Automorphism-invariant Integral Forms in Griess Algebras
by

Gregory G. Simon

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Mathematics)
in the University of Michigan
2016

Doctoral Committee:

Professor Robert L. Griess, Jr., Chair

Professor Jonathon I. Hall, Michigan State University
Professor John R. Stembridge

Professor James D. Wells

Professor Michael E. Zieve



DEDICATION

Dedicated to my family, especially my wife and the family I gained
through her, my mother, my father, my stepmother, my grandmothers, and
my sisters. Your love and support were and are invaluable and irreplace-
able.

i



ACKNOWLEDGMENTS

I want to first and foremost thank my advisor, Dr. Robert Griess, for his
suggesting the main problem solved in this dissertation and for innumer-
able suggestions and ideas given throughout. This dissertation benefited
also from the supportive atmosphere at the University of Michigan by both
professors and fellow students. I want to thank Gabriel Frieden for sug-
gesting Gauss’ Lemma, which turned out to be very powerful and helpful.

I also want to thank Dr. Karen Smith for her advice and support.

11



TABLE OF CONTENTS

Dedication . . . . . . . . . .. ii
Acknowledgments . . . . . .. .. ... iii
List of Appendices . . . . . . . . . . .. ... v
Abstract . . . . . . L vi
Chapter
1 Introduction . . . . . . . ... L 1
1.1 Motivation and background . . . . . . ... ..o oL 1
1.2 Statement of the mainresult . . . . . . ... ... ... ... ..., 3
2 General facts about integralforms . . . . . . . ... ... .. ... ..., .. 8
2.1 Integral form detector functions . . . . . . . . ... ... 8
2.2 The intrinsic forms and extending GIIFs . . . . .. ... ... ....... 12
2.3 The general strategy . . . . . . . . . . . . 18
3 GIIFs in the Norton-Sakuma Algebras . . . . . .. ... .. ... ........ 22
3.1 The2Aalgebra . . . . . . . . . . . 22
32 The2Balgebra . . . .. ... .. ... ... 27
33 The3Aalgebra . . . . . . . . . . . e 28
34 The3Calgebra . . . ... .. .. . . . ... .. . e 35
3.5 ThedAalgebra . . . . . . . . . .. . . . e 41
3.6 Thed4Balgebra . . . . .. .. ... ... ... 47
377 TheSAalgebra . . . . . . .. . .. 51
3.8 The6Aalgebra . . . . . . . . . . . . e 61
4 GIIFs in some larger Griess algebras . . . . . . .. ... ... .......... 69
4.1 The algebra with group Sym(4) of shape 2B,3C) . . . ... ... .. ... 69
4.2 The algebra with group Sym(4) of shape (2A,3C) . . . . ... .. .. ... 73
4.3 The Lam-Chen algebra with group 3% :2. . . . ... ... ... ...... 81
Appendices . . . . ... L e 88
Bibliography . . . . . . .. .. 129

v



LIST OF APPENDICES

A Glossary of terms and notations . . . . .. ... ... .. ... ..........

B Mathematicachapter . . . . . . . .. ... ... .. ... .. ... .. .. ..



ABSTRACT

Automorphism-invariant Integral Forms in Griess Algebras
by

Gregory G. Simon

Chair: Robert L. Griess, Jr.

Motivated by the existence of group-invariant integral forms in various vertex oper-
ator algebras, we classify maximal automorphism-invariant integral forms in some
small-dimensional Griess algebras, which are certain finite-dimensional commuta-
tive, nonassociative algebras arising in the theory of vertex operator algebras. An
integral form of a rational algebra is the integer span of a basis of the algebra that is
closed under the algebra product. The main method is the development of “integral
form detector functions" and an investigation of their properties. Each of the small
Griess algebras we analyzed — the eight Norton-Sakuma algebras and three others
— have unique maximal automorphism-invariant integral forms. This provides a

canonically defined lattice and subring inside these algebras.

vi



CHAPTER 1

Introduction

1.1 Motivation and background

In 1982, Robert L. Griess, Jr., provided the first construction of the monster simple group M
as a group of automorphisms of a 196884-dimensional commutative nonassociative algebra
B [Gri82]. In subsequent years, this construction was simplified and analyzed in a number
of papers, including several by Jacques Tits [Tit83a, Tit83b, Tit84, Tit85] and by John H.
Conway [Con85]. In particular, Conway discovered an association between a distinguished
set of idempotents (called axes) in 8 and a conjugacy class of involutions in M (called the
2A conjugacy class, or called the set of T-involutions of B). Simon Norton [Nor96] studied
the subalgebras in 8 generated by two axes, and he was the first to state many facts about
these algebras. He stated that the isomorphism type of the algebra generated by two axes only
depended on the conjugacy class in M of the product of the associated involutions. He gave

eight such algebras, labeled by the name of the relevent conjugacy class:
2A, 2B, 3A, 3C, 4A, 4B, 5A, and 6A.

He worked out the structure coefficients in each algebra.
In 1988, Frenkel, Lepowsky, and Meurman [FLM88] showed that 8 was the degree two
piece of an infinite-dimensional graded representation of M called the moonshine module,

denoted V¥ = P~ V£, which has the structure of a vertex operator algebra (VOA). The
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moonshine module was used by Borcherds to resolve the moonshine conjectures — which
were a family of conjectures relating the representation theory of M and modular forms.
For certain vertex operator algebras (for those V with dimV, = 1 and dimV; = 0), the
degree two piece V, will inherit the structure of a commutative nonassociative algebra, and
this is known as a (generalized) Griess algebra. The adjective generalized is included to
emphasize the distinction between the degree two piece of some general VOA with the
original Griess algebra, the original 196884-dimensional algebra and the degree two piece
of the moonshine module. It was shown by Miyamoto [Miy96] that the link between axes
in B and involutions in M could be understood in the more general context of VOAs as
a link between involutive automorphisms of the vertex operator algebra and distinguished
idempotents in a generalized Griess algebra (or more precisely, Miyamoto considered ‘rational
conformal vectors with central charge 1/2 also known as ‘Ising vectors’ which correspond
to two times these idempotents). In 2007, Sakuma [Sak07] showed that in any generalized
Griess algebra for a suitably nice vertex operator algebra, there are only eight possibilities for
the subalgebra generated by two distinct axes, and so the eight studied by Norton represent
all possible isomorphism types of such algebras. These eight algebras are known as the
Norton-Sakuma algebras.

Although often considered over fields of characteristic zero, the axioms defining vertex
algebras involve only the integers and therefore make sense over any commutative ring
[Bor86, Kac98, GL13]. In particular, there has been some recent progress studying integral
forms in vertex algebras.

For an algebra (not necessarily associative) over a field of characteristic zero (meaning a
vector space A with a bilinear map A x A — A), an integral form is defined to be the Z-span of
a basis of the algebra which is closed under the algebra product. For example, Z" is an integral
form in R” and Mat,,,,(Z) is an integral form in Mat,.,(C), both for any positive integer n.
The definition for an integral form in a vertex algebra is analogous. There are at least two

inequivalent definitions for integral forms (also called a Z-forms) for a vertex algebra. In



[McR14], an integral form of a vertex algebra V is defined to be an additive subgroup V7
of V such that V; is a vertex subalgebra (over Z) of V and the map k ®z Vz — V given by
A®v — Avis a vector space isomorphism. In [DG12] and [GL13], an integral form is defined
for a vertex operator algebra that invokes the grading and the Virasoro vector, which are not
available in the vertex algebra setting. Of particular interest are integral forms of a vertex
operator algebra V which are invariant under some subgroup G of Aut(V). For such an integral
form Vz, we can form the vertex algebra V; ®z k over any field k and produce an infinite
sequence of representations of k|G|, given by the graded components of Vz ® k. In this way,
we could potentially study moonshine-like phenomena over arbitrary fields. This also can
increase our understanding of vertex (operator) algebras in general over arbitrary fields. When
these integral forms of vertex operator algebras intersect with the generalized Griess algebra,
the result is an integral form of this algebra in the classical sense. So in this document, we
study the integral forms in several small generalized Griess algebras — in particular inside
the Norton-Sakuma algebras. More precisely, we study the integral forms preserved by the
action of G (called G-invariant integral forms, or GIIFs for short), where G is the subgroup of
the automorphism group of the algebra generated by the distinguished involutions mentioned
above.

So this sets forth the following goal: given a finite-dimensional algebra A (which is not
necessarily associative) over a field k of characteristic zero, and a subgroup G < Aut(A), try

to understand the integral forms of A which are preserved by the action of G.

1.2 Statement of the main result

Throughout this document, a rng is an abelian group R with a Z-bilinear product Rx R — R. A
ring is a rng with an element 1 that is both a left and right multiplicative identity element, and
a k-algebra is ring that is a k-vector space and the algebra product is k-bilinear. In particular,

none of these products are necessarily associative.



Let a be an element in an algebra V. For a scalar yu, define V,Ea) ={veV :a-v=pv}to

be the subspace of u-eigenvectors of the adjoint action of a.

Definition 1.2.1. Let k be a field of characteristic zero, and V a commutative k-algebra. An

element a € V is an axis if:
(i) Vl(a) = span,(a). In particular, a - a = a.

(ii) The algebra decomposes as V = Vl(“) &) Véa) &) Vl(ﬁ &) V1(73)2. In other words the map
ad(a) : V — V defined by v — a - v is diagonalizable with eigenvalues from the set

{1,0,1/4,1/32}.

(111) The eigenspaces Vja) satisfy the Virasoro fusion rules: V/ga) . V,Ea) - Z Vv(a) where

«:{0, 1,1, 51> — 22({0,1,1, 55}) is given by the table below. o
10| 5| 5
L1053 | %
0(0|LO| I | %
IR
o R A

Note that (X)) is the powerset of X.

The properties of axes in Griess algebras have been axiomatized and studied in several
different ways. Our definition of axes is less restrictive than that in e.g. [Iva09] and [IPSS10],
where existence of an associative bilinear form is also required. Our definition of axes
coincides with the definition of B(4, 3)-axes given in [HRS15a] and [HRS15b].

One can see from this table that there is a Z/2Z-grading of V given by fo) = Vl(a) @ Vé”) S

Vl(ji and V@ & Vl(;gz. A Z/2Z-grading of an algebra yields an involution of the algebra: if we



define the linear map 7(a) : V. — V by

(a)
—Id on V1 32

t(a) =
d onV" @V, @V,

Then 7(a) is an involutive automorphism of the algebra V, called the 7-involution associated
to the axis a.
The fusion rules also show that the fixed point subalgebra of 7(a), V7@ = Vi“), itself has

a Z/27Z-grading given by [Vl(a) @ Véa)_ @ [Vl(;’i] Therefore we define o(a) : VJ(:’) — J(r“) by

( (a)
—Id on V1/4
o(a) =<

d onV¥a@V

\

Then o(a) is an involutive automorphism of VJ(F”). These are properties (M4),(M6), and (M7)
in [IPSS10]. When V is a subalgebra of a generalized Griess algebra of a vertex operator
algebra, the automorphisms 7(a) and o (a) of V equal the 7- and o-involutions defined by

Miyamoto when restricted to V [Miy03, §2].

Definition 1.2.2. An integral form of an algebra V over a field k of characteristic zero is a

subrng L < V such that L is the Z-span of a k-basis of V.

Definition 1.2.3. For an F-algebra A with basis {b; : i € I}, the structure coefficients of A with

respect to this basis are the scalars @; ;; € F (where i, j,k € I) defined by b; - b; = >, @i jxbx.

