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Abstract 

 Crowdsourcing systems promise to leverage the "wisdom of crowds" to help 

solve many kinds of problems that are difficult to solve using only computers.  Although 

a crowd of people inherently represents a diversity of skill levels, knowledge, and 

opinions, crowdsourcing system designers typically view this diversity as noise and 

effectively cancel it out by aggregating responses.  However, we believe that by 

embracing crowd workers' diverse expertise levels, system designers can better leverage 

that knowledge to increase the wisdom of crowds.   

 In this thesis, we propose solutions to a limitation of current crowdsourcing 

approaches: not accounting for a range of expertise levels in the crowd.  The current body 

of work in crowdsourcing does not systematically examine this, suggesting that 

researchers may not believe the benefits of using mixed expertise warrants the 

complexities of supporting it.  This thesis presents two systems, Escalier and Kurator, to 

show that leveraging mixed expertise is a worthwhile endeavor because it materially 

benefits system performance, at scale, for various types of problems.  We also 

demonstrate an effective technique, called expertise layering, to incorporate mixed 

expertise into crowdsourcing systems.  Finally, we show that leveraging mixed expertise 

enables researchers to use crowdsourcing to address new types of problems. 
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Chapter 1.  Introduction 

 

 The popularity of online crowdsourcing amongst researchers and the mainstream 

public has grown tremendously since the term "crowdsourcing" was first coined only ten 

years ago.  Jeff Howe, an editor at Wired Magazine, stated: 

 “Crowdsourcing represents the act of a company or institution taking a function 

 once performed by employees and outsourcing it to an undefined (and generally 

 large) network of people in the form of an open call.”  (Howe, 2006) 

 Quinn and Bederson (2011, 1405) define crowdsourcing more concisely as 

replacing "traditional human workers with members of the public." The idea of using an 

open call to members of the public to perform tasks is not new, but using the Internet to 

facilitate this effort has made it commonplace.  In this sense, online crowdsourcing 

platforms like Amazon Mechanical Turk have created a new type of workforce, one made 

up of "anonymous"1 workers who complete many small tasks, or micro tasks, for pay by 

task requesters.  From a task worker's perspective, the allure of this kind of work is the 

flexibility in type of work and pay, as well as ultimate control over when and how much 

to work.  From a task requester's perspective, the power of crowdsourcing is in its easy 

access to a large pool of human workers who can perform just about any imaginable 

                                                

1 Despite Amazon's intent for Mechanical Turkers to remain anonymous, a study by Lease et al. 
(2015) revealed that they are not as anonymous as was originally thought. 
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micro task for a reasonably small fee.  While there is justifiable focus on labor issues and 

workplace ethics (e.g., Fort et al., 2011, Martin et al., 2014, Milland, 2014, and Teodoro 

et al., 2014), we focus on the crowdsourcing system designer, who ostensibly is 

concerned with maximizing her system's efficacy when using a crowd's inputs. 

 Crowdsourcing promises to help solve many kinds of problems that are difficult 

to solve using only computers, such as problems in natural language processing (e.g., 

Snow et al., 2008), computer vision (e.g., Sorokin and Forsyth 2008), and translation 

(e.g., Hu et al., 2011).  These systems typically use an aggregation of non-expert inputs 

as a cheaper and faster way to replicate human expert work or to inject human expertise 

into an algorithmic problem.  This approach has been useful, but it is missing the benefits 

of differentially mining what people can do, which we see as division of labor in society.  

Crowdsourcing system designers almost universally categorize crowd workers into expert 

and non-expert classes, but we believe there is more value to be gained from a finer-

grained resolution of the mix of expertise.  In other words, if system designers could 

know the continuum of expertise brought to bear by a workforce, then what could it 

enable?   

 In this thesis, we propose solutions to a limitation of current crowdsourcing 

approaches: not accounting for a range of expertise levels in the crowd.  The current body 

of work in crowdsourcing suggest that researchers do not believe the benefits of using 

mixed expertise warrants the complexities of supporting it.  This thesis demonstrates that 

leveraging mixed expertise is a worthwhile endeavor for crowdsourcing system 

designers, and that using the principles of expertise layering, discussed below, is an 

effective way to incorporate mixed expertise.  
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1.1 Thesis Scope 

 This thesis establishes that there are benefits to incorporating mixed expertise into 

crowdsourcing system design.  These benefits are not limited to the system's 

performance, however.  We believe that looking for problems where mixed expertise 

would be beneficial has shed light on understudied problem areas in crowdsourcing 

research.  The work in this thesis heeds the call of Bigham et al. (2015, 12): 

“Crowdsourcing has traditionally worked best, although not exclusively, for problems 

that required little expertise. A challenge going forward is to push on the scope of 

problems possible to solve with crowdsourcing by engaging with expert crowds, 

embedding needed expertise in the tools non-expert crowds use, or by using a flexible 

combination of the two." 

 In short, instead of building a system to target only one level of expertise, a 

designer can build for a range of expertise in worker inputs, especially where the problem 

requires it.  With this in mind, the "scope of problems possible" that we address in this 

thesis includes: 

1) problems where the diverse expertise of a population must be leveraged to 

uncover more of a solution space, 

2) and personalized, subjective problems where there are multiple valid solutions 

to an end user, 

 These two problem areas are particularly interesting because they are known 

difficult problems that likely would benefit from mixed-expertise, crowd-powered 

systems.  As an example of the first type of problem, suppose we want to generate 

multiple versions of a textual summary of a scientific article about the solar system, 
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where the versions ranged from high school-level vocabulary to an expert-level one.  This 

problem could benefit from a crowdsourcing system that recognizes a diversity of 

expertise people have about the solar system.  A user with expert-level knowledge might 

be able to write summaries for other experts, and those with less expertise can write for 

others with similar expertise.  In short, for this first type of problem, if we were to focus 

on obtaining only expert input, then we would be missing part of the solution space (e.g., 

textual summaries for non-experts). 

 As an example of the second type of problem, suppose a mother wants to find 20 

sentimental photos of her children from her collection of 10,000 digital pictures.  She 

may not be as concerned with finding the "best" photo(s) as she is with finding 

sufficiently sentimental ones.  In this scenario, there are likely to be many valid solution 

sets.  Using a crowd to find sentimental pictures would require some notion of expertise, 

where expertise in this problem is manifested as one's ability to predict the mother's 

opinion of what sentimental is.  By definition, the mother has the most expertise because 

her opinion is the gold standard.  Presumably, people who know the kinds of memories 

the mother likes to keep, like close family or her spouse, would have more expertise in 

this task than the general public.  Thus the family might select solution sets similar to the 

mother's.  On the other hand, a crowd worker who has grown children may have 

substantial expertise in this domain, and she may produce a sufficiently acceptable 

solution set different from the mother's.  Using a mix of crowds, in this case a generic 

crowd and an expert crowd consisting of the mother and her family, could produce a 

more diverse range of valid solutions than if only the mother's or her family's inputs were 

used.   
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 To address these types of problems, we built systems using a certain approach that 

aided us when making design choices.  This approach, which we call expertise layering, 

is a set of principles that can be used as a technique for designing crowdsourcing systems 

for the problems within the scope of this thesis.  Expertise layering follows two 

principles:  

• adding expertise, through expertise assessments, should add value to the 

system when available, but the system should not be required to use expertise 

(i.e., the use of expertise is non-blocking), and 

• expertise use should be modular, where different mechanisms for assessing 

and using expertise can be added or swapped out.  

 In this thesis, we introduce two systems and a study that use expertise layering, 

each highlighting different domains, types of crowds and expertise, and the resulting 

challenges.   

1.2 Research Questions 

 The research questions this thesis answers are: 

• RQ1. Under what conditions, and to what extent, does using mixed expertise 

within a crowd materially benefit a crowdsourcing system at scale? 

• RQ2. Under what conditions, and to what extent, is there benefit when using a 

mix of crowds, differentiated by types and levels of expertise, to solve a 

problem when the crowds work on similar tasks? 

• RQ3. Under what conditions, and to what extent, is there benefit when using a 

mix of subcrowds within a crowd, differentiated by expertise? 
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 The methodology we use to answer these questions is building and studying 

crowd-powered systems.  We use a combination of empirical evaluations as well as a 

large-scale simulation to assess feasibility at scale.  This thesis presents two systems and 

a study that build on one another.  Answering RQ1 will determine whether using mixed 

expertise is a worthwhile endeavor for crowdsourcing system designers.  The first 

system, Escalier, shows us there is material benefit, in theory, when using a mix of 

expertise within a crowd.  Answering RQ2 tells us if a mix of expertise between crowds, 

not just within a crowd, would still provide benefit.  The second system, Kurator, builds 

on the first one by demonstrating empirically a problem that can be solved by using 

multiple crowds.  Answering RQ3 will determine if there is benefit to using subcrowds, 

which are groups from the same crowd but differentiated by their topic-specific expertise.  

A study on Question Finding uses what we found with Escalier (mixed expertise within a 

crowd) and Kurator (mixed expertise between crowds) to demonstrate the benefits of 

using multiple subcrowds, differentiated by expertise. 

1.3 Thesis Outline 

 In this chapter, we provided initial motivation for the need to investigate ways to 

build crowdsourcing systems with mixed expertise in mind.  The work presented in this 

thesis is built using the principles of expertise layering, and scoped to address the two 

problem areas we discussed.  The rest of the thesis is framed to answer the three research 

questions in the context of these problems areas. 

 In the second chapter, we explore how human expertise has been defined and 

studied in order to identify the portions of the space that we can carry into the 

crowdsourcing literature.  We follow with a review of the prior literature where technical 
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systems concerned with human expertise have been used to find and share this expertise.  

We apply the lessons learned from that review to the crowdsourcing literature.  After 

reviewing the relevant crowdsourcing literature where expertise has been a focal point, 

we identify shortcomings that this thesis seeks to address. 

 In the third chapter, we present the Escalier system, which is intended to answer 

the first research question in the context of the first type of problem.  We implemented a 

large-scale simulation to examine the feasibility of leveraging mixed expertise at scale.  

This work used some feedback loops and mixed expertise leveraged from the same 

crowd.  

 In the fourth chapter, we present the Kurator system in a deeper investigation into 

feedback loops and mixed expertise between crowds.  Our work with Kurator is intended 

to answer the second research question in the context of the second type of problem.  We 

evaluate the system and its components through a user study and lab experiments.  This 

work also shed some light on the importance of identifying specialized crowds. 

 In the fifth chapter, we present a study on Question Finding, which we use to 

investigate more fully how we might identify and leverage specialized crowds, 

particularly subcrowds within a crowd, differentiated by expertise.  The study on 

Question Finding is intended to answer the third research question in the context of both 

types of problems. 

 In the sixth chapter, we conclude with a discussion of the contributions and 

impact of the work in this thesis, as well as of future research directions enabled by this 

work.   
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Chapter 2.  Literature Review 

 

 In crowdsourcing systems, the expertise of a crowd worker is largely assumed by 

the selection of the particular crowd to use.  Often, experts are available for a particular 

problem, but a non-expert crowd is used as a cheaper, and sometimes faster, 

alternative.  On the other hand, organizational work does not have a notion of non-experts 

in the workforce (Treem and Leonardi, 2016b).  The predominant view of crowdsourcing 

researchers that expertise can be categorized into expert and non-expert workers is an 

oversimplification of expertise.  It does not systematically account for the continuum of 

expertise within a crowd, even though there are material benefits to doing so, which is a 

focus of this thesis. 

 Why do we believe there is a mix of expertise in the crowd, and why do we 

believe this is important to crowdsourcing systems research?  Our beliefs are based on the 

prior literature on the study of expertise, on the study of technical systems that identify 

and use expertise in organizations and communities, and on the study of crowdsourcing 

systems that have emphasized some notion of expertise. 

  In this chapter, we first discuss the relevant concepts from the broad literature on 

the study of human experts and expertise.  This literature teaches us that expertise is not 

only widely studied, but there are many attributes of expertise and frameworks for 

reasoning about expertise that have yet to make their way into crowdsourcing research. 
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 Second, we review the literature where expertise has been used in technical 

systems.  Since this thesis is concerned with expertise in crowdsourcing systems, it is 

prudent to review the literature on technical systems that have identified and used 

expertise in real-world settings.  This topic is widely studied in CSCW, particularly in the 

context of expertise finder systems.  This literature teaches us the importance of the 

availability of data to measure expertise as well as the software architectures that are 

effective in practice. 

 Finally, we review the literature on crowdsourcing systems that have explicitly 

acknowledged a reliance on experts or expertise.  In this literature, it is clear that 

expertise has been studied, but not explicitly framed and investigated as systematically as 

it has been in the CSCW literature.  The prior work in crowdsourcing teaches us that 

crowdsourcing system designers typically view expertise as a binary categorization of 

experts and non-experts, which we believe could be to the detriment of some 

crowdsourcing systems. 

 We conclude the chapter with a summary of the takeaways from the expertise 

literature and the expertise finder systems literature that fill in some gaps in the 

crowdsourcing literature. 

2.1 The Many Attributes of Expertise 

 The prior literature on the study of expertise reveals that there are many attributes 

to expertise.  These attributes vary widely based on, for example, psychological or 

philosophical approaches to the study of expertise, methods for studying the structure of 

expertise, methods for studying the acquisition and maintenance of expertise, and how 

expertise is studied in different domains (Ericsson et al., 2006b). A complete review is 
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beyond the scope of this thesis, and the reader is referred to The Cambridge Handbook of 

Expertise and Expert Performance (Ericsson et al., 2006b) for detailed investigations of 

experts and expertise research, and Expertise, Communication, and Organizing (Treem 

and Leonardi, 2016a) for a more recent treatment on the social, communicative, and 

organizational aspects of expertise.  Instead, this section focuses on specific attributes of 

expertise to clearly indicate how the work in this thesis fits together, and also where this 

work fits into research on expertise. 

 In this section, we discuss what "expertise" means, that there are many levels of 

expertise, the types of expertise with which we are concerned, and how this all relates to 

the focus of this thesis.  

2.1.1 Expertise Defined 

 In this thesis, we adopt Ericsson's (2006a, 3) definition of expertise, which is "the 

characteristics, skills, and knowledge that distinguish experts from novices and less 

experienced people." Ericsson, among others, applies this definition to numerous 

domains where expertise is studied (e.g., law, medical, music, arts, and sports).  Treem 

and Leonardi (2016b) also suggest that expertise is not objective or stable across 

contexts; a discussion of expertise must be in a domain-specific context. 

 Perhaps because of the many domains and topics of interest to expertise 

researchers, there are many frameworks for explaining the process of acquiring the 

"characteristics, skills, and knowledge" required for expert performance.  As discussed in 

Ericsson's survey (2006a), these frameworks differ based on how researchers account for 

individuals' mental capacities, experience, mental organization of knowledge, learning 

environments, or task-based performance.   
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 The work presented in this thesis operates under the last framework: expertise as 

reliably superior performance on representative tasks.  This framework argues for finding 

representative tasks for measuring performance, where the tasks are under standardized 

conditions.  As explained by Ericsson (2006a, 11), these standardized conditions "make it 

possible to measure and compare the performance of less-skilled individuals on the same 

tasks."  These conditions are prevalent in crowdsourcing research.  Thus this framework 

is a natural fit for the work in this thesis. Just as important, this framework acknowledges 

a gradient of expertise, which we discuss next. 

2.1.2 Levels of Expertise 

 When studying the characteristics of experts, researchers typically use one of two 

approaches: the "absolute" approach, or the "relative" approach (Chi, 2006).  In the 

absolute approach, the truly elite experts are studied to understand their superior 

performance within their respective domains.  There is also a tacit assumption, in the 

literature, that true experts have "greater minds", "greater memory capacity", and "unique 

innate talent" that are domain-general (as opposed to domain-specific), which leads to 

domain-specific expert performance (Chi, 2006). 

 An alternative approach is aptly named the "relative" approach.  Chi (2006, 21) 

explains this approach "assumes that expertise is a level of proficiency that novices can 

achieve."  This approach acknowledges there are multiple levels of expertise, and 

expertise is more than a simple distinction of "novice" versus "expert."  Hoffman's (1998) 

continuum of development, based on craft guilds of the Middle Ages, is indicative of this 

relative approach, where a "naive" person is someone who is ignorant of a domain, 

followed by novice, initiate, apprentice, journeyman, expert, and master, in increasing 
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order of skill or demonstrated expertise.  As another example of the explicit 

acknowledgement of a continuum of expertise, Dreyfus and Dreyfus (1980) proposed a 

five-stage model of adult skill acquisition: novice, advanced beginner, competence, 

proficiency, and expertise.  As a final example of an argument for a continuum of 

expertise, Collins (2016) explains that expertise is not just for esoteric contexts, but there 

are degrees of expertise within one domain.  An example Collins offers is driving a car.  

This activity is nearly ubiquitous in many industrialized societies, which means it is not 

esoteric.  However, professional car racing, which is arguably in the same broad domain, 

is esoteric.  Thus it seems reasonable to treat expertise as a continuum instead of as an 

absolute level only for the elite. 

 In this thesis, we embrace the relative approach by taking the holistic view of 

expertise as being more than a binary assignment of "expert" and "novice" to individuals. 

As discussed below, this approach is under-utilized in crowdsourcing research, and we 

show in this thesis that leveraging the continuum of expertise represented in the crowd 

can materially benefit crowdsourcing systems. 

2.1.3 Types of Expertise 

 Beyond the use of multiple levels of expertise, the work presented in this thesis 

also investigates different types of expertise.  Note the concept of a continuum of 

expertise refers specifically to the skill or knowledge that distinguishes individuals with 

differing levels of expertise.  By "types" of expertise, we are referring to abstractions in 

the criteria used to measure expertise.  In particular, we are interested in both fact-based 

and opinion-based measurements of expertise.   
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 Much of the study of expertise is focused on domains where expertise is measured 

using fact-based criteria, ostensibly because it is tractable to quantify and compare.  For 

example, Chase and Simon (1973) studied chess players, and Larkin et al. (1980) studied 

physics experts, which are domains consisting of agreed-upon solutions and formal logic. 

Less well studied are domains where opinion-based criteria are used to measure 

expertise.  Opinion-based criteria are evident in domains having subjective aspects for 

quality judgment, like dance (Noice and Noice, 2006), music (Lehmann and Gruber, 

2006), and history (Voss and Wiley, 2006).   

 Voss and Wiley's (2006) characterization of "well-structured" and "ill-structured" 

domains is helpful in explaining where fact-based and opinion-based criteria apply. Voss 

and Wiley's well-structured domains consist of problems having single answers with 

agreed-upon solutions, typically using mathematics or formal logic.  In other words, 

expertise measured using fact-based criteria is suitable for well-structured domains.  Ill-

structured domains contain problems with more than one answer, no agreed-upon 

solution, and little opportunity for formal logic or mathematics to apply.  Opinion-based 

criteria are more suitable than fact-based criteria for ill-structured domains.  

 We also pose that fact-based and opinion-based criteria are the opposite ends of a 

spectrum of measurement criteria.  Towards the fact-based end of the continuum are 

criteria based on, for example, mathematics, formal logic, and scientific and technical 

knowledge.  Towards the opinion-based end of the spectrum are ill-defined criteria based 

on, for example, cultural understandings and personal preference.  For this fact-opinion 

spectrum to make sense, the middle of the spectrum should represent contexts where a 

mix of the two criteria is used.  Indeed, there are examples of this, such as judging 
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gymnastics, which requires certain compulsory skills and techniques to be demonstrated, 

but there is also subjective scoring, like artistry, that is calculated into overall scoring. 

 Although this fact-opinion spectrum represents many types of expertise, this 

thesis focuses on three points on the spectrum, which we discuss next. 

2.1.4 Tying it All Together 

 As mentioned, we anchor the definition of expertise to the idea of it being 

domain-specific.  Expertise in one domain may not correlate to expertise in other 

domains.  As well, a person may have a high level of expertise in many domains while 

simultaneously having little expertise in others.  Assuming no two people are perfectly 

alike, a crowd of people inherently represents a diversity of skill levels, knowledge, and 

opinions, applied to various domains.  Typically, crowdsourcing system designers view 

this diversity as noise, and they effectively cancel it out by aggregating responses over a 

large enough n.  The aggregated response is treated as "the wisdom of crowds" 

(Surowiecki, 2005).  However, our hope in this thesis is to embrace crowd workers' 

diverse expertise levels.  This diversity is what we mean when we use the term "mixed 

expertise" throughout this thesis.  We want to tease out the differences in expertise within 

that diversity, and leverage that knowledge to, ideally, increase the wisdom of crowds.   

 The next three chapters of the thesis discuss two systems and a study, all having 

something in common: they leverage the diversity of domain-specific expertise 

represented in the crowd.  They differ, however, in the type of expertise being studied. In 

Chapter 3, we discuss the Escalier system, which leverages fact-based criteria for 

measuring technical expertise.  In Chapter 4, we discuss the Kurator system, which uses 

opinion-based criteria for measuring expertise in predicting a user's subjective 
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preferences.  And in Chapter 5, we discuss a study of Question Finding, which uses a 

combination of the two: fact-based criteria to distinguish who, in the crowd, knows what, 

and opinion-based criteria to subjectively determine which solutions are suitable.  We 

selected these three points on the fact-opinion spectrum to investigate more broadly the 

benefits of leveraging mixed expertise to crowdsourcing systems. 

 Having established what expertise means, the continuum of expertise that exists, 

and which types of expertise are of concern to this thesis, we next discuss what CSCW 

has taught us about designing systems that identify and use expertise.  

2.2 Using Expertise in Technical Systems 

 To understand how mixed expertise can be used in crowdsourcing systems, we 

first need to understand how expertise has been used in technical systems in practice.  

Technical systems for expertise finding and expertise sharing in organizations have been 

widely studied in CSCW (see Ackerman et al., 2013, for a detailed survey).  This is likely 

because, in practice, human expertise is a social construct2.  By reviewing how the 

CSCW community has studied expertise, we can learn what things a system that needs 

expertise needs to consider.  Organizationally, being able to easily find the requisite 

expertise whenever required has been studied in the domain of expertise finder systems. 

 Expertise finder systems (EFs), a type of CSCW or social computing system, help 

people locate required expertise in organizations and online communities.  EF systems 
                                                

2 Treem and Leonardi (2016b) refer to expertise as a "communicative construct", arguing that 
"experts do not exist unless there is an audience out there willing to attribute expertise to them 
and recognize them as experts. (p. 2)"  Collins (2016) formalizes this social construct in a three-
dimensional model of the expertise-space, where exposure to tacit knowledge from the expert 
community is one of the dimensions.  These are just two recent examples where expertise 
researchers acknowledge a sociality of expertise, but there are many more: see Treem and 
Leonardi (2016a) for more examples. 
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have evolved substantially over the last twenty years, as organizations and designers have 

developed a better understanding of the problems associated with the use of these 

technologies. What one can see is the slow but steady evolution of expertise finding in 

terms of both its technical and social mechanisms, as one might expect from the changes 

observed over time with other successful technologies (Petroski, 1994).  

 EFs’ history shows an increasing scope of available data and the technical 

capabilities to handle those data in order to find others, and help the user select a suitable 

person for an information need. Not only have the technical capabilities increased over 

time, the EFs’ architectures have grown to handle an increasing number of rating 

schemes, matching algorithms and heuristics, and selection criteria.   

 Below, we briefly review the progression of EF system capabilities through 

history, focusing on the kinds of data available and used. The discussion of available data 

must be inherently limited, as availability is ever-changing as more and more digital 

traces become available.  

2.2.1 Technical Capabilities in Expertise Finding  

 The history of EFs shows us that EFs' technical capabilities and their ability to 

resolve organizational and social requirements are highly dependent on the available data. 

