

We performed a nested case-control study of patients in the Hepatitis C Antiviral

Long-term Treatment against Cirrhosis (HALT-C) trial. In HALT-C non-responders

to prior antiviral therapy were enrolled and randomized to receive maintenance pegy-

lated interferon or placebo. Inclusion criteria included advanced fibrosis (Ishak score

≥ 3) on biopsy, lack of suspicious mass on cross-sectional imaging, and AFP < 200.

The HALT-C trial included 1025 patients followed for an average of 5.3 years.

Surveillance of patients in this trial was performed in three ways: Firstly, the

patients were screened every 3 months for the first 3.5 years, then every 6 months

thereafter on a voluntary basis. At each screening visit, the level of alpha-fetoprotein

(AFP) concentration in the blood was measured. Secondly, each patient underwent

an ultrasound imaging approximately every 6-12 months. Thirdly, a liver biopsy

was performed on all trial participants at 1.5 and 3.5 years into the trial. HCC was

diagnosed by cross-sectional imaging and biopsy. Tumors were staged based on the

modified United Network of Organ Sharing TNM system. Early HCC was defined

as tumor stage T1 (single lesion <2 cm in diameter) or T2 (single lesion between 2

and 5 cm or no more than 3 lesions each < 3cm in diameter). As the HALT-C data

are now de-identified and publicly available, the current study was exempt from IRB

review at our institution.

2.3 Methods

HCC cases were matched to controls without HCC in a 1:3 ratio by length of

follow-up time. This was accomplished by dividing the duration of the HALT-C trial

into 10 mutually exclusive intervals of equal length. Cases and controls were matched

by sampling from the patients who fell into the same interval of follow-up time. This

criteria was chosen for matching in order to exclude bias caused by subjects with
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longer follow-up time having higher cumulative probability of HCC development, as

well as more AFP values available. This matching process was repeated 1,000 times

through bootstrapping, generating a new nested case-control group in each iteration.

Any cases found to not have at least three candidate controls for matching were

discarded from that iteration. Within each iteration, the cases were sequentially

matched to controls without replacement. For this reason, the order in which cases

were matched was randomized each time, so as to not give any case a higher likelihood

of being discarded. However, replacement was used in between iterations, allowing

for each matched case-control set to be viewed as independent of previous sets.

Using conditional logistic regression, we analyzed the association between devel-

opment of HCC and the following two AFP patterns:

� Rate of rise, defined as AFP Final−AFP Baseline
(Follow up duration)

90 days

where AFP baseline is the patient’s

first recorded AFP reading subsequent to randomization in ng/ml, AFP final

is either (a) the patient’s last recorded AFP if they did not develop HCC, or

(b) the last recorded AFP prior to diagnosis if they did develop HCC. Fol-

low up duration is defined to be the difference between the dates of the two

aforementioned AFP readings.

� Standard deviation of AFP, defined as the standard deviation of all AFP values

recorded within each patient. The metric of standard deviation was chosen

to capture the pattern of variability in AFP. Variability has been previously

identified as behavior typical in patients at higher risk by Imaeda and Doi

(1992).

Next, the independent significance of each pattern was assessed in multiple logis-

tic regression. The initial model included the two AFP patterns as well as the most

recent AFP value, and clinical and demographic risk factors for HCC as described

in Lok et al. (2009). Since multiple variations of AFP were being assessed, model
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collinearity was determined by calculating the Variance Inflation Factor (VIF). Mean

value imputation was performed on any missing values (< 0.05% of the dataset).The

final model was chosen by stepwise backwards elimination, removing variables with

p < 0.1 or VIF> 10. The area under the receiver-operating characteristic (AUROC)

curve value was used to compare accuracy of the final model (history model) to a

model which included only baseline risk factors and most recent AFP (no history

model). Bootstrapping was used to generate confidence intervals around the AU-

ROCs, and to provide p-values for comparison between the models. All calculations

were performed using R (v 2.15.1)

2.4 Results

Out of 1050 subjects randomized in the HALT-C study, 83 were omitted from

the current analysis for having < 5 AFP values available. Among the 967 subjects

remaining, 82 developed HCC during the study period. Table 2.1 shows the clinical

and demographic characteristics of these 82 cases and the remaining 885 subjects

without HCC. For continuous variables, the mean standard deviation is shown, with

p-values from a 2-sample t-test. For binary variables, the proportion is shown, with

p-values from Fisher’s exact test. During the screening period (time from enrollment

to HCC diagnosis or end of follow-up), subjects had a median of 18 (range 5-23) AFP

tests performed.

After matching each HCC case to 3 controls by duration of follow-up, the follow-

up time in HCC cases and controls was 1670 and 1693 when averaged over 1,000

bootstrapped samples. All subsequently reported output statistics are the average

of each statistic over these bootstrap samples. The distributions of the three AFP

metrics, namely a) most recent AFP, b) standard deviation of AFP, and c) rate of

rise of AFP, are shown in Figure 2.1, Figure 2.2, and Figure 2.3.
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Table 2.1: Characteristics of patients with and without HCC.
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Figure 2.1: Distribution of the standard deviation of AFP over the studied popula-
tion.

Figure 2.2: Distribution of rate of rise of AFP over the studied population.
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Figure 2.3: Distribution of most recent AFP over the studied population.

In bivariable analysis, all three metrics were associated with risk of HCC, as shown

in Table 2.2.

Table 2.2: Results of simple logistic regression of association between alpha-
fetoprotein (AFP) metrics and hepatocellular carcinoma (HCC).

In initial multiple logistic regression, the most recent AFP and the rate of rise were

moderately collinear, with VIF values of 3-4, and the most recent AFP was no longer

significant with p=0.59 (but standard deviation remained statistically significant).

Thus, the final model included standard deviation, rate of rise of AFP, as well as

baseline age, platelet count, and smoking history, as shown in Table 3. The AUROC

for this “history” model was 0.81, which was significantly higher than the “no history”
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Table 2.3: Multiple logistic regression of patient variables associated with develop-
ment of hepatocellular carcinoma.

model at 0.76 (p< 0.001, 95% confidence interval of difference [0.044, 0.046] obtained

via a Wilcoxon Rank Sum test of the AUROC’s calculated at each iteration for each

model), as shown in Table 2.3 and Figure 2.4. Notice that the AUROC is higher for

the “history” model than the traditional “no history” approach (p<0.001).

2.5 Sensitivity Analyses

Two sensitivity analyses were then conducted to test the strength of the findings

across various assumptions. First, the analysis was repeated including only HCC

cases with early stage disease and their controls matched by bootstrapping. Second,

the final multiple logistic regression was repeated including ultrasound as a covari-

ate, to determine whether the AFP patterns remained independently associated with

development of HCC.

In sensitivity analysis, omitting cases with late-stage HCC from the analysis re-

sulted an increase of less than 0.01 in AUROC for both the “history” and “no history”
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Figure 2.4: Comparison of AUROC is for the “history” and “no history” models.

models. Including ultrasound findings improved the AUROC of the “history” model

from 0.81 to 0.86, but all variables remained statistically significant (data not shown).

For sake of comparison, when ultrasound was analyzed alone, the AUROC was only

0.66.

2.6 Discussion

This study has shown that the pattern of AFP behavior over time in an individual

patient is associated with development of HCC. Both the standard deviation and

the rate of rise of AFP were independently associated with HCC, and incorporating

these metrics along with patient-specific risk factors resulted in improved accuracy

for HCC prediction when compared to the current method of using only the most

recent AFP value. If confirmed in future studies, these findings could be used to

develop individualized risk assessments for clinical use, which could then influence
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the frequency and type of further testing.

It is intuitively evident why the rate of rise of AFP might be associated with risk of

HCC development, but what might explain the association with standard deviation?

The biologic basis is unknown, but we theorize that fluctuations in AFP may reflect

cycles of damage and regeneration within the liver, and that growth factors involved

in regeneration could stimulate hepatocarcinogenesis. Future studies could perhaps

measure fluctuation in growth factors in humans or mouse models of HCC, and these

observations might thus shed light on mechanisms of HCC development.

The results of this study should be interpreted in the context of several limitations.

This was a case-control study, albeit nested within a prospective cohort. Prior to

considering these findings for clinical use, confirmation should be awaited from future

prospective cohort studies with a priori hypotheses regarding patterns of AFP. While

the two AFP metrics were independently associated with HCC development, their

inclusion into a multivariable model with patient-specific risk factors only increased

the AUROC from 0.76 to 0.81. This is a modest improvement, in part due to the

AUROC of 0.76 with most recent AFP alone, which is higher than seen in most

studies. Since this study was primarily aimed towards testing a hypothesis rather than

validating a prognostic algorithm, we did not split the data to calculate a validation

AUROC. Thus, the exact performance characteristics for these metrics should be

viewed as preliminary. From a practical perspective these metrics will only be useful

once a patient has been followed for at least 2 years in order for the patterns to

emerge. Finally, this study included only patients with hepatitis C; it is unknown

whether these associations would be present among patients with other chronic liver

diseases. Despite these limitations, this is the first large study to demonstrate that

patterns of AFP over time are independently associated with HCC development. The

concept is appealing since it uses data already available, without extra cost or patient

inconvenience.
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In summary, we have shown that incorporating the history of prior AFP test-

ing can improve accuracy for detecting HCC among patients with hepatitis C and

advanced fibrosis or cirrhosis. Specific AFP patterns with prognostic significance in-

cluded the degree of fluctuation, as measured by standard deviation, as well as the

rate of rise over time. Future studies should validate these findings in a dedicated

prospective cohort of patients with a variety of chronic liver diseases. In the future,

these findings may be used to develop individualized testing strategies.
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CHAPTER III

Reinforcement Learning Based Policies

In this chapter, we investigate the problem faced by a healthcare system wishing to

allocate its constrained screening resources across a population at risk for developing

a disease. A patient’s risk of developing the disease depends on his/her biomedi-

cal dynamics. However, knowledge of these dynamics must be learned over time.

Three classes of reinforcement learning policies are designed to address this prob-

lem of simultaneously gathering and utilizing information across multiple patients.

We investigate a case study based upon the screening for Hepatocellular Carcinoma

(HCC), and optimize each of the three classes of policies using the indifference zone

method. A simulation is built to gauge the performance of these policies, and their

performance is compared to current practice. We then demonstrate how the benefits

of learning-based screening policies differ across various levels of resource scarcity and

provide metrics of policy performance.

3.1 Introduction

Over six million Americans are estimated to be at risk for developing Hepatocel-

lular Carcinoma (HCC) (Wilkins et al. (2010)). The incidence rate of HCC in the

United States as of 2005 was 4.9 persons per 100,000, a rate which has tripled since

1975 (Altekruse et al. (2009)).
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Early detection is highly correlated to patient health outcomes; less than 10% of

the patients who are diagnosed with late-stage HCC survive beyond 5 years, whereas

more than 50% of the patients diagnosed with early-stage HCC are disease free after

5 years (Centers for Disease Control (2010)). Therefore, the primary goal of HCC

screening programs is to detect the development of the disease in the early stage.

We consider a screening program which has a limited screening capacity in each

period. More precisely, the number of patients at risk for developing HCC outweighs

the number of screenings available for administration in each period, and thus the

problem of deciding which subset of the population to screen in each period arises.

This situation of a limited screening capacity could arise as a product of multiple

scenarios. For instance, in highly overbooked screening clinics, the limited capacity

results due to operational constraints of the clinics. Our approach addresses the chal-

lenge of finding a suitable screening program which accounts for their overbooked

settings. Morever, capacity constraints could arise as a decision maker is faced with

the problem of improving population-wide health outcomes without using additional

resources beyond the current expenditure, such as in third world countries. This ap-

proach also becomes more relevant in the face of soaring costs in American Healthcare

(Bodenheimer et al. (2009)).

The current recommended screening protocol in the United States is to screen all

at-risk patients every six months. The full definition of the at-risk population for

HCC is defined in (Bruix et al. (2001)). In this Chapter, we restrict that definition

to be those patients with chronic Hepatitis C with advanced fibrosis, which are two

key risk factors for HCC.

The main disadvantage of fixed interval screening is that it does not take into

account the information learned sequentially, which differentiates patients at various

levels of risk of developing HCC. More intelligible behavior would entail allocating

resources according to the risk learned.
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Reinforcement learning algorithms are well-suited to handle these problems of

sequential learning under constrained resources, as it will be demonstrated in this

paper. It is our goal to provide insight into what types of behaviors are characteristic

of efficient screening for Hepatocellular Carcinoma.

3.1.1 HCC Screening

Two things occur when a patient is screened for HCC. An ultrasound image of the

patient’s liver is taken and examined by a doctor. The doctor will order more accurate

tests (such as CT or MRI) if any suspicious features in the ultrasound suggest the

development of a tumor.

Secondly, the patient’s blood is measured for the alphafeto-protein (AFP) level.

The AFP is a biomarker which is weakly correlated with HCC. Given that this corre-

lation is weak, the AFP is not explicitly utilized in treatment or screening decisions

(Colli et al. (2006)).

However, it has been shown that certain dynamics of the AFP, namely the stan-

dard deviation of a patient’s AFP and the rate of rise of the patient’s AFP, can

significantly improve estimations of the patient’s risk of developing HCC (Lee et al.

(2012a)). The following list contains risk factors identified in that study (where *

indicates values measured upon enrollment into the surveillance program)

� Age*

� Black ethnicity*

� Blood platelet count*

� Ever having been a smoker*

� Alkaline phosphatase*

� Presence of esophageal varices*
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� Standard deviation of all AFP readings while under surveillance

� Rate of AFP rise over time, determined by ordinary least squares estimate of

all AFP readings while under surveillance

To illustrate the nature of the last two risk factors, the following graph depicts

sample AFP paths of patients in our dataset. Patients who eventually develop cancer

tend to be characterized by AFP measurements which are wildly fluctuating, while

simultaneously trending upwards. On the other hand, patients who do not develop

HCC tend to have more stable, predictable AFP measurements.

Figure 3.1: Sample AFP progressions for 2 patients who did and did not develop
cancer.

Intuitively, detection rates could be maximized by shifting resources towards high

risk patients, away from low risk patients. However, re-allocating resources according

to patients’ risk is not a straightforward problem due to the fact that, at any point in

time, the decision maker holds imperfect knowledge of these dynamics. While baseline

information about the patient provides some initial knowledge about the patient’s

risk of developing HCC, it is incomplete without understanding the patient’s AFP
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dynamics. The challenge lies in the fact that knowledge of the AFP dynamics must be

observed over multiple visits. Therefore, a sequential stage learning problem arises in

the question of how to simultaneously gather and utilize this knowledge with limited

resources.

3.2 Relevant Literature

The mathematical analysis, design, and optimization of medical screening policies

is expansive, and has seen significant proliferation in the past decade. Comprehensive

surveys of this field include Stevenson (1995), Alagoz et al. (2011), Knudsen et al.

(2007), and Pierskalla and Brailer (1994).

Research in the field varies in goals, such as the cost-effectiveness analysis of

existing screening programs (Goldie et al. (2004), Frazier et al. (2000), Leshno et al.

(2003)) the cost-effectiveness analysis of proposed hypothetical screening programs

(Harper and Jones (2005), Davies et al. (2002), Kulasingam et al. (2008)), and the

optimization of new screening programs (Preston and Smith (2001), Hanin et al.

(2001), Lee and Zelen (2003), Lee and Zelen (2008), Parmigiani et al. (2002), Tsodikov

et al. (2006)). Our work is of the latter type, as aforementioned recent medical

discoveries have presented the opportunity for novel policies to be considered.

Previous research also varies in how the objective is defined. Authors seek to

maximize quality-adjusted life years gained (Ayer et al. (2012), Chhatwal et al. (2010),

Erenay et al. (2014)), minimize negative health outcomes of a patient (Parmigiani

et al. (2002), Tsodikov et al. (2006)), or minimize costs to the system (Leshno et al.

(2003), Myers et al. (2000), Frazier et al. (2000)). Others yet consider a combination

of the above, usually providing a pareto-optimal set of policies, as seen in Rauner

et al. (2010), Maillart et al. (2008), and Güneş et al. (2004). As mentioned in the

previous section, the stage at which HCC is diagnosed is heavily correlated to the

patient’s likelihood of survival. We analyze policies with respect to two performance
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metrics: (1) the proportion of all cancers detected in the early stage, and (2) the

proportion of screening resources spent on cancer patients.

Depending on the goal and problem setting, a large number of methodologies

have been proposed, including Markov chains (Myers et al. (2000), Preston and Smith

(2001), Goldie et al. (2004), Kulasingam et al. (2008), Harper and Jones (2005)), sim-

ulation (Davies et al. (2002), Frazier et al. (2000), Harper and Jones (2005), Clemen

and Lacke (2001)), Markov decision processes (Chhatwal et al. (2010), Maillart et al.

(2008), Leshno et al. (2003)), partially observable Markov decision processes (Zhang

et al. (2012), Ayvaci et al. (2012), Zhang et al. (2012), Ayer et al. (2009), Erenay et al.

(2014)), hidden Markov chains (Maillart et al. (2008)), and other stochastic models

(Lee and Zelen (2003), Lee and Zelen (2008), Rauner et al. (2010), Helm et al. (2015),

Schell et al. (2014), Piette et al. (2013)). There are even less traditional methodolo-

gies used for analysis, such as game theory Yaesoubi and Roberts (2008) and queueing

theory Güneş et al. (2004). For this work, simulation based optimization was chosen

for its flexibility to analyze less traditional policies unable to be handled within the

framework of the above methodologies.

Historically, researchers have often focused on simulating each patient’s medical

history by sampling from population parameters. This method is demonstrated in

Loeve et al. (1999) in the simulation of colorectal cancer screening, and again in

Urban et al. (1997) in the simulation of ovarian cancer screening. Our study dif-

fered primarily in choosing to use historical data to retroactively draw each patient’s

medical progression. Our approach has the advantage of having actual historical pa-

tients experience the proposed policy. It does not, however, have the robustness of a

population-based simulation which can easily have a million unique, albeit fabricated,

patients experience each policy.

Within the healthcare field, simulation based optimization has already seen much

success. Zhang used a bisection search algorithm to find optimal capacity levels in

26



long term care facilities (Zhang and Puterman (2013)). Romero employed built-in

optimization packages with the simulation software Arena to find optimal operational

parameters of a skin cancer clinic (Romero et al. (2013)). Dhamodharan utilized

Monte Carlo sampling methods, along with their developed simulation model, to

optimize the implementation of immunization services in rural areas (Dhamodharan

and Proano (2012)). Simulation based optimization has not yet been used to optimize

learning-based screening policies under constrained resources. We will rely on the

indifference zone method to obtain optimal policies to address this question.