If the structure coeflicients of a basis are all integers, then the Z-span of that basis is an
integral form of the algebra.

If a; ; are the structure coefficients of a basis {; : i € I}, and c is in the field F, then it
follows from the previous definition that the structure coefficients of the basis {cb; : i € I} are
given by ca; jx. Thus if the structure coefficients are a basis are rational numbers, then some

integer multiple of this basis spans an integral form of the algebra.
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Definition 1.2.4. A G-invariant integral form (GIIF) of an algebra V is an integral form L of
V such that L is closed under the action of G = (r(a) : a an axis of V).

A GIIF L is maximal if it is not properly contained in any other GIIF.

By a discrete subgroup of a finite-dimensional rational vector space, we mean a subgroup
that is discrete with respect to the unique topology making the vector space a Hausdorff
topological Q-vector space [Rud91, Theorem 1.21] . Equivalently, a discrete subgroup of a
finite-dimensional rational vector space is the Z-span of a finite set of vectors. Let W be a
G-invariant discrete subgroup of a finite-dimensional Q-algebra V with rank(W) = dim V.
Let {w; : i =1,...,dim V} be a Z-basis of W. Then {w; : i = 1,...,dim V} is a Q-linearly
independent set so is also a Q-basis of V. The structure coeflicients of the algebra with respect
to this basis will be rational numbers. By the discussion following Definition 1.2.3, nW will be
an integral form of V for some integer n. By hypothesis, W is G-invariant, which implies that
nW is G-invariant, so nW will be a GIIF of V. Therefore, a list all GIIFs of V would include
an integer multiple of every G-invariant full-rank additive subgroup of V. The classification
of all GIIFs of V is then a strictly harder problem than a classification of all discrete full-rank
G-submodules of V.

However, we shall show that the list of maximal GIIFs for the Norton-Sakuma algebras
is completely classifiable and similarly for several larger Griess algebras. There is a unique
maximal GIIF in every Norton-Sakuma algebra except for 24, and in 2A there are three GIIFs
but which are conjugate under other automorphisms. This gives a distinguished intrinsically-
defined integral form inside each Norton-Sakuma algebra, which is the main result of this

document:

Theorem 1.2.5. Let V be one of the Norton-Sakuma algebras over Q. Then there is a unique

maximal Aut(V)-invariant integral form of V.

Proof. This is proven case-by-case for each algebra. In Theorem 3.1.11, it is shown that
there are exactly three maximal integral forms of the rational 2A Norton-Sakuma algebra,

and they are conjugate under the action of the o-automorphisms. The rational 2B algebra is
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isomorphic to Q?, so it has a unique maximal integral form, namely Z? (3.1.4). There is a
unique maximal GIIF in the rational Norton-Sakuma algebras of type 3C (Theorem 3.4.4), 3A
(Theorem 3.3.13), 4A (Theorem 3.5.10), 4B (Theorem 3.6.8), SA (Theorem 3.7.9), and 6A
(Theorem 3.8.6).

It is an easy consequence of G = (7(a) : a an axis.) being normal in Aut(V) that the
set of GIIFs is invariant under the action of Aut(V) (Corollary 2.2.11). Therefore, if V has a

unique maximal GIIF then this is also the unique maximal Aut(V)-invariant integral form. [J

In the later sections, we extend this result to several slightly larger algebras which are
generated by three axes (compared to the Norton-Sakuma algebras which are generated by

two axes).
Theorem 1.2.6. Each of the following algebras has a unique maximal GIIF:
(i) The algebra with G =~ Sym(4) of shape (2B,3C), described in [IPSS10, §4.3],
(ii) The algebra with G =~ Sym(4) of shape (2A,3C), described in [IPSS10, §4.4],
(iii) The ‘Lam-Chen algebra’ with G = 32 : 2, as described in [CLI4].
Proof. These are proved separately, as Theorems 4.1.7, 4.2.10, and 4.3.13. ]

It is unknown if every Griess algebra V has a unique maximal Aut(V)-invariant integral

form.



CHAPTER 2

General facts about integral forms

2.1 Integral form detector functions

Definition 2.1.1. For « in an finite dimensional algebra V, define ad(a) to be the linear
function V. — V given by x — a - x.

For an endomorphism x of a finite dimensional vector space, define y(x; ) = det(x — #I)
to be the characteristic polynomial of x. When it can cause no confusion, if a is in a
finite dimensional algebra, y(a; t) is understood to mean y(ad(a); ¢) i.e. the characteristic

polynomial of ad(a). Similarly, trace(a) = Tr(ad(a)) is the trace of ad(a).

It is clear that if a is in an integral form of an algebra V, then the matrix of ad(a) has
integer coefficients, and therefore y(a; ) will be in Z[¢]. Thinking of a as a variable, each
coefficient of y(a; t) is then a function V — Q which takes integer values on elements in an

integral form. This motivates the following definition:

Definition 2.1.2. Let W be a subspace of a Q-algebra V. An integral form detector function
(IFDF) on W in m variables is a function f : W” — Q such that if wy,w,,...,w,, are in an

integral form of V, then f(wy,w,,...,w,,) is an integer.

For a fixed subspace W and a fixed m, the set of integral form detector functions on W in
m variables form a ring. They are also closed under some more subtle operations: an IFDF in

m variables can be made into one of m + 1 variables by multiplication: if f : W" — Q is an



IFDF, then so is the following function:

(Wi W2y oo s Wia Wi 1) — fF(W1L Was oo s Wity Wi - Wi 1)

The proof is immediate: if wy,...,w, are in an integral form, then w,, - w,,;; is also in
this integral form and hence f(wy,..., W, - W,41) € Z. This could be formally described as
precomposition of f with multiplication.
An IFDF in m variables can also be made into an IFDF on m — 1 variables by ‘precompo-
ef

sition with the diagonal map’ (A(x) & (x, x)). More concretely, if f : W”" — Q is an IFDF,

then so is the following function:

(W19W2’ .. .,Wm_l) = f(Wl,W],Wz,. .. ,Wm_l).

The proof again is immediate from the definitions.

There are numerous permutations of how one can perform these multiplications or pre-
compositions with the diagonal map, and stating these formally will not shed any new insight
on these operations. We will exclusively use these operations on small degree (e.g. linear
or quadratic) functions and on just one or two variables. For example, we will often use the
fact that v — trace(v - v) is an IFDF. This is fairly easy to see (if v is in an integral form, then
so is v - v), which makes calling this function “precomposition of trace with multiplication
followed by precomposition with the diagonal map” somewhat unnecessarily verbose, and we
will often avoid the excessive jargon if it is not illuminating.

Integral forms are also closed under a property which we can call “taking the kth root of

the perfect k-power part," which we formalize with a basic lemma and then explain below.

Lemma 2.1.3. Let k be positive integer, y a rational number, and m an integer such that no

factor of m is a kth power. Then my* is an integer if and only if y is an integer:

Proof. Suppose m - y* € Z. In reduced form, the denominator of y* has all prime factors with



multiplicity a multiple of k. The prime factors of m all divide m with multiplicity strictly less
than k. So the denominator of y* must be 1 in order for my* to be an integer. Thus y is an

integer. O

This will be used to reduce down integral form detector functions to smaller degrees.
For example, suppose g : W — Q is any function, and f(w) = 24g(w)? is an integral form
detector function. Then write f(w) = 6 - [2g(w)]*. By the lemma, f(w) is an integer if and
only if 2g(w) is an integer. Thus w — 2g(w) is an integral form detector function. In summary,
we factored f as a square-free integer times a perfect square, and took the square-root of the
perfect-square part. We will use this lemma freely and without citation when it is obvious —
e.g “If xe Qand 5x*> € Zthenx € Z."

Producing integral form detector functions will be key to classifying maximal invariant
integral forms. In a certain sense, the IFDFs are dual to integral forms. The more IFDFs we
have, the more constricted the possibilities for integral forms are, which allows us to classify
them.

As a key example, if one can produce n = dim(A) linearly-independent linear functions
fis---sfu + A — Q which are integral form detectors, then we can form the dual basis
fiso o fi of A defined by fi(ff) = 6;;. Then any integral form must be contained in
span, ( i f7¥) since this is the largest subset of A on which all of the functions fi, ..., f,
take integer values. If span, (f}*,..., f") happened to be closed under the algebra products,
then this would be the unique maximal integral form in the algebra.

This sets the goal as constructing small degree (especially linear) integral form detector
functions. As was mentioned, trace(a) is an integral form detector function, as are the other
coefficients of y(a; ). We next show that for any ad(a)-invariant subspace W, y(ad(a) ‘W; f)

will be in Z[¢]. First an elementary lemma:

Lemma 2.14. Let 0 < W, < W, < --- & W, = W be a full flag for an n-dimensional
Q-vector space W (i.e. each W; is a subspace, and dim W; = i), and let L be a discrete

subgroup of W of rank n. Then L has a Z-basis b, . ..,b, such that b; e W,.
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Proof. Proceed by induction on dim W, with the dim W = 1 case being trivial.

Let w, be a nonzero element of W;. When expressed as a linear combination of a basis of
L, the coefficients of w; will be rational. So some integer times w; will lie in L. In particular,
Wi n L s a subgroup of L with rank at least 1. The rank can be no more than 1 because two
Z-linearly independent vectors in W; n L would be two Q-linearly independent vectors in W;.

So L n W, equals Zb, for some by. Then (L + W;)/W; =~ L/(W; n L) = L/Zb,, and the
latter is torsion free by the definition of b;. (If %bl were in L for some positive integer k, then
%bl would be in L n W,.) Hence (L + W;)/W, is a free subgroup of rank n — 1 inside W/Wj,
and W;/W, (i = 2,...,n) is a full flag of W/W,. By induction hypothesis, take a Z-basis of
by,....b, of (L + Wy)/W, with b; € W;/W, fori = 2,...n. Let by,...,b, € L be elements
such that (b;) = b; where 7 : L — W/W,; is the inclusion of L into W followed by the
canonical quotient map.

Note that b; € W, for i = 2,...n. The images of by, ..., b, are a Z-basis of L/ker(rx), and

by is a Z-basis of ker(n), so by, ..., b, is a Z-basis of L. O

Proposition 2.1.5. Let A be a finite dimensional algebra over Q. If x is in an integral form L

of A, and ad(x) leaves invariant a rational subspace W of A, then x (ad(x)|w; t) is in Z[1].

Proof. Choose any full flag A,,...,A, of A such that Ay = W, where k = dimg W. Let
{1,...,0, be a Z-basis of L subordinate to this flag guaranteed by Lemma 2.1.4. Then
{1, ..., L are k vectors that are Z-linearly independent (hence Q-linearly independent) in W,
and therefore are a Q-basis of W.

Since both L and W are invariant under ad(x), their intersection is also invariant. Note that
W n L = span,(¢y,...,¢). Therefore, with respect to the basis ¢y, ..., {; of W, the matrix
of ad(x) ‘W has integer entries, and so the characteristic polynomial of ad(x) ‘W has integer

coeflicients. OJ

The existence of ad(x) invariant subspaces, for certain choices of x, are guaranteed by the

following lemma, which is a slight restatement of [FG92, Lemma 2.2]:
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Lemma 2.1.6. Let o be an automorphism of a rng R, with C equal to the fixed-point subrng,

and ¢(t) € Z[t]. Then N = Im(¢(0)) is stable under multiplication by C.

