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ABSTRACT 

 

Asset Pricing with Revealed Utility 

by 

John Ruben Huck 

 

Chair:  Professor Stefan Nagel 

 

This dissertation consists of two essays that interpret crime as revealed marginal utility 

of heterogeneous consumers, and investigates its implications for asset pricing.   

The first chapter proposes crime as a revealed response of individuals that derive utility 

from relative wealth.  Using daily reported crime incidents from over 2,500 law enforcement 

agencies across 27 states from 1991-2012, a contemporaneous relationship between daily 

stock returns and various types of crimes are found.  Market changes also impact investors’ and 

non-investors’ utility differently and this is interpreted as evidence in support of envy models 

such as Abel (1990) that individuals care about their own wealth relative to others.  For 

example, daily stock market increases are associated with decreases in violent crimes in high 
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income locations, while market increases are associated with increases in violent crime in low 

income locations.   

The second chapter builds upon using crime as revealed marginal utility.  Having 

established a relationship between violent crime and the stock market in the first chapter, the 

second chapter proposes violent crime growth as a measure of revealed marginal utility growth 

of heterogeneous consumers in incomplete markets to price the cross-section of stock returns.  

Consumer heterogeneity is measured using the cross-sectional average and cross-sectional 

variance of crime growth exploiting a monthly panel of reported crime incidents from over 

10,000 law enforcement agencies across the United States from 1975-2012.  Consistent with 

heterogeneous consumer models such as Mankiw (1986), the cross-sectional average and 

variance of violent crime growth are found to explain the cross-section of stock returns.  

Specifically, investors pay a premium for assets that have higher betas to the violent crime 

growth moments.
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CHAPTER 1 

Taking a Beating on the Stock Market:   

Crime and Stock Returns 

 

1.1 Abstract 

Using daily reported crime incidents from over 2,500 law enforcement agencies across 

27 states from 1991-2012, I examine the social effects of realized stock market returns using 

micro-level (city/county) data.  Proposing crime as a measure of revealed marginal utility, I find 

a contemporaneous positive and convex relationship between daily stock returns and overall 

crime rates.  I also find that market changes impact investors’ and non-investors’ utility 

differently and interpret this as evidence in support of envy models such as Abel (1990) that 

individuals care about their own wealth relative to others. 
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1.2 Introduction 

It is commonly assumed that changes in wealth drive instantaneous changes in utility, 

however, there is little direct evidence to support this assertion.  Surveys of subjective well-

being (SWB) are the standard approach to directly measure utility, but interpreting these 

surveys is often considered problematic.  Additionally, there is mixed evidence on which types 

of utility functions are appropriate.1  A popular form of utility that has had some success in 

explaining economic and asset return phenomena are envy forms of utility, also known as 

keeping up with Joneses or habit preferences (Abel, 1990; Campbell and Cochrane, 1999).  In 

this paper I propose crime as a new measure of revealed marginal utility, and in support of envy 

forms of utility, I provide evidence that utility depends on relative wealth.  Specifically, I find 

that declines in relative wealth are associated with increases in crime.  This association suggests 

that the impact of stock market returns on marginal utility is more painful than standard 

models imply,2 and indicates that changes in the stock market can drive undesirable behavior 

that is detrimental to society. 

While interpreting crime as a measure of revealed utility is relatively novel in the finance 

literature, it does have precedent.  An analogous assumption is made by Card and Dahl (2011) 

who posit that intimate partner violence (IPV) is a function of the utility of NFL game outcomes, 

and finds that local team losses are associated with higher rates of violence.  Similarly, if poor 

stock market performance leads to increases in marginal utility (declines in utility) for investors, 

                                                      
1
 An incomplete list includes standard power utility (Hansen and Singleton, 1983), habit formation (Abel, 1990; 

Campbell and Cochrane, 1999), heterogeneous agents and idiosyncratic risk (Constantinides and Duffie, 1996), 
long run risk (Bansal and Yaron, 2004), and prospect theory (Barberis, Huang, and Santos, 2001). 
2
 Under standard power utility, changes in the stock market are associated with only small changes in 

consumption, and by implication only small deviations in marginal utility. 
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these individuals may act out in ways that lead to law enforcement involvement.  Using daily 

crime rates as a measure of marginal utility for individuals provides a causal link between stock 

returns and utility.  The link between stock returns and utility is also made by Engelberg and 

Parsons (2014).  They argue that hospital admissions are also a form of revealed utility, and 

show that declines in the stock market are associated with an increase in hospitalizations. 

Utility has typically been directly measured using SWB questions such as if the individual 

agrees with the statement, “Much of the time during the past week I was happy.”  It is well 

documented that answers to these questions can be sensitive to wording, framing, or question 

order among other factors (Bertrand and Mullainathan, 2001).  Additionally, surveys are 

typically conducted at low frequencies and generally measure SWB with respect to income, and 

not wealth, due to the substantial measurement error associated with the wealth data (Juster, 

Smith, and Stafford, 1999).   Crime data provides an alternative measure of utility with several 

advantages over surveys.  First, crime can be considered a revealed response made by 

individuals.  Revealed preferences have long been considered preferable in studies of consumer 

choice.  Second, crime data is standardized across regions and time.  This enhances the 

comparability of crime across individuals that could be biased if self-reported.  Third, coverage 

of the daily crime data is extensive and encompasses over 25% of the US population in recent 

periods.  Finally, the daily frequency of the crime data allows us to examine if stock market 

returns immediately impact an individual’s utility.   

If relative wealth is a driver of utility, the stock market’s effect on an individual’s utility is 

expected to be different for investors and non-investors.  Relative consumption models, or envy 

forms of utility, posit that individuals derive utility from relative consumption 𝑢(𝑐/𝑐̅), rather 
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than just from their own consumption 𝑢(𝑐).  Here, 𝑐̅ represents some measure of the average 

consumption of others.  Envy models are well documented in the finance and economics 

literature (e.g., Abel, 1990; Campbell and Cochrane, 1999).  If utility depends on relative 

consumption, then one person’s increase in consumption has a negative externality on others 

because it lowers the relative consumption of others.  Since expected lifetime consumption is a 

function of wealth, fluctuations in relative wealth will have similar effects.   

Interpreting crime as a measure of revealed marginal utility, my findings support that 

stock returns impact individuals’ utility and that increases in marginal utility are associated with 

increases in crime.  Using reported crime incidents from over 2,500 law enforcement agencies 

across 27 states from 1991-2012, I observe a contemporaneous positive and convex 

relationship between daily stock returns and overall crime rates.  I also find that stock market 

returns impact investor and non-investors differently and interpret this as evidence in support 

of envy or external habit models such as Abel (1990) that individuals care about their own 

wealth relative to others.  For high income individuals, a positive market return is associated 

with a decrease in marginal utility (increase in utility) because high income individuals are more 

likely to hold stocks, and a positive market return increases their wealth relative to non-

stockholders.  This decrease in marginal utility corresponds to decreases (or at least no 

increase) in crime rates for high income individuals.  Low income individuals are impacted 

differently by positive market returns.  Because low income individuals hold less (or no) stocks 

as compared to high income individuals, positive market returns are associated with higher 

marginal utility because they are now worse off relative to high income individuals.  This 

increase in marginal utility corresponds to an increase in crime rates for low income individuals.   
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Empirically I find that a one standard deviation increase in daily stock market returns 

corresponds to a 22.8 bps increase in overall crimes across the US.  The relationship between 

returns and crime rates also monotonically increases from high income to low income locations.  

The 22.8 bps daily increase in crime is also economically meaningful and corresponds with an 

additional annualized 36,551 crimes across the US with an estimated annualized loss to society 

of $2.67 billion.     

I also find a relationship between daily returns and violent crime, property crime, and 

white collar crime.  For assaults, a one standard deviation increase in the market return is 

associated with a 22 bps decrease in assaults for high income locations, and a 40 bps increase in 

assaults for low income locations.  The relationship with assaults is particularly supportive of 

envy models because most assaults occur at individuals’ homes which ensure that our proxy for 

investors (high income cities) and non-investors (low income cities) are meaningful.  This is in 

contrast to other crimes such as theft where there are presumably a number of low income 

individuals committing many of the thefts in high income areas.  The relationship between the 

stock market and property crimes is also positive and strongly convex.  A one standard 

deviation increase in the market corresponds to a 26.8 bps daily increase in property crimes.  

Finally, the relationship between market returns and white collar crime (fraud) is also positive 

and strongly convex.  A one standard deviation increase in the market is associated with a 1.5% 

increase in fraud offenses.   

I find that the relationship between crime and returns is robust to controls for common 

weather and celestial factors that affect both returns and crime, remains with local state 

returns, and is sustained when including daily fixed effects that control for common news.  My 
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results are consistent with rational asset pricing models with utility over relative wealth.  

Speculatively, my results suggest that high income inequality and large stock market changes 

can be detrimental to society through increased crime. 

Although I study how asset prices affect individuals’ utility, the traditional behavioral 

asset pricing literature has typically examined how investors’ moods affect asset prices.  The 

usual explanations of how mood affects asset prices are through risk aversion (Kliger and Levy, 

2003), misattribution bias (Lucey and Dowling, 2005), and visceral factors (Loewenstein, 2000).  

The empirical literature relating mood to asset returns is extensive.  Saunders (1993) and 

Hirshleifer and Shumway (2003) argue that sunshine puts investors in better moods, and this 

translates into higher stock returns.  Cao and Wei (2005) find low temperatures are associated 

with higher returns.  Kamstra, Kramer, and Levi (2003) find that returns are negatively 

associated with the onset of Seasonal Affective Disorder (SAD).  Kamstra,  Kramer, and Levi 

(2000) find lower returns following the disruption of sleep patterns due to daylight savings 

time.  Yuan, Zheng, and Zhu (2006) observe lower returns on days around a full moon relative 

to returns around a new moon.  Frieder and Subrahmanyam (2004) find higher returns for 

festive non-secular holidays and lower returns for somber holidays.  Edmans, Garcia, and Norli 

(2007) document abnormal negative returns in the local market after a local sports team loss.  

This paper makes two noteworthy contributions to the literature.  First, this adds to the 

scarce literature that shows how stock returns can impact an individual’s psychology.  The 

closest study to mine is that of Engelberg and Parsons (2014), who find a strong inverse link 

between daily stock returns and hospital admissions in California, particularly for mental 

conditions.  They argue that anticipation over future consumption directly influences an 
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investor’s instantaneous utility, and suggest this is consistent with the model of Caplin and 

Leahy (2001).  My study differs from theirs not only through the proxy of utility, but I also take 

advantage of a panel data set to control for un-observables, I utilize time-varying controls that 

are common to both the crime and finance literature, and I cover a larger portion of the US.  

Most importantly, I show that stock returns impact investor (high income) and non-investor 

(low income) utility heterogeneously and that declines in utility not only effect the impacted 

individuals but also have externalities which are detrimental to society through increased 

crime.   

While the literature relating economics and crime is vast, the literature relating finance 

and crime is relatively unexplored.  The finance literature has typically examined effects from 

corporate crimes such as financial misrepresentation and managerial turnover (Karpoff, Lee, 

and Martin, 2008), bribery on firm value (Zeume, 2014), and insider trading (Acharya and 

Johnson, 2010).  The literature linking finance and non-corporate crimes such as violent or 

property crimes is particularly sparse.  Garmaise and Moskowitz (2006) find evidence of 

spillover effects on crime from changes in credit conditions.  

The economics and criminology literature suggests that crime is a plausible measure of 

marginal utility because crime increases in bad economic states.  Exploiting a panel of annual 

state GDP growth, Arvanites and Defina (2006) find that property crime has a negative 

relationship with state GDP growth.  Rosenfeld and Fornango (2007) and Rosenfeld (2009) find 

that property crime and homicide exhibit a negative relationship with changes in the regional 

components of the University of Michigan Consumer Sentiment Index.   The literature generally 

supports a positive relationship between unemployment and crime (Freeman, 1999), while low 
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legal wage opportunities have also been associated with increased crime (Gould, Weinberg, and 

Mustard, 2002).  Fajnzylber, Ledeman, and Loayza (2002) find that violent crime increases with 

income inequality. 

Second, this paper helps identify the form of investors’ utility functions and contributes 

to the literature on theoretical envy or external habit formation models such as Abel (1990) or 

Campbell and Cochrane (1999).  These models have empirical support in the behavioral 

economics literature including experiments that find inequality aversion (Engelmann and 

Strobel, 2004), surveys which find an inverse relationship between self-reported satisfaction 

and relative income (Luttmer, 2005), and revealed choice methods (Daly, Wilson, and Johnson, 

2013).  Daly et al. propose suicide as a measure of utility and finds that suicide risk of 

individuals in the US is affected not only by their own income but also by the incomes of others 

in the vicinity.  Consistent with these studies I provide evidence that suggests crime is a form of 

revealed marginal utility over relative wealth, and that declines in relative wealth increase 

crime. 

 

1.3 Economic Model of Crime 

1.3.1 Theoretical Model 

The key assumption is that market returns generate a behavioral response that reflects 

a gain or loss in marginal utility.  The notion that changes in wealth impact utility is standard in 

the literature, but has little direct empirical evidence.  The assertion that crime is a behavioral 

response which reflects increases in marginal utility (losses in utility) is novel in the finance 
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literature, but has precedent.  An analogous assumption is made by Card and Dahl (2011) who 

posit that the gain-loss utility of NFL game outcomes affects the propensity of intimate partner 

violence.  This study contrasts with theirs in that I assert that utility is derived from relative 

wealth. 

Following Abel (1990), I assume an external habit or envy form of utility.  In external 

habit models, each individual’s habit is determined by everyone else’s consumption.  I assume 

that the utility function is 𝑢(𝑐/𝑐̅), where 𝑐 is an individual’s consumption, 𝑐̅ is an individual’s 

external habit consumption (e.g., the average consumption of others), and consumption is 

subject to a budget constraint on wealth and income.  Similarly, relative wealth 𝑤 drives utility 

𝑢(𝑤/𝑤̅) through the budget constraint.   

Theoretical models of crime typically fall into two categories.  Under the standard 

economic model of crime, an individual optimally chooses a criminal activity based on the 

expected utility of that act (Becker, 1968).  The utility gained could be from the monetary value 

of stolen goods or from the morbid pleasure of committing a violent act upon a victim.  

Alternatively, a crime may be committed due to a visceral factor triggering a loss of control 

(Loewenstein, 2000).  Examples of loss of control include inducing a fight due to anger, or 

stealing a good because the offender believes the world is unjust and he deserves it.  Consistent 

with either model, I posit that an increase in marginal utility (loss in utility) either leads an 

individual to commit a crime to restore utility to its original level or that the increase in 

marginal utility causes an individual to lose control and commit a crime.  Specifically, similar to 

Card and Dahl (2011), I assume that with some probability 𝑝 ≥ 0, that the propensity of crime 

depends on marginal utility over relative wealth: 
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 𝑝 = 𝑝0 + 𝜆𝑢′(𝑤/𝑤̅), (1.1) 

 

where 𝑝0 is the baseline probability of crime for an individual, and 𝜆 is a scaling factor.  When 

marginal utility increases, due to a decline in relative wealth, the probability of committing a 

crime increases.   

Declines in marginal utility (gains in utility) do not necessarily correspond with stock 

market increases.  A market increase can have different impacts on investors and non-

investors.  Although a market increase will lead to an increase in relative wealth and thus utility 

for investors, market increases cause non-investors to be worse off.  This is because non-

investors’ relative wealth decreases with market increases as compared to investors.  This can 

be clearly seen in Figure 1.1, where the propensity of crime (equivalently, marginal utility) is 

decreasing and convex in returns for investors, while increasing and convex for non-investors.   

Although increases in the stock market may signal improvements in economic 

conditions that may raise incomes and job prospects for non-investors, Piketty and Saez (2003) 

and Saez and Zucman (2014) show that gains in income and wealth have disproportionately 

accrued to the top of the distribution during economic expansions.  For example, they show 

that during the Clinton expansion from 1993-2000, income grew by 54% for the top 10% of 

income earners, but grew by only 16% for the bottom 90%.  This suggests that although on an 

absolute basis non-investors (low income individuals) may be better off with economic 

improvements, on a relative basis they may fall behind.  This is consistent with the animosity 

over inequality that has grown over recent years.  
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1.3.2 Empirical Model 

Empirically, I am only able to observe the outcome of crime and not the propensity for 

crime.  As such, the outcome variable 𝑦𝑖,𝑠,𝑡 measures the crime rate (per 100 million individuals) 

for location 𝑖 (in state 𝑠), at time 𝑡.  My empirical specification focuses on changes in wealth as 

proxied by stock returns and takes the form, 

 𝑦𝑖,𝑠,𝑡 = 𝛽1𝑟𝑠,𝑡 + 𝛽2𝑟𝑠,𝑡
2 + 𝚪𝑿𝑖,𝑡 + 𝜃𝑖 + 𝚻𝑡 + 𝜖𝑖,𝑠,𝑡, (1.2) 

where 𝑟𝑠,𝑡 is the market return (or state and non-state returns for state 𝑠 of location 𝑖), 𝑿𝑖,𝑡 is a 

vector of controls for weather and celestial phenomena further described below, 𝜃𝑖  is a fixed 

effect for the law enforcement agency in location 𝑖, and 𝚻𝑡 controls for time fixed effects 

including year, month of year, day of week, and holidays.3  The primary coefficients of interest 

are those on the return and squared return.  The squared return is included to account for the 

curvature of the marginal utility function, which is particularly important for those individuals 

that have the highest marginal utility.  The location fixed effects control for the overall time 

invariant characteristics of the population such as average income level, demographic makeup, 

average education, and employment opportunities.  The year fixed effects capture slow moving 

conditions that can affect crimes rates such as general economic conditions, income inequality, 

and popular culture.  The month fixed effects capture the seasonality in crime rates.  For 

example, crime rates tend to be higher in the summer months and lower in the winter months.  

The day of week fixed effects capture the average daily variation in crimes.  For example, crime 

                                                      
3
 I include dummies for the day observed, the day before and the day after a holiday adjusted for weekends.  

Holidays where the market is closed include: Independence Day, Martin Luther King Day, President’s Day, 
Memorial Day, Labor Day, Easter (Good Friday), Thanksgiving, Christmas, and New Year’s Day.  Additional holidays 
where the bond markets (but not stock markets) are closed include: Columbus Day and Veterans Day.  I also 
include popular US holidays where the markets remain open: Halloween, St. Patrick’s Day, Cinco de Mayo, 
Valentine’s Day, Mother’s Day and Father’s Day.  For completeness, I also include the Jewish and Islamic major 
holy days of Rosh Hashanah, Yom Kippur, Eid Al-Adha and Eid Al-Fitr. 
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rates tend to be highest on Fridays and lowest on Sundays.  The holiday fixed effects control for 

the tendency of higher crime rates on national holidays such as New Years and the 4th of July, or 

widely celebrated holidays such as Halloween and St. Patrick’s Day. 

There is extensive literature that documents that weather affects crime.  For example, 

Jacob, Lefgren, and Moretti (2007) find that crime increases with temperature and decreases 

with precipitation, while Rotton and Frey (1985) find a negative relationship between wind 

speed and domestic violence, a positive relationship between sunshine and assaults, and a 

negative relationship with humidity and assaults.  There have also been a number of studies 

that link weather to market returns.  For example, Cao and Wei (2005) find low temperatures 

are associated with higher returns internationally, Saunders (1993) and Hirshleifer and 

Shumway (2003) find that sunshine is associated with higher stock returns, Loughran and 

Schultz (2004) report lower volumes for firms in blizzard-struck cities in the US, and 

Limpaphyom, Locke, and Sarajoti (2005) find that the bid-ask spread on the Chicago Mercantile 

Exchange increases on windy days. 

There is also research relating behavior to celestial phenomenon such as moon phases 

and Seasonal Affective Disorder (SAD).  Cohn (1993) finds a relationship between violent crime 

and moon phase, while  Yuan, Zheng, and Zhu (2006) observe lower returns on days around a 

full moon relative to returns around a new moon.  Although there appears to be no evidence 

for or against criminal activity and SAD, it is clinically defined as a form of major depressive 

disorder and depression has been linked to a greater degree of risk aversion (Eisenberg et al. 

1998), and increased risk aversion could lead to a lower incidence of risky crimes.  SAD has been 

examined in the financial literature, with Kamstra, Kramer, and Levi (2003) finding that returns 
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are negatively associated with the onset of SAD.  Because there is some evidence that weather 

and celestial phenomena have been found to affect both crime rates and returns, I control for 

them explicitly in all specifications. 

Although the outcome variable is essentially count data, I utilize a linear fixed-effects 

model.  The linear estimates are consistent, but inefficient.  Furthermore, I utilize 

heteroskedasticity consistent standard errors clustered by time (daily) to account for the 

heteroskedastic nature of the count data.  Clustering the standard errors by time accounts for 

the cross-sectional correlation of the residuals.  An alternative specification that is typically 

applied to count data is the Poisson regression model.  The advantage of using a Poisson model 

is that it explicitly models the non-negativity and discrete nature of count data.  The standard 

criticism of Poisson regressions is that it assumes a Poisson distribution where the variance is 

equal to the mean, a condition that is typically violated.  This restriction usually manifests itself 

by predicting fewer zeros than observed in the sample and by exhibiting grossly deflated 

standard errors.  In the appendix, I find that a Poisson specification produces similar results as 

the linear specification.  However, the crime data’s larger variance relative to the mean (over-

dispersion) leads one to interpret the Poisson specification with caution.  The linear regression 

may be the more conservative option. 

For there to be a relationship between stock market returns and crime rates, individuals 

must be aware of market movements to adjust their behavior.  Although it is implausible that 

all individuals are aware of the stock market’s performance on a given day, all that is required 

for the relationship to hold is that the behavior of some individuals is altered when made aware 

of the market’s performance.  Summaries of stock market performance are constantly provided 
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by the media in radio, television, online, and newspaper formats.  Therefore, it is not 

inconceivable that a significant portion of the population is made aware of the market’s 

performance and that some of these individuals alter their crime-committing behavior in 

response. 

 

1.4 Data 

1.4.1 Crime 

Daily crime data is from the National Incident Based Reporting System (NIBRS) which is 

under the jurisdiction of the Federal Bureau of Investigation (FBI). 4  NIBRS is a voluntary system 

used by law enforcement agencies in the US for collecting and reporting data on crime.  The 

dataset begins in 1991 and ends in 2012.  Only police agencies in a handful of states report data 

at the beginning of the sample, but by the end of the sample coverage grows to police agencies 

in 36 states that represent about 25% of the US population.  The NIBRS dataset utilized is the 

incident-level file which contains reports of 46 major Group A crimes to individual police 

agencies, and are not necessarily associated with an arrest.  In this study I utilize an aggregate 

of all 46 incidents, and separately split out property crimes, violent crimes, assaults (within 

violent crimes), and fraud.  NIBRS supplies population data for each of the agencies, and often 

provides basic demographic information of the offender and victim, relationship of offender to 

victim, location of offense (city, county, state), location type (home, office, etc.), date and time 

of offense, and type of offense (homicide, assault, etc.).   

                                                      
4
 I utilize the dataset distributed by the Inter-university Consortium for Political and Social Research (ICPSR) 

available here: http://www.icpsr.umich.edu/icpsrweb/NACJD/series/128  

http://www.icpsr.umich.edu/icpsrweb/NACJD/series/128
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I aggregate the daily NIBRS data to the agency level (city police force or county sheriff’s 

office) by type of crime.  Thus, the unit of interest is the reported number of incidents per day 

for a specific type of offense (e.g., assault) in a specific agency (e.g., Ann Arbor Police).  Because 

not all agencies report consistently across time, I follow Dahl and DellaVigna (2009) to filter 

inconsistently reporting agencies annually.  Specifically, for each year I first exclude agencies 

that do not report any offense for seven consecutive days.  Next, I remove the remaining 

agencies that have less than 50 report days.  To ensure that market movements on a given day 

correspond with actions that may occur during an individual’s waking hours, I define a crime 

date t as beginning at 6:00 AM on calendar day t and ending at 5:59 AM on calendar day t+1.  I 

use this date definition when merging the crime data with other datasets.  In Figure 1.2 we see 

that between 4 AM and 6 AM is when the least number of incidents occur during the day, while 

midnight is when the most number of incidents occur during the day.5  Thus 6 AM local time 

appears to be a reasonable start time for crime, and is before the market opens in all locations. 

The increasing trend in NIBRS coverage can be seen in Figure 1.3.  The start of the 

sample includes less than 150 agencies in only two states covering approximately 5.2 million 

people, but by the end of the sample it covers approximately 1,500 agencies covering roughly 

67.3 million people.  Over the entire sample there are approximately 3,000 unique agencies, 

which indicates that half the agencies drop out over the sample period.  The number of 

incidents also increases with NIBRS coverage from approximately 1,400 crime incidents per day 

to 11,000 per day.  To ensure that crimes are comparable across cities, I normalize the number 

of crimes by the population.  The resulting crime rate is defined as the number of crime 

                                                      
5
 Although the spike at midnight may be due to misreporting, it is of little consequence since I classify crime day t 

to include all night-time hours through day t+1. 
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incidents each day per 100 million people.  To ensure that the crime rate is not overly 

influenced by small populations (denominator effect) I require that the agency covers a 

population of at least 2,000 people to be included in the sample.  The monthly crime rate can 

be found in Figure 1.4.  The crime rate exhibits a clear cyclical pattern with a peak in 

July/August and a trough in January/February.  The summary crime statistics by state in Table 

1.1 shows that the state with the highest coverage is Michigan with an average of 164 agencies 

covering an average population of 6.4 million.  The state with the highest overall crime rate is 

Georgia (although with only one agency reporting), followed by Illinois with 32,429 crimes per 

100 million people per day. 6   The New England states of Connecticut and Rhode Island have 

the lowest crime in the sample with roughly half the rate of Illinois.  Table 1.2 shows the 

agencies in the sample as of December 2012 with the largest population.  The Fairfax County 

Police Department in the Washington D.C. metropolitan area has the highest population 

coverage.  Thus, although some of the largest cities in the US are not covered (e.g., New York 

City or Los Angeles), there is strong coverage in moderately sized cities. 

A summary of the crime rates by offense types can be found in Table 1.3.  The first three 

columns show summary statistics for the daily time series of crime rates aggregated across all 

reporting agencies.   Across all incidents, the aggregate crime rate across the US is 20,302 

crimes per 100 million individuals per day.  The two largest contributors to the overall crime 

rate are property crimes at 10,164 crimes per 100 million individuals and violent crime with 

4,852 crimes.  Within violent crimes, the largest sub-category is assault offenses with 4,298 

crimes.  The remaining columns show summary statistics pooled across all agencies.  Although 

                                                      
6
 The state of Illinois drops out of the sample in 1995, with only Rockford, IL rejoining NIBRS coverage in 2006.   
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the pooled agency average crime rate is similar to the aggregated US rate, the agency average 

is generally very low in comparison to its standard deviation, suggesting a mass of zeroes and a 

long right tail.  Indeed, many individual crime types are rare for agencies as indicated by the 

pooled agency median crime rate of zero in column four.   This is further exemplified by the last 

column which shows the percent of agency-days that report at least one crime.  For example, 

the value of 0.7% for murder indicates that on any given day in any city there was a 0.7% 

chance of at least one murder reported.  The preponderance of zeros and the variance which is 

much higher than the mean indicate the assumptions underlying a Poisson regression are 

violated and may lead to misleading results for most crimes if used.  Therefore, the linear 

specification may be more conservative. 

 

1.4.2 Income 

To identify offenders that are likely to have stock holdings and those that don’t, I utilize 

the 2012 American Community Survey Public Use Microdata Sample (PUMS) from the US 

Census to estimate the median income for individuals within a PUMS area.  PUMS areas are 

primarily defined at the county level, but could represent parts of counties or parts of cities that 

contain at least 100,000 people.  For each PUMS area, I calculate the median income for full-

time workers, and match the PUMS income with the NIBRS reporting city or county.  I define 

high income agencies as those in the top tercile of income, while low income agencies are 

defined as those in the bottom tercile of income.  Table 1.4 reports the highest income cities 

and counties that correspond with the agencies in the sample.  The highest income agency is 

Issaquah in the Seattle area with a median individual income of approximately $100,000.  
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Issaquah is followed by a number of agencies within the Washington, D.C. metropolitan area.  

The lowest income cities (unreported) include Flint, MI and a number of cities in Kansas and 

Tennessee.  Using income as a proxy for stockholder classification is consistent with Malloy, 

Moskowitz, and Vissing-Jorgensen (2009) who find using Survey of Consumer Finances data 

that the probability of holding stock is significantly higher for individuals with higher incomes. 7  

Additionally, the usage of terciles on income is useful to separate stockholders from non-

stockholders as they find that on average 23% of households are stockholders, with the portion 

of stockholders increasing over time.8 

 

1.4.3 Returns 

Stock returns at the US and state levels are from the Center for Research in Security 

Prices (CRSP).  The US stock return is the value-weighted return for all US stocks in the CRSP 

database.  State level value-weighted returns only include those companies that can be 

matched to Compustat and have non-missing values for the state of a company’s headquarters.  

To be included in the regressions, I require at least 20 companies in each state to ensure proper 

diversification.  Consistent with Engelberg and Parsons (2014) and Edmans, Garcia, and Norli 

(2007), all returns are standardized by dividing the daily return by its trailing one-year (252-day) 

standard deviation.  This removes concerns of the time varying volatility of returns affecting the 

results.  In specifications that include state and non-state returns, I first perform rolling one-

year regressions of state returns on returns of firms headquartered outside of that state (non-

                                                      
7
 They also find that the probability of being a stockholder is lower for non-whites, quadratically increases with 

age, is higher for high school and college graduates, higher for non-zero dividends, and increases with amount in 
checking and savings. 
8
 Based on self-reported data from the Consumer Expenditure Survey (CEX) from 1982-2004. 
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state returns) and extract the residual.  This residual represents the component of market 

returns that are unique to each state.  As with the other returns, the residuals are divided by its 

trailing one-year standard deviation.  It is important to note that NIBRS has daily crime data for 

each of the seven days in the week, while CRSP only has returns data for days that the market is 

open.  When examining lagged daily effects of market returns on crime rates, I utilize all seven 

days of the crime data while appropriately accounting for market closures. 

A summary of returns for each state that correspond to the available data in NIBRS is 

presented in Panel A of Table 1.5.  Unfortunately, requiring at least 20 companies in a state will 

exclude a number of states for at least part of the sample.  States excluded entirely include ID, 

ME, MS, MT, ND, RI, SD, VT, and WV.  States excluded in part are AL, AR, DE, NE, and NH.  As 

expected, average daily state returns are slightly positive but near zero, with standard 

deviations of one to three percent.  Of the states included in the sample, MO has the highest 

average daily return of 7 bps, while GA has the lowest return of -1 bps.  The low return for GA is 

at least partly due to its entrance in the data in 2004 and subsequent exit at the end of 2008, 

thus suffering the brunt of the financial crisis and not the following recovery.  The remaining 

columns show the mean and standard deviation for the state residual return.  Panel B of Table 

1.5 displays the summary of market returns and pooled state returns.  The market has an 

average return of 4.6 bps, and a standard deviation of 1.16%.  As expected the standardized 

returns have standard deviations close to one.  Thus in the regression results, a one unit 

increase in the standardized returns roughly correspond to a one percent increase in actual 

returns. 

