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ABSTRACT

 

The neurotransmitter dopamine is vital to motor coordination, reward, motivation, and 

cognition. Diseases of dopaminergic dysfunction include Parkinson’s disease, addictions, 

and bipolar disorder, to name a few. The dopamine transporter is responsible for the 

reuptake of extracellular dopamine and as such plays a key role in modulating the strength 

and duration of the dopamine signal. Due to its role in dopamine regulation, the dopamine 

transporter is an attractive therapeutic target for pharmacological intervention in diseases 

of dopaminergic dysfunction. This dissertation presents results that support the 

repurposing of an old drug for a novel purpose. I demonstrate for the first time that the 

breast cancer therapeutic tamoxifen, widely investigated and prescribed for its role as a 

selective estrogen receptor modulator, is an atypical blocker of the dopamine transporter. 

Atypical dopamine transporter blockers are currently under investigation for the 

treatment of psychostimulant abuse due to their unique ability to antagonize the actions of 

cocaine and amphetamine at the dopamine transporter without exhibiting their own abuse 

liability. Here, I show that tamoxifen non-competitively inhibits dopamine uptake and 

amphetamine-stimulated dopamine efflux. This action at the transporter is independent of 

tamoxifen’s effects on the estrogen receptors and appears to involve a direct interaction of 

tamoxifen with the S2 binding site of the dopamine transporter. Consistent with my 

assertion that tamoxifen is an atypical dopamine transporter blocker, I found that 



 x 

tamoxifen attenuates amphetamine-stimulated hyperactivity, yet exerts no stimulant 

effects on its own. Further investigation into the active metabolites of tamoxifen revealed 

that 4-hydroxytamoxifen and endoxifen also impede dopamine uptake and amphetamine-

stimulated dopamine efflux. Interestingly, these two compounds seem to act 

asymmetrically on the dopamine transporter, preferentially inhibiting dopamine uptake 

and amphetamine-stimulated dopamine efflux, respectively. I propose that tamoxifen, or a 

novel chemical based on its structure, may present a viable option for the treatment of 

psychostimulant abuse.  
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CHAPTER ONE. INTRODUCTION 
 

The Dopaminergic System 

The dopaminergic systems of the brain play a fundamental role in many vital neural 

processes including the regulation of movement, cognition, decision-making, learning, and 

reward processing (Beninger, 1983; Westbrook and Braver, 2016). Dysfunctions in the 

dopaminergic system can contribute to a number of pathological conditions, including 

Parkinson’s disease and parkinsonism, schizophrenia, bipolar disorder, and addiction 

(Robinson and Berridge, 2008; Abi-Dargham, 2014; German et al., 2015; Whitton et al., 

2015). 

Neuroanatomy 

The chief ascending dopaminergic pathways are the mesocorticolimbic and nigrostriatal 

pathways. The mesocorticolimbic pathway is composed of two parts, the mesolimbic 

pathway, which extends from the ventral tegmental area (VTA) to the nucleus accumbens, 

and the mesocortical pathway which projects from the VTA to the prefrontal cortex. The 

mesolimbic pathway is important in reward processing and the development of addiction 

(Pierce and Kumaresan, 2006), whereas the mesocortical pathway contributes to cognition 

and learning (Seamans and Yang, 2004). The nigrostriatal pathway extends from the 

substantia nigra pars compacta to the striatum. Loss of these neurons is a dominant 

characteristic of Parkinson’s disease (Shadrina et al., 2010). Additionally, dopamine is 
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released from the arcuate nucleus of the hypothalamus into the portal vein where it 

interacts with the pituitary gland and regulates the secretion of prolactin (Figure 1-1). 

 

Figure 1-1 Dopaminergic pathways of the human brain. 
Adapted from Brody et al. (1998) 

 
Dopamine synthesis and metabolism 

Dopamine signaling is tightly regulated at multiple levels beginning with production. The 

first step in the synthesis of dopamine is the conversion of tyrosine to 3,4-

deoxyphenylacetic acid (DOPA) by tyrosine hydroxylase (Figure 1-2). Tyrosine hydroxylase 

performs the rate limiting step in dopamine production and is a site of dynamic regulation. 

Tyrosine hydroxylase gene expression can be up- or down-regulated for long term effects 

on dopamine levels, and enzyme activity can be more rapidly regulated by feedback 

inhibition. Catecholamines bind to tyrosine hydroxylase with very high affinity which 

inhibits the enzyme; this inhibition can only be removed by phosphorylation of tyrosine 

hydroxylase, most prominently at serine 40 (Ramsey and Fitzpatrick, 1998; Dickson and 

Briggs, 2013). Tyrosine hydroxylase is a substrate for various serine/threonine kinases, 
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including protein kinase A, protein kinase G, protein kinase C, calcium/calmodulin 

dependent kinase II (CAMKII), and extracellular regulated kinase (ERK), but only 

phosphorylation by protein kinase A, protein kinase G, or ERK leads to productive 

activation of the enzyme. Deactivation of tyrosine hydroxylase is restored by 

dephosphorylation by protein phosphatase 2A, which presents another target for 

regulation (Zhang et al., 2007). Following synthesis of DOPA, dopamine is formed by rapid 

decarboxylation by DOPA decarboxylase. Dopamine is rapidly metabolized by catechol-O-

methyl transferase, expressed in glial cells (Myohanen et al., 2010; Zeng et al., 2010) and 

postsynaptic neurons, and by monoamine oxidase, which is expressed in the mitochondria 

of the synaptic neuron as well as in glia (Meiser et al., 2013).  

Dopamine packaging and release 

Once synthesized, DA is packaged into vesicles via the vesicular monoamine transporter 2 

(VMAT2) and held in reserve until an action potential stimulates exocytotic release. Upon 

release, dopamine enters the extracellular space and binds to G-protein coupled dopamine 

receptors on both the pre- and post-synaptic neuron. Dopamine receptors on the 

postsynaptic neuron, which are either D1-like or D2-like propagate the downstream signal 

and are another site of regulation. Dopamine receptors on the presynaptic neuron, which 

are D2-like, exist extrasynaptically. When dopamine concentrations in the synapse are 

sufficient to produce an overflow of dopamine outside of the synaptic space, the D2 

receptor is activated and creates a feedback inhibition to attenuate further dopamine 

release. Activation of this D2 autoreceptor leads to inhibition of calcium channels and 

activation of G-protein-coupled inwardly rectifying potassium channels (GIRKs) both of 

which cause a decrease in vesicle-fusion events following an action potential (Ford, 2014). 
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In addition to the rapid effects on exocytosis, D2 activation also leads to decreased 

dephosphorylation of tyrosine hydroxylase, and a consequent decrease in dopamine 

production in the neuron (Salah et al., 1989).  

 

 
Figure 1-2. Synthesis and metabolism of the neurotransmitter dopamine. 

 

Termination of the dopamine signal 

The dopamine signal can be terminated in one of three ways: 1) diffusion into the 

extracellular space, 2) metabolism (described above), or 3) reuptake into the presynaptic 

neuron via the dopamine transporter. The dopamine transporter is the primary method by 
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which the dopamine signal is terminated, as evidenced by the fact that dopamine 

transporter knockout mice have significantly elevated extracellular dopamine levels in the 

brain and as a result exhibit a notable increase in locomotor activity. 

 

Figure 1-3. Presynaptic regulation of dopamine signaling.  
Exocytotic release of dopamine floods the extracellular space with dopamine. 
Dopamine binds D2-like autoreceptors (D2AR) which initiate a negative 
feedback signal to decrease dopamine release. Dopamine is taken back up into 
the presynaptic neuron through the dopamine transporter (DAT) and 
repackaged into vesicles by the vesicular monoamine transporter (VMAT2) for 
future release.  

 
The dopamine transporter is a 12-transmembrane protein of the SLC6 transporter 

family which includes the norepinephrine transporter and the serotonin transporter. Both 

the C-and N-termini of the protein rest on the cytoplasmic site of the membrane and serve 

as major sites for the dynamic regulation of the transporter. Dopamine transport is driven 

by the coupling of the inward movement of dopamine to the transport of two sodium ions 

down the electrochemical gradient into the neuron. One dopamine molecule is transported 
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for every two sodium ions and one chloride ion. Following uptake of dopamine into the 

neuron, it is repackaged into nearby vesicles through the vesicular monoamine transporter 

(VMAT) for further exocytotic release.  

The dopamine transporter is also vital in mediating the mechanism of several important 

drugs of abuse including cocaine and amphetamine. Cocaine blocks the dopamine 

transporter while amphetamines, which are substrates for the dopamine transporter, 

deplete dopamine from vesicles into the cytoplasm, and stimulate the reverse transport of 

dopamine out of the neuron into the extracellular space. Both of these drugs stimulate a 

supraphysiological increase in extracellular dopamine levels, which are responsible for the 

majority, if not all, of these drugs’ rewarding effects. The history of our understanding of 

the dopamine transporter will be presented in depth, followed by a review of current 

knowledge and controversies in its structure and regulation. Particular attention will be 

paid to the interaction between the transporter and amphetamine. 

A history of catecholamine transport 

Dopamine was originally believed to be merely a precursor for norepinephrine. Thus, much 

of the original work that would eventually lead to our understanding of the dopamine 

transporter was based around epinephrine and norepinephrine. Early attention was paid 

to the actions of “sympathomimetic” drugs, those compounds known to cause effects 

consistent with activation of the sympathetic nervous system, i.e. increased heart rate, 

elevated blood pressure, pupil dilation. 

Early Indications 

Perhaps the first indication of a catecholamine uptake mechanism was the demonstration 

in 1910 that cocaine, a popular anesthetic and stimulant whose use was becoming an 
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increasing matter for concern, potentiates the effects of adrenaline (Frölich and Loewi, 

1910). We now understand that this potentiation resulted from blockade of the 

norepinephrine transporter, enabling a persistence of elevated levels of adrenaline. 

Catecholamine uptake was first proposed by Burn in 1932. He found that tyramine and 

ephedrine, both drugs that we now know increase the release of epinephrine, had only a 

minor vasoconstrictor effect on perfused tissue unless epinephrine was added to the bath 

and allowed to perfuse the tissue for a prolonged period. In hindsight, we now understand 

that this prolonged perfusion permitted the uptake of epinephrine into nerve terminals, 

whose original stores of epinephrine had been depleted due to experimental conditions, so 

that when tyramine or ephedrine were added, they would stimulate release (Burn, 1932). 

Decades later, the phenomenon described by Burn was still being investigated, though 

perhaps with improved models that were capable of retaining their original stores of 

norepinephrine. Several key finds were reported from the 1930s through the early 1960s. 

It was determined that functioning nerve terminals were required for the noradrenergic 

rescue of tyramine function, and cocaine would exert effects similar to total denervation. 

Notably, reserpine, which depletes norepinephrine stores, abrogated the effect of tyramine. 

However, infusion of noradrenaline following reserpine treatment restored the tyramine 

effect. Like cocaine, the effects of treatment with reserpine were similar to denervation 

(Fleckenstein and Bass, 1953; Fleckenstein and Stockle, 1955; Hertting et al., 1961). Julius 

Axelrod and colleagues continued these lines of research and found that epinephrine and 

norepinephrine were selectively taken up or bound by adrenal gland, heart, and spleen. 

Though metabolism by catechol-O-methyltransferase (an enzyme first described by 

Axelrod (Labrosse et al., 1958)) was detected, mostly in skeletal muscle, significant 
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amounts of unmodified catecholamine remained in other tissues. Additionally, 

accumulation of catecholamines in these tissues was inhibited by cocaine, indicating that 

cocaine was prolonging the effect of injected catecholamines by inhibiting its uptake, rather 

than impeding metabolism as had been proposed by some (Whitby et al., 1960; Whitby et 

al., 1961; Wolfe et al., 1962). This work was the first indication that uptake or sequestration 

was the predominant method for inactivation of the effects of circulating catecholamines 

and would contribute to Axelrod’s share in the 1970 Nobel Prize in Physiology or Medicine. 

Axelrod and colleagues visually localized tritiated norepinephrine to sympathetic nerve 

axons by electromicroscropic autoradiography (Wolfe et al., 1962), and further determined 

its intracellular localization to small microsomes, which was one of the earliest indications 

of the packaging of catecholamines into vesicles for future release (Potter and Axelrod, 

1962).  

Dopamine vs. Norepinephrine 

The concept of separate uptake mechanisms for norepinephrine and dopamine began with 

the observation that desipramine (now known to be a potent norepinephrine transporter 

inhibitor with little affinity for the DAT) prevented the accumulation of catecholamines in 

noradrenergic but not dopaminergic terminals (Hamberger, 1967). Though primarily 

noradrenergic regions of the brain efficiently took up both dopamine and norepinephrine 

(consistent with our current knowledge that dopamine has an even higher affinity for the 

norepinephrine transporter than the dopamine transporter), synaptosomes from the 

corpus striatum were significantly more efficient at accumulating dopamine than 

norepinephrine, with Kms (the substrate concentration at which the reaction is half-
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maximal) of 400 nM and 2 μM, respectively (Gfeller et al., 1968; Snyder et al., 1968a; 

Snyder et al., 1968b; Coyle and Snyder, 1969; Snyder and Coyle, 1969; Horn et al., 1971). 

Identification of the dopamine transporter 

During the following decade, compounds that seemed to bind to the “dopamine transport 

complex” with some specificity were identified and included cocaine, GBR 12935, mazindol, 

methylphenidate and nomifensine (Kennedy and Hanbauer, 1983; Javitch et al., 1984; 

Dubocovich and Zahniser, 1985; Janowsky et al., 1985; Scatton et al., 1985; Janowsky et al., 

1986). Concurrently, the dopamine hypothesis of addiction was gaining traction. It was 

determined that drugs abused by humans selectively increased extracellular dopamine 

levels in the nucleus accumbens, while therapeutics without abuse potential had no such 

effect (Di Chiara and Imperato, 1988). Additionally, the potencies of cocaine-like drugs in 

producing self-administration correlated with their affinity for the dopamine transporter 

(Ritz et al., 1987), further indicating a role for the dopaminergic system in the reinforcing 

characteristics of such compounds. In 1989, Grigoriadis et al. successfully isolated the 

dopamine transporter using a ligand similar in structure to GBR 12935 (125I-DEEP) which 

bound irreversibly to a protein following exposure to UV light. Selective blockade of the 

binding of 125I-DEEP by known dopamine transporter blockers strongly indicated that the 

protein was indeed the dopamine transporter. The dopamine transporter was revealed to 

be a large glycoprotein with a molecular weight of 58 kilodaltons. The rat, bovine and 

human dopamine transporters were successfully cloned in rapid succession (Giros et al., 

1991; Kilty et al., 1991; Shimada et al., 1991; Usdin et al., 1991; Giros et al., 1992). The 

dopamine transporter was confirmed to be 12 membrane-spanning domain protein that is 

highly conserved between species (Figure 1-4). The human transporter has 92% and 84% 
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homology with rat and bovine transporters (Giros and Caron, 1993), respectively, and a 

66% homology with the norepinephrine transporter, which was cloned nearly 

simultaneously with the dopamine transporter (Pacholczyk et al., 1991). 

 

Figure 1-4 Topology of the dopamine transporter.  
Adapted from Ng et al. (2014) 

 
The dopamine transporter knockout mouse 

Only a few years after the transporter was cloned, the Caron lab generated a mouse that 

lacked the dopamine transporter from birth. These mice exhibit profound hyperlocomotion 

and fast scan cyclic voltammetry demonstrates that dopamine persists in the extracellular 

space of the striatum 100 times longer than in the wild type animal. These results cleanly 

proved the importance of uptake as a mechanism of inactivation of dopamine in the brain 

(Giros et al., 1996). These mice were also indifferent to the locomotor activity stimulating 

effects of cocaine and amphetamine, indicating that the dopamine transporter is the 

primary site of action for these two psychostimulants and that amphetamine-stimulated 

dopamine release occurs through a dopamine transporter-dependent mechanism (Jones et 
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al., 1998). Several years of debate ensued when studies from both the Caron lab and others 

published conflicting evidence about the effects of psychostimulants on dopamine 

transporter knockout mice. It was found that dopamine transporter knockout mice would 

self-administer cocaine (Rocha et al., 1998) and developed conditioned place preference to 

cocaine and methylphenidate, another dopamine transporter blocker (Sora et al., 1998). 

Another group found that in dopamine transporter knockout mice, cocaine and 

amphetamine were still capable of increasing extracellular dopamine levels in the nucleus 

accumbens as measured by microdialysis (Carboni et al., 2001). In dopamine transporter 

knockout but not wild type mice a selective norepinephrine transporter blocker also 

increased extracellular dopamine in the nucleus accumbens, suggesting that a 

compensatory increase in expression of the norepinephrine transporter may have occurred 

in the nucleus accumbens of mice that lacked the dopamine transporter from birth 

(Carboni et al., 2001). However, the Jones lab was unable to reproduce these results 

through in vitro voltammetry and found no indication of compensatory expression of 

norepinephrine transporter or serotonin transporter within the accumbens: neither 

desipramine (a norepinephrine transporter blocker)  nor fluoxetine (a serotonin 

transporter blocker) had any effect on dopamine levels in the nucleus accumbens of 

knockout mice (Budygin et al., 2002; Mateo et al., 2004). The problem was put to rest, 

however, when Rong Chen and colleagues generated a triple-mutated dopamine 

transporter that was insensitive to cocaine but still capable of dopamine uptake at 

approximately 50% of wild-type activity (Chen et al., 2005b). When this mutated dopamine 

transporter was “knocked in” to mice, the mice exhibited no conditioned place preference 

to cocaine (Chen et al., 2006) and would not self-administer cocaine intravenously 
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(Thomsen et al., 2009). This demonstrated once and for all that the interaction of cocaine 

with the dopamine transporter is necessary in order for the drug to exhibit its reinforcing 

effects.  

The dopamine transporter: current knowledge 

Subsequent work on the dopamine transporter pertinent to this thesis will be 

roughly divided into three groups: 1) research into the structure and physical mechanisms 

of transport; 2) pharmacology of the transporter; and 3) investigations into the various 

cellular mechanisms that regulate dopamine transporter function. 

Structural considerations 

There is a significant degree of homology among the different transporters of the solute 

carrier 6 family: dopamine transporter exhibits ~67% amino acid homology with 

norepinephrine transporter, a ~49% homology with serotonin transporter, and a ~45% 

homology with the GABA transporter. Additionally, the dopamine transporter is highly 

conserved across mammals; rat, bovine and mouse dopamine transporter exhibit 92%, 

88%, and 93% amino acid homology with the human dopamine transporter, respectively 

(Chen and Reith, 2002). Pharmacologically, dopamine transporters from different species 

exhibit varied affinities for dopamine transporter ligands, with rat dopamine transporter 

most closely mimicking human dopamine transporter in its affinity for GBR 12909, 

mazindol, cocaine, and bupropion (Chen and Reith, 2002).  

The current understanding of the mechanisms of dopamine transport indicates that 

the dopamine transporter functions through an “alternating access” mechanism (Jardetzky, 

1966; Liang et al., 2009). That is, the transporter cycles through multiple conformations 

which can most simply be condensed to an outward facing conformation, where the 
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transporter binds extracellular sodium, chloride and dopamine, an occluded conformation, 

where the DA binding pocket is inaccessible to both the intracellular and extracellular 

space, and an inward facing conformation, where DA is released from the transporter and 

repackaged into nearby vesicles by the vesicular monoamine transporter 2 (Figure 1-5) 

(Rudnick, 2002). These differing conformations have been modeled with the aid of solved 

structures for the leucine transporter, LeuT, a bacterial homologue (Indarte et al., 2008; 

Gedeon et al., 2010; Shan et al., 2011; Loland, 2015; Penmatsa et al., 2015) and dopamine 

transporter from Drosophila melanogaster (Cheng and Bahar, 2015; Koldso et al., 2015; 

Wang et al., 2015). The recent solving of the human serotonin transporter structure is 

likely to provide new homology models in the near future (Coleman et al., 2016). 

Here, the term ‘conformational equilibrium’ is used to describe the ratio of 

transporter in an outward facing conformation to inward facing conformation at a given 

point in time; in physiological conditions, most dopamine transporters will “prefer” to 

adopt the outward facing conformation. Alterations in conformational equilibrium are 

believed to be the predominant non-trafficking mechanism by which transport capacity is 

regulated. 

 

Figure 1-5. Alternating access model of dopamine transporter.  
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A. The outward facing conformation. B. The occluded conformation. C. The 
inward facing conformation.  

For example, collapsing the Na+ gradient with gramcidin (increasing intracellular sodium), 

leads to an increase of dopamine transporter in the inward facing conformation and a 

decrease in dopamine uptake (Chen and Reith, 2004). Unfortunately, the relationship 

between conformational preference and transport is not as clear-cut as one might hope. 

For example, zinc, which, like sodium, promotes the outward facing conformation of the 

dopamine transporter and decreases dopamine uptake, actually enhances reverse 

transport stimulated by amphetamine (Norregaard et al., 1998; Scholze et al., 2002). The 

complexity of conformational equilibrium and its effects on dopamine transporter function 

serve to highlight that the simplified “three conformation” model, though useful, provides 

an incomplete picture of dopamine transport.  

One source of controversy for the neurotransmitter transporters resides in the 

putative existence of a second substrate binding site (S2) located extracellularly to the 

primary binding site (S1) (Shi et al., 2008). The S2 site could not be resolved with the LeuT 

structure alone (Piscitelli et al., 2010; Quick et al., 2012), but has been demonstrated in 

multiple homology models to be the likely site of action for several antidepressants at the 

serotonin transporter (Zhou et al., 2007). Additionally, putative occupation of this site by 

“allosteric” modulators slows dissociation of ligands from the primary site in multiple 

biogenic amine transporters including the dopamine transporter (Chen et al., 2005a; 

Pariser et al., 2008).  