Proof. Fix ¢ € C and r € R. Note that ad(c) commutes with all powers of o, so ¢ - ¢(0)r =

¢(o)(c- 7). O

In particular, for a GIIF L of a Norton-Sakuma algebra V, suppose that ¢ is a nontrivial
r-involution. Then the lemma says that elements in L act with integer trace on Im(z + 1) and
of Im(¢ — 1), which are the fixed points of 7 and the -1-eigenspace of ¢, respectively. This puts
a considerable rigidity on the elements in the algebra which can be in LT for some GIIF L.

We conclude this section with another method of producing integral form detector func-
tions. This will be used to factor characteristic polynomials in order to get linear integral form

detector functions. The result is a slight variant of Gauss’ lemma.

Lemma 2.1.7. Suppose p;(t) is a monic polynomial in Q[t] for i = 1,...n such that

117, pi(t) € Z[z]. Then p;(t) € Z[t] for each i.

Proof. For each i, let r; be the smallest positive rational number such that r;p;(¢) € Z[t]. Then
r;p(t) must be primitive (in the sense that its coefficients must have no common prime factor)
because if ¢ divides each coefficient, then r;/gp;(f) would be in Z[¢]. Because p;(¢) is monic,
r; must be an integer.

Gauss’ lemma implies that [ [\_, r; p;(¢) is primitive. Since [ [}_, p:(¢) € Z[¢], this implies

that [ [_, r; must equal 1. Therefore each r; = 1 so p;(t) € Z[z]. O

2.2 The intrinsic forms and extending GIIF's

Definition 2.2.1. For a, b in any finite-dimensional algebra, define the two forms «(a, b) =
Tr(ad(a) ad(b)) and n(a,b) = Tr(ad(a - b)). The form « is called the Killing form.
Both of these forms are bilinear, and if the algebra is commutative then both forms are also

symmetric. Note that neither form is, in general, equal to or a multiple of the associative inner
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product on the Griess algebras that is usually considered, for example in [IPSS10]. Both of
these forms are also integral form detector functions, which is a consequence of the following
slightly more general statement.

The importance of these intrinsic bilinear forms to the study of integral forms is given by

the following easy but important result.

Proposition 2.2.2. If R and S are integral forms of an algebra A with R < S, then S <
R** N R*" where R** = {x € A : a(R,x) € Z} is the dual space to R with respect to the form

Q.

Proof. Take s € S and r € R. With respect to a Z-basis of S, both ad(r) and ad(s) are matrices
with integer entries. Hence «(r, 5) € Z.
Similarly s - r € S so the matrix of ad(s - r) in a Z-basis of S is an integer matrix. Thus,

n(r,s) € Z. O

Taking R = § in this proposition shows that every integral form in a finite-dimensional
commutative algebra is a lattice with respect to both of these two forms. So we record a few

definitions and results about lattices and the containment of lattices.

Definition 2.2.3. (i) A Ilattice is a finitely-generated free abelian group L together with a

symmetric bilinear form a : L x L — Q.
(ii) A lattice is called integral if (L, L) < Z.

(iii) Given a Z-basis of a lattice {b; : i = 1,...,n}, the Gram matrix with respect to this

basis is the n x n-matrix with (i, j)-entry equal to a(b;, b;).

(iv) A lattice is nonsingular if for every ¢ € L, the function L — Q defined by x — a(¢, x)

is not identically zero.

(v) The dual of a nonsingular rational lattice is L** = { € Q®L | a(¢,y) € Z forall y € L}
where we make the identification L =~ 1 ® L and extend the bilinear form to Q ® L by

linearity.
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(vi) The determinant det, (L) of an integral lattice L is the determinant of the Gram matrix of
any Z-basis of L, and this is independent of the choice of basis. The lattice is singular if
and only if det, (L) = 0. The absolute value of the determinant of a nonsingular integral
lattice L equals [L* : L] [Grill, 2.3].

Note that often times the bilinear form is implicitly understood, so the « is omitted in
these notation — e.g. in det L = det, L and L* = L*®. Since integral forms are lattices with

respect to both « and 7, it will be important for us to emphasize the form.

Proposition 2.2.4 (“Index-determinant formula”). Let R < S be two nonsingular integral

lattices with respect to a form a and [S : R] < c0. Then det,(S)[S : R]* = det,(R).
Proof. [Grill, 2.3.3] O
As a corollary to Propositions 2.2.2, we have the following.

Corollary 2.2.5. If R is an integral form in a finite-dimensional commutative algebra, then
the set of integral forms containing R correspond to some collection of (additive) subgroups
of (R** n R*")/R.

Furthermore, [R** n R*" : R] < ged(det,(R), det,(R)), (where ged(0,0) = o).

Proof. The first claim is a restatement of 2.2.2 combined with the correspondence theorem for
subgroups of quotient groups. To prove the inequality, first note that if det,(R) = det,(R) = 0
then there is nothing to prove. So we may assume that one of these is nonzero. Therefore at
least one of the groups R**/R and R*" /R is finite. Note that (R** n R*")/R is a subgroup of
both R**/R and R*"/R. By the comment in Definition 2.2.3(iv), [R** n R*" : R] divides both

det,(R) and det, (R). O

This gives a finite time algorithm to produce maximal (G-invariant) integral forms in any
finite-dimensional rational algebra V with one of « and n7 nonsingular. We start with a general
integral form R of V, which one can find by taking any Q-basis and multiplying the basis by a

sufficiently large integer, as explained in the paragraph following Definition 1.2.4. Corollary
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2.2.5 guarantees that every integral form containing R corresponds to some subgroup of the
finite group (R** n R*")/R.
The following easy but important result proves that if we want to prove R is maximal, we

do not need to search through all of these subgroups.

Proposition 2.2.6. Let R & S be two integral forms in a finite-dimensional algebra V with
p a prime a divisor of [S : R|. Then there exists an integral form S’ such that S' < %R but

S' ¢ R,

Proof. Let m be the exponent of S /R. So p divides m, and note that an integer multiple of
an integral form is still an integral form. Take S’ = (m/p)S. Then pS’ = mS < R with
S ER. ]

So to find an integral form not contained in R, one only needs to search through the
subgroups of %R/R N (R** n R*")/R. And in fact if one is searching for GIIFs, then the
corresponding subgroups of the quotient will actually be submodules of the F,[G]-module
SR/R 0 (R R*")/R.

One should note here that the quotient R** /R is called the discriminant group of the lattice
(L, @), and that there are algorithms available for computing the dual of lattice, intersections
of lattices, finding generators of the quotients of two lattices (which is related to finding a
Smith basis for an inclusion of finitely generated Z-modules, see for example Theorem 7.8
in [Lan02]). In the remaining sections, we begin with an integral form and prove that it is
the unique maximal Gy-invariant integral form'. The preceding discussion indicates how we
discovered these maximal G-invariant integral forms to begin with — namely by checking
through the G-submodules of (R** n R*")/R for some fixed R, using knowledge of F,[G]
representation theory.

Below we want to collect a few results about integral forms, the 7-involutions and integral

representation theory that we will need in other sections. The following results in this section

where Gy is either G or in the 2A case, we must take Gy = Aut(V)
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should not be considered original, but it will be convenient to collect them here. First we make

the observation that / is in any maximal GIIF.

Lemma 2.2.7. Let V be a rational vector space, and S < 'V a finite set. Then span,(S) is a

discrete subgroup and has a Z-basis consisting of at most n = dimg (V) elements.

Proof. Fix a basis vy,...,v, of V. There is an integer m such that, for all s € S, the coef-
ficients of ms in the basis vy, ..., v, are integers. Therefore span,(S) < Lspan, (vi,...,v,).
Submodules of free modules are free, so span, (S ) is also free over Z and its rank is no more

than n [DF04, 12.1 Thm 4]. O

Proposition 2.2.8. Let V be a Q-algebra with a multiplicative identity I, and let H be any

subgroup of Aut(V). Then every maximal H-invariant integral form contains 1.

Proof. Let L be any H-invariant integral form of V. Then clearly L + ZI will also be an
integral form. By the previous lemma (2.2.7), L + ZI 1s also discrete and its rank is at most
dim V and at least rank L = dimV. So L + ZI is also an integral form, and it is clearly

H-invariant, since hl = [ for all h € Aut(V). O
Lemma 2.2.9. For an axis a in a Q-algebra V, 7(a) is a rational polynomial in ad(a).

Proof. Let p(t) be a rational polynomial such that p(0) = p(1) = p(1/4) = 1 and p(1/32) =
—1. For a p-eigenvector v of ad(a), p(ad(a))v = p(u)v. In particular, p(ad(a)) acts as 1 on
Véa) ® VY @V and it acts on V') as the scalar -1. So p(ad(a)) = 7(a). O

1/4 1/32

This also shows that any subalgebra containing a will be closed under the action of 7(a).
Proposition 2.2.10. Let V be an algebra with at least one axis and g an automorphism of V.
1

(i) If a is an axis, then ga is an axis and 1(ga) = gr(a)g™

Let A be a set of axes in V and T = {t(a) : a € A} be the corresponding set of T-involutions.

Suppose that the function from A to T given by a — 7(a) is bijective. Let t — a, be its inverse.
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(ii) If t€ T, then ga; = agq1.

Proof. (i) The function a — 7(a) is a polynomial in ad(a) by Lemma 2.2.9. Since gad(a)g™' =

1

ad(ga), it follows that gr(a)g~"' = 7(ga).

(ii) By definition, ¢t = 7(a,) and a,(»y = @'. Then by part (i), dyp—1 = dr(ea) = 4. ]
(a) g8 (gar)

Corollary 2.2.11. Let V be an algebra. Then G = {(t(a) : a an axis) is a normal subgroup of
Aut(V). Therefore the set of all G-invariant integral forms (GIIFs) is closed under the action
of Aut(V). So if there is a unique maximal GIIF in V, then this is also the unique maximal

Aut(V)-invariant integral form.

Proof. By (i) of the previous result (2.2.10), the set of 7-involutions is invariant under conjuga-
tion by any element Aut(V), so the subgroup G generated by the 7-involutions is normal. Let
h be an element in Aut(V) and L a GIIF. Then we claim that 4L is also a GIIF. If {¢y,...,¢,}
is a Z-basis of L, then {h(y,...,h¢,} is a Z-basis of hL, and the structure coefficients of hL
under this algebra are the same as the structure coefficients of L. So AL is also an integral

form. Choose any g € G. Then

g-hL =hh~'ghh™" - hL = h(h'gh) L = hL.

The final inequality follows since L is invariant under G and h~'gh € G by normality. O]

We conclude here with a proposition regarding the action of dihedral groups on lattices

which will be relevant in the cases 34, 3C, 5A and 6A.

Proposition 2.2.12. Let V be a finite-dimensional rational vector space with a symmetric
bilinear forma : VQ®V — Q. Let L be a lattice inside V and let g be a lattice automorphism

of L of order p a prime such that L/L? has rank (p — 1)*. Then [L : L* + (L#)*] divides p*.

Proof. We may assume L #+ L#, and so (g — 1)L + 0. Observe that (g— 1)L < (L?)*, because
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if v,x e L with g - v = v, then:

((g—Dx,v) = (gx,v) — (x,v) = (x,gv) — (x,v) = 0. (2.1)
We then have:

0=(g"—1L=(¢" " +&" 2+ ---g+1)(g— 1)L

The polynomial ®,(1) = t*~! + 7=2 + .- + 1, being irreducible in Z[¢], is therefore the
minimal polynomial of g on (g — 1)L. Since rank L/L# = (p — 1), then g acts on (g — 1)L
with characteristic polynomial +®,(¢)*. Therefore g — 1 acts on (g — 1)L with characteristic
polynomial +®,(z + 1)* and in so in particular with determinant + pF.