 



 

20 
 

1.4.4 Other Controls 

Data for additional controls identified in the behavioral finance and crime literature are 

from a number of sources.  Daily weather data is from the NOAA National Climatic Data Center 

(NCDC), 9 and is calculated as the median value for all weather stations within 250 miles of the 

crime reporting agency.  Average temperature is defined as the average of the maximum and 

minimum temperature that day measured in tenths of degrees Celsius, precipitation consists of 

rainfall and the liquid equivalent of any frozen precipitation in tenths of millimeters, snowfall is 

the amount of new snow (and other frozen types of precipitation) that fell during the day in 

millimeters, snow depth is the total depth in millimeters of snow on the ground at the time of 

observation, and wind is the average daily wind speed in tenths of meters per second.  Moon 

fraction is from the United States Naval Observatory (USNO) and is the fraction of the moon 

that is illuminated at midnight. 10  Daily Seasonal Affective Disorder (SAD) data is from Lisa 

Kramer’s website and reflects the estimated change in the proportion of subjects experiencing 

depression symptoms across the US. 11  Thus, higher values indicate higher depression or higher 

risk aversion.  Changes in the VIX are from the CBOE.  Analyst estimates used to calculate 

earnings surprises are from IBES. 

 

                                                      
9
 NCDC daily weather: http://www.ncdc.noaa.gov/cdo-web/datasets  

10
 USNO moon fraction: http://aa.usno.navy.mil/data/docs/MoonFraction.php  

11
 Thanks to Lisa Kramer for making the data available on her website:  http://www.lisakramer.com/data.html   

http://www.ncdc.noaa.gov/cdo-web/datasets
http://aa.usno.navy.mil/data/docs/MoonFraction.php
http://www.lisakramer.com/data.html


 

21 
 

1.5 Market Results 

1.5.1 Daily Market Relationship 

I first focus on the relationship between overall market returns and overall crime rates.  

Panel A of Table 1.6 shows the specification where the dependent variable is the crime rate for 

all 46 Group A crime offenses listed in Table 1.3.  The first column reports the results for all 

income groups together, with a positive and significant coefficient on the market return and 

positive yet insignificant coefficient on the squared return.  This indicates an increasing and 

weakly convex relationship between overall market returns and overall crime rates.  

Specifically, a one standard deviation increase in market returns corresponds to an increase of 

46.2 crimes per 100 million people per day. 12  As compared to the US daily average of 20,302 

crimes per 100 million people, this corresponds to a 22.8 bps increase in overall crimes.  With 

an estimated 314 million individuals in the US, a one standard deviation increase in returns 

results in an additional annualized 36,551 crimes across the US. 13   This increase is economically 

significant when considering that the net annual burden of crime has been estimated by 

Anderson (1999) to be approximately $1.7 trillion per year.  Thus, a one standard deviation 

increase in the market translates to an estimated $2.670 billion annualized loss ($10.597 million 

daily loss)  due to crime. 14   

The positive relationship between crime and returns seems odd if one assumes that 

higher returns should decrease marginal utility (increase utility) and thus decrease the 

                                                      
12

 Although the squared term is insignificant in a number of cases, I include them in all calculations: (linear term) + 
2 × (squared term) = 35.56 + 2 × 5.316 = 46.192 
13

 46.192 × 252 × 3.14 = 36,550.81 
14

 (0.00228 × 1.7 trillion) / 365 days = 10.597 million/day; 10.60  × 252 days = 2.670 billion/year 
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propensity for crime.  However, not all individuals invest in the stock market as indicated by 

Malloy, Moskowitz, and Vissing-Jorgensen (2009), who estimate that only 23% of households 

hold stocks (including retirement plans) using the Consumer Expenditure Survey from 1982-

2004.  It is likely that individuals whom are more prone to commit crimes have no funds 

invested in the stock market and thus they are more likely to be put in sour moods when the 

stock market goes up and they observe others benefiting.  This envy effect is consistent with 

models such as Abel (1990) who posit that individuals care about their own consumption 

relative to others.  If envy from observing the “rich getting richer” is a driver of increased crime, 

one would expect to see higher crime rates in subgroups of the population that benefit less 

from market increases.  Specifically, low income individuals who likely have no (or less) wealth 

invested in the stock market should exhibit a higher envy effect.  Furthermore, because low 

income individuals’ wealth and thus utility begins at a lower level, their marginal utility is 

higher, so we expect to see a higher sensitivity to market returns.  To illustrate this, I partition 

the sample into terciles by the median income for each agency location and reproduce the 

results in the last three columns of Table 1.6.  Indeed, I find that low income locations have the 

strongest positive and convex relationship with market returns, and this relationship 

monotonically decreases from low income locations to high income locations.  For example, a 

one standard deviation increase in the market corresponds to a significant increase of 94.7 

crimes per 100 million (46.7 bps) in low income locations, but an insignificant 2.7 crimes (1.3 

bps) in high income locations.   

The controls in Panel A of Table 1.6 enter the specification significantly with the 

expected sign.  Crime increases with moon illumination, decreases with SAD induced risk 
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aversion, increases with temperature, decreases with precipitation, decreases with snowfall 

and snow depth, and decreases in wind speed.  The inclusion of controls provides us with 

additional confidence that the results are not driven by other factors in the literature that have 

been shown to influence both crime and returns.  For conciseness, the controls in other 

specifications are included but with the coefficients not reported.  Generally, the coefficients 

follow the same sign and significance across all crime categories.  Exceptions include SAD and 

snow depth which are positive for violent crimes and assaults.   

I next turn to the relationship between the stock market and significant categories of 

crime as defined by the FBI:  property crimes, violent crimes, assaults (within violent crimes), 

and fraud.  As shown in Table 1.3, property crimes include larceny/theft offenses, 

burglary/breaking and entering, and motor vehicle theft.  The first column of Panel B in Table 

1.6 illustrates the significantly positive and convex relationship between property crime and 

market returns.  For example, a one standard deviation increase in market returns is associated 

with an increase of 27.2 property crimes per 100 million individuals (26.8 bps) per day.  The 

significantly positive coefficient on the squared market return indicates a convex relationship 

between property crimes and the market.  When breaking up the relationship by income in the 

last three columns of Panel B in Table 1.6, it appears that the overall relationship between 

market returns and property crimes seems to be driven by middle income locations.  The lack of 

significant coefficients on the high and low income locations may be due to the tradeoff that 

thieves face between the rewards and punishment in those locations.  This tradeoff is 

consistent with Johnson and Bowers (2004) who utilize optimal foraging theory to model 

criminals.  In optimal foraging theory, predatory animals select hunting areas and prey, and 
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optimize rewards by weighting the nutrition value of potential prey with the efforts and risks 

involved in finding, attacking, and eating it.  In the same vein, thieves may be assumed to 

maximize their revenues by selecting neighborhoods which contain valued items with a low 

likelihood of being apprehended.  Although high income locations likely have the highest 

potential rewards due to valuable goods, they are also the most likely to have the highest 

potential for punishment due to home security systems, security guards, and well-funded law 

enforcement.  Conversely, low income locations are likely to have the lowest reward, but also 

the lowest potential for punishment.  The middle income locations may be the optimal 

locations to perform a theft when an increase in marginal utility leads to a higher propensity for 

crime. 

Next, I examine the relationship between the stock market and violent crimes.  Violent 

crimes include homicide, rape offenses, assault offenses, and robbery.  Although I report the 

results for all violent crimes in Panel C of Table 1.6, I will focus on assaults in Panel D of Table 

1.6.  I focus on assaults because they dominate the violent crime offenses, and the vast majority 

of assaults are classified as occurring at home (61%) where the victim is related to or otherwise 

knows the offender (87% of home assaults).  Thus, we can be confident that the income 

groupings are meaningful for the offender.  In other words, we can be confident that assaults 

committed by high income individuals (i.e., investors) are most likely to occur in high income 

locations, while assaults committed by low income individuals (i.e., non-investors) are most 

likely to occur in low income locations.  This is in contrast to other crimes such as theft where 

there is presumably a large number of low income individuals committing the crimes in high 

income locations. 
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At first glance, there appears to be no relationship between stock market returns and 

overall assaults in the first column of Panel D of Table 1.6, but when breaking up the sample by 

income, it appears that the differential effects by income groups may have muddled the 

aggregate results.  In high income locations a one standard deviation increase in the market is 

associated with a significant decrease of -9.4 assaults per 100 million individuals (-22 bps), while 

in low income locations a one standard deviation increase in the market is associated with a 

significant increase of 17.1 assaults (40 bps).  The direction of the relationship between market 

returns and assaults is consistent with utility over relative wealth.  For high income individuals, 

a higher market return is associated with a decrease in marginal utility (increase in utility) 

because high income individuals are more likely to hold stocks, and a higher market return 

increases their wealth relative to non-stock holders.  This decrease in marginal utility 

corresponds with decreases in assaults for high income individuals.  Low income individuals are 

impacted negatively by higher market returns.  Because low income individuals are more likely 

to hold no stocks, higher market returns are associated with an increase in marginal utility 

because they are now worse off relative to high income individuals.  This increase in marginal 

utility corresponds with an increase in crime rates for low income individuals.  The empirical 

relationship between market returns and assaults is plotted in Figure 1.5, and is remarkably 

similar to the theoretical plot of market returns and crime propensity as modeled by the 

increasing function of marginal utility over relative wealth shown in Figure 1.1.  The fact that we 

see the expected positive and weakly convex relationship between crime and market returns 

for low income locations, and the negative and weakly convex relationship for high income 
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locations provides evidence that utility models over relative wealth are appropriate and that 

crime can be considered a measure of revealed marginal utility. 

Finally, I report the relationship between market returns and fraud.  Fraud includes false 

pretenses, credit card fraud, impersonation, welfare fraud, and wire fraud.  Fraud is included 

because it is generally considered a white collar crime.  Panel E of Table 1.6 indicates that the 

relationship between market returns and the overall fraud crime rate is significantly positive 

and convex.  For example, a one standard deviation increase in the market return corresponds 

to 7.7 additional fraud offenses per 100 million individuals, or an increase of 1.5%.  There is also 

a decreasing and monotonic relationship between market returns and fraud as we go from low 

income to high income locations.  Specifically, a one standard deviation increase in the market 

is associated with a significant increase of 15.8 (3.2%) fraud offenses in low income locations, 

but an insignificant increase of 1.1 (23 bps) in high income locations. 

 

1.5.2 Lagged Market Relationship 

Asset pricing models assume that changes in wealth are instantaneously related to 

changes in utility.  To examine the instantaneous assumption, I test for a delayed relationship 

between stock market returns and crime rates.  A delayed relationship between returns and 

crime rates could occur due to delayed awareness or a delayed response.  Delayed awareness 

could occur if an individual does not pay close attention to the daily movements in stock prices, 

but becomes aware of them over the coming days and then responds.  Delayed response could 

occur if an individual is immediately aware of the stock market movements, but the 

consequences take time to manifest and perhaps are triggered by an additional event that 
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pushes him beyond a threshold.  These situations could explain if we see past returns at time t - 

s  (for s > 0) having an impact on crime rates at time 𝑡. 

I report the lagged relationship between the past three daily stock market returns and 

current crimes rates for all incidents in Table 1.7.  It is important to note that the crime rates 

correspond to all seven days a week, while market returns only correspond to trading days.  For 

example, the column labeled t - 1 in includes the relationship between Saturday crime rates and 

Friday returns.  The results indicate that the relationship between market returns and crime 

rates is contemporaneous.  All of the coefficients on the lagged market returns are 

indistinguishable from zero.  In other words, there does not appear to be delayed awareness or 

delayed response between crime rates and market returns, which supports the assumption that 

changes in wealth are instantaneously related to changes in utility. 

 

1.6 State Return Results 

Although fixed effects were previously added for location, year, month of year, day of 

week, and holidays, there still may be common variation across locations that occur on a daily 

frequency due to an omitted factor.  To understand the extent to which unobserved 

heterogeneity may alter the results I exploit the home bias of US investors through the use of 

state returns and local crime rates, and compare specifications with and without daily fixed 

effects.   

It is well documented that investors exhibit a home bias in their equity portfolios.  

French and Porterba (1991) find that investors only hold modest amounts of foreign equity.  

Home bias has also been shown to hold for US investors in domestic stocks.  Coval and 
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Moskowitz (1999) show that US investment managers exhibit a strong preference for locally 

headquartered firms.  Seasholes and Zhu (2010) show that individual US investors overweight 

local stocks by 18%, but still hold approximately 70% of their portfolios in non-local US stocks.  

This implies that the market return will be the largest driver of utility, but local returns can drive 

marginal differences in utility among different locations. 

In order to isolate the component of returns that is unique to each state, I perform 

rolling one-year regressions of state returns on non-state returns and extract the state residual 

return.  State returns are defined as the market weighted return of all firms headquartered in 

the state in which the police agency is located, while non-state returns are the market weighted 

return of all firms headquartered outside of corresponding state.  The state residual return and 

non-state return are divided by their respective rolling one-year standard deviations.  Although 

investors would benefit from the total state return, the state residual return has the advantage 

of not being confounded by the market return.  Thus the state residual return provides an 

effective way to exploit the home bias by cleanly identifying state-only effects. 

 

1.6.1 Daily State Return Relationship 

The first column of Panel A in Table 1.8 confirms that state specific returns are related 

to overall crime rates.  Specifically, the relationship between the overall crime rate and the 

state specific residual return is about two-thirds the magnitude of non-state returns with a one 

standard deviation increase in the state residual return associated with an increase of 30.9 

crimes per 100 million individuals (15.2 bps) versus the non-state return effect of 46.1 (22.7 

bps).  The relationship with the non-state return is nearly identical to that of the market return 
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in Table 1.6 of 46.2, because the non-state return includes most of the firms used to calculate 

the market return and is orthogonal to the state residual return.  The significance of non-state 

returns also provides additional assurances that it is the stock market that is driving the results, 

and not just a local effect that could show up in the state returns.  Furthermore, as with market 

returns, the remaining columns of Panel A in Table 1.8 show that the relationship between the 

state residual return and crime rates also roughly monotonically decreases from low income to 

high income locations.  Specifically, a one standard deviation increase in the state residual 

return corresponds to a significant 76.2 (37.5 bps) for low income locations, which decreases to 

11.8 crimes per 100 million individuals (5.8 bps) for high income locations. 

Turning to the other crime categories, only property crimes follow a similar relationship 

with the state residual return as with market returns.  Specifically, a one standard deviation 

increase in the state residual return corresponds to an additional 17.2 crimes per 100 million 

individuals (16.9 bps).  Once again the relationship appears to be driven by middle income 

locations, which may be an optimal target for property crime given the tradeoff between 

rewards and punishment.  The remaining crime categories of violent crimes, assaults, and fraud 

appear to be insignificantly related to the state residual return which indicates that the market 

is the primary driver in the relationship of these crimes. 

 

1.6.2 Daily State Return Relationship with Daily Fixed Effects 

To ensure that common news is not driving the relationship between stock market 

returns and crime rates, I use daily fixed effects to control for common variation across 

locations that occur at a daily frequency.  For example, suppose that the Bureau of Labor 
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Statistics announces a weak jobs report.  The prospects of high unemployment could lead to a 

decline in the market, and perhaps an increase in crime rates.  The advantage of using daily 

fixed effects is that common news that may affect both the stock market and crime can be 

controlled.  The disadvantage is that valid identifying information can be thrown out with the 

use of daily fixed effects.  Furthermore, the use of daily fixed effects prevents identification of a 

relationship with the market return and only allows us to identify a relationship with local 

returns.  This is of particular concern since investors hold most of their portfolio in non-local 

firms (i.e., the market portfolio), and the market return (i.e., the S&P 500, NASDAQ, or DJIA) is 

the most publicized form of stock performance on a daily basis.   

The relationship between the overall crime rate and returns with daily fixed effects can 

be found in Table 1.9.  The specification clearly has trouble identifying an effect from the non-

state return (essentially the stock market return), likely due to the lack of variation across 

states.  However, the state residual return can be cleanly identified, and exhibits roughly similar 

results to those shown without daily fixed effects in Table 1.8.  For example, a one standard 

deviation increase in the state residual return is associated with an increase of 29.6 crimes per 

100 million individuals (14.6 bps) in the daily fixed effects specification, but 30.9 (15.2 bps) 

without the daily fixed effects.  This provides us with some assurance that the results are not 

driven by common news simultaneously affecting both returns and crime. 
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1.7 Robustness 

1.7.1 Is it the VIX? 

The VIX is a widely used gauge of market risk and measures the market’s expectation of 

S&P 500 volatility over the next 30 days.  If utility is affected by anxiety over the uncertainty of 

future consumption as in Caplin and Leahy (2001), and the VIX measures the uncertainty of 

future wealth, then changes in the VIX could impact utility.  To ensure that anxiety over future 

consumption is not driving the results, as suggested by Engelberg and Parsons (2014), I 

explicitly control for changes in the VIX in Table 1.10.  The first column shows that changes in 

the VIX enters insignificantly, with a one unit increase in the market corresponding to 19.4 

additional crimes per 100 million individuals (9.6 bps).  This provides inconclusive evidence that 

individuals are affected by anxiety over future returns.  However, the coefficient on the market 

return remains highly significant with a one standard deviation increase in the market 

corresponding to an additional 68.6 crimes (33.8 bps).  This compares to the specification 

without the VIX of 46.2 crimes (22.8 bps).  Breaking down the results by income, changes in the 

VIX only enters significantly in medium income locations.  Furthermore, the monotonic 

relationship across income groups between stock market returns and crime remains.  For 

example, a one standard deviation increase in the market corresponds to an insignificant 6.7 

crimes per 100 million individuals (3.3 bps) in high income locations, and a significant increase 

of 124 crimes (61.1 bps) in low income locations.  The significance of the market return and 

remaining monotonic relationship provides assurances that the results are not driven by anxiety 

as measured by the VIX. 
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1.7.2 Earnings Surprises 

If stock market returns are partly driven by the revelation of firm specific information 

that can influence expectations of cash flows and discount rates, then we should also expect 

individuals to incorporate this firm specific information in their utility over expected relative 

wealth.  An example of firm specific information that is frequently provided to the market is 

earnings announcements.  The difference between reported earnings and expected earnings 

provides new information to the stock market that could influence prices.  To quantify the 

unexpected component of earnings, I utilize the standardized unexpected earnings (SUE) 

measure.  Following Livnat and Mendenhall (2006), SUE is defined as the difference between 

reported quarterly earnings and the median of the most recent forecast for each analyst made 

in the 90 days prior to the report date, scaled by the quarter end price.  To generate an 

aggregate market measure of SUE, I market cap weight the firm level SUEs for all firms that 

report on a given day.  To be included in the sample, at least ten firms must report on that date.  

The empirical relationship between SUE and firm announcement returns is positive (Livnat and 

Mendenhall, 2006), which suggests that we should also expect a relationship between 

aggregate SUE and crime rates if individuals’ utility over expected relative wealth changes with 

unexpected earnings. 

The usage of SUE has the advantage that it only includes previously non-public firm 

information that occurred in the past, and thus is not confounded by other daily news that 

could simultaneously influence crime rates and returns such as macroeconomic 

announcements, wars/terrorist attacks, or other geo-political events.  The disadvantage of 

using SUE is that firms do not report on all days in the sample, so approximately one-third of 
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the observations are discarded.  The results in Panel A of Table 1.11 are consistent with 

individuals’ utility over expected relative wealth changing with unexpected earnings.  The 

overall relationship between crime rates and aggregate SUE is positive with a one unit increase 

in SUE associated with a significant increase of 4.7 crimes per 100 million individuals (2.3 bps).  

The relationship is also stronger for low income individuals as compared to high income 

individuals, with a one unit increase in SUE associated with a significant 11.4 crimes (5.6 bps) in 

low income locations, and a significant 3.1 crimes (1.5 bps) in high income locations.  Panel B of 

Table 1.11 confirms that the relationship between market returns and crime rates remains after 

controlling for SUE, suggesting that both realized returns and unexpected firm performance 

impact utility. 

 

1.7.3 Falsification Test 

In order to further examine if the home bias is driving the relationship between state 

specific returns and overall crime rates, I conduct a falsification test.  In the falsification test, all 

police agencies within a state are assigned returns from all firms headquartered in a distant-

state.  If individuals exhibit a home bias for local stocks but do not exhibit a bias for distant 

stocks, then local residual returns can drive marginal changes in utility while distant residual 

returns (orthogonal to the market) will have no effect.  Consistent with the local bias, a 

significant relationship between local overall crime rates and local-state residual returns was 

previously seen in Table 1.8.  Similarly, if there is no bias for distant stocks, an insignificant 

relationship between local crime rates and distant-state residual returns is expected. 
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A local-state is defined as the state in which a police agency is domiciled.  A distant-state 

is defined as any state which is at least 500 miles away from the local state15.  To ensure that a 

unique distant-state’s return is assigned to each local-state, the following algorithm is followed.  

First, local-states with the fewest distant-state options are matched to distant-states with the 

fewest local-state options.  Second, if there are ties when selecting local or distant-states, ties a 

broken randomly.  This process is repeated until all local-states are matched with a unique 

distant-state.  As with the local-state returns, I perform rolling one-year regressions of the 

distant-state returns on non-distant-state returns and extract the residual return in order to 

isolate the component of returns that is unique to each distant-state.  Distant-state returns are 

defined as the market weighted average of all firms within a distant-state, while non-distant-

state returns are defined as the market weighted average of all firms outside of the distant-

state.  As previously, the distant-state residual return and non-distant state returns are then 

divided by their respective rolling one-year standard deviation. 

The results in Table 1.12 are consistent with individuals showing no bias for distant 

stocks.  The coefficients on the distant-state residual returns are all insignificant indicating that 

the residual return of distant stocks has no relationship with crime rates and thus utility.  

However, the coefficients on the non-distant-state return (essentially the stock market return) 

remain very similar to the coefficients on the stock market return in Table 1.6, with a one 

standard deviation increase in the non-distant-state return associated with 48.1 additional 

crimes (23.7 bps) versus the 46.2 (22.8 bps) relationship with market returns.  As previously, the 

relationship between overall crime rates and non-distant-state returns also decreases 

                                                      
15

 Distance is measured from the center of one state to the next.  The center of the state is defined as the average 
latitude and longitude for all zip codes within a state. 
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monotonically with income.  For example, a one standard deviation increase in the non-distant-

state return is associated with a significant increase of 97.8 crimes (48.2 bps) in low income 

locations and decreases to an insignificant 3.0 crimes (1.5 bps) in high income locations. 

 

1.8 Conclusion 

Using daily reported crime incidents from over 2,500 law enforcement agencies across 

27 states from 1991-2012, I examine the social effects of realized stock market returns using 

micro-level (city/county) data.  Proposing crime as a measure of revealed marginal utility, I find 

a contemporaneous positive and convex relationship between daily stock returns and overall 

crime rates.  I also find that market changes impact investors’ and non-investors’ marginal 

utility differently and interpret this as evidence in support of envy or “keeping up with the 

Joneses” models such as Abel (1990) that individuals care about their own wealth relative to 

others.  For high income individuals, a positive stock market return is associated with  a 

decrease in marginal utility (increase in utility) because high income individuals are more likely 

to hold stocks, and a higher market return increases their wealth relative to non-stockholders.  

This decrease in marginal utility corresponds with decreases (or at least no increase) in crime 

rates for high income individuals.  Low income individuals are impacted differently by higher 

market returns.  Because low income individuals hold less (or no) stocks as compared to high 

income individuals, positive market returns are associated with higher marginal utility because 

they are now worse off relative to high income individuals.  This increase in marginal utility 

corresponds to an increase in crime rates for low income individuals.   
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Empirically I find that a one standard deviation increase in daily stock market returns 

corresponds to a 22.8 bps increase in overall crimes across the US.  The relationship between 

returns and crime rates also monotonically increases from high income to low income locations.  

The 22.8 bps daily increase in crime is also economically meaningful and corresponds with an 

additional annualized 36,551 crimes across the US with an estimated annualized loss to society 

of $2.67 billion.     

I also find a relationship between returns and violent crime, property crime, and white 

collar crime.  For example, a one standard deviation increase in the market return is associated 

with a 22 bps decrease in assaults for high income locations, and a 40 bps increase in assaults 

for low income locations.  The relationship with assaults is particularly supportive because most 

assaults occur at home by an offender that is related to or otherwise known by the victim.  This 

ensures that our proxy for investors (high income cities) and non-investors (low income cities) 

are meaningful. 

I find that the overall relationship between overall crime rates is robust to a battery of 

controls, and is consistent with rational asset pricing models with utility over relative wealth.  

Speculatively, my results also suggest that high income inequality and large stock market 

changes can be detrimental to society through increased crime. 
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Figure 1.1  Stockholder and Non-Stockholder Crime Propensity 

This figure illustrates the hypothetical crime propensity (marginal utility) of stockholders and non-stockholders 
over the market return. 

 

  

0.0 0

0.5 0

1.0 0

1.5 0

2.0 0

2.5 0

0.0 01 0.0 011 0.0 012 0.0 013 0.0 014 0.0 015 0.0 016 0.0 017 0.0 018 0.0 019 0.0 02 0.0 021 0.0 022 0.0 023 0.0 024 0.0 025 0.0 026 0.0 027 0.0 028 0.0 029 0.0 03 0.0 031 0.0 032 0.0 033 0.0 034 0.0 035 0.0 036 0.0 037 0.0 038 0.0 039 0.0 04 0.0 041 0.0 042 0.0 043 0.0 044 0.0 045 0.0 046 0.0 047 0.0 048 0.0 049 0.0 05 0.0 051 0.0 052 0.0 053 0.0 054 0.0 055 0.0 056 0.0 057 0.0 058 0.0 059 0.0 06 0.0 061 0.0 062 0.0 063 0.0 064 0.0 065 0.0 066 0.0 067 0.0 068 0.0 069 0.0 07 0.0 071 0.0 072 0.0 073 0.0 074 0.0 075 0.0 076 0.0 077 0.0 078 0.0 079 0.0 08 0.0 081 0.0 082 0.0 083 0.0 084 0.0 085 0.0 086 0.0 087 0.0 088 0.0 089 0.0 09 0.0 091 0.0 092 0.0 093 0.0 094 0.0 095 0.0 096 0.0 097 0.0 098 0.0 099 0.0 1 0.0 101 0.0 102 0.0 103 0.0 104 0.0 105 0.0 106 0.0 107

C
ri

m
e

 P
ro

p
e

n
si

ty

Stock Market Return

Stockholder Non-Stockholder



 

42 
 

Figure 1.2  Hourly Crime Distribution 

This figure illustrates the hourly distribution of crimes in the NIBRS database from 1/1991 – 12/2012.  All crime 
incidents regardless of offense type are included. 
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Figure 1.3  NIBRS Coverage 

This figure illustrates the monthly coverage of the NIBRS database from 1/1991 – 12/2012.  Agencies include all 
law enforcement agencies in the NIBRS database after the filters described in the text.  Population only includes 
the population that the agencies cover and is measured in millions.  Crimes include the number of all crime 
incidents regardless of offense type. 
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Figure 1.4  Crime Rate 

This figure illustrates the aggregate US daily crime rate per 100 million people from 1/1991 – 12/2012 averaged 
over each month.  The crime rate is calculated as the number of incidents across all agencies divided by the 
population covered by all agencies.   
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Figure 1.5  Stock Returns and All Assaults by Income 

This figure illustrates the empirical relationship between market returns and assaults for high income and low 
income locations from 1991-2012 utilizing the coefficients in Panel D of Table 1.6.  High income is defined as the 
top tercile of income for all agency locations, while low income is defined as the bottom tercile.  Standardized 
market return is market capitalization weighted returns of all firms in CRSP, and divided by its trailing 252-day 
standard deviation.   All assaults include aggravated assaults, simple assault, and intimidation.  Each line is plotted 
on a separate axis. 
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Table 1.1  NIBRS Coverage by State  

Summary from 1991-2012.  Start Date is the first date where at least one agency reports an incident within that 
state.  Population only includes those covered by the agencies.  Crime rate is per 100 million people per day. 

State Start 
Date 

Average # 
of Agencies 

Max # of 
Agencies 

Average 
Population 

Max 
Population 

Average 
Crime Count 

Average 
Crime Rate 

AL 1/1991 14 70           545,940         2,434,391  139 18,615 

AR 1/2001 47 96        1,154,888         2,266,027  303 28,966 

AZ 7/2004 2 4           178,701            312,927  23 16,214 

CO 1/1992 34 61        2,275,347         4,331,786  421 21,548 

CT 1/1999 34 53        1,110,817         1,730,738  157 14,378 

DE 1/2001 11 15           587,177            625,631  111 18,934 

GA 1/2004 1 1              10,102               10,782  4 38,204 

IA 1/1992 45 68        1,412,848         1,764,232  333 23,829 

ID 1/1992 28 37           926,374         1,215,426  178 19,804 

IL 1/1993 29 154           762,390         3,352,576  186 32,429 

KS 1/2001 45 63        1,226,522         1,541,737  319 25,996 

KY 1/1998 19 77           442,701         1,978,083  79 21,787 

LA 1/2003 12 19           395,677            609,064  77 19,726 

MA 1/1995 81 130        2,557,968         4,352,634  423 17,355 

ME 8/2004 8 14           179,602            281,856  34 19,020 

MI 1/1995 164 212        6,406,866         8,644,641  1,159 18,062 

MO 1/2007 5 8           405,576            701,654  103 24,316 

MS 1/2010 2 3              99,415            126,059  30 30,383 

MT 1/2005 21 29           622,369            722,546  112 18,134 

NE 1/1998 13 22           274,414            420,195  51 19,121 

ND 1/1991 8 16           267,010            455,215  49 18,616 

NH 1/2002 29 45           545,393            782,780  106 19,602 

OH 1/1998 86 161        3,930,069         6,411,498  899 23,309 

OK 1/2008 14 39           258,570            680,809  41 15,777 

OR 12/2003 30 40           921,616         1,110,748  177 19,455 

RI 1/2005 23 28           854,350            976,320  134 15,595 

SC 1/1991 94 120        3,553,929         4,533,846  886 25,011 

SD 1/2001 7 16           253,383            447,566  46 18,209 

TN 1/1997 122 161        4,375,201         5,779,965  1,115 24,164 

TX 1/1997 33 49        2,265,583         3,709,977  490 22,103 

UT 1/1993 29 49        1,245,444         2,139,098  271 21,749 

VA 1/1995 84 124        5,164,985         7,556,158  857 16,382 

VT 1/1994 9 15           132,746            215,655  29 21,627 

WA 1/2006 28 92        1,421,357         4,208,516  277 20,002 

WI 1/2005 17 37        1,213,396         1,901,953  255 22,687 

WV 6/1998 22 36           669,360         1,005,669  112 17,011 
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Table 1.2  Law Enforcement Agencies by Population 

Law enforcement agencies in the NIBRS database with the largest population coverage as of 12/2012. 

