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ABSTRACT

Analysis of Coarsening of Complex Structures

by

Chal-Lan Park

Chair: Katsuyo Thornton

Coarsening is an ubiquitous phenomenon that alters the microstructure of the mate-

rial and its properties. While coarsening of spherical particles has been extensively

studied over the last half century, the understanding of coarsening of complex mi-

crostructures is still at an early stage. The complex morphology and topology pose

difficulty in establishing a theory of coarsening of such microstructures. In an effort

to elucidate the dynamics of coarsening, we examine the morphological evolution of

bicontinuous structures simulated using the phase-field method. To improve the ac-

curacy of the calculation of interfacial characteristics of the simulated structures, we

develop a numerically efficient smoothing algorithm termed “level-set smoothing.”

We employ statistical analyses to uncover correlations between interfacial character-

istics, such as curvatures, and their rate of changes, such as interfacial velocities and

rate of change of curvatures. As the framework for the coarsening theory develop-

ment, we propose to consider the evolution as a consequence of (i) the interfacial

velocity induced by diffusion and (ii) the resulting evolution of the interfacial curva-

tures. As a first step, we examine the evolution of a bicontinuous structure simulated

via nonconserved dynamics, in which the interfacial velocity is proportional to the

xix



local mean curvature, in order to focus on the second aspect of the evolution (ii).

We find that, while the interfacial velocity is locally determined, the evolution of

mean curvature is nonlocal and depends on the curvatures of the nearby interfaces.

As a second step, we examine the evolution of bicontinuous structures simulated via

conserved dynamics to investigate both aspects of the evolution, (i) and (ii). Here,

we find that the interfacial velocity is correlated with both the mean curvature and

the surface Laplacian of mean curvature. Based on these correlations, we employ a

semi-analytical approach to predict the average rate of change of mean curvature,

which is found to be consistent with the simulation results. Lastly, in an effort to

develop a theory of coarsening of complex microstructures, we derive a general con-

tinuity equation of interfacial area to predict the evolution of the overall morphology

of a microstructure undergoing coarsening. Simulation of rods undergoing pinching

is also conducted to provide insights into the source term arising from topological

singularity.
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CHAPTER I

Introduction

1.1 General Background and Motivations

Coarsening is a ubiquitous phenomenon that naturally occurs in a wide range

of materials, such as metallic alloys [1, 2, 3, 4, 5, 6, 7], polymers [8, 9, 10, 11, 12,

13, 14], and semiconductors [15, 16, 17, 18, 19, 20]. During coarsening, the total

interfacial area of a microstructure decreases to reduce excess free energy associated

with the existence of phase boundaries. Therefore, coarsening can play a key role in

determining the morphology and the topology of the microstructure of a material.

Coarsening is generally preceded by phase separation, where a single-phase system

transforms into a two-phase system. Regardless of whether the phase transformation

is initiated by spinodal decomposition or nucleation, once the concentrations of the

newly formed phases are close to their equilibrium values, the microstructure begins

to coarsen [21].

The study of coarsening is important because the microstructure of a material

often has a strong influence on its properties. For example, during casting of metal-

lic alloys, solid-liquid dendritic mixtures frequently form at temperatures above the

eutectic temperature. If the removal of heat is sufficiently slow, the dendrites begin

to coarsen [2, 22, 23, 24, 25, 26]. The resulting evolution of the shape and size dis-

tributions of the dendrites during coarsening alters the properties of the cast alloy.
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In the case of an Al-Si cast alloy, as the secondary dendritic arm spacings increase,

the corrosion resistance improves and the tensile strength decreases [27, 28]. In the

case of nickel/yttria-stabilized zirconia (Ni/YSZ) cermet, which is a widely used an-

ode material in solid oxide fuel cells (SOFC), the coarsening of Ni particles in the

anode reduces the density of triple-phase boundaries, thus significantly diminishing

the electrochemically active regions and degrading the electrochemical performance

of the SOFC over time [29, 30, 31].

Coarsening is driven by the Gibbs-Thomson effect, which describes the dependence

of interfacial chemical potential on interfacial curvature. Consider a two-component

(A & B) system with the matrix phase α and B-rich spherical precipitate phase β

as shown in Figure 1.1a. Since the interfaces between the two phases have finite

curvatures, the pressure at the curved interface will be larger than its equilibrium

value based on the Young-Laplace equation

Pr = P∞ + 2γH , (1.1)

where Pr is the pressure at the curved interface, P∞ is the pressure at a flat interface,

γ is the interfacial energy, and H is the interfacial mean curvature [32].

Since the Gibbs free energy is a function of pressure, the increase in pressure will

result in the increase in the free energy of the precipitates. This increase in free energy

is represented with the upward movement of the free energy curve of the β phase in

Figure 1.1b, where Gβ
∞ and Gβ

r are the free energy curves of the β phase at a flat

interface and a curved interface, respectively, while ΔGβ
γ is the amount of increase. As

depicted by the free energy diagram, this upward movement of the free energy curve

shifts the equilibrium solute concentration of the matrix phase from Cα
∞ to Cα

r , where

Cα
∞ and Cα

r are the solute concentration of the matrix phase at a flat interface and

a curved interface, respectively [33]. Since the shift in the free energy is dependent
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Figure 1.1: a) A schematic of the B-rich precipitate phase β embedded in the matrix
phase α. b) Free energy diagram that shows the increase in the solubility of the
solute in the matrix phase at the curved interface between the α matrix and the β
precipitate.
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on the curvature of the interface, high-curvature regions have higher concentration of

solute than the low-curvature regions, as described by the Gibbs-Thomson equation,

Cα
r = Cα

∞ + 2lH . (1.2)

Here, the capillary length l is defined as

l =
V β

mγ
(
Cβ

∞ − Cα
∞

)
Gα

m
′′

, (1.3)

where Cβ
∞ and Gα

m
′′ are the equilibrium concentration of the precipitate phase and

the second derivative of the molar Gibbs free energy of the matrix phase with respect

to solute composition, respectively [32]. Thus, the driving force of coarsening is the

solute concentration gradient, which arises from the variation of curvature along the

interfaces. With this information, a theory of coarsening can be developed to elucidate

how the morphology and topology of a microstructure evolves.

The simplest material system in which to develop a theory of coarsening is the

spherical precipitates embedded in the matrix phase. For such systems, in the absence

of interfacial misfit and other effects, the radius of a particle alone determines the

interfacial chemical potential and thus interfacial concentration. As the result of the

Gibbs-Thomson effect, larger particles grow at the expense of the smaller particles

while the volume fraction of the particle phase remains constant. Thus, the number

density of particles decreases while the average size of the particles increases, as shown

in Fig. 1.2, in which the length scales of the micrographs of the solid Sn particles

undergoing coarsening in the Pb-Sn liquid matrix are scaled by the average particle

size.

The theory of coarsening of spherical particles has already been developed in the

past. In the 1960s, Lifshitz and Slyozov [35], and Wagner [36] independently derived

4



Figure 1.2: Micrographs of the solid Sn particles, shown in white, in the Pb-Sn liquid
matrix, shown in black, at various coarsening times. These micrographs are scaled by
the plane-section average radius at each coarsening time. Adapted with permission
from [34]. Copyright 2016 by Elsevier.
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an analytical theory of coarsening (now commonly referred to as the LSW theory) that

describes both the local and the ensemble behavior of spherical precipitates during

coarsening. Three major assumptions behind this theory are that these precipitates

are spherical in geometry resulting from isotropic interfacial energy, the volume frac-

tion of the precipitate phase is negligible (and thus the diffusion fields from individual

precipitates do not overlap) and only the Gibbs-Thomson effect is considered (i.e.,

other effects that alter the chemical potential are neglected). In addition, it is as-

sumed that the interfacial velocity is sufficiently small such that the concentration

field remains near equilibrium (i.e., the quasi-static approximation). Thus, the con-

centration field of solute atoms in the matrix phase is described by the solution to

the Laplace equation

∇2C = 0 , (1.4)

with the solute concentration along the interfaces defined by Eq. (1.2) as the bound-

ary condition. By combining the solution of Eq. (1.4) in spherical coordinates and

the interfacial mass balance condition, Lifshitz, Slyozov, and Wagner derived the

growth rate of a spherical particle with radius, R, in a system of particles undergoing

coarsening as

dR

dt
= A0

1

R

(
1

Rc

−
1

R

)

, (1.5)

where t is time, A0 is a material parameter, and Rc is the critical radius. This growth

rate indicates that particles with radii greater than Rc grow, while particles with

radii smaller than Rc contract. As a result, the number of particles in the system

decreases while the average particle size increases during Ostwald ripening (another

terminology for coarsening). Further derivation shows Rc to be equal to 〈R〉, the

average radius of particles in the system.
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In addition, the LSW theory characterizes the overall morphology of the partic-

ulate system with the particle size distribution, f (R, t), as a function of radius and

time. The evolution of the particle size distribution is described by the continuity

equation

∂f

∂t
+

∂

∂R

(

f
dR

dt

)

= 0 . (1.6)

This continuity equation does not take account discontinuous changes in particle

size resulting from nucleation or coalescence. After scaling R by the time-dependent

〈R〉, the LSW theory presents the expression for the time-independent particle size

distribution from the solution of Eq. (1.6), the scaled distribution is shown in Fig.

1.3. The time-independent particle size distribution implies that the particle system

undergoes self-similar evolution during coarsening. Furthermore, the LSW theory

predicts that this time-dependent characteristic length scale of the system, 〈R〉, obeys

a temporal growth law

〈R(t)〉3 − 〈R(t0)〉
3 = K0t , (1.7)

where 〈R(t0)〉 and 〈R(t)〉 are the average particle size at the onset of coarsening at time

t0 and at some following time t, respectively, and K0 is the rate constant. Knowledge

of the time-independent particle size distribution and the temporal law regarding

the average particle size enables accurate prediction of the overall morphology of the

microstructure during coarsening.

In contrast, the understanding of the dynamics of coarsening in materials with

complex microstructures is still at an early stage. An attempt to derive the theory

of coarsening based solely on an analytical approach in these materials is extremely

challenging, if not impossible. This is because, unlike the simple spherical geometry

used in the LSW theory, their complex morphology and topology pose difficulties in
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Figure 1.3: The time-independent particle size distribution f(R/ 〈R〉) of spherical
particles presented in Wagner’s analysis. Adapted with permission from [36]. Copy-
right 2016 by John Wiley and Sons.

solving the free-boundary problem of the interfacial motion. Therefore, one must rely

on experimental and computational approaches to gather insights into the kinetics of

interfacial motion during coarsening.

The development of theory of coarsening requires accurate quantification of the

morphology. Two types of complex microstructures that are commonly found in na-

ture are the dendritic and bicontinuous microstructures. Dendrites often form during

solidification and are observed, for example, in metal castings [37]. On the other

hand, bicontinuous structures, in which two phases interpenetrate one another and

each is connected to itself throughout, typically form during phase decomposition

such as spinodal decomposition in polymers [38, 39]. Examples of dendritic and bi-

continuous structures are shown in Fig. 1.4. The spatially varying curvatures of these

structures imply that the local morphology must be characterized by interfacial cur-

vatures, rather than a length scale associated with each region (e.g., the radius of a

particle for systems containing spherical particles). In contrast, the overall morphol-

ogy must be statistically quantified through a distribution function defined on the
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(a) (b)

Figure 1.4: (a) A three-dimensional reconstruction of Al dendrite in Al-15 wt.%Cu
alloy. Adapted with permission from [41]. Copyright 2016 by Springer. (b) a sim-
ulated bicontinuous structure resulting from spinodal decomposition. Adapted with
permission from [42]. Copyright 2016 by Taylor & Francis.

interfacial curvature space, analogous to how the overall morphology of a microstruc-

ture consisting of spherical particles is quantified by a particle size distribution as a

function of radius. While the morphologies of dendritic mixtures of metallic alloys

[26] and simulated bicontinuous structures [40] have been accurately quantified by

interfacial curvature measurements, the development of theory of coarsening also re-

quires understanding of the dynamics of coarsening. Thus, in this dissertation, we

examine both interfacial curvatures and their rate of changes in our analysis to eluci-

date the complex dynamics of coarsening. Hereafter, interfacial characteristics such

as curvatures, as well as their rate of changes such as interfacial velocity and rate of

change of curvatures, will be referred to as interfacial quantities.
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1.2 Overview and Outline of Dissertation

As stated above, the ultimate goal of this work is to develop the theory of coarsen-

ing of complex microstructures. This requires a simplification of the dynamics because

the complex morphology and topology of the structure alone introduces complications.

Therefore, we begin with a simplified mathematical description of the process, based

solely on the thermodynamic driving force from interfacial free energy and excluding

other effects such as elastic stress and unequal mobilities in different phases. Compu-

tational approaches can then be used to simulate the coarsening dynamics and gain

insights into the process.

As the framework for the coarsening theory development, we propose to consider

the evolution as a consequence of (i) the interfacial velocity induced by diffusion

and (ii) the resulting evolution of the interfacial curvatures. The framework begins

with the generation of microstructural data with complex morphologies and accurate

quantification of interfacial quantities of the simulated structures. Based on statistical

analysis, correlations between interfacial characteristics and their rate of changes are

uncovered to elucidate both aspects of interfacial motion. Lastly, as in the LSW

theory, a continuity equation is derived to obtain the time-independent curvature

distribution that can characterize the self-similar morphology of a complex structure.

The outline of the following chapters in the dissertation is as follows :

• Chapter II discusses the interfacial curvatures and the curvature distribution

that are used to quantify the interfacial morphology and the overall morphol-

ogy of complex structures, respectively. In addition, a literature review on the

topics of coarsening of spherical particles, dendritic microstructures, and bicon-

tinuous structures are presented. Lastly, the chapter also contains background

information of the phase-field method and the finite difference method.

• Chapter III details the development and the validation of the level-set smoothing
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method, which allows accurate calculation of interfacial quantities, including

both static and dynamic interfacial quantities. Numerical algorithms that can

be used to calculate the aforementioned interfacial quantities are also described.

• Chapter IV examines the coarsening of a bicontinuous structure simulated via

nonconserved dynamics. Examination of the evolution via nonconserved dy-

namics is the ideal starting point to elucidate the complex dynamics of coars-

ening since the kinetics is in the simplest form as it is driven by motion by

mean curvature. The analysis in this chapter focuses on the second aspect of

interfacial evolution, (ii) evolution of interfacial curvature given the interfacial

velocity.

• Chapter V examines the coarsening of bicontinuous and nonbicontinuous struc-

tures simulated via conserved dynamics. In this chapter, we investigate the

dynamics of diffusion-driven coarsening, which requires the consideration of

both aspects of interfacial evolution: (i) the interfacial velocity induced by dif-

fusion and (ii) the resulting evolution of the interfacial curvatures. In the first

part of the chapter, the correlations between interfacial velocities and various

static interfacial quantities are examined. In the second part, based on the

aforementioned correlations, the evolution of average curvature is predicted.

• Chapter VI discusses preliminary work involving the derivation of a general

continuity equation in terms of the interfacial shape distribution and the mor-

phological evolution of a rod undergoing pinch-off, resulting in topological sin-

gularities.

• Chapter VII provides the overall summary of work, its potential application,

and future work.
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CHAPTER II

Background

2.1 Characterization of Morphology

The development of theory of coarsening requires accurate quantification of inter-

facial morphology and statistics of the overall morphology of complex microstructures.

This section briefly describes the interfacial curvatures and the curvature distribution

that are discussed in the subsequent literature review section and employed through-

out this dissertation.

2.1.1 Interfacial Curvatures

As stated in Chapter I, the morphologies of microstructures with intricate ge-

ometries need to be examined with interfacial curvatures. In differential geometry, a

smooth surface, which is at least twice differentiable in three-dimensional Euclidian

space R3, can be parameterized by r = r(u, v), where r is a vector function of two

independent parameters, u and v. The partial derivatives of r with respect to u and

v are denoted as ru and rv, which lie within the tangent plane of the surface. If ru

and rv are linearly independent, then r(u, v) is said to be parameterized regularly.

Thus, the unit normal vector is given by

n =
ru × rv

|ru × rv|
. (2.1)
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n

Figure 2.1: A schematic of a differentiable surface with a point P and a normal vector
n pointing outwards. The variables R1 and R2 indicate the radii of osculating circles
along the two principal coordinates. Their reciprocals κ1 and κ2 are the minor and
major principal curvatures of the surface at point P , respectively. Adapted with
permission from [41]. Copyright 2016 by Springer.

The second fundamental form of parametric surface, also known as the shape tensor,

is a quadratic expression describing the tangent plane to the smooth surface, defined

as

II = L du2 + M du dv + N dv2 , (2.2)

where the coefficients are the dot products of the second-order partial derivatives of

r with respect to the parameters and the normal vector: L = ruu ∙ n, M = ruv ∙ n,

and N = rvv ∙n. If ru and rv are orthogonal vectors that results in M = 0, then the

lines of curvatures which are aligned with ru and rv are called the lines of principal

curvatures. The normal curvatures defined along the lines of principal curvatures are

called the principal curvatures, κ1 and κ2, which represent the smallest and the largest

curvatures of a surface at a given point, respectively. Figure 2.1 shows the schematic

representation of the two principal curvatures defined at a point on a smooth surface.
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From the principal curvatures, we can define the mean curvature, H, and the

Gaussian curvature, K:

H =
1

2
(κ1 + κ2) , (2.3)

K = κ1κ2 . (2.4)

While the principal curvatures and the mean curvature have a dimension of 1/length,

the Gaussian curvature has a unit of 1/length2. The interfacial morphology can be

accurately described by either the two principal curvatures or the pair of mean and

Gaussian curvatures. Elliptic-shape surfaces have principal curvatures with an equal

sign, where the sign determines the concavity of surface. In terms of the mean and

Gaussian curvatures, the elliptic shapes have positive Gaussian curvatures and the

sign of the mean curvature determines the concavity. In addition, cylindrical shapes

have K = 0 since one of the principal curvatures is zero. In contrast, hyperbolic

shapes have principal curvatures with opposite signs, or equivalently, have negative

Gaussian curvatures. Hyperbolic shapes with H = 0 represent symmetric saddle-

shaped surfaces.

Neither H or K directly expresses the degree by which a surface is curved on its

own. To quantify the overall curvature of an interface, we define the net curvature,

d, defined as [43, 44]

d =

√
κ2

1 + κ2
2

2
. (2.5)

The factor of 1/2 ensures that the net curvature reduces to 1/R for a spherical shape

[43]. The advantage of using the net curvature is that the curviness of the interface

(and the inverse of the length scale of the feature) can be quantified with a single

metric. Figure 2.2 shows an example of two surfaces that have H = 0, yet clearly the

saddle-shaped surface in Fig. 2.2b has more bend to the surface than the flat surface

in Fig. 2.2a. While both surfaces have H = 0, they have different net curvatures

as the flat surface has d = 0 while the saddle-shaped surface has d > 0. A similar
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Figure 2.2: A schematic representation of (a) a flat surface with H = 0 and a sym-
metric saddle-shaped surface also with H = 0.

analogy can be made with cylinders with varying radii, in which both cylinders have

K = 0 but their net curvatures will vary depending on their radii. Thus, we will use

the net curvature throughout the dissertation to describe the overall curvature of a

surface.

2.1.2 Statistical Distribution of Overall Curvatures

The overall morphology of a complex microstructure can be characterized by a

probability distribution as a function of curvatures. While the probability distribution

in terms of the mean and Gaussian curvatures can describe the overall morphology,

this distribution is distorted because two curvatures have different units. An alterna-

tive approach is the probability distribution in terms of the principal curvatures, also

called the interfacial shape distribution (ISD) [41]. The interfacial shape distribution

is the probability, PISD(κ1, κ2), of finding an interface with a given pair κ1 and κ2,

which is defined as:

PISD(κ1, κ2) =
AISD(κ1, κ2)

AT

, (2.6)

where AISD(κ1, κ2) is the total surface area of all interfaces with given principal

curvatures and AT is the total surface area of the microstructure examined. This is

numerically evaluated by summing interfacial areas that have curvatures within the
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(a) (b)

Figure 2.3: (a) A graphical representation of interfacial shapes in the principal curva-
ture space where the interfacial shape distribution is defined. Labels ‘Ph1’ and ‘Ph2’
represent the two phases in the system. Adapted with permission from [41]. Copy-
right 2016 by Springer. (b) The ISD of the AC structure with isolines of constant
H and K. The principal curvature coordinates are scaled with characteristic length
scale S−1

v .
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range of κi
1±Δκ1/2 and κi

2±Δκ2/2, where κi
1 and κi

2 are the center values of the i-th

bin, and Δκ1 and Δκ2 are the bin sizes in κ1 and κ2, respectively. The bin sizes are

chosen such that there is sufficient statistics within the bin while providing sufficient

resolution on the curvature space. Labels 1 through 4 in Fig. 2.3a mark the four

regions of the ISD that represent different interfacial morphologies. Regions 1 and 4

represent elliptic interfaces and regions 2 and 3 represent saddle-shaped (hyperbolic)

interfaces. Figure 2.3b shows the ISD of the AC bicontinuous structure (details of the

structure are presented in Chapter IV) with isolines of constant H and K. The red

color represents high probability of finding an interface with a given pair of principal

curvatures and the dark color represents low probability, as shown on the color bar.

It can be observed from the ISD that most of the interfaces of the AC structure are

saddle-shaped (negative K). On the other hand, the net curvatures of the interfaces

can be determined by the distance between the point on the ISD map and the origin,

κ1 = κ2 = 0. Figure 2.4 shows the ISD map with isocurves of constant net curvatures

(green). The isocurves that are farther away from the origin represent interfaces with

higher net curvatures than isocurves closer to the origin.

2.2 Literature Review on the Study of Coarsening

2.2.1 Coarsening of Spherical Particles

The LSW theory presented in the previous chapter is based on the assumption

of near zero volume fraction of the particle phase, in which the particle coarsens

at a rate determined only by its size relative to the average particle size. Since

most experiments are carried out with a finite volume fraction of the coarsening

phase, their results have seldom agreed with the LSW theory. A series of subsequent

theoretical investigations and experiments have been conducted to develop a theory

that describes coarsening in nonzero volume fraction of the particle phase. At a
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Figure 2.4: The map of the interfacial shape distribution defined in the principal
curvature space, with isocurves of constant net curvature, d, displayed as green curves

finite volume fraction, the interparticle diffusional interaction plays a pivotal role

in the microstructural evolution and, as a result, the size and spatial distribution

of the particles influence the growth rate of individual particles [45]. For instance,

two particles with unequal sizes that are close to each other will experience higher

coarsening rate than two particles that have the same sizes but are farther away from

each other. Thus, in nonzero volume fractions, particles with the same size can have

different rates of coarsening depending on the spatial distribution of particles in the

vicinity.

Experimentally, Voorhees et al. has confirmed the dependence of growth rate

of individual particles on the spatial distribution of nearby particles by studying

the coarsening of liquid droplets in a solid matrix in which the coarsening phase

constitutes 3% of the volume fraction [46]. Figure 2.5 shows the plot of particle size

versus time for select particle sizes of the liquid droplets, in which a particle with

initial size of 47 microns contracts during coarsening. The contraction of a particle

with a size that is larger than the average particle size is the result of the presence
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Figure 2.5: A plot of particle size versus time for select particle sizes of the acetone-
rich liquid droplets in the succinonitrile matrix. A particle with initial size of 47
microns, which is larger than the average particle size, contracts over time (see the
arrow). Adapted with permission from [46]. Copyright 2016 by Elsevier.

of even larger particles in close proximity. This finding contradicts the LSW theory,

which states that particles with sizes larger than the average particle size always grow.

Thus, the representative growth rate of particles with a given radius in a system with

a finite volume fraction must be obtained by taking the average of the different growth

rates of the particles with a given radius.

The interparticle diffusional interactions can also alter the morphologies of par-

ticles undergoing coarsening. While the LSW theory assumes a spherical geometry

of the precipitates based on the isotropic interfacial energy, experiments have shown

that isotropic interfacial energy does not always result in spherical particles. Hardy

et al. have shown that, at high solid volume fraction, solid Sn particles in the Sn-Pb

eutectic liquid matrix evolve into non-spherical morphologies, even though their in-

terfacial energy is isotropic [47]. Figure 2.6 shows the micrographs of Sn particles at

various coarsening times, in a system with a high volume fraction of Sn particles. The

morphologies of the Sn particles are clearly non-spherical throughout the evolution.

Voorhees et al. verified this observation with a two-dimensional numerical simulation
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Figure 2.6: Micrographs of Sn particles in a Sn-Pb eutectic liquid matrix at various
coarsening times with variable magnification, which effectively scales the size of the
images with the average intercept length of the particles. Adapted with permission
from [47]. Copyright 2016 by Springer.

of the coarsening of four, initially circular, particles [48]. Figure 2.7 illustrates the

morphological evolution of the particle system, in which there are two particles with

larger radii that are closer to each other than the other two smaller particles. As the

two particles with larger radii grow and approach each other during coarsening, they

evolve into non-spherical shapes with flatter interfaces in the region between the two

larger particles. In addition, the same study has found that particles in a system with

a high volume fraction of the coarsening phase can shift their center-of-mass positions

[48].

Since large volume fractions of the coarsening phase can induce additional phe-

nomena such as morphological changes and particle migration, most theories of coars-

ening have focused on microstructural systems with a low volume fraction of the coars-

ening phase [49, 50, 51, 52, 53]. These theories of coarsening that account for interpar-

ticle diffusional interactions represent the particles in the microstructure as monopole

sources and sinks in the concentration field. The magnitude of the source/sink is de-

termined by the size of each particle, which determines the interfacial concentration

based on the Gibbs-Thomson condition. While the aforementioned theories alike rep-

resent the particles as sources and sinks to determine the growth rate of an individual
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Figure 2.7: Morphological evolution of a system of four initially circular particles
(top), in which there are two particles with larger radii that are closer to each other
than the other two smaller particles. At the later time (bottom), the larger parti-
cles become non-spherical. Adapted with permission from [48]. Copyright 2016 by
Elsevier.
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particle, each theory employs different statistical averaging scheme to determine the

average growth rate of particles for a given radius [45]. Nevertheless, all of the the-

oretical work have reported that the temporal power law of 〈R〉 ∝ t1/3 derived from

the LSW theory still holds for nonzero volume fractions, while the rate constant in-

creases with increasing volume fraction of the coarsening phase [49, 50, 51, 52, 53].

Moreover, it has been found that the time-independent particle size distribution be-

comes broader and more symmetric as the volume fraction of the coarsening phase

increases, as shown in Fig. 2.8 [49, 50, 51].