The difficulties in creating suitable profiles, especially with the additional problem of 

limited or reduced data (such as the email logs or hand-coded expertise maps used in the 

first EFs), led to the use of more and more kinds of data. The addition of new kinds of 

data led to better retrieval of suitable candidates. Over time, EF systems have 

progressively become more precise, and here we pull the key points from this progression 
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to carry into our work on identifying and using mixed expertise in crowdsourcing 

systems.   

 This progression of technical capabilities is evident in Merritt et al.'s (2016) 

review of EFs, where they describe ten representative systems that display the range of 

functionality and data used in EFs.  Below, we briefly review what these systems brought 

to our understanding of how technical systems make use of expertise. 

 The Who Knows system (Streeter and Lochbaum, 1988) was one of earliest EFs. 

Who Knows used organization-specific collections of project documents, such as 

technical memoranda and project descriptions, to determine the expertise in 

suborganizations. Who Knows demonstrated that suitable organizational documents were 

helpful in assessing expertise at the organizational level. 

 Yenta (Foner and Crabtree, 1997; Foner, 1997) focused on finding individuals, 

introducing people with similar interests. Finding similarity of interests creates a partial 

EF, because a similarity of interests can imply a similarity of expertise but does not 

always do so. Yenta showed that documents, emails, and web posts were helpful in 

understanding interests and, to some degree, expertise.  Its novel architecture also 

demonstrated the importance of considering privacy for EF systems research. 

 In addition to these standard types of documentation-based data, McDonald and 

Ackerman’s (2000) Expertise Recommender (ER) also offered a flexible architecture that 

could support a range of expertise finding and recommendation models using different 

types of data. In particular, it established that using multiple heuristics for expertise might 

be required for an EF system to be a workable solution, in practice. ER also considered 
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additional social factors in expertise finding, such as candidates' suitability and 

availability.  

 The ExpertFinding Framework (Becks et al., 2004), and its successor TABUMA 

(Reichling et al., 2005) focused on a customizable people-matching process in an 

extensible architecture.  Users were able to customize the matching process, which 

consisted of user profiles (user’s education and experience) and user (learning) histories.  

These two systems, in addition to providing strict privacy controls, demonstrated the 

effectiveness of using an extensible architecture.  The expertise layering technique we 

discussed in Chapter 1 is based on the Expertise Recommender's and ExpertFinding 

Framework's extensible architecture.  Escalier and Kurator, which we discuss in Chapters 

3 and 4, respectively, are descendants (albeit crowdsourcing-based) of these EF systems. 

 SmallBlue (Lin et al., 2008; Yarosh et al., 2012) represents the current state of the 

art for EFs. Its data included users’ communication (emails and chat), content from the 

company intranet (blogs, wikis, and enterprise directories), as well as user-defined 

profiles. It then added social network-based data, “whom people know”, to profiles with 

“what people know.” Additional data included people’s interests and activities compiled 

from the company’s numerous internal sources (e.g., social networking software, 

company directory, geographic location, shared documents) and LinkedIn for those who 

had an account. SmallBlue demonstrated that social network position (“who knows 

whom”) was important for EF, particularly within a very large organization. 

 The previous EFs were organizational; however, by the early 2000s, online 

communities were becoming increasingly important. Zhang et al. (2007) examined a way 

to measure expertise by focusing on the social network in online question-and-answer 
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communities to rank the expertise of users. The determined that a simple expertise 

measure was adequate, based on the assumption that question answerers are likely to 

have more expertise than question askers, validating the potential of EF for Q&A 

communities. Kao et al. (2010) and Munger and Zhao (2014) have more recently 

provided additional useful metrics for an EF, to include users' knowledge, reputation, 

authority, helpfulness, responsiveness, and sentiment. 

 Finally, as the societal use of social networks systems (SNS), such as Facebook or 

Twitter, became standard, individuals turned to them to answer questions and seek 

expertise. Interest was sparked in adding more formal Q&A to SNS. Bozzon et al. (2013) 

reported a prototype EF system, which was the first to our knowledge designed 

exclusively for public SNS. Their approach used Facebook, Twitter, and LinkedIn data, 

and they found that the inclusion of indirectly related resources (posts not made by the 

candidate expert) made the system significantly more accurate.  Aardvark (Horowitz and 

Kamvar, 2010) further refined this by routing questions to people “nearby” in the social 

network. Aardvark incorporated social networks as primary data in addition to its use of 

expertise profiles. 

 In summary, EF systems through history have demonstrated the utility of using 

technical data at the organizational and personal level, detailed user profiles that also 

maintained privacy, domain-specific heuristics, social networks, social interaction data, 

customizable matching processes, and extensible architectures.  At the end of this section, 

we summarize which specific lessons from the study of EFs we used for the work in this 

thesis.  Because EF systems research has been highly dependent on the availability and 

evolution of data used to determine expertise, we cover that topic next.   
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2.2.2 Data Required to Assess Expertise 

 Understanding the data required to assess expertise is crucial to knowing what 

types of expertise measures are possible for crowdsourcing systems.  Based on what we 

have learned from expertise finder systems in the CSCW literature, we categorized data 

sources into classes based on whether they directly or indirectly capture “artifactual” or 

“interactional” indicators of expertise.  After explaining these classes of data, we walk 

through their advantages and limitations, concluding with a summary of what we will 

carry forward into our crowdsourcing work from this review. 

 Data used directly does not have to be converted to or reconstructed from other 

data before it is used in an expertise measurement. Direct artifactual indicators are 

explicit statements of expertise, and they are commonly found in self-disclosures, like 

someone declaring “I’m an expert in Java programming”, or a credential on someone’s 

résumé, such as a Professional Engineer license. As an example, Ackerman et al. (2003) 

proposed the Knowledge Mapping Instrument (KMI) to estimate people's expertise where 

organization members contributed questions to a company’s “trivial pursuit” game, based 

on the knowledge required at the company. Those questions then enabled company 

members to estimate how others would do on the game, providing an expertise estimation 

of expertise under a realistic work context. Direct interactional indicators may be found 

in a publicized list of relational connections, such as that found in co-authored scholarly 

publications or networking sites like LinkedIn. Alternatively, Farrell et al. (2007) used 

social tagging (e.g., categorizing people based on the their projects) and found it effective 

for characterizing people’s expertise. 
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 Indirect measures attempt to characterize the same information represented by 

direct observation, except this information typically must be inferred from a person’s 

activity. In the EF literature, a person’s activity has generally been measured through two 

behaviors: what people create (artifactual) and with whom people communicate 

(interactional). Algorithms are used to turn documents or other artifacts (e.g., code, forum 

posts, or email content) into a mapping of people to keywords and topics. These 

artifactual indirect metrics measure what someone knows. Algorithms can also 

characterize a person’s social network based on communications with others (e.g., email 

or question-answer forums); these become indirect interactional metrics when they are 

used to determine an entire network of relations (question-answering, communication, 

work projects, and so on). 

 It is important to note that the artifactual “what someone knows” and the 

interactional “whom someone knows” are analytical distinctions, since the two are often 

conjoint. In addition, some systems use mixed metrics for indicators of expertise. For 

example, Munger and Zhao (2014) applied sentiment analysis to Q&A posts to 

characterize whether an answer had a positive or negative sentiment (positive sentiment 

favorably influenced the answerer’s expertise score).  Availability in SmallBlue (Yarosh 

et al., 2012) and responsiveness in Kao et al. (2010) and Munger and Zhao (2014) of 

candidate experts are more examples of features used to measure helpfulness. Indeed, in 

Kao et al. (2010), a person’s “reputation” metric includes availability, responsiveness, 

and sentiment-based features. 

 Some initial EF systems used direct artifactual indicators. However, people’s self-

reports are unreliable (Donaldson and Grant-Vallone, 2002 and Arnold and Feldman, 
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1981). There are strong organizational, as well as personal, reasons to either hide or over-

promote expertise. There are relatively few observational measures in organizations 

except for managers' periodic assessments, and these, too, can be unreliable. 

 Indirect artifactual indicators solved aspects of these problems; indirect artifactual 

indicators could construct expertise profiles without intervention. Expertise profiles could 

be constructed from project reports or later, Intranet documents. The list of potential 

sources has become larger and larger over time. 

 Indirect measures solve two additional data problems. The first is the standard 

problem with explicit data collection: users’ lacking sufficient motivation to enter their 

data (Hinds and Pfeffer, 2003). The second is related: it is the problem of maintaining 

data over time, which requires the continued motivation to enter one’s data accurately 

(Ehrlich, 2003). This can lead to non-consistent entry of data, incomplete entry of data, 

and out-of-date data. While incomplete entry and perhaps non-consistent entry can still 

result in useful EF systems, out-of-date data quickly lead to disuse. If an EF cannot be 

used for current needs or points to the wrong people, it is less than helpful.  

 Indirect measures, while they solve those problems, have other problems. While 

standard information retrieval relies on incomplete or ambiguous representations of 

information sources, EF metrics use even more incomplete or ambiguous representations. 

While indirect measures solve self-report errors, they introduce many other sources of 

error. The issue of inferring topics from keyword vectors or even more suitable 

representations (e.g., topic models or LDA) is well understood in the information 

retrieval community, and there are the difficulties of distinguishing mere interest in a 

topic versus expertise in that topic and of determining relative expertise. These issues can 
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introduce error into an EF. Systems generally ameliorate this concern by producing a 

candidate set which can then be manually examined. 

 Indirect measures also suffer from the problem of new employees and their cold 

start. New employees obviously will not have built a repertoire of suitable content. This 

issue introduces a form of incompleteness into the EF system by reducing the potential 

candidate set. It is not easily corrected, although in an organization of a sufficient size, 

this issue is likely to have negligible effect. 

 More importantly, indirect measures still rely on incomplete data. Not everyone 

has published material in the public domain or on organizational Intranets. Not everyone 

even produces documents, even though they may have a great deal of organizational 

expertise (e.g., admins). Invisible work (Star, 1999) is, indeed, often invisible and not 

captured by EF systems. 

 There has been recent work on discount expertise metrics that attempts to sidestep 

the problems we see with indirect measures of expertise.  Hung and Ackerman (2015) 

found web browsing history to be useful in reliably determining if a person were likely to 

be an expert or novice in programming.  Even though their approach yields a coarse-

grained stratification of expertise, the ubiquity of web browsing makes this a promising 

step towards alleviating some of the challenges in using indirect measures.  In Chapter 5, 

we discuss a third project called Question Finding, which includes an attempt to more 

generally address the problem of discount expertise metrics. 

2.2.3 Summary 

 Technical systems that find and use expertise has been well-studied in the CSCW 

literature, particularly in the domain of expertise finder systems.  In designing the mixed 
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expertise crowdsourcing systems presented in this thesis, we used some of the lessons 

learned from our review of expertise finder systems.  Specifically, we found that 

extensible architectures are effective in practice because they allow for customizability 

and flexibility depending on available data, heuristics, and expertise identification and 

matching algorithms.  In short, extensible architectures are an imperative for 

environments with constantly evolving data availability and algorithms, which is true of 

crowdsourcing environments.  Using this lesson, Escalier and Kurator both use extensible 

architectures.  Escalier allows for arbitrary discount expertise metrics to be used in its 

expertise layer, but the system uses a fixed number of layers (i.e. a base layer and an 

expertise layer).  Kurator takes this idea further, allowing for an arbitrary number of 

layers.  It uses family, crowd, and machine learning layers by default, but the system can 

handle multiple machine learning, crowd, and family layers. 

 As well, we learned that technical systems using expertise are limited by the data 

that is available to measure that expertise.  Direct indicators of expertise are often 

unreliable and impractical to maintain.  Indirect indicators alleviate the need for direct 

reporting from users, but it introduces the additional problems of being inconsistent and 

incomplete.  Discount expertise metrics is a promising direction, but researchers have 

only very recently begun to focus on this.  After reviewing the relevant crowdsourcing 

literature, which we do next, we return to this discussion of what data is available to 

crowdsourcing systems. 

2.3 Using Expertise in Crowdsourcing 

 This thesis is focused on the study of crowdsourcing systems, which we define as 

using crowds within an automated workflow.  This is not quite the same as human 
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computation, depending on how the reader interprets Quinn and Bederson's (2011) 

taxonomy, because we do not want to constrain our explorations only to systems where 

"human participation is directed by the computational system (p. 1404)" (emphasis 

mine).  Escalier, the first system in this thesis and discussed in the next chapter, allows a 

community of people to explore a space as they see fit, and the backend automation 

makes inferences based on human behavior and presents new information back to the 

users.  This does not fit cleanly into a human computation paradigm, but it does fit into 

our definition of crowdsourcing. 

 As mentioned, many crowdsourcing system designers take a binary perspective 

on expertise and assume the crowd consists of non-experts in its problem domain, 

ostensibly because designers believe the aggregate wisdom of crowds (Surowiecki 2005) 

can approach that of an expert.  This approach is pragmatic and is proven to be effective 

for many problem domains. As a relatively early example, in Snow et al.'s (2008) work 

with natural language processing, they use non-expert crowd workers to provide 

judgments on multiple tasks, such as finding similar words and assessing emotional 

valence of news headlines, and the crowd's responses showed high agreement with expert 

labelers.  There are many other examples of systems designed to use non-expert inputs to 

replicate expert-level work in the domains of:  

• Computer vision; Sorokin and Forsyth (2008) acquired annotations for a large 

number of images by utilizing a crowd's latent ability to recognize simple 

images. Annotated image datasets were, and still are, important to computer 

vision research, and prior to leveraging the crowd for annotation, researchers 

typically acted as the "expert" annotators for image datasets. 
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• Document editing; Bernstein et al. (2010a) leveraged a non-expert crowd for 

their "basic knowledge of written English" to help novice and expert writers 

offload word processing tasks such as shortening paragraphs and formatting, 

spelling, and grammar checks.  Their find-fix-verify workflow garnered 

enough quality from the crowd to alleviate the need for expert human editors. 

• Visual question answering; Bigham et al. (2010) introduced a crowd-powered 

system that answered open-ended, natural language requests from blind users. 

The crowd's basic abilities to see and write were effective enough to 

outperform, in terms of monetary cost, many automated tools built specifically 

for this purpose. 

• Translating text; Hu et al. (2011) designed a crowdsourcing system to support 

monolingual translation, which uses people who know only the target or 

source language of a machine-translated text. This allowed many crowd 

workers, who did not have bilingual (or multilingual) expertise, to contribute 

in the domain of text translation. 

• Real-time systems; Bigham et al. (2010) established the idea of near-real time 

responses from the crowd, and Bernstein et al. (2011b) extended the idea to 

the concept of synchronous crowds for on-demand crowdsourcing (<2 second 

response time). Their approach used the crowd's collective ability to identify 

the "best" moment from a short video. Similarly, Lasecki et al. (2012) 

leveraged real-time crowdsourcing to allow deaf people to request speech 

captions on-demand.  In their own words, their system "enables non-experts to 

contribute without any special training or skill. (p. 3)" 
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• Creative work; Lasecki et al. (2015) created a crowdsourcing system for 

Wizard-of-Oz prototyping of user interfaces. Their system allowed crowd 

workers to collaboratively sketch and iteratively improve sketches of a shared 

user interface. This approach applied the idea of real-time crowdsourcing 

systems to highly creative work to alleviate the need for a single expert user 

typically needed for Wizard-of-Oz prototyping.  

 
 These systems are examples of common domains of research within 

crowdsourcing that all have something in common: their reliance on non-expert crowd 

abilities to perform work typically done by experts.  Leveraging mixed expertise in crowd 

work has been under-studied in the prior literature, and it is rarely explicitly framed as 

such.   

 There have been, to our knowledge, no systematic examinations of how to 

leverage different types and levels of expertise in crowds.  However, there has been work 

in crowdsourcing systems where experts or expertise is a focal point.  In these systems, 

the social arrangement of the workers and requesters is important and has influenced the 

architecture of the systems.  Thus the first part of our review of the crowdsourcing 

literature is organized according to the social arrangements at play.  The second, and 

final, part of the review discusses crowdsourcing systems in the context of the types of 

expertise they use.   

2.3.1 Social Arrangements of Expertise in Crowdsourcing 

 The expertise-focused crowdsourcing literature can be divided into three 

categories of social arrangements, each representing different ways to account for input 
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from expert and/or non-expert workers: using input only from expert crowds, having 

experts guide non-expert crowds, and mixed arrangements. 

2.3.1.1 Using Only Expert Crowds 

 First, there are systems designed to focus solely on expert workers.  Chilton et al. 

(2014) introduce Frenzy, a conference planning tool designed for large groups of experts 

to collaboratively build a conference program.  Instead of tasks being routed to experts, 

experts self-select tasks (papers) based on their topics of expertise.  Frenzy provides a 

way to facilitate experts working simultaneously on a complex task. 

 Similarly, Foundry (Retelny et al., 2014) enables expert flash teams, where 

multiple experts come together to quickly and collaboratively work on modular tasks that 

can be linked to other modular tasks.  Multiple tasks can be combined to accomplish 

highly complex tasks, such as video animations, mobile web applications, and platforms 

for online educational courses.  The work is performed by experts regardless of who 

requests the work. 

 Kulkarni et al.'s Wish system (2014) allows expertise to be solicited when a non-

expert user lacks what he needs for specialized, creative work.  The Wish system uses 

MobileWorks, a commercial platform, to post wishes and solicit experts for help.  The 

expert selection process is also handled by MobileWorks, where an expert identification 

algorithm is executed to recruit new experts only when the initial wish goes unanswered.   

 The work in this thesis adds to this prior literature by not focusing solely on 

expert crowds.  Instead, we hope to identify various levels of expertise within crowds and 

to leverage the full spectrum of expertise where possible. 



 

 29 

2.3.1.2 Experts Guiding Non-expert Crowds 

 Second, instead of relying solely on expert crowds, there are workflows designed 

to allow experts to guide non-expert crowds.  In an early study of this, Kittur and Kraut 

(2008) examined Wikipedia's contributions and coordination amongst editors and found 

that the timing and type of coordination used affected the quality of an article.  In 

particular, they conclude that concentrating the complex tasks, such as establishing 

structure and cohesion during article formation, into fewer editors would likely lead to 

higher article quality.  Although it is not stated explicitly in the paper, it is implied that 

these few editors possess a high level of expertise on the article's topic.  This is an early 

example of experts guiding a crowd of contributors by laying down the structure of a 

Wikipedia article during its formative stage.   

 Dow et al. (2012) use a shepherding metaphor to demonstrate how task-specific, 

external feedback, provided at the right time, increases the quality of work provided from 

the crowd.  Chan et al. (2016) expand this shepherding concept into idea-generation, 

creative work.  They show that experienced facilitators are able to help workers come up 

with more ideas, and these ideas were more creative than the ideas of workers who were 

unfacilitated.  Kim et al. (2014) use a similar metaphor of leaders directing followers, and 

they apply it to collaborative story-writing.  Leaders served as the expert facilitators of 

the stories by directing the work and communicating goals to collaborators. 

 The systems presented in this thesis build upon this prior work by using a 

combination of experts guiding the work of the crowd while simultaneously performing 

tasks alongside the crowd. 
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2.3.1.3 Mixed Arrangements of Expertise 

 Finally, there are few crowdsourcing systems acknowledging an approach 

designed specifically for a mix of expertise in worker contributions.  Law et al.'s (2013) 

Curio platform is designed to help scientists, who may be non-expert in implementing 

crowdsourcing projects, to use crowdsourcing.  It is a system that allows expert 

requesters (i.e., scientists) to direct and control crowdsourcing projects that use amateur 

workers (i.e., citizen scientists).  Curio allows for hierarchical teams, where researchers 

can select participants with specific expertise as well as collaborators with significant 

domain knowledge to be on the project management team.  This work explicitly calls out 

"mixed-expertise crowdsourcing" as the combination of expert and amateur workers or 

requesters.   

 In a different take on mixed arrangements of expertise, Huang et al. (2015) 

designed Guardian, a crowd-powered spoken dialog system, to use inputs from a non-

expert crowd to filter out "unnatural" parameters from various web API's to lower the 

threshold for programmers (i.e., the experts) to contribute to Guardian.  With this 

arrangement, the non-expert workers are leveraged earlier in the workflow, laying the 

groundwork for expert workers to contribute more easily on a separate task.   

 Curio and Guardian both use social arrangements that allow for some non-expert 

participation, but they emphasize expert (or near-expert, in Curio's case) participation 

because the problems require it.  Those experts are known to exist and are accessible.  In 

this thesis, we are interested in problem areas that are not as mature as these, where 

expert crowds are unidentified or inaccessible and cannot be relied upon, at least at the 

outset of the system deployment.  Thus the reliance on less-than-expert input becomes 
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paramount, which makes these systems unsuitable for our purposes.  The work in this 

thesis adds to the dearth of crowdsourcing literature on mixed expertise by using a greater 

diversity and depth of mixed expertise. 

2.3.2 Types of Expertise Used in Crowdsourcing 

 Most of the crowdsourcing systems reviewed up to this point either pre-determine 

expertise by the social arrangement used, or it focuses on fact-based tasks (as mentioned, 

computer vision, document editing, etc.).  However, few focus on opinion-based tasks.  

Some researchers doubt that certain technologies, crowdsourcing in particular, are 

applicable to problems having personal or highly subjective aspects to them.  This 

sentiment is summed up by Simko and Bieliková (2011, 45): "Automated or 

crowdsourcing approaches are inapplicable in [the] case of personal content or content of 

a small social group (e.g. family)."  The pervasiveness of this sentiment is unclear, but 

Organisciak et al. (2014) acknowledge that researchers in crowdsourcing have only 

recently begun focusing more on problems with a "subjective aspect to them."  Although 

there has been crowdsourcing research in subjective problems (e.g., word processing in 

Bernstein et al., 2010a, itinerary planning in Zhang et al., 2012, and managing email in 

Kokkalis et al., 2013), Organisciak et al. (2014, 193) formally call out this "class of 

problems where the task is time-consuming for an individual, but its subjective nature 

makes it difficult to delegate."   

 The Kurator system, discussed in Chapter 4 of this thesis, is used to study the 

utility of crowdsourcing for a highly subjective task: personal digital media curation.  

One goal of Kurator is to extend the crowdsourcing literature to new kinds of subjective 
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problems and, in doing so, to demonstrate that leveraging the diversity of expertise in the 

crowd is an effective way to begin to solve subjective problems of this kind. 

2.4 Summary 

 In the previous sections, we discussed the importance of considering a continuum 

of expertise in the crowd, and that the crowdsourcing literature does not address this 

continuum.  We have also discussed that the fact-opinion spectrum of criteria for 

measuring expertise is a useful framing for exploring this space in crowdsourcing 

research.  As well, we touched on the importance of using extensible architectures when 

building mixed expertise systems.  Finally, as mentioned, we return to the discussion of 

the data available to crowdsourcing systems.   

 The data used to measure expertise is plentiful in CSCW and almost non-existent 

in crowdsourcing.  Organizational and Internet-scale expertise finder systems, as 

discussed, use direct and indirect artifactual and interactional data.  Crowd work has 

limited availability of these data due to the nature of anonymous microtasking 

environments as well as a lack of focus on obtaining or using such data.  There is little 

interactional data to use because this would require access to workers’ interactions, which 

is almost non-existent in microtasking environments.  Thus the focus is on artifactual 

data--what workers produce and how they perform.  When expertise is determined 

dynamically (which is rare, as discussed above) direct artifactual indicators are relied 

upon almost entirely.  In microtasking environments, a worker’s success rate is a direct 

measure of their ability to perform tasks well, in general.  For a richer, albeit still flawed, 

representation of expertise, qualifications or credentials can be awarded based on 
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successful performance on specific types of tasks (see Mechanical Turk).  These are all 

direct artifactual indicators of expertise. 