State Agency Population 

VA Fairfax County Police Department    1,072,723  

OH Columbus       797,384  

TX Fort Worth       770,101  

MI Detroit       707,096  

TN Memphis       657,436  

CO Denver       628,545  

WA Seattle       626,865  

TN Nashville       620,886  

WI Milwaukee       599,395  

MO Kansas City       464,073  
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Table 1.3  Summary Statistics by Offense Type  

Daily US crime rates are calculated as the sum of offenses across all agencies divided by the population of all 
agencies and is per 100 million people.  The average, median, and standard deviation of the US crime rate is 
calculated over the time series of the aggregate daily US crime rate.  Daily agency crime rates are calculated as the 
daily sum of offenses for a specific agency divided by the agency population.  The average, median, and standard 
deviation of the agency crime rate is calculated over the pooled daily agency crime rate.  Agency percent is the 
percent of non-zero daily observations for the offense. 

       US Med  US Avg 
US Std. 

Dev 
Agency 

Med 
Agency 

Avg 
Agency 

SD 
Agency 

Pct 

Violent Crime 
       

 
Homicide Offenses 

       

  
Murder/Non-negligent Manslaughter 12 13 11 0 14 333 0.7 

  
Negligent Manslaughter 0 1 2 0 3 175 0.1 

 
  Justifiable Homicide 0 0 1 0 2 114 0.2 

    All Homicides 12 14 11 0 15 349 0.7 

 
Assault Offenses 

       

  
Aggravated Assault 738 849 385 0 794 2,815 17.2 

  
Simple Assault 2,676 2,749 518 0 3,138 5,753 44.8 

 
  Intimidation 751 699 234 0 1,049 3,440 19.8 

    All Assaults 4,211 4,298 787 2,444 4,938 7,607 56.8 

 
Sex Offenses, Forcible 

       

  
Forcible Rape 95 101 40 0 114 962 3.8 

  
Forcible Sodomy 18 20 14 0 29 503 1.0 

  
Sexual Assault With An Object 10 11 9 0 21 401 0.7 

  
Forcible Fondling 100 105 53 0 136 1,093 4.1 

    All Rape 226 237 90 0 278 1,548 8.1 

  Robbery 290 303 100 0 220 1,319 7.3 

 
All Violent Crime 4,754 4,852 883 3,041 5,430 7,975 59.6 

Property Crimes 
       

 
Larceny/Theft Offenses 

       

  
Pocket-picking 19 38 90 0 32 561 1.1 

  
Purse-snatching 25 28 17 0 41 647 1.2 

  
Shoplifting 1,096 1,151 290 0 1,367 4,033 24.1 

  
Theft From Building 748 739 178 0 995 3,300 19.2 

  

Theft From Coin-Operated Machine or 
Device 35 39 24 0 58 868 1.4 

  
Theft From Motor Vehicle 1,665 1,678 312 0 1,625 4,458 28.1 

  

Theft of Motor Vehicle 
Parts/Accessories 561 611 238 0 462 2,045 12.0 

  
All Other Larceny 2,725 2,845 813 0 3,515 6,340 47.7 

    All Larceny/Theft 6,980 7,130 1,511 5,418 7,957 10,093 71.2 

 
Burglary/Breaking and Entering 2,105 2,215 613 0 2,226 4,739 37.0 

 
Motor Vehicle Theft 823 820 197 0 664 2,326 16.6 

  All Property Crime 9,899 10,164 2,166 8,031 10,835 11,855 80.9 
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Other Classified 
       

 
Fraud Offenses 

       

  

False Pretenses/Swindle/Confidence 
Game 263 267 131 0 378 2,202 9.3 

  

Credit Card/Automatic Teller Machine 
Fraud 115 132 87 0 228 1,658 6.3 

  
Impersonation 56 87 89 0 152 1,206 5.0 

  
Welfare Fraud 0 2 5 0 12 394 0.2 

  
Wire Fraud 6 8 8 0 25 489 0.9 

    All Fraud 444 496 264 0 726 2,974 16.5 

 
Drug/Narcotic Offenses 

       

  
Drug/Narcotic Violations 1,049 1,039 348 0 1,475 4,241 26.4 

  
Drug Equipment Violations 149 140 57 0 215 1,442 5.7 

    All Drugs 1,197 1,179 390 0 1,662 4,510 28.6 

 
Sex Offenses, Non-forcible 

       

  
Incest 2 4 5 0 10 285 0.3 

  
Statutory Rape 15 17 13 0 33 541 1.0 

    All Non-Forcible Sex 19 21 15 0 37 573 1.1 

 
Gambling Offenses 

       

  
Betting/Wagering 0 2 4 0 5 239 0.2 

  

Operating/Promoting/Assisting 
Gambling 0 2 6 0 6 253 0.2 

  
Gambling Equipment Violations 0 1 4 0 7 276 0.2 

  
Sports Tampering 0 0 0 0 3 123 0.1 

    All Gambling 2 5 9 0 9 327 0.3 

 
Prostitution Offenses 

       

  
Prostitution 22 30 28 0 30 545 1.4 

  
Assisting or Promoting Prostitution 5 8 13 0 16 507 0.6 

    All Prostitution 30 38 33 0 34 639 1.5 

Other Offenses 
       

 
Kidnaping/Abduction 45 45 18 0 55 692 2.0 

 
Arson 63 66 26 0 73 794 2.4 

 
Extortion/Blackmail 2 3 4 0 7 236 0.3 

 
Counterfeiting/Forgery 288 299 114 0 454 2,562 9.4 

 
Embezzlement 65 67 37 0 114 1,077 3.3 

 
Stolen Property Offenses 77 75 29 0 112 1,008 3.2 

 
Destruction/Damage/Vandalism of Property 2,781 2,842 697 0 3,404 6,646 45.6 

 
Pornography/Obscene Material 6 8 8 0 21 432 0.6 

 
Bribery 0 0 2 0 4 179 0.1 

 
Weapon Law Violations 137 143 52 0 167 1,294 4.9 

All Incidents     20,201  20,302  3,420  17,835  22,976  19,011  100.0 
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Table 1.4  Law Enforcement Agencies by Median Income  

Law enforcement agencies in the NIBRS database with the highest median income.  Median income is calculated 
using the 2012 American Community Survey Public Use Microdata Sample from the US Census, and only includes 
income for full-time workers. 

State Agency Median Income Population 

WA Issaquah 99,930 31,341 
VA Falls Church 97,990 12,892 
VA Vienna 90,919 16,140 
MA Newton 87,888 86,710 
MI Birmingham 83,847 20,250 
VA Herndon 80,716 23,966 
VA Arlington County Police Department 79,990 218,385 
VA Loudoun 75,912 275,263 
VA Fairfax City 75,766 22,798 
TX Flower Mound 74,980 68,023 

 

  



 

51 
 

Table 1.5  Daily Return Statistics  

State return statistics in percent that correspond to only time periods where crime data is available with start 
dates listed in Table 1.1.  The state residual return is defined as the residual from a regression of state returns on 
non-state returns and represent the component of returns specific to that state. 
 
Panel A: Daily Return Statistics by State 

State 
Avg # of 

Firms 
Min # of 

Firms 
Max # of 

Firms 
Avg State 

Return 
Std Dev of 
State Ret 

Avg State Ret 
Residual 

Std Dev of State 
Ret Residual 

AL 29 18 40 0.02 2.14 0.00 1.09 

AR 21 17 28 0.02 1.37 0.01 0.97 

AZ 56 38 67 0.05 2.08 0.00 1.04 

CO 120 81 183 0.04 1.60 0.00 1.02 

CT 111 82 163 0.02 1.75 -0.01 1.01 

DE 19 14 26 0.02 1.86 -0.01 0.98 

GA 140 117 148 -0.01 1.22 0.02 1.10 

IA 32 20 51 0.04 1.81 -0.01 1.05 

ID 11 8 15 0.05 2.95 0.00 1.04 

IL 203 156 298 0.03 1.25 0.01 1.01 

KS 27 21 35 0.00 2.12 -0.01 0.99 

KY 37 26 50 0.05 1.42 0.00 1.02 

LA 30 26 34 0.04 1.47 -0.01 0.98 

MA 281 187 388 0.04 1.57 0.00 1.02 

ME 9 7 11 0.06 1.61 -0.01 1.05 

MI 105 65 147 0.03 1.44 -0.01 1.01 

MO 66 61 75 0.07 1.53 0.04 0.95 

MS 14 13 14 0.00 1.77 0.02 0.99 

MT 6 4 7 0.04 2.85 0.00 1.01 

NE 17 14 25 0.03 1.42 0.00 1.04 

ND 4 2 6 0.06 1.52 0.00 1.02 

NH 15 9 24 0.03 1.97 0.00 1.03 

OH 173 121 267 0.02 1.20 -0.02 1.02 

OK 32 27 35 0.04 2.92 -0.01 1.10 

OR 42 35 52 0.05 1.63 0.00 1.03 

RI 14 13 15 0.04 1.67 0.00 1.05 

SC 35 21 48 0.03 1.28 0.00 1.01 

SD 8 6 9 0.00 1.79 -0.01 1.02 

TN 74 58 103 0.03 1.43 -0.01 1.03 

TX 454 339 650 0.04 1.45 0.00 1.04 

UT 42 27 65 0.02 1.61 0.00 1.01 

VA 152 112 205 0.04 1.28 0.00 1.01 

VT 10 5 15 0.09 2.11 0.01 1.05 

WA 84 67 98 0.02 1.78 -0.01 1.05 

WI 59 53 65 0.02 1.82 -0.01 1.05 

WV 10 7 17 0.04 1.88 0.01 1.04 

 

  



 

52 
 

Panel B: Daily Market and Pooled State Return Statistics 

  Mean Std Dev 

Market Return 0.046 1.158 

Market Return (Standardized) 0.055 1.029 

      

State Return 0.035 1.756 

State Residual Return 0.000 1.114 

State Residual Return (Standardized) -0.002 1.025 

      

Non-State Return 0.031 1.332 

Non-State Return (Standardized) 0.032 1.073 
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Table 1.6  Market Returns and Crime Rates by Income 

Regression of daily crime rates on daily market returns by income from 1991-2012.  High income is defined as the 
top tercile of income for all agency locations, while low income is defined as the bottom tercile.  Market returns 
are market weighted returns of all firms in CRSP, and divided by its trailing 252-day standard deviation.  The crime 
rate is for the incident indicated in the column header.  Crime rates are measured as the number of incidents per 
100 million people.  Crime offenses are defined in Table 1.3.  Controls are included in all specifications, but with 
coefficients only shown in Panel A.  Moon fraction is the fraction of the moon illuminated, SAD is the estimated 
change in the proportion of individuals experiencing Seasonal Affective Disorder, temperature is in tenths of 
degrees Celsius, precipitation consists of rainfall and the liquid equivalent of any frozen precipitation in tenths of 
millimeters, snowfall is the amount of new snow that fell during the day in millimeters, snow depth is the total 
depth in millimeters of snow on the ground at the time of observation, and wind is the average wind speed in 
tenths of meters per second.  Parentheses contain t-statistics with heteroskedasticity robust standard errors 
clustered by time.  ***, **, and * indicate significance at the 1%, 5%, and 10% significance levels respectively. 

 
Panel A: All Incidents by income 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

Market Return 35.56*** 1.474 45.91*** 65.57*** 

 

(2.593) (0.124) (2.683) (3.053) 

Market Return Sq. 5.316 0.631 2.472 14.58* 

 

(1.002) (0.137) (0.370) (1.800) 

Moon Fraction 70.77* 32.24 30.93 152.6** 

 

(1.696) (0.852) (0.587) (2.362) 

SAD -959.7** -444.5 -1,339*** -1,019 

 

(-2.383) (-1.394) (-2.871) (-1.634) 

Temperature 13.11*** 10.42*** 15.04*** 13.66*** 

 

(39.28) (32.62) (34.77) (25.65) 

Precipitation -2.282*** -1.505*** -2.535*** -2.341*** 

 

(-5.942) (-3.958) (-4.849) (-3.747) 

Snowfall -23.03*** -17.36*** -31.87*** -38.46*** 

 

(-8.233) (-7.289) (-8.505) (-6.832) 

Snow Depth -3.459*** -3.392*** -8.385*** -8.092*** 

 

(-9.555) (-10.41) (-14.58) (-9.778) 

Wind -17.56*** -14.55*** -21.02*** -19.81*** 

 

(-15.92) (-13.58) (-14.05) (-10.46) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.474 0.452 0.459 0.450 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 
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Panel B: All Property Crime by Income 

Incident 

All 
Property 

Crime 

All 
Property 

Crime 

All 
Property 

Crime 

All 
Property 

Crime 

Income Level ALL HIGH MED LOW 

Market Return 14.04* 4.071 20.57* 19.94 

 

(1.709) (0.518) (1.898) (1.438) 

Market Return Sq. 6.597** 2.582 14.19*** 4.129 

 

(2.054) (0.845) (3.220) (0.748) 

          

Observations 3,728,566 1,313,862 1,216,699 1,195,425 

R-squared 0.307 0.287 0.294 0.294 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

 

Panel C: All Violent Crime by Income 

Incident 
All Violent 

Crime 
All Violent 

Crime 
All Violent 

Crime 
All Violent 

Crime 

Income Level ALL HIGH MED LOW 

Market Return 0.183 -9.716** -5.793 17.21** 

 

(0.0413) (-2.065) (-0.927) (2.049) 

Market Return Sq. -0.298 1.699 -4.720* 2.206 

 

(-0.163) (0.850) (-1.848) (0.569) 

          

Observations 3,727,519 1,313,426 1,216,364 1,195,151 

R-squared 0.260 0.234 0.260 0.228 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 
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Panel D: All Assaults by Income 

Incident 
All 

Assaults 
All 

Assaults 
All 

Assaults 
All 

Assaults 

Income Level ALL HIGH MED LOW 

Market Return -1.103 -12.02*** -4.269 14.13* 

 

(-0.277) (-2.701) (-0.740) (1.812) 

Market Return Sq. -0.617 1.316 -4.609* 1.476 

 

(-0.379) (0.661) (-1.926) (0.402) 

          

Observations 3,726,934 1,313,282 1,216,169 1,194,907 

R-squared 0.247 0.223 0.246 0.217 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

     

 

 

Panel E: All Fraud by Income 

Incident All Fraud All Fraud All Fraud All Fraud 

Income Level ALL HIGH MED LOW 

Market Return 4.791** 1.861 6.547** 6.142* 

 

(2.457) (0.894) (2.062) (1.827) 

Market Return Sq. 1.440* -0.369 0.121 4.838*** 

 

(1.914) (-0.475) (0.104) (3.528) 

          

Observations 3,645,825 1,290,978 1,188,586 1,163,753 

R-squared 0.054 0.057 0.052 0.055 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 
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Table 1.7  Market Returns and Crime Rates with Lags 

Regression of daily crime rates on market returns from 1991-2012.  Returns lag indicates the timing of the market 
return relative to the crime rate at date t, where the date t crime rate includes non-trading days.  Market returns 
are divided by its trailing 252-day standard deviation.  Crime rates are measured as the number of incidents per 
100 million people.  All Incidents include all of the offenses listed in Table 1.3.  Control variables are defined in 
Table 1.6.   Parentheses contain t-statistics with heteroskedasticity robust standard errors clustered by time.  ***, 
**, and * indicate significance at the 1%, 5%, and 10% significance levels respectively. 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Returns Lag t - 3 t - 2 t - 1 t 

Market Return 8.163 19.17 8.510 35.56*** 

 

(0.587) (1.352) (0.616) (2.593) 

Market Return Sq. 0.633 -1.878 5.199 5.316 

 

(0.114) (-0.288) (0.796) (1.002) 

          

Observations 3,921,805 3,905,421 3,814,634 3,728,775 

R-squared 0.471 0.471 0.476 0.474 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

 

 

  



 

57 
 

Table 1.8  State Returns and Crime Rates by Income 

Regression of daily crime rates on daily state residual returns and non-state returns by income from 1991-2012.  
The state residual return is defined as the residual from a regression of state returns on non-state returns and 
represent the component of returns specific to that state.  State returns are market weighted returns of firms 
within the agency’s state.  Non-state returns are market weighted returns for firms outside of the agency’s state.  
The state residual and non-state return are divided by their 252-day trailing standard deviation.  The crime rate is 
for the incident indicated in the column header.  Crime rates are measured as the number of incidents per 100 
million people.  Crime offenses are defined in Table 1.3.  High income is defined as the top tercile of income for all 
agency locations, while low income is defined as the bottom tercile.  Controls are defined in Table 1.6 and included 
in all specifications, but with coefficients only shown in Panel A.  Parentheses contain t-statistics with 
heteroskedasticity robust standard errors clustered by time.  ***, **, and * indicate significance at the 1%, 5%, and 
10% significance levels respectively. 
 

Panel A: All Incidents by Income 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

State Residual Return 28.68*** 21.28* 23.81 42.26** 

 

(2.655) (1.875) (1.544) (2.270) 

Non-State Return 35.06** 1.300 45.63*** 64.44*** 

 

(2.557) (0.109) (2.668) (3.002) 

State Residual Return Sq. 1.128 -4.763 -8.753 16.97** 

 

(0.220) (-0.967) (-1.245) (2.105) 

Non-State Return Sq. 5.518 1.177 3.225 13.92* 

 

(1.038) (0.254) (0.482) (1.721) 

Moon Fraction 70.55* 31.98 30.71 152.9** 

 

(1.690) (0.845) (0.583) (2.367) 

SAD -964.1** -448.5 -1,346*** -1,021 

 

(-2.393) (-1.406) (-2.884) (-1.639) 

Temperature 13.12*** 10.42*** 15.04*** 13.66*** 

 

(39.31) (32.62) (34.77) (25.67) 

Precipitation -2.284*** -1.507*** -2.542*** -2.339*** 

 

(-5.945) (-3.961) (-4.862) (-3.743) 

Snowfall -23.03*** -17.36*** -31.85*** -38.37*** 

 

(-8.218) (-7.290) (-8.462) (-6.797) 

Snow Depth -3.455*** -3.388*** -8.374*** -8.081*** 

 

(-9.550) (-10.40) (-14.56) (-9.789) 

Wind -17.55*** -14.56*** -21.03*** -19.76*** 

 

(-15.92) (-13.60) (-14.06) (-10.43) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.474 0.452 0.459 0.450 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 
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Panel B: All Property Crimes by Income 

Incident 

All 
Property 

Crime 

All 
Property 

Crime 

All 
Property 

Crime 

All 
Property 

Crime 

Income Level ALL HIGH MED LOW 

State Residual Return 14.30** 8.961 15.78* 19.05 

 

(2.242) (1.142) (1.647) (1.596) 

Non-State Return 13.73* 3.973 20.08* 19.56 

 

(1.673) (0.505) (1.855) (1.412) 

State Residual Return Sq. 1.461 -1.412 -1.359 7.109 

 

(0.509) (-0.412) (-0.312) (1.412) 

Non-State Return Sq. 6.607** 2.719 14.33*** 3.915 

 

(2.057) (0.890) (3.245) (0.710) 

          

Observations 3,728,566 1,313,862 1,216,699 1,195,425 

R-squared 0.307 0.287 0.294 0.294 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

Panel C: All Violent Crime by Income 

Incident 

All 
Violent 
Crime 

All 
Violent 
Crime 

All 
Violent 
Crime 

All 
Violent 
Crime 

Income Level ALL HIGH MED LOW 

State Residual Return 6.123 2.744 4.396 11.66 

 

(1.499) (0.593) (0.704) (1.437) 

Non-State Return 0.0986 -9.787** -5.785 16.98** 

 

(0.0222) (-2.080) (-0.926) (2.020) 

State Residual Return Sq. 1.718 1.079 -0.870 5.398 

 

(0.920) (0.550) (-0.324) (1.405) 

Non-State Return Sq. -0.328 1.723 -4.616* 1.966 

 

(-0.180) (0.863) (-1.799) (0.507) 

          

Observations 3,727,519 1,313,426 1,216,364 1,195,151 

R-squared 0.260 0.234 0.260 0.228 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 
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Panel D: All Assaults by Income 

Incident 
All 

Assaults 
All 

Assaults 
All 

Assaults 
All 

Assaults 

Income Level ALL HIGH MED LOW 

State Residual Return 4.534 2.460 3.156 8.209 

 

(1.183) (0.565) (0.539) (1.059) 

Non-State Return -1.142 -12.08*** -4.221 13.99* 

 

(-0.286) (-2.714) (-0.731) (1.792) 

State Residual Return Sq. 1.045 0.836 -1.682 4.408 

 

(0.625) (0.446) (-0.686) (1.240) 

Non-State Return Sq. -0.633 1.328 -4.472* 1.256 

 

(-0.389) (0.667) (-1.860) (0.342) 

          

Observations 3,726,934 1,313,282 1,216,169 1,194,907 

R-squared 0.247 0.223 0.246 0.217 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

Panel E: All Fraud by Income 

Incident All Fraud All Fraud All Fraud All Fraud 

Income Level ALL HIGH MED LOW 

State Residual Return 0.237 -0.0703 -0.220 1.260 

 

(0.143) (-0.0352) (-0.0742) (0.400) 

Non-State Return 4.783** 1.860 6.611** 6.054* 

 

(2.452) (0.893) (2.085) (1.802) 

State Residual Return Sq. 0.0289 0.396 -2.007* 1.711 

 

(0.0416) (0.455) (-1.694) (1.321) 

Non-State Return Sq. 1.466* -0.378 0.281 4.766*** 

 

(1.939) (-0.485) (0.241) (3.470) 

          

Observations 3,645,825 1,290,978 1,188,586 1,163,753 

R-squared 0.054 0.057 0.052 0.055 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

  



 

60 
 

Table 1.9  State Returns and Crime Rates with Daily Fixed Effects 

Regression of daily crime rates on daily state residual returns and non-state returns from 1991-2012 including fixed 
effects for agency location and time.  High income is defined as the top tercile of income for all agency locations, 
while low income is defined as the bottom tercile.  All other variables are as defined in Table 1.8.  Parentheses 
contain t-statistics with heteroskedasticity robust standard errors clustered by time.  ***, **, and * indicate 
significance at the 1%, 5%, and 10% significance levels respectively. 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

State Residual Return 36.18** 32.64** 22.86 47.56** 

 

(2.526) (2.009) (1.087) (1.967) 

Non-State Return -27.11 10.06 -1,157 1,088 

 

(-0.0445) (0.0154) (-1.136) (0.874) 

State Residual Return Sq. -3.292 -5.746 -14.10* 8.446 

 

(-0.633) (-1.100) (-1.853) (0.921) 

Non-State Return Sq. -101.4 7.324 -120.1 -217.0 

 

(-0.581) (0.0417) (-0.366) (-0.627) 

Temperature 13.43*** 11.68*** 16.01*** 12.90*** 

 

(30.46) (25.44) (24.94) (17.61) 

Precipitation -2.276*** -1.209** -2.376*** -2.670*** 

 

(-5.637) (-2.457) (-4.036) (-4.222) 

Snowfall -20.98*** -15.39*** -31.31*** -36.05*** 

 

(-6.973) (-5.477) (-7.378) (-5.820) 

Snow Depth -2.161*** -2.309*** -7.194*** -6.788*** 

 

(-5.537) (-5.956) (-11.65) (-7.855) 

Wind -21.06*** -19.01*** -27.36*** -22.90*** 

 

(-17.40) (-14.26) (-15.26) (-10.68) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.478 0.457 0.464 0.456 

Daily FE YES YES YES YES 

Location FE YES YES YES YES 
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Table 1.10  Market Returns and Crime Rates with VIX 

Regression of daily crime rates on daily market returns and changes in the VIX by income from 1991-2012.  High 
income is defined as the top tercile of income for all agency locations, while low income is defined as the bottom 
tercile.  Market returns are divided by its trailing 252-day standard deviation.  Crime rates are measured as the 
number of incidents per 100 million people.  All Incidents include all of the offenses listed in Table 1.3.  Additional 
control variables are defined in Table 1.6.  Parentheses contain t-statistics with heteroskedasticity robust standard 
errors clustered by time.  ***, **, and * indicate significance at the 1%, 5%, and 10% significance levels 
respectively. 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

Market Return 59.75*** 5.425 84.95*** 97.55*** 

 

(2.702) (0.282) (3.090) (2.765) 

Market Return Sq. 4.442 0.656 1.059 13.25* 

 

(0.851) (0.142) (0.162) (1.651) 

 ΔVIX 19.41 3.110 31.59** 25.73 

 

(1.468) (0.278) (1.979) (1.189) 

          

Observations 3,726,178 1,313,013 1,215,895 1,194,690 

R-squared 0.474 0.452 0.459 0.450 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 
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Table 1.11  SUE and Crime Rates 

Regression of daily crime rates on daily standardized unexpected earnings (SUE) by income from 1991-2012.  At 
the firm level, SUE is defined as the difference between reported quarterly earnings and the median of all analyst 
earnings estimates made in the 90 days prior to the report date from IBES, scaled by the quarter end price.   An 
aggregate market weighted SUE is calculated for all firms that report on a given day.  To be included in the sample, 
at least ten firms must report on that date.  High income is defined as the top tercile of income for all agency 
locations, while low income is defined as the bottom tercile.  Market returns are divided by its trailing 252-day 
standard deviation.  Crime rates are measured as the number of incidents per 100 million people.  All Incidents 
include all of the offenses listed in Table 1.3.  Additional control variables are defined in Table 1.6.  Parentheses 
contain t-statistics with heteroskedasticity robust standard errors clustered by time.  ***, **, and * indicate 
significance at the 1%, 5%, and 10% significance levels respectively. 
 
Panel A: Relationship with SUE only 

Incident All Incidents All Incidents All Incidents All Incidents 

Income Level ALL HIGH MED LOW 

Aggregate SUE 4.670* 3.100* -0.706 11.39*** 

 

(1.653) (1.868) (-0.137) (3.397) 

          

Observations 2,543,096 896,378 830,756 814,269 

R-squared 0.471 0.453 0.456 0.446 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

Panel B: Relationship with market returns controlling for SUE 

Incident All Incidents All Incidents All Incidents All Incidents 

Income Level ALL HIGH MED LOW 

Market Return 39.64*** 13.87 41.86** 70.51*** 

 

(2.580) (1.015) (2.135) (2.879) 

Market Return Sq. 2.365 -0.728 2.009 6.986 

 

(0.401) (-0.143) (0.263) (0.736) 

Aggregate SUE 4.135 2.891* -1.283 10.48*** 

 

(1.501) (1.742) (-0.253) (3.214) 

          

Observations 2,543,096 896,378 830,756 814,269 

R-squared 0.471 0.453 0.456 0.446 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 
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Table 1.12  State Return Falsification Test 

Regression of daily crime rates on daily distant-state residual returns and non-distant-state returns by income from 
1991-2012.  The distant-state residual return is defined as the residual from a regression of distant-state returns 
on non-distant-state returns and represents the component of returns specific to the distant-state.  Distant-state 
returns are market weighted returns of firms in states that are at least 500 miles away from the police agency’s 
state.  Non-distant-state returns are market weighted returns for firms outside of the distant-state.  The distant-
state residual and non-distant-state return are divided by their 252-day trailing standard deviation.  Crime rates 
are measured as the number of incidents per 100 million people.  All Incidents include all of the offenses listed in 
Table 1.3.  High income is defined as the top tercile of income for all agency locations, while low income is defined 
as the bottom tercile.  Controls are defined in Table 1.6 and included in all specifications.  Parentheses contain t-
statistics with heteroskedasticity robust standard errors clustered by time.  ***, **, and * indicate significance at 
the 1%, 5%, and 10% significance levels respectively. 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

Distant-State Residual Return 8.041 -0.579 11.62 10.48 

 

(0.767) (-0.0524) (0.777) (0.583) 

Non-Distant-State Return 36.21*** 1.698 45.75*** 67.26*** 

 

(2.643) (0.142) (2.676) (3.133) 

Distant-State Residual Return Sq. -6.261 0.220 -8.730 -7.161 

 

(-1.156) (0.0413) (-1.153) (-0.774) 

Non-Distant-State Return Sq. 5.939 0.658 3.403 15.25* 

 

(1.110) (0.141) (0.506) (1.868) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.474 0.452 0.459 0.450 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 
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CHAPTER 2 

Does Crime Pay?  

Asset Pricing with Revealed Utility of Heterogeneous Consumers 

 

2.1 Abstract 

I propose violent crime growth as a measure of revealed marginal utility growth of 

heterogeneous consumers in incomplete markets.  Consumer heterogeneity is measured using 

the cross-sectional average and cross-sectional variance of crime growth exploiting a monthly 

panel of reported crime incidents from over 10,000 law enforcement agencies across the 

United States from 1975-2012.  Consistent with heterogeneous consumer models such as 

Mankiw (1986), I find that the cross-sectional average and variance of violent crime growth can 

explain the cross-section of stock returns.  Specifically, investors pay a premium for assets that 

have higher betas to the violent crime growth moments. 
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2.2 Introduction  

In many asset pricing models, changes in the representative agent’s marginal utility 

price all assets.  However, these models rely on a number of assumptions and imperfect data.  

First, the existence of a representative agent implicitly assumes individual consumers have 

perfect insurance against idiosyncratic consumption risk so that they can equalize their 

marginal rates of substitution state by state.  If consumers are unable to protect themselves 

against this risk, then measures of consumer heterogeneity matter for the estimation of the 

stochastic discount factor (SDF).16  Second, measuring changes in marginal utility requires an 

assumed utility specification, but it remains unclear which specification of utility is 

appropriate.17  Finally, utility is typically measured as some function of consumption, but it is 

well known that the key empirical input to testing consumption-based models, NIPA 

consumption expenditure, is poorly measured due to imputation, interpolation, and 

aggregation problems (Breeden, Gibbons, and Litzenberger, 1989; Savov, 2011).18   

One potential solution that avoids an assumed specification of utility for the 

representative agent and poorly measured consumption is to use an estimate of marginal utility 

that directly reflects the psychological states of consumers.  In this paper, I propose violent 

                                                      
16

 An exception includes when marginal utility is linear (utility is quadratic), where a representative consumer 
formulation can still exist without full insurance (Hansen, 1987). 
17

 An incomplete list includes standard power utility (Hansen and Singleton, 1983), habit formation (Abel, 1990; 
Campbell and Cochrane, 1999), leisure (Dittmar, Palomino, and Wang, 2014) and prospect theory (Barberis, Huang, 
and Santos, 2001). 
18

 Survey based household level consumption data also has its difficulties.  Koijen, Van Nieuwerburgh, and 
Vestman (2013) compare high-quality tax registry-based consumption to survey based consumption for Swedish 
households and find large discrepancies.  Attanasio, Battistin, and Leicester (2004) argue that the quality of 
Consumer Expenditure Survey (CEX) consumption relative to NIPA consumption has deteriorated over time, and 
express caution in using higher distributional moments of the CEX data.  Meyer, Mok, and Sullivan (2015) report 
that many household surveys, including the CEX, have exhibited increased non-response rates, increased item 
imputation, and increased measurement error over time and suggest that respondents have become less 
cooperative due to being “over-surveyed”, concerns about privacy, and time pressure. 
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crime growth as a new measure of revealed marginal utility growth for heterogeneous 

consumers in incomplete markets.  High marginal utility states are assumed to be so painful 

that individual consumers lose control and behave in violent ways that involve law 

enforcement.  By using a direct measure of marginal utility growth, I abstract away from what 

specification utility should take, and address a more general question in support of 

consumption-based asset pricing models:  does the marginal utility growth of heterogeneous 

consumers matter for asset pricing?   