2.2.2 Coarsening of Dendritic Microstructures

As shown in Fig. 1.4, dendrites are tree-like structures that have side branches

(secondary, and sometimes tertiary, arms) growing out of the primary arms. Initial

studies of the evolution of dendritic microstructures have used the distance between

the secondary dendrite arms as the measure of characteristic length scale [2, 37, 54,

55]. The secondary arm spacing, λ2, increases with coarsening time, analogous to the

average particle size for a system of spherical particles, and is also easy to measure

from the two-dimensional micrographs. In the case of Al-Cu alloys with low solute

concentrations (less than 11 wt.% Cu), experimental observations have shown that

λ2 increases with t1/3, which is consistent with the temporal power law predicted by

the LSW theory [22]. In addition, it has been found that λ2 decreases with increasing

solute concentration up to the eutectic composition, in which the solid volume fraction

decreases and thus the solid dendrites are finer in size [22, 54].

Many theories have been developed to elucidate the morphological evolution of

dendrite arms by simplifying their geometries [2, 22, 55, 56, 57]. Kattamis et al. have

modeled the dendrite arms as cylinders with constant radius except for one, which

has smaller radius [2]. Since the solute concentration at the interface of the thinner

arm is higher than the rest due to the Gibbs-Thomson condition, the thinner arm
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Figure 2.8: Plots of the time-independent particle size distribution for various vol-
ume fractions of the coarsening phase obtained from the simulations performed by
Voorhees et al. [51]. The number just above or below each of the curve represents
the volume fraction of the coarsening phase. The curve with “LSW” label represents
the steady-state size particle size distribution in the limit of zero volume fraction.
Adapted with permission from [51]. Copyright 2016 by Elsevier.
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melts and its radius decreases (radial melting). On the other hand, Kahlweit has

modeled the dendrite arms as cylinders with spherical caps at the end [55]. Since

the cap has twice the mean curvature of the cylindrical part of the arm, a thinner

arm melts from the cap without changing the radii of the arm (axial melting). Based

on the same geometrical assumption as Ref. [55], Reeves et al. have considered two

arms with different radii in which the thinner arm undergoes axial melting while the

larger arm grows [57].

The assumption that dendrite arms can be modeled as cylindrical shapes is gener-

ally invalid as the arms themselves have spatially varying curvatures. Some theories

have assumed that these secondary dendrite arms are tear-shaped, as shown in Fig.

2.9a [2, 41, 56]. Since the radius of the base of the arm, r1, is smaller than the radius

at the tip, r2, material flows from the base of the arm to the tip. Thus the tip of

the dendrite arm increases its diameter while the base melts away, until it detaches

completely from the primary arm. This self-detachment mechanism of dendrite arms

has been observed experimentally with the solid-liquid dendritic mixture of NH 4Cl

[58]. On the other hand, Young et al. propose that the primary mechanism of coars-

ening of the dendrites is coalescence [22]. As shown in Fig. 2.9b, the material flows

from the bases of the arms to the tips and, as a result, the tips of the dendrites

grow, decreasing the distance between the two adjacent tips, d2 until they coalesce.

The coalescence mechanism has also been observed experimentally in the dendritic

structure of succinonitrile, as shown in Fig. 2.10. The dendrite arms labeled J and

I coalesce at the tips of the arms and a small liquid region is trapped in the solid

dendrite [59].

While many theoretical and experimental investigations have utilized the sec-

ondary dendrite arm spacing λ2 to describe the evolution of dendritic microstructures,

in some cases, measurement of λ2 is not practical. Marsh et al. observed that initially

Sn-rich dendrites in a Sn-Bi alloy melt change their morphologies and become globu-
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Figure 2.9: Schematics of the dendrite arms modeled as tear-shaped (a) undergoing
self-detachment mechanism [56] and (b) coalescence [22]. Adapted with permission
from [41]. Copyright 2016 by Springer.

Figure 2.10: Sequential micrographs of a pure succinonitrile sample taken at time
intervals of 20-30 minutes, displaying the coalescence of dendrite arms at the tips.
Adapted with permission form [59]. Copyright 2016 by Elsevier.
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Figure 2.11: Micrographs of Sn-Bi alloy (a) as-cast and at coarsening times (b) after
10 min, (c) after 2.5 hours, and (d) after 10 days. Adapted with permission from [60].
Copyright 2016 by Springer.

lar at long coarsening times, as shown in Fig. 2.11, and thus λ2 cannot be measured

[60]. To circumvent the limitation of λ2, a more generic measurement of the charac-

teristic length scale in the form of inverse of surface area per unit volume, S−1
v , which

is independent of morphology, has been proposed [2, 60]. Marsh et al. have observed

that S−1
v scales linearly with t1/3 regardless of the changes in the morphology of the

microstructure during coarsening [60].

Despite the advantage of S−1
v over λ2 in the characterization of the length scale,

both measurements are inadequate to describe the morphologies of the dendritic mi-

crostructures. As stated in Chapter I, such complex microstructures require interfa-

cial curvatures to quantify their morphologies. Mendoza et al. [41] and Fife et al.
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[26] have used the interfacial shape distribution defined in the principal curvature

space to accurately characterize the morphologies of dendritic microstructure. In a

more recent work, with advances in four-dimensional tomography (three-dimensional

in space plus time), the correlation between the interfacial velocity and the mean

curvature of the dendritic microstructures of Al-Cu alloys have been examined [43]

2.2.3 Coarsening of Bicontinuous Structures

Self-similar structures are ideally suited for developing theoretical understanding

because they possess a single-modal distribution of features and because the governing

equation becomes time independent when scaled with the characteristic length scale.

Two types of complex microstructure that evolve self-similarly are the bicontinuous

structures that result from phase decomposition such as spinodal decomposition [38,

39] or phase ordering [61, 62, 63]. Examples of bicontinuous structures can be found

in metals [62, 64], polymers [38, 39, 65] and ceramics [66, 67]. Figure 2.12 shows the

micrographs of the bicontinuous structures resulting from spinodal decomposition

of a polymer mixture [39] and from phase-ordering of antiferromagnetically coupled

multilayer films [62]. Similar to the dendritic microstructures, these bicontinuous

structures also possess complex morphologies.

Many of the past studies have used scattering experiments such as light scattering

(LS) [68, 69], small-angle X-ray scattering (SAXS) [70, 71], and small-angle neutron

scattering (SANS) [39, 70, 71], to characterize the bicontinuous structures. From

these scattering experiments, a structure factor, which is the Fourier transform of

the correlation function, can be obtained. Jinnai et al. have characterized bicontin-

uous structures resulting from spinodal decomposition in the polymer blend and in

the microemulsion through the structure factor [71]. Figure 2.13 shows the plot of

structure factor, S(q), versus scaled wave number, q/qm, of the microemulsion and

polymer blend, where qm is the wave number at the peak of the distribution. The
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1 µm

Figure 2.12: (a) A micrograph of the binary mixture of deuterated polybutadiene
(DPB) and polybutadiene (PB) resulting from spinodal decomposition. Adapted
with permission from [39]. Copyright 2016 by ACS Publications. (b) A micrograph
of the antiferromagntically coupled Co/Pt and Co/Ru layers resulting from order-
disorder transition. Adapted with permission from [62]. Copyright 2016 by American
Physical Society.

plot shows that the structure factors of the microemulsion at different temperatures

and the polymer blend have general similarities. The distributions have single-peak

shapes and a small shoulder at about q/qm = 3. The same trend has been observed in

the structure factor of a bicontinuous structure resulting from spinodal decomposition

in a different polymer mixture [38].

The evolution of the bicontinuous structure can also be characterized by examining

the temporal evolution of the structure factor through the light scattering intensity

distribution. Figure 2.14 shows the temporal evolution of the light scattering inten-

sity distribution of a bicontinuous structure found in a binary polymer mixture with

a symmetric volume fraction ratio [39]. Similar to the structure factors shown in Fig.

2.13, the intensity distributions at various times have a single peak . However, as the

microstructure of the polymer mixture coarsens, the wave number corresponding to

the peak location of the intensity distribution (qm) shifts to a lower wave number,
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Figure 2.13: A plot of structure factor, S(q), as a function of scaled wave number
q/qm of the microemulsion samples at various temperatures and of the perdeuterated
polybutadiene (DPB) and polyisoprene (PI) polymer blend. The solid lines represent
S(q) (q/qm)n, where the value of exponent n is the number marked next to the lines.
Adapted with permission from [71]. Copyright 2016 by ACS Publications.
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Figure 2.14: Temporal evolution of the scattering light intensity distribution, I(q, t)
as a function of the wave number q of a bicontinuous structure resulting from spinodal
decomposition in a binary mixture of deuterated polybutadiene (DPB) and polybuta-
diene (PB). Adapted with permission from [39]. Copyright 2016 by ACS Publications.

which indicates that the size of the dominant length-scale feature increases. In ad-

dition, the scattering intensity distributions become narrower and the height of the

peak increases at longer times, which suggests that the sizes of the features in the

microstructures become more uniform.

While characteristic length scales such as the size of the dominant length scale

feature can be obtained from the structure factor, it cannot accurately describe the

morphology of bicontinuous structures. Similar to the study of dendritic microstruc-

tures, the morphological evolution of the bicontinuous structures needs to be char-

acterized by interfacial curvatures. In Ref. [39], the morphological evolution of the

bicontinuous structure is examined with a probability distribution in terms of the

mean curvature and in terms of the Gaussian curvature. Figure 2.15 shows the prob-

ability distributions as functions of scaled mean and Gaussian curvatures at various

coarsening times. The mean curvature is scaled by S−1
v while the Gaussian curvature
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Figure 2.15: A probability distribution as a function of (a) the scaled mean curvature
and (b) the scaled Gaussian curvature, at various times of evolution of a bicontinuous
structure resulting from spinodal decomposition in a binary mixture of deuterated
polybutadiene (DPB) and polybutadiene (PB). Adapted with permission from [39].
Copyright 2016 by ACS Publications.

is scaled by S−2
v . Figure 2.15a show that the average mean curvature is zero for the bi-

continuous structure with a symmetric volume fraction ratio. In contrast, Fig. 2.15b

shows that the most of the interfaces of the bicontinuous structure are saddle-shaped

and that the average Gaussian curvature is negative throughout the evolution. The

scaling of both curvature distributions implies that the microstructure evolves in a

self-similar manner.

On the other hand, Kwon et al. have examined the morphological evolution of

the simulated bicontinuous structures with the interfacial shape distribution (defined

in the principal curvature space) [72]. The time-independent ISDs demonstrate that

the bicontinuous structures resulting from either spinodal decomposition or phase-

ordering evolve self-similarly in the late stage of coarsening. In a related study, it

has been found that, regardless of the volume fraction, the bicontinuous structures

resulting from spinodal decomposition have characteristic length scales S−1
v that obey

the t1/3 power law, as in the LSW theory [42]. In a different study, Genau et al. have

examined the spatial correlations of interfacial curvatures of the bicontinuous struc-

tures resulting from spinodal decomposition. The study shows that curvatures with
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equal sign show strong correlation at short distances, whereas curvatures of opposite

signs show strong correlation at intermediate distances [73]. While the morphologies

of the bicontinuous structures have been examined extensively with curvature, there

is still limited understanding of the evolution of curvatures in these structures.

2.3 Phase-Field Method

The phase-field method is a computational technique for simulating phase trans-

formations [74]. The phase-field method is based on the diffuse-interface theory, where

the value of an order parameter, φ, smoothly varies across an interfacial region with

a finite thickness from a value representing a phase to another representing a dif-

ferent phase. The diffuse-interface approach eliminates the need to explicitly track

the location of interfaces since this information is embedded in φ, which is evolved

based on the governing phase-field equation. The following section briefly explains

the underlying physics behind the model.

In a two-phase heterogeneous system, the total free energy, G, of the system can

be divided into

G = GPhase 1 + GInterface + GPhase 2 , (2.7)

where GPhase 1, GPhase 2, and GInterface are the free energy associated with the two bulk

phases and the interface, respectively [40]. During coarsening, GInterface decreases

as the overall interfacial area decreases while GPhase 1 and GPhase 2 remain constant

resulting from the fixed volume fractions of the phases.

The total free energy of the system, Eq. (2.7), can be described in the functional

form as

G =

∫

Ω

{

g (φ) +
1

2
ε2 |∇φ|2

}

dV , (2.8)
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where Ω is the domain of the system, ε2 is the gradient energy coefficient, and g(φ)

is the free energy density. The free energy density for a given material system can be

obtained from theoretical calculations [75] such as the first-principles density func-

tional theory (DFT) [76, 77], atomistic molecular dynamics (MD) [78, 79], and Monte

Carlo (MC) simulations [80, 81], as well as from CALPHAD approach [82, 83]. In

the phase-field method, the free energy density is often simplified into a double-well

potential of the form

g (φ) =
W

4
φ2 (1 − φ)2 , (2.9)

where W is the coefficient that controls the height of the double well [84]. The two

minima of the free energy density, at φ = 0 and φ = 1, determine the equilibrium

values of the order parameter in the bulk phases. The chemical potential, μ, is derived

from the variational derivative of the free energy functional, Eq. (2.8),

μ =
δG

δφ
=

dg

dφ
− ε2∇2φ , (2.10)

dg

dφ
=

W

2
φ (1 − φ) (1 − 2φ) . (2.11)

If the nonconserved order parameter is labeled as η and the conserved order pa-

rameter labeled as c, then the governing phase-field equations for nonconserved and

conserved dynamics are

∂η

∂t
= −Lη

δG

δη
= −Lη

(
dg

dη
− ε2∇2η

)

, (2.12)

∂c

∂t
= ∇ ∙ Lc∇

δG

δc
= Lc∇

2

(
dg

dc
− ε2∇2c

)

, (2.13)
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respectively, where Lη and Lc are the mobility coefficients treated as a unit constant

here for simplicity. Equations (2.12 & 2.13) are commonly referred to as the Allen-

Cahn equation and the Cahn-Hilliard equation, respectively [84, 85, 86]. For simplic-

ity, the order parameters will be represented by φ hereafter, regardless of whether

conserved or nonconserved.

While both the Allen-Cahn and Cahn-Hilliard equations are expressed in terms

of the chemical potential derived from the variational derivative of the energy func-

tional, their kinetics and the resulting morphologies of the simulated structures are

very different. In nonconserved dynamics, the interfacial evolution is the motion by

mean curvature, and the order parameter changes such that it results in the steepest

descent of the free energy functional, Eq. (2.8). Moreover, the volume fractions of

the phases are not conserved, except in the symmetric microstructural system with a

50:50 volume fraction ratio. In contrast, the kinetics in conserved dynamics is deter-

mined by long-range diffusion. The Laplacian of the chemical potential in Eq. (2.13)

ensures that the each species is conserved. Thus, in the absence of large concentration

shift (e.g., from the Gibbs-Thomson effect), the volume fractions of the phases also

remain constant.

Despite the different kinetics induced by Eqs. (2.12) & (2.13), both governing

equations results in smooth interfacial profiles. At equilibrium, the Allen-Cahn equa-

tion simplifies to μ = 0 while the Cahn-Hilliard equation simplifies to μ = constant.

Therefore, for a planar interface centered at x = 0, the solutions to both governing

equations yield the same interfacial profile described as

φ (x) =
1

2

[

1 + tanh

(
2x

δ

)]

, (2.14)

δ = 4

√
2ε2

W
, (2.15)
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Figure 2.16: Planar interfacial profile, represented as a blue curve, based on Eq.
(2.14) with δ = 4.

where δ is the interfacial thickness defined as a region where φ varies between 0.1 and

0.9. Figure (2.16) shows the interfacial profile based on Eq. (2.14) with δ = 4.

Since both governing equations are derived from the same free energy functional,

Eq. (2.8), the pseudo one-dimensional interfacial energy γ derived from both governing

equations is defined as [84]

γ =

∞∫

−∞

ε2

(
∂φ

∂x

)2

dx . (2.16)

At equilibrium, Eq. (2.16) can be re-written as

γ =

1∫

0

√
2ε2g (φ) dφ , (2.17)

with the change in the variable of integration. After solving the integral, Eq. (2.17)
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further simplifies to

γ =
1

6

√
ε2W

2
. (2.18)

Equations (2.15) & (2.18) demonstrate that the choice of ε2 and W determines the

interfacial thickness and the interfacial energy of the system.

2.4 Finite Difference Method

Nonlinear partial differential equations, such as the Allen-Cahn and the Cahn-

Hilliard equations, must be solved numerically. There are number of methods that can

be employed, including finite difference method (FDM), finite element method (FEM),

and finite volume method (FVM), to solve partial differential equations (PDE). FDM

approximates the derivatives in the PDE into simple algebraic expressions (obtained

via Taylor expansion) in terms of the unknown function defined at every grid point

in the domain, generally in the Cartesian coordinate. The simple implementation of

FDM on a uniform grid system has been applied to solve a wide variety of PDEs

[87]. On the other hand, FEM divides the domain of consideration into regularly or

irregularly shaped “finite elements” and determines an approximation of the solution

of the PDE for each element. FEM is employed in applications that involve solving

PDEs in domains with complex geometries, such as solving the heat equation in

vehicle components [87]. Lastly, FVM represents each grid point as a cubic cell (in

three-dimension) with a finite volume and thus the divergence operator is substituted

with the surface integral using the divergence theorem. Since the divergence operator

appears in the conservation equation, FVM is commonly utilized in computational

fluid dynamics calculations [75]. While each method has its own advantages, we

will employ FDM to numerically solve the governing phase-field equations since this

method on a Cartesian grid is relatively easy to implement and computationally less
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expensive in three-dimension than the other two methods discussed above.

The finite difference methods require discretization of the computational domain.

The discretization of a continuous variable x defined in the range of [X1, X2] can be

represented as

xi = X1 + iΔx, i = 0, 1, 2... , (2.19)

where xi is the discretized representation of x, and Δx is the grid spacing [88]. Sim-

ilarly, the discretization of a continuous function q(x) can be represented in terms of

xi as

qi = q(xi), (2.20)

where qi is the discretized representation of q. Since qi is a discrete function whose

values are only defined at xi, the choice of Δx determines the accuracy of the dis-

cretization. Smaller Δx increases the accuracy of the discrete function compared to

its continuous counterpart, but this is achieved at the cost of numerical efficiency.

After discretizing the variables, the spatial derivatives of the function q can be

evaluated using the finite difference method, which is based on the Taylor expansion.

The Taylor expansion of q(xi+1) about the point xi is defined as

q(xi+1) = q(xi) + q′(xi)Δx +
1

2!
q′′(xi)Δx2 +

1

3!
q′′′(xi)Δx3 + ... (2.21)

Similarly, the Taylor expansion of q(xi−1) about the point xi is defined as

q(xi−1) = q(xi) − q′(xi)Δx +
1

2!
q′′(xi)Δx2 −

1

3!
q′′′(xi)Δx3 + ... (2.22)

The first-order spatial derivative q′(xi) can be obtained by subtracting Eq. (2.22)

from Eq. (2.21), which results in

q′(xi) =
q(xi+1) − q(xi−1)

2Δx
+ O(Δx2) , (2.23)
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where O(Δx2) indicates that the expression has an error in the order of Δx2 [88].

Since the spatial derivative of q at xi requires the values of the function at the two

adjacent coordinates, xi−1 and xi+1, Eq. (2.23) is referred to as the central differencing

scheme. Similarly, the second derivative q′′(xi) can also be evaluated with the central

differencing scheme by first calculating q′(xi+1/2) and q′(xi−1/2),

q′′(xi) =
q′(xi+1/2) − q′(xi−1/2)

Δx
=

q(xi+1) − q(xi)

Δx
−

q(xi) − q(xi−1)

Δx
Δx

(2.24)

=
q(xi+1) + q(xi−1) − 2q(xi)

Δx2
+ O

(
Δx2

)
,

which is also second-order accurate.

On the other hand, the temporal derivative can be evaluated using the forward

Euler differencing scheme. Similar to the discretization of x, time t defined in the

interval [T1, T2] can be discretized as

tp = T1 + pΔt, p = 0, 1, 2... . (2.25)

where Δt is the time step size [88]. If the continuous function q is defined in both

space and time, it can be discretized in terms of the discrete variables xi and tp,

qi = q(xi, tp) . (2.26)

The forward Euler scheme can be obtained from the Taylor series expansion of

q(xi, tp+1) about xi and tp,

q(xi,tp+1) = q(xi, tp) +
∂q(xi, tp)

∂t
Δt , (2.27)

where the higher-order terms are ignored [88]. Since the governing phase-field equa-
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tions are in the form of

∂q

∂t
= f(q) , (2.28)

where f(q) is a functional consisting of the spatial derivatives of q, Eq. (2.27) can be

re-written as

q(xi,tp+1) = q(xi, tp) + f(q(xi, tp))Δt . (2.29)

Equation (2.29) shows that the value of the function q at the next time step p + 1

is explicitly determined based on values of the function at the current time step p.

Therefore, this scheme is fully explicit, i.e., the unknown quantity is determined solely

by known quantities [88].
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CHAPTER III

Application of the Level-Set Method to the

Analysis of an Evolving Microstructure

The material presented in this chapter is based on the published manuscript “C.-L.

Park, P. W. Voorhees, and. K. Thornton. Application of the Level-Set Method to the

Analysis of an Evolving Microstructure. Computational Materials Science, 85:46-58,

2014.”

3.1 Introduction

The study of coarsening requires accurate quantification of the morphology of

complex microstructures. In order to study microstructures to the full extent, it

is often necessary to analyze three-dimensional (3-D) microstructures, rather than

two-dimensional (2-D) cross-sectional images. Advances in experimental tools and

computing resources have made the studies of 3-D microstructures more accessible

[89, 90, 91]. Experimental techniques such as mechanical-serial-sectioning optical

microscopy [24, 26, 92, 93], X-ray tomography [94, 95, 96, 97, 98], and dual-beam

focused-ion-beam scanning electron microscopy [99, 100, 101, 102] can now provide

detailed 3-D microstructures. In addition, computational tools such as phase-field

method [42, 72, 74, 103, 104] and level-set method [105, 106, 107] can be used to
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simulate the evolution of 3-D microstructures.

There are a number of 3-D characterization approaches, but, in some situations,

interfacial curvatures are the preferred measure for characterizing complex microstruc-

tures due to their integral role in microstructural evolution. For example, the kinetics

of coarsening is dictated by the curvature of the interface. Furthermore the rate of

changes of curvatures can help elucidate the evolution of morphology and topology. It

is thus clear that the ability to numerically calculate the interfacial quantities such as

curvatures and their rate of changes (rates of change) from 3-D data sets is essential

in developing an understanding of microstructural evolution.

Several numerical schemes for computing interfacial curvatures have been devel-

oped in the past. These numerical methods can be largely classified into two main

groups: surface-mesh-based methods and voxel-based methods (voxels are 3-D coun-

terpart of pixels, which stands for volumetric pixels). The surface-mesh-based meth-

ods compute curvatures on a 3-D network of triangulated mesh that represent in-

terfaces using the positional information of the mesh vertices. On the other hand,

voxel-based methods compute curvatures using the values of a function at voxels that

are close to the interfaces, which are typically defined as regions where the values of

the function at the voxels are between the two bulk phase values. Most triangulated-

mesh-based methods can be further categorized as either a “surface fitting” method or

a “discrete” method [108]. A surface fitting method determines the curvature at each

vertex by obtaining a quadratic (or cubic for higher accuracy) equation for a param-

eterized surface that best fits the interface [109, 110, 111]. On the contrary, discrete

methods compute curvatures directly using formulas derived from differential geome-

try, such as Gauss-Bonnet theorem [111, 112, 113] and Euler theorem [111, 114, 115],

without analytically fitting the surface. Similarly, voxel-based methods can also be

divided into two subgroups: methods that require spatial derivatives across the inter-

face, such those involving the level-set method [116, 117], and methods that do not
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require any spatial derivative [118, 119]. In this chapter, we focus on the derivative-

based approach combined with the level-set method for computing curvatures since

the methodology is straightforward and is also computationally efficient, which is

particularly advantageous with large 3-D data sets.

However, there is one major challenge in computing interfacial quantities, such as

curvatures, using the level-set method. Numerical calculations of curvatures require

the evaluation of high-order derivatives across the interface, which become inaccurate

when interfacial resolution is low. Experimental microstructure data often describe

the microstructure through a contrast difference between two phases. In such cases,

the interfaces between two phases are described by few pixels or voxels and thus

the reconstructed interfaces form a “wedding cake” structure (having stepped surface

rather than smooth) due to the sharp change of contrast across the interfaces. For

the phase-field approach, order parameters with smooth transitions describe the phase

boundaries, but they typically contain only two to five Cartesian grid points (four

grid points for all order parameters simulated in this thesis), which presents problems

in the quantitative analysis of the interfacial quantities.

A simple solution to the sharp transition of the microstructural data across in-

terfaces is to apply the volume smoothing technique. This method simply averages

the value of data over the neighboring Cartesian grid points with a set width. How-

ever, smoothing the data sufficiently for evaluating high-order derivatives using this

approach leads to substantial shift in the interfacial position. As a result, interfacial

quantities, such as curvatures, calculated from the volume-averaged data may not

accurately represent the morphology of the microstructure or its evolution.

Therefore, we have developed an advanced yet computationally inexpensive smooth-

ing algorithm, which we term “level-set smoothing,” that can be applied to any voxel-

based data describing a two-phase structure. The level-set smoothing method is a

set of sequential data-processing schemes that consists of first generating the signed
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distance function for the given microstructure using the level-set method, followed

by smoothing via diffusion. The proposed smoothing method can facilitate accurate

calculation of interfacial quantities with minimal displacement of interfaces during

the smoothing process, enabling quantification of morphology and its evolution for a

3-D microstructure.

In this chapter, we present the algorithm for the level-set smoothing method

and demonstrate its effectiveness in calculating various types of interfacial quantities

through a series of validation tests. We also list numerical algorithms that can be used

to calculate various interfacial quantities, including rate of change quantities. For the

rate of changes of curvatures, we present two methods, advective and convective, for

a comparison.

3.2 Numerical Methods

3.2.1 Level-Set Smoothing Method

The level-set iterations generate the signed distance function near the interfaces

for the microstructure. Since the level-set iteration only smoothes out the noise in the

first derivative, we apply diffusion smoothing as the second step to remove noise in

higher derivatives. The details for each of these processes are described below. From

here onwards, a “grid point” refers to a voxel on a Cartesian-grid system.