3.3 Problem Setting

We consider a healthcare system with a panel size of i = 1, ..., n patients at risk

of developing HCC. All patients at time t = 0 are known to begin in a cancer-free

state. In our problem, the size of the population outweighs the number of screenings

available, and it is the task of the decision maker (DM) to decide which subset of the

population to screen. At each time t = 0, 1, 2, .., T , the DM can choose a subset of

k < n patients to screen.

Each patient i’s risk of developing HCC can be measured by the following equation:

P (HCC)i = [1 + exp(−c1Bi − c2SDi − c3RRi)]
−1 (3.1)

� P (HCC)i is the patient’s lifetime cumulative probability of developing HCC,

� Bi is a vector of all static risk cofactors measured upon enrollment into surveil-

lance (age, ethnicity, smoker, alkaline phosphatase, blood platelets, and esophageal

varices),

� SDi is the standard deviation amongst a patient’s recorded AFP readings,

� RRi is the least squares estimate for the rate of AFP rise over time amongst a
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patient’s recorded AFP readings,

� c1 is a vector of the corresponding regression coefficients for all static risk factors,

and

� c2, and c3 are regression coefficients for the AFP standard deviation and the

rate of AFP rise over time.

Equation 3.1 calculates a patient’s lifetime cumulative risk of developing HCC

based upon several risk factors. For simplicity of notation, multiple risk factors

which do not vary over time have been combined into a single quantity, Bi. The

equation was determined through a nested case-control study in which risk factors

for HCC development were assessed through conditional logistic regression in Lee

et al. (2012a).

The knowledge of the DM at time t is captured by the state space variable:

(Bi, ŜDi,t, vi,t, R̂Ri,t, wi,t) (3.2)

∀i = 1, .., n, ∀t = 0, 1, 2, ...T

Where the subscript t has been added to emphasize that the DM only holds

estimates of these quantities for each patient i at each time t. ŜDi,t is the sample

standard deviation of all AFP observations for patient i up to, and including, time

t. R̂Ri,t is the rate of AFP rise over time for patient i, estimated by ordinary least

squares of all AFP readings up to, and including, time t. Note that this quantity can

be negative. vi,t is the variance of the standard deviation estimate ŜDi,t, and wi,t is

the variance of the rate of rise estimate R̂Ri,t, both calculated by standard statistical

methods.

The DM can utilize Equation 3.1 to obtain an estimate of patient i’s risk at time
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t by using the equation:

ˆP (HCC)i,t = [1 + exp(−c1Bi − c2ŜDi,t − c3R̂Ri,t)]
−1 (3.3)

Note that we have simply adapted Equation 3.1 by replacing unknown clinical

quantities with sample estimates in order to approximate a patient’s risk when said

quantities are not perfectly known.

When the DM chooses to screen a patient i, two events occur in succession:

Firstly, the patient is revealed to be either (1) still cancer-free, (2) in early-stage

cancer, (3) in late-stage cancer, or (4) dead, whether from cancer or other causes. If

either outcome (2), (3), or (4) occur, the patient exits the system, and a new patient

arrives in his/her place at time t+ 1, thus maintaining a constant panel size n.

Secondly, the patient’s AFP level is measured. This additional reading is then

used to re-estimate the AFP related state space variables for that patient: ŜDi,t+1,

vi,t+1, R̂Ri,t+1, and wi,t+1.

3.4 Reinforcement Learning Policies

3.4.1 Myopic Behavior

An intuitive policy to investigate would be to act myopically upon current esti-

mates ˆP (HCC)i,t. The algorithm proceeds as follows:

Note that ranking patients according to xi,t is equivalent to ranking patients ac-

cording to ˆP (HCC)i,t because the function (1+exp(−x))−1 is monotonically increasing

in x.

Naturally, this will utilize the DM’s knowledge accumulated thus far to maximize

the number of cancers detected in the current stage. The downside to this policy

is that it fails to expand the DM’s knowledge set for future decisions by exploring

other patients. This behavior is often referred to as “pure exploitation” and usually
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Figure 3.2: Pseudocode for myopic behavior algorithm.

performs suboptimally in various settings (Sutton and Barto (1998)).

We consider three classes of reinforcement learning algorithms, each of which can

be viewed as more intelligible modifications of this myopic behavior, with features

to encourage exploration. We chose to study three distinct classes of algorithms to

provide multiple perspectives on the value of learning within this problem setting,

and thus increase the robustness of our conclusions.

3.4.2 ε-Greedy Strategies

The first class of reinforcement learning algorithms that we consider are ε-greedy

strategies (Watkins (1989)). The algorithm (modified for our problem setting) pro-

ceeds as follows:

This strategy represents a slight modification of the myopic behavior as it reserves

ε proportion of resources for exploration, and acts greedily with the remainder. It

should be noted that myopic behavior is a special case of ε-greedy strategies, corre-

sponding to ε = 0.

Conversely, the special case of ε = 1 is often referred to as “pure exploration”,

where all choices are made randomly. Both pure exploration and pure exploitation
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Figure 3.3: Pseudocode for epsilon greedy algorithm.

provide benchmark performances for other reinforcement learning techniques to com-

pare against.

3.4.3 Interval Estimation Strategies

The second class of reinforcement learning algorithms that we consider are interval

estimation strategies (Kaelbling (1993)). These algorithms proceed as follows:

Figure 3.4: Pseudocode for interval estimation algorithm.
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Interval estimation is very similar in form to myopic behavior, but it encourages

exploration by using a “distorted” risk score. Under very mild assumptions, patients

whose risk of developing HCC is not currently known with high confidence are charac-

terized by higher estimate variances, vi,t and wi,t. Therefore by adding a multiplicative

factor of the estimate variance to the risk score, the policy has artificially promoted

patients with low knowledge up the list. The multiplicative factor, z, captures the

incentive to explore as the relative importance of exploration. It should be noted that

z = 0 corresponds to myopic behavior.

3.4.4 Boltzmann Exploration Strategies

The third class of reinforcement learning algorithms we consider are Boltzmann

exploration strategies (Luce (1959)). These algorithms proceed as follows:

Figure 3.5: Pseudocode for Boltzmann exploration algorithm.

Boltzmann exploration gives all patients a positive probability of being screened,

but with a probability which is weighted according to the DM’s current risk estimates.

The tuning parameter τ is known as the temperature. τ roughly captures the relative

importance of exploration versus exploitation.
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If xi,t is the original risk score, then the quantity exi,t/τ can be thought of as a

skewed risk score.

For example, when τ is very low, patients with only slightly differing original risk

scores will have vastly differing skewed risk scores, due to the nature of the exponential

function. Assessing patient risk according to the skewed risk score in this situation

would be akin to artificially promoting exploitive behavior.

On the other hand, when τ is very high, the patients with vastly different original

risk scores will have relatively similar skewed risk scores, again due to the nature of

the exponential function. Therefore if we behave according to this skewed risk score,

we have artificially promoted explorative behavior.

As τ →∞, Boltzmann exploration approaches pure exploration.

3.5 Simulation

With three classes of candidate policies, a simulation was designed to serve as a

testbed for empirical evaluation. The goal of this simulation was to receive proposed

alternative screening policies as inputs, and then determine the number of cancers

detected, as well as the resources used by each policy.

3.5.1 Description of the Data

The Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) trial

included 1050 patients followed for an average of 5.3 years. Surveillance of patients

in this trial was performed in three ways: Firstly, the patients were screened every

3 months for the first 3.5 years, then every 6 months thereafter on a voluntary ba-

sis. At each screening visit, the level of alpha-fetoprotein (AFP) concentration in

the blood was measured. Secondly, each patient underwent an ultrasound imaging

approximately every 6-12 months. Thirdly, a liver biopsy was performed on all trial

participants at 1.5 and 3.5 years into the trial. Table 3.1 displays the relevant char-
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acteristics of the patients in the HALT-C dataset used in our study. For continuous

variables, the mean ± standard deviation is shown, with p-values from a 2-sample

t-test. For binary variables, the proportion is shown, with p-values from Fisher’s

exact test.

Characteristic HCC
(N=82)

NO HCC
(N=885)

P Value

Age at Baseline (years) 53±7 50±7 < 0.01
Black (binary) 24% 18% 0.10
Platelets at Baseline x1000/mm3 126±51 169±65 < 0.01
Ever Smoked (binary) 41% 24% < 0.01
Alkaline Phosphataste at Base-
line (U/L)

117±59 97±43 < 0.01

Esophageal Varices (binary) 4% 34% 0.01
Standard Deviation of AFP
(ng/mL)

51 ± 86 9 ± 19 < 0.01

Rate of AFP Rise (90*ng/mL) 5±11 0.11±2.1 < 0.01

Table 3.1: Characteristics of patients with and without HCC.

Out of 1050 subjects, 83 were omitted from the current analysis for having <

5 AFP values available. Among the 967 subjects remaining, 82 developed HCC

during the study period. During the screening period (time from enrollment to HCC

diagnosis or end of follow-up), subjects had a median of 18 (range 5-23) AFP tests

performed. It should be noted that the general American population has a lifetime risk

for HCC of approximately 0.9%. Our dataset demonstrated a much higher cumulative

incidence due to the fact that the eligibility requirements of the HALT-C trial included

a history of chronic hepatitis C with advanced fibrosis, a key risk factor for HCC. As

HCC screening is not currently recommended for the general public, it is appropriate

to study the performance of these policies on this at-risk subset population.

3.5.2 Model

In this simulation, we record three statistics:

1. E, the total number of early stage cancers detected during the planning horizon,
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2. L, the total number of late stage cancers detected during the planning horizon,

and

3. X, the number of screenings spent on patients who would eventually develop

cancer

The discrete event logic is graphically depicted in Figure 3.6. At all times, the simu-

lation maintains two separate sets of patient data: (1) the simulation knowledge, and

(2) the DM’s knowledge. The latter is an incomplete subset of the former, which is

further revealed through the DM’s decisions of who to screen. The simulation begins

at time t = 0 by using the Initial Panel Module to fill panel slots i = 1, .., n. Here, the

simulation will randomly draw, with replacement, a patient history from the dataset

to be this patient’s simulated history. The result will be the creation of C, the set

of patients who will develop cancer, and N , the set of patients who will not develop

cancer in their lifetime. The DM’s knowledge of these n patients at this point is

limited to the baseline score, B. Also at this time, the DM knows every patient to

be cancer-free, as the dataset which we used was a clinical trial whose enrollment

criteria included being cancer-free at the beginning of surveillance.

Next the simulation runs the Policy Module, which receives the DM’s knowledge

of the current n patients as an input, and the DM chooses a subset K of patients to

screen according to the current policy being evaluated. The value X is then increased

by the number of screenings which were correctly spent on cancer patients, |K ∩N |.

For patients i 6∈ K not chosen to be screened, the DM’s knowledge of the patients

will go unchanged until the next period. Patients chosen to be screened i ∈ K

enter the Imaging Module, which queries the simulation for the patient’s current

cancer state. If the patient never developed cancer during the course of HALT-C,

the Imaging Module automatically outputs a cancer-free state. However, if the data

indicates that this patient was detected to have a tumor of size s̄ on date t̄, we can

estimate the tumor size s on the simulated date t according to the tumor doubling
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Figure 3.6: Discrete event simulation flow event logic.

time δ given in Okada et al. (1993) and the following doubling time equation:

s = 2
t−t̄
δ · s̄ (3.4)

The Imaging Module then assigns a cancer state according to the following logic:
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State =


Early if t ≥ t̄ and 1 ≤ s ≤ 5

Late if t ≥ t̄ and 5 < s

Cancer-Free if Otherwise

(3.5)

It should be noted that the Imaging Module assumes that all tumors between 1

cm and 5 cm in size are detected with perfect accuracy. This assumption of perfect

accuracy is supported by the fact that it is standard procedure to follow up any

ultrasound which reveals suspicious features with either a CT scan or MRI, both of

which are highly accurate tests for tumor detection. This assumption could easily be

relaxed in future work by incorporating the specificity and sensitivity of the respective

tests.

The reason for assuming the tumor to be undetected on all dates t < t̄ is to be as

conservative as possible in our gauging in the performance of hypothetical policies.

We could have utilized the same doubling time formula to determine the first date

of tumor development, i.e the date at which the tumor was 1 cm in size. The tumor

could theoretically be detected on any date after this first date of tumor development

in the simulation. We however instead adopted our more stringent definition in order

to make it as difficult as possible for the investigated screening policies to outperform

the real-world detection rates.

If the patient is cancer-free, then the simulation assigns a new AFP reading for

this patient through the AFP Reading Module. On the simulated date, the dataset

is queried for a linear interpolation between the two closest AFP readings in date.

This simulated AFP reading is then added to the DM’s knowledge by appropriately

updating all state space variables to reflect this new reading in the Update Module.

If the patient is assigned an early-cancer state, the value E is incremented by 1,

and the patient is replaced according to the New Patient Module. The New Patient

Module resets both the simulation knowledge of patient i to a new patient drawn from
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the dataset, as well as the DM’s knowledge of patient i. Furthermore, we assume the

DM receives a single AFP reading for this patient.

Similarly, if a patient is assigned a late-cancer state, the value L is incremented

by 1, and the patient is replaced according to the same New Patient Module.

At the end of each period (with the exception of the final period), the Patient

Exit Module is run to eliminate patients who depart the panel before the beginning

of the next period. It does so by determining the departing subset D ⊂ K whose time

under surveillance in HALT-C has exceeded their duration in the simulation. These

departures from surveillance include both outcomes of death or voluntary withdrawal

from HALT-C. All patients who are eliminated are also replaced by a new patient

before the beginning of the next period. In addition, all patients i ∈ |D ∩C| who are

eliminated through the Patient Exit Module also increment the penalty metric L by

1, as the policy has failed to identify a patient who had early stage cancer, and will

now develop late-stage cancer outside of the simulated surveillance of that patient.

It should be noted that if the incoming replacement patient is drawn with equally

likely probabilities, the population would become biased towards those patients with

longer follow-up times. To maintain a patient panel which is probabilistically equiv-

alent to that of HALT-C, the following probabilistic weights are used: if patients

j = 1, .., 967 of HALT-C have follow-up times pj, define P =
∑

j pj. Patient q is

chosen for replacement with probability

P
pq∑
j
P
pj

(3.6)

This process of deciding who to screen, and simulating the outcome of those

screenings repeats until the end of the planning horizon T . Upon termination the

three final values of E, L, and X are reported to produce the following performance

metrics:
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1. The proportion of cancers detected in early stage E
E+L

2. The proportion of screenings spent on cancer patients X
K×T

The usage of this historical simulation method is not without its shortcomings.

This simulation is subject to inaccuracy if the HALT-C cohort consisted of many

statistical outliers (with respect to disease progression sample paths). A typical sim-

ulation which fabricates patients from population parameters would not suffer from

the misrepresentation of these statistical outliers. However, it should be noted that

our simulation draws from a large dataset. Therefore, under some mild assumptions

on the distribution of disease progression, it is unlikely that the HALT-C dataset is

misrepresentative of the general American population. Additionally, HALT-C was a

multi-center trial, with patients enrolled at 12 hospitals from all regions of America,

further mitigating the possibility of a misrepresentative dataset.

3.5.3 Validation

Each iteration of the simulation begins by first randomly splitting the patients in

the HALT-C data set into a training and validation set. The data in the training set

is input into a conditional logistic regression to obtain coefficients c1, c2, and c3 in

equation (1). The patients in the validation set are used to populate the simulation.

By this method, we avoid obtaining inflated estimates of policy performance, which

would inevitably result by testing a policy on the same patients upon which the policy

was built.

In testing the simulation outputs for agreement with real-world observations, the

simulation predicted the number of early-cancers detected per year to be within 3%

of the results observed in the HALT-C dataset.

The model was built with high face validity by discussing the discrete-event logic

alongside people involved in the screening process. Our co-author, a practicing clin-

ician at the University of Michigan Hospital, helped to validate our model. We also
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interviewed the receptionists at the hospital responsible for booking screenings for

patients, ultrasound technicians who perform the screenings, and nurses at the blood

draw clinic responsible for measuring and reporting the AFP back to the doctor.

These interviews were meant to strengthen our understanding of the real-world flow

of events at every step of the screening process.

Lastly, we unilaterally deviated simulation parameters to extreme scenarios for

“sanity checks”, and checked for intuitive agreement with expected outputs.

3.6 Tuning Parameter Optimization

To find the optimal levels of tuning parameters within each class of reinforcement

learning algorithms, we employed the indifference zone method of Dudewicz and Dalal

(1975). This discrete optimization via simulation method considers m = 1, .., ` dis-

crete alternatives, where observations from population m are normally distributed

N(µm, σ
2
m).

The procedure begins by sampling each of the ` alternatives and equal number

of times, n0, via simulation. After the completion of this first stage, the sample

variance of the simulation outcomes for each of the ` alternatives is calculated in

order to determine the suitable number of additional samplings are needed for each

alternative. After a second stage of sampling, a weighted average of the observations

from the two stages is taken. The alternative m with the highest weighted averaged

is declared to be within δ of the true best with probability P .

The main advantage of this method over the ranking and selection method devel-

oped in Bechhofer (1954) is that it does not require the assumption of σ2
1 = ... =

σ2
` := σ2, where σ2 is known in advance. Initial analyses proved neither assumption

to hold in this problem setting, thus encouraging the usage of the indifference zone

method. Further details of this sampling procedure can be found in Dudewicz and

Dalal (1975).
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3.7 Results

3.7.1 Implementation Parameters

Decision epochs were chosen to be at equally spaced 90 day intervals, under clinical

recommendations that under no circumstance would it be necessary to again screen

a patient less than 90 days after being screened. The planning horizon was chosen to

be T = 30 years arbitrarily by the authors, although this analysis was first performed

over 10 years, and the difference in results were insignificant. Finally, a panel size

of n = 500 was chosen to mimic the approximate size of the screening program

at the University of Michigan Hospital. The indifference zone method was run at a

confidence of P = 95% with an indifference zone width of δ = 0.25. These parameters

are the result of initial analyses on the computation time required, and were chosen

to maximize accuracy given the resources available.

The calculations were performed using MATLAB v2013a’s Parallel Computing

Toolbox, at the University of Michigan’s Center for Advanced Computing, on 24

computing cores (intel i7, 4GB RAM). A single iteration of the simulation requires

approximately 30 seconds of computing time. Our simulation was run for approxi-

mately 400 iterations per each of the 34 policies, per each of the 5 resource constraint

levels.

3.7.2 Policy Performance

The first analysis compared 5000 samples of current practice and pure exploration.

Recall that pure exploration is equivalent to choosing a random subset of the pop-

ulation to screen in each period. Figure 3.7 is a histogram of the number of early

cancers detected by these two policies. It is readily apparent that the two policies

are highly similar in performance. This agrees with intuition, as both policies use no

patient specific information, and treat all patients equally. Both policies can act as
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baselines to compare the performance of other policies against.