So there is an inclusion:
B4 (g—1)LS L+ (L5 <L,

where the outer inclusion is of index p*. The desired result follows. ]

2.3 The general strategy

Throughout this section V is finite-dimensional algebra (with axes), and G = {(7(a) :
a an axis of V) is the subgroup of Aut(V) generated by the 7-involutions. We will show
the general strategy of classifying the maximal G-invariant integral forms.

Let Wy, ..., W, be a set of representatives of all irreducible Q[G]-modules up to isomor-
phism, with W, the trivial 1-dimensional representation. Decompose V = (—Df:l V; into
corresponding isotypic subspaces with respect to the action of G, meaning that each V; is
the sum of all submodules of V isomorphic to W;. For each i we will first try to classify the

elements in V; which can be in an integral form.
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The most important isotypic piece to consider will turn out to be the fixed point subalgebra
V¢ = V,. The importance stems from the following fact: suppose g € G < Aut(V), f € VO,

and v € V; then

g(f-v)=1(8f) (gv)=r (gv)

In other words, the map ad(f) from V — V is a G-module endomorphism. In particular
f - Vi €V, for each index i. If we concatenate bases of each V; to produce a basis of V, then
with respect to this basis, ad(f) is a block diagonal matrix with blocks of size dim V;. This
implies that the characteristic polynomial of ad(f) necessarily factors nontrivially as long
as there is more than one isotypic component. This allows us to apply the variant of Gauss’
lemma (2.1.7) in order to produce many integral form detector functions, corresponding to
every coefficient in every factor of the characteristic polynomial. In particular, the trace of
ad(f) |V,- is a linear integral form detector function on V¢ for each i.

This is in fact a special case of a more general phenomenon. The tensor product of
every pair of irreducible Q[G]-modules will decompose as a direct sum of some subset (with
multiplicities) of the set of irreducible modules, and not every irreducible will necessarily
occur in this decomposition. The algebra product is a G-module map V ® V — V and this
restricts to a G-module map V; ® V; — V for each pair i and j. The image of this map will be
a G-submodule of V, and this image can only contain the irreducible submodules which occur
in V; ® V; and which also occur in V. And in practice the image of V; ® V; will contain even
fewer irreducible submodules.

Suppose we choose a basis of each of Vi, ...V, and concatenate this to a basis of V. So
if v; € V; then ad(v;) will be decomposable in terms of blocks, where there will be a block
of Os when there is an irreducible W; that does not occur in both V and V; ® V; for some j.
Supposing there are sufficiently many zero blocks, this will cause a tendency for ad(v;) to

preserve some proper subspaces and also to have the characteristic polynomial of ad(v;) factor,
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providing more IFDFs on V.

In particular, this is will always happen for the isotypic pieces corresponding to one-
dimensional irreducibles, since if W; and W; are one-dimensional, then W; ® W; =~ W, for
some other one-dimensional W, and in this case V; - V; < V,. This is especially effective
for the 4A and 4B algebras in which the group G is isomorphic to (Z/2Z)?, meaning all the
irreducible Q[G]-modules are one-dimensional.

As mentioned in the previous section, in each of the algebras we will be able to find
some maximal GIIF M of V. By constructing enough detector functions on each isotypic
subspace, for each i we will try to prove that for every GIIF L, L n V; € M. Now GIIFs are
Z-free Z|G|-modules, and in particular they are cannot always be uniquely decomposed into
irreducibles — meaning that in general for a GIIF L, L + Zi.;l (L n'V;). However, it is a fact

that L cannot be too far off from this.

Lemma 2.3.1. Let L be a discrete Z|G-submodule of the Q[G]-module V and V = @)_, V;

the decomposition of V into G-isotypic subspaces. Then L < G‘ Zl (L V).

Proof. Decompose Q[G] as D, ;Q[G] where each ¢ is a primitive central idempotent of
Q[G], where we let e; be ordered so that ¢; acts on V/; as the scalar §;;. Then we first claim that
|Gle; € Z[G].

To prove this, note that for an irreducible complex character y of G, the idempotent corre-
sponding to y is given by e(y) = ‘ G| Z <G x(g71)g. Then the primitive central idempotents
in Q[G] are given by i a()/0) ¢(X") for some irreducible complex character y [Yam74,
Prop 1.1] . The coefficients of each g € G in this sum will all be 4] G‘ times rational integers.

Write 1 = > ¢; in Q[G]. Since L is invariant under Z[G], oberve that |G|e;L < L A V..

Thus we have,

k
IG|L = |Gl|(e; + e+ ---e)L < |Gle\L + - - - |GlerL < Z (LAV).
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Therefore, if we have proven that, for every GIIF L and eachi = 1,... kthat LnV; < M,
then the previous lemma implies that L < |—(1;‘M . Now if L is a GIIF not contained in M then
(|G|/p)L will be a GIIF not contained in M which is contained in %M for some prime divisor
of |G|. So it suffices to check if there are any integral forms in %M for each prime p dividing
the order of G. This turns out to often be a finite problem in arithmetic modulo p. When no
such GIIFs are found, we will have proven that every GIIF is contained in M.

It should be noted here that the strategy explained here is not always followed exactly,
step-by-step, in each algebra — there are occasional shortcuts and alternate routes. For the
most part, however, you can view this strategy as a template attempted to be followed in each
subsection, which hopefully will help motivate the ideas presented therein.

We note here that much of the work in classifying the maximal G-invariant integral
forms will rely on calculation of traces, characteristic polynomials, and the intrinsic forms
on elements in various isotypic subspaces. When a calculation is required, we will include a
reference like ‘[%2A.2]’. This indicates that this calculation was performed with a computer
algebra system. Code for these calculations as well as an explanations of the necessary

structural code is given in Appendix B.

21



CHAPTER 3
GIIFs in the Norton-Sakuma Algebras

3.1 The 2A algebra

Notation 3.1.1. The 2A dihedral algebra V,4 has a basis of axes (therefore idempotents)

aop, ai, a, such that for every choice of indices {i, j, k} = {0, 1, p},
ai-a;=2"(a;+a; — a).

([IPSS10, Table 3])

The group of t-involutions acts trivially on V,4 [IPSS10, Lemma 2.20]. Let I be the
multiplicative identity. We seta = apandk = I —a,sok-k = kand k- a = 0. We set
q = 4(a; — a,), and we compute that g - ¢ = 7a + 15k and a - ¢ = 7q [*2A.1].

It follows thatk - g = (I —a) - q = %q. These notations were chosen because a kills k, and

a quarters g. Idempotents a and k generate a subalgebra isomorphic to Z2.

Lemma 3.1.2. The following gives the trace of each element a, k, and q
5 7
trace(a) = 7 trace(k) = T trace(q) = 0.

Proof. Let B denote the ordered basis (a, k, g). With respect to 8B, the matrix of ad(a) is

diagonal with entries 1,0, ;. The matrix [ad(k)]s of ad(k) with respect to B has diagonal

3

components 0, 1, 4, and the diagonal entries of [ad(g)]z are all 0. O
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Proposition 3.1.3. If 4xa + yq is in an integral form of V4, with x,y € Q, then x,y € Z.

Proof. Set w = 4xa + yq. We compute trace(w) = 5x and trace(w - w) = 5(4x* + 7y?)
[*2A.2] which are both integers. We note that 100x*> = 4(5x)? is an integer, hence 5%7y* =
52(4x* 4+ Ty*) — 100« is also an integer. Since y is rational, we conclude that Sy is an integer.

Set X = Sxand Y = 5y, so that X, Y € Z, we have:
1
trace(w - w) = 20x* + 35y* = §(4X2 +7Y7%).

The equation 4X> + 7Y? = 0, (mod 5) is equivalent to X> = 2¥? (mod 5). Since 2 is not
a square mod 5, this equation has only the trivial solution X = Y = 0, (mod 5). Hence

X,Y e 5Z and so x,y € Z. ]
Lemma 3.1.4. For any positive integer k, every discrete subrng of Q is contained in Z*.

Proof. Let A be a discrete subrng of Q". Then A is additively generated by at most n elements
[Bou98, Ch VII §1.1-1.2]. So there is some N > 0 such that A < %Z". Let e; be the ith

n

standard basis vector of Q". Let a = Z:;l a;e; be an element of A. Then af = D dle.

Write a; = p;/q; for relatively prime integers ¢; > 0 and p;. Suppose ¢; > 1 for some

k
j. Choose k so that g > N. Then a* = ', d*e; is not in 17", since a* = 2 is a reduced
J i=1 ! N J 4

i
i

fraction with denominator larger than N. Therefore ¢; = 1 and A < Z". [

Corollary 3.1.5. Suppose x,y € Q. If xa + yk or xa + yl is in an integral form of V4, then

X,y €Z.

Proof. The rational span of a and k is isomorphic to Z>. The intersection of spang(a, k)
with any integral form is a discrete subrng of spang(a, k) = Q? and therefore is contained in
span(a, k), by 3.1.4.

If xa + yI = (x + y)a + yk is in an integral form, then the previous paragraph shows

x+yeZandye Zand hence x € Z. 0
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Corollary 3.1.6. Let L be an integral form of Vo with I € L. Then there exists a positive
integer t and a w € Vya such that 1,4ta,w is a Z-basis of L. Furthermore, we may write

w = xa + yq + zI where x,y,z€ Qwith) < x <2tand 0 < z < 1.

Proof. Note that if xa € L for some rational x, then x € 4Z by Proposition 3.1.3. Let ¢ € Z be
such that 4ta is the smallest integer multiple of a in L. If we can show that L/span; (1, 4ta)

is torsion-free, then {I, 4za} can be extended to a Z-basis of L. Let n,m, { € Z (with € & 0)

be such that ¢ = 22 j5 in L. By Corollary 3.1.5, n/¢ and 4tm/¢ are integers. But then
z— %I = #g is in L. By minimality of ¢, (4rm/€)a is an integer multiple of 4za. In other

words, m/{ is an integer. Therefore, z € span, (1, 4ta).

If w is the preimage in L of a generator of L/span,(/,4ta), then L = span, (I, 4ta,w).
Writing w = xa + yq + zI we may add or subtract integer multiples of 47a and I from w to
ensure that 0 < x < 4¢ and that 0 < z < 1. Then we may replace w by —w + [ + 4ta if

necessary to ensure that 0 < x < 2. U

Definition 3.1.7. For subsets S 1, ..., S of an algebra A, define rng(S,...,S,) to be the rng
generated by Ule S, 1.e. the smallest (additive) subgroup of A containing Ule S, that is
closed under the algebra multiplication.

We omit brackets on singleton subsets: for example if S — A and v € A then rng(S,v) =
mg(S, {v}).
Definition 3.1.8. Set P = span,(4a, I, q)

Proposition 3.1.9. P is an integral form of V.

Proof. Showing that P is a ring is an easy verification: (4a)> = 16a, 4a - ¢ = ¢ and
g* = —8a + 151 are all in P.

Then since a, k = a — I, and g form a basis of V,,, it follows that P has rank 3. ]

Lemma 3.1.10. Ler L(m) = span,(1,8a, a + 225 + 1I). Then L(m) is an integral form
for Vau for every m € Z. If L is maximal integral form of V4 then either L = P or L = L(m)

for some integer m.
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Proof. With our mind on the conclusion of 3.1.6, suppose L = span, (I, 4ta, w), where ¢ is an
integer and where w = xa + ﬁq + il with x,y,z€ Q and where 0 < x < 2tand 0 < z < 4.
(The factors of 4 are included here and not in 3.1.6 because this will simplify the computations
to come.)