 Expertise finder systems also use the social interactions between knowledgeable 

actors as interactional indicators of expertise.  By design, in microtasking environments, 

it is difficult for crowd workers to engage in such social interactions.  The crowdsourcing 

and human computation communities are only now looking at ways expertise can be 

shared on real-time microtasks (e.g., Lasecki et al., 2015).  In general, crowdsourcing 

systems lack support for the social needs of workers, which may make the systems less 

efficient.  Implementing social interactivity, and leveraging the metadata of that activity 

for expertise measurement, is a potential future direction for the line of research 

presented in this thesis.  However, as social interactivity is incorporated into 

crowdsourcing systems, privacy issues are surfaced, as we have seen in the review of 

expertise finder systems.   

 Finally, exploring the use of discount expertise metrics is a promising direction 

for both the CSCW and crowdsourcing literature.  Escalier is able to use discount 

expertise metrics from Hung and Ackerman (2015) and Zhang et al.'s z-score (2007).  

Our study on Question Finding is a deeper investigation into using discount expertise 

metric for specific topics, such as space science. 

 In this chapter, the crowdsourcing systems we reviewed, in almost all cases, used 

predetermined experts, or experts who were handpicked for experiments.  Where expert 

crowds are known and accessible, this is a non-issue.  However, as we show in this thesis, 

considering the mix of expertise within a crowd can significantly improve the 

effectiveness of certain crowdsourcing systems, particularly in new problem areas.  In the 
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next chapter, we introduce the Escalier system, which builds on the lessons learned in this 

chapter's literature review, and it answers the first research question in this thesis.  



 

 35 

Chapter 3.  Escalier: Mixed Expertise within a Crowd 

 

 In Chapter 1, we described the importance of considering the diversity of 

expertise present in the crowd.  We refer to this diversity as mixed expertise.  Our aim, 

ultimately, is to be able to differentiate this mix of expertise in order to leverage it to 

improve system performance.   

 This chapter lays the foundation for designing systems with mixed expertise in 

mind.  In this chapter, we introduce Escalier, a crowdsourcing system based in social 

navigation that uses mixed expertise, and through a simulation-based evaluation, we 

quantify the material benefit of using a range of expertise levels from the same crowd.   

In this work, we assume expertise levels can be identified because we first need to 

establish if using mixed expertise is worthwhile.   Escalier is a solution within the first 

problem area discussed in Chapter 1, where the diverse expertise of a population can be 

leveraged to uncover more of a solution space.  Through our study of Escalier, we answer 

the first research question: 

• RQ1. Under what conditions, and to what extent, does mixed expertise within 

a crowd materially benefit a crowdsourcing system at scale? 

 Although not explicitly called out in the narrative that follows, we used the 

expertise layering paradigm discussed in Chapter 1 in constructing Escalier.  We obeyed 

the two principles of expertise layering: 1) adding expertise, through expertise 
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assessments, should add value to the system when available, but the system should not be 

required to use expertise (i.e., the use of expertise is non-blocking), and 2) expertise use 

should be modular, where different mechanisms for assessing and using expertise can be 

added or swapped out.  The current implementation of Escalier uses fact-based expertise 

assessments, which we discuss in more detail below. 

3.1 Introduction and Background 

 Social navigation is something we use often in the physical world (Dieberger et 

al, 2000).  Social navigation occurs when we use the activity of other people as cues for 

our own decision-making, such as hiking on an uncharted path but following a trail, or 

using the size of a crowd outside a restaurant to help you decide what the good 

restaurants are.  In the context of the work presented in this chapter, social navigation is a 

form of passive crowdsourcing (Bigham et al., 2015), where crowd activity is not 

directed but rather monitored and leveraged.  Social navigation occurs when someone 

uses the activity traces left by other people to inform their decisions. A social navigation 

system makes a crowd’s activity traces visible to an end user, or it makes inferences on 

the traces directly. One such popular system is Aardvark (Horowitz and Kamvar 2010), 

which used social navigation to help it route questions to answerers in a user’s social 

network. 

 The idea of social navigation in the digital domain has been around for decades.  

A seminal work in this domain is Hill et al.'s (1992) idea of "computational wear", where 

the history of editors' or readers' interactions with a digital document is shown 

graphically in the document's scroll bar.  Wexelblat and Maes (1999) build on this work 

by applying the same principles to web navigation.  Freyne et al. (2007) reprise the work 
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on web navigation by combining the ideas of social search and social navigation to grow 

and use "community wisdom" in web searches.  Dieberger et al. (2000) was one of the 

first to define social navigation traces as a passively grown by-product of how people use 

a space.  Digioia and Dourish (2005) expand on this notion of passivity in activity traces 

by arguing for users to have freedom to interpret traces however they see fit, which they 

apply to usable security.  Goecks et al. (2009) extended this work to help users make 

decisions about their privacy and security configurations. 

 It is our hope in this chapter to understand how user expertise, revealed as fact-

based measures in system use and as explicit ratings, can be better incorporated into 

crowdsourcing systems, in general, and social navigation systems, specifically. 

Accordingly, this chapter makes two contributions to the crowdsourcing and social 

computing literature: 

 First, we demonstrate through a system design, and then show through a study, 

that using people's expertise levels as part of crowdsourcing can have significant benefits 

for at least some applications. 

 To do this, we present a system we have built. Our second contribution is 

Escalier3, a crowdsourcing system that shows there are possibilities of using a diversity of 

expertise explicitly in crowdsourcing. It does this by actively aggregating activity traces. 

Escalier was explicitly designed to demonstrate that accounting for mixed expertise in the 

crowd could help the effectiveness of a social navigation system. We believe Escalier is 

                                                

3 My contribution to Escalier, the system, is in creating version 2; version 1 was tested heavily, 
and the applications discussed in this section were created with version 1; version 2's re-write 
includes, among other things, the scripting layer of Escalier. 
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novel in its own right and may lead potentially to a range of other crowdsourcing 

systems. 

 Below, we first present an example use scenario, then the formalisms 

underpinning Escalier, and then the Escalier system itself. We follow that with a brief 

overview of simulations as an evaluation technique. We then present the results of a 

4x4x5x2 set of simulations, plus additional sensitivity analyses, that examine the basic 

workability of Escalier and the utility of using expertise. We follow with limitations and 

future work, and then conclude. 

3.2 Use Case 

 It is easiest to understand the Escalier functionality from the application side. An 

example of how Escalier could be used is the Am-I-Normal (AIN) application, which 

helps users with their system configurations. AIN highlights an important problem for 

end-users: they need technological support for their individualized use of technology 

(Huh et al, 2011). Specifically, AIN addresses the issue that people may or may not 

understand whether they have unusual system components, especially software drivers. 

Many users do not update their drivers or other system components reliably. Even those 

who update consistently may choose to wait until new drivers have been patched and are 

reliable. Knowing when to update can be difficult. 
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Figure 1. The Am-I-Normal (AIN) application. AIN lets users know whether they have 
unusual configurations. AIN uses Escalier to obtain “conformity” data to display to the 

user. 

 In Figure 1, Balay is using Am-I-Normal, a web app, within his community’s 

MediaWiki, in this case, for MythTV, a Linux media platform. AIN tells a user how 

common each part of his system configuration (software components, drivers, hardware 

devices, etc.) is for all users. (For the AIN prototype, the data came from a dataset of 330 

Linux computers.) Commonly used components are shown in green. Note that for Balay 

one of the "storage - ide:1" drivers, called "sata_nv", is unusual. It is shown in red, 

indicating that a small percentage of users have this driver. For Balay, it is probably time 

to update the driver or at least to investigate why it is uncommon. On the other hand, the 

user can see that the rest of his drivers are used by many others and are likely to be 

reliable if not up-to-date. True to the intent of social navigation, the aggregated 

information from a crowd's activity is made visible to the user in a meaningful way, and 

AIN itself is not directing the user towards any particular decision. 
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 AIN is made possible by Escalier’s knowing the system configurations of many 

other users. For AIN, Escalier merely needs to know that the system configurations exist. 

More complex applications require a greater understanding of how configurations meet 

an objective criterion, and Escalier can also provide this. Next, we describe the 

formalisms that form the foundation for how Escalier is built. 

3.3 Escalier Formalisms 

 Escalier creates a crowdsourced map of what configurations “work” – in the view 

of its users. Escalier is crowdsourced in the sense that its many users co-construct its map 

by exploring single points or even subspaces.  

 Users report on whether their configurations “work” based on some objective 

function. Of course, users’ reports may vary in reporting whether something “works” or 

meets its objective function. Therefore, Escalier’s co-constructed map is probabilistic 

because any given user report could be incorrect, so Escalier has only a likelihood 

estimate that the given configuration of settings or traces meets the criterion. Below, we 

describe how a likelihood estimate is made. Before explaining the architecture and 

components of Escalier, we first define Escalier’s features formally. We will necessarily 

stay very abstract at first, but we will follow the abstractions with an example application. 

 We will term a set of settings or activity traces as a configuration, denoted as c. 

(Note we are distinguishing between “configuration,” which is a generalized abstraction 

in Escalier, from “system configuration,” which is used in computer systems 

management.) Configurations are defined as ordered lists of properties, p. The set of all 

properties in configuration c is Pc = ⋃{pi}, where pi is the i’th property in configuration 

c.  
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 In turn, each property has some value v, and therefore vi is the value assigned to 

the i’th property pi.. The set of possible values for a property is Vi = ⋃{vi}. Note any 

given Vi could be very large or even unbounded.  

 Formally, then, a given configuration c is defined as the ordered set of existent 

(property name, property value) duples, or ⋃(pi ,vi) for ∀i in c. C is the set of all possible 

configurations. 

 Escalier’s goal is to determine which c in C meet some criterion, such as exceed a 

threshold value for an objective function. We will term some c that meets an application 

criterion as a valid configuration. In domain-specific uses, the general term valid is likely 

to be replaced with a domain-specific term. For example, security applications might also 

use the term secure settings, and a valid configuration in an activity trace-based domain 

might be a relevant trace. Domains concerned with system configurations would typically 

use the terms stable and stable system configuration. 

 To find valid configurations, Escalier assumes a constant stream of user reports. A 

user report consists of submitting the configuration c, and expressing whether it meets an 

objective function. This user report may be explicit or inferred. For example, the user can 

explicitly report whether she believes her system is stable or not. The user report can be 

automatic, such as when the system itself reports whether it has crashed with certain 

settings. However, under many conditions, the outcome may need to be inferred. For 

example, in the case of a system configuration without crash data, a report may consist of 

whether a system configuration has been selected and kept for a period of time above a 

threshold. For activity traces, as suggested by (Lee et al. 2013), a configuration will be a 

trace that has been either labeled or assumed to be relevant. 
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 In summary, Escalier lets users know what configurations in the space C fit their 

goals by each person reporting their successes and failures, collaboratively constructing a 

map. It functions as an online algorithm, generating its map as a constant stream of user 

reports comes in. Therefore, Escalier serves as a collaborative reinforcement learning 

platform (Barto 1998).  Unlike reinforcement learning, however, each user explores a 

point or subspace in the space C, the space of all possible configurations. As more users 

report positively on a given c, the more the likelihood of that c meeting the given 

criterion is reinforced. Because reinforcement learning and social navigation (Wexelblat 

and Maes 1999) are similar mechanisms in their abstractions, Escalier also enables a new 

form of social navigation, one that is crowdsourced and probabilistic.  

 Next, we explain in detail how Escalier works, how the likelihoods are estimated, 

and how users’ levels of expertise can be leveraged. 

3.4 Escalier Platform 

 We now provide an overview of the system itself and how it works. This section 

will also detail how the likelihood estimates are made and used.  

 To make our explanation clearer, we will continue our use case of system 

configuration to explain how Escalier works. It is a simplification of actual system 

configuration; see (Chau et al. 2011) for a system designed to handle system 

configuration specifically. Instead, here we walk through the use case only to show the 

functionality that Escalier can provide, assuming that there is additional support for any 

given domain that may be required. 

 Below, the Escalier core functionality and its support for prototype applications 

will be detailed in turn. 
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Figure 2. How the Base Layer functions. (a) Escalier starts up with canonical (test) cases 

that are known to be valid (green). (b) Users report over time, growing the number of valids 
(green) and nearly-valids (yellow). 

3.4.1 Escalier Core 

 In general, Escalier consists of a standard web-based service architecture 

connected to a database, a set of applications, and auxiliary maintenance services. This 

architecture allows separate applications to provide customizable end-user functionality.  

 Escalier conceptually consists of two layers, where the functionality of the second 

layer builds on the first layer. The layers are: 

3.4.1.1 Base Layer – a Bayesian map.  

 The first part of Escalier keeps a probability assessment for the likelihood of 

whether every potential configuration meets its objective function and is therefore valid. 

For system configuration, it would be whether that system configuration was stable; i.e., 

it does not crash, or it appears to the user to be stable.  

 The map is initialized with what we call canonical configurations. These are 

configurations known to be valid. They may be, for example, system configurations that a 

vendor or open-source community heavily tested as part of the release cycle. Or, they 

could also be hand-labeled activity streams or security settings.  

 Thereby, Escalier starts with some known configurations that meet the objective 

function criterion. These canonical, known valid configurations are shown in Figure 2(a) 

(a)      (b)  
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as green cells in a notional 2-dimensional space of all C. Starting with known solutions 

avoids the standard cold start problem (Adomavicius and Tuzhilin 2005), i.e., the 

problem with many social computing systems of not having data when they initialize. It 

should be noted Escalier can start with a small number of canonical configurations 

initially and still be effective; we will provide test results below.   

 As more and more configurations are reported to Escalier, these reports update the 

probability assessments for specific configurations. If the user report indicates the 

configuration meets the objective function (either by explicitly labeling the configuration 

or more likely it being automatically inferred), the likelihood is increased. Conversely, if 

the user report indicates the configuration is invalid, the likelihood can be decremented. 

Over time, this constructs a map of the configurations inferred to be valid.  

 A configuration is given an a priori value (hence it is a Bayesian map). As users 

report, the probability assessment for any given ci is increased or decreased by a value. If 

the probability assessment for ci eventually exceeds a pre-defined threshold, then Escalier 

will report ci as meeting its objective function. One way to do this is to have all users' 

reports be worth the same value. Another way is to weight values based on the expertise 

of the user and/or her history of reports. Weighting of reports based on expertise is 

handled in the Expertise Layer, discussed below. We believe that report values used by 

Escalier for its likelihood assessments may need to be tuned by domain and community, 

but we have not tested this.  

 Figure 2(b) shows the Base Layer after user reports have come in. Remember, we 

do not know whether the user reports are accurate, and so validity is conditional on other 

users’ reports. If enough users have reported positively about a configuration so that its 



 

 45 

validity assessment is above a threshold, then Escalier believes the configuration meets 

the objective function. This is shown as a new green cell in Figure 2(b). If a user, for 

example, wanted to know what configurations were valid, Escalier would report that any 

configuration above the threshold (green) was valid and any configuration below it 

(yellow or white) was invalid. 

 To continue the systems configuration example, over time, users report on the 

stability of their system configurations. An Escalier application, described below, can 

provide this relatively simple functionality for uploading configurations. These user 

reports are time-stamped, and our Escalier prototype assumes that if users stay with a 

configuration, it is likely to be stable. As more users land on a system configuration, then 

there is a higher likelihood that the configuration is stable. If users leave a configuration, 

it may be unstable or it may not have provided the desired functionality, and so the 

assessment is decremented lower. Thus, the crowd’s use ultimately leads to accurate 

assessments about the validity of system configurations. 

3.4.1.2 Expertise Layer – a Bayesian network of expertise assessment.  

 In its default state, the Base Layer is a straightforward probability map, where 

every user’s report is weighed equally. However, there are often users with more 

expertise. The Expertise Layer, the second part of Escalier, weighs the likelihood 

assessments by the expertise of the user that made the report. The Expertise Layer 

consists of another map that assesses users’ expertise levels, and its values are used to 

weigh the increments (and any decrements) in the Base Layer.  
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Figure 3. How Expertise Layer functions. (a) Escalier starts up with knowledge of user 
expertise from Q&A community data, for example, in the Expertise Layer (top). (b) Users 
report over time, and these reports are weighed by the expertise assessments (additional 

expertise data may also be added over time). 

 The Expertise Layer is dependent on obtaining users’ expertise levels. This can be 

done in a number of ways, none of them perfect. We have constructed two different 

Expertise Layer mechanisms. The first uses a simple z-score metric based on the metric 

in Zhang et al. (2007). This z-score is calculated from who answers whom in a Q&A 

community, allowing one to infer a 5-level expertise rating. The ratings are dynamically 

adjusted as Q&A activity continues, so the z-score-based Expertise Layer is constructed 

as a Bayesian network. Using z-scores, however, requires Q&A community data. Since 

most users will not participate in some Q&A community, this approach requires that we 

label these users’ expertise rankings as novices or don’t-knows.  

 The other expertise metric we constructed is based on a user's web history. Hung 

and Ackerman (2015) found that one’s web history of searching websites can identify 

users who are novices and who have high expertise in technical subjects. We believe that 

simple metrics, such as the use of advanced commands in Linux, can also imply a high-

level of expertise. (We note that all of these can be calculated on a user’s machine and are 

therefore privacy sensitive). We are confident that suitable discount expertise metrics can 

(a)       (b)   
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be found, although we believe different domain areas, such as security, will have other, 

specialized metrics. 

 The expertise evaluations lead to a weighting factor for users’ reports, and the 

Expertise Layer provides reweighting for the Base Layer’s likelihood assessments, as 

shown in Figure 3. The intuition here is that reports from someone with the highest 

expertise should be trusted, those from novices substantially less so. Without the 

Expertise Layer, the Base Layer will rate each user as a novice. As we will see later, 

adding expertise information substantially improves Escalier’s performance. 

 Weighting by expertise also provides additional protection against poor false 

positive assessments. Escalier’s Base Layer can be tuned to be conservative, as it is in our 

current prototype. However, because it is conservative, it requires many more reports 

than would be needed if one could weed out erroneous reports. The Expertise Layer 

provides the ability to winnow the end-users and pay more attention to those with higher 

levels of expertise or experience.  

 In terms of our example use case, the Expertise Layer would have assessments of 

people’s technical expertise. We could assume those with higher expertise would be more 

likely to know when their system configurations were stable and when to look for new 

settings. 

 Note that if more data were available (e.g., crash reports), Escalier’s assessments 

become only better. As well, we remind the reader that Escalier can say something about 

stable configurations from the very beginning because of its canonical data (Base Layer).  
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3.4.2 Escalier Applications 

 Escalier consists not only of its core functionality, but also support for 

applications. We have designed a number of Escalier applications. One was presented 

above; it was the Am-I-Normal application that determines whether a user’s system 

settings are consistent with the crowd’s. We have also constructed a simple reporting 

prototype. This application can also reside within a community MediaWiki. It is designed 

to give an incentive to report one’s configuration. The reporting application uploads a 

user’s configuration using a client-side script. It omits or obscures any privacy- or 

security-sensitive data. It also reports back to the user whether her configuration is likely 

to be valid. The reporting application can run stand-alone or, as with the MythTV forum, 

in a community wiki. Having applications run in the community’s wiki will make it 

easier for users. 

 Another application is Whats-Next (Figure 4), again incorporated as part of a 

MediaWiki page for a community in a simple recommender that allows a user pivots on 

her own configuration or a subset of it. Using What’s-Next, the user determine what 

additional system components could be added, with Escalier saying which new system 

configurations are likely to be stable. 

3.5 Implementation 

 Escalier consists of both Java code, which is the real kernel of Escalier, and 

Python, which provides scripting that adds functionality to the Java layer, supports 

prototyping, and handles the server-side of applications. The functionality of the MySQL 

engine is used extensively, so Escalier itself is relatively small. Currently there are about 

4500 lines of Java and Python in the Escalier system. The 3 applications presented in this 
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paper, relying on functionality on the Escalier side, are only approximately 500 lines 

each. Additional applications can be easily supported by adding application-specific 

functionality to Escalier’s scripting.  

 
Figure 4. The What’s-Next (WN) application. WN lets users look at what components they 

can add or modify, but still remain stable. 

3.6 Evaluation Through Simulations 

 We chose to examine Escalier’s potential workability, especially in terms of its 

use of expertise, using simulations. While preliminary tests of the Am-I-Normal and 

Whats-Next applications indicated Escalier's potential, to assess Escalier's actual 

performance at scale was intractable. We would have had to not only find tens- to 

hundreds-of-thousands of users, but also do so under conditions where we would not yet 

know whether the system was useful. This is not an uncommon problem in 

crowdsourcing research, and it inhibits finding new crowdsourcing solutions. 

 Instead, in the remainder of this section, we explore the use of simulations.  We 

wanted to know: 
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• Whether Escalier is feasible in principle and under what conditions 

• Whether the use of expertise leads to better crowdsourcing results. 

 To answer these questions, we used simulations to examine the system at scale. 

The next section explains an approach for doing so. 

3.7 Why Simulation 

 In simulation, one needs to construct models to examine the phenomenon in 

question. Each model, as (Gilbert and Troitzsch 2005) states, “...is a simplification – 

smaller, less detailed, less complex, or all of these together – of some other structure or 

system. (p. 2)”. One does this to better examine the relevant effects of important system 

and user characteristics and, in our case, variables such as number of users, density of the 

configuration space, user expertise, and so forth.  

 While there are many types of simulations, we decided to use a hybrid between 

simulations of computational systems and agent-based modeling and simulation (ABMS).  

(It is likely that simulations of crowdsourcing systems will be a hybrid.) The former has a 

long history in computer science (MacDougall 1970), although they are seldom used in 

HCI and CSCW. These simulations have primarily modeled the throughput of hardware 

and then the performance of software systems, including networking and distributed 

systems. Entities being modeled might include, for example, mainframe jobs that require 

disk and memory allocations. ABMS, on the other hand, has been used extensively in the 

social sciences as well as in distributed artificial intelligence (Bandini, Manzoni, and 

Vizzari 2004). In ABMS, agents consist of models of intelligent and social behavior; 

these agents operate in some modeled environment. 
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 Our simulation of Escalier as a crowdsourcing system must share many 

characteristics of software system simulations. Our goal is to understand the 

characteristics under which Escalier functions best (to be defined below). However, the 

entities flowing through our simulation are not computer jobs but rather intelligent 

agents, namely users, engaging in their individual and social activities. As in ABMS, we 

will need to model their individual behaviors within a given social environment. Our 

agent models, however, can be greatly simplified since their learning or emergent 

behaviors are not our central concern. 

 Simulations of software systems are most effective when they are used to 

understand the important issues in achieving suitable performance or other operational 

characteristics. For us, this led to two sets of simulations to determine whether Escalier 

was workable and would likely provide utility. The first examined the basic operation of 

Escalier. Its outcome measures included the number of users needed to produce results 

that would be helpful to other users. Our second set examined the relative boost or 

decline in results from including expertise assessments. The second set of results will be 

compared with the first – was Escalier’s performance enhanced with the use of expertise? 

 In general, evaluation of simulations can include validation through comparison 

with existing performance data. Unfortunately, systems under design rarely have such 

data. Instead, software system simulations are often evaluated largely on the credibility of 

their assumptions. We therefore detail our models and their assumptions in the following 

sections. Below, we discuss the problem space, outcome metrics, simulated environment, 

and simulated users. 
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3.8 Problem space and outcome metrics 

 To ground our simulations, we used the reduced system configuration problem 

discussed above. In this problem, we want to help users discover stable system 

configurations, but we simplify the system configuration problem to remove issues 

Escalier cannot handle (such as scripts). We argue that while this reduction limits the 

usefulness of Escalier to system configuration per se, it also allows us to examine the 

basic abstractions of Escalier use. We will reflect in the Limitations and Future Work 

section following our simulation results how Escalier might be used most effectively in 

conjunction with other software tools to handle system configuration, security, and 

activity traces. Meanwhile, we can model how Escalier functions. 

 To consider system configurations, we needed to divide the possible 

configurations C into two subsets: a subset of stable configurations Cs and a subset of 

unstable configurations, Cns. Configurations are probabilistically assigned to one subset 

or another for each simulation run. In turn, since Escalier assesses whether a system 

configuration is stable or not, we will have true positives and false positives when 

Escalier has likelihood estimates that match the ground truth. We use as outcome metrics 

the number of true positives and false positives found by Escalier. 

