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For every parcel I stoop down to seize
I lose some other off my arms and knees,
And the whole pile is slipping, bottles, buns—
Extremes too hard to comprehend at once,
Yet nothing I should care to leave behind.
With all I have to hold with, I will do my best
To keep their building balanced at my breast.
I crouch down to prevent them as they fall;
Then sit down in the middle of them all.
I had to drop the armful in the road.
And try to stack them in a better load.

—Robert Frost, “The Armful”
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Abstract

Decision makers often approach decisions with a divided mind. Rather than having

clear, overall preferences between options, they evaluate them according to many cri-

teria. Worse still, these criteria often conflict in their rankings of options. Such decisions

are hard, but it is clear that they can be resolved in better and worse ways. However,

decision theoretic accounts of rational decision making have little traction on these real-

istic cases. This is because a complete, conflict-free preference order over the available

actions, representable by a formal structure at least as robust as a weak order is typically

understood to be the essential prerequisite for rational action.

There has been very little work on this problem within the philosophical literature;

here, I lay the groundwork for an account of good multiple-objective decision-making.

The first step is to characterize acceptable methods for constructing overall preference

orders from the objective-specific rankings which are accessible to the decision maker.

Here, I consider two such methods.

While there has been little work on multiple-objective decision making within philos-

ophy, the problem has received considerable attention in the decision analysis literature.

In the first chapter, I argue that decision analytic methods for constructing overall pref-

erences are philosophically well-motivated, and explore how they can be applied to some

simple examples of multiple-objective decisions.

In the second chapter, I consider an altogether different approach, which takes at face

value the analogy between an individual decision maker trying to reconcile several ob-

jectives in her decision and a group of several individuals trying to reach a joint decision.
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The thought is that multiple-objective decisions can be modeled as social choices—in the

sense of Social Choice Theory. The challenge is that such an approach seems to run head-

long into the limiting result of Arrow’s Theorem. Against earlier work on this approach,

I argue that Arrow’s Theorem does not apply to individual decisions.
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Introduction

Actual decision makers frequently face decisions that require them to reconcile conflict-

ing commitments, values, or desires, in order to decide between alternatives each of

which is better with respect to some commitments and worse with respect to others.

I refer to such decisions as multiple-objective decisions.

Facing a multiple-objective decision can be disheartening. Often, it can seem to the

decision maker that there are no good ways to reconcile their conflicting commitments,

and thus no good choices. Of course, some of our choices are just hard. Sometimes there

really are no good ways to move forward. That might be all there is to say on the subject.

But perhaps, instead, the decision maker faced with a seemingly intractable multiple-

objective decision is similar to a naı̈ve gambler trying her hand at the tables for the first

time. To the naı̈ve gambler, which bets are good and which are bad may be mystifying.

The games are intricate and risky. Even as she learns the rules, it may not be obvious to

her which features of the game are relevant to the choices she should make, or how she

should consider those features when she makes her choices. It may seem to her that she

has no good choices. After all, decisions under uncertainty are hard.

However, for the naı̈ve gambler, that is certainly not all there is to say on the subject.

Decision theory can help the naı̈ve gambler. Decision theory gives account of which fea-

tures are relevant in her decisions and of how these features should be considered when

she makes a choice. Of course it is not decision theory that makes a given choice good:

the goodness of the choice consists in the way it corresponds to her preferences and her

beliefs. Nonetheless, decision theory illuminates the complex, uncertain decisions of the
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naı̈ve gambler, by providing an account of which choices are good by her own lights.

Perhaps decision theory can be deployed similarly to illuminate multiple-objective

decisions, and to give an account of better and worse choices in these complicated cases.

I am optimistic that it can be. But there is scarcely any philosophical work on how we

might do so. This dissertation explores how we might give a philosophical account of

multiple-objective decision making.

If we are to apply decision theoretic accounts of good decision making to multiple-

objective cases, there is a considerable obstacle to surmount. Decision theoretic accounts

require that a decision maker have at least complete weak preferences over outcomes, or

that her choices meet certain consistency conditions, in order to characterize good deci-

sion making. The theoretical apparatus has no purchase on decisions where such pref-

erences cannot be identified. The challenge is that decision makers faced with multiple-

objective decisions often lack introspective access to such overall preferences between

outcomes. Sometimes a decision maker may have partial preferences over outcomes. But

often, the best a decision maker can do is say whether a given outcome is better or worse

with respect to a given objective.

To gain purchase on multiple-objective decisions, then, we have to give an account of

how the necessary overall preferences can be characterized in these cases. Resolving this

puzzle is the central task of this dissertation. The two chapters here diverge sharply with

respect to the potential solutions they explore.

In the first chapter, I consider the gap between realistic decisions and the sort of for-

mal decision problems that are within the scope of axiomatic decision theory. If axiomatic

decision theory is to help us get traction on realistic decisions, we need to be able to spec-

ify decision problems that aptly represent the realistic cases. The task of specifying such

a representation varies enormously in difficulty. For some realistic decisions there are

obvious, ready-made representative decision problems. But in other cases, specifying
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a decision problem is frustratingly hard. To illustrate the real scope of this problem, I

sketch a rough taxonomy of human decisions, identifying features of realistic decisions

that affect the difficulty of solving the specification problem. I argue that multiple objec-

tives pose the biggest challenge to specifying representative decision problems.

Where philosophy is nearly silent on multiple-objective decisions, considerable progress

has been made on this topic in the field of decision analysis. I give an overview of deci-

sion analysis, and explore its philosophical foundations, arguing that decision analytic

methods for specifying decision problems are philosophically well-motivated. In the re-

mainder of the paper, I give a detailed exposition of how decision analytic methods can

be used to specify representative decision problems for multiple-objective decisions. I

focus principally on a method for analyzing a decision maker’s preferences for particular

attributes of her available outcomes and tradeoffs between them, through which a weak

preference order over outcomes themselves can be determined.

The primary goal of the second chapter is to argue for the possibility of a social choice

theoretic approach to modeling multiple-objective decisions. There is an obvious analogy

between a decision maker facing a multiple-objective decision, whose objective-specific

rankings of outcomes take the form of weak orders, and a group of individuals making a

single objective decision, each of whose preferences over outcome take the form of weak

orders. In both cases, the goal is to go from several weak orders over outcomes, to a

single overall or aggregate weak order over outcomes. However, in cases of group deci-

sions, there is a familiar way to aggregate individual preferences into a single weak order:

voting. Suppose we take this analogy at face value. We can conceive of the individual de-

cision maker’s various objectives as voters, whose votes are expressed by weak orders they

give over the available outcomes. Then we can model an individual multiple-objective de-

cision as a social choice—in the sense of Social Choice Theory. Let a social choice function

be a function from a tuple of weak orders to a single weak order. And we can determine





an individual decision maker’s overall preferences as a social choice function evaluated

on her objective-specific weak orders. This approach faces an obvious challenge from

Arrow’s Theorem. The theorem establishes that no social choice function jointly satisfies

four conditions, which are generally understood as necessary conditions on rationally ac-

ceptable social choice functions. In other words, Arrow’s Theorem entails that there are

no rationally acceptable social choice functions. At first glance, this limiting result seems

to scuttle any social choice theoretic approach to multiple-objective decisions. Conse-

quently, this modeling approach has been flatly rejected wherever it has been considered.

But I argue that this is mistaken. While Arrow’s conditions are well-motivated with re-

spect to group decisions, I argue that the so-called independence condition does not apply

with respect to individual decisions. Thus, I conclude, social choice theoretic models

of multiple-objective decisions should be given more careful consideration. To close, I

consider some questions for future work on this modeling approach.





Chapter 

The Specification Problem: Lessons from Decision Analysis on how to Formally
Represent Real-world Decisions

. The specification problem

Let’s say a decision is the sort of occasion for choice we encounter in our daily lives. We

face decisions whenever its up to us what to do. Decisions range in complexity from the

quotidian—what to wear to work, or where to eat dinner—to the momentous—whom to

marry, or which career to pursue.

Let’s say a decision problem is a formal representation of a decision replete with enough

structure that it falls within the scope of Axiomatic Decision Theory (ADT). Typically

this formal structure will include at least a well-specified domain of events, a well-

specified range of consequences, a well-specified set of actions—understood as functions

from events to consequences, and a transitive and complete order over consequences from

which a family of utility functions over consequences can be derived.

While decisions are ubiquitous and familiar in the wild, decision problems are mostly

hidden away in textbooks and academic papers, and are rarely encountered except by

students and professional academics. In rare contexts like casino gaming, we bump into

decisions for which aptly representative decision problems are fairly obvious. When we

encounter such ready-made decision problems, ADT has obvious and specific practical

Throughout, I’ll ignore debates about which particular formulation of ADT is correct, and write as
though there were a single, univocal formulation of ADT. This is because nothing in this chapter depends
on which formulation of ADT one prefers. Also, I strenuously doubt that any convincing argument could
be made that some particular formulation of ADT is the single, correct formulation.
See: Lin , – for discussion of the standard formal elements of a decision problem in ADT.
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value: It recommends a set of optimal choices. Alas, for the most part, the world we

navigate isn’t furnished with ready-made decision problems.

Instead, our real-world decisions are messy and complicated, having both too little

and too much structure—more on this later—to be aptly or easily represented as decision

problems. Seemingly, the more momentous a decision, the messier and more complicated

it typically is. I’d be underselling ADT if I said it offers no guidance with respect to

our real-world decisions. But if there is a general, practicable lesson to be gleaned from

ADT, it is disappointingly vague. Raiffa  suggests the upshot of ADT is that we

should decide in a manner consistent with our basic preferences for consequences taken

together with our basic probabilistic beliefs about the world (xxxiii). Outside the casino,

the decisions that can be settled by that maxim are few and far between.

Davidson, Suppes, and Siegel  contend that an ultimate goal of decision theory

is to throw light on our everyday decisions (); Weatherson  echoes this sentiment,

charging that “we want decision theory . . . to be applicable to real-life situations.” I agree.

If we are to throw light on our everyday decisions with ADT, we need to be able to specify

decision problems to represent our everyday decisions. Yet, as Lin  notes, “standard

decision theory is silent about which specification is the best one for the agent to adopt

on a particular occasion ().” In the contemporary philosophical literature, there is a

vast gap between the sophisticated formal apparatus of ADT, and our informal everyday

decisions. In this paper, I address how we might close this gap by making progress on the

specification problem.

My objectives in this paper are fairly modest: First, I outline the gap between our

everyday decisions and formal decision problems in more detail. I sketch a coarse taxon-

omy of our everyday decisions, and indicate where we should expect to find ready-made

decision problems, and where things get trickier. Second, I argue that the our prefer-

ences in real-world decisions pose the biggest challenge to specification. The way we
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evaluate consequences in our real-world decisions—in particular in our most significant

decisions—seldom yields an obvious formal representation with a single preference or-

der. Instead, we often evaluate consequences along multiple, potentially conflicting di-

mensions. Third, borrowing heavily from work in decision analysis, especially Raiffa

, Winterfeldt and Fischer b, Keeney and Raiffa , and Keeney , I

explore some methods for structuring formal representations of complex, real-world de-

cisions with multiple objectives, discuss the philosophical foundations of these methods,

and examine how the resultant representations can be brought in line with the axiomatic

constraints of ADT.

The work is here, admittedly, exploratory. The paper raises at least as many questions

as it answers, and I don’t pretend to offer a general, ideal method for formalizing real-

world decisions. To make the chapter accessible to the general philosophical reader, I will

keep the formal details in the background. In the main body of the paper, when jargon

is unavoidable, I use footnotes to clarify the ideas. I revisit some of the formal aspects in

the appendix.

With that said, there are some concepts it’s hard to talk about clearly without a regi-

mented formalism, in particular, the difference between value functions and utility func-

tions, conditional preferences, preferential independence, and risk attitudes. If my dis-

cussion of these matters is somewhat muddy in the main body of the paper, I strive to

clarify it in the appendix.

. The shape of the problem

The gap between our best formal accounts of ideal decision making embodied in ADT

and our real-world decisions is a long-standing worry for decision theorists. In the first

noteworthy monograph on ADT, von Neumann and Morgenstern  recognize that

“the process of mathematization” of any theory, let alone one of human decision, is “not
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at all obvious ().” They are optimistic, though, that factors which initially appear chal-

lenging or impossible to measure or formalize will become more tractable as the theory is

developed. Drawing an analogy to the theory of heat within physics, they note it was the

mathematization of the theory that showed the way to measuring the relevant quantities

(). Given this optimism, it makes sense that von Neumann and Morgenstern  con-

cern themselves principally with developing ADT, and give little consideration to how

we should specify decision problems to represent our real-world decisions. Their hope is

that theory building will help to show the way to theory application.

But by the time of Savage , the analogy of von Neumann and Morgenstern 

to the theory of heat had not altogether panned out. Much work has been done on the

measuring of utility functions—perhaps most important among it Mosteller and Nogee

, but the formal theory had not enabled much progress on the specification problem.

Savage  recognizes the difficulty, noting that our everyday decisions take place in a

world too grand to fit easily within his formal account of decision making (). To attack

decision problems, Savage suggests, we must begin by “artificially confining attention to

so small a world” that it fits within our formalism. But he doesn’t share the optimism of

von Neumann and Morgenstern . He laments, “he is unable to formulate criteria

for selecting these small worlds,” and speculates that no complete and sharply defined

general principles governing how this ought to be done can be discovered ().

Subsequently, the specification problem is scarcely addressed anywhere else in the

philosophical literature. For example, the issue isn’t addressed at all in the next semi-


Davidson, Suppes, and Siegel  takes up the task of experimentally verifying ADT, or at least laying

the groundwork for such experimental verification. The authors express serious concern with the empirical
adequacy of ADT, citing two key reasons: first, that people often seem to simply no meet the conditions of
the models of ADT, and second that ADT has been given no empirical interpretation on the basis of which
its adequacy can be tested. However, the work makes no serious effort to address the specification problem.

I also feel compelled to note that the issue of how to accommodate our every day decisions in both deci-
sion theoretic and logical systems has been taken up enthusiastically in the computer science community,
in particular within the nonmonotonic logic community and formal artificial intelligence communities. In-
deed, there is considerable work on formulating a qualitative decision theory more capable of capturing
our everyday reasoning. For more on qualitative decision theory see: Brafman and Tennenholtz  and





nal work of philosophical decision theory, Jeffrey , except for an oblique suggestion

that decision theory has a “central heartland” where things are tidy, beyond which com-

plexities lurk (). Resnik  does discuss the specification problem, principally to

suggest it’s not a problem of genuine philosophical interest. He also briefly takes up the

question of how we should specify states of the world, and our probability function over

them, and quickly dismisses the regress problem—that is, whether rationality requires

that we always decide how to decide, on pain of vicious regress (–). The specification

problem also gets some attention in a few recent articles, notably, Weatherson , Lin

, and Lin . Weatherson  argues for some constraints on how we capture

our real-life probabilistic beliefs with states and a probability function when structur-

ing decision problems; Lin  develops a qualitative decision theory meant to capture

everyday decisions; and Lin  addresses the regress problem.

I suspect Savage  is right that we won’t find any complete, and perfectly general

way to resolve the specification problem; I certainly don’t have any general solutions

to offer here. In fact, I think the problem is, if not harder, at least bigger even than

Savage  suggests, and that its scope and difficulty are not well-understood, even in

the recent work discussed above. But for this reason alone, Resnik  is dead wrong

that the problem is not of philosophical interest. Whether or not we can identify general

principles for solving the specification problem, recognizing the magnitude of the gap

between ADT and real-world decisions is of independent philosophical interest. I turn

now to sketching a rough taxonomy of human decisions, which will serve to highlight the

real complexity of the specification problem.

Doyle and Thomason . For a general introduction to the role of logic in formalizing everyday rea-
soning within the artificial intelligence literature, see: Thomason  and Thomason Forthcoming. The
latter paper is available upon request from the author.





.. A taxonomy of decisions

I adapt this taxonomy, with additions and simplifications, from work in Wendt and Vlek

, Winterfeldt and Fischer b, and Triantaphyllou .

Decisions are often written about as though they are things decision makers (DMs)

just happen upon, with particular structural features, on which DMs bring their propo-

sitional attitudes to bear. One of the things that becomes obvious, after careful consider-

ation of the specification problem, is that there is a tremendous amount of feedback and

interaction between structural and attitudinal features, and the two are not obviously

or easily separable. Therefore, I take a decision to be the whole package of structural

features constrained by the decision context, and attitudes brought to bear by the DM.

Where appropriate, I’ll flag features of a decision as either attitudinal or structural. Some

features of a decision do not fit neatly into either category.

We can distinguish our real world decisions along at least the following dimensions:

character of beliefs, plasticity, uncertainty, time variability, number of stages, and number

of objectives. I discuss each in turn.

DMs face decisions in real-world contexts. In some cases of decision, the DM has

explicitly quantitative beliefs about how things might turn out in her decision context.

For example, if the DM is considering how to bet in a game of craps, she may believe that

the dice each have six sides, allowing for a total of thirty six possible combinations, with

eighteen distinct rolls under the rules of the game, two of which will constitute a win for

some particular bet. In other cases, the DM has only purely qualitative beliefs about how

things might turn out in her decision context. Lin , , discusses the example of a

DM considering whether to purchase groceries today or tomorrow. The DM is likely to

have some basic, purely qualitative beliefs about when the store is open , say, that it is

See: Wendt and Vlek , ; Winterfeldt and Fischer b, –; and Triantaphyllou ,
Ch. . Winterfeldt and Fischer b was originally published as Winterfeldt and Fischer a and
is available in that format upon request from the Library of University of Michigan, Ann Arbor.
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likely open today, and probably not open tomorrow. In many cases, the DM has relevant

beliefs of both kinds about her decision context. Of course, Bayesian epistemologists

are always keen to formalize qualitative beliefs with quantitative credence functions, but

this has to be seen for what it is: a formalization of basic beliefs that were not obviously

quantitative. So we can distinguish decisions with respect to character of beliefs as purely

quantitative, purely qualitative, or mixed. Character of belief is obviously an attitudinal

feature of decisions.

In some cases, the set of possible choices open to the DM is rigid. That is, the apparent

options are the only options, and this is not open to change. When betting on a game

of craps, the available actions are rigidly fixed by the rules of the game. But in other

cases, the DM can discover or construct additional options by reflecting on the decision

context and her attitudes more carefully. When deciding what to cook for dinner from

the ingredients in the pantry, the set of choices is plastic. Reflection and imagination can

generate new actions. Obviously, plasticity comes in degrees, and it can be observed even

in highly structured games. Subjectively, the choice of strategies in poker is more plastic

than the choice of bets in craps, and the choice of what to cook is more plastic than

the choice of moves in any casino game. So we can distinguish decisions with respect

to plasticity as perfectly rigid, or plastic to any degree, and then further with respect

the degree of plasticity. It’s unclear whether plasticity should be conceptualized as a

structural feature or an attitudinal feature.

Decisions also vary with respect to their riskiness. Sometimes all actions have fixed

consequences, no matter what the world is like. In other cases the consequence of ac-

tions are uncertain, and dependent on how the world turns out to be. So we can dis-

tinguish between decisions under certainty, and decisions under uncertainty. Crucially,

uncertainty—often modeled as a structural feature of the decision—must instead be un-

derstood as an attitudinal feature of the decision, if ADT is to have any normative import
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for actual DMs. In other words, certainty must be understood as a subjective, epistemic

notion, not an objective, metaphysical notion. Thus a decision is uncertain as long as

some relevant features of the decision context on which the consequences of her actions

depend aren’t determinately fixed by her beliefs, even if those features of the decision

context are determinately fixed by the objective state of the world. This isn’t meant to

glibly dismiss the longstanding debate between Bayesians and objectivists about proba-

bility. I have no dog in that fight. Rather, it stems from the same intuitions about what

it means for a model to be normatively relevant that motivate the overall agenda of this

paper. To be normatively relevant, the model must capture the key features of the DM’s

subjective experience of decision making. So it must not treat as certain a decision that is

subjectively uncertain, or treat as uncertain a decision that is subjectively certain.

Sometimes consequences are time-invariant. That is, the consequences of all actions

are received by the DM, or at least determinately fixed, at the same time. For example,

on a bet determined by flip of a coin, the consequences of all betting actions are paid

out—or at very least fixed—when the coin lands. Note that the consequences of the ac-

tions need not be received immediately, just all at some uniform, possibly future time,

in order for the decision to count as time-invariant. But in other cases, the consequences

of some actions are received at different times than others. For example, in a choice be-

tween job offers, some jobs may have different start dates. Time variability occurs even in

highly-structured games. In craps, some bets are won or lost on the next roll of the dice,

but others are won or lost only when the round comes to a close, so some actions’ conse-

quences are determined at different points than others. So we can distinguish decisions

with respect to time variability as either time-invariant, or time-variable.

We can also distinguish single-stage decisions from multi-stage decisions. In a single-

stage decision, each of the initially available actions leads directly, though perhaps un-

certainly, to consequences without requiring a further choice on the part of the DM. In a
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multi-stage decision, some actions themselves lead to further occasions for choice. Sav-

age , of course, suggests ways that we can conceive of multi-stage decisions as single-

stage decisions between more complicated actions (–). But the aim of this taxonomy

is to distinguish decisions in terms of the features they seem to have from the perspective

of the real-world DM.

Finally, in some cases the DM has a single objective guiding her choice and in other

cases, she has many objectives. Throughout, I’ll adopt a very permissive definition of

objective; an objective is anything the DM understands to be at stake in, or hopes to achieve

through, her decision. This definition obviously includes the sort of values we typically

think of as in-play in our decisions—say, moral, aesthetic, or epistemic value—while also

allowing for more mundane and practically directed objectives—say, cost, or comfort, or

wait time. Objectives, then, correspond to features of consequences of actions—Kantian

nonconsequentialist ethical theories notwithstanding.

Objectives typically have an orientation. Roughly, for positively oriented attributes,

the DM aims to be maximize some feature of the consequences of her actions. For neg-

atively oriented attributes, the DM aims to minimize some feature of the consequences

of her actions. She may aim, for example, to be maximally moral, or to minimize wait

time. So, we can distinguish single-objective decisions from multiple-objective decisions,

and we can further distinguish multiple-objective decisions by the number of objectives

in play. Crucially, in multiple-objective cases, these objectives may conflict with one an-

other, in the sense that realizing one may require compromising another.

Thus, we have the following grid of possibilities for a decision: beliefs about the de-

cision context may be purely quantitative, purely qualitative, or mixed; the decision may

be rigid or plastic; the actions may be certain or uncertain; the consequences may be

time-invariant or time-variable; the decision may be single-stage or multi-stage; and the

decision may be single-objective or multi-objective.
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.. Specifying decision problems: From ready-made decision problems to trickier

cases

Within this grid, we can locate cases which seem to come with ready-made decision prob-

lems, and cases for which specifying decision problems is frustratingly hard.

It is obvious that decisions are easiest to model when they involve purely quantitative

beliefs, and are rigid, certain, time-invariant, single-stage, and single-objective. In these

cases, formal decision problems which aptly represent the decision are so obvious as to

be indisputable. Because it takes place under certainty, all that seems to be required to

formally model the decision, and characterize rational decision making behavior, is a set

of options and a weak preference order over those options. From these, we can quickly

specify the rational choice as any of the most preferable options from the set. Indeed, a

complete, conflict-free preference order over the available actions, representable by a for-

mal structure at least as robust as a weak order is typically understood to be the essential

prerequisite for rational action. There is an obvious argument motivating this prerequi-

site: These seem to be the simplest sorts of decisions we can encounter. In order for there

to be a set of best options in the eyes of the DM, she has to have at least a weak prefer-

ence order over her options, therefore having a weak preference order over her options

is a necessary condition for rational action on the part of the DM. Thus, it is typically

taken for granted that a DM will have such a weak preference order over her options.

Some decision theorists like early Savage, simply assume that rational agents will have

For the formally disinclined reader: A weak order, ≺, is a binary relation—that is, a two-term relation—
over a set S, that is reflexive, transitive, and total (or, complete, or connected.) A relation is reflexive if and
only if, for every element a of S, a ≺ a. A relation is transitive if and only if, for every triple of elements,
a,b,c, of S, if a ≺ b, and b ≺ c, then a ≺ c. A relation is total if and only if, for every pair of elements a,b of
S, a ≺ b or b ≺ a. An obvious example of a weak order is the relation of less than or equal to over the natural
numbers; a more colloquial example is the relation of at least as tall as over the set of people.

Weak orders are especially helpful when constructing mathematical models, because whenever we have
a weak order over a set, we can generate a function between elements of the set, and the real numbers,
which respects this weak order. (In fact, we can generate many such mappings.)
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such preferences. Others, like Sen or Hammond, derive this from other assumptions

about rational choice functions, or consistency in choices, together with an account of the

relationship between choices and preferences.