Kyle Schmitt of the Reith lab at New York University elegantly demonstrated the 

existence of a second agonist binding site by generating a family of bivalent dopamine 

transporter ligands that exhibited increased affinity at the dopamine transporter compared 
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to their monovalent components. This increase in affinity was particularly appreciable 

when the linker in the bivalent compound spanned 11-13 Å, the distance between the S1 

and S2 sites. Computational modeling with the most potent compounds indicated 

simultaneous occupancy of two different substrate binding sites (Schmitt et al., 2010). Most 

recently, the solving of the human serotonin structure and the demonstration of an 

“allosteric” binding site analogous to the proposed S2 binding site, suggests that such a site 

may exist in the dopamine transporter. It is important to understand that the proponents of 

the S2 site in the dopamine transporter do not claim that a second molecule of dopamine is 

being transported; the stoichiometry of uptake, one dopamine for two sodium ions and one 

chloride ion, is well established and is not being questioned.  

 

Figure 1-6 Modified dopamine transport cycle including the S2 site.  
Illustrating two potential mechanisms by which the S2 site facilitates 
dopamine transport. (A) Binding of dopamine to the S2 site facilitates 
permeation to the S1 site. Alternatively, (B) following binding of dopamine 
to the S1 site, (C) dopamine binds to the S2 site and (D) facilitates the 
opening of the intracellular gate so that dopamine can diffuse into the 
intracellular space. 

Rather, it is proposed that the S2 site either represents an extracellular vestibule which 

aids in penetration of dopamine to the S1 site (Schmitt et al., 2010), or that substrate 

binding to the S2 site facilitates the conformational changes that allow for the release of the 
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primary substrate and sodium into the extracellular space (Figure 1-6) (Shi et al., 2008; 

Shan et al., 2011). Both of these hypotheses are supported by the observation that mutation 

of key binding residues in the S2 sites greatly impedes the uptake capacity of the dopamine 

transporter (Loland et al., 2004; Zhen and Reith, 2016).  

Dopamine transporter pharmacology 

Pharmaceutical agents acting on the dopamine transporter can be broadly classified as 

either transporter blockers or transporter substrates/releasers, with cocaine and 

amphetamine being the classic examples of each, respectively. Both of these drugs act upon 

the transporter to increase extracellular dopamine levels. This increase in extracellular 

dopamine is interpreted by the brain in such a way that drug taking behavior is reinforced, 

eventually leading to the psychological conditions of substance abuse and addiction.  

DAT blockers prevent reuptake of dopamine, so that the dopamine released through 

exocytosis accumulates in the extracellular space. In recent decades, however, it has 

become clear that there is more to the reinforcing properties of a drug like cocaine than 

simple blockade of the dopamine transporters. A new class of compounds has been defined 

as “atypical dopamine uptake inhibitors.” The characteristics of these compounds are many 

and varied, but atypical uptake inhibitors have in two features in common: 1) a blockade of 

dopamine uptake at the transporter; and 2) a lack of characteristic psychostimulant effects 

exhibited by a classical inhibitor such as cocaine. The reasons for the lack of 

psychostimulant effect in these drugs are as yet not understood, but due to the wide 

structural variety of compounds meeting these two criteria, it is unlikely that one 

explanation will fit all of the compounds. Hypotheses include muscarinic agonism, sigma 

receptor antagonism, pharmacokinetics, binding rate, and conformational effects on the 
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dopamine transporter. All have been demonstrated as possible explanations for some 

atypical uptake inhibitors, but no single unifying characteristic has been found across all 

atypical uptake inhibitors (Schmitt et al., 2013).  

Atypical dopamine transporter blockers reduce the locomotor stimulating effects of 

cocaine and amphetamine (Velazquez-Sanchez et al., 2010). Some atypical dopamine 

transporter blockers have been shown to inhibit the self-administration and conditioned 

place preference of cocaine and amphetamine without exhibiting any reinforcing 

characteristics themselves (Ferragud et al., 2009; Hiranita et al., 2009; Ferragud et al., 

2014). As a result of their lack of abuse potential (Schmitt et al., 2013), current research is 

focusing on atypical dopamine transporter inhibitors to develop a new therapeutic that 

might be useful in the treatment of amphetamine abuse (Tanda et al., 2009). Such a drug 

could either act as a substitution therapy, as methadone is used for heroin addiction, or an 

antagonist therapy, such as naloxone or naltrexone.  

Substrates like amphetamine exert a more complex effect on the dopamine 

transporter. To begin with, as a substrate of the dopamine transporter, amphetamine will 

compete with dopamine for uptake, which will lead to increased extracellular dopamine 

levels. Following translocation into the cell, amphetamine exerts a number of effects 

including activation of several important signaling protein kinases, disruption of the 

vesicular proton gradient so that dopamine accumulates in the cytosol, and reversal of the 

transporter so that dopamine is transported out of the cell, a process known as efflux. 

Amphetamine appears to exert its effects on the dopamine transporter by taking advantage 

of many natural processes important to transporter regulation, thus the mechanism of 



 18 

action of amphetamine will be addressed in greater length in the next section discussing 

regulation of the dopamine transporter.  

Regulation of the Dopamine Transporter 

Regulation of dopamine transporter function occurs at two levels, surface expression of the 

transporter and uptake capacity. Though diminished transport activity is frequently the 

result of reduced surface expression of the transporter, the dopamine transporter can 

demonstrate decreased dopamine uptake capacity independently of decreased surface 

expression levels. Both surface expression and uptake capacity are modulated by a number 

of potential post-translational modifications as well as interactions with the membrane 

environment in which the transporter resides.  

Glycosylation 

The dopamine transporter is a glycoprotein with N-glycosylation occurring at 3 

extracellular sites (Vaughan et al., 1996; Li et al., 2004). Glycosylation of the dopamine 

transporter appears to increase with age (Patel et al., 1994). Additionally, dopamine 

transporter from the nucleus accumbens has a higher apparent molecular weight 

compared to that from striatum and this difference is due to glycosylation levels (Lew et al., 

1992). Prevention of N-glycosylation reduced expression of dopamine transporter both on 

the surface and intracellularly, and non-glycosylated dopamine transporter mutants 

demonstrated decreased dopamine uptake efficiency in heterologous HEK293 cells as 

compared to wild type (Li et al., 2004). Interestingly, the expression pattern of N-

glycosylated dopamine transporter correlates with those neurons which are most 

vulnerable to degradation in Parkinson’s disease (Afonso-Oramas et al., 2009).  
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Phosphorylation 

Phosphorylation is a ubiquitous post translational modification used to rapidly and 

dynamically regulate protein conformation, function, and interactions. The addition of a 

bulky phosphate group to a polar residue (most frequently serine and threonine) can 

drastically alter the hydrophobic and hydrophilic interactions which dictate protein 

structure, thus leading to conformational changes that alter protein function. The 

dopamine transporter is a target of regulation by numerous protein kinases 

(phosphorylating enzymes) including ERK, protein kinase B (PKB/Akt), CAMKII, and 

protein kinase C (Gnegy, 2003; Ramamoorthy et al., 2011). Many of these kinases are 

important not only for normal regulation of the dopamine transporter, but also vital to the 

induction of reverse transport by amphetamine. The following paragraphs will address the 

effects of these kinases on both transporter regulation and amphetamine action.  

Protein kinase C is probably the most extensively characterized of the kinases 

known to regulate the dopamine transporter. Giambalvo (2004) first demonstrated that 

protein kinase C is activated by amphetamine in a calcium and phospholipase C/A2 

dependent manner. Phorbol esters that activate protein kinase C were found to alter 

uptake activity of the dopamine transporter and even stimulate efflux (Cowell et al., 2000; 

Giambalvo, 2003). Activation of protein kinase C with the phorbol 12-myristate 13-acetate 

(PMA) has also been demonstrated to stimulate the internalization of the dopamine 

transporter (Pristupa et al., 1998; Daniels and Amara, 1999). The dopamine transporter 

possesses a serine rich N-terminus that is believed to be the target of phosphorylation by 

protein kinase C as well as several other kinases. Removal of the first 22 amino acids of the 

dopamine transporter N-terminus, which includes these serines, almost completely 
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eliminates phorbol ester-stimulated phosphorylation and attenuates amphetamine-

stimulated reverse transport (Granas et al., 2003; Khoshbouei et al., 2004). However, the 

loss of these N-terminal serines has no effect on the phorbol ester-induced internalization 

of the dopamine transporter, indicating that protein kinase C is regulating the dopamine 

transporter through multiple mechanisms (Granas et al., 2003). Several accessory proteins 

that contribute to internalization of the dopamine transporter have been proposed to be 

the protein kinase C substrates that facilitate phorbol ester-induced dopamine transporter 

internalization, including flotillin (Cremona et al., 2011) and syntaxin A (Lee et al., 2004) 

though conflicting evidence exists for both (Cervinski et al., 2010; Sorkina et al., 2013). 

Similarly, inhibition of protein kinase C, and the isoform in particular, has been found to 

decrease amphetamine-stimulated dopamine efflux and amphetamine-stimulated 

locomotor behavior without altering dopamine uptake (Browman et al., 1998; Kantor and 

Gnegy, 1998; Johnson et al., 2005b; Zestos et al., 2016). Protein kinase C  knockout mice 

also exhibit decreased amphetamine-stimulated locomotor activity, decreased 

amphetamine-stimulated dopamine efflux (Chen et al., 2009), and impaired development of 

condition place preference to amphetamine (Rong Chen, in preparation), indicating that 

loss of protein kinase C  activity not only impairs amphetamine-stimulated efflux, but also 

decreases the rewarding properties of the drug. Interestingly, experiments performed with 

enhanced temporal resolution have demonstrated that activation of protein kinase C by 

amphetamine induces a rapid increase in surface levels of the dopamine transporter, 

followed by a persistent and longer lasting down regulation of surface transporter levels 

(Johnson et al., 2005a; Furman et al., 2009). Protein kinase C modulation of the dopamine 

transporter is not entirely dependent on trafficking of the dopamine transporter. Inhibition 
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of endocytosis by either conconavalin A or sucrose only incompletely impairs protein 

kinase C-dependent down regulation of transporter activity despite a complete block of the 

decrease in surface DAT (Foster et al., 2008). This indicates that prolonged protein kinase C 

activation results in a two-pronged down regulation of the dopamine transporter: both 

decreasing surface expression of the dopamine transporter and decreasing transport 

activity of those transporters still expressed on the surface.  

CAMKII is also important to the regulation of dopamine transporter activity. 

CAMKIIα binds to the C-terminus of the dopamine transporter (Steinkellner et al., 2012), 

resulting in its phosphorylation of several N-terminal serines. Removal of these serines or 

of the C-terminus impaired the stimulatory effects of CAMKII and amphetamine-

stimulated dopamine efflux (Fog et al., 2006). CAMKII knockout mice exhibit reduced 

amphetamine-stimulated elevation in striatal dopamine and reduced amphetamine-

stimulated hyperlocomotion and behavioral sensitization. Unlike the protein kinase C  

knockout mice, amphetamine still evoked a conditioned placed preference in the CAMKII 

knockout mice, indicating that the rewarding properties of the drug were intact in the 

mutant mouse (Steinkellner et al., 2014). Additionally, inhibition of CAMKII in Drosophila 

larvae blocks amphetamine-stimulated hyperlocomotion (Pizzo et al., 2014). 

Protein kinase B/Akt2, an important signaling molecule in the insulin-signaling 

pathway, also alters dopamine transporter surface expression. Basal Akt activity appears to 

support surface localization of the transporter, because inhibition of Akt leads to a decrease 

of surface dopamine transporter levels in heterologous cells (Speed et al., 2010). In this 

vein, rodents fed a high fat diet (diet-induced obesity) that exhibit an impairment in Akt 

activity, have less surface striatal dopamine transporter and thus exhibit reduced DA 
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clearance and reduced locomotion in response to amphetamine compared to their normal-

diet counterparts. In addition, pharmacological inhibition of striatal Akt reduced both the 

behavioral response to intrastriatal amphetamine and amphetamine-stimulated reverse 

transport (as measured by amperometry) (Speed et al., 2011). It is as yet unclear whether 

Akt activation affects the phosphorylation state of the transporter, or whether it modulates 

the activity of other proteins involved in the regulation of surface dopamine transporter 

levels. 

Mitogen activated protein kinase (MAPK/ERK) modulates dopamine transporter 

function at multiple levels. D2-like dopamine autoreceptors regulate surface expression 

levels of the dopamine transporter through activation of ERK (Bolan et al., 2007; Zapata et 

al., 2007), and ERK inhibitors reduce dopamine transport activity (Carvelli et al., 2002; 

Moron et al., 2003) and amphetamine-induced behaviors (Shi and McGinty, 2006). ERK 

directly phosphorylates the dopamine transporter at threonine 53 in the N terminus 

(Gorentla et al., 2009). Basal phosphorylation of T53 is approximately 50% and is 

increased by protein phosphatase inhibitors, indicating a sustained “phosphorylation tone” 

in the protein (Foster et al., 2012). As phorbol esters can also increase phosphorylation at 

T53, it is believed that activation of ERK, in this instance, occurs downstream of protein 

kinase C activation. Interestingly, the generation of dopamine transporter mutants that are 

non-phosphorylatable (threonine to alanine) or phosphomimetic (threonine to aspartic 

acid or glutamic acid) have the same phenotypic effect: both types of mutants exhibit a 

slight reduction in the Vmax of dopamine uptake, indicating a decrease in transport 

turnover rate, and a complete loss of the amphetamine-stimulated dopamine efflux (Foster 

et al., 2012). Loss of dopamine efflux with both mutants indicates that the 
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phosphorylation/dephosphorylation at T53 plays a role in the kinetic function of the 

dopamine transporter and is absolutely necessary for amphetamine-stimulated dopamine 

efflux.  

Lipid Interactions 

The dopamine transporter is affected by its interactions with local milieu. An 

interaction between the N-terminus of the dopamine transporter and the 

phosphatidylinositol 4,5 bisphosphate (PIP2) has been demonstrated (Hamilton et al., 

2014). Chinese hamster ovary (CHO) cells stably transfected to express the human 

dopamine transporter exhibited markedly less amphetamine-stimulated dopamine efflux 

following treatment of the cells with a PIP2-sequestering peptide. Using a dopamine 

transporter K64A mutant, this group determined that K64 was the pertinent residue in the 

interaction between the dopamine transporter N-terminus and PIP2. As one might expect 

from the experiments with PIP2 sequestration, K64A-DAT exhibited decreased 

amphetamine-stimulated dopamine efflux as compared to wildtype, though dopamine 

uptake between wildtype and mutant dopamine transporter was unchanged. Even more 

compellingly, when the wildtype and mutant dopamine transporter were expressed in 

dopamine transporter knockout Drosophila, those flies expressing the mutant dopamine 

transporter exhibited significantly less amphetamine-stimulated hyperactivity (Hamilton 

et al., 2014). 

The role for PIP2 in the modulation of dopamine transporter function is particularly 

interesting when it is considered that breakdown of PIP2 into diacyglyerol and inositol-

triphosphate is a vital step in the activation of protein kinase C. Activation of protein kinase 

C would be expected to deplete PIP2 from the membrane, which according to the results 
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discussed above, should result in a decrease in amphetamine-stimulated dopamine efflux. 

However, protein kinase C activation stimulates an increase in efflux (Cowell et al., 2000). 

Though no work has been done to indicate a connection between the interaction of PIP2 

with dopamine transporter and protein kinase C modulation of the transporter, it is an 

interesting coincidence that two such closely related signaling molecules both facilitate 

amphetamine-stimulated dopamine efflux.  

Cholesterol plays an important role in the dopamine transporter conformation and 

function. The crystal structure of the Drosophila melanogaster dopamine transporter was 

solved with a cholesterol molecule bound within transmembrane helices 1a, 5, and 7 

(Penmatsa et al., 2013). Other work has demonstrated that cholesterol binding to the 

dopamine transporter stabilizes the outward facing conformation (Hong and Amara, 2010).  

Lipid interactions with the dopamine transporter have also been interrogated by 

studying the interaction of the dopamine transporter with lipid rafts. The transporter 

appears to exist in two populations which can be delineated by the presence of the 

transporter in or out of cholesterol rich microdomains (lipid rafts) (Adkins et al., 2007). It 

was originally postulated that association within a lipid raft would regulate transport 

capacity, because treatment with methyl--cyclodextrin, a cholesterol extracting and lipid 

raft-disrupting agent, decreased transport capacity (Adkins et al., 2007). However, work 

with more selective lipid raft disruptors that do not strip the cell of cholesterol 

demonstrated that cholesterol is vital for transporter function, but association in rafts does 

not appear to influence transport capacity (Jones et al., 2012). Depletion of cholesterol with 

methyl- -cyclodextrin reduces both dopamine uptake and efflux. Disrupting lipid rafts 

without affecting membrane cholesterol levels with nystatin had no effect on efflux and 
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uptake. Repletion of cholesterol with desmosterol, which does not form lipid rafts, was 

sufficient to restore dopamine uptake and efflux transport rates, indicating that it is the 

direct interaction with cholesterol and not residence within a lipid raft that affects 

dopamine transporter functionality (Jones et al., 2012). 

Other work has indicated that the two populations of transporter are differentially 

regulated by protein kinase C. In LLCPK1 cells stably expressing the human dopamine 

transporter, internalization specifically affected non-raft populations of the transporter. 

Protein kinase C-mediated decreases in dopamine transporter activity (independent of 

transporter internalization) occurred predominantly within lipid-raft localized populations 

(Foster et al., 2008). However, there remains some controversy in this area, as another 

group found that the protein kinase C-mediated internalization of the dopamine 

transporter occurs primarily in lipid raft populations through a non-traditional 

internalization mechanism involving flotillin in both HEK293 and HeLa cells transfected to 

express the dopamine transporter (Cremona et al., 2011). Contradictory to this, though, 

another group found that flotillin is not required for protein kinase C-stimulated dopamine 

transporter internalization and that internalization of dopamine transporter by protein 

kinase C in HEK293 cells is clathrin-mediated (Sorkina et al., 2013). Additionally, protein 

kinase C-stimulated internalization occurs through a different mechanism than constitutive 

dopamine transporter internalization. Biotinylation of mouse striatal slices revealed that 

while constitutive dopamine transporter internalization occurs independently of dynamin, 

protein kinase C-stimulated internalization of dopamine transporter is dynamin-dependent 

(Gabriel et al., 2013). Contradictory to Foster et al. (2008), protein kinase C-stimulated 

internalization of the transporter in neuronal cells appears to occur primarily from lipid 
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raft populations of the dopamine transporter, whereas constitutive internalization appears 

to occur equally from raft and non-raft populations (Gabriel et al., 2013). There is not a 

clear explanation for the discrepancy in these studies, but it is worth noting that 

association of dopamine transporter with lipid rafts appears to differ between non-

neuronal and neuronal cell lines; in the non-neuronal HEK293 cell line, dopamine 

transporter appears to diffuse freely, while in the neuronal N2A cell line it associates with 

lipid rafts (Adkins et al., 2007). Of the studies discussed above, only those of Gabriel et al. 

(2013) were performed in a neuronal cell line, and their results were supported by 

biotinylation studies in mouse striatal slices.  

Amphetamine abuse and rationale  

The abuse of amphetamine-type stimulants presents a significant societal issue. 

Amphetamines, excluding ecstasy, are the world’s second most widely abused drug type 

(UNODC, 2011) and emergency room visits due to amphetamines, including the non-

medical use of prescription amphetamines, more than quadrupled from 2005 to 2011 

(SAMHSA, 2011; SAMHSA, June 19, 2014). The treatment of drug abuse typically involves 

extensive behavioral therapy and, when available, pharmacological assistance. Though 

pharmacological interventions exist for opiate and alcohol abuse, and have been used with 

some success, no such therapeutic option exists for patients who wish to break free of the 

dangerous cycle of amphetamine abuse.  

As we presented above, protein kinase C is important in the mechanism of action of 

amphetamine. As such, we set out to investigate the potential of a protein kinase C inhibitor 

and a therapeutic for amphetamine abuse. A successful therapeutic for this indication 

would have to cross the blood brain barrier. The only known protein kinase C inhibitor 
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capable of crossing the blood brain barrier is the breast cancer drug tamoxifen. A brief 

summary of tamoxifen pharmacology precedes an in depth review of the current literature 

concerning the protein kinase C inhibitory activity of tamoxifen and its known effects on 

the dopaminergic system.  

Tamoxifen 

Tamoxifen is a selective estrogen receptor modulator used in the treatment of breast 

cancer and the maintenance of remission. Tamoxifen is a lipophilic compound that 

accumulates in tissue (Lien et al., 1991a) giving it a high apparent volume of distribution of 

50-60 liters (Lien et al., 1989). Despite the observation that tamoxifen and its metabolites 

are substrates for P-glycoprotein (Iusuf et al., 2011), tamoxifen readily crosses the blood 

brain barrier and concentrations in brain tissue can sometimes be 40-times higher than 

concentrations in serum (Lien et al., 1991b). There are currently three known active 

metabolites of tamoxifen that circulate at varying concentrations and demonstrate varying 

levels of efficacy. These metabolites are N-desmethyltamoxifen, 4-hydroxytamoxifen, and 

4-hydroxy-N-desmethyltamoxifen, also known as endoxifen (Figure 1-7). Of these three 

metabolites, N-desmethyltamoxifen is the primary metabolite, circulating at concentrations 

2-3 fold higher than tamoxifen (Lien et al., 1991a). 4-hydroxytamoxifen and endoxifen are 

present in much lower concentrations. The elimination half-life of tamoxifen in humans 

ranges from 7-10 days (de Vos et al., 1992). 

In order to properly understand the context of our investigation into the dopamine 

modulating effects of tamoxifen, we must first understand the mechanisms of action of the 

drug. First of these is its role as an estrogen receptor modulator.  
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SERMS 

The selective estrogen receptor modulators (SERMs) are part of a unique class of 

compounds that can act as both agonists and antagonists at the estrogen receptors, 

depending on the type of tissue in which they are acting. For example, tamoxifen acts as an 

antiestrogen in breast tissue, but has estrogenic effects in endometrial tissue, thus it is 

useful as a treatment in estrogen-sensitive breast cancers, but carries the possibility of 

increasing the risk of endometrial cancers (Ellis et al., 2015). Similarly, the drug raloxifene 

is estrogenic in bone tissue while being antiestrogenic in breast tissue, and as such has 

proven useful as a preventative treatment for osteoporosis in post-menopausal women 

that lacks the increased cancer risk and other unpleasant side effects of hormone 

replacement therapy (Dane et al., 2007; Pinkerton and Thomas, 2014).  
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Figure 1-7. Metabolism of tamoxifen to its three active metabolites. 
 