 Note in the ensuing discussions, we will use the problem domain-specific term 

stable for the general term valid when it is appropriate. 

3.9 Model of the environment  

 Given this problem space, determining a good model for the space of possible 

system configurations, and the stable and unstable configurations within that space, was 

the most difficult part of creating a good simulation.  
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 We first considered laying out the system configuration space C as a grid, and 

uniformly randomly distributing the stable configurations in that grid. That was obviously 

not sophisticated enough. 

 We then examined an empirical dataset of 330 Linux configurations (the output of 

Linux’s lshw –secure command), which we believe are all stable. Our analysis of the 

components of the Linux configurations suggested that, in general, they are likely 

clustered around one another: there was non-trivial duplication of large portions of 

settings. We found that an edit distance metric was useful in quantifying the statistical 

distance between a configuration's components (how far they are from each other). We 

calculated the pairwise edit distances between popular components of all configurations 

and aggregated the distances into a distribution. We discovered a positively-skewed log-

normal distribution of edit distances (distances were mostly small), which gave us a 

topology that not only covered this dataset but could also generalize to a larger, synthetic 

dataset that used the same basic distributions. Specifically, we used the Hamming 

distance between configurations, which is a fixed string-length version of edit distance, 

because it was computationally beneficial to normalize the configurations in this way. 

We used the remaining components in our dataset to validate these findings. 

 Accordingly, we modeled the configuration space as stable configurations 

clustered around canonical ones. As mentioned previously, canonicals are configurations 

known to be valid. For the system configuration problem space, canonicals are system 

configurations known to be stable (e.g., tested by a vendor or open-source community). 

In a simulation run, canonicals were randomly placed in the space (i.e., the edit distances 

between them were random). Stable configurations were then created by randomly 
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selecting a canonical, randomly selecting a target edit distance from a log-normal 

distribution, and then randomly editing the canonical until it attained the target edit 

distance. Appendix B discusses in step-by-step detail how stable and canonical 

configurations are determined for the simulation. 

 Thus stable configurations are clustered around canonicals, and the ratio of stables 

to canonicals represents the density of the clustering. The tightness of the clustering is 

affected by the distribution of edit distances between the stables and canonicals (lower 

edit distances create tighter clusters). We also evaluated the effects of various cluster 

densities and different distributions to assess the robustness of the environment model. 

 We modeled a simulated configuration as a 50-parameter vector, where each 

parameter can have 10 values. The size of the simulation space C is therefore 1050 

configurations. Each Monte Carlo run lays out between 1,020 (1,000 stables + 20 

canonicals) and 20,300 (20,000 stables + 300 canonicals) configurations. The rest of the 

space consists of unstable configurations. This state space is relatively small for actual 

system configurations, but it is tractable for our simulations while also able to give us 

insights into how Escalier would work. 

3.10 Model of user behavior 

 We needed a relatively limited model of users because we were primarily 

interested in their search behavior in the aggregate. White et al. (2009) show, in general, 

that there are multiple levels of expertise at play and that search behavior is affected by 

expertise level. Specifically, they found experts were more successful in their search 

sessions than non-experts, and experts tend to explore longer within their domain of 
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expertise by employing a more broad and diverse search strategy than do novices. Based 

on White et al., we modeled three characteristics of user behavior: 

• There are multiple levels of expertise. Our user model consists of five levels 

of expertise ranging from relative novice to relative expert, which is based on 

Dreyfus’ 5-stage model for skill acquisition (Dreyfus and Dreyfus 1980).  The 

actual number of levels is not as important as the fact that there are multiple 

levels of expertise. By intuition, we assume higher levels of expertise are 

more rare than lower expertise. Thus a given user’s expertise level is 

determined according to a Pareto distribution where novices are the majority 

and experts are rare.  

• Experts are more successful. Users’ levels of expertise correlate with their 

search accuracy within a search space. User accuracy is modeled by the shape 

of the distribution used to make edits to a configuration (see Appendix A for 

more details about user accuracy distributions). Experts modify their 

configurations using the same log-normal distribution of edit distances used to 

build the stable configurations, and novices use a "widened" log-normal so as 

to represent a near-equiprobable (i.e., random) selection of edit distances.  

Similarly, users with higher levels of expertise are more accurate in their 

reporting than novice users are. 

• Experts explore longer, more broadly, and more diversely. Users’ expertise 

levels also correlates with their level of effort in finding a stable system 

configuration. In other words, users with higher levels of expertise will 
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perform a more thorough search of the configuration space. In the simulation, 

experts make the most search attempts, and novices make the least.  

 Each user, according to her expertise level, searches for a stable system 

configuration. However, user assessments of stability are aligned with level of expertise 

(experts are correct in their assessment much more often than novices). Appendix A 

discusses in more detail how the user search and voting algorithm are determined for the 

simulation.   

 Note that while users in our model always act according to their expertise level, 

thus simulating a population of users, Escalier does not always know the expertise level. 

In the first set of simulations, Escalier cannot differentiate levels of expertise; in the 

second, it can use users’ expertise levels to better its likelihood assessments.  

 Also note we assume that users only modify existing configurations. To "search" 

the space, users edit some number of settings within their own configuration.  Therefore, 

edit distance is realistic for our model of how users move around in a system 

configuration space. We can directly measure distance as the number of edits needed to 

move from one configuration to another. 

3.11 Simulations 

 Finally, our simulations used 10,000-round Monte Carlos (Mooney 1997) to 

investigate Escalier’s usefulness under differing conditions. (Monte Carlos give an 

estimate of the true value of the outcome metrics, and 10,000 rounds provide a very tight 

variance for that estimate.) We used the Mersenne Twister random number generator 

with a period of 219937–1. 
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 Each Monte Carlo round randomly initialized the canonicals and the stables set. It 

then simulated the users, with randomly distributed expertise levels, using Escalier. Each 

user searched for a stable configuration, subject to his expertise level, and reported the 

results of that search to Escalier. Escalier then made a likelihood assessment of whether 

that reported configuration was stable. Each round simulated 200,000 users total.  

 We ran a 4x4x5x2 factorial simulation experiment where the factors were, in 

order, the number of users, the number of canonical configurations, the number of stable 

configurations initialized in the configuration space, and whether or not Escalier was able 

to consider user expertise. 200,000 simulated users was sufficiently large to assess 

potential utility at scale. In total, we ran 160 simulations, each with 10,000 rounds and 

200,000 simulated users. 

 We remind the reader that, although we discuss our simulations in terms of 

configurations, the simulations use an abstract notion of a configuration: an integer tuple.  

Virtually any kind of information need can be represented in tuple form.  A "stable 

configuration" means a tuple has correctly met an information need.  Thus we believe the 

results of the simulation are applicable to the broader use case of social navigation. 

3.12 Simulation Results 

 In short, our first set of simulations showed that Escalier worked in general.  

Table 1 shows a summary of the results for one set of parameters (20,000 stable 

configurations, 300 canonical configurations, expertise of the user is not used for 

likelihood assessments). This stimulation showed that: 

• Even with a relatively small number of users for a social computing system 

(10,000 users), there are benefits: Escalier helped users discover about one-
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third more stable configurations (36%) than were originally known. The gain 

in known stable configurations appears to grow dramatically (1168%) as more 

users interact with Escalier. 

• By the time Escalier has seen 200,000 users, it has discovered over 3500 

stable configurations, 18% of the actual stable configurations. Note this does 

not mean the crowd never reported on the other 82% of the stable system 

configurations – it means they did not do it enough for Escalier to decide that 

the configuration was probabilistically likely to be stable.  

• The number of false positives is small, and the true positives that are found 

increase with the number of users. 

Table 1. Escalier simulated performance using 20k stable configurations, 300 canonical 
configurations, and with expertise enabled. Values are means based on 10,000 runs.   

 

 All of these results were consistent across all simulations. The results were robust 

across all of the number of stable configurations used in our simulations, as well as the 

variation in the number of starting canonical configurations. Figure 5 shows there is 

positive growth in true positives as the number of users increase, regardless of the 

number of stable configurations in the simulation. We found similar results for the 

variation in number of starting canonical configurations: as users increase, so do the true 

positives, regardless of the number of canonicals.  
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 In summary, based on the results of the first set of simulations, Escalier appears to 

find many more stable configurations than would be known without it. As well, the 

benefits scale as the number of users increases. 

 
Figure 5. Effect of Number of Stable Configurations (300 canonical configurations; 
expertise disabled). The 4 lines are snapshots of number of users at that point in the 

simulation. 

3.12.1 Using Expertise 

 The second set of simulations examined using expertise. In short, using expertise 

boosts the results. Escalier's ability to use a user's expertise seems to have a significant 

positive effect on helping users find stable system configurations more quickly than if 

expertise were not taken into account. , Figure 6 using the same parameters as Table 1 

(20,000 stable configurations and 300 canonical configurations), shows the comparison 

between using expertise and not. Without using the expertise rankings for Escalier's 

likelihood assessments (i.e., if Expertise Layer were disabled), it takes about 160,000 

users for Escalier to discover 3,000 true positives. When expertise assessment is enabled, 

it takes roughly 90,000 users, which is a 43% decrease in users needed. This boosting 

effect is especially valuable when there are relatively few users: At 10,000 users, using 

expertise is most effective, helping users discover three times as many stable 
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configurations when expertise is considered (339 true positives, excluding the canonicals) 

versus when it is not used in the likelihood assessments (108 true positives). 

 

Figure 6. Effect of Expertise on True Positives (# of stable configurations found). This 
shows the effect of using Escalier's Expertise Layer's expertise assessments. 

 We also used additional simulations to compare the condition where the Expertise 

Layer only recognized three types of users. Figure 7 compares the effect of a discount 

approach against the original simulation using 20,000 stables, 300 canonicals, and with 

expertise assessments enabled. The figure shows there is little negative effect from 

collapsing the expertise rankings, and Escalier could use suitable discount expertise 

metrics. 

 
Figure 7. Effect of Discount Expertise Metrics on True Positives (20k stables, 300 

canonicals, expertise enabled). 
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 In summary, the simulations with the Expertise Layer being used showed that the 

use of expertise gives Escalier a noticeable boost, even when there are fewer users. Thus 

it is important to assess the users' expertise levels, if possible, for crowdsourcing systems 

like Escalier.  They also suggest domain experts are between two and three times more 

effective at finding stable configurations than domain novices and about twice as 

effective as advanced beginners. Designing Escalier or similar crowdsourcing systems to 

incentivize or solicit input from domain experts is likely to be worthwhile. 

3.12.2 Sensitivity Analyses 

 To evaluate the trustworthiness of our simulation results, we performed additional 

analyses on the assumptions in the models. We wanted to know how Escalier's 

performance would be affected if the assumptions in these models were changed. 

Although we looked at many of our assumptions, we report only three here.  

 We wanted to investigate the clustering density and tightness. One can vary 

clustering density by varying the ratio of stables to canonicals, and this was explored in 

the simulations presented above. With one exception, Escalier's effectiveness is 

reasonably robust to changes in cluster density. Escalier functions less effectively in 

either extremely sparse spaces with low numbers of users, or very dense spaces.  It 

always returns true positives regardless of the density, and generally, as density increases, 

so do the number of true positives discovered. In the condition with relatively few users 

(10,000) and very sparsely filled spaces, Escalier finds relatively fewer true positives.  

This is not surprising since there are fewer searches, and each user’s search is less 

fruitful. As well, with 200,000 users in the most densely clustered condition, Escalier 

discovered 13% fewer true positives than the highest observed number of true positives. 
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In this condition, the space is so densely packed with stable configurations that users kept 

discovering the same ones instead of being forced to explore more of the space to find 

additional stable configurations.  Therefore, if we were to change the assumption of how 

densely the space is clustered, we believe Escalier would maintain its effectiveness with a 

noticeable but acceptable decrease in effectiveness in the extreme cases. 

 Our environment model also assumed a tightly clustered space by using edit 

distances from a positively skewed log-normal distribution, which favors low edit 

distances. A normal distribution would cause larger edit distances to be used, and this 

would result in more loosely clustered spaces. To examine this, we ran a simulation using 

a normal distribution, and the results showed a decrease in true positives of almost 50% 

at 10,000 users and 36% at 200,000 users. Escalier does vary in its effectiveness if we 

were to change the assumption of the probability distribution for the edit distances or how 

tightly the configuration space is clustered. However, Escalier is only somewhat less 

effective in a more loosely clustered space, and it still helps users discover stable 

configurations at a significant rate. 

 Finally, we also found that the assessment threshold was reasonably robust. 

Reducing the threshold appears to only increase Escalier’s finding of true positives, but at 

the cost of more false positives. Reducing the threshold by 25%, when there were 10,000 

users, we see a 1.6x gain in true positives. The gain continues as users increase, although 

the effect decreases. However, the false positives also increase. With the decreased 

threshold and 200,000 users, the false positives triple, and when the threshold is 

decreased by 50% from the original, the false positives increase by an order of 
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magnitude. A reasonable threshold is likely between the original and the 25% reduced 

one, but it may be useful to dynamically change the threshold with the number of users. 

 In summary, even if the model assumptions were changed, all of the sensitivity 

analyses suggest that Escalier's performance would not deviate far from the findings in 

the original simulations.  

3.12.3 Summary of Results 

 To summarize, under some basic assumptions, the study of Escalier's simulated 

performance argued that Escalier would work as claimed and: 

• In the simulations, Escalier scaled appropriately. As the number of users 

increases, so did the number of true positives found.   

• We did not have additional “noise” as Escalier scaled.  We found it was 

possible to tune Escalier to keep the number of false positives low as the 

system scaled.  

• Knowing users' expertise levels boosted Escalier’s results, substantially in 

most cases. However, knowing users' expertise levels was not required.  

• Discount expertise measures are likely to be effective, and difficult-to-obtain 

measures are likely not to be necessary. 

 In short, under reasonable assumptions and in reasonable conditions, Escalier 

appears to be a workable crowdsourcing system, and the use of expertise improves its 

effectiveness. 
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3.13 Limitations 

 Our results are limited in that simulation studies provide evidence of workability 

and can examine the possible effects of system changes, but they are not empirically-

derived proof.  Simulations also cannot substitute for field studies where emergent 

behavior and everyday messiness can be observed.  Nonetheless, we believe the 

simulations were useful for the understanding we required. 

 As well, our use case scenario was necessarily reduced. For example, Chau et al.'s 

Polonium (2011) is more tailored to configuration management, and, in general, system 

configuration systems are substantially better for that particular domain. We remind the 

reader, however, that we were using the use case to motivate and then understand 

Escalier’s use of expertise. 

 We also see further examining the use of experts in systems like Escalier. Proper 

incentives for experts to explore more configurations could further bootstrap Escalier’s 

true positives. Alternatively, users might also want to see the evolution of experts’ 

configurations over time. Curious users could then follow the traces of configuration 

maintenance. 

 We believe that expertise can be used more within Escalier or its applications. 

The system could be able to ask domain experts to reconcile differences or add rules, for 

example, when inconsistencies are inferred.  

3.14 Conclusion 

 We began by claiming three contributions for this chapter.  They were (1) using 

expertise could substantially benefit crowdsourcing systems, at least for some 

applications, (2) Escalier was an innovative crowdsourcing system that used traces and 
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configurations from the crowd, and (3) simulations had utility as a way of testing the 

workability and feasibility of social computing systems like Escalier. We believe we have 

demonstrated each of these. In this chapter, for these contributions: 

• We presented Escalier and Escalier applications for an example use scenario 

to show how it worked. 

• We presented how Escalier could use the expertise ratings of users by 

weighting user reports to affect its likelihood assessments of specific 

configurations. 

• As a result of use, both users and a community have mutually-reinforcing 

motivations to use the system. Users can find out whether they have 

configurations likely to be stable and in return, the community gains a 

repository of suitable configurations. 

• We also showed that Escalier can operate effectively out of the box. It can 

bootstrap using canonical, or known, configurations, thus avoiding the cold 

start problem.  

• We showed in a simulation study of Escalier that it can provide utility to users 

by finding new configurations, and that utility scales appropriately with the 

number of users.   

• We also showed that the use of expertise boosted Escalier performance under 

the simulation conditions. 

• Finally, we showed how simulations were able to study Escalier at scale for 

basic workability and feasibility. 
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 In this chapter, we have described the Escalier system, and through a study of its 

feasibility at scale, we have answered the first research question posed in this thesis:   

• RQ1. Under what conditions, and to what extent, does mixed expertise within 

a crowd materially benefit a crowdsourcing system at scale? 

 Using Escalier, we investigated expertise at scale for fact-based expertise criteria, 

and there were some feedback loops (i.e., user reports and external expertise assessments) 

and mixed expertise leveraged from the same crowd. We wanted to do a deeper 

investigation of feedback loops and mixed expertise in different crowds, particularly in a 

domain where opinion-based expertise criteria was at play, so we built and studied 

another system with those motivations in mind. Using the same expertise layering 

principles we used for Escalier, we built the Kurator system. The next chapter explains 

Kurator and how it answers our second research question.   
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Chapter 4.  Kurator: Mixed Expertise between Crowds 

  

 The previous chapter's study of Escalier taught us that mixed expertise within a 

crowd materially benefits a crowdsourcing system at scale, and that feedback loops (i.e., 

user reports and external expertise assessments) were helpful to the system.  We now 

know, in theory, that leveraging a range of expertise levels in the crowd is worthwhile, 

particularly where the diverse expertise of a population can be leveraged to uncover more 

of a solution space.  Using what we learned, we wanted to establish, empirically, if mixed 

expertise was beneficial, and in what other problem areas it had benefit.  We also wanted 

to study more fully the effects of feedback loops in a crowdsourcing system.   

 In this chapter, we present the Kurator system, which expands the pool of mixed 

expertise contributors to include an expert crowd as well as machine learning agents. 

Kurator is designed to allow the expert crowd to perform work alongside, and to provide 

feedback to, a paid crowd and machine learning agents.  This mix of expertise between 

crowds allows us to address the second research question: 

• RQ2. Under what conditions, and to what extent, is there benefit when using a 

mix of crowds, differentiated by types and levels of expertise, to solve a 

problem when the crowds work on similar tasks?  

 Kurator is a solution within the second problem area discussed in Chapter 1, 

which focuses on personalized, subjective problems, where there are multiple valid 
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solutions to an end user.  Thus Kurator uses opinion-based criteria (see Chapter 2) for 

measuring expertise in predicting a user's subjective preferences.  We built Kurator using 

the principles of expertise layering to demonstrate the utility of this paradigm in an 

empirical study. 

4.1 Introduction 

 People have much more digital content than they can manage, even when it comes 

to relatively narrow sub-sets of content, such as digital photos. Researchers have called 

out the need for a strategy for forgetting, preserving, and remembering personal digital 

content (e.g., Nejdl and Niederee 2015), but this requires families to significantly shift 

their habits, which is often impractical.  Instead, a focus on using systems to help manage 

familial digital information may be valuable (Gulotta et al. 2015).  Since artificial 

intelligence (AI) is not able to make judgments about personalized, subjective content, 

approaches like crowdsourcing look promising. However, most prior crowdsourcing 

work has focused on inferring specific preferences by finding similar individuals or 

groups in the crowd (similar to collaborative filtering), or on solving general problems 

where everyone has some amount of the required expertise in the problem domain – 

neither of which are likely to be the case with personal data. 



 

 69 

 

Figure 8. Kurator system diagram. Kurator starts with a collection of digital media content. 
A machine learning tier reduces the amount of content by filtering, based on criteria for 

that media type (such as no volume for audio). The crowd tier then does further refinement, 
producing a candidate set for the family, who is the ultimate judge for family memory. 

Feedback from the family can guide the improvement of the machine learning tier and the 
crowd tier. 

 This chapter introduces a novel approach that uses mixed expertise crowds as part 

of a hybrid intelligence system to reduce the curation burden on families.  We explore 

this approach via Kurator, a system designed to help families curate their own digital 

audio recordings.  Kurator is a hybrid intelligence system (see Figure 8) because it uses 

inputs from machine learning and crowds. It also leverages the mixed expertise levels 

between “crowds”: families (experts) and paid web workers (variable expertise).  We 

implemented a tiered refinement approach whereby a machine learning classifier 

performs coarse-grained filtering on a family’s entire digital audio collection, and the 

crowd refines the classifiers’ output into a smaller, more manageable set of higher quality 

recordings that can be presented back to the family. Kurator also uses feedback from 

families and paid crowds as a way to obtain more personalized results by providing 

feedback to the ML classifier and the paid crowd. Providing feedback to this hybrid 

intelligence system can improve the system’s ability to return more accurate, 
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personalized results for families.  We evaluated Kurator through a user study with five 

families. 

 We found that not only is the resulting curation useful but also that crowdsourcing 

can be applicable to a class of problems we would not expect. Curating families’ digital 

memories belongs to a class of problems where it is not obvious the crowd can help: 

those for which specialized knowledge is needed (i.e., a family’s preferences), and the 

crowd is not the target audience (the family is). For these problems, we would not 

necessarily expect crowdsourcing to be a viable solution, but as we will show, Kurator is 

able to effectively leverage crowds to provide useful assistance.  We believe our work 

demonstrates a potentially important new problem setting in which crowds can benefit 

users.  

 We make the following contributions in this chapter: 

• Through the problem of digital curation, we show there is a class of subjective 

problems where crowds may be helpful but have not yet been leveraged. 

Specifically, we show that crowds are effective at predicting whether specific 

children's digital audio recordings will be valuable family memorabilia. 

• We introduce the Kurator system, a hybrid intelligence system which uses 

mixed-expertise crowds in a tiered architecture to synthesize inputs from 

multiple layers of contributors, such as machine learning, the crowd, and the 

family, to reduce the burden on a family with family curation tasks. 

• We show that Kurator can ameliorate the digital curation problem as well as 

the general validity of our approach through a user study, as well as a set of 

crowd experiments. 



 

 71 

 After we walk through the background literature for our work, we then present 

Kurator and its major design assumptions and features.  We then present the results of our 

user study and laboratory experiments where we examined whether Kurator and its 

features were effective.  We conclude with a brief discussion and limitations. 

4.2 Background 

4.2.1 Curation in HCI and CSCW 

 The practices and processes of selecting, organizing, and maintaining a collection 

of material is broadly considered as "curation." Curation has been extensively studied in 

institutional archives and library science, and it has recently been extended to data and 

digital curation (Yakel, 2007).  The problem of curating personal digital content is a 

difficult one that remains difficult and unsolved. Marshall (2007) noted that "digital 

material accumulates quickly, obscuring those items that have long-term value (p. 5)." 

Marshall (2007), as well as Marshall et al. (2006), found that almost all users do not do 

an adequate job of curation. 

 Early work on digital curation in CSCW/HCI focused on studies of and systems 

for sharing digital photos. Recent curation research in CSCW/HCI has focused on the 

work of curation in social media sites. Chang et al. (2014) examined the curation work 

taking place a social curation site, Pinterest.  Zhao and Lindley (2014) examined how the 

use of a social media site leads to a curated archive of personal digital content. Very 

recently, there have been studies of people's perceptions and understandings of 

algorithmic curation on Facebook News Feed and how it affects their use of the system 

(Rader and Gray 2015, Eslami et al. 2015). As well, a recent study on the "modern day 

baby book" investigated new mothers' photo sharing activities on Facebook (Kumar and 
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Schoenebeck 2015). These studies did not investigate how families might curate digital 

content when they do not want to share or keep private. 

4.2.2 Automating personal digital media curation 

 It is clear that people can hand select digital content for preservation and use. 

Relatively little work has investigated how digital curation might be done through 

systems, either machine learning-based or crowd-sourced.  