It is equally obvious that the the majority of our interesting, real-world decisions are

not so tidy. Real-world decisions are almost always taken under conditions of uncer-

tainty. However, provided beliefs remain quantitative, and the decision remains rigid,

time-invariant, single-stage, and single-objective, obvious formal representations of the

decision still suggest themselves. In these cases, we begin with a set of mutually exclusive

states and a probability function over these states determined by the DM’s quantitative

beliefs about the decision context, a set of actions understood as functions from states to

consequences, and a weak order over the set of possible consequences determined by the

DM’s weak preferences over those consequences. Each of these components is an obvious

and indisputably apt representation of the real-world decision. Then, using techniques

like those initially suggested in von Neumann and Morgenstern  and later refined

in works like Mosteller and Nogee , we elicit a utility function over the options

available to the decision maker. While the weak order over consequences constrains the

space of admissible utility functions, it is not itself sufficient to determine a specific util-

ity function. Eliciting utility functions requires collection of further information from the

DM, in particular about her preferences for certain two-value lotteries of known proba-

bility and particular consequences. Here, a two-value lottery is understood as an action

that returns one consequence value with some probability, and the other consequence

value with the complementary probability. Though eliciting a utility function is nuanced

and tricky, it is a familiar and well-understood technique within the philosophical litera-

See, for example, Savage , Chs.–
See, for example, Sen , P. J. Hammond , or Sen .
I discuss utility functions further in the appendix, including the difference between a simple value

function over a space of consequences, and a utility function. I also discuss how utility functions can be
elicited.
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ture, so I don’t go into details here. Given a utility function, we can then identify the set

of rational choices for the decision maker.

Even in cases where consequences are time-variable, and the decision is multi-stage,

fairly obvious representations can be structured, by identifying a rate of exchange be-

tween consequences realized at different times,and then applying techniques of aver-

aging out and folding back to represent the decision as a time-invariant, single-stage

decision, for which rational choice behavior can again be characterized by eliciting a util-

ity function corresponding to the DM’s weak preferences over consequences.

Cases in which the decision maker has purely qualitative beliefs, and the decision is

plastic, are somewhat trickier. Still, the formal representations feel familiar once one has

a handle on the formal representations just discussed. Quantitative beliefs representing

qualitative beliefs can be identified using familiar techniques again involving the DM’s

preferences with respect to certain two-value lotteries over consequences of known util-

ity. Plasticity can be dealt with either by representing the decision as multi-stage, with

the first one or more stages understood as choices between distinct sets of actions, or by

modeling the set of actions as a fuzzy set. Roughly, fuzzy sets are sets in which the ele-

ments vary with respect to degrees of membership: some elements can be clearly in the

set, while others are only fuzzily in the set. To model plasticity, we can represent the set

of actions with a fuzzy set in which obvious actions have a high degree of membership,

and less obvious actions have a lower degree of membership. From there, we can again

elicit a utility function for the DM, and—notwithstanding the additional subtleties that

emerge from the double layer of uncertainty introduced if we elect to model plasticity

For further discussion of this see: Savage , Ch. , Jeffrey , Resnik .
See: Keeney and Raiffa , Ch.  for a detailed discussion of discounting techniques over so-called

btime streams of consequences.
See: Raiffa , Chs. – for a detailed discussion of averaging out and folding back applied in

several very tractable example cases.
For further discussion of this see: Savage , Ch., and Resnik , Ch..
See: Klir and Folger , Ch. .
See: Tzeng and Huang , Chs. –.
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using fuzzy sets—define rational choice behavior in the usual way.

In uncertain decisions, structuring a representation of the decision sufficient to char-

acterize rational choice behavior depends on being able to describe a utility function for

the DM over her set of available consequences. This, in turn, depends on the DM hav-

ing clear weak preferences representable as a weak order. Weak preferences are equally

essential in aptly formally representing any decision under certainty. But such weak

preferences can only be assumed to be clear because, thus far, we have considered only

single-objective decisions.

.. The heart of the problem: Decisions with multiple objectives

The majority of real-world decisions, in particular, our momentous life-changing deci-

sions, involve qualitative beliefs, and are plastic, uncertain, time-variable, and multi-

stage. Thus, they are generally toward the trickier end of the spectrum. More impor-

tantly, though, they are typically multiple-objective decisions. For example, when choos-

ing between careers, or between automobiles, or even between caterers for a wedding,

there are always many things at stake in the decision. For that matter, many decisions

that are typically thought of as single-objective—say betting decisions while playing a

casino game—may be better conceived as multiple-objective decisions. Not every casino

gamer plays with the sole objective of winning money. Some players also hope to have

fun, take out-of-character risks, get free drinks, or catch the attention of the attractive

stranger across the table.

Wherever there are multiple objectives, there is the potential for conflict. The job

with the highest pay is unlikely to be the job with the least responsibility. The fastest

car might not be the most fuel efficient. The best reviewed caterer might not offer the

most interesting menu. The boldest, most exciting bet may not be the bet with the high-

est expected payout. The potential for conflict once multiple objectives are introduced
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complicates things enormously. When objectives conflict, even minimally, a DM may not

have clear overall preferences over her available options. Thus, her preferences may not

be obviously representable as a weak order. In good cases, she will at least have objective-

specific weak preferences over her options. That is, in good cases, holding some particular

objective fixed, she will be able to determine whether any of her options is at least as good

at achieving that objective as any other. Even so, her evaluations over her options will be

representable not as a single weak order, but instead as a tuple of weak orders, each cor-

responding to one of her objectives. It is for this reason that I said above that in many of

our everyday decisions we have both less and more structure than is required to specify a

clear, representative decision problem. In multiple-objective cases we sometimes lack ob-

vious overall weak-preferences—there is too little structure—but we instead have many

objective-based weak orders over our options—there is too much structure.

As we saw above, formally modeling even the simplest decisions taken under certainty

in such a way that the decision problem is resolvable with ADT requires that we can rep-

resent the DM’s preferences with a weak order. And representing the DM’s preferences as

a weak order remains essential to modeling increasingly complex cases involving uncer-

tainty, since the weak order is required to determine a utility function for the DM. Thus,

without some way of moving either from a tuple of objective-specific weak orders to a

single overall weak order over options, or directly from a tuple of objective-specific weak

orders to a utility function over options, we find ourselves unable to get any purchase on

multiple-objective decisions with the formal apparatus of ADT. Decisions with multiple

objectives, then, are at the very heart of the specification problem.

Given the ubiquity of multiple-objective decisions in our everyday lives, it is some-

what surprising that they are discussed scarcely anywhere in the philosophical literature.

Ellis  singles out multiple-objective decisions as an altogether “neglected problem”

in the philosophy of decision making, but himself offers no positive suggestions for how
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it might be resolved (). The problem is discussed somewhat in the essays collected

in Elster b—in particular in Steedman and Krause —and Kavka . Steed-

man and Krause  and Kavka  both explore the possibility of using social choice

theoretic techniques to aggregate a tuple of weak orders into a single weak order. Ul-

timately, both dismiss these techniques as dead ends because of the limiting result of

Arrow’s Theorem. I disagree, and take up this issue in my second chapter. Otherwise, the

philosophical literature on decision making is silent on the issue.

Outside philosophy, however, the problem has been addressed extensively within the

decision analysis literature. In the remainder of the paper, I will explore and defend the

philosophical legitimacy of using decision analytic techniques to get formal purchase on

multiple-objective decisions.

. What is decision anaylsis?

It is safe to say that philosophy, as a discipline, has had very little interaction with de-

cision analysis. In terms of academic geography, decision analysis is a research subfield

principally of interest to researchers in operations research, decision and control, man-

agement sciences, behavioral economics, artificial intelligence research, and cybernet-

ics. Decision analysis emerged in the s, spurred along by the pioneering work of

Robert Schlaifer, Ronald Howard, and most centrally Howard Raiffa who, to the best of

my knowledge, first coined the name ‘decision analysis.’ Raiffa, who began his career

in operations research, then completed a Ph.D. in pure math, sought to apply the math-

ematical framework of ADT to the complex and practical problems he had worked on as

He does explore two potential avenues of progress, the decision analytic methods discussed in this
chapter, and the social choice theoretic methods discussed in the third chapter of this dissertation. But he
dismisses both out of hand without much in the way of argument.
Their key early works on the subject include Schlaifer , Raiffa and Schlaifer , Pratt,

Raiffa, and Schlaifer ,Howard , Raiffa , andRaiffa . For more on the origins of deci-
sion theory as a discipline: Raiffa  and Keeney .
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an operations researcher.

It is not surprising that there is no single, widely accepted, clear, and non-trivial

creed of decision analysis. But one gets the sense that decision analysts are quite used

to being asked to explain themselves. Researchers in decision analysis are unusually

concerned with and candid about the aims and scope of their research. Monographs,

handbooks, and introductory texts alike typically include lengthy discussions of these

themes. From these we can distill a fairly brief characterization of the field. Research

in decision analysis focuses on the paradigm of choice in uncertain environments, and

is generally concerned with prescribing practicable methods for making good choices in

complicated, realistic cases. The research is often grounded in empirical science, and is

driven by case-studies of troublesome, large-scale institutional decisions.

Decision analysts generally recognize three kinds of accounts of decision making.

The first are normative accounts of decision making, which characterize ideally rational

decision making behavior. ADT is the standard normative account of decision making

within philosophy. But normative accounts only retain obvious normative force with

respect to those cases in which the gap between a real-world decision and its formal

representation as a decision problem is so narrow as to be disregarded. The second are

descriptive accounts, which characterize the behavior of actual decision makers. The third

are prescriptive accounts, which characterize good decision methods for resolving real-

world decisions. Decision analysis aims to generate a prescriptive account of real-world

decision making under uncertainty.

In particular, he was inspired by the work of the mathematician Abraham Wald, who in Wald  had
developed the statistical technique known as sequential analysis, in which data is analyzed as it is gathered,
rather than after it has been collected in its entirety. In Wald  he then attempted to apply these
techniques to decision theoretic problems. No doubt Wald would have continued to be at the leading edge
of decision analysis research had he not died in a plane crash in .
See, for example: Raiffa , ix–xii; Keeney and Raiffa , vii–xi; Clemen , Ch. ; Tzeng and

Huang , Ch. ; or Parnell et al. , Chs. –.
See Becker and McClintock , –, Raiffa , x–xi; Fischer ; Keeney and Raiffa ,

vii; and J. S. Hammond, Keeney, and Raiffa , Ch. .
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Prescriptive accounts are, by definition, not ideal accounts. Thus they lack the ob-

vious philosophical luster of normative accounts. They lack the precise formal system-

aticity and coherence of ADT, and do not reduce cleanly to a few axiomatic principles.

Decision analytic accounts of decision making fall short of being ideal accounts, because

decision analytic methods do not uniquely generate a single best formal representation

of any given decision. For that matter, it’s somewhat misleading to suggest that there is

a singular, univocal decision analytic method. Rather, there are a variety of techniques

that can be applied to a particular decision in a variety of ways to generate multiple

distinct formal representations, or multiple distinct regimentations of the same formal

representation. Given that there are many different admissible formal regimentations of

the decision, it is no longer reasonable to assume that a single set of best decisions will be

identified. To be clear, though, each model generated by the decision analytic methods

below will identify an indifference class of best actions according to that model. The issue

is that the models themselves, or their precise regimentations, are non-unique.

Despite this, decision analytic accounts of decision making remain philosophically in-

teresting for four key reasons. First, decision analytic accounts of good decision making

embrace the central idea of ADT, that we should decide in a manner consistent with our

basic preferences for consequences, taken together with our basic probabilistic beliefs

about the world. The challenge, from the perspective of decision analysis, is to describe

these preferences and beliefs in a clear and robust enough way that this belief-preference

consistency requirement actually has some traction on our decisions. Thus, decision an-

alysts are especially interested in methods for resolving the specification problem, and

this is philosophically interesting in its own right. This amounts to the second reason.

Third, decision analytic methods can, at bottom, be thought of as techniques for investi-

gating the DM’s beliefs and preferences. In other words, they are not tools for imposing

structure on unstructured beliefs and preferences, but rather are tools for discovering
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preexisting structure in the DM’s subjective attitudes about the decision and extending

it so that ADT has purchase on the decision. Thus, decision analytic accounts remain

essentially subjective accounts of good decision making, where a good decision is picked

out by the relation it bears to the DM’s attitudes. Fourth, as we’ll see below, case studies

in decision analysis reveal feedback between a DM’s preferences and decision analytic

attempts to formally represent them. This suggests that the loosely Humean idea that

our preferences are unassailable or unalterable through acts of reasoning sometimes ad-

vanced in contemporary philosophy is false. As it turns out, the heart may not simply

want what the heart wants. While we may find ourselves nudged this way or that by brute

desires, urges, or appetites, these seem not to be the same thing as all-things-considered

preferences. It is through the latter that our dispositions to act are often mediated, and

where the former may be unalterable through acts of reasoning, the latter are not. After

all, if there are such things as all-things-considered preferences, then consideration en-

ters into the picture somehow, and there may be better and worse ways of carrying out

said consideration. I’ll say a bit more about these matters below, when I reply to some

objections.

Decision analytic methods for formally characterizing decisions typically involve three

phases: option analysis, uncertainty analysis, and preference (and utility) analysis. In the

option analysis phase, the analyst or the decision maker (sometimes the two are the same)

carefully inventories the options available. In the uncertainty analysis phase, the analyst

gathers data about how uncertainty affects the relationship between the choices available

to the DM and their consequences. In the preference analysis phase, the analyst investi-

gates the DM’s reactions to potential outcomes, identifying those features of the outcomes

This idea is sometimes formulated thus: All reasons issue forth from desires, and these desires them-
selves are not within the scope of reason. See, for example, Schroeder . I don’t take issue with this
point, per say. Rather, the claim is that the way desires give rise to reasons for action is frequently mediated
by acts of reasoning. Roughly, which reasons we are given by our desires depends on how we reason about
them to arrive at all-things-considered preferences.
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that are relevant to the decision, and exploring how they affect the DM’s preferences over

them. Naturally, there may be feedback between the phases.

Here I focus on methods for preference analysis in multiple-objective cases. Before

delving into that further, I reply to some worries for this approach.

. Three worries: the end of rationality, conflict means inconsistency, the problem

of regress

Three foundational objections arise at this juncture: We might worry that if decision ana-

lytic methods do not uniquely select formal representations of decisions, then the choices

they recommended can no longer be thought of as rational. Independently, we might

worry that no good account of decision making under conflict can be given, because such

conflicts are indicative of problematic underlying inconsistencies in the DM’s attitudes.

Then there is the problem of regress: if there are several ways we might formally repre-

sent a decision, then we need to make a choice between those representations, but this

choice is itself a decision with many possible representations, and so on down the rabbit

hole of regress. I elaborate on and reply to each of these objections below.

.. Worry No. : The end of rationality

Above I noted that decision analytic methods do not uniquely generate a single best for-

mal representation of a decision, thus, it is a mistake to suggest that they select a single

set of best decisions. Because of this, when applying decision analytic methods, we can

no longer talk in terms of rational choices or optimality. In a sense, once we entertain

methods with non-unique solutions, we’ve come to the end of rationality.

The only reply here is to bite the bullet. We do, in fact, lose access to the concepts of

ideal rationality and optimality when we consider methods with non-unique solutions.

But if the worry is that we somehow fall off a theoretical cliff, and are left with nothing
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interesting to say about decision making, the worry is misplaced. Many scholars who

find themselves thinking carefully about realistic decision problems come to think that

fixation on the ideal of rationality is misplaced and unhelpful. This is evident in the work

of Herbert Simon, Jon Elster, George Ainslie, Christopher Cherniak, Stuart Russell and

Eric Wefald, Gerd Gigerenzer and Reinhard Selten, and Marvin Minsky. Nonetheless,

they all insist and their work stands as testament to the fact that we can still talk cogently

about good and bad decision making.

Decision analysts are the first to admit that applying ADT to complex, real-world

cases is more art than science. But this does not strip us of the ability to talk about better

and worse applications of the theory, or better and worse resolutions of the decision.

Elsewhere, philosophy does not balk at taking up questions of what makes for good art.

And it should not in this domain. In fact, we may be better equipped to talk in terms of

good and bad with respect to decision making, than in most other areas. Here we have

a clear ideal theory: ADT. We also have clear ideal cases: those decisions representable

with ready-made decision problems. We also have a clear general principle to accord

with: decide in a manner consistent with our beliefs and preferences. Further, we can

identify other more specific principles that constrain the methods we apply to analyze

multiple-objective cases. Triantaphyllou , , suggests two: First, any method for

resolving a multiple-objective decision should concur with the ideal theory when applied

to a single-objective case. Second, any method for resolving a multiple-objective decision

should still select the same choice when some non-best option is replaced by another

option that is strictly worse in every respect.

If the best we can aspire to is an aesthetics rather than a science or a logic of decision,

these are unusually sturdy foundations for an aesthetics. Losing access to the concept of

See, for example: Simon , Elster a, Ainslie , Cherniak , Russell and Wefald ,
Ainslie , Gigerenzer and Selten , and Minsky .
See: Raiffa , –.
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ideal rationality doesn’t scuttle further investigations of good and bad decision making;

we can put this objection to rest.

.. Worry No. : Conflict means inconsistency

A cursory review of Gowans , Mason , or Baumann and Betzler  reveals

that philosophers interested in decision under conflict have focused overwhelmingly on

cases patterned after the now-classic example from Sartre . Sartre presents a case

of a young man, torn between patriotic loyalty and filial duty, who must choose between

leaving home to join the resistance, and staying behind to tend to his ailing mother. Deci-

sions like this are hard. They are so hard that many philosophers—among them Socrates

in Plato’s Euthyphro, Jean-Paul Satre, W.D. Ross, R.M. Hare, and Kurt Baier have

suggested that the only way for an agent to resolve such decisions is to qualify, relax, or

get rid of one or other of the value commitments that led her to conflict. Not only is

there no ideal way to resolve such decisions, our best philosophy seems to indicate that

there aren’t even any good ways. Any decision will result in tremendous loss of value and

unavoidable regret.

This intuition that decisions under conflict can only be resolved by relaxing or aban-

doning commitments to one or more of the conflicting objectives is no doubt related to

the belief that systems of commitments (whether to objectives or values) that can give rise

to conflict are problematically inconsistent, cannot serve as bases for reasonable decision

See Euthyphro E to E (Plato , –.)


Nussbaum  and Davidson b characterize Sartre as suggesting that we avoid such conflicts by
improvising our decisions, rather than allowing ourselves to be bound by principle, and plagued by regret.
See Ross .
As Williams , , notes, Hare , , suggests that when faced with conflicting principles, the

agent is to revise or modify as many principles as it takes to eliminate conflict in the case at hand.
As Davidson a, , notes, Baier  allows “only one ultimate moral principle” and “holds that

in cases of conflict between principles, there are higher-order principles that tell which principles take
precedence.” In other words, Baier  argues that whenever we are faced with an apparent conflict in
(moral) values, one of these values is to be respected over and above others. Thereby, he suggests that our
objectives are always arranged in a lexicographic order.
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making, and hence are to be avoided. For example, when discussing moral dilemmas

Davidson a suggests that if we allow systems of moral principles which can come

into conflict, we must altogether give up our ordinary conception of practical reason.

Brink  argues similarly that given certain deontic principles we cannot countenance

conflicts of all-things-considered obligations on pain of paradox. Both authors suggest

that if we are to proceed with practical reason as usual, we must have a system of com-

mitments that allows at worst prima facie conflicts.

We might worry, then, that there simply can’t be any account of good multiple-objective

decision making in any case in which the objectives come into conflict with one another.

But I think we can dismiss this worry for four reasons. First, and most important, even

if conflicts spring only from deficient systems of commitment, this doesn’t throw much

light on what a DM should do when she’s faced with such conflicts. Suppose conflicts only

come from deficient systems of commitment, and a reasonable agent should respond to

these conflicts by revising her system of commitments. Surely some ways of qualifying,

relaxing, or giving up commitments are better than others. Surely some tradeoffs are

reasonable, and some are just crazy. For example, compromise options are frequently

available that respect many of the conflicting commitments to some degree. When such

options are present it’s clearly bad practice to ignore them, but this is not ruled out by

the directive to revise one’s commitments. Even when faced with a simple dilemmatic

conflict like Sartre’s case, it doesn’t seem reasonable for an agent to simply give up and

do nothing at all. If Sartre’s young man simply throws up his hands, and wanders off into

the sunset he’s done something wrong, by his own lights. Yet this is the most obvious way

out of the conflict. Merely counseling a DM to avoid conflict, and where she encounters

it to eliminate her conflicting commitments, doesn’t steer her away from this extreme op-

tion, or give her any guidance regarding good decision making behavior. Philosophy can

See Davidson a, ; see Marcus  for discussion.
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clearly do better in its age-old advice-giving role.

Second, conflicts come in considerably greater variety than the philosophical litera-

ture allows. Cases in which exactly two commitments pull in opposite directions with

respect to exactly two choices are not the norm. Far more common are more complex

cases in which the decision maker has several objectives, and several options. Perhaps

there is a background assumption that the two-commitment, two-option case is the sim-

plest, and that if we cannot resolve this case well, then surely more complex cases will

be out of reach. But this assumption is naı̈ve. Part of what makes cases like Sartre’s chal-

lenging is that there are only two options, each of which is militated against by one of the

objectives. But another part of what makes the case challenging is that there are only two

objectives; the addition of a third objective might help settle the case if the two options

were not equivalent with respect to that objective.

In an often discussed letter directed to a vexed Joseph Priestly, Benjamin Franklin

advocates that tough decisions can be resolved by marshaling our reasons for and against

each option, and canceling out reasons of equal weight, until, if we are lucky, one clear

choice remains. Suppose Sartre’s young man also had a young daughter for whom his

mother couldn’t provide adequate care while he was away. Then going off to war would

have only one mark in favor and two against, while staying home would have two marks

in favor and one against. It’s safe to assume his commitment to his filial and patriotic

duties are of comparable strength, otherwise Sartre’s case wouldn’t have been much of a

bind to begin with. Following Franklin’s method of canceling out reasons of comparable

weight, we’re left with one reason in favor of staying at home—care of his daughter,

and no reasons against, and one reason against going off to war—the same reason, and

no reasons in favor. Thus, the choice seems clear: he should stay at home. This is not

to say that we can or should resolve all of our tricky decisions with Franklin’s method.

See Franklin . The letter is discussed in detail in J. S. Hammond, Keeney, and Raiffa , ,
and also Horty , Introduction.
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Rather, the point is that, despite becoming more complex, the decision actually becomes

easier to resolve when a third objective is introduced. As we will see in more detail

below, additional complexity, rather than impeding decision making, instead sometimes

provides enough structure to identify a good choice.

Third, I think that the tendency to blame conflicts on problematically inconsistent

systems of commitments is in part due to the lack of any decent philosophical account of

good decision making under conflict. The reasoning seems to run like this: The supposi-

tion that the underlying systems of commitment are flawed explains and excuses the lack

of progress toward an account of good decision making under conflict. Conflict reveals

problematic underlying inconsistencies. These inconsistencies preclude good decision

making in these cases. Therefore, there can be no account of good decision making in

these cases, so it’s no wonder we haven’t found one. But this chapter, and this disserta-

tion more broadly, lays the groundwork for such an account. Thus, I’m unwilling to take

for granted that conflicts stem from deficient systems of commitment.

Finally, I think Marcus  argues successfully against Davidson a that the oc-

currence of conflicts does not indicate underlying inconsistency, and Horty  argues

successfully against Brink  that allowing conflicts between all-things-considered

commitments does not give rise to paradox. Getting into the specifics of the Davidson-

Marcus and Brink-Horty debates would take me rather far afield, and in light of the other

reasons just adduced, I don’t think such a digression is necessary in order to disarm this

objection.

.. Worry No. : The problem of regress

Much like the problem of multiple-objective decisions, the regress problem has not re-

ceived much attention within the academic literature on decision theory. Indeed, just

as Ellis  flagged the topic of multiple-objective decisions as a neglected problem
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within the philosophy of human action, Conlisk  complains that regress problem of

deciding how to decide has not been adequately addressed.

Lin  gives a clear and pointed presentation of the problem, that is especially

relevant for my purposes in this chapter. When confronted with a decision, to settle on

a formal representation of a decision is to settle on a way of deciding. In any case in

which a DM is not satisfied with simply fixing the elements of a formal representation

without further consideration or deliberation, it’s open to consider how she should settle

on a formal representation of that decision. Lin writes:

And she may deal with the problem as a second-order decision problem, in
which one decides among many various fixations of the elements in order to
address the first decision problem. This opens the door to higher-order de-
cision problems, leading to a regress. In daily life we stop the regress. The
question is what would make it rational for us to stop the regress. This is what
I call the regress problem of deciding how to decide. ()

Lin argues that the problem of regress is serious enough to completely undercut

Bayesian models of rationality, because no way of choosing between decision problems

will count as rational by the Bayesian’s own lights. He argues similarly against the sorts of

adaptive rationality accounts advanced within the bounded rationality literature, though

he argues that adaptive rationality comes closer to providing a satisfactory solution to

the problem. Ultimately, Lin only suggests the beginning of a solution to the problem,

cashed out in terms of the notion of goal-conduciveness invoked in work on adaptive ratio-

nality. Call a method of resolving a decision robustly goal-conducive if that method would

actually help the DM “achieve her actual goals in every situation similar to the actual

situation ().” Lin argues that for it to be rational for the DM to stop the regress of

deciding how to decide, it is necessary that she not believe that the method she elects is

The problem is discussed only in a handful of places that I’m aware of, among them: Johansen ,
Resnik , Smith , Conlisk , and Lin . Lin  offers helpful summaries of the views in
the other articles.
For an overview of the idea of adaptive rationality see: Gigerenzer and Selten , Introduction.
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not robustly goal conducive. Beyond this, though, he admits its unclear how to specify

further conditions that would be jointly sufficient to rationally stop the regress.