Figure 3.7: Comparison of performances of current practice and pure exploration.

We optimized each of the three classes of learning-based policies at five settings of

resource constraints with respect to the proportion of cancers detected in early stage.

If we let k be the number of screenings available to spend by the DM in each period,

and n be the size of the patient panel, then k
n

is the measure of how constrained

the problem is. We analyzed this problem at k
n

= 0.10,0.20, 0.30, 0.40, and 0.50

corresponding to five scenarios of varying resource scarcity.

ε-Greedy strategies were searched over the range ε = 0, 0.025, 0.050, 0.075, ..., 0.25,

Interval Estimation over z = 1, 2, 3, ..., 10, and Boltzmann Exploration over τ =

.250, 0.275, .300, .325, ..., .750. The search ranges were chosen at the discretion of the

authors, after some initial experiments to find suitable candidates, and observing

significant drop-offs in performance beyond those bounds. We optimized each of the

three classes of policies at each of the five resource constraint levels. Table 3.2 shows

the results of the tuning parameter optimization.
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Resource
Constraint

Level
k/n

ε-greedy
ε

Interval
Estimation

z

Boltzmann
Exploration

τ

10% 0.025 1 0.250
20% 0.05 1 0.250
30% 0.10 1 0.300
40% 0.10 1 0.325
50% 0.25 5 0.400

Table 3.2: Optimal tuning parameters determined by the indifference zone method.

Recall that for each of the three classes of policies studied, higher tuning param-

eters represent more emphasis upon exploration. From these results, we can see that

as resources become less constrained, the optimal balance between exploration and

exploitation shifts towards exploration. Conversely, as resources become more con-

strained, greater exploitation is encouraged. The tendency to explore less in highly

resource constrained settings is intelligible, as the DM does not have enough resources

to learn anything of significance. Therefore, in highly resource constrained settings,

it would be prudent to depend more upon the baseline risk information received by

the DM when the patient entered screening.

Next we sought to compare the increase in performance of these optimized learn-

ing policies over current practice. Because the protocol of screening every patient

every six months cannot be implemented in resource constrained settings, we created

the equitable allocation policy to act as a policy equivalent in spirit to current prac-

tice. The equitable allocation policy uses whatever resources are available as fairly

as possible, akin to current practice, by ensuring that all patients experience fixed

interval screening at equal frequencies. Figure 3.8 displays our findings.

Our analysis determined Boltzmann exploration to be the policy which produced

the most early stage cancer detections at every level of resource constraint. Fur-

thermore, at every level of resource constraint, both myopic behavior and equitable

allocation are dominated by any of the three reinforcement learning policies, thus
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Figure 3.8: The performance of the optimal policies across various resource con-
straints.

demonstrating the importance of learning in our problem.

The most immediate benefit that can be drawn from these results is the increase

in detection rates gained by switching to the best learning policy. Current practice

screens 100% of the population every 180 days, so it stands to reason that its per-

formance is equivalent to equitably screening 50% of the population every 90 days.

The latter policy detects 58% of patients in early stage cancer. The best performing

learning policy reaches a 63% detection rate at the same level of resource expenditure.
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This represents a 8.6% increase in performance by switching from equitable allocation

to the best performing learning policy.

Alternatively, we can analyze the cost-savings that can be achieved by switching to

a learning based policy. The best performing learning policy only requires screening

41.75% of the population every 90 days to achieve the same level of performance as

current practice, which screens 50% of the population every 90 days. This represents

a 16.5% reduction in screening costs by switching from equitable allocation to the

best performing learning policy, while maintaining the same level of performance.

As in many reinforcement learning applications, myopic behavior, or pure ex-

ploitation, is vastly suboptimal. This is due to the fact that myopic behavior can

very easily become stuck in poor knowledge sets, and continue to incorrectly believe

that certain subset of patients to be high risk. At 50% resource constraint setting,

the best learning policy has a 27% increase in performance over myopic allocation of

resources.

Another interesting feature of Figure 3.8 is the relative gap between the learning

policies and the equitable policy seems to decrease in size as more resources become

available. This agrees with intuition because the more scarce a resource becomes, the

more benefit there stands to be gained by acting efficiently. The value of learning

policies can be made apparent by comparing the best performing policy at each

resource level with equitable allocation in Figure 3.9. Although the relative benefit

of learning policies does generally decrease as more resources become available, it is

still better than equitable allocation of resources.

We analyzed performance with respect to the percentage of screenings spent on

cancer patients. This metric rewards a policy for screening the correct patients, even

if those screenings did not immediately result in the detection of an early stage cancer.

This metric is more concerned with the correct identification of high risk patients,

and not necessarily the timing at which patients are screened. Although this metric
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Figure 3.9: Increases in performance, with 90% sampling percentiles, across various
resource constraints.

is less useful in a clinical setting, it is actually more closely aligned to the original

purpose of the reinforcement learning algorithms studied. The results are displayed

in Figure 3.10. Equitable allocation spends roughly 8% of its resources on cancer pa-

tients, across all resource levels. This is to be expected, as approximately 8% of the

HALT-C dataset develops cancer, and thus approximately 8% of our simulated pa-

tient panel will eventually develop cancer. This metric more decisively demonstrates

the advantage of learning-based policies over both equitable allocation, and myopic

behavior. It also displays the decrease in relative benefit of learning-based policies as

the capacity of the system increases.
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Figure 3.10: The proportion of screenings spent on cancer patients.

3.7.3 Policy Equity

Lastly, we investigated the affects of these policies from the patients’ perspective.

We sought to answer what a patient could expect to experience by participating in

a screening regimen prescribed by our approach. We measured the 25th, 50th, and

75th percentile in days between subsequent screenings for each patient, then averaged

these statistics across the population throughout the history of the simulation. These

results are presented in Figure 3.11.
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Figure 3.11: 25th, 50th, and 75th percentiles of screening gaps, averaged across cancer
and non-cancer patients separately.

From this figure we can glean what kinds of screening policies these reinforcement

learning methods require a specific patient to undergo. There is a distinct gap between

the screening frequencies experienced by patients who do and do not develop cancer.

This holds for every type of policy, at every resource constraint level.

Under current practice, the screening capacity is 50%, and both cancer and non

cancer patients alike can expect to be screened once every 180 days. In the same

setting, the average cancer patient being screened according to the optimal Boltzmann

exploration policy can expect to have a median screening gap of 130 days. Similarly,

the average patient who does not develop cancer will have a median screening gap of

296 days, an improved health outcome by means of avoiding unnecessary time, costs,
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and mental distress associated with screening visits. These same effects occur for all

three policies.

We would advise a clinician looking to choose which of the three policies to adopt

to choose based upon the findings in Figure 3.11. If patient equity is a priority,

epsilon greedy strategies seem to achieve the most similar screening gaps between

cancer and non-cancer patients. If identification and treatment of cancer patients is

a priority, then Boltzmann exploration policies are the best choice, as they give the

most frequent screenings to cancer patients. On the other hand, if the avoidance of

costs and hassle of non-cancer patients with unnecessary screenings is a priority, we

would advise the clinician to adopt interval estimation policies, as they demonstrate

a large advantage in infrequently screening non-cancer patients.

3.8 Discussion

In this work, we searched a large, but by no means exhaustive, class of reinforce-

ment learning algorithms to evaluate the benefits that can be gained by reallocating

the existing screening resources. We believe that this approach of learning-based

decision rules with a simulation built purely upon historical observations provides a

highly accurate picture of the potential gains that can be made.

From this study, we induced several conclusions. The first is that current prac-

tice is roughly equal in performance to distributing resources randomly, thus creating

the incentive to search for smarter behavior. Next, we saw that the optimal balance

between explorative and exploitive behavior shifts towards the latter as resources be-

come more scarce. We then estimated that switching from fixed-interval, equitable

allocation of screening resources to a learning-based policy which utilizes sequen-

tially gathered biological information will result in either 8.6% increased performance

or 16.5% cost savings. We have also noted that these benefits of switching to a

learning-based policy increase further as resources become more constrained. Lastly,
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we discussed the disadvantages of not utilizing learning based policies by showing

myopic behavior to be vastly suboptimal.

We opted for the method of a historical simulation because of its potential for

increased acceptance by the clinical community. This is due to two features of this

method: we utilized a widely recognized clinical trials in the area of hepatocellu-

lar carcinoma, thereby creating results directly comparable to its well understood

outcomes. Moreover, we avoided the usage of parametric assumptions on patient

progression which are not recognized by the clinical community. These two features

both establish strong rationale for a clinician to believe our simulation accurately

replicated their situation.

Nevertheless, we would like to note that our method of historical simulation is

not without its shortcomings. The simulation may suffer from censoring which is

inherent to the data from which we drew patient progressions. The simulation may

also fail to accurately reflect a typical cohort of American patients with Hepatitis C

and advanced fibrosis. These concerns are mitigated by the particularly robust nature

of the HALT-C dataset. With patients remaining under surveillance for an average

of 5.3 years, the impact of censoring is far less than that associated with a typical

observational study. And with over 1,000 patients enrolled at 12 different hospitals

from all regions of the United States, the HALT-C trial can be viably accepted as an

accurate depiction of the American population living with chronic Hepatitis C and

advanced fibrosis.

In our model, recall that a positive detection is simulated only if the tumor is

determined to be both greater than 1 cm in diameter, as well as being beyond the

date of detection in the original data. These detection rules were chosen to increase

acceptance of our analysis by the medical community. However, to evaluate the

robustness of our results, a separate analysis re-sampled the best performing policies

(which had been found based upon the original tumor detection assumptions) 5000
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times each under an alternate set of assumptions where positive detections depended

solely upon the size of the tumor.

We found that although the performances of the policies were 15% higher (av-

eraged across all policies and scenarios) under these new detection rules, our major

findings continued to hold. That is, current practice could either gain 8.6% increase

in early stage detections, or a 16.4% cost-savings, by switching to a reinforcement

learning based policy for patients at risk for HCC. While this provides some evidence

of the robustness of our results, it may be worthwhile in future work to derive the

optimal reinforcement learning policies according to this alternate detection rule.

It is interesting to note that Boltzmann exploration outperforms epsilon-greedy

strategies and interval estimation, which is certainly not necessarily the case in other

applications of reinforcement learning. We give two possible explanations for this

result. Firstly, interval estimation performs exploration by encouraging screening

of patients with high standard deviation of observed AFP readings. This is based

upon the underlying assumption that more screenings results in a smaller standard

deviation. This in turn is based upon the assumption that AFP readings are drawn

from a normal distribution with known, fixed parameters, therefore eventually causing

the sample variance to converge. For this reason, we believe interval estimation would

be more successful in an application where patients biomarkers were distributed from

normal distributions, and the problem of identifying their risk was equivalent to

identifying the different means of those normal distributions.

Secondly, the weakness of an Epsilon-Greedy policy is forced exploration in long

term scenarios. Consider a screening clinic which has been running for a very long

time, relative to a disease which progresses very slowly. This clinic will have accu-

mulated a large amount of information about all of its patients, and know each of

its patients level of risk high certainty. The epsilon-greedy policy would still insist

on allocating resources towards exploration in this scenario. Boltzmann exploration,
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on the other hand, adjusts its level of exploration according the strength of current

knowledge. Therefore, we postulate that epsilon-greedy policies would be more suc-

cessful if (1) we ran our case study over shorter time horizons, and/or (2) had a slower

progressing underlying disease.

Further work may use stochastic simulation, where patient characteristics and

their disease progressions are drawn parametrically. As an example, additive noise

terms could be added to the AFP reading module to more realistically simulate the

unpredictability of the AFP levels. Should the necessary parametrizations become

established and available in the medical literature, this approach could potentially

validate the results seen here, as well as provide further insight into the nature of

efficient allocation of screenings.

These analyses could also be re-done with alternative objective functions to re-

flect other concerns of the screening clinic. Although we maximized the number of

early-stage detections, it may be worthwhile consider rewards that are a function of

the tumor size. Current staging definitions for HCC tumors use a threshold of 5

cm to distinguish between early stage and late stage tumors. While this may be a

convenient definition for clinical classification, a patient’s probability of survival may

be better correlated with the tumor size at the time of his/her detection. This type

of alternative objective function may identify a better policy more directly related to

patient survival.

It might also be worthwhile to re-establish a measure of risk which turns all static

risk factors (such as baseline age, smoking history, and baseline blood platelet count)

into dynamic risk factors (current age, total years as a smoker, and current baseline

blood platelet count). If this new measure of risk were to be established, we suspect

it would only strengthen the decision making performed here. Our analysis could also

benefit further from including the visual assessment of ultrasound images by doctors

as an additional risk factor. Often a negative ultrasound will not contain enough
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features to warrant a diagnosis, yet it will still provide the doctor with some insight

into the health of the liver organ. The main disadvantage of this usage of visual

ultrasound images is that it is highly subjective between doctors, and it is difficult to

quantify for a mathematical decision making framework.

Finally, other avenues for future work include complications that occur during

real-life screening, such as false negative outcomes in the imaging process, panel size

variability, penalties associated with screenings, and imperfect patient adherence.

We conclude with clinical recommendations derived from this work. Outside of

direct policy adoption, a clinic can still utilize Equation 3.1 in isolation to gauge their

patient’s estimated current level of risk. Furthermore, our results can be used for

capacity planning purposes to gain a better understanding of the potential marginal

benefits of increasing their current screening resources. Lastly, we would advise doc-

tors to recognize the importance of balancing the exploration and exploitation of

information when allocating resources.
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CHAPTER IV

Restless Bandit Based Policies

In this chapter, we seek an efficient way to screen a population of patients at-risk

for hepatocellular carcinoma when (1) each patient’s disease evolves stochastically,

and (2) there are limited screening resources shared by the population. We model

the problem as a family of restless bandits, with each patient’s disease progression

evolving as a partially observable markov decision process. We derive an optimal

policy for this problem and discuss managerial insights into what characterizes more

effective screening. To provide numerical evidence, we use two independent datasets

of over 800 patients each, one to train the optimal policy, and the other to build a

computer simulation to act as a testbed for said policy. We are able to show that

our policy detects 22% more early stage cancers than current practice, while using

the same amount of resource expenditure. We provide insights into the structure

underlying our policy, and discuss the implications of our findings.

4.1 Introduction

The cost of modern American healthcare is projected to continue rising without

impedance (Keehan et al. (2015)), and more policymakers are seeking ways to allevi-

ate this exaggerated overspending on healthcare. Simultaneously, the aging popula-

tion continues to impose increasing burdens upon existing healthcare infrastructure
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(Strunk et al. (2006)), introducing new challenges to operate under limited capacities.

In the vast history of the mathematical optimization of medical decision making,

the overwhelming majority of work has sought to optimize the health outcomes of

a single patient. In light of the new realities of American healthcare, attempting

to simultaneously execute policies which are optimal for every single patient will be

both inordinately expensive, and possibly infeasible due to operational constraints. In

this Chapter, we consider the novel setting of making medical decisions for multiple

patients whose disease evolves simultaneously while sharing limited resources. As a

proof of concept, we will look at liver cancer screening, a problem which is character-

ized by simultaneously evolving disease and a limited number of shared resources.

4.1.1 Hepatocellular Carcinoma Screening

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths

worldwide (Altekruse et al. (2009)). With over six million Americans at risk for HCC

(Wilkins et al. (2010)), the size of the population at risk for HCC far outweighs the

available infrastructure needed to properly screen them. Screening for HCC is critical

because over 50% of patients whose cancer is diagnosed in early-stage are expected

to be disease free after 5 years. By contrast, less than 10% of patients whose cancer

is diagnosed in late-stage are expected to still be alive after 5 years (Curley et al.

(2015)).

When screened for HCC, each patient undergoes multiple procedures. Firstly, an

ultrasound of the liver is taken. If any new features of tumor growth are indicted in

this ultrasound, the doctor will order a follow-up image via CT scan or MRI to confirm

or deny these features. These tests are costly and limited in a hospital; ultrasounds

are typically a shared resource between all departments of a major hospital, and in

practice, are booked at over 100% capacity. CT scans and MRIs are expensive tests

which should be used as sparingly as possible.
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In addition, the patient’s blood is measured for the alphafetoprotein (AFP), a

biomarker for HCC. Recent medical literature has shown a relationship between a

patient’s AFP and his/her lifetime risk for HCC (Lee et al. (2012a), Wong et al.

(2014), Chaiteerakij et al. (2013)). AFP readings are inherently noisy, and must be

observed over time to properly assess a patient’s risk of HCC.

The current recommended screening protocol in the United States proposes a fixed

interval of six months for all patients at risk for HCC (Bruix and Sherman (2005)),

regardless of any previous knowledge of the patient’s risk. In contrast, we develop

a model to determine which subset of patients to screen, based upon their observed

risk, while ensuring that we only use as many resources as current practice. The

current “one-size fits all” strategy will set the baseline performance against which our

policy can be compared.

We model the problem of screening a population for HCC under limited resources

as a restless bandit problem. Each patient’s disease progression is modeled as a

partially observable Markov process, and this accounts for how the decision maker

will learn each individual patient’s risk over time. We derive an optimal policy for this

problem when the objective of the policy is to maximize early stage cancer detections

over a finite planning horizon, and then show how the structural and computational

complexity of this policy can be reduced.

We then provide a case study of how our policy would have performed in real

life. The model is calibrated using data from a clinical trial, and the corresponding

optimal policy is then tested against a simulation built upon historical patient data

collected from a large university hospital. Through a robust set of scenarios, we show

that our policy outperforms current practice.

The contributions of this work are three-fold: (1) Our work considers the optimiza-

tion of patient-centered health outcomes, while constraining for resource expenditure

at the population level. This is in contrast to most literature, which addresses the
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problem of how to optimally screen a single patient, with no regards to total system

costs or resource expenditure. (2) We add new structural insights to a new class of

restless bandit problems. In contrast, the analysis of restless bandits has tradition-

ally relied upon approximative methods due to their complexity. (3) We interpret the

policies derived to extract managerial insights for clinicians to screen more effectively;

we provide strong numerical evidence (based on clinical trial and hospital data) that

there is an opportunity for improvement in current screening practices that requires

no additional cost.

The remainder of this Chapter is organized as follows. In §4.2 we survey the

literature relevant to this problem. The problem is modeled and an optimal policy is

derived in §4.3, followed by a reduction of that policy’s structural and computational

complexity. In §4.4, we present the simulation used to test our policy, and develop a

heuristic for the implementation of our policy. We conclude with a discussion of the

challenges of our findings, along with avenues for future work in §4.5.