 Obrador et al. (2010) inferred user preferences for "style" using social cues from 

their online photo albums, but it did not allow for explicit end user feedback into the 

system. Other work that builds on the idea of inferring user preferences includes 

Guldogan et al. (2013), which required a profiling task to be performed by the end user.  

This, however, required training, and a usability goal might be to be effective "out of the 

box" without requiring user tasks before being useful, as we do with Kurator.  

 Recently, there has been research on automating personal digital media curation 

using general preferences for photo selections instead of user-specific preferences 

(Ceroni et al., 2015a, Ceroni et al. 2015b, Nejdl and Niederee 2015). Nejdl and Niederee 

(2015) concluded that a coverage-based approach, which attempted to cover multiple 

events, did not perform as well as a simple reduction-oriented strategy, which removed 

duplicate and near-duplicate photos. We follow this, using a similar reduction-oriented 

strategy in Kurator by filtering out low quality recordings. Additionally, this line of work 

suggests a potential utility in utilizing family-specific preferences by re-training the 

machine-learning agents on data supplied by the family or the crowd. 

 The only direct example of crowdsourced curation of personal digital media, 

Cusano and Santini (2014), proposed a community-sourced method to help users 
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categorize their photos using labels (i.e., tags).  This method correlates photos from the 

public Flickr user community with target users.  Public photos with labels are used to 

predict labels for similar photos from a target user.  This method works only when there 

is an Internet-scale repository of public data, and is appropriate only with some content.  

Kurator is designed to work when there is no public repository of similar data. 

As an indirect example of crowdsourced curation, Organisiak et al. (2014) used profiling 

tasks to understand user preferences, then they employ two approaches to understand a 

user: taste-matching and taste-grokking. Taste-matching works by finding workers 

similar to the user's profiling results, and with taste-grokking, where any benefit is 

limited to when the users train the crowd. As mentioned, we want an approach that is 

effective immediately but also improves with additional training. 

 Similar to taste-grokking, Yi et al. (2013) leveraged a user's response to pairwise 

comparisons from a subset of items.  They use a matrix completion algorithm, which they 

call crowdrank, to infer the user's preferences on the remaining items.  This matrix 

completion approach, however, can be very lengthy, increasing the task time and cost 

significantly. 

4.2.3 Using expertise in crowdsourcing 

 Our work also overlaps with systems leveraging collaboration between only 

expert crowd workers, between experts and non-experts, and among some mix of 

expertise.  In Chapter 2 of this thesis, we reviewed the literature on the use of expertise in 

crowdsourcing, and we drew attention to these types of systems.  Kurator builds upon 

that work by combining the mutual efforts of the crowd, expert users, and machine 

learning agents, in addition to leveraging expert users' feedback.  As well, Kurator's mix 
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of contributors represents a mix of expertise between "crowds," and Kurator uses a 

greater diversity and depth of mixed expertise than what we have seen in prior work. 

 As a point of emphasis, we remind the reader that by following the principles of 

expertise layering, we designed Kurator to work without requiring the expert crowd's 

involvement, especially when the system initializes with a new family.  This subtle but 

important point is what makes Kurator distinct from the prior literature, where experts are 

used to guide non-expert crowds but not contribute to the same tasks directly (e.g., Dow 

et al. 2012), or in a division of labor where experts work on different tasks than the non-

experts because those tasks can only be done by experts (e.g., Huang et al., 2015).   

4.3 KidKeeper Background 

 Kurator currently uses digital audio recordings collected from the KidKeeper 

system (Jones et al., 2016). KidKeeper is a toy-like device designed for children to 

spontaneously capture audio recordings of their everyday activities, combined with a 

simple curation and delivery system to enable parents to enjoy the recordings their 

children created.  The types of content captured using KidKeeper are children singing, 

telling a story, making up sounds or words, screaming, and short phrases. 

KidKeeper revealed the need for a more sophisticated, automated curation system to help 

parents find the "gems" of audio recordings (Oleksik and Brown 2008) from a large 

digital audio collection.  Next, we explain how Kurator addresses this issue. 

4.4 Kurator 

 Improving personal digital content curation requires trading off two key factors: 

scalability and access to specialized knowledge.  A family has "expert" knowledge of 
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what is meaningful to them, but their time is finite resource.  Machines can scale to 

massive data sets, but cannot understand the “meaning” of content, making only 

superficial assessment possible. Crowds of online workers are flexible, available on 

demand, and can be recruited at scale. Furthermore, crowd workers will likely have some 

level of common social understanding with the family. But the crowd is still separate 

from the family and does not know the subtler context underlying the content. 

Additionally, crowdsourcing can often be cost-prohibitive for very large collections. 

 Kurator is a hybrid intelligence system that reduces the time and effort cost of 

curation for families so as to make collections of digital memories easier to manage.  It 

uses a tiered architecture (see Figure 8) that first filters raw data using machine learning, 

and then asks the crowd to assess the content on behalf of the family. Finally, the filtered, 

significantly smaller set of potentially-interesting artifacts are returned to the user for 

final evaluation. After viewing and (optionally) further refining the set, family members 

can provide feedback to the crowd and machine learning to improve future results. We 

apply Kurator to the domain of personal digital audio recordings collected using 

KidKeeper. 

4.4.1 Example Scenario 

 Daniel, hearing the sound of young children running down the hallway of his 

hotel room, gets a twinge of nostalgia for his own children.  He logs onto the Kurator 

website to listen to some audio recordings of his kids.  He notices two things right 

away.  First, he see there are now over 1,000 recordings in his collection, and a part of 

him is thankful he hasn't listened to the vast majority of them.  The other thing he notices 

is that his Top 20 list has three recent additions.  He listens to the first recording and, 
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enjoying his son's rendition of Hush Little Baby, tags and rates the recording 

accordingly.  He enjoys the second recording, of his daughter saying how much she loves 

her daddy, and tags and rates it.  The third recording, the longest of the three, is less 

enjoyable because the family dog is barking for half of it.  He clicks on the feedback link 

for this recording, and on the subsequent page, he sees all the previous guidance he and 

his wife have provided up until now.  Seeing that they had, somehow, not yet provided 

guidance about their dog, Daniel submits the following feedback to the system: "It's not 

as meaningful if the dog is barking for too much of the recording." 

4.4.2 Design Considerations 

 Kurator is designed to address the fact that there is no way for (most) people to 

keep up with their digital media collections long term.  We make a few baseline 

assumptions about curating digital artifacts: 

• Curation is a process and not a static goal.  It is dynamic over time as tastes, 

goals, needs, and perspectives change. 

• Everything should be kept.  Digital space is cheap, so curation should no 

longer be about "keep or throw away" but rather about "what to pay attention 

to". 

• The primary goal of curation is not to select the single most meaningful 

artifact. Even families themselves may not be able to do this. Instead, the goal 

is to narrow the focus down to a meaningful set of artifacts for further 

processing by the family. 
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 Below, we discuss Kurator’s key design features: the integration of machine 

learning, the crowd, and families, and how we incorporate feedback in this process in 

order to improve results.  

4.4.3 Integrating machine learning 

 Design Rationale: We leverage machine learning to reduce the decision space for 

the human contributors.  Reducing the curation decision space by using automated 

approaches in a reduction-oriented strategy has been demonstrated on digital photo 

collections (Nejdl and Niederee 2015).  The automated approach we use needs to handle 

continually re-training machine learning classifiers over time as the crowd and the family 

provide inputs to Kurator.  For this purpose, Nguyen et al. (2015) suggest using logistic 

regression with gradient descent, which supports incremental training.   

 System Description: Kurator uses a three-class rating system, where each audio 

recording is rated as one of three classes.  Thus the machine learning classifier (ML) is 

currently implemented as a multinomial, or multi-class, logistic regression model using 

gradient descent.  This particular ML is meant as a proof of concept, and Kurator is 

designed to be agnostic to the ML algorithm and even to the use of an ensemble, or a 

"crowd", of ML algorithms.  The core of the ML is implemented in Octave (Eaton 2009) 

scripts, which are called from a Python script using the oct2py module.  When Kurator is 

initialized for a family, there are no human ratings to use to train the model, so regression 

coefficients from a preliminary study are used as the seed.  In practice, regression 

coefficients could be reused from other families who have already used the system.  The 

ML is re-trained as human ratings become available, and as new artifacts are uploaded to 

Kurator, the ML predicts ratings for them.  Also, our purpose for the ML is to remove 
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low quality artifacts, in a reduction-oriented strategy, because low quality audio 

recordings likely have more objective characteristics (e.g., noisy or blank recording). 

 For feature selection, we analyzed the KidKeeper data set.  The most common 

recordings captured with the KidKeeper device were songs, stories, and screaming 

gibberish.  In order to characterize these types recordings, we used these general 

principles: 

P.1 Screaming produces higher average amplitude than talking. 

P.2 Singing or talking has more frequent and dramatic changes in amplitude than 

constant screaming, random noise, or a blank recording. 

P.3 Longer recordings contain more content and are therefore more likely to have 

interesting content. 

 The features currently implemented are root mean square (RMS) of the 

spectrogram (addresses P1), RMS of the peaks in the spectrogram (addresses P2), 

duration of audio (addresses P3), and ratio of the peaks to the raw RMS (addresses P1 

and P2).  

 Note that our aim is not to create a state of the art machine learning classifier 

(ML) to eventually replace humans in the loop.  We deliberately left out a feature that we 

thought would be needed--detecting adult voices.  There are also many other speech 

classification features and methods we did not incorporate, such as emotion detection 

(e.g., Schuller et al. 2011 and Le and Mower Provost 2013), speech activity detection 

(e.g., Sadjadi and Hansen 2013), and age and gender detection (e.g., Meinedo and 

Trancoso 2011 and Hämäläinen et al., 2014).  Because the problem of personal digital 

content curation is highly subjective, we assume the ML is limited and will eventually 
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fail on some content, no matter how sophisticated the ML is.  We wanted to know 

whether the family could guide the crowd where the ML failed.  With our current 

implementation, we can test this easily and determine if Kurator is robust to a limited 

ML.  Future implementations can use more sophisticated ML mechanisms. 

4.4.4 Integrating crowd input  

 Design Rationale: Clearly, machine learning has limits, particularly on highly 

subjective tasks like personal digital curation, where "personal importance" is a key 

criterion for users in their decision-making (Ceroni et al., 2015a).  As discussed above, 

crowdsourcing has been used on subjective tasks and in personal digital media curation 

directly (Cusano and Santini 2014) and indirectly (Organisiak et al., 2014 and Yi et al., 

2013).  Thus harnessing the power of crowdsourcing seemed to be a promising approach 

to consider for this problem. 

 System Description: Our prototype implementation of Kurator uses Mechanical 

Turk as its generic crowd.  It also uses Amazon's Simple Storage Service (S3) to store the 

audio files, making them read-accessible only for the duration of crowd tasks.  Crowd 

tasks are automatically generated by Python scripts using Boto3, a Python interface to 

Amazon Web Services, to allow for API access to Mechanical Turk and S3.  We built a 

crowd-tasking engine to interface with Mechanical Turk.  This engine automates the 

workflow of creating HITs, collecting responses, and tracking the accuracy of workers' 

responses.  A HIT consists of a description of the task, a link to the audio file, a 

subjective scoring section, and a free-text feedback section.   

 We used, as the description of the task, the question: "Do you think this audio 

could be meaningful to the content owner?"  Workers were given three options 
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("Definitely", "Maybe", "No Way") as well as a free-text feedback section to answer the 

question: "Why did you rate it that way?"  We allowed three workers per HIT and used 

majority voting to determine the crowd's rating on a particular audio 

recording.  Furthermore, the crowd's ratings were later used to re-train the machine 

learning classifier. 

4.4.4.1 Are we asking the right question? 

 A key issue with integrating the crowd’s input was that we did not know how to 

elicit crowd responses that were in line with the parent's responses. We investigated the 

effect of changing the wording of the crowd task question altogether.  We tested four 

questions on the same 30 audio recordings where we had ground truth data, and we 

prevented crowd workers from working on more than one question.  The questions were: 

A. "Do you think this audio could be meaningful to the content owner?" 

B. "Do you think the content owner would want to hear this again in the future?" 

C. "Would you want to hear this again in the future?" 

D. "If this were your child, would you want to hear this again in the future?" 

 Quantitatively, we found that Question A's ratings were the only ones with at least 

moderate agreement with the ground truth (kappa > 0.4).  Question B showed fair 

agreement (kappa > 0.3), which suggests that framing the question as a judgment about 

the content owner's preference might elicit crowd responses that are in line with the 

parent's responses. 

 As confirmatory evidence of this, for Question C, there were many negative 

remarks in the "Why did you rate it that way?" feedback, such as "I'm not sure why I 

would want to listen to a toddler singing if it were not my child. This recording is 
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moderately creepy", and "This is grating on the ears." As well, crowd workers used the 

word "annoying" much more often to describe a recording when answering Questions C 

or D. 

4.4.5 Integrating the family’s expertise 

 Design Rationale: The crowd inherently does not have as much situated 

understanding as do family members. Therefore the family should add its expertise, but 

only in a cost-effective manner for them.  Our goal was to allow family members to rate 

only the content that had been deemed possibly appropriate by the machine learner and 

the crowd. 

 System Description: We implemented a family-facing website built with Django 

and Bootstrap.  Referring back to Daniel's activities in the scenario above, he interacts 

with the website to access his family's personal content.  As he listens to recordings, he 

provides ratings (similar to how the crowd provides ratings) and occasionally submits 

keyword tags. 

 To solicit ratings and text tags from the family, every audio playback web page 

contains: a question--"Would you want to hear this again in the future?", clickable 

buttons to answer the question – "Definitely", "Maybe", and "No Way", and a free-text 

area to submit keyword tags, limited to 140 characters (same as Twitter).  The three 

categories of ratings are the same for the family and the crowd. 

 Note that Kurator is designed to incorporate family-sourcing as well, where 

multiple parents, other family members, and family friends can be included--technically, 

anyone the parent wants to give access to.  Each person would have his or her own login, 

and the parent can restrict whom to give feedback access to.  Intuitively, close family and 
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friends probably have more knowledge about the family than a generic crowd does, so we 

expect the family "crowd" to have higher levels of expertise than the generic paid crowd. 

4.4.6 Implementing feedback loops 

 Design Rationale: Since the family is the end user of Kurator, their subjective 

preferences need to be considered.  As they are the experts for this task, it could benefit 

Kurator to allow the family to "shepherd" the crowd (Dow et al., 2012) by being the 

source of external feedback to crowd workers.  Natural language descriptions have 

proven to be an effective way to guide crowd workers (e.g., Dow et al., 2012, Zhang et al. 

2012 and Kokkalis et al. 2013).  

 System Description: The Kurator website allows the user to provide guidance to 

the crowd.  Family guidance is used verbatim in the tasks assigned to the 

crowds.  Furthermore, the family's ratings, as well as the crowd's ratings, are used to re-

train the machine learning classifier. 

4.4.7 Summary 

 Kurator is a hybrid intelligence system that uses machine learning along side 

mixed-expertise input from people (crowd workers and families) to weed out low quality 

artifacts.  As Kurator’s tiered process moves from machine learning to the experts, the 

task requirements are increasingly subjective.  The use of machine learning, crowd 

workers, and experts to collectively label items has been used in active learning (Nguyen 

et al., 2015), where the aim is to minimize costs over a finite pool of items.  Kurator 

differs in that the pool of items is not finite (i.e., the pool of artifacts grows over time), 

and due to the subjective nature of the personal digital curation, the "ground truth" (what 

a family deems important) can vary. 
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4.5 User Study and Experiments 

 To better understand if Kurator's tiered architecture helped reduce the level of 

work for end users, we ran a user study with five families. To explore how guiding the 

crowd and re-training the ML improved system performance, we ran a series of focused 

follow-up experiments. 

4.5.1 Study Design 

 The study participants were five families who had used the KidKeeper system for 

about a week to capture recordings of their children. The study was designed to obtain 

ground truth ratings as well as qualitative data from semi-structured interviews. The 

ratings were the categorical responses discussed above: "Definitely", "Maybe", and "No 

Way". Parents also chose their absolute favorites from their list of "Definitely"-rated 

recordings, with no minimum or maximum number suggested or required. We did this in 

order to evaluate how well Kurator could find a parent's favorite recordings, which we 

refer to as Favorites throughout the rest of the chapter. The interview consisted of 

questions about parents' decision-making processes for their ratings, the difficulty of 

doing the ratings, what they thought about Kurator's selected recordings, and if they 

could train someone else to recognize their preferences.   

 An issue we had to overcome was the size of each family's audio collections: they 

ranged from 217 to 620 recordings. The limiting factor for the user study was the parents' 

time, and we felt that having parents rate their whole collections would have been 

unreasonably burdensome. Thus we used a randomly sampled subset (n=120) for each 

family.   



 

 84 

4.5.1.1 Sampling 

 In a preliminary study with a different family, we found that simple random 

sampling resulted in too many low quality audio recordings (i.e., those rated as "No 

Way").  After two researchers coded all study participants' recordings into the three 

categories, we found there were a much larger percentage of non-keepers (No-Way's) 

than keepers (either Maybe's or Definitely's). Accordingly, we used a stratified non-

proportional random sample (Bernard, 2011) of the coded recordings to equalize the 

number of recordings in each category (n=40 for each of three categories). For the rating 

task in the user study, the Kurator website was configured to present one recording at a 

time to the user, and each recording was randomly sampled from the sampling frame. 

4.5.1.2 Baseline ML parameters 

 We needed to seed the machine learning classifier with a baseline set of 

parameters, so we trained the ML on rating data collected in a pre-study. Kurator used the 

same baseline for each family. 

4.5.1.3 Kurator's Top K 

 The study included a comparison between the parent's Defintiely's (including 

Favorites) and Kurator's selection for what it thinks the top k recordings are. We set k=12 

(10% of 120) and played at least that many recordings during the interview. 

4.6 Findings 

 In this section, we use the ground truth data collected from the user study in 

follow-on experiments, as well as interview data.  In our evaluation, we use precision, 
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recall, and F1 scores to measure Kurator's overall performance as well as the performance 

of its hybrid intelligence components: the crowd and the ML classifier.  

4.6.1 Kurator worked 

 In the interview data, there were two sets of preferences that parents followed. 

These were not always mutually exclusive, as they were preferences.  

 Overall, parents viewed Kurator as a tool to augment their curation work by 

reducing the overall workload. We called this preference "Best-Of" because the user 

wanted to hand-curate a reduced set. One parent remarked: “I don't even go back and 

look at all 60,000 pictures that I have on my computer. If it's going to send me a smaller 

sample, I'm more likely to listen to all of them.” 

 Another parent also elaborated on the benefits of working on a reduced collection: 

“[Maybe if] it saved 10 minutes worth of samples, where it's small enough that you could 

sit down and kind of click through them quickly and figure out if you like it or not. You 

got time for that in between other stuff, where if it's large, large number of stuff, when are 

you going to sit down and actually go through it?”   

 A third parent acknowledged her use for Kurator would depend on the frequency 

of her curation efforts: “I would probably let [it] give me the top 20. If I knew this was 

going to happen once a week, I would let it do it for me. Yeah, I think I would just 

definitely choose the efficiency over making sure I captured every single moment.” 
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Table 2. ML classifier's precision, recall, and F1 scores. 

 
 

Table 3. Crowd's precision, recall, and F1 scores. 

 
 

Table 4. Kurator's precision, recall, and F1 scores. 
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 These sentiments about Kurator's utility as a curation tool is further supported by 

our quantitative data. Kurator was effective in refining the families' collections by 

systematically removing non-keeper recordings. Table 4 shows that Kurator had 80% 

precision, 67% recall, and a 0.73 F1 when predicting NoWay audio clips. This suggests 

the tiered refinement approach may be a reliable way to winnow a collection down 

simply by removing artifacts of the lowest quality.  In terms of raw numbers, Kurator 

removed 342 out of 600 audio clips (120 x 5 families), and it did so with 78% precision, 

meaning for every four recordings the system filtered out, three of them were truly non-

keepers.  This metric, alone, suggests Kurator may be a useful tool for reducing the 

workload on families who prefer to hand-curate a reduced set to find the "Best-Of." We 

will discuss this more below. 

 At other times, parents talked about finding "gems" in the collection.  These are 

essentially a set of clips in an equivalence class.  In this preference, parents were less 

interested in winnowing down their collection so they could hand-select interesting clips.  

Instead, they were happy when Kurator found "gems" even if it didn't find all of them. 

We called this preference "Album", and it was manifested as a desire to hear many 

sufficiently interesting recordings instead of only a few very meaningful ones.   As an 

example, one parent enjoyed when Kurator returned an audio clip of his young boy 

reciting the following line from the movie The Princess Bride: “My name is Inigo 

Montoya. You killed my father. Prepare to die.”  Another parent expressed using a low 

threshold for what she would find interesting enough to listen to again: "I pretty much 

would definitely listen to all the ones that weren't garbage files. I liked all of the ones that 

were of them talking..." 
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 The following sections discuss how each tier of Kurator worked and then goes 

into more detail about how well the system worked overall. 

4.6.2 ML is effective at filtering non-keepers 

 As the first tier of the tiered architecture, we want to know if the ML was 

effective in terms of its quality of predictions.  Table 2 shows the ML's effectiveness in 

terms of precision, recall, and F1 scores.  Overall, the machine learning classifier had an 

F1 score of 0.51 in finding non-keepers (NoWay's).  For the three most selective families 

(i.e., they rated the least number of clips as Definitely's), the ML had 100% precision for 

two of them and 94% for the other, when predicting No-Way ratings.  This is likely due 

to these families strongly favoring the "Best-Of" approach, which means they tended to 

rate a large majority of their collections as NoWay.  This would increase the likelihood 

that a ML-rated NoWay was also rated as NoWay by the family, thus driving up the 

precision for NoWay's. 

4.6.3 The crowd is effective 

 As the second tier, the crowd was overall particularly good at identifying non-

keepers (NoWay ratings), achieving 89% precision and 60% recall (F1=0.72) across all 

families combined (see Table 3).  The crowd was only moderately successful in 

predicting Definitely ratings (58% precision, 43% recall, 0.50 F1), but for one family, the 

crowd achieved 91% precision (n=35).  This family rated significantly more Definitely's 

(n=62) than the other 4 families, which would drive up the crowd's precision for 

Definitely's, similar to the previous discussion about the ML's high precision for 

NoWay's. 
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 Note that the recall for four of the families ranged from 38% to 67%, meaning the 

crowd was able to uncover a significant subset of the Definitely's, in general.  The recall 

and precision of zero for Family C's Definitely's may have been a consequence of their 

using nuanced and idiosyncratic criteria, which we discuss below. 

 Interestingly, four crowd workers expressed their enjoyment, via unsolicited 

emails to the research team, in doing the task of rating audio clips of children. Two 

workers said they "loved" hearing these clips, commenting on the cuteness and 

hilariousness of the children's utterances.  One worker even remarked: "As mine grow up 

I wish I had saved so much more audio of them."   

 Remarkably, the crowd divulged an interesting array of thought processes and 

criteria they used to make their decisions in their free-text responses in the tasks. Beyond 

frequent statements about recordings being "cute", "silly", and "adorable", workers often 

viewed specific activities they heard as being important to parents, such as singing, 

playing, and a "child calling for her daddy...means so much". Some workers guessed 

about possible use cases that would make an audio clip valuable, such as: "meaningful...if 

long distance" or "to a parent who isn't around at the time this occurred", "put into a 

musical Christmas card...sent overseas if they have a parent in the military", and "they 

might want to embarrass their kid when he's older; quite funny".  Others made 

judgments, different from their own opinion, based on what they thought the parent 

would choose: "it's a child screaming, perhaps [the parent] thinks it's funny but it's 

annoying really" and "I think this audio will only be meaningful to the audio 

owner...while cute, it doesn't mean a lot to people who do not know the child or have 

some context to go with audio." Finally, many workers were willing to share personal 
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thoughts about the audio recordings themselves: "Reminds me of my kids", "heart 

breaking child wishing for parents, so moving", "sounded awesome; [my] favorite so 

far", "I love kids just being kids", and "children grow up so fast". 