As it turns out, biting the bullet above and backing away from the notion of ideal

rationality eases the burden of responding to this objection. When we shift our interest

away from ideal decision making to better and worse decision making, the question then

becomes, not what would make it rational for us to stop the regress, but which ways of

stopping the regress are better, and which are worse. Thus, we no longer need to achieve

some perfect recursive equilibrium where the decision method recommends itself, in or-

der to forestall the regress. Instead, it is enough to say of some particular method that it

is a good way to stop the regress. From there, it seems that a belief that the decision mak-

ing method is robustly goal-conducive is sufficient to forestall the regress. The key point

is that when we’re no longer worried about ideal rationality, we only need good enough

reasons to stop the regress, and good enough reasons are far easier to come by than ideal

reasons. For example, we can invoke some or other heuristic to forestall the regress. Most

obviously, we could employ a satisficing heuristic constrained by the foundation prin-

ciples principles discussed in §. above, according to which we’d stop the search for a

decision method once we’d hit on one that met these constraints. So, we can also close

the door on this objection.

. Decision analytic methods for structuring multiple-objective decision problems

Fischer  writes:

. . . almost all decisions in fact involve multiple criteria, and these criteria are
often subjective in nature, eluding easy quantification. The essence of good
decision making in such circumstances lies in trading off one goal against an-
other. Mathematical decision making models can be properly applied in such
situations only if these trade-offs can be expressed in quantitative form. ()

The notion of satisficing as a non-optimizing means to resolve decisions originates in Herb Simon’s
work on bounded rationality. See: Simon . Gigerenzer and Selten  discuss a variety of so-called
“fast and frugal” heuristics we might employ to forestall regress here.
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I turn now to methods for structuring such models. Recall that decision analysis typ-

ically divides into three phases: option analysis, uncertainty analysis, and preference

analysis. Here I focus principally on methods of preference analysis, since these are ob-

viously the techniques by which multiple objectives will be accommodated. As noted

above, there is considerable feedback between the preference analysis phase and other

phases of analysis, and I’ll call attention to some of that below.

The key method for modeling preferences in a multiple-objective decision has its first

thorough presentation in Raiffa , but originates in the independent work of Miller

a and Manheim and Hall . I’ll refer to the method as hierarchical decompo-

sition. Since Raiffa , hierarchical decomposition is the dominant method used

to model multiple-objective decisions within decision analysis. The goal of hierarchi-

cal decomposition is to represent each possible decision outcome as a vector of values,

each element of which is associated with a single objective. In some work on multiple-

objective decision making, these vectors are simply assumed as a starting point, and then

subjected to a value function or utility function analysis. But, since my goal in this

chapter is to get some traction on the specification problem for multiple-objective deci-

sions, it is necessary that I discuss how we might arrive at such a vectorial representation

of consequences.


Raiffa , , refers it as a hierarchical method; Fischer ,  refers to it as a decompositional

method. I think the combined term is apt, for reasons that will become apparent. The method is dis-
cussed in detail in Raiffa , and Keeney and Raiffa , but because what follows is an informal and
condensed presentation of ideas distributed throughout these the whole of these works, it is not gener-
ally possible for me to give page-specific citations of this material. Keeney , , presents a concise
overview of the method.
See: Winterfeldt and Fischer a, , or Tzeng and Huang .
For the formally disinclined reader: In single-objective decisions, consequences are typically repre-

sented with a single, scalar, real number values. The real numbers come with a ready-to-hand weak-order
(see my earlier note on weak orders), the relation of less-than-or-equal-to, which is perfect for comparison
of value levels. A vector, on the other hand, is a tuple of values, and there is no single obvious metric
over these tuples that stands in for the less-than-or-equal relation over the real numbers. Consider a toy
example. Suppose we have a room full of one hundred individuals. If we want to sort them individu-
ally by height from shortest to tallest, it is clear how the task should be completed. Each student can be
represented by a real-value scalar—her height in inches—and we can then order these scalars with the less-
than-or-equal to relation. But suppose instead, that the students are arranged in groups of ten, and the
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.. Identifying the decision

The first step in the hierarchical decomposition method is, not unexpectedly, to identify

the decision being made. The essence of the hierarchical decomposition method is to

work downward from this overall characterization of the decision—often somewhat mis-

leadingly referred to as a “goal” in the decision analysis literature—to lower and lower

level objectives, until quantifiable structure emerges. Thus, the overall characterization

of the decision need not be especially concrete, structured, or quantifiable. These fea-

tures will emerge as the analysis continues. However, the overall characterization of the

decision is meant to provide some guidance in how to carry out the rest of the process.

Thus, it should be specific enough that we can ask practically oriented questions about

how to resolve the decision. Thus, decision analysts urge that we avoid characterizations

like, “deciding on what’s best,” or “deciding what to do,” and instead characterize the

particular decision that the DM faces more precisely, like “deciding which bet to place on

the next round of craps.”

Throughout, I’ll illustrate the hierarchical dependence method by reference to two

example cases. In the first case, let us suppose that Chandeep’s old jalopy has finally

died, and she is considering buying one of several distinct new cars that fall within her

price range. In the second case, let us suppose that Dayo is a recent professional school

graduate who is considering accepting one of several initial job offers that have come

from his professional school’s hiring fair. With respect to these cases, we’ll assume that

these obvious characterizations are also correct characterizations of the decisions that

task is to sort the groups by height from shortest to tallest. There is no longer any single, obvious way to
sort the groups. We could sort them by the sum of their heights, or the average of their heights (since the
groups are all the same size these methods will be identical), or by tallest member, or by shortest member,
or by modal height, or by variance in height, and so on. How we elect to sort the groups will depend on
our purposes in sorting them. If we’re picking a basketball team, we might want the group with the tallest
individual. But if we’re picking a crew team, we might want the group with the lowest variation in height
and an average height above a certain threshold. Thus, as we transition from single-objective decisions,
in which outcomes can be represented with scalar values, to multiple-objective decisions which require
vectorial representation, the task of comparing consequences becomes dramatically more complex.
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Chandeep and Dayo face.

Keeney  and J. S. Hammond, Keeney, and Raiffa  suggest it is a mistake to

take for granted the obvious characterization of any decision, and stress that we should

not trivially identify the decision before a DM as a choice between the apparent options.

Reflection on which decision the DM actually faces sometimes reveals that instead of an

apparently rigid decision with obvious options, she faces an altogether different, plastic

decision for which she can generate a considerably wider variety of options. For example,

the obvious characterization of Chandeep’s decision is as a choice between new cars. But

some reflection on her situation may reveal that, now that she has retired her old jalopy,

what she really needs isn’t a new car, but simply a way to get to and from work and occa-

sional recreational destinations. So, perhaps she could consider used cars in addition to

new cars, or she could consider using public transportation and ride sharing services, or

simply bicycling, rather than simply defaulting to buying a new car. And we’ve suggested

that Dayo’s overall goal is to select the right job offer. But some reflection on his situation

may reveal that he should consider applying to additional jobs, or trying to renegotiate

some of his additional offers, or applying for additional schooling, or taking some time

off.

As we discuss these cases further, it will be obvious how characterizing the decision

differently can lead hierarchical decomposition method to produce entirely different re-

sults. For simplicity of presentation, we’ll continue to characterize Chandeep and Dayo’s

decisions in the obvious way, as choices between new cars and job offers, respectively.

.. Identifying the objectives

Once an overall characterization of the decision is identified, we proceed by identifying

the objectives the DM has for her decision. Recall that we’re thinking of an objective as

anything the DM understands to be at stake in, or hopes to achieve, through her deci-





sion. Keeney , suggests we think of identifying the objectives as making explicit

“the values that are of concern in a given decision situation ().” As noted in §. above,

objectives may involve the sort of things we traditionally think of as philosophically in-

teresting values (moral, aesthetic, epistemic), but they may also be more mundane and

practically directed. Recall also that objectives have an orientation. We can distinguish

positively oriented objectives, according to which the DM aims to maximize some fea-

ture of the consequences of her actions, from negatively oriented objectives, according to

which the DM aims to minimize some feature of the consequences of her actions.

Sometimes objectives will themselves be fairly high-level—that is, they will involve

fairly high-level features of the outcomes. Then the process becomes iterative. Holding a

higher level objective fixed, we can identify further sub-objectives achievement of which

constitutes achievement of the higher-level objective.

From this, an objectives hierarchy emerges. Sometimes, especially when hierarchical

decomposition is applied to large scale institutional decisions, it may seem that we can

delve almost arbitrarily deeper and deeper into the objectives hierarchy, without any ob-

vious end. This problem of where to draw the line when constructing an objectives hier-

archy parallels the regress problem mentioned above. I discuss this and related concerns

further in §., after I introduce the notion of attributes.

In the meantime, let’s return to the example cases just introduced. To identify Chan-

deep’s objectives in realizing her decision between cars, we need to identify what she sees

as at stake in her decision, and which features of her options are relevant for realizing her

goal. We can elicit objectives in any of the many ways we would ordinarily try to identify

what someone cares about. One way of generating objectives is to consider means for

realizing the overall goal; another is to consider an imagined ideal option, and identify

its goal-relevant features; still a third is to consider directly how to describe the relevant
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features of the consequences of the decision. Suppose, for example, we ask Chandeep

to describe her ideal car, and she suggests it is affordable, environmentally friendly, safe,

and comfortable. Then we can identify four distinct objectives in Chandeep’s decision:

to minimize cost of ownership, to maximize fuel-efficiency, to maximize vehicle safety,

and to maximize comfort. It is obvious that these objectives can conflict. The cheapest

car simply won’t be the safest car; safety features cost money. And the most comfortable

car is unlikely to be the most fuel efficient, since vehicle size tends to make cars more

comfortable and less fuel efficient.

It may seem something of a stretch to move from Chandeep’s description of her ideal

car as affordable to an objective to minimize cost of ownership. But it is a safe charac-

terization, because if affordability is a goal, then whenever other things are equal—say,

Chandeep is considering the same make and model vehicle at two distinct dealerships—

obvious dominance principles come into play, and it’s clearly the case that Chandeep

should choose the car at the lower price. In general, this is why we understand positively

oriented objectives as objectives to maximize some feature, and negatively oriented ob-

jectives as objectives to minimize some feature of the consequences. Its also likely that in

a real-world car-buying decision, more objectives would come into play. For example, it’s

likely that she would care about the color of the car, the quality of the stereo, the presence

of absence of certain features, and so on. But in the interest of keeping the presentation

here tractable, let’s assume that Chandeep’s objectives are limited to the preceding list.

And let’s suppose that Dayo’s objectives are to maximize his compensation, minimize

his commute time, and maximize his prestige in his field. Again, it is likely that more

objectives would come into play in a realistic decision between job offers, but this is a

difference in complexity, not a difference in kind. So, again, to keep things tractable,

we’ll limit Dayo’s list of objectives.


Keeney , – discusses the process of eliciting a list of objectives, introducing a variety of prac-

tically applicable techniques.
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.. Identifying attributes

Corresponding to each lowest-level objective we then identify one or more attributes. We

can think of an objectives hierarchy as bottoming out in the attributes. These are the

ground level features of consequences that will be formally represented in the decision

problem. Choice of attributes will be highly sensitive to the values of the individual DM

subject to the analysis.

Good attributes will be both comprehensive and measurable features of decision out-

comes. An attribute is comprehensive if, by knowing the level of the attribute in a par-

ticular decision context, the DM can gauge the extent to which the associated objective is

achieved. An attribute is measurable if it is reasonable to obtain a probability distribution

over the possible levels of the attribute for each of the DM’s available actions, and we can

assess the DM’s preferences for levels of that attribute, holding all other attributes fixed.

In decisions under certainty, of course, the task of obtaining a probability distribution

over levels of the attribute for each action reduces to simply determining that attribute’s

level for the certain consequences of each action. Once the set of attributes is fixed, we

can represent each possible decision outcome as a vector of those attribute values.

Keeney and Raiffa  and Keeney  suggest that we can distinguish three kinds

of attributes: natural attributes, constructed attributes, and proxy attributes.

Natural attributes are salient features of outcomes that are obviously apt represen-

tations of the extent to which the associated objective is achieved. Natural attributes are

likely to be familiar and to have a common interpretation to any DM faced with a decision

involving the associated objective. For example, if an individual has the objective to max-

imize her returns in a choice between a variety of investment packages, then net returns

on investment in dollars is a natural attribute for this objective. Or if an individual has

See, Keeney and Raiffa , –,–, and Keeney , –, for discussion of the various
types of attributers
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the objective to minimize her travel time in in her choice between air travel arrangements,

then destination-to-destination time in minutes is a natural attribute for this objective.

Obviously, naturalness of attributes comes in degrees, and value judgments emerge even

in the choice of natural attributes. For example, if maximizing storage space is an ob-

jective in a DM’s choice of homes, a natural attribute is area of storage space in square

feet, but the choice of that attribute involves the value judgment that every square foot of

storage space should be treated equally.

For some objectives, it is difficult to find natural attributes. This is most obvious

with respect to the sort of objectives we think of as qualitative or subjective in nature,

including objectives like maximizing visual appeal in a branding decision, or minimiz-

ing patient discomfort in a medical decision. In these cases, we can sometimes generate

constructed attributes. One common way to generate a constructed attribute is through

a procedure we might call scoring out, in which the DM directly evaluates each of the

options, and assigns to each a subjectively generated numerical score on the basis of her

qualitative experience of the option. There are, of course, more complicated ways of gen-

erating constructed attributes, and the task of generating a constructed attribute may

itself reduce to a small multi-criteria problem. It is crucial to note that the DM need

not care directly about the level of the constructed attribute. If, for example, a DM is

choosing between childcare providers, and maximizing felt rapport with the provider is

one of her objectives, she might score this out to generate a constructed attribute. It goes

without saying, in such a case, that it is not the score, but the rapport itself that she cares

about. The score is merely used as a way to incorporate her qualitative evaluations into

the model.

In other cases, we can sometimes identify a proxy attribute. A proxy attribute is one

that indicates the extent to which the associated objective is achieved, but in some sense,

does not measure this achievement directly. Typically the level of a proxy attribute will
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bear a means-to-end relationship with the associated objective. Suppose a DM has the

objective to minimize degradation of an old painting in her choice of display options.

Degradation itself may be challenging or impossible to measure without thereby damag-

ing the painting, and a constructed attribute may be unreliable or hard to generate. In

this, case, we could use a proxy attribute like UV light exposure. Note that exposure to

UV light is itself a means to degrade the painting, and thus minimizing UV light exposure

is a means to minimizing degradation. So a measurement of UV light exposure, while not

a direct measurement of the extent to which the painting will degrade, is indicative of

that extent.

In some cases, more than one attribute may be required to aptly represent the extent to

which the associated objective is achieved. Here, though, we’ll assume that we can iden-

tify a single comprehensive attribute for each objective. We can make this assumption

without loss of generality. Suppose we are dealing with an objective the achievement of

which is most obviously measured by a tuple of more than one attribute. Then the prob-

lem of distilling from these a single, overall attribute we can use to track the achievement

of the objective is just a multiple-objective decision problem, writ small. Thus the tech-

niques discussed below for distilling a value function from a tuple of attributes can be

applied to construct a single, composite attribute from some tuple of sub-attributes. We

can then treat that value function evaluated at each of the options as a single attribute for

the associated objective.

Like objectives themselves, attributes can also have an orientation. For positively ori-

ented attributes a higher attribute level indicates a higher level of achievement with re-

spect to the associated objective. For negatively oriented attributes, a lower attribute

level indicates a higher level of achievement with respect to the associated objective. In

general, it simplifies an analysis and the resulting model if all attributes are kept pos-

itively oriented. One way to do that is to press for only positively oriented objectives,
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which may be easier to associate with positively oriented attributes. (This is not always

the case: consider the prestige ranking in Dayo’s case below.) But another way is to begin

with an obvious negatively oriented attribute, and transform it into a positively oriented

attribute. Often, the simplest way to do this is to set a upper threshold value, and track

the difference between this threshold value and the actual value of the natural attribute

for each option.

Let’s return to our example cases. Recall that Chandeep had objectives to minimize

cost of ownership, minimize environmental impact, maximize vehicle safety, and max-

imize comfort. Let’s suppose, to keep things simple, that she plans to pay cash for the

car, without negotiating. Then list price of the vehicle is a natural, comprehensive, and

measureable attribute to associate with her objective to minimize cost of ownership. Un-

fortunately, it is a negatively oriented attribute: the higher the list price, the worse she is

doing with respect to the associated objective. But, as just noted, we can easily generate

a natural, positively oriented attribute. We need only identify the maximum list price of

options under consideration, and then track the attribute of savings in dollars beneath

this maximum price.

Minimizing environmental impact, on the other hand, is not obviously associated

with any natural attributes. And, unless Chandeep is herself an environmental scien-

tist with expertise in automobiles, it’s unlikely that she will be positioned to generate a

constructed attribute. So we should consider proxy attributes. Independently estimated

estimated highway miles-per-gallon is a strong candidate for a proxy attribute here. Since

data about the environmental impact of manufacturing processes of automobiles are not

widely available, it’s unlikely Chandeep can learn much more about the environmental

impact of the vehicles she is considering. So estimated highway miles-per-gallon stands

out as both a measurable and comprehensive proxy attribute to associate with this objec-

tive.
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Maximizing vehicle safety is also not associated with any natural attributes. And

again, if Chandeep is not an expert highly proficient in the subject, it’s unlikely that

she herself will be able to generate a constructed attribute. So again, we should con-

sider proxy attributes. In this case, the most plausible proxy attributes are constructed

attributes generated by experts in the field, like independently assessed vehicle safety

ratings. Let’s suppose that Chandeep has special confidence in the safety ratings of a par-

ticular agency; then these ratings serve as a measurable and comprehensive constructed

proxy attribute to associate with this objective.

That leaves maximizing vehicle comfort. This, like many realistic decision objectives,

is a qualitative, and highly subjective objective. It seems we have two obvious choices

here. If Chandeep can actually test-drive all of the vehicles she’s considering—it’s not

a stretch to make this assumption—then she can score out the vehicles with respect to

comfort on some arbitrary scale to generate a constructed attribute. If she is unable to

test-drive the cars, perhaps because she is buying remotely, then she may have to resort

to a constructed proxy attribute as above, like the comfort score assigned to each car by a

trusted independent review of automobiles. Let’s assume that she is able to test-drive the

vehicles, and generates a comfort scale as a constructed attribute.

We now have four attributes associated with her four objectives: savings in dollars

beneath the maximum price, independently estimated highway miles-per-gallon, inde-

pendently assessed safety score, and subjectively scored comfort score. Then we can rep-

resent each possible decision outcome—that is, each car she is choosing between—as a

vector of values of these four attribute values.

Recall that Dayo had objectives to maximize his compensation, minimize his commute

time, and maximize his prestige in his field. For simplicity, let’s assume that all of Dayo’s

job offers feature all-salary compensation packages. Annual salary in dollars is an obvious

natural, measurable, and comprehensive attribute for this objective. There are no natural
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and comprehensive attributes for minimizing commute, but good constructed attributes

are fairly obvious. While it’s unlikely Dayo could simply score out his various options,

he could, for example, research the estimated peak-traffic travel time in minutes for each

possible route to each of his job options, and average these for each option, and then

consider the difference between these values and the maximum estimated time in traffic.

This seems like an ideal constructed attribute that is both measurable and comprehen-

sive. With respect to prestige, we might consider this a purely qualitative objective, for

which Dayo has to generate a constructed attribute. But there might be an independently

established prestige rating of firms which he could use as a ready-made constructed at-

tribute. (Such ratings actually exist for law firms, and investment banks.) For Dayo we

have three attributes associated with his three objectives, and we can represent each pos-

sible decision outcome as a vector of values of these three attributes.

.. Properties of good objectives and attributes

Eliciting an objectives and attribute hierarchy from a DM is a sensitive and tricky process,

and for many decisions there is no single, obviously correct objectives hierarchy. Keeney

and Raiffa  put the point thus:

The objectives hierarchy for a particular problem is not unique. It can be
varied simply by changing the degree to which the hierarchy is formalized.
However, even if the degree of formalization remains unchanged (in the sense
that the number of lowest-level objectives is the same), the objectives hierarchy
can be significantly varied. Whether one arrangement is better than another
is mainly a matter of the particular points the decision maker wish to make.
. . . With different hierarchies, different tradeoffs facing the decision maker can
be more easily identified and illustrated. ()

Nonetheless, we are not adrift without direction here. Hierarchical decomposition is

ultimately a method deployed to a clear practical end: to structure a formal representa-

tion of a real-world decision that simultaneously aptly represents the DM’s attitudes, and

involves the appropriate formal structures to be resolved using ADT. Thus, Raiffa ,
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, suggests that since the elaboration of an objectives hierarchy is not unique, we would

be well advised to choose an objectives hierarchy that enables further analysis. With that

in mind, we can identify some desirable properties of the attributes corresponding to the

lowest-level objectives, and can reasonably stop delving deeper once we’ve reached a set

of attributes with these properties.

A good set of attributes will be complete, operational, decomposable, non-redundant, and

minimal.

A set of attributes is complete if it covers all important aspects of the outcomes. In

other words, given a complete set of attributes, knowledge of all the attribute values for

a given outcome provides the DM with a full description of those features of the outcome

she views as relevant in her decision.

A set of attributes is operational if it can actually be meaningfully applied to the de-

cision at hand. The attributes must be intelligible to the DM, and it must be possible

to actually collect the necessary information about the options to assess either attribute

levels, or probability distributions over attribute levels.

A set of attributes is decomposable if we can break it into parts to simplify aspects of the

analysis. This is especially crucial when the set of attributes is of even moderately large

size. Typically, independence conditions are leveraged to decompose the set of attributes.

I defer discussion of these notions to §. below, since they require the introduction of

some further concepts.

A set of attributes is non-redundant when it avoids double-counting in the evaluation

of outcomes. Double-counting occurs when the same feature of the outcomes are mea-

sured (perhaps in a different way) by two distinct attributes. Suppose, for example, that

in a decision between investment packages, expected return from securities and expected

return from stocks are both used as attributes. Since stocks are themselves a kind of se-
For discussion of desirable properties of lowest level attributes, see: Raiffa , – Keeney and

Raiffa , –; and Keeney , –.
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curity, their impact on the consequences will be problematically counted twice. This will

falsely exaggerate the difference between an investment package which contains some

stocks and one which contains none. Most importantly, redundancies can compromise

the independence properties that can be leveraged to decompose the attribute set.

Provided we have identified a set of attributes with the above properties, it is desirable

to keep it to a minimum size.

Let’s assume that the sets of attributes described for Chandeep’s and Dayo’s cases are

complete. They are also clearly operational, and non-redundant, and seemingly minimal,

since there is no way we could prune them down. I’ll revisit whether they are decompos-

able below in §..

Above I noted that weak preferences are typically assumed to be a necessary condition

for characterizing rational action. In considering how to model multiple-objective deci-

sions we have backed away from this assumption considerably. It would, of course, be

a mistake to say that representability by a set of attributes that is complete, operational,

decomposable and non-redundant is a necessary condition for characterizing good deci-

sion making in a multiple-objective case. Suppose we have a multiple-objective decision

for which no set of attributes satisfying these desiderata can be described. There may still

be clear ways to identify good choices. One option may simply dominate all others. Or

we might be able to identify a lexicographic order over the attributes according to which

a best indifference class could be selected. Or we might be able to leverage fragmentary

holistic preferences—more on this below—to rough-in a value function, and then refine

this approach with feedback from the DM. Nonetheless, when we cannot identify a set of

attributes with these desiderata, we must concede that we are pushed to the limits of our

theoretical capacity to model decisions using decision analytic techniques.
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.. The consequence space, outcomes, states, and actions

Once we have determined an adequate set of attributes, we have thereby described what

we can call the consequence space for the decision. Roughly, the consequence space is the

set of mathematically possible combinations of attribute values.

More precisely, since each attribute is a real-valued measure over some feature of the

decision outcomes, we can represent these attributes in our model as bounded intervals of

real numbers. Then the consequence space is the set of vectors the first element of which

takes a possible value for the first attribute, the second element of which takes a possi-

ble value for the second attribute, and so on. We can then identify any possible decision

outcome as a particular vector of attribute values, or point within this consequence space.

It is important to stress that the consequence space is the set of mathematically possible

combinations of attribute values, not the set of practically or realistically possible com-

binations of attribute values. In multiple-objective decisions, just as in single-objective

decisions, it is sometimes important to be able to consider imaginary outcomes.

We opt for intervals of real numbers to facilitate modeling of continuous trade-offs of

arbitrary levels of the attribute in question. And we opt for bounded intervals in order to

keep the consequence space both manageable, and more importantly, intelligible to the

DM. For some attributes the maximum and minimum values will be obvious or natural.

In other cases, there may be no natural maximum or minimum value. In these cases we

can bound the intervals at values beyond which levels of that attribute will no longer be

intelligible to the DM. If we’ve adopted dollar-value attributes for a small-scale personal

financial decision faced by a middle-income DM, then we can reasonably ignore values of

these attributes that are a factor of one hundred greater than her annual income. Values

that large will simply be practically unintelligible to her.

Since the focus here is on the preference analysis required to represent decisions with

multiple objectives, I’ll assume that we already have an adequate representation of the
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uncertainties that impinge on the decision. So I’ll assume that we have aptly represented

the DM’s relevant probabilistic beliefs with a probability function over a set of mutually

exclusive states of the world. Here, we should think of a state of the world as some way

the world might turn out to be that can relevantly affect the consequences of the DM’s

decision. That is, we can ignore differences in how things could turn out that make no

distinctions between any of her available actions.