This paper tests if stocks can be priced using the marginal utility (crime) growth of 

heterogeneous consumers in incomplete markets.  The way I measure heterogeneity is by 

exploiting a second order Taylor expansion of my proxy for marginal utility growth and model 

the SDF as a function of both the cross-sectional average and cross-sectional variance of crime 

growth using a panel of crime data for almost every city and county in the US.  Consistent with 

heterogeneous consumer models such as Mankiw (1986), I find that both the cross-sectional 

average and variance of violent crime growth can help explain the cross-section of stock 

returns.  The significance of the cross-sectional variance of violent crime growth suggests that 

the representative agent framework may be too restrictive, and that measures of heterogeneity 

can be helpful for asset pricing.  Both cross-sectional moments carry negative prices of risk 

when using both portfolios or individual stocks as test-assets in Fama and MacBeth (1973) 

regressions.  I also show using time-series and cross-sectional tests that the results hold when 

using crime mimicking portfolios, which mitigates measurement error in using crime growth as 

a proxy for marginal utility growth and allows for asset pricing tests over a longer time period.  

Furthermore, the significance of the crime factors is verified using the generalized method of 
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moments (GMM).  In robustness tests I also show that the portfolio cross-sectional tests hold 

for crime growth in high-income locations for those individuals most likely to hold stocks, are 

not affected by weather or location specific time-invariant factors, and are robust to other 

proposed measures of heterogeneity and marginal utility.  The results suggest that investors 

pay a premium for assets that have higher betas to the average and variance of violent crime 

growth.  The negative prices of risk are expected because increases in the average and variance 

of violent crime growth are associated with bad states of the world, and assets that pay off in 

bad states provide insurance.   

Interpreting violent crime as a measure of revealed utility has precedent.   A similar 

assumption is made by Card and Dahl (2011) who posit that intimate partner violence (IPV) is a 

function of the utility of NFL game outcomes, and finds that local team losses are associated 

with higher rates of violence.  Similarly, if poor stock market performance leads to increases in 

marginal utility (declines in utility) for investors, these individuals may act out in ways that lead 

to law enforcement involvement.  The link between stock returns and utility is also made by 

Engelberg and Parsons (2014).  They argue that hospital admissions are also a form of revealed 

utility, and show that declines in the stock market are associated with an increase in 

hospitalizations.  Both findings suggest that when utility is low (marginal utility is high), these 

individuals may suffer from psychological or physiological distress.  Accordingly, monthly 

changes in crime rates suggest a link with changes in marginal utility that can potentially price 

the cross section of stock returns. 

Utility has alternatively been directly measured using Subjective Well Being (SWB) 

questions such as if the individual agrees with the statement, “Much of the time during the past 
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week I was happy.”  It is well documented that answers to these questions can be sensitive to 

wording, framing, or question order among other factors (Bertrand and Mullainathan, 2001).  

Additionally, surveys are typically conducted at low frequencies and with a limited time 

dimension which hampers their usage in asset pricing.   Crime data provides an alternative 

measure of utility with several advantages over surveys.  First, crime can be considered a 

revealed response made by individuals.  Revealed preferences have long been considered 

preferable in studies of consumer choice.  Second, crime data is standardized across regions 

and time.  This enhances the comparability of utility across individuals that could be biased if 

self-reported.  Third, coverage of the crime data is extensive and encompasses over 99% of the 

US population in recent periods.  Finally, the long time period and monthly frequency of the 

crime data provides us with a continuously updated pulse of individuals’ utility. 

One class of asset pricing models that have been proposed in explaining the cross-

section of stock returns are heterogeneous consumer models with incomplete consumption 

insurance.19  In these models, consumers are unable to self-insure against background risks 

(e.g., labor income shocks) and realized consumption growth rates can differ across 

individuals.20  This is in contrast to representative agent models which implicitly assume that 

consumers are able to equalize their marginal rates of substitution state by state.  Any 

heterogeneity of consumption growth suggests that asset prices depend not only on average 

                                                      
19

 An incomplete list includes Mankiw (1986), Telmer (1993), Heaton and Lucas (1996), Constantinides and Duffie 
(1996), Storesletten, Telmer, and Yaron (2007), Brav, Constantinides, and Geczy (2002), Cogley (2002), Jacobs and 
Wang (2004), and Constantinides and Ghosh (2014). 
20

 A potential reason why consumers cannot perfectly insure against income shocks is due to private information 
(Telmer, 1993).  The ensuing moral hazard problem results in the inability to write incentive compatible contracts 
based on idiosyncratic outcomes. 
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consumption growth, but also on the higher cross-sectional moments of individual consumers’ 

consumption growth. 

Each moment of consumption growth carries a price of risk that can differ in sign.  

Intuitively, assets that have higher betas to average consumption growth should be associated 

with higher expected returns because these assets payoff in good times (low marginal utility 

states), and have poor performance in bad times (high marginal utility states).  Thus, investors 

set a positive price of risk on the beta for average consumption growth.  Assets that have higher 

betas to the cross-sectional variance of consumption growth should be associated with lower 

expected returns because a higher cross-sectional variance indicates a larger probability of a 

decrease in consumption growth.21  Since assets with larger betas to the cross-sectional 

variance of consumption growth payoff in bad times, these assets act as insurance.  As such, 

investors set a negative price of risk on the beta for the variance of consumption growth.  If 

increases in crime correspond with increases in marginal utility, then assets with higher betas to 

the cross-sectional average and variance of crime growth pay off in bad states and should be 

associated with lower returns, and thus negative prices of risk. 

Heterogeneous consumer models with incomplete consumption insurance have had 

mixed success.  In a calibrated economy in which consumers face uninsurable income risk, 

Telmer (1993) and Heaton and Lucas (1996) find that consumers are able to come close to 

complete risk sharing, and are unable to generate a large enough risk premia for most realistic 

parameterizations of the economy. Storesletten, Telmer, and Yaron (2007) are able to generate 

                                                      
21

 Although a higher cross-sectional variance also suggests a larger probability of a positive shock to consumption 
growth, the curvature of the utility function implies that the pain from any decrease in consumption will outweigh 
any elation from an equivalent increase in consumption. 
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a larger risk premia under the assumption that idiosyncratic shocks are persistent.  Other 

studies have investigated stochastic discount factors (SDFs) that hold even when markets are 

incomplete, through the use of Taylor series expansions of the SDF that exploit higher cross-

sectional consumption growth moments.    A difficulty in estimating these models is that they 

require disaggregated household-level data.  Unfortunately, the household-level data that is 

available to researchers typically has a short time dimension and a small cross-section, is 

infrequently measured, suffers from significant measurement error, and has been argued to 

exhibit deteriorating quality (Meyer, Mok, and Sullivan, 2015).  At least partly due to these 

issues, there has been little consensus in the literature on the importance of heterogeneous 

consumers.  Using a panel of individual consumption growth from the Consumer Expenditure 

Survey (CEX), Brav, Constantinides, and Geczy (2002) find that a non-linear SDF that depends on 

the cross-sectional average, variance, and skewness of consumption growth helps explain the 

value-weighted equity premium at low levels of risk aversion, but models that depend on just 

the cross-sectional average or the cross-sectional average and variance do not explain the 

equity premium.  Using a similar setup, but on log consumption growth, Cogley (2002) finds 

that a non-linear SDF that depends on the cross sectional average, variance, and skewness 

cannot help explain the equity premium.  Conversely using a similar subset of the CEX data, 

Jacobs and Wang (2004) find that an SDF that is linear in both the cross-sectional average and 

variance of consumption growth can explain the cross-section of stock and bond returns, but 

only if the presence of measurement error is addressed by calculating consumption growth on 

synthetic cohorts of consumers. 
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While the literature relating economics and crime is vast, the literature relating finance 

and crime is relatively unexplored.  The finance literature has typically examined effects from 

corporate crimes such as financial misrepresentation on managerial turnover (Karpoff, Lee, and 

Martin, 2008), bribery on firm value (Zeume, 2014), and insider trading (Acharya and Johnson, 

2010).  The literature linking finance and non-corporate crimes such as violent or property 

crimes is particularly sparse.  Garmaise and Moskowitz (2006) find evidence of spillover effects 

on crime from changes in credit conditions.     

The economics and criminology literature suggests that crime is a plausible measure of 

marginal utility because crime increases in bad economic states.  Exploiting a panel of annual 

state GDP growth, Arvanites and Defina (2006) find that property crime has a negative 

relationship with state GDP growth.  Rosenfeld and Fornango (2007) and Rosenfeld (2009) find 

that property crime and homicide exhibit a negative relationship with changes in the regional 

components of the University of Michigan Consumer Sentiment Index.   The literature generally 

supports a positive relationship between unemployment and crime (Freeman, 1999), while low 

legal wage opportunities have also been associated with increased crime (Gould, Weinberg, and 

Mustard, 2002).  Fajnzylber, Ledeman, and Loayza (2002) find that violent crime increases with 

income inequality. 

The psychology literature suggests that individuals that are depressed have an increased 

propensity of violent behavior (Oakley, Hynes, and Clark, 2009).  Fazel, et al. (2015) match 

approximately 50,000 Swedish individuals with outpatient diagnoses of depression to 900,000 

individuals in the general population and find that depressed individuals were three times as 

likely to commit a violent crime compared to the general population, and twice as likely 
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compared to non-depressed siblings.  Depression, anxiety, and chronic stress have been linked 

to low serotonin levels, while low serotonin levels have also been linked to increased violent 

behavior in mice, primates, and humans (Krakowski, 2003).  Seo, Patrick, and Kennealy (2008) 

suggest that low serotonin levels can also reduce control over the dopamine system, which can 

compound impulsive and aggressive behavior towards the self and others.  Depression has 

often been used as a proxy for utility in the economics literature (e.g., Luttmer, 2005), while 

neurotransmitters such as dopamine and serotonin have been linked to utility in the 

neuroeconomics literature (Bossaerts, 2009).  This suggests a connection between an 

individual’s utility and violent crime. 

 

 

2.3 Economic Model of Crime 

2.3.1 Crime as Marginal Utility 

The key assumption is that violent crime is a behavioral response that reflects 

consumers’ marginal utility.  The notion that changes in marginal utility drive asset returns is 

standard in the literature, but has little empirical evidence with direct measures of utility.  The 

assertion that crime is a behavioral response which reflects losses in utility is relatively novel in 

the finance literature, but has precedent.  Card and Dahl (2011) posit that the gain-loss utility of 

NFL game outcomes affects the propensity of intimate partner violence.  Huck (2016) finds that 

increases in the stock market are associated with decreases in violent crime in high income 

locations and increases in violent crime in low income locations, and attributes this to utility 
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over relative wealth.  This study builds on Huck (2016) on the presumption that if crime reflects 

high levels of marginal utility for stock holders, then changes in crime reflect changes in 

marginal utility which can price the cross-section of stock returns. 

The channel by which violent behavior is typically modeled is through a visceral factor 

triggering a loss of control (Loewenstein, 2000).  For example, in high marginal utility states an 

individual may experience increased visceral factors such as anger, anxiety, or hunger.  These 

heightened visceral factors may trigger an individual to lose control and induce a fight.  An 

alternative channel is the economic model of crime where an individual optimally chooses 

violent behavior based on the expected utility of that act (Becker, 1968).  In this framework, the 

utility gained from the morbid pleasure of committing a violent act outweighs any costs of 

committing that act in high marginal utility states.  Although the two models imply similar links 

between violent crime and marginal utility, the loss of control model is preferred as it does not 

rely on psychopathic behavior inherent in the economic model of crime.    Modeling the link 

between violent crime and marginal utility explicitly, I posit that the crime rate, 𝑧𝑖,𝑡, for city 𝑖 in 

month 𝑡 is a function of marginal utility, 𝑢′(𝑐𝑖,𝑡), with multiplicative error 𝜖𝑖,𝑡 > 0: 

 
𝑧𝑖,𝑡 = 𝜙 (𝑢′(𝑐𝑖,𝑡))

1/𝜃

𝜖𝑖,𝑡. (2.1) 

Because I am agnostic to the specification of marginal utility, 𝑐𝑖,𝑡 can be thought of as any driver 

of marginal utility such as consumption, leisure, or wealth.  Solving for marginal utility as a 

function of crime yields: 

 
𝑢′(𝑐𝑖,𝑡) = (

1

𝜙
𝑧𝑖,𝑡)

𝜃

𝜖𝑖,𝑡
−𝜃. (2.2) 
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2.3.2 The Economy and Equilibrium 

Following Mankiw (1986) and Brav, Constantinides, and Geczy (2002), I consider a set of 

households, 𝑖 = 1,… , 𝐼, that participate in the capital markets.  The households trade a set of 

securities, 𝑛 = 1,… ,𝑁, with total return 𝑅𝑛,𝑡 between dates 𝑡 − 1 and 𝑡.  Each household 𝑖 

maximizes expected lifetime utility 

 
𝐸 [∑𝛿𝑡𝑢(𝑐𝑖,𝑡)

∞ 

𝑡=0

], (2.3) 

where 𝛿 is the subjective discount factor.  In equilibrium, a set of 𝐼 × 𝑁 Euler equations are 

obtained between dates 𝑡 − 1 and 𝑡: 

 
𝐸 [𝛿

𝑢′(𝑐𝑖,𝑡)

𝑢′(𝑐𝑖,𝑡−1)
𝑅𝑛,𝑡] = 1. 

(2.4) 

Under the assumption that crime is revealed marginal utility as in (2.1), (2.2) can be substituted 

into (2.4) to yield the Euler equations in terms of crime: 

 
𝐸 [𝛿 (

𝑧𝑖,𝑡

𝑧𝑖,𝑡−1
)

𝜃

(
𝜖𝑖,𝑡

𝜖𝑖,𝑡−1
)

−𝜃

𝑅𝑛,𝑡] = 1. (2.5) 

Letting 𝑔𝑖,𝑡 = 𝑧𝑖,𝑡/𝑧𝑖,𝑡−1 and 𝜂𝑖,𝑡 = 𝜖𝑖,𝑡/𝜖𝑖,𝑡−1, and using the definition for covariance, (2.5) can 

be expanded as: 

 𝐸[𝛿𝑔𝑖,𝑡
𝜃 𝑅𝑛,𝑡]𝐸[𝜂𝑖,𝑡

−𝜃] + 𝑐𝑜𝑣(𝛿𝑔𝑖,𝑡
𝜃 𝑅𝑛,𝑡, 𝜂𝑖,𝑡

−𝜃) = 1. (2.6) 

The covariance term can be further expanded using the asymptotic approximation for the 

covariance of products:22 

 𝐸[𝛿𝑔𝑖,𝑡
𝜃 𝑅𝑛,𝑡]𝐸[𝜂𝑖,𝑡

−𝜃] + 𝐸[𝛿𝑔𝑖,𝑡
𝜃 ]𝑐𝑜𝑣(𝑅𝑛,𝑡, 𝜂𝑖,𝑡

−𝜃) + (2.7) 

                                                      
22

 Under multivariate normality, the definition used for the covariance of products in (2.7) is exact (Bohrnstedt and 
Goldberger, 1969). 
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𝐸[𝑅𝑛,𝑡]𝑐𝑜𝑣(𝛿𝑔𝑖,𝑡
𝜃 , 𝜂𝑖,𝑡

−𝜃) = 1. 

Under the assumption that the error terms are independent of returns, and defining 𝐸[𝜂𝑖,𝑡
−𝜃] 

and  𝑐𝑜𝑣(𝛿𝑔𝑖,𝑡
𝜃 , 𝜂𝑖,𝑡

−𝜃) as the constants Η and 𝜌 respectively, (2.7) can be re-written as: 

 Η𝐸[𝛿𝑔𝑖,𝑡
𝜃 𝑅𝑡 ] + 𝜌𝐸[𝑅𝑛,𝑡] = 1. (2.8) 

 

2.3.3 Stochastic Discount Factor 

From the first-order condition of the consumer’s maximization problem, the Euler 

equation holds for each household as does any weighted sum across households.  I investigate 

the equal weighted sum of households’ Euler equations, defining the SDF as: 

 
𝑀𝑡 =

1

𝐼
∑𝛿𝑔𝑖,𝑡

𝜃

𝐼

𝑖=1

. (2.9) 

Equation (2.9) can be expanded using a Taylor series up to quadratic terms around a constant 𝜔 

to obtain the SDF: 

 𝑀𝑡 = 𝛿𝜔𝜃 + 𝛿𝜃𝜔𝜃−1(𝑔̅𝑡 − 𝜔)

+
1

2
𝛿𝜃(𝜃 − 1)𝜔𝜃−2[𝑣̅𝑡 + (𝑔̅𝑡 − 𝜔)2], 

(2.10) 

where 𝑔̅𝑡 = 𝐼−1 ∑ 𝑔𝑖,𝑡𝑖  and 𝑣̅𝑡 = 𝐼−1 ∑ (𝑔𝑖,𝑡 − 𝑔̅𝑡)
2

𝑖 .  Thus, the SDF can be written in terms of 

the cross-sectional mean and variance of crime growth. 

Next, solving (2.8) in terms of expected returns yields: 

 
𝐸[𝑅𝑛,𝑡] =

1

Η𝐸[𝑀𝑡] + 𝜌
(1 − Η𝑐𝑜𝑣(𝑀𝑡, 𝑅𝑛,𝑡)). (2.11) 

Solving for 𝐸[𝑀𝑡] in terms of the risk free rate, and expressing (2.11) in terms of excess returns 

(𝑅𝑒) gives the pricing equation: 
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 𝐸[𝑅𝑛,𝑡
𝑒 ] = −Η𝑅𝑓𝑐𝑜𝑣(𝑀𝑡 , 𝑅𝑛,𝑡

𝑒 ). (2.12) 

Substituting (2.10) into (2.12) and simplifying yields the relationship: 

 𝐸[𝑅𝑛,𝑡
𝑒 ] = 𝜋𝑔𝑐𝑜𝑣(𝑔̅𝑡, 𝑅𝑛,𝑡

𝑒 ) + 𝜋𝑣𝑐𝑜𝑣(𝑣̅𝑡, 𝑅𝑛,𝑡
𝑒 ) + 𝜋𝑔2𝑐𝑜𝑣(𝑔̅𝑡

2, 𝑅𝑛,𝑡
𝑒 ) (2.13) 

where, 

 

 𝜋𝑔 = −Η𝑅𝑓𝛿𝜃(2 − 𝜃)𝜔𝜃−1 

𝜋𝑣 = −
1

2
Η𝑅𝑓𝛿𝜃(𝜃 − 1)𝜔𝜃−2 

𝜋𝑔2 = −
1

2
Η𝑅𝑓𝛿𝜃(𝜃 − 1)𝜔𝜃−2. 

 

In practice, average crime growth 𝑔̅𝑡 is highly correlated (96%) with the squared average crime 

growth 𝑔̅𝑡
2 leading to problems in estimation and confounding the interpretation of the results.  

Therefore, the squared average crime growth term will be dropped in subsequent empirical 

tests.  Appendix B.1 derives the bounds for the bias factor Η.  The derivation suggests that 

when accounting for error, the coefficients in (2.13) may be biased upwards by a factor of 1 to 

1.58, with a plausible bias of 1.14.  Although many of the subsequent empirical findings remain 

significant when accounting for this bias, it is worth noting that any proxy for an individual’s 

true unobserved marginal utility will produce a similar upward bias. 

The above derivation shows that the use of crime growth as a proxy for marginal utility 

growth can be used to support consumption based asset pricing models with heterogeneous 

consumers.  This is in contrast to ad-hoc return based factor models such as Fama and French 

(1993).  While return based factor models are extremely successful for relative pricing, they do 

not tell us where returns come from.  For example, its hard to link the HML or SMB factors to 
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marginal utility growth.  At least with crime, there is a plausible relationship between crime 

growth and marginal utility growth. 

 

2.4 Data 

Monthly crime data is from the Uniform Crime Reports (UCR) which is under the 

jurisdiction of the Federal Bureau of Investigation (FBI).23  The UCR is a voluntary system used 

by law enforcement agencies in the US for collecting and reporting data on crime.  By 2012, 

there are over 18,000 law enforcement agencies active in the UCR program covering more than 

99% of the US population.  The dataset begins in January 1975 and ends in December 2012 and 

contains monthly counts of eight major Part I crime offenses that are reported to city and 

county police agencies, and are not necessarily associated with an arrest.  The eight major 

offenses are homicide, manslaughter, aggravated assault, rape, robbery, burglary, larceny, and 

motor vehicle theft.  In this study, I focus on an aggregate of the violent crimes of homicide, 

manslaughter, and aggravated assault because they are the most serious and best measured 

offenses in the UCR data and follow most closely with the loss of control argument. 

To mitigate observation error, I only include crimes reported by city and county police 

agencies with twelve months of crime data and with populations greater than 2,000 individuals.  

I also remove outlier data with possible reporting errors.  Specifically, following a similar 

methodology that Brav, Constantinides, and Geczy (2002) use for consumption growth, I 

remove crime growth 𝑔𝑖,𝑡 and 𝑔𝑖,𝑡+1 if 𝑔𝑖,𝑡 < 0.5 and 𝑔𝑖,𝑡+1 > 2, or 𝑔𝑖,𝑡 > 2 and 𝑔𝑖,𝑡+1 < 0.5.  

                                                      
23

 I utilize the dataset distributed by the Inter-university Consortium for Political and Social Research (ICPSR) 
available here: http://www.icpsr.umich.edu/icpsrweb/content/NACJD/guides/ucr.html  

http://www.icpsr.umich.edu/icpsrweb/content/NACJD/guides/ucr.html
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Additionally, I remove 𝑔𝑖,𝑡 if 𝑔𝑖,𝑡 > 5 or 𝑔𝑖,𝑡 = 0.  After all filters, roughly 10,000 law 

enforcement agencies remain.  I use the monthly cross sectional average and variance of crime 

growth across all locations as the main factors to explain stock returns.   Because both cross-

sectional moments exhibit a strong monthly seasonal pattern, I run a regression of each series 

on twelve monthly dummies and extract the residual.  Additionally, I difference the cross-

sectional variance as it exhibits strong persistence.  I denote the residual cross-sectional 

average and differenced residual cross-sectional variance as 𝑔̃𝑡 and 𝑣̃𝑡 respectively, and simply 

refer to them as the average and variance of crime growth in the subsequent text. 

Figure 2.1 displays the time-series of the cross-sectional average and variance of crime 

growth, with associated summary statistics in Table 2.1.  As expected, both moments are 

centered around zero, while the standard deviation of the average of crime growth (2.82) is 

slightly higher than that of the variance of crime growth (2.55). 

 

2.5 Risk Premia 

2.5.1 Test Portfolios 

Many firm-specific characteristics have been proposed to guide portfolio formation of 

test-assets.  Fama and French (1992) suggest that the cross-section of returns can be 

summarized by size and book-to market, but forming test-asset portfolios using only these two 

characteristics has come under criticism by Lewellen, Nagel, and Shanken (2010) due to the 

ease of fitting a model to its strong two-factor structure.  To overcome this criticism I also 

investigate test-asset portfolios that are formed on a set of characteristics that Lewellen (2014) 
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finds to be consistently significant in Fama and MacBeth (1973) regressions.  These seven 

characteristics are book-to-market, market capitalization, past 12-month returns, asset growth, 

profitability, stock issuance, and total accruals.  I utilize the 25 size and book-to-market and 10 

momentum portfolios on Kenneth French’s website,24  and also form test-asset portfolios on 

the remaining characteristics by sorting all stocks by the characteristic, splitting the sample into 

decile portfolios, and market cap weighting the stocks within each portfolio. 

 

2.5.2 Portfolio-Level Prices of Risk 

I follow the standard approach to investigate whether risk exposures are related to 

average returns using Fama and MacBeth (1973) two-stage regressions.  In the first stage I 

regress the time series of test-asset portfolio excess returns (𝑅𝑛,𝑡
𝑒 ) on the cross-sectional 

average (𝑔̃𝑡) and variance (𝑣̃𝑡) of crime growth to estimate the betas: 

 𝑅𝑛,𝑡
𝑒 = 𝛼𝑛 + 𝛽𝑛,𝑔 𝑔̃𝑡 + 𝛽𝑛,𝑣 𝑣̃𝑡 + 𝜉𝑛,𝑡. (2.14) 

In the second stage, I run cross sectional regressions on the estimated betas from the first stage 

to estimate a time series of the prices of risk (𝛾𝑘,𝑡): 

 𝑅𝑛,𝑡
𝑒 = 𝛾0,𝑡 + 𝛾𝑔,𝑡𝛽̂𝑛,𝑔  + 𝛾𝑣,𝑡𝛽̂𝑛,𝑣 + 𝑢𝑛,𝑡. (2.15) 

The price of risk associated with each beta is calculated as 

 
𝛾𝑘 =

1

𝑇
∑𝛾𝑘,𝑡

𝑇

𝑡=1

, (2.16) 

with associated Fama and MacBeth (FM) standard error 

                                                      
24

 Thanks to Kenneth French for making this data available: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  
 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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𝑠. 𝑒. (𝛾𝑘)  =

1

𝑇2
∑(𝛾𝑘,𝑡 − 𝛾𝑘)

2
𝑇

𝑡=1

. (2.17) 

An advantage of the FM standard errors are that they are simple to estimate, and do not 

require the estimation of large covariance matrices which makes it suitable for studying large 

cross sections of individual stocks.  The FM standard errors are also robust to cross-correlation 

and heteroscedasticity, however, it does not account for the first stage estimation error and 

autocorrelation in the residuals.  Therefore, in addition to the t-stats that use FM standard 

errors (𝑡𝐹𝑀), I also report t-stats that use generalized method of moments (GMM) standard 

errors (𝑡𝐺𝑀𝑀) as advocated by Cochrane (2005).  The GMM standard errors correct for first 

stage estimation error, cross-correlation, heteroscedasticity, and autocorrelation using 12 

Newey-West lags.  The GMM standard errors are typically larger than the FM standard errors 

resulting in lower GMM t-stats.  For the portfolio level results, unless the inference of the two t-

stats differs, I will refer only to the GMM t-stats in the text. 

A good asset pricing model is generally considered to have statistically significant and 

stable prices of risk for 𝛾𝑔 and 𝛾𝑣, and small pricing errors on the test-assets.  Small pricing 

errors are indicated by a high cross-sectional adjusted 𝑅2, a small and insignificant price of risk 

on the zero-beta portfolio (𝛾0), a low mean absolute pricing error (MAPE), and a low Shanken 

𝑇2 statistic that tests if the pricing errors are jointly zero.25 

                                                      
25

The 𝑅̅𝑂𝐿𝑆
2  is defined as 1 −

𝑁−1

𝑁−𝐾−1
𝑣𝑎𝑟(𝑢̂)/𝑣𝑎𝑟(𝑅̅𝑒), where the vector of sample pricing errors is given by 

𝑢̂ =
1

𝑇
∑ 𝑢̂𝑡

𝑇
𝑡=1 , and 𝑅̅𝑒 is the vector of average excess returns.  The 𝑇2 test with the null that the pricing errors are 

jointly zero is calculated as 𝑢̂′𝑐𝑜𝑣(𝑢̂)−1𝑢̂~𝜒𝑁−𝐾−1
2  with 𝑐𝑜𝑣(𝑢̂) =

1

𝑇
(𝐼𝑁 − 𝛽(𝛽′𝛽)−1𝛽′)𝛺𝜉(𝐼𝑁 − 𝛽(𝛽′𝛽)−1𝛽′)(1 +

𝛾′𝛺𝑓
−1𝛾), and Ω𝜉  is the covariance matrix of the first stage residuals and Ω𝑓  is the covariance of the factors.  The 

MAPE is defined as 
1

𝑁
∑ |𝑢̂𝑛|𝑁

𝑛=1 . 
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Panel A of Table 2.2 presents the main results.  The first three columns show the prices 

of risk estimated using the 25 size and book-to-market portfolios, while the last three columns 

show the prices of risk estimated using the 75 size and book-to-market, momentum, asset 

growth, profitability, stock issuance, and total accrual portfolios.  Across all specifications, the 

prices of risk on both the cross-sectional average and variance of crime growth are negative and 

relatively stable.  The prices of risk are expected to be negative, because assets that have higher 

betas to the average and variance of crime growth pay off in bad states of the world, and 

therefore act as insurance.  Specifically, for the 25 size and book-to-market portfolios, the price 

of risk for the average of crime growth is -3.03 (𝑡𝐹𝑀=1.94, 𝑡𝐺𝑀𝑀=1.37), while the price of risk for 

the variance of crime growth is a significant -3.58 (𝑡𝐺𝑀𝑀=2.99).  The results are marginally 

weaker, but still significant when augmenting the 25 size and book-to-market test portfolios 

with 10 portfolios each of momentum, total accruals, asset growth, share issuance, and 

profitability (for a total of 75 test portfolios).  Specifically, the price of risk for the average of 

crime growth declines marginally to a significant -2.97 (𝑡𝐺𝑀𝑀=2.26), while the price of risk for 

the variance of crime growth declines to a significant -2.86 (𝑡𝐺𝑀𝑀=3.23). 

Comparing the pricing errors, the crime model performs reasonably well relative to the 

Fama and French (1993) three factor (FF3) model which includes the market (MKT), size (SMB), 

and value (HML) factors.  The relatively strong performance of the crime model is noteworthy 

considering that it is not a return based factor model.  Focusing on the results with only the 25 

size and book-to-market portfolios, the crime model has a reasonably high adjusted 𝑅2 of 0.46 

and a low (but still significant) price of risk on the zero-beta portfolio of 0.69.  The MAPE of the 

crime model is higher than the FF3 model but is a reasonable 0.133 vs 0.081 for the FF3 model.  
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The Shanken 𝑇2 statistic for the crime model cannot reject the null that the pricing errors are 

zero, while the FF3 model strongly rejects that the pricing errors are jointly equal to zero.   The 

seemingly good performance of the crime model according to the 𝑇2 statistic is partly due to 

the larger covariance of the pricing errors.  The performance of the models on the 75 test-asset 

portfolios is similar to that of the 25 size and book-to-market portfolios.  Panel B of Table 2.2 

reports the MAPE by each set of test assets.  The crime model has a much higher MAPE than 

the FF3 model for the momentum (0.268 vs 0.175) and total accruals (0.177 vs 0.085) test 

assets, but performs relatively well for the asset growth (0.090 vs 0.097) and profitability (0.128 

vs 0.111) test assets. 