Neurological effects of estrogen 

The steroid hormone estrogen is the primary sex hormone involved in the female 

reproductive system and development of secondary sex traits. Classically, estrogen exerts 

its effects by stimulating the translocation of estrogen receptors α or β into the nucleus 

where the receptors affect the expression of numerous genes. More recently, it has become 

clear that estrogen exerts a number of rapid, non-genomic effects, both through the 

classical estrogen receptors, which can translocate to the membrane to interact with 

membrane proteins, and through the G-protein coupled estrogen receptor (GPER1) 

originally known as GPR30 (Thomas et al., 2005). Estrogen appears to have a number of 
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effects on the dopaminergic system, including neuroprotective activity in many models of 

dopaminergic and general neurotoxicity, including models of stroke (Shao et al., 2012), 

Parkinson’s disease (Litim et al., 2015), and methamphetamine-induced neurotoxicity 

(Dluzen and McDermott, 2006). 

Effects of tamoxifen in the dopaminergic system: SERM or something else? 

The investigation of the effects of tamoxifen on the dopaminergic system are complicated 

by the lack of knowledge concerning tamoxifen’s specific effects on the estrogen receptor in 

the dopamine neuron. SERMs are known to act in either manner depending on the tissue 

and the specific response that is being measured. Additionally, tamoxifen has been 

identified as a potent agonist at GPER1, the G-protein coupled estrogen receptor (Thomas 

et al., 2005). Evidence that may clarify the SERM activity of tamoxifen in the dopamine 

neuron proves contradictory. Estrogen is known to increase amphetamine-stimulated 

dopamine efflux and tamoxifen, at concentrations where it would be expected to bind 

estrogen receptors, does not inhibit this effect (while the estrogen receptor antagonist 

fulvestrant does). This indicates that tamoxifen is not an antiestrogen in this system. It is 

also not estrogenic in this system, because tamoxifen by itself, at ER-occupying 

concentrations, has no effect on amphetamine-stimulated dopamine efflux (Xiao et al., 

2003).  

Tamoxifen is neuroprotective in some models of dopaminergic neurotoxicity. 

Though the neuroprotective properties of tamoxifen are beyond the scope of this thesis, a 

significant portion of the work addressing tamoxifen and the dopaminergic system has 

been conducted within this field and thus warrants a closer examination. The predominant 

models of dopaminergic toxicity utilize neurotoxic doses of MPTP (1-methyl-4-phenyl-
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1,2,3,6-tetrahydrophridine), which is a prodrug for MPP+ (1-methyl-4-phenylpyridinium). 

MPP+ is taken up selectively by the dopamine transporter, where is interferes with 

oxidative phosphorylation and triggers cell death. In some models, MPP+ is administered 

directly to the brain. Shortly after administration of MPTP or MPP+, animals will begin to 

exhibit parkinsonism-like behaviors as dopaminergic neurons begin to degenerate. 

Methamphetamine-induced neurotoxicity is an additional model used in these studies, 

though the mechanisms of its neurotoxic effects are somewhat more complex than MPP+ 

and likely involve a combination of oxidative stress, excitotoxicity, and neuroinflammation 

(Moratalla et al., 2015). 

Estrogen is neuroprotective in multiple models of dopaminergic neurotoxicity, and 

SERMS have been investigated as potential neuroprotective agents that lack some of the 

wide spread side effects of estrogen. Dluzen et al. (2001a) demonstrated that tamoxifen 

was neuroprotective against methamphetamine-induced neurotoxicity in males and 

females, though estrogen was neuroprotective in females only. Though at first glance this 

may seem to indicate an estrogenic role for tamoxifen in the dopamine neuron, the fact that 

tamoxifen was effective in males, where estrogen was not, may be the first indication of a 

non-estrogenic mechanism for the neuroprotective effects seen with tamoxifen. The same 

group later found that tamoxifen antagonized the neuroprotective action of estrogen in 

methamphetamine-induced neurotoxicity (Gao and Dluzen, 2001) and MPTP-induced 

neurotoxicity (Dluzen et al., 2001b), indicating an antiestrogenic role for tamoxifen. In 

another study, tamoxifen prevented the formation of hydroxyl radicals following 

administration of MPP+ to rat striatum by retrodialysis. Interestingly, in this study 

tamoxifen was administered after the initial MPP+ insult, indicating that tamoxifen was 
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affecting the downstream neurotoxic pathways triggered by MPP+ (Obata and Kubota, 

2001). The antioxidant properties of tamoxifen provide a potential explanation for the 

observation made by Dluzen et al. (2001a) that tamoxifen was neuroprotective in male 

mice. Because estrogen is known to affect the dopaminergic neuron, all work with the drug, 

with regard to the dopaminergic system, should take in to consideration its effects at the 

estrogen receptors.  

Therapeutic potential of tamoxifen: bipolar mania 

An interest in tamoxifen as a therapeutic for bipolar disorder was sparked by the 

observation that valproate (Chen et al., 1994) and lithium (Wang and Friedman, 1989; 

Lenox et al., 1992; Manji et al., 1993), the only two drugs approved at the time for the 

treatment of mania, were both found to inhibit protein kinase C, despite being structurally 

unrelated. Furthermore, the brains of bipolar patients exhibit enhanced protein kinase C 

activity (Wang and Friedman, 1996). A preliminary clinical study in patients exhibiting 

mania found that tamoxifen, at doses ranging from 20-80 mg per day, reduced symptoms of 

mania (as measured by the Young Mania Rating Scale (YMRS)) by 50% in 5 out of 7 

patients, and that the drug was well tolerated (Bebchuk et al., 2000). Further studies with 

larger sample sizes have been conducted. In one, 40 patients were give lithium 

supplemented with 80 mg/day of tamoxifen or placebo for a 6 week double blind study; 

tamoxifen with lithium was significantly more effective in reducing scores on the YMRS 

compared to lithium alone. Again, tamoxifen was generally well tolerated (Amrollahi et al., 

2011). In a third trial, 66 inpatients were given tamoxifen or a placebo for up to 3 weeks. 

Tamoxifen significantly lowered scores on both the YMRS and the Clinical Global 

Impressions Mania scale compared to placebo and patients taking tamoxifen required less 
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sedation with lorazepam as the trial progressed. Interestingly, tamoxifen also caused a 

greater decrease in depressive symptoms compared to placebo, as measured by the 

Hamilton Depression Rating Scale and the Montgomery-Åsberg Depression Rating Scale, 

though these results did not reach significance (Yildiz et al., 2008). Three additional trials 

have been carried out to test the effectiveness of tamoxifen either as an adjunct- or mono- 

therapy. A meta-analysis of these three trials as well as the two described above concluded 

that tamoxifen is an effective treatment for bipolar mania, but that further studies utilizing 

a larger sample size and a longer follow up duration will be necessary to make any 

conclusions as to its safety and efficacy (Talaei et al., 2016). 

Although these early clinical results were encouraging, it was difficult to determine 

in human subjects whether the success observed with tamoxifen could be attributed to its 

activity as a selective estrogen receptor modulator or as a protein kinase C inhibitor. 

Preclinical studies in rodents have attempted to clarify this issue.   

The dominant models of bipolar mania in rodents typically involve repeated 

administration of amphetamine or amphetamine-like psychostimulants. Relatively small 

doses of tamoxifen (1-5 mg/kg) attenuate amphetamine-stimulated hyperactivity, risk 

taking behavior, and appetitive vocalization in rats (Einat et al., 2007; Cechinel-Recco et al., 

2012; Abrial et al., 2013; Pereira et al., 2014). On a cellular level, tamoxifen prevented and 

reversed amphetamine-induced mitochondrial dysfunction, oxidative damage, and changes 

in neuronal signaling activity (Moretti et al., 2011; Cechinel-Recco et al., 2012; Steckert et 

al., 2012; Valvassori et al., 2014). Interestingly, tamoxifen has proven equally effective in 

alternative models of bipolar mania, including paradoxical sleep deprivation in rats, albeit 

with a much higher dose of tamoxifen (80 mg/kg) (Abrial et al., 2015), sleep deprivation in 
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mice (Armani et al., 2012), and methylphenidate-induced hyperactivity in mice (Pereira et 

al., 2011). The effect of tamoxifen in models of bipolar mania is hypothesized to be the 

result not of its SERM activity, but its effects as a protein kinase C inhibitor. This 

assumption is supported by the observation that lithium, the most common treatment for 

mania, inhibits protein kinase C (Chen et al., 2000) and that clomiphene, a SERM that lacks 

protein kinase C inhibitory activity, and medroxyprogesterone, a progestin with indirect 

antiestrogenic activity, have no effect on methylphenidate-induced hyperactivity in mice 

(Pereira et al., 2011). Surprisingly, though all of these models of bipolar mania are 

dependent on dysfunction of the dopaminergic system, and most of them specifically on the 

dopamine transporter, no work has been done to determine the effects of tamoxifen on 

dopamine transporter function. It is worth noting that a preliminary investigation into 

serotonin transporter function demonstrated that tamoxifen inhibited serotonin uptake 

with an IC50 of approximately 17 M (Chang and Chang, 1999).  

Dissertation Summary 

The aim of this dissertation is to better understand the mechanisms by which tamoxifen 

affects the dopaminergic system. Tamoxifen’s actions on the dopaminergic system have 

clinical implications both with regard to the side effects experienced by breast cancer 

patients taking the drug, as well as in the potential repurposing of tamoxifen to treat 

diseases of dopaminergic dysfunction. Therefore, a better understanding of how tamoxifen 

modulates dopaminergic signaling may reveal new possibilities for its use in the clinic.  

 As detailed in Chapter 2, we demonstrate for the first time that tamoxifen inhibits 

dopamine transporter function. Furthermore, our studies indicate that this is likely through 

a direct interaction on the dopamine transporter, as tamoxifen decreases binding of the 
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cocaine analog [3H]WIN 35,428 in rat striatal membranes, alters the conformational 

equilibrium of the transporter, and has no effect on surface expression levels of the 

transporter. A comparison of ex vivo and in vivo studies indicate that tamoxifen may 

represent a previously unrecognized atypical dopamine uptake inhibitor, and the potential 

clinical implications of this finding are explored. 

In Chapter 3, we compare the effects of tamoxifen and its metabolites on the dopamine 

transporter between an ex vivo tissue preparation (rat striatal synaptosomes) and a cell 

culture model (hDAT-N2A mouse neuroblastoma cells). Though we do find some 

inconsistencies between the two model systems, we are able to utilize the cell culture 

model to demonstrate that tamoxifen and its metabolites affect the dopamine transporter 

independently of their actions on the estrogen receptor. Additionally, our results suggest 

that the effects of tamoxifen on amphetamine-stimulated dopamine efflux, in this model, 

are due to an inhibition of amphetamine uptake, rather than a selective attenuation of 

amphetamine-stimulated dopamine efflux. Potential explanations for the discrepancies 

between synaptosomes and cells are explored. 

The final chapter of this dissertation summarizes the evidence for a direct 

interaction between tamoxifen and the dopamine transporter. I also explore the possibility 

of a dual action of tamoxifen on the dopamine transporter: as an atypical blocker and as a 

protein kinase C inhibitor. I present preliminary results that support a further investigation 

into tamoxifen’s modulation of the dopamine transporter through direct and indirect 

mechanisms. I also discuss several questions that were raised by my results and propose 

future studies to address those concerns. Finally, I present the evidence supporting the use 

of tamoxifen, or a related compound, in the treatment of psychostimulant abuse.  
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CHAPTER TWO. TAMOXIFEN INHIBITS DOPAMINE TRANSPORTER FUNCTION. 
 

Abstract 

The dopaminergic systems of the brain are important in the regulation of a number of 

processes, including motor control and reward processing. Psychostimulants such as 

amphetamine and cocaine take advantage of these systems to exert their stimulant and 

reinforcing effects. The selective estrogen receptor modulator tamoxifen has been 

demonstrated to increase extracellular dopamine in vivo and act as a neuroprotectant in 

models of dopamine neurotoxicity. However, the nature and mechanism of these effects 

remains to be clarified. We investigated the effect of tamoxifen on dopamine transporter-

mediated dopamine uptake, dopamine efflux, and [3H]WIN 35,428 binding in rat striatal 

tissue. We found that tamoxifen dose dependently blocks [3H]dopamine uptake (38% 

reduction at 10 μM) and efflux (63% reduction at 10 μM) in synaptosomes. It also effects a 

small but significant reduction in [3H]WIN 35,428 binding in striatal membranes, indicating 

a weak interaction with the WIN 35,428 binding site. Biotinylation and cysteine 

accessibility studies indicate that tamoxifen stabilizes the outward-facing conformation of 

the dopamine transporter in a cocaine-like manner and does not affect surface expression 

of the dopamine transporter. Additional studies with S2-site dopamine transporter 

mutants indicate a direct interaction between tamoxifen and the secondary substrate 

binding site of the transporter. Locomotor studies indicate that tamoxifen attenuates 

amphetamine-stimulated hyperactivity in rats, but has no effect on locomotor activity in 
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the absence of amphetamine. These results suggest a complex mechanism of action for 

tamoxifen as a regulator of the dopamine transporter. We believe that this activity of 

tamoxifen makes the tamoxifen structure an excellent starting point for a structure-based 

drug design program to develop a pharmacological therapeutic for psychostimulant abuse.  

Introduction 

Dopamine plays a significant role in multiple neural processes, including motor control 

and reward processing. Dysfunction of the dopaminergic system can lead to diverse 

disorders such as addiction, Parkinson’s disease, and schizophrenia (Abi-Dargham, 2014; 

German et al., 2015). Tamoxifen is a widely prescribed selective estrogen receptor 

modulator (SERM) used in the treatment and prevention of estrogen receptor positive 

breast cancer (Jordan, 2014). It has long been known that the drug tamoxifen affects the 

dopaminergic system, yet the mechanisms by which it does so have remained unclear. 

Tamoxifen has been found to cause a slight but significant increase in extracellular 

dopamine levels in the nucleus accumbens following systemic administration (Chaurasia et 

al., 1998). Tamoxifen also inhibits amphetamine-stimulated hyperactivity (Einat et al., 

2007; Cechinel-Recco et al., 2012; Pereira et al., 2014), which relies on elevation of 

extracellular dopamine levels in the striatum (French, 1986). Tamoxifen has been 

investigated as a neuroprotective agent against MPP+ and MPTP-induced neurotoxicity in a 

mouse model of Parkinson’s disease (Obata and Kubota, 2001; Bourque et al., 2007; Obata 

and Aomine, 2009), and against methamphetamine-induced neurotoxicity (D'Astous et al., 

2005). Both models of neurotoxicity selectively damage dopaminergic neurons and depend 

upon uptake of the neurotoxin by the dopamine transporter to exert their deleterious 

effects. While the effects on amphetamine-stimulated hyperactivity are believed to be the 
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result of protein kinase C inhibition (O'Brian et al., 1985; Einat et al., 2007), the 

neuroprotective effects of tamoxifen have largely been assumed to be the result of 

tamoxifen’s activity as a SERM. However, tamoxifen has many alternative mechanisms of 

action, including but not limited to binding to calmodulin (O'Brian et al., 1990), and the D2-

like dopamine receptor (Hiemke and Ghraf, 1984; Toney and Katzenellenbogen, 1987). It is 

unclear whether any of these mechanisms are responsible for the effects of tamoxifen on 

the dopaminergic system. Therefore we set out to better characterize the dopaminergic 

effects of tamoxifen and determine the mechanism by which it exerts these effects.  

A logical query is the effect of tamoxifen on dopamine transporter function. 

Amphetamine, MPP+ and MPTP are all substrates for the dopamine transporter and require 

the transporter in order to enter the cell and exert their effects. The dopamine transporter 

is responsible for clearing the extracellular space of dopamine following release and in this 

capacity is a crucial mechanism for regulating dopaminergic signaling (Jaber et al., 1997). 

Although tamoxifen has been demonstrated to block amphetamine-stimulated locomotor 

behavior, no one has systematically examined the effect of tamoxifen on dopamine 

transporter function.  

The dopamine transporter facilitates the movement of dopamine across the plasma 

membrane through a series of conformational changes that can be simplified into the 

“alternating access” model of transport (Jardetzky, 1966). In this model, the dopamine 

transporter alternates between an outward-facing conformation, where dopamine binds 

the primary binding site, a series of occluded conformations, through which dopamine is 

transporter across the membrane, and an inward-facing conformation, forming the 

transition between the two (Shi et al., 2008; Shan et al., 2011). More recently, a secondary 
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site (S2) has been proposed to play a role in transporter function. The existence of the site 

had been demonstrated with bivalent dopamine transporter ligands that demonstrate a 

much increased affinity compared to their monovalent counterparts, indicating the 

presence of two binding sites on the dopamine transporter (Schmitt et al., 2010). This 

secondary site has been indicated as an allosteric binding site for modulation of dopamine 

transporter conformation and dopamine transport (Shan et al., 2011). 

Here we demonstrate that tamoxifen directly interacts with the dopamine transporter. 

We find that tamoxifen non-competitively inhibits dopamine uptake and blocks 

amphetamine-stimulated dopamine efflux. We utilize cysteine accessibility assays and a 

newly characterized “S2-defective” dopamine transporter mutant (Zhen and Reith, 2016) 

to demonstrate that tamoxifen is stabilizing the outward-facing conformation of the 

dopamine transporter, apparently through an interaction with the S2 domain. Finally, we 

demonstrate that tamoxifen inhibits amphetamine-stimulated hyperactivity, yet exhibits no 

stimulant effects of its own. Our results demonstrate a heretofore unrecognized mechanism 

of action for tamoxifen. 

Materials and Methods 

Materials 

Tamoxifen citrate and amphetamine hemi-sulfate were obtained from Sigma-Aldrich. For in 

vitro experiments, tamoxifen was dissolved in DMSO to produce a 50 mM stock. 

Amphetamine was dissolved in aqueous buffer or water to produce a 10 mM stock. Cocaine 

hydrochloride was provided by NIDA and dissolved in aqueous buffer or water to produce 

a 10 mM stock. [3H]WIN 35,428 and [3H]dopamine were purchased from Perkin Elmer. All 

other chemicals were obtained from Sigma Aldrich unless otherwise noted. 
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Animals 

All animal use procedures were approved by the University Animal Care and Use 

Committee and were in accordance with the National Institutes of Health guidelines. Male 

Sprague-Dawley rats from 7-12 weeks of age were obtained from Harlan Laboratories. Rats 

were maintained under standard conditions on a 12-h light dark cycle and were housed in 

groups of two or three. 

Synaptosome preparation 

Rat striata were gently homogenized in 10 volumes of homogenization buffer (0.32 M 

sucrose, 1 mM EDTA, pH 7.4). Homogenates were centrifuged at 1000 x g for 10 min and 

the supernatant was transferred to a fresh vial. The supernatant fraction was centrifuged at 

15,000 x g for 15 minutes. The resulting pellet was resuspended in the appropriate buffer 

for subsequent use.  

Suprafusion 

The pellet containing the synaptosomes was resuspended in Kreb’s Ringer Buffer (KRB, 

145 mM NaCl, 2.7 mM KCl, 1.2 mM KH2PO4, 1.0 mM MgCl2, 10 mM glucose, 24.9 mM 

NaHCO3, 0.05 mM ascorbic acid, 0.05 mM pargyline, pH 7.4). Synaptosomes were then 

loaded into the reaction chambers of a Brandel Suprafusion Apparatus (Brandel Inc., 

Gaithersburg, MD) and washed with KRB (with or without drug) for one hour at 37 ˚C at 

800 μl/min to allow for adequate treatment time and to reach a steady baseline. Following 

the wash, 1 minute fractions were collected for a total of 14 fractions, with 10 μM 

amphetamine sulfate added to the buffer during fractions 7 and 8. Vehicle or tamoxifen 

were included in the buffer throughout fraction collection. An internal standard solution 

(ISS, final concentration 50 mM perchloric acid, 25 μM EDTA, 10 nM 2-aminophenol) was 
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added to each sample in an approximately 1:20 dilution and samples were analyzed for 

dopamine content by HPLC coupled with electrochemical detection (Thermo 

Scientific/ESA, Sunnyvale, CA). A small aliquot of synaptosomes was reserved and diluted 

1:50 in ISS. After 30 min incubation at 4 ˚C, the solution was centrifuged for 20 min at 

15,000 x g. The supernatant was diluted 1:20 in KRB and measured for dopamine content. 

This value was used to calculate the total dopamine content of the synaptosomes. 

[3H]Dopamine Uptake 

Synaptosomes were resuspended in KRB as described above, aliquoted into 13x100 mm 

borosilicate glass test tubes, and incubated with tamoxifen or vehicle for 60 minutes at 37 

˚C. Cocaine (100 μM) was used to measure nonspecific [3H]dopamine uptake. Unlabeled 

dopamine (20-300 nM) supplemented with 10 nM [3H]dopamine was added to the 

synaptosomes. The reaction was stopped at 3 min for saturation experiments and 30 

seconds for kinetic experiments by the addition of 3 ml of cold KRB followed by filtration 

through glass fiber filters (GF/C, Fisher Scientific) and washed twice more with cold KRB. 

Filters were dried and transferred to scintillation vials and radioactivity was counted in 5 

ml of ScintiVerse cocktail (ThermoFisher Scientific, Waltham, MA) using a Beckman LS5801 

scintillation counter (Beckman Coulter, Brea, CA).  

[3H]WIN 35,428 binding in membranes 

Membranes were prepared by resuspending synaptosomes in buffer containing 30 mM 

sodium phosphate, 0.32 M sucrose, pH 7.4 and homogenizing the suspension with a 

polytron tissue homogenizer. This solution was then aliquoted into 13x100 mm glass test 

tubes containing tamoxifen or vehicle and [3H]WIN 35,428. Membranes were incubated for 

2 hours at 4˚C to allow the binding reaction to reach equilibrium, then filtered, washed, and 
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counted as described above. Nonspecific binding was determined by incubation with 30 μM 

nomifensine. 