Informally, we can think of actions as ways for the decision maker to get to outcomes.

More precisely, we can think of actions as functions from states to outcomes. Using the

probability function over states, we can determine a probability distribution over out-

comes associated with each action. Certain actions always lead to the same outcome, no

matter the state of the world; if actions are ways to get to outcomes, a certain action is a

sure way to get to a particular outcome. When we’re dealing with a decision under cer-

tainty, we can simply identify each action with its associated outcome. And we will have

identified good decision making behavior when we have developed the model enough to

characterize a best outcome according to the model. When dealing with decisions under

uncertainty, we have to go a step further, and characterize a best action according to the

model.

Let’s return again to our example cases: Let’s call her attributes dollars saved, or D

for short, miles-per-gallon or M, safety rating or S, and comfort score or C, for ease

of reference. We can represent each of these attributes as a range of possible values.

We’ll set these ranges arbitrarily, as nothing hangs on the particular values the attributes

can take. In a realistic analysis, these ranges will obviously be determined, or at least

loosely constrained by the results of the analysis. Let’s assume values of D range from 0

For the formally disinclined reader: A probability function is a mapping over a set of inputs that pairs
each input with a value from zero to one, inclusive, such that the sum of values for all inputs is one, and the
values are assigned in a manner that corresponds to some axiomatization or othe of the laws of probability.
For the formally disinclined reader, each action can be thought of as a rule which associates exactly one

particular outcome to each state.





to 25,000, values of M range from 15 to 50, values of S range from 0 to 100, and values

of C range from 0 to 10. Then any tuple of the form 〈d,m,s,c〉 where d, m, s, and c fall

within the ranges of D, M, S, and C respectively is an outcome in the consequence space

of her decision.

And let’s call Dayo’s attributes wages in dollars or W , time not in traffic or T , and

prestige rating or P . Let’s suppose that values ofW range from 50,000 to 250,000, values

of T range from 0 to 100, and values of P range from 0 to 25. Then any tuple of the form

〈w,t,p〉 where w, t, and p fall within the ranges ofW , T , and P respectively is an outcome

in the consequence space of her decision.

Let’s assume for now that Chandeep’s and Dayo’s decisions are made under certainty.

Then we can identify the actions available to each of them with points in their respective

consequence spaces. Suppose one of the actions available to Chandeep is to buy a Volvo

station wagon, which will result in a savings of $5,000, gets an estimated 25.2 highway

miles-per-gallon, has a safety rating of 98, and to which she assigned a comfort score of

8.5. The we can identify the action of buying the Volvo with tuple 〈5,000, 25.2, 98, 8.5〉.

Suppose one of the actions available to Dayo is to accept an offer from Moneymaker

and Rich Partners, a firm that has offered him a salary of 125,000 dollars, the com-

mute to which is 25 minutes less than the maximum commute, and which has a pres-

tige rating of 18. Then we can identify the action of working for M & R with the tuple

〈125,000, 25, 18〉.

.. Preference structures, value functions, holistic preferences, and partial prefer-

ence structures

Ultimately, the goal of the analysis is to identify a value function over the consequence

space, which will determine a preference structure over the same space sufficient to resolve

decisions under certainty, and with which we can elicit a utility function over the same
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space sufficient to resolve decisions under uncertainty. I elaborate on the notions of value

functions and preference structures here, and defer further discussion of utility functions

to the appendix.

In keeping with the standard use of the term, let’s say that two outcomes are compa-

rable in the eyes of a DM, if she can say of them whether one is preferable to the other, or

she’s indifferent between them.

We’ll say a DM has a preference structure over the consequence space of her decision,

if and only if, by her lights, any two outcomes are comparable without intransitivities.

In other words, she has a preference structure whenever she has weak preferences over

outcomes. A value function is a function from outcomes to real numbers associated with

a preference structure in the following ways: Preferable outcomes are assigned higher

values than less preferable outcomes, and outcomes between which the DM is indifferent

are assigned equal values. It is crucial to note that a value function is not necessarily

a utility function, in the sense of von Neumann and Morgenstern  or any other

standard axiomatization of ADT, though every utility function is a by definition a value

function which conforms to additional axioms.

Whereas a preference structure determines a family of value functions unique only

up to positive linear transformation, a value function uniquely determines a preference

structure. Thus, if we can leverage the DM’s available preference information to deter-

mine an acceptable value function, we have thereby determined a preference structure

See the essays of Chang a, in particular Chang b, for a good overview of comparability and
incomparability.
For the formally disinclined reader: Suppose we have just three items, a, b, and c, and a is strictly pre-

ferred to b which is indifferent to c. Then the function that maps b and c to 0, and a to 1 is a value function
over those options that conforms to the preferences. But so is the function that maps b and c to 1,000 and
a to 1,000,000. When we say that value functions are unique only up to positive linear transformation,
we mean that if we take the outputs of some value function, and multiply them all uniformly by the same
positive real number, and add the same real number to them all uniformly, the result is another acceptable
value function.

On the other hand, if we start with a value function that maps a to 3, b to 5, and c to 7, this uniquely
determines a preference structure over a, b, and c, according to which c is strictly preferred to b which is
strictly preferred to a.
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over the consequence space.

Multiple-objective decisions would be no different from single-objective decisions if

we could simply assume that the DM had a preference structure over the consequence

space of her decision. However, the DM may have preferences over small bundles of

outcomes, which may overlap, but do not cover the whole of the consequence space. That

is, there may be subsets of the consequence space (sets of outcomes) over which the DM

has holistic preferences. I refer to these as holistic preferences because they are determined

by a direct assessment of the outcome as a whole, not in terms of its representation as

a vector of attributes. These should be understood as primitive features of the DM’s

attitudes, to be represented in our formal model, and leveraged in our efforts to assess a

value function.

If we are to have any hope of generating an overall preference structure that aptly

represents the DM’s attitudes, then we’ll need to assume that these holistic preferences

are consistent and free from transitivities such that they can be represented as a partial

order over the consequence space. We’ll call the partial order determined by the DM’s

For the formally disinclined reader: Recall form the earlier note that a weak order is a binary relation
that is reflexive, transitive, and total. A partial order is a binary relation that is reflexive and transitive, but
is not necessarily total. Every weak order is, ipso facto, a partial order. Every partial order can be extended
to a weak order in a multitude of ways.

Here’s a toy example to illustrate: Suppose 52 people are dealt cards face-down from a standard deck of
playing cards, to be sorted by into groups by the binary relation of winning-or-tying the others at a game
of High Card, which is won by the card of higher rank, regardless of suit. Suppose that individuals turn
over their cards one by one. When the first individual turns over his card, a partial order is determined
over the set of people: she is related to herself, and no one else is related to anyone. At this juncture, there
is an incomprehensibly enormous, but finite number (51 × 50 × 49 × · · · × 1) of ways the partial order can
be extended to a weak order over the individuals that are consistent with the possible values the cards can
take. As each additional individual turns over her card, the partial order becomes more complete, and the
number of distinct ways it can be extended to a weak order is considerably reduced. Suppose only Ashima
and Badri have yet to turn over their cards, and the two remaining cards are an ace and a deuce. Then
either Ashima will be ranked higher than everyone but the other aces, and Badri will be ranked lower than
everyone but the other aces, or vice versa. There are no other ways to extend the partial order to a weak
order.

Now imagine that one of the 52 standard cards is removed, and replaced with a joker, which beats a king,
but loses to a deuce, and ties anything else. As soon as the joker, a king, and a deuce have been turned over,
we no longer have a partial order, and this can no longer be extended to a weak order over the individuals,
since these individuals are intransitively related.
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holistic preferences a partial preference structure. On a first pass at analysis, we’ll re-

strict our consideration to value functions that respect this partial preference structure

(in the sense that they determine preference structures which are extensions of the par-

tial preference structure). No doubt eyebrows have been raised at the qualification in the

preceding sentence. I’ll offer further explanation in §. below.

.. Dominance and lexicographic orders

In some cases, once a consequence space has been described, and the available actions

have been represented as functions from states to outcomes, the decision can be settled

by recourse to a dominance principle, or a lexicographic order over the attributes.

We can generalize the familiar idea of dominance to multiple-objective outcomes and

actions in the obvious way. We’ll say one outcome dominates another if and only if it is

strictly better with respect to every attribute. And we’ll say that one action dominates

another if and only if the former action’s outcomes dominate the latter actions outcomes

in every state of the world.

In rare cases, one available action will dominate all others, and will clearly stand out

as the best choice according to the model. When this is the case, if our only ambition is

to identify good decision making behavior, we have carried the analysis as far as it needs

to go. On the other hand, if we hope to describe a complete preference structure over the

consequence space, or to assess a utility function, we have to press on.

Even where there is no single dominant action, dominance can be used to extend any

partial preference structure that results from the DM’s holistic preferences.

Equally rarely, the DM’s attitudes may reflect a lexicographic ordering over attributes.

This arises when the DM can sort the attributes strictly by priority. Then we can quite

easily describe a complete preference structure over the consequence space. We begin

by assessing outcomes according to the highest-priority attribute; outcomes with higher
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values of this outcome will be strictly preferred to outcomes with lower values. Then,

among outcomes that are equivalent with respect to the highest-priority outcome, we’ll

consult the next highest attribute, and so on, until a complete preference structure has

been described.

I reiterate, realistic cases are rarely settled by dominance, and decisions for which

lexicographic emerge are few and far between. However, dominance relations help to

extend any partial preference structure determined by the agents holistic preferences,

and can thus be used to help in the assessment of a value function.

.. Conditional preferences, preferential independence, and additive value func-

tions

Among the desiderata for a set of attributes listed is that the set be decomposable. Sets

of attributes can be decomposed when we can establish that they satisfy certain indepen-

dence properties. These properties are challenging to discuss in an informal way; I direct

the reader to the appendix for clarification.

To characterize these properties, we first need the notion of conditional preference.

Consider an arbitrary set of attributes, and select one attribute from it. If we hold the

values of all other attributes fixed, we can then elicit from the DM preferences for values

of the selected attribute conditional on the fixed values of the non-selected attributes. We

could instead select two attributes, and hold the values of all other attributes fixed, and

then elicit from the DM preferences for tuples of values of the two selected attributes,

conditional on the fixed values of the non-selected attributes. And so on. Call these pref-

erences for tuples of values of some set of selected attributes determined while values of

the set of non-selected attributes are held fixed, conditional preferences.

From this we can define a notion of preferential independence. A selected subset of

attributes is preferentially independent of the complementary subset of attributes, if the
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conditional preferences for tuples of values of the selected attributes don’t change, no

matter which values we choose for the remaining attributes.

Whenever a subset of attributes and its complement are preferentially independent

of one another, we can decompose the original set of attributes into these two pieces,

and continue our analysis on each separately. We can think of this as breaking the con-

sequence space into two simpler subspaces. The crucial fact here—entailed by well-

established results—is that we can independently assess value functions over each of

these subspaces, from which we can construct an overall value function over the original

consequence space.

When every subset of attributes we can select is preferentially independent of its com-

plementary subset of attributes, then the set of attributes is mutually preferentially inde-

pendent. The original set of attributes can then be decomposed down to its atoms. Or, if

you like, the consequence space can be split into individual attributes. Then we can in-

dependently assess a value function for each attribute. Further, if we have three or more

attributes, it is a well-established result that the overall value function for the whole con-

sequence space will be an additive function which simply sums the (scaled) values of each

attribute-specific value function. Above, I suggested that a higher number of objectives

can sometimes make a decision easier to resolve. We cannot leverage pairwise preferential

independence to establish the existence of an additive value function in a case where we

have only two attributes, instead stricter conditions apply. Thus, the addition of a third

objective, and thereby a third attribute, can sometimes considerably simplify the analysis

of the decision. However, for even a small set of attributes, directly establishing pairwise

preferential independence requires establishing mutual preferential independence a dis-

concerting number of times. Fortunately, there are additional widely-established results

that dramatically reduce the number of comparisons required.

Obviously, use of these independence results to decompose a set of attributes into
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smaller and smaller subsets simplifies the ensuing analysis enormously. Decisions in-

volving unmanageably large numbers of attributes can be made tractable by carefully

identifying a decomposable set of attributes.

Let’s return to our example cases. Recall that Chandeep’s attributes were dollars

saved (D), miles-per-gallon (M), safety rating (S), and comfort score (C). Consider

dollars saved to one side, and the remaining attributes to the other. It is intuitively ob-

vious that dollars saved is preferentially independent of the remaining attributes. No

matter where we hold the other attribute fixed, Chandeep will prefer to save more, con-

ditional on those fixed values. Indeed, each individual attribute is clearly preferentially

independent of the three remaining attributes. However, it is not obvious that each triple

of attributes is preferentially independent of the remaining single attribute. Again, con-

sider dollars saved and the remaining triple of attributes. Suppose we hold D fixed at

a low value, so that Chandeep is considering an expensive car. She may have particular

expectations for an expensive car, say that it be especially safe and comfortable. Indeed,

this seems likely. So, with D held fixed at that value, she may weight values of S and C

more heavily in her preferences than she does values of M. If she does, we will not be

able to identify an additive value function in Chandeep’s case.

Still, it may be possible to decompose her set of attributes to simplify the problem. For

example, the pairs of attributes dollars saved and miles-per-gallon, and safety rating

and comfort score, it seems likely these pairs will be preferentially independent of one

another. Let’s suppose that they are. Then we can decompose Chandeep’s attribute set

into those two pairs of attributes, and independently assess value functions over each

pair. Then, we are effectively left with a two-value characterization of outcomes, from

which we can assess an overall value function.

Recall that Dayo’s attributes were wages in dollars or (W ), time not in traffic (T ), and

prestige rating or (P ). Again, each individual attribute seems preferentially independent
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of the remaining attributes. For example, if we hold levels of W and T fixed, Dayo will

obviously prefer higher levels of P , and this will be the case no matter where we hold

W and T . Here, though, each pair may be preferentially independent of the remaining

individual attribute. For example, it seems unlikely that Dayo will weight values of W

and P differently at different values of T . Suppose, that the pair W and P is mutually

independent of T . Then at worst, we can decompose Dayo’s attribute set into those two

parts, and simplify the resulting analysis to assessing a value function over T , and a value

function over W and P , and then constructing an overall value function from these. It is

crucial to note that assessing the value function over T is not necessarily trivial; the value

function may not simply map values of T directly to themselves. For example, Dayo may

more strongly prefer going from saving 60 minutes of his commute to saving 40 minutes

of his commute, than he prefers saving 80 minutes off his commute to saving 60 minutes.

In Dayo’s case, let’s suppose further that each pair of attributes is independent of the

remaining individual attributes. Then Dayo’s attributes are mutually preferentially in-

dependent, and we can decompose his consequence space down to individual attributes,

assess a value function over each attribute, and his overall value function over the con-

sequence space will simply be the (scaled) sum of each attribute-specific value function

evaluated for each individual element of an outcome.

.. Assessing value functions

Thus far, we have explored how to use the hierarchical decomposition method to con-

struct a set of attributes which represents outcomes of a multiple-objective decision as

points in a consequence space. And we’ve discussed how a value function over that con-

sequence space can be used to determine a preference structure over that consequence

space, and suggested that it can also be used to determine a utility function over the con-

sequence space. We’ve also seen how a set of attributes can be decomposed to simplify





the ensuing analysis of the value function. To fit everything together, we need to see how

to elicit value functions.

Methods for eliciting single-attribute value functions are familiar within the philo-

sophical literature on ADT. Savage  and Resnik  both discuss such techniques.

Consequently, my presentation here is somewhat superficial. The standard procedure is

roughly as follows: We begin by considering the upper and lower bound for levels of the

attribute. Call these u and l respectively. We map these attribute levels to arbitrary val-

ues, say 100 and 0, respectively. Then we identify the subjective midvalue point between

u and l. Call this m. The midvalue point is the level of the attribute such that the change

in value from l to m is identical to the change in value from m to u. In other words, the

DM considers m just as much better than l as u is than m. Then it follows that m should

have a value exactly in between the value of u and the value of l, so m should be mapped

to the value 50. Then we consider the subjective midvalue points between l and m, and

m and u. These should be mapped to values exactly in between the values of l and m,

and the values of m and u, so to 25 and 75 respectively. We continue this procedure until

we have enough data to determine a precise mathematical function, using standard tech-

niques for fitting curves to data. Then we check this function against the DM’s subjective

evaluations of attribute levels, to verify consistency. And thus we get a single-attribute

value function.

In some cases, it is actually easier and more intelligible to assess a single-attribute

value function against the backdrop of other attributes, than in isolation. Consider a

two-attribute case, in which the attributes are, say, cost in dollars, and volume in cubic

feet, and suppose that the additivity conditions have been met for these attributes, such

that we can independently assess single-attribute value functions. Suppose we are trying

to assess a value function for volume in cubic feet. Suppose the least volume is 50 cubic

feet, and the greatest is 500. Then, to find the midvalue point we can formulate things
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in terms of the other attribute, cost in dollars. We then elicit from the DM the level of

volume between 50 and 500 such that she’d be willing to pay the same amount in dollars

to increase the volume from 50 to that level, as she would to increase from that level to

500. Pricing out the attribute under analysis, in terms of levels of the other attribute(s)

can give the DM some traction when making value comparisons.

Eliciting a value function over two attributes can be tricky. Where the additivity con-

ditions are met, of course, we can follow the procedure just outlined. But where these

conditions are not met, things become considerably more complicated. Typically, this

process involves a protracted cycle of guesswork, consistency checks, refined guesses,

and more consistency checks. The process can be made easier if the DM has some par-

tial preference structure of holistic preferences over the consequence space determined

by those two attributes. We can also exploit dominance relations to help narrow our fo-

cus. Further, the process can made a great deal more tractable if the pair of attributes

under consideration is mutually preferentially independent of another set of attributes

over which a value function has already been assessed. In its broad strokes, the procedure

for assessing two-attribute value functions is similar to the one used for single-attribute

value functions, just a great deal messier. I defer discussion thereof to the appendix.

When we are confronted with a set of three or more attributes that cannot be decom-

posed into smaller sets, over which a value function must be assessed directly, the pro-

cess explodes in terms of complexity, and the task cannot be reasonably managed without

computer assistance.

Then, even when an additive overall valuation function exists, we must confront the

further task of assigning scaling factors to each lower-level valuation function over which

it sums. Crucially, these must not be understood as weights—at least not in the sense

generally understood in philosophy, according to which a heavier weight communicates
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a greater degree of importance. Keeney , writes:

. . . [S]caling factors are often misinterpreted as indicating the relative impor-
tance of the objectives. Scaling factors do not indicate the relative importance
of the objectives, but rather they indicate the relative importance of changing
the level of performance on the respective objectives from their worst to their
best levels as specified for the decision under consideration. ()

Again, we can leverage the DM’s partial preference structure over outcomes to aid in

the task. By considering groups of outcomes over which the DM is indifferent accord-

ing to her partial preference structure, we can identify points of necessarily equal value.

These indifferences will constrain the scaling factors; any set of scaling factors that gener-

ates a value function which is consistent with these indifferences will be consistent with

the DM’s partial preference structure.

Let’s return to the example cases. Recall that Chandeep’s attributes could be decom-

posed no further by way of preferential independence conditions than to the pair dollars

saved and miles per gallon, and the mutually preferentially independent pair safety rat-

ing and comfort score. (It remains possible that these pairs of attributes may be further

decomposed if they meet some additional conditions discussed in the appendix.) As-

sessing an overall value function in this case will likely be tricky. First, assessing the

two-attribute value functions over each pair of attributes could get quite messy, and then

we more or less have to repeat the process a third time to generate the overall valua-

tion function. (This is not to say that an acceptable value function cannot be assessed;

approaches to assessing value functions like this are discussed in the appendix.)

In Dayo’s case, on the other hand, the prospects for assessing an overall value func-

tion are much better. Since each of his individual attributes is mutually preferentially

independent of the complementary pair of attributes, an additive overall value func-

tion exists, and we can independently assess value functions over each attribute using

the methods for assessing single-attribute value functions above. From there, we need

See, for example, Dancy , Ch. ; Schroeder , Ch. ; and Horty , Introduction.
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only identify scaling factors, and we have an overall value function for Dayo. Recall that

Dayo’s attributes are wages in dollars (W ), time not in traffic (T ), and prestige rating

(P ). For simplicity of presentation, let’s assume the value functions for each attribute

are just the identity functions—that is, they map each attribute value to itself—and the

scaling factors are 1
2,500 , 1, and 4, respectively. Then given any point in the consequence

space of Dayo’s decision of the form 〈w,t,p〉, the value function will map that point to

the real value w
2,500 + t + 4p. Above, we identified the action of working for M & R with

the outcome 〈125,000, 25, 18〉. Suppose another available action for Dayo is working for

the Feds, which is identified with the outcome 〈80,000, 60, 22〉. Then, using the value

function, we can describe each of these actions with a single value. Call the real value to

which an outcome is mapped by the value function its evaluation. The evaluation of M &

R is 147, while the evaluation of Feds is 180. Because the evaluation of working for the

Feds is higher than that of working for Moneymaker and Rich, that working for the Feds

is a better choice for Dayo. In the next section, we will get a better understanding of why

this outcome should be preferable to Dayo.

.. Enough for certainty; from certainty to uncertainty

Just as with single-objective decisions, it is clear that multiple-objective decisions vary

considerably in difficulty when it comes to structuring a representative decision prob-

lem. When we can identify a complete, operational, non-redundant set of attributes that

exhibits mutual preferential independence for a given decision, fully specifying an aptly

representative decision problem can be quite easy. When we cannot identify such a set

of attributes, and in particular when the set of attributes resists decomposition, the deci-

sion may slip through our formal net. In the range of cases in between, the gap between

real-world multiple-objective decisions and representative decision problems varies con-

siderably in width, and we may have to really turn the crank of our analytical machinery
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to churn out a representative decision problem.

Still, suppose we have deployed the hierarchical decomposition method to elicit from

the DM a complete set of attributes, and a scaled value function over the associated conse-

quence space that is consistent with any partial preference structure we could determine

from her holistic preferences. Hierarchical decomposition is a process of identifying the

low-level features of outcomes that the DM cares about—either directly, or as proxies—

and determining the structure of her preferences for tradeoffs between these attributes.

The resultant value function implicitly encodes the DM’s preferences for tradeoffs be-

tween these attributes, in a manner consistent with any unrevised preexisting partial

preference structure we could elicit from the DM. Recall that this value function uniquely

determines a complete preference structure over the consequence space. Then we can

think of the value function as using the DM’s preferences for tradeoffs between attributes

to extend her preexisting partial preference structure into regions of the consequence

space that were initially preferentially obscure. Crucially, the preferences between out-

comes fixed by the value function are determined by her preferences for tradeoffs between

features of outcomes. The value function does not impose a preference structure on her;

rather it can be thought of either as revealing her heretofore obscure preferences, or as

a way for her to construct them that is consistent with her preferences for tradeoffs be-

tween attributes. Thus the preferences between outcomes determined by the value func-

tion should either be thought of as her preferences, or preferences she could consistently

adopt.

The preference structure determined by the value function is representable as a weak

order over outcomes. Then we have arrived at a standard formal representation of a

decision under certainty: we have a set of options, and an associated weak order over

those options. According to ADT, this is sufficient to characterize good choices under

certainty; any option weakly preferred to all others in the resulting preference structure
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is a good choice.

So, let’s take one last look at our example cases. We identified working for M & R

with the outcome 〈125,000, 25, 18〉 which had an evaluation of 147 under Dayo’s value

function. And we identified working for the Feds with the outcome 〈80,000, 60, 22〉,

with an evaluation of 180. Then, according to the preference structure determined by

that value function, Feds should be strictly preferable to M & R. This value function

should be understood to implicitly encode Dayo’s preferences for tradeoffs between levels

of these attributes. Dayo’s particular value function indicates a preference for a conjoint

improvement in time not in traffic and prestige rating, over an increase in wages in

dollars at the expense of these other attributes. According to his value function, Dayo

should be indifferent between Feds and the outcome 〈207,500, 25, 18〉. In other words,

even at the reduced wage level of working for the Feds, he values the extra 35 minutes he

saves in traffic and the 22% far more than he does a pay bump of 45,000 dollars at the

expense of his time and career prestige. Since its unlikely Moneymaker and Rich could

move their offices or improve traffic conditions, they’d have to offer him a tremendous

increase in compensation to offset those features. No matter whether we understand

Dayo’s value function to reveal his heretofore obscure preferences between outcomes,

or to describe a way of consistently constructing those preferences, his value function

reveals that he should prefer Feds to M & R.

Further, hierarchical decomposition characterizes a decision problem in such a way

that we can readily enrich it with the structure necessary to resolve decisions under un-

certainty, in the standard way. To do so, we need to elicit from the DM a set of states,

and a probability function over those states, and we need to characterize her available

actions as functions from states to outcomes in the consequence space. From there, we

need only assess a utility function over outcomes. At first glance, it might seem that we

need a method for assessing a utility function over a tuple of attributes, but this not the
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case. The situation is far tidier than this. Since we have already assessed a value function,

each outcome is mapped to a single real value.

Then, by composing the action functions with the value function—that is, linking

them up so that actions are mapped directly to their outcome’s evaluation—we can rep-

resent all actions as functions from states to single-dimensional evaluations, rather than

to multi-dimensional points in the consequence space. Then, we can use standard tech-

niques for assessing a single-attribute utility function, like those of Mosteller and Nogee

—not over outcomes, but over evaluations. And we can then apply ADT to charac-

terize good choices under uncertainty; any option which maximizes subjective expected

utility is a good choice.