4.2 Related Literature

Recently, there has been a growing concern for resource scarcity in medical decision

making problems. For example, Khademi et al. (2015) considered policies to treat a

population when drug supplies are severely limited. Deo and Sohoni (2015) studied

the distribution of scarce diagnostic devices across a large population. In a similar

vein, we consider how to allocate limited resources in liver cancer screening. We will

survey the existing literature concerning (1) cancer screening, and (2) multi-armed

bandits, a framework well-suited to handle resource allocation.

4.2.1 Optimization of Cancer Screening

The literature concerning the mathematical optimization of screening is vast, and

we refer the reader to four surveys which together make a comprehensive overview
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of this problem’s landscape: Stevenson (1995), Alagoz et al. (2011), Pierskalla and

Voelker (1976) , Pierskalla and Brailer (1994).

Each type of cancer introduces new challenges in policymaking. In breast cancer,

we must account for the possibility of overscreening, as well as regression (Chhatwal

et al. (2010), Maillart et al. (2008), Ayer et al. (2012)). Colorectal cancer has partic-

ularly complex disease progression, with patients progressing in both risk and tumor

stage (Erenay et al. (2014)). In some cancers, such as prostate cancer, we have addi-

tional biological information in the form of biomarkers to aid in screening decisions

(Zhang et al. (2012), Underwood et al. (2012)). Despite the multitude of approaches to

this problem, they all hold the common characteristic of seeking the optimal method

to screen a single patient. While optimal treatment of a single patient to maximize

his/her health outcomes is an important problem, this paper addresses the shortcom-

ings of using a single patient perspective by developing a screening policy executed at

a population wide level. We choose the methodology of multi-armed bandits for its

ability to optimize rewards accrued over simultaneous stochastic processes, the key

challenge in our problem.

4.2.2 Multi-armed Bandits

In a multi-armed bandit problem, a decision maker chooses one of several bandit

arms for an immediate reward. The reward depends on the arm’s current state,

which evolves stochastically each time it is activated. The goal is to maximize the

total discounted reward. The primary results of multi-armed bandit problems were

established in the seminal work of Gittins (1979).

Our problem is of the restless bandit variation explored by Whittle (1988), where

each bandit arm evolves stochastically regardless of whether or not it is activated.

Papadimitriou and Tsitsiklis (1999) showed the restless bandit problem is P-SPACE

hard, and thus an optimal policy can usually only be approximated. Krishnamurthy
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and Evans (2001) gave a more explicit solution to the restless bandit problem when

the bandit arms are partially observable Markov decision process (POMDP), but their

results are only valid for a small class of transition probability matrices that does not

include our problem. In our paper, we take advantage of the structural characteristics

of cancer screening to derive an explicit solution to this class of problems.

Ahuja and Birge (2016) showed how clinical trials can be viewed as multi-armed

bandit problems, and how changing treatment decisions during the course of the

trial can achieve better health outcomes for its participants. They demonstrated

how a bandit problem can successfully be applied to population level medical deci-

sions. However, they did not incorporate disease progression over time. Negoescu

et al. (2014) modeled the treatment decisions of patients with Multiple Sclerosis as

a continuous-time, multi-armed bandit problem. Their clinical outcomes of interest

were singular events (i.e. relapses, flare-ups). In contrast, our outcomes of inter-

est, early-stage cancer, is a state with time duration, which requires a significantly

different approach.

Closest to our work is Deo et al. (2013), who modeled the treatment of chronic

diseases at a community level using a restless bandit model. Their paper also takes a

population-level approach to a medical decision. However, we assume our population

is heterogenous in their underlying disease progression, whereas their population is

stochastically homogenous. Also, our model specifically addresses liver cancer, the

structure of which ultimately enables us to gain deeper insights into the structure of

the optimal policy for this specific problem.

4.3 The Modeling Framework

We model this problem as a discrete-time, finite-horizon simple family of multi-

armed restless bandits where each bandit is a partially observable Markov decision

process. The sequence of events within a single decision epoch are depicted in Figure
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Figure 4.1: The sequence of events within a single decision epoch.

4.1.

A single decision maker seeks to maximize the number of early cancers detected

over a finite horizon, with no terminal reward. The assumption of a finite horizon

is chosen for its ease of interpretation amongst clinicians and policymakers. At the

beginning of each decision epoch t, the decision maker must choose a single patient

a(t) to undergo screening. In the case study, we relax the assumption of screening

only a single patient in each period. The decision maker will then receive a reward

r(t), and an observation o(t), both of which depend on the current state of the patient

chosen to be screened. After this decision, all patients (both screened and unscreened)

will transition according to the underlying Markov chain, in the same vein as much

of the literature on cancer screening optimization.

If a patient is in early-stage or late-stage cancer, we assume their state is per-

fectly observed, as in practice, diagnosis is made by ultrasound followed by CT or

MRI. This combination has been reported to have sensitivity of 97% (Arif-Tiwari

et al. (2014)) and specificity of 96% (Nam et al. (2011)). Future work may relax

this assumption. However, if a patient does not have cancer, his/her risk is imper-

fectly observed through a noisy AFP reading. We assume perfect patient adherence

to scheduled screenings, and that all decisions and events happen instantaneously

within a decision epoch, two assumptions which may be relaxed in future work. The

components of our model are as follows:
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� t: Decision epochs, t = 1, ..., T ; T <∞.

� i: Patients, i = 1, ..., N . In our model, we assume the screening clinic will

maintain a panel size of N patients. If a patient is diagnosed with cancer, or

dies from non-cancer causes, that patient leaves the clinic and a new patient

will be found to occupy the available capacity.

� j: Health state space, where j = 1, ...,m,E, L. The first 1, ...,m states are the

possible cancer-free risk types. State E represents early-state cancer, and L

represents a combination of health states in which a patient would leave the

system, whether through late-stage cancer, cancer-caused mortality, or non-

cancer caused mortality. These three outcomes are indistinguishable from the

perspective of the decision maker, given the objective of maximizing early-stage

cancers detected, and hence can be modeled as a single state.

� Yit: The true health state of patient i at time t, Yit ∈ {1, ..., .m,E, L}, which is

unknown to the decision maker and can only be estimated.

� τu, τs: Transition probability matrices, for unscreened and screened patients,

respectively. These transitions are depicted along with their respective matrix

representations in Figures 4.2 and 4.3. Patients in cancer-free states j = 1, ...,m

remain cancer-free with probability Pjj, transition to early-stage cancer with

probability PjE, or die from non-cancer related mortality with probability δ.

Patients in early-stage cancer remain in early-stage cancer with probability PEE,

or transition to late-stage cancer with probability PEL. Patients in late-stage

cancer/death (L) remain in that state with probability 1. The key difference

between τu and τs is that when a patient is screened and found to be in early-

stage or late-stage cancer, they leave the system and a new cancer-free patient

is assumed to arrive to the clinic. This replacement is accomplished by letting

the Markov chain transition to one of the j = 1, ...,m cancer-free states, each
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Figure 4.2: Transition matrix and diagram for an unscreened patient.

Figure 4.3: Transition matrix and diagram for a screened patient.

with probability qj. While we acknowledge this to be simplification of the

true system, it enables us to maintain a constant panel size which has been

roughly observed in our partnering clinic. Further extensions of this model may

incorporate changing panel sizes.

� Ω: Observation matrix, shown in Figure 4.4. When a cancer-free patient of

type j = 1, ...,m is screened, a discretized AFP observation is received of type

k = 1, ..., p with probability ojk. Ē and L̄ are used to denote perfect observation

of cancer states. We will also frequently use the notation Ωk, ΩE, and ΩL. These

are diagonal matrices of dimension (p + 2) × (p + 2), whose entries consist of

the rows k, E, and L of the matrix Ω.

� ρ: Reward vector. Because the goal of the decision maker is to maximize the
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Figure 4.4: Observation probability matrix.

number of screenings in early-stage cancer, there is a reward of 1 for a patient

screened in state E and 0 for all other states. Therefore rewards are dictated

by the vector ρ =

( 1 ... m E L

0 ... 0 1 0

)
. A table summarizing the notation

of this paper is provided in Table 4.1.

Indices
i = 1, ..n Patients
j = 1, ...,m Risk types
k = 1, ..., p AFP observations
t = 1, ..., T Time
Primitive Data
Pjj, PjE Transition probability from state j to state j, or E, etc.
τu, τs Transition matrices, for unscreened and screened patients, respectively
Ojk Observation probability that a patient of type j gives observation k
Ω Observation matrix
Ωk,ΩE,ΩL The kth row of Ω diagonalized into a matrix
ρ Reward vector
Model Notation
Xijt The belief that patient i is in state j at the beginning of time t
Yit The true health state of patient i at the beginning of time t
a(t) The patient chosen to be screened at time t
o(t) The observation received at time t
r(t) The reward received at time t

Table 4.1: Table of notation
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4.3.1 Belief States

We will use Xijt to represent the belief that patient i is in state j at time t. More

explicitly,

Xijt := Pr(Yit = j) ∀i, j, t (4.1)

Xt will represent the collection of all beliefs about all n patients at time t. Xit will

represent all beliefs about a particular patient i at time t. The relationship between

these forms of the belief state are demonstrated in Equation (4.2).

Xt =



X1t

...

Xit

...

Xnt


=



X11t, . . . X1jt, . . . X1mt, X1Et, X1Lt

...

Xi1t, . . . Xijt, . . . Ximt, XiEt, XiLt

...

Xn1t, . . . Xnjt, . . . Xnmt, XnEt, XnLt


(4.2)

Given the order of events depicted in Figure 4.1, we can now compute how the beliefs

Xijt evolve from one period to the next. Xij,t+1 will depend on two things: (1) whether

or not patient i was the patient a(t) chosen to be screened, and (2) the observation

o(t) received upon screening. Standard applications of Bayes’ rule can be applied to

give the formulas for the subsequent belief state Xi,t+1 in Equation (4.3).

Xi,t+1 =



XitΩkτs if a(t) = i and o(t) = 1, ..., p

XitΩEτs if a(t) = i and o(t) = Ē

XitΩLτs if a(t) = i and o(t) = L̄

Xitτu if a(t) 6= i

(4.3)

Where we have used the convention v to represent the vector v, normalized to con-

dense notation.
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To derive Xi,t+1, given any previous belief state Xit, any action a(t) and any

screening outcome o(t), we need Xij,t+1 = Pr(Yi,t+1 = j|a(t), o(t), Xit), ∀j. We will

divide this section into three cases, depending upon the action a(t) and the stochastic

observation o(t). Because in our model, observations occur before transitions in each

decision epoch, we denote t′ to denote the belief immediately after an observation is

received, but before transition occurs.

Case 1. a(t) = i and k = 1, ..., p (Screened patient and non-cancer read-

ing)

We wish to calculate

Xij,t+1 = Pr(Yi,t+1 = j|a(t) = i, o(t) = k,Xit) (4.4)

Expanding by conditioning on the belief at the intermediate time t′, we get:

Xij,t+1 =
∑
j′

Pr(Yi,t+1 = j|Yit′ = j′, a(t) = i, o(t) = k,Xit)

· Pr(Yit′ = j′|a(t) = i, o(t) = k,Xit) (4.5)

Recognizing that the transition from t′ to t + 1 is independent of the action and

observations, we get:

Xij,t+1 =
∑
j′

Pr(Yi,t+1 = j|Yit′ = j′) · Pr(Yit′ = j′|a(t) = i, o(t) = k,Xit) (4.6)

Substituting for primitive data where applicable

Xij,t+1 =
∑
j′

Pj′j · Pr(Yit′ = j′|a(t) = i, o(t) = k,Xit) (4.7)

The remainder of this equation will be different, depending on 1 of 3 cases:

Case 1a. j = 1, ...,m (Probability of being cancer-free)
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Equation (4.7) can be simplified because Pj′j = 0 if j 6= j′

Xij,t+1 = Pjj · Pr(Yit′ = j|a(t) = i, o(t) = k,Xit)

Applying Bayes’ Law, we get:

Xij,t+1 = Pjj ·
Pr(o(t) = k|Yit′ = j, a(t) = i,Xit)Pr(Yit′ = j|a(t) = i,Xit)∑
ĵ

Pr(o(t) = k|Yit′ = ĵ, a(t) = i,Xit)Pr(Yit′ = ĵ|a(t) = i,Xit)

Substituting for any known quantities:

Xij,t+1 = Pjj ·
OjkXijt∑
ĵ

OĵkXiĵt

(4.8)

Case 1b. j = E (Probability of being in early-stage cancer)

Containing from Equation (4.7):

XiE,t+1 =
∑
j′

Pj′E · Pr(Yit′ = j′|a(t) = i, o(t) = k,Xit) (4.9)

The summands j′ = E,L can be removed from 4.9 because the state at t′ cannot be

E or L if an observation k was received

XiE,t+1 =
m∑
j′

Pj′E · Pr(Yit′ = j′|a(t) = i, o(t) = k,Xit) (4.10)

Apply Bayes’ Law to get:

XiE,t+1 =
m∑
j′

Pj′E
Pr(o(t) = k|Xijt′ = j′, a(t) = i,Xit)Pr(Yit′ = j′|a(t) = i,Xit)∑
ĵ

Pr(o(t) = k|Xijt′ = ĵ, a(t) = i,Xit)Pr(Yit′ = ĵ|a(t) = i,Xit)

(4.11)
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Substituting for any known quantities:

XiE,t+1 =

∑m
j′ Pj′EOj′kXijt∑

ĵ OĵkXiĵt

(4.12)

Case 1c. j = L (Probability of being in late-stage cancer)

Continuing from Equation (4.7):

XiL,t+1 =
∑
j′

Pj′L · Pr(Yit′ = j′|a(t) = i, o(t) = k,Xit) (4.13)

The summands j′ = E,L can be removed from 4.13 because the state at t′ cannot be

E or L if an observation k was received

XiL,t+1 =
m∑
j′

Pj′L · Pr(Yit′ = j′|a(t) = i, o(t) = k,Xit) (4.14)

Applying Bayes’ Law, we get:

XiL,t+1 =
m∑
j′

Pj′L
Pr(o(t) = k|Xijt′ = j′, a(t) = i,Xit)Pr(Yit′ = j′|a(t) = i,Xit)∑
ĵ

Pr(o(t) = k|Xijt′ = ĵ, a(t) = i,Xit)Pr(Yit′ = ĵ|a(t) = i,Xit)

(4.15)

Substituting for any known quantities:

XiL,t+1 =

∑m
j′ δOj′kXijt∑
ĵ OĵkXiĵt

(4.16)

Therefore, Equations (4.8), (4.12), and (4.16) can be summarized in vector form as
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follows. When a(t) = i observation o(t) = 1, 2, ..., p:

(Xi,t+1|a(t) = i, o(t) = k) =



Xi1t+1

...

Xijt+1

...

Ximt+1

XiEt+1

XiLt+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a(t) = i, o(t) = k



T

(4.17)

=



P11O1kXi1t∑m
j=1OjkXijt

...

PjjOjkXijt∑m
j=1OjkXijt

...

PmmOmkXimt∑m
j=1OjkXijt∑m

j=1 PjEOjkXijt∑m
j=1OjkXijt∑m
j=1 δOjkXijt∑m
j=1OjkXijt



T

= XitΩkτS∀k = 1, ..., p

Case 2. a(t) = i and k = Ē, L̄ (Screened patient and cancer reading)

The belief state update when a(t) = i and the observation o(t) = Ē or o(t) = L̄

is far simpler:

Xij,t+1 = Pr(Yi,t+1 = j|a(t) = i, o(t) = Ē,Xit) (4.18)

Expanding by conditioning on the intermediate state at time t′ we get:

Xij,t+1 =
∑
j′

Pr(Yi,t+1 = j|Yit′ = j′, a(t) = i, o(t) = Ē,Xit)

· Pr(Yit′ = j′|a(t) = i, o(t) = Ē,Xit) (4.19)
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But when we see an observation Ē, we know that the state at time t′ is E with

probability 1, so all but one of the summands are zero

Xij,t+1 = Pr(Xi,t+1 = j|Yit′ = Ē, a(t) = i, o(t) = Ē,Xit) (4.20)

Lastly, we know from τS that a patient who is found to be in state E will replaced

by new patient with probabilities qj

Xij,t+1 = qj∗ (4.21)

Equation (4.21) can be summarized in matrix form in Equation (4.22):

(Xi,t+1|a(t) = i, o(t) = k) =



Xi1t+1

...

Xijt+1

...

Ximt+1

XiEt+1

XiLt+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a(t) = i, o(t) = k



T

(4.22)

=



q1

...

qj
...

qm

0

0



T

=


XitΩEτS if k = Ē

XitΩLτS if k = L̄

(4.23)

Case 3. a(t) 6= i (Non-screened patient)
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On the other hand, the subsequent belief state of the unscreened patient, a(t) 6= i

evolves regardless of the observation o(t), therefore:

(Xi,t+1|a(t) 6= i, o(t) = k) =



Xi1t+1

...

Xijt+1

...

Ximt+1

XiEt+1

XiLt+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a(t) 6= i, o(t) = k



T

(4.24)

=



P11X1t

...

PjjXijt

...

PmmXmt∑m
j=1 PjEXjt + PEEXEt∑m

j=1 δXjt + PELXEt + 1XLt



T

= XitτU (4.25)

We can now combine Equations (4.17), (4.22) and (4.24) into Equation (4.26) to

tell us the subsequent belief state Xij,t+1, given any previous belief state Xit, any

action a(t) and any screening outcome o(t)

Xi,t+1 =



XitΩkτs if a(t) = i and o(t) = 1, ..., p

XitΩEτs if a(t) = i and o(t) = Ē

XitΩLτs if a(t) = i and o(t) = L̄

Xitτu if a(t) 6= i

(4.26)
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The probability of any observation in terms of the belief state Xijt is given in

Equation (4.30), can be found as follows:

We wish to know the probability of any observation, given the current belief state

Xt and a patient choice a(t) = i:

Pr(o(t) = k|a(t) = i) (4.27)

Conditioning on the underlying state of the patient i, we get:

Pr(o(t) = k|a(t) = i) =
∑
j

Pr(o(t) = k|a(t) = i,Xit = j)Pr(Xit = j|a(t) = i)

(4.28)

Substituting for any known quantities:

Pr(o(t) = k|a(t) = i) =



m∑
j=1

ojkXijt for k = 1, ..., p

XiEt for k = Ē

XiLt for k = L̄

(4.29)

Pr(o(t) = k
∣∣ a(t) = i,Xt) =


Xa(t)Ωk

~1 for k = 1, ..., p

Xa(t)ΩE
~1 for k = Ē

Xa(t)ΩL
~1 for k = L̄

(4.30)

Also, the reward received r(t) is dictated by ρ, and depends upon the observation
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alone:

r(t) =


0, if o(t) = 1, ..., p

1, if o(t) = Ē

0, if o(t) = L̄

(4.31)

Equation (4.26) tells us how belief states will evolve given any action and any ob-

servation. Equation (4.30) tells us the probability of these stochastic events given

any action. Lastly, Equation (4.31) tells us how the system will accrue rewards given

any stochastic event. These are all the elements needed to write the corresponding

dynamic program for this model.