[3H]dopamine uptake in LLCPK1 cells 

LLCPK-1 cells stably transfected to express WT and mutant human dopamine transporters 

were grown to confluency in a 24-well plate for 2-3days. To enhance dopamine transporter 

mutant expression, D476A- and I159A-human dopamine transporter-transfected cells 

were treated for 16 hr with 100 mM sodium butyrate prior to experiment. Cells were 

washed 3x with phosphate-buffered saline (PBS) and preincubated with vehicle, 10 µM 

tamoxifen prepared in 240 µl of uptake buffer supplemented with 1mM ascorbic acid (122 

mM NaCl, 5 mM KCl, 1.2 mM MgSO4, 15 mM Na2HPO4, 10 mM glucose and 1 mM CaCl2) for 

1hr at room temperature. [3H]Dopamine uptake assays were initiated by addition of 30 µl 

of varying concentrations of unlabeled dopamine (final concentration ranging from 0-10 

µM) followed quickly by addition of 30 µl of 6–11 nM [3H]dopamine for a final per-well 

reaction volume of 300 µl. Nonspecific uptake was determined using 100 µM cocaine. 

Assays were conducted in 24-well plates for 5 minutes (WT cells) and 7 minutes (mutant 

cells) at 25 ˚C followed by extensive washing (3x) in ice-cold PBS. Cells were lysed with 5% 

ice-cold trichloroacetic acid for 30 minutes at 4 ˚C, and measured by liquid scintillation 

counting. 

Biotinylation to determine surface levels of the dopamine transporter and cysteine 

accessibility 

Biotinylation assays were adapted from Hong and Amara (2010). Synaptosomes were 

incubated with vehicle, 10 µM tamoxifen or 100 µM cocaine in KRB for 1 hour at 37 ˚C. The 

reactions were transferred to ice and washed with cold KRB. The vehicle- and tamoxifen-
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treated samples were divided in two. One set (vehicle-, cocaine- and tamoxifen-treated) 

was further incubated with 5 mg/ml maleimide-PEG2–biotin (Thermo Scientific) in PBSCM 

(PBS containing 0.1 mM CaCl2 and 1 mM MgCl2) pH 7.1, for 45 min at 4 ˚C in the continued 

presence of vehicle, cocaine, or tamoxifen where indicated. These samples were used to 

assess cysteine accessibility on the dopamine transporter. The other set (vehicle- and 

tamoxifen- treated) was incubated with 2 mg/ml sulfo-NHS-biotin (Thermo Scientific) in 

PBSCM, pH 7.4 under the same conditions. These samples were used to assess surface 

levels of the dopamine transporter following treatment with tamoxifen. The remaining 

maleimide-PEG2 –biotin or sulfo-NHS-biotin was quenched by adding 500 mM cysteine or 1 

M glycine, respectively, in PBSCM at 4 ˚C for 15 min, respectively. Synaptosomes were 

centrifuged for 10 min at 16000 x g and washed once more with the quenching solution. 

After centrifugation for 10 min at 16000 x g, maleimide-PEG2-biotin treated synaptosomes 

were resuspended in TNE lysis buffer (10 mM Tris, 150 mM NaCl, 1 mM EDTA, pH 7.5 

containing protease inhibitors – Roche Applied Science). Sulfo-NHS-biotin treated samples 

were resuspended in solubilization buffer (50 mM Tris, 150 mM NaCl, 1% Triton x 100, pH 

7.4, containing protease inhibitors) and lysed for 1 hr at 4 ˚C followed by 10 min 

centrifugation at 12000 x g. The supernatant was incubated with a 50% slurry of 

streptavidin agarose beads (Thermo Scientific) overnight at 4 ˚C. The beads were washed 

once with 400 µl respective buffers and twice with 600 µl PBS. Biotinylated proteins were 

eluted with SDS-PAGE sample buffer and a 20 µl sample of lysate was prepared for 

electrophoresis as a control. All samples were heated at 70 ˚C for 10 min and separated by 

SDS-PAGE, transferred to nitrocellulose membranes and probed with anti-dopamine 
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transporter antibody, mab 16, (Roxanne Vaughan, University of Nebraska), HRP-

conjugated mouse secondary antibody and developed using chemiluminescence.  

Locomotor assays 

Locomotor activity was evaluated in testing chambers (41 cm x 25.4 cm x 20.3 cm) 

equipped with a photocell beam array. Activity was quantified as the number of beam 

breaks in a designated period of time. Animals were allowed to acclimate in the chamber 

for two hours prior to administration of 5 mg/kg tamoxifen citrate or vehicle (i.p., 2 mg/ml 

in 3.5% DMSO and 10% Tween-80 in saline) and monitored for an additional three hours. 

This procedure was repeated the next day. On the third day, animals were allowed to 

acclimate in the chambers for two hours prior to administration of 1 mg/kg amphetamine 

(i.p. 1 mg/ml in saline) or the equivalent volume of saline and activity was monitored for an 

additional three hours.  

Statistical Analysis 

All statistical analyses were carried out using Graphpad Prism 6 software (San Diego, CA). 

Data are plotted as mean ± S.E.M. Significance was set at p<0.05. Comparisons between 

multiple groups were made with one- or two- way ANOVA, with post hoc Dunnett’s 

multiple comparison test. Where only two groups were analyzed, unpaired or paired, two-

tailed Student’s t-tests were used. In kinetic uptake and saturation binding assays, non-

linear regression was used to determine the appropriate parameters. Calculated Kd/Km and 

Bmax/Vmax were compared across experiments by a paired, two-tailed Student’s t-test. 
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Results 

Tamoxifen non-competitively inhibits [3H]dopamine uptake in rat striatal synaptosomes 

Because amphetamine and methamphetamine are substrates for the dopamine 

transporter, and are competitive with dopamine, we examined whether tamoxifen might 

impede the effects of amphetamine by reducing the transporter’s capacity to take up 

substrate. Rat striatal synaptosomes were pretreated with 0.3 µM to 10 µM tamoxifen or 

vehicle prior to initiation of uptake with 310 nM [3H]dopamine. RM one-way ANOVA 

indicated a significant treatment effect for tamoxifen [F(3,12) = 27.49, p<0.0001]. Post-hoc 

Dunnett’s multiple comparison indicated that tamoxifen significantly decreased 

[3H]dopamine uptake at 3 µM and 10 µM (Figure 2-1A). Further kinetic analysis 

demonstrated that this blockade was the result of non-competitive inhibition of dopamine 

uptake, as 10 μM tamoxifen significantly decreased the Vmax of [3H]dopamine uptake but 

not the Km (Figure 2-1B, Table 2-1). 

Tamoxifen attenuates amphetamine-stimulated dopamine efflux 

 We next examined the dose-dependent effect of tamoxifen on amphetamine-stimulated 

dopamine efflux using suprafusion of rat striatal synaptosomes to determine whether 

tamoxifen would affect efflux to a similar degree that it affects uptake. A one-way ANOVA 

indicated a significant treatment effect [F(3,9)=9.686,p<0.0035] for tamoxifen. 

Pretreatment with 1 μM to 10 μM tamoxifen had no effect on baseline dopamine levels 

(Table 2-2), yet tamoxifen dose-dependently inhibited amphetamine-stimulated dopamine 

efflux with statistically significant decreases at 3 μM (34% reduction, p<0.05 vs. vehicle) 

and 10 μM (63% reduction, p<0.01 vs vehicle) tamoxifen (Figure 2-2). 
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Figure 2-1. Tamoxifen impairs dopamine uptake.  

Striatal synaptosomes from male Sprague Dawley rats were incubated for one 
hour at 37°C with vehicle or indicated concentrations of tamoxifen, then 
treated with 310 nM (A) or indicated concentrations of [3H]dopamine and 
incubated for an additional 3 min (A) or 30 seconds (B). A. Repeated measures 
one-way ANOVA indicated a significant treatment effect for tamoxifen. Post-
hoc Dunnet’s multiple comparison indicate a significant reduction in 
dopamine uptake at 3 μM (p<0.05) and 10 μM tamoxifen (p<0.01) compared 
to vehicle. Data are represented as mean ± S.E.M. n=5. B. Km and Vmax were 
calculated as averages from 4 experiments and are displayed in table 1. Paired 
two-tailed t-test indicated a significant effect of tamoxifen on Vmax (p<0.001) 
but not Km. Data are represented as mean ± S.E.M. n=4 

 
 
 

 Vehicle 10 μM TMX 

Km (nM) 1576 ± 263.3 1531 ± 643.7 

Vmax (nM) 48.5 ± 13.6 34.0 ± 13.5* 

Table 2-1. Kinetics of [3H]dopamine uptake 
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Figure 2-2. Tamoxifen attenuates amphetamine-stimulated dopamine 
efflux.  
Striatal synaptosomes were perfused for one hour at 37°C with vehicle or 
various concentrations of tamoxifen at 800 μL/min before collection of 1 
minute fractions. 10 μM amphetamine was included in the perfusate during 
fractions 7 and 8. Data were calculated as the area under the curve 
following treatment with amphetamine. A one-way ANOVA indicated a 
significant treatment effect for tamoxifen. Post-hoc Dunnet’s multiple 
comparison indicate a significant reduction in amphetamine-stimulated 
dopamine release at 3 μM tamoxifen (p<0.05) and 10 μM tamoxifen 
(p<0.01) compared to vehicle. Data are represented as mean ± S.E.M. N=2-
4 

 

 Vehicle 1 μM TMX 3 μM TMX 10 μM TMX 

Baseline (pmol DA/tDA) 6.8 ± 2.0 7.1 ± 1.8 8.9 ± 1.2 4.9 ± 0.3 

dopamine release (AUC) 151.7 ± 10.3 137.9 ± 19.5 100.9 ± 6.4* 56.5 ± 2.9** 

Table 2-2. Basal and amphetamine-stimulated dopamine release 
(normalized to total dopamine (tDA) content of synaptosomes) 
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Tamoxifen does not affect surface expression of the dopamine transporter. 

In order to determine whether tamoxifen was reducing dopamine uptake and efflux by 

decreasing surface dopamine transporter levels, we utilized a surface biotinylation assay. 

Synaptosomes were incubated for one hour with 10 μM tamoxifen or vehicle at 37 °C 

followed by incubation with NHS-sulfo-biotin. Following biotin pulldown, dopamine 

transporter levels in the biotinylated fraction and total lysate were quantified by western 

blotting. Dopamine transporter levels in the biotinylated fraction were normalized to 

lysate. We found no change in biotinylated dopamine transporter levels in synaptosomes 

treated with tamoxifen compared to vehicle (Figure 2-3). 

 

Figure 2-3. Tamoxifen does not affect surface expression of the 
dopamine transporter.  

Rat striatal synaptosomes were incubated for one hour with 10 μM tamoxifen or 
vehicle prior to biotinylation of surface proteins with sulfo-NHS-biotin. Following 
avidin-biotin pulldown, dopamine transporter content in biotinylated fractions 
and lysates was quantified by western blotting. A. Tamoxifen did not affect 
surface expression of the dopamine transporter. B. Representative western blot 
showing the biotinylated dopamine transporter protein and its corresponding 
total lysate. N=3 
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Tamoxifen inhibits binding of [3H]WIN 35,428 to the dopamine transporter 

We next determined whether the effects of tamoxifen on dopamine uptake and efflux were 

the result of a direct interaction with the dopamine transporter, such as that which would 

be seen with a typical dopamine transporter blocker like cocaine. To test this we looked at 

the effect of tamoxifen on the binding of [3H]WIN 35,428, a cocaine analogue, to the 

dopamine transporter in rat striatal membranes. In a competition binding assay, a repeated 

measures one-way ANOVA indicated a significant effect of treatment [F(4, 16) = 8.571, 

p=0.0007]. Post-hoc Dunnett’s multiple comparison test revealed that 3 and 10 μM 

tamoxifen significantly decreased binding of 4 nM [3H]WIN 35,428 (Figure 2-4a). In a 

saturation binding assay comparing membranes pretreated with or without 10 μM 

tamoxifen, tamoxifen significantly decreased [3H]WIN 35,428 binding to the dopamine 

transporter (p<0.0001, Figure 2-4b). Further analysis indicated that tamoxifen significantly 

increased the Kd of WIN for the transporter (veh vs. TMX, 9.3±0.6 vs. 15.4±1 nM, paired t-

test, p<0.05), but had no effect on Bmax compared to vehicle (veh vs. TMX, 3.5±0.2 vs. 

3.4±0.2) (Figure 2-4b). These results indicate a weak, competitive interaction with the WIN 

35,428 binding site. 

Tamoxifen increases biotinylation of extracellular cysteines in a cocaine-like manner. 

We next determined whether tamoxifen is affecting dopamine transporter conformation. In 

the alternating access model of dopamine transport, the dopamine transporter alternates 

between the outward facing conformation, where it binds extracellular dopamine, and the 

inward facing conformation, where dopamine is released into the cytosol. Previous work 

demonstrated that the availability of cysteine 306 in the dopamine transporter for 

modification by maleimide-PEG2 biotin is enhanced by cocaine, and that this correlates to 
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an increase in the outward facing conformation of the dopamine transporter. We found 

that incubation with 10 μM tamoxifen increases biotinylation of extracellular cysteines 

similar to cocaine (Figure 2-5), though whether this increased biotinylation is occurring at 

cysteine 306 remains unknown without further study.  

 

 

Figure 2-4. Tamoxifen inhibits [3H]WIN 35,428 binding to the dopamine 
transporter in rat striatal membranes.  
In a series of binding assays, rat striatal membranes were incubated with 
[3H]WIN 35,428 and tamoxifen or vehicle for 3 hours at 4 °C. Non-specific 
binding was determined with 30 μM nomifensine. A. In a competition binding 
assay, membranes were incubated with 4 nM [3H]WIN 35,428 and various 
concentrations of tamoxifen. A repeated measures one-way ANOVA indicated 
a significant effect of treatment on WIN binding. Tamoxifen at 3 and 10 μM 
significantly decreased [3H]WIN 35,428 binding compared to the vehicle 
control (p<0.01, post hoc Dunnett’s multiple comparisons test). n=4 B. In a 
saturation binding assay, membranes were incubated with 10 μM tamoxifen 
and various concentrations of [3H]WIN 35,428 to equilibrium. Comparison of 
fits in a non-linear regression demonstrated a significant effect of tamoxifen 
on [3H]WIN 35,428 binding compared to vehicle (p<0.0001). N=3. Further 
analysis indicated that tamoxifen significantly increased Kd but had no effect 
on Bmax (paired t-test, p<0.05). Data represented as mean ± S.E.M. 
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Figure 2-5. Tamoxifen stabilizes the outward facing conformation of the 
dopamine transporter in a cocaine-like manner.  
Rat striatal synaptosomes were incubated for one hour with 100 μM cocaine, 
10 μM tamoxifen, or vehicle prior to biotinylation of surface cysteines with 
maleimide-PEG2-biotin. Following avidin-biotin pulldown, dopamine 
transporter content in biotinylated fractions were quantified by western 
blotting. An ordinary one-way ANOVA found a significant effect of treatment 
(p<0.05) and post hoc analysis with Dunnett’s multiple comparisons test 
indicated that both tamoxifen (p<0.05) and cocaine (p<0.05) significantly 
increased the availability of extracellular cysteines on the dopamine 
transporter to biotinylation. N=3 

 Mutation of the S2 site of the dopamine transporter eliminates the effect of tamoxifen on 

dopamine uptake. 

The atypical nature of tamoxifen’s effects on the dopamine transporter led us to 

hypothesize that tamoxifen may be interacting with the putative S2 site of the dopamine 

transporter. Evidence suggests that D476A and I159A dopamine transporter mutants have 

an impaired S2 site (Zhen and Reith, 2016). These mutants exhibit an increase Km and a 

vehicle 100 µM 
cocaine

10 µM 
TMX

0

50

100

150

200

250

Treatment

D
A

T
 c

y
s

te
in

e
 a

c
c

e
s

s
ib

il
it
y

 

(%
 o

f 
v

e
h

ic
le

)

*

*

A

B



 65 

decrease Vmax, but are still capable of taking up dopamine, bind WIN 35,428, and can be 

inhibited by cocaine. Thus we utilized these mutants, which were stably expressed in 

porcine kidney LLCPK-1 cells, to determine whether an intact S2 site is necessary in order 

for tamoxifen to inhibit uptake. 10 μM tamoxifen significantly reduced the Vmax of 

[3H]dopamine uptake in wild-type transporter compared to vehicle, but had no effect in 

either of the S2 mutants (Table 2-3). Tamoxifen did not affect the Km of dopamine uptake in 

the wild-type or mutant dopamine transporter, consistent with our previous observations 

of non-competitive inhibition of dopamine uptake by tamoxifen.  

 WT DAT D476A DAT I159A DAT 

treatment Vehicle 10 μM 
TMX 

Vehicle 10 μM 
TMX 

Vehicle 10 μM 
TMX 

Km (μM) 0.7 ± 0.06 0.6 ± 0.09 4.2 ± 0.5 4.3 ± 0.3 1.3 ± 0.2 1.3 ± 0.1 

Vmax (pmol/mg/min) 8.1 ± 0.7 3.4 ± 0.4*** 1.5 ± 0.2 1.3 ± 0.1 0.2 ± 0.02 0.1 ± 0.02 

Table 2-3 Effect of tamoxifen on dopamine uptake kinetics in wild-type 
and S2 mutant dopamine transporter (DAT) 
Unpaired t-test, veh vs. TMX. ***p<0.001, data expressed as mean ± S.E.M. , 
n=5-6  

 
Tamoxifen decreases amphetamine-stimulated locomotor activity but not basal locomotion 

The decrease in dopamine uptake capacity caused by tamoxifen might be expected to lead 

to an increase in extracellular dopamine levels, and in fact, tamoxifen has been 

demonstrated to increase extracellular dopamine levels by a small but significant amount 

in vivo via microdialysis (Chaurasia et al., 1998). This increase in extracellular dopamine 

could cause tamoxifen to have stimulant effects on its own. To test whether this would 

occur, we followed the tamoxifen dosing protocol established by Einat et al. (2007). 
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Figure 2-6. Tamoxifen does not affect normal locomotor activity in rats.  
Male Sprague-Dawley rats (n=8) were allowed to habituate for three hours in 
a beam break apparatus before administration of an i.p. injection. Locomotor 
activity was monitored throughout habituation and two hours following i.p. 
injection. On Days 1 and 2, animals received either 5 mg/kg tamoxifen citrate 
(2 mg/ml tamoxifen, 3.5% DMSO, 10% Tween-80 in saline) or an equivalent 
volume of vehicle. On day 3 all animals received saline. Though locomotor 
activity following i.p. injection with drug or saline was significantly higher 
than activity during habituation in both groups and across all days, there was 
no significant difference in locomotor activity between tamoxifen and vehicle 
treated animals. Values represented are the total beam breaks in the two 
hours preceding (habituation) and the two hours following (post i.p.) 
injection.  

 

Animals were given an intraperitoneal injection of 5 mg/kg tamoxifen citrate or vehicle 

once each day for two days while acclimating to locomotor beam break boxes. On the third 

day, animals were given an injection of saline. Locomotor activity was measured as the 

number of beam breaks in the two-hour period preceding and following each injection. 

Though locomotor activity following i.p. injection with saline or drug was significantly 

higher than activity during habituation in both groups and across all days, there was no 
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significant difference in locomotor activity between tamoxifen- and vehicle-treated animals 

(Figure 2-6). Following the same experimental protocol, rats were pretreated with 

tamoxifen over two days, however, on day three they received an injection of amphetamine 

(1 mg/kg, i.p.). In contrast to the lack of effect of tamoxifen on basal locomotor activity, a 

repeated measures 2-way ANOVA indicated a significant effect for pretreatment on 

amphetamine-stimulated hyperactivity [F(1, 18) = 7.26,p=0.0148], time [F(23, 414) = 

15.67, p<0.0001], and interaction [F(23, 414) = 2.543, p=0.0001] (Figure 2-7).  

 

 

Figure 2-7. Tamoxifen pretreatment attenuates amphetamine-
stimulated hyperactivity.  

Male Sprague Dawley rats (n=10) were pretreated with 3 mg/kg tamoxifen or 
vehicle 48 and 24 hours prior to administration of amphetamine (1 mg/kg). 
Basal locomotor activity was collected and amphetamine was administered 
(i.p. 1mg/kg) at time point 100, as indicated by the arrow. Pretreatment with 
tamoxifen significantly reduced amphetamine-stimulated hyperactivity. A 
repeated measures 2-way ANOVA indicated a significant effect for 
pretreatment. Post-hoc Sidak’s multiple comparisons test indicate a significant 
difference between vehicle and tamoxifen treated animals at 140 minutes 
(p<0.0001), 150 minutes (p<0.0001), and 160 minutes (p<0.01). Data are 
represented as the mean ± S.E.M. 
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Discussion 

In this study, we demonstrate for the first time that tamoxifen inhibits normal function of 

the dopamine transporter in an atypical manner, as opposed to the typical inhibition seen 

with drugs like cocaine. These conclusions are based on our results demonstrating that 

tamoxifen attenuates both dopamine uptake and amphetamine-stimulated dopamine efflux 

in vitro and hyperactivity in vivo, yet fails to induce hyperlocomotion in vivo on its own. 

Tamoxifen’s inhibition of dopamine uptake is non-competitive, and independent of any 

changes in surface dopamine transporter levels, further indicating the atypicality of 

tamoxifen’s effects on the dopamine transporter. Interestingly, though this is the first 

demonstration of tamoxifen inhibiting dopamine transporter function, it is not the first 

demonstration of inhibition of a neurotransmitter transporter by tamoxifen; Chang and 

Chang (1999) found that tamoxifen inhibited uptake through the serotonin transporter 

with an IC50 of approximate 17 M. Unfortunately, this observation was never fully 

explored.  

 The fact that tamoxifen inhibits dopamine uptake without increasing locomotor 

activity is reminiscent of the effects of atypical dopamine transporter blockers. An atypical 

dopamine transporter blocker is defined as a compound that inhibits dopamine uptake, has 

no stimulant effects of its own (Reith et al., 2015), and reduces the locomotor stimulating 

effects of cocaine and amphetamine (Velazquez-Sanchez et al., 2010). Some atypical 

dopamine transporter blockers also inhibit the self-administration and conditioned place 

preference of cocaine and amphetamine without exhibiting any reinforcing characteristics 

themselves (Ferragud et al., 2009; Hiranita et al., 2009; Ferragud et al., 2014). There is a 
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hope that the atypical dopamine transporter blockers may serve as effective therapies for 

psychostimulant abuse (Tanda et al., 2009) due to their ability to antagonize 

psychostimulant action without exhibiting their own abuse liability (Schmitt et al., 2013). 