3.2.1.1 Level-Set Method

In the level-set approach, an interface is represented by a contour where a level-

set function, ϕ, takes a predetermined value, typically zero. The level-set method

has been applied to study a wide range of microstructural evolution [105, 106, 107,

120, 121]. In many cases, the level-set function is assumed to be a signed distance

function, where the magnitude of the function is given by the distance from the
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nearest interface, while the sign indicates one phase or another. Given a function

that is positive in one phase and negative in another phase, the signed distance

function can be calculated by iterating the following equation until converged:

∂ϕ

∂τ
= S(ϕ)(1 − |∇ϕ|), (3.1)

where S(ϕ) is a smoothed sign function, which will be defined later in this section, and

the time, τ , is an iteration time that is not associated with any physical evolution.

Equation (3.1) will be referred to as the level-set equation hereafter. A signed distance

function representing the microstructure can be obtained from microstructural data

from computer simulations or experiments.

To use simulated data, described by the order parameter, φ (note the difference

in the font between φ and ϕ), in the level-set equation, we prepare the data as follows

to best preserve interfacial location during the smoothing process. We begin with φ,

which describes a two-phase structure where the phases are defined by bulk values,

such as φ = 0 or 1, and the phase boundary defined as the region where φ transitions

between the bulk values. Since the zero level-set defines the interface, the value of

order parameter needs to be adjusted by adding or subtracting a constant if the

interfacial value of φ is nonzero. Additionally, we found that Eq. (3.1) converges

more quickly and accurately with a minimal shift of the interface, if the range of

φ is adjusted so that the magnitude of the gradient is approximately one near the

interface (which is the steady-state condition of Eq. (3.1)). For example, if the input

order parameter, φ, has the bulk phase values defined at 0 and 1 while the phase

boundary has a nondimensional length of δ, then φ needs to be translated and scaled

such that it varies from −δ/2 to δ/2. This adjusted order parameter then becomes

the initial condition, ϕ0, and has the property |∇ϕ0| ' 1 near the interface.

The level-set equation, Eq. (3.1), is a modification of re-initialization equation
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developed by Sussman, et al. [122]. The discretized version of Eq. (3.1) in a 3-D

Cartesian grid system, where i, j, and k denote the indices for x, y, and z positions,

respectively, is

ϕN+1
ijk = ϕN

ijk + Δτ ∙ S(ϕN
ijk)G(ϕN

ijk), (3.2)

where S(ϕijk) is the numerical implementation of the smoothed sign function (ex-

plained below), and G(ϕijk) is the numerical approximation for 1 − |∇ϕ| at a grid

point (i, j, k). Following Sussman, G(ϕijk) is calculated using a first-order upwind

scheme [122]. If we define one-sided derivatives as

a =
ϕi,j,k − ϕi−1,j,k

Δx
, b =

ϕi+1,j,k − ϕi,j,k

Δx
(3.3)

c =
ϕi,j,k − ϕi,j−1,k

Δy
, d =

ϕi,j+1,k − ϕi,j,k

Δy

e =
ϕi,j,k − ϕi,j,k−1

Δz
, f =

ϕi,j,k+1 − ϕi,j,k

Δz
,

then G(ϕijk) is evaluated as

G(ϕijk) =






1 −
√

max((a+)2, (b−)2) + max((c+)2, (d−)2) + max((e+)2, (f−)2)

if ϕijk > 0 ,

1 −
√

max((a−)2, (b+)2) + max((c−)2, (d+)2) + max((e−)2, (f+)2)

if ϕijk < 0 ,

0 if ϕijk = 0 ,

(3.4)

where the superscript + indicates that only the positive values of the derivatives are

considered (if the value of the derivative is negative then zero is used). Similarly,

the superscript − indicates that only the negative values of the derivatives are con-

sidered. This monotone scheme possesses improved stability over standard central

differencing and also ensures that ϕ near the interfaces converges to the steady-state
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first. While we adopt the same numerical scheme to calculate 1 −|∇ϕ| as Sussman’s,

our numerical implementation of the sign function is modified such that shift in the

interfacial position is reduced. The smoothed sign function, S(ϕ), used in our level-set

formulation is defined as

S(ϕijk) = ϕijk

/√
ϕ2

ijk + ζ2, (3.5)

where the numerical parameter, ζ, is used to regularize the singularity in the numer-

ical implementation of S(ϕ). There are two differences between our smoothed sign

function and the sign function adopted by Sussman: the smoothed sign function can

vary during the level-set iteration and uses much larger value of ζ. For a typical sign

function, a very small value of ζ is used so that the sign function returns a value

of either approximately 1 or −1. We employ a larger value of ζ, one that is com-

parable to the range of ϕ0, to smooth the sign function; hence we refer to S(ϕ) as

a “smoothed sign function.” These two modifications ensure that the effective time

step, Δτ ∙S(ϕN
ijk), actively changes as ϕ approaches the signed distance function near

the interface. The effective time step is smaller in the region near the interfaces, where

the level-set equation converges faster and higher accuracy is needed, and is larger

in the region further away, where the equation converges slower and less accuracy is

needed.

However, even with the adjustment of the input such that |∇ϕ0| = 1 at the

interface and the use of the smoothed sign function that reduces the effective time

step for grid points near interfaces, the interfacial location can shift slightly in high

curvature regions (usually at distances smaller than a voxel, which is still undesired).

One way to mitigate this problem is by limiting the number of iterations of the level-

set method. Calculation of interfacial quantities requires the level-set function in the

form of a signed distance function only within a certain number of grid points near
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Figure 3.1: a) The interfacial profile of the AC structure (details of the structure
are discussed in Section 3.2.2), comparing the input function from phase-field order
parameter and the level-set function obtained using the scheme described Section
3.2.1.1. The solid line shows the phase-field order parameter describing the two
phases, scaled such that the magnitude of the gradient at interface is unity. The dotted
line shows the level-set function whose value near the interface (3Δx on each side)
is the signed distance from the nearest interface. b) Morphology of the bicontinuous
AC structure at the simulation time of t0 = 600.

the interface. For example, the number of grid points, N , near the interface required

for calculating curvature is determined by the width of the stencil used to calculate

the high-order derivatives. With the numerical scheme adopted, N = 6Δx (3Δx on

both sides of the interface) is sufficient to calculate all of the interfacial quantities

discussed in this dissertation, including dynamic interfacial quantities (rate of changes

of interfacial characteristics). To provide adequate iteration time for the level-set

function to converge to the signed distance function in the region within 3Δx of

the interfaces, the level-set equation is iterated until the maximum magnitude of the

level-set function reaches 6Δx (twice the distance over which the distance function is

desired), as shown in Fig. 3.1a. Once the iteration is complete, the level-set method

produces a signed distance function, ϕ, near the interface.
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3.2.1.2 Diffusion smoothing method

The signed distance function obtained above contains a significant amount of

numerical noise in the second derivative. To remove noise in the second derivative,

diffusion smoothing, achieved by evolving the standard diffusion equation, is applied

to the level-set function. The dimensionless diffusion equation is given by

∂ϕ

∂τ
= ∇2ϕ, (3.6)

where, τ is a nonphysical iterative time. Over-iteration of diffusion smoothing can sig-

nificantly alter the location of the interfaces. This is avoided by limiting the diffusion

smoothing to the bare minimum required to eliminate noise in the second derivative.

The appropriate amount of diffusion smoothing depends on the quantity to be

calculated. Calculation of static interfacial quantities, such as curvatures, requires a

small number of iterations for diffusion smoothing; we use 20 iteration steps with time-

step of 0.1(Δx)2. On the other hand, calculation of dynamic interfacial quantities,

such as the rate of change of curvatures, need approximately 30 iterations of diffusion

smoothing.

While the interfacial positions can be preserved by limiting the diffusion smooth-

ing, the level-set function near the interfaces can deviate from the signed distance

function during this process. We have found that this deviation is nearly uniform over

the grid points required to calculate interfacial quantities. To remedy this problem,

after applying the diffusion smoothing, we compute |∇ϕ| at all grid points and deter-

mine its average, 〈|∇ϕ|〉, where |ϕ| < 1Δx, i.e. the region where the level-set function

is closest to the distance function after diffusion smoothing, and scale the level-set

function with the calculated 1/ 〈|∇ϕ|〉. After normalization, the diffusion smoothed

level-set function again takes the form of the signed distance function. Hereafter,

to simplify notations, φ, ϕ and ϕD will be used to denote the order parameter, the
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level-set function, and the smoothed level-set function that has been processed by

the diffusion smoothing and normalized by 〈|∇ϕ|〉. The combination of the level-set

function with diffusion smoothing will be referred to as level-set smoothing.

3.2.2 Preparation of Structures

Three types of structures are employed in this chapter to validate the level-set

smoothing method: a sphere, a cylinder and a bicontinuous structure. All structures

presented in this chapter are constructed in a nondimensional space, and therefore all

measurements of length and time are unitless. A grid spacing of Δx = Δy = Δz = 1.0

is employed for simplicity.

Order parameters describing spherical and cylindrical geometries can be con-

structed analytically using a hyperbolic tangent function. For a spherical particle

in a Cartesian grid system, the discretized order parameter, φijk, where i, j, and k

denote the indices for the position, can be constructed as

φijk =
1

2
+

1

2
tanh

(
2 (rijk − R)

1
2
δtanh

)

, (3.7)

where

rijk =

√
(i − xc)

2 + (j − yc)
2 + (k − zc)

2, (3.8)

and R is the radius of the spherical particle. The variables xc, yc, zc represent the

Cartesian coordinate of the center of the sphere, which is placed at the center of the

computational domain. The order parameter defined by Eq. (3.7) will have a bulk

value of 0 for the inside of the sphere and 1 for the outside while δtanh represents

the nondimensional interfacial thickness, which is defined as the region where the

value of φ smoothly transitions between the two bulk values. In this chapter, we used

δtanh = 4.0, which results in about four grid points across the interface and is typical

of phase-field simulations. Similarly, a cylindrical tube with an infinite length along
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the z-axis can be constructed by Eq. (3.7) with rijk redefined as

rijk =

√
(i − xc)

2 + (j − yc)
2, (3.9)

where xc and yc represent the Cartesian coordinate of the axis of the cylinder. To

calculate the dynamic interfacial quantities, pairs of spherical particles and cylindrical

tubes with different radii were analytically constructed from the order parameters.

While above geometries provide important test cases with well defined analytical

solutions to interfacial quantities, the true power of the method is its ability to be

applied to a wide range of complex microstructures. For demonstration, we choose

a bicontinuous structure resulting from phase ordering [84]. Using the phase-field

method, a two-phase bicontinuous structure is simulated via nonconserved Allen-Cahn

dynamics. Henceforth, this bicontinuous structure is referred to as the AC structure.

A time step of Δt = 0.1 with Lφ = 1.0 are employed for simplicity. The remaining

parameters in the governing equation are ε2 = 0.4 and W = 0.8, which lead to an

interfacial thickness of δ = 4 and interfacial energy of γ = 0.2. Since this AC structure

is also statistically analyzed in the subsequent chapter, a large computational domain

size of 2048×2048×2048 in a Cartesian-grid system was simulated. Starting from an

initial condition consisting of random numbers that vary between φ = 0.5 ± 0.1 that

ensures equal volume fractions of the two phases, the simulation was run until the AC

structure underwent sufficient amount of coarsening to achieve self-similarity. Even

though the dynamics is nonconserved, the system maintains a 50 : 50 volume fraction

due to its symmetry. The simulation time t0 = 600 is used as a reference simulation

time for all analyses presented in this chapter. Figure 3.1b shows the isosurfaces of

the AC structure at nondimensional simulation time t0 = 600. As a note, in this

chapter, only a cubic region of side length 6.2(S−1
v ) of the AC structure is examined

for the validation of the level-set smoothing method.
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3.2.3 Calculation of the interfacial quantities with Convective and Ad-

vective Method

In order to study the morphology of a complex microstructure, curvatures of the

surface, such as the mean and Gaussian curvatures, need to be evaluated. Further-

more, to study the evolution of microstructures, calculations of rate of changes of

relevant quantities are necessary to quantify the evolution of interfaces. These dy-

namic quantities include the normal velocity, which is the rate of displacement of

interfaces in the direction normal to the interface, and the rate of changes of mean

and Gaussian curvatures (calculated following the interface), which quantify the evo-

lution of local curvatures. In this section, we briefly explain how the mean curvature,

H, the Gaussian curvature, K, and the normal velocity, v, can be calculated using the

level-set approach. We then introduce two methods, the convective and the advective

method, which are used to calculate rate of changes of mean and Gaussian curvatures,

DH/Dt and DK/Dt, respectively and defined below. All interfacial quantities are

calculated from the smoothed level-set function, ϕD.

Since ϕD takes the form of a signed distance function near the interface, the inter-

facial quantities, H, K, and v can be evaluated from the derivatives of ϕD using the

level-set method [116]. The main advantage of using the smoothed level-set function

is that the interfacial quantities can be accurately computed on the Cartesian coor-

dinate without parameterizing the surface of the microstructure. Once an interfacial

quantity is calculated at all grid points, the physically meaningful interfacial values

are obtained by linear interpolation at the interfacial position where ϕD = 0. The

expressions for H, K, and v can be found in Sethian’s book [116] and are included in

Appendix A along with the finite differencing methods used to evaluate the spatial

derivatives that appear in the expressions. Note that our definition of H varies from

[116] by a factor of 1/2.

We now present the two numerical methods to evaluate DH/Dt and DK/Dt,
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each based on a different frame of reference (FOR): Eulerian with fixed FOR and La-

grangian with material FOR. The first approach is the convective method [123]. The

convective method uses an Eulerian approach to calculate the Lagrangian derivative

D/Dt. For instance, DH/Dt can be expressed in terms of an Eulerian derivative

∂H/∂t and a gradient, ∇H, as

DH

Dt
=

∂H

∂t
+ v ∙ ∇H. (3.10)

Here, v is the normal velocity vector defined as the product of the normal velocity,

v (Eq. (A.9)), and the unit normal vector, n (Eq. (A.3)). The convective method

calculates each term on the right hand side of Eq. (3.10) at all grid points, where H

and v are computed using the level-set approach. The partial rate of changes of the

mean curvature in Eq. (3.10) is an Eulerian derivative and can be discretized as

∂H(xi, yj , zk, t1)

∂t
=

H(xi, yj, zk, t2) − H(xi, yj, zk, t1)

Δt
, (3.11)

where t1 and t2 are different evolution times, Δt = t2 − t1, and xi, yj , and zk are the

coordinates in Cartesian grid, where i, j, and k are the indices associated with grid

points along the x, y, and z directions, respectively. Values of H(xi, yj , zk, t1) and

H(xi, yj , zk, t2) at each grid point are calculated from the smoothed level-set function

at t1 and t2, respectively, based on Eq. (A.4). The second term, v ∙∇H, in Eq. (3.10)

is referred to as the convective term and is calculated using a first-order upwind

scheme, where the normal velocity vector, v, is calculated as vn, and the gradient of

H is evaluated at t1, ∇H(xi, yj , zk, t1). The convective term provides the correction

between the Lagrangian derivative (D/Dt), also known as the convective derivative

or the material derivative, and the Eulerian derivative (∂/∂t), which does not take

into account the movement of interfaces. Once the sum of the partial derivative and

the convective term is evaluated at all grid points, the interfacial values of DH/Dt are
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determined by linear interpolation at the interfacial position where ϕD(t1) = 0. The

main advantage of the convective method is that the entire calculation is performed at

stationary grid points, which circumvents the need to explicitly follow the interfacial

movement between time steps.

The second approach for calculating the rate of changes of curvatures is the ad-

vective method. Unlike the convective method, the advective method requires the

explicit determination of the location of interfaces at two consecutive time steps. The

advective method can be viewed as directly calculating DH/Dt and DK/Dt on a

FOR that is moving with the interface. The rate of changes of the mean curvature,

DH/Dt, can be expressed as

DH

Dt
(x(t1), t1) =

H(x(t2), t2) − H(x(t1), t1)

Δt
, (3.12)

where

x(t2) = x(t1) + vΔt. (3.13)

Here, x(t1) is the interfacial coordinate at reference simulation time t1; and x(t2) is

the predicted interfacial coordinate of the point x(t1) at time t2, which is obtained by

displacing x(t1) by vΔt (see Eq. (3.13)). Figure 3.2 shows a schematic representation

of the advection of interfacial coordinates, onto which the mean curvature values are

interpolated.

While the convective method is more straightforward because the rate of changes

of curvatures are computed on stationary grid points, the advective method yields

more accurate results as demonstrated below. There are two reasons behind this. As

an example, we here consider the calculation of DH/Dt. The first source of error in

the convective method is in the term v ∙∇H. The convective term requires calculation

of ∇H, and the higher order derivative introduces additional numerical errors. The

second source of error arises from the calculation of H(xi, yj , zk, t2) near x(t1). For an
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Figure 3.2: A schematic representation of the advection of interfacial coordinates.
The variables x(t) and x(t + Δt) represent interfacial coordinates at time t and the
predicted interfacial coordinates at t + Δt, which is obtained by advecting x(t) by
vΔt in the direction of the normal. The values of mean curvatures at t and at t + Δt
are interpolated onto x(t) and x(t + Δt), respectively.

accurate calculation of H(xi, yj , zk, t2), ϕD(t2) needs to be in the form of the signed

distance function. However, if the interfacial displacement between two time steps is

large, ϕD(t2) at grid points near x(t1) may not be a signed distance function (since

ϕD(t2) is in the form of the signed distance function only within 3Δx from x(t2)).

Error in H(xi, yj, zk, t2) leads to inaccuracy in ∂H/∂t. Hence, the accuracy of the

convective method quickly deteriorates as the interfacial displacement between two

consecutive time steps increases. A detailed study of the errors associated with the

calculation of interfacial quantities are presented in the subsequent section.

3.3 Results & Discussion

The following section demonstrates the capability of the proposed level-set smooth-

ing method for calculating various types of interfacial quantities. As mentioned ear-

lier, we aim to achieve (1) accurate calculations of interfacial quantities, (2) minimal

displacement of interfaces during the smoothing process, and (3) to demonstrate the
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method with complex microstructures. As such, we divided this section into four

parts:

• Validation and uncertainty quantification of the level-set smoothing for simple

geometries

• Validation of the calculation of rate of changes of curvatures for simple geome-

tries

• Comparison of interfacial locations before and after smoothing for a complex

microstructure

• Application of the method to a complex microstructure.

3.3.1 Validation & Uncertainty Quantification of the Level-Set Smooth-

ing for Simple Geometries

Generally speaking, validation of a numerical method can be accomplished by

comparing the numerically calculated quantities with corresponding analytical solu-

tions. To carry out such comparisons for the level-set smoothing method, we must

compare the numerically calculated interfacial quantities from the smoothed level-set

functions with corresponding analytical values. Therefore, we use pairs of spheres

and cylinders with different radii (to mimic the morphologies of contracting objects

at two different times). The simple geometries of spheres and cylinders are ideal for

obtaining analytical values of interfacial quantities and their changes. The construc-

tion of these structures using the hyperbolic tangent function, presented in Section

3.2.2, ensures near perfect spherical and cylindrical geometries, minimizing errors in

the geometries themselves.

As an initial analysis, we used pairs of spheres and cylinders with R1 = 40 and

R2 = 38. Figure 3.3a shows the interfacial profiles of the pair of spherical particles.
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Figure 3.3: (a) A center cut showing the interfacial profiles of the spherical particles
of radius 40 and 38 given by φ1 (solid line) and φ2 (dashed line), respectively. The
outside of the sphere is defined as φ = 1 and the inside as φ = 0. (b) A center cut
showing interfacial profiles of the spherical particle with radius of 40 described by ϕ0

1

(solid line), before smoothing, and ϕD
1 (dashed line), after smoothing. The outside of

the sphere is defined as ϕ0 = 2 and the inside as ϕ0 = −2.

The same smoothing sequence was applied to the four order parameters. Before the

smoothing process, we translate the values of the order parameter, φ, via

ϕ0 = 4φ − 2. (3.14)

After the translation, the inside and outside the structures are defined as ϕ0 = −2

and ϕ0 = 2, respectively (see Fig. 3.3b). Throughout the smoothing sequence, Δx =

Δy = Δz = 1.0, Δτ = 0.1, ζ = 3
√

(Δx2 + Δy2 + Δz2) in Eq. (3.5), and periodic

boundary condition was used. The level-set equation is iterated until the maximum |ϕ|

reaches 6Δx. Subsequently, the level-set function is processed via diffusion smoothing

and is scaled by 0.9 (≈ 〈|∇ϕ|〉 near the interfaces after the diffusion smoothing step)

to acquire ϕD, as shown in Fig. 3.3b.

After obtaining the smoothed level-set functions, we calculated various interfacial

quantities discussed in Section 3.2.3. For the calculation of dynamic interfacial quan-

tities, the structures with larger radii are considered the reference point at t1. For this
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particular setup, the physical time, Δt, required for the calculation of rate of change

quantities can be arbitrarily chosen since it cancels out during the quantification of

the fractional error of the numerical calculation with respect to the analytical solu-

tion, as discussed below. The numerically calculated interfacial quantities are then

compared with the analytical solutions to evaluate the fractional errors according to

ε(f) =
fnumerical − fanalytical

fanalytical

, (3.15)

where f is one of the interfacial quantities. The comparison of the numerical calcula-

tion with the analytical solution is performed at every vertex that forms the surface

mesh of the spheres and the cylinders. Figures 3.4 & 3.5 display the isosurfaces of

the spherical particle and the cylinder, respectively, each with radius of 40, colored

by the magnitude of fractional errors of various interfacial quantities calculated from

φ and ϕD.

The grid effect, which manifests itself as rapidly varying errors on the surface,

appears for both types of data sets. This effect originates from the grid-anisotropy

of the underlying Cartesian grid employed. However, the range of the magnitude of

percentage errors (as noted by the color bar range) shows that the level-set smoothing

method significantly improves the accuracy of the calculated interfacial quantities,

especially for the dynamic interfacial quantities.

The differences in errors from pre-smoothed and post-smoothed data sets do not

vary much for the curvatures (as shown in Fig. 3.4a-d and Fig. 3.5a-b, about a factor

of 2). However, for the dynamic interfacial quantities, the magnitudes of errors reduce

dramatically after smoothing, by as much as a factor of 100, as shown in Fig. 3.4e-j

and Fig. 3.5c-f. The large magnitude of errors in the calculated rate of changes of

curvatures from pre-smoothed data sets can be explained by identifying the sources

of errors for DH/Dt and DK/Dt. Based on Eq. (3.15), with f = DH/Dt for an
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Pre-Smooth Data (φ) Post-Smooth Data (ϕD)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.4: The isosurfaces of the spherical particle with R = 40 described by (left
column) the unsmoothed order parameter, φ, (right column) and the smoothed level-
set function, ϕD, each colored by the magnitude of errors of (a,b) H, (c,d) v, (e,f)
DH/Dt using the advective method.
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Pre-Smooth Data (φ) Post-Smooth Data (ϕD)

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: The isosurfaces of the cylinder with R = 40 described by (left column) the
unsmoothed order parameter, φ, (right column) and the smoothed level-set function,
ϕD, each colored by the magnitude of errors of (a,b) H, (c,d) v, (e,f) DH/Dt using
the advective method.
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example,

ε(DH/Dt) =
H2(1+ε(H2))−H1(1+ε(H1))

Δt
− H2−H1

Δt
H2−H1

Δt

=
H2ε(H2) − H1ε(H1)

H2 − H1

, (3.16)

where Δt = t2 − t1, and Hi and ε(Hi) are the interfacial mean curvatures and their

associated fractional errors at simulation time ti (i = 1 and 2), respectively. Following

Eq. (3.16), the upper-bound error of |ε(DH/Dt)|, sup|ε(DH/Dt)|, becomes

sup|ε(DH/Dt)| =
max (|ε(H1)|, |ε(H2)|) (|H1| + |H2|)

|ΔH|
≈

2|ε(H1)|
|ΔH|
|H1|

, (3.17)

where ΔH = H2 − H1 and the right-hand side is based on the assumption that

|ε(H1)| = |ε(H2)| and H1 ≈ H2 during Δt. Equation (3.17) shows that the upper-

bound error is observed when ε(H1) and ε(H2) have opposite signs. Moreover, sup|ε(DH/Dt)|

is amplified if the difference in quantities, ΔH, is much smaller than the quantities

from which the differences are calculated, H1 ≈ H2. Without the application of the

level-set smoothing method, interfaces of the pre-smoothed data have noise as a result

of low interfacial resolution. The unsmoothed order parameter across the interfaces

produces continuous over/under-estimation of curvatures along the surface. Hence,

there is a greater probability that ε(H1) and ε(H2) have inconsistent signs, which

ultimately increases |ε(DH/Dt)|. However, after applying the level-set smoothing

method, the interfaces are represented by the smoothed level-set function with sig-

nificantly reduced noise. As a result, the magnitudes of ε(H) and ε(K) are reduced

and, more importantly, the signs of the errors are more consistent between time-steps,

which leads to error cancellation when computing DH/Dt and DK/Dt.

Tables 3.1 & 3.2 summarize the statistics of the errors for all interfacial quantities

calculated from both φ’s and ϕD’s describing the spheres and the cylinders. The

maximum error, max(|ε|), is the magnitude of the largest error on the surface mesh

of the sphere. The standard deviation of the error based on area, σε, is calculated on
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Before Smoothing (φ) After Smoothing (ϕD)
Interfacial Properties max(|ε|) [%] σε [%] max(|ε|) [%] σε [%]

H at radius=40 2.2 1.1 0.98 0.45
K at radius=40 4.5 2.5 2.0 0.91
H at radius=38 2.2 1.1 1.0 0.49
K at radius=38 4.5 2.5 2.1 1.0

v 22 18 1.1 1.1
DH/Dt convective method 833 498 11 6.3
DK/Dt convective method 795 476 13 9.1
DH/Dt advective method 262 147 5.7 0.84
DK/Dt advective method 268 149 5.3 0.89

Table 3.1: Error analysis of the interfacial quantities calculated on two spherical
particles with different radii. The variables max(|ε|) and σε denote the magnitude of
the maximum error among all errors defined at vertices on the surface mesh and the
standard deviation of the error based on area, respectively.

the triangulated surface mesh and is defined as

σε(f) =

√√
√
√
√
∑N

i=1 (fnumerical − fanalytical)
2 Ai

∑N
i=1 Ai

|fanalytical|
, (3.18)

where the calculated interfacial quantity, fnumerical, is interpolated at the center of

each triangulated element, N is the number of triangulated elements that make up

the surface mesh of the spheres and cylinders, and Ai represent surface area of each

triangulated element.