The set L is clearly closed under multiplication by I. It also contains (4ta)* = 16/%a.
Therefore, L will be an integral form if and only if L contains (47a) - wand w - w.

We compute the coefficients of (4ta)-w and w-w in the Z-basis I,4ta,w of L: [%2A.4]

t 1
(4ta) -w = g —(3x+2) (4ta) +tw

4" "%
(x> — %)

1
wew=— (150" —z(2x +2)) I + Yy

1
4 —
T (ta)+2(x+z)w

Thus we conclude that L is an integral form if and only if the following six terms are integers:

tz 1 1 5 ¥ =y x4z
—Z S (Bx+ —(15y% — z(2x + :
7 4(3x 2), t, 16< 5y —z(2x + 2)), Y >

3.D

Now suppose that L is a maximal integral form of V54, not equal to P. By Corollary 3.1.6,
we may indeed write L = span,(/,4ta, w), where ¢ is an integer and where w = xa + g + 21
with x,y,z € Q and where 0 < x < 2rand 0 < z < 4. As we showed above, the six

expressions given in (3.1) are integers.

We observe that x and z are integer linear combinations of these:

x:_(x;Z)+2(3<3x+Z>)
Z=3<X;Z)—2(%Bx+@>.

Therefore both x and z are integers. Then ¢ € Z and (x> — y*)/(8t) € Z imply x> — y* € Z

which implies that y* € Z. Since y is rational, y € Z.
Note that (3x + z)/4 € Z implies that x = z (mod 4) and so 2x = 2z, (mod 8). Then

(15y* — z(2x + z))/16 € Z implies 15y* = z(2x + z) = 3z*> (mod 8), which implies y* = 572,
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(mod 8). Since 5 is not a perfect square modulo 8, it must be that z is not invertible modulo 8.
So zis even.

Supposing z = 0, then w € (Qa + Qq) n L < P, where the last inclusion follows from
3.1.3. It follows that L < P. Maximality of L implies L = P. So we may assume z is not zero.
Thenzisevenand 0 < z < 4,s0z = 2.

Observe that 7 occurs only in three terms of the six expressions in (3.1) above: —tz/4, 1,
and (x* — y?)/(8¢). It must be then that gcd(tz/4,¢) = 1 for if there were a prime p such that
tz/(4p) and t/p are integers, then span, (I, 4ta/p, w) would be an integral form (because the
6 expressions given in (3.1) would still be integers with ¢/p substituted in place of r), and
this integral form would be strictly larger than L. Now 1 = ged(tz/4,t) = ged(t/2,t) implies
t=2.Thenwehave 0 < x <2r=4andx=z=2 (mod 4) so x = 2.

Then (x> — y*)/(8t) = (4 — y*)/16 being an integer implies that y* = 4 (mod 16), and:

y*=4 (mod 16) < 16divides (y —2)(y +2) < y=2 (mod 4).

To summarize, if L is a maximal integral form and L #+ P, then L = span,(/, 8ta, 2a + %q + %I )
where y = 4m + 2 for some integer m.

It is an easy verification that if t = x = z = 2 and y = 4m + 2 for an integer m, then the
six expressions in (3.1) are integers. Therefore L(m) = span, (1, 8a,2a + (m + 3)q + 31I) is

an integral form for any integer m. [

Theorem 3.1.11. There are three maximal integral forms in Vox: P, L(0), and L(—1). If o(x)

denotes the o-involution associated to the axis x, then L(0) = o(a;)P and L(—1) = o (a,)P.

Proof. By the previous theorem, any maximal integral form equals P or L(m) for some integer
m. We will show that L(0) and L(—1) are the only maximal integral forms among the set
of {L(m) : m e Z}. Setw,, = 2a + (m + 1)q + 31 so that L(m) = spanz (1, 8a,w,,). We in

fact will show that L(m) < L(0) if m is even, and L(m) < L(—1) if m is odd. Compute the
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coefficients of w,, in the bases {/, 8a, wy} and {I,8a,w_1}: [*2A.5]

Wy = —ml — %(861) + (1 4 2m)wy,

m+ 1

= (1+m) + (8a) — (1 + 2m)w_;.

Therefore, if m is even, w,, € L(0) and if m is odd, then w,, € L(—1). Note that w,, € L(n)
implies L(m) < L(n). So L(m) can only be maximal for m = 0 and m = —1.

If p(r) = 2> — 21 + 1, then p(0) = p(1) = 1 and p(1/4) = —1. So the o-involution
associated to an axis a, is given by o(a,) = p(ad(a,)). We verify computationally that
o(a;)P = L(0) and that o(a,)P = L(—1) [*2A.6].

So by Lemma 3.1.10, any integral form of V,, is contained in P, L(0), or L(—1), so at
least one of these integral forms must be maximal. However, they are all conjugate under

automorphisms of the algebra, so they are all maximal. L

3.2 The 2B algebra

The 2B algebra has a basis of idempotents ay, a; such that ay - a; = 0. So V5 is isomorphic to
the algebra Q?. Since ad(ay) and ad(a;) do not have 1/32 as an eigenvalue, the T-involutions
are trivial. Therefore every integral form will be G-invariant. The following result gives a list

of all integral forms of V,5 =~ Q2.

Proposition 3.2.1. For every rank 2 free-abelian subgroup A of Q?, there are unique rational
numbers k,a,b with 0 < a < min(k, b) such that A = Z(k, k) + Z(a,b). Such a subgroup is a
subring if and only if k,a, b € Z and k|ab.

Proof. There is a unique k > 0 such that Z(k, k) = Q(1, 1) n A. There are two cosets which
generate the infinite cyclic group A/Z(k, k); let (x,y) + Z(k, k) be one generator and so the
other is (—x, —y) + Z(k, k). If (k, k) and Z additively generate A, then Z € (x,y) + Z(k, k) U

(—x, —y) + Z(k, k). There is a unique element (a,b) in (x,y) + Z(k, k) U (—x, —y) + Z(k, k)

27



such that) < a < kanda < b.

Let A = Z(k,k) + Z(a, b) for some a, b,k € Q with 0 < a < min(b, k). If A is a ring then
k,a,b € Z. Under the conditions that a, b, k € Z, A will be a ring if it contains (a2, b?) (since A
is clearly closed under multiplication by (k, k)). Observe that (a?, b*) = [a+b]|(a, b)— (ab, ab).
Therefore, (a?,b*) is in A if and only if (ab, ab) € A which happens if and only if kjab. [

Note that this implies there is a unique maximal integral form in V,5 =~ QZ, namely

span, (ag, a;) = 7.

3.3 The 3A algebra

Notation 3.3.1. The 3A Norton-Sakuma algebra V3, has a basis of idempotents a_1, ay, a;

and u,, with:

ap-a; =2"(2ap +2a; —a_;) — 2’“335up,

ag - U, = 372(2ay —a; —a_y) + 2’55up.

([IPSS10, Table 3]) The subgroup G generated by r-involutions fixes u, and induces the
dihedral group of order 6 on the set {a_;,ap,a;} of axes. This uniquely determines the

remaining products [[PSS10, Lemma 2.20].

Since 7(a)a = a for any axis, this also implies that for any permutation p, ¢, r of {—1,0, 1},
we have that 7(a,) induces the involution in Sym({a,, a,, a,}) that fixes a, and interchanges
a, with a,. Let g = 7(a_;)7(ao). Then g cyclicly permutes the list (a_;, ag, a;) one element

to the right. Let / be the multiplicative identity in the algebra.

Lemma 3.3.2. Fori = —1,0, 1, trace(a;) = 4. Also, trace(u,) = 3.
Proof. With respect to the basis a_1, ag, ai, u,, the matrix of ad(a_, ) has diagonal components

1.L L 5
> 16° 16” 32

N=l| S}

and the matrix of ad(up) has diagonal components %, , %, 1. Since each q; is
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conjugate under the group of automorphism of V3, it follows that trace(a;) = trace(a_;) =

41
- []

Definition 3.3.3. L6 = {Ie L: hl = [, Vh € G} and L¢* = (LY)*, where L is defined with

respect to the Killing form.
Proposition 3.3.4. For a GIIF L of Vau, [L : L¢ + LS| is either I or 3.

Proof. We first observe that L¢ = L8. Forif w = au, + Y, a,a;, with @, @_y, ap, @1 € Q, is
g-invariant, then @_; = @y = a; and therefore w is G-invariant. This also shows that L/L#

has rank 4 — 2 = 2. The result follows from 2.2.12. [
Proposition 3.3.5. For a GIIF L of Va, LC is contained in spany(3u,, I).

Proof. Thinking of V34 as a module of G =~ Sym(3), V34 decomposes as the permutation
representation of Sym(3) spang(a_i,dag,a;) plus a one-dimensional trivial representation
spang(u,). So the G-fixed points of V34 are 2-dimension, spanned by / and u,. The elements
u, and I — u, are idempotents which multiply to zero, so their rational span is an algebra
isomorphic to Q*. The maximal rank 2 subring of Q* is Z*, which corresponds to spany (u,,, I —
u,) = spany(u,, I).

So if w = xu, + yl is in a GIIF. Then x,y € Z. Using Lemma 3.3.2, we compute that
trace(xu, + yI) = 5?" + 4y. (We can also verify this computationally [*3A. 1].) This must be

an integer, hence x € 3Z. So L€ is contained in span(3u,, I). O

Lemma 3.3.6. Suppose W is a two dimensional Q|G|-module (where G = {g,t) is the
dihedral group of order 6, with g* = 1> = tgtg = 1), such that g acts with minimal polynomial
x> + x + 1. Let N be a G-invariant rank two free-abelian subgroup of W. Then every G-
invariant rank two free-abelian subgroup of W is either sN or s(g — 1)N for some rational

number s.

Proof. Let M be a rank two G-invariant subgroup of W such that M £ sN for any s € Q.

Choose s € Q- such that sN € M and [M : sN] is minimal. Then M/sN is cyclic, since
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otherwise there would be elements my,m; € M and a prime p such that pmy, pm, is a Z-
basis of sN, which would imply that (s/p)N < M, and this contradicting the minimality of
[M : sN].

Since the automorphism group of a cyclic group is abelian, the commutator subgroup
G’ = {g) acts trivially on M/sN. In other words, (g — 1)M < sN.

Note that (g — 1)> = —3g + (1 + g + &%) so (g — 1)>M = 3M, and therefore M =
iy c (g — 1N

The characteristic polynomial of g on W being x*> + x + 1 implies that the characteristic

polynomial of g — 1 on Wis (x + 1)> + (x + 1) + 1 and therefore g — 1 acts with determinant

3 on W. We therefore have:

sNeMc —(g—1)N< =N.

W]

Now [%N : sN] = 9, and the right-most containment has index 3. It follows that M =

5(g—1)N. O

Definition 3.3.7. Define ny = 2°(a; — a_;) and n; = 2%a_; — ag) = gny. Let N =

spang (ng, ny).
These notations were chosen because n; is negated by 7(a;).

Proposition 3.3.8. N is a G-submodule of V. For any GIIF L of V34, L% is either lg‘(g —1)N

or kN for some k € Z.