4.3.2 Optimality Equation

Let Vt(Xt) be the maximum expected reward from periods t through T , given a

belief state Xt at time t. We use Bellman’s optimality principle to expand Vt(Xt).

The value of any state is the maximum of the immediate reward, given an action,

plus the value of the next state resulting from that action. All time subscripts will be

omitted from the belief state in this section whenever the distinction is unnecessary.

Vt(Xt) = max
a(t)=1,...,n

{(rt|a(t) = i) + Vt+1(Xt+1|a(t) = i)} (4.32)

We now condition on the stochastic observation o(t):

Vt(Xt) = max
a(t)=1,...,n

{ ∑
k=1,...,p,Ē,L̄

Pr(o(t) = k)

[
(rt|a(t) = i, o(t) = k) + Vt+1 (Xt+1|a(t) = i, o(t) = k)

]}
(4.33)
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After expanding the summation over the three possible types of observations, the

optimality equation can now be expressed in terms of the primitive data, made ex-

plicit in the Equations (4.26), (4.30), and (4.31). Substituting for each appropriate

expression, we get:

Vt(Xt) = max
a(t)=1,...,n



p∑
k=1

Xa(t)Ωk
~1 ·
[
0 + Vt+1

(
X1τu, ..., Xa(t)Ωkτs, ..., Xnτu

)]
+Xa(t)ΩE

~1 ·
[
1 + Vt+1

(
X1τu, ..., Xa(t)ΩEτs, ..., Xnτu

)]
+Xa(t)ΩE

~1 ·
[
0 + Vt+1

(
X1τu, ..., Xa(t)ΩLτs, ..., Xnτu

)]


(4.34)

First, notice that XΩEτS = [q1, ..., qm, 0, 0] = XΩLτS, which can be used to simplify

this expression into:

Vt(Xt) = max
a(t)=1,...,n



p∑
k=1

Xa(t)Ωk
~1 ·
[
0 + Vt+1

(
X1τu, ..., Xa(t)Ωkτs, ..., Xnτu

)]
+Xa(t)ΩE

~1 ·
[
1 + Vt+1

(
X1τu, ..., Xa(t)ΩEτs, ..., Xnτu

)]
+Xa(t)ΩL

~1 ·
[
0 + Vt+1

(
X1τu, ..., Xa(t)ΩEτs, ..., Xnτu

)]


(4.35)

If we distribute the terms outside of the hard brackets, we get:

Vt(Xt) = max
a(t)=1,...,n



p∑
k=1

Xa(t)Ωk
~1 · Vt+1

(
X1τu, ..., Xa(t)Ωkτs, ..., Xnτu

)
+Xa(t)ΩE

~1

+(Xa(t)ΩE
~1 +Xa(t)ΩL

~1) · Vt+1

(
X1τu, ..., Xa(t)ΩEτs, ..., Xnτu

)


(4.36)

73



We replace Xa(T )ΩE
~1 = Xa(t)ρ.

Vt(Xt) = max
a(t)=1,...,n



p∑
k=1

Xa(t)Ωk
~1 · Vt+1

(
X1τu, ..., Xa(t)Ωkτs, ..., Xnτu

)
+Xa(t)ρ

+(Xa(t)ΩE
~1 +Xa(t)ΩL

~1) · Vt+1

(
X1τu, ..., Xa(t)ΩEτs, ..., Xnτu

)


(4.37)

And finally notice that Xa(t)ΩE
~1 = Xa(t),E and Xa(t)ΩL

~1 = Xa(t),L

Vt(Xt) = max
a(t)=1,...,n



p∑
k=1

Xa(t)Ωk
~1 · Vt+1

(
X1τu, ..., Xa(t)Ωkτs, ..., Xnτu

)
+Xa(t)ρ

+(Xa(t),E +Xa(t),L) · Vt+1

(
X1τu, ..., Xa(t)ΩEτs, ..., Xnτu

)


(4.38)

Furthermore, our clinical collaborators felt the ending health states of any patients

were of negligible consequence in comparison to the length of the planning horizon.

Therefore, we impose no terminal reward for our problem:

VT+1(XT+1) = 0 ∀XT+1 (4.39)

4.3.3 An Optimal Screening Policy

The optimality Equation (4.38) is written in recursive form. We wish to derive

a non-recursive form of the optimality equation for any time t, along with its corre-

sponding optimal policy. We will proceed to do this through backwards induction,

but first we require some helpful definitions.

Definition 1. The condition C(r), for any r > 0, is said to be satisfied by the belief

state Xt at time t if the following holds true:

For any b ∈ {1, ..., n}, there exists a corresponding a ∈ {1, ..., n}, a 6= b such that
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Xatτ
r
uρ ≥ XbtΩkτsτ

r−1
u ρ

For every possible k ∈ {1, ..., p, E, L}.

Intuitively, the condition C(r) can be understood in the following way. The left

hand side of the inequality represents the expected value of a patient a’s belief state,

after having gone unscreened for r consecutive periods. The right hand side of the

inequality represents the expected value of patient b’s belief state after being screened

once and obtaining the observation k, then going unscreened for the next r − 1

periods. Therefore, the condition C(r) holds if for every possible patient screened

and any observation outcome, there exists another corresponding patient with higher

probability of being in early cancer stage cancer after r periods of being unscreened.

The strength of this condition depends on the problem-specific values of Ω and τU ,

and will be investigated in the case-study portion of this paper. These conditions C(r)

are the sufficient conditions needed to write a non-recursive form of the optimality

equation in Theorem IV.1.

Theorem IV.1. At every time t = 1, 2, ..., T , let r = T − t. If C(1), C(2),..., C(r)

hold at time t, then the optimality equation is

Vt(Xt) = max
a(t)=1,...,n

{
Xa(t)ρ+ max

a(t+1)=1,...,n
a(t+1)6=a(t)

{
Xa(t+1)τuρ+ ...

...+ max
a(T )=1,...,n

a(T )6=a(T−1),a(T−2),...,a(t)

{
Xa(T )τ

r
uρ
}}}

(4.40)

Furthermore, it is optimal to screen patient a(t) at time t.

Theorem IV.1 tells us that the optimal patient to screen at any time t can be found

by solving a new separate problem in Equation (4.40). Although Theorem IV.1 may

be cumbersome, it is necessary to establish before a simpler policy is derived in Section

4.3.4.
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Proof. By plugging the terminal condition in Equation (4.39) above into the recursive

optimality Equation (4.38), we get

VT (XT ) = max
a(T )=1,...,n



p∑
k=1

Xa(T )Ωk
~1 · (0)

+Xa(T )ρ

+(Xa(t),E +Xa(T ),L) · (0)


(4.41)

Which simplifies to:

VT (XT ) = max
a(T )=1,...,n

{
Xa(T )ρ

}
(4.42)

This agrees with Theorem IV.1, and agrees with our intuition as well. The optimal

action in the final period should be to act greedily, i.e. screen the patient with the

highest belief of being in early-stage cancer. We now iterate this process of backwards

recursively deriving optimality equations. If we apply Equation (4.38) for t = T − 1,

we get:

= max
a(T−1)=1,...,n



p∑
k=1

Xa(T−1)Ωk
~1 · VT

(
X1τu, ..., Xa(T−1)Ωkτs, ..., Xnτu

)
+Xa(T−1)ρ

+(Xa(T−1),E +Xa(T−1),L) · VT
(
X1τu, ..., Xa(T−1)ΩEτs, ..., Xnτu

)


(4.43)
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Now use Equation (4.42) to substitute for VT where applicable:

VT−1(XT−1) = max
a(T−1)=1,...,n



p∑
k=1

Xa(T−1)Ωk
~1

· max
a(T )=1,...,n

{
X1τuρ, ..., Xa(T−1)Ωkτsρ, ..., Xnτuρ

}
+Xa(T−1)ρ

+(Xa(T−1),E +Xa(T−1),L)

· max
a(T )=1,...,n

{
X1τuρ, ..., Xa(T−1)ΩEτsρ, ..., Xnτuρ

}


(4.44)

The inner nested maximizations can be re-written. Notice that it is a maximiza-

tion of n summands, n−1 of which have the same form, and the a(T −1)th summand

is different from the others.

VT−1(XT−1) = max
a(T−1)=1,...,n



p∑
k=1

Xa(T−1)Ωk
~1

· max
a(T )=1,...,n
a(T )6=a(T−1)

{
Xa(T )τuρ, Xa(T−1)Ωkτsρ

}
+Xa(T−1)ρ

+(Xa(T−1),E +Xa(T−1),L)

· max
a(T )=1,...,n
a(T )6=a(T−1)

{
Xa(T )τuρ, Xa(T−1)ΩEτsρ

}



(4.45)

The reasons for the conditions C(r) will now become apparent. The condition

guarantees that the maximum of the inner nested maximizations will be achieved by

one of the n− 1 summands of similar form.

Lemma 1. Suppose C(1) holds at time T − 1. Then it follows that

max
a(T )=1,...,n
a(T ) 6=a(T−1)

{
Xa(T )τuρ, Xa(T−1)Ωkτsρ

}
= max

a(T )=1,...,n
a(T )6=a(T−1)

{
Xa(T )τuρ

}
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and

max
a(T )=1,...,n
a(T )6=a(T−1)

{
Xa(T )τuρ, Xa(T−1)ΩEτsρ

}
= max

a(T )=1,...,n
a(T )6=a(T−1)

{
Xa(T )τuρ

}
Proof. Both of these statements apply as a direct result of the definition of C(r) with

r = 1, a = a(T − 1) and b = a(T ).

Therefore if C(1) holds at time T − 1, the optimality equation for VT−1 can be

simplified further via Lemma 1 into:

VT−1(XT−1) = max
a(T−1)=1,...,n



p∑
k=1

Xa(T−1)Ωk
~1 · max

a(T )=1,...,n
a(T )6=a(T−1)

{
Xa(T )τuρ

}
+Xa(T−1)ρ

+(Xa(T−1),E +Xa(T−1),L) · max
a(T )=1,...,n
a(T ) 6=a(T−1)

{
Xa(T )τuρ

}


(4.46)

The two inner maximizations are the same, so their coefficients can be added:

VT−1(XT−1) = max
a(T−1)=1,...,n

{
Xa(T−1)ρ+(

(

p∑
k=1

Xi,T−1Ωk
~1) + (Xa(T−1),E +Xa(T−1),L)

)
max

a(T )=1,...,n
a(T )6=a(T−1)

{
Xa(T )τuρ

}} (4.47)

But it is easy to verify that (

p∑
k=1

Xa(T−1)Ωk
~1) + (Xa(T−1),E +Xa(T−1),L) = 1, there-

fore we are left with the following optimality equation for T−1, given that C(1) holds

at time T − 1 :

VT−1(XT−1) = max
a(T−1)=1,...,n

Xa(T−1)ρ+ max
a(T )=1,...,n
a(T )6=a(T−1)

{
Xa(T )τuρ

} (4.48)

78



Again, this agrees with Theorem IV.1. We iterate this process one additional time to

derive VT−2. Applying Equation (4.38) at t = T − 2, we get:

= max
a(T−2)=1,...,n



p∑
k=1

Xa(T−2)Ωk
~1 · VT−1

(
X1τu, ..., Xa(T−2)Ωkτs, ..., Xnτu

)
+Xa(T−2)ρ

+(Xa(T−2),E +Xa(T−2),L) · VT−1

(
X1τu, ..., Xa(T−2)ΩEτs, ..., Xnτu

)


(4.49)

After substituting Equation (4.48) for VT−1, we get the following for VT−2

= max
a(T−2)=1,...,n



p∑
k=1

Xa(T−2)Ωk
~1·

max
a(T−1)=1,...,n
a(T−1)6=a(T−2)



Xa(T−1)τuρ+ max
a(T )=1,...,n
a(T ) 6=a(T−2)
a(T ) 6=a(T−1)

{XT τ
2
uρ,Xa(T−2)Ωkτsτuρ},

Xa(T−1)Ωkτs + max
a(T )=1,...,n
a(T ) 6=a(T−2)

{Xa(T )τ
2
uρ}


+Xa(T−2)ρ+(

Xa(T−2),E +Xa(T−2),L

)
·

max
a(T−1)=1,...,n
a(T−1) 6=a(T−2)



Xa(T−1)τuρ+ max
a(T )=1,...,n
a(T )6=a(T−2)
a(T )6=a(T−1)

{Xa(T )τ
2
uρ,Xa(T )ΩEτsτuρ},

Xa(T−1)ΩEτs + max
a(T )=1,...,n
a(T )6=a(T−2)

{Xa(T )τ
2
uρ}




(4.50)

Similar to the way that condition C(1) resolved the nested max in the derivation

of VT−1, conditions C(2) will resolve the nested maxes of VT−2

Lemma 2. Suppose C(2) holds at time T . Then it follows that

max
a(T )=1,...,n

a(T ) 6=a(T−2),a(T−1)

{
XT τ

2
uρ, Xa(T−2)Ωkτsτuρ

}
= max

a(T )=1,...,n
a(T )6=a(T−2),a(T−1)

{
XT τ

2
uρ
}
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and

max
a(T )−1=1,...,n
a(T )−16=a(T−2)

{
XT−1τ

2
uρ, Xa(T−1)ΩEτsτuρ

}
= max

a(T−1)=1,...,n
a(T−1) 6=a(T−2)

{
XT−1τ

2
uρ
}

Proof. Both of these statements apply as a direct result of the definition of C(r) with

r = 2, i = a(T − 2) and j = a(T − 1).

.

Therefore if C(2) holds at time T−1, the inner-most nested maximzations simplify

to give:

VT−2(XT−2) =

max
a(T−2)=1,...,n



p∑
k=1

Xa(T−2)Ωk
~1 · max

a(T−1)=1,...,n
a(T−1)6=a(T−2)



Xa(T−1)τuρ+

max
a(T )=1,...,n
a(T )6=a(T−2)
a(T )6=a(T−1)

{XT τ
2
uρ},

Xa(T−2)Ωkτs+

max
a(T )=1,...,n
a(T )6=a(T−2)

{Xa(T )τ
2
uρ}


+Xa(T−2)ρ

+
(
Xa(T−2),E +Xa(T−2),L

)
· max
a(T−1)=1,...,n
a(T−1) 6=a(T−2)



Xa(T−1)τuρ+

max
a(T )=1,...,n
a(T )6=a(T−2)
a(T )6=a(T−1)

{XT τ
2
uρ},

Xa(T−2)ΩEτs+

max
a(T )=1,...,n
a(T ) 6=a(T−2)

{Xa(T )τ
2
uρ}




(4.51)

Lastly, if C(1) also hold at T − 2, the second inner-most nested maximizations

become resolved to give:
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VT−2(XT−2) =

max
a(T−2)=1,...,n



p∑
k=1

Xa(T−2)Ωk
~1·

max
a(T−1)=1,...,n
a(T−1) 6=a(T−2)

Xa(T−1)τuρ+ max
a(T )=1,...,n
a(T )6=a(T−2)
a(T )6=a(T−1)

{XT τ
2
uρ}


+Xa(T−2)ρ

+
(
Xa(T−2),E +Xa(T−2),L

)
·

max
a(T−1)=1,...,n
a(T−1) 6=a(T−2)

Xa(T−1)τuρ+ max
a(T )=1,...,n
a(T )6=a(T−2)
a(T )6=a(T−1)

{XT τ
2
uρ}





(4.52)

And in a similar vein to the time T − 1, the inner nested maximizations are

now identical, allowing us to sum their coefficients (

p∑
k=1

Xa(T−2)Ωk
~1) + (Xa(T−2),E +

Xa(T−2),L) = 1 . The final optimality equation for time T − 2 is the following:

VT−2(XT−2) = max
a(T−2)=1,...,n

{
Xa(T−2)ρ+

max
a(T−1)=1,...,n
a(T−1)6=a(T−2)

{
Xa(T−1)τuρ+ max

a(T )=1,...,n
a(T )6=a(T−1)
a(T )6=a(T−2)

{
Xa(T )τ

2
uρ
}}}

(4.53)

Again this agrees with Theorem IV.1. At this point, the method of recursively

deriving VT−3, VT−4, and so forth will follow the same steps as used for VT , VT−1, VT−2,

and the structure of Equations (4.42), (4.48), and (4.53) will continue to follow the

structure proposed in Theorem IV.1.

We will spend the remainder of the analytical portion of this paper addressing
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three challenges in implementing this theorem: (1) The number of sufficient conditions

to be checked is equal to the number of stages remaining, which can be very large.

(2) The value function is currently in the unintuitive form of a sequence of nested

maximizations, and (3) The number of nested maximizations increases by 1 for each

prior stage, causing the problem to grow in complexity. We will hence present an

alternative optimal policy which addresses all three issues. Table 4.2 organizes the

method by which we accomplish this.

Optimality Equation Modification Weakness
Equation (4.9) Recursive
Theorem IV.1 Non-recursive Several conditions
Theorem IV.2 Single condition Long cumbersome structure
Theorem IV.3 Simple truncated structure Single patient per period
Equation (4.31) Multiple patients per period

Table 4.2: A table organizing the theoretical development of our screening policy.

4.3.4 Reduction of the Optimal Policy

We will first seek to reduce the number of sufficient conditions necessary for our

Theorem IV.1 by exploiting properties of coefficients of the condition C(r), τ ruρ and

τsτ
r
uρ. In particular, consider the j-th component as a sequence in r.

Definition 2.

αj(r) := [τ ruρ]j (4.54)

βj(r) := [τ r−1
u τsρ]j (4.55)

The definitions of these four indices are shown graphically in Figure 4.5. Notice

that αj(r) is non-decreasing until δj, and decreases beyond its first term at λj (or

βj(r), εj, and µj, respectively.)

Lemma 3. For every j = 1, ...,m, there exists indices δj, εj, λj, µj such that

the sequences αj(r) and βj(r) are
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Figure 4.5: A depiction of the relationship between αj(r), δj, and λj. (or βj(r), εj,
and µj, respectively.)

1. non-decreasing from r = 1, ..., δj and r = 1, ..., εj, respectively, and non-increasing

thereafter.

2. guaranteed to decrease beyond the first term in the sequence at indices λj and

µj, respectively.

The indices δj, εj are necessary for the definition of an alternative set of conditions,

which are easier to check than the original set of conditions. The purpose of the indices

λj, µj are to create a less computational expensive version of our optimal policy.