The statistics of errors presented in the two tables emphasize the much improved

accuracy of the calculation of interfacial quantities after applying the level-set smooth-

ing method, especially with the rate of changes of curvatures (c.f. Tables 3.1 & 3.2,

σε for DH/Dt and DK/Dt). As expected, the advective method yielded higher accu-

racy in the calculation of rate of changes of curvatures. Hence, we suggest the use of

advective method for calculating the rate of changes of curvatures when meshing of

the surface contour is possible. It should be noted that there exist first-order errors
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Before Smoothing (φ) After Smoothing (ϕD)
Interfacial Properties max(|ε|) [%] σε [%] max(|ε|) [%] σε [%]

H at radius=40 2.7 1.6 1.3 0.38
H at radius=38 2.6 1.6 1.3 0.39

v 20 18 1.3 1.3
DH/Dt convective method 1658 894 11 7.7
DH/Dt advective method 503 241 4.0 1.8

Table 3.2: Error analysis of the interfacial quantities calculated on two cylindrical
tubes with different radii. The variables max(|ε|) and σε denote the magnitude of
the maximum error among all errors defined at vertices on the surface mesh and the
standard deviation of the error based on area, respectively. Error analysis of K and
DK/Dt calculations of the cylinder is omitted since their analytical values are zero.

associated with linear interpolation of interfacial quantities to the location of the in-

terfaces. However, we claim that these errors from interpolation are negligible based

on the wide variation of max(|ε|) and σε values for different interfacial quantities that

were interpolated to the location of interfaces using the same linear interpolation

scheme.

3.3.2 Validation of the Calculation of rate of changes of Curvatures for

Simple Geometries

Our next step was to identify the effects of the size of the particles and the dis-

placement of interfaces between time-steps on the magnitude of errors associated with

the calculation of DH/Dt and DK/Dt. In this section, we considered only structures

with spherical geometries. In order to conduct this parametric study, multiple sets of

spherical particles with varying R1 values (10, 20, 30, 40 and 50) and R2 = R1−|ΔR|

values, where 1 ≤ |ΔR| ≤ 4, are created from the hyperbolic tangent function (see

Section 3.2.2). After obtaining the smoothed level-set functions (by using the same

smoothing sequence presented in Section 3.3.1), we calculated DH/Dt and DK/Dt

using the advective method and analyzed the statistics of their respective errors. Fig-

ure 3.6 shows the plots of maximum error, max(|ε|), and standard deviation of error
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Figure 3.6: The maximum error, max(ε), and the standard deviation of error, σε,
of DH/Dt (left column) and DK/Dt (right column) as a function of interfacial dis-
placement, |ΔR|, for different particle sizes. The error plots show that |ΔR| values
between two and three are optimal for computing rate of changes of curvatures.

based on area, σε, associated with calculating DH/Dt and DK/Dt as functions of

interfacial displacement, |ΔR|, for different R1 values.

We find that |ΔR| = 2 or 3 (interfacial displacement of about two or three grid

points) is optimal for computing the rate of change quantities. The large magnitude

of ε(DH/Dt) and ε(DK/Dt) for the smallest particle, R1 = 10, results from the fact

that as the radius of the particle approaches to the thickness of the diffuse interface,

ε(H) and ε(K) values become large. For R1 = 20 (five times the interfacial thickness),

the errors were comparable to the cases with larger radius. Therefore, DH/Dt and

DK/Dt calculated on interfaces with radii of curvatures greater than five times the

63



interfacial thickness should yield sufficiently accurate results. As a note, further error

analysis showed that H, K and v (normal velocity) can be accurately calculated on

interfaces with radii of curvatures greater than four times the interfacial thickness.

3.3.3 Comparison of Interfacial Locations Before and After Smoothing

for a Complex Microstructure

For complex morphologies with spatially varying curvatures, such as the AC struc-

ture, a direct comparison to known solutions cannot be made. Therefore, an alterna-

tive approach to validating a smoothing method is necessary. Here, we will examine

the position of the interfaces before and after the smoothing process to determine

how the level-set smoothing method alters the surface morphology.

Preservation of the interfacial location during a smoothing process is important,

especially for complex morphologies that often have fine features as well as coarse

ones. Even if the calculated curvature values appear to be smooth when plotted on

the surface of a structure, if the interfacial shifts are significant during data processing,

the calculated curvature values will not accurately represent the morphology and the

topology of the original structure. In addition, if the shifts of the interfaces caused by a

smoothing process is greater than the interfacial displacement due to microstructural

evolution, the rate of change calculations become meaningless. Therefore, an effective

smoothing method must demonstrate that it can preserve the interfacial location

sufficiently during the smoothing process.

The level-set smoothing method was applied to convert the order parameter, φ,

from the phase-field simulation that describes the AC structure to the smoothed level-

set function, ϕD. The same sequence of smoothing with the same set of parameter

values as in Section 3.3.1 were employed. We then calculated the interfacial quantities

and plotted the values on the surface of the structure to ensure that the calculated

quantities are smooth, as shown in Fig. 3.7.
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(a) (b) (c)

Figure 3.7: Isosurfaces of the AC structure colored by a) the mean curvature, b) the
Gaussian curvature, c) the normal velocity calculated from the rate of changes of the
smoothed level-set functions.

In order to visualize the effect of the smoothing scheme on the interfacial loca-

tions, the contour lines (interfacial locations) obtained at φ = 0.5 and ϕD = 0 are

compared, as shown in Fig. 3.8. The overplots reveal a general overlap of the two

contours of the interfaces from the pre-smoothed and the post-smoothed data, indi-

cating that the level-set smoothing preserves the location of the interfaces for most

interfaces for most interfaces. At surface patches with very high curvatures (where

the radii of curvatures are comparable to the interfacial thickness), there are slight

shifts in the two contour lines obtained from φ and ϕD (see inset (a) for a magnified

image of two regions with notable shifts). However, these regions are confined to

small volumes of the entire structure and should not affect the overall results when

statistically examined. In addition, these small shifts occur in regions where the in-

terfacial thickness is comparable to the radius of curvature of the interface. Thus the

phase-field calculation is under resolved at these points and these areas should not

be included in the calculations.
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Figure 3.8: Overplots of the interfacial contour lines of the AC structure described
by the order parameter, φ, (solid red line) and the smoothed level set function, ϕD

(dotted black line). The contour lines are obtained on the x-y planes of the AC struc-
ture at different z values. Two contours are generally coincident except in the very
high curvature regions where the radii of curvatures are comparable to the thickness
of the diffuse interface, as shown in inset (a).
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3.3.4 Application of the Method to a Complex Microstructure

We have thus far demonstrated the level-set smoothing method’s capability to

smooth the interfaces with minimal motion of the interfaces so that interfacial quan-

tities are accurately calculated. We also found that the errors associated with rate

of change quantities are minimized when the interfacial displacement between time

steps is about two to three grid points. Unlike the shrinking sphere, the AC struc-

ture possesses spatially dependent mean curvatures and rate of changes, where some

interfaces are evolving faster than others. Therefore, in order to maintain this range

of interfacial displacement, it is necessary to take different Δt that depends on the

normal velocity.

For the AC structure, the normal velocity, v, is proportional to the mean curvature

[84],

v = −MH, (3.19)

where M is a proportionality constant as a function of Lφ and ε2 of the Allen-Cahn

equation, Eq. (2.12). Therefore, to implement a multiple time-differential size to

calculate DH/Dt and DK/Dt of the evolving AC structure, one only needs to consider

the local mean-curvature values at the interface. First, we group the surface patches of

the structure at simulation time t0 based on their mean-curvature values, and then we

determine the required time-step, Δt, for each curvature group, such that all surface

patches would be displaced two to three grid points except for the low curvature

regions (as explained below). If we assume that the individual surface patches of a

microstructure can be approximated as spherical patches with varying radii, then we

can substitute v = dR/dt and H = 1/R in Eq. (3.19). After integration, one obtains

Δt =
R(t0 + Δt)2 − R(t0)

2

−2M
(3.20)
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where R(t0) is the inverse of the mean curvature of a surface patch at time t0 and

R(t0 + Δt) is the corresponding value after Δt. Table 3.3 lists the curvature range,

R(t0), R(t0 + Δt), and the corresponding Δt for each group of surface patches. For

each curvature group, R(t0) is the reciprocal of the |H| value at the lower end of the

curvature range in each group. The time-step, Δt, in each group is determined by Eq.

(3.20) setting R(t0+Δt) = R(t0)−2Δx. Note that even though we assigned Δt values

for interfaces with very large curvature values (in this case R(t0) < 20 as discussed

in Section 3.3.2), in practice the calculated values on these high curvature surfaces

(which constitute only about 5% of the total interfacial area of the AC structure)

contain significant errors and should still be discarded for quantitative analysis of the

evolution of local curvatures.

For the surface patches with |H| < 0.025, we use Δt = 100. This is because, as

Δt increases, the general morphology of the structure can undergo substantial evo-

lution (the low curvature patches are connected with the rest of the structure) and

consequently rate of changes of curvature calculations become meaningless. There-

fore, one must strike a balance when choosing the appropriate time steps such that

rate of change computations are accurate and also physically meaningful. It should

be noted that, because the interfacial displacements for the low curvature regions

are less than the optimal range, the error in the calculated DH/Dt and DK/Dt at

these interfaces maybe substantially larger than those discussed earlier. For example,

max(|ε|) and σε in DH/Dt for a sphere with R1 = 80 and R2 = 79 are 78% and

7.3%, respectively. However, these large errors are not detrimental to the quantita-

tive analysis of local curvatures since these low curvature regions undergo very small

change in curvatures; thus these surfaces do not contribute substantially to the overall

microstructural evolution.

Figure 3.9 shows the calculated DH/Dt and DK/Dt of the AC structure described

by the smoothed level-set function, ϕD, using a multiple time-differential size based
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Range of |H| R(t0) R(t0 + Δt) Δt
0.2 ≤ |H| 5.0 3.0 10.0

0.1 ≤ |H| < 0.2 10.0 7.8 25.0
0.05 ≤ |H| < 0.1 20.0 17.9 50.0

0.033 ≤ |H| < 0.05 30.0 27.9 75.0
0.025 ≤ |H| < 0.033 40.0 37.9 100.0
0.0125 ≤ |H| < 0.025 80.0 79.0 100.0

|H| < 0.0125 - - 100.0

Table 3.3: Different evolution times, Δt, are required to ensure displacement of inter-
faces that yield accurate rate of changes of curvatures of the AC structure (Δx = 1 is
used). The left-hand column shows the range of |H| values that each group of surface
patches have while R(t0) represents reciprocal of the H value at the lower end of the
curvature range in each group and R(t0 + Δt) is the corresponding radius value after
evolving for Δt. The values of R(t0) and R(t0 + Δt) are omitted for |H| < 0.0125
because the minimum |H| value in this curvature range is zero.

on the Δt’s for each curvature group shown in Table 3.3. To compare the values

of DH/Dt and DK/Dt obtained from the convective and the advective method,

the differences in their corresponding values were also plotted. Figure (3.9c) and f

shows that the convective and the advective methods for calculating DH/Dt and

DK/Dt agree for most part except in the high curvature regions, where the radii of

curvatures are comparable to five times the interfacial thickness. Based on the error

analysis performed in Sections 3.3.1 & 3.3.2, we have more confidence in the accuracy

of the rate of changes of curvatures calculated with the advective method.

In summary, the above analysis suggests the use of a multiple time-differential

size for more accurate calculation of rate of changes of interfacial characteristics of a

microstructure with complex morphologies. We note that, while the surface patches

of the AC structure were approximated to be spherical for the above analysis, other

simple geometries, such as cylinders, can be used for the same analysis. However,

the resulting dependence of Δt on H remains the same regardless of the assumed

geometry. Furthermore, high curvature regions typically possess geometry similar

to a sphere, and therefore the results should be representative of rapidly evolving

69



(a) (b) (c)

(d) (e) (f)

Figure 3.9: Isosurfaces of the AC structure colored by a) DH/Dt using the convective
method, b) DH/Dt using the advective method, c) the difference between a) and b),
d) DK/Dt using the convective method, e) DK/Dt using the advective method, and
f) the difference between d) and e). All DH/Dt and DK/Dt calculations employed
a multiple time-differential size, Δt, based on Table 3.3.
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features in a morphologically complex microstructure.

3.4 Conclusion

We present an algorithm, “level-set smoothing,” that smoothes voxel-based data

describing the interfaces with minimal shift in the interfaces so that interfacial quanti-

ties can be accurately calculated. The significance of the level-set smoothing method

is its ability to be applied to a wide range of complex microstructures obtained from 3-

D experimental and computational techniques. The proposed method can be applied

to any voxel-based data describing a 3-D two-phase structure so that the interfacial

quantities, including their rate of change, can be accurately calculated. These inter-

facial quantities can then be used to characterize the morphology of a microstructure

and its evolution, which is a crucial aspect of 3-D materials science. The level-set

smoothing method is a set of sequential data-processing schemes that consists of first

generating the signed distance function for the given microstructure using the level-set

method, followed by smoothing via diffusion. In addition, this chapter also includes

numerical algorithms to calculate various types of interfacial quantities, such as the

curvatures and their rate of changes, the latter of which can be calculated by either

the convective or the advective methods.

The error analysis of interfacial quantity calculations for simple geometries shows

that the method improves the accuracy of the calculated curvatures and their rate of

changes of and that the magnitude of the errors are within the acceptable range for

the analysis of these quantities. For example, in the case of spheres and cylinders with

R1 = 40 and R2 = 38 described by the smoothed level-set functions (with Δx = 1

and interfacial thickness of 4), the maximum error level is found to be ∼ 1% in H,

∼ 2% in K (for a sphere) and ∼ 4 − 7% in rate of changes of the curvatures when

using the advective method. The improvement is especially significant for the rate of

change of quantities. We determine that an interfacial thickness less than fifth of the
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radius of curvature ensures accurate values of DH/Dt and DK/Dt.

We find that the advective method yields more accurate results for both DH/Dt

and DK/Dt than the convective method. The source of the increased error in the

convective method is traced to the calculation of gradient and the partial rate of

change of, which are not required for the advective method. Furthermore, interfa-

cial displacement of two to three grid points is shown to be optimal for calculating

the rate of changes of curvatures. Comparison of the surface contours of the AC

structure from the initial order parameter and the post-smoothed level-set function

demonstrates that the level-set smoothing method sufficiently preserves the location

of the interfaces except for where the curvature is large. Lastly, we have shown that

if the evolution of the structure is non-uniform, multiple time differential sizes are

suggested to accurately calculate the rate of changes of curvature. The considerations

should be given to balance sufficient motion of interfaces for numerical accuracy while

preventing major evolution of the microstructure.
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CHAPTER IV

Evolution of Interfacial Curvatures of a

Bicontinuous Structure Generated via

Nonconserved Dynamics

The material presented in this chapter is based on the published manuscript “C.-

L. Park, P. W. Voorhees, and K. Thornton. Evolution of Interfacial Curvatures of

a Bicontinuous Structure Generated via Nonconserved Dynamics, Acta Materialia

90:182-193, 2015.”

4.1 Introduction

As stated in Chapter I, we propose to consider the evolution during coarsening as

a consequence of (1) the interfacial velocity induced by diffusion and (2) the resulting

evolution of the interfacial curvatures. Examination of the evolution via nonconserved

dynamics is the ideal starting point to elucidate the complex dynamics of coarsening

since the kinetics is in the simplest form; it is driven by motion by mean curvature

and thus the normal velocity is only a function of the local mean curvature. We

use a bicontinuous structure simulated via nonconserved dynamics as a test bed to

investigate the second aspect of the evolution. In this chapter, we identify interfacial

quantities that influence the evolution of local mean curvature.
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4.2 Numerical Method

This section briefly describes the phase-field method used to simulate the bicontin-

uous structure and the numerical algorithms employed to calculate various interfacial

quantities.

4.2.1 Preparation of Microstructural Data

In this chapter, we use the bicontinuous AC structure presented in Section 3.2.2

as a test bed. As already discussed in the aforementioned section, the bicontinuous

structure is simulated using the phase-field method based on the governing equa-

tion for the nonconserved Allen-Cahn dynamics, Eqs. (2.9) and (2.12). To generate

sufficient statistics, a large computational domain size of 2048 × 2048 × 2048 in a

Cartesian-grid system is employed. Starting from an initial condition consisting of

random numbers that vary between φ = 0.5 ± 0.1 that ensures equal volume frac-

tions of the two phases, the simulation was run until self-similarity was achieved.

The simulation time t0 = 600 is used as a reference simulation time for all analyses

presented in this chapter. The characteristic length scale of AC structure at this

reference simulation time is S−1
v = 41.0.

4.2.2 Calculation of Interfacial Quantities

We characterize the interfacial morphology of the AC structure with the mean

and the Gaussian curvatures, H and K, respectively, or alternatively with the mi-

nor and major principal curvatures, κ1 = H −
√

H2 − K and κ2 = H +
√

H2 − K,

respectively. The normal displacement of interfaces is characterized with the interfa-

cial normal velocity, v. On the other hand, the evolution of interfacial morphology

is characterized with the Lagrangian rate of changes (in the material frame) of the

mean and Gaussian curvatures, DH/Dt and DK/Dt, respectively, or alternatively
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with the rate of changes of the principal curvatures, Dκ1/Dt and Dκ2/Dt.

In order to accurately calculate these interfacial quantities, we apply the level-set

smoothing method presented in Chapter III. The mean and Gaussian curvatures are

calculated first using the level-set approach and the principal curvatures are then

computed using the values of H and K. The interfacial velocity is also evaluated

using the level-set approach. On the other hand, the rate of changes of curvatures

are calculated using the advective method in the moving frame of the reference. To

improve the accuracy of the calculation of dynamic interfacial quantities, we employ

multiple time-differential sizes, Δτ , based on Table 3.3 in Section 3.3.4, such that

the smallest and the largest Δτ utilized are 10 and 100, respectively. All interfacial

quantities presented in this chapter are scaled by S−1
v at t0 = 600 and the correspond-

ing time scale, S−1
v /(dS−1

v /dt), where dS−1
v /dt is evaluated with S−1

v (t1 = 700) and

S−1
v (t0 = 600). The time step Δτ = 100 is chosen to calculate dS−1

v /dt since most

of the interfaces have small mean curvature values, which fall in the lowest curva-

ture group in Table 3.3. In addition, the difference between the values of dS−1
v /dt

calculated with Δτ = 10 (the shortest time step used to calculate rate of changes of

curvatures for the interfaces with the largest mean curvature values) and Δτ = 100

is only about 4%.

4.3 Procedures for Analysis

This section briefly explains the various techniques employed to analyze the mor-

phologies and their evolution of the AC structure.

4.3.1 Analysis of the Overall Evolution Using a Statistical Approach

Statistical analysis quantifies the overall morphology of the AC structure and its

evolution. For this analysis, the entire structure is examined. We apply two statistical

characterization techniques: the interfacial shape distribution (ISD) superimposed
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with average curvature velocity arrows and the probability contour map of rate of

changes of mean curvature as a function of H and of H and K.

The interfacial shape distribution (ISD) is a probability distribution defined in the

principal curvature space. The background on the ISD are presented in Section 2.1.2.

Figure 4.1 shows the ISD map defined in the principal curvature space with isolines

of constant net curvature and the H = (κ1 + κ2)/2 = 0 line. The H = 0 line (red)

represents symmetric saddle-shaped interfaces. In addition, the isolines of constant

net curvature (green), d = ((κ2
1 + κ2

2) /2)
1/2

, that are farther away from the origin of

the ISD represent interfaces with higher net curvatures. Labels 1 through 4 mark the

four regions (quadrants) of the ISD that describe different interfacial morphologies.

Regions 1 and 4 represent elliptic interfaces and regions 2 and 3 represent saddle-

shaped (hyperbolic) interfaces.

To understand how, on average, the morphologies of the interfaces with the same

principal curvatures evolve, we calculate the average velocity in the curvature space,

vκ:

vκ = 〈Dκ1/Dt〉κ1,κ2
κ̂1 + 〈Dκ2/Dt〉κ1,κ2

κ̂2, (4.1)

where 〈Dκ1/Dt〉κ1,κ2
and 〈Dκ2/Dt〉κ1,κ2

are the area-averages of the rate of changes

of principal curvatures of all interfaces with given κ1 and κ2, and κ̂1 and κ̂2 are

the unit vector on the principal curvature space. The vector, vκ, is represented as

arrows superimposed on the ISD (termed “average curvature-velocity arrows”). The

direction of the curvature velocity arrow is determined by the direction of vκ and the

length of the arrow is representative of |vκ|.

The second characterization technique is the probability contour map. The evo-

lution of mean curvature is statistically characterized by the probability distribution,

P1(H,DH/Dt), defined as

P1(H,DH/Dt) =
A1 (H,DH/Dt)

AT

, (4.2)
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Figure 4.1: The ISD map defined in the principal curvature space with isocurves
of constant net curvature d (green) and the H = 0 line (red). Labels 1 through
4 mark the four regions (quadrants) of the ISD that represent different interfacial
morphologies.
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where A1(H,DH/Dt) is the total surface area of all interfaces with given H and

DH/Dt and AT is the total surface area of the microstructure. This is numerically

evaluated by summing interfacial areas that have mean curvature and its rate of

change within the range of H i ± ΔH/2 and DH/Dti ± ΔDH/Dt / 2, where H i

and DH/Dti are the center values of the i-th bin, and ΔH and ΔDH/Dt are the

bin sizes in H and DH/Dt, respectively. Additionally, to investigate the role of K,

which together with H determine the interfacial morphology, in the evolution of mean

curvature, we calculate the probability distribution, P2(H,K,DH/Dt), defined as

P2(H,K,DH/Dt) =
A2 (H,K,DH/Dt)

AT

, (4.3)

where A2(H,K,DH/Dt) is the total surface area of all interfaces with given H, K,

and DH/Dt. This is numerically evaluated in the similar manner described above.

4.3.2 Analysis of Local Morphologies and Their Evolution

To gain insights into the local morphological characteristics and their evolution

of the AC structure, we visualize the interfacial quantities with shades of colors on

the isosurfaces of the structure. For this analysis, we examine a cubic region of side

length 6.2(S−1
v ) of the AC structures. The relationships between the mean curvature

and its rate of change is examined through the comparison of the isosurfaces colored

with H and DH/Dt.

4.4 Results & Discussion

4.4.1 Overall Morphologies and Their Evolution

The ISD of the AC structure in a scaled principal curvature space is shown in

Fig. 4.2 (both plots show the same ISD, and the arrows superimposed on the ISD

are discussed below). It shows that the most of the distribution is in the regions 2
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(a) (b)

Figure 4.2: ISD of the AC structure superimposed with (a) the average curvature-
velocity arrows, which represent the average velocity in curvature space, vκ, and (b)
the normalized average curvature-velocity arrows, which represent the normalized
average velocity in curvature space, vκ/ |vκ|.

and 3 of the ISD, which indicates that the majority of interfaces are saddle-shaped.

The symmetry of the ISD about the H = 0 line (κ1 = −κ2) is a consequence of the

50:50 volume fractions of the phases of the AC structure, the steady-state structure

arising from nonconserved dynamics. Note that the equal volume fractions alone are

not sufficient for achieving the symmetry of the ISD about the H = 0 line; in the

case of the AC structure, the symmetry between the two phases is ensured by the

dynamics and the initial condition that do not bias either of the phases.

Figure 4.2a shows the average curvature-velocity arrows on the ISD, which rep-

resent the velocity (including the magnitude) in curvature space, vκ in Eq. (4.1).

Figure 4.2b is presented to show the direction of the curvature velocity by plotting

the normalized average curvature-velocity arrows, vκ/ |vκ|, as it is difficult to show

the direction in Fig. 4.2a when the value of vκ is small. The average curvature-velocity

arrows demonstrate that the magnitude of vκ generally increases the net curvature

(as evident by the longer arrows away from the origin than near the origin). This

79



implies that highly curved interfaces of the AC structure are rapidly changing their

interfacial morphologies during coarsening, as expected.

Figure 4.2b shows that the normalized average curvature-velocity arrows near the

peak of the distribution (within the green color contour) point toward either toward

the origin or toward the κ1 = κ2 line, indicating that the majority of interfaces are

flattening. However, there are few arrows far from the origin of the ISD and the H = 0

line that point toward the direction that increases the net curvature. This tendency

indicates that some of highly curved interfaces are increasing their net curvatures

during coarsening, even though the overall net curvature decreases (or alternatively,

the characteristic length scale increases).

This phenomenon is not unlike those observed in coarsening in particulate sys-

tems. In a system of spherical particles, the average particle size increases only by

disappearance of small particles. These particles, which are smaller than the critical

particle size, contract and their curvatures increases in the process. The coarsening

thus proceeds by two concurrent processes: smaller particles increasing their net cur-

vatures, evolving towards topological singularity (disappearance), and larger particles

growing at their expense. An analogy can be drawn for the bicontinuous structure.

In this case, the reduction of the overall net curvature during coarsening is accom-

plished by : a) some of the small features increasing in net curvatures and evolving

toward topological singularity (in this case, pinching), as shown in Fig. 4.3, and b)

large features flattening, as shown in Fig. 4.4. Unlike the spherical particle systems,

however, some of the small features (with high net curvatures) also flatten when they

are surrounded by flatter interfaces. This is the case subsequent to pinching, where

the remnant is retracting, as illustrated by Fig. 4.3c-f.

All of these processes can be observed in Fig. 4.2b. The normalized average

curvature-velocity arrows that point to higher net curvatures in regions 2 and 3 of

the ISD represent the saddle-shaped interfaces increasing their net curvatures as they
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Figure 4.3: Sequential snapshots of the evolution of an interfacial feature in the
AC structure undergoing pinching, resulting in a topological singularity, followed by
retraction of the remnants of pinching. The corresponding evolution times are (a)
t = 600, (b) t = 610, (c) t = 625, (d) t = 650, (e) t = 675, and (f) t = 700.

Figure 4.4: Sequential snapshots of the evolution of an interfacial feature in the AC
structure undergoing flattening. The corresponding evolution times are (a) t = 600,
(b) t = 610, (c) t = 625, (d) t = 650, (e) t = 675, and (f) t = 700.
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evolve toward pinching. On the other hand, the nearly spherical interfaces with high

curvatures, likely a remnant of pinching, evolve toward the origin (i.e., flattening), as

indicated by the arrows pointing toward lower net curvatures in regions 1 and 4 close

to the κ1 = κ2 line. These results show that topological singularities play a vital role

in increasing the length scale of the AC structure during coarsening.