I hedge here and talk in terms of good choices, rather than rational or ideal choices

because in §. above, I conceded that since the hierarchical decomposition method can

result in many distinct formal representations of a given decision, or many distinct reg-

imentations of a particular representation, the choices recommended by these models

cannot be thought of as ideally rational. But I also argued that the choices recommended

by these models can still be understood as good choices by the DM’s own lights, that is,

choices the DM has strong reasons to make. I revisit this topic in § below, but before

pressing on, I address one final detail of hierarchical decomposition.

.. Resolving inconsistencies between assessed value functions and partial pref-

erence structures

Recent research in psychology suggests that there is a difference between inherent prefer-

ences and constructed preferences. The former, also sometimes called retrieved prefer-

ences, are preferences that can be retrieved by a simple act of introspection. The latter are

See, for example: Simonson , Simonson , Slovic , Nowlis and Simonson , Johnson,
Steffel, and Goldstein a, Schwarz , Bettman, M. F. Luce, and Payne . Much of this research
is helpfully surveyed in Warren, McGraw, and Boven  and Lichtenstein and Slovic .
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preferences that are somehow calculated or formulated in the decision making process.

According to Warren, McGraw, and Boven , research indicates that “decision mak-

ers often retrieve existing underlying preferences in familiar situations ().” On the

other hand, constructed preferences typically emerge when the DM faces unfamiliar or

complex decisions, or when the DM is put in a justificatory context.

This distinction helps to frame discussion of preferential inconsistencies that can arise

under application of the hierarchical decomposition method. Whatever preexisting par-

tial preference structure that can be elicited from the DM should clearly be thought of

as comprised of inherent preferences. On the other hand, a preference structure deter-

mined by an assessed value function seems best thought of as comprised of constructed

preferences. When the constructed preferences determined by the assessed value func-

tion disagree with the preexisting inherent preferences initially elicited, we might think

that the only acceptable course of action is to revise the value function so that the pref-

erence structure that it determines is consistent with DM’s preexisting preferences. That

is, we might think that constructed preferences should always yield to inherent prefer-

ences. Yet Keeney and Raiffa  suggest that in real cases of analysis, DMs sometimes

accommodate such inconsistencies by instead reconsidering or revising their preexisting

preferences.

The decision analysis literature is, itself, somewhat lean on such example cases, but

good examples can be found within the literature on preference construction. Warren,

McGraw, and Boven  gives an good overview of research on reconciling inherent

and constructed preferences, though several of the cases there are too complex for easy

discussion here. Sanbonmatsu and Fazio  provide an especially compelling and

simple case. In their study, participants were induced to form a preference between

The term “constructed preference” is also sometimes used to refer to context-sensitive preferences, but
that sense of the term isn’t relevant for my purposes here.
See Keeney and Raiffa , Chs. , , and also Anderson and Clemen .
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two department stores, so that it was certain they had an inherent preference between

the stores. They were then presented with information about several attributes of each

store—selection, customer service, product expertise, etc.—and asked at which store they

would prefer to buy a camera. At this stage, participants typically retrieved their inherent

preference. But when participants were asked to engage in some rudimentary analysis,

by simply weighting the various attributes according to importance with respect to the

goal of buying a camera, many participants reached a constructed preference inconsis-

tent with their inherent preference. When this occurred, participants were asked to state

whether the inherent or the constructed preference best reflected their sincere preference

for the store at which to by a camera; participants typically stood by the constructed

preference.

If DMs are willing to revise inherent preferences in light of such a rudimentary anal-

ysis, it is easy to imagine that they might do the same in more complex cases. If we’re

inclined to doggedly stick to what I above called the loosely Humean idea that our pref-

erences are unassailable or unalterable through acts of reasoning, then we might simply

brand this sort of behavior as patently irrational. But stamping these cases as irrational

seems hasty to me. It is important to note that DMs only carry out or subject them-

selves to decision analysis when they are keenly interested in making good choices that

genuinely reflect their objectives and their attitude toward consequences, or in justify-

ing their choices to some auditor. It’s simply too much work to undertake for any other

reasons. That is, DMs only subject themselves to these methods when they are explicitly

trying to make good choices, or to justify their choices in light of their objectives. Fur-

ther, research on preference construction indicates that when DMs are faced with highly

complex decisions, especially when they are given ample time and asked to justify their

eventual choice, inherent preferences are either nonexistent or considerably harder to

retrieve, and DMs depend increasingly on constructed preferences.
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So, if we brand as irrational any revision of inherent preferences resulting in con-

structed preferences, then we are forced to adopt some sort of error theory to cover the

apparently numerous cases in which this occurs. We have to explain how an agent who

is explicitly trying to make or justify her choices with respect to her objectives and her

attitudes toward consequences instead directly runs afoul of them. To be sure, agents can

be mistaken about their own preferences. But it seems strange that they should turn out

to be mistaken precisely when they’re taking tremendous care to sort their preferences

out. Thus, it seems unlikely that we could give a plausible error theory here. Without

some sort of error theory, though, it seems like we’re simply interpreting cases to fit our

preconceived account of the relationship between human agents’ preferences and acts of

reasoning, instead of giving an account that explains the actual cases.

On the other hand, if we take a step back and suppose that the DM who, through a

process of analysis, revises her inherent preferences in the direction of the constructed

preferences may be behaving reasonably, this reveals a fascinating sort of interaction be-

tween our preferences and our faculty of reason. The straightforward explanation for

what’s going on is that the DM generates or discovers, through an act of reasoning, rea-

sons to revise her preexisting preferences. But in the course of the analysis, the DM is

not necessarily discovering anything new about the objects of her preferences. Instead,

she is primarily analyzing and reasoning through the structural relationships between

her preexisting preferences for outcomes, her preferences for tradeoffs of features of her

outcomes, and her objectives. Thus, it seems that the DM can reasonably modify her pref-

erences between outcomes through deliberate acts of reason, without first learning any

new non-relational properties of those outcomes.

Here, I have only sketched a rough theory of what might be going on in these cases.

Giving a full account is a task for future work. Suffice to say, I think this sort of interaction

between preferences and reason deserves more consideration.
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. Conclusion

The bulk of this chapter has been devoted to exploring decision analytic methods for

modeling realistic, multiple-objective decisions as formal decision problems. But I began

by exploring the question of how we can throw light on our everyday decisions. I argued

that the way forward was to make progress on the specification problem: to find ways

to specify formal decision problems that were aptly representative of realistic decisions.

Perhaps the most important claim in this chapter is that if we apply the decision analytic

methods discussed herein to model a realistic decision, we can indeed throw some light

on it with ADT. I have argued that we should consider the choice recommended by such

a model, together with ADT, to be a good choice for us to make, by our own lights. I have

conceded that the recommendations of these models together with ADT do not character-

ize rational decision making in any ideal sense, but nonetheless they still inform us about

which ways of deciding are better for us, and which are worse.

Allan Gibbard has cautioned me against stating this claim in a way that implies that

we should care about conforming with recommendations of such models, rather than

about satisfying our own preferences. We care directly about the consequences of our

decisions, not about the outputs of a value function evaluated on representative points

in a consequence space. So the models should not be thought of as tools for helping us

sort out what we care about, because we don’t care about features of the models, we care

about features of our choices.

On the one hand, I agree. To select an option because it is the choice recommended by

such a model and ADT is, in a sense, to choose for the wrong reasons. The choice is good

for us if it satisfies our preferences, and we should choose thus because our preferences

are satisfied by that option.

But on the other hand, I disagree. I think there is something important about the
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models, and the choices they recommend, which makes them worth caring about more

directly. We have to remember that these are models of multiple-objective decisions.

A key feature of multiple-objective decisions is that it’s enormously hard for a DM to

sort out what she cares about, because the outcomes are tremendously complex, and the

objectives can come into conflict with one another. Indeed, it is common that a DM cannot

easily reconcile her raw preferences for features of outcomes with one another, nor can

she see her way clear to a decision from these alone. Really, the key insight of Sartre’s

classic case discussed above is that when an agent is faced with conflicting objectives, it

is hard to maintain her integrity and consistency as a decision maker.

We might think of describing a model through hierarchical decomposition as a way

of discovering the structure of our preferences. Or we might think of it as a way of

constructing and refining our preferences directly. Either way, the resultant model, and

the decision it recommends represent a way for a decision maker to retain integrity and

consistency. For this reason then, these models and their recommendations are of direct

value to decision makers.

. Appendix

In this appendix, I revisit the key concepts from § above in a more formal and regi-

mented way; I do not reiterate informal characterizations of these concepts already given

in the main body of the chapter. Content is adapted from Raiffa , Winterfeldt and

Fischer a, Keeney and Raiffa , Keeney .





.. Preliminaries

States and probability function

Let S be a set of mutually exclusive states, and p : S −→ [0,1] is an probability function

over S.

When discussing a particular decision frame, or decision, we will assume that S and p

represent the decision maker’s subjective probability function over states of the world.

Objectives, attributes, outcomes, actions

Let {O1,O2, . . . ,On} be a set of objectives with associated set of attributes X = {X1,X2, . . . ,Xn},

such that, for all i, Xi ⊂ R and Xi has both a least and a greatest element. We can assume

without loss of generality that Xi is positively oriented, for all i.

Then X = X1×X2×· · ·×Xn describes a consequence space. An outcome or point is an ordered

n-tuple of the form 〈x1,x2, . . . ,xn〉 ∈ X .

An action a : S −→ X is a function from states to outcomes. An action a is certain, if and

only if, a(s) = x′ for all s ∈ S, and some x′ ∈ X .

.. Preference structures, partial preference structures, and dominance

A binary relation � over X is a preference structure if and only if it is a weak order over

X—that is, it is reflexive, transitive, and complete over X .A binary relation� is a partial

preference structure if and only if it is a partial order over X—that is, it is reflexive and

transitive over X . Every preference structure is a partial preference structure, but the

converse is not true.
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An outcome x′ dominates the outcome x′′, if and only if, xi ′ > xi ′′, for all i. We can extend

the notion of dominance to actions in the natural way: an action a′ dominates an action

a′′, if and only if, a′(s) dominates a′′(s) for all s ∈ S.

A partial preference structure� is admissible, if and only if, if an outcome x′ dominates

the outcome x′′, then x′ � x′′.

.. Decision frames, pre-decisions, and decisions

A decision frame is a tuple of the form D = 〈S,p,X ,A〉, where S is a set of mutually ex-

clusive states, p is probability function over S, X is a consequence space, and A is a set

of actions from S to X . A pre-decision is a tuple of the form D = 〈D ,�〉, where D is a

decision frame, and a� is a partial preference structure over X . A decision is a tuple of

the form D = 〈D ,�〉, where D is a decision frame, and a � is a preference structure over

X .

Any pre-decision can be extended to a decision by extending the associated partial order

� to a weak order.

A decision frame, pre-decision, or decision is certain if and only if S contains only 1

element, or all actions in A are certain. For a certain decision D, the set of best choices is

the equivalence class of �-maximal elements.

.. Value functions

A value function v : X −→ R is a real-valued function over a consequence space, with

an associated preference structure �v , which satisfies the following conditions for any

x′,x′′ ∈ X , (i) v(x′) > v(x′′) if and only if if x′ �v x′′, and (ii) v(x′) = v(x′′) if and only if
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neither x′ �v x′′ nor x′′ �v x′.

Note that a value function uniquely determines a preference structure, but a preference

structure determines a value function only up to positive linear transformation. That is,

if v is a value function determined by a particular weak order, then so is a · v + b for any

positive real value of a and non-negative real value of b.

.. Decomposing attribute sets

The objective, in decomposing an attribute set, is to identify a partition over that set, such

that value functions can be assessed independently over each cell in that partition.

The corresponding tradeoffs condition

Let {X,Y } be the set of attributes. Choose four arbitrary points in the consequence space

determined by X and Y of the form 〈x1, y1〉, 〈x1, y2〉, 〈x2y1〉, and 〈x2, y2〉.

Assume that (i) at 〈x1, y1〉 an increase of b in Y is worth a payment of a in X; (ii) at 〈x1, y2〉

an increase of c in Y is worth a payment of a in X; (iii) at 〈x2y1〉 an increase of b in Y is

worth a payment of d in X. Then, if at 〈x2, y2〉 an increase of c in worth a payment of d in

X, and this holds no matter which values we choose for x1,x2, y1, y2, then X and Y satisfy

the corresponding tradeoffs condition. (See Keeney and Raiffa , , for more on the

corresponding tradeoffs condition.)

IfX and Y satisfy the corresponding tradeoffs condition, then we can consider preferences

for levels of X independent of preferences for levels of Y . It follows that we can assess

single-attribute value functions vX and vY respectively.

More importantly, given two attributes, X and Y , an additive value function of the form
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v = vX + vY , where vX and vY are value functions over X and Y respectively, exists if and

only if X and Y satisfy the corresponding tradeoffs condition.

Conditional preference relation

Let Y ,Z form a two-cell partition over a set of attributes X = {X1,X2, . . . ,Xn}. Since we

can arbitrarily permute the indices over X, we can assume without loss of generality, that

Y = {X1,X2, . . . ,Xs} and Z = {Xs+1,Xs+2, . . . ,Xn}. Recall that X is the consequence space

associated with the set of attributes X. Then we can represent any x ∈ X as x = 〈y,z〉,

where y = 〈x1,x2, . . . ,xs〉 and z = 〈xs+1,xs+2, . . . ,xn〉.

Given such a partition, Y ,Z, we can say that y′ is conditionally preferred to y′′ given z′ if

and only if 〈y′,z′〉 is preferred to 〈y′,z′〉, and y′ is conditionally indifferent to y′′ given z′ if

and only if 〈y′,z′〉 is indifferent to 〈y′,z′〉. Let a conditional preference relation �Yz′ be the

relation of conditional preference over Y given z′.

Preferential independence, and mutual preferential independence

For some two-cell partition Y ,Z over X, Y is preferentially independent of Z if and only if

�Yz′ is invariant over values of z′. The elements of X are mutually preferentially independent

of one another if and only if, for every two-cell partition Y ,Z of X, Y is preferentially

independent of Z.

.. Simplifying value functions, additive value functions

Where Y ,Z are mutually preferentially independent, we can independently assess value

functions vY and vZ over the y-space and the z-space, and there will be an acceptable
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valuation function of the form v = f (〈vY ,xZ〉), where f is some real-valued function over

vY × vZ .

Consider a n-element set of attributes X, with associated consequence space X . Let vi be

an acceptable single-attribute value function over the attribute Xi ∈ X. A additive value

function over X is a value function of the form

v(x) =
n∑
i=1

λivi(xi)

where λi is a non-zero real number. λi is referred to as a scaling factor.

An acceptable additive value function over X exists if and only if either:

(i) n = 2 and the corresponding tradeoffs condition is met by the two elements of X; or

(ii) n > 2 and the elements of X are mutually preferentially independent.

Crucially, when there are only  attributes, mutual preferential independence is not suf-

ficient for the existence of an additive value function, and the stronger corresponding

tradeoffs condition must be met.

For n = 2 the implication from left to right is obvious; clearly if v is an additive value

function the corresponding tradeoffs condition will be met. The implication from right

to left is much trickier. That result is proven in R. D. Luce and Tukey . Proofs

for n > 2 can be found in Debreu , Pruzan and Jackson , Fishburn , and

Krantz et al. .





Establishing the existence of an additive value function

It is obvious that for even modest values of n, in order to establish mutual preferential in-

dependence, the number of two-cell partitions for which we need to establish preferential

independence is exponential in the number of attributes. To be precise, for n attributes,

we have to consider 2(n−1) − 1 two-cell partitions.

But Keeney and Raiffa ,  call our attention to a collection of results from Leon-

tief b, Leontief a, Gorman b, and Gorman a which greatly simplifies

things.

Building on the other work just cited, Gorman b proves the following: Suppose Y

and Z are subsets of X such that Y ∩Z , ∅, Y ∪Z ,X, Y 1 Z and Z 1 Y . Then, if Y and Z

are each preferentially independent of their respective complements, so are Y ∪Z, Y ∩Z,

Y \Z, Z \Y , and (Y \Z)∪ (Z \Y )

From this it follows that we can reduce the number of two-cell partitions we have to

consider to at most n − 1. For example, Keeney and Raiffa ,  notes that if each

pair of attributes {Xi ,Xi+1} for i < n is preferentially independent of its complement, then

it follows that the elements of X are mutually preferentially independent.

In a four attribute case, like Chandeep’s above, if we can establish that both {X1,X2},

{X2,X3}, or both {X2,X3}, {X3,X4}, or both {X1,X3}, {X3,X4} are each preferentially inde-

pendent of their complementary sets of attributes then it follows from Gorman’s result

that all four attributes are mutually preferentially independent. So, perhaps we could

have assessed an additive value function in Chandeep’s case after all.
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.. Assessing value functions

Techniques for assessing value functions are familiar in the literature on decision the-

ory and decision analysis. I present some common techniques here. Throughout, we’ll

suppose we are assessing a value function for a pre-decision, D, since realistic decision

makers often have only partial preference over the consequence space of their decision.

Assessing value functions over a single attribute

Let X be an attribute with greatest element x+ and least element x−. Since, value func-

tions correspond to interval scales over outcomes, we can begin by arbitrarily assigning

v(x+) = 1 and v(x−) = 0. Then we elicit from the DM the midvalue point x∗, between x−

and x+. This is the point such that the DM thinks there is the same change in value to in-

crease from x− to x∗, as from x∗ to x+. We assign v(x∗) = 1
2 . We then elicit midvalue points

between x− to x∗, and x∗ to x−, and assign these values of 1
4 and 3

4 respectively. We iterate

until we have sufficient data to use curve fitting techniques to describe a value function

over the data. Then we check the assessed function for consistency against the partial

preference order �. If there are inconsistencies, these are generally accommodated by

adjusting the value function, and the process is repeated until the function v is consistent

with�.

Here it can be extremely helpful if there is another attribute Y , which is preferentially

independent of X and vice versa, over which a value function has already been assessed.

Then, we can describe the point x∗ as the point for which the decision maker would be

willing to pay the same value in Y to go from x− to x∗ as from x∗ to x+.

See Stevens  for more on scales of measure.
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Assessing value functions directly over two attributes

The process of assessing a value function directly over even two attributes is consider-

ably more difficult. In its broad strokes, it resembles the processed just described, but is

considerably more computationally complex.

Suppose we have attributes X,Y with greatest elements x+, y+ and least elements x−, y−

respectively. Then we begin by setting v(〈x+, y+〉) = 1 and v(〈x−, y−〉) = 0. We then elicit

midvalue points in the consequence space. Note here there may be many such points.

These are mapped to values of 1
2 . Here, unlike in the single attribute case, we can imme-

diately leverage the partial order�, to guide the analysis. If m′ is a midvalue point, then

so too is any point m′′ such that m′ �m′′ and m′′ �m′

From there we iterate, looking for midvalue points between these points and the pairs of

greatest and least elements.

Suppose we have elicited a set of midvalue pointsM. Then we can sometimes leverage the

partial order� to simplify further analysis, by restricting our search for upper midvalue

points to the set {〈x,y〉 | ∃m ∈M,〈x,y〉 �m}, and our search for lower midvalue points to

the set {〈x,y〉 | ∃m ∈M,m� 〈x,y〉}. There is no guarantee we will find midvalue points in

this way, especially when� is sparse. But when� is more complete, the method can be

of considerable help. At very least, it can give the analyst some neighborhoods of points

to direct the DMs attention to in search of midvalue points.

Once we have sufficient data we use curve fitting techniques and check for consistency,

revising to accommodate inconsistency as needed.
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Determining scaling factors for additive functions

Suppose an additive value function

v(x) =
n∑
i=1

λivi(xi)

exists and we have assessed acceptable single-attribute value functions v1,v2, . . . , vn.

It remains to determine the scaling factors λ1,λ2, . . . ,λn.

If � determines at least one indifference class with n elements, then acceptable scaling

factors can be identified by choosing any n such points, and mapping those points to an

arbitrary positive value. The result is a system of n linear equations with n unknowns

and can be solved using standard techniques of linear algebra.

When� does not determine such an indifference class, we can nonetheless use it to iden-

tify inequalities between the scaling factors, and elicit information from the DM to nar-

row in on acceptable scaling factors. This process can get quite messy.

From pre-decision to decision

Suppose we start with a certain pre-decision, D, for which we have assessed the value

function v, consistent with �. Then v extends D to the decision Dv = 〈D,�v〉, where �v

is the weak order over X determined by v. We then have all the structure required to

identify a set of best actions under the framework of ADT.

In other words, under conditions of certainty, by assessing an acceptable value function

over a pre-decision, we can thereby move to a resolvable decision.
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.. Assessing utility functions

Suppose we began with an uncertain pre-decision, D, for which we have assessed the

value function v, and which we have extended to the decision Dv = 〈D,�v〉.

Then, to resolve this decision under the framework of ADT, we have to further assess a

utility function over X . A utility function is a value function that conforms to additional

axioms, like those of von Neumann and Morgenstern .

Conveniently, because we have already assessed a value function v, this reduces to the

familiar task of assessing a utility function over a single attribute—namely, levels of v.

One simple way to carry out this assessment is as follows: Let v+ be the upper bound

on values of v evaluated on elements of X and v− the lower bound. Then we arbitrarily

assign u(v+) = 1 and u(v−) = 0. We then consider the / lottery (v−,v+) and identify the

certainty equivalent v∗ such that the DM is indifferent between v∗ and the lottery (v+,v−).

Then we assign u(v∗) = 1
2 , consider the / lotteries (v−,v∗) and (v∗,v+), and identify

their certainty equivalents, assigning these utilities of 1
4 and 3

4 respectively. We iterate

until we have sufficient data to fit a curve, and then check for consistency with any direct

preferences over lotteries we can assess from the DM.

The resultant utility function u, together with the associated decision Dv , is sufficient to

identify a set of best actions under uncertainty under the framework of ADT.

See Raiffa , Ch.  for more detail on the nuances of assessing utility functions.
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Chapter 

Individual Decisions and Arrow’s Theorem

Introduction

Decision makers often approach decisions with a divided mind. Rather than having

clear, overall preferences between options, they evaluate them according to many cri-

teria. Worse still, these criteria often conflict in their rankings of options. Rational choice

theorists broadly agree that overall preferences are required for rational action. If this

requirement is correct—I will assume here that it is—then our task in such cases is to

somehow aggregate our conflicting criteria into a single preference order. It is common-

place in modeling conflict, to treat conflicts as arising from a multiplicity of conflict-free

preference orderings. I assume, then, that each criterion is associated with a weak pref-

erence ordering (or weak order, or total pre-order)—a binary relation over options that is

complete, reflexive, and transitive. This assumption immediately invites an analogy be-

Some rational choice theorists, like Savage in his early work on the subject, simply assume that rational
agents will have such preferences. (See, for example, Savage .) Others, like Sen or Hammond derive
this from other assumptions about choice functions, or consistency in choices, supplemented with some
underlying account of the relationship between choices and preferences. (See, for example, Sen , Sen

, and P. J. Hammond . Presumably, Samuelson’s Revealed Preference Theory should be understood
similarly.)
One might also say that we have at least complete weak preferences over options with respect to each

criterion. We have total weak preferences over some collection of options, when for any pair of options,
we can determine whether the first is at least as preferable as the second. I use the term ‘weak preference’
in the manner standard in the economics and rational choice literature. (See, for example: Sen , –
.) Given some dimension of measurement, when we can judge of any two objects whether the first ranks
at least as high as the second, we can determine an ordinal scale of measurement along that dimension.
Weak preferences, then, determine an ordinal scale of preferability. That is, each option can be assigned a
natural number, with preference corresponding to numerical magnitude. On an ordinal preference scale,
neither ratios nor intervals between measurements carry any significance about degrees of preference. (For
detailed discussion of scales of measure, see: Stevens .)
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tween conflict within an individual decision maker and social conflict.

In fact, May  suggests that the problem faced by an individual decision maker

determining her overall preferences when she is “confronted with conflicting criteria

applied to a set of alternatives” is formally identical to the problem of aggregating the

conflicting preference rankings of “different individuals in a group ().” Call the first

problem individual aggregation of preferences and the second problem social aggregation of

preferences. In general, call a problem of either sort a preference aggregation problem. At

bottom, the problem in either case is to generate a single aggregate weak order from a tuple

of weak orders.

May’s point is that formal results about social aggregation apply equally well to indi-

vidual aggregation. Let a preference aggregation function be a function that inputs a tuple

of weak orders and outputs a single weak order. The General Possibility Theorem of Ar-

row  establishes that no social aggregation function can satisfy all of four Arrow

Conditions. I explain the Arrow Conditions in greater detail below. They are generally

understood as constraints on rational social aggregation functions. Thus, Arrow’s Theo-

rem is often taken to establish that there can be no rational social aggregation function.