Proof. The coefficients αj(r) can be written in terms of the primitive data. Simple

matrix multiplication gives

αj(r) = [τ ruρ]j =
n−1∑
s=0

P s
jjPjEP

n−s−1
EE (4.56)

The results of this proposition will be apparent after rewriting this coefficient

sequence in a recursive form. After pulling the s = 0 term out of the summation, we

get

= PjEP
n−1
EE +

n−1∑
s=1

P s
jjPjEP

n−s−1
EE (4.57)
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We then use a change of variables in the summation:

= PjEP
n−1
EE +

n−2∑
s=0

P s+1
jj PjEP

n−s−2
EE (4.58)

Then factor out a single common term from the summation

= PjEP
n−1
EE + Pjj

(
n−2∑
s=0

P s
jjPjEP

n−s−2
EE

)
(4.59)

We can now re-apply the original formula for the coefficient sequence

αj(r) = PjEP
n−1
EE + Pjj (αj(r − 1)) (4.60)

A similar method gives a recursive formula for βj(r):

βj(r) = PjjPjEP
r−2
EE + Pjj (βj(r − 1)) (4.61)

The recursive form of these sequences reveals that each subsequent term can be

obtained by multiplying by the same factor which is strictly less than 1, (Pjj), and

then the addition of a term which tends to zero (PjjPjEP
r−2
EE ). This guarantees

that the sequences will first be non-decreasing, then non-increasing thereafter, thus

proving the existence and uniqueness of indices δj, εj. We can also apply limits across

Equation (4.60) to get

lim
n→∞

αj(r) = lim
n→∞

(
PjEP

n−1
EE + Pjjαj(r − 1)

)
(4.62)

Then because limits distribute across sums

= lim
n→∞

PjEP
n−1
EE + lim

n→∞
Pjjαj(r − 1) (4.63)

The first additive term becomes arbitrarily small in the limit because PEE < 1
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therefore

= lim
n→∞

Pjjαj(r − 1) (4.64)

Which is equal to

= Pjj lim
n→∞

αj(r − 1) (4.65)

However we know the sequences on the left-hand and right-hand side must have

the same limit, because they are the same sequence, only shifted in index. In general,

the equation x = Pjjx has only two solutions: either Pjj = 1 or x = 0. The first is a

contradiction of our model’s assumptions, so therefore we have the unique solution:

lim
n→∞

αj(r − 1) = 0 (4.66)

Therefore λj is guaranteed to exist and to be unique. A similar proof gives the

existence and uniqueness of µj.

Definition 3.

α∗j (r) =


αj(λj) if r ≤ δj

αj(r) if r > δj

β∗j (r) =


βj(r) if r ≤ εj

βj(εj) if r > εj

(4.67)

α∗ is the sequence α, modified to be non-increasing. Similarly, β∗ is the sequence β

modified to be non-decreasing. Now consider C∗(r), which looks exactly the same in

form as C(r), except that it uses α∗ and β∗, instead of α and β. These new sequences

are shown graphically in Figures 4.6 and 4.7.

Definition 4. The condition C∗(r) is said to be satisfied by the belief state Xt at

time t if the following holds true:

For every b ∈ {1, ..., n}, there exists a corresponding a ∈ {1, ..., n}, b 6= a such that
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Figure 4.6: A depiction of the relationship between α∗ and α.

Figure 4.7: A depiction of the relationship between β∗ and β.

Xaα
∗(r) ≥ XbΩkβ

∗(r)

for every possible k ∈ {1, ..., p}.

C∗(r) has the advantage of the following two properties.

Lemma 4. Suppose C∗(r) holds at time t. Then C(r) also holds at time t.

Lemma 5. Suppose C∗(r) holds at time t. Then C∗(r − 1) holds at time t.

Proof. Suppose C∗(r) holds at time t. Then by definition, ∀b ∈ {1, ..., n},∃a ∈

{1, ..., n}, b 6= a such that

Xaα
∗ ≥ XbΩkβ

∗ (4.68)

But we know by construction that α(r) ≥ α∗(r) , ∀r and β∗(r) ≥ β(r) , ∀r Therefore,
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it is a direct consequence that

Xaα(r) ≥ Xaα
∗(r) ≥ XbΩkβ

∗(r) ≥ XbΩkβ(r) (4.69)

Therefore C(r) holds.

Proof. Suppose C∗(r) holds at time t. Then by definition, ∀b ∈ {1, ..., n},∃a ∈

{1, ..., n}, j 6= i such that

Xbα
∗ ≥ XaΩkβ

∗ (4.70)

We know that α∗ is non-increasing, and β∗ is non-decreasing. Therefore α∗(r −

1) ≥ α∗(r) and β∗(r) ≥ β∗(r − 1). Therefore, we can write the following chain of

inequalities:

Xaα
∗(r − 1) ≥ Xaα

∗(r) ≥ XbΩkβ
∗(r) ≥ XbΩkβ

∗(r − 1) (4.71)

Therefore C∗(r) holds.

We can now combine the two properties of C∗(r) to reduce the many sufficient

conditions of Theorem IV.1 from C(1), C(2), ..., C(r) to just the single sufficient con-

dition C∗(r).

Theorem IV.2. At every time t = 1, 2, ..., T , let r = T − t. If C∗(r) holds at time t

then the optimality equation is

Vt(Xt) = max
a(t)=1,...,n

{
Xa(t)ρ+ max

a(t+1)=1,...,n
a(t+1)6=a(t)

{
Xa(t+1)τuρ

+ ... max
a(T )=1,...,n

a(T )6=a(T−1),a(T−2),...,a(t)

{
Xa(T )τ

r
uρ
}}}

(4.72)
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Figure 4.8: The structure of the proof of Theorem 2.

Furthermore, it is optimal to screen patient a(t) at time t.

Proof. This comes as an application of the combination of Lemmas 4 and 5 to The-

orem IV.1. Suppose C∗(r) holds at time T − r. Then by repeated applications of

Lemma 5, C∗(r − 1), C∗(r − 2), ... , C∗(1) also hold. Consequently, r applications

of Lemma 4 guarantees that C(r − 1), C(r − 2) ,..., C(1) also hold. Therefore the

conditions of Theorem IV.1 are met.

The logical deduction of this proof is depicted in Figure 4.8.

Theorem IV.2 only requires a single condition, and therefore is a reduced form of

Theorem IV.1 which requires many conditions. We now seek to further reduce the

complexity of the policy by investigating the expression needed to be maximized.

Lemma 6. Let c1, c2, ...cr ∈ R(1×n) and X1, X2, ..., Xn ∈ R(n×1) Then

max
a(1)∈{1,...,n}

c1Xa(1) + max
a(2)∈{1,...,n}
a(2)6=a(1)

c2Xa(2) + ... max
a(r)∈{1,...,n}

a(1)6=a(1),a(2),...,a(r−1)

crXa(r)




=

max
{a(1),...,a(r)}⊂{1,...,n}

{
c1Xa(1) + ...+ crXa(r)

}
Furthermore, the arguments which maximize the left-hand side expression also

maximize the right-hand side expression.

When applied with ci = τ i−1
u ρ, lemma 6 allows us to reduce Equation 4.72 into a

simpler combinatorial maximization. The latter expression is easier to compute and
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simpler to understand.

Proof. We prove this statement for any fixed n, and by induction on the number of

summands r.

Clearly this statement is true for the case of a single summand, because they

equate the exactly the same expression.

Now suppose that this statement holds true for r summands.

max
a(r)∈{1,...,n}

crXa(r) + max
a(r−1)∈{1,...,n}
a(r−1)6=a(r)

cr−1Xa(r−1) + ... max
a(1)∈{1,...,n}

a(1)6=a(2),a(3),...,a(r)

c1Xa(1)




=

max
{a(1),...,a(r)}⊂{1,...,n}

{
crXa(r) + ...+ c1Xa(1)

}
(4.73)

We can use this inductive hypothesis to simplify the claim for r + 1 summands.

max
a(r+1)∈{1,...,n}

cr+1Xa(r+1) + max
a(r)∈{1,...,n}
a(r)6=a(r+1)

crXa(r) + max
a(r−1)∈{1,...,n}

a(r−1)6=a(r),a(r+1)

{
cr−1Xa(r−1)+

... + max
a(1)∈{1,...,n}

a(1)6=a(2),a(3),...,a(r),a(r+1)

c1Xa(1)

}


=

max
a(r+1)∈{1,...,n}

{
cr+1Xa(r+1) +

[
max

{a(1),...,a(r)}⊂{1,...,n}\{a(r+1)}

{
crXa(r) + ...+ c1Xa(1)

}]}
(4.74)

We can move the term cr+1Xa(r+1) inside the inner max because it is not a function

of the arguments being maximized.

= max
a(r+1)∈{1,...,n}

{
max

{a(1),...,a(r)}⊂{1,...,n}\{a(r+1)}

{
cr+1Xa(r+1) + crXa(r) + ...+ c1Xa(1)

}}
(4.75)

We are now maximizing a single expression first over two sets of arguments. However

89



the arguments are guaranteed to have no intersection, so it is possible to evaluate

both simultaneously.

= max
a(r+1)∈{1,...,n}

{a(1),...,a(r)}⊂{1,...,n}\{a(r+1)}

{
cr+1Xa(r+1) + crXa(r) + ...+ c1Xa(1)

}
(4.76)

Which is equivalent to:

= max
{a(1),...,a(r),a(r+1)}⊂{1,...,n}

{
cr+1Xa(r+1) + crXa(r) + ...+ c1Xa(1)

}
(4.77)

Therefore maximizing the two expressions are one in the same.

Lemma 7. Let c1, c2, ...cr ∈ R(1×n) and X1, X2, ..., Xn ∈ R(n×1) and Suppose ∃λ

such that every vector c1, ..., cλ−1 strictly dominates every vector cλ, ..., cr in every

component. Then the first a(1), ..., a(λ− 1) arguments which maximize

max
{a(1),...,a(r)}⊂{1,...,n}

{
c1Xa(1) + ...+ crXa(r)

}
(4.78)

will also maximize

max
{a(1),...,a(λ−1)}⊂{1,...,n}

{
c1Xa(1) + ...+ cλ−1Xa(λ−1)

}
(4.79)

This lemma states that in solving the large combinatorial maximization of lemma

6, it will be sufficient to consider a truncated expression if the coefficients cr eventually

become strictly smaller than the first coefficient c1.

Proof. Notice that if every vector c1, ..., cλ−1 strictly dominates every vector cλ, ..., cr

in every component, then this problem can be solved in two discrete stages without

any loss of optimality. That is the first 1, ..., λ− 1 terms can be maximized without

regard to the final λ, ..., r terms.
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We now combine Lemmas 6 and 3 to further reduce Theorem IV.2.

Theorem IV.3. At every time t = 1, 2, ..., T , let r = T − t. If C∗(r) holds at time t,

then there exists λ such that, to find the optimal patient to screen, it is sufficient to

consider

max
{a(t),...,a(t+λ)}⊂{1,...,n}

{
Xa(t)ρ+Xa(t+1)τuρ+ ...Xa(t+λ)τ

λ−1
u ρ

}
(4.80)

Furthermore, it is optimal to screen patient a(t) at time t.

Proof. We know from Theorem IV.2 that the optimality equation at time t is

Vt(Xt) = max
a(t)=1,...,n

{
Xa(t)ρ+ max

a(t+1)=1,...,n
a(t+1)6=a(t)

{
Xa(t+1)τuρ

+ ... max
a(T )=1,...,n

a(T )6=a(T−1),a(T−2),...,a(t)

{
Xa(T )τ

r
uρ
}}}

(4.81)

However we can apply Lemma 6 with cr := τ ruρ to turn this optimality equation

from a sequence of nested maxes into a combinatorial maximization.

Vt(Xt) = max
{a(t),...,a(t+r)}⊂{1,...,n}

{
Xa(t)ρ+Xa(t+1)τuρ+ ...Xa(t+r)τ

r
uρ
}

(4.82)

Furthermore, we know from Lemma 3 that there exists λj such that [τ ru ]j is strictly

less than [τ 1
u ]j, ∀r > λj. So define λ := max

j
λj. Since our coefficients satisfy the

strict domination requirement of Lemma 7, and it can now be applied with cr := τ ruρ.

Therefore to find the optimal patient to screen now, it is sufficient to consider the

problem

max
{a(t),...,a(t+λ)}⊂{1,...,n}

{
Xa(t)ρ+Xa(t+1)τuρ+ ...Xa(t+λ)τ

λ−1
u ρ

}
(4.83)
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4.3.5 Managerial Insights

The optimal policy dictated by Theorem IV.3 gives us several insights into the

nature of effective screening. The most immediate lesson is that it is not necessarily

optimal to screen the patient most likely to currently have early-stage cancer. One

can construct a set of belief states where myopic behavior will not be optimal. This

is due to the fact that the future value of learning may outweigh the current value of

detecting cancer. This may come as a surprise to many clinicians.

In fact, the dependance of our policy upon the transition probability matrix τU

tells us how disease progression will influence optimal behavior. A more aggressively

evolving disease will encourage the screening of patients with current higher risk

of early-stage cancer, whereas a slower evolving disease will shift optimal screening

decisions towards patients for whom less is known, placing more benefit upon learning.

The knowledge of a disease’s evolution and natural history can guide clinicians on

how to trade-off between exploration and exploitation.

It is surprising that the observation probability matrix Ω is absent from Equation

(4.80). Ω was used to update belief states upon past observations, however it should

not influence future behavior. The relative value of screening a patient derives solely

from their predicted disease progression given their current belief state, and not on

any potential belief states that could result from future learning.

We can gain further insight into efficacious screening behavior by looking at the

structure of the policy. The expression in Equation (4.80) is precisely the expected

value of screening patient at now, at+1 in the next period, then at+2 and so forth

for the next λ periods. A clinic only need to consider a time horizon of λ periods

into the future in order to behave optimally in the current period. Interestingly, λ is

guaranteed in Theorem IV.3 to only be a function of τU which captures the disease

dynamics. In particular, λ is the same, regardless of the distribution of belief states

Xt, the number of time periods remaining t, and even the panel size n. Therefore,
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as long as Theorem IV.3’s conditions continue to hold, the same truncated planning

horizon can be used for all clinics screening the same disease, regardless of size and

situation.

4.4 Case Study

The analytical results derived in the first part of this paper will now be evaluated

in a numerical case study. We develop a computer simulation of a panel of patients

at risk for HCC who are screened according to both our policy and current practice.

Individual patient disease progressions, as well as outcomes of hypothetical screening

events, are drawn from historical patient data. IRB approval was obtained for the

collection and usage of the data for this study (HUM00088566).

4.4.1 Sources of Data

Longitudinal data on disease progression for patients at risk for HCC were ac-

quired from two independent sources: the Hepatitis C Antiviral Long-term Treatment

against Cirrhosis clinical trial (HALT-C), and the University of Michigan Health Sys-

tem Hospital’s records (UM). The characteristics of the two datasets are given in

Table 1.

The HALT-C dataset followed 1050 patients for an average of 5.3 years. The

level of alpha-fetoprotein (AFP) was measured every 3 months for the first 3.5 years,

then every 6 months thereafter on a voluntary basis. Patients received an ultrasound

imaging every 6-12 months. 946 patients remained after our exclusion criteria of

having fewer than 2 AFP readings, and/or any AFP reading more than 5 standard

deviations above the mean.

For the UM dataset, the authors manually collected individual patient charts of

all patients enrolled in the hospital’s HCC screening program from the dates of May

1, 2004 to May 1, 2014. From these charts, we extracted all relevant demographics
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Characteristic HALT-C (N=946) UM (N=820)
Age at Baseline (years) 50.2 ± 7.2 55.9 ± 11.0
Ever a Smoker 75.3% 57.7%
Length of Follow-up (years) 5.3 ± 1.8 3.3 ± 1.2
Time Between Screenings (days) 126.3 ± 29.7 205.0 ± 77.8
% Developed Cancer 7.7% 5.0%

Table 4.3: Summary statistics of the two independent datasets used. Statistics are
reported as mean ± standard deviation.

and screening results related to disease progression. In total, 820 patient charts met

the inclusion criteria of (1) having at least 2 AFP readings on record, and (2) having

at least 1 abdominal imaging on record.

The HALT-C dataset was used to parameterize the analytical model. Clinical

trials benefit from strict inclusion criteria, as well as the more regularly administered

screenings, thus giving a better estimate of the underlying disease progression. We

then applied the parameterized model to a simulation built upon the UM dataset,

for a better estimate of how our policy would perform in practice with complications,

such as non-adherence and co-morbidities.

4.4.2 Model Parametrization

To implement our screening policy, the decision maker needs three components:

(1) τ , the transition probability matrix which reflects the decision maker’s beliefs

about how the disease progresses (2) Ω, the observation probability matrix, which

will be used to update the decision maker’s beliefs upon observing screening results,

and (3) the function β(·), which translates baseline information of newly entering

patients into initial belief states.

Figure 4.9 provides a graphical depiction of how the HALT-C dataset was used to

obtain these three necessary components. The HALT-C dataset contains two types

of patient records: (1) the date and value of each patient’s AFP readings over time,

and (2) risk factors for HCC for each patient, measured at baseline enrollment. This
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Figure 4.9: The use of the HALT-C dataset to parameterize the model.

baseline information includes age, race, smoking status, blood platelet count, alkaline

phosphatase level, and presence/absence of esophageal varices.

We now provide the numerical values determined from parameterizing our model

to the HALT-C dataset. To determine the discretized definitions for AFP observa-

tions, we used the 33rd and 67th percentile of all AFP readings observed throughout

the history of HALT-C. We provide the thresholds to divide a patient’s risk score into

discretized ranges in Table 4.4

Low Risk 0 - 0.039
Medium Risk 0.040 - 0.069
High Risk >0.070

Table 4.4: Definition of continuous risk scores as discretized risk classes.

These are the transition probabilities between those risk classes as a result of those

definitions in Equation 4.84.
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τU =



Low Risk Med Risk High Risk Early Cancer Death/Late

Low Risk 0.976 0 0 0.018 0.006

Med Risk 0 0.973 0 0.021 0.006

High Risk 0 0 0.966 0.028 0.006

Early Cancer 0 0 0 0.872 0.128

Death/Late 0 0 0 0 1


(4.84)

We then provide the thresholds to divide AFP into discretized ranges in Table

4.5, followed by the probability of observing each range as a function of risk class in

Equation 4.85. Together, these compose the parameters τU and Ω used in our case

study.

Low AFP Reading 0 - 2.39
Medium AFP Reading 2.40 - 4.39
High AFP Reading >4.40

Table 4.5: Definition of continuous AFP readings as discretized observations.