I also report the prices of risk for the crime factors when controlling for MKT, SMB, and 

HML.  When including the FF3 factors, the prices of risk for the average of crime growth 

declines to  -2.39 (𝑡𝐹𝑀=1.96, 𝑡𝐺𝑀𝑀=1.36) for the 25 size and book-to-market test-assets, while 

the price of risk for the variance of crime growth declines to a significant -2.33 (𝑡𝐺𝑀𝑀=2.97).  

The prices of risk for the 75 test-asset portfolios also decline, but remain significant after 

controlling for the FF3 factors.  The weaker prices of risk after controlling for the FF3 factors 

indicate that the Fama and French factors may proxy for the same underlying changes in 

marginal utility that the cross-sectional moments of crime growth capture.  Furthermore, when 

including both the crime and FF3 factors, the pricing errors improve over both the stand-alone 

crime and FF3 model with a higher adjusted 𝑅2, lower MAPE, but with a price of risk on the 

zero-beta portfolio that is similar to the FF3 model.   The Shanken 𝑇2 statistic does not reject 

the null of zero pricing errors for the 25 size and book-to-market portfolios, but rejects the null 

for the 75 test asset portfolios. 
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2.5.3 Firm-Level Prices of Risk 

In the previous section, I showed that the price of risk on both the cross-sectional average and 

variance of crime growth are both negative when using various sets of test-asset portfolios.  In this 

section, I utilize individual stocks to estimate prices of risk.  The usage of firms as test assets avoids the 

criticism of easily fitting a model due to the strong factor structure in the test asset portfolios (Lewellen, 

Nagel, and Shanken, 2010).  I follow the methodology of Fama and French (1992) to estimate betas for 

each firm.  First, using all NYSE, NASDAQ, and AMEX stocks from CRSP with prices greater than $5, I 

estimate firm-level Dimson (1979) crime betas with one lag using a 60-month rolling window.  Second, I 

sort firms into 10×10 portfolios first by the variance beta and then by the average beta.  The sequential 

sorts are required over independent sorts to ensure diversified portfolios.  Third, I estimate the post-

ranking crime betas for all 100 portfolios over the entire time series and assign the post-ranking crime 

betas to the firms that belong to each portfolio.  As in Fama and French (1992), the post-ranking 

portfolio betas are preferred over the imprecise individual betas when estimating prices of risk.  Finally, 

using each firm’s return and its assigned post-ranking beta, I calculate a time series of prices of risk 

following (2.15) and estimate the average price of risk and its standard error as in (2.16) and (2.17) 

respectively. 

Table 2.3 shows that the price of risk is negative for both crime growth moments when using 

individual firms as test-assets.  For example, column 1 shows that the price of risk for average crime 

growth is a not quite significant -0.87 (𝑡𝐹𝑀=1.61) while the price of risk for the variance of crime growth 

is a significant -1.21 (𝑡𝐹𝑀=3.01).  As a comparison, column 2 shows that the average price of risk for two 

out of the three FF3 factors are insignificant, with only HML having a significantly positive price of risk of 

0.66 (𝑡𝐹𝑀=2.23).  When including the crime growth moments with the FF3 factors in column 3, the 

coefficients on the crime growth moments decline with only the variance of crime growth remaining 
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significant.  The fact that the negative price of risk generally holds with stock-level Fama and MacBeth 

regressions provides additional assurances that both moments of crime growth are priced. 

 

2.5.4 Portfolio Sorts 

An alternative procedure to show the relationship between crime and returns is to sort 

individual stocks by expected returns into portfolios and test for a significant spread between 

high and low expected return portfolios.  Within each NYSE size quintile I sort each stock by its 

expected return and place them into quintiles.  Sorting first by size ensures that a size effect is 

not biasing the results.  Expected returns are estimated using rolling 60-month crime exposures 

for each stock applied to the prices of risk estimated in the previous section.  The resulting 

quintile portfolios are equally weighted and rebalanced monthly.  

Panel A of Table 2.4 shows that the realized crime returns increase monotonically with 

expected returns.  For example, Q1 exhibits a monthly return of 1.03% while Q5 exhibits a 

return of 1.28% resulting in a long-short spread of 0.24% which is statistically different from 

zero (t=2.70).  Figure 2.2 shows that the crime long-short portfolio performs well during 

recessions, and appears to be somewhat correlated with HML.  Panel B of Table 2.4 confirms 

that the crime long-short portfolio exhibits positive correlation with HML (0.35), negative 

correlation with SMB (-0.17), and virtually no correlation with the excess market return (-0.02).  

The performance of the crime long-short portfolio also compares favorably to HML and SMB.  

The crime portfolio return is only bested by HML’s average monthly return of 0.32%, but the 

crime portfolio’s lower volatility gives it the highest monthly Sharpe ratio of 0.14.  The strong 



 

85 
 

performance of the crime long-short portfolios, and the monotonic relationship between 

expected and realized returns provides further evidence that crime exposure risk is priced. 

 

2.5.5 Crime Beta Sorted Portfolios as Test-Assets 

It was previously shown that the cross-sectional average and variance of crime growth 

can help price various anomaly portfolios and individual stocks as test-assets.  In this section, I 

generate a new set of crime test-asset portfolios sorted by individual stock’s exposure to the 

average and variance of crime growth, and examine whether the portfolios can be priced using 

the 2-factor crime and 3-factor Fama and French (FF3) models.  The advantage of using the 

crime portfolios as test-assets is that it avoids the criticism of the strong two-factor structure in 

the size and book-to-market portfolios (Lewellen, Nagel, and Shanken, 2010).  The crime test-

asset portfolios are formed following a similar procedure used to estimate stock-level prices of 

risk.  First, Dimson (1972) crime betas with one lag are estimated for each firm using a 60-

month rolling window.  Second, firms are sorted into 5×5 portfolios first by the variance beta 

and then by the average beta.  The resulting 25 portfolios are equally weighted and rebalanced 

monthly.  Table B.1 in Appendix B.3 shows that the returns are roughly decreasing in the 

average and variance of crime beta portfolios. 

Table 2.5 shows that the prices of risk on both the cross-sectional average and variance 

of crime growth are both negative and are similar in magnitude to those using traditional test-

asset portfolios.  Specifically, the first column shows that the price of risk for the average of 

crime growth is a -2.24 (𝑡𝐹𝑀=1.85, 𝑡𝐺𝑀𝑀=1.30), while the price of risk on the variance of crime 

growth is a significant -3.05 (𝑡𝐺𝑀𝑀=1.89).  The second column shows that the FF3 factors have 
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difficulty explaining the crime test-asset portfolios, with none of the factors significant at 

conventional levels.  The final column shows that after controlling for the FF3 factors, the prices 

of risk on the crime factors are attenuated and generally insignificant.  The performance of the 

crime model relative to the weak performance of the FF3 model indicates that the crime test-

asset portfolios contain sources of risk which the FF3 model has difficulty pricing. 

 

2.6 Crime Mimicking Portfolios 

To conduct additional tests, the crime factors are projected onto the space of traded 

returns to form crime mimicking portfolios (CMPs) as in Breeden, Gibbons, and Litzenberger 

(1989).  In testing the Consumption CAPM, Breeden et al. show that asset betas measured using 

consumption mimicking portfolios are proportional to the betas measured using true 

consumption.  The use of mimicking portfolios has several advantages.  First, mimicking 

portfolios can exploit a longer time series that are not constrained by the availability of the 

crime data.  This avoids concerns that the results rely on the 1975-2012 time period.  Second, 

since the crime mimicking portfolios are return-based factors, time-series alpha tests can be 

run without estimating cross-sectional prices of risk since the factor risk premium is equal to 

the sample mean of the factor return.  Finally, mimicking portfolios can mitigate any 

measurement error in the time-series betas for crime growth as a proxy for marginal utility 

growth. 

 



 

87 
 

2.6.1 Construction of Crime Mimicking Portfolios 

To construct the crime mimicking portfolios, the nontraded crime growth moments are 

projected onto the space of excess returns with the mimicking portfolio defined as the fitted 

value (excluding the constant).  Specifically, a vector of weights (𝑏𝑘) for each crime factor 𝑘 is 

estimated using the following regressions: 

 𝑓𝑘,𝑡 = 𝑎 + 𝑏𝑘
′ [𝐵𝐿, 𝐵𝑀, 𝐵𝐻, 𝑆𝐿, 𝑆𝑀, 𝑆𝐻]𝑡 + 𝜖𝑘,𝑡, (2.18) 

where 𝑓𝑘,𝑡 is the cross sectional average of crime growth (𝑔̃𝑡) or variance of crime growth (𝑣̃𝑡) 

and [𝐵𝐿, 𝐵𝑀, 𝐵𝐻, 𝑆𝐿, 𝑆𝑀, 𝑆𝐻] are the excess returns of the six Fama and French benchmark 

portfolios sorted on size (Small and Big) and book-to-market (Low, Medium, and High).  These 

portfolios are chosen to parsimoniously summarize the return space.  The crime mimicking 

portfolio for crime factor 𝑘 is given by 

 𝐶𝑀𝑃𝑘,𝑡 = 𝑏̂𝑘
′ [𝐵𝐿, 𝐵𝑀, 𝐵𝐻, 𝑆𝐿, 𝑆𝑀, 𝑆𝐻]𝑡, (2.19) 

where, 𝑏̂𝑘 are the fitted weights from (18) with 𝑏̂𝑔 = [0.17,-0.07,-0.12,-0.14, 0.04, 0.11] 

indicating the fitted weights for the average of crime growth and 𝑏̂𝑣 = [0.16, -0.17, -0.09, -0.15, 

0.18, 0.03] for the variance of crime growth.  The cross sectional average of crime growth and 

variance of crime growth mimicking portfolios have net short positions in small firms relative to 

big firms (-0.03 and -0.17 respectively), and net short positions in high book-to-market firms 

relative to low book-to-market firms (-0.04 and -0.07 respectively). 

 

2.6.2 Portfolio-Level Prices of Risk using the Crime Mimicking Portfolios 

In this section, the pricing performance of the crime mimicking portfolios is assessed 

using both cross-sectional and time-series tests over the 1975-2012 and 1952-2013 time 
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periods.  The cross-sectional tests follow the method described previously, but with the crime 

mimicking portfolios instead of the underlying crime factors.  The time-series pricing errors are 

tested using the Gibbons, Ross, and Shanken (1989) F-statistic (GRS).  The GRS statistic tests the 

null that the time-series alphas are jointly zero.  The advantage of the time-series approach is 

that it avoids freely choosing the cross-sectional price of risk, since it imposes that the factor 

risk premium is equal to the sample mean of the factor return. 

Table 2.6 illustrates the summary statistics for the crime mimicking portfolios over both 

sub-periods, while Figure 2.3 plots the cumulative returns over the full 1952-2013 period.  

Focusing on the full period results in Panel B of Table 2.6, the sample mean for both crime 

mimicking portfolios are negative.  The average monthly return for the crime mimicking 

portfolio of the cross-sectional average of crime growth (CMP Avg) is -0.063% (t=4.95) while the 

average monthly return for the mimicking portfolio of the cross-sectional variance of crime 

growth (CMP Var) is -0.11% (t=6.99).  The negative return is expected because the underlying 

crime factors (and mimicking portfolios) increase with marginal utility, and assets that pay off in 

high marginal utility states act as insurance and command negative risk premiums.  The 

mimicking portfolios also exhibit the highest absolute Sharpe ratios, with a monthly Sharpe 

ratio of -0.18 for CMP Avg and -0.26 for CMP Var.  Compared to the next largest Sharpe ratio of 

the market (0.13), the CMP Avg Sharpe ratio is 36% larger than the market in absolute terms, 

while the CMP Var Sharpe ratio is 92% larger, indicating that the crime mimicking portfolios are 

closer to the mean-variance frontier. 

The cross-sectional and time-series pricing performance is presented in Table 2.7.  

Focusing on the full 1952-2013 period results in Panel C, as expected, the prices of risk on both 
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crime moment mimicking portfolios are negative.  For example, the price of risk using the 25 

size and book-to-market test-asset portfolios is a significant -0.112 (𝑡𝐺𝑀𝑀=4.22) on the CMP Avg 

portfolio and a significant -0.143 (𝑡𝐺𝑀𝑀=5.17) on the CMP Var portfolio.  These prices of risk are 

slightly more negative than the time-series average return.  Comparing the crime mimicking 

portfolios to the Fama and French three factor model, the crime mimicking portfolios compare 

favorably.  The crime mimicking portfolios have a low, but still significant pricing error on the 

zero beta portfolio of 0.59 (𝑡𝐺𝑀𝑀=3.20), a high adjusted 𝑅2 of 0.72, and a lower MAPE of 0.064 

as compared to the FF3 models MAPE of 0.079.  However, the Shanken 𝑇2 statistic that tests 

the null that the cross-sectional pricing errors are jointly zero remain significant for both the 

crime and FF3 models, and the GRS F-statistic that tests the null that the time-series pricing 

errors (alphas) are jointly zero are also significant for both models.  Combining the crime 

mimicking portfolios with the Fama and French three factors improves performance over either 

model alone (with the exception of a slightly larger, though less significant, zero-beta price of 

risk), while the crime mimicking portfolio prices of risk are slightly smaller but still highly 

significant.  The results using the 75 test-asset portfolios are similar.  Table B.2 in Appendix B.3 

shows that the vast majority of the CMP time series betas are significant for the test-asset 

portfolios,26 while Table B.3 to Table B.5 use the CMP factors to replicate many of the previous 

results that use the underlying crime factors in Table 2.3 to Table 2.5 show similar findings. 

 

                                                      
26

 Significance of the CMP betas is gauged using wild-bootstrapped standard errors with 10,000 replications that 
account for heteroscedasticity and estimation error in both the first and second stages.  The multiplicative error 
term of the wild-bootstrap uses the asymmetric two-point distribution suggested by Mammen (1993).  All time 
periods are sampled jointly to preserve the cross-correlation of the error terms. 
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2.7 GMM/SDF Estimates 

The previous results showed that the crime factors can help explain returns using Fama 

and MacBeth regressions on portfolios and individual firms, that portfolio sorts on expected 

returns according to the crime model generate a significant spread, and that crime mimicking 

portfolios have significantly negative average returns in the time-series and significantly 

negative prices of risk in the cross-section.  In this section, the relationship between crime and 

portfolio returns is confirmed using the generalized method of moments (GMM) stochastic 

discount factor (SDF) approach.  While the cross-sectional regression approach produces 

asymptotically precise and identical estimates (after the appropriate transformation) as the 

GMM/SDF approach for linear models, they are often not identical in finite samples 

(Jagannathan and Wang, 2002).  Details of the GMM estimation can be found in Appendix B.2.   

In all GMM tests, two alternative weighting matrices are considered:  the optimal weighting 

matrix of the two-step procedure in Hansen (1982), and the inverse of the second moment 

matrix of returns as advocated by Hansen and Jagannathan (1997).  The optimal weighting 

matrix produces the most precise parameter estimates, while the Hansen and Jagannathan (HJ) 

weighting matrix produces a misspecification measure that can be used to compare competing 

models. 

The first column in Table 2.8 shows the crime model with the efficient weighting matrix.  

As expected, both cross-sectional moments of crime growth have significantly negative prices 

of risk.  The coefficient on the cross-sectional average of crime growth is a significant -0.08 

(s.e.=0.02), while the coefficient on the cross-sectional variance of crime growth is a 

significant -0.18 (s.e.=0.02).  Multiplying the GMM coefficients by the variance of the cross-
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sectional average and variance of crime growth of 7.96 and 6.53 yields an estimate for the price 

of risk of -0.63 and -1.20 respectively.  These coefficients compare favorably to the portfolio 

level prices of risk found in the Fama and MacBeth regression in column four of Table 2.2 

of -2.97 and -2.86 respectively.  The p-value of the 𝑇𝐽𝑇 test of over-identifying restrictions for 

this model and in all linear specification discussed below is 0.000 which indicates that we can 

reject the null of zero pricing errors.  The second column shows the crime model with the HJ 

weighting matrix.  The coefficients remain negative, but are somewhat smaller and less 

significant.  The coefficient on the cross-sectional average of crime growth becomes an 

insignificant -0.07 (s.e.=0.06), while the coefficient on the cross-sectional variance of crime 

growth is a significant -0.08 (s.e.=0.04).   

Columns three and four show the linear GMM/SDF estimates for the Fama and French 

three factor model (FF3) using the efficient and HJ weighting matrices respectively.  As 

expected the coefficients for the FF3 model are generally positive and significant.  The 

minimum HJ distance in column four is 0.588 which is somewhat lower than the crime model’s 

distance of 0.614.  Finally, the last two columns show parameter estimates for the combined 

crime and FF3 model.  The crime coefficients remain significantly negative when using the 

efficient weighting matrix, but decline and become insignificant with the HJ weighting matrix.   

To gauge whether the combined crime and FF3 model improves upon the standalone 

crime and FF3 models, the Newey and West D-test is used to test the null that the pricing errors 

of the restricted standalone models are equal to the pricing errors of the unrestricted 

combined model with the efficient weighting matrix.  For both the standalone crime and FF3 
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models, the null is rejected (p-value=0.000) which suggests that the combined model improves 

upon the pricing errors.  In other words, neither set of factors is subsumed by the other. 

 

2.8 Robustness 

2.8.1 High Income Locations 

Vissing-Jorgensen (2002) argues that the Euler equation holds only for households that 

possess a nonzero position in a financial asset. Using standard power utility over consumption, 

she finds significant estimates of the intertemporal elasticity of substitution (IES) for stock and 

bondholders, but finds insignificant IES estimates for non-asset holders. Previously, we saw that 

the price of risk on the crime moments were significant across all income locations.  If the 

prices of risk remain significant across high income locations, we can be assured that crime 

growth in high income locations reflects changes in marginal utility for those most likely to hold 

stocks.27  High income locations are defined as those cities and counties in the top third of 

household median income for each period.  City and household median income is from the 

1980, 1990, and 2000 decennial U.S. Census and the 2008-2012 U.S. Census’ American 

Community Survey (ACS).28  Crime data is matched to the nearest available census date.  For 

example, crime data from 1975-1984 is matched to the 1980 census, while crime data from 

2005-2012 is matched to the ACS. 

                                                      
27

 Using the National Incident Based Reporting System (NIBRS) daily crime dataset from 1991-2012, Huck (2015) 
states that the vast majority of assaults occur at home (61%) where the victim is related to or otherwise knows the 
offender (87% of home assaults).  Therefore, we can be confident that the income groupings are meaningful for 
the offender. 
28

 Census data is from the University of Minnesota Population Center’s National Historical Geographic Information 
System (NHGIS): https://www.nhgis.org/. 

https://www.nhgis.org/
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Table 2.9 shows the cross-sectional pricing results for high income locations.  The prices 

of risk remain negative and generally significant across all specifications.  For example, the price 

of risk using the 25 size and book-to-market portfolios as test-assets is -4.64 (𝑡𝐹𝑀=2.36, 

𝑡𝐺𝑀𝑀=1.37) for the cross-sectional average of crime growth and -4.07 (𝑡𝐺𝑀𝑀=2.57) for the 

cross-sectional variance of crime growth.  This is somewhat higher than the cross-sectional 

prices of risk across all income locations.  The pricing errors for the crime specification compare 

reasonably well with those of the FF3 model.  The crime model has a low pricing error on the 

zero-beta portfolio of 0.50 (𝑡𝐹𝑀=2.45, 𝑡𝐺𝑀𝑀=1.50), a reasonably high adjusted 𝑅2 of 0.36, and a 

higher MAPE of 0.13 as compared to the FF3 model of 0.08.  The 𝑇2 test statistic remains 

insignificant for the crime model and significant for the FF3 model.  The prices of risk for the 

crime moments also remain significant after controlling for the Fama and French factors with a 

price of risk of -3.51 (𝑡𝐺𝑀𝑀=1.98) for the cross-sectional average of crime growth and -2.59 

(𝑡𝐺𝑀𝑀=1.92) for the cross-sectional variance of crime growth.  The results are qualitatively 

similar on the 75 test-asset portfolios.  The strong results for high-income locations suggest that 

the crime growth moments can proxy for the changes in marginal utility of those individuals 

who are most likely to hold stocks. 

 

2.8.2 Controlling for Location Fixed-Effects and Weather 

There is extensive literature that weather affects crime. For example, Jacob, Lefgren, 

and Moretti (2007) find that crime increases with temperature. There have also been a number 

of studies that link weather to market returns. For example, Cao and Wei (2005) find low 

temperatures are associated with higher returns internationally, while Saunders (1993) and 
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Hirshleifer and Shumway (2003) find that sunshine is associated with higher stock returns.  To 

ensure that temperature is not driving the results, I orthogonalize the crime growth rate for 

each location using state-level heating and cooling degree day changes from NOAA.29  

Additionally, to ensure that unobserved location effects are not driving the results, I include 

police agency fixed effects.  As previously, the cross-sectional average and variance of the 

orthogonal changes in crime rates are deseasonalized using monthly dummies, and the cross-

sectional variance is differenced. 

Table 2.10 shows the cross-sectional pricing results for the crime growth moments 

adjusted for weather and location fixed effects.  The results are fairly consistent with the main 

results in Table 2.2.  The prices of risk are generally significantly negative across all 

specifications, with the exception of the price of risk on the adjusted cross-sectional average of 

crime growth when controlling for the Fama and French factors using the 75 test-assets.  The 

strong performance suggests that weather and time invariant location factors are not driving 

the results. 

 

2.8.3 Common Idiosyncratic Volatility 

Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2015) posit that the distribution of 

households’ consumption growth inherits the same factor structure as firms’ idiosyncratic risk 

in stock returns and cash flows because households cannot completely insulate their 

consumption from persistent shocks to their labor income.  They construct an incomplete 

                                                      
29

 I utilize the weather data from the IHS database available on WRDS.  Cooling degree days are defined as the sum 
over all days in the month of max(F-65,0), where F is the average population-weighted state temperature for that 
day in degrees Fahrenheit.  Heating degree days are defined as the sum over all days in the month of max(65-F,0). 
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markets heterogeneous agent model where shocks to the common factor in idiosyncratic 

volatility (CIV) are priced.  They argue that CIV carries a negative price of risk because an 

increase in idiosyncratic firm volatility raises the average household’s marginal utility.  Since 

assets that have higher betas to CIV pay off in bad times, they act as insurance and therefore 

command a negative price of risk. 

To investigate whether the crime factors are priced in the presence of CIV shocks, I 

construct the CIV factor as in Herskovic et al. (2015).  Each month, daily individual firm returns 

are regressed on the value-weighted market return for all CRSP firms with non-missing data 

that month.  CIV is defined as the equal-weighted average of residual variance across firms, 

where residual variance is the variance of daily market model residuals within a month for each 

firm.  CIV shocks are the factor of interest, and are monthly changes in CIV.   

Table 2.11 shows the cross-sectional pricing results using the CIV shocks factor.  The first 

column includes only the CIV factor, and shows that the price of risk on CIV is an insignificantly 

negative -0.07 (𝑡𝐺𝑀𝑀=0.97) when using the 25 size and book-to-market portfolios as test-assets.  

The insignificant price of risk is surprising, given the results of Herskovic et al. (2015).  However, 

their empirical results are over a longer time period and also includes the market factor.  The 

second column shows that the crime factors remain significantly negative in the presence of 

CIV, with prices of risk that are similar to those in the base case.  For example, the price of risk 

on the average of crime growth is -4.38 (𝑡𝐹𝑀=2.57, 𝑡𝐺𝑀𝑀=1.53), while that on the variance of 

crime growth is -2.97 (𝑡𝐺𝑀𝑀=3.12).  The third column shows a specification with the CIV and FF3 

factors.  Controlling for the FF3 factors, the price of risk on the CIV factor flips signs and 

becomes counterfactually positive and somewhat significant 0.12 (𝑡𝐹𝑀=1.84, 𝑡𝐺𝑀𝑀=1.61).  
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Finally, the fourth column shows a specification which includes the crime, CIV, and FF3 factors.  

The crime factors remain significantly negative, however, the price of risk on the CIV factor 

becomes insignificant.  The remaining columns show the pricing results using the 75 test-asset 

portfolios and are qualitatively similar to the 25 test-asset portfolios.  The strong performance 

of the crime factors suggest that crime captures changes in marginal utility that differ from 

those in CIV shocks. 

 

2.8.4 Income Mimicking Portfolios 

Next, I investigate whether the crime factors remain priced in the presence of factors 

that mimic the income growth distribution.  Income growth is often used to proxy for 

consumption growth, and are often equivalent in theoretical models (e.g., Constantinides and 

Duffie, 1996).  The highest quality source of cross-sectional income growth is from Guvenen, 

Ozkan, and Song (2014).  Guvenen et al. report a number of cross-sectional moments of annual 

income growth using a 10% sample of males aged  24-60 from the Social Security 

Administration from 1979-2011.  To match the monthly frequency and sample period of the 

crime data, I transform the income growth data using the mimicking portfolio technique.  

Specifically, I regress the median, variance, and skewness of annual income growth on annual 

returns of the six size and book-to-market portfolios.  The coefficients on each of the annual 

size and book-to market portfolios are the weights used to construct the income mimicking 

portfolios (IMPs).  The monthly IMP returns are thus the weights multiplied by the monthly size 

and book-to-market portfolio returns. 
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The expected signs for the cross-sectional moments of income growth (as a proxy for 

consumption growth) are positive for the average of income growth, negative for the variance 

of income growth, and positive for the skewness of income growth.  Skewness commands a 

positive price of risk, because more positive income shocks (or less negative shocks) reflect 

good states, and assets that pay off in good states require higher expected returns.  However, 

Table 2.12 shows that the prices of risk on the IMP factors diverge from expectations.  

Specifically, the first column shows that when using the 25 size and book-to-market portfolios 

as test assets, the price of risk on the median of income growth is an insignificantly positive 

0.013 (𝑡𝐺𝑀𝑀=1.27), on the variance of income growth is a counterfactually positive 0.001 

(𝑡𝐺𝑀𝑀=3.56), and on the skewness of income growth is a counterfactually negative -0.004 

(𝑡𝐺𝑀𝑀=2.40).  The second column shows that the coefficients on the IMP factors are slightly 

lower in the presence of the FF3 factors.  The third column shows that the crime factors remain 

similar to the base case after controlling for the IMP factors, with a price of risk of -3.54 

(𝑡𝐹𝑀=2.51, 𝑡𝐺𝑀𝑀=1.86) on the average of crime growth and -1.86 (𝑡𝐹𝑀=2.20, 𝑡𝐺𝑀𝑀=1.63) on the 

variance of crime growth.  The IMP factors remain similar to their base case.  Finally, the fourth 

column shows a specification which includes both crime factors, the three IMP factors, and FF3 

factors.  The price of risk on the average of crime growth drops to an insignificant -1.09 

(𝑡𝐺𝑀𝑀=0.70), while that on the variance of crime growth remains a significant -1.65 

(𝑡𝐺𝑀𝑀=2.42).  The remaining columns show the results with the 75 test asset portfolios and are 

qualitatively similar, with the exception of neither crime factor remaining significant when 

controlling for the three IMP and FF3 factors. 
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2.8.5 Initial Unemployment Claims 

Schmidt (2015) proposes idiosyncratic tail risk as a key driver of asset prices and 

suggests initial unemployment claims as a high frequency observable proxy for the cross-

sectional skewness of household income growth.  Although he does not show the cross-

sectional pricing implications of initial claims, he finds that the level of initial claims can help 

predict market returns at 3-month, 1-year, and 2-year horizons.  To investigate whether the 

crime factors are priced in the presence of initial claims, I construct an initial claims index as in 

Schmidt (2015).  The claims index is defined as the number of initial claims for unemployment 

insurance divided by the size of the workforce from the Bureau of Labor Statistics (BLS).  The 

claims index is also differenced because it is highly persistent.   

Table 2.13 shows the cross-sectional pricing results using the claims factor.  The first 

column shows that initial claims by itself carries an insignificantly negative price of risk of -0.02 

(𝑡𝐺𝑀𝑀=0.60) when using the 25 size and book-to-market portfolios as test assets.  A negative 

price of risk is expected because an increase in initial unemployment claims are associated with 

bad states.  The second column shows that the crime factors remain significantly negative in 

the presence of the initial claims factor, with prices of risk that are similar to those in the base 

case.  For example, the price of risk on the average of crime growth is -5.26 (𝑡𝐹𝑀=3.07, 

𝑡𝐺𝑀𝑀=1.87), while that on the variance of crime growth is -3.53 (𝑡𝐺𝑀𝑀=2.91).  The third column 

shows a specification with initial claims and the FF3 factors.  Controlling for the FF3 factors, the 

price of risk on initial claims flips signs and becomes insignificantly positive.  Finally, the fourth 

column shows a specification which includes the crime, initial claims, and FF3 factors.  The 

crime factors remain similar to the specification without the FF3 factors, however, the price of 
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risk on the claims factor is insignificantly negative.  The remaining columns show the pricing 

results using the 75 test-asset portfolios and are qualitatively similar to the 25 test-asset 

portfolios. 

 

2.8.6 Other Macroeconomic Variables 

As previously mentioned, the economics literature suggests that crime is a plausible 

measure of marginal utility because crime increases in bad economic states.  For example, 

crime is negatively associated with state GDP growth (Arvanites and Defina, 2006), negatively 

associated with the Consumer Sentiment Index (Rosenfeld and Fornango, 2007; Rosenfeld, 

2009), and positively associated with unemployment (Freeman, 1999).  It is therefore helpful to 

understand whether the crime factors are driven out by these other measures of the economy.  

We previously saw that changes in unemployment claims do not price the cross-section of stock 

returns, and in Table 2.14 we see that changes in consumption and consumer sentiment also do 

not explain stock returns.  For example, when using the 25 size and book-to-market portfolios 

as test assets, the price of risk on consumption growth is an insignificant 0.041 (𝑡𝐺𝑀𝑀=0.379), 

while the price of risk on changes in consumer sentiment is an insignificant 0.003 (𝑡𝐺𝑀𝑀=0.314).  

When the crime factors are combined with consumption, consumer sentiment, and 

unemployment claims, the crime factors remain significant, while the other economic factors 

remain generally insignificant.  Similar results are found when using the 75 test asset portfolios.  

The significance of the crime factors in the presence of the economic factors suggest that the 

crime may be a better proxy of marginal utility than the other measures of the economy. 
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2.9 Conclusion 

In this paper, I propose violent crime growth as a new measure of revealed marginal 

utility growth of heterogeneous consumers in incomplete markets.  Heterogeneity is measured 

by exploiting a second order Taylor expansion of my proxy for marginal utility growth and 

modeling the SDF as a function of both the cross-sectional average and cross-sectional variance 

of crime growth using a panel of crime data for almost every city and county in the US.  