4.4.2 Evolution of Mean Curvature

To gain insight into the evolution of the mean curvature via nonconserved dynam-

ics, we examine the expression for the rate of change of mean curvature, derived from

differential geometry:

DH

Dt
= −(2H2 − K)v −

1

2
(v,11 + v,22) , (4.4)

where v,11 and v,22 are the second derivatives of the interfacial velocity with respect

to the principal coordinates [124]. This expression clearly shows that there are two

contributions to the evolution of mean curvatures. In particular, the first term in Eq.

(4.4) depends solely on the local curvatures and local normal velocity, while the latter

depends on the variation of the velocity. Using Eq. (3.19), Eq. (4.4) can be re-written

as

DH/Dt = M(2H2 − K)H +
M

2
(H,11 + H,22) . (4.5)

Therefore, for nonconserved dynamics, the first term only depends on the local inter-

facial curvatures, M(2H2 − K)H, and the second term depends on the variation of

mean curvature along the surface, M
2

(H,11 + H,22). Note that this term is the surface

Laplacian of the mean curvature, and in the absence of the local term, the evolu-

tion equation, Eq. (4.5), reduces to the surface diffusion equation, which typically

describes the concentration of a chemical species diffusing on a surface. Hereafter,

we refer to the first term in Eq. (4.5) as the local term and the second term as the
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nonlocal term.

Since M and (2H2 − K) are positive, the local term of DH/Dt always has the

same sign as the mean curvature. Therefore, the local term, which consists of only

H and K, do not induce reduction of |H| (the magnitude of H), which would be

required to flatten an interface. On the other hand, the nonlocal term of DH/Dt

has the form of the surface Laplacian of H, which tends to smooth it in the manner

similar to surface diffusion of chemical species. Hence, the nonlocal term drives H

toward values similar to the surface’s neighbors. Depending on the values of H in the

neighborhood, the resulting change may be in the direction of increasing or decreasing

|H|. However, since this structure has an average mean curvature of zero, the overall

tendency is toward decreasing |H|.

To verify the role of the local and the nonlocal term of DH/Dt based on Eq. (4.5),

we examined the probability contour maps of these quantities, as shown in Fig. 4.5.

Figure 4.5a shows the probability distribution of for a given set of DH/Dt and H;

the red indicates larger area of interfaces of having the set of DH/Dt and H, and

black indicates little or no area. If these two quantities are perfectly correlated, the

distribution will collapse to a line. Figure 4.5a indicates some correlation (trend), but

with a large dispersion. Similarly, Fig. 4.5b and c are the probability distribution for

a given set of the local term of DH/Dt and H and for a given set of the nonlocal

term of DH/Dt and H respectively. The probability contour map of the local term

of DH/Dt shows a positive and tight correlation between the local term and the

mean curvature (i.e., local term always increases |H| and spread as long as the value

of K is not large). Note that the probability in Fig. 4.5b is strongly peaked due

to the tight correlation, and thus the color bar range is significantly different from

Fig. 4.5a and c. In contrast, the probability contour map of the nonlocal term of

DH/Dt (Fig. 4.5c) shows, on average, a negative correlation between the nonlocal

term and the mean curvature (i.e., the nonlocal term preferentially decrease |H|).
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(a) (b)

(c)

Figure 4.5: Probability contour maps of (a) DH/Dt (b) the local term of DH/Dt
and (c) the nonlocal term of DH/Dt as functions of H. These plots confirm that
much of the dispersion of DH/Dt for a given H value stems from the nonlocal term
of DH/Dt.
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Hence the three probability contour maps on Fig. 4.5 demonstrate that the local

term of DH/Dt increases |H|, while the nonlocal term favors decrease in |H|, but

with a large dispersion.

We also investigate the statistical dispersions of DH/Dt, as well as its local term

and its nonlocal term for a given H value. While the source of the dispersion of

the local term is clear, the source of the dispersion in the nonlocal term is not. To

examine whether the dispersion originates from its dependence on K, we plot the

probability contour map for the nonlocal term for fixed K values, K = −4,−1, 0,

and 1, in Fig. 4.6. Interfaces with negative K are those that lie in the regions 2 and

3 of the ISD map (κ1 < 0, κ2 > 0), as shown in Fig. 4.1. These saddle-like shapes

constitute the majority of interfaces in the structure. The distributions of the nonlocal

term of DH/Dt are alike in this class of interfaces, which are similar to that of the

entire structure. The interfaces with K = −4 have similar morphologies as those

with K = −1 but differ by the magnitude of K. The larger spread in the nonlocal

term for interfaces with K = −4 indicates that the immediate neighborhood of the

interfaces have more diverse interfacial morphologies for saddle-like interfaces with

larger |K| than those with smaller |K|. The K = 0 interfaces have cylindrical shapes.

It consists of two populations, one with κ1 = 0 and the other with κ2 = 0, whose

distributions for the nonlocal term of DH/Dt are antisymmetric. The combined

distribution is still reminiscent of those of the interfaces with negative K. On the

other hand, the distribution for K = 1 is significantly different. It consists of two

distinct distributions, one belonging to the region 1 of ISD (κ1 > 0, κ2 > 0), and

the other region 4 (κ1 < 0, κ2 < 0). These interfaces have elliptic shapes, and

exhibit a wider spread in the nonlocal term than those with K = −1. Nevertheless,

it follows the same trend as other populations in that the nonlocal term is negatively

proportional to H.

In all of these probability plots shown in Fig. 4.6, the large dispersion in the

85



(a) (b)

(c) (d)

Figure 4.6: Probability contour maps of the nonlocal term of DH/Dt as a function
H at K values of (a) K = −4, (b) K = −1, (c) K = 0, and (d) K = 1. The large
dispersion persists even when the K value is fixed.
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nonlocal term persists, indicating that the spread in K for given H is not responsible

for the dispersion observed in Fig. 4.5c. Therefore, the origin of the dispersion is

truly nonlocal, and it cannot be characterized by the local curvatures or shape of a

patch of interface. This nonlocality is a result of the surface diffusion term in the

evolution equation for H, Eq. (4.5).

4.4.3 Local Morphologies and Their Evolution

The isosurfaces of the AC structure colored by the mean and the Gaussian cur-

vature values are shown on Fig. 4.7. Consistent with the ISD, the isosurfaces of

the AC structure have spatially varying curvatures with interfacial morphologies that

continuously vary from elliptical to cylindrical and to hyperbolic (saddle-shaped) in-

terfaces. The isosurfaces also show many evidence of topological singularities in the

form of pinching. The numbers marked on Fig. 4.7b highlight regions of interfaces

that are about to undergo pinching (labels (1) and (2)) and regions of interfaces that

are remnant of pinching (labels (3) and (4)). We find that interfaces that are about

to pinch off always have large |H|(>∼ 5, which can still be tracked with the given

diffuse interface) and negative K values (asymmetric saddle-shaped interfaces) and

interfaces that are remnant of pinching have large |H| and positive K values (elliptic

interfaces).

We also investigate the local dynamics of interfaces through the calculations of the

interfacial velocity and the rate of changes of curvatures, using the AC structure at

different simulation times. In the limit where the interfacial thickness is much smaller

than the radius of curvature of the interface, the interfacial velocity, v, in Allen-Cahn

dynamics is proportional to the mean curvature of the interface. To verify this local

dependence of the interfacial velocity, we also calculate the interfacial velocity as a

function of mean curvature, the right-hand side of Eq. (3.19). Figure 4.8 shows ex-

cellent agreement between the two velocity data, one from the rate of change of the
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(a) (b)

Figure 4.7: Isosurfaces of the AC structure colored by (a) the mean curvature, H,
and (b) the Gaussian curvature, K. Labels (1) and (2) are examples of interfaces
that are about to undergo topological singularity (pinching), which always have neg-
ative K values (saddle-shaped interfaces). On the other hand, labels (3) and (4) are
examples of interfaces that are remnant of pinching, which always have positive K
values (elliptic interfaces).

smoothed level-set function and the other based on the right-hand side of Eq. (3.19).

This agreement demonstrates the accuracy of the method employed to calculate the

interfacial velocity from the microstructural data at two closely separated times. This

also demonstrates that, for most of the interfacial area, the nonzero interfacial thick-

ness has no effect on the interfacial velocities. Note that, for this comparison only,

we use small Δτ = 10 to calculate v to capture the dynamics of rapidly evolving

interfaces with large mean curvature values.

The evolution of interfacial curvatures, on the other hand, is examined by the

calculation of the rate of changes of mean and Gaussian curvatures, DH/Dt and

DK/Dt, respectively. Figure 4.9 shows isosurfaces colored with DH/Dt and DK/Dt

values. Compared to the interfacial velocity (Fig. 4.8), the values of rate of changes

of curvatures exhibit much larger fluctuations throughout the interfaces. More im-

portantly, a direct comparison between the isosurfaces of H and DH/Dt (Figs. 4.7a
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(a) (b)

Figure 4.8: Isosurfaces of the AC structure colored by the interfacial velocity cal-
culated from (a) the rate of change of the smoothed level-set function and (b) the
mean curvature. The excellent agreement between the two sets of data validates the
accuracy of the method employed to calculate the interfacial velocity from the rate
of change of the smoothed level-set function.

& 4.9a) reveals a nonlinear relationship between the two quantities, even though the

interfacial velocity is linearly proportional to the mean curvature.

Figure 4.10 shows the interfaces colored by H, the local term, and the nonlocal

term of DH/Dt in Eq. (4.5). By comparing Figs. 4.10a and b, one can observe that

the high (positive) mean curvature region (in red in Fig. 4.10a) has positive value of

the local term (in red in Fig. 4.10b). On the other hand, the signs of the nonlocal

term (Fig. 4.10c) tend to be opposite of the signs of the mean curvatures, but not

always. These results are consistent with the findings obtained from the probability

contour maps of H and DH/Dt in Fig. 4.5 in Section 4.4.2.

4.5 Conclusion

In this chapter, we investigate the morphological evolution of a bicontinuous struc-

ture simulated via nonconserved dynamics to elucidate the evolution of local mean
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(a) (b)

Figure 4.9: Isosurfaces of the AC structure colored by the rate of change of (a) the
mean curvature, DH/Dt, and (b) the Gaussian curvature, DK/Dt.

curvature. The AC structure is used as a test bed. The order parameter describing the

interfaces of the AC structure is smoothed by the level-set smoothing method so that

the interfacial quantities, including dynamic interfacial quantities, could be accurately

calculated. These interfacial quantities are then used to quantify the morphology and

its evolution to understand the dynamics of coarsening of the bicontinuous structure.

The average curvature-velocity arrows superimposed on the ISD demonstrate that,

while the majority of interfaces are flattening (decreasing net curvatures), some of

highly curved interfaces are increasing their net curvatures. This is attributed to

features evolving toward topological singularity (pinching). The probability contour

maps of DH/Dt, its local term, and its nonlocal term confirm that the local term

always increases |H|, whereas the average value of the nonlocal term decreases |H|;

the resulting evolution is given by a competition of the two terms. We also find that

the large dispersion of DH/Dt for a given H value stems from the nonlocal term of

DH/Dt. In addition, we observe that the dispersion in the nonlocal term is not due

to variation in K for a given H.
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(a) (b)

(c)

Figure 4.10: Isosurfaces of the AC structure colored by (a) H (b) the local term of
DH/Dt, and (c) the nonlocal term of DH/Dt. In agreement with the findings from
the probability contour maps shown in Fig. 4.5, the local term always increases the
magnitude of H and the nonlocal term favors reduction in the magnitude of H.
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CHAPTER V

Coarsening of Complex Microstructures Following

Spinodal Decomposition

The material presented in this chapter is based on the manuscript in preparation

“C.-L. Park, J.W. Gibbs, P. W. Voorhees, and K. Thornton. Coarsening of Complex

Microstructures Following Spinodal Decomposition.”

5.1 Introduction

As stated in Chapter I, we propose to consider the evolution as a consequence

of (i) the interfacial velocity induced by diffusion and (ii) the resulting evolution of

the interfacial curvatures. In the previous chapter, we have investigated the effects

of interfacial curvature on coarsening by simulating the evolution of a bicontinuous

structure via nonconserved dynamics and the analysis of the interfacial morpholo-

gies and their evolution. Building upon this work, in this chapter we examine the

coarsening of three complex structures following spinodal decomposition, in which the

evolution of interfaces is due to the interfacial-energy-driven bulk diffusion. We first

elucidate the dynamics of coarsening by examining the correlation between interfacial

velocity and static interfacial properties, namely the mean curvature and the surface

Laplacian of mean curvature. We also examine the distribution of interfacial velocities
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of interfaces with given principal curvatures. Based on the information gathered from

the analysis of interfacial velocity during coarsening, we develop a semi-analytical ap-

proach to predict the rate of change of mean curvature, which is then verified against

the simulation results.

5.2 Numerical Methods

5.2.1 Preparation of Microstructural Data

In this chapter, we use bicontinuous structures simulated using the phase-field

method based on governing equation for the conserved Cahn-Hilliard dynamics, Eqs.

(2.9) & (2.13). The simulations are performed with a dimensionless form of the

Cahn-Hilliard equation, where we define the dimensionless variables such that x =

x̃/l, where l is the scaling length, and t = t̃/τ , where τ is the associated time

scale and the tilde indicates the dimensional variables. We select l such that the

grid spacings are Δx = Δy = Δz = 1.0 and τ such that Lφ = L̃φτ/l2W̃ = 1.0,

where L̃ is the dimensional mobility coefficient and W̃ is the dimensional well-height

parameter. A time step of Δt = 0.05 is employed. A computational domain size of

1024×1024×1024 in a Cartesian grid system is chosen to generate sufficient statistics

for accurate analyses of interfacial morphologies. In the phase-field method, values

of ε2 and W in the Cahn-Hilliard equation determine the interfacial thickness, δ. In

order to ensure sufficient interfacial resolution, we used ε2 = 0.2 and W = 0.4 to

obtain δ = 4.0, which results in the interfacial region (defined by φ in range 0.1 to

0.9) approximately four-grid-point wide.

In order to examine the influence of overall morphologies on the dynamics of

coarsening, we performed three separate simulations with different initial conditions

that result in different volume fractions of the phases. The three initial conditions

consist of order parameters with average values φ1 = 0.5, φ2 = 0.4, and φ3 = 0.3, each

93



Figure 5.1: Morphologies of (a) the 50:50 CH structure, (b) the 40:60 CH structure,
and (c) the 30:70 CH structure at the reference simulation time of t0 = 65, 000. The
structures in (a) and (b) are bicontinuous, while that in (c) is not bicontinuous. The
morphologies shown are in cubic domains with side lengths six times their respective
characteristic length scales, S−1

v .

with a random noise of amplitude 0.1. These initial conditions result in bicontinuous

structures with 50:50 and 40:60 volume fractions of the phases, and a nonbicontinuous

structure with 30:70 volume fractions of the phases. Since the Cahn-Hilliard equation

is conserved, the volume fractions of the phases remain constant throughout their

evolution.

The three structures were evolved for dimensionless simulation time of t0 =

65, 000, which is sufficient to produce self-similar structures for the 50:50 and 40:60

volume fractions [42]. Hereafter, these simulated structures are termed 50:50, 40:60,

and 30:70 CH structures, respectively. As a note, the self-similar morphology of the

structure with the 30:70 volume fraction should be a polydisperse spherical system,

as suggested by [42]. Therefore, the 30:70 CH structure is not self-similar, but rather

evolving toward one consisting of spherical particles. Figure 5.1 shows cubic portions

of the three CH structures, each with side length 6S−1
v , where S−1

v is the inverse of

surface area per unit volume, which is employed as the characteristic length scale.
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5.2.2 Calculation of Interfacial Quantities

Interfacial quantities can be classified into three categories: static local properties,

static nonlocal properties, and dynamic quantities. The static local properties include

the mean curvature, H, the Gaussian curvature, K, the two principal curvatures,

κ1 = H −
√

H2 − K and κ2 = H +
√

H2 − K. We also evaluate the net curvature,

d =
√

(κ2
1 + κ2

2) /2, which measures the overall bend of the interface and reduces

to 1/R in spherical geometry [43]. The static nonlocal property we examine is the

surface Laplacian of mean curvature, ΔSH, which describes the local variation of

H. The three dynamic quantities we examine are interfacial velocity, v, the rate of

change of mean curvature, DH/Dt, and the surface Laplacian of interfacial velocity,

ΔSv. These dynamic quantities all appear in the expression for DH/Dt based on

differential geometry, Eq. (4.4), in which the sum v,11 + v,22 in Eq. (4.4) is equal to

the surface Laplacian of interfacial velocity, ΔSv [124].

In order to accurately calculate these interfacial quantities, we apply the level-set

smoothing method [125]. The mean and Gaussian curvatures are calculated first and

other curvatures are then computed using the values of H and K. The nonlocal static

property, ΔSH, is calculated based on the expression

ΔSH = ∇2H − 2H
∂H

∂n
−

∂2H

∂n2
(5.1)

where ∇2H is the Laplacian of H, and ∂H/∂n and ∂2H/∂n2 are the first and second

derivative of H with respect to the normal coordinate, respectively [126]. The interfa-

cial velocity is calculated using the level-set method. Based on this velocity, DH/Dt,

the Lagrangian derivative is evaluated with respect to the coordinates moving with

the interface. We use the advective method to calculate the Lagrangian derivative,

as described in Chapter III. The surface Laplacian of interfacial velocity, ΔSv, is

calculated in the same manner as ΔSH. All interfacial quantities presented in this
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chapter are scaled by the characteristic length scale, S−1
v , and the corresponding time

scale, S−1
v / (dS−1

v /dt), where Sv is the surface area per unit volume calculated for the

entire simulation volume for each structure.

As a note, while the use of a multiple time-differential size is recommended when

calculating dynamic interfacial quantities (refer to Section 3.3.4 for details), for the

analysis in this chapter, we use a single time differential of Δτ = 100. This is because,

unlike with the AC structure, interfaces of the CH structures with the same mean

curvature can have very different rates of displacement of interfaces depending on the

curvatures of the nearby interfaces. This implies that we cannot assign a single time

step for interfaces that belong to a particular mean curvature group. Therefore, we

choose a time differential of Δτ = 100, which yields sufficient motion of interfaces

without major evolution of the microstructures.

5.3 Procedures for Analysis

This section briefly explains the various techniques employed to analyze the mor-

phologies and their evolution of complex structures.

5.3.1 Analysis of the Overall Morphologies Using a Statistical Approach

The statistical analysis reveals the global features of the morphology and the gen-

eral relationships between interfacial quantities that govern the dynamics of coarsen-

ing. The characterization technique used in the statistical analysis is the probability

distribution as a function of various interfacial characteristics. All of the probability

distributions are calculated by examining each structure in its entirety. The proba-

bility distributions employed in this chapter are described below.

The overall morphologies of the three structures are statistically characterized by

the interfacial shape distributions (ISDs). The ISD is the probability distribution of

finding a patch of interface with a given pair of principal curvatures, κ1 and κ2. For
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more details of the ISD, refer to Section 2.1.2. The statistical relationship between the

interfacial velocity and the local mean curvature is examined through the probability

distributions, P3 (H, v), defined as

P3 (H, v) =
A3(H, v)

AT

(5.2)

where A3(H, v) is the total area of interfaces with given values of H and v. This is

numerically evaluated by summing interfacial areas that have mean curvature and

interfacial velocity within the range of H i ± ΔH/2 and vi ± Δv/2, where H i and vi

are the center values of the i-th bin, and ΔH and Δv are the bin values in H and v

coordinates, respectively. All distributions presented in this chapter are numerically

evaluated in the similar manner. The correlation between the interfacial velocity

and the surface Laplacian of mean curvature is examined through the probability

distributions, P4(ΔSH, v), defined as

P4 (ΔSH, v) =
A4(ΔSH, v)

AT

(5.3)

where A4(ΔSH, v) is the total area of interfaces with given values of ΔSH and v.

In addition, the correlation between the surface Laplacian of mean curvature and

mean curvature is also examined through the probability distributions, P5(H, ΔSH),

defined as

P5 (H, ΔSH) =
A5(H, ΔSH)

AT

(5.4)

where A5(H, ΔSH) is the total area of interfaces with given values of H and ΔSH.

The distribution of normal velocities of interfaces with the same principal curva-

tures is examined through the probability distribution, P6(κ1, κ2, v), defined as

P6 (κ1, κ2, v) =
A6(κ1, κ2, v)

AT

(5.5)
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where A6(κ1, κ2, v) is the total area of interfaces with given values of κ1, κ2, and v.

In an effort to predict the rate of change of mean curvature, we calculate the area-

weighted averages of interfacial velocity, 〈v〉H,d, the surface Laplacian of interfacial

velocity, 〈ΔSv〉H,d, and the rate of change of mean curvature, 〈DH/Dt〉H,d, of all

interfaces with given values of H and d. For example, 〈v〉H,d is evaluated as

〈v〉H,d =
A∗(H, d)

AH,d(H, d)
(5.6)

where A∗(H, d) is the sum of the product of area of a patch of interface with given

values of H and d and its interfacial velocity, and AH,d(H, d) is the area of interfaces

with given values of H and d. Other averaged quantities, 〈ΔSv〉H,d and 〈DH/Dt〉H,d,

are calculated in the same manner.

5.3.2 Analysis of Local Morphologies and Interfacial Dynamics

To gain insights into the local morphological characteristics and their evolution of

the three CH structures, we visualize the interfacial quantities with shades of colors

on the isosurfaces of the structure. For this analysis, we examine a cubic region

of side length 6S−1
v from each of the CH structures. The relationship between the

interfacial velocity and local curvature is examined by comparing of the isosurfaces

colored by the values of v and −H. We use the negative of the mean curvature for

easier comparison of the two isosurfaces because v and −H, in general, have the same

sign. In addition, the influence of the local variation of curvature on the interfacial

velocity is investigated by comparing the isosurfaces colored by the values of v and

ΔSH.
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5.4 Results

5.4.1 Overall Morphologies and Interfacial Dynamics

Figure 5.2(a.1)-(c.1) shows the interfacial shape distributions of the three CH

structures. These ISDs are consistent with those calculated by Kwon et al. [42]. The

ISDs of the 50:50 and 40:60 CH structures, Fig. 5.2(a.1) and (b.1), show that the

majority of the interfaces are saddled-shaped. The ISD of the 50:50 CH structure is

symmetric about the H = 0 line due to the equal volume fraction of the two phases.

On the other hand, the ISD of the 40:60 CH structure has similar shape as that for

the 50:50 CH structure, but is slightly shifted to the left of the line as a result of the

unequal volume fraction. In contrast to the two bicontinuous structures, the ISD of

the 30:70 CH structure, Fig. 5.2(c.1), shows that the majority of the interfaces are

elliptic surfaces.

The correlations between v and H, as well as v and ΔSH, are examined with

the corresponding probability contour maps for all three structures, as shown in

Fig. 5.2(a.2)-(c.2) and (a.3)-(c.3), respectively. For ease of comparison, a probability

contour map of P3 (H, v) is plotted against −H. All plot ranges are kept constant for

each type of plots. In Fig. 5.2(c.2), a second probability contour map of P3 (H, v) of

the 30:70 CH structure with a wider range is inserted to show the entire distribution.

The plots of P3 (H, v) show that v and H are strongly correlated. However, it is clear

that the value of H does not set v; there is a dispersion of velocities for a given H,

unlike the case of nonconserved dynamics where v is proportional to H. In addition,

similar correlations can be observed between v and ΔSH. Furthermore, P3 (H, v) and

P4 (ΔSH, v) for each structure have similar shape, but over different ranges of H and

ΔSH, that differ by approximately a factor of five. However, the distribution with

respect to H show shift toward a greater value of H for the asymmetric 40:60 and

30:70 CH structures as a consequence of unequal volume fraction. The white solid
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curve in each of the contour map represents the average interfacial velocity, 〈v〉H

and 〈v〉ΔSH , for a given value of H and ΔSH, respectively. These curves confirm

the general correlations between the interfacial quantities. We find that both 〈v〉H

and 〈v〉ΔSH are good fit to cubic polynomials (not shown because the fit overlaps

the average values); the fit parameters are shown in the Appendix B. The apparent

discrepancy between 〈v〉ΔSH and the peak of the P4 (ΔSH, v) distributions at |ΔSH|

greater than 2 for all volume fractions is the result of the asymmetry of P4 (ΔSH, v),

which is not visible with the range of color chosen to show the entire distribution.

Such asymmetry is nearly absent in the P3 (H, v) and thus 〈v〉H coincides with the

apparent peak of the distribution.

Since the mean curvature determines the chemical potential at the interface, it is

not surprising that v and H are correlated; interfaces with higher chemical potential

is expected to evolve faster than those with lower chemical potentials on the average.

Similar correlation between v and H has been observed for experimental microstruc-

tures as well, e.g., in the solid-liquid dendritic mixtures of Al-Cu alloy [43]. On the

other hand, the origin of the correlation between v and ΔSH is not obvious. However,

the interfacial velocity is determined by the normal gradient of the chemical potential

at the interface, which is influenced by the chemical potentials of the nearby inter-

faces. Since the chemical potential at each interface is determined by mean curvature

(due to Gibbs-Thomson effect), it is reasonable that ΔSH, which measures the local

variation of mean curvature, can be correlated with v.

Since the above results point to possible correlation between H and ΔSH, we have

examined P5(H, ΔSH) for all three structures (not shown). The contour maps reveal

that, on average, ΔSH share a negative correlation with H, but broader than other

correlations we have identified. This correlation may be a result of the correlation

between v and ΔSH and v and H, or, alternatively, it may be a result of geometrically

necessary variation in H for the bicontinuous structure.
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Figure 5.2: The interfacial shape distributions of (a.1) 50:50, (b.1) 40:60, and
(c.1) 30:70 CH structure, along with the corresponding probability contour maps
of P3 (H, v) ((a.2)-(c.2)) and P4 (ΔSH, v) ((a.3)-(c.3)). The white solid curve in each
of the contour map represents the average interfacial velocity, 〈v〉H and 〈v〉ΔSH , for
a given a value of H and ΔSH, respectively.
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5.4.2 Local Morphologies and Interfacial Dynamics

The morphologies of the interfaces of the three CH structures colored by the

negative of the mean curvature values are shown in Fig. 5.3(a.1)-(c.1). While the

range on the color bars for Fig. 5.3(a.1) and (b.1) is symmetric and is equal to

[−1, 1], the range for Fig. 5.3(c.1) is shifted and is set to [0, 2] to accommodate the

substantial change in the range of the mean curvature in that structure as compared

to the other two. All of the local morphologies exhibit features that are consistent

with the ISDs presented in Fig. 5.2(a.1)-(c.1). The 50:50 CH structure appears to

have an equal distribution of positive and negative mean curvature (consistent with

the equal volume fractions of the two phases), while the 40:60 CH structure clearly

has a larger proportion of interfaces with negative mean curvature, as observed in Fig.