4.6.3.1 Identifying specialized crowds 

 Given the crowd's apparent ability to draw on their own experience or to use in-

depth thought processes to predict ratings for others, we wanted to better understand if 

there was a subset of the paid crowd that seemed to perform better than the rest of the 

crowd.  To identify a "specialized" crowd, we ran an experiment where 40 crowd workers 

rated 30 randomly chosen recordings from two families (15 from each family).  In 

addition to soliciting the ratings, we asked demographics questions of the workers: their 

age range, gender, how long they have been a parent, and how many children they have. 

 We calculated each worker's accuracy based on how their ratings compared to the 

ground truth (i.e., the parents from the user study).  Of those who have children (n=16), 

workers 35 and younger rate less accurately than those who are 36 and older (47.8% vs. 

63.3%, respectively; Fisher's exact test p-value=0.02).  Remarkably, when comparing the 

same age groups for workers without children, we see an opposite effect: workers 35 and 

younger were more accurate (55.8%) than those who were 36 and older (48.0%), but the 

effect was not statistically significant (Fisher's exact p=0.24). 

 Because this data suggest "older" parents are able to rate more accurately, we 

wanted to take a deeper look at why this might be true.  We discovered that worker age 

was a by-product, in most cases, of how long a worker had been a parent.  Workers who 

had been parents for 16 or more years (n = 5) were more accurate in their ratings than 
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those who had been parents for 5 years or less (70.7% vs. 53.6%, respectively; Fisher's 

exact p=0.006). 

 These results suggest there is a subset of the crowd with substantially more 

expertise in predicting how parents of young children would judge the sentimental quality 

of audio recordings.  This specialized crowd, as it were, appears to consist of middle-

aged (and older) workers who are parents, and if they have been parents for a significant 

amount of time (16+ years), they seem to have even more expertise.  If this is true, it 

would imply that their lived experience as parents has equipped them with specialized 

knowledge they are drawing upon for this problem.  It is important to note that all the 

parents in the user study have been parenting for nine years or less.  This could mean that 

a specialized crowd for curating digital audio recordings might need to have been 

parenting at least as long as the end users in order to be most helpful. 

4.6.4 Kurator as a tiered architecture is effective 

 The goal of Kurator’s tiered architecture is to allow for contributor types with 

different strengths to be traded off. For example, we use machine learning as a scalable, 

cost-effective way to take a quick pass, but human insight (i.e., from the crowd) is 

required to make more accurate judgments. 

 Measuring the performance of our approach requires looking at the ability to trade 

off cost and accuracy. Table 5 shows the tradeoffs induced by the crowd’s performance 

as well as the tuning of the machine learning system used in our trials. Crowds are able to 

more accurately assess memories, but can be cost prohibitive. In fact, for 10,000 audio 

clips (about 8 months of data for our average family) it would cost $2,100 to have the 

crowd rate them all. Adding in the machine learning tier as a pre-filter for what the crowd 
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sees can reduce the cost by $711 if recall of Definitely's is optimized for ("Album") or by 

$2,076 if precision of Definitely's is optimized for ("Best Of"). This is exactly the 

intended effect.  

 Since the machine learning component itself can be tuned to trade off precision 

and recall (along a ROC curve that is specific to the classifier), it is possible for users to 

adjust the effect of the classifier to fit their preferences.  This feature was not 

implemented in this prototype, and is left for future work. 

 Table 5. Curation quality, reduction in user effort, and cost savings caused by the 
machine learning tier of Kurator.  "Album" favors recall of Definitely's, and "Best Of" 
favors precision for Definitely's (quality = precision for Definitely's, and %reduction = 

proportion of collection rated as NoWay) 

 
 

4.6.5 Re-training the crowd 

 We believed that using feedback from the family would improve the quality of the 

ML and crowd's performance.  To check this, we obtained family-specific guidance to the 

crowd for two families. This guidance came from responses to interview questions where 

parents were asked what they would tell a stranger in order to help them rate the family's 

recordings. An example from Family A, who provided guidance for their Definitely 

preferences, was: "Choose 'Definitely' if it makes you laugh or if it gives you an 

emotional response."  Another example from Family B, who had two Definitely, one 

Maybe, and one NoWay guidance statements, was: "Choose 'Maybe' if the kids are 

saying something but you can't make out what they are saying." 



 

 93 

 We used the guidance statements to update the crowd's task descriptions for each 

family and then obtained new ratings for all 120 recordings for each of the two families. 

For both families, the crowd's F1 score for Definitely's increased (.46 to .57, and .66 to 

.78) but decreased slightly for NoWay's (.80 to .73, and .82 to .75).  For both families, the 

guidance to the crowd included specific criteria for when to rate a recording as 

"Definitely" keep, which seemed to cause the crowd to assign more Definitely ratings for 

each family than they did without this guidance.  This increase in Definitely's led to more 

of the Definitely's being identified, and it also led to fewer NoWay ratings.  This caused 

the Definitely recall to increase and the NoWay recall to decrease.   

4.6.6 Re-training the ML from the crowd and family 

 We re-trained the ML, per family, using the crowd's ratings, and then using the 

family's rating.  After re-training on the crowd's ratings, the ML had a slight 

improvement in F1 score (0.54 to 0.57) when predicting NoWay ratings, and it improved 

significantly in precision (0.43 to 0.67) when predicting Definitely ratings. This suggests 

the crowd's inputs primarily benefited the ML's assessments of Definitely-rated 

recordings, which is not unexpected, considering the crowd is more effective in 

identifying Definitely's than the ML is. After re-training the ML on the family's rating, 

the ML scored much higher in F1 (0.51 to 0.66) for NoWay ratings, meaning the ML had 

a better grasp of what to filter out of the collections after incorporating families' 

inputs.  The larger improvement was in the ML's precision for Definitely ratings, where it 

increased from 0.43 to 0.69. Again, this is as expected, and it validates that re-training the 

ML using the crowd's and/or the family's examples benefits the classifier's effectiveness, 

particularly when predicting Definitely ratings. 
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4.6.7 What happened? 

 To understand more about where Kurator differed from the preferences of the 

parents, we compared Kurator's selection of Favorites, the top k on each family's 

Definitely list.  We used this to understand what criteria parents were using and how they 

differed from what Kurator could determine. 

 Overall, as indicated before, parents were generally satisfied with Kurator's 

selection. One parent stated she preferred Kurator's list over having to listen to 120 

recordings.  Another parent was pleased that Kurator caught an important clip she had 

overlooked in her ratings.  As mentioned, Kurator found children saying cute sayings 

such as the Princess Bride quote mentioned above. For that clip, the crowd rated it as a 

Definitely, and one worker remarked: “It’s really cute but dark! [It] would make a parent 

laugh.” 

 Other examples, such as a 2-second recording of a parent’s two daughters 

laughing and making unintelligible, silly sounds, suggest the crowd was able to find 

content likely to be meaningful to parents even without much linguistic content. 

 Kurator also missed some clips. Some cases in which responses were counted as 

incorrect did not have an impact on the end users. For example, when duplicate clips 

(multiple recordings with the same content) were present, Kurator sometimes included all 

of them in its top k, or it would pick a different one than the family chose as a Favorite. 

This artificially decreases Kurator’s measured performance. 

 One parent had two clips in her collection of her daughter saying “My name is 

Clementine.”  Although they sounded almost exactly the same, in one of the recordings, 

the parent heard her daughter use her “home voice”, and thus selected that clip as the 
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Favorite out of the two, although she would have been happy with either:“One example 

is Clementine had two and they were basically exactly the same, but I picked one because 

it sounded more like what she sounds like at home. She's very shy and she doesn't talk a 

lot to other people, so only really us and our family know what she really sounds like.” 

 Similarly, another parent had four clips of her son saying the same thing. She 

marked them all as “Definitely” in her first pass through the collection. However, when 

she had the chance to review her selections and upgrade some of them to Favorites, she 

only marked one as a Favorite: “I think I had saved Cooper saying I love you 4 times, but 

then I [de-selected] 3 of them. I don't need him saying it 4 times.” Kurator however 

classified three of the four “I love you’s” as top picks. She was not upset about this near-

miss, because, although she only saved one to avoid duplication, these were some of the 

most valuable clips that she had, mentioning that “... there wasn't any other better choice 

to choose from.” 

 This ability to pick up on meaningful content was a key strength of the crowd. 

Whereas automated curation strategies depend on surface-level features, and parents had 

a certainty drawn from their in-depth knowledge of their children and their own 

preferences, the crowd nonetheless was able to draw on its own experience to guess what 

might be meaningful quite accurately. We return to this idea of “common understanding” 

in the discussion section. 

 At times, Kurator severely missed.  Often it was because of very specialized and 

idiosyncratic knowledge that only the family possesses.  We believed this would be true, 

although future iterations of Kurator need to take them into account. 
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 The one parent who expressed dissatisfaction with Kurator's list was disappointed 

that the list she heard included recordings mostly of only one of her three children 

(anonymized): “I didn't hear a lot of Sally or Michael. Yeah, it was mainly Max. I mean 

that's just one from my child, I need to hear Sally and Michael. I'm an equal rights mom. 

All my children get to have one each.” This comment potentially reflected curation 

preferences that favored representativeness in what was kept.   

 Where the ML and the family differed, the clips were unremarkable at the signal 

level: they were mono-tone or quietly spoken utterances. For 3 of the 4 clips where the 

crowd and the parents differed, workers had trouble understanding the children’s poor 

articulation of otherwise normal English words. The fourth crowd-filtered Favorite was a 

whistle being blown, which the crowd deemed as “just noise”.  The parent explained: 

"That was when we went for Ella's birthday and they all got those Chuck-E-Cheese 

whistles. [The kids blew the whistles] in the car, the whole way home and the whole next 

day. Of course, [KidKeeper] got some Chuck-E-Cheese whistles, it was hilarious! … I 

had already forgotten about it and that reminded me how awesome it was."   

 The sound of the whistle was a trigger of a particularly sonic memory for this 

parent, but would be perceived by anyone else as just noise. The parent anticipated the 

obscure nature of the clip, and did not expect the system to catch it because “it was an 

inside joke.” In these examples, “insider” knowledge is required, and Kurator failed 

expectedly.  This suggests that the ML and the crowd may need to be tuned 

conservatively for some families. 
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4.7 Discussion 

 Parents were generally happy with Kurator's top k even though the quantitative 

data paints a bleaker picture.   

 The findings suggest that crowds are effective at predicting whether specific 

children's digital audio recordings will be valuable family memorabilia.  As mentioned, 

leveraging crowds, alone, is not a scalable solution. Combining mixed expertise crowds 

with machine learning increases scalability and decreases monetary cost, but it comes at a 

price in terms of system precision.  Kurator's ML component was fairly effective, at best, 

but the paid crowd was very effective. The combination of the two resulted in a precision 

that was less than what the crowd could achieve alone.  For the tiered architecture, 

researchers must investigate more deeply what tradeoffs their users want, in terms of 

price versus precision. 

4.7.1 Leveraging the crowd's common understanding 

 Curating subjective, semantic content has been theorized to be beyond the current 

capabilities of automated approaches. Barriers range from inability to make idiosyncratic 

judgments to a lack of contextual knowledge needed. Further, the criteria that those with 

“expert” knowledge have are difficult to fully articulate. Yet, with Kurator, the 

combination of crowd and machine was somehow able to be reasonably successful.  

 There were obvious wins. As we point out in our findings, some clips were 

selected to keep unanimously by the system and the family. These clips were those that 

were commonly understood to be good and meaningful to a parent. These common 

understandings, for example recognizing that a child speaking about a parent was highly 

likely to be valuable or that “I love you” is always worth saving, were critically important 
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to the success of Kurator.  We found that the crowd was underestimated in the literature 

with regard to its ability to react sympathetically to a subjective task. Their ability to pull 

from common cultural assumptions (Berger and Luckmann, 1991) is actually a viable 

source of help on this class of problems. 

 There were also cases where Kurator consistently failed. In these cases, the value 

of a clip could not be surmised from its content alone. For some clips, the sound quality 

of the recording, due to it being noisy or unclear, caused it to be filtered out by the crowd 

or ML. For other clips, such as an "inside joke", a common understanding of cultural 

assumptions was not helpful.  In the third case, the value of a clip was relative to its role 

in a collection rather than just its own content. In each of these cases, Kurator did not 

have the necessary context and information to make a good guess. However for most of 

these cases, Kurator was expected to fail. It was taken for granted by parents that there 

were some audio clips that would be impossible to recognize to anyone but them.  

 There were hard cases, however, where the value of a clip was more ambiguous. 

In these cases, the crowd’s common understanding was not nuanced enough to recognize 

the full value of a clip. Yet, the crowd was not consistently wrong. For cases where the 

crowd missed the nuance, such as failing to recognize a child’s message to her father to 

not leave for work, there were corresponding cases where the crowd actively recognized 

non-obvious semantic value and even crafted elaborate narratives to explain why they 

thought it might be valuable to a parent. The ability to recognize the value of some clips 

may be tied to workers' experience or ability to create a believable narrative for 

themselves about the potential value of the clip.  
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4.7.2 Criteria may change over time 

 For some parents, their ratings on the first few recordings were not as consistent 

with the rest of their ratings due to a lack of familiarity with their digital collection.  This 

lack of familiarity impacted their curation decision-making criteria, and it potentially 

created noise in the system, which could mislead machine learning agents.  One possible 

remedy for this is to prevent users from rating the first time they are presented with a 

refined collection from a curation system.  Another solution might be to have parents re-

rate old recordings, either randomly-selected or strategically-selected ones.  We elaborate 

on this below. 

 Some parents speculated that their criteria would change over a longer period of 

time, like 20 years.  Prior research has shown that time impacts the meaningfulness of 

certain digital content (Gulotta et al., 2015).  Ceroni et al. (2015a) also point out their 

participants desired to be able to update their preservation decisions every 2-5 years.  The 

implication is that we need a way to encourage long-term use of a curation system.  We 

know parents enjoyed the task, especially in small time chunks, which makes an 

approach like selfsourcing look promising (Teevan et al, 2014). 

 Curation systems like Kurator could incorporate a selfsourcing framework as a 

way to re-calibrate the crowd and machine learners as the family's notion of what makes 

an item meaningful changes over time (Gulotta et al., 2015).   

4.7.3 Focus on specialized crowds 

 Using specialized crowds is another avenue for potential improvement.  Because 

Kurator leverages a mix of crowds with varying expertise levels, it may benefit the 

system if it were possible to identify and leverage specialized crowds dynamically.  If a 
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subset of a paid crowd had specialized skills, particularly with how and what to curate for 

long-term preservation, Kurator could leverage their higher levels of expertise.  At least 

some portions of the crowd seemed to use an in-depth thought process when making their 

decisions about ratings.  We believe there is some amount of common understanding, 

such as looking for "cuteness", but the stories the crowd members were telling indicate 

they were going past "cuteness", per se.  

 An investigation into specialized crowds would need to, first, identify them and, 

second, determine how to dynamically leverage them.  This study has shown it may be 

possible to identify specialized crowds within the paid crowd.  Dynamically using them 

may be more difficult, but specialized tests, or discount expertise metrics, may be helpful 

in automatically identifying, then utilizing, those with expertise in curating.  In the next 

chapter, we more fully explore ways to identify and leverage specialized crowds. 

4.7.4 Privacy 

 One significant obstacle to deploying crowd-powered content curation systems is 

privacy. To help partially address this issue, we used a less-identifiable medium (audio), 

kept user information private, used large distributed crowds, and randomly ordered 

content to prevent workers from “following” certain users or families. However, families 

may share (accidentally or intentionally) content that contain sensitive data, personal 

information, or other private content. Prior work has shown that there are several means 

by which workers can access or even reconstruct shared sensitive user information 

(Lasecki et al., 2014). Obfuscation methods such as audio warping and worker routing 

that minimizes the amount of information from one family that one workers sees can 

further improve the chances of safe use of crowd powered systems in our setting. 
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Research has also explored how intelligent division of content (Kajino et al., 2014; 

Lasecki et al., 2015) can help reduce the threat of information exposure. Future work will 

explore how crowd’s ability to assess the sentimental value of content is affected by these 

filters. 

4.8 Limitations 

 Our study explored the viability of using crowds and our tiered architecture for a 

curation task with a focused group of participants. A larger scale deployment over a 

longer period of time is needed to further explore questions about how people choose to 

trade off quality and cost, how assessment of sentiment changes over time, and how 

much the curation regimes between families diverge (or possibly even converge) over 

time.  

 Another limitation of our study is that we only collected rating data from one 

parent in each family.  A future direction for this work could be collecting ratings from 

more than one family member, and perhaps even close friends of the family, to allow for 

a deeper investigation into the variance of ratings within the "expert" crowd, and between 

the expert crowd and a specialized paid crowd. 

 Finally, Kurator used a majority voting mechanism to determine the crowd's 

rating on a particular audio recording.  We believe this could be less efficient than 

weighted voting.  A promising future direction for Kurator, particularly in the context of 

a longitudinal study, would be to track crowd workers' rating accuracies over time and 

then use a single, weighted rating on a recording when a known worker is involved.  This 

would alleviate the need to obtain multiple ratings for every recording, which is yet 
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another way to leverage mixed expertise in the paid crowd to benefit system 

performance. 

4.9 Conclusion 

 In this chapter, we have introduced Kurator, a proof of concept for hybrid 

intelligence systems that use mixed expertise between crowds in a tiered architecture to 

synthesize inputs from multiple layers of contributors, such as machine learning, the 

crowd, and the family.  We applied Kurator to the problem of reducing the burden of 

curating a family’s digital audio memories. Our results demonstrate that paid crowds can 

accurately select content that parents find sentimental even without specialized context, 

and that machine learning can effectively be used to trade off accuracy versus cost. Over 

time, families, who are ostensibly the experts for this task, can contribute directly to their 

own curation tasks as well as provide feedback to paid crowds and the machine learning 

components of the system to get more accurate, personalized results. 

 The problem of personal digital media curation falls within the second problem 

called out by this thesis, which are personalized, subjective problems with multiple valid 

solutions to an end user.  We have shown that leveraging mixed expertise in this problem 

area is worthwhile, and we have answered the second research question posed in this 

thesis: 

• RQ2. Under what conditions, and to what extent, is there benefit when using a 

mix of crowds, differentiated by types and levels of expertise, to solve a 

problem when the crowds are working on similar tasks? 

 As well, Kurator represents a workable solution that uses opinion-based expertise 

criteria.  Using Kurator, we were able to identify specialized crowds, but we wanted to 
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investigate more fully how we might identify and leverage specialized crowds, 

particularly subcrowds within a crowd, differentiated by expertise.  Also, we wanted to 

better understand how a system might work in the middle of the fact-opinion spectrum of 

expertise criteria.  The next chapter explains a study of the Question Finding problem and 

how it achieves this, which answers our third research question. 
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Chapter 5.  Question Finding: Mixed Subcrowds and Expertise 

  

 In this chapter, we prototype an approach that builds on what we found with 

Escalier (mixed expertise within a crowd) and Kurator (mixed expertise between crowds) 

by leveraging multiple subcrowds, differentiated by expertise.  Our study of this approach 

is a culminating study for this thesis, and it aims to answer the third research question: 

• RQ3. Under what conditions, and to what extent, is there benefit when using a 

mix of subcrowds within a crowd, differentiated by expertise? 

 Answering this question will show that there is benefit to using subcrowds, which 

are groups from the same crowd but differentiated by their topic-specific expertise.  We 

refer to these subcrowds as specialized crowds. 

 In the previous chapter, Kurator shed light on the importance of specialized 

crowds, but we wanted to investigate more fully how we might identify and leverage 

specialized crowds.  We do this by studying a problem we call "Question Finding".  

 The goal of Question Finding (QF) is somewhat backward to the standard Q&A 

site.  Instead of having people answer one another’s questions, we wish to create 

questions where the sophistication of an answer, based on pre-existing material, will align 

with the sophistication of the question.  QF overlaps both problem areas in the scope of 

this thesis: problems where the diverse expertise of a population must be leveraged to 

uncover more of a solution space, and personalized, subjective problems where there are 
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multiple valid solutions to an end user.  To do address this problem, we use a 

combination of different types of expertise from the fact-opinion spectrum (see Chapter 

2): fact-based criteria to distinguish who, in the crowd, knows what, and opinion-based 

criteria to add human subjectivity into the measurement process.   

5.1 Introduction and Background 

 Question Finding (QF) is a general problem for information sites that lack a 

convenient way to direct a user, who has an information need, to suitable content 

containing the answer.  We studied this problem using the NASA website4 and its myriad 

sub-sites5 as a motivating example.  NASA has a number of websites that are poorly 

designed for lay people to conveniently find suitable answers to their questions.  Not only 

are there many websites covering a large number of topics, even within a single topic, 

there is a wide variance in the sophistication of the content.  Some content may be too 

advanced to be a suitable answer to a beginner-level information need.  As well, some 

content is too basic to be a suitable answer to an expert-level information need. 

 To ground the problem of QF to something familiar, consider this scenario: 

NASA has much web content about stars, and we would like a range of questions from an 

elementary school-level, such as "why is the sun so bright?" to more complex questions, 

such as "What physical process causes the sun to be so bright?"  Then a user could be 

directed to elementary-level articles where he might learn that "it's because it is a star that 

we are the closest to" or to more advanced content on astrophysics, where he would learn 

about "the thermonuclear fusion of hydrogen into helium."   

                                                

4 http://www.nasa.gov/ 
5 http://www.nasa.gov/sitemap/sitemap_nasa.html#.V6FcP9ArJE4 
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 In this chapter, we prototyped an approach for generating questions of varying 

complexity for multiple topics.  This approach identified specialized subcrowds of 

workers, differentiated by scientific topic and expertise about that topic, and leveraged 

them to generate a variety of questions.  Because people’s self-reports are unreliable 

(Donaldson and Grant-Vallone, 2002 and Arnold and Feldman, 1981), we used a survey 

instrument, distributed via crowdsourcing, to obtain expertise measurements as well as to 

solicit questions from the crowd.  The expertise measurements are used to identify topics 

and levels of expertise for crowd workers.  Knowing workers' expertise levels allowed us 

to examine if expertise is correlated with the complexity of questions they generate.  We 

found that a range of expertise in a topic is needed to reliably generate questions that vary 

in level of difficulty.  As well, we determined the crowd consists of multiple specialized 

crowds who show a range of expertise for multiple topics.  Therefore, this approach 

pulled mixed expertise and specialized crowds together to create questions differentiated 

by levels of complexity for multiple topics.  

 The remainder of this chapter is structured as follows: we first explain the goals 

and design of our prototype, then we describe how we evaluate it, then we explain the 

findings from the evaluation, and then we discuss the salient lessons learned, the 

limitations of this study, and our conclusions. 

5.2 Prototype Design 

 In this chapter, we use the term "prototype" to refer to an approach, not 

necessarily a technical prototype.  We prototyped an approach with two goals in mind.  

The first goal was to identify specialized subcrowds, each having a range of expertise 

levels, differentiated by topical expertise.  To do this, we needed measures of expertise 
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for multiple topics.  Just as important, we also wanted to know when we could not 

identify expertise levels and specialized crowds. 

 The second goal was to solicit questions from the crowd that can be differentiated 

by complexity, and to determine if these differences are correlated to workers' expertise.  

We also wanted to know what difficulties people had in doing this. 

 There were three important considerations we had to work through. First, we 

needed an instrument to measure workers' expertise levels in various scientific topics.  

Second, we needed an approach for question solicitation that would encourage crowd 

workers to create questions with rich content and of varying complexity.  Third, we 

needed to determine a way to measure the difficulty level of the questions the crowd 

generated.  Next, we discuss each of those considerations, in turn. 