Because tamoxifen exhibits similar blockade of dopamine transporter function without 

psychostimulant properties of its own, there is a potential that many of the beneficial 

effects of atypical blockers may be seen with tamoxifen as well.  

 Further examination of the effects of tamoxifen on the dopamine transporter indicate 

that tamoxifen stabilizes the outward facing conformation of the dopamine transporter, 

similar to cocaine. If tamoxifen were allosterically stabilizing the outward facing 

conformation of dopamine transporter, we would expect to see an increase in [3H]WIN 

35,428 binding, as was observed with cholesterol (Hong and Amara, 2010). However, we 

find that tamoxifen attenuates [3H]WIN 35,428 binding to dopamine transporter in striatal 

membranes, albeit weakly, indicating that tamoxifen is somehow interfering with 

[3H]WIN35,428 binding at the dopamine transporter. It is possible that the effect of 

tamoxifen on dopamine transporter function that we see is the result of binding to the 

putative S2 site of the transporter. This site is hypothesized to facilitate binding of 

substrate to the primary substrate site (Nyola et al., 2010) and possibly even drive the 

translocation of the dopamine molecule across the membrane (Shan et al., 2011). The 

existence of the S2 site in the dopamine transporter has been hypothesized from homology 

models with the bacterial leucine transporter, whose own S2 site is a matter of some 

controversy (Nyola et al., 2010; Piscitelli et al., 2010). However, the recent solving of the 

human serotonin transporter structure (Coleman et al., 2016) and the discovery of an 

allosteric (S2) site homologous to the proposed S2 site in dopamine transporter, promises 
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to shine a new light on this line of investigation. Pharmacologically, the existence of the S2 

site on the dopamine transporter was demonstrated utilizing bivalent ligands. These 

interesting compounds, constructed from two dopamine transporter ligands connected by 

a poly-carbon linker, exhibited a significant increase in affinity for the dopamine 

transporter compared to their monovalent counterparts, indicating concurrent binding to 

multiple sites on the transporter (Schmitt et al., 2010). More recently, our collaborators in 

the Reith lab at New York University have developed a pair of S2 site dopamine transporter 

mutants, D467A and I159A, which possess a disrupted S2 site (Zhen and Reith, 2016). 

Though these mutants exhibit a much decreased affinity for WIN 35,428 and decreased 

uptake capacity, they are still vulnerable to uptake inhibition by typical DAT blockers such 

as cocaine. Excitingly, these mutants are completely resistant to the effects of tamoxifen on 

dopamine uptake, indicating that these residues are important to the interaction of 

tamoxifen with the dopamine transporter. These results further support our assertion that 

tamoxifen is interacting directly with the dopamine transporter.  

Tamoxifen is well established as an inhibitor of protein kinase C and other labs have 

demonstrated that treatment with tamoxifen at therapeutically comparable doses can 

inhibit amphetamine-stimulated phosphorylation of the protein kinase C substrate GAP43 

in vivo (Einat et al., 2007). Our lab and others have demonstrated that activation of protein 

kinase C by amphetamine contributes to amphetamine-stimulated dopamine efflux. 

Conversely, inhibition of protein kinase C, and the  isoform in particular, decreases 

amphetamine-stimulated dopamine efflux (Giambalvo, 1992b; Giambalvo, 1992a; Kantor 

and Gnegy, 1998; Johnson et al., 2005; Zestos et al., 2016) and amphetamine-stimulated 

locomotor activity (Browman et al., 1998; Zestos et al., 2016). Protein kinase C exhibits 
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other roles in the regulation of the dopaminergic neuron. Inhibition of protein kinase C 

potentiates D2-like autoreceptor regulation of exocytotic dopamine release (Luderman et 

al., 2015). Activation of accumbens protein kinase C promotes the reinstatement of cocaine 

seeking behavior (Schmidt et al., 2013; Ortinski et al., 2015; Schmidt et al., 2015), while 

blockade of protein kinase C signaling in the nucleus accumbens prevents the development 

of amphetamine conditioned place preference (Aujla and Beninger, 2003). As a result of the 

extensive work connecting psychostimulant abuse and protein kinase C, we have proposed 

that protein kinase C may present a viable target for the treatment of psychostimulant 

abuse.  

With the shared mechanisms of protein kinase C inhibition and “atypical-like” 

dopamine transporter blockade in mind, it is possible that tamoxifen may present a two-

pronged approach to the modulation of the dopamine systems of the brain. A drug like 

tamoxifen may be able to prevent the acute actions of drugs like amphetamine and cocaine 

both through protein kinase C inhibition and blockade of the dopamine transporter, while 

also inhibiting some of the processes that may lead to relapse in recovering addicts. 

Tamoxifen is CNS permeant and has been used clinically for many years, yielding a well-

defined safety profile. Furthermore, the structure activity relationship of tamoxifen is 

sufficiently understood (Poirot et al., 2000; de Medina et al., 2004) that the tamoxifen 

scaffold could be used as a basis for a compound with both atypical dopamine transporter 

blocker activity and protein kinase C inhibition, but which lacks the estrogen receptor-

mediated side effects that make tamoxifen a less than ideal therapeutic.  

 The discovery that tamoxifen blocks the dopamine transporter shines a new light on 

work done in years past. For example, tamoxifen has been demonstrated to act as a 
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neuroprotectant in methamphetamine and MPP+ induced dopaminergic neurotoxicity. This 

was largely believed to be due to the estrogen receptor-modulating effects of tamoxifen, 

since estrogen is neuroprotective as well. However, though estrogen is neuroprotective 

against methamphetamine-induced neurotoxicity in female mice only, tamoxifen is 

neuroprotective in both male and female mice (Bourque et al., 2007), indicating the 

presence of an alternative non-estrogenic-mediated mechanism. Furthermore, tamoxifen 

will antagonize the neuroprotective effects of estrogen in methamphetamine-induced 

dopaminergic neurotoxicity (D'Astous et al., 2005), indicating that, in these cases, 

tamoxifen is likely not estrogenic. Both methamphetamine and MPP+ require uptake 

through the dopamine transporter to induce dopamine neurotoxicity, thus, in light of our 

results here, the “neuroprotective” effects of tamoxifen could simply be the result of 

decreased dopamine transporter-mediated uptake.  

 It’s important to acknowledge that the concentrations of tamoxifen used in these 

studies and the IC50s calculated are quite high. However, published data on tamoxifen 

pharmacokinetics and brain tissue disposition indicate that concentrations near 1 mg/mg 

of tissue and higher are readily achieved in human brain at steady state (assuming 1 mg 

tissue = 1 μl of volume, this is estimated at ~2-10 M and higher) (Lien et al., 1991a; Lien et 

al., 1991b; Kisanga et al., 2003). Furthermore, though we have found that tamoxifen has a 

similarly high IC50 for inhibition of protein kinase C (1 μM) in a cell based assay, data not 

shown), the dosing regimen used here was sufficient to decrease amphetamine-stimulated, 

protein kinase C-mediated phosphorylation of GAP-43 in rat striatum in vivo (Einat et al., 

2007), indicating that tamoxifen can reach sufficient levels in the brain in vivo to be 

comparable to our in vitro studies.  
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 It is also important to consider tamoxifen’s SERM activity in the context of the above 

results. It is still unclear whether the effects of tamoxifen on the estrogen receptor in a 

dopamine neuron are predominantly estrogenic or antiestrogenic. Estrogen increases 

amphetamine-stimulated dopamine efflux in striatal tissue (Becker, 1990). However, at 

concentrations where it binds the estrogen receptor, tamoxifen is unable to block this effect 

of estrogen on amphetamine-stimulated efflux, nor affect efflux on its own, indicating that it 

does not have anti-estrogenic effects in the dopamine neuron (Xiao et al., 2003). 

Furthermore, our studies utilized male animals, which generally are considerably less 

responsive to estrogenic effects (Becker, 1990; Cummings et al., 2014). In addition, 

although tamoxifen inhibits breast cancer cell growth at 100 nM through estrogen 

receptor-dependent mechanisms (Coezy et al., 1982), we fail to see any effect of tamoxifen 

on dopaminergic processes until we approach concentrations 10-100 times higher. Though 

micromolar concentrations of estrogen have been found to inhibit dopamine uptake 

(Disshon et al., 1998), this effect follows a pattern of competitive inhibition (increased Km, 

unchanged Vmax), while we find that tamoxifen noncompetitively inhibits dopamine uptake. 

Taken together, these results strongly indicate a division between estrogen and tamoxifen 

and their effects on the dopamine transporter. Still, future work in our lab will more closely 

examine the role of the estrogen receptors in the effects of tamoxifen on the dopamine 

transporter. 

 Something of interest in our experiments was that, contrary to some previously 

published work (Pereira et al., 2014), we were unable to see an effect of tamoxifen on 

amphetamine-stimulated hyperactivity unless the animals were treated over two days 

(data not shown). These results are especially puzzling when taken into consideration with 
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the observation that one-hour treatment with tamoxifen in vitro is sufficient to produce a 

robust inhibition of the dopamine transporter. Given that tamoxifen was capable of 

producing an increase in striatal extracellular dopamine in vivo within an hour of systemic 

administration (Chaurasia et al., 1998), the need for an extended incubation time in order 

for the effects of tamoxifen on behavior to become apparent indicates that there may be 

alternative mechanisms at work in regards to the effects of tamoxifen on amphetamine-

stimulated behaviors. It is also possible that higher doses of tamoxifen may have a more 

acute effect on amphetamine-stimulated hyperactivity. It may be worth noting that ongoing 

work in our lab has found that protein kinase C inhibitors administered to the intracerebral 

ventricular space require an extended incubation time (12-24 hours) before a measurable 

inhibition of amphetamine-stimulated behaviors is obtained (publication forthcoming). 

In conclusion, we demonstrated that tamoxifen significantly impairs dopamine 

transporter function in vitro. In vivo, however, this effect on dopamine transporter 

functionality appears to only have behavioral relevance in the presence of a non-

physiological stimulus such as amphetamine. This effect provides an explanation for many 

of the results seen previously in studies of tamoxifen and dopaminergic signaling. 

Additionally, we believe that the combined protein kinase C inhibition and dopamine 

transporter modulating functions of tamoxifen exhibit potential for a two pronged 

approach to the pharmacological treatment of psychostimulant abuse and that a further 

investigation of the tamoxifen structure is warranted.  

 



 75 

References 

Abi-Dargham A (2014) Schizophrenia: overview and dopamine dysfunction. The Journal of 
clinical psychiatry 75:e31. 

Aujla H and Beninger RJ (2003) Intra-accumbens protein kinase C inhibitor NPC 15437 
blocks amphetamine-produced conditioned place preference in rats. Behav Brain 
Res 147:41-48. 

Becker JB (1990) Direct effect of 17 beta-estradiol on striatum: sex differences in dopamine 
release. Synapse 5:157-164. 

Bourque M, Liu B, Dluzen DE and Di Paolo T (2007) Tamoxifen protects male mice 
nigrostriatal dopamine against methamphetamine-induced toxicity. Biochemical 
pharmacology 74:1413-1423. 

Browman KE, Kantor L, Richardson S, Badiani A, Robinson TE and Gnegy ME (1998) 
Injection of the protein kinase C inhibitor Ro31-8220 into the nucleus accumbens 
attenuates the acute response to amphetamine: tissue and behavioral studies. Brain 
research 814:112-119. 

Cechinel-Recco K, Valvassori SS, Varela RB, Resende WR, Arent CO, Vitto MF, Luz G, de 
Souza CT and Quevedo J (2012) Lithium and tamoxifen modulate cellular plasticity 
cascades in animal model of mania. Journal of psychopharmacology 26:1594-1604. 

Chang AS and Chang SM (1999) Nongenomic steroidal modulation of high-affinity 
serotonin transport. Biochim Biophys Acta 1417:157-166. 

Chaurasia CS, Chen CE, Rubin J and Dewey SL (1998) Effects of tamoxifen on striatal 
dopamine and 5-hydroxytryptamine release in freely moving male rats: an in-vivo 
microdialysis investigation. The Journal of pharmacy and pharmacology 50:1377-
1385. 

Coezy E, Borgna JL and Rochefort H (1982) Tamoxifen and metabolites in MCF7 cells: 
correlation between binding to estrogen receptor and inhibition of cell growth. 
Cancer research 42:317-323. 

Coleman JA, Green EM and Gouaux E (2016) X-ray structures and mechanism of the human 
serotonin transporter. Nature. 

Cummings JA, Jagannathan L, Jackson LR and Becker JB (2014) Sex differences in the effects 
of estradiol in the nucleus accumbens and striatum on the response to cocaine: 
neurochemistry and behavior. Drug and alcohol dependence 135:22-28. 

D'Astous M, Mickley KR, Dluzen DE and Di Paolo T (2005) Differential protective properties 
of estradiol and tamoxifen against methamphetamine-induced nigrostriatal 
dopaminergic toxicity in mice. Neuroendocrinology 82:111-120. 

de Medina P, Favre G and Poirot M (2004) Multiple targeting by the antitumor drug 
tamoxifen: a structure-activity study. Curr Med Chem Anticancer Agents 4:491-508. 

Disshon KA, Boja JW and Dluzen DE (1998) Inhibition of striatal dopamine transporter 
activity by 17beta-estradiol. European journal of pharmacology 345:207-211. 

Einat H, Yuan P, Szabo ST, Dogra S and Manji HK (2007) Protein kinase C inhibition by 
tamoxifen antagonizes manic-like behavior in rats: implications for the development 
of novel therapeutics for bipolar disorder. Neuropsychobiology 55:123-131. 

Ferragud A, Velazquez-Sanchez C and Canales JJ (2014) Modulation of methamphetamine's 
locomotor stimulation and self-administration by JHW 007, an atypical dopamine 
reuptake blocker. European journal of pharmacology 731:73-79. 



 76 

Ferragud A, Velazquez-Sanchez C, Hernandez-Rabaza V, Nacher A, Merino V, Carda M, 
Murga J and Canales JJ (2009) A dopamine transport inhibitor with markedly low 
abuse liability suppresses cocaine self-administration in the rat. 
Psychopharmacology 207:281-289. 

French ED (1986) Effects of N-allylnormetazocine (SKF 10,047), phencyclidine, and other 
psychomotor stimulants in the rat following 6-hydroxydopamine lesion of the 
ventral tegmental area. Neuropharmacology 25:447-450. 

German CL, Baladi MG, McFadden LM, Hanson GR and Fleckenstein AE (2015) Regulation of 
the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets 
and Implications for Disease. Pharmacological reviews 67:1005-1024. 

Giambalvo CT (1992a) Protein kinase C and dopamine transport--1. Effects of 
amphetamine in vivo. Neuropharmacology 31:1201-1210. 

Giambalvo CT (1992b) Protein kinase C and dopamine transport--2. Effects of 
amphetamine in vitro. Neuropharmacology 31:1211-1222. 

Hiemke C and Ghraf R (1984) Interaction of non-steroidal antiestrogens with dopamine 
receptor binding. Journal of steroid biochemistry 21:663-667. 

Hiranita T, Soto PL, Newman AH and Katz JL (2009) Assessment of reinforcing effects of 
benztropine analogs and their effects on cocaine self-administration in rats: 
comparisons with monoamine uptake inhibitors. The Journal of pharmacology and 
experimental therapeutics 329:677-686. 

Hong WC and Amara SG (2010) Membrane cholesterol modulates the outward facing 
conformation of the dopamine transporter and alters cocaine binding. J Biol Chem 
285:32616-32626. 

Jaber M, Jones S, Giros B and Caron MG (1997) The dopamine transporter: a crucial 
component regulating dopamine transmission. Movement disorders : official journal 
of the Movement Disorder Society 12:629-633. 

Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969-970. 
Johnson LA, Guptaroy B, Lund D, Shamban S and Gnegy ME (2005) Regulation of 

amphetamine-stimulated dopamine efflux by protein kinase C beta. The Journal of 
biological chemistry 280:10914-10919. 

Jordan VC (2014) Tamoxifen as the first targeted long-term adjuvant therapy for breast 
cancer. Endocrine-related cancer 21:R235-246. 

Kantor L and Gnegy ME (1998) Protein kinase C inhibitors block amphetamine-mediated 
dopamine release in rat striatal slices. The Journal of pharmacology and experimental 
therapeutics 284:592-598. 

Kisanga ER, Gjerde J, Schjott J, Mellgren G and Lien EA (2003) Tamoxifen administration 
and metabolism in nude mice and nude rats. The Journal of steroid biochemistry and 
molecular biology 84:361-367. 

Lien EA, Solheim E and Ueland PM (1991a) Distribution of tamoxifen and its metabolites in 
rat and human tissues during steady-state treatment. Cancer research 51:4837-
4844. 

Lien EA, Wester K, Lonning PE, Solheim E and Ueland PM (1991b) Distribution of tamoxifen 
and metabolites into brain tissue and brain metastases in breast cancer patients. 
British journal of cancer 63:641-645. 

Luderman KD, Chen R, Ferris MJ, Jones SR and Gnegy ME (2015) Protein kinase C beta 
regulates the D(2)-like dopamine autoreceptor. Neuropharmacology 89:335-341. 



 77 

Nyola A, Karpowich NK, Zhen J, Marden J, Reith ME and Wang DN (2010) Substrate and 
drug binding sites in LeuT. Curr Opin Struct Biol 20:415-422. 

O'Brian CA, Ioannides CG, Ward NE and Liskamp RM (1990) Inhibition of protein kinase C 
and calmodulin by the geometric isomers cis- and trans-tamoxifen. Biopolymers 
29:97-104. 

O'Brian CA, Liskamp RM, Solomon DH and Weinstein IB (1985) Inhibition of protein kinase 
C by tamoxifen. Cancer research 45:2462-2465. 

Obata T and Aomine M (2009) Protective effect of tamoxifen, a synthetic non-steroidal 
antiestrogen, on phenelzine and 1-methyl-4-phenylpyridinium ion (MPP+)-induced 
hydroxyl radical generation in rat striatum. Research communications in molecular 
pathology and pharmacology 122-123:65-78. 

Obata T and Kubota S (2001) Protective effect of tamoxifen on 1-methyl-4-phenylpyridine-
induced hydroxyl radical generation in the rat striatum. Neuroscience letters 
308:87-90. 

Ortinski PI, Briand LA, Pierce RC and Schmidt HD (2015) Cocaine-seeking is associated 
with PKC-dependent reduction of excitatory signaling in accumbens shell D2 
dopamine receptor-expressing neurons. Neuropharmacology 92:80-89. 

Pereira M, Andreatini R, Schwarting RK and Brenes JC (2014) Amphetamine-induced 
appetitive 50-kHz calls in rats: a marker of affect in mania? Psychopharmacology 
231:2567-2577. 

Piscitelli CL, Krishnamurthy H and Gouaux E (2010) Neurotransmitter/sodium symporter 
orthologue LeuT has a single high-affinity substrate site. Nature 468:1129-1132. 

Poirot M, De Medina P, Delarue F, Perie JJ, Klaebe A and Faye JC (2000) Synthesis, binding 
and structure-affinity studies of new ligands for the microsomal anti-estrogen 
binding site (AEBS). Bioorganic & medicinal chemistry 8:2007-2016. 

Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman 
RB and Katz JL (2015) Behavioral, biological, and chemical perspectives on atypical 
agents targeting the dopamine transporter. Drug and alcohol dependence 147:1-19. 

Schmidt HD, Kimmey BA, Arreola AC and Pierce RC (2015) Group I metabotropic glutamate 
receptor-mediated activation of PKC gamma in the nucleus accumbens core 
promotes the reinstatement of cocaine seeking. Addiction biology 20:285-296. 

Schmidt HD, Schassburger RL, Guercio LA and Pierce RC (2013) Stimulation of mGluR5 in 
the accumbens shell promotes cocaine seeking by activating PKC gamma. The 
Journal of neuroscience : the official journal of the Society for Neuroscience 33:14160-
14169. 

Schmitt KC, Mamidyala S, Biswas S, Dutta AK and Reith ME (2010) Bivalent 
phenethylamines as novel dopamine transporter inhibitors: evidence for multiple 
substrate-binding sites in a single transporter. Journal of neurochemistry 112:1605-
1618. 

Schmitt KC, Rothman RB and Reith ME (2013) Nonclassical pharmacology of the dopamine 
transporter: atypical inhibitors, allosteric modulators, and partial substrates. The 
Journal of pharmacology and experimental therapeutics 346:2-10. 

Shan J, Javitch JA, Shi L and Weinstein H (2011) The substrate-driven transition to an 
inward-facing conformation in the functional mechanism of the dopamine 
transporter. PLoS One 6:e16350. 



 78 

Shi L, Quick M, Zhao Y, Weinstein H and Javitch JA (2008) The mechanism of a 
neurotransmitter:sodium symporter--inward release of Na+ and substrate is 
triggered by substrate in a second binding site. Mol Cell 30:667-677. 

Tanda G, Newman AH and Katz JL (2009) Discovery of drugs to treat cocaine dependence: 
behavioral and neurochemical effects of atypical dopamine transport inhibitors. 
Advances in pharmacology 57:253-289. 

Toney TW and Katzenellenbogen BS (1987) An evaluation of the interactions of 
antiestrogens with pituitary and striatal dopamine receptors. Journal of receptor 
research 7:695-712. 

Velazquez-Sanchez C, Ferragud A, Murga J, Carda M and Canales JJ (2010) The high affinity 
dopamine uptake inhibitor, JHW 007, blocks cocaine-induced reward, locomotor 
stimulation and sensitization. European neuropsychopharmacology : the journal of 
the European College of Neuropsychopharmacology 20:501-508. 

Xiao L, Jackson LR and Becker JB (2003) The effect of estradiol in the striatum is blocked by 
ICI 182,780 but not tamoxifen: pharmacological and behavioral evidence. 
Neuroendocrinology 77:239-245. 

Zestos AG, Mikelman SR, Kennedy RT and Gnegy ME (2016) PKCbeta Inhibitors Attenuate 
Amphetamine-Stimulated Dopamine Efflux. ACS Chem Neurosci. 