In the literature on Arrow’s Theorem, it is often further assumed that rational resolution

of aggregation problems must be characterized by an aggregation function. Given this

functionality assumption, Arrow’s Theorem shows that there can be no rational resolution

In contemporary research, May  is often taken as the locus classicus for the analogy between in-
dividual decision makers and collectives, without any deeper discussion of the history of this idea. But
the philosophical analogy between individuals and states predates May  by more than two thousand
years, dating back at least to Plato. Steedman and Krause  note that in The Republic, Plato draws “an
analogy between the conflicting aspects of the individual, and the citizens of a state and thus between that
which integrates the person and the government of the state ().” Plato introduces the city-soul analogy
in Book II [c] and develops the idea further in relation to the five constitutions beginning in Book VIII
[approximately d] and continuing through his discussion of tyranny and the tyrant in Book IX. In his
Fifteen Sermons, Butler gives perhaps the most sustained discussion of the individual-to-state analogy. (See,
in particular, Sermons I and III.) He argues that, like the state, the individual decision maker must some-
how reconcile a self divided by “reason, several appetites, passions, and affections prevailing in different
degrees of strength” to act as one. (From Sermon III, “Upon the Natural Supremacy of Consciences”–Rom.
ii. ; Butler , .)
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of social aggregation problems.

Philosophers have argued that Arrow’s Theorem is equally pessimistic for individual

aggregation problems. For example, Steedman and Krause , Kavka , and Ellis

 all argue along these lines. These authors share the strategy of arguing that the Ar-

row conditions are also constraints on rational individual aggregation functions. Thus,

they conclude that there can be no rational individual aggregation function.

To the contrary, I argue that Arrow’s Theorem does not rule out the possibility of ra-

tional individual aggregation functions. I argue further that individual aggregation func-

tions which violate Arrow’s independence condition can be substantively rational. May,

Steedman and Krause, Kavka, and Ellis all take Arrow’s Theorem to close the door on

modeling individual decisions under conflicting criteria as aggregation problems. Here,

I reopen the door to this modeling approach.

I begin by introducing the required notation and formalism. Next I introduce the

Arrow conditions and present Arrow’s Theorem. As it turns out, Arrow’s independence

condition is widely misstated, misunderstood, and poorly motivated. Fruitful discussion

of the condition requires a more precise understanding of what the condition requires,

and what a violation of the condition looks like. I address this in the third section. In the

fourth and fifth sections of the chapter, I argue for my central claim that Arrow’s indepen-

dence condition is not a constraint on rational individual aggregation functions. In the

fourth section, I review the standard arguments used to motivate the condition as a con-

straint on rational social aggregation functions, and I argue that none of these arguments

can be extended to the case of individual aggregation. In the fifth section, I argue di-

These authors embrace functionality to differing degrees. For example, Steedman and Krause seem to
take functionality for granted. Thus, their chief concern is to characterize better and worse sets of condi-
tions an individual aggregation function might meet, short of being rational. Whereas Ellis assumes that
there must be rational means of resolving individual aggregation problems, and takes Arrow’s Theorem to
count against functionality. Kavka occupies an intermediate position. While he allows that non-functional
means of resolving individual aggregation problems might be rational, he also argues that Arrow’s Theorem
might explain certain predictable irrationalities exhibited by human agents, like intransitive preferences.
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rectly for rational individual aggregation functions which violate Arrow’s independence

condition. I conclude by discussing prospects for modeling individual decisions under

conflicting criteria as aggregation problems.

. Notation and formalism

Let X = {x,y,z, . . . } denote the set of all options. This definition of X is loose in the ex-

treme, leaving room for construals under which X contains all logically possible options,

all conceivable options, all initially available options, and so on. For now, I leave the

precise scope of X unspecified, though later greater precision will prove important. Let

S ⊆ X, S , ∅, where S denotes the set of feasible options. Call S the agenda. Unless con-

text indicates otherwise, assume that S = X—that is, that all options are feasible. Let

N = {1,2, . . . ,n}, denote a set either of individuals, or of some individual’s decision crite-

ria, as determined by context, with n ≥ 2. Let R be a binary relation on X. That is, R is

a set of ordered pairs of elements from X. R will be understood to be a preference rela-

tion. When written without an index, Rwill be understood to be the aggregate preference

relation—the social preference relation in the case of social aggregation, and the individ-

ual’s overall preference relation in the case of individual aggregation. Where context is

ambiguous, superscripts will be used to differentiate aggregate orders. When written

with an index, Ri will be understood to be either the preference relation of individual i,

or the preference relation determined by criterion i. That 〈x,y〉 is an element of R will be

denoted xRy; that 〈x,y〉 is not an element of R will be denoted ¬xRy.

R is reflexive if and only if, for all x ∈ X, xRx. R is complete if and only if, for all

x,y ∈ X, xRy or yRx. R is transitive if and only if, for all x,y,z ∈ X, if xRy and yRz then

xRz. When R is reflexive, complete, and transitive, we will say R is a weak preference

relation. Suppose R is a weak preference relation. Let P denote the anti-symmetric part

I adopt the formalism of Gaertner , which is more-or-less standard, and exceptionally clearly
presented. (See, in particular, section ..)
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of R. That is, xP y if and only if xRy and ¬yRx. P will be a strict (but not necessarily

complete) preference relation over X. Let I denote the symmetric part of R. That is, xIy if

and only if xRy and yRx. I will be a (not necessarily complete) indifference relation over

X.

Let P = 〈R1,R2, . . . ,Rn〉 be a tuple of weak preference orders over X. Call P a profile

over X.

Where R is a binary order over X, and A ⊂ X, let RcA = {〈x,y〉 | x,y ∈ A and xRy}.

Call RcA the restriction of R to A. It is trivial that if R is a weak order over X, then

the restriction RcA is a weak order over A. Similarly, where P is a profile over X, let

PcA = 〈R1cA,R2cA, . . . ,RncA〉. Call PcA the restriction of P to A.

Let P be the set of all possible profiles over X. Let R be the set of all weak preference

orders over X. Let f : P −→R be a function from profiles to weak preference orders. Call

f an aggregation function. Let f (P ) refer to the image of profile P under f—that is, the

weak preference order returned when f is evaluated at the profile P . Since f (P ) is itself

a weak order, it will sometimes be convenient to write xf (P )y to indicate that x is related

to y by the weak order f returns on profile P .

Let X be the set of non-empty subsets of X. A choice function is a function c : X −→X ,

subject to the restriction that C(S) ⊆ S.

An element x ∈ S is a best element of S with respect to binary relation R if and only if

for all y ∈ S, xRy. For short, call these the R-best elements. The R-best elements are at

least as good as all other elements with respect to R. The set of all R-best elements in S is

called the choice set of R on S, and is denoted C(S,R). Every binary relation R on X thus

determines a choice function on X in the obvious way. The converse is false. In general,

a choice function does not uniquely determine a binary relation. For example, no binary

For simplicity’s sake, I have adopted a formalism that does not permit the set of individuals or alterna-
tives to vary. To be clear, this is a perfectly standard formalism. Gärdenfors  provides an excellent,
and easy to follow example of a formalism which does allow these objects to vary.
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relation corresponds to the choice function defined by C({x,y,x}) = {x},C({x,y}) = {y}. A

choice function determined by a binary relation is called a representable choice function.

. Arrow’s General Possibility Theorem

Arrow’s Theorem demonstrates inconsistency between the following conditions.

.. The Arrow Conditions

Let P = 〈R1,R2, . . . ,Rn〉, P ′ = 〈R′1,R
′
2, . . . ,R

′
n〉 be profiles. Let f be some arbitrary aggrega-

tion function. Let R = f (P ), R′ = f (P ′). That is, R and R′ are the aggregate orders returned

by aggregation function f evaluated at profiles P and P ′ respectively. Let P be the strict

preference relation corresponding to R.

(U) Unrestricted domain For all P ∈ P, f (P ) is defined.

(P) Weak Pareto principle If, for all i ∈N , xPiy, then xP y.

(D) Non-dictatorship There is no i ∈ N such that, for all P ∈ P, and for all x,y ∈ X, if

xPiy then xP y.


Sen , .
See: Sen , Sen .
The conditions I present here differ in strength and substance from those presented in Arrow .

They are both weaker and more generally stated. By now, though, they have become more or less standard
in the literature on Arrow’s Theorem, and are the conditions commonly used in primers on the subject.
(See, for example: Kelly , –; Gaertner , ; and Sen a, .) One can prove results
highly similar to Arrow’s Theorem from weaker sets of conditions. In particular, Hansson  shows
that one can get an almost equivalent theorem by replacing the weak Pareto principal with two conditions
the conjunction of which is still weaker than weak Pareto. And Wilson  shows that one can prove a
somewhat weaker theorem without the use of the weak Pareto principle or any nearby replacement condi-
tions. Wilson’s theorem is weaker in the sense that an aggregation function which satisfies his conditions
of unrestricted domain and independence of irrelevant alternatives won’t necessarily be a dictatorial func-
tion, and may instead be what he terms a null-function. (See: Wilson , .) All the same, I opt
for these now-standard conditions for a simple reason: I don’t care much about any condition other than
independence of irrelevant alternatives, and this condition is indispensable to every result closely related
to Arrow’s Theorem.
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(I) Independence of irrelevant alternatives For any x,y ∈ S, and for all i ∈N , if xRiy iff

xR′iy, then xRy iff xR′y.

Then Arrow’s Theorem is as follows:

Arrow’s Theorem Given at least three elements in S, and with N finite, no aggregation

function f can satisfy all of: (U), (P), (D), and (I).

Or as Sen a so elegantly puts it: “a social choice function that satisfies unrestricted

domain, independence of irrelevant alternatives, and Pareto Princple has to be dictatorial

(–).”

.. Why relation theory rather than choice theory?

Readers familiar with Arrow  or Arrow  will recognize that I depart from Ar-

row by giving a relation theoretic rather than choice theoretic definition of condition (I).

More generally, I discuss aggregation functions which return binary relations rather than

choice sets, and present a relation theoretic version of Arrow’s Theorem rather than a

choice theoretic version. I have two simple reasons for this: Relation theoretic results

can easily be extended to choice theoretic results, but the converse is not true. Also, I aim

to make room for a modeling approach for rational individual decisions under conflict-

ing criteria. The hope is that the output of such a model could be plugged into standard

decision theoretic models of rational decision making under uncertainty, which gener-

ally require that the individual decision maker have a single overall weak order over her

options.


Fishburn  shows that given an infinite number of voters, it is possible for a social choice function

to satisfy all four conditions.
I omit a proof of Arrow’s Theorem here. The interested reader should see Sen a, pp. –, for

an especially concise and elegant proof, or Gaertner , – for a presentation of several different
proofs. Arrow  proves only the restriction of the theorem to the two-voter case.
See Hansson  for several choice theoretic versions of the theorem.
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.. Motivating the first three Arrow conditions with respect to social aggregation

Condition (U) requires that an aggregation function be defined for all possible preference

orders over the set of options. That is, it requires that no possible preferences be excluded

in advance; individuals or decision criteria can rank options however they see fit. Any

aggregation function which violates (U) rules out certain means of participation in the ag-

gregation problem. Worse, as we shall see below, aggregation functions which violate (U)

can fail to yield actionable or rational collective preferences, by returning empty orders,

or orders that are problematically intransitive.

Condition (P) requires that consensus be respected wherever it arises. For this reason,

this condition is also sometimes called the consensus principle. The condition requires

that unanimous individual strict preference entail aggregate strict preference. Any ag-

gregation function that fails to satisfy (P) might give rise to situations in which, despite

unanimous weak preferences for one candidate over another, the aggregate order is indif-

ferent or strictly prefers the second candidate to the first. The appeal of (P) is as obvious

as it is indisputable.

Condition (D) requires that an aggregation function does not simply parrot the strict

preferences of one individual or individual criterion. Maskin  notes that (D) is typi-

cally justified as an entailment of a much stronger condition, generally called anonymity

and in the context of elections equal treatment of voters ().

Anonymity If P ′ is permutation of P then, f (P ) = f (P ′).

A thorough defense of anonymity could fill its own book, but the gist of the reasoning is

See: Maskin and Sen , .
The Pareto principle is not entirely without criticism as a constraint on collective decision. Existing

criticism divides quite neatly into two camps. To one side, some authors have questioned whether apparent
unanimity encoded in agreement of pairwise preferences across individuals should always be taken at face
value. (See, for example, Mongin .) To the other side, some authors argue that the Pareto principle
conflicts with principles of fairness and justice. (See, for example, Kaplow and Shavell , Kaplow and
Shavell , and Kaplow and Shavell .) However, these criticisms plainly have no bearing on the
discussion here.
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fairly simple. In cases of social aggregation, aggregation of preferences of moral agents is

at stake. Moral agents are the natural subjects of considerations of fairness and justice.

Standardly, considerations of fairness and justice require that individual moral agents are

treated equally unless we have principled reasons to deny them equal standing. That is,

how a moral agent should be treated is not dependent on who in particular the agent is. In

other words, considerations of fairness and justice impose a defeasible presumption that

moral agents are to be treated anonymously. In social aggregation problems, weak orders

are the only information we have about the individual moral agents whose preferences are

to be aggregated. On the basis of this information alone, there is generally no principled

reason to deny the moral agents involved equal standing. Thus we should adhere to

something like the anonymity condition, which entails non-dictatorship.

I defer further discussion of condition (I) to the next section.

.. Motivating the conditions with respect to individual aggregation

Conditions (U) and (P) can be motivated as constraints on rational individual aggregation

functions by straightforward analogues of the arguments used to motivate them in the

social case.

Condition (D) demands just a bit more thinking. Dictatorship is objectionable in the

case of social aggregation because, as noted above, the individuals whose preferences

are to be aggregated are moral agents subject to considerations of justice and fairness.

On basis of these considerations we can argue for their equal treatment by aggregation

functions, and argue against specific ways of treating them differently like dictatorship.

But the decision criteria in an individual aggregation problem are not agents, let alone

moral agents. They are not even quasi-autonomous subagents. Instead, they are some-

thing like value considerations. There are no natural analogs of justice and fairness from

which to argue for equal treatment of the decision criteria. Indeed, there’s good reason to
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think that some of our decision criteria—say our moral and justice-related evaluations of

options—should be treated as distinctly more important than our other decision criteria.

Nonetheless, there’s a fairly compelling reason to impose (D) as a constraint on in-

dividual aggregation functions. To condone dictatorial aggregation functions is to give

up on saying anything interesting about decision under conflicting criteria. Suppose we

concluded there was one rational aggregation function, namely the one which made the

decision maker’s moral evaluation of options the dictator. Conflict with other criteria

might lead to all sorts of psychological fallout for the decision maker, like regret, shame,

dissociation, perhaps even an eventual break from her previous moral commitments. But

these purely formal conflicts are completely swept aside when it comes to the practical

question of what to choose. On that question, the dictator’s evaluation is final. And in that

sense, all conflicts would be obviated. Similarly, conflicts would be obviated whenever

the individual decision maker had any kind of fully worked-out weighting or priority

scheme over her decision criteria. This point will prove important later.

Thus, if the aim is in fact to say something about decision under conflicting criteria

in the discussion of individual aggregation problems, we must impose (D) as a constraint

on individual aggregation functions. Note well, though, that (D) is not motivated by

considerations of rationality. The motivation for (D) is altogether methodological. It

remains possible that violations of (D) might be rational.

Again, I defer discussion of condition (I) to the next section.

.. Two familiar aggregation functions

To illustrate the significance of Arrow’s Theorem, I briefly introduce two familiar aggre-

gation functions, and indicate which of the Arrow Conditions they violate.
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The Condorcet Rule

Let RC be a binary relation over X, with associated strict preference relation P C . Define

Cxy =
∣∣∣{i | xRiy}∣∣∣. (Here, where A is a set, |A| denotes the cardinality of A.) Then xRCy if

and only if Cxy ≥ C
y
x . And xP Cy if and only if xPiy holds for a simple majority of i ∈N .

Condorcet Rule fC : P −→R, such that fC(P ) = RC .

The Condorcet Rule plainly satisfies (P), (D), and (I). It violates (U). Condorcet noted

that the rule fails to return a weak order over so-called cyclic profiles. This is easiest

to illustrate in the three individual, three option case. Let {x,y,z} be the set of candi-

dates. Adopt xPiyPiz as shorthand for xPiy,yPiz and xPiz. Suppose the strict preferences

of the three individuals are xP1yP1z, yP2zP2x, and zP3xP3y. Then a majority of individuals

prefers x to y, a majority prefers y to z, and a majority prefers z to x. Thus the binary

relation RC determined by this profile is not a weak order, since it is cyclic without also

being flat, and is therefore intransitive.

The Borda Rule

For notational convenience when discussing the Borda Rule, we will assume that X =

{x1,x2, . . . ,xc}. Let Bi be a c-dimensional vector, such that Bi = 〈b1,b2, . . . , bc〉 and define
The Condorcet Rule takes its name from the Marquis de Condorcet, who discusses it at length in his

monograph of , Essay on the Application of Analysis to the Probability of Majority Decisions. However,
identical or highly similar rules were previously discussed in the works of Ramon Llull (in the thirteenth
century), Nicolas Cusanus (in the fifteenth century), and Pufendorf (in the seventeenth century.) (See:
Gaertner , –.)
That the Condorcet Rule violates (U) depends on the fact that I define the range of aggregation func-

tions as the set of weak preference orders. Cyclic profiles reveal that RC is sometimes not a weak preference
order. If, however, one characterizes aggregation functions as functions from tuples of weak preference or-
ders to mere binary relations (see, for example, Gaertner ), then the Condorcet Rule satisfies (U).
Nonetheless, it’s still deficient since it sometimes returns inconsistent aggregate orders, which are gener-
ally regarded as problematically inconsistent and inadequate for rational choice. However, I prefer my
characterization of aggregation functions, for the simple reason that on this characterization, Arrow’s The-
orem covers all aggregation functions, instead of having exceptions in rules like Condorcet. Others, like
Sen b characterize (U) as I do here.
The Borda Rule takes its name from Jean-Charles de Borda, who discusses it at length in his  essay,

Memoir on the Election by Ballot. Again, identical or highly similar rules were previously discussed by Llull,
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bj =
∣∣∣{y ∈ X | xjPiy}∣∣∣. Let B+ =

∑n
i=1 Bi . Then, xpRBxq if and only if B+

p ≥ B+
q . That is, xpRBxq

if and only if the p-th component of B+ is at least equal to the q-th component.

Borda Rule fB : P −→R such that fB(P ) = RB.

Put more expressively, the Borda Rule works like this: First, convert each preference

order in the profile into a positional scoring, where each option’s positional score is the

number of options to which it is strictly preferred. Then, for each option, sum the po-

sitional scores it receives from each individual or decision criterion. Call this the option’s

aggregate positional score. Then one option is weakly preferred to another in the aggregate

order if and only if the first option’s aggregate positional score is greater than or equal to

the second’s aggregate positional score.

The Borda Rule plainly satisfies (P) and (D). It also satisfies (U), since on cyclic profiles

it returns the flat order, rather than an intransitive, cyclic order. However, it violates (I),

since aggregate preferences between x and y depend on the aggregate positional scores of

x and y, which in turn depend on how other options are ranked relative to x and y. This

will become clear from examples in the next section.

Cusanus, and Pufendorf.


Gärdenfors , B. Fine and K. Fine , P. J. Hammond , and Pattanaik  all note that
there is ambiguity regarding how to define an option’s positional score when the profile is allowed to
contain non-linear weak orders. A weak order R with associated strict order P is linear if and only if for
all x,y, with x , y, either xP y or yP x. Given a linear order over the options, the natural positional score
for each option is the number of options to which it is strictly preferred on that order. But when the order
is non-linear there are at least two ways to generate positional scores: each option can be scored on basis
of the number of options to which it is strictly preferred, or on basis of the number of disjoint indifference
classes beneath it. Two options x,y are in the same indifference class if and only if xIy. These two scoring
methods can return different scores. Let X = {x,y,z}. Suppose xP y and yIz. Then scored by the strict
preference method, x receives a positional score of 2 since it is strictly preferred to both y and z. Scored
by the indifference class method, x receives a positional score of 1, since it is strictly preferred to elements
from the indifference classes {x,y}. It is trivial that these methods converge on the same score for linear
orders. Here I follow P. J. Hammond  and Pattanaik  and opt for the strict preference scoring
method, which more closely approximates how linear orders would be scored in cases where weak orders
are very close to linear.
An order is flat when nothing is strictly preferred to anything else. Everything is weakly preferred to

everything; the options are all in the same indifference clance.
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Violations of (P) and (D)

It seems that no aggregation function actually in use as a voting rule violates either (P)

or (D). But such aggregation functions are easy to imagine. The function that maps every

profile to its first element violates (D). And any imposed function will violate (P). An

aggregation function is imposed, in Arrow’s sense, if it the aggregate order it returns is

not dependent on the profile on which it is evaluated. So a function that maps every

profile to the same fixed aggregate order is imposed, and thus violates (P).

. The Independence Condition

Hansson writes, “Arrow’s Theorem is really a theorem about the independence con-

dition ().” Condition (D) is quite reasonably taken as sacrosanct. Dasgupta and Maskin

 and others have shown that there are restricted domains such as the domain of sin-

gle peaked preferences and the domain of single troughed preferences on which certain

aggregation functions—in particular the Condorcet rule—satisfy all the other Arrow con-

ditions. But we generally lack good reason to expect individual preferences to fall into

such domains, thus we generally lack good reason to reject or relax condition (U). Con-

dition (P) seems just as sacrosanct as (D). Further, Hansson proves versions of Arrow’s

Theorem that involve substantial weakenings of the weak Pareto principle. Relatedly,

Wilson  proves a nearby impossibility theorem that doesn’t require any version of

the Pareto principle. So, despite its sacred role, (P) isn’t exactly essential to the theorem.

The appeal of condition (I) is not so obvious. In fact, Arrow  admits that if

one means to object to one of his conditions, (I) is the natural starting point. Despite

this, the condition is widely taken for granted. Mackie  notes that “justifications of

the condition are typically thin and dogmatic, often no more than an assertion that its


Arrow , Arrow , and Arrow  actually contain an explicit non-imposition condition,
though it later became clear that the weaker Pareto principle was sufficient for the impossibility result.
See: R. D. Luce and Raiffa ,  for further discussion of imposition and dictatorship.
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appeal is intuitively obvious ().” For example, Arrow  states that the “essential

argument” in favor of this condition is its direct appeal to intuition ().

Barry and Hardin  suggest that it is perhaps because the condition is so subtle

that it is so readily taken for granted. As evidence of its subtlety consider that Nash

, Goodman and Markowitz , Radner and Marschak , R. D. Luce ,

R. D. Luce and Raiffa , Vickrey , Samuelson , Dummett , among oth-

ers, have all been alleged to have confused condition (I) for another condition to which it

is only indirectly related, which has sometimes also been called independence of irrel-

evant alternatives. Allegations of these confusions are catalogued at length in Ray ,

Hansson , Barry and Hardin , Kemp and Ng , Bordes and Tideman ,

McLean , Denicolò . Mackie , and elsewhere. And Maskin  and

Dasgupta and Maskin  somewhat misleadingly treat Arrow’s condition (I) as though

it is interchangeable with Nash’s condition of the same name. This other condition is

also known as contraction consistency, and is referred to in Sen  and Sen  as

Property α. Let C be some choice function. Then the condition is:

(C) Contraction consistency If S ′ ⊂ S, x ∈ C(S), and x ∈ S ′, then x ∈ C(S ′).

Indeed, in Arrow , Arrow himself admits to having made the same confusion in

Arrow , Arrow , and Arrow , when he provided the oft-cited alleged ex-

ample of a violation of condition (I) involving the death of a candidate in a club election.

Given the history of confusion surrounding the condition, it is somewhat surprising

that anyone should claim the condition appeals obviously to the intuition. It would be one


Denicolò  shows that if an aggregation function is restricted in certain fairly weak ways, then it

can satisfy at most one of Arrow’s condition (I) and contraction consistency.
Of historical interest, McLean  suggests that this confusion is evident even in the work of Con-

dorcet, and his most prominent intellectual heir, Pierre Claude François Daunou.
See, in particular: Maskin , , nt. ; and Dasgupta and Maskin , , nt. . In personal

communication with Maskin, he admits that his presentation of Nash’s condition as interchangeable with
Arrow’s was somewhat confusing. He had intended to communicate their interchangeability only with
respect to the majority dominance theorem in discussion in those papers, and not their interchangeability
in the larger context of Arrow’s Theorem.
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thing if the confusion was endemic to laypersons and non-experts, but the very content of

the condition seems to have eluded sophisticated commentators who are trained experts

in the field.

To better explore the motivations for condition (I), it is necessary to more carefully

distinguish condition (I) from condition (C), and to discuss what violations of each con-

dition might look like.

.. No aggregation function violates (C)

It is also somewhat surprising that anyone has ever confused conditions (I) and (C). Con-

dition (I) is what Kelly  has called an interprofile condition on aggregation functions.

It states that if two profiles relate to one another in certain ways, then the aggregate orders

generated from those profiles must relate to one another in certain ways.

Condition (C) is not even straightforwardly a condition on aggregation functions.

Rather, it is a condition on much more general choice functions. Recall, though, that every

binary relation determines a choice function. Let C∗ be a choice function over X such that

for for some aggregation function f and profile P , and for any S ⊂ X, C∗(S) = C(S,f (P )).

Sharpening up condition (C) in the obvious way, we get something like the following

condition:

(C′) Contraction Consistency on Aggregation Functions If S ′ ⊂ S, x ∈ C∗(S), and x ∈ S ′,

then x ∈ C∗(S ′).

Then we have what Denicolò  calls an interagenda condition. (C′) states that if two

agendas are related to one another in certain ways, then the choice sets from those agen-

das must relate to one another in a certain way. If we intend to demonstrate that an

aggregation function violates (C), presumably we’ll do so by showing that it violates the

more specific condition (C′).