Proof. N is the intersection of two G-invariant subgroups: 26 span,(a_y, ap, a;) and the kernel
of the trace map trace : V34 — C. Therefore N is G-invariant. Note that N contains no
elements fixed by G, so g acts on N with minimal polynomial x?> + x + 1. The previous lemma

applies to ensure that L&+

is either sN or $(¢ — 1)N a rational number s. We need only show
that s must be an integer in these two cases.

Suppose sN is contained in GIIF of V34 for some s € Q. We compute that trace((sny) -
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(sny)) = —2'32271's* and k(sng, sn;) = —223'313's?, both of which must be integers
[%3A.2].
2132271's? € Z implies 3s € Z, and 223'313's? € Z implies 2s € Z. Therefore s € Z.
Next, suppose that LS+ = £(g — 1)N for some s € Q. Recall that (g — 1)’N = [-3g +

(g2 + g+ 1)]N =3N,s0 (g — 1)L = sN. By the previous paragraph, s € Z. O

Definition 3.3.9. For i = 0,1, set m; = 3(g — 1)n;, and let M = spang (mo,m;) = 3(g — 1)N.
So the previous proposition says that for any GIIF L, L% is either kM or kN for some integer

k.
Proposition 3.3.10. P = M + 3Zu, + ZI is a GIIF of V3.

Proof. To show G-invariance, it is enough to show that M is G-invariant, since G acts trivially

on [ and u,. Proposition 3.3.8 says that N is G-invariant. By definition M = %(g —1)N,soM

—1

is clearly invariant under g. Let € G be an element of order 2 in G such that gt = g~ and

G = {g,t). Then we have:

M =1 3(g DN = 3(g7" — 1)N) = 5 (g~ )(~g"'iN) = M.

We compute the matrix of ad(3u,) and ad(m,) with respect to the ordered basis 8 =
(mo, my, 3u,, I) [*3A.3]:

20 —20 11
] [ad(m) ] = [ o 88] .
1008 —504 0 0

[ad (30, )]s — [

0
0
3
0

o—oOo

0
1
0
0

[=l=erg

Therefore P = span,(8B) is closed under multiplication by 3u, and my. Since gmy, = m; and
P is invariant under the action of g, it follows that P is also closed under multiplication by m;.

So P is aring. [

Lemma 3.3.11. Suppose L is a maximal GIIF of Vi, with [L : LS + L] = 3. Then there is

some € € L% and k € Z such that the coset of 3 + 3ku,, generates L/(L° + L)
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Proof. There is an element z in L® + L% such that the coset of %z generates L/(L® + L°).
Since LY+ = M and L® < span,(3u,, 1), we may write z = amg + bm; + 3cu, + dI for some
integers a, b, ¢, d.

We compute trace(z) = 5c+4d and n(z, z) = 3252a*>—3252ab+3252b*+15¢*+10cd+4d>
[*3A.4]. Since z/3 € L, trace(z) € 3Z and n(z,z) = trace(z - z) € 9Z.

5c + 4d € 3Z implies ¢ = d (mod 3). Then 1(z, z) € 3Z implies cd + d* € 3Z. Therefore
0=cd+d*=2d° (mod3).Soc=d=0, (mod 3).

Let £ = amy + bm; = z — dI — 3cu,. Since d/3 € Z it follows that g’l e LC. Therefore
z/3—d/31 = £ +cu, is equivalent to z/3 (mod (L¢+ L%)) and in particular, it also generates

L/(L + L9*). Since 3|c, it follows that £ + cu,, is the desired generator. O
Lemma 3.3.12. 9u,, is in every maximal GIIF of V3.

Proof. Let L be a maximal integral form of Vi,. If L = LY + LS+, then L%+ < M (by 3.3.8)
and L® < ZI + Z3u, (by 3.3.5) so by maximality L = ZI + Z3u, + M, since this is GIIF
by 3.3.10. So we may suppose that L + L¢ + L%L. By the previous lemma (3.3.11), let
z = £+ 3ku, be in L with £ € L° and k € Z and such that L = L% + L%+ + Zz. Note that
I e Lsoby3.2.1and 3.3.5, L¢ = ZI + Z3tu, for some € Z.

We claim that L' = Z9u,, + L is still an integral form. Since L is a ring, it suffices to show
that L' is closed under the action of ad(9u,).

From Notation 6.1, one can check that 3u, acts as the identity on VO = span,(ay —
ai,a; — a_) (or we can check this computationally [*3A.5]). So Yu, - L%+ = 3L%+ < L,
and u, -z = €+ 27ku, € L'. Clearly, L' contains I -9u,. And L’ contains 9u,, - (3tu,) = t(9u,).

Therefore 9u, - L < L'. And (9u,)* = 9(9u,) finishes the proof that L' is a ring. By

maximality, L' = L. []
Theorem 3.3.13. M + ZI + Z3u,, is the unique maximal GIIF in Vs,.

Proof. M + ZI + Z3u, is a GIIF by 3.3.10, and by 3.3.5 and 3.3.8, it is the unique maximal

GIIF L such that L = LY + L6+,
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Let L be a maximal GIIF such that L 4 L¢ + L%+, By 3.3.4, the index of L¢ + L% in
L equals 3. By 3.3.11, there is an element z = %(amo + bmy) + 3cu, with a,b, ¢ € Z such
that L = Zz + L + L. By the previous lemma, u, € L, so we may replace z with a linear
combination of z and 9u, to ensure that ¢ = 1, and still have that L = Zz + LC + L9+

By 3.2.1 and 3.3.5, LY = ZI + Z31u, for some positive integer 7. Since L® contains 9u,
we must have that 7 divides 3. If t = 1, then z € LS + LY, a contradiction. Therefore ¢ = 3.
Since L9+ = M (by 3.3.8 and Definition 3.3.9), we have LE + L%* < spany,(mq, m1, Yu,, I).

The quotient L/(LY + L¢1) is additively generated by the coset of z. So we may let k be

such that z - z = kz (mod L® + L) with 0 < k < 3. Then z - z — kz € spang,(mq, my, 9u,, I).

We compute the coefficients of z - z — kz with respect to the basis {mg, m;,9u,,I}: [*%3A.6]

z-z—kz == (20a® — 40ab — 3ak + 6a) my

+= (6b — 40ab + 20b> — 3bk) m,

+=(9 — 52a* + 52ab — 52b* — 3k) (9u,)

O| = O] — \O| —

+112(a* — ab + b*)1.

All of these coeflicients are integers; in particular, the numerators of the first three must be
integers divisible by 9. We want to analyze all integers a, b, k such that these three equivalences

are satisfied:

20a* — 40ab — 3ak + 6a =0, (mod 9),
6b — 40ab + 20b* — 3bk =0, (mod 9),

9 — 52a* + 52ab — 52b* — 3k =0, (mod 9).

Computer verification shows that the solution is all a, b, k such that a, b,k € 3Z [*3A.7].

Therefore z = (a/3)my + (b/3)my + 3us € M + ZI + Z3u,,, and therefore L = M + ZI +
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Z3u,,.
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3.4 The 3C algebra

Notation 3.4.1. The 3C Norton-Sakuma algebra V3¢ has a basis of axes (which are necessarily

idempotents) a_1, ay, a; where for any choice of indices {i, j, k} = {—1,0, 1},
a; - Clj = 2_6((1,' + Clj — ak).

([IPSS10, Table 3])

The dihedral group G generated by the 7-involutions has order 6 by [IPSS10, 2.20], and
so 7(a) cannot be trivial for any axis a, since there is an automorphism of the algebra acting
transitively on the 3 axes. For any axis a, 7(a)a = a. It follows then that 7(q;) interchanges
a; with a;. We define g = 7(a_1)7(ap), so that |g| = 3 and g permutes cyclicly the list

(a_1,ap,a;) one space to the right.

Definition 3.4.2. Define ny = 2%a; —a_;) and n; = 2%a_; — ay) = gng, and N =

span (ng, n;). Again these notations were chosen because n; is negated by 7(a;).

For i = 0, 1 define m; = (ggl)ni and M = spang(mo, m;) = —(gQI)N-

Recall Definition 3.3.3, that L¢ = {le L: hl =1, Yh € G} is the set of elements in L

fixed by G, and L9+ = (L9)* where the | is with respect to the Killing form «.
Lemma 3.4.3. For a GIIF L of Vs¢, LS is either sN or sM for some integer s.

Proof. Note that N is G-invariant, since it is the intersection of 26spanZ(a_1, ap, a) with
trace™!(0).Also, elements in (V3c)® must be of the form A(a_; + ay + a,), and therefore
L° A N = 0. It follows that g (an element in G of order 3) acts with minimal polynomial
x>+ x+1lonN.

The situation is analogous to the 3A case. In particular, Lemma 3.3.6 applies, proving that
LS+ equals sN or 5(g — 1)N = sM for some rational number s. It suffices to verify that s

must be an integer in either of these two cases.
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Suppose sN is contained in an integral form of V3¢. We compute 5(ng,n;) = —2'337'11!
and k(ng,m) = —1223'331" [*3C. 1].

Then 5(sny), sn;) = —2!337'11's? € Z implies 3s € Z, and k(sng, sn;) = —2231331's? €
Z implies 2s € Z. Hence s € Z.

Next, suppose sM = L% for some rational s. Since (g—1)>N = [-3g+ (g +g+1)]N =
3N, we have:

(g — DLO = (g — 1)sM = %(g — 12N = sN.

By the previous paragraph, s € Z. [
Theorem 3.4.4. M + ZI is the unique maximal GIIF of Vjc.

Proof. Observe that to show M + ZI is G-invariant it suffices to prove that M is. In fact, for
any G-invariant set S, (g — 1)S will also be G-invariant. To see this write G = (g, ) with 7
an element of order 2 such that tgr = g=!. Thent(g — 1) = (g7! — 1)t = —(g — 1)g°t and
similarly g(g — 1) = (g — 1)g. This proves that (g — 1)S will be G-invariant, and in particular
proves that M = QN is G-invariant.

We will verify that M + ZI is an integral form by computing the matrix of ad(m,) with

respect to the basis 8 = (mg, my, I) [*3C.2].

20 —20 1
[ad(mo) s = [934 i 8] ’

So M + ZI = span,(8B) is closed under the multiplication by my. Since M + ZI is G-invariant
and gmy = 1(g — 1)(gno) = my, it follows that M + ZI is closed under multiplication by m;
as well. So M + ZI is aring.

Let L be any maximal integral form, and fix any w € L. Write w = amq + Bm, + yI where

@,fB,y € Q. Then trace(w) = 3y is an integer. Since I € L (Lemma 2.2.8), it follows that
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3w — 3yl = 3amg + 3pm; € L N spang(M) = L.

By the previous lemma (Lemma 3.4.3), L% < M. So 3a and 38 are integers. We compute
trace(w - w) = 2772a* — 2772ap + 2772p* + 3*, which must be an integer [%3C. 3].

Observe that 2772 is divisible by 9, so 2772a?, 2772af3, and 2772/ are integers. So
trace(w - w) € Z implies 3y* € Z which in turn implies y € Z.

Now w — yI = amy + Bm; € L n spang(M) = L°+ < M. Therefore w € M + ZI.

Therefore M + ZI is the unique maximal GIIF. ]

For the 3C case, we can say more about the GIIFs. The following is a classification all

GIIFs in Vj¢, partitioned into three 2-parameter families.

Proposition 3.4.5. The set of GIIFs of V¢ is given by the following list, consisting of three

types:
sM + Ztl (s,t€Zog, 146257,
sN + Ztl (s,1€Zwo, 1138657,

SN+ Z (S5 4 dl)  (s1€Z, 14625 and (22) 4 54+1=0 (mod 3)).