Zhen J and Reith MEA (2016) Impact of disruption of secondary binding site S(2) on 
dopamine transporter function. Journal of neurochemistry (accepted).



 79 

CHAPTER THREE. TAMOXIFEN AND ITS METABOLITES INHIBIT DOPAMINE TRANSPORTER 

FUNCTION INDEPENDENTLY OF THE ESTROGEN RECEPTORS 
 

Abstract

As one of the primary mechanisms by which dopamine signaling is regulated, the dopamine 

transporter is an attractive pharmacological target for the treatment of diseases based in 

dopaminergic dysfunction. Previously, we demonstrated that the breast cancer therapeutic, 

tamoxifen, exhibits characteristics of an atypical inhibitor of dopamine uptake. Here, we 

further characterize the effects of tamoxifen and two of its metabolites, 4-

hydroxytamoxifen and endoxifen, on the dopamine transporter. We found that tamoxifen 

non-competitively inhibits amphetamine-stimulated dopamine efflux in hDAT-N2A cells 

and that the effects of tamoxifen on dopamine transporter function in this model are 

comparable to those seen previously in synaptosomes. The metabolites 4-

hydroxytamoxifen and endoxifen prove more complex in their modulation of the dopamine 

transporter than tamoxifen. Endoxifen asymmetrically inhibits dopamine transporter 

function in hDAT-N2A cells, showing a preference for the inhibition of amphetamine-

stimulated dopamine efflux. Conversely, 4-hydroxytamoxifen exhibited no difference 

between inhibition of dopamine uptake and inhibition of amphetamine-stimulated 

dopamine efflux in cells, yet demonstrated a preference for inhibition of uptake in rat 

striatal synaptosomes. Additionally, we demonstrate that the effects of tamoxifen on the 

dopamine transporter occur independently of its activity as a selective estrogen receptor 
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modulator, further supporting our assertion that tamoxifen inhibits dopamine transporter 

function though a previously unidentified mechanism 

Introduction 

The dopamine transporter is the chief mechanism by which extracellular dopamine is 

removed from the synapse following its release, and as such plays a vital role in the 

regulation of dopamine signaling. Pharmacological modulation of the dopamine 

transporter, therefore, is a source of great interest for the treatment of multiple 

dopaminergic diseases.  

Previously, we demonstrated that the breast cancer therapeutic tamoxifen exhibits 

the characteristics of an atypical dopamine uptake inhibitor (Chapter 2). Tamoxifen 

inhibits dopamine uptake, amphetamine-stimulated dopamine efflux, and amphetamine-

stimulated hyperlocomotion, yet fails on its own to elicit the hyperlocomotion 

characteristic of “typical” dopamine transporter blockers such as cocaine and 

methylphenidate. We also demonstrated that tamoxifen stabilizes the outward facing 

conformation of the dopamine transporter in a striatal membrane preparation, indicating a 

direct interaction between tamoxifen and the transporter. 

Tamoxifen is metabolized into three active metabolites that reach appreciable levels 

in the brain (See Figure 1-7): 4-hydroxytamoxifen, N-desmethyltamoxifen, and 4-hydroxy-

N-desmethyltamoxifen (known as endoxifen). 4-hydroxytamoxifen and endoxifen are 

considered the active metabolites of tamoxifen, because their potency as SERMs is 100-fold 

higher than the parent compound (Lien et al., 1991). Any combination of these metabolites 

could be responsible for the effects of tamoxifen on dopamine-regulated behaviors.  
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 Though our previous results indicated a direct interaction between tamoxifen and 

the dopamine transporter, we have not yet ruled out the possibility that tamoxifen is 

exerting its effects on the dopamine transporter through its well-established activity as a 

selective estrogen receptor modulator. Estrogen is well known to affect dopamine 

transporter function; it stimulates dopamine efflux on its own and enhances amphetamine-

stimulated dopamine efflux (Becker, 1990; Xiao et al., 2003). There are three known 

estrogens receptors: ER, ER, and the G-protein coupled estrogen receptor (GPER1). All 

three receptors have been demonstrated to modulate dopamine transporter function to 

varying degrees (Alyea et al., 2008; Alyea and Watson, 2009). Beyond its SERM activity at 

ER and ER tamoxifen is also an agonist at GPER1 (Thomas et al., 2005).  

 Investigation of direct effects of tamoxifen on the dopamine transporter would be 

facilitated by the use of cell culture models. In this study, therefore, we characterize the 

effects of tamoxifen on dopamine transporter function in a mouse neuroblastoma cell line 

stably expressing the dopamine transporter (hDAT-N2A) and compare these results to 

those achieved in rat striatal tissue. We determined that tamoxifen and two of its three 

major metabolites, 4-hydroxytamoxifen and endoxifen, directly inhibit dopamine uptake 

and amphetamine-stimulated dopamine efflux to varying degrees in hDAT-N2A cells. N2A 

mouse neuroblastoma cells have been demonstrated to express all three known estrogen 

receptors (Mendez and Garcia-Segura, 2006; Manthey et al., 2010; Su et al., 2012), and as 

such are useful in determining whether tamoxifen’s SERM activity contributes to its effects 

on the dopamine transporter. We demonstrate that tamoxifen and its metabolites are not 

exerting their effects via activation of the estrogen receptors. Therefore, antagonism of the 



 82 

estrogen receptors is not sufficient to explain the effects of tamoxifen or its metabolites on 

dopamine transporter function. 

Methods and materials  

Materials 

All chemicals were obtained from Sigma Aldrich with the exception of [3H]dopamine, which 

was purchased from Perkin Elmer, and G36, which was purchased from Tocris. Tamoxifen 

citrate, endoxifen, 4-hydroxytamoxifen, and G36 were prepared as a 50 mM stock in 

dimethylsulfoxide (DMSO). Fulvestrant was dissolved in DMSO as a 10 mM stock. The stock 

solutions were then diluted in the buffers appropriate for the assay. Final concentration of 

DMSO in all solutions ranged from 0.01-0.03% and were kept constant across all conditions 

within an experiment.  

Cell culture 

N2a mouse neuroblastoma cells stably expressing the human dopamine transporter 

(hDAT-N2a) cells were grown in Optimem reduced serum media (Gibco) supplemented 

with fetal bovine serum (10%), penicillin-strepavidin (1%), and G418 (100 μg/ml, Gibco) 

at 37 °C in 5% CO2. For experiments involving estrogen receptor antagonists, cells were 

maintained under the same conditions and in a similar media formulation except that the 

Optimem was free of phenol-red and was supplemented with a charcoal-stripped bovine 

serum (kindly provided by Dr. James Rae, University of Michigan) in order to limit 

exposure of the cells to exogenous estrogens. For dopamine uptake and amphetamine-

stimulated dopamine efflux assays cells were trypsinized 1-2 days before the experiment 

and seeded on 24-well plates (50,000 to 100,000 cells per well) such that at the time of the 
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experiment, cell density would be approaching confluency with approximately 200,000 

cells per well.  

[3H]dopamine uptake – cell based assay 

Cells were grown in 24-well plates. Media was aspirated from the wells and cells were 

washed three times with Krebs Ringer HEPES buffer (KRH, pH 7.4, 25 mM HEPES, 125 mM 

NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.3 mM CaCl2, 1.2 mM MgSO4, 5.6 mM glucose, 50 μM 

pargyline, and 50 μM ascorbic acid) before the addition of 400 μl of drug treatment or 

vehicle in KRH. Cells were kept in treatment throughout the duration of the experiment. 

After a one-hour incubation, cocaine was added to non-specific wells, and dopamine uptake 

was initiated 10 minutes later. For the dopamine uptake concentration response curves, 

dopamine uptake was initiated by the addition of 10 nM [3H]dopamine supplemented with 

300 nM unlabeled dopamine and the reaction was terminated after 10 minutes. In the 

kinetic assay, dopamine uptake was initiated with the addition of 10 nM [3H]dopamine 

supplemented with 10 nM to 3 μM unlabeled dopamine and the reaction was terminated 

after 5 minutes. Dopamine uptake was terminated by aspiration of the dopamine solution 

followed by three rapid washes with ice cold KRH. Cells in each well were lysed with 400 μl 

of 2 M perchloric acid and transferred to scintillation vials with 5 mls of Scintiverse 

Scintillation Cocktail (Fisher Scientific) and counted for 2 minutes each on a Beckman 

scintillation counter.  

[3H]dopamine efflux - cell based assay 

Media was aspirated from wells and cells were washed three times with KRH before the 

addition of 200 μl of 50 nM [3H] dopamine supplemented with 5 μM unlabeled dopamine in 

KRH and incubation at 37°C for 40 min. After dopamine loading, each well was rapidly 



 84 

washed with KRH three times. KRH plus drugs or vehicle was added to each well. A stable 

baseline was established by removing and replacing the solution in the cells every 10 

minutes for a total of 50 minutes. Beginning at 50 minutes, three 10 minute fractions were 

collected. 20 µM amphetamine was added during the second fraction. Baseline was defined 

as the counts per minute in the fraction immediately preceding the addition of 

amphetamine. Following removal of the final fraction, cells were lysed with 2 M perchloric 

acid to quantify total remaining dopamine content. In each experiment, treatment 

conditions were carried out in triplicate and an additional well was reserved for each 

treatment condition which received no amphetamine in order to quantify non-specific 

dopamine release. Dopamine efflux was quantified as the percentage of the dopamine 

content released during the efflux fraction divided by the total dopamine present in the 

cells.  

Animals 

All animal use procedures were approved by the University Animal Care and Use 

Committee and were in accordance with the National Institutes of Health guidelines. Male 

Sprague-Dawley rats (Harlan laboratories) from 7-12 weeks of age were maintained under 

standard conditions on a 12-hour light-dark cycle and were housed in groups of two or 

three.  

Synaptosome preparation 

Following decapitation of the rat, striata were isolated and homogenized in 10 volumes of 

0.32 M sucrose with 1 mM EDTA (pH 7.4). Homogenates were centrifuged at 1000 x g for 

10 minutes. The supernatant was centrifuged again at 15,000 x g for 15 minutes and the 

resulting pellet was gently resuspended in Kreb’s Ringer Buffer for subsequent use (KRB, 
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145 mM NaCl, 2.7 mM KCl, 1.2 mM KH2PO4, 1.0 mM MgCl2, 10 mM glucose, 24.9 mM 

NaHCO3, 0.05 mM ascorbic acid, 0.05 mM pargyline, pH 7.4). 

Dopamine efflux assay – suprafusion 

The entirety of the suprafusion assay was carried out in KRB. Suprafusion was carried out 

as described previously (chapter 2). Briefly, following a one hour wash (800 μl/min) with 

vehicle or drug on a Brandel Suprafusion Apparatus (Brandel Inc, Gaithersburg, MD), 1 min 

fractions were collected for a total of 14 fractions and 10 μM amphetamine sulfate was 

added to the wash during fractions 7 and 8. An internal standard solution was added to 

each sample in an approximately 1:20 dilution (ISS, final concentration 50 mM perchloric 

acid, 25 μM EDTA, 10 nM 2-aminophenol). Samples were analyzed for dopamine content by 

HPLC coupled to electrochemical detection (Thermo Scientific/ESA, Sunnyvale, CA). A small 

aliquot of synaptosomes was reserved for quantification of total dopamine content.  

[3H]Dopamine Uptake - synaptosomes 

Uptake assays were carried out as described previously (Chapter 2). Briefly, synaptosomes 

were incubated with drug or vehicle for 60 minutes at 37 °C. Unlabeled dopamine (300 nM) 

supplemented with 10 nM [3H]dopamine was added to the synaptosomes and the reaction 

was stopped at 3 min with the addition of 3 ml of cold KRB. 100 μM cocaine was added to 

select vials to determine nonspecific uptake. Specific [3H]dopamine uptake was determined 

as the [3H]dopamine content following filtration minus the [3H]dopamine content in the 

nonspecific samples. Samples were filtered through glass fiber filters (GF/C, Fisher 

Scientific) and washed twice more with cold KRB. Filters were dried and transferred to 

scintillation vials and radioactivity was counted in 5 ml of ScintiVerse cocktail 

(ThermoFisher Scientific, Waltham, MA) using a Beckman LS5801 scintillation counter 
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(Beckman Coulter, Brea, CA).  

Statistical analysis 

All statistical analyses were carried out in Graphpad Prism 6 (San Diego, CA). Data are 

plotted as mean ± S.E.M. Significance was set at p<0.05. Comparisons between multiple 

groups were made with one-way ANOVA, with post hoc Dunnett’s multiple comparison test. 

Non-linear regression was used to determine IC50, Vmax, and Km values. IC50 values were 

calculated as the average of those calculated for each experiment. When concentration 

response curves were compared, comparison of fits in non-linear regression was used to 

determine whether curves differed from each other. Calculated Km and Vmax were compared 

across experiments by a one-way ANOVA. 

Results 

Tamoxifen and dopamine uptake kinetics 

We previously found that tamoxifen inhibits dopamine uptake in rat striatal synaptosomes 

in a non-competitive manner (Chapter 2). To validate the results in heterologous cultured 

cells, we examined the potency and kinetic effects of tamoxifen on dopamine uptake in the 

hDAT-N2A cells.  Confirming our result in synaptosomes, we found that tamoxifen 

significantly decreases the Vmax of dopamine uptake at 3 and 10 μM. In contrast to the 

results in synaptosomes, 10 μM tamoxifen significantly decreases the Km of [3H]dopamine 

uptake. (Figure 3-1, Table 3-1). 

Best-fit values Vehicle (n=6) 3 μM TMX (n=3) 10 μM TMX (n=3) 

Vmax (± S.E.M.) 34.5 ± 2.8 13.8 ± 2.1** 4.9 ± 0.9**** 

Km (± S.E.M.) 430.9 ± 57.2 232.6 ± 33.7 148.6 ± 53.9* 

Table 3-1. Best fit Michaelis-Menten values for dopamine uptake  
*p<0.05, **p<0.01, ****p<0.0001 vs. vehicle, One-way ANOVA with Dunnett’s 

post hoc multiple comparisons. 
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Figure 3-1. Kinetic analysis of [3H]dopamine uptake following 
pretreatment of hDAT-N2A cells with tamoxifen.  
hDAT-N2A cells seeded on a 24-well plate were treated for one hour at room 

temperature with vehicle, 3 μM, or 10 μM tamoxifen. [3H]Dopamine uptake 

was initiated with the addition of 10 nM [3H]dopamine supplemented with 10 

nM to 3 μM unlabeled dopamine and allowed to precede for 5 minutes prior to 

halting the reaction with cold wash buffer, lysis of cells with 2 M perchloric 

acid, and quantification of tritium content by scintillation counting. 

Comparison of fits indicated a significant effect of both concentrations of 

tamoxifen on Vmax but not Km compared to vehicle (p<0.0001). Data are 

represented as mean ± S.E.M. n=3 

 

Effect of tamoxifen on amphetamine-stimulated dopamine efflux 

We next probed the dose-dependent effects of tamoxifen on [3H]dopamine efflux 

stimulated by a wide range of amphetamine concentrations. hDAT-N2A cells were treated 

with 1 μM, 3μM, and 10 μM tamoxifen and efflux was stimulated by 30 nM to 3 μM 

amphetamine. As the tamoxifen concentration increases we see no significant change in 

EC50 of amphetamine (range across tamoxifen doses 156-209 nM, mean 172 ± 12 nM), but 

we do see a significant reduction in maximal effect for 3 μM and 10 μM (comparison of fits, 

p<0.05), indicating that tamoxifen is affecting amphetamine-stimulated dopamine efflux 

through a non-competitive mechanism (Figure 3-2).  
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Figure 3-2. Inhibition of amphetamine-stimulated dopamine efflux by 
tamoxifen.  

Following loading with 5 μM [3H]dopamine, hDAT-N2A cells were incubated 

with vehicle or tamoxifen at the indicated concentrations. Following one hour 

of incubation amphetamine was added to the wells and the supernatant was 

collected after 10 minutes for quantification via scintillation counting. Efflux 

represents the amount of dopamine in the supernatant relative to the total 

dopamine content of the well, minus the dopamine in the supernatant of the 

prior unstimulated well (basal dopamine release, no amphetamine).  

 

Tamoxifen inhibits amphetamine-stimulated dopamine efflux and uptake with similar 

potency in hDAT-N2A cells. 

 In order to characterize the effects of tamoxifen on dopamine transporter function, we 

quantified dopamine uptake and amphetamine-stimulated dopamine efflux in hDAT-N2A 

cells following 1-hour pretreatment with the increasing concentrations of tamoxifen 

(Figure 3-3a). One-way repeated measures ANOVA indicated a significant effect of 

treatment on dopamine uptake (F(5, 20) = 32.74, p<0.0001) and efflux (F(5, 20) = 40.19, 

p<0.0001). Post hoc Dunnett’s multiple comparisons test revealed a significant decrease in 

uptake for 3 μM (p<0.001) and 10 μM (p<0.0001) tamoxifen and a significant decrease in 

efflux for 0.3 μM (p<0.05), 1 μM (p<0.001), 3 μM (p<0.01) and 10 μM (p<0.0001) tamoxifen 

compared to vehicle. There was no significant difference between the concentration 
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response curves generated for uptake and amphetamine-stimulated efflux in hDAT-N2A 

cells. See table 3-2 for IC50 values.  

 For comparison, I have included an alternate representation of the data presented in 

Figures 2-1a and 2-2. The IC50 values  for tamoxifen were 10.6 ± 2.4 and 8.3 ± 3.0 μM for 

dopamine uptake and amphetamine-stimulated dopamine efflux, respectively, with no 

significant difference between the two curves (Figure 3-3b). A repeated measures one-way 

ANOVA found a significant effect of tamoxifen treatment on uptake (F(3,12)=27.5, 

p<0.0001). A one-way ANOVA found a significant effect of tamoxifen treatment on efflux 

(F(3,9)=9.7, p<0.01). Significant reductions in dopamine uptake were seen at 3 μM 

(p<0.05) and 10 μM (p<0.0001). Significant reductions in amphetamine stimulate 

dopamine efflux were seen at 3 μM (p<0.05) and 10 μM (p<0.01). 
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Figure 3-3. Tamoxifen inhibits the dopamine transporter.  

Inhibition of [3H]dopamine uptake and amphetamine-stimulated 

[3H]dopamine efflux in (A) hDAT-N2A cells and (B) rat striatal synaptosomes 

(from chapter 2) following a 1-hour treatment with tamoxifen. Comparison of 

fits for non-linear regression indicated no difference between the 

concentration response curves for uptake vs. efflux in either systems. The 

solubility limitations of tamoxifen prevented the testing of higher 

concentrations. *efflux, p<0.05 vs vehicle; **efflux, p<0.01 vs vehicle; ***efflux, 

p<0.001 vs vehicle; ****efflux, p<0.0001 vs vehicle; • uptake, p<0.05 vs vehicle; 

••• uptake, p<0.001; •••• uptake, p<0.0001.   
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Effects of tamoxifen metabolites on dopamine transporter function. 

We next characterized the effects of the active metabolites of tamoxifen on the dopamine 

transporter. N-desmethyltamoxifen had no effect on [3H]dopamine uptake or efflux 

through the dopamine transporter at concentrations up to 3 μM, but was cytotoxic at 

higher concentrations as measured by PrestoBlue (ThermoFisher, data not shown). Our 

focus was then on the two remaining metabolites, 4-hydroxytamoxifen and endoxifen. 

 In hDAT-N2A cells, a repeated measures one-way ANOVA indicated a significant 

effect of 4-hydroxytamoxifen treatment on [3H]dopamine uptake (F(5, 15) = 33.68, 

p<0.0001) and efflux (F(5,10) = 31.63, p<0.0001). Post hoc Dunnett’s multiple comparisons 

test revealed a significant decrease in [3H]dopamine uptake 1 μM (p<0.05), 3 μM 

(p<0.0001) and 10 μM (p<0.0001) 4-hydroxytamoxifen and a significant decrease in 

[3H]dopamine efflux for 3 μM (p<0.001), and 10 μM (p<0.0001) 4-hydroxytamoxifen 

compared to vehicle. The concentration response curves generated by these two data sets 

were not significantly different from each other. See table 3-2 for IC50 values. 

 In rat striatal synaptosomes, a one-way ANOVA indicated a significant effect of 4-

hydroxytamoxifen treatment on dopamine uptake (F(4,9) = 15.68, p<0.001) and efflux 

(F(3, 11) = 5.769, p<0.05). Post hoc Dunnett’s multiple comparisons test revealed a 

significant decrease in dopamine uptake for 1 μM (p<0.05), 3 μM (p<0.01) and 10 μM 

(0.001) 4-hydroxytamoxifen and a significant decrease in efflux for 10 μM (p<0.05) 4-

hydroxytamoxifen compared to vehicle. Unlike in cells, the concentration response curves 

generated by these data sets were significantly different from each other (p<0.001) see 

table 3-2 for IC50s.  
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 Figure 3-4. 4-hydroxytamoxifen inhibits the dopamine transporter.  
Inhibition of dopamine uptake and amphetamine-stimulated dopamine efflux 

in hDAT-N2A cells and rat striatal synaptosomes following 1 hour treatment 

with 4-hydroxtamoxifen. Comparison of fits for non-linear regression 

indicated no difference between the concentration response curves for 

dopamine uptake vs. amphetamine-stimulated dopamine efflux in cells (A) but 

a significant difference between potency (lower IC50 for efflux, p<0.01) and 

efficacy (greater efficacy for uptake, p<0.01) in synaptosomes (B). Note: in 

cells, efflux is stimulated with 20 μM amphetamine, whereas in synaptosomes 

efflux is stimulated by 10 μM amphetamine. *efflux, p<0.05 vs vehicle; **efflux, 

p<0.01 vs vehicle; ***efflux, p<0.001 vs vehicle; ****efflux, p<0.0001 vs 

vehicle; • uptake, p<0.05; •• uptake, p<0.01; ••• uptake, p<0.001; •••• uptake, 

p<0.0001.   