Consistent with heterogeneous consumer models such as Mankiw (1986), I find that the cross-

sectional average and variance of violent crime growth can explain the cross-section of stock 

returns.  Both cross-sectional moments carry negative prices of risk, which suggests that 

investors pay a premium for assets that have higher betas with the average and variance of 

violent crime growth.  The negative price of risk is expected because increases in violent crime 

are associated with bad states of the world, and assets that pay off in bad states provide 

insurance.  The results are supportive of consumption-based asset pricing models that assume 

changes in marginal utility price assets, but they also suggest that the assumption of a 

representative agent may be too strong and measures of heterogeneity should be considered. 
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Figure 2.1  Average and Variance of Crime Growth 

Monthly time series of the seasonally adjusted cross-sectional average of crime growth (top panel), and 
differenced seasonally adjusted cross-sectional variance of crime growth (bottom panel).  Seasonal adjustment is 
performed by a regression of each cross-sectional moment on twelve monthly dummies and extracting the 
residual.  Cross-sectional moments are calculated for a panel of crime growth for U.S. cities and counties as 
described in the text.  Shaded areas in gray represent NBER recessions. 
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Figure 2.2  Long-Short Cumulative Returns 

Crime long-short portfolios sorted by expected returns are generated using the following procedure.  First, using all 
NYSE, NASDAQ, and AMEX stocks from CRSP with prices greater than $5, rolling 60-month crime exposures for 
each stock are estimated following (2.14).  Second, expected returns are estimated using both the estimated crime 
betas and prices of risk for the firm-level regressions in the first column of Table 2.3.  Third, within each NYSE size 
quintile each stock is sorted by its expected return and placed into quintiles, with the long side having the highest 
quintile of expected returns while the short side has the lowest quintile of expected returns.  The resulting long 
and short portfolios are equal weighted and rebalanced monthly.  For comparison, the long-short Fama and French 
(1993) HML (high minus low book to market) and SMB (small minus big) factors are also plotted.  Cumulative 
returns represent the cumulative arithmetic sum of returns.  Areas in gray represent NBER recessions. 
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Figure 2.3  Crime Mimicking Portfolio Cumulative Returns 

Cumulative returns for the cross-sectional average of crime growth mimicking portfolio (CMP Avg) and the cross-
sectional variance of crime growth mimicking portfolio (CMP Var).  The crime mimicking portfolios are constructed 
by regressing the nontraded crime growth moments (𝑔̃ and 𝑣̃) onto a set of excess return benchmark portfolios 
with the mimicking portfolio defined as the fitted value (excluding the constant).  The benchmark portfolios 
include the six Fama and French benchmark portfolios sorted on size and book-to-market.  Cumulative returns 
cover July 1952 to December 2013, and represent the cumulative arithmetic sum of returns.  Areas in gray 
represent NBER recessions. 
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Table 2.1  Summary Statistics 

Summary statistics of the seasonally adjusted cross-sectional average of crime growth (𝑔̃), and differenced 
seasonally adjusted cross-sectional variance of crime growth (𝑣̃).  Seasonal adjustment is performed by a 
regression of each cross-sectional moment on twelve monthly dummies and extracting the residual.  Cross-
sectional moments are calculated for a panel of crime growth for U.S. cities and counties as described in the text.  
Also presented are summary statistics for the Fama and French (1993) three factors (MKT, HML, and SMB).  The 
returns and crime factors are multiplied by 100 for all results.  Data is monthly from March 1975 to December 
2012. 

 

  Avg Std Q1 Med Q3 

𝑔̃ -0.018 2.820 -2.013 -0.096 1.751 

𝑣̃ -0.034 2.554 -1.560 -0.021 1.485 

MKT 0.588 4.530 -1.960 1.030 3.600 

HML 0.350 2.990 -1.200 0.335 1.780 

SMB 0.271 3.063 -1.310 0.160 2.080 
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Table 2.2  Portfolio-Level Fama MacBeth Regressions Estimates 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure 
outlined in equations (2.14) through (2.17).  Factors to explain test-asset returns include the cross-sectional 
average of crime growth (𝑔̃), the cross-sectional variance of crime growth (𝑣̃), and the Fama and French (1993) 
three factors.  Test-assets are indicated in the column header with SZ x BM indicating only 25 size and book-to 
market portfolios (SZ X BM), while ALL also includes 10 portfolios for each of the following characteristics: 12-
month price momentum (MO), total accruals (TA), asset growth (AG), share issuance (SI), and profitability (ROE).  

𝑅̅𝑂𝐿𝑆
2  denotes the OLS cross-sectional adjusted r-squared.  MAPE is the mean absolute pricing errors.  The 𝑇2 

statistic and its associated p-value tests the null that the pricing errors are jointly zero.  In brackets are t-statistics 
that use Fama and MacBeth standard errors, and in braces are t-statistics that use GMM standard errors with a 
Newey-West spectral density matrix with 12 lags.  Data is monthly from March 1975 to December 2012. 
 
Panel A:  Regression Estimates 

  (1) (2) (3) (4) (5) (6) 

  SZ X BM SZ X BM SZ X BM ALL ALL ALL 

𝛾𝑔 -3.027 
 

-2.386 -2.971 
 

-1.089 
 [1.941]  [1.963] [2.799]  [2.340] 

 {1.372}  {1.356} {2.264}  {1.997} 

𝛾𝑣 -3.582 
 

-2.330 -2.863 
 

-1.344 
 [4.867]  [3.684] [4.456]  [2.868] 

 {2.988}  {2.970} {3.230}  {2.637} 

𝛾𝑀𝐾𝑇 
 

-0.814 -0.863 
 

-1.462 -1.392 
  [2.214] [2.267]  [3.925] [3.671] 

  {2.162} {1.609}  {3.112} {2.614} 

𝛾𝑆𝑀𝐵  
 

0.194 0.247 
 

0.225 0.253 
  [1.322] [1.697]  [1.528] [1.737] 

  {1.296} {1.648}  {1.528} {1.781} 

𝛾𝐻𝑀𝐿 
 

0.380 0.341 
 

0.310 0.270 
  [2.642] [2.379]  [2.072] [1.830] 

  {2.127} {1.893}  {1.628} {1.491} 

𝛾0 0.687 1.451 1.487 0.668 2.101 2.029 
 [3.295] [4.894] [4.781] [3.487] [6.759] [6.362] 

 {2.113} {4.042} {3.116} {2.250} {4.736} {3.954} 

𝑅̅𝑂𝐿𝑆
2  0.459 0.620 0.790 0.257 0.595 0.622 

MAPE 0.133 0.081 0.068 0.160 0.113 0.109 

𝑇2 19.795 54.158 22.561 66.102 145.763 111.403 

p-value 0.596 0.000 0.257 0.674 0.000 0.001 

 

Panel B: Mean Absolute Pricing Errors (MAPE) by test assets 

Asset (1) (2) (3) (4) (5) (6) 

SZ X BM 0.133 0.081 0.068 0.154 0.100 0.083 

MO 
   

0.268 0.175 0.185 

TA 
   

0.177 0.085 0.110 

AG 
   

0.090 0.097 0.092 

SI 
   

0.150 0.131 0.120 

ROE       0.128 0.111 0.101 
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Table 2.3  Firm-Level Fama MacBeth Regressions Estimates 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
Betas for each firm are estimated following Dimson (1972) with one lag over a 60-month rolling window.  Each 
month, firms are sequentially sorted first into 10 portfolios by the variance of crime growth beta and then into an 
additional 10 portfolios by the average of crime growth beta, for a total of 100 equal weighted portfolios.  Full time 
series betas are estimated for all 100 portfolios, and assigned to the firms that belong to each portfolio.  Prices of 
risk and standard errors are calculated as in equations (2.16) and (2.17) respectively.  All NYSE, AMEX, and NASDAQ 

stocks in CRSP with prices greater than $5 are included.  𝑅̅𝐹𝑀
2  denotes the average cross-sectional adjusted r-

squared, while 𝑁 denotes the average cross-sectional number of test-assets across all T periods.  In brackets are t-
statistics that use Fama and MacBeth standard errors. 
 

  (1) (2) (3) 

𝛾𝑔  -0.874 
 

-0.359 
 [1.612]  [1.214] 

𝛾𝑣 -1.210 
 

-0.710 
 [3.008]  [2.290] 

𝛾𝑀𝐾𝑇  
 

-0.032 -0.042 
  [0.077] [0.102] 

𝛾𝑆𝑀𝐵  
 

-0.011 -0.016 
  [0.044] [0.071] 

𝛾𝐻𝑀𝐿 
 

0.658 0.552 
  [2.229] [2.016] 

𝛾0 0.812 0.629 0.685 
 [3.721] [2.056] [2.217] 

𝑅̅𝐹𝑀
2  0.003 0.009 0.010 

𝑁 2729 2729 2729 

𝑇 394 394 394 
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Table 2.4  Expected Return Portfolio Sorts 

Portfolios sorted by expected returns are generated using the following procedure.  First, using all NYSE, NASDAQ, 
and AMEX stocks from CRSP with prices greater than $5, rolling 60-month crime exposures for each stock are 
estimated following (2.14).  Second, expected returns are estimated using both the estimated crime betas and 
prices of risk for the firm-level regressions in the first column of Table 2.3.  Third, within each NYSE size quintile 
each stock is sorted by its expected return and placed into quintiles, with Q5 having the highest expected returns 
while Q1 has the lowest expected returns.  The resulting quintile portfolios are equal weighted and rebalanced 
monthly.  Panel A presents quintile returns for each portfolio, while Panel B presents returns and correlations of 
the Q5-Q1 long-short portfolio (CRIME) with the Fama and French (1993) factors.  Returns are monthly from March 
1980 to December 2012. 
 
Panel A:  Crime portfolio quintile returns 

Quintile Avg t-stat 

Q1 (Low) 1.033 3.67 

Q2 1.192 5.23 

Q3 1.239 5.55 

Q4 1.261 5.43 

Q5 (High) 1.275 4.56 

Q5-Q1 0.243 2.70 

 

Panel B: Return summary statistics and correlations 

      
Correlation 

  Avg Std Sharpe t-stat 
 

CRIME MKT HML SMB 

CRIME 0.243 1.783 0.136 2.705 
 

1.000 -0.016 0.351 -0.169 

MKT 0.574 4.592 0.125 2.481 
 

-0.016 1.000 -0.344 0.238 

HML 0.324 3.100 0.105 2.075 
 

0.351 -0.344 1.000 -0.317 

SMB 0.141 3.105 0.045 0.901 
 

-0.169 0.238 -0.317 1.000 
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Table 2.5  Crime Beta Sorted Portfolios as Test Assets 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure 
outlined in equations (2.14) through (2.17).  Factors to explain test-asset returns include the cross-sectional 
average of crime growth (𝑔̃), the cross-sectional variance of crime growth (𝑣̃), and the Fama and French (1993) 
three factors (MKT, SMB, and HML).  Test-assets include firms sorted by their crime betas.  Betas for each firm are 
estimated following Dimson (1972) with one lag over a 60-month rolling window.  Each month, firms are 
sequentially sorted first into 5 portfolios by the variance of crime growth beta and then into an additional 5 
portfolios by the average of crime growth beta, for a total of 25 equal weighted portfolios.  MAPE is the mean 
absolute pricing errors.  The 𝑇2 statistic and its associated p-value tests the null that the pricing errors are jointly 
zero.  In brackets are t-statistics that use Fama and MacBeth standard errors, and in braces are t-statistics that use 
GMM standard errors with a Newey-West spectral density matrix with 12 lags.  Returns are monthly from March 
1980 to December 2012. 

  (1) (2) (3) 

𝛾𝑔 -2.238 
 

-0.886 
 [1.851]  [1.428] 

 {1.293}  {0.950} 

𝛾𝑣 -3.052 
 

-1.868 
 [2.645]  [1.996] 

 {1.894}  {1.617} 

𝛾𝑀𝐾𝑇 
 

0.004 0.36 
  [0.006] [0.544] 

  {0.006} {0.417} 

𝛾𝑆𝑀𝐵  
 

-0.016 -0.273 
  [0.041] [0.600] 

  {0.036} {0.426} 

𝛾𝐻𝑀𝐿 
 

0.707 0.283 
  [1.619] [0.511] 

  {1.498} {0.388} 

𝛾0 0.849 0.585 0.548 
 [4.032] [1.319] [1.235] 

 {2.350} {1.436} {0.944} 

𝑅̅𝑂𝐿𝑆
2  0.325 0.454 0.531 

MAPE 0.074 0.063 0.057 

𝑇2 15.607 42.739 23.958 

p-value 0.835 0.003 0.198 
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Table 2.6  Crime Mimicking Portfolio Summary Statistics 

Monthly return summary statistics of the cross-sectional average of crime growth mimicking portfolio (CMP Avg), 
the cross-sectional variance of crime growth mimicking portfolio (CMP Var), and the Fama and French (1993) three 
factors (MKT, SMB, and HML).  The crime mimicking portfolios are constructed by regressing the nontraded crime 
growth moments (𝑔̃ and 𝑣̃) onto a set of excess return benchmark portfolios with the mimicking portfolio defined 
as the fitted value (excluding the constant).  The benchmark portfolios include the six Fama and French benchmark 
portfolios sorted on size and book-to-market.  Panel A covers March 1975 to December 2012, while Panel B covers 
July 1952 to December 2013. 
 
Panel A: March 1975 to December 2012 

      
Correlation 

  Avg Std Sharpe t-stat 
 

CMP Avg CMP Var MKT HML SMB 

CMP Avg -0.079 0.368 -0.215 4.574 
 

1.000 0.614 0.247 -0.290 0.298 

CMP Var -0.121 0.404 -0.300 6.382 
 

0.614 1.000 -0.170 -0.128 -0.387 

MKT 0.588 4.530 0.130 2.766 
 

0.247 -0.170 1.000 -0.317 0.256 

HML 0.350 2.990 0.117 2.494 
 

-0.290 -0.128 -0.317 1.000 -0.272 

SMB 0.271 3.063 0.088 1.885 
 

0.298 -0.387 0.256 -0.272 1.000 

 

 

Panel B: July 1952 to December 2013 

      
Correlation 

  Avg Std Sharpe t-stat 
 

CMP Avg CMP Var MKT HML SMB 

CMP Avg -0.063 0.346 -0.182 4.946 
 

1.000 0.560 0.206 -0.198 0.311 

CMP Var -0.105 0.408 -0.257 6.991 
 

0.560 1.000 -0.282 -0.093 -0.413 

MKT 0.583 4.339 0.134 3.650 
 

0.206 -0.282 1.000 -0.268 0.275 

HML 0.354 2.713 0.130 3.545 
 

-0.198 -0.093 -0.268 1.000 -0.211 

SMB 0.199 2.908 0.068 1.859 
 

0.311 -0.413 0.275 -0.211 1.000 
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Table 2.7  Crime Mimicking Portfolio Cross-Sectional and Time-Series Estimates 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure 
outlined in equations (2.14) through (2.17).  Factors to explain test-asset returns include the cross-sectional 
average of crime growth mimicking portfolio (CMP Avg), the cross-sectional variance of crime growth mimicking 
portfolio (CMP Var), and the Fama and French (1993) three factors (MKT, SMB, and HML) described in Table 2.5.  
Test-assets are indicated in the column header with SZ x BM indicating only 25 size and book-to market portfolios, 
while ALL also includes 10 portfolios for each of the following characteristics: 12-month price momentum (MO), 

total accruals (TA), asset growth (AG), share issuance (SI), and profitability (ROE).  𝑅̅𝑂𝐿𝑆
2  denotes the OLS cross-

sectional adjusted r-squared.  MAPE is the cross-sectional mean absolute pricing errors.  The 𝑇2 statistic and its 
associated p-value tests the null that the cross-sectional pricing errors are jointly zero.  The GRS (Gibbons, Ross, 
and Shanken, 1989) F-statistic and its associated p-value tests the null that the time-series pricing errors (alphas) 
are jointly zero.    In brackets are t-statistics that use Fama and MacBeth standard errors, and in braces are t-
statistics that use GMM standard errors with a Newey-West spectral density matrix with 12 lags.   Panel A covers 
March 1975 to December 2012, while Panel B covers July 1952 to December 2013. 
 
Panel A: March 1975 to December 2012 

  (1) (2) (3) (4) (5) (6) 

  SZ X BM SZ X BM SZ X BM ALL ALL ALL 

𝛾𝐶𝑀𝑃 𝐴𝑣𝑔 -0.108 
 

-0.082 -0.150 
 

-0.110 
 [3.829]  [3.958] [4.935]  [4.936] 

 {2.936}  {3.590} {3.983}  {4.309} 

𝛾𝐶𝑀𝑃 𝑉𝑎𝑟 -0.140 
 

-0.098 -0.188 
 

-0.108 
 [4.740]  [3.914] [5.533]  [4.723] 

 {3.653}  {3.941} {4.301}  {4.217} 

𝛾𝑀𝐾𝑇 
 

-0.814 -0.234 
 

-1.462 -0.836 
  [2.214] [0.575]  [3.925] [2.422] 

  {2.162} {0.693}  {3.112} {2.061} 

𝛾𝑆𝑀𝐵  
 

0.194 0.224 
 

0.225 0.301 
  [1.322] [1.535]  [1.528] [2.057] 

  {1.296} {1.485}  {1.528} {1.995} 

𝛾𝐻𝑀𝐿 
 

0.380 0.310 
 

0.310 0.263 
  [2.642] [2.170]  [2.072] [1.764] 

  {2.127} {1.749}  {1.628} {1.352} 

𝛾0 0.660 1.451 0.903 0.582 2.101 1.480 
 [2.972] [4.894] [2.679] [2.845] [6.759] [5.385] 

 {2.913} {4.042} {2.819} {2.524} {4.736} {4.035} 

𝑅̅𝑂𝐿𝑆
2  0.732 0.620 0.762 0.589 0.595 0.701 

MAPE 0.071 0.081 0.066 0.117 0.113 0.096 

𝑇2 52.774 54.158 45.015 132.524 145.763 131.151 

p-value 0.000 0.000 0.001 0.000 0.000 0.000 

GRS F 3.077 3.717 2.628 2.241 2.541 2.141 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 
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Panel B: Mean absolute pricing errors (1975-2012) 

Asset (1) (2) (3) (4) (5) (6) 

SZ X BM 0.071 0.081 0.066 0.113 0.100 0.095 

MO 
   

0.186 0.175 0.151 

TA 
   

0.138 0.085 0.088 

AG 
   

0.080 0.097 0.067 

SI 
   

0.104 0.131 0.096 

ROE       0.085 0.111 0.079 

 

Panel C: July 1952 to December 2013 

  (1) (2) (3) (4) (5) (6) 

  SZ X BM SZ X BM SZ X BM ALL ALL ALL 

𝛾𝐶𝑀𝑃 𝐴𝑣𝑔 -0.112 
 

-0.079 -0.132 
 

-0.092 
 [5.333]  [4.900] [6.274]  [5.503] 

 {4.216}  {4.670} {5.408}  {5.039} 

𝛾𝐶𝑀𝑃 𝑉𝑎𝑟 -0.143 
 

-0.098 -0.169 
 

-0.084 
 [6.109]  [4.557] [6.705]  [4.123] 

 {5.170}  {4.905} {5.530}  {3.437} 

𝛾𝑀𝐾𝑇 
 

-0.799 0.049 
 

-1.503 -0.942 
  [2.521] [0.138]  [5.096] [3.189] 

  {2.447} {0.151}  {4.035} {2.660} 

𝛾𝑆𝑀𝐵  
 

0.145 0.170 
 

0.159 0.223 
  [1.316] [1.556]  [1.448] [2.048] 

  {1.184} {1.383}  {1.322} {1.803} 

𝛾𝐻𝑀𝐿 
 

0.372 0.323 
 

0.231 0.227 
  [3.620] [3.159]  [2.160] [2.126] 

  {3.002} {2.589}  {1.788} {1.729} 

𝛾0 0.590 1.405 0.592 0.474 2.140 1.580 
 [3.492] [5.142] [1.918] [2.953] [8.514] [6.298] 

 {3.201} {4.269} {1.759} {2.460} {6.037} {4.696} 

𝑅̅𝑂𝐿𝑆
2  0.719 0.670 0.847 0.424 0.489 0.586 

MAPE 0.064 0.079 0.052 0.122 0.115 0.100 

𝑇2 39.941 45.700 29.011 164.379 178.273 159.675 

p-value 0.011 0.001 0.066 0.000 0.000 0.000 

GRS F 2.687 3.243 2.010 2.874 3.170 2.689 

p-value 0.000 0.000 0.003 0.000 0.000 0.000 

 

Panel D: Mean absolute pricing errors (1952-2013) 

Asset (1) (2) (3) (4) (5) (6) 

SZ X BM 0.064 0.079 0.052 0.113 0.097 0.083 

MO    0.238 0.212 0.207 

TA    0.134 0.091 0.092 

AG    0.072 0.096 0.061 

SI    0.117 0.144 0.119 

ROE       0.071 0.078 0.066 



 

117 
 

Table 2.8  Linear GMM/SDF Estimates 

Linear GMM estimates, where factors to explain test-asset returns include the cross-sectional average of crime 
growth (𝑔̃), the cross-sectional variance of crime growth (𝑣̃), and the Fama and French (1993) three factors.   
Test-assets include the 25 size and book-to market portfolios, supplemented with 10 portfolios each sorted by the 
following characteristics: 12-month price momentum, total accruals, asset growth, share issuance, and profitability 
(ROE).  The weighting matrix used in the GMM estimation is indicated in the column header.  𝑆−1 signifies the 
optimal weighting matrix of Hansen (1982), while 𝐻𝐽 signifies the inverse of the second moment matrix of returns 
as advocated by Hansen and Jagannthan (1997).  𝑇𝐽𝑇 is the 𝜒2 test statistic of over-identifying restrictions and 
tests the null that the pricing errors are jointly zero.  𝐻𝐽 dist is the Hansen and Jagannathan (1997) distance, which 
when using the 𝐻𝐽 weighting matrix measures the least-square distance between the given candidate SDF and the 
nearest point to it in the set of all SDFs that price assets correctly.  In parentheses are standard errors.   Further 
details of the GMM procedure can be found in Appendix B.2.  Data is monthly from March 1975 to December 
2012. 
 

  𝑆−1  𝐻𝐽 𝑆−1 𝐻𝐽 𝑆−1 𝐻𝐽 

𝑏̂𝑔  -0.079 -0.066 
  

-0.154 -0.069 

 

(0.023) (0.056)   (0.023) (0.052) 

𝑏̂𝑣  -0.184 -0.080 
  

-0.147 -0.053 

 

(0.024) (0.042)   (0.024) (0.041) 

𝑏̂𝑀𝐾𝑇   
  

0.063 -0.019 0.062 -0.017 

 

  (0.005) (0.015) (0.006) (0.015) 

𝑏̂𝐻𝑀𝐿  
  

0.111 0.054 0.096 0.050 

 

  (0.008) (0.020) (0.009) (0.020) 

𝑏̂𝑆𝑀𝐵   
  

0.059 0.061 0.025 0.059 

 

  (0.006) (0.016) (0.007) (0.016) 

𝑇𝐽𝑇  719.009 773.917 654.742 635.543 395.291 525.079 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 

𝐻𝐽 dist 0.627 0.614 0.647 0.588 0.653 0.576 

MAPE 0.636 0.670 0.648 0.933 0.480 0.910 
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Table 2.9  Hi Income Location Fama MacBeth Regressions Estimates 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
Factors to explain test-asset returns include the cross-sectional average of crime growth for high income locations 
(𝑔𝐻𝑖), the cross-sectional variance of crime growth for high income locations (𝑣𝐻𝑖), and the Fama and French 
(1993) three factors (MKT, SMB, and HML).  Test-assets are indicated in the column header with SZ x BM indicating 
only 25 size and book-to market portfolios, while ALL also includes 10 portfolios for each of the following 
characteristics: 12-month price momentum, total accruals, asset growth, share issuance, and profitability (ROE).  

𝑅̅𝑂𝐿𝑆
2  denotes the OLS cross-sectional adjusted r-squared.  MAPE is the mean absolute pricing errors.  The 𝑇2 

statistic and its associated p-value tests the null that the pricing errors are jointly zero.  In brackets are t-statistics 
that use Fama and MacBeth standard errors, and in braces are t-statistics that use GMM standard errors with a 
Newey-West spectral density matrix with 12 lags.   Data is monthly from March 1975 to December 2012. 
 

  (1) (2) (3) (4) (5) (6) 

  SZ X BM SZ X BM SZ X BM ALL ALL ALL 

𝛾𝑔𝐻𝑖  -4.644 
 

-3.505 -4.004 
 

-2.118 
 [2.361]  [3.094] [4.540]  [3.710] 

 {1.373}  {1.978} {2.889}  {2.576} 

𝛾𝑣𝐻𝑖  -4.065 
 

-2.592 -3.757 
 

-2.186 
 [4.173]  [2.909] [3.795]  [2.806] 

 {2.571}  {1.918} {2.595}  {2.009} 

𝛾𝑀𝐾𝑇 
 

-0.814 -0.641 
 

-1.462 -1.201 
  [2.214] [1.594]  [3.925] [3.440] 

  {2.162} {1.179}  {3.112} {2.299} 

𝛾𝑆𝑀𝐵  
 

0.194 0.265 
 

0.225 0.266 
  [1.322] [1.823]  [1.528] [1.819] 

  {1.296} {1.782}  {1.528} {1.878} 

𝛾𝐻𝑀𝐿 
 

0.380 0.341 
 

0.310 0.294 
  [2.642] [2.371]  [2.072] [1.970] 

  {2.127} {1.931}  {1.628} {1.606} 

𝛾0 0.499 1.451 1.273 0.397 2.101 1.829 
 [2.449] [4.894] [3.763] [1.866] [6.759] [6.520] 

 {1.497} {4.042} {2.581} {1.239} {4.736} {3.637} 

𝑅̅𝑂𝐿𝑆
2  0.355 0.620 0.792 0.261 0.595 0.661 

MAPE 0.132 0.081 0.070 0.164 0.113 0.105 

𝑇2 15.875 54.158 18.138 50.444 145.763 85.094 

p-value 0.822 0.000 0.513 0.975 0.000 0.091 
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Table 2.10  Orthogonalized Fama MacBeth Regressions Estimates 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
Factors to explain test-asset returns include the cross-sectional average of crime growth adjusted for temperature 
and location fixed effects (𝑔𝐴𝑑𝑗), the adjusted cross-sectional variance of crime growth (𝑣𝐴𝑑𝑗), and the Fama and 
French (1993) three factors (MKT, SMB, and HML).  Test-assets are indicated in the column header with SZ x BM 
indicating only 25 size and book-to market portfolios, while ALL also includes 10 portfolios for each of the following 
characteristics: 12-month price momentum, total accruals, asset growth, share issuance, and profitability (ROE).  

𝑅̅𝑂𝐿𝑆
2  denotes the OLS cross-sectional adjusted r-squared.  MAPE is the mean absolute pricing errors.  The 𝑇2 

statistic and its associated p-value tests the null that the pricing errors are jointly zero.  In brackets are t-statistics 
that use Fama and MacBeth standard errors, and in braces are t-statistics that use GMM standard errors with a 
Newey-West spectral density matrix with 12 lags.  Data is monthly from March 1975 to December 2012. 
 