5.3(a.1)-(b.1). The nonbicontinuous 30:70 CH structure possesses multiple isolated

domains with near-spherical caps, as shown in Fig. 5.3(c.1). The fact that most of

the surfaces of the isolated domains have negative mean curvature values indicates

that these droplet-like interfaces enclose the minority phase (by the sign convention

chosen). In addition, these isolated domains have larger |−H| than the saddle-shaped

interfaces in the 50:50 CH structure.

The local dynamics of coarsening is investigated by considering the interfacial

velocities indicated by the color on the interfaces, as shown in Fig. 5.3(a.2)-(c.2).

The comparisons between Fig. 5.3(a.1)-(c.1) and (a.2)-(c.2) reveal a general corre-

lation between interfacial velocity and mean curvature, which is consistent with the

probability distributions P3 (H, v) in Fig. 5.2(a.2)-(c.2). In most regions, interfaces

with large |−H| also have large |v|, as illustrated by the circled regions A through

C in these figures. These regions include both saddle-shaped and elliptic surfaces,

and thus the correlation appears to hold for a wide range of interfacial morpholo-

gies without notable rules or exceptions. However, in the nonbicontinuous 30:70 CH

structure, there are interfaces with H ≈ 0 but have large |v|, as highlighted by the
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Figure 5.3: Morphologies of the CH structures with different volume fractions: (a.1)-
(a.3) 50:50; (b.1)-(b.3) 40:60; and (c.1)-(c.3) 30:70, colored with (a.1)-(c.1) the neg-
ative of the mean curvature, H; (a.2)-(c.2) the interfacial velocity, v; and (a.3)-(c.3)
the surface Laplacian of mean curvature, ΔSH.
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circled region D in Fig. 5.3(c.1) and (c.2). This is also consistent with the contour

map of P3 (H, v) for the 30:70 CH structure, where the center of the distribution is

shifted from v = 0 and H = 0. This apparent discrepancy can be understood by

considering the driving force of coarsening being the difference in the chemical poten-

tial of the interface with respect to the average (or mean-field) chemical potential of

the surroundings. It has been suggested that the interfacial velocity may be modeled

as v ∝ (H − Hc), where Hc is the critical mean curvature (which equals the average

mean curvature) of the system [43]. In this case, the interfaces having in the 30:70

CH structure, which has Hc = −1.1, is expected to have a nonzero velocity. This is

consistent with the observation from Fig. 5.3. However, as discussed in the previous

subsection, there appear to be higher-order terms that exist when v is modeled as

a function of H. Nevertheless, this simple linear model may provide insights into

coarsening of complex microstructures by capturing the primary dependence of v on

H.

To examine the correlation between v and ΔSH in detail, we compare the iso-

surfaces colored by the surface Laplacian of mean curvature (Fig. 5.3(a.3)-(c.3)) and

the normal velocity (Fig. 5.3(a.2)-(c.2)). Consistent with P4 (ΔSH, v), it is clear that

v and ΔSH have a positive correlation as displayed by the like-colors throughout

the interfaces in all three structures, highlighted by the circled regions A through

D in Fig. 5.3(a.2)-(c.2) and (a.3)-(c.3). This finding agrees with the contour map of

P4 (ΔSH, v), where the centers of the distributions all lie at or near the origin. Again,

we examined both saddle-shaped and elliptic surfaces, and no notable exceptions from

the general correlation were found.

As a note, the roughness in the color that appears on in Fig. 5.3(a.3)-(c.3) is the

result of the grid effect that manifests itself when high-order derivatives are calculated

at interfaces with insufficient interfacial resolution. The level-set smoothing method

applied to the microstructural data is designed to smooth up to the second-order
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derivatives required in the calculation of curvatures, as evidenced by the smooth H

profiles in Fig. 5.3(a.1)-(c.1). Since ΔSH requires calculation of fourth-order deriva-

tives across the interfaces, the level-set smoothing method cannot fully eliminate the

numerical noise associated with the calculation of ΔSH. Thus, the quality of data

from the calculation of ΔSH is slightly affected. Nevertheless, the numerical noise

does not seem to significantly deteriorate the quality of the data as the correlations

between ΔSH and other interfacial quantities can be quantitatively verified.

5.4.3 Distribution of Interfacial Velocities

The distribution of normal velocities of interfaces with the same principal curva-

tures, P6(κ1, κ2, v), is also examined. Figures 5.4-5.6 show the ISD and P6(κ1, κ2, v)

for the 50:50, 40:60, and 30:70 CH structures, respectively. The principal curvature

values at which P6(κ1, κ2, v) are plotted are shown on the ISD as solid blue circles

with arrows pointing to the corresponding distributions (the actual ranges in the i-th

bin are κi
1 ± 0.01 and κi

2 ± 0.01, as in the ISD calculation). For velocity, the bin size

is taken to be Δv = 0.16. Each distribution is then fitted with a Gaussian function;

the fit parameters are shown in Table 5.1.We find that the Gaussian function fits the

distributions very well, independent of the principal curvature values and the volume

fraction of the system.

The fact that a Gaussian function fits the velocity distributions across the wide

range of curvatures is remarkable. However, it is even more surprising that it fits all

volume fractions examined because the 50:50 and 40:60 CH structures are evolving in

a self-similar manner, while the 30:70 CH structure is in the process of breaking up

into individual domains that consist of spherical particles. The latter is expected to

be fundamentally different from the self-similar evolution of a bicontinuous structure.

Furthermore, it is notable that, while v has a wide range, σv is relatively constant

across different curvature values for a given volume fraction. Specifically, σv ≈ 0.51±
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Figure 5.4: Probability distributions of interfacial velocities, P6(κ1, κ2, v), at various
principal curvature values for the 50:50 CH structure. The principal curvature values
at which P6(κ1, κ2, v) are plotted are shown on the ISD (top center) as solid blue
circles connected to the corresponding distributions. The Gaussian fit is represented
as a solid red curve on each plot. The numbers marked on the top left corner of the
plots correspond to the plot numbers in Table 5.1.
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Figure 5.5: Probability distributions of interfacial velocities, P6(κ1, κ2, v), at various
principal curvature values for the 40:60 CH structure. The principal curvature values
at which P6(κ1, κ2, v) are plotted are shown on the ISD (top center) as solid blue
circles connected to the corresponding distributions. The Gaussian fit is represented
as a solid red curve on each plot. The numbers marked on the top left corner of the
plots correspond to the plot numbers in Table 5.1.
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Figure 5.6: Probability distributions of interfacial velocities, P6(κ1, κ2, v), at various
principal curvature values for the 30:70 CH structure. The principal curvature values
at which P6(κ1, κ2, v) are plotted are shown on the ISD (top center) as solid blue
circles connected to the corresponding distributions. The Gaussian fit is represented
as a solid red curve on each plot. The numbers marked on the top left corner of the
plots correspond to the plot numbers in Table 5.1.
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Structure Plot # κ1 κ2 〈v〉 σv

50:50
CH

Structure

1 −1.48 1.98 -1.24 0.54
2 −0.72 1.22 −1.04 0.47
3 −1.37 0.37 2.06 0.58
4 −1.25 1.25 −0.01 0.45
5 −1.98 1.48 1.23 0.52

40:60
CH

Structure

1 −1.13 1.63 −2.01 0.50
2 −1.00 1.00 −0.93 0.44
3 −0.80 0.30 −0.06 0.42
4 −1.37 0.37 0.77 0.49
5 −2.02 1.02 0.96 0.50

30:70
CH

Structure

1 −1.18 0.78 −1.34 0.40
2 −1.09 0.29 −0.98 0.38
3 −1.40 −0.20 −0.41 0.37
4 −1.98 −0.02 0.01 0.46
5 −1.95 0.35 −0.33 0.40

Table 5.1: Fit parameters of P6(κ1, κ2, v) presented in Figs. 5.4-5.6. The plot numbers
are the numbers indicated on the top left corner of each distribution plot. Variables
κ1 and κ2 are the curvature values chosen to plot P6(κ1, κ2, v), and 〈v〉 and σv are the
average and the standard deviation of the Gaussian fit, respectively.

0.07 for the 50:50 CH structure, σv ≈ 0.45 ± 0.05 for the 40:60 CH structure, and

σv ≈ 0.40 ± 0.06 for the 30:70 CH structure. The origin of the Gaussian distribution

is still not clear and requires further investigation.

5.4.4 Prediction of Curvature Evolution

Having gained insights into the evolution of interfaces during coarsening in com-

plex structures, we now attempt to predict the evolution of the average curvature

based on local morphological characteristics. As introduced in Chapter IV, the rate

of change of mean curvature, DH/Dt, can be expressed as Eq. (4.4) based on dif-

ferential geometry. Since 2H2 − K = d2 and v,11 + v,22 = ΔSH, Eq. (4.4) can be

re-written as

DH

Dt
= −d2v −

1

2
(ΔSv) . (5.7)
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In the previous chapter, since v = −MH in nonconserved dynamics [84], where M

is the proportionality constant, we derive the expression for DH/Dt solely in terms

of static interfacial properties, namely the local curvatures, H and K, and nonlocal

interfacial property, ΔSH (see Eq. (4.5)). In conserved dynamics, even though v is not

proportional to mean curvature, the statistical analysis in Section 5.4.1 demonstrated

that the average interfacial velocity can be expressed in terms of a cubic polynomial of

H. Based on this finding, we employ a semi-analytical model to derive an expression

for the average rate of change of mean curvature solely in terms of the local curvatures.

By averaging Eq. (5.7) over all interfaces with given values of H and d, the average

rate of change of mean curvature, 〈DH/Dt〉H,d, with the given values of H and d can

be written as
〈

DH

Dt

〉

H,d

= −d2 〈v〉H,d −
1

2
〈ΔSv〉H,d (5.8)

where 〈v〉H,d and 〈ΔSv〉H,d are the average interfacial velocity and surface Laplacian

of interfacial velocity, respectively, of all interfaces with given values of H and d. The

expressions for 〈v〉H,d and 〈ΔSv〉H,d in terms of H and d are numerically determined

through curve fitting the simulation data using the POLY FIT function in Interactive

Data Language (IDL) software. We then substitute two expressions into Eq. (5.8) to

express 〈DH/Dt〉H,d in terms of the local curvatures. The curvatures H and d are

chosen to express 〈v〉H,d and 〈ΔSv〉H,d since H alone cannot fully describe the local

morphology, and thus we require a second parameter. The net curvature, d, is chosen

since, unlike the Gaussian curvature, it has the same unit as H and it has an intuitive

interpretation as the distance from the origin on the ISD map (refer to Fig. 2.4 in

Section 2.1.2), representing the curviness of the interface.

Figure 5.7a shows the values of 〈v〉H,d versus d for different values of H for the

50:50 CH structure drawn with solid diamonds that are connected by solid lines,
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Figure 5.7: (a) Values of 〈v〉H,d, calculated from the simulation data, as a function
of d for different values of H for the 50:50 CH structure are drawn with the colored
diamond symbols that are connected by colored lines. Each color represents a given
H value. The quadratic fit, in the form of A0(H) + A1(H)d + A2(H)d2, for each
set of points for a given H value is drawn with a solid black curve. (b) Values of
the coefficients, A0(H), A1(H) and A2(H), as functions of H are drawn with colored
diamond symbols that are connected by colored lines. The cubic polynomial fit, in
the form of Ai = ai0 +ai1H +ai2H

2 +ai3H
3 with i = 0, 1 and 2, for each coefficient is

drawn with a solid black curve. Subfigures (c) and (d) are similar to (a) and (b) but
for the average surface Laplacian of interfacial velocity, 〈ΔSv〉H,d and the coefficients
of its quadratic fit, B0(H), B1(H), and B2(H).

111



Figure 5.8: (a) Values of 〈v〉H,d, calculated from the simulation data, as a function
of d for different values of H for the 40:60 CH structure are drawn with the colored
diamond symbols that are connected by colored lines. Each color represents a given
H value. The quadratic fit, in the form of A0(H) + A1(H)d + A2(H)d2, for each
set of points for a given H value is drawn with a solid black curve. (b) Values of
the coefficients, A0(H), A1(H) and A2(H), as functions of H are drawn with colored
diamond symbols that are connected by colored lines. The cubic polynomial fit, in
the form of Ai = ai0 +ai1H +ai2H

2 +ai3H
3 with i = 0, 1 and 2, for each coefficient is

drawn with a solid black curve. Subfigures (c) and (d) are similar to (a) and (b) but
for the average surface Laplacian of interfacial velocity, 〈ΔSv〉H,d and the coefficients
of its quadratic fit, B0(H), B1(H), and B2(H).
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Figure 5.9: (a) Values of 〈v〉H,d, calculated from the simulation data, as a function
of d for different values of H for the 30:70 CH structure are drawn with the colored
diamond symbols that are connected by colored lines. Each color represents a given
H value. The quadratic fit, in the form of A0(H) + A1(H)d + A2(H)d2, for each
set of points for a given H value is drawn with a solid black curve. (b) Values of
the coefficients, A0(H), A1(H) and A2(H), as functions of H are drawn with colored
diamond symbols that are connected by colored lines. The cubic polynomial fit, in
the form of Ai = ai0 +ai1H +ai2H

2 +ai3H
3 with i = 0, 1 and 2, for each coefficient is

drawn with a solid black curve. Subfigures (c) and (d) are similar to (a) and (b) but
for the average surface Laplacian of interfacial velocity, 〈ΔSv〉H,d and the coefficients
of its quadratic fit, B0(H), B1(H), and B2(H).
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where each color represents a given H value. A quadratic fit in the form of

〈v〉H,d = A0(H) + A1(H)d + A2(H)d2 (5.9)

is applied on each set of 〈v〉H,d points for a given H value and is drawn as a solid black

curve on top of the same plot. To find the expressions for the coefficients, A0(H),

A1(H), and A2(H), in terms of H, we also plotted the values of coefficients versus H

as colored diamonds. A cubic polynomial fit in the form of

Ai = ai0 + ai1H + ai2H
2 + ai3H

3 (5.10)

where i = 0, 1 and 2, is applied to each coefficient and is drawn as a solid black

curve (Fig. 5.7b). The two numerical fits, Eqs. (5.9) and (5.10), demonstrate that

the expression for 〈v〉H,d is a combination of a quadratic function of d and a cubic

function of H. The values of the fit parameters ai0, ai1, ai2, and ai3 in Eq. (5.10) are

shown in the Appendix B.

The same approach was used to obtain the expression for 〈ΔSv〉H,d. The plots

of data points and their numerical fits are shown in Fig. 5.7c and d. Similar to the

expression for 〈v〉H,d, the expression for 〈ΔSv〉H,d is a combination of a quadratic

function of d and a cubic function of H. The values of the fit parameters are shown

in the Appendix B. The plots of 〈v〉H,d and 〈ΔSv〉H,d and the coefficients for their

respective numerical fits for the 40:60 and 30:70 CH structures are shown in Figs.

5.8 and 5.9, respectively. We find that 〈v〉H,d and 〈ΔSv〉H,d for the 40:60 and 30:70

CH structures also have the same quadratic and cubic dependencies on d and H,

respectively. The values of the fit parameters for the 40:60 and 30:70 CH structures

are also included in the Appendix B.

The expressions for 〈v〉H,d and 〈ΔSv〉H,d are substituted into Eq. (5.8) to obtain

the expression for 〈DH/Dt〉H,d as a function of the local curvatures: H and d. The
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Figure 5.10: Plots of the predicted values of 〈DH/Dt〉H,d based on Eq. (5.8) for the
CH structure with volume fractions of (a) 50:50, (b) 40:60, and (c) 30:70 are drawn
with dashed colored curves. In addition, the calculated values of 〈DH/Dt〉H,d are
drawn with solid colored curves with the diamond symbol, which mark select values
of 〈DH/Dt〉H,d.

predicted values of 〈DH/Dt〉H,d based on the expressions of 〈v〉H,d and 〈ΔSv〉H,d are

compared with 〈DH/Dt〉H,d directly calculated from DH/Dt at all interfaces with

given values of H and d in Fig. 5.10. The calculated 〈DH/Dt〉H,d is represented as

solid colored curves while the predicted 〈DH/Dt〉H,d is represented as dashed colored

curves. The predicted 〈DH/Dt〉H,d agrees well with the calculated 〈DH/Dt〉H,d.

The plot of 〈DH/Dt〉H,d for the 50:50 CH structure, Fig. 5.10a, shows that H of

interfaces with low net curvature, d . 1.2, evolves toward the average mean curvature,

H̄ = 0, while H of interfaces with larger net curvature, d & 1.3 , diverges from H̄.

For example, the red curve corresponding to H = 0.4 is negative for d . 1.2,

indicating H evolving toward H = 0, while it becomes positive for d & 1.3, which

would result in increasing H further. This finding demonstrates that interfaces with

low net curvature are evolving to reduce the local mean curvature during coarsening.

On the other hand, interfaces with large net curvature appear to break the symmetry

of the saddle-shape even when H is not large (|H|≥ 0.1 ), which can be understood

as a part of the process leading to topological singularity. The same trend is observed
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for the plot of of the 40:60 CH structure,Fig. 5.10b, which has H̄ = −0.2.

In the case of the nonbicontinuous 30:70 CH structure, the evolution of mean

curvature is more complex, as indicated by the plot of 〈DH/Dt〉H,d shown in Fig.

5.10c. We find that H of interfaces with H & H̄ = −1.1 and d . 1.2 evolves toward

H̄, while H of interfaces with H . −1.2 and d & 1.3 diverges from H̄. This is

consistent with the results for bicontinuous structures. Indeed a sizable portion of

interfaces with H & H̄ of the 30:70 CH structure are saddle-shaped, like those of

the bicontinuous structures, as can be observed in the ISD in Fig. 5.2(c.1). However,

this trend in the evolution of H gradually disappears for interfaces with H < H̄. For

interfaces with H . −1.2, which are mostly of isolated domains that have elliptical

geometry, we find that |H| increases on the average, which represents dissolution

of high-curvature interfaces. Thus, the observation that low net curvature regions

evolve toward reducing the difference between the mean curvature and the local mean

curvature, while high net curvature regions evolves in the opposite direction, may be

universal not only to bicontinuous structures but also to hyperbolic interfaces within

transient structures that are similar to bicontinuous structures.

The results obtained from the semi-analytical approach demonstrate that the av-

erage rate of change of curvatures can be predicted based on the local curvatures.

Furthermore, as discussed in the introduction, an analytical expression for the growth

rate of a particle, dR/dt, as a function of radius, R, was a critical input in deriving the

time-independent particle size distribution and the coarsening law. As in the LSW

theory, the expression for the average rate of change of curvature we have obtained

here can be used to solve for the time-independent interfacial shape distribution using

the continuity equation. This should be the next step in the development of theory

of coarsening of complex structures.
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5.5 Conclusion

In this chapter, we have examined the correlations between the interfacial veloc-

ity and static local properties and developed a semi-analytical approach to predict

curvature evolution of complex structures undergoing coarsening following spinodal

decomposition. Three simulated CH structures are generated using phase-field sim-

ulations with different volume fractions that resulted in two bicontinuous structures

and one nonbicontinuous structure. The level-set smoothing method is employed to

ensure that various interfacial quantities used in the analysis are accurately calcu-

lated.

The probability contour maps have shown that there exist a correlation between

v and H; such correlation has been observed for dendritic mixtures of Al-Cu al-

loy [43]. We also identified a correlation between v and ΔSH; such correlation has

not yet been examined because a technique has not been developed to compute the

surface Laplacian of mean curvature for experimentally obtained three-dimensional

microstructures. The analyses of 〈v〉H and 〈v〉ΔSH indicate that average v is of the

form of a cubic polynomial of H and ΔSH. Examination of the local morphologies

and their evolution also support the general findings from the statistical analysis.

We find that the distribution of normal velocities of interfaces with the same local

principal curvatures fits a Gaussian function well, independent of the local principal

curvatures and the volume fractions of the structures. This finding is remarkable

since the bicontinuous and nonbicontinuous structures are undergoing fundamentally

different evolution, one self-similar and the other in the process of breaking up into

disconnected domains. The mechanism that drives the distributions toward Gaussian

is still not understood and requires further investigation.

To predict the evolution of mean curvature, we employ a semi-analytical approach

to derive the expression for the average rate of change of mean curvature in terms
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of static local properties, H and d. The predicted 〈DH/Dt〉H,d match the directly

calculated 〈DH/Dt〉H,d well. The plots of 〈DH/Dt〉H,d show that, in the case of

the bicontinuous structures, interfaces with low net curvature evolve to reduce the

local mean curvature while the opposite occurs for interfaces with large net curva-

ture. The results demonstrate that we have successfully developed a semi-analytical

approach that can be employed to predict the evolution of mean curvature and repre-

sent a significant advancement in the development of theory of coarsening of complex

structures.
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CHAPTER VI

Preliminary Results From Examination of

Continuity Equation and Singularity

6.1 Introduction

This chapter discusses preliminary work that requires further investigation. The

first section focuses on the derivation of the continuity equation of area flow in terms

of the interfacial shape distribution. The second section examines the morphological

evolution of a rod undergoing pinch-off, resulting in topological singularity.

6.2 Continuity Equation of Interfacial Area

The development of the theory of coarsening will enable the prediction of the

evolution of the overall morphology of a microstructure undergoing coarsening. If the

microstructure evolves self-similarly, then the probability distribution that quantifies

the overall morphology becomes time-independent. As explained in Chapter I, in

the case of the coarsening of spherical particles, the LSW theory predicts the overall

morphology from the time-independent particle size distribution obtained from the

solution of the continuity equation, Eq. (1.6).

A similar approach can be taken to predict the overall morphology of complex

microstructures. Chapters IV & V show that the complex morphologies of the bicon-
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tinuous structures can be statistically represented by the ISD. Much like the parti-

cle size distribution, the ISD also becomes time-independent when a microstructure

reaches the self-similar state. As the ISD is based on the area density, we cannot

use the same continuity equation, Eq. (1.6), to describe the ISD. Therefore, in this

section, we derive the appropriate continuity equation for interfacial areas.

6.2.1 Derivation of the General Continuity Equation for Interfacial Area

The total surface area of the microstructure, AT , is defined as

AT =

∫

S

dS , (6.1)

where S is the surface of the microstructure. Since the surface consists of large

number of infinitesimal surface patches with varying principal curvatures, k1 and k2,

positioned within a three-dimensional space, Eq. (6.1) can be re-formulated as

AT =

∫ ∫



∫

S

dS δ(k1 − κ1)δ(k2 − κ2)



 dκ1dκ2 , (6.2)

where κ1 and κ2 are the coordinates in the principal curvature space. Note that, for

this derivation only, we differentiate the notations between the principal curvatures

defined in the physical space, k1 and k2, and the principal curvature coordinates κ1

and κ2.

We now introduce a new variable Aκ(κ1, κ2), which represents a curvature distri-

bution based on area density as a function of κ1 and κ2. Its value at each curvature

bin (for a given κ1 and κ2 value) is given by

Aκ (κ1, κ2) =

∫

S

dS δ(k1 − κ1)δ(k2 − κ2) , (6.3)
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which is the total area of all surface patches with k1 = κ1 and k2 = κ2. This curvature

distribution becomes ISD once normalized by the total surface area of the system,

AT . Based on the definition of Aκ, AT can be re-defined as

AT =

∫ ∫
Aκ dκ1dκ2 . (6.4)

If the surface evolves in time, then both AT and Aκ(κ1, κ2) become functions of time

t as well.

In general, the differentiable form of the continuity equation for some density, f ,

is given by

∂f

∂t
+ ∇̄ ∙ j = Q, (6.5)

where j is the flux of density defined as the product of the density and its velocity in

the space where the density is defined, and Q is the source/sink term. The symbol

∇̄∙ is the divergence operator on the space in which f is defined and ∂/∂t is a partial

time derivative evaluated on a fixed frame of reference where f is defined, which is

different from an ordinary time derivative, d/dt. Note also that it is different from

the Lagrangian derivative defined in the material frame, D/Dt, which is reserved for

changes within a physical space.

In the case of Aκ (κ1, κ2, t), which lies in the two-dimensional principal curvature

space, the continuity equation becomes

∂Aκ
∂t

+
∂

∂κ1

(
jκ1

)
+

∂

∂κ2

(
jκ2

)
= Q, (6.6)

where jκ1
(κ1, κ2) and jκ2

(κ1, κ2) represent the flux of area density along the κ1 and

κ2 coordinates, respectively, and Q (κ1, κ2) is the source term that accounts for the

rate of generation/loss of area during the evolution of the microstructure. The value
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of jκ1
(κ1, κ2) and jκ2

(κ1, κ2) is defined as

jκ1
(κ1, κ2) =

∫

S

Dk1

Dt
dSδ(k1 − κ1)δ(k2 − κ2) , (6.7)

jκ2
(κ1, κ2) =

∫

S

Dk2

Dt
dSδ(k1 − κ1)δ(k2 − κ2) , (6.8)

respectively, where Dk1/Dt and Dk2/Dt are the rate of change of principal curvatures

defined in physical space. After multiplying the right hand side by Aκ/Aκ, Eqs. (6.7)

& (6.8) simplify to

jκ1
(κ1, κ2) = Aκ

〈
Dk1

Dt

〉

κ1,κ2

, (6.9)

jκ2
(κ1, κ2) = Aκ

〈
Dk2

Dt

〉

κ1,κ2

, (6.10)

respectively, where 〈Dk1/Dt〉κ1,κ2
and 〈Dk2/Dt〉κ1,κ2

are the average rate of change

of principal curvatures of all interfaces with k1 = κ1 and k2 = κ2. Substituting Eqs.

(6.9) & (6.10) into Eq. (6.6) results in

∂Aκ
∂t

+
∂

∂κ1

(

Aκ

〈
Dk1

Dt

〉

κ1,κ2

)

+
∂

∂κ2

(

Aκ

〈
Dk2

Dt

〉

κ1,κ2

)

= Q . (6.11)

To determine the source term, Q, we must examine how the overall surface area

AT changes with time. Based on the calculus of moving surfaces, the rate of change

of the surface integral is defined as

d

dt

∫

S

dS =

∫

S

2Hv dS (6.12)

where H is the interfacial mean curvature and v is the normal velocity [127]. As

done in Eq. (6.2), one can isolate surface patches with same principal curvatures to
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re-write Eq. (6.12) as

∫ ∫


 d

dt

∫

S

dS δ(k1 − κ1)δ(k2 − κ2)



 dκ1dκ2 = (6.13)

∫ ∫



∫

S

2Hv dS δ(k1 − κ1)δ(k2 − κ2)



 dκ1dκ2.