Furthermore, no two distinct GIIF's on this list are equal.

Proof. Suppose L is a GIIF of V3¢ with L = LY + L%*, Then L® = ZtI for some integer
t > 0 and L is either sN or sM (by 3.4.3) for a unique positive integer s. We need to verify
that sM + ZtI and sN + ZtlI are integral forms exactly under the conditions described.

The additive group sM + Ztl is an integral form if and only if it is closed under the action
of ad(smy) and ad(sm,). We compute the matrix of these endomorphisms with respect to the
basis M(s, t) defined to be M(s,t) = {smo, smy,t1} [%3C.4]:

205 —20s 1 —20s 0 0
[ad(smo) sy = [ wie e g] and  [ad(sm1)] s = [ i ;]

With s, 1 € Z., these entries are all integers if and only if ¢ divides 462s>.
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Similarly, sN + ZtI is a GIIF if and only if it is closed under the action of ad(sny) and
ad(sn;), and so we compute the matrices of these endomorphisms with respect to the basis
N (s,1) defined to be {sno, sn;, I} [*3C.5]:

20s 20s t 20s 20s ¢t

J0s 205 0 -
lad(smo) Ins) = lz7721~2 7138(;2 o] and  [ad(sm)|n(sn) = [zjgiz 71328(22 g] :
t t t t

Since s,t € Z-y, all of these coeflicients are integers if and only if ¢ divides 1386s2.

So every GIIF L with L = LY + L% is one of the first two types, and each subgroup of
the first two types is a GIIF.

So it remains to enumerate the GIIFs L of V¢ such that L 2 LY + LY. Let L be a such
a GIIF. First I claim that [L : L + L%*] divides 3. To see this, note that V5. = QI = VZ..
Therefore g acts without fixed points on L/LC. Since |g| = 3 and g acts nontrivially, g acts
with charactersistic polynomial x? + x + 1 on L/LS. Hence g — 1 acts with determinant 3
on L/L®. So (g — 1)L + L° has index 3 in L. This completes the claim, since (g — 1)L is
orthogonal to L° and so equals LE+.
Clearly, L/L®* is torsion free (for if x € L and nx € L% then x | L® hence x € L) so

LG,L

any Z-basis of can be extended to a basis of L.

Consider the case that LS+ = sM. Let smy, sm;, w be a Z-basis of L (extended from the

[4

3 smo + gsml + tI for some t € Q and some integers

Z-basis of L°). We may write w =
@, B (because 3w € LY + L%1). Furthermore, we may add elements in sM to w to ensure that
a,B € {0, 1,2} (and not both zero, since then L = sM + ZtI). We now compute the matrices

of 7(a_;) and 7(ay) with respect to the basis smy, sm;, w [%3C.6]:

B
[

—10 —1(20)
[T(aO)](smo,sml,w) =10-1 —% and [T(afl)](smo,sml,w) =|l-11 -5
00 1

For these entries to all be integers clearly 3 divides both @ and 8. So @ = 8 = 0, which
would imply L = sM + Ztl = L° + L%, a contradiction. Therefore, there is no such GIIF L

with L + L¢ + L% and L6 = sM.
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Finally, we consider the case that L  L¢ + LS and L% = sN. As before, we may

extend the basis sng, sn; of L% to a Z-basis sng, sn;, w of L. In fact, by adding multiples of

@

3851 + 'gsnl + tl,

sng or sn; if necessary, we may assume that there exists such a w with w =
for some @, € {—1,0,1} and ¢ € Q. We compute the matrix of 7(a_;) and 7(ay) with respect

to the basis sng, sn;, w [*3C.7]:

—

[T(aO)](sno,snl,w) = [8

We see that span,(sno, sny, w) is invariant under (r(a_,), 7(ap)) = G ifand only if & = —f
(mod 3), which implies @ = —3. So@ = —f & O orelse w = tI and L = LY + L%+, Without
loss of generality, we may take « = —f = 1, for if not, then replace w by —w.

Define the ordered basis B(s,t) = (sno, sny, =5+ + tI) and set B(s,t) = span(B(s,1)).
The computation done above shows that B(s, ¢) is G-invariant. We have shown that any GIIF
L with L &+ L¢ 4+ O+ equals B(s, 1) for some integers s,7 > 0. It suffices now to show
that B(s, t) is an integral form exactly under the conditions described in the statement of the
proposition.

The element 7(a;) € G acts on B(s, t) by interchanging ny = 64(a_; — a;) with —n; =
64(a_, — ap) and by fixing I. So B(s, t) will be closed under ad(sno) if and only if it is closed
under ad(sn; ).

So B(s,t) will be an integral form if and only if the matrices of ad(sny) and ad(w) [where

w = 3 (sno—sny)+tI] with respect to the basis B(s, 1) = (sno, sny, w) have integer components.

1
3

We compute these matrices here:

2 2 2
20s — 924[15 46%& +20s f— 46$s

[ad(sno)]|s(s) = &;52 + 40s —@ —20s 467252 +20s

27725> 138652 138652
t t t
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and

2 2 2
{462 46t2s 1 00s 308 _%+

1
t t 3

2 2 2 )
[ad<w)]8(s,t) — 46?\ 20s ¢ 46?3 30?5 2;)3 %
2 2 2
13865~ _ 138657 % 4t

t t

These 18 expressions being integers is equivalent to the following two expressions being
integers: 462s%/t and —((20s)/3) — (3085s%)/t + t/3. These two are sufficient because in the
16 expressions that do not equal —(20s)/3 — (3085s%)/t + /3, the only possibly non-integer
terms are integer multiples of 462s°/t: namely 92452 /t, 13865 /t, and 2772s%/t.

If 46252/t is an integer, then —((20s)/3) — (308s?)/t +t/3 € Z if and only if (s +1)/3 +
1525%/t € Z; this is because the difference of these two is 7s + 462s/t. The condition
(s +1)/3 + 1525/t € Z is equivalent to %6252/’ €Z,ie s+1t+ (462s?/t) =0 (mod 3).

So B(s,t) (s,t € Z~o) is a GIIF if and only if #/462s* and s + ¢ + (4625%/t) =0 (mod 3).

It remains to prove that no two of the three types of GIIF in the list are equal. Let L
be a GIIF. If L1 = sM for a positive integer s, then it is of the first type, s is uniquely
determined by L, and ¢ is equal to 1/3 times the unique positive additive generator of the
image of trace : L — Z.

If L6 = sN for a positive integer s and L = L¢ + L%, then L is of the second type, s is
uniquely determined by L, and ¢ again equals 1/3 the unique positive generator of the image
of trace : L — Z.

If LS+ = sN for a positive integer s and L + L¢ + L%, then L is of the third type, s is
uniquely determined by L, and ¢ again is 1/3 the unique positive generator of the image of

trace : L — Z. ]
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3.5 The 4A algebra

Notation 3.5.1. The Norton-Sakuma algebra V., of type 4A has a basis consisting of four

axes a_i, ay, ai, a, and another (non-axis) idempotent v,, satisfying:

ap-a; =2"°3ag +3a; +a +a_, — 3v,)
ag - dy = 0.

apg - Vp = 2_4(5a0 —2ay —ay —2a_; + 3v,).

([IPSS10, Table 3]). There is an automorphism o of the algebra that fixes v, and cyclicly per-
mutes the list (a_1, ag, a1, a;) one space to the right. This uniquely determines the remaining

products. [IPSS10, 2.20].

Compute the matrix of 7(ag) with respect to this given basis B of Vy,, and this verifies

that 7(ao) fixes ag, a,, and v, and it interchanges a_; with a; [*4A.1]:

|

Define q; for any i € Z by defining a; = a;,4 for all i € Z; in other words, we only consider

0100
ool - | 448
0000

=l =l=lw]

the subscripts of a; modulo 4. If o~ € Aut(V) then 7(ap) is a polynomial in ad(a) (B.2.2), and
therefore o (7(agp)v) = 7(0ap)(ov). Take o to be the automorphism of V such that a; — a;,;
(i = —1,0,1,2) and which fixes v,. Repeatedly applying o shows that 7(g;) fixes a;, a;;, and
v, and interchanges a;_; with a;;.

In particular then, 7(ag) = 7(ay) and 7(a;) = 7(a_,). Define 79 = 7(ay) = 7(ay) and set

71 = 1(a_;) = 7(a;). Note that 7,7y = 7o7;. S0 G = (19,71 = (Z/2Z).

Definition 3.5.2. For any finite abelian group A and any Z[A]-module L, define the total

eigenlattice TEL(L,A) = )|

xeHom(a,c+) LY, where ¥ = {x e L: a-x = y(a)xVa € A}. This

makes TEL(L, A) into an Hom(A, C*)-graded algebra.
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Definition 3.5.3. For i = 0, 1 define n; = 4(a;_1 — a;11) and f; = n? = 16(a;_1 + a;11).

For brevity, for any selection of symbols ¢; € {+, —} we let L denote L* where y is
the linear character of G defined by y(7;) = €1 fori = 0,1. So ng € (V4a) " because
To(no) = —np and 7y (ny) = ny. Similarly, n; € (V34)™~. Using the Hom(G, C*)-grading, we
have f; € (V34)™*. These notations were chosen because the n terms are negated and the f

terms are fixed.

Proposition 3.5.4. For either permutation of indices {i, j} = {0, 1}, the following products

hold in V4A.'

n-n; = f; nj-n =0

fi-nj = 16n; fi-ni=n

fi- fi = 16f; fi- fi = 8fi + 8f; — 120L.
and

7i(n;) = —n; 7i(n;) = n;.

Each of fy and fi is fixed by G.

Proof. Recall that o is the automorphism of V sending a; — a;,; (with the indices considered
modulo 4) and which fixes v,. Then o(ny) = n;, o(n;) = —ny and o interchanges f; with f;.
It follows that 7 o o~ interchanges n, with n; and interchanges f, with fi. Therefore it suffices
to prove the desired products fori = O and j = 1.

Note that n} = f by definition. We verify the remaining five products by computer

calculation [*4A. 2]. ]

Corollary 3.5.5. The list (1, fy, fi,n0, 1) is a Q-basis of V4a. Fori = 0 or 1, trace(f;) = 41

and trace(n;) = 0.
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Proof. When expressed in the basis a_i, ag, a1, a», v,, it is evident that the list of 5 elements

are linearly independent:

4 2
[=—(a_1+ap+a +a)+ Zv,
5 5
fo=16(a_1 + ay),
fi = 16(ap + ay),
ng = 4(61_] — Cl]),

ny = 4(610 — Clz).

With respect to this ordered basis, the trace of f; can be computed from the computations
previous result: the components along the diagonal of the matrix of ad(f;) are 0,16,8,16,1
which sum to 41. We can see directly that n; = 4(a;_; — a;41) has trace 0, since each a; is

conjugate under the automorphism group of Va,. Ol
Proposition 3.5.6. Define F = span,( fo, fi,1). For a GIIF L of Vas, L™+ C F.