Ω =



Low AFP Med AFP High AFP

Low Risk 0.40 0.35 0.24

Med Risk 0.22 0.32 0.46

High Risk 0.05 0.28 0.67

 (4.85)

To determine the discretized risk classes, we performed a logistic regression on

baseline risk factors and AFP readings against the development of HCC, similar

to the methods in Lee et al. (2012a). This logistic model resulted in a risk value

associated with each patient reflecting his/her predicted probability of developing

HCC, given AFP information. We then performed a k-means cluster analysis of these

scores. A choice of 3 clusters was decided for this model, because it achieved the
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minimum Akaike Information Criterion (AIC) of 7.09.

Once the definitions for discretized risk classes and AFP observations were deter-

mined, model parameterization was performed in a frequentist approach. To obtain

the desired observation probabilities, we counted the number of times each discrete

screening outcome was observed for all patients of a particular discrete risk class,

and then divided by the total number of times patients in that discrete risk class

were screened. To obtain the transition probabilities, we counted the number of early

stage cancers developed, then divided it by the number of 30 day periods patients of

a particular risk class did not develop cancer. Under the assumption that patients

in the dataset evolved according to the model proposed, this method provides the

maximum likelihood estimate for the desired transition and observation probabilities.

Lastly, the decision maker requires the function β(·) in order to initialize the

beliefs over new patients entering the simulation. Presumably, the decision maker

would have complete knowledge of the baseline risk information of the patient (i.e.

age, race, smoking status) but none of the future AFP-related risk information. We

parameterized a logistic regression without any future AFP information, in order to

produce a Baseline Information Only (BI) risk score.

We then parameterized an ordinal logistic regression on the BI risk score to esti-

mate how the BI only risk score predicted a patient’s true discretized risk class. This

analysis provided us with the function β(·) which translates a patient’s BI risk score

into probabilities of being a particular discretized risk class, C. The results of this

analysis are shown in Equation (4.86).

Pr(C ≤ j) =
1

1 + e−(−αj+βBI)
for j = Low, Medium, High (4.86)

β = −22.59, αLow = 4.10, αMedium = 8.09

Once the model is parameterized, we tested its performance through a computer
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simulation built upon the UM dataset.

4.4.3 The Screening Simulation

Figure 4.10: Discrete event simulation event logic.

The discrete event simulation event logic is depicted graphically in Figure 4.10,

similar to that of Chapter III. The simulation keeps track of three intermediate statis-

tics: E, early stage cancers detected, L, late stage cancers detected, and X, screenings

spent on patients who eventually develop cancer.
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The simulation begins by building an initial patient panel P . The simulation

chooses a historical patient from the UM dataset, with replacement, to fill each of

the |P | panel slots. From this point on, there are two separate sets of knowledge:

1. P , the true disease history of each patient according to HALT-C, including all

AFP readings, and if/when each patient first develops cancer. P is made of

two subsets: C patients who will eventually develop cancer, and N the patients

who will not. Note that the policy is unaware of which patients will and will

not develop cancer.

2. B, the decision maker’s belief state of the patients in P . B is initialized by

using the function β(·), which translates baseline information about a patient

into an initial belief state.

Once the simulation is initialized, the main loop begins. Each decision epoch

begins by querying the screening policy for which patients S ⊂ P to screen, given a

current belief B. We screen multiple patients per period (see Section 4.4.4) because

operational procedures often require patients to be scheduled in batches.

For all patients who are chosen to be screened who will never develop cancer,

S ∩N , we find the two AFP readings in UM which are closest in date to the current

simulation date t, and generate a new reading for this patient via linear interpolation.

This will then be used to update the decision maker’s belief state of this patient in

B through the usage of Ω according to the Equation (4.26).

For all patients who are chosen to be screened who will eventually develop cancer,

S ∩C, we increment the statistic X by |S ∩C| to record that we have efficiently used

a screening. Next, we check the patient’s true disease state by comparing the current

simulation date t to each patient’s date of cancer development in UM.

If a chosen patient is cancer-free, as for patients in S ∩ N , we perform the same

process of generating a new AFP reading and updating the decision maker’s belief
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about this patient in B.

If a chosen patent is currently in early-stage cancer, we assume it is detected with

perfect accuracy, increment E by 1, then replace this patient in P with a new patient

drawn from UM. B is also updated via β(·), according to the newly incoming patient’s

baseline information. Similarly, if the chosen patient is currently in late-stage cancer,

we increment L by 1, and replace this patient in P in the same manner, we update

B accordingly for this new patient.

For all unscreened patients P \ S, no new information will be observed. However

the decision maker still knows that their underlying disease will progress, and therefore

their beliefs are updated through τU according to Equation (4.24).

Lastly, before the beginning of the next decision epoch, we search for patients who

leave the screening program, D, before the next time period. The patients in UM

may have left voluntarily, due to cancer-related death, or due to non-cancer related

death. These patients are replaced in P and their corresponding belief state in B is

updated according to their chosen replacement. We increment the penalty statistic

L by |C ∩D| for any cancer patients who expired from the system, due to the failure

to detect their cancer.

4.4.4 Implementation of Our Policy in Practice

The policy developed in Theorem IV.3 is not conveniently implementable within

most common hospital operations. Most hospitals and screening clinics set their

schedules and appointment in batches, and it would not be convenient to execute a

screening policy which must alternate between screening a single patient, observing

their result, then setting an appointment with the next single patient. Therefore, we

adapt our policy to screen multiple patients in each decision epoch in order to create

a policy which is implementable within the operational capabilities of a real clinic.

For this reason, in our case study, the decision maker will use the following mod-
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ification of the derived optimal policy: in each decision epoch, given a set of current

belief states {X1, X2, ..., Xn}, solve the problem:

max
{a(1),...,a(s)}⊂
{1,...,.n}

{
Xa(1)R +Xa(2)τR +Xa(3)τ

2R + ....+Xa(s−1)τ
s−2R +Xa(s)τ

s−1R
}

(4.87)

where s is the number of patients needed to be screened every 30 days to achieve

an equivalent rate of screening as current practice. The modification of the optimal

policy will be to screen all patients Xa(1), ..., Xa(s), instead of just the single patient

Xa(1). Notice that this policy has no guarantee of optimality for the problem where

multiple patients are screened each period. Nevertheless, we will demonstrate that

this policy performs very well in practice. It should be noted that solving multi-

armed bandits with multiple plays have been shown to be non-trivial (see Pandelis

and Teneketzis (1999)).

The combinatorial optimization problem in Equation (4.87) has computational

complexity O(
(
n
s

)
m3s2), when there are n patients, s screenings per period, and there

are m risk types. Exact solution to this problem would be too time consuming to

implement realistically at our partnering hospital, even for modest problem sizes. We

sought to develop a computational heuristic which estimates Equation (4.87) with

high accuracy and significantly less time than an exact solution.

The key idea behind our algorithm is that while Equation (4.87) is difficult to max-

imize combinatorially, it is simple to maximize each summand individually. Therefore,

we propose to randomize the order of the summands, and to choose a belief state,

without replacement, to maximize each summand. This construction of the desired

expression may be suboptimal. To alleviate this, the randomized process is repeated

for R runs, constructing a new expression in each run. Upon termination, the algo-

rithm outputs the k belief states which achieved the highest value across all runs.
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Figure 4.11: Pseudocode for the heuristic solution algorithm.

Note that this algorithm has computational complexity O(nm2R), where the runs

parameter, R, can be chosen to trade-off between accuracy and speed.

Our heuristic was tested against an exact solution of Equation 4.87 on a small

tractable problem. For 1000 iterations, 10 patient belief states were chosen from the

pool of initial patient belief states used within the case study simulation. Within each

iteration, both the heuristic and the exact solution were queried for which patients

to screen if 5 screenings were available in each period. This test was executed at

5 separate levels of heuristic strength R = 100, 200, 300, 400, 500. The results are

shown in Table 4.6, where * indicates a comparison to the exact solution value or

exact solution run time.
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Heuristic Used 100 runs 200 runs 300 runs 400 runs 500 runs
Matched Exact Solution 58% 83% 93% 96% 99%
Average Solution Value* 99.91% 99.98% >99.99% >99.99% >99.99%
Average Run Time* 5.79% 11.59% 17.38% 23.11% 29.89%

Table 4.6: Performance of the combinatorial optimization heuristic at various
strengths, compared to an exact solution.

The two methods were compared on three performance metrics (1) the percentage

of the 1000 iterations where the heuristic solution matched the exact solution, (2) the

average value of the heuristic solution, compared to the value of the exact solution,

and (3) the average run time of the heuristic, compared to the run time of the exact

solution. The heuristic is extremely efficient at finding good solutions to the combi-

natorial optimization problem. Even at the most expensive strength of 500 runs, the

heuristic requires less than a third of the time as the exact solution, while finding the

same solution in 99% of the scenarios.

4.4.5 Case Study Results

The simulation of current practice and our policy were tested on 6 different panel

sizes of 50, 100, 150, 200, 250, 300 to imitate clinics of various sizes, each for 100 it-

erations. Each time the simulation queried our policy for a decision, the heuristic

was employed at a strength of 500 runs. All simulations were run in MATLAB

v.8.5(R2015a). For each initial patient panel, we tested whether the condition C∗(r)

in Theorem IV.3 which dictated our policy was violated. In 100% of the tested sce-

narios, the sufficient condition was satisfied. These initial tests indicate that our

problem does warrant the usage of Theorem IV.3 in our case study parameterized to

liver cancer.

Figure 4.12 shows that our policy is able to detect, on average, 22.2% more early

cancers per year. This increase in performance comes at no additional cost to the

decision maker, as our policy used the same number of screenings every 30 days as
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current practice, yet only differed in the choice of patients screened.

Figure 4.12: Detection rates of our policy vs current practice, with 95th percentiles
across all iterations.

While early stage cancer detection is the primary objective of any screening pol-

icy, we can measure the auxiliary benefits of a smarter screening policy through other

metrics. Figure 4.13 displays the percentage of screenings spent on patients who

eventually developed cancer. On average, our policy spends 30.5% more of its re-

sources on cancer developing patients than current practice. This benefit is two-fold:

more resources are spent on those patients who need it, and unnecessary time, costs,

and psychological distress are saved for patients who ultimately do not develop the

disease.

Additionally, we compare the performance of the two screening policies on a more

focused scope. Figure 4.14 shows that, if we only consider patients who developed

cancer, 19.6% more of these patients would be detected while still in early stage.

This proves that our policy translates into better health outcomes for these critical

patients.

While the parameterizations of our models was done in the most intuitive way

104



Figure 4.13: Resource usage of our policy vs current practice, with 95th percentiles
across all iterations.

Figure 4.14: Health outcomes of our policy vs current practice, with 95th percentiles
across all iterations.

possible, and in a way which is consistent with concurrent medical screening opti-

mization literature, it is still fair to question whether the estimates of beliefs about

patient risk are accurate. This concern is alleviated by the performance of our policy

which depends upon these beliefs for decision-making. Our policies’ numerical success
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serves as high level validation of our underlying disease and belief models.

In summary, Figure 4.12 demonstrates that our approach outperforms current

practice in the primary clinical outcome of interest. Figure 4.13 provides deeper

evidence that our policy is highly effective at identifying patients of higher risk, and

allocating screenings to them accordingly. Lastly, Figure 4.14 demonstrates that our

policy not only screens the correct patients, but at the critical times needed to improve

health outcomes.

4.5 Discussion

In this paper, we considered a novel framework to screen a population for liver

cancer while simultaneously considering disease progression and resource availability.

We modeled the problem as a restless bandit problem, and derived an optimal policy

and investigated its structural properties. We addressed its computational complexity

by reducing the number of sufficient conditions, as well as simplifying its structure, so

that it could be implementable within a clinical setting. Lastly, we parameterized this

model with clinical trial data, and demonstrated its numerical efficacy in a computer

simulation built upon historical patient data.

The policy derived in this paper has an easily interpreted structure which provides

several intuitive suggestions for screening. Namely, it advocates a trade-off between

screening to learn patient risk and screening to detect cancer. Our policy advises

against myopic behavior which may seem like the intuitive choice to many clinicians.

Our research also proves that screening clinics can make decisions using a truncated

planning horizon without any loss of optimality, an observation which simplifies plan-

ning decisions for clinicians. Lastly, the policy remains the same, regardless of panel

size and patient health.

We acknowledge that there are several complications which are not captured in

our model. Patient adherence to screening requests are assumed to be perfect. The
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impact of imperfect adherence could easily be estimated in future modifications to

the case study simulation by adding a fixed probability that a chosen patient does

not receive a screening. Furthermore, the time delays involved with requesting a

screening, performing the screening, and receiving the analyzed results of screening

tests are all assumed to be negligible. Future formulations of our model could start

by adding a fixed delay between the stage when a patient is chosen for screening and

the stage when their belief state is updated. This modification would enable us to

study the impact of time delays upon the structure of the optimal policy. Lastly,

early-stage and late-stage cancer are assumed to be observed with perfect accuracy.

(Note that while the ultrasound is not reliable for tumor diagnosis, it is standard

practice to follow-up any suspicious features in the ultrasound with a CT scan or

MRI, both of which have very high sensitivity and specificity.) Imperfect diagnoses

could be studied in future work both analytically and numerically in a similar vein

to Ayer et al. (2012). While these extensions are possible, we choose to leave direct

incorporation of these features to future work because we believe our work provides a

starting point for understanding how to allocate a limited capacity amongst patients

whose risk is simultaneously evolving.

To study this problem from an economic perspective, one could incorporate the

cost of screenings, and QALYs (quality-adjusted life years) gained by an early cancer

detection. To add in an ethical perspective, one could also place a constraint on

the policy’s maximum permitted time between any screenings for each patient to

guarantee a level of treatment equity. In both cases, our work provides bounds

on the maximum number of early stage cancers detected per year, without these

additional considerations. Furthermore, while our model was tested in the area of

liver cancer, it could be adapted to analogous problems that require detecting a

critical state amongst simultaneously evolving processes with a limited number of

resources. For example, this model could be parameterized to other cancers and
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machine maintenance problems.

The use of bandit problems to healthcare will continue to become more relevant as

expenditure continues to rise and existing infrastructure is further stretched thin. We

hope that this modeling framework, as well as its successful validation with real-world

data, opens possibilities for this methodology to be explored in new applications to

further enhance healthcare delivery.
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CHAPTER V

Conclusion and Future Work

This research applies operations research methods to address problems of how

to simultaneously manage a population of chronically ill patients. We began by

characterizing disease progression so that we could exploit this knowledge for better

decisions. We turned this knowledge over to reinforcement learning based policies,

and found that this knowledge can be learned over time to the advantage of a decision

maker. Lastly, we modeled this problem as a restless bandit, and showed that this

learning could be optimized.

We now turn our attention to issues which would arise from implementing this

policy. We first discuss three areas where we could see these centrally planned policies

being used in the future, as well as for other chronic diseases. We discuss how we

could improve the strength of our base risk models. We then provide two alternative

policies which address potential extensions of our work. We then study how changes

in fixed problem parameters (such as patient panel size and biomarker accuracy) affect

overall performance, and how planners could take advantage of this relationship for

capacity planning. Finally, we address recent developments surrounding liver cancer

screening and provide some concluding remarks.
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5.1 Uses of Centrally Planned Healthcare in the Future

We discuss four sample areas in which we could see a centrally planned healthcare

policy being utilized in the near future.

5.1.1 In the United States

The first setting is in the changing landscape of American healthcare. We have

already established that American policymakers have long recognized the need to

curb overall healthcare expenditure (Orszag (2009)), while accounting for the aging

and increasingly ill population. Our approach is motivated by these circumstances,

and the United States remains the area where we believe it to be most appropriate.

According to the National Center for Biotechnology Information, the United

States is the last remaining developed country in the world without government

provided universal healthcare for its citizens (Vladeck (2003)). Recent political de-

velopments, such as the Patient Protection and Affordable Care Act (more com-

monly known as“Obamacare”), point towards centrally distributed healthcare be-

coming more and more of a reality in this country. However, we do acknowledge that

public approval for these new government provision of healthcare has not yet been

widely accepted by the general public (Conway (2013)).

The largest obstacle we foresee to implementation of centrally planned healthcare

in the United States is the need to change the public mindset on rationing healthcare

spending. The general mindset of American healthcare has been to spare no expense

for optimal health outcomes of every patient, and to allow each individual’s personal

preferences and financial resources to determine the level of care they receive (Singer

(2009)). Our approach does not dictate a patient’s treatment by their preferences

or financial resources, but only by their observed health status, and therefore the

general public may not be receptive to this lack of control over individual treatment.

However, as healthcare spending continues to soar and burden individuals, we believe
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our models could provide financial relief to the population and government. Further

evidence for the potential success of centrally planned healthcare is demonstrated

by the far greater satisfaction with healthcare in similarly developed countries which

provide national health. 44% of Americans are “very dissatisfied” with the availability

of affordable healthcare, as opposed to 17% and 25% in Canada and Great Britain,

respectively (Blizzard (2003)).

5.1.2 In Closed Healthcare Systems

Thinking beyond a centralized system of healthcare for the general public, one

may consider closed systems that already exist in the United States. An example of

such a system is the Department of Veteran Affairs (VA). The VA is an especially

attractive place for our models to be implemented for two reasons: (1) Empirical

studies have shown the VA to have a long history of maintaining accurate and robust

clinical data on their patients (Kashner (1998)), a requirement for our policy to

make proper decisions. (2) With over 150 medical centers nationwide, the VA is the

national’s single largest integrated health network, and its wide coverage has lead

it to be described as “a national resource for clinical research” (Fisher and Welch

(1995)). Historically, the VA has been a pioneer for many new medical technologies

and health delivery systems. We believe an implementation of our screening policies

would fit into the VA’s long tradition translating innovative research into standard

medical practice.

The VA is not, however, without its own unique potential challenges for imple-

mentation of our policies. Recent studies have brought forward issues of patient

equity in the VA. These disparities have been recognized across gender (Hoff and

Rosenheck (1998)), race (Trivedi et al. (2011)), and socioeconomic status (Trivedi

and Grebla (2011)). The VA has even established a Center for Health Equity to

address the importance of these issues. Patient equity would need to be addressed
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before implementation, and we discuss potential ways to modify our policies later in

this chapter.

5.1.3 In Humanitarian Healthcare

Moving outside of the United States, our work may prove to be of use in human-

itarian efforts in developing countries. This is the setting with the most dispropor-

tionately exaggerated difference between population size and available resources, and

thus our approach might be very appropriate. More often than not, the sole objec-

tive in that setting is to improve health outcomes at a population level (Blanchet

and Roberts (2013)), and thus this setting is very much aligned with the presumed

objectives of our model.