Substituting Eq. (6.3) into the left hand side and multiplying the right hand side with

Aκ/Aκ , Eq. (6.13) is simplified as

dAκ
dt

= Aκ (κ1 + κ2) < v >κ1,κ2= 2AκH < v >κ1,κ2 , (6.14)

where < v >κ1,κ2 is the area-weighted average interfacial velocity of all surface patches

with k1 = κ1 and k2 = κ2. Equation (6.14) shows that the flow of Aκ in the principal

curvature space is not conserved because the area of a moving interfacial patch changes

during the evolution unless the mean curvature is zero. This also implies that the

source/sink term in Eq. (6.11) is nonzero even in the absence of topological singularity.

The final form of the continuity equation in terms of the curvature distribution

Aκ is obtained by combining Eqs. (6.11) and (6.14):

∂Aκ
∂t

+
∂

∂κ1

(

Aκ

〈
Dk1

Dt

〉

κ1,κ2

)

+
∂

∂κ2

(

Aκ

〈
Dk2

Dt

〉

κ1,κ2

)

(6.15)

= Aκ (κ1 + κ2) < v >κ1,κ2 +Qs ,

where Qs is the source/sink term that accounts for the discontinuous changes in

interfacial curvatures resulting from topological singularities, e.g. pinching of a rod.

An example of the discontinuous changes in interfacial curvatures is presented in

Section 6.3, in which the morphological evolution of a rod undergoing pinching is

examined.
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Equation (6.15) is general and should apply to bicontinuous structures as well as

those consisting of spherical particles. Thus, in the following subsection, we verify

the equation by applying it to a system of spherical particles.

6.2.2 Validation of the Continuity Equation for Coarsening of Spherical

Particles

To examine the validity of Eq. (6.15), we apply the equation to solve for the

time-independent curvature distribution for spherical particles undergoing coarsening,

using the same assumptions as the LSW theory.

6.2.2.1 Mean Curvature Distribution in Terms of Number Density

The particle size distribution presented in the LSW theory is defined in the radius

space based on number density. Since Eq. (6.15) is defined in the curvature space, first,

we re-derive the time-independent particle size distribution presented in the LSW

theory in the mean curvature space (since spheres have κ1 = κ2 = H) and compare

with the time-independent mean curvature distribution based on area density that

will be derived subsequently using the general form of Eq. (6.15).

We first define a mean curvature distribution based on number density, f(H, t), as

a function of the mean curvature and time. As in Eq. (1.6), the continuity equation

in terms of f(H, t) is

∂f

∂t
+

∂

∂H

(

f
DH

Dt

)

= 0 , (6.16)

where DH/Dt is the rate of change of mean curvature defined in the physical space.

We then transform the coordinates into dimensionless forms, H̃ = H/Hc and τ =

ln(Hc(t = 0)/Hc(t)), where H̃ and τ are the dimensionless mean curvature and time,

respectively, and Hc(t) and Hc(t = 0) are the critical mean curvature (as a function

of time) and the critical mean curvature at the onset of coarsening. The critical mean

curvature is the inverse of the critical radius at which the growth rate of a particle is
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zero in the particulate system undergoing coarsening.

With the dimensionless coordinates defined, Eq. (6.16) is re-written in terms of a

dimensionless mean curvature distribution, f(H̃, τ ),

∂f

∂τ
+

∂

∂H̃

(

f
dH̃

dτ

)

= 0 . (6.17)

In the LSW theory, an additional transformation of time is performed such that the

reference particle size (particle size that results in zero growth rate) is shifted from

the critical mean curvature, Hc, to the minimum scaled mean curvature H̃m. By this

transformation, one obtains the scaled growth rate of a particle for a given H̃, dH̃/dτ

expressed in terms of H̃ alone [32, 36],

dH̃

dτ
= H̃ − ν

(
H̃4 − H̃3

)
, (6.18)

where

ν = ωdiffH
4
c

/dH̃

dt
, (6.19)

and ωdiff is a rate of coarsening in isothermal two-phase alloy. The LSW theory shows

that ν becomes a constant at very large τ and that there exists a maximum cut-off

size of the particle size distribution (which corresponds to H̃m). The scaled growth

rate, dH̃/dτ , is zero only at H̃ = H̃m, which results in two equalities: dH̃/dτ = 0

and d
(
dH̃/dτ

)
/dH̃ = 0. On the basis of these two conditions, the values of ν and

H̃m are evaluated as −27/4 and 2/3, respectively [32, 36].

As an ansatz, we try a solution for Eq. (6.17) of the form

f(H̃, τ ) = χ(τ + Ψ)
/dH̃

dτ
, (6.20)

where both Ψ and dH̃/dτ are functions of only H̃. Substituting Eq. (6.20) into Eq.
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(6.17), we find

∂

∂τ

(
χ
dH̃
dτ

)

+
∂

∂H̃

(
χ
dH̃
dτ

dH̃

dτ

)

= 0 , (6.21)

dχ

d(τ + Ψ)

(
1

dH̃
dτ

)

+
dχ

d(τ + Ψ)

∂Ψ

∂H̃
= 0 ,

∂Ψ

∂H̃
= −

(
1

dH̃
dτ

)

.

The expressions for Ψ can be evaluated with an integral with variable upper limit of

integration,

Ψ =

H̃∫

∞

−
1

dH̃
dτ

dH̃ ′ (6.22)

=

H̃∫

∞

−
1

H̃ ′
+

4

3(3H̃ ′ + 1)
+

5

3(3H̃ ′ − 2)
−

2

(3H̃ ′ − 2)2
dH̃ ′

= −lnH̃ +
4

9
ln(3H̃ + 1) +

5

9
ln(3H̃ − 2) +

2

3(3H̃ − 2)
− ln3 .

To determine the specific solution of Eq. (6.17) we must consider the volume

fraction, Φ, expressed as

Φ =

∞∫

H̃m

4

3
πH−3

c H̃−3f(H̃, τ ) dH̃ (6.23)

=

∞∫

H̃m

4

3
πHc(0)−3e3τH̃−3χ(τ + Ψ)

/dH̃

dτ
dH̃ .

Since the volume fraction is conserved in the particulate system undergoing coarsen-

ing, this implies that the product e3τχ(τ + Ψ) must be independent of τ . Thus,

χ(τ + Ψ) = Be−3(τ+Ψ), (6.24)
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where B is a numerical constant. Thus, the solution of Eq. (6.17) takes the form of

f(H̃, τ ) = Be−3τe−3Ψ

/
dH̃

dτ
(6.25)

= Be−3τ334
H̃2e

2

2 − 3H̃

(3H̃ + 1)
7
3 (3H̃ − 2)

11
3

.

The total number of particles, NT (τ), that changes with time can be determined as

NT (τ) =

∞∫

H̃m

f(H̃, τ ) dH̃ (6.26)

= −Be−3τ

0∫

∞

e−3Ψ dΨ

=
B

3
e−3τ .

After normalizing Eq. (6.25) by NT , we then obtain the time-independent mean cur-

vature distribution based on number density, P (H̃)#,

P (H̃)# =
f(H̃, τ )

Nv(τ)
(6.27)

=

Be−3τe−3Ψ

/
dH̃
dτ

B

3
e−3τ

= 344
H̃2e

2

2 − 3H̃

(3H̃ + 1)
7
3 (3H̃ − 2)

11
3

,

which is equivalent to the particle size distribution presented in the LSW theory, but

defined in the mean curvature space.
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6.2.2.2 The Mean Curvature Distribution in Terms of Area Density

As in the mean curvature distribution based on number density derived above,

the mean curvature distribution based on area density, AH(H, t), for the particulate

system undergoing coarsening is also a function of H and t. The continuity equation

in terms of a curvature distribution as a function of the two principal curvatures, Eq.

(6.15) is expressed in the mean curvature space as

∂AH

∂t
+

∂

∂H

(

AH
dH

dt

)

= −
2AH

H

dH

dt
, (6.28)

where v = dR/dt is substituted with −(1/H2)(dH/dt). The source/sink term due to

topological singularities, Qs, is omitted since the LSW theory neglects any discon-

tinuous changes in the particle size [35, 36]. In addition, particles that are about to

undergo topological singularity are very small in size and, thus, their interfacial areas

contribute insignificantly to the mean curvature distribution based on area density.

Equation (6.28) can be re-written in dimensionless coordinates, H̃ and τ , as

∂AH

∂τ
+

∂

∂H̃

(

AH
dH̃

dτ

)

= −
2AH

H̃

dH̃

dτ
. (6.29)

Since the growth rate, dH/dτ is already defined in Eq. (6.18), as in Section 6.2.2.1,

we try a solution of Eq. (6.29) in the form

AH(H̃, τ ) = χ(τ + Ψ)H̃−2
/dH̃

dτ
(6.30)

with both Ψ and dH̃
dτ

depend only on H̃. Substituting Eq. (6.30) into Eq. (6.29) yields

∂

∂τ

(
χ
dH̃
dτ

H̃−2

)

+
∂

∂H̃

(
χH̃−2

dH̃
dτ

dH̃

dτ

)

= −
2

H̃

χH̃−2

dH̃
dτ

dH̃

dτ
, (6.31)

128



dχ

d(τ + Ψ)

(
H̃−2

dH̃
dτ

)

− 2H̃−3χ + H̃−2 dχ

d(τ + Ψ)

∂Ψ

∂H̃
= −2χH̃−3 ,

∂Ψ

∂H̃
= −

(
1

dH̃
dτ

)

.

Thus, the expression for Ψ in terms of H̃ is identical to Eq. (6.22).

As in Section 6.2.2.1, the volume fraction, Φ, must be considered to obtain a

unique solution to Eq. (6.29). The volume fraction in terms of AH is expressed as

Φ =

∞∫

H̃m

1

3
H−3

c H̃−1AH(H̃, τ ) dH̃ (6.32)

=

∞∫

H̃m

1

3
Hc(0)−3e3τH̃−3χ(τ + Ψ)

/dH̃

dτ
dH̃, (6.33)

which must be conserved. Thus, the product e3τχ(τ + Ψ) must be independent of τ

and

χ(τ + Ψ) = Be−3(τ+Ψ), (6.34)

where B is a numerical constant. Consequently,

AH(H̃, τ ) = Ce−3τe−3ΨH̃−2

/
dH̃

dτ
(6.35)

= Ce−3τ334
e

2

2 − 3H̃

(3H̃ + 1)
7
3 (3H̃ − 2)

11
3

. (6.36)
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The total surface area of a particular system, AT (τ), is

AT (τ) =

∞∫

H̃m

AH(H̃, τ ) dH̃ (6.37)

= Ce−3τ

∞∫

H̃m

e

2

2 − 3H̃

(3H̃ + 1)
7
3 (3H̃ − 2)

11
3

dH̃. (6.38)

We then obtain the time-independent mean curvature distribution based on area

density, P (H̃)A, by

P (H̃)A =
AH(H̃, τ )

AT (H̃)
(6.39)

=
1

hA
H̃

e

2

2 − 3H̃

(3H̃ + 1)
7
3 (3H̃ − 2)

11
3

, (6.40)

where hA
H̃

= 0.00320 determined numerically using Maple. Figure 6.1 shows the plot

of P (H̃)# and P (H̃)A for comparison. Since the ratio of the two time-independent

solutions, Eqs. (6.27) & (6.39), is a factor of H̃2, Eq. (6.15) is valid in the case of

spherical particles.

6.2.3 Application of the Continuity Equation for Coarsening of Complex

Microstructures

To further validate the continuity equation, it must be applied to complex mi-

crostructures. We employ the bicontinuous structures presented in previous chapters,

which evolve self-similarly. The continuity equation requires the expression of the av-

erage rate of changes of principal curvatures of all interfaces with the same principal

curvatures, 〈Dκ1/Dt〉κ1,κ2
and 〈Dκ1/Dt〉κ1,κ2

, in terms of the principal curvatures.

Based on differential geometry, the rate of changes of principal curvatures at an in-

130



Figure 6.1: The time-independent mean curvature distribution based on number den-
sity, P (H̃)#, and the mean curvature distribution based on area density, P (H̃)A in
mean curvature space for a particulate system undergoing coarsening.
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terface can be expressed as

DκJ

Dt
= −κ2

Jv − (v,11 + v,22) , (6.41)

where different principal curvatures are denoted by subscript J = 1 or J = 2 [124].

The average rate of changes of principal curvatures of all interfaces with the same

principal curvatures, 〈DκJ/dt〉κ1,κ2
, then becomes

〈
DκJ

Dt

〉

κ1,κ2

= −κ2
J 〈v〉κ1,κ2

− 〈ΔSv〉κ1,κ2
, (6.42)

where 〈v〉κ1,κ2
and 〈ΔSv〉κ1, κ2 are the average velocity and the surface Laplacian of

velocity of all interfaces with the same principal curvatures, respectively. Thus, the

expression for 〈Dκ1/dt〉κ1,κ2
and 〈Dκ2/dt〉κ1,κ2

in terms of the principal curvatures

can be obtained once we determine 〈v〉κ1,κ2
and 〈ΔSv〉κ1,κ2

in terms of the principal

curvatures.

The expressions of 〈v〉κ1,κ2
and 〈ΔSv〉κ1,κ2

in terms of the two principal curvatures

can be obtained with the same semi-analytical model presented in Chapter V. These

expressions can then be substituted into the Eqs. (6.15) & (6.42) to analytically

derive the time-independent ISD of the AC and CH bicontinuous structures already

examined in this dissertation. As a note, the expression for 〈v〉κ1,κ2
for the AC

structure in terms of the principal curvatures is simply −M (κ1 + κ2) /2, where M is

a proportionality constant. The predicted ISD from the solution of Eq. (6.15) should

be compared with the calculated ISD to validate the continuity equation for complex

microstructures. This work is still ongoing.
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6.3 Morphological Evolution of a Rod Undergoing Pinching

Topological singularities play an important role in microstructural evolution dur-

ing coarsening. As discussed in Chapter IV, a bicontinuous structure can decrease

its overall interfacial area during coarsening by reducing the total net curvature or

undergoing topological singularities. In the case of dendritic mixtures, topological

singularities occur in the form of coalescence or pinching [96] while in bicontinuous

structures, they occur in the form of pinching only [42]. The topological singularities

present in complex microstructures alter their topologies. The most common measure

of topology is the genus, which is a measure of number of handles in a structure. Past

experiment and simulation results have shown that the scaled genus, gvS
−3
v , where gv

is the genus per unit volume, remains constant for both dendrites and bicontinuous

structures that evolve self-similarly [42, 96].

While the overall evolution of the bicontinuous structures has been carefully ex-

amined in the previous two chapters, our understanding of the evolution of the topo-

logical singularities present in these structures is still limited because of the difficulties

involved in observing and quantitatively characterizing the details of the processes

associated due to its rarity and short timescale. To focus our attention to topological

singularity, we simulate pinching of a rod via conserved dynamics and nonconserved

dynamics. The morphological evolution of the rod is examined locally using the iso-

surfaces colored with the mean and Gaussian curvatures and statistically using the

interfacial shape distribution. The analysis can help identify general similarities and

differences in morphologies and their evolution of the pinch-off of a rod simulated

via different dynamics. Furthermore, as stated in Section 6.2, tracking the tempo-

ral evolution of ISD of a rod undergoing pinching should illustrate the discontinuous

changes in interfacial curvatures during topological singularities.
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6.3.1 Numerical Method

6.3.1.1 Structures

The initial morphology of the rod is defined using the hyperbolic tangent function.

For a rod with the center axis parallel to the x-axis in a Cartesian grid system, the

discretized order parameter, φijk, where i, j, and k denote the indices for the position,

can be constructed as

φijk =
1

2
+

1

2
tanh





√
(i − xc)

2 + (j − yc)
2 −

(
R + cos

(
2πx
L

))

1
2
δtanh



 , (6.43)

where the variables xc and yc represent the Cartesian coordinates of the center of

the rod, and x and L represent the x-coordinate and the length of the domain in

the x-axis, respectively. The term R + cos(2πx/L) determines the radius of the rod,

which varies with position along the x-axis. For R = 15, the maximum radius of the

rod is 16 at the ends of the rod (x = 0 and x = L) while the minimum radius is 14 in

the middle of the rod (x = L/2). The order parameter defined by Eq. (6.43) will have

a bulk value of 0 inside of the rod and 1 outside. The variable δtanh represents the

nondimensional interfacial thickness, which is defined as the region where the value of

φ smoothly transitions between the two bulk values. Here, we use δtanh = 4.0, which

results in about four grid points across the interface, which is typical of phase-field

simulations and is consistent with the parameters of the phase-field model employed.

6.3.1.2 Phase-field Simulation

The evolution of the rod is simulated using the phase-field method via conserved

dynamics, Eq. (2.12), as well as nonconserved dynamics, Eq. (2.13). The order pa-

rameter from Eq. (6.43) is used as the initial condition in both simulations. From

here onward, the rod simulated via Allen-Cahn dynamics is termed “the AC rod”
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while the rod simulated via Cahn-Hilliard dynamics is termed “the CH rod.” The

simulation is carried out in a Cartesian grid system with domain size [100 , 60, 60]

and a periodic boundary condition along the x-axis and no-flux boundary conditions

along the y and z axes. The same values of parameters for the phase-field simulations

of the AC structure (Chapter IV) and the CH structures (Chapter V) are employed

to simulate the AC rod and the CH rod, respectively. The simulations are carried out

until the initially continuous rods are pinched off and the remnants of the pinching

have retracted.

6.3.1.3 Calculation of Interfacial Properties

To accurately calculate various curvatures, we apply the level-set smoothing method.

We characterize the interfacial morphology of the rod and its remnant with the mean

and the Gaussian curvatures, H and K, respectively, using the level-set approach

presented in Chapter III. The two principal curvatures, κ1 = H −
√

H2 − K and

κ2 = H +
√

H2 − K, used in the calculation of ISD, are then evaluated based on the

values of H and K.

6.3.2 Procedure for Analysis

6.3.2.1 Analysis of Local Morphologies and Their Evolution

The morphologies of the rods undergoing topological singularities are examined

by generating the isosurfaces, which represent the interface, colored with the mean

and Gaussian curvature values. All interfacial properties presented in this section are

scaled by the characteristic length scale, S−1
v .

6.3.2.2 Analysis of Overall Morphologies and Their Evolution

The overall morphologies of the rods and their evolution is examined by the ISD.

Details of the ISD and its calculation procedure can be found in Section 2.1.2. The
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range of the color bar is saturated at P (κ1, κ2) = 0.2 to better observe the curvature

evolution of the area of interfaces having the largest magnitude of curvatures in the

middle of the rod, which are rapidly evolving during the pinching event.

6.3.3 Results & Discussion

6.3.3.1 Local Morphological Evolution of the Rods

Figure 6.2 shows the morphology of the CH rod undergoing topological singu-

larity via conserved dynamics colored with the mean and Gaussian curvatures at

select nondimensional times. The isosurfaces representing the interface show that

the narrowest region in the middle of the rod shrinks to the point of singularity at

some simulation time between t = 500, 000 (the last output prior to pinching) and

t = 510, 000 (the first output after pinching). After pinching, the caps that remain

from pinching retract.

The interfacial morphology also reveal that the CH rod possesses positive mean

curvatures throughout the structure at all simulation times, both before and after

pinching. In terms of Gaussian curvatures, the CH rod prior to pinching possesses

positive Gaussian curvatures (elliptic-shape) at the ends of the rod and of negative

Gaussian curvatures (saddle-shape) in the middle of the rod. Once the CH rod

pinches off, the spherical caps, which are remnants of pinching, have positive Gaussian

curvatures (elliptic-shape). Since the CH rod is simulated via conserved dynamics,

as the middle region of the rod shrinks away, the end regions of the rod must expand

in order to conserve the overall volume fractions. This retraction, as well as the

expansion, is shown in Fig. 6.2a and c, where the value of mean curvature increases

in the middle of the CH rod while it decreases in the ends of the rod as the structure

approaches singularity. After pinching, the initially cone-shaped caps retract to the

ends of the domain and become more spherical, as evidenced by the decrease in the

value of mean curvature at the tips of the caps shown in Fig. 6.2e and g.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: Morphologies of the rod undergoing topological singularity via conserved
dynamics, with the interface colored with the mean and Gaussian curvatures at nondi-
mensional time of (a) & (b) t = 0, (c) & (d) t = 500, 000, (e) & (f) t = 510, 000, and
(g) & (h) t = 520, 000.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: Morphologies undergoing topological singularity via nonconserved dy-
namics, with the interface colored with the mean and Gaussian curvatures at nondi-
mensional time of (a) & (b) t = 0, (c) & (d) t = 240, (e) & (f) t = 250, and (g) &
(h) t = 260.
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The morphological evolution of the AC rod undergoing topological singularity via

nonconserved dynamics is also examined, as presented in Fig. 6.3. The isosurfaces

representing the interface show that the AC rod pinches off at some simulation time

between t = 240 (the last output prior to pinching) and t = 250 (the first output after

pinching). At t = 260 (the second output after pinching) the caps that remain from

pinching retract. Clearly, there are some general similarities between the evolution of

the AC rod and the CH rod. For example, both rods possess positive mean curvatures

at all times. Both have negative Gaussian curvature in the middle of the rod and

positive Gaussian curvature at the edges of the rod before pinching and only positive

Gaussian curvature after pinching.

The key difference between the evolution of the CH rod and the AC rod is that,

in the latter case, the rod shrinks almost uniformly over its length without preserving

the volume fraction. As a result, the mean curvature of the AC rod at the onset of

pinching is much larger than that of the CH rod at a similar evolution time, as shown

in Figs. 6.2d & 6.3d, respectively. This difference in evolution is also evident after

pinching when the cone-shaped caps in the AC rod maintain their general shape,

unlike the ends of the CH rod that become more spherical as they retract.

The above results indicate that the primary difference between Cahn-Hilliard and

Allen-Cahn dynamics in this example is the change in the volume fraction in the

latter case. To test this conjuncture, we apply the modified Allen-Cahn equation,

∂φ

∂t
= −Lφ



dg

dφ
− ε2∇2φ +

1

|Ω|

∫

Ω

dg

dφ
dV



 , (6.44)

where Ω is the overall domain of the problem [128], in which volume fraction change

is prohibited. The rod simulated via the modified Allen-Cahn equation is referred

to as the volume-conserving AC rod. The results are shown in Fig. 6.4, in which

the volume-conserving AC rod undergoes pinching at some simulation time between
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t = 4, 800 (the last output prior to pinching) and t = 5, 000 (the first output after

pinching). At t = 5, 200 (the second output after pinching) the caps that remain from

pinching retract. It is evident that the morphological evolution for volume-conserving

Allen-Cahn dynamics is closely resembles that of the CH case shown in Figs. 6.2. This

supports our conjecture that the volume fraction change in the Allen-Cahn dynamics

is the main source of the difference in the morphological evolution. The similarity

between the morphology of the CH rod and the volume-conserving AC rod will be

quantified in the latter part of this section using the ISD.

6.3.4 Evolution of the Interfacial Shape Distributions of the Rods

The statistical description of the morphology of the CH rod at select times is

represented by the ISD in Fig. 6.5. At t = 0, the ISD is centered as a point along

κ1 = 0 (cylindrical shape), which indicates small variations in curvature of the initial

geometry of the CH rod, as shown in Fig. 6.2a and b. At the onset of pinching, as

shown in Fig. 6.5b, the ISD is located in the first and second quadrants of the ISD

map. The ISD in the first quadrant (κ1 > 0, κ2 > 0) represents interfaces at the

ends of the rod that have elliptic shapes. On the other hand, the ISD in the second

quadrant (κ1 < 0, κ2 > 0) represents interfaces in the middle of the rod that have

saddle shapes, which can be seen in Fig. 6.2c and d. This finding is consistent with the

thinnest part of the still connected rod having negative Gaussian curvatures (saddle-

shapes). After pinching at t = 510, 000, the ISD is only present in the first quadrant,

as shown in Fig. 6.5c. The discontinuous change in the interfacial curvature during

topological singularity is evident when we compare the principal curvatures of the

interfaces with the largest net curvatures (furthest from the origin on the ISD map)

at t = 500, 000 and at t = 510, 000. Before pinching, interfaces with the largest net

curvature have principal curvatures with opposite signs, which belong to the second

quadrant of the ISD map (Fig. 6.5b). In contrast, after pinching, interfaces with the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.4: Morphologies undergoing topological singularity via volume-conserving
Allen-Cahn dynamics, Eq. (6.44), with the interface colored with the mean and Gaus-
sian curvatures at nondimensional time of (a) & (b) t = 0, (c) & (d) t = 4800, (e) &
(f) t = 5000, and (g) & (h) t = 5200.
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largest net curvature have principal curvatures with same sign, which belong to the

first quadrant (Fig. 6.5c). This change is the result of the pinching, which generates

two caps (belonging to the first quadrant) from a narrow neck of the rod (belonging

to the second quadrant). At t = 520, 000, the ISD (colored in red) is located closer

to the origin of the ISD map compared to that at t = 510, 000, indicating that the

net curvatures of the caps decrease as they retract.

We also examine the overall morphology of the AC rod at select times using the

ISD, which is shown in Fig. 6.6. Similar to the ISD of the CH rod, the ISD of the

AC rod shows distributions located in the first and second quadrants before pinching

and in only the first quadrant after pinching. Furthermore, the discontinuous change

in the interfacial curvature during topological singularity is also evident in the AC

rod. At t = 240, interfaces with largest net curvature have principal curvatures with

opposite signs (second quadrant of the ISD map), as shown in Fig. 6.6b. In contrast,

at t = 250, interfaces with largest net curvature have principal curvatures with same

sign (first quadrant of the ISD map), as shown in Fig. 6.6c. However, the values of

the net curvatures of the interfaces of the two rods are very different. In general,

the interfaces of the AC rod have larger net curvature than those of the CH rod as a

result of uniform shrinkage during pinching.