 

In hDAT-N2A cells, a one-way repeated measures ANOVA indicated a significant effect of 

endoxifen treatment on [3H]dopamine uptake (F(4,8) = 4.1, p<0.05) and amphetamine-

stimulated [3H]dopamine efflux (F(4,8) = 36.4, p<0.001). Post hoc Dunnett’s multiple 

comparisons test revealed a significant decrease in [3H]dopamine uptake at 3 μM (p<0.05) 

endoxifen and a significant decrease in amphetamine-stimulated [3H]dopamine efflux at 1 

μM (p<0.01) and 3 μM (p<0.0001) endoxifen compared to vehicle. The concentration 

response curves generated by these two data sets were significantly different from each 

other (p<0.01) though the calculated IC50s were not significant different. In rat striatal 
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synaptosomes, we have yet to obtain efflux data for endoxifen; however, a repeated 

measures one-way ANOVA indicated an effect of endoxifen on uptake (F(3,9) = 17.06, 

p<0.001) with a significant reduction at 3 μM (p<0.001) in synaptosomes (Figure 3-5).  

Effect of estrogen antagonists 

Because tamoxifen and its metabolites are selective estrogen receptor modulators, we 

sought to determine whether their actions on the dopamine transporter might be 

attributable to their activity at any of the three estrogen receptors. The hDAT-N2A cells 

used in these experiments were maintained in medium supplemented with charcoal 

stripped fetal bovine serum in order to preclude complications that might arise from the 

presence of exogenous estrogens. Using the ER and ER antagonist fulvestrant (3 μM), 

and the GPER1 antagonist G36 (10 μM), we found that blockade of the estrogen receptors 

had no significant effect on basal dopamine uptake or efflux. Moreover, neither fulvestrant 

nor G36 inhibited the effects of tamoxifen or its metabolites on [3H]dopamine uptake or 

amphetamine-stimulated [3H]dopamine efflux (Figure 3-6). 

IC50 Tamoxifen 4-hydroxytamoxifen Endoxifen 
hDAT-N2A cells    

Uptake 5.1 μM ± 1.5 (n=5) 2.6 μM ± 1.0 (n=4) 4.1 μM ± 0.6 (n=3) 

Efflux 14.1 μM ± 10.0 (n=5) 2.5 μM ± 0.2 (n=3) 3.0 μM ± 1.0 ¥ (n=3) 

synaptosomes    
Uptake 13.4 μM ± 5.7 ‡ (n=5) 2.3 μM ± 0.5* (n=3) 10.0 μM ± 5.4 (n=5) 

Efflux 8.4 μM ± 2.6 ‡ (n=5) 13.1 μM ± 2.8 (n=4) n.d. 
Table 3-2 – IC50s for uptake and efflux in hDAT-N2A cells and rat striatal 
synaptosomes. (±S.E.M.).   
*p<.01 vs. IC50 for efflux, ‡ from Chapter 2, reanalyzed for concentration 

response curve comparison, ¥ p=0.054 vs. uptake, statistical trend. 
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Figure 3-5. Endoxifen inhibits the dopamine transporter.  
Inhibition of dopamine uptake and amphetamine-stimulated dopamine efflux 

in hDAT-N2A cells and rat striatal synaptosomes following 1-hour treatment 

with endoxifen (endox). Comparison of fits for non-linear regression indicated 

a significant difference between the concentration response curves for uptake 

(open squares) vs efflux (20 μM amphetamine, closed squares) in hDAT-N2A 

cells. **efflux (cells), p<0.01 vs vehicle; ****efflux (cells), p<0.0001 vs vehicle; 

• uptake (cells), p<0.05; +++ uptake (synaptosomes), p<0.001 vs vehicle. 

  

Discussion 

 In this study we demonstrate that tamoxifen and two of its active metabolites, 4-

hydroxytamoxifen and endoxifen, impair dopamine transporter function independently of 

their actions at the estrogen receptors. We also demonstrate that in cells, tamoxifen 

impairs both dopamine uptake and amphetamine-stimulated dopamine efflux through a 

non-competitive mechanism. Due to the similarities between the concentration response 

curves for tamoxifen in inhibition of dopamine uptake and amphetamine-stimulated  



 94 

 

Figure 3-6. Effects of estrogen receptor antagonists on [3H]dopamine 
uptake and amphetamine-stimulated [3H]dopamine release.  
Inhibition of dopamine uptake (A, C, E) and amphetamine-stimulated 

dopamine efflux (20 μM amphetamine, B, D, F) by tamoxifen (10 μM, A, B), 4-

hydroxytamoxifen (3 μM, C, D), and endoxifen (3 μM, E, F) were measured in 

the presence and absence of the ER/ER antagonist fulvestrant (3 μM) or the 

GPER1 antagonist G36 (10 μM). The presence of the estrogen receptor 

antagonists had no significant on amphetamine-stimulated [3H]dopamine 

efflux or [3H]dopamine uptake and failed to affect the ability of tamoxifen and 

its metabolites to inhibit these activities.  
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dopamine efflux, we hypothesize that the effect of tamoxifen on amphetamine-stimulated 

dopamine efflux is the result of an impairment of amphetamine uptake.  

Interestingly, we find that some discrepancies exist for the effect of tamoxifen 

metabolites on dopamine uptake and amphetamine-stimulated dopamine efflux between 

the hDAT-N2A cell model and the striatal synaptosomes. Though tamoxifen exhibits similar 

inhibition of uptake and efflux in both cells and synaptosomes, modulation of transporter 

activity by the metabolites appears somewhat more complex. We find that in cells, 4-

hydroxytamoxifen inhibits dopamine uptake and amphetamine-stimulated dopamine efflux 

with similar potency and efficacy, yet in synaptosomes, 4-hydroxytamoxifen is significantly 

less efficacious in the inhibition of efflux as compared to uptake. Though we have yet to 

obtain efflux data in synaptosomes for endoxifen, we find that endoxifen appears to be 

more efficacious and potent as an inhibitor of amphetamine-stimulated dopamine efflux as 

compared to [3H]dopamine uptake in hDAT-N2A cells.  

Before the implications of these discrepancies can be discussed, it is important to 

consider the differences between the assays used for cells vs synaptosomes. All cell-based 

efflux assays were performed with adherent cells plated in 24-well plates with 

exogenously-loaded [3H]dopamine, while amphetamine-stimulated dopamine efflux from 

synaptosomes is carried out in a suprafusion apparatus with buffer rapidly perfusing the 

tissue preparation, with only endogenous dopamine contributing to efflux. The rapid 

perfusion of the synaptosomes ensures that as dopamine is transported into the extra-

synaptosomal space, it is washed away before any significant amount of reuptake can take 

place. However, in a plated cell based assay, the efflux that we are measuring is in reality a 

measure of the amount of dopamine released through amphetamine-stimulated dopamine 
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efflux minus the amount of dopamine taken back up in to the cell. In this setting, an 

inhibitor of dopamine uptake might be expected to appear to have less of an effect on 

amphetamine-stimulated dopamine efflux, as the blockade of reuptake might cancel out 

any reduction in efflux. Thus, it is difficult for us to make a truly accurate comparison 

between uptake and efflux in the plated cell-based assay. 

It is worth considering that the stationary condition of the cell-based efflux assay is 

likely more comparable to the in situ environment of the dopamine neuron, yet it is still not 

an ideal model. Previously, we have seen that in every other measure of efflux used in our 

lab, including in vivo microdialysis (Zestos et al., 2016), suprafusion with striatal tissue 

(Kantor and Gnegy, 1998; Johnson et al., 2005), and even suprafusion with cells 

(unpublished data), protein kinase C inhibitors significantly attenuate amphetamine-

stimulated dopamine efflux for concentrations of amphetamine reaching as high as 20 μM. 

In the cell based assay, however, we find that protein kinase C inhibitors have a minimal 

and unreliable effect on amphetamine-stimulated dopamine efflux, and then only when 

very small concentrations of amphetamine are used (< 1 μM, data not shown). The reasons 

for this incongruence eludes us, as well as whether it is attributable to the assay (plated vs. 

suprafusion) or the model (cells vs. synaptosomes), but it serves to highlight an important 

caveat in the cell-based efflux assay.  

Returning to the discrepancies observed between dopamine uptake and 

amphetamine-stimulated efflux in the tamoxifen metabolites, both 4-hydroxytamoxifen 

and endoxifen appear to be asymmetrically affecting the function of the dopamine 

transporter. While 4-hydroxytamoxifen appears to exhibit a “preference” for inhibition of 

dopamine uptake, at least in synaptosomes, endoxifen preferentially inhibits efflux in cells. 
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The difference between the effects of endoxifen on dopamine uptake and amphetamine-

stimulated dopamine efflux in the cells is intriguing. Endoxifen is a known inhibitor of 

protein kinase C, and, based on our previous studies (Kantor and Gnegy, 1998; Johnson et 

al., 2005), our initial thought upon observing the effect of endoxifen on amphetamine-

stimulated dopamine efflux was that it may be exerting its effects through inhibition of 

protein kinase C. However, the above mentioned caveats with the cell-based assay preclude 

this hypothesis, as we might not expect to see an effect of protein kinase C inhibition on 

amphetamine-stimulated dopamine efflux. As yet, we are unable to speculate as to the 

means by which endoxifen and 4-hydroxytamoxifen asymmetrically modulate transporter 

activity, but it is a question worthy of further investigation.  

 In our investigation of the effects of tamoxifen and its metabolites on the dopamine 

transporter, it was necessary that we consider the potential effects of the drugs’ SERM 

activity on dopamine transporter function. We found that antagonists of the estrogen 

receptors had no effect on amphetamine-stimulated dopamine efflux or dopamine uptake 

on their own, and did not alter the ability of tamoxifen or its metabolites to inhibit forward 

or reverse transport. By failing to antagonize the effects of tamoxifen and its metabolites on 

the dopamine transporter, these experiments demonstrated that tamoxifen is not exerting 

its effects on the dopamine transporter through an estrogenic mechanism. Furthermore, 

because the antagonists themselves had no effect on uptake or efflux, an antiestrogenic 

effect of tamoxifen is insufficient to explain its inhibition of dopamine transporter function. 

These conclusions are further supported by previous observations that fulvestrant but not 

tamoxifen is capable of antagonizing the effect of estrogen on amphetamine-stimulated 

efflux (Xiao et al., 2003). Notably, endoxifen and 4-hydroxytamoxifen are 100-fold more 
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potent in their actions at the estrogen receptors, relative to tamoxifen (Lien et al., 1991), 

but all of the compounds tested display IC50s in the micromolar range for reduction of 

dopamine transporter function.  

 In conclusion, we demonstrated that two of tamoxifen’s metabolites, endoxifen and 

4-hydroxytamoxifen, asymmetrically inhibit dopamine transporter function. We also 

demonstrated the validity and identified some of the caveats of a cell based assay for 

further probing of this phenomenon. Finally, we conclusively demonstrated that the effects 

of tamoxifen and its metabolites on dopamine uptake and amphetamine-stimulated 

dopamine efflux occur independently of the compounds actions at the estrogen receptor.  
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CHAPTER 4. DISCUSSION 
 

This thesis demonstrates for the first time that the breast cancer therapeutic tamoxifen 

inhibits dopamine transporter function independently of its actions as a selective estrogen 

receptor modulator. Furthermore, I provide evidence supporting the characterization of 

tamoxifen as a new atypical dopamine uptake inhibitor.  

In Chapter 2 I demonstrated that tamoxifen blocks both uptake and amphetamine-

stimulated efflux of dopamine through the dopamine transporter. I demonstrated that 

tamoxifen alters the conformational equilibrium of the dopamine transporter, and that it 

appears to interact directly with the transporter at the putative S2 site of the transporter. 

In vivo, tamoxifen inhibited amphetamine-stimulated locomotor activity, yet exhibited no 

effects on basal locomotor activity. In Chapter 3, I demonstrated that the blockade of 

dopamine transporter function by tamoxifen occurs independently of its actions as a 

selective estrogen receptor modulator. I also characterized the effects of tamoxifen’s chief 

metabolites on dopamine transporter function and noted discrepancies and similarities in 

their effects on uptake and efflux in cells and synaptosomes. 

A direct interaction with the transporter? 

Though the data presented here do not conclusively indicate a direct interaction 

between tamoxifen and the dopamine transporter, such an interaction seems the most 

likely explanation. Inhibition of dopamine uptake and efflux could occur through 

intracellular modulation of the regulatory pathways known to target the dopamine 
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transporter; however, we demonstrated that tamoxifen stabilizes an outward-facing 

conformation of the dopamine transporter. Previous work demonstrated that stabilization 

of the outward facing conformation of the dopamine transporter enhances [3H]WIN 35,428 

binding, yet we see a competitive decrease in [3H]WIN 35,428 binding. I believe this 

strongly suggests that tamoxifen is directly interacting with the transporter to block 

[3H]WIN 35,428 binding. Indeed, our collaboration with the laboratory of Dr. Maarten 

Reith, NYU, supports the hypothesis that tamoxifen is interacting with the so-called S2 

allosteric binding site of the dopamine transporter. Mutation to alanine of aspartic acid 476 

in the transporter, an important residue in the coordination of the S2 binding site, 

eliminates the ability of tamoxifen to inhibit dopamine uptake (Zhen and Reith, 2016). This 

suggests a direct interaction with the S2 binding site. However, previous work has 

indicated that compounds binding this allosteric site in the serotonin transporter (Chen et 

al., 2005) and in the dopamine transporter (Pariser et al., 2008) will slow dissociation of 

[3H]S-citalopram or [3H]WIN 35,428 from each respective transporter. This observation in 

the dopamine transporter is consistent with the position of the S2 site extracellular to the 

substrate S1 and [3H]WIN 35,428 binding sites of the transporter. However, in a pilot study 

I conducted, I found that tamoxifen does not slow dissociation of [3H]WIN binding (see 

Figure 4-1 for a more in depth explanation). Instead, tamoxifen appears to have a similar 

effect on [3H]WIN 35,428 binding as the addition of a large concentration of unlabeled WIN 

35,428. This would suggest that tamoxifen is interacting with the WIN 35,428 binding site 

of the dopamine transporter. This is consistent with my observation, reported in chapter 2, 

that tamoxifen competitively inhibits [3H]WIN 35,428 binding. Though WIN 35,428 has 

long been thought to bind near the S1 site, newer computer modeling studies have 
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demonstrated a potential interaction between cocaine analogues (such as WIN 35,428) and 

the S2 site (Huang et al., 2009). The D476A and I159A dopamine transporter mutants 

exhibit a significantly different Bmax, but not Kd, for [3H]WIN 35,428 binding compared to 

wild type (Zhen and Reith, 2016). These observations, in addition to the results reported 

here, suggest that tamoxifen may be inhibiting [3H]WIN 35,428 binding by competitive 

inhibition of the S2 site 

Atypical dopamine uptake inhibitors 

In this dissertation I present evidence that tamoxifen falls within the class of atypical 

dopamine uptake inhibitors. These compounds are capable of blocking the dopamine 

transporter, yet unlike a typical inhibitor such as cocaine, they fail to exhibit 

psychostimulant properties of their own. I found that tamoxifen fulfilled both of these 

characteristics. Similar to some atypical dopamine uptake inhibitors, tamoxifen also 

antagonized amphetamine-stimulated hyperactivity, and has been previously 

demonstrated to antagonize hyperactivity stimulated by treatment with the typical uptake 

blocker, methylphenidate (Pereira et al., 2011a).  

In recent years, atypical uptake inhibitors have gained traction as potential 

therapeutics for the treatment of psychostimulant abuse (Tanda et al., 2009). Previous 

attempts to antagonize the effect of psychostimulants of the dopamine transporter have 

yielded compounds with similar abuse liability to cocaine and amphetamine. The atypical 

uptake inhibitors may prove an opportunity to antagonize psychostimulants without the 

risk of their own abuse potential.  

. 
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Figure 4-1. Preliminary Data. Effects of tamoxifen on dissociation of 
[3H]WIN 35,428 from the dopamine transporter.  
Rat striatal membranes were prepared as described in Chapter 2 and 

incubated with 10 nM [3H]WIN 35,428 in binding assay buffer on ice for one 

hour, in order to allow binding to the dopamine transporter to reach 

equilibrium. To initiate dissociation, 20 μl of “complex solution” ([3H]WIN 

35,428 bound to striatal membranes) was added to 500 μl of dissociation 

treatment. The samples were divided up into four groups which differed by 

their dissociation treatment. Group 1: binding assay buffer with vehicle, Group 

2: 10 μM unlabeled WIN 35,428, Group 3: 10 μM tamoxifen, Group 4: 10 μM 

unlabeled WIN 35,428 and 10 μM tamoxifen. This assay format has been used 

previously to probe the effects of substrate bound to the S2 site on dissociation 

of a centrally binding ligand (Pariser et al., 2008). The dissociation in group 1 

is actually a combination of disassociation and reassociation, whereas in group 

2, excess unlabeled WIN 35,428 competes with [3H]WIN 35,428 for 

reassociation. In group 3, we see that tamoxifen affects dissociation similarly 

to group 2, indicating that tamoxifen is similarly preventing reassociation. 

Previously, drugs that interact with the S2 or allosteric site have been 

proposed to slow dissociation of a centrally binding ligand, but we do not see 

such an effect with tamoxifen. Group 4 looks no different from group 2 or 3, 

indicating that tamoxifen and WIN 35,428 are likely exerting their effects on 

[3H]WIN 35,428 dissociation at the same site.  
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 The unifying characteristics of the atypical uptake inhibitors are that they block the 

dopamine transporter, yet fail to exhibit one or more of the expected characteristics of a 

typical dopamine transporter blocker. A typical dopamine transporter blocker is expected 

to, at a high enough concentration:  

1. fully inhibit DA uptake  

2. fully inhibit the binding of another blocker  

3. fully block the reverse transport of substrate.  

Behaviorally, typical dopamine transporter blockers are expected to  

4. stimulate locomotor behavior  

5. exhibit reinforcing characteristics, indicating a potential for abuse in 

human users (Reith et al., 2015).  

The atypical dopamine transporter blockers are united only in that they each fail to 

exhibit at least one, but usually more, of the above effects of typical blockers. As such, it is 

easy to imagine the huge level of diversity among the actions studied in these compounds, 

making them particularly difficult to discuss as a group. The most intriguing of the atypical 

uptake inhibitors have exhibited the additional characteristic of being able to antagonize 

the behavioral effects of psychostimulants, without exhibiting psychostimulant effects of 

their own. In order to simplify I will focus on one of the more successful atypical inhibitors 

tested thus far and draw comparisons to my results with tamoxifen.  

The earliest atypical inhibitors to be subjects of extensive study and development 

were the benztropine analogs. These compounds possess the distinctive tropane group of 

cocaine with the addition of a diphenyl moiety (Reith et al., 2015). The compound with, 

perhaps, the most therapeutic potential that has been investigated to date is JHW007 
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(Figure 4-2, note the congruency between the diphenyl groups of JHW007 and tamoxifen). 

When first synthesized, JHW007 was found to have a Ki of ~25 nM for the dopamine 

transporter, with roughly 100-fold selectivity for the dopamine transporter over the 

norepinephrine and serotonin transporter. Its IC50 for inhibition of uptake (roughly 25 nM) 

was similar to its Ki (Agoston et al., 1997). JHW007 was demonstrated to associate slowly 

with the dopamine transporter. At doses of 1-10 mg/kg it failed to produce locomotor 

stimulation (Hiranita et al., 2009) or conditioned place preference in mice (Velazquez-

Sanchez et al., 2010). Tamoxifen similarly failed to produce locomotor stimulation in rats. 

Unlike cocaine, there was no correlation between behavioral stimulation and dopamine 

transporter occupancy, as measured by ex vivo displacement of the dopamine transporter 

ligand [125I]RTI-121. JHW007 also failed to maintain self-administration, indicating that it 

lacks the reinforcing characteristics of typical uptake inhibitors like cocaine (Hiranita et al., 

2009). Pretreatment with 10 mg/kg JHW007 completely antagonized the effects of cocaine 

on locomotor activity. In cocaine discrimination, JHW007 shifted the dose effect curve of 

cocaine to the right, suggesting that JHW007 was competitively antagonizing cocaine 

(Desai et al., 2005). This observation was consistent with molecular modeling studies that 

revealed that the benztropine analogs bind to a site on the dopamine transporter that 

overlaps with those of cocaine and dopamine (Bisgaard et al., 2011). However, whereas 

pretreatment with a typical dopamine uptake inhibitor such as methylphenidate shifted the 

cocaine self-administration dose response curve to the left, pretreatment with JHW007 

completely antagonized self-administration of cocaine, instead leading to a flattening of the 

dose response curve (Hiranita et al., 2009). JHW007 also dose dependently blocked self-

administration of methamphetamine (Hiranita et al., 2014) and the development of 
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behavioral sensitization when administered concurrently with amphetamine (Velazquez-

Sanchez et al., 2013). Comparatively, tamoxifen blocked amphetamine-stimulated 

hyperactivity. 