5.2.1 Using a Validated Measurement Instrument  

 For the measurement instrument, we leveraged prior work in measuring civic 

scientific literacy (e.g., Miller 1998, 2012a, 2012b).  We used a validated survey 

instrument, with suitably updated questions, for measuring crowd workers’ expertise 

levels.  The survey consisted of 42 questions: 35 closed-ended questions (i.e., multiple 

choice and true/false) and 7 open-ended questions (i.e., written responses).  The questions 

fell into two broad domains: biology and space.  Within the biology domain, there were 

questions covering the topics of DNA, stem cells, molecules, evolution, and genetics.  

Within the space domain, there were questions covering the topics of planets, the Sun, 

Earth's atmosphere and geology, and the universe.   

 The percentage of correct items for a topic is used as the measure of expertise in 

that topic.  To determine this measure, all closed-ended responses were weighed on the 



 

 108 

same binary scale (i.e., one point if correct, zero if not), and the open-ended responses 

were weighted using a three-point scale, effectively making it worth three times more 

than a closed-ended item.  This weighting of the open-ended responses accomplished two 

things: it allowed for a more fine-grained measurement of varying quality, and this higher 

resolution allowed us to tease apart the workers on the high end of the expertise scale.  

This treatment of open-ended responses is similar to Miller's measurement approach for 

open-ended responses (1998, 2012a, 2012b).   

 We used this measurement approach to establish measures for well-represented 

topics in the survey.  In particular, we established measurements for the space and 

biology domains, and as a subset of those domains, we had measures for the topics of 

DNA, stem cells, the solar system, and the universe. 

5.2.2 Soliciting Questions from the Crowd 

 We needed an approach for question solicitation that would encourage crowd 

workers to create questions with rich content and of varying complexity.  To build our 

intuition on how to design for this, we performed several pre-studies.  We found that the 

scope of the topics might affect the crowd's ability to create questions that varied in 

complexity.  This is a classic problem in expertise finding on where to divide the topics 

and how narrow should they be (Merritt et al. 2016). Topics that were too broad resulted 

in vague questions, and topics that were too narrow or specialized (e.g., molecular 

biology), caused people to struggle with having enough knowledge to generate multiple 

questions.  Ultimately, we stayed within the science and technology domain, and pre-

testing pointed us towards four topics that showed promise: DNA, stem cells, the solar 

system, and the universe.  As mentioned, the data collection instrument can be used to 



 

 109 

measure expertise in these topics, which allowed us to correlate workers' topical expertise 

with the difficulty level of their questions. 

 The pre-studies also showed us that soliciting multiple questions per topic led to 

richer questions because it forced workers to go beyond the canned "What is [insert topic 

here]?"  This also applied to asking the crowd for multiple levels of difficulty: instead of 

simply asking for questions, we asked for easy, medium, and hard questions.  Not only 

did this increase the number of questions we asked for, it also prompted intentional 

thinking about the difficulty levels of questions, which we found the crowd was able to 

do. 

5.2.3 Measuring Question Difficulty with a Rubric  

 To measure the difficulty level of the crowd-generated questions, we created a 

rubric for assessing the complexity of the question.  The rubric was also used to score the 

open-ended responses in the survey.  In short, we considered the complexity in the 

question content as well as the complexity of the answer.  If the question or the expected 

answer covered a complex topic, the scoring would reflect that.  Although the rubric adds 

consistency and reliability to the scoring, the scoring will always include some amount of 

subjectivity.  Thus the use of the rubric to score the questions generated by the crowd, as 

well as the open-ended responses in the survey, introduced opinion-based criteria into the 

measurements of expertise.  Combined with the fact-based measurements from the 

closed-ended responses on the survey, this study is positioned somewhere in the middle 

of the fact-opinion spectrum of types of expertise. 
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5.3 Evaluation 

 As mentioned, the prototype had two goals: identifying specialized subcrowds by 

topical expertise, and soliciting questions with varying complexity.  To understand how 

the prototype met these goals, we evaluated it using Amazon Mechanical Turk as the 

crowdsourcing platform, limiting participants to workers located in the U.S.7   

 To measure success for the first goal, we used a combination of analyses:  

1) a visual analysis of the distribution of worker scores for each measure,  

2) a paired t test between measures,  

3) and the Pearson correlation coefficient between measures.   

 For (1), the distribution of scores should show that a range of scores exists.  If 

workers all achieve the same score (i.e., they cannot be differentiated because the t-tests 

are not statistically significant), then either the measure is invalid, or the crowd is 

homogenous in its knowledge level for that subject matter.  Either way, we cannot 

conclude that the measure is able to identify a range of expertise in the crowd.   

 For (2) and (3), we considered these results together.  In short, (2) tells us if 

workers score differently on the two measurements being tested, and (3) tells us if a 

worker's score on one measure is correlated with their score on the other measure.  For 

example, if workers' scores on both measures are found to be the same, on average, 

according to (2), and the scores on both measures are perfectly positively correlated, then 

we can conclude these two measures are either measuring the same thing, or a worker's 

level of knowledge in one subject perfectly predicts their level of knowledge in the other.  

                                                

7 The validated survey instrument we used was validated on U.S. participants. 
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Either way, we cannot conclude we have two distinct measures because they are 

redundant. 

 To measure success for the second goal, we compared the questions generated by 

the crowd to determine two things: 

1) if a range of complexity exists in the questions, 

2) and if the complexity of the questions aligns with workers' expertise levels.   

For (1), we scored the easy, medium, and hard questions created by the crowd, and then 

we compare these scores.  In these comparisons, we were looking for a significant 

difference in the average complexity of questions in the easy, medium, and hard 

categories.  If there were differences, then we concluded that the crowd was able to 

generate questions with a range of complexity levels.  For (2), if higher expertise workers 

ask harder questions, and lower expertise workers ask easier questions, then there is 

support in concluding that workers' expertise levels are general predictors of their ability 

to create complex questions. 

 Using these measures of success in evaluating the prototype, we discuss the 

findings next. 

5.4 Findings 

 We collected data from 120 Mechanical Turk workers, which consisted of 

responses to the survey and six questions generated for each of the four topics (DNA, 

stem cell, the solar system, and the universe).  The six questions consisted of two easy, 

two medium, and two hard questions.   
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 In this section, we discuss the findings from the evaluation of the prototyped 

approach's two goals.  We also discuss the challenges faced by the workers, as reported 

by them in open-ended feedback sections on the survey. 

5.4.1 Goal 1: Identifying specialized subcrowds, differentiated by expertise 

 The first prototype goal was to identify specialized subcrowds, each having a 

range of expertise levels, differentiated by topical expertise.  To accomplish this, we 

scored the workers' responses on the data collection instrument, which produced 

measurements of expertise for the space and biology domains, as well as the sub-topics of 

DNA, stem cells, the solar system, and the universe.  We thus needed to determine if 

these measurements were valid, according to the three-step analysis discussed previously.  

First, we discuss the domains of biology and space, and then we discuss the narrower 

topics of stem cells, DNA, solar system, and universe. 

 First, we wanted to determine if the biology and the space expertise measures 

were valid.  The first step is to analyze the distributions of biology and space scores.  In 

Figure 9, we can see that both measures have scores that span the range from 0.3 to 1.0 

(note the scale is 0.0 to 1.0), and there are many workers represented in almost all 

segments of the histogram.  This data indicates we can use the biology and space 

measurements of expertise to identify a range of expertise levels in those domains.  In 

contrast, if all workers scored the same or nearly the same in a domain, then it would 

mean the prototype was not able to identify a range of expertise levels within that 

domain. 



 

 113 

 
Figure 9. Histogram of Biology and Space Expertise Scores for 120 crowd workers.  0.0 to 

1.0 is the range of the scale that each expertise measure uses. 

 The next step is to determine if the space and biology measures are distinct from 

each other, which would indicate whether they are measuring expertise in different 

domains.  Thus we analyzed the difference between workers' space and biology scores.  

For this, we performed a paired t test, which measures the mean of the differences in 

scores, per worker.  This test revealed a mean difference of 0.04 that was statistically 

significant (p<0.001).  As well, there is only a moderate correlation in workers' scores for 

each domain (see Error! Reference source not found.), with a Pearson correlation of 

0.70.  This suggests that a worker's score in the space domain is different than their score 

in the biology domain, but there may be a slight trend where a higher score in one domain 

coincides with a higher score in another domain.  These results indicate the space and 

biology measures of expertise can be used to identify specialized crowds in those 

domains. 
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Table 6. Correlation Matrix for Biology and Space domains as well as DNA, Stem Cells, 
Solar System, and Universe sub-topics (Pearson's r is reported).

 

 Second, to determine if the prototype was able to identify even narrower topics, 

we followed this same three-step analysis pattern for the four subtopics: DNA, stem cells, 

solar system, and universe.  Figure 10 shows the histograms of scores for each of these 

measures.  We can see that all measures have scores that span the range from 0.0 to 1.0, 

and there are many workers represented in most segments of the histograms.  Note that 

there are fewer bins in these histograms than the ones in Figure 9 because there are fewer 

items with which to measure, which means the number of possible scores is smaller.  

This data indicates the prototype is able to identify a range of expertise levels in each of 

these four topics. 
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Figure 10. Histograms of Universe, Solar System, DNA, and Stem Cell Expertise Scores for 
120 crowd workers.  0.0 to 1.0 is the range of the scale that each expertise measure uses. 

 In Table 6, note that all correlation coefficients are positive, indicating a general 

trend where workers who score higher on one measure tend to score relatively higher on 

other measures as well.  This may be due to these topics being widely taught as part of 

general science education in the U.S.9 (Miller, 2010), but additional tests are needed to 

say this conclusively.  To finish the three steps of analysis for these measures, we analyze 

the biology domain and topics, then the space domain and topics, and then all the topics. 

                                                

9 We remind the reader that the survey was only available to Mechanical Turk workers located in 
the United States. 
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 For the biology domain, the topical measures for DNA and stem cells are distinct 

from each other and the biology measure.  These differences were statistically significant 

(p<0.01).  Also, the correlation between DNA and stem cells (0.32) is weak, and the 

correlation between DNA and biology (0.64) is weak to moderate.  The stem cell scores 

are moderately correlated with the biology scores (0.76).  This suggests that workers with 

higher expertise in stem cells are likely to have higher expertise in biology, which makes 

sense.  These results indicate that we have three distinct biology-related measures of 

expertise--an overall biology measure, and stem cell and DNA measures--that can be 

used to identify multiple specialized crowds. 

 For the space domain, the measures were more strongly correlated than in the 

biology domain.  We found a moderate correlation (0.80) between the universe and the 

space measurement instruments, but the space score was 0.09 points higher than the 

universe score, on average, and it was statistically significant (p<0.001).  This indicates 

these two measures identify separate specialized crowds, but workers scoring high in 

space likely score high in universe as well. 

 The space and solar system measures, however, were strongly correlated (0.90) 

with a mean difference of 0.005 points (p=0.5).  This fits our notional example (see 

Evaluation section) where we cannot conclude these are two distinct measures because 

they appear redundant.  There are a couple possible reasons for this outcome.  One 

possibility is that workers' expertise level in one topic is very similar to their expertise 

level in the other.  Another possibility is that the solar system questions in the survey 

were not specific enough, thus making it another measure of general space expertise.  

Thus we cannot say conclusively that the solar system measure is a standalone topical 
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expertise measure.  The universe and space measures, however, are distinct expertise 

measures. 

 We also tested the DNA and stem cell measures against the universe measure.  

All correlations were weak (<0.40), indicating that higher expertise in one topic does not 

necessarily correlate with higher expertise in the others.  Although the stem cell and 

universe scores were different (p<0.001), the difference in the DNA and universe 

measures was not statistically significant (p=0.08).  In Figure 11, we see that there are 

some workers scoring moderate to high in DNA but low in universe, and other workers 

score moderate to high in universe and low in DNA.  Thus we conclude that the DNA, 

stem cell, and universe measures of expertise are distinct, and they can be used to identify 

specialized crowds in each of those topic areas. 

 
Figure 11. Scatterplot of DNA scores versus Universe scores. 

 In summary, the first prototype goal was to identify specialized subcrowds, each 

having a range of expertise levels, differentiated by topical expertise.  The results in this 

section indicate the prototype is able to use expertise measures for the biology and space 

domains, as well as the DNA, stem cell, and universe topics, to identify specialized 
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subcrowds in those domains and topics.  We also found that the prototype's use of the 

solar system measure of expertise was redundant with the overall space measure, 

meaning we cannot say conclusively that we have a valid measure for solar system 

expertise. 

5.4.2 Goal 2: Differentiating crowd-generated questions by difficulty level 

 The second prototype goal was to solicit questions from the crowd that can be 

differentiated by complexity, and to determine if these differences are correlated to 

workers' expertise.  As mentioned, we solicited two easy, two medium, and two hard 

questions from each crowd worker for each of four topics: DNA, stem cell, the solar 

system, and the universe.  We scored the DNA and universe crowd-generated questions 

but not the stem cell and solar system questions.  After a brief discussion of what the 

stem cell and solar system questions taught us about the proper scoping of topics, we then 

move into a discussion of how the crowd was able to generate DNA and universe 

questions with suitable levels of difficulty. 

5.4.2.1 Workers lacked depth of knowledge for some topics 

 A review of the stem cell questions gave us insight into issues with the subject 

matter itself.  Apparently, the topic of stem cells was not a familiar one to the workers, 

and most seemed to struggle with the concept.  As a point of reference, the average score 

on the stem cell expertise measure (0.45) was well below all the other measures (next 

lowest is 0.61).  Over half of the workers received a zero score for their open-ended 

response to explain what a stem cell was.  This lack of knowledge caused workers to 

create irrelevant questions.  The questions that were relevant were often overly vague and 

a variation on the same few types of basic questions, such as: "what are stem cells?", 



 

 119 

"what do they do?", "where do they come from?", "why are they controversial?", and 

"can stem cells cure [insert illness here]?".   

 In the open-ended feedback for the stem cell questions, all the top tier workers 

said they had difficulty with these questions.  One said it was difficult coming up with 

easy questions for stem cells, and two others said they did not "know enough" or have 

"advanced knowledge" to ask hard questions.  These results indicate there may be some 

topics that are too complex for there to be a diversity of expertise levels amongst the 

general public12.  Thus measuring a diversity of expertise in complex topics is likely to be 

very difficult, if not impractical.  

 Similarly, the solar system questions lacked depth, but for different reasons.  Most 

workers seemed quite familiar with the makeup of the solar system (planets, asteroids, 

moons, comets, the sun), as evidenced by workers scoring the highest, on average, on the 

solar system measure (0.74) as well as the one open-ended question pertaining to the 

solar system.  Although these high scores seemed to indicate a widespread familiarity 

with the solar system, there was not much depth in the questions.  A substantial majority 

of the questions were simple questions of fact, like "is x bigger than y?", "how far is x?", 

"which planet has the biggest/most...?", "how big is...?", or "how many...?".  

 It is possible that the topic of "solar systems", while familiar to many, lacks depth 

as a standalone topic.  Attempts to go beyond surface-level knowledge of the topic 

immediately leads into much more advanced subjects, such as planetary science or 

astrophysics.  This notion of lacking depth was summarized by one astute worker, who 

                                                

12 We are not claiming Mechanical Turk workers are an accurate representation of the general 
public, but we do view the workers as having access to at least as much information as the 
general public, as evidenced by their participation in an online work environment. 



 

 120 

made the comment: "It seems most of the questions involving solar systems are relatively 

easy, but more complex questions involve theory as to what happens during formation 

and eventual system collapse."  Again, these results suggest there may be some topics 

that are not too complex but, instead, are too shallow for there to be a depth of expertise 

without transitioning into other (possibly more complex) topics.  This problem of topic 

scope was further elaborated on by another worker, who stated: "Solar system is a very 

generic subject, so it sort of made it easy to come up with questions, but also difficult in 

that it could refer to many different things."  We discuss topic scoping in more detail later 

in this chapter. 

5.4.2.2 Crowd was able to generate questions that varied in complexity 

 Although some topics were not conducive to creating question with varied 

complexities, we found that the crowd was able to generate DNA and universe questions 

that varied in complexity.  In this section, we explain the findings that supported this 

conclusion, and we do it in combination with our analysis of whether workers' expertise 

levels affected their ability to generate easy, medium, and hard questions.   

 To determine the difficulty of questions, we scored the questions created by 

workers from the top 10%, middle 10%, and bottom 10% based on the universe and DNA 

expertise measures.  As mentioned, we used a rubric to score these difficulty levels.  

Scores were on a three-point scale, where one meant a question was easy, two meant it 

was medium, and three meant it was hard.   For both topics, if a question was irrelevant, 

it did not receive a score.  We had initially given irrelevant questions a score of zero, but 

this artificially reduced the mean scores.   
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 This analysis is done in two parts: we first evaluate the universe questions, and 

then we evaluate the DNA questions. 

 First, in the universe topic (see ), the bottom tier of workers was able to ask easier 

questions (mean = 1.05) than the middle and top tier could produce; this difference was 

statistically significant (p<0.01 for both).  The bottom tier's medium and hard questions 

were the same difficulty level, which was more difficult than their easy ones (p<0.01).  

This indicates the bottom tier of workers might only be able to generate two classes of 

questions: easy and medium difficulty questions.  Their easy questions are likely to be 

easier than what the middle and top tier workers are able to create. 

Table 7. Question difficulty scores for Universe topic.  Bottom, middle, and top 10% 
groupings are based on workers' scores on the universe expertise measure. 

 

 With the middle tier workers, there was no statistically significant difference 

between the average scores for their easy, medium, and hard questions, and these scores 

were in the medium difficulty range.  This suggests the middle expertise tier for universe 

can ask a variety of medium difficulty questions but may be inconsistent in creating easy 

or difficult ones.  

 The top tier of workers in the universe topic was able to ask the most difficult 

questions.  Their medium questions were harder than the middle tier's hard questions, on 
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average, but this difference was not significant (p=0.06).  This suggests the top tier is a 

reliable source of hard and medium/hard universe questions, and they, like the middle 

tier, are not able to generate easy questions consistently.   

 Second, in the DNA topic, the differentiation existed but was not as clean (see 

Table 8).  There was no statistically significant difference between the expertise tiers for 

the easy and medium question difficulties.  The easy questions were about the same 

difficulty regardless of expertise tier.  The medium difficulty questions were also 

indistinguishable between expertise tiers, but they were noticeably more difficult than the 

easy questions (p<0.05).  The middle and bottom expertise tier's medium and hard 

questions were basically an equivalence class of medium-hard questions.  The questions 

in this equivalence class were more complex than the easy questions, with statistical 

significance.    

 Only the top expertise tier was able to differentiate easy, medium, and hard 

questions with statistical significance.  As well, the top tier's hard questions were more 

difficult than the bottom tier's hard questions (p<0.05), but not more difficult than the 

middle tier's hard ones.  As mentioned, the middle tier's hard questions were not 

significantly harder than the bottom tier's.  This indicates the middle tier is not consistent 

in creating harder questions (1.85), on average, than the bottom tier (1.62), but the top tier 

is likely to be consistent in creating harder questions. 
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Table 8. Question difficulty scores for DNA topic.  Bottom, middle, and top 10% groupings 
are based on workers' scores on the DNA expertise measure. 

 

 As discussed, the crowd-generated DNA questions, when stratified according to 

workers' score on the DNA expertise measure, were not cleanly differentiated in many 

cases.  To unpack this, we reviewed worker feedback on this task.  Interestingly, a top-

tier worker said: "It's hard to ask questions about something you don't fully understand".  

This is a paradoxical remark considering this person scored towards the top of this 

measure, yet they do not believe they "fully understand" the topic.  Another top-scoring 

worker gave more insight on this apparent paradox, offering a possible explanation for 

this gap between the DNA measure and their ability to generate questions.  This worker 

remarked how they "understand the nature of [DNA] fairly well", but what they do know 

"about DNA is pretty narrow".  This could imply that some workers have a working 

knowledge of a topic, but their in-depth knowledge is limited in breadth.  Another 

possible explanation for this potential paradox is that our measure for DNA expertise 

might be noisy.  This measure is based on three closed-ended items and one open-ended 

item on the survey that explicitly mentions DNA, but we could consider including the 

handful of survey items that touched on the topic of genetics.  Additional tuning of the 

DNA expertise measure is perhaps warranted. 
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5.4.3 Challenges: Workers thought the task was hard 

 Overall, crowd workers, regardless of expertise level, found the task of creating 

multiple questions of varying complexities quite challenging.  Workers lamented about 

the task being "extremely difficult", "brutally tough", and "REALLY hard".  A lack of 

knowledge in a particular topic was an issue mentioned by many workers.  Also, 

"separating hard from easy" questions was another common issue.  One worker said it 

was "hard to think about hard questions", while another remarked: "I couldn't think of 

any medium or hard questions".  Yet others expressed uncertainty about what "qualifies 

as easy or hard" and difficulty in coming up with "something in between easy and hard."  

What was most surprising about these sentiments is that they were fairly uniform across 

all topics and expertise levels.  Apparently, workers' perceived difficulty of the task was 

not a good predictor of their ability to generate suitable questions. 

 Remarkably, some workers "enjoyed" the challenge, commenting on the "fun" 

and "stimulating" nature of the task in light of its difficulty.  One worker was "happy to 

be made to think", and another was thought it was "a lot of fun" even though the survey 

was "a lot harder than expected."   

 Interestingly, within the universe topic, a theme emerged.  While many in the top 

tier did not find this task difficult, of those who did, what they found difficult was not 

their own lack of knowledge but the community's lack of knowledge.  Five workers 

commented on how little is known about the universe, using phrases such as "we don't 

know", "a lot that is unknown", "so much...is unknown about it".  One of these five 

workers actually found it "rather easy" to come up with questions because of this.  In 

contrast to the top-tier theme, workers in the bottom tier generally found the task 
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difficult, primarily due to their own lack of knowledge (n=12) on the subject.  They used 

phrases like "don't know much", "not knowledgeable", and "not very well versed".  The 

difficulty for them rested on their personal lack of knowledge, whereas for the top tier, 

the difficulty was not personal but community-focused. 

 Some workers were surprised by how little they knew.  One worker said they did 

not know "as many details...as I thought".  Another echoed this sentiment: "I question 

how much I really know!"  The survey helped these workers "realize there is a lot [they] 

don't know or remember," which "inspired" at least one of them "to do some more 

reading" and others to "study more", "learn more", and "start paying more attention".   

 Finally, the task of creating questions was actually easy for some workers.  One 

worker summarized it by saying how it was "easy to conceptualize from previous 

knowledge."  The sources of this "previous knowledge" were called out by various 

workers as "space documentaries", "previous science classes", TED talks on YouTube, 

and learning a lot about DNA growing up with a "mother [who] has a PhD in molecular 

genetics."  Some workers acquired knowledge by being contemplative about certain 

topics, like having "a lot of thoughts about space" and being more interested in stem cells 

because of the "imminent arrival of a new baby soon."  This contemplative state may 

have been spurned on by workers having "interest" in the topic or finding certain topics 

"very fascinating".  Similar to what we found with perceived difficulty, workers' ability 

to generate suitable questions was not affected by the perceived ease of the task either. 

5.5 Discussion 

 The goals of the Question Finding prototype was to identify specialized 

subcrowds, each having a range of expertise levels, differentiated by topical expertise, 
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and to solicit questions from the crowd that can be differentiated by complexity.  We also 

wanted to better understand what difficulties people had in doing this.  In this section, we 

discuss our findings in light of these goals.  Integrated into this discussion are design 

implications for building a scalable, automated QF system.  

5.5.1 Using topic-specific expertise measures 

 Findings from the study indicated the prototyped approach could identify 

numerous specialized subcrowds within the paid crowd, differentiated by topic-specific 

expertise.  We have demonstrated this by creating and using topic-specific expertise 

measures based on a validated survey instrument.  The expertise measures we found were 

for the biology and space domains, as well as the DNA, stem cell, and universe topics. 