Here’s Arrow’s (in)famous example of an alleged violation of (I), now widely under-

stood to be an example of a violation of (C):

With a finite number of candidates, let each individual rank all the candidates,
i.e., designate his first-choice candidate, second-choice candidate, etc. Let pre-
assigned weights be given to the first, second, etc., choices, the higher weight
to the higher choice, and then the the candidate with the highest weighted
sum of votes be elected. In particular, suppose that there are three voters
and four candidates, x,y,x, and w. Let the weights for the first, second, third,
and fourth choices be 4,3,2 and 1, respectively. Suppose that individuals 1
and 2 rank the candidates in the order x,y,z, and w, while individual 3 ranks
them in the order z,w,x, and y. Under the given electoral system x is chosen.
Then, certainly if y is deleted from the ranks of candidates, the system applied
to the remaining candidates should yield the same result, especially since, in
this case, y is inferior to x according to the tastes of every individual; but, if
y is in fact deleted, the indicated electoral system would yield a tie between x
and z.

The voting system Arrow has in mind requires a bit more explanation: Arrow suggests

that the way to respond to the removal of a candidate from the agenda is to take each

individual order in the profile, blot out the name of the removed candidate from that

order, and aggregate from there.

The example is plainly not a violation of (I), since to show a violation of an interprofile

condition, we need an example that involves a change in profiles. In light of this, com-

mentators have often held that it is meant to show a violation of (C′). But the example is

not even structured properly to demonstrate a violation of (C) or (C′). The only element

in the initial choice set, x, remains in the choice set after contraction. Let S = {w,x,y,z},

and S ′ = {w,x,z}. For the time being, I will hedge and refer to the choice function at

play in the example as C, rather than C∗ with explanation to follow below. Then we have

C(S) = {x}, and C(S ′) = {x,z}. There is no element in C(S) that is not in C(S ′). And this

would be required to demonstrate a violation of (C).


Arrow , Arrow , Arrow , –.


Bordes and Tideman  offer an ingenious, rather complicated, though eminently plausible reading
of Arrow  and Arrow  according to which Arrow makes no such confusion. Kemp and Ng 
argue along similar lines. However, I take Arrow’s own admission of the mistake to trump their clever
interpretive efforts.
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We can generate an example similar to Arrow’s example with the right structure. Sup-

pose there are five voters, rather than three. Suppose each of the individuals rank the

candidates in the following orders, respectively: x,z,y,w; x,y,w,z; w,x,z,y; y,w,z,x; and

y,w,x,z. When y remains a feasible candidate, x and y tie. When y is deleted from the

ranks of candidates, w wins outright. C(S) = {y,z} and C(S ′) = {w}. We now have a case in

which S ′ ⊂ S, x ∈ S ′ and x ∈ C(S), but x < C(S ′).

But, as, Ray  explains, this example can’t actually work. Sen  proves it’s

impossible. Condition (C) is equivalent to Sen’s Property α. Condition (C′) is just that

condition reformulated in terms of C∗, which is the choice function determined by the

weak order f (P ). Sen proves that every representable choice function necessarily satisfies

Property α. Recall that a representable choice function is one determined by a binary

relation. f (P ) is a binary relation, so C∗ is a representable choice function. (C′) turns

out to be an inviolable condition. The example simply can’t be showing us what it appears

to be showing us.

So what’s going on? The answer lies in a subtlety of the voting method Arrow uses.

When a candidate is removed from the agenda, Arrow suggests blotting them out of the

individual orders in the profile, rather than blotting them out of the aggregate order gen-

erated by the aggregation function on the profile. Let f be the aggregation function for

the voting method in the example. When the agenda contracts from S to S ′, he suggests

we consider f (PcS ′ ) rather than f (P )cS ′ . Strictly speaking, I am abusing my notation a bit,

since the domain of f is the set of profiles of weak orders over X, whereas PcS ′ is a profile

over S ′. However, the meaning of the construction is obvious, and so I don’t see any rea-

son to add additional notation. Now we can see why I hedged earlier in referring to the

choice function in Arrow’s example as C∗. With respect to the initial agenda, S, Arrow

See: Sen , –; and Sen , –.
Even better, it’s a weak order, so we can actually expect the choice function it determines to satisfy

stricter conditions.
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may very well consider C∗, where C∗ is the choice function determined by f (P ). But af-

ter contraction to S ′, Arrow instead considers the choice function determined by f (PcS ′ ).

f (P ) and f (PcS ′ ), are, quite obviously, different binary relations since the former is com-

plete over S and the latter only over S ′. But what is worse, for Arrow’s voting method

they disagree over S ′. That is, for Arrow’s voting method, f (PcS ′ ) , f (P )cS ′ . Thus the

choice function determined by the latter over S ′ cannot be a subset of the choice function

determined by the former over S. They must be two quite distinct choice functions.

Arrow’s case, then, is not an example of an aggregation function violating (C) or (C′).

The upshot of this is that I can safely ignore a whole class of arguments and examples in-

tended to motivate condition (I). In particular, I can ignore any examples and arguments

that treat (I) as though it is, or entails, an interagenda consistency condition like (C). I

can restrict my focus to those arguments and examples that take condition (I) for what it

is: an interprofile condition, violations of which depend on changes in profiles.

.. An example violation of (I)

Arrow’s example above makes it clear that there is some ambiguity in how we define the

Borda Rule for any case where S , X. Recall that f B is the aggregation function associated

with the Borda Rule, and let P be the profile under consideration. One way to generate

a weak order over S is to evaluate f B(P )cS . That is, we can first restrict the profile to

the set S, and then calculate the aggregate order from the restricted profile. Call this

the local Borda Rule. But we might instead evaluate f B(P )cS . That is, we can evaluate

the Borda Rule on the profile over X, and then restrict the resultant aggregate order to

S. Call this the global Borda Rule. Arrow’s example and my modified case show us that

the local and global Borda rules will sometimes yield different results. The examples also

illustrate a further divide between the rules. Whereas the local Borda Rule can be used

to generate apparent inconsistencies under contraction, no such inconsistencies can be
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generated from the global Borda Rule. However, the local Borda Rule quite obviously

satisfies condition (I), whereas the global Borda Rule violates (I). Since I’m interested in

violations of (I), rather than (C), hereafter I intend the global version of the rule.

Here’s a simple example of a violation of (I) adapted from Mackie : Suppose

there are five individuals, and X = {x,y,z}. Adopt the shorthand x > y to indicate that

on the order under discussion x is strictly preferred to y. Suppose two individuals rank

the options in order of strict preference x > y > z, two rank them y > z > x, and one

ranks them z > x > y. On this profile, the Condorcet Rule returns the cycle x > y > z > x,

whereas the Borda Rule returns the aggregate order y > x > z. To show a violation of (I),

we’ll need to home in a on particular pair of options. Focus on x,y, and suppose that

the two individuals who initially ranked the options y > z > x change their ranking to

z > y > x. Now the Condorcet Rule returns the aggregate order z > x > y, and the Borda

Rule returns the order z > x > y. The aggregate order returned by the Borda Rule on the

first profile ranks y > x. On the second profile, the aggregate order returned by the Borda

rule ranks x > y. The Borda Rule has changed its pairwise ranking of x and y. Crucially,

no individual’s preferences between x and y have changed from the first profile to the

second. Thus we have a violation of condition (I).

Were condition (I) to have some sort of obvious intuitive appeal, we should expect it

to be evident in the example just discussed. But, at least to my mind, nothing seems obvi-

ously wrong with the behavior of the Borda Rule on the profiles in the example. Perhaps

the appeal of the condition could be made more obvious by fleshing out the example with

details. However, we are supposed to be troubled by violations of the condition in gen-

eral, and not violations in some particular case. So we’d be moving in the wrong direction

For more on the relationship between global and local versions of an aggregation function and condi-
tion (I), see Bordes and Tideman . There, the authors introduce a more expressive formalism, in which
they characterize a condition called regularity. Roughly, an aggregation function is regular whenever its
global and local versions always agree. They show that any regular function must satisfy condition (I), but
the converse is not true.
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to exchange abstract and generic violation for a more concrete and particular case. There

is supposed to be something so troubling about the ground-level formal structure of the

example that we can readily grasp it with our intuition. If that’s the case it should be

evident no matter how spare we are with concrete details. Consider as an analogy the

principle that intransitive preferences are irrational. This principle, I readily concede,

appeals directly to one’s intuition, and it can easily be motivated by the most abstract of

examples. Condition (I) just doesn’t seem to have the same degree of intuitive force.

Motivating condition (I) requires more substantive arguments. I turn now to address-

ing these.

. Motivating condition (I): arguments and replies

Though condition (I) is widely motivated by appeal to intuition, there are several more

substantive arguments on offer in the literature. While these arguments may motivate the

condition with respect to social aggregation functions, the question at hand is whether

they adequately motivate the condition with respect to individual aggregation functions.

Existing work on extending Arrow’s theorem to individual aggregation problems ei-

ther takes condition (I) as intuitively obvious (see Ellis ), or gestures to one of

the arguments discussed below to motivate the condition without carefully exploring

whether the argument actually extends to cases of individual aggregation (see Steedman

and Krause  and Kavka .)

.. Argument : Condition (I) prohibits strategic misrepresentation of preferences

An individual misrepresents her preferences if she submits for aggregation a weak order

that does not reflect her actual preference order over the options. Call the former an

insincere order and the latter her sincere order. She misrepresents her preferences strategi-

cally if by way of submitting an insincere order, she actually increases the chances that an
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options she prefers on her sincere order will win. This is also called strategic voting; for

reasons that will become obvious, I avoid this term.

Riker , Riker , P. J. Hammond , and Dasgupta and Maskin  have

argued that condition (I) rules out aggregation functions that are susceptible to manipu-

lation by strategic mispresentation of preferences. One has to parse the conclusion of

this argument carefully, as there are several possible ways to manipulate the results of an

aggregation function. In addition to strategic misrepresentation of preferences, individ-

uals can also manipulate the agenda by causing options to be added or removed. When

discussing this argument, both P. J. Hammond  and Mackie  slip into discussion

of agenda manipulation. But it’s been well known since Condorcet that even aggregation

functions which satisfy condition (I), like his eponymous rule, are susceptible to agenda

manipulation.

However, aggregation functions which violate (I) are susceptible to strategic misrepre-

sentation of preferences, and uniquely susceptible to strategic misrepresentation of pair-

wise preferences between pairs consisting of one feasible and one infeasible option. Sup-

pose we’re aggregating by the Borda Rule, X = {a,b, . . . , z}, and the agenda is S = {x,y,z}.

Consider an individual whose sincere order is x > y > z > a > b > · · · > w. Were she instead

to submit the insincere order x > a > b > · · · > w > y > z, she could reduce the positional

score for y and z each by 23 points. This difference might be washed out in a large pool

of mostly sincere individuals; but in a small pool of voters it could easily overwhelm the

sincere preferences of others. Note, though, that the individual does not misrepresent her

pairwise preferences over feasible options, or for that matter over the infeasible options.

Rather she misrepresents her pairwise preferences over the set of pairs consisting of one

option from {a,b, . . . ,w} and either y or z. It is quite plain that it is precisely because the

See: Riker , ; P. J. Hammond , ; Dasgupta and Maskin , . For a lengthy dis-
cussion of manipulation, in particular for a careful distinction between strategic voting and manipulation
of options, see: Riker , –.
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Borda Rule violates condition (I) that it is susceptible to such manipulation. It is equally

obvious that any aggregation function which satisfies condition (I) won’t be susceptible

to this sort of manipulation, because such a function won’t be sensitive to how any ele-

ment of S is ranked relative to any element of X \S. (Here, X \S notates the set-difference

between X and S, that is, the set of all elements of X not also in S.)

Where we have reason to worry about manipulation, especially about manipulation

by this sort of strategic misrepresentation of preferences, we have corresponding reason

to reject aggregation functions which violate condition (I). However, though this worry is

legitimate for social aggregation, it is irrelevant for individual aggregation.

Social aggregation only allows for strategic misrepresentation of preferences because

we don’t have immediate access to individuals’ preferences. Some way or other, they

have to generate an external representation of their preferences on a ballot, and submit

this to the institution in charge of aggregation. Further, individuals are able to misrepre-

sent their preferences because they are full-fledged agents, and are able to reason about

the balloting process. Neither of these conditions obtain in cases of individual aggre-

gation. There is no separation of the individual’s decision criteria from the aggregator.

The aggregator is one and the same individual whose criteria are to be aggregated. The

aggregator has immediate access to the weak orders generated by her decision criteria

precisely because they are her decision criteria. Further, the decision criteria are not any-

thing like autonomous agents capable of insincerity. As noted above, they are something

like value considerations, the very essence of which is that they are always transparent in

their evaluation of options.

For these reasons, I can safely ignore the family of results closely related to Arrow’s Theorem about
strategic voting and manipulability, like those of Gibbard , Satterthwaite , and Duggan and
Schwartz .
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.. Argument : Condition (I) rules out lotteries

Riker  argues that condition (I) rules out what he calls lotteries, which are aggre-

gation functions that somehow incorporate an element of randomness in their mapping

from profiles to aggregate orders(–). Random aggregation functions are objection-

able because they are not responsive in the right way to changes in individual preferences.

Thus, Riker’s reasoning runs, we should reject aggregation functions which violate (I).

Riker, however, is unclear what he means by lotteries. There seem to be three possible

interpretations. Recall that R is the set of weak orders over X and P is the set of pos-

sible profiles over X. First, Riker might have in mind a function that takes in a profile

and returns a probability distribution over (some subset) of R. In fact, functions of this

sort seem to be what Riker has in mind. But if the distribution returned is appropriately

sensitive to differences in profile, such a function doesn’t seem obviously objectionable.

We might, for example, interpret it as communicating the probability, for each aggregate

order in the distribution, that it was the order that would maximize social or individual

utility. That’s neither here nor there, though, because condition (I) is not a constraint

on functions of this kind, and neither is it required to rule out functions like this. Such

functions are preemptively ruled out by the formal structure of aggregation problems,

because they are not aggregation functions. Aggregation functions are by definition func-

tions from profiles to weak orders, not from profiles to probability distributions.

Second, he might have in mind a non-deterministic mapping from profiles to weak

orders. Such a mapping would, for any profile input, return a weak order selected in a

non-deterministic way, perhaps randomly according to a probability distribution some-

how sensitive to the profile itself. But, though such a mapping has the same domain and

range as an aggregation function, it is not a function, since each input is not mapped to

a single output. Such a mapping might map any given profile to any number of distinct,

possibly unrelated, aggregate orders. Once again, condition (I) is not required to rule out
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such non-deterministic mappings; they are preemptively ruled out by the structure of

aggregation problems.

There is a third possibility. Imagine that we proceeded through the space of possi-

ble profiles one by one, pairing each profile with a single, randomly-selected weak order.

The resulting map would indeed be an aggregation function. This interpretation might be

Riker’s best option. Call these functions Riker lotteries. It’s quite obvious why we should

reject aggregation by Riker lotteries with respect to both social and individual aggre-

gation problems. Riker lotteries fail to respond appropriately to differences in profiles.

Condition (I) obviously rules out Riker lotteries.

But condition (I) is not required to rule out Riker lotteries. Indeed, there are condi-

tions that rule out Riker lotteries, and which do not entail condition (I). This is obvious

because the Borda Rule violates (I), but is not a Riker lottery. We can generate any num-

ber of other conditions that rule out Riker lotteries. In principle, all that’s required is that

we can predict how f (P ) and f (P ′) will differ on the basis of information about how P

and P ′ differ. Or, to put the point somewhat differently, what’s required is that given P

we can somehow deterministically calculate f (P ). It is outside the scope of this essay to

suggest and defend alternate conditions for ruling out Riker lotteries. All that matters is

that condition (I) is not required to rule them out, and that there are conditions which

will suffice that do not entail (I).

This argument, then, fails to motivate condition (I) as a constraint on either social

aggregation functions or individual aggregation functions.

.. Argument : Functions which violate condition (I) can also violate the majority

rule condition

At the core of the eighteenth century debate between Condorcet’s camp and Borda’s camp

was the recognition that when there is a clear pairwise majority winner, the Borda Rule
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might fail to select it. This is, it seems, the oldest criticism of the Borda Rule, and among

the most common arguments used to motivate condition (I). Let’s put the point more

precisely. Again, let f be an aggregation function, P = 〈R1,R2, . . . ,Rn〉, and define Cxy =∣∣∣{i | xRiy}∣∣∣. Consider the following condition:

(M) Weak majority rule If Cxy > C
y
x then xf (P )y.

It is easy to see that the Borda Rule violates this condition. Let S = X = {x,y,z}. Sup-

pose there are five voters, three of whom rank the options x > y > z and two of whom

rank the options y > z > x. x is plainly preferred to every option by a majority of voters.

In particular, Cxy > C
y
x . But the Borda Rule returns the aggregate order y > x > z. Thus,

the Borda Rule violates (M).

As it happens, neither condition (I) nor condition (M) entails the other. In other words,

the Borda Rule does not violate (M) merely because violates (I). We can easily describe an

aggregation function that satisfies (M), but violates (I). As above, in §.., let B+
x notate

the Borda count for any x. Consider the function f defined such that, for all x,y, if

Cxy > C
y
x , then xf (P )y, and if Cxy = CyX , then xf (P )y if and only if B+

x > B+
y . This function

agrees with majority pairwise preference wherever it arises, and settles any ties that arise

by the Borda Rule. It quite obviously satisfies (M), since it was defined to do just that.

And it also quite obviously violates (I) for just the same reasons the plain Borda Rule

does. In the other direction, every imposed aggregation function trivially satisfies (I), but

violates (M).

However, I think there is a less pedantic and more charitable interpretation of this

argument. Call any aggregation function which violates condition (I) a non-(I) function,

and any aggregation function which violates condition (M) a non-(M) function. It is of-

ten assumed or argued that if any non-(I) function is potentially viable, then the Borda

This criticism of the Borda Rule is actually a great deal older than either Condorcet’s or Borda’s work.
Ramon Llull observed this as early as the thirteenth century. See my notes  and  above.





Rule and all other members of a closely related family of positional functions—call it the

Borda family—are viable. Let’s take this claim for granted. Then, if we can show that

we have reason to reject any function from the Borda family, we can show that there is

no viable aggregation function which violates (I). The Borda Rule is obviously a non-(M)

function. Let’s assume further that the Borda family consists exclusively in non-(M) func-

tions. Given the assumptions made thus far, if we can show that violating (M) is a reason

to reject an aggregation function, we will have shown that no viable aggregation function

violates (I). Although this reason for (I) is fairly hedged and indirect, it still provides some

motivation for the condition.

So should we reject aggregation functions which violate (M)? With respect to social

aggregation, there is a strong case that we should. To reiterate an earlier point, in cases of

social aggregation, the weak orders to be aggregated are the preferences of moral agents.

Moral agents are the subjects of considerations of justice and fairness. Justice and fairness

are generally understood to require that without good reason to do otherwise, we treat

moral agents as equals. Equal treatment requires giving equal weight to the preferences

of every individual. Suppose a majority of individuals prefer x to y, but the aggregate

order prefers y to x. Under the banner of equal treatment, there seem to be only two plau-

sible ways to justify this: It could be justified because the preferences of the individuals

in the minority are more important—say because these individuals are more reasonable,

or will be more deeply affected by the issue under decision, or are of a higher social rank.

Or it could be justified because the preferences of the individuals in the minority for y

over x are more intense than the preferences of the individuals in the majority for x over

y.

The former option is a non-starter, because in the formal framework of aggregation

problems, we don’t have any information about the relative importance of anyone’s pref-

erences. The latter justification is also a non-starter. To be sure, preferences vary in
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intensity. But in an aggregation problem, we have access only to each individual’s ordinal

ranking of options. This isn’t sufficient to determine a unique cardinal utility function for

each individual, let alone a joint utility scale on which interpersonal comparisons can be

made. (More on this below.) So, in the formal framework of aggregation problems, indi-

vidual preferences have to be treated as though they are discrete, on-off states, each to be

counted once as a single unit of preference in the aggregate. One individual’s preference

for x over y is to be tallied as equal in intensity and importance to any other individual’s

preference for y over x. The preference of the majority has to prevail in the aggregate, on

pain of unequal treatment of individuals when it does not.

What’s to be made of the analog of this argument with respect to individual aggre-

gation? We’ve already noted that an individual’s decision criteria aren’t moral agents,

or agents of any kind, that there are no analogs of justice and fairness from which to

argue for their equal treatment, and that there may even be cases in which they should

be treated unequally. So the analogous argument simply doesn’t get off the ground with

respect to individual aggregation. If we don’t begin with the defeasible presumption that

all decision criteria are to be treated equally, we don’t need justification to defeat that

presumption. That certain functions which violate (I) sometimes also violate (M) is not,

in and of itself, good reason to reject these aggregation functions.

There is, however, the lingering worry of comparisons of intensity of preference that

arose as a subsidiary point in the discussion of this argument. I revisit this point in §§.

and  below.

.. Argument : Condition (I) eliminates the effect of judgments pertaining to in-

feasible options

One way to express the importance of condition (I) is that it prevents preferences involv-

ing infeasible options from affecting the aggregate order. For any aggregation function
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that satisfies (I), if S is the set of feasible options, we need only consider individuals’ pref-

erences between options in S to determine the aggregate order over S. In other words, for

functions satisfying (I), aggregate preferences over feasible options are independent of

individuals’ preferences over infeasible options. Hence the ‘independence’ component of

the name. For aggregation functions which violate (I), the aggregate order over S depends

on preferences over infeasible options.

Discussions of this point sometimes run aground on relatively uninteresting questions

about feasibility. To forestall this, I’m going to shift terms. Call preferences involving op-

tions in X \ S off-agenda preferences. Independence of the aggregate order over S from

the influence of off-agenda preferences is clearly justified only if we have good reason

to consider off-agenda preferences irrelevant. Indeed, the condition might have been

been better called “independence from irrelevant preferences.” Presumably, this justi-

fication of condition (I) is rooted in a plausible general principle of rationality that our

decisions—whether individual or collective—should not be influenced by irrelevant in-

formation. Suppose that off-agenda preferences are always genuinely irrelevant. Then,

for any aggregation function that violates (I), the aggregate order over S depends on ir-

relevant information. Thus, we have good reason to reject aggregation functions which

violate (I).

There is a problem with this version of the argument. Off-agenda preferences don’t

always appear to be irrelevant. This is not a novel point, or even a contested point. In-

deed, virtually every commentator who has written on Arrow’s theorem concedes that, in

principle, preferences pertaining to infeasible options might sometimes be relevant. This

point is made quite clearly in Arrow , Hildreth , Goodman and Markowitz

, Sen , Riker , Sen , and P. J. Hammond , just to name a few. Per-

haps a more illustrative way to put the point is this: Not all off-agenda options are equal

with respect to relevance. Some are clearly more relevant than others. Relevance comes
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in degrees.

Consider the following case. Suppose a city council is voting on a new community

development project. Proposals for the development projects were submitted by citizens

at an open forum meeting, and all proposals were open for discussion. A few of the pro-

posed projects are construction of a new stadium, construction of a new library on the

east side of town, construction of a new library on the west side of town, renovation of

the historic shopping district, renovation of the waterfront district, expanding the city

convention center, and construction of a spaceport. After preliminarily ranking all pro-

posed options, the council determines that the spaceport is infeasible because it’s absurd,

the stadium is infeasible because it’s too expensive, and the west-side library is infeasi-

ble because no suitable building site is available. Though the option is now infeasible,

off-agenda preferences involving the west-side library seem especially relevant because

of its similarity to another option in contention. They are clearly more relevant than off-

agenda preferences involving the stadium. And off-agenda preferences involving either

the west-side library or the stadium are clearly more relevant than off-agenda preferences

involving the ludicrous spaceport.

To see the point somewhat more clearly, let’s consider a pared down version of this

case. Suppose that the initial set of options includes only the following projects: the

east-side library, the west-side library, the convention center expansion, and the shop-

ping district renovation. Let e, w, c, and d stand for each of these options respectively,

so that X = {c,d,e,w}. Suppose that of the seven city councilors, four rank the options

w > c > e > d, and three rank the options e > w > d > c. On this profile, the Condorcet

Rule ranks the options w > c > e > d, and the Borda Rule ranks the options w > e > c > d.

Both agree that w is the clear winner. Now suppose that the west-side library is ruled

out for the reasons discussed above so that S = {c,d,e}. The Condorcet Rule returns the

order c > e > d whereas the Borda Rule returns the order e > c > d. The two aggregation
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functions disagree, the former selects c, whereas the latter—sensitive to off-agenda pref-

erences involving w—selects e. It is not obvious that the Borda Rule is in error. After all,

everyone preferred some library or other to everything else, and three of four councillors

preferred both libraries to anything at all. Though in the end some of these preferences

turned out to be off-agenda, it’s not obvious that they are irrelevant. Indeed, my intuition

is that they are quite relevant. And—no matter that they’d have violated some consis-

tency conditions in their own preferences by doing so—we can easily imagine that the

four councillors who preferred the convention center expansion to the east-side library

might have changed their tune if they knew there would be no library at all.