 

 

Figure 4-2. Inhibitors of dopamine uptake 
 

Mechanism of action of atypical uptake inhibitors 

Numerous mechanisms have been proposed as explanations for the differential 

nature of the atypical uptake inhibitors, yet for every explanation suggested, an exception 

is discovered. It was proposed that the lack of psychostimulant and reinforcing properties 

may be due to a slower onset of action. Indeed, slow infusion of cocaine is significantly less 

reinforcing in monkeys compared to a rapid infusion of the same dose (Woolverton and 

Wang, 2004) and several of the benztropine analogs exhibit a slow onset of action (Schmitt 

et al., 2013). However, fast-acting benztropine analogs, which rapidly block dopamine 

uptake in vivo, have been found that still lack the reinforcing properties of cocaine (Li et al., 
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2011). One particularly intriguing hypothesis posited that the reinforcing effects of atypical 

inhibitors of uptake were directly related to the effect the inhibitor had on the dopamine 

transporter conformation. Loland et al. (2008) demonstrated a positive correlation 

between the degree to which an uptake inhibitor would substitute for cocaine in drug 

discrimination trials and that drug’s preference to bind the outward facing conformation of 

the dopamine transporter. The atypical inhibitors, which exhibited minimal, if any, 

substitution for cocaine in drug discriminating rats, exhibited either no preference for the 

outward facing conformation of the transporter, or a preference for the inward-facing or 

occluded conformation. This led to an examination of the intriguing “transceptor” 

hypothesis (Schmitt et al., 2013) first introduced in nutrient transporters (Kriel et al., 

2011), in which the conformation of the transporter may be capable of translocating a 

signal across the membrane in the manner of a membrane receptor and independently of 

its function as a transporter. Though this hypothesis still has merit with some atypical 

uptake inhibitors, the recent discovery of atypical uptake inhibitors which stabilize the 

outward facing conformation of the dopamine transporter have precluded the possibility of 

this hypothesis as one which encompasses all atypical uptake blockers. As we 

demonstrated, tamoxifen stabilizes the outward facing conformation of the dopamine 

transporter, and thus disagrees with the conformation hypothesis of atypicality. Additional 

explanations have been posited regarding off-target effects observed in many of the 

atypical inhibitors, including antagonism of M1 muscarinic receptors, antagonism of H1 

histamine receptors, agonism of dopamine D2 receptors, and allosteric modulation of 

cannabinoid 1 (CB1) receptors. The muscarinic hypothesis was dismissed with the 

observation that pure anticholinergics, both general and selective for the M1 receptor 
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actually potentiated the effects of cocaine, in direct disagreement with the hypothesis that 

antagonism at M1 may be masking the reinforcing effects of the atypical dopamine uptake 

inhibitors (Tanda et al., 2007). Antagonism of H1 was similarly dismissed with the 

observation that H1 antagonists failed to modify the subjective effects of cocaine (Campbell 

et al., 2005). Modulation of D2 and CB1 receptors were dismissed as viable hypotheses for 

the atypicality of the benztropine analogs because JHW007 could antagonize the effect of 

cocaine-stimulated locomotor activity in CB1 and D2 knockout mice (Desai et al., 2014).  

The most promising of the hypotheses set forward have concerned antagonism of 

the sigma receptors. The sigma receptors are small intracellular chaperone like proteins, 

and a great deal remains unknown about them (Katz et al., 2016). Antagonists of the sigma 

receptors have demonstrated efficacy in blocking some of the behavioral effects of cocaine, 

and cocaine is known to bind the sigma receptors (Sharkey et al., 1988; Matsumoto et al., 

2003). Several atypical dopamine transporter inhibitors that successfully antagonize the 

effects of cocaine also antagonize the sigma receptor (Hiranita et al., 2011). Combinations 

of dopamine transporter inhibitors with sigma antagonists have proven effective against 

the self-administration of both cocaine (Hiranita et al., 2011) and methamphetamine 

(Hiranita et al., 2014). It is worth noting that a screen performed by the NIMH-funded 

Psychoactive Drug Screen Program at the University of North Carolina showed that 

tamoxifen binds the sigma 1 and sigma 2 receptors with affinities of ~200 nM and ~30 nM, 

respectively (data not shown). It is unknown whether tamoxifen is acting as a sigma 

antagonist or agonist. However, not all of the atypical inhibitors bind the sigma receptor, 

so, once again, this hypothesis is incapable of explaining atypical inhibition of uptake as a 

whole (Hiranita et al., 2014). At this point, it seems unlikely that there will be one over-
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arching mechanism which unites all atypical dopamine uptake inhibitors, but rather 

several different hypotheses, including slow-onset, the transceptor hypothesis, and 

antagonism of the sigma receptor, which eventually explain the diverse actions of the 

atypical uptake inhibitors.  

Tamoxifen as a protein kinase C inhibitor 

The data presented in this dissertation focus on an interaction between tamoxifen 

(or its metabolites) and the dopamine transporter. However, our original hypothesis when 

we began working with tamoxifen pertained to its ability to inhibit protein kinase C. 

Tamoxifen is the only known brain permeable protein kinase C inhibitor. We have found 

that tamoxifen inhibits protein kinase C with micromolar potency in N2A cells.  

 

Figure 4-3. Tamoxifen inhibition PMA-stimulated phosphorylation of the 
protein kinase C substrate GAP43.  
N2A cells were incubated with tamoxifen for 1 hour prior to stimulation of 

protein kinase C activity with 20 nM of the phorbol ester and protein kinase C 

activator, PMA for 5 min at 37 °C. Phospho-ser40-GAP43 was detected by 

western blotting and quantified. Data are represented as mean ± S.E.M. 
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We have demonstrated previously, and extensively, that inhibition of protein kinase 

C (particularly the isoform) attenuates amphetamine-stimulated dopamine efflux, 

without altering normal dopamine uptake (Kantor and Gnegy, 1998; Johnson et al., 2005; 

Zestos et al., 2016).  

Ample evidence exists supporting the therapeutic potential of tamoxifen as a 

protein kinase C inhibitor. Post-mortem brain tissue from patients with bipolar mania have 

elevated protein kinase C activity (Wang and Friedman, 1996) and patients experiencing a 

manic episode exhibit elevated protein kinase C activity in their platelets (Friedman et al., 

1993; Wang et al., 1999). Preclinically, activation of protein kinase C with the phorbol ester 

PMA enhances risk taking behavior in rats (a mania-like behavioral marker)(Abrial et al., 

2013). Tamoxifen treatment has proven effective in multiple preclinical models of bipolar 

mania (Armani et al., 2014). The data presented in this dissertation may render 

questionable those results performed with models which are dependent on 

pharmacological modulation of the dopamine transporter. However, tamoxifen successfully 

inhibited the paradoxical sleep-deprivation model of mania as well as apomorphine-

induced stereotypy (Pereira et al., 2011b; Armani et al., 2012; Abrial et al., 2015), both 

models that should be independent of the dopamine transporter. Furthermore, in vivo 

treatment with tamoxifen effectively blocked amphetamine-stimulated phosphorylation of 

GAP-43 in rat striata, demonstrating that tamoxifen was inhibiting protein kinase C in these 

animals (Einat et al., 2007). Of course, based on our results, it is possible that the inhibition 

of protein kinase C activity in vivo is the result of a blockade of amphetamine action. 

However, we know from our work in cells that tamoxifen inhibits protein kinase C 

independently of any action on the dopamine transporter (Figure 4-3). Beyond the 



 111 

preclinical models, tamoxifen has been used successfully in several clinical trials for the 

treatment of bipolar mania (Bebchuk et al., 2000; Zarate et al., 2007; Yildiz et al., 2008; 

Amrollahi et al., 2011; Yildiz et al., 2016). Preclinical studies have also compared tamoxifen 

with other antiestrogens to demonstrate that tamoxifen’s success in treating mania is 

independent of its SERM activity (Pereira et al., 2011a).  

Therapeutic potential of a protein kinase C inhibitor – Beyond mania 

Inhibition of protein kinase C has therapeutic potential beyond the treatment of 

mania. As discussed, protein kinase C plays an important role in amphetamine-stimulated 

dopamine efflux. Protein kinase C inhibition decreases amphetamine-stimulated dopamine 

efflux in vivo (Zestos et al., 2016) and in vitro (Kantor and Gnegy, 1998; Johnson et al., 

2005), attenuates amphetamine-stimulated locomotor activity in vivo (Browman et al., 

1998; Zestos et al., 2016), and prevents the development of conditioned place preference to 

amphetamine (Aujla and Beninger, 2003).  

An additional potential mechanism for protein kinase C inhibition in the treatment 

of psychostimulant abuse lies in protein kinase C regulation of the dopamine autoreceptor. 

The dopamine autoreceptor, which is part of the D2 family of dopamine receptors, resides 

extrasynaptically on the presynaptic neuron and provides a negative feedback mechanism 

for the reduction of exocytotic dopamine release. Though relatively few studies have 

investigated the effects of psychostimulant abuse on dopamine autoreceptors, novelty 

seeking and impulsivity, both predictors for susceptibility to drug abuse (Bardo et al., 1996; 

Weafer et al., 2014), are associated with lower levels of dopamine autoreceptor (Zald et al., 

2008; Buckholtz et al., 2010). Amphetamine self-administration in rats causes a decrease in 

dopamine D2 receptor (autoreceptors) function in the midbrain dopamine cells (Calipari et 
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al., 2014). Preclinical data in rat models of psychostimulant abuse and relapse suggest that 

some D2/D3 partial agonists may translate to the clinic as aids in maintenance of 

abstinence in recovering addicts, potentially through activation of dopamine autoreceptors 

(Neisewander et al., 2014). Alternatively, a therapeutic which enhanced autoreceptor 

signaling or prevented desensitization might be able to serve a similar role. The Gnegy lab 

has found that protein kinase C beta inhibition enhances the function of the dopamine 

autoreceptor by increasing the surface levels of the D2 dopamine receptor (Luderman et 

al., 2015). With this in mind, a protein kinase C inhibitor might be able to serve the same 

role as a D2 partial agonist.  

Though the focus of the Gnegy lab has been on presynaptic regulation of 

extracellular dopamine levels, others have identified important roles for protein kinase C in 

the post synaptic response to the dopamine signal, particularly with regards to cocaine 

abuse. Protein kinase C zeta/lambda phosphorylation (a marker of activation) is increased 

in rats exhibiting cocaine-induced behavioral sensitization (Chen et al., 2007). 

Intracerebral injection of protein kinase C inhibitors blocks cocaine seeking (Schmidt et al., 

2013; Ortinski et al., 2015; Schmidt et al., 2015), the development of conditioned place 

preference for cocaine, (Cervo et al., 1997), and the expression of behavioral sensitization 

to cocaine (Pierce et al., 1998). With the above data in hand, it indeed appears that 

inhibition of protein kinase C may be a viable treatment for psychostimulant abuse.  

Future Directions 

Tamoxifen, protein kinase C, and the dopamine transporter 

Within this body of work, I was unable to further investigate the potential role for 

protein kinase C inhibition in tamoxifen’s effects on the dopaminergic system, but several 
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pilot studies I conducted suggest a potential dual mechanism for tamoxifen, with regards to 

the dopamine transporter. As revealed in Chapter 3, we find that suprafusion-based efflux 

assays are more capable of demonstrating the effects of protein kinase C inhibition on 

amphetamine-stimulated dopamine efflux than are plate-based efflux assays. Whether this 

discrepancy is the result of a difference in model (rat tissue vs cultured cells) or assay 

(suprafusion vs plate) remains unclear.  

My pilot studies indicate that tamoxifen is capable of inhibiting protein kinase C-

mediated phosphorylation of GAP-43 with only 10 minutes’ pretreatment (data not 

shown). In this vein, pretreatment with 10 μM tamoxifen for 6 minutes prior to initiation of 

efflux in a suprafusion assay was sufficient to create a robust reduction in amphetamine-

stimulated dopamine efflux (treatment: F(1, 4) = 38.23; time: F(19, 76) = 174.2; 

interaction: F(19, 76) = =25.62). 

 

Figure 4-4. Tamoxifen rapidly inhibits amphetamine-stimulated 
dopamine efflux in rat striatal synaptosomes.  
The suprafusion assay was conducted as described in chapters 2 and 3 with 

the exception that 10 μM tamoxifen/vehicle was added to the wash buffer at 

fraction 7 and 10 μM amphetamine was added at fractions 13 and 14, as 

indicated by the arrows. Results are expressed mean ± S.E.M. RM two-way 

ANOVA indicates p<0.01 for treatment, p<0.0001 for time, p<0.0001 for 

interaction. N=3. 
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If we quantify baseline dopamine release from synaptosomes over the hour following the 

addition of tamoxifen to the suprafusion buffer, we see a slow but steady increase in 

baseline dopamine levels that is calcium dependent, consistent with a slow-onset blockade 

of dopamine transport (Figure 4-5). Within 1-hour of initiating tamoxifen treatment, this 

increase in basal dopamine release returns to those of untreated synaptosomes, possibly 

due to negative feedback inhibition of dopamine release by the D2-like autoreceptor.  

 

Figure 4-5. Basal dopamine release during treatment with 10 μM 
tamoxifen. 
Synaptosomes were perfused on a Brandel suprafusion apparatus with 

normal Kreb’s Ringer Buffer or with buffer lacking Ca2+ at 800 μl/min. 10 μM 

tamoxifen or vehicle was added at 5 minutes and the synaptosomes were 

perfused for an hour. Every 6 minutes, a 2-minute fraction was collected for 

quantification of dopamine in the perfusate via HPLC couple to 

electrochemical detection. Tamoxifen significantly increased dopamine in the 

perfusate. This increase was blocked by the removal of calcium from the 

buffer, suggesting that the increase in extracellular dopamine was due to 

exocytotic dopamine release rather than reverse transport through the 

dopamine transporter. These results are consistent with a blockade of 

dopamine uptake.  
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Though we were unable to further investigate the phenomena shown here, I 

hypothesize that we are seeing a two-fold modulation of the dopamine transporter by 

tamoxifen. Tamoxifen rapidly inhibits protein kinase C, allowing for the attenuation of 

amphetamine-stimulated dopamine efflux that we see after only 10 minutes’ pre-

treatment, then as tamoxifen slowly associates with the dopamine transporter, we see a 

steady increase in dopamine in the perfusate as uptake is blocked. When efflux is 

stimulated with amphetamine following an hour treatment with tamoxifen we are likely 

seeing the results of a combination of protein kinase C inhibition and direct blockade of the 

dopamine transporter.  

To a certain degree this hypothesis is even supported by our results in the cell based 

assay: we found that a one-hour incubation was absolutely necessary in order to see a 

reduction in dopamine uptake and amphetamine-stimulated efflux. A ten-minute 

incubation with tamoxifen yielded only a weak inhibition of uptake or amphetamine-

stimulated efflux. 

 These results support the hypothesis that the direct effects of tamoxifen on the 

dopamine transporter have a slow onset and are consistent with the slow increase in 

baseline I saw in the suprafusion assay. Additionally, according to the above hypothesis, at 

this point in time protein kinase C inhibition would be the primary mechanism by which 

tamoxifen was affecting the dopamine transporter, and as I have discussed, efflux in the 

plate-based assay is resistant to effects from protein kinase C inhibition. Further studies 

and replication of the above preliminary data will be necessary in order to pull apart 

tamoxifen’s actions on protein kinase C and its effects on the dopamine transporter, but 
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such studies will need to be done in a suprafusion based assay of amphetamine-stimulated 

dopamine efflux.  

 

Figure 4-6. Tamoxifen inhibition of uptake and amphetamine-stimulated 
efflux in hDAT-N2A cells after only 10 minutes pretreatment.  
The experiment was carried out identically to those described in chapter 3 

with the following exceptions: 1) in the uptake assay, tamoxifen was added 

only 10 minutes prior to the initiation of uptake; 2) in the efflux assay, 

following five 10 minute washes, tamoxifen was added in the last wash prior 

to stimulation of efflux with 20 μM amphetamine. Shown for comparison, 

uptake and efflux following 60 min pretreatment, from figure 3-3a (dashed 

line).  

 

Time dependence of tamoxifen action in vivo 

One intriguing phenomena that we were unable to sufficiently explain is the observation 

that an extended pretreatment time with tamoxifen was necessary in order for us to 

observe an attenuations of amphetamine-stimulated hyperactivity (data not shown). It is, 

as yet, unclear whether this is the result of a pharmacodynamic or a pharmacokinetic 

characteristic of the drug. One hypothesis was that the extended pretreatment was 

necessary in order for sufficient levels of tamoxifen or one of its metabolites to reach 

appreciable concentration in the brain. However, one microdialysis study demonstrated 
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that a systemic injection of tamoxifen induced a slight but significant increase in 

extracellular dopamine levels in the striatum within an hour of administration, indicating 

that sufficient brain concentrations were being reached within that time frame for 

tamoxifen to be affecting the dopamine transporter (Chaurasia et al., 1998). If such 

concentrations are being reached in the brain so soon after administration, it seems that 

brain penetrance is an insufficient explanation for the delayed in vivo effect.  

 Though we have found that tamoxifen inhibits the dopamine transporter 

independently of its action as a selective estrogen receptor modulator, we have not 

confirmed that this effect on dopamine transport is also the reason for the blockade of 

amphetamine action that we see in vivo. It is possible that tamoxifen is affecting 

amphetamine-mediated behaviors through its actions as a selective estrogen receptor 

modulator. Indeed, the delayed onset of the genomic effects of estrogen receptor 

modulation would seem to fit with this timeline. This problem may be able to be probed 

more in depth with estrogen receptor knockout mice. A similar but alternative hypothesis 

is that one of tamoxifen’s other mechanisms of action, such as protein kinase C inhibition, is 

acting in a manner that requires complex downstream changes before an effect can be seen.  

Effects on psychostimulant-mediated behaviors 

We have provided evidence that tamoxifen will block the dopamine transporter and, 

indeed, tamoxifen appears to be behaving as an atypical inhibitor of dopamine uptake. I 

have already demonstrated that tamoxifen antagonizes amphetamine-stimulated 

hyperactivity, but we do not know how it will affect the reinforcing characteristic of 

amphetamine, or whether it will impact the behavioral effects of cocaine. Future studies 
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with tamoxifen will aim to determine whether tamoxifen, like other atypical uptake 

inhibitors, is capable of antagonizing the effects of psychostimulants. 

4-hydroxytamoxifen and endoxifen 

We demonstrated that 4-hydroxytamoxifen and endoxifen differentially modulate 

dopamine uptake and efflux, depending on the system being observed. 4-hydroxytamoxifen 

was significantly more efficacious as an inhibitor of dopamine uptake than as an inhibitor 

of amphetamine-stimulated dopamine efflux in synaptosomes. The reasons for this 

asymmetry in the modulation of the transporter remain unclear. It is possible that 4-

hydroxytamoxifen is interacting with the transporter in a way that asymmetrically 

regulates transporter function, or that it is acting intracellularly to affect one of the many 

regulatory pathways known to act on the dopamine transporter. No such difference in the 

effects of 4-hydroxytamoxifen on the dopamine transporter were seen in hDAT-N2A cells, 

but due to the above discussed caveats of the plated cell assay, it is difficult to draw any 

hypotheses concerning a difference between cells and synaptosomes.  

Endoxifen, on the other hand, was a much more potent inhibitor of amphetamine-

stimulated dopamine efflux than of dopamine uptake in cells. Future work will aim to 

determine whether endoxifen is similarly effective at inhibiting amphetamine-stimulated 

dopamine efflux in synaptosomes. Inhibition of protein kinase C presents an attractive 

hypothesis for the effect of endoxifen on amphetamine-stimulated dopamine efflux, 

however, this asymmetry was seen in the plated cell assay, which, as I have discussed, fails 

to fully demonstrate an effect of protein kinase C on amphetamine-stimulated dopamine 

efflux. Thus it seems unlikely that the effects of endoxifen on amphetamine-stimulated 

dopamine efflux in this assay are the result of inhibition of protein kinase C. With this in 
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mind, it may be that endoxifen is the opposite side of the same coin as 4-hydroxytamoxifen, 

and is interacting with the transporter to asymmetrically affect transporter function, but in 

a manner converse to what is seen with tamoxifen. More in depth studies of the effects of 

these two compounds on dopamine transporter function, conformation, and WIN binding, 

as were already carried out with tamoxifen here, may provide additional insight into these 

compounds mechanisms of action.  

The tamoxifen scaffold in drug design  

In its capacity as both a protein kinase C inhibitor and an atypical dopamine 

transporter blocker, the tamoxifen structure exhibits enormous therapeutic potential for 

the treatment of diseases of dopaminergic dysfunction. The development of a similar drug 

that lacks the selective estrogen receptor modulating activity of tamoxifen promises to 

provide the advantages of a protein kinase C inhibitor and atypical uptake inhibitor, 

without the negative estrogenic effects attributed to tamoxifen. Interestingly, tamoxifen 

appears to inhibit protein kinase C through a different mechanism than the typical 

bisindoylmaleimide protein kinase C inhibitors. Tamoxifen inhibits protein kinase C 

through the regulatory domain of the enzyme, competing with binding for 

phosphatidylserine (O'Brian et al., 1990). The bisindoylmaleimide inhibitors 

(staurosporine-based compounds) act competitively at the ATP binding site of the enzyme. 

As the regulatory site is less tightly conserved across isoforms, the design of a protein 

kinase C inhibitor based on the tamoxifen structure may allow for increased isoform 

selectivity, a goal elusive thus far in the development of protein kinase C inhibitors (with 

kinase C inhibitor in our use of it so far, there is some indication that it may selectively 
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inhibit those isoforms which are dependent phospholipids and calcium for activation (Su et 

al., 1985).  

Thanks in part to a thorough characterization of the structure activity relationships 

between tamoxifen’s various moieties and their effects on estrogen receptor binding, 

protein kinase C inhibition and calmodulin binding (de Medina et al., 2004), we have 

already had some success in the development of such a compound. CCG215103 is a 

tamoxifen analogue currently under investigation in our lab which exhibits no binding to 

the estrogen receptor at concentrations up to 10 μM, has an improved potency for 

inhibition of protein kinase C relative to tamoxifen, and has been seen to successfully 

attenuate amphetamine-stimulated locomotor activity and self-administration (Carpenter 

et al. in preparation).  

Conclusions 

I demonstrated that tamoxifen inhibits dopamine uptake and amphetamine-

stimulated dopamine efflux through the dopamine receptor in a non-competitive manner, 

and competitively inhibits binding of the selective dopamine transporter ligand WIN 

35,428. Combined with my observation that tamoxifen antagonizes amphetamine-

stimulated hyperactivity, yet exhibits no stimulating properties of our own, I make the 

argument that tamoxifen falls within the class of atypical dopamine uptake inhibitors. 

Additionally, I demonstrated that two of tamoxifen’s active metabolites exhibit similar 

actions at the dopamine transporter, though these two compounds appear to 

asymmetrically regulate dopamine uptake vs. amphetamine-stimulated dopamine efflux. I 

also found that while a plated cell-based model of dopamine transporter function is useful 

in the characterization of these compounds’ effect directly on dopamine transporter 
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function, it is insufficient to identify potential indirect methods of regulation of the 

dopamine transporter such as protein kinase C inhibition.  

My results provide insight into some of the previous observations made concerning 

tamoxifen and the dopaminergic system. More significantly, my results provide valuable 

ground work for a targeted drug design program that has already had some success in 

preclinical models of drug abuse. Additionally, I demonstrate a potential opportunity for 

the therapeutic repurposing of a drug with a well-known safety profile for the treatment of 

psychostimulant abuse, a widespread condition with a paucity of therapeutic options.  
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