  (1) (2) (3) (4) (5) (6) 

  SZ X BM SZ X BM SZ X BM ALL ALL ALL 

𝛾𝑔𝐴𝑑𝑗  -3.927 
 

-2.796 -2.634 
 

-0.462 
 [1.897]  [3.072] [2.519]  [0.803] 

 {1.266}  {2.046} {1.767}  {0.500} 

𝛾𝑣𝐴𝑑𝑗  -2.950 
 

-1.915 -2.386 
 

-1.290 
 [3.812]  [3.163] [3.750]  [2.741] 

 {2.547}  {2.754} {2.751}  {2.424} 

𝛾𝑀𝐾𝑇 
 

-0.814 -0.888 
 

-1.462 -1.456 
  [2.214] [2.388]  [3.925] [3.883] 

  {2.162} {1.758}  {3.112} {2.881} 

𝛾𝑆𝑀𝐵  
 

0.194 0.249 
 

0.225 0.255 
  [1.322] [1.708]  [1.528] [1.748] 

  {1.296} {1.689}  {1.528} {1.783} 

𝛾𝐻𝑀𝐿 
 

0.380 0.334 
 

0.310 0.270 
  [2.642] [2.328]  [2.072] [1.829] 

  {2.127} {1.839}  {1.628} {1.485} 

𝛾0 0.841 1.451 1.523 0.675 2.101 2.091 
 [3.515] [4.894] [5.066] [3.568] [6.759] [6.685] 

 {2.214} {4.042} {3.412} {2.403} {4.736} {4.389} 

𝑅̅𝑂𝐿𝑆
2  0.487 0.620 0.822 0.178 0.595 0.620 

MAPE 0.115 0.081 0.063 0.170 0.113 0.109 

𝑇2 16.683 54.158 19.906 75.724 145.763 114.525 

p-value 0.781 0.000 0.400 0.359 0.000 0.000 
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Table 2.11  Common Idiosyncratic Volatility Shocks 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
Factors to explain test-asset returns include the common idiosyncratic volatility  shocks, cross-sectional average of 
crime growth (𝑔̃), the cross-sectional variance of crime growth (𝑣̃), and the Fama and French (1993) three factors 
(MKT, SMB, and HML).  CIV is defined as the equal-weighted average of residual variance across firms, where 
residual variance is the variance of daily market model residuals within a month for each firm.  CIV shocks are the 
factor of interest, and are monthly changes in CIV.  Test-assets are indicated in the column header with SZ x BM 
indicating only 25 size and book-to market portfolios, while ALL also includes 10 portfolios for each of the following 
characteristics: 12-month price momentum, total accruals, asset growth, share issuance, and profitability (ROE).  
MAPE is the mean absolute pricing errors.  The 𝑇2 statistic and its associated p-value tests the null that the pricing 
errors are jointly zero.  In brackets are t-statistics that use Fama and MacBeth standard errors, and in braces are t-
statistics that use GMM standard errors with a Newey-West spectral density matrix with 12 lags.   Data is monthly 
from March 1975 to December 2012. 
 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  SZ X BM SZ X BM SZ X BM SZ X BM ALL ALL ALL ALL 

𝛾𝑔 

 
-4.377 

 
-2.434 

 
-3.447  -1.086 

  [2.570]  [1.965]  [3.662]  [2.327] 

  {1.531}  {1.374}  {2.727}  {1.967} 

𝛾𝑣 
 

-2.966 
 

-2.242 
 

-2.511  -1.336 
  [4.550]  [3.853]  [4.155]  [2.873] 

  {3.119}  {3.022}  {3.181}  {2.629} 

𝛾𝐶𝐼𝑉 -0.069 -0.134 0.123 0.026 -0.026 -0.064 0.027 0.014 

 [1.035] [2.260] [1.837] [0.431] [0.440] [1.241] [0.653] [0.353] 

 {0.968} {1.159} {1.613} {0.340} {0.415} {0.670} {0.554} {0.271} 

𝛾𝑀𝐾𝑇 
  

-0.593 -0.796 
  

-1.453 -1.388 
   [1.450] [1.877]   [3.965] [3.718] 

   {1.331} {1.335}   {3.175} {2.649} 

𝛾𝑆𝑀𝐵  
  

0.209 0.250 
  

0.227 0.254 
   [1.430] [1.716]   [1.542] [1.742] 

   {1.432} {1.683}   {1.557} {1.799} 

𝛾𝐻𝑀𝐿 
  

0.391 0.343 
  

0.311 0.271 
   [2.705] [2.391]   [2.081] [1.838] 

   {2.244} {1.920}   {1.644} {1.509} 

𝛾0 0.580 0.462 1.243 1.424 0.591 0.572 2.093 2.026 
 [2.419] [1.973] [3.671] [4.016] [2.819] [2.719] [6.871] [6.468] 

 {2.091} {1.013} {2.815} {2.667} {2.669} {1.587} {4.869} {4.022} 

𝑅̅𝑂𝐿𝑆
2  0.058 0.590 0.635 0.780 -0.004 0.274 0.590 0.617 

MAPE 0.156 0.107 0.085 0.069 0.180 0.154 0.113 0.109 

𝑇2 76.747 16.612 48.103 22.801 183.198 63.092 144.837 111.079 

p-value 0.000 0.734 0.000 0.198 0.000 0.737 0.000 0.001 
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Table 2.12  Income Mimicking Portfolios 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
Factors to explain test-asset returns include income mimicking portfolios (IMP) on the cross-sectional median, 
variance, and skewness of income growth, the cross-sectional average of crime growth (𝑔̃), the cross-sectional 
variance of crime growth (𝑣̃), and the Fama and French (1993) three factors (MKT, SMB, and HML).  Mimicking 
portfolios are constructed by regressing the annual income growth moments on annual returns of six size and 
book-to-market portfolios, and applying the fitted coefficients to monthly returns.  Test-assets are indicated in the 
column header with SZ x BM indicating only 25 size and book-to market portfolios, while ALL also includes 10 
portfolios for each of the following characteristics: 12-month price momentum, total accruals, asset growth, share 
issuance, and profitability (ROE).  MAPE is the mean absolute pricing errors.  The 𝑇2 statistic and its associated p-
value tests the null that the pricing errors are jointly zero.  In brackets are t-statistics that use Fama and MacBeth 
standard errors, and in braces are t-statistics that use GMM standard errors with a Newey-West spectral density 
matrix with 12 lags.   Data is monthly from March 1975 to December 2012. 
 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  SZ X BM SZ X BM SZ X BM SZ X BM ALL ALL ALL ALL 

𝛾𝑔 

  
-3.544 -1.093 

  
-1.000 -0.224 

   [2.507] [0.868]   [2.067] [0.473] 

   {1.863} {0.698}   {1.802} {0.364} 

𝛾𝑣 
  

-1.855 -1.654 
  

-0.985 -0.113 
   [2.196] [2.340]   [2.001] [0.271] 

   {1.630} {2.418}   {1.741} {0.257} 

𝛾𝐼𝑀𝑃 𝑀𝑒𝑑  0.013 0.006 0.012 0.000 0.014 0.000 0.014 0.001 

 [1.350] [0.643] [1.304] [0.008] [1.413] [0.034] [1.388] [0.059] 

 {1.268} {0.693} {1.086} {0.008} {1.233} {0.033} {1.300} {0.057} 

𝛾𝐼𝑀𝑃 𝑉𝑎𝑟  0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 

 [4.702] [4.379] [4.602] [4.339] [5.651] [5.251] [5.601] [5.231] 

 {3.594} {3.626} {3.160} {3.451} {3.889} {4.840} {4.495} {4.797} 

𝛾𝐼𝑀𝑃 𝑆𝑘𝑒𝑤  -0.004 -0.003 -0.005 -0.005 -0.008 -0.007 -0.009 -0.007 

 [2.428] [1.639] [2.832] [2.458] [3.766] [3.535] [4.046] [3.677] 

 {2.400} {1.732} {2.314} {2.218} {3.190} {3.538} {3.224} {3.779} 

𝛾𝑀𝐾𝑇 
 

-0.254 
 

-0.636 
 

-0.807  -0.793 
  [0.627]  [1.587]  [2.312]  [2.324] 

  {0.738}  {1.331}  {2.085}  {1.974} 

𝛾𝑆𝑀𝐵  
 

0.242 
 

0.250 
 

0.305  0.305 
  [1.674]  [1.725]  [2.093]  [2.092] 

  {1.618}  {1.644}  {2.028}  {2.031} 

𝛾𝐻𝑀𝐿 
 

0.300 
 

0.325 
 

0.230  0.229 
  [2.101]  [2.281]  [1.568]  [1.561] 

  {1.713}  {1.822}  {1.217}  {1.207} 

𝛾0 1.197 0.888 1.118 1.261 1.402 1.438 1.365 1.424 
 [5.724] [2.571] [5.465] [3.728] [7.036] [5.153] [6.851] [5.307] 

 {5.271} {2.655} {4.119} {2.873} {5.566} {4.011} {4.805} {3.898} 

𝑅̅𝑂𝐿𝑆
2  0.577 0.767 0.623 0.770 0.561 0.703 0.562 0.694 

MAPE 0.085 0.068 0.081 0.068 0.127 0.095 0.125 0.095 

𝑇2 52.801 44.688 20.638 30.209 130.089 131.949 115.275 129.516 

p-value 0.000 0.000 0.357 0.017 0.000 0.000 0.000 0.000 
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Table 2.13  Initial Unemployment Claims 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
Factors to explain test-asset returns include initial unemployment claims (claims), cross-sectional average of crime 
growth (𝑔̃), the cross-sectional variance of crime growth (𝑣̃), and the Fama and French (1993) three factors (MKT, 
SMB, and HML).  Claims is the differenced series of the number of initial claims for unemployment insurance 
divided by the size of the workforce.  Test-assets are indicated in the column header with SZ x BM indicating only 
25 size and book-to market portfolios, while ALL also includes 10 portfolios for each of the following 
characteristics: 12-month price momentum, total accruals, asset growth, share issuance, and profitability (ROE).  
MAPE is the mean absolute pricing errors.  The 𝑇2 statistic and its associated p-value tests the null that the pricing 
errors are jointly zero.  In brackets are t-statistics that use Fama and MacBeth standard errors, and in braces are t-
statistics that use GMM standard errors with a Newey-West spectral density matrix with 12 lags.   Data is monthly 
from March 1975 to December 2012. 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  SZ X BM SZ X BM SZ X BM SZ X BM ALL ALL ALL ALL 

𝛾𝑔 

 
-5.256 

 
-2.604 

 
-3.143  -1.131 

  [3.072]  [2.227]  [3.796]  [2.337] 

  {1.865}  {1.569}  {2.556}  {1.829} 

𝛾𝑣 
 

-3.532 
 

-2.424 
 

-2.851  -1.374 
  [4.840]  [3.991]  [4.473]  [3.007] 

  {2.911}  {3.154}  {3.378}  {2.727} 

𝛾𝐶𝑙𝑎𝑖𝑚𝑠  -0.020 -0.081 0.021 -0.016 0.013 -0.013 0.008 -0.006 

 [0.591] [2.876] [0.985] [0.867] [0.479] [0.552] [0.485] [0.392] 

 {0.597} {1.453} {1.031} {0.645} {0.456} {0.320} {0.375} {0.276} 

𝛾𝑀𝐾𝑇 
  

-0.854 -0.831 
  

-1.430 -1.410 
   [2.375] [2.243]   [4.008] [3.874] 

   {2.239} {1.530}   {3.377} {2.869} 

𝛾𝑆𝑀𝐵  
  

0.204 0.245 
  

0.227 0.252 
   [1.395] [1.682]   [1.546] [1.730] 

   {1.361} {1.625}   {1.559} {1.788} 

𝛾𝐻𝑀𝐿 
  

0.386 0.334 
  

0.312 0.268 
   [2.673] [2.333]   [2.082] [1.818] 

   {2.144} {1.863}   {1.646} {1.510} 

𝛾0 0.722 0.574 1.490 1.455 0.729 0.657 2.068 2.047 
 [3.248] [2.607] [5.173] [4.844] [3.786] [3.388] [7.122] [6.824] 

 {2.970} {1.083} {4.085} {3.089} {4.152} {2.019} {5.152} {4.393} 

𝑅̅𝑂𝐿𝑆
2  -0.008 0.607 0.611 0.781 -0.002 0.248 0.590 0.617 

MAPE 0.170 0.098 0.084 0.069 0.186 0.160 0.113 0.109 

𝑇2 75.417 11.333 50.851 20.811 177.469 62.689 143.045 107.109 

p-value 0.000 0.956 0.000 0.289 0.000 0.749 0.000 0.002 
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Table 2.14  Other Economic Variables 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
Factors to explain test-asset returns include consumption growth (Cons), changes in the University of Michigan  
Consumer Sentiment Index (CSent), initial unemployment claims (claims), the cross-sectional average of crime 
growth (𝑔̃), the cross-sectional variance of crime growth (𝑣̃), and the Fama and French (1993) three factors (MKT, 
SMB, and HML).  Cons is changes in real seasonally adjusted per capita non-durables and services consumption.  
Claims is the differenced series of the number of initial claims for unemployment insurance divided by the size of 
the workforce.  Test-assets are indicated in the column header with SZ x BM indicating only 25 size and book-to 
market portfolios, while ALL also includes 10 portfolios for each of the following characteristics: 12-month price 
momentum, total accruals, asset growth, share issuance, and profitability (ROE).  MAPE is the mean absolute 
pricing errors.  The 𝑇2 statistic and its associated p-value tests the null that the pricing errors are jointly zero.  In 
brackets are t-statistics that use Fama and MacBeth standard errors, and in braces are t-statistics that use GMM 
standard errors with a Newey-West spectral density matrix with 12 lags.   Crime, consumption, and unemployment 
claims data is monthly from March 1975 to December 2012.  Monthly consumer sentiment data is from February 
1978 to December 2012. 

 

  (1) (2) (3) (4) (5) (6) 

  SZ X BM SZ X BM SZ X BM ALL ALL ALL 
𝛾𝑔  

  
-4.783 

  
-2.121 

   [3.050]   [2.891] 

   {2.019}   {1.873} 

𝛾𝑣  
  

-3.071 
  

-1.835 
   [4.715]   [3.559] 

   {2.677}   {3.013} 

𝛾𝐶𝑜𝑛𝑠   0.041 
 

0.010 -0.020 
 

0.063 
 [0.370]  [0.133] [0.214]  [0.925] 

 {0.379}  {0.062} {0.200}  {0.890} 

𝛾𝐶𝑆𝑒𝑛𝑡   
 

0.003 0.030 
 

-0.008 0.000 
  [0.288] [2.402]  [0.898] [0.056] 

  {0.314} {1.247}  {0.854} {0.034} 

𝛾𝐶𝑙𝑎𝑖𝑚𝑠  
  

-0.028 
  

0.006 
   [1.265]   [0.417] 

   {0.791}   {0.298} 

𝛾0  0.732 0.699 0.407 0.711 0.840 0.718 
 [2.922] [2.517] [1.494] [3.383] [3.800] [3.167] 

 {2.819} {2.689} {0.709} {3.361} {3.756} {2.063} 

𝑅̅𝑂𝐿𝑆
2   -0.030 -0.033 0.548 -0.011 0.036 0.192 

MAPE 0.174 0.153 0.091 0.184 0.172 0.157 

𝑇2  78.268 84.780 15.717 181.122 179.925 92.727 

p-value 0.000 0.000 0.676 0.000 0.000 0.030 
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APPENDIX A 

Taking a Beating on the Stock Market: 

Crime and Stock Returns 

Table A.1  Market Returns and Crime Rates without Quadratic Term 

Regression of daily crime rates on daily market returns by income from 1991-2012.  High income is defined as the 
top tercile of income for all agency locations, while low income is defined as the bottom tercile.  Market returns 
are divided by its trailing 252-day standard deviation.  Crime rates are measured as the number of incidents per 
100 million people.  All Incidents include all of the offenses listed in Table 1.3.  Additional control variables are 
defined in Table 1.6.  Parentheses contain t-statistics with heteroskedasticity robust standard errors clustered by 
time.  ***, **, and * indicate significance at the 1%, 5%, and 10% significance levels respectively. 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

Market Return 34.28** 1.320 45.30*** 62.13*** 

 
(2.561) (0.113) (2.682) (2.946) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.474 0.452 0.459 0.450 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

 

Notes: Previously curvature of the utility function was accounted for by including a term for the squared market 
return.  Although the quadratic term was insignificant in the overall relationship and for high and medium income 
locations, it was significantly positive for low income locations.  The highly significant quadratic coefficient for low 
income locations is expected since these locations should have the highest marginal utility over relative wealth, 
and thus the curvature should be most pronounced for these individuals.  Removing the quadratic term does not 
significantly alter the linear term, but underestimates the total relationship between stock market returns and 
crime rates for low income locations.  In the quadratic specification a one standard deviation increase in the 
market is associated with a significant increase of 94.7 crimes per 100 million (46.7 bps), while here in the linear 
specification it is associated with an increase of 62.1 crimes (30.6 bps).  This is a reduction of 34%. 
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Table A.2  Relationship between Extreme Market Returns and Crime Rates 

Regression of daily crime rates on indicators for large positive and large negative market returns by income from 
1991-2012.  High income is defined as the top tercile of income for all agency locations, while low income is 
defined as the bottom tercile.  Indicators are for market returns divided by their trailing 252-day standard 
deviation.  Crime rates are measured as the number of incidents per 100 million people.  All Incidents include all of 
the offenses listed in Table 1.3.  Additional control variables are defined in Table 1.6.  Parentheses contain t-
statistics with heteroskedasticity robust standard errors clustered by time.  ***, **, and * indicate significance at 
the 1%, 5%, and 10% significance levels respectively. 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

1{Market Return > 1} 45.55 -19.44 54.75 118.0* 

 
(1.056) (-0.509) (1.014) (1.748) 

1{Market Return < -1} -76.83* -32.19 -78.83 -118.7* 

 
(-1.932) (-0.875) (-1.527) (-1.886) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.474 0.452 0.459 0.450 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

 

Notes:  A question that arises is whether the results are driven by large positive or large negative returns.  To 
explore this, indicators are used for standardized returns that exceed one and those that are below negative one.  
The overall relationship between market returns and crime rates is larger for negative returns, with extreme 
negative return days associated with a significant decline of 77 crimes per 100 million individuals (-38 bps).  
Extreme positive return days associated with an insignificant increase of 46 crimes (22 bps).  Although the overall 
relationship seems to be stronger for extreme negative returns, when breaking up the results by income either 
both coefficients are insignificant or both are significant which prohibits any conclusion that one extreme is driving 
the results. The relationship between returns and crime rates increases in absolute value as we go from high 
income locations to low income locations.  Extreme positive returns are associated with an insignificant -19.4 
crimes per 100 million individuals (9.6 bps) in high income locations, and increases to a significant 118 crimes (58.1 
bps) in low income locations.  Extreme negative returns are associated with an insignificant -32.2 crimes per 100 
million (15.9 bps) individuals in high income locations, and decreases to a significant -118 crimes (-58.5 bps) in low 
income locations. 
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Table A.3  Market Returns and Crime Rates in Recessions 

Regression of daily crime rates on daily market returns and recession indicator by income from 1991-2012.  
Recessions are defined by the NBER as occurring during the following dates: July 1, 1990 to March 31, 1991, March 
1, 2001 to November 30, 2001, and December 1, 2007 to June 30, 2009.  High income is defined as the top tercile 
of income for all agency locations, while low income is defined as the bottom tercile.  Market returns are divided 
by its trailing 252-day standard deviation.  Crime rates are measured as the number of incidents per 100 million 
people.  All Incidents include all of the offenses listed in Table 1.3.  Additional control variables are defined in Table 
1.6.  Parentheses contain t-statistics with heteroskedasticity robust standard errors clustered by time.  ***, **, and 
* indicate significance at the 1%, 5%, and 10% significance levels respectively. 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

Market Return 30.66** 2.422 37.28* 58.16** 

 
(1.983) (0.177) (1.960) (2.380) 

Market Return Sq. 5.147 0.220 4.328 12.87 

 
(0.828) (0.0403) (0.553) (1.320) 

Market × Recession 23.92 -4.534 44.79 34.31 

 
(0.720) (-0.167) (1.034) (0.678) 

Market Sq. × Recession -0.916 0.873 -10.07 4.724 

 
(-0.0735) (0.0857) (-0.653) (0.260) 

Recession 151.1* 89.19 243.5** 143.1 

 
(1.763) (1.184) (2.263) (1.104) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.474 0.452 0.459 0.450 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

 

Notes:  Although crime rates are generally higher during recessions as defined by the NBER, the relationship 
between crime rates and market returns is not significantly different during recessions.  
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Table A.4  Market Returns and Crime Rates in Bear Markets 

Regression of daily crime rates on daily market returns and bear markets indicator by income from 1991-2012.  
Bear markets are defined by Merrill Lynch as occurring when the S&P 500 drops by at least -20% without a +20% 
recovery and occur the following dates: March 24, 2000 to September 21, 2001 (-36.8%), January 4, 2002 to 
October 9, 2002 (-33.8%), October 9, 2007 to November 20, 2008 (-51.9%), and January 6, 2009 to March 9, 2009 
(-27.6%).  High income is defined as the top tercile of income for all agency locations, while low income is defined 
as the bottom tercile.  Market returns are divided by its trailing 252-day standard deviation.  Crime rates are 
measured as the number of incidents per 100 million people.  All Incidents include all of the offenses listed in Table 
1.3.  Additional control variables are defined in Table 1.6.  Parentheses contain t-statistics with heteroskedasticity 
robust standard errors clustered by time.  ***, **, and * indicate significance at the 1%, 5%, and 10% significance 
levels respectively. 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

Income Level ALL HIGH MED LOW 

Market Return 26.82 -2.829 38.32* 51.44* 

 
(1.597) (-0.192) (1.849) (1.944) 

Market Return Sq. 2.203 -3.063 0.561 10.52 

 
(0.328) (-0.528) (0.0663) (0.993) 

Market × Bear 21.71 8.823 14.58 40.87 

 
(0.743) (0.350) (0.397) (0.902) 

Market Sq. × Bear 9.520 11.10 6.850 11.37 

 
(0.843) (1.126) (0.488) (0.684) 

Bear Market -157.2** -100.6* -245.5*** -123.5 

 
(-2.455) (-1.755) (-3.046) (-1.259) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.474 0.452 0.459 0.450 

Controls YES YES YES YES 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 
 
Notes:  Although crime rates are generally lower during bear markets as defined by Merrill Lynch, the relationship 
between crime rates and market returns is not significantly different during bear markets.  
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Table A.5  Average Cumulative Market Returns and Crime Rates  

Regression of daily crime rates on cumulative average daily market returns by income from 1991-2012.  In Panel A, 
average cumulative market returns are from date t – s as indicated in the column header through date t, where 
lags are only performed on days the market is open.  In Panel B, average market returns are from date t – s though 
t – 1.   High income is defined as the top tercile of income for all agency locations, while low income is defined as 
the bottom tercile.  Market returns are divided by its trailing 252-day standard deviation.  Crime rates are 
measured as the number of incidents per 100 million people.  All Incidents include all of the offenses listed in Table 
1.3.  Additional control variables are defined in Table 1.6.  Parentheses contain t-statistics with heteroskedasticity 
robust standard errors clustered by location and time.  ***, **, and * indicate significance at the 1%, 5%, and 10% 
significance levels respectively. 

 

Panel A: Average cumulative returns from t – s to t 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

t - s t t - 1 t - 2 t - 3 t - 4 t - 5 

Avg Market Returnt-s,t 35.56*** 39.73** 50.12** 40.94 6.796 6.904 

 
(2.596) (1.985) (1.989) (1.339) (0.194) (0.181) 

Avg Market Ret. Sqt-s,t 5.316 7.361 20.26 16.16 5.397 -1.225 

 
(0.988) (0.508) (1.055) (0.566) (0.158) (-0.0297) 

              

Observations 3,728,775 3,728,775 3,728,775 3,728,775 3,728,775 3,728,775 

R-squared 0.474 0.474 0.474 0.474 0.474 0.474 

Controls YES YES YES YES YES YES 

Location FE YES YES YES YES YES YES 

Day of Week FE YES YES YES YES YES YES 

Month of Year FE YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

Holiday FE YES YES YES YES YES YES 
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Panel B: Contemporaneous and average cumulative returns from t – s to t – 1 

Incident 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 
All 

Incidents 

t - s t t - 1 t - 2 t - 3 t - 4 t - 5 

Market Returnt 35.56*** 35.76*** 36.24*** 35.92*** 35.18** 35.65** 

 
(2.596) (2.594) (2.632) (2.599) (2.541) (2.551) 

Market Return Sqt 5.316 5.496 6.068 5.751 4.894 5.694 

 
(0.988) (1.008) (1.054) (0.981) (0.805) (0.930) 

Avg Market Returnt-s,t-1 
 

5.488 13.89 6.648 -27.09 -25.47 

  
(0.405) (0.697) (0.252) (-0.839) (-0.717) 

Avg Market Ret. Sqt-s,t-1 
 

0.587 0.343 -1.634 -14.96 -29.57 

  
(0.0847) (0.0218) (-0.0651) (-0.419) (-0.725) 

              

Observations 3,728,775 3,728,775 3,728,775 3,728,775 3,728,775 3,728,775 

R-squared 0.474 0.474 0.474 0.474 0.474 0.474 

Controls YES YES YES YES YES YES 

Location FE YES YES YES YES YES YES 

Day of Week FE YES YES YES YES YES YES 

Month of Year FE YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

Holiday FE YES YES YES YES YES YES 

 

 

Notes: It is interesting to see if average cumulative returns impact current utility, and thus crime rates.  To examine 
this I measure returns from t – s to t, and also from t – s to t - 1 while separately including date t returns.  Here, 
lags are only performed on trading days (not calendar days).  For example, in the second column in Panel A of 
Table A.5 labeled t – 1, a Monday crime rate on day t is associated with a cumulative return that includes that 
Monday and the previous Friday if the market is open on both days.  First examining the relationship from t – s to t 
in Panel A, we see that the relationship between stock market returns and crime rates increases from a significant 
46.2 crimes per 100 million individuals (22.8 bps) on day 0 to a significant 90.64 crimes (44.6 bps) for cumulative 
average returns from trading day t – 2 to trading day 0, however, the relationship declines steeply thereafter.  This 
suggests a short memory for individuals.  Panel B shows that the relationship is driven by the period t return and 
that previous cumulative returns are insignificant. 
 
It is important to note that the overlapping returns used to calculate the cumulative average returns can create 
autocorrelation in the residuals.  To account for this, the t-statistics utilize standard errors that are clustered by 
both location and time.  The t-statistics for the first column are approximately equal to those reported in Table 1.6 
(which only clusters on the time dimension), and indicates that the time dimension is the relevant dimension to 
cluster standard errors.  Confirming this, when clustering by just location (unreported), the t-statistics are much 
larger. 
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Table A.6  Market Returns and Crime Rates with Log-Linear Specification 

Regression of daily logged crime rates on market returns from 1991-2012.  Market returns are divided by its 
trailing 252-day standard deviation.  Crime rates are measured as the number of incidents per 100 million people.   
All Incidents include all of the offenses listed in Table 1.3.  Control variables are defined in Table 1.6.   
Heteroskedasticity robust t-statistics clustered by time in parentheses.  ***, **, and * indicate significance at the 
1%, 5%, and 10% significance levels respectively. 

Incident All Incidents All Incidents All Incidents All Incidents 

Income Level ALL HIGH MED LOW 

Market Return 0.00106* 0.000183 0.00122* 0.00195*** 

 
(1.874) (0.299) (1.791) (2.665) 

Market Return Sq. 0.000474** 0.000463* 0.000270 0.000731** 

 
(2.148) (1.930) (1.009) (2.563) 

Moon Fraction 0.00334** 0.00114 0.00323 0.00602*** 

 
(1.963) (0.591) (1.546) (2.748) 

SAD -0.0492*** -0.0403** -0.0573*** -0.0475** 

 
(-2.932) (-2.429) (-2.958) (-2.201) 

Temperature 0.000607*** 0.000591*** 0.000666*** 0.000536*** 

 
(43.13) (35.89) (37.87) (28.78) 

Precipitation -9.38e-05*** -8.93e-05*** -9.55e-05*** -8.87e-05*** 

 
(-6.011) (-4.246) (-4.600) (-4.258) 

Snowfall -0.00170*** -0.00148*** -0.00194*** -0.00220*** 

 
(-11.35) (-9.185) (-12.70) (-8.335) 

Snow Depth -0.000368*** -0.000307*** -0.000518*** -0.000530*** 

 
(-22.60) (-16.82) (-20.60) (-15.41) 

Wind -0.000878*** -0.000848*** -0.000992*** -0.000856*** 

 
(-19.50) (-15.51) (-16.50) (-13.25) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

R-squared 0.525 0.462 0.521 0.531 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

 

Notes:  A common transformation for count data is the logarithmic transformation.  This transformation is 
problematic if the data contains zeros, which is true with all individual crime offenses considered with the 
exception of when we examine all incidents.  Table A.6 shows that the log specification produces the same 
increasing and convex relationship with significance levels that are similar to the linear specification.  With a log 
specification, the coefficients can be interpreted as the percent increase in crime rates due to a unit increase in 
returns.  As such, the first column shows that a one standard deviation in the market return corresponds with a 
20.1 bps increase in crime rates.  This is very similar to the original (non-logged) specification with an increase of 
22.8 bps.  Furthermore, the monotonic relationship across income groups between market returns and crime 
remains.  For example, a one standard deviation increase in the market corresponds with a significant 34.1 bps 
increase in low income locations, and an 11.1 bps increase in high income locations.   
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Table A.7  Market Returns and Crime Rates with Poisson Specification 

Poisson regression of daily crime rates on market returns from 1991-2012.  Market returns are divided by its 
trailing 252-day standard deviation.  Crime rates are measured as the number of incidents per 100 million people.   
All Incidents include all of the offenses listed in Table 1.3.  Control variables are defined in Table 1.6.   
Heteroskedasticity robust t-statistics clustered by location in parentheses.  ***, **, and * indicate significance at 
the 1%, 5%, and 10% significance levels respectively. 

Incident All Incidents All Incidents All Incidents All Incidents 

Income Level ALL HIGH MED LOW 

Market Return 0.00154*** 0.00102*** 0.00169*** 0.00185*** 

 
(7.871) (2.839) (5.558) (4.886) 

Market Return Sq. 0.000514*** 0.000486** 0.000356** 0.000704*** 

 
(4.476) (2.476) (2.177) (3.275) 

Moon Fraction 0.00265*** 0.00237* 0.00222* 0.00326*** 

 
(3.739) (1.794) (1.811) (2.827) 

SAD -0.0370*** -0.0204 -0.0525*** -0.0318*** 

 
(-5.565) (-1.638) (-4.400) (-3.582) 

Temperature 0.000619*** 0.000606*** 0.000661*** 0.000566*** 

 
(45.94) (30.55) (32.24) (20.65) 

Precipitation -8.56e-05*** -9.06e-05*** -8.19e-05*** -8.11e-05*** 

 
(-11.42) (-5.947) (-6.690) (-5.828) 

Snowfall -0.00217*** -0.00196*** -0.00228*** -0.00235*** 

 
(-22.59) (-14.40) (-12.81) (-10.37) 

Snow Depth -0.000444*** -0.000406*** -0.000482*** -0.000609*** 

 
(-15.01) (-14.87) (-6.399) (-11.37) 

Wind -0.000825*** -0.000838*** -0.000923*** -0.000703*** 

 
(-17.38) (-15.08) (-12.85) (-7.076) 

          

Observations 3,728,775 1,313,926 1,216,759 1,195,510 

Location FE YES YES YES YES 

Day of Week FE YES YES YES YES 

Month of Year FE YES YES YES YES 

Year FE YES YES YES YES 

Holiday FE YES YES YES YES 

 

 

Notes:  A specification that is typically applied to count data is the Poisson regression model.  The advantage of 
using a Poisson model is that it explicitly models the non-negativity and discrete nature of count data.  The 
standard criticism of Poisson regressions is that it assumes a Poisson distribution where the variance is equal to the 
mean, a condition that is typically violated.  This restriction usually manifests itself by predicting less zero counts 
than observed in the sample and grossly deflated standard errors which can be mitigated using a robust variance 
estimator.  Although most of the individual crime incidents suffer from a high incidence of zeros and over-
dispersion, this is not a significant issue when examining all incidents combined.  For example, Table 1.3 illustrates 
that for all incidents there are no zeros and the pooled mean crime rate of 22,976 is reasonably close to the 
standard deviation of 19,011. 
 
Table A.7 shows that the Poisson specification produces the same increasing and convex relationship with 
significance levels that are much higher than the linear specification.  For computational convenience, standard 
errors are clustered by location instead of time in this specification, however, this does not affect the coefficients.  
With a Poisson specification, the coefficients can be interpreted as the change in log crime counts, while the 
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exponential of the coefficients (i.,e.,  𝑒𝑥𝑝(𝛽)) are interpreted as incidence-rate ratios (IRRs).  The IRRs minus one 
(𝑒𝑥𝑝(𝛽) − 1) are interpreted as the percent change in the crime count.  Since the coefficients are particularly 
small, 𝑒𝑥𝑝(𝛽) − 1 is approximately equal to 𝛽, so we can simply interpret the stated coefficients as the percent 
change in crimes.  For example, a one standard deviation increase in the market return corresponds with a 25.7 
bps increase in crime rates.  This is very similar to the original (non-logged) linear specification with an increase of 
22.8 bps and the log specification of 20.1 bps.    Furthermore, the roughly monotonic relationship across income 
groups between market returns and crime remains.  For example, a one standard deviation increase in the market 
corresponds with a significant 32.7 bps increase in low income locations, and a 19.9 bps increase in high income 
locations.  The similar results provide assurances that the linear specification is reasonable, and may in fact be 
conservative. 
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APPENDIX B 

Does Crime Pay? 

Asset Pricing with Revealed Utility of Heterogeneous Consumers 

 

B.1 Error in the Relationship of Crime as Marginal Utility 

I derive the lower and upper bounds for the bias factor Η.  Assuming the error term, 𝜖𝑖,𝑡, 

in (2.1) is identically distributed and greater than 0, then the lower bound to Η can be 

estimated by: 

 1 = 𝐸 [(𝜖𝑖,𝑡
−𝜃𝜖𝑖,𝑡−1

𝜃 )(𝜖𝑖,𝑡
−𝜃𝜖𝑖,𝑡−1

𝜃 )
−1

] ≤

𝐸[(𝜖𝑖,𝑡
−𝜃𝜖𝑖,𝑡−1

𝜃 )]𝐸 [(𝜖𝑖,𝑡
−𝜃𝜖𝑖,𝑡−1

𝜃 )
−1

] = {𝐸[𝜖𝑖,𝑡
−𝜃𝜖𝑖,𝑡−1

𝜃 ]}
2
, 

(B.1) 

where the inequality follows from an application of Jensen’s inequality and the definition of 

covariance, and the second equality follows from the fact that 𝜖𝑖,𝑡
−𝜃𝜖𝑖,𝑡−1

𝜃  and its inverse are 

symmetrically distributed.  Therefore, the coefficients are biased upwards by the factor Η ≥ 1. 