In this setting, the healthcare provider distributes resources and services at pre-

sumably no cost to the patients. Some policymakers may object to the usage of our

methods in humanitarian efforts in developing countries because of the lower relevance

of chronic disease in that setting. Typically, screening for infectious diseases could

represent a more pressing matter than screening for chronic diseases. However, death

from chronic conditions in developing countries continues to outweigh deaths from

infection and injury combined (Nugent (2008)). Therefore we argue that improved

management of chronic diseases needs to be considered.

Lastly, consider the following potential advantage of our findings. Many highly

burdened screenings clinics, such as those in humanitarian efforts, are limited by ul-

trasound availability, not AFP blood test availability (Kurjak and Breyer (1986)).

This is for two reasons: firstly, drawing a patient’s blood and analyzing it for AFP

costs far less than an ultrasound imaging. Secondly, AFP blood tests are quick in

administration and evaluation, whereas an ultrasound image requires an appoint-

ment with a trained ultrasound technician, as well as analysis by a medical doctor

for specific image features. Therefore we could imagine highly burdened screening
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clinics being able to simultaneously administer two modifications of our policy: AFP

blood draws for a large proportion of our population, and ultrasounds for a select

few. By essentially separating the problems of exploration and exploitation into sep-

arated problems, a highly burdened humanitarian screening clinic may maximize the

efficiency of their available resources.

A second point to consider in the implementation of our work in developing coun-

tries is the lack of stable and sustainable healthcare infrastructure (Perry (2007)).

Because our model leads to a policy which is administered over time, several aspects

of our problem are assumed to remain constant throughout the planning horizon,

such as the availability of medical professionals, durable equipment, and disposable

medical resources. The modelling of changing environments and resources could rep-

resent a meaningful extension of the models presented in this thesis to be studied in

the future.

5.1.4 In Other Chronic Diseases

We would like to add that our models could be applied to other chronic disease

besides HCC. Although our case studies were parameterized for the setting of liver

cancer screening, the models themselves fit a large number of chronic diseases. For

example, the problems of screening for prostate cancer are very similar to that of

screening for liver cancer. Both problems seek to screen patients during a critical

point in their disease progression, and both problems have a blood biomarker which

serves as a signal of underlying patient risk (Catalona et al. (1993)).

5.2 Re-Parameterizations of Models

The success of the policies developed in Chapters III and IV depend on the

strength of the base risk model developed in Chapter II. Our policies performed

well numerically, despite the fact that the AFP is considered to be relatively weak
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signal of risk compared to other biomarkers of chronic disease. Therefore it would

be natural to investigate how much the policies performance could improve, given a

stronger base model of patient risk.

A stronger base model of risk essentially amounts to a stronger fitting logistic

regression model between individual factors and HCC development. This could hap-

pen in the future in one of two ways: (1) If more robust surveillance data become

available, the prediction of HCC development could be more accurately associated

to individual factors. We could seek out further datasets from hospital charts and

other clinical trials to supplement the HALT-C dataset to accomplish this. (2) Sec-

ondly, medical literature continues to discover new biomarkers for chronic diseases.

We could adapt our models to reflect any future findings in the medical literature to

improve our underlying risk models. As our understanding of what factors predict

tumor development improves, we postulate that our policies based upon these models

would improve as well.

Having discussed potential areas of implementation for our models, the potential

for usage with other diseases, and the prospect of re-parameterizing our model with

stronger base models, we now proceed to discuss three extensions of our work: (1) A

modified policy which limits the maximum time a patient can go without being seen,

(2) A modified policy which balances the competing objective of patient equity, and

(3) A capacity planning tool for new screening clinics.

5.3 Extensions of Our Work: The Maximum Delay Policy

An unfortunate outcome of maximizing population wide health metrics is that

any individual patient may be neglected by the system for long periods of time. The

possibility of this event, however unlikely, could cause our policy to draw criticism,

and so we propose a method to curb these detriments.

We could study a modification of our proposed policy, called the Maximum Delay
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Policy. For a decision maker with n available screenings, the choice of who to screen

could be made in two stages: First, any patient who has not been screened within the

last p periods must be included in the current decision epoch’s screening cohort (or

the next possible period while maintaining feasibility). This ensures a maximum gap

between any two screenings for every single patient, thus providing a minimal level

of guaranteed treatment across the population. Secondly, any remaining screenings

would be distributed according to our existing method. Further modifications may

be required to ensure feasibility when the fixed capacity is insufficient.

Recall Equation 4.3 of Chapter IV, which summarizes the beliefs of all patients

i = 1, .., n, for any state j = 1, ..,m, at any time t = 1, .., T .

Xi,t+1 =



XitΩkτs if a(t) = i and o(t) = 1, ..., p

XitΩEτs if a(t) = i and o(t) = Ē

XitΩLτs if a(t) = i and o(t) = L̄

Xitτu if a(t) 6= i

(5.1)

We would append the state space of the problem with an additional variable, Zi,t

which tells the decision maker how long it has been since the patient was last screened.

Zi,t evolves deterministically in the following way: If patient i was screened at time

t, this counter is reset to 1. If patent i was not screened at time t, then this counter

would increment by 1.

Zi,t+1 =


Zi,t + 1 if a(t) 6= i

1 if a(t) = i

(5.2)

Another key difference from the formulation in Chapter IV is that a(t) was the single

patient i ∈ {1, ..., N} that was chosen to be screened at time t. Instead, we now let
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e(t) be defined as patients who must be screened to achieve minimal equity.

e(t) = patients with p periods since their last screening (5.3)

= {i ∈ {1, .., N}|Zi,t = p} (5.4)

a(t) = patients to chosen to be screened with the remaining available capacity

(5.5)

The last new notation we need is to describe all the choices of combinations of patients

who can be screened. Let R(t) be defined as patients who do not necessarily have to

be screened for equity purposes.

Rt = {i ∈ {1, .., N}|Zi,t < p} (5.6)

Then the power set of R describes all combinations of patients that the decision maker

can choose to screen at time t:

Ct = a(t) ∈ 2R||(a(t)| = N − |e(t)| (5.7)

With this new notation, we can now formulate the dynamic program for the

Minimally Equitable Policy variation. The value of the current state is the sum of

the immediate rewards from patients who must be screened e(t) and the patients we

choose to screen a(t), plus the value of the next state resulting from these choices.

Vt(Xt, Zt) = max
a(t)∈Ct

∑
i∈e(t)

ri,t +
∑
i∈a(t)

ri,t + Vt+1(Xt+1, Zt+1|e(t), a(t))

 (5.8)

For the second portion of studying the maximum delay policy, we could write the

most intuitive analog of our policy adapted to this new two-stage decision process,
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and measure its efficiency numerically. Recall that our policy decides which n patients

to screen according to the following equation:

max
{a(1),...,a(s)}⊂
{1,...,.n}

{
Xa(1)R +Xa(2)τR +Xa(3)τ

2R + ....+Xa(s−1)τ
s−2R +Xa(s)τ

s−1R
}
(5.9)

We could test the numerical performance of this policy in simulation, and analyze

the impact of the maximum time gap p upon the performance of the policy. We would

reasonably expect that (1) our original problem (which is essentially our new problem

with p = ∞ to be an upper bound on policy performance for all other policies, and

(2) the policy performance to be a non-decreasing function of p. We believe that

these two statements would be confirmed numerically, but would be more challenging

to prove analytically.

5.4 Extensions of Our Work: The Equitable Policy

We now consider a second extension to our models: equitable treatment of pa-

tients. As in the previous section, the maximization of population-wide health metrics

pays no regard to the treatment of each individual patient, and as a result, there may

be a perceived disparity in medical attention. To alleviate the potential disparities

in treatment, we could explicitly account for patient equity in the decision maker’s

objective.

We propose a second variation of our policy which more directly addresses the

issue of patient equity. We would do so by adding a weighted term to the objective

function which measures the equity of the patient chosen to be screened. We would

create a measure of equity which encourages screening patients who have not been seen

in a long time, and penalizes seeing patient who have been seen relatively recently.

Consider the following quantity:
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max
i
Zi,t − Za(t),t (5.10)

This quantity represents the difference between the time between screenings of the

patient chosen to be screened Za(t),t and the patient who has not been screened least

recently max
i
Zi,t. By adding this term as a weighted penalty to objective function,

we could penalize inequitable choices to any degree that we choose.

To add an equity consideration to our decision maker’s objective, recall the pre-

vious reward function in our dynamic program:

(r(t)|a(t) = i, o(t) = p) =


0, if o(t) = 1, ..., p

1, if o(t) = Ē

0, if o(t) = L̄

(5.11)

The new reward function would add on our measure of equity with a weighted penalty,

where k is the adjustable weight:

(r(t)|a(t) = i, o(t) = p) =


0 + k ·

(
max
i
Zi,t − Za(t),t

)
, if o(t) = 1, ..., p

1 + k ·
(

max
i
Zi,t − Za(t),t

)
, if o(t) = Ē

0 + k ·
(

max
i
Zi,t − Za(t),t

)
, if o(t) = L̄

(5.12)

Let us consider the impact of this change upon the optimality equation. We begin with

the same generic optimality equation conditioned upon the action and observations:

Vt(Xt) = max
a(t)=1,...,n

{ ∑
k=1,...,p,Ē,L̄

Pr(o(t) = k)

[
(rt|a(t) = i, o(t) = k) + Vt+1 (Xt+1|a(t) = i, o(t) = k)

]}
(5.13)

If we follow the same basic steps of substitution and simplification followed in Chapter
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IV, we would arrive at the following optimality equation for any generic time t:

Vt(Xt) = max
a(t)=1,...,n



p∑
k=1

Xa(t)Ωk
~1 · Vt+1

(
X1τu, ..., Xa(t)Ωkτs, ..., Xnτu

)
+Xa(t)ρ

+k ·
(

max
i
Zi,t − Za(t),t

)
+(Xa(t),E +Xa(t),L) · Vt+1

(
X1τu, ..., Xa(t)ΩEτs, ..., Xnτu

)


(5.14)

All of our previous results should set a numerical upper bound on performance

for any equitable policy (since it corresponds to the k = 0 case).

5.5 Capacity Planning for a New Clinic

One final way to expand upon the ideas of Chapter IV is to see our models as

a component of a larger hospital planning problem. When building a new screening

clinic, it is difficult to balance the costs and benefits of the various clinic sizes. In-

creasing the size of a clinic translates into hiring more staff and doctors, purchasing

more durable medical equipment, and planning for more resource usage. Our model

could provide a way for a new screening clinic to decide these operational parameters.

Recall that the panel size N , and the number of screenings available per period

s, were fixed parameters in Chapter IV. In that scenario, the total number of early

cancers detected could be written in terms of the value function as follows: V0(X0),

given some initial belief state X0. If we expanded this problem to make panel size

N and screening capacity s to be decision variables instead of parameters, we could

write the total expected number of early-stage cancer detections to be

V0(X0|N, s) (5.15)

To complete our analysis, we would require three new parameters:
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1. B the total budget available for operating this screening clinic

2. c the marginal cost of single screening

3. q the value of an early stage cancer detection

Now consider the problem of maximizing the total expected number of early stage

detections gained by a clinic of size N which screens s patients per month for a time

horizon of T months, given an operating budget of B. This could be written as

follows:

max q · V0(X0|N, s) (5.16)

subject to: s · c ·N · T ≤ B s,N ∈ Z+.

Intutitively, we are seeking to maximize the value gained by a screening clinic

using our policy over the entire time horizon q · V0(X0|N, s) without the total cost of

implementing that screening policy going over budget s · c ·N · T ≤ B.

This is a new optimization problem in the variables N and s. Fortunately, the

decision variables s and N are limited to the positive integers, and the constraint

s · c ·N · T is linear in the two variables, which simplifies this problem. The difficulty

of the analysis would lie in the objective function, V0(X0|N, s), which itself an entire

dynamic program.

A natural first approach might be to compute V0(X0|N, s) for all possible val-

ues of N and s satisfying s · c · N · T ≤ B, with brute force. However, this ap-

proach is wasteful, and with some insight, can be reduced. It is reasonable to as-

sume that V0(X0|N, s) is non-decreasing in s. That is, for any two clinics with the

same panel size N , but with differing screening capacities s1 < s2, we should ex-

pect that V0(X0|N, s1) ≤ V0(X0|N, s2). This conclusion is only through an intuitive

interpreation of the problem, and would require formal proof. However, if proven,
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we could avoid computing V0(X0|N, s) for many strictly dominated portions of the

feasible region.

5.6 Recent Developments

In the past year, the FDA has approved Zepatier, which has been shown to cure

Hepatitis C in over 95% of patients (Food and Administration (2016)). This does not

diminish the value of this research for two reasons: (1) The cost of a full drug regimen

required to completely eradicate the Hepatitis C virus costs approximately 100,000

US dollars (Wapner (2014)). The drug Zepatier, while fast and effective, is not yet

a financially viable option for most of the general US population. (2) The drug has

only been shown to be effective on certain genotypes of the disease (Zeuzem et al.

(2015)), therefore a large portion of people with Hepatitis C remain incurable. While

future pharmaceutical developments seem promising for Hepatitis C, we believe more

efficient screening still holds value for many years to come.

5.7 Concluding Remarks

In this thesis, we have given a new operations approach to the surveillance of

populations with chronic diseases. We have contributed to the academic community

by modeling screening problems in more realistic and complex settings. We have

also contributed to the medical community by providing implementable methods of

screening which we demonstrated thoroughly to be superior to current practice. We

believe this is a rich area of research, holding both interest to the academic community

and benefits for society in the future.

121



BIBLIOGRAPHY

122



BIBLIOGRAPHY

Ahuja, V., and J. R. Birge (2016), Response-adaptive designs for clinical trials: Simul-
taneous learning from multiple patients, European Journal of Operational Research,
248 (2), 619 – 633.

Alagoz, O., T. Ayer, and F. S. Erenay (2011), Operations research models for cancer
screening, Wiley Encyclopedia of Operations Research and Management Science.

Altekruse, S. F., K. A. McGlynn, and M. E. Reichman (2009), Hepatocellular carci-
noma incidence, mortality, and survival trends in the United States from 1975 to
2005, Journal of Clinical Oncology, 27 (9), 1485–1491.

Arif-Tiwari, H., B. Kalb, S. Chundru, P. Sharma, J. Costello, R. W. Guessner, and
D. R. Martin (2014), MRI of hepatocellular carcinoma: an update of current prac-
tices, Diagnostic Interventional Radiology, 20, 209–221.

Ayer, T., O. Alagoz, and N. Stout (2009), A mathematical model to optimize breast
cancer screening policy, in Proceedings of the 31st Annual Meeting of the Society
for Medical Decision Making Abstract.

Ayer, T., O. Alagoz, and N. K. Stout (2012), OR Forum-A POMDP approach to
personalize mammography screening decisions, Operations Research, 60 (5), 1019–
1034.

Ayvaci, M. U., O. Alagoz, and E. S. Burnside (2012), The effect of budgetary restric-
tions on breast cancer diagnostic decisions, Manufacturing & Service Operations
Management, 14 (4), 600–617.

Bechhofer, R. E. (1954), A single-sample multiple decision procedure for ranking
means of normal populations with known variances, The Annals of Mathematical
Statistics, pp. 16–39.

Blanchet, K., and B. Roberts (2013), An evidence review of research on health in-
terventions in humanitarian crises, London: London School of Hygiene & Tropical
Medicine.

Blizzard, R. (2003), Healthcare System Ratings: U.S., Great Britain, Canada, Gallup.

Bodenheimer, T., E. Chen, and H. D. Bennett (2009), Confronting the growing burden
of chronic disease: can the US health care workforce do the job?, Health Affairs,
28 (1), 64–74.

123



Bruix, J., and M. Sherman (2005), Management of hepatocellular carcinoma, Hepa-
tology, 42 (5), 1208–1236.

Bruix, J., et al. (2001), Clinical management of hepatocellular carcinoma. conclusions
of the barcelona-2000 easl conference, Journal of Hepatology, 35 (3), 421–430.

Catalona, W. J., D. S. Smith, T. L. Ratliff, and J. W. Basler (1993), Detection of
organ-confined prostate cancer is increased through prostate-specific antigenbased
screening, Jama, 270 (8), 948–954.

Centers for Disease Control (2010), Hepatocellular Carcinoma — United States, 2001–
2006, Morbidity and Mortality Weekly Report, 59, 517–520.

Centers for Disease Control (2016), Deaths and mortality, FastStats.

Chaiteerakij, R., B. D. Addissie, and L. R. Roberts (2013), Update on biomarkers of
hepatocellular carcinoma, Clinical Gastroenterology and Hepatology.

Chhatwal, J., O. Alagoz, and E. S. Burnside (2010), Optimal breast biopsy decision-
making based on mammographic features and demographic factors, Operations
Research, 58 (6), 1577–1591.

Clemen, R. T., and C. J. Lacke (2001), Analysis of colorectal cancer screening regi-
mens, Health Care Management Science, 4 (4), 257–267.

Colli, A., M. Fraquelli, G. Casazza, S. Massironi, A. Colucci, D. Conte, and P. Duca
(2006), Accuracy of ultrasonography, spiral ct, magnetic resonance, and alpha-
fetoprotein in diagnosing hepatocellular carcinoma: a systematic review, The
American Journal of Gastroenterology, 101 (3), 513–523.

Conway, B. A. (2013), Addressing the medical malady: second-level agenda setting
and public approval of obamacare, International Journal of Public Opinion Re-
search, 25 (4), 535–546.

Curley, S. A., C. C. Barnett Jr, E. K. Abdalla, K. K. Tanabe, and D. M. Savarese
(2015), Staging and prognostic factors in hepatocellular carcinoma.

Davies, R., D. Crabbe, P. Roderick, J. R. Goddard, J. Raftery, and P. Patel (2002), A
simulation to evaluate screening for helicobacter pylori infection in the prevention of
peptic ulcers and gastric cancers, Health Care Management Science, 5 (4), 249–258.

Davis, G. L., M. J. Alter, H. El-Serag, T. Poynard, and L. W. Jennings (2010),
Aging of hepatitis c virus (hcv)-infected persons in the united states: a multiple
cohort model of hcv prevalence and disease progression, Gastroenterology, 138 (2),
513–521.

Deo, S., and M. Sohoni (2015), Optimal decentralization of early infant diagnosis
of HIV in resource-limited settings, Manufacturing & Service Operations Manage-
ment, 17 (2), 191–207.

124



Deo, S., S. Iravani, T. Jiang, K. Smilowitz, and S. Samuelson (2013), Improving
health outcomes through better capacity allocation in a community-based chronic
care model, Operations Research, 61 (6), 1277–1294.

Dhamodharan, A., and R. Proano (2012), Determining the optimal vaccine vial size in
developing countries: a monte carlo simulation approach, Health Care Management
Science, 15 (3), 188–196.

Dudewicz, E. J., and S. R. Dalal (1975), Allocation of observations in ranking and
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