 In a more general sense, the topical expertise measures (not space or biology) are 

quite close to what is considered as "discount" expertise metrics.  Hung and Ackerman 

(2015) define discount expertise metrics as being easy to obtain and use.  The topical 

expertise measures we used consisted of a handful of survey items each, but the scoring 

was not fully automated (disqualifying it from being a "discount" metric, in our opinion).  

Even though each topic included an open-ended response that we manually graded using 

a scoring rubric, this is not a fully automated expertise assessment.  Teasing out 

additional closed-ended questions from the scoring rubric is one way to remove the need 

for manual scoring, but this fact-based approach runs the risk of losing some richness in 

the measurements that were introduced by the opinion-based criteria (discussed below).  

 Scoring the questions using a rubric is a problem nicely suited for crowdsourcing 

(Lasecki et al., 2014), where the crowd could use the rubric to provide subjective 

judgments about other workers' responses on open-ended items.  This would allow for an 
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automated expertise measurement workflow while maintaining humans in the loop for 

added richness to the measurement.  This would be a logical next step towards creating a 

scalable, automated QF system. 

5.5.2 Differentiating question complexity 

 Being able to identify specialized crowds is interesting, but what does it enable?  

The ultimate goal of Question Finding is to eventually map the questions, differentiated 

by complexity, to suitable web content.  The implied first step, which the prototype 

successfully addresses, is to generate questions of varying complexity.  The findings 

demonstrate the crowd was able to do this.   

 The next step, then, is to scale this solution, which presents a challenge: 

determining the variations in question complexity was manually intensive.  We tried two 

approaches: asking the workers to indicate the difficulty of their questions, and manually 

scoring the questions.  We found that workers' judgments about the difficulty of the task 

were not a good predictor of their performance on the task.  Thus, we had to rely on 

manual scoring of the questions by the research team.  This is not scalable.  With just 120 

workers, there were almost 3,000 questions generated.  Again, an interesting future 

direction for building a QF system is to use crowdsourcing to judge the quality of these 

questions. 

 The prototyped approach showed that predicting question complexity is useful, as 

we discuss next.  But this capability is subject to a caveat about appropriately-scoped 

topics, which we discuss after that. 
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5.5.3 Strategic solicitation 

 The crowd experienced difficulties in differentiating hard from easy questions.  

This was more apparent for some topics (stem cells and solar system) than others (DNA 

and universe).  By being able to identify worker expertise by topic, it is now possible to 

focus the efforts of the specialized crowds on specific difficulty levels.  For example, 

with the DNA topic, top-tier workers were able to generate distinctly hard questions, but 

they produced easy and medium questions that were similar to the middle and bottom tier 

workers.  This shows that the way to design QF systems is to focus the higher expertise 

workers on creating a variety of hard questions.  As well, we know that workers with low 

expertise on the universe topic are much more reliable than higher-expertise workers at 

creating easy questions.  Thus QF systems should solicit lower-tier workers to generate 

easy questions.   

 This strategic solicitation of questions affords QF system designers the flexibility 

to tradeoff task efficiency and question variety.  Efficiencies are gained if designers chose 

to solicit, for example, only two hard questions from every expert-level worker.  This 

would not only be cheaper and faster initially (as compared to our setup for this study), 

but it could have downstream effects if they rely on a separate mechanism to validate all 

the questions for suitability and complexity.  In short, fewer questions to process would 

likely yield a cheaper and faster solution.  If, on the other hand, the designer's goal is to 

maximize the variety of easy questions, then they might choose to solicit many more than 

two easy questions from every low-expertise worker.  This strategically focused 

solicitation of work adds the flexibility for QF system designers to make tradeoffs. 
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5.5.4 Scoping the topic 

 As mentioned, an important finding in the evaluation of our QF approach was the 

need to consider the scope of the topic from which expertise is measured.  We know that 

overly specific or complex topics (e.g., stem cells) lack widespread familiarity of the 

information, and this is a hindrance to the task of Question Finding.  However, simply 

choosing topics that have widespread familiarity (e.g., solar system) is no guarantee of 

success, either.  This is a classic problem in expertise finding on where to divide the 

topics and how narrow they should be (Merritt et al. 2016). 

 This points to the need for crowdsourcing system designers to assess a topic to 

determine if it is amenable to a diversity of expertise levels.  Topic assessments would 

need to consider the scope of the topic (e.g., "molecular biology" versus "biology"), the 

widespread accessibility of information, and if there is a sufficient depth of information 

on the topic.  In short, topic assessment needs to be a precursor to using mixed expertise 

in crowdsourcing.   

5.5.5 Enriching the expertise measures 

 The QF prototype revealed some nuances about the combination of fact and 

opinion-based expertise measures, which was something we did not see in our studies of 

Escalier and Kurator.  What we learned from this study is that open-ended questions can 

increase the resolution of the expertise measures.  The fact-based (closed-ended) items on 

the survey were binary outcomes, making the scoring of those items a straightforward 

measure of percent correct.  This tended to cause clumps of same scores for topical 

expertise measures that did not use many survey items.  Using more closed-ended 

questions is one way to address this.  However, we found that having even just one open-
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ended question in the topic, scored on a non-binary scale, introduced more granularity 

into the measure's scale.  Although these questions were scored using a rubric, we believe 

that human judgments about the correctness of the answers make this scoring an opinion-

based one.  Thus the inclusion of open-ended questions brings opinion-based criteria into 

the mix, which has the potential to increase the expertise measure's accuracy, particularly 

on complex items where there is a variance of correctness in an answer. 

 As well, opinion-based criteria could be used on top of fact-based ones.  For 

example, if a multiple choice question (fact-based) was deemed especially difficult for 

most people, the scoring of the question could be weighted more heavily.  The choice of 

this weighting is ultimately a subjective judgment about the relative difficulty of the 

question. 

 This problem of Question Finding lends itself to having subjective influence on 

how correctness is measured.  This study revealed opportunities to inject opinion-based 

criteria into the expertise measures, and we found that subjective input added richness to 

the measurements. 

5.6 Issues and Limitations 

 Our knowledge of the expertise measures we used is limited to how the 120 

workers performed on the survey task.  Will the crowd always produce similar scores for 

each measure?  Perhaps we collected data on an unusual day where many high-expertise 

biology and space enthusiasts were using Mechanical Turk.  To better understand the 

limitations, as well as the consistency, of these expertise measures, additional data 

collection instruments should be deployed over different days and times.  This would 
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allow for a more generalizable index of expertise levels for the various topics we studied 

in this chapter.   

 What if, over time, information on stem cells or other measured topics becomes 

more widespread and understood?  Presumably, crowd workers would score better on our 

expertise measures, possibly to the point of most workers appearing to have "uncommon" 

expertise.  These measures would have to adjust over time to re-normalize to the crowd.  

This would keep our assessments anchored in the current reality, which makes statements 

such as "this person is a biology novice" or "that worker is a space expert" more 

trustworthy and enduring. 

5.7 Conclusion 

 In this chapter, we introduced a prototype for an approach for Question Finding 

that was intended to meet two goals.  The first goal was to identify specialized 

subcrowds, each having a range of expertise levels, differentiated by topical expertise.  

The QF prototype accomplished this goal by validating measures of expertise for multiple 

topics.  The second goal was to solicit questions from the crowd that can be differentiated 

by complexity, and to determine if these differences were correlated to workers' 

expertise.  The QF prototype accomplished this goal as well by demonstrating a way to 

leverage the information produced in the first goal.  We found that identifying the topics 

and levels of expertise, according to our validated measures, is useful in predicting the 

difficulty level of questions generated by the crowd. 

 In a more general sense, we showed there are tangible benefits of using mixed 

expertise in this problem, which answers the third research question in this thesis.  As 

well, the Question Finding problem overlaps the two problem areas this thesis has been 
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scoped to address.  To identify specialized crowds, we established and tested several 

expertise measures for various topics and argued for their use as discount expertise 

metrics.  These expertise measures used a combination of fact and opinion-based criteria, 

which helped us to better understand the nuances of the spectrum that the previous 

chapters did not uncover. 

 In the next chapter, we conclude this thesis through a discussion of the major 

contributions presented in this thesis, what it enables for researchers, the lessons learned, 

and the caveats. 
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Chapter 6.  Conclusions 

 

 In this thesis, we proposed solutions to a limitation of current crowdsourcing 

approaches: not accounting for a range of expertise levels in the crowd.  The current body 

of work in crowdsourcing does not systematically examine this, suggesting that 

researchers may not believe the benefits of using mixed expertise warrants the 

complexities of supporting it.  This thesis presented two systems, Escalier and Kurator, as 

well as a study on Question Finding, to show that leveraging mixed expertise is a 

worthwhile endeavor because it materially benefits system performance, at scale, for 

various types of problems.  We also demonstrated an effective technique, called expertise 

layering, to incorporate mixed expertise into crowdsourcing systems.  Finally, we showed 

that leveraging mixed expertise enables researchers to use crowdsourcing to address new 

types of problems. 

 In the Introduction of this thesis, there were three research questions this thesis set 

out to answer: 

• RQ1. Under what conditions, and to what extent, does using mixed expertise 

within a crowd materially benefit a crowdsourcing system at scale? 

• RQ2. Under what conditions, and to what extent, is there benefit when using a 

mix of crowds, differentiated by types and levels of expertise, to solve a 

problem when the crowds work on similar tasks? 



 

 134 

• RQ3. Under what conditions, and to what extent, is there benefit when using a 

mix of subcrowds within a crowd, differentiated by expertise? 

 This thesis has answered these questions.  In our study of the Escalier system, we 

investigated expertise at scale for fact-based expertise criteria, and there were some 

feedback loops and mixed expertise leveraged from the same crowd.  In a deeper 

investigation of feedback loops and mixed expertise in different crowds, particularly in a 

domain where opinion-based expertise criteria was at play, we built and studied the 

Kurator system.  Kurator represents a workable solution that uses opinion-based expertise 

criteria.  Using Kurator, we started to identify specialized crowds, but we wanted to 

investigate more fully how we might identify and leverage specialized crowds, 

particularly subcrowds within a crowd, differentiated by expertise.  Also, we wanted to 

better understand how a system might work in the middle of the fact-opinion spectrum of 

expertise criteria.  This led to our study on Question Finding, which demonstrated that we 

were able to identify specialized subcrowds who are differentiated by expertise.  We 

created several expertise measures for various topics.  These measures used a 

combination of fact and opinion-based criteria, which helped us to better understand the 

nuances of the spectrum. 

6.1 General Conclusions 

 There are many conclusions to be drawn from the work presented in this thesis.  

Here we walk through many of the salient conclusions organized into a "path" for 

crowdsourcing system designers to follow.  Our articulation of the path itself is arguably 

a contribution to the crowdsourcing literature, but our intent is simply to walk the reader 

along a cogent narrative of the areas we believe we understand better because of this 
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thesis.  Borrowing from military command and control doctrine, we use the OODA 

Loop--Observe, Orient, Decide, Act (Boyd, 1987)--as a mental model for this path, 

except we include a fifth step: Leverage. 

6.1.1 Observe: A mix of expertise exists in the crowd. 

 As the starting point on the path for building crowdsourcing systems to leverage 

mixed expertise, crowdsourcing system designers must first "observe" that a mix of 

expertise even exists in the crowd.  The literature review in Chapter 2 made it clear that 

human expertise likely exists on a continuum.  The work in this thesis has given us more 

reason to believe this is true.  Kurator taught us that there exists in the crowd some latent 

expertise for predicting how parents make decisions about sentimental audio recordings.  

If the "crowd" is extended to include family members, a mix of expertise is plain to see in 

the combination of "expert" parents, less expert family and friends, crowd workers with 

some expertise, and crowd workers with little expertise.  Question Finding further 

developed this belief by showing us there are specialized subcrowds with various levels 

of scientific expertise, specifically within the topics of DNA, the universe, the solar 

system, and space and biology, in general. 

6.1.2 Orient: Choose the "right" topic and type of expertise. 

 Knowing there is a mix of expertise is only helpful if designers know how to 

"orient" the expertise topics and types that their system will use.  Our notion of "right" 

means there are some topics and types that are better choices than others, but there is 

likely not a single correct topic or type of expertise.  The study of Question Finding 

illuminated the importance of scoping a topic appropriately, paying careful attention to 

the breadth of the topic, the widespread accessibility of information, and if there is a 
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sufficient depth of information on the topic.  As well, throughout this thesis, we have 

seen varying types of expertise, from fact-based (Escalier) to opinion-based (Kurator).  A 

combination of the two (Question Finding) proved useful, too.  Designers ought to 

consider how well-structured or ill-structured their domain is (Voss and Wiley, 2006), 

which will guide their choice of expertise type (see Chapter 2 for more details).  

6.1.3 Decide: There are ways to identify some of that expertise. 

 Equipped with a chosen expertise topic and type, designers must decide how they 

will identify expertise in that topic.  This thesis partially worked out several ways to 

identify a mix of expertise in the crowd.  Kurator tracked the crowd's expertise as a 

performance-based measure, possibly to be used later in weighted voting.  The Question 

Finding study borrowed a validated survey instrument, added to it, and used the 

subcomponents of the survey for topic-based expertise measures.  That study also 

suggested it might be useful to crowd-source subjective judgments about question 

complexity.  Designers can use other established metrics, similar to how Escalier used 

social network analysis (e.g., Zhang et al. 2007) and web browsing-based discount 

expertise metrics (Hung and Ackerman, 2015). 

6.1.4 Act: Build an expertise-aware system without having expertise at the start. 

 Designers may find themselves desiring to build a system to incorporate a topic 

and/or type of expertise that has not already been established.  This thesis demonstrates at 

least one way to "act" on that desire to build without the need to use expertise right away.  

Expertise layering is a useful guiding concept for system builders, and we demonstrate its 

effectiveness with Escalier and Kurator.  Expertise layering avoids "expertise cold start", 

which can be thought of as the absence of available expertise at system initialization.  
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Escalier is an example of a social navigation system that can leverage mixed expertise 

when the expertise becomes available, and Kurator is similarly built to be effective "out 

of the box" but can improve as experts contribute to the tasks. 

6.1.5 Leverage. Expertise is additive 

 Finally, even with a workable crowdsourcing solution that successfully accounts 

for mixed expertise, designers should remember there is more benefit to be gained if they 

continually "leverage" new data, new expertise, and new expertise measurement 

algorithms or approaches.  This is possible because expertise is additive.  The literature 

on expertise finder systems taught us that, as systems evolve over time, more and more 

data and algorithms were added into systems to continually refine the expertise measures.  

Thus, where data is available and relevant, designers should continue to leverage it. 

 This path of system design considerations for incorporating mixed expertise is 

surely not the only path.  However, the work in this thesis has demonstrated this path is 

workable, and we offer it as one way we believe is helpful to crowdsourcing system 

designers.   

6.2 Limitations 

 There are many limitations to the studies presented in this thesis.  Here we draw 

the reader's attention to two salient ones. 

 First, the systems and studies in this thesis primarily used Mechanical Turk, 

which means our results are generalizable only to paid microtasking environments.  Paid 

microtasking environments are designed for micro tasks.  If a task is really trivial, then 

maybe mixed expertise does not matter.  Perhaps mixed expertise only matters for tasks 

beyond a certain level of complexity.  Crowdsourcing systems leveraging mixed 
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expertise in paid microtasking environments will likely have to face a tension between 

breaking a problem into trivial tasks while also maintaining enough complexity to 

maximize the value of using human input.  We did not examine this tension, so we do not 

know the effects it will have on mixed expertise crowdsourcing system design. 

 Second, in our study of Kurator, we speculate about the benefits of using 

weighted crowd voting.  Tracking crowd workers' expertise is only helpful if the 

expertise can be leveraged, and weighting inputs from known13 workers is a 

straightforward way to account for their expertise.  Although we assume this is a 

workable approach, we do not examine this idea of weighted voting.  Doing so, and 

showing it is indeed workable, would bolster the strength of our argument that leveraging 

mixed expertise is worthwhile.  

6.3 Future Direction 

 This thesis brings to light several areas where future research may be fruitful.  In 

addition to the areas we discussed in the previous section, here we discuss two more that 

deserve attention. 

 First, it is important to acknowledge that not all problems are better solved by 

mixed expertise.  When a crowd of experts is accessible and practical to use, as is the 

case for Master14 image labelers on Mechanical Turk, then it makes little sense to attempt 

to incorporate less-expert workers.  This is only one example, but there are likely many 

more.  This thesis has not surveyed the current state of the art to uncover problem areas 

                                                

13 We do not mean their identity is known; we mean to say their expertise is known. 

14 Visit this website for more an explanation of what a Master turker is: 
https://www.mturk.com/mturk/help?helpPage=worker#what_is_master_worker 
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and tasks where mixed expertise may be moot.  It would be useful to have this 

knowledge, and examining the progression of problems where experts have become more 

accessible over time is a warranted future direction for this research.  

 Second, our review of the CSCW prior literature on expertise finder system taught 

us that social interaction data is helpful in expertise measurements, but we did not 

attempt to address this data gap.  Although microtasking environments, like Mechanical 

Turk, maintain a certain level of anonymity, researchers have begun to build self-

coordinating crowdsourcing infrastructure (e.g., Apparition, by Lasecki et al. 2015).  

Crowdsourcing systems that rely on interaction and collaboration between workers will 

likely have useful metadata for expertise measurements.  To gain a better understanding 

of the nature of expertise in crowds, it is important to study crowdsourcing systems that 

generate interactional data and, perhaps, to incorporate more social data into expertise 

measures. 
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Appendix A 

User Search and Voting Algorithms in Escalier 

Accuracy Factor: 

 In the model of user behavior, the highest level of expertise makes edits to 

modules based on the same distribution used to determine the Stable set from the 

Canonical set.  As the levels of expertise decrease, the distribution curve flattens out, 

slowly approaching a uniform distribution of numbers of edits.  The lowest level of 

expertise actually uses a uniform distribution, where each selection of the number of edits 

to modules is equiprobable.  In Figure 12, one simulation run’s sampling of the five 

distributions validates that the distribution curves are flattening out as the expertise 

decreases. 

 
Figure 12. Simulation Sampling for Number of Edits to a Module 
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User Search Algorithm: 

1) User is probabilistically assigned a UserType based on a random sample 

drawn uniformly, as shown in Table 9. 

a. The five UserTypes correspond to five user expertise levels.  

UserType 1 has the least expertise, and UserType 5 has the most 

expertise. 

Table 9. Probabilistic Selection of 5 User Types (randomly selected values [0,1]) 

 

2) Randomly select the starting configuration from the IS set. 

3) Choose the number of search attempts based on the Persistence Factor. 

a. Number of attempts = 3 x UserType, where UserType is an integer 

between 1 and 5, inclusive.   

b. For example, relative novices (UserType=1) will make 3 attempts, and 

relative experts (UserType=5) will make 15 attempts. 

c. I also implemented Persistence Factors of 1 and 2 to use in a 

sensitivity analysis. 

4) For each search attempt: 

a. Modify the starting configuration using the lognormal distribution of 

number of modules to edit, the lognormal distribution of number of 

edits to each module, and the lognormal distribution of new value 

selections.   

i. The distribution of number of edits to each module is 

determined by the user’s Accuracy Factor. 
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b. User performs a Vote() operation on the Edited Configuration  

c. If the result of the Vote() operation is “stable”, then end the search 

i. Else if all search attempts have been made, then end the search 

ii. Else, go to step 3. 

User Voting Algorithm: 

1) Probabilistically vote (“stable” or “not stable”) on the configuration at hand. 

a. The vote equals the actual stability of the configuration according to 

the probabilities based on the UserType, as shown in Table 10.  The 

actual stability of the configuration is determined by the 

configuration’s membership in the Stable set, where Ci ∈ S means it is 

“stable”; otherwise, it is “not stable”. 

b. The probability starts at 0.6 because I decided domain novices should 

perform better than sheer luck (>0.5).   I also decided domain experts 

very rarely make incorrect assessments but, being human, are not 

perfect (<1.0). 

Table 10. Vote Probability Based on UserType 

 

2) Increment or decrement the configuration’s stability rating depending on the 

result of the vote (“stable” or “not stable”, respectively). 

Table 11. Weighted Rating Based on UserType 

 

a. If Escalier L3 layer is enabled, then the increment/decrement value is 

weighted based on the user’s expertise level, as shown in Table 10. 

b. Otherwise, it is equally weighted at 0.25.
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Appendix B 

Canonical and Stable Generation Algorithms in Escalier 

 

Canonical-generation Algorithm: 

 For each configuration in the Canonical set, the integer values for each of the 

elements of its vector are selected from a lognormal distribution of value selections for 

each property.  We chose a lognormal distribution of values based on a manual analysis 

of the Linux data, where I observed that the same properties between configurations 

mostly used the same one or two values.  A less common but still noteworthy observation 

we made was the opposite of this lognormal distribution: there did not appear to be a 

favoring towards any one value but, rather, a fairly equal distribution of values (possibly 

a uniform distribution).  These two observations are intuitive, as the former indicates 

properties where only one or two values are important, and the latter indicates properties 

where every value is important.  Thus we initially use the lognormal distribution of value 

selections in order to cluster the Canonical set in the configuration space based on 

preferential attachment.  However, we later modify the simulation using a normal 

distribution of value selections to explore the effect of the distribution of values per 

property. 

 

Stable-generation Algorithm: 
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1) Select a random Canonical configuration. 

2) Determine the number of modules to edit by sampling from the lognormal 

distribution. 

3) For each module to edit, determine the number of edits to make to the module 

by sampling from the lognormal distribution. 

4) For each edit to make within a module, select a new value by sampling from the 

lognormal distribution. 

o The new value cannot be equal to the current value. 

5) Append the modified configuration to the Stable set 

o If Stable set is fully populated, then start simulation; else go to Step 1 

The following bullets are further discussions about the Stable-generation algorithm: 

• In Step 2:  

o Even though I do not directly calculate how many modules are edited from 

one configuration to the next, my empirical observations reveal that at 

least some modules remain the same.   

o This lognormal distribution probabilistically limits the editing to only a 

few modules most of the time, which has support in the data and by 

personal experience.  However, I performed a sensitivity analysis using a 

uniform distribution to compare the effects of non-clustering of the 

topology. 

• In Step 3: 
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o Section 5.3 discusses two distributions for intra-module Hamming 

distances: lognormal and normal.  Thus I performed a sensitivity analysis 

using a normal distribution as well. 

• In Step 4: 

o I also performed a sensitivity analysis using a uniform distribution. 
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Appendix C 

Question Finding: Example Questions from the Crowd 

Easy Questions 

• Does everyone have DNA? 
• Do animals have DNA? 
• What does DNA stand for? 
• Where is DNA found? 
• How big is the universe? 
• How many galaxies are there in the universe? 
• Are there other planets in the universe? 
• What is the largest galaxy in the universe? 

 
Medium Questions 

• How does DNA function? 
• What causes DNA to degrade over time? 
• What happens when there are mutations in DNA? 
• How is DNA imparted to offspring? 
• What is the temperature of the universe? 
• At what rate is the universe expanding? 
• Is	it	possible	that	at	some	point	the	universe	runs	out	of	outward	momentum	

and	starts	to	collapse	in	on	itself	again? 
• How	can	the	big	bang	form	matter	and	energy	out	of	nothing? 

 
Hard Questions 

• How does DNA replicate? 
• Does DNA control gene expression? 
• Why is the DNA molecule shaped like a helix? 
• What translates DNA into messenger RNA? 
• Where is the missing dark matter in our universe? 
• How are space and time connected? 
• How	do	blue	and	red	shift	contribute	to	our	knowledge	of	the	universe? 
• What	percent	of	the	matter	in	the	universe	is	contained	in	supermassive	black	

holes? 
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