An upper bound to Η can be derived under the additional assumption that the error 

term, 𝜖𝑖,𝑡, is i.i.d. lognormal with mean 𝜇 and variance 𝜎2, and noting that Η = 𝐸[𝜂𝑖,𝑡
−𝜃] =

exp(𝜃2𝜎2).  Therefore, bounds for 𝜎2 and 𝜃2 will be sufficient to bound Η.  An upper bound to 

𝜎2 is provided by exploiting log changes in (2.1),  

 
ln(𝑔𝑖𝑡) =

1

𝜃
ln (

𝑢′(𝑐𝑖,𝑡)

𝑢′(𝑐𝑖,𝑡−1)
) + ln(𝜂𝑖,𝑡), (B.2) 

and using the definition of the 𝑅2 from the OLS regression given in (A2): 
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 𝑣𝑎𝑟(ln(𝜂𝑖,𝑡)) = 𝑣𝑎𝑟(ln(𝑔𝑖,𝑡))(1 − 𝑅2). 
(B.3) 

Finally, the upper bound of 𝜎2 is given using the property that the 𝑅2 is bounded between 0 

and 1: 

 
𝜎2 ≤

1

2
𝑣𝑎𝑟(ln(𝑔𝑖,𝑡)). (B.4) 

Next, an upper bound for 𝜃 can be derived under the assumption that increases in 

marginal utility are associated with increases in crime, and that the cross-sectional average and 

variance of crime growth are associated with bad states of the world and thus command 

negative prices of risk.  Using the definition of the coefficients derived in (13), this suggests that 

𝜃 must take on a value between one and two.  Given that the pooled variance of log crime 

growth in the data is 0.23, the upper bound for Η can be derived as: 

 
Η = exp(𝜃2𝜎2) = exp (

1

2
× 0.23(1 − 𝑅2)𝜃2) ≤ 1.12𝜃2

≤ 1.58. (B.5) 

The above results suggest that the prices of risk may be biased by a factor of 1 to 1.58.  

A more plausible estimate of the bias can be derived if 𝜃 takes on its mid-point value of 1.5, 

resulting in a bias of 1.29.  If it is further assumed that the regression of log crime growth on 

marginal utility growth has an 𝑅2 of 0.5, the bias declines to 1.14.  It is worth noting that 

although using crime as revealed marginal utility may lead to an upward bias of the pricing 

coefficients, any proxy for an individual’s true unobserved marginal utility will produce a similar 

upward bias.  
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B.2 Linear GMM Estimation 

B.2.1 Euler Equation and SDF 

The Euler equation is 

 𝐸[𝑀𝑡𝑅𝑛,𝑡
𝑒 ] = 0. (B.6) 

 

The linear SDF is defined as 

 𝑀𝑡 = 1 − 𝑏′𝑓𝑡 (B.7) 

where 𝑓 is a 𝐾 × 1 vector of factors, and 𝑏 is a 𝐾 × 1 vector of parameters. 

 

B.2.2 GMM Estimation 

B.2.2.1 Moment Conditions 

The GMM objective function is 

 min{𝑏} 𝑔𝑇
′ 𝑊𝑔𝑇,  (B.8) 

with 

 

𝑔𝑇 = [

𝐸𝑇[𝑢1,𝑡]

⋮
𝐸𝑇[𝑢𝑁,𝑡]  

] , (B.9) 

𝑁 × 𝑁 weighting matrix 𝑊, 𝐸𝑇[𝑥𝑡] = 𝑇−1 ∑ 𝑥𝑡
𝑇
𝑡=1 , and the pricing errors for excess returns is 

 𝑢𝑛,𝑡 = 𝑀𝑡𝑅𝑛,𝑡
𝑒 . (B.10) 
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B.2.2.2 Weighting Matrix 

Two alternative weighting matrices are considered.  The first is the optimal weighting 

matrix of the two step procedure in Hansen and Singleton (1982), which sets the weighting 

matrix equal to the inverse of the long run covariance matrix of the pricing errors (𝑊 = 𝑆−1).  

The long run covariance matrix is estimated using the pricing errors from the first stage that 

sets the weighting matrix to the identity matrix, and is estimated following the methodology of 

Newey and West (1987) with 12 lags 

 
𝑆 = ∑ (

𝑘 − |𝑗|

𝑘
)

1

𝑇
∑(𝑢𝑡 − 𝐸𝑇[𝑢𝑡])(𝑢𝑡 − 𝐸𝑇[𝑢𝑡])

′.

𝑇

𝑡=1

𝑘

𝑗=−𝑘

 (B.11) 

 

The second weighting matrix uses the inverse of the second moment matrix of returns, 

𝑊 = 𝐸𝑇[𝑅𝑡
′𝑅𝑡]

−1, as advocated by Hansen and Jagannathan (1997). 

 

B.2.2.3 GMM Standard Errors 

Standard errors are the square root of the diagonal elements of 

 1

𝑇
(𝑑′𝑊𝑑)−1𝑑′𝑊𝑆𝑊𝑑(𝑑′𝑊𝑑)−1, (B.12) 

where under the optimal weighting matrix it simplifies to 

 1

𝑇
𝑑′𝑆−1𝑑, (B.13) 

where 
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𝑑 =
𝜕𝑔𝑇

𝜕𝑏′
=

[
 
 
 
 
𝜕𝑔𝑇(𝑅1,𝑡

𝑒 )

𝜕𝑏′
⋮

𝜕𝑔𝑇(𝑅𝑁,𝑡
𝑒 )

𝜕𝑏′ ]
 
 
 
 

. (B.14) 

and 

 𝜕𝑔𝑇(𝑅𝑛,𝑡
𝑒 )

𝜕𝑏′
= −𝐸𝑇[𝑅𝑛,𝑡

𝑒 𝑓𝑡′]. (B.15) 

 

B.2.2.4 Test of over-identifying restrictions 

The test of over-identifying restrictions tests the null that the pricing errors are zero.  

Using the optimal weighting matrix, the test is 

  

 𝑇𝐽𝑇 = 𝑇𝑔𝑇′𝑆−1𝑔𝑇 ~ 𝜒𝑁−𝐾
2  (B.16) 

where K is the number of parameters estimated.  With a non-optimal weighting matrix the test 

is 

 𝑇𝐽𝑇 = 𝑇𝑔𝑇′((𝐼 − 𝑑(𝑑′𝑊𝑑)−1𝑑′𝑊)𝑆(𝐼

− 𝑊(𝑑′𝑊𝑑)−1𝑑′))+ 𝑔𝑇  ~ 𝜒𝑁−𝐾
2 . 

(B.17) 

 

B.2.2.5 Hansen-Jagannathan statistic 

Following Hansen and Jagannathan (1997), the HJ statistic is estimated with weighting 

matrix 𝑊 = 𝐸𝑇[𝑅𝑡
′𝑅𝑡]

−1 as  

 𝐻𝐽 = √𝑔𝑇
′ 𝑊𝑔𝑇 . (B.18) 
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B.2.2.6 Newey-West D-test 

The Newey and West (1987) 𝜒2 difference test (D-test) compares the 𝑇𝐽𝑇 statistic of a 

restricted model to its unrestricted counterpart and is defined as 

 Δ𝑇𝐽𝑇 = 𝑇𝑔𝑇,𝑅
′ 𝑆𝑈𝑅

−1𝑔𝑇,𝑅 − 𝑇𝑔𝑇,𝑈𝑅
′ 𝑆𝑈𝑅

−1𝑔𝑇,𝑈𝑅 ~ 𝜒𝐿
2 (B.19) 

where, 𝑔𝑇,𝑅 and 𝑔𝑇,𝑈𝑅 indicate the average pricing errors for the restricted and unrestricted 

models respectively, 𝑆𝑈𝑅 indicates the spectral density matrix for the unrestricted model, and 𝐿 

indicates the number of restrictions.  It is important to note that using the same unrestricted 

spectral density matrix for both 𝑇𝐽𝑇 statistics ensures that the Δ𝑇𝐽𝑇  statistic is positive. 
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B.3 Additional Tables 

Table B.1  Crime Beta Sorted Portfolios 

Portfolios of firms sorted by their cross-sectional average of crime growth beta (AVG) and cross-sectional variance 
of crime growth beta (VAR).  Betas for each firm are estimated following Dimson (1972) with one lag over a 60-
month rolling window.  Each month, firms are sequentially sorted first into 5 portfolios by the variance of crime 
growth beta and then into an additional 5 portfolios by the average of crime growth beta, for a total of 25 equal 
weighted portfolios.  Panel A displays average returns, while Panel B displays t-statistics.  Returns are monthly 
from March 1980 to December 2012. 
 
Panel A: Excess Returns 

  VAR1 VAR2 VAR3 VAR4 VAR5 VAR5-1 

AVG1 1.29 1.24 1.25 1.39 1.01 -0.28 

AVG2 1.31 1.36 1.27 1.20 1.26 -0.05 

AVG3 1.26 1.27 1.18 1.29 1.05 -0.20 

AVG4 1.20 1.36 1.19 1.23 1.07 -0.13 

AVG5 1.01 1.16 1.23 1.14 0.79 -0.22 

AVG5-1 -0.27 -0.08 -0.01 -0.25 -0.21   

 
 
Panel B: t-Statistics 

  VAR1 VAR2 VAR3 VAR4 VAR5 VAR5-1 

AVG1 4.39 4.81 5.10 5.20 3.13 2.01 

AVG2 4.98 6.05 5.92 5.50 4.36 0.39 

AVG3 4.92 5.70 5.64 6.04 4.07 1.66 

AVG4 4.30 6.05 5.44 5.51 3.93 1.11 

AVG5 2.88 4.39 4.63 4.22 2.46 1.64 

AVG5-1 1.53 0.67 0.11 2.01 1.61   
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Table B.2  Time-Series Betas and Expected Excess Returns 

Time-series betas and expected excess returns for test-asset and Fama and French 48 industry portfolios.  Factors 
to explain returns include the cross-sectional average of crime growth, the cross-sectional variance of crime 
growth, and their respective mimicking portfolios (CMP Avg and CMP Var).  Expected returns are calculated using 
the betas indicated below, and the prices of risk from column 4 of Table 2.2 for the crime factors and column 4 of 
Panel A of Table 2.6 for the CMP factors.  Test-assets are indicated in the first column.  Portfolios are sorted by 
CMP expected returns.  Heteroskedasticity consistent standard errors are used to calculated t-statistics for the 
crime factors, while wild-bootstrapped standard errors with 10,000 replications are used for the CMP factors 
which account for estimation error in both the first and second stages.  Data covers March 1975 to December 
2012. 
 
Panel A: Size and book to market portfolios 

Test 
Asset 

Ret 
Avg 

Ret 
SD 𝛽𝑔 t 𝛽𝑣 t 𝐸[𝑅] 𝛽𝐶𝑀𝑃 𝐴𝑣𝑔 t 𝛽𝐶𝑀𝑃 𝑉𝑎𝑟 t 𝐸[𝑅𝐶𝑀𝑃] 

S2B1 0.58 7.15 0.22 1.77 -0.15 1.06 0.46 17.87 4.00 -12.89 2.98 0.32 

S5B3 0.57 4.52 0.05 0.64 0.01 0.05 0.50 3.70 3.36 -1.65 1.55 0.34 

S1B1 0.27 7.92 0.23 1.58 -0.15 0.90 0.40 20.31 3.98 -15.00 3.04 0.36 

S3B1 0.64 6.61 0.19 1.70 -0.20 1.48 0.66 15.17 3.94 -11.36 3.06 0.44 

S4B1 0.74 5.98 0.15 1.50 -0.19 1.62 0.76 12.14 3.88 -9.33 3.10 0.51 

S5B4 0.61 4.44 0.04 0.48 -0.04 0.47 0.68 4.56 3.50 -3.33 2.66 0.53 

S5B2 0.68 4.59 0.06 0.70 -0.03 0.37 0.60 4.12 3.38 -3.03 2.60 0.53 

S5B5 0.71 5.10 0.08 0.94 -0.04 0.40 0.55 7.26 3.73 -5.55 2.98 0.54 

S1B2 0.94 6.72 0.20 1.52 -0.17 1.24 0.59 16.91 3.85 -13.93 3.31 0.66 

S4B2 0.75 5.19 0.08 0.92 -0.12 1.12 0.79 7.93 3.62 -6.88 3.30 0.69 

S2B2 0.85 5.83 0.18 1.82 -0.23 1.95 0.79 13.41 3.79 -11.49 3.40 0.73 

S3B2 0.91 5.44 0.14 1.59 -0.17 1.56 0.75 10.37 3.66 -9.30 3.47 0.78 

S4B4 0.85 4.78 0.07 0.94 -0.13 1.39 0.81 6.99 3.49 -6.63 3.49 0.78 

S4B3 0.79 5.17 0.10 1.23 -0.14 1.40 0.77 7.07 3.42 -6.81 3.49 0.80 

S4B5 0.89 5.33 0.09 1.06 -0.16 1.55 0.85 7.77 3.45 -7.48 3.52 0.82 

S5B1 0.51 4.75 0.07 0.87 -0.09 1.02 0.73 5.15 3.13 -5.42 3.52 0.83 

S3B4 0.94 4.91 0.06 0.81 -0.09 0.93 0.74 7.75 3.38 -7.81 3.63 0.89 

S3B3 0.90 4.95 0.10 1.26 -0.17 1.81 0.87 8.36 3.45 -8.37 3.67 0.90 

S1B3 0.99 5.74 0.18 1.71 -0.17 1.37 0.62 13.13 3.61 -12.43 3.63 0.95 

S2B3 1.02 5.25 0.11 1.31 -0.16 1.50 0.80 10.79 3.51 -10.64 3.69 0.96 

S2B4 1.05 5.18 0.11 1.30 -0.16 1.55 0.79 9.56 3.36 -10.13 3.81 1.05 

S1B4 1.12 5.39 0.12 1.32 -0.17 1.45 0.77 11.35 3.44 -11.69 3.79 1.08 

S3B5 1.16 5.39 0.07 0.80 -0.15 1.43 0.90 8.38 3.17 -9.48 3.87 1.11 

S1B5 1.22 5.88 0.14 1.43 -0.19 1.45 0.78 11.75 3.35 -12.58 3.85 1.18 

S2B5 1.04 5.97 0.15 1.48 -0.23 1.92 0.89 11.07 3.31 -12.10 3.87 1.20 
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Panel B: 12-month price momentum portfolios 

Test 
Asset 

Ret 
Avg 

Ret 
SD 𝛽𝑔 t 𝛽𝑣 t 𝐸[𝑅] 𝛽𝐶𝑀𝑃 𝐴𝑣𝑔 t 𝛽𝐶𝑀𝑃 𝑉𝑎𝑟 t 𝐸[𝑅𝐶𝑀𝑃] 

MO1 -0.12 8.26 0.22 1.67 -0.24 1.52 0.70 13.52 3.86 -9.80 2.90 0.40 

MO2 0.44 6.24 0.09 0.98 -0.07 0.60 0.59 8.66 3.67 -6.89 3.05 0.58 

MO4 0.62 4.71 0.04 0.57 -0.07 0.83 0.75 5.69 3.53 -4.75 3.09 0.62 

MO8 0.79 4.51 0.08 1.08 -0.04 0.39 0.52 5.30 3.48 -4.52 3.13 0.64 

MO6 0.56 4.49 0.10 1.32 -0.05 0.50 0.50 4.98 3.42 -4.33 3.15 0.65 

MO10 1.12 6.40 0.15 1.29 -0.14 1.11 0.64 11.36 3.73 -9.47 3.26 0.66 

MO3 0.56 5.30 0.07 0.84 -0.11 1.14 0.78 6.62 3.51 -5.76 3.22 0.67 

MO5 0.49 4.45 0.05 0.70 -0.08 0.88 0.73 5.46 3.44 -4.89 3.26 0.68 

MO9 0.81 4.96 0.14 1.58 -0.10 0.92 0.55 5.83 3.45 -5.26 3.29 0.70 

MO7 0.65 4.43 0.05 0.66 -0.03 0.33 0.60 4.39 3.18 -4.26 3.29 0.72 

 

Panel C: Total accruals portfolios 

Test 
Asset 

Ret 
Avg 

Ret 
SD 𝛽𝑔 t 𝛽𝑣 t 𝐸[𝑅] 𝛽𝐶𝑀𝑃 𝐴𝑣𝑔 t 𝛽𝐶𝑀𝑃 𝑉𝑎𝑟 t 𝐸[𝑅𝐶𝑀𝑃] 

TA2 0.70 5.23 0.14 1.61 -0.04 0.41 0.38 8.44 3.83 -6.21 2.93 0.48 

TA10 0.38 6.45 0.15 1.43 -0.16 1.15 0.67 11.20 3.84 -8.48 3.02 0.50 

TA3 0.60 4.86 0.05 0.57 -0.05 0.52 0.67 6.59 3.69 -4.88 2.84 0.51 

TA1 0.61 6.26 0.18 1.73 -0.06 0.53 0.32 9.97 3.74 -7.87 3.09 0.57 

TA4 0.67 4.41 0.06 0.76 -0.07 0.79 0.70 5.93 3.65 -4.72 3.03 0.58 

TA6 0.68 4.42 0.03 0.46 -0.04 0.51 0.69 5.76 3.47 -5.14 3.27 0.69 

TA8 0.52 5.06 0.11 1.33 -0.11 1.06 0.64 6.95 3.55 -6.12 3.30 0.69 

TA5 0.67 4.20 0.08 1.09 -0.12 1.45 0.79 5.27 3.41 -4.95 3.40 0.72 

TA9 0.52 5.73 0.12 1.29 -0.14 1.15 0.71 9.30 3.61 -8.30 3.39 0.75 

TA7 0.48 4.67 0.06 0.82 -0.12 1.27 0.81 5.75 3.22 -6.00 3.59 0.85 

 

Panel D: Asset growth portfolios 

Test 
Asset 

Ret 
Avg 

Ret 
SD 𝛽𝑔 t 𝛽𝑣 t 𝐸[𝑅] 𝛽𝐶𝑀𝑃 𝐴𝑣𝑔 t 𝛽𝐶𝑀𝑃 𝑉𝑎𝑟 t 𝐸[𝑅𝐶𝑀𝑃] 

AG10 0.24 6.75 0.26 2.37 -0.17 1.20 0.38 12.68 3.99 -8.38 2.72 0.25 

AG9 0.47 5.73 0.12 1.27 -0.09 0.81 0.57 9.76 3.78 -7.63 3.08 0.55 

AG4 0.71 4.04 0.04 0.62 -0.03 0.39 0.63 5.13 3.59 -4.12 3.01 0.59 

AG6 0.64 4.41 0.06 0.85 -0.11 1.22 0.79 5.14 3.49 -4.40 3.13 0.64 

AG7 0.59 4.67 0.08 1.01 -0.10 1.02 0.71 6.43 3.58 -5.47 3.20 0.64 

AG2 0.92 5.06 0.02 0.26 -0.05 0.49 0.75 7.89 3.58 -6.98 3.33 0.71 

AG8 0.61 5.37 0.05 0.57 -0.06 0.57 0.69 8.08 3.54 -7.20 3.33 0.72 

AG5 0.67 4.33 0.04 0.62 -0.07 0.81 0.73 5.24 3.36 -4.96 3.37 0.73 

AG1 0.88 5.97 0.09 0.89 -0.16 1.28 0.88 11.24 3.69 -9.82 3.39 0.74 

AG3 0.75 4.64 0.08 1.05 -0.11 1.15 0.73 6.01 3.41 -5.69 3.42 0.75 
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Panel E: Share issuance portfolios 

Test 
Asset 

Ret 
Avg 

Ret 
SD 𝛽𝑔 t 𝛽𝑣 t 𝐸[𝑅] 𝛽𝐶𝑀𝑃 𝐴𝑣𝑔 t 𝛽𝐶𝑀𝑃 𝑉𝑎𝑟 t 𝐸[𝑅𝐶𝑀𝑃] 

SI10 0.18 5.47 0.15 1.68 -0.12 1.10 0.57 9.00 3.87 -6.44 2.88 0.44 

SI9 0.39 5.24 0.12 1.37 -0.09 0.87 0.59 8.48 3.82 -6.40 3.00 0.51 

SI8 0.51 5.21 0.09 1.09 -0.05 0.54 0.56 8.50 3.75 -6.66 3.07 0.56 

SI7 0.59 5.24 0.11 1.30 -0.07 0.72 0.55 8.50 3.75 -6.74 3.10 0.57 

SI4 0.77 4.47 0.03 0.41 -0.04 0.40 0.68 5.33 3.45 -4.65 3.18 0.66 

SI3 0.64 4.29 0.04 0.54 -0.07 0.76 0.74 4.96 3.41 -4.41 3.20 0.67 

SI6 0.68 5.22 0.07 0.80 -0.11 1.14 0.79 8.00 3.61 -6.96 3.30 0.69 

SI2 0.74 4.38 0.11 1.42 -0.07 0.73 0.53 4.67 3.26 -4.47 3.33 0.72 

SI5 0.68 4.90 0.08 0.96 -0.10 1.05 0.73 6.72 3.42 -6.41 3.46 0.78 

SI1 1.09 4.59 0.07 0.91 -0.13 1.36 0.82 5.92 3.35 -5.81 3.50 0.79 

 

Panel F: Profitability (ROE) portfolios 

Test 
Asset 

Ret 
Avg 

Ret 
SD 𝛽𝑔 t 𝛽𝑣 t 𝐸[𝑅] 𝛽𝐶𝑀𝑃 𝐴𝑣𝑔 t 𝛽𝐶𝑀𝑃 𝑉𝑎𝑟 t 𝐸[𝑅𝐶𝑀𝑃] 

ROE1 -0.09 8.80 0.16 1.08 -0.06 0.32 0.36 19.98 3.96 -14.15 2.90 0.25 

ROE2 0.37 7.62 0.13 1.06 -0.07 0.49 0.49 15.95 3.92 -11.59 2.95 0.37 

ROE3 0.39 5.94 0.21 2.17 -0.16 1.39 0.53 11.16 3.90 -8.29 3.02 0.47 

ROE6 0.66 4.64 0.09 1.16 -0.10 1.04 0.69 7.22 3.80 -5.41 2.95 0.52 

ROE5 0.51 4.50 0.08 1.12 -0.04 0.43 0.53 7.64 3.81 -5.80 3.00 0.53 

ROE7 0.52 4.70 0.07 0.92 -0.05 0.56 0.60 6.95 3.72 -5.36 2.99 0.55 

ROE4 0.48 5.13 0.09 1.13 -0.13 1.29 0.78 8.69 3.78 -6.80 3.08 0.56 

ROE8 0.58 4.71 0.06 0.77 -0.03 0.31 0.57 6.08 3.55 -5.17 3.16 0.64 

ROE9 0.70 4.55 0.11 1.43 -0.11 1.17 0.65 5.72 3.48 -5.14 3.30 0.69 

ROE10 0.65 4.57 0.04 0.54 -0.07 0.71 0.73 5.17 3.29 -4.93 3.33 0.73 
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Table B.3  Firm-Level Estimates Using Crime Mimicking Portfolios (CMPs) 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
CMP betas for each firm are estimated following Dimson (1972) with one lag over a 60-month rolling window.  
Each month, firms are sequentially sorted first into 10 portfolios by the variance of crime growth mimicking 
portfolio (CMP Var) beta and then into an additional 10 portfolios by the average of crime growth mimicking 
portfolio (CMP Avg) beta, for a total of 100 equal weighted portfolios.  Full time series betas are estimated for all 
100 portfolios, and assigned to the firms that belong to each portfolio.  Prices of risk and standard errors are 
calculated as in equations (2.16) and (2.17) respectively.  All NYSE, AMEX, and NASDAQ stocks in CRSP with prices 
greater than $5 are included.  𝑅̅𝐹𝑀

2  denotes the average cross-sectional adjusted r-squared, while 𝑁 denotes the 
average cross-sectional number of test-assets across all T periods.  In brackets are t-statistics that use Fama and 
MacBeth standard errors. 
 
 
Panel A: March 1980 to December 2012 

  (1) (2) (3) 

𝛾𝐶𝑀𝑃 𝐴𝑣𝑔  -0.073 
 

-0.083 
 [2.147]  [2.325] 

𝛾𝐶𝑀𝑃 𝑉𝑎𝑟 -0.098 
 

-0.092 
 [2.393]  [2.077] 

𝛾𝑀𝐾𝑇  
 

0.107 0.270 
  [0.249] [0.618] 

𝛾𝑆𝑀𝐵  
 

0.201 0.065 
  [0.729] [0.252] 

𝛾𝐻𝑀𝐿 
 

0.567 0.093 
  [2.062] [0.398] 

𝛾0 0.652 0.404 0.487 
 [3.478] [1.549] [1.874] 

𝑅̅𝐹𝑀
2  0.027 0.027 0.030 

𝑁 2729 2729 2729 

𝑇 394 394 394 
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Panel B: July 1957 to December 2013 

  (1) (2) (3) 

𝛾𝐶𝑀𝑃 𝐴𝑣𝑔  -0.059 
 

0.001 
 [2.135]  [0.023] 

𝛾𝐶𝑀𝑃 𝑉𝑎𝑟 -0.085 
 

-0.050 
 [2.687]  [1.588] 

𝛾𝑀𝐾𝑇  
 

0.496 0.388 
  [1.317] [1.025] 

𝛾𝑆𝑀𝐵  
 

0.042 -0.019 
  [0.205] [0.096] 

𝛾𝐻𝑀𝐿 
 

0.541 0.431 
  [2.604] [2.441] 

𝛾0 0.595 0.133 0.309 
 [4.386] [0.546] [1.225] 

𝑅̅𝐹𝑀
2  0.032 0.032 0.034 

𝑁 2204 2204 2204 

𝑇 678 678 678 
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Table B.4  Expected Return Portfolio Sorts using Crime Mimicking Portfolios (CMPs) 

Portfolios sorted by expected returns are generated using the following procedure.  First, using all NYSE, NASDAQ, 
and AMEX stocks from CRSP with prices greater than $5, rolling 60-month crime mimicking portfolio exposures for 
each stock are estimated following (2.14).  Second, expected returns are estimated using both the estimated crime 
betas and prices of risk for the firm-level regressions in the first column of Table B.3.  Third, within each NYSE size 
quintile each stock is sorted by its expected return and placed into quintiles, with Q5 having the highest expected 
returns while Q1 has the lowest expected returns.  The resulting quintile portfolios are equal weighted and 
rebalanced monthly.   
 
Panel A:  March 1980 to December 2012 

Quintile Avg t-stat 

Q1 (Low) 1.029 3.59 

Q2 1.190 5.23 

Q3 1.270 5.72 

Q4 1.240 5.24 

Q5 (High) 1.271 4.55 

Q5-Q1 0.242 2.07 

 

 

Panel B: July 1957 to December 2013 

Quintile Avg t-stat 

Q1 (Low) 1.066 5.23 

Q2 1.198 6.75 

Q3 1.223 6.78 

Q4 1.272 6.58 

Q5 (High) 1.226 5.45 

Q5-Q1 0.160 1.84 
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Table B.5  CMP Beta Sorted Portfolios as Test Assets 

Cross-sectional regression estimates of monthly risk premia following the Fama and MacBeth (1973) procedure.  
Factors to explain test-asset returns include the cross-sectional average of crime growth mimicking portfolio (CMP 
Avg), the cross-sectional variance of crime growth mimicking portfolio (CMP Var), and the Fama and French (1993) 
three factors (MKT, SMB, and HML).  Test-assets include firms sorted by their crime betas.  Betas for each firm are 
estimated following Dimson (1972) with one lag over a 60-month rolling window.  Each month, firms are 
sequentially sorted first into 5 portfolios by the variance of crime growth beta and then into an additional 5 
portfolios by the average of crime growth beta, for a total of 25 equal weighted portfolios.  MAPE is the mean 
absolute pricing errors.  The 𝑇2 statistic and its associated p-value tests the null that the pricing errors are jointly 
zero.  In brackets are t-statistics that use Fama and MacBeth standard errors, and in braces are t-statistics that use 
GMM standard errors with a Newey-West spectral density matrix with 12 lags. Returns are monthly and over the 
period indicated in the panel title. 

 
Panel A: March 1980 to December 2012 

  (1) (2) (3) 

𝛾𝐶𝑀𝑃 𝐴𝑣𝑔 -0.076 
 

-0.123 
 [2.167]  [2.799] 

 {1.715}  {2.175} 

𝛾𝐶𝑀𝑃 𝑉𝑎𝑟 -0.103 
 

-0.102 
 [2.406]  [2.027] 

 {1.960}  {1.593} 

𝛾𝑀𝐾𝑇 
 

0.050 0.264 
  [0.095] [0.516] 

  {0.080} {0.440} 

𝛾𝑆𝑀𝐵  
 

0.270 0.041 
  [0.808] [0.136] 

  {0.732} {0.123} 

𝛾𝐻𝑀𝐿 
 

0.635 -0.181 
  [2.061] [0.617] 

  {1.451} {0.533} 

𝛾0 0.645 0.398 0.585 
 [3.482] [1.251] [1.856] 

 {2.902} {0.917} {1.442} 

𝑅̅𝑂𝐿𝑆
2  0.641 0.420 0.629 

MAPE 0.055 0.075 0.050 

𝑇2 20.398 24.415 18.015 

p-value 0.558 0.273 0.521 

GRS F 1.597 1.519 1.364 

p-value 0.036 0.055 0.116 
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Panel B: July 1957 to December 2013 

  (1) (2) (3) 

𝛾𝐶𝑀𝑃 𝐴𝑣𝑔 -0.064 
 

-0.005 
 [2.240]  [0.128] 

 {1.847}  {0.111} 

𝛾𝐶𝑀𝑃 𝑉𝑎𝑟 -0.093 
 

-0.054 
 [2.797]  [1.543] 

 {2.380}  {1.341} 

𝛾𝑀𝐾𝑇 
 

0.524 0.500 
  [1.110] [1.064] 

  {0.759} {0.767} 

𝛾𝑆𝑀𝐵  
 

0.042 -0.056 
  [0.171] [0.233] 

  {0.137} {0.180} 

𝛾𝐻𝑀𝐿 
 

0.576 0.420 
  [2.600] [2.080] 

  {1.743} {1.630} 

𝛾0 0.582 0.094 0.229 
 [4.318] [0.305] [0.700] 

 {3.467} {0.189} {0.483} 

𝑅̅𝑂𝐿𝑆
2  0.532 0.575 0.572 

MAPE 0.056 0.055 0.053 

𝑇2  29.266 29.037 27.107 

p-value 0.137 0.113 0.102 

GRS F 1.861 1.565 1.417 

p-value 0.007 0.040 0.087 

 

 

 