We have also examined the ISDs of the volume-conserving AC rod at select times,

as shown in Fig. 6.7. As evidenced by the isosurface plots, the results are similar to

the ISDs of the CH rod shown in Fig. 6.5. For ease of comparison, the ISDs of the CH

rod (green) and that of the volume-conserving AC rod (red) are overplotted, as shown

in Fig. 6.8. The ISDs are capped at P (κ1, κ2) = 0.1. Surprisingly, the ISDs of the

two rods at similar evolution times are both qualitatively and quantitatively similar,

as indicated by the overlapping ISD. The difference between the two ISDs seen in

Fig. 6.8b is likely due to the different state in the evolution, as the outputs were not

available at the exact match. This finding demonstrates that the conserved dynamics
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(a) (b)

(c) (d)

Figure 6.5: Interfacial shape distribution of the rod undergoing topological singularity
via conserved dynamics at nondimensional time of (a) t = 0, (b) t = 500, 000, (c)
t = 510, 000, and (d) t = 520, 000. The maximum of the color bar range is set at
P (κ1, κ2) = 0.2 to highlight the curvature evolution of the interfaces that are involved
in pinching and have large magnitudes of curvatures. The rod pinches off at some
simulation time between (b) t = 500, 000 and (c) t = 510, 000.
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(a) (b)

(c) (d)

Figure 6.6: Interfacial shape distribution of the rod undergoing topological singularity
via nonconserved dynamics at nondimensional time at (a) t = 0, (b) t = 240, (c)
t = 250 and (d) t = 260. The maximum of the color bar range is set at P (κ1, κ2) = 0.2
to highlight the curvature evolution of the interfaces that are involved in pinching and
have large magnitudes of curvatures. The rod pinches off at some simulation time
between (b) t = 240 and (c) t = 250.
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and the modified Allen-Cahn dynamics yield similar morphological evolution but

have different rate of evolution, at least when pinching is considered. Whether this

similarity holds for evolution in general should be examined by simulating coarsening

using the volume-conserving Allen-Cahn dynamics with an initial condition obtained

from the Cahn-Hilliard dynamics.

Finally, the temporal evolution of the ISD verifies the discontinuous changes in

the interfacial curvatures during topological singularity, which gives rise to the source

term Qs in the continuity equation in terms of the ISD presented in the previous

section. Detailed analysis of these simulations can provide the form of Qs, which is

left for future work.

6.4 Conclusion

This chapter described preliminary work that is still on going. In the first part of

the chapter, a general continuity equation of interfacial area is derived to develop the

theory of coarsening. As in the LSW theory, we can predict the overall morphology of

complex structures by solving the continuity equation in terms of the ISD to obtain

the time-independent ISD. We find that the key difference between the continuity

equation in terms of the particle size distribution based on number density (presented

in the LSW theory) and in terms of the curvature distribution based on area density

(presented in this chapter) is the existence of the source/sink term. The source/sink

term accounts for the rate of generation/loss of surface area during the evolution.

In order to validate the derived continuity equation, we apply the equation to a

system of spherical particles undergoing coarsening and solve for the time-independent

curvature distribution based on area density, employing the same assumptions as

the LSW theory. We find that the continuity equation can accurately describe the

evolution of the curvature distribution based on area density of spherical particles. To

further validate the continuity equation, it must be applied to coarsening of complex
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(a) (b)

(c) (d)

Figure 6.7: Interfacial shape distribution of the rod undergoing topological singularity
via volume-conserving Allen-Cahn dynamics, Eq. (6.44), at nondimensional time at
(a) t = 0, (b) t = 4, 800, (c) t = 5, 000 and (d) t = 5, 200. The maximum of the
color bar range is set at P (κ1, κ2) = 0.2 to highlight the curvature evolution of the
interfaces that are involved in pinching and have large magnitudes of curvatures. The
rod pinches off at some simulation time between (b) t = 4, 800 and (c) t = 5, 000.
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Figure 6.8: Interfacial shape distributions of the volume-conserving AC rod (red)
and the CH rod (green) at nondimensional time at (a) t = 4, 800 and t = 500, 000,
respectively, (b) t = 5, 000 and t = 510, 000, respectively, and (c) t = 5200 and
t = 520, 000, respectively. The ISD is drawn based on the contour of P (κ1, κ2) = 0.1.

microstructures, where the kinetics is more complex. This work is ongoing and is

discussed further as a future work in the next chapter.

In the second part of this chapter, we examined the morphological evolution of

a rod undergoing pinching, which is simulated via conserved and nonconserved dy-

namics. We find that the rod evolving via nonconserved dynamics possess larger

net curvature than that evolving via conserved dynamics because the former shrinks

almost uniformly over its long axis without preserving the volume fraction. On the

other hand, when volume-conserving AC dynamics was employed to evolve the rod,

the morphologies of the rod become remarkably similar to the CH rod. The result

demonstrates that the conserved dynamics and the volume-conserving Allen-Cahn

dynamics yield similar morphological evolution but have different rate of evolution.

The ISDs of the simulated rods at different evolution times shows the discontinuous

changes in the interfacial curvatures during topological singularity, which gives rise to

the source/sink term that account for topological singularities, Qs, in the continuity

equation. The results can be further analyzed to develop the functional form of Qs

that could be used in the continuity equation.

147



CHAPTER VII

Summary, Potential Application, and Future work

7.1 Summary

In this dissertation, we investigated the morphological evolution of complex struc-

tures undergoing coarsening in an effort to develop a general theory of coarsening

for microstructures with intricate morphologies. We begin with a simplified math-

ematical description of the coarsening process, based solely on the thermodynamic

driving force from interfacial free energy. Computational approaches can then be

used to simulate the coarsening dynamics in order to gain insights into the process.

We simulated coarsening of bicontinuous structures via conserved and nonconserved

dynamics using the phase-field method.

Development of the theory of coarsening requires accurate quantification of mor-

phological evolution, which is obtained from the calculation of various interfacial prop-

erties. In Chapter III, we present an algorithm, “level-set smoothing,” that smoothes

voxel-based data describing the interfaces with minimal shift in the interfaces so that

interfacial properties can be accurately calculated. The level-set smoothing method is

a set of sequential data-processing schemes that consists of first generating the signed

distance function for the given microstructure using the level-set method, followed by

smoothing via diffusion. We also present numerical algorithms to calculate various

types of interfacial properties, such as the curvatures and their rate of changes, the
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latter of which can be calculated by either the convective or the advective method.

Detailed error analysis shows that the advective method yields more accurate results

for rate of change of curvatures than the convective method. With the development of

the level-set smoothing method and the advective method, we proceed to investigate

the morphological evolution in complex structures.

As a framework for theory development, we propose to consider the interfacial

evolution during coarsening as a consequence of (i) the interfacial velocity induced by

diffusion and (ii) the resulting evolution of the interfacial curvatures. In Chapter IV,

we have used the AC structure simulated via nonconserved dynamics as a test bed

to investigate the evolution of curvatures, (ii). We find that the evolution proceeds

with some interfaces evolving toward topological singularities (pinching) while the

majority of interfaces flatten. These two processes were also illustrated through the

evolution equation for the mean curvature, which has a term that depends solely on

the local curvatures, as well as a term that is proportional to the surface Laplacian

of the mean curvature. The first term causes increase in the magnitude of the mean

curvature, while the second term causes smoothing of the mean curvature in a manner

similar to diffusion of chemical species on a surface. The second term causes a large

dispersion in the values of rate of change of the mean curvature at various locations in

the structure. The origin of the dispersion is nonlocal, and it cannot be characterized

by the local curvatures or shape of a patch of interface.

Chapter V extends the analyses to the coarsening of the three CH structures

simulated via conserved dynamics. This dynamics is more complex than nonconserved

dynamics since long-range diffusion dictates the kinetics. We find general correlations

between interfacial velocity and the mean curvature, as well as between interfacial

velocity and the surface Laplacian of mean curvature. Furthermore, we discover that

the normal velocities of interfaces with the same local principal curvatures have a

Gaussian distribution, independent of the principal curvature values and the volume
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fractions of the structures. Based on the correlations obtained, we develop a semi-

analytical model in order to predict the rate of change of the mean curvature.

Chapter VI discusses preliminary work that require further investigation. In the

first half of the chapter, we derive a general continuity equation of interfacial area in

terms of the interfacial shape distribution. The validation of the continuity equation

is still ongoing. In the second half of the chapter, we examine the morphological

evolution of a rod undergoing pinching, resulting in a topological singularity. The

analysis confirms that there are discontinuous changes in interfacial curvatures during

topological singularities, which gives rise to a source term in the continuity equation.

7.2 Potential Application

With advances in experimental and computational techniques, three-dimensional

microstructural data have become more accessible for analysis [89, 90, 91]. Regardless

of the technique employed to obtain the microstructure, the reconstructed data often

require processing before any analysis can be done. The level-set smoothing method

presented in this dissertation is a computationally efficient data processing algorithm

that can be applied to any three-dimensional microstructure. The algorithm is de-

signed to smooth the interfaces with minimal shifts in the interfacial location to

preserve the original morphology. Thus, the method can be widely utilized in the

analysis of microstructures that requires accurate calculation of various interfacial

quantities.

In addition, the characterization techniques presented in this dissertation can also

be employed to examine the dynamics of the evolution in other complex microstruc-

tures. The correlations between dynamic interfacial quantities, such as interfacial

velocity or rate of change of curvature, and static interfacial properties, such as cur-

vatures, must be understood in order to elucidate the complex dynamics of coarsening.

This can be achieved by employing both statistical and local analysis; the statisti-
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cal analysis shows the general relationship among the static and dynamic interfacial

quantities, while the examination of local morphologies and their evolution can be

used to confirm these relationships and identify any outliers. Furthermore, since the

semi-analytical model adopted to predict curvature evolution is based on differential

geometry, the approach is not limited to the coarsening kinetics presented in this

dissertation. For example, such an approach can be applied to solidification.

7.3 Future Work

The work presented in this dissertation represents significant progress in the devel-

opment of theory of coarsening in complex structures. This section highlights possible

future work that can further advance the theory development.

As discussed in Chapter VI (preliminary works), the continuity equation of in-

terfacial area must be validated with microstructures with complex morphologies, in

particular the bicontinuous structures analyzed in this dissertation. A valid conti-

nuity equation in terms of the ISD will enable the prediction of the evolution of the

overall morphology of a microstructure undergoing coarsening. The semi-analytical

model presented in Chapter V provides the expressions for the average rate of changes

of principal curvatures when the expressions can be numerically determined for the

average velocity and for the surface Laplacian of velocity in terms of the principal

curvatures. In addition, the functional form of the source/sink term that account for

topological singularity, Qs, also needs to be derived. As a next step, these expres-

sions can be substituted into the continuity equation to predict ISD. This ISD should

be compared with the calculated ISD to validate the continuity equation. Once the

continuity equation is validated with the bicontinuous structures, the semi-analytical

model and the continuity equation can be employed to investigate the morphologi-

cal evolution of other types of microstructures with more complex kinetics, including

those observed in experiments. Another topic of interest mentioned in Chapter VI
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is to examine the morphological evolution complex structures during coarsening via

volume-conserving Allen-Cahn dynamics with an initial condition obtained from the

Cahn-Hilliard dynamics. This simulation should verify if the Cahn-Hilliard dynamics

and the volume-conserving Allen-Cahn dynamics induce similar morphological evo-

lution independent of the morphology of the initial condition as indicated by the

evolution of pinching rods.

While the bicontinuous structures examined in this dissertation have constant

mobility between the two phases, many of the two-phase alloys found in nature have

different diffusion coefficients for each phase. Domain coarsening with unequal mobil-

ity between the two phases can be simulated with the phase-field method. To model

microstructural evolution following spinodal decomposition with unequal mobility,

the modified Cahn-Hilliard equation with concentration dependent mobility term is

given by

∂φ

∂t
= ∇ ∙

(

Lφ(φ)∇
δG

δφ

)

, (7.1)

where δG/δφ is the variational derivative of the free energy functional, also known

as the chemical potential, and Lφ(φ) is the concentration dependent mobility term.

This equation is identical to Eq. (2.13) except for the fact that Lφ is dependent on

φ. In one of the earlier works that investigated the microstructural evolution with

variable mobility, Sappelt et al. [129] have used

Lφ(φ) =
1

exp [α (φ − φg)] + 1
, (7.2)

where α is a large positive constant and φg is the equilibrium value of the order

parameter in the glass-forming phase (φ varies between -1 and 1). In this setup,

provided that α is large enough, Lφ(φ) ≈ 1 for φ < φg and Lφ(φ) ≈ 0 for φ > φg.

In the two-dimensional simulations performed by Sappelt et al. using Eqs. (7.1) &

(7.2), they found that the temporal growth law of 〈R〉 ∝ t1/3 only holds if the volume
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fraction of the phase with higher mobility is greater than 40%. In a similar work,

Sheng et al. [130] have used

Lφ(φ) =
1 + φ

2
, (7.3)

as the expression for the mobility coefficient, with φ = ±1 as the equilibrium values,

to examine the microstructural evolution following spinodal decomposition. In this

setup, Lφ(φ) = 1 for φ = 1 and Lφ(φ) = 0 for φ = −1. With this setup, Sheng et

al. have found that the growth law becomes 〈R〉 ∝ t3/10. They tested five different

expressions for Lφ(φ), and found that the ∼ t1/3 growth law holds as long as the ratio

of the smaller mobility coefficient to the larger one is greater than 0.2 regardless of the

exact form of Lφ(φ). These results demonstrate the introduction of the concentration

dependent mobility can alter the coarsening rate from that reported by the LSW

theory. However, it is still unclear how the morphology and its evolution is affected

by the unequal mobility. As a first step, three-dimensional morphological evolution

during coarsening with constant mobility, with unequal mobility which results in the

∼ t1/3 growth law, and with unequal mobility which does not result in the ∼ t1/3

growth law can be compared

Another complexity that can be added to the coarsening dynamics is the anisotropy

in the interfacial energy. The anisotropy in the interfacial energy arises from the

crystalline nature of solids, where the interfacial energy is a function of the crystal-

lographic orientation. Coarsening of microstructures with anisotropy in interfacial

energy can also be simulated with the phase-field method. Eggleston et al. have

used the same free energy functional presented in Chapter II, Eq. (2.8), but with a

gradient energy coefficient, ε(θ), that depends on the orientation,

ε(θ) = ε0 (1 + ε4 cos 4θ) , (7.4)

where θ is the angle between the normal to the surface and the x-axis, ε0 and ε4
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are positive constants (the latter of which determines the degree of anisotropy), to

describe the anisotropy in interfacial energy with four-fold symmetry [131]. With

sufficiently large degree of anisotropy, there could be a range of interfacial orienta-

tions that are unstable, referred to as missing orientations, which give rise to sharp

corners in the equilibrium particle shape. At these missing orientations, the evolution

equation becomes ill-posed [131, 132]. These missing orientations can be determined

by plotting the polar plot of 1/ε and identifying the non-convex regions, as shown in

Fig. 7.1. To convexify the polar plot, the common tangent approach can be applied

[133]. Eggleston et al. modified the gradient energy coefficient as

ε̃ =






ε(θm) for non-missing orientations

ε(θ) cos θ

cos θm

for missing orientations

, (7.5)

where θm is the angle at which the polar plot intersects the tangent plot, as shown

in Fig. 7.1. With the regularized gradient energy coefficient ε̃, the expression for the

chemical potential in two dimensions is given by

μ =
dg

dφ
−∇ ∙

(
ε̃2∇φ

)
+

∂

∂x

(

ε̃
dε̃

dθ

∂φ

∂y

)

−
∂

∂y

(

ε̃
dε̃

dθ

∂φ

∂x

)

. (7.6)

While the phase-field model presented by Eggleston et al. has accurately simulated

equilibrium shapes of particles with highly anisotropic interfacial energy, Hausser et

al. argue that convexifying the gradient energy coefficient prevents the model from

capturing the nucleation of facets [134]. To circumvent this problem, Wise et al.

introduced an extra regularization term in the free energy functional,

G =

∫

Ω

{

g (φ) +
ε2

2
|γ(~n)∇φ|2 +

δ2

2

(
∇2φ

)2
}

dV , (7.7)

where γ (~n) is the interfacial energy as a function of normal to the surface (which
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Figure 7.1: Polar plot of 1/ε as a function of θ. The orientations corresponding
to non-convexity are the missing orientations in the equilibrium particle shape. The
vertical tangent line intersects the polar plot at angles ±θm. Adapted with permission
from [131]. Copyright 2016 by Elsevier.

is not convexified) and δ is the regularization parameter [132]. The following free-

energy functional leads to a nonlinear sixth-order evolution equation for φ, which can

be numerically iterated using the implicit time-discretization scheme for computa-

tional efficiency. While Wise et al. have used the aforementioned model to simulate

coarsening of corrugated surface via surface diffusion, a similar approach can be ap-

plied to simulate coarsening via bulk-diffusion with anisotropy in interfacial energy.

With such a model, one can examine the morphological evolution of complex mi-

crostructure by applying the same set of statistical analysis techniques developed in

this dissertation. Specifically, insights can be gained by comparing the morphological

evolution of complex microstructures undergoing coarsening with constant mobility

and isotropic interfacial energy, unequal mobility and isotropic interfacial energy, and

equal mobility and anisotropic interfacial energy.

The evolution of experimental microstructures should also be examined and com-

pared with that of the simulated structures under different dynamics. An example of

an experimental microstructure that can be compared with the simulated CH struc-

tures presented in this dissertation is a dendritic mixture of Al-Cu alloys [96]. In

general, the morphologies of dendrites are more complex than that of bicontinuous
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structures because dendrites possess features with multiple length scales. Yet, the

evolution of Al-Cu alloys and the simulated systems presented in Chapter V are both

driven by long-range diffusion and have isotropic interfacial energies. Thus, it will

be interesting to examine the correlations between the interfacial velocity and mor-

phological characteristics for the dendritic mixtures and compare them with those of

the simpler CH structures. Furthermore, it has been found that, similarly to the CH

structures, the normal velocities of interfaces with the same principal curvatures in

Al-Cu alloy also have a Gaussian distribution [135]. This is remarkable since dendrites

and bicontinuous structures undergo fundamentally different type of evolution. The

origin of the Gaussian distribution is still not clear and requires further investigation.

Although the CH structures and the dendritic mixtures of Al-Cu alloy have some

general similarities in kinetics, the solid-liquid dendritic mixtures possess unequal

mobility between the two-phases while the CH structures possess equal mobility. For

a better comparison with dendritic microstructures of the Al-Cu alloy, a bicontin-

uous structure with unequal mobility in the two phases should be compared. The

unequal mobility can be modeled with the concentration dependent mobility term,

as described above.

Coarsening of simulated microstructure with the anisotropy in the interfacial en-

ergy can be compared with metallic alloys, such as Al-Si and Al-Ge, that also possess

interfacial energies that are highly anisotropic [136, 137]. Many of the microstructures

of metallic alloys with anisotropic interfacial energies often exhibit faceted surfaces

[137, 138]. Building upon the work described in this dissertation, the correlations

between static and dynamic interfacial quantities and the surface normal can be in-

vestigated, in addition to other interfacial quantities. Since the anisotropic interfacial

energy introduces additional complexity to the kinetics of coarsening, it is likely that

the semi-analytical model and the continuity equation presented here must be mod-

ified. However, the work presented in this dissertation provides a clear path toward
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the understanding of coarsening of complex microstructures, such as dendritic and

anisotropic microstructures.
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APPENDIX A

Expressions for Curvatures and Normal Velocity

Presented in Chapter III

A.1 Level-Set Formulation of Curvatures and Normal Veloc-

ity

As discussed in Section 3.2.3, the following section describes the numerical schemes

employed to calculate the mean and Gaussian curvatures and the interfacial velocity

using the level-set approach. The two common mathematical descriptions of the

curvatures of surfaces are the mean and the Gaussian curvatures, denoted by H and

K, respectively. The analytical equation for the mean curvature in terms of the

normal to the surface is

H =
1

2
(∇ ∙ n), (A.1)

where n is the unit normal vector [116]. The Gaussian curvature can also be expressed

in terms of the unit normal vector as

K = n ∙ adj(He(ϕD))n, (A.2)
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where He(ϕD) is the 3 × 3 Hessian matrix of the second derivative of the smoothed

level-set function, and adj(He(ϕD)) is the adjoint of the Hessian matrix [116]. In the

level-set approach, the unit normal vector in Eqs. (A.1) & (A.2) can be written in

terms of the smoothed level-set function as

n =
∇ϕD

|∇ϕD|
. (A.3)

By substituting Eq. (A.3) into Eqs. (A.1) & (A.2), the mean and the Gaussian cur-

vature can be calculated by taking the spatial derivatives of ϕD,

H =
1

2(ϕD2
x + ϕD2

y + ϕD2
z)

3/2

{
ϕD2

x(ϕ
D

yy + ϕD
zz) + ϕD2

y(ϕ
D

xx + ϕD
zz)+ (A.4)

ϕD2

z(ϕ
D

xx + ϕD
yy) − 2(ϕD

xϕ
D

yϕ
D

xy + ϕD
yϕ

D
zϕ

D
yz + ϕD

xϕ
D

zϕ
D

xz)
}

,

K =
1

(
ϕD2

x + ϕD2
y + ϕD2

z

)2

{
ϕD2

x(ϕ
D

yyϕ
D

zz − ϕD2

yz) + ϕD2

y(ϕ
D

xxϕ
D

zz − ϕD2

xz)

(A.5)

ϕD2

z(ϕ
D

xxϕ
D

yy − ϕD2

xy) + 2
[
ϕD

xϕ
D

y

(
ϕD

xzϕ
D

yz − ϕD
xyϕ

D
zz

)

+ϕD
yϕ

D
z

(
ϕD

xyϕ
D

xz − ϕD
yzϕ

D
xx

)
+ ϕD

xϕ
D

z

(
ϕD

xyϕ
D

yz − ϕD
xzϕ

D
yy

)]}

where the subscripts of ϕD denote the spatial derivatives in their respective directions

[116].

The first and second derivatives of the smoothed level-set function shown in Eqs.

(A.4) & (A.5) are calculated with the central differencing scheme. For example, the

numerical stencils for the spatial derivatives along the x-direction is defined as

ϕD
x =

ϕD
i+1,j,k − ϕD

i−1,j,k

2Δx
(A.6)
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ϕD
xx =

−ϕD
i+2,j,k + 16ϕD

i+1,j,k − 30ϕD
i,j,k + 16ϕD

i−1,j,k − ϕD
i−2,j,k

12Δx2
(A.7)

where i, j, and k denote the indices for x, y, and z positions, respectively. The first

derivative is second-order accurate, and the second derivative is fourth-order accurate.

The mixed partial derivative stencil is

ϕD
xy =

1

144ΔxΔy
[ ϕD

i+2,j+2,k − 8ϕD
i+2,j+1,k + 8ϕD

i+2,j−1,k − ϕD
i+2,j−2,k

−8ϕD
i+1,j+2,k + 64ϕD

i+1,j+1,k − 64ϕD
i+1,j−1,k + 8ϕD

i+1,j−2,k

+8ϕD
i−1,j+2,k − 64ϕD

i−1,j+1,k + 64ϕD
i−1,j−1,k − 8ϕD

i−1,j−2,k

−ϕD
i−2,j+2,k + 8ϕD

i−2,j+1,k − 8ϕD
i−2,j−1,k + ϕD

i−2,j−2,k], (A.8)

which is also fourth-order accurate [123]. The use of higher-order schemes can reduce

the grid anisotropy effect.

The normal velocity, v, can be determined by [116]

v = −
∂ϕD

∂t

/∣
∣∇ϕD

∣
∣ , (A.9)

where the time derivative can be discretized as

∂ϕD
ijk(t1)

∂t
=

ϕD
ijk (t2) − ϕD

ijk(t1)

Δt
. (A.10)

Here, ϕD(ti) represents the smoothed level-set function for the microstructure at time

ti and Δt = t2 − t1. The denominator of Eq. (A.9) is evaluated at t1; i.e., |∇ϕD(t1)|.

It is important to note that the discretization incurs a first order error, which is

proportional to Δt.
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APPENDIX B

Fit parameters Presented in Chapter V

B.1 Fit parameters for 〈v〉H and 〈v〉ΔSH in Section 5.4.1

The parameters for the cubic polynomial fit in the form of

〈v〉α = cα0 + cα1α + cα2α
2 + cα3α

3 (B.1)

where α = H or α = ΔSH, to the plot of 〈v〉H and 〈v〉ΔSH in Fig. 5.2(a.2)-(c.3) and

(a.3)-(c.3) for the three CH structures are presented in Table B.1.

Structure Type of Fit cα0 cα1 cα2 cα3

50:50
CH Structure

〈v〉H 0.02 4.67 -0.05 0.74
〈v〉ΔSH 0.00 1.54 0.00 -0.03

40:60
CH Structure

〈v〉H -1.17 3.99 -0.33 0.61
〈v〉ΔSH -0.01 1.29 0.01 -0.02

30:70
CH Structure

〈v〉H -2.03 2.83 -1.31 0.49
〈v〉ΔSH -0.05 0.61 0.01 0.00

Table B.1: The parameters of the cubic polynomial fit of the plots and for the three
CH structures.
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Fit Parameters for 〈v〉H,d

Structure
Coefficients of the
Quadratic Fit (i)

ai0 ai1 ai2 ai3

50:50
CH Structure

0 0.17 −2.87 −0.32 −3.44
1 −0.02 −1.28 0.43 5.19
2 0.00 0.06 −0.14 −1.72

40:60
CH Structure

0 −0.81 −3.10 −1.47 −0.28
1 −0.09 −0.28 1.37 −0.28
2 −0.05 −0.19 −0.31 0.30

30:70
CH Structure

0 −1.51 0.31 7.81 7.71
1 −0.25 −3.74 −14.0 −12.8
2 −0.01 1.32 5.38 4.81

Table B.2: The parameters of the cubic polynomial fit of the plot 〈v〉H,d for the three
CH structures.

B.2 Fit parameters for 〈v〉H,d and 〈ΔSv〉H,d in Section 5.4.4

The parameters for the cubic polynomial fit in the form of Eq. (5.10) of the

coefficients of the quadratic fit to 〈v〉H,d and 〈ΔSv〉H,d are presented in Table B.2

and B.3, respectively. The parameters ai0, ai1, ai2, and ai3 are for 〈v〉H,d while the

parameters bi0, bi1, bi2, and bi3 are for 〈ΔSv〉H,d, where i = 0, 1 and 2 indicate the

powers of d in the quadratic fit of 〈v〉H,d and 〈ΔSv〉H,d.
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Fit Parameters for 〈ΔSv〉H,d

Structure
Coefficients of the
Quadratic Fit (i)

bi0 bi1 bi2 bi3

50:50
CH Structure

0 −0.16 3.62 3.86 57.9
1 0.15 −7.78 −5.78 −72.1
2 −0.02 12.7 1.88 15.6

40:60
CH Structure

0 2.09 11.2 25.0 15.3
1 −3.67 −17.3 −29.8 −7.14
2 −3.51 14.1 6.94 −5.03

30:70
CH Structure

0 3.25 −16.5 −81.5 −77.6
1 −2.96 36.0 153.8 138.3
2 4.06 −12.8 −67.3 −58.6

Table B.3: The parameters of the cubic polynomial fit of the plot 〈ΔSv〉H,d for the
three CH structures.
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