Advocates of condition (I) generally seem quite willing to concede all of this, while

still arguing that we should reject aggregation functions which violate (I) because they

are sensitive to off-agenda preferences. Their reasoning seems to run as follows: The

relevance of off-agenda preferences does seem to come in degrees. Some off-agenda pref-

erences are clearly more relevant than others, and some might even be downright worth

considering. But there is no acceptable formal or practical rule for sorting off-agenda

preferences by degrees of relevance. Formally, preferences involving options in X \ S

are indistinguishable with respect to their relevance. Practically, different individuals

may disagree about which off-agenda preferences are relevant—P. J. Hammond , in

particular, worries about this problem—and to suggest that the relevance of off-agenda

preferences can be settled by polling the collective is to invite a regress of aggregation

problems. Without some way to filter out the downright irrelevant off-agenda prefer-

ences, all off-agenda preferences should be treated as irrelevant. Thus, we should reject

aggregation functions which violate (I). At this point, we ought to wonder what licenses

the conclusion that when we are unable to sort the relevant from the irrelevant off-agenda

preferences we should treat them all as irrelevant. Presumably, this step in the reason-

ing is underpinned by another intuitively plausible general principle of rationality. The
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principle is something likes this: It is a greater sin of rationality to allow patently irrele-

vant information to impact our decisions—whether individual or collective—than it is to

ignore potentially relevant information.

This argument is, I think, quite compelling with respect to social aggregation. But

there is a ready reply with respect to individual aggregation, which incorporates points

from the preceding replies to Arguments  and  above (§§.. and ., respectively.)

First, to reiterate a point raised in reply to Argument , an individual’s decision criteria

are not autonomous agents. Second, to reiterate a point raised in reply to Argument ,

in cases of individual aggregation, the aggregator is one and the same as the individual

whose preferences are to be aggregated. Because decision criteria are something like value

considerations, rather than autonomous or quasi-autonomous agents, they can’t disagree

over which options are relevant. Indeed, they can’t formulate any judgments of relevance

at all. So this puts to rest Hammond-style worries about turf-wars over relevance.

More importantly, because the aggregator is aggregating her very own decision crite-

ria, she is perfectly positioned as the arbiter of what is and isn’t relevant. In other words,

in cases of individual aggregation there is a general rule for sorting relevant off-agenda

preferences from irrelevant off-agenda preferences. It is a practical, rather than a formal

rule: an off-agenda preference is relevant precisely when and to the degree that the indi-

vidual decision maker judges it to be. In many cases, it is quite reasonable to assume that

all preferences involving all options that originally appeared in X will remain relevant.

However, we need not assume that much. When faced with a decision in which S , X,

an individual decision maker might very well determine that only some of her off-agenda

preferences are relevant to the decision. Even so, any aggregation function sensitive to

any off-agenda preferences will violate (I).

Thus, the argument that we should endorse condition (I) because it eliminates the ef-

fect of irrelevant off-agenda preferences fails with respect to individual aggregation. This
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argument succeeded with respect to social aggregation, because we lacked a clear way to

sort out which off-agenda preferences were relevant. We are not similarly handicapped

with respect to individual aggregation.

.. Argument : Condition (I) prohibits interpersonal comparisons of utilities

From the outset, we can ignore versions of this argument that depend on the claim that

condition (I) somehow prohibits interpersonal comparisons of utility, full stop. There

is an easily ignored fact of welfare economics, to which Scitovsky  draws our at-

tention: Even the most obvious collective welfare-based recommendations of economic

policy necessarily involve some sort of interpersonal comparisons of welfare. Such com-

parisons might be crude, implicit, and qualitative, but they are never absent. Hildreth

makes much the same point, when he writes:

. . . as soon as we say that state x is socially preferred to state y for two states
such that some individuals prefer x to y and others prefer y to x, we are thereby
saying that the gains to those who prefer x are socially more important than
the losses of those who prefer y. This implies that we have some basis for
comparing the relevant gains and losses. Such a comparison is fundamentally
an interpersonal comparison of utilities ().

In other words, all aggregation functions—even those which satisfy condition (I)—

involve some degree of implicit interpersonal comparisons of utilities.

The trouble is not merely that aggregation functions which violate condition (I) make

interpersonal comparisons of utilities. Rather, it is that they mistakenly attempt—as

Mackie  so pithily puts it—“to squeeze cardinal blood from the ordinal turnip ().”

This line of reasoning is best illustrated with a specific example of an aggregation func-

tion which violates condition (I); as usual, I’ll discuss the Borda Rule. Recall that at the

Some commentators like Mackie  and Hildreth  seem to read an argument like this into Ar-

row . I don’t see any convincing evidence that Arrow puts forward anything quite so naı̈ve. Nonethe-
less, this flatfooted version of the argument is widely echoed elsewhere in the literature on social choice
theory.
See Sen , – for a valuable summary of Scitovsky .
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heart of the Borda Rule is what we might call a positional scoring function that, for each

individual weak order, maps each option to a natural number. Here I’ve opted to spec-

ify the Borda Rule by way of a positional scoring function that maps each option to the

number of other options to which it is strictly preferred, though other authors sometimes

define the rule differently. These positional scores are then summed across individuals

for each option, and the aggregate order is determined on basis of comparisons of these

sums. For any two options, whichever has a greater aggregate positional score is strictly

preferred in the aggregate.

Thus, the Borda Rule implicitly treats differences between adjacent positional scores

as equivalent within individual weak-orders, and across individuals. It will help to pre-

cisely cash out these two points. For any option x, and any individual i, if x rises or falls

in i’s weak order, such that its positional score increases or decreases by exactly 1, this

will change x’s aggregate positional score by exactly 1, no matter what individual posi-

tional score x initially had with respect to i’s order. And for any two individuals, i and

j, and any option x, if x rises in i’s weak order such that its positional score is increased

by exactly 1, and falls in j’s weak order such that its positional score is decreased by ex-

actly 1, x’s aggregate positional score will remain unchanged, no matter what individual

positional scores x initially had with respect to i’s and j’s weak orders.

Proponents of condition (I) argue that there simply isn’t any available justification

for this implicit interpersonal comparison scheme. Two individuals with sharply distinct

utility functions may have precisely the same ordinal preferences. From ordinal prefer-

ences alone, we cannot conclude that the utility difference between adjacent positional

scores is identical either within or across individuals. To justify this comparison scheme,

we’d need cardinal data on individual utility somehow measured on a common scale. The

comparison scheme implicit in the Borda Rule isn’t adequately grounded by the informa-

tion available in an aggregation problem. Distinct aggregation functions which violate
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condition (I) will all involve their own implicit interpersonal comparison schemes, which

will also be too specific to be grounded by the information available in an aggregation

problem. So we should accept condition (I) as a constraint on rational aggregation func-

tions. Call this the utility comparisons argument.

This argument is at once the hardest to translate from the domain of social aggregation

to the domain of individual aggregation, and also the toughest argument to reply to with

respect to individual aggregation.

There is no obvious analog of individual utility with respect to individual decision

criteria. Individuals are quite reasonably modeled with real-value functions over options

(unique up to linear transformation) that communicate the individual’s level of welfare

if that option is selected. Decision criteria don’t obviously have anything like levels of

welfare. Thus it’s not clear that an individual’s decision criteria are similarly reasonably

modeled with real-value functions over options (unique up to linear transformation) that

communicate the level to which that decision criteria will be satisfied if that option is se-

lected. One way to resist a similar line of argument with respect to individual aggregation

would be to argue that there is no analog of utility for decision criteria. This preemptive

line of reply isn’t especially interesting, and I doubt it would be particularly compelling.

While decision criteria don’t obviously have levels of welfare, we can quite easily imagine

a criterion being satisfied to various degrees. For the preemptive reply to work, we’d need

to argue successfully that there there is some important disanalogy between an individ-

ual’s level or welfare and a decision criterion’s degree of satisfaction, such that the former

but not the latter can be reasonably modeled with a real value function. I just don’t see

how any such argument could succeed.

So let’s assume that there is some analog of utility with respect to an individual de-

cision criterion. Call it choiceworthiness. Choiceworthiness is to a decision criterion as
I borrow this use of the term ‘choiceworthiness’ from MacAskill .
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utility is to an individual. For each decision criterion, there is an associated choicewor-

thiness function (unique up to linear transformation) which communicates the degree to

which that criterion is, in some sense I won’t bother specifying, satisfied by that option.

Just as we can talk about utility of options in relation to a particular individual, we can

talk about choiceworthiness of options in relation to a particular decision criterion.

The analog of the interpersonal comparisons argument then runs as follows: Indi-

vidual aggregation functions which violate condition (I) implicitly make fairly specific

inter-criteria comparisons of choiceworthiness. These comparisons would require robust

cardinal data to justify. This data is unavailable in an aggregation problem where we have

merely ordinal information. Thus we should reject aggregation functions which violate

condition (I). Call this the choiceworthiness comparisons argument.

What do we make of these arguments? The utility comparisons argument is perhaps

the most convincing motivation for condition (I) as it applies to social aggregation. I

know of no adequate reply to it in the literature. Developing ideas from Armstrong

, the response in Goodman and Markowitz  seems initially promising, but it

fails for reasons discussed in Vickrey  and Sen .

However, I think that a Goodman and Markowitz-style reply succeeds with respect

to the choiceworthiness comparisons argument where it failed with respect to the utility

comparisons argument, again because of crucial differences between individuals and an

individual’s decision criteria.

Robbins  offers the earliest thorough discussion of interpersonal comparisons of

utility in the contemporary tradition of welfare economics. Sen  notes that Robbins

is widely misunderstood to have argued there that such comparisons are always ground-

less (). But—as he is at pains to make clear in Robbins —his view of things is far

less pessimistic. To be clear, Robbins does argue that what Sen later calls descriptive in-

See: Sen’s nt. , that page.
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terpersonal comparisons will always be unjustified. Descriptive comparisons purport to

compare actual utilities across individuals. Justifying descriptive comparisons requires

utility measurements on some common scale for all individuals to be compared. Cru-

cially, though, Robbins recognizes that we can make interpersonal comparisons of an

altogether different type, what Sen later calls prescriptive comparisons. Prescriptive com-

parisons purport to state how we ought to compare utilities across individuals. Unlike

descriptive comparisons, prescriptive comparisons are justified by appeal to ethical or

political principles.

On this point, clarifying the confusion surrounding his earlier work, Robbins 

writes:

I do not believe, and I never have believed, that in fact men are necessarily
equal or should always be judged as such. But I do believe that, in most cases,
political calculations which do not treat them as if they were equal are morally
revolting. ()

Appeal to ethical and political principles is precisely how we have justified the condi-

tion of anonymity which entails the non-dictatorship condition. And it is precisely how

we can justify weighting each individual’s weak-order equally in our aggregation func-

tions. In the case of social aggregation, we—like Robbins—find the idea of aggregation

functions which do not treat individuals as equals revolting to our ethical sensibilities,

and generally incompatible with our most cherished ethical and political principles. Yet

the individuals whose weak orders we collect in an aggregation problem might experi-

ence wildly different levels of utility. One individual might experience more utility if

his least preferred option were realized, than another would experience if his most pre-

ferred option were realized. Despite this, we accept equal treatment of individuals as a

constraint on aggregation functions without the least hesitation. The point here is that

we are, in fact, extremely comfortable making prescriptive interpersonal comparisons of

utility, no matter how much reluctance we feel making descriptive comparisons. We are
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especially comfortable, and take ourselves to be especially well-justified when the pre-

scriptive comparisons we make are egalitarian in nature.

Goodman and Markowitz’s general reply to the utility comparisons argument against

the Borda Rule is that the same principles that ground equal treatment of individuals

also ground equal treatment of differences between adjacent ranks within and across in-

dividuals. Mackie  elaborates on the same line of reply. Goodman and Markowitz

 and later Mackie  build on ideas in from Armstrong , so I begin with an

overview of Armstrong’s position on interpersonal comparisons.

Armstrong suggested that we can find a common interpersonal unit of preference in

the psychologists’ notion of a just noticeable difference or, in Armstrong’s preferred terms

just perceptible preference. Armstrong writes:

. . . some approximation to a preference that is strictly marginal can be discov-
ered by direct introspection; what is just perceptible is revealed to the individ-
ual directly and an individual is aware of preferences that are just perceptible
as such. Furthermore, non-marginal preferences are clearly distinguishable as
varying from weak to strong. If, then, we take the two person group, α, β, with
α preferring A to B, and β preferring B to A, the utility-data for solving the
group-welfare comparison are, in point of fact, given with the preference-data,
since both α and β are aware of the strengths of their preferences. So long as
the unit in which α and β measure their preferences is the same, the problem
is solved, and the use of the same unit is ensured if both parties use the same
number to describe the preference-strength of a ‘just perceptible preference.’
()

Armstrong quite clearly intends to lay the groundwork for a descriptive scheme of

interpersonal comparisons.

But the attempt to ground a descriptive scheme of interpersonal comparisons in the

notion of just noticeable differences runs into difficulties. Alas, his appeal to the notion of

just noticeable differences does not in fact buy him the unit of comparison that he needs.

Mackie, and Goodman and Markowitz, conspicuously fail to cite Armstrong. Mackie does cite Good-
man and Markowitz, though rather unhelpfully. But, despite quite obviously lifting directly from Arm-
strong (see especially p.  of Goodman and Markowitz, as compared to pp.– of Armstrong),
Goodman and Markowitz make no mention of Armstrong.
See: Armstrong , .





Vickrey  points out that Armstrong fails to take note of the fact that the degree to

which individuals can discriminate options varies widely on basis of many, many factors

(-). Further, even given two equally discriminating individuals, we have no reason

to believe that they attach the same degree of felt subjective welfare to their just notice-

able differences of satisfaction. Consequently, we have no reason to believe the common

scale yielded by just noticeable differences of satisfaction is actually a scale of utility. The

comparisons it yields are not comparisons of utility, but comparisons of measurements

in just noticeable differences. This is not at all what we were after. We can illustrate

the difficulty with an example. Suppose everyone measured distance by the length of his

foot. One way we could compare measurements across individuals would be to treat all

individual measurements as alike in scale. One individual’s measurement of one foot is

taken to be comparable to anyone else’s measurement of one foot. This is hardly a way

to generate joint scale. What results are at best pseudo-comparisons, too subjective to be

put to any use, least of all for navigating the world

Goodman and Markowitz , and later Mackie  riff on Armstrong  by

building atop the notion of just noticeable differences a notion of an individual’s levels of

discretion. When an individual judges at least a just noticeable difference of satisfaction

from one option to next, the options sit at different levels of discretion. We ought, accord-

ing to these authors, treat the move from one level of discretion to another as comparable

across individuals. We can then treat each individual’s weak-order as ranking her op-

tions by levels of discretion. We can then interpret an option’s individual Borda Rank as

indicating the level of discretion at which it sits for that individual. Thus, the compar-

isons implicit in the Borda Rule can be understood as based on levels of discretion, and

thus these authors allege, the Borda Rule is not objectionable.

Setting aside the practical problems with this approach involving accurately assessing

The question of precisely which principles of ethics or politics motivate this conclusion is left to the
reader’s imagination.
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individuals’ levels of discretion notwithstanding, it’s clearly not the case that we should

treat levels of discretion as having the same ethical significance across individuals. Sen

 builds on Vickrey’s earlier arguments against Armstrong, Sen  argues for this

point quite convincingly (-). We might have two individuals, one of whom has very

fine grained preferences, and thereby many levels of discretion, and another of whom

has only coarse-grained preferences with just two levels of discretion. Clearly, the ethical

significance of shifting one level of discretion is not the same for these individuals, what

for the former individual may be an unnoticed triviality may have the utmost impact for

the latter.

Its fair to conclude that prospects for this line of reply to the utility comparisons

argument are bleak.

The analogous reply to the choiceworthiness comparisons argument does not meet

with the same difficulties. In the case of individual aggregation, there is only one indi-

vidual whose distinct decision criteria are to be aggregated. Thus there is only one indi-

vidual whose just noticeable differences and levels of discretion are to be considered. To

be clear, these may vary somewhat from one criterion to another. But, recall that in §.

we noted that in any case where the individual decision maker has a fully worked-out

priority or weighting scheme for her decision criteria, she has thereby obviated the sort

of conflict between criteria that was of interest in the first place. We can assume, then,

that we’re dealing with an individual who genuinely feels the pull of several different

decision criteria. Moreover, though she may not feel the pull of each criterion in the same

way, or even with quite the same intensity, she cannot measure or rank their deliberative

significance in any straightforward way. This is, in a sense, just what it means for her to

be a decision maker with multiple conflicting criteria.

But if the degree of relevance of these criteria is not clear to her, beyond the fact that

each criterion is relevant, then she clearly ought to treat changes in levels of discretion
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equally across criteria. That is, she ought to treat differences between adjacent ranks as of

comparable deliberative significance. Here, unlike in the case of social aggregation, when

she treats differences between adjacent ranks as comparable there is no underlying fact

of the matter she can run afoul of. There are no two individuals with different subjective

welfare experiences, whom we can be problematically misrepresenting when we treat

them as comparable. The decision maker’s criteria are relevant only because, and only to

the degree that, they are relevant to her. If she cannot sort them by relevance, there is no

further fact of the matter to uncover. Thus, she should treat differences between adjacent

ranks as comparable across her decision criteria, because its the only principled attitude

she can adopt toward them; she should treat them as comparable precisely because she

has no reason treat them as incomparable. Thus, the line of reply advanced by Goodman

and Markowitz, and Mackie, succeeds with respect to the choiceworthiness comparisons

argument.

. Rational violations of condition (I) in individual aggregation

Condition (I) is not, as we saw in §, easily understood, and when it’s made clear, it lacks

the intuitive appeal so many commentators have taken as sufficient motivation for the

condition. Beyond that, the usual arguments intended to motivate condition (I) as a con-

straint on rational social aggregation functions simply do not translate the the case of

individual aggregation. It seems that we are left with no reason at all to accept condi-

tion (I) as a constraint on rational individual aggregation functions. Even so, I suspect

that partisans of condition (I) might take a little more convincing. I turn now to argu-

ing directly that certain individual aggregation functions which violate condition (I) are

rational.

The point I argue for here is that it is rational for individual decision makers to be

sensitive to off-agenda preferences in precisely the way that they would be if they were to
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violate condition (I) by aggregating with a function like the Borda Rule. In other words, it

is not merely that condition (I) fails to be a constraint on rational individual aggregation

functions, but that some individual aggregation functions are rational precisely because

they violate condition (I). Recall that off-agenda preferences are preferences involving

items from the original set of options, X, which for some reason or other, are not included

in the agenda, S.

My argument here is quite brief. First, note that in both kinds of aggregation, the

inputs to an aggregation function are of a fundamentally different kind than the output,

even if both are modeled with weak orders. The point is more obvious in social aggre-

gation: individual orders and the aggregate social order are not the same kind of thing.

The former guide individual choice behavior; the latter guides social choice behavior.

But the point is felt more acutely with respect to individual aggregation. As we’ve noted,

individual decision criteria are not themselves decision makers, and so their associated

weak orders do not directly guide any kind of choice behavior. For this reason, we should

not be troubled if what grounds the ranking determined by a decision criterion differs

somehow from what grounds overall preferences.

One respect in which I think they differ is that ranking options according to a specific

decision criterion sometimes integrally involves consideration of imagined options—in

particular imagined best or worse cases—in a way that formation of overall preferences

might not. When I suggest that the ranking integrally involves consideration of the imag-

ined option, I mean that each option’s place in the ranking is determined by how it com-

pares to the imagined option(s). Suppose, for example, that Ashima is choosing between

vacations, and among her decision criteria are cost, distance from home, and excitement.

One way for her to rank the available options according to excitement is to imagine an

ideally exciting vacation and then compare available options to it. Available options will

rank higher to the degree that they resemble the ideally exciting vacation. Fairly clearly,
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then, with respect to this particular decision criterion, in her overall decision it’s far more

relevant how far each available option is from the ideal, than how it compares pairwise

to other available options. Whether this is the only way for her to generate this criteria-

specific order is irrelevant. All that matters is that we can make sense of her ordering

options according to a specific criterion in this way—that is, by comparing them indi-

vidual to an ideal option, rather than pairwise to one another. If she does this, there’s a

sense in which the comparisons to the ideal option are integral to, or constitutive of the

weak-order generated by the decision criterion. To ignore these options is to undermine

the weak-order determined by the criterion.

There is an obvious objection at this point: If the weak-orders associated with partic-

ular decision criteria can be determined in this fashion—by comparison, one at a time,

to an imagined ideal rather than by pairwise comparison with one another—then this

completely undermines the binary account of choice that is standard in philosophy. This

objection would be spot-on, if I had suggested that overall preferences might work like

this. But I have not suggested that at all. I have merely suggested that rankings of options

according to specific criteria might work thus. As I’ve just pointed out, even if we model

them similarly, we should not confuse the two. An individual’s overall preferences di-

rectly guides her choice behavior. Her individual decision criteria only guide her choice

behavior insofar as they are somehow aggregated into a single overall order. Thus, this

objection is misplaced.

Returning to the main thread of the argument, wherever the ranking associated with

a criterion depends on such imagined options, these options are, necessarily infeasible,

in the sense that they’re not available to choose. After all, they’re imaginary. Therefore,

preferences involving these options are necessarily off-agenda preferences. Any aggre-

gation function that satisfies condition (I) necessarily prevents these preferences from

having any impact on the aggregate order. But if the order determined by that decision
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criterion is grounded in comparisons to an imagined option, ignoring off-agenda prefer-

ences involving that option renders the ranking associated with that criterion more-or-

less meaningless. If the decision maker aggregates by a function that satisfies condition

(I), she ignores what grounds the weak order associated with the criterion in question.

Perhaps I stretch the use of the word ‘rational’ when I suggest that it would be irrational

in these cases to use aggregation functions which satisfy condition (I). But if a means of

decision making erodes the very basis for rational choice, it seems that means should be

called irrational.

In such cases, only aggregation functions which violate condition (I) are sensitive to

off-agenda preferences in the right way to respect the role they play in grounding the

weak orders associated with certain decision criteria. And it is precisely because they

violate condition (I) that they are appropriately sensitive to these off-agenda preferences.

Thus, far from being a constraint on rational individual aggregation functions, satisfying

condition (I) is sometimes directly opposed to rational aggregation.

. Prospects for modeling multiple objective decisions as aggregation problems

Above I argued that we should not take Arrow’s condition (I) as a constraint on rational

individual aggregation functions. As I noted above (and is reiterated time and again in

the literature on social choice theory), we’re supposed to be struck dumb by the sheer in-

tuitive appeal of this condition. After all, Arrow himself takes the “essential argument”

in favor of the condition to be its “direct appeal to intuition” and other partisans of the

condition almost unanimously echo this sentiment. All other substantive motivations

for the condition are supposed to be subsidiary to its intuitive appeal. But in §., I show

that the condition clearly lacks the intuitive glow that was supposed to have drawn us

in like moths. Abstract away from concrete examples, and the condition—like so many

See: Arrow , .
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other abstruse formal principles—is neither immediately attractive nor immediately re-

pulsive to the intuition. Then, in §, I argued that the standard substantive arguments

for condition (I) advanced in the social case fail to extend to the individual case.

At this point, I hope I’ve shown that we have no reason whatsoever to take condition

(I) as a constraint on rational individual aggregation functions.

Then, in §, I argued that individual decision makers should be sensitive to off-agenda

preferences in precisely the way they would be if they were to violate condition (I). My

argument here is best understood as a balance-of-reasons argument. Balance-of-reasons

arguments sometimes leave us wanting something more, in particular when the book-

keeping of opposing reasons is a bit murky. But in this case, there is nothing more to

want. The ledger is quite clear: There is no reason to take condition (I) as a constraint on

individual aggregation functions, and at least one good reason to reject it.

This means that, though Arrrow’s Theorem might make us pessimists about ratio-

nally resolving social aggregation problems, we can remain optimists about rationally

resolving individual aggregation problems. So long as we don’t think individual aggre-

gation functions are subject to additional constraints of rationality sufficient to generate

an Arrow-style impossibility result, then we should expect to find individual aggregation

functions that satisfy all of the constraints rationality imposes.

This re-opens the door to a modeling approach for what are—after Keeney and Raiffa

—standardly called multiple objective decisions; we can model these decisions as indi-

vidual aggregation problems. Multiple objective decisions are the sort of decisions we’ve

had in mind, at least in the background, from the beginning of this essay. An individual

faces a multiple objective decision when she evaluates her options according to multiple,

possibly conflicting criteria, each of which she sees as motivationally relevant with re-

spect to her choice. To model such a decision as an aggregation problem, we model the

decision-maker’s decision criteria as a tuple of weak orders over her options, from which





her aggregate—that is overall preference order—is to be determined by application of

an aggregation function. Until now philosophers working on the problem of multiple

objective decisions—for example, Steedman and Krause , Kavka , and Ellis

—have taken this approach to be a non-starter because of Arrow’s Theorem. Part of

the pay-off of this essay is to give this modeling approach a second chance.

This modeling approach faces pressing questions, both formal and foundational in

nature. At the formal level I have to confront the question of whether there are addi-

tional constraints on rational individual aggregation functions, and if so, whether they

are sufficient to generate an impossibility result. Then, given some set of constraints, I’ll

need to know whether they determine one unique aggregation function, or many distinct

aggregation functions. If a plurality of aggregation functions satisfy the constraints, I’ll

have to face the further question of which of these is the correct aggregation function.

At a more foundational level, I’ll have to confront questions about how well this model

actually captures the essential features of a multiple objective decision. For starters, I’ll

need to give a more precise account of just what decision criteria are, and whether they

can be appropriately modeled by weak orders. At perhaps a deeper level I’ll need to say

more about why we should think the output of models like this is in any sense correct, or

normatively binding.

I defer the task of developing this modeling approach in more detail to future work.

For now, at least, it remains an enticing possibility.


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