Proof. (V4a)™ 1 is three dimensional, with Q-basis fy, fi, I (by Corollary 3.5.5).
The adjoint action of any v € (V44) 7 fixes the one-dimensional subspaces (V)" =
Qng and (V44)™~ = Qny. Fori = 0, 1, we define the linear functional 4; : V** — R by the

formula v - n; = A;(v)n;. And for clarity of notation in what follows, define 4, : V** — Q by

A4,(v) = Tr(ad(v)). Using the products in 3.5.4, we compute:

Ao(fo) = 16 o(fi) =1 Ao(I) =1 (3.2)
L(fy) =1 L (f) = 16 () =1 (3.3)
A(fy) = 41 A(fi) = 41 A1) = 5. (3.4)
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But then:

16 1 1
det| 1 16 1| =45. 3.5
41 41 5

This being nonzero gives another proof that that fy, f;, and I are linearly independent in
(Vaa) ™" and also that Ay, 4y, 4, is linearly independent in the dual space [(Vsa) ™" ]*. Let
Vo, V1, v, be a basis of (V44) ™" dual to the basis Ag, 41, A, of [(Vaa) ™ ]*.

Let L be a G-invariant integral form. Define W = span, (v, v1, v;). We aim to show that

LT < W. Suppose w € LT, Write w = avy + bv; + cv, for some a, b, ¢ € Q. Then:

w- fo=afy w-fi=bfi trace(w) = c.

Since w is in a integral form, a, b, and c are integers (by Proposition 2.1.5). Thus w € W, as
desired.

Note that L™ is a subalgebra of L. So w? is also in W. We compute the coefficients of w?
in this basis vy, vy, v;. (To do this in Mathematica, we first define v = «aq fy + @ f1 + a3/, and

then solve for the scalars @; needed for v to equal v; for (j = 0, 1,). [*%4A.3])

1
wew = (159a” + 24a(13b — 5¢) + (13b — 5¢)*) vy
1
+35 (169a> + 26a(12b — 5¢) + 159b* — 120bc + 25¢%) v,

1
+ §(169a2 +322ab + 169b*) — 44(a + b)c + 902] v,

These three coeflicients must be integers. In particular, the first value being an integer
implies that 3 must divide (13b — 5¢)?, or equivalently b = —c, (mod 3).

The second value being an integer implies that 5 divides 169a® + 1595 + 26a(12b), which
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can be simplified to:

0 = 1694> + 159b> + 26a(12b) = —a® — b* + 2ab = —(a — b)* (mod 5)

Soa=b (mod 5).
The third value being an integer implies that 3 divides 169a? + 322ab + 169b%, which

gives

0 = 169a* + 322ab + 169b* = a* + ab + b* = (a — b)*  (mod 3).

Soa =b, (mod 3).

Let F/ = {avy + bv) + cv, : a,b,c € Zwitha=b (mod 15) and b = —c¢ (mod 3)}. We
have shown that for any GIIF L, LT+ < F’.

It suffices to show that F’ = F. Note that F < F’, since F + Zng + Zn; is an integral form
(by 3.5.4), and F 1s its G-fixed point subalgebra.

Define a Z-linear map W — Z/15Z®Z/3Z by avy + bv, + cv, — (a—b (mod 15), b+ ¢
(mod 3)). This is surjective, with kernel F’. So [W : F'] = 45.

The computation done in (3.2) shows that:

Jo = 16vy + v +41v,,
fi =vo+ 16v; +41v,,

I:V0+V1+5V,,

and the determinant computed in (3.5) shows that [W : F] = 45. So W < F < F/, and

[F : W] = [F": W]. Therefore F = F’, which completes the proof. O

The following is essentially a restatement of Lemma A.2 in [GL11] (This article was
originally announced in [GLOS8]) with a twist by an automorphism. The proof is a modified

version of the proof found there. First some notation:
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Notation 3.5.7. For an additive group A and some r € End(A), define A" = {a € A : ra = a}.

This can be iterated: for example, A*~* = {a € A: ra = a and sa = —a}.

Lemma 3.5.8. Suppose that a four group D = {r, sy = (Z/2Z)* acts on the abelian group A.

IfIf A="=* = 0 then A/ TEL(A, D) is an elementary abelian 2-group.

Proof. Forae A, (s —1)(r—1)ae A~"* = 0.
From this we can conclude several things. First, (r — 1)a € A~"* and similarly (s — 1)a €

A", We can also conclude that:

(r—=1)(r+s)a=1+rs—r—s)a=r—1)(s—1)a=0.

Similarly, (s — 1)(r + s)a = 0. Therefore (r + s)a € A”™.

The proof is complete by noting that 2a = —(r—1)a— (s—1)a+ (r+s)a € 1eL(A, D). O

Corollary 3.5.9. For any rank 5 G-invariant discrete subgroup L of the V44, the quotient

L/ teL(L, G) is isomorphic to a subgroup of the Klein four group.

Proof. Note that L™~ = 0 as can be seen by noting that V4, is five dimensional and dim V,; " +
dim V4—A,+ + dim V:X_ =3+ 1+ 1 = 5 by Proposition 3.5.4. So we can apply the previous
lemma to conclude that L/ teL(L, G) is an elementary abelian 2-group.

The Q-basis fy, fi, 1, ng, n; of Vyu gives rise to a full flag of V,4. By Lemma 2.1.4, there is
a Z-basis of L compatible with this flag. The first three elements in this basis are in L%, hence

the rank of L/ TeL(L, G) is at most two. O
Theorem 3.5.10. Zny + Zn, + F is the unique maximal GIIF in V4.

Proof. Let L be a maximal GIIF of V,,. Write TeL(L, G) = Zsong + Zsn; + L™ for some
50,51 € Q. By 3.5.6, L*"* < F. The products in 3.5.4 show that (fori = 0, 1) (s;n;)* = s7f,,
which is an element in L™ < F. Since f; and f; are primitive elements of the free abelian

group F, we have s, s7 € Z which implies so, s; € Z. Therefore TeL(L,G) < Zny + Zn; + F.
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So if L = tEL(L,G) we are done. If not, let w € L with w ¢ TteL(L,G). By 3.5.9,
2w € 1eL(L,G) S Zng + Zn; + F, so we may write w = %(ano +bny + cfy + dfi + el) where
a,b,c,d,e € Z. By maximality, I € L (Lemma 2.2.8). Adding an integer multiple of / to w if
necessary, we may assume that e € {0, 1}.

Note that w - w € L so 2w - w € TEL(L, G) < Zny + Zn, + F. We compute the coefficients

of 2w - w with respect to the basis ng, ny, fo, fi, 1 [*4A.4]:

2w - w =(16ac + ad + ae) ng + (bc + 16bd + be) n,

a? b? e?
+ (5 + 8¢ + 8cd + ce) fo+ (3 + 8cd + 8d* + de) fi + (5 — 120cd) I

All 5 of these coefficients must be integers. Therefore a, b, e € 2Z. Thus e = 0. Under the

condition that e = 0, we compute x(w, w) [*4A.5]:

5772 57742
© L 56cd +

k(w,w) = 8a* + 8b* +

This is an integer if and only if ¢> + d> = 0 (mod 4) which happens if and only if ¢, d € 2Z.

This completes the proof that w € Zny + Zn; + F. O]

3.6 The 4B algebra

Notation 3.6.1. The 4B Norton-Sakuma algebra V,p has a basis of axes a_, ap, a;,a, and a,

with:

dog-a) = 276(610 +a —a_1 —a; + (lp2>,
ay -y = 273(610 +ap; — apz),

ap - ap = 273 (ap + ayp — a).
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((IPSS10, Table 3]) There is an algebra automorphism ¢ of V,p fixing a,» and cyclicly
permuting the list (a_i,ap,a;,a;) one space to the right; this determines the remaining

products [IPSS10, 2.20].

Define 7; = 7(a;). We compute the matrix of 7y with respect to the given basis B of Vg,

and this verifies that 7, fixes ag, a,, and a,» and it interchanges a_; with a; [*4B. 1].

|

Since 7(a) is a polynomial in ad(a) (Lemma 2.2.9), we have that ¢  7(a) = 7(¢(a)) ° ¢.
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Applying ¢ repeatedly shows that 7(¢*ay) fixes ¢*ay, ¢*"ay, and a,» and it interchanges
®*ay with ¢*+ay.

In particular, 7y = 7, fixes ay and a, and interchanges a_; with ay, and similarly 7_; = 7,
fixes a_; and a; and interchanges a, with a,. We use a computer to verify that T(apz) acts
trivially [%4B. 2]. Therefore G = {1, 7} is isomorphic to the four group.

Recall Definition 3.5.2 which for finite abelian group A acting on a finite rank free group

L, defines the total eigenlattice TEL(L,A) = 3 yon

(a,c+) L¥. For any GIIF L, TEL(L,G) is a
Hom(G, C*)-graded subrng of L.

Definition 3.6.2. For i = 0, I define n; = 8(a;_1 — a;11) and f; = gsn? — La,.

For brevity, we denote by (&, €) with € € {+, —}, the linear character y of G defined by
x(1;) = €l fori = 0,1. Sony € V> and n; € V*~. Using the Hom(G, C*)-grading, we
have f; € V** fori = 0, 1. These notations were chosen because the n terms are negated and

the f terms are fixed.

Lemma 3.6.3. For either permutation of indices {i, j} = {0, 1}, the following products hold
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in V4B.'

3
fi'ni:Zni fi-ni=0
fi-fi=f Fiefi=0
Proof. Let ¢ be the automorphism of V,p that sends a; — a;, for i = —1,0, 1, sends
a, — a_; and which fixes a,2. Then ¢(ng) = ny, ¢(n1) = —no and ¢ interchanges f, with f;.

It follows that 7 © ¢ interchanges ny with n; and interchanges f;, with f;. Therefore it suffices
to prove the desired products for i = 0 and j = 1. We verify the six products by computer

calculation [*4B. 3]. O]

Proposition 3.6.4. fo, fi, and a,. are three idempotents whose pairwise products are zero.

Therefore V- is associative and isomorphic to Q* as a ring. And I = fy + fi + a.

Proof. We verify that I = fy + fi + a,» [*4B.4]. The previous result shows that f, and f
are idempotents whose product is zero, and a,» is an idempotent (since it is an axis). Finally,
we compute f; - a, = fi(l — fo— fi) = fi— fi=0fori=0,1.

This also shows that fy, fi,a,, are linearly independent, because if one idempotent

were in the linear span of the other two, then it would square to zero. Hence V™ =

SpanQ(‘ﬁ)’flaapz) = Q3‘ D

Corollary 3.6.5. The list (fo, fi,1,n0,n1) is a Q-basis of Vup. For either i = 0 ori = 1,

trace(n;) = 0 and trace(f;) = 1.

Proof. It was shown that fy, fi, are linearly independent (Proposition 3.6.4). Note that
{fo, fi,1} < V:;r, ng € V4_B’+, and n, € VL,;_. Therefore (fy, f1,1,n9,n) is linearly indepen-
dent and so a Q-basis of V,p.

Based on the products in Lemma 3.6.3, the diagonal components of ad( f;) with respect

to this basis are 1,0, 0, %,O which sum to %. Since n; = 8(a;—; — a;4+1), we can see that
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trace(n;) = 0. O
Corollary 3.6.6. For any GIIF L of the 4B algebra, TeL(L,G) < spany(ng, ny,4fo, 4 f1,1).

Proof. By Lemma 3.1.4, L™ is contained in span,( fy, f1,a,2), which equals span, ( fo, fi,1)
since I = fy + fi + ay, (by 3.6.4).

Suppose w = afy + bf; + ¢l (a,b,c € Z) is in L. The products in Lemma 3.6.3 imply
that w - ny = (3a/4 + ¢)ng and w - ny = (3b/4 + c¢)n;. Both of these eigenvalues must be
integers (by 2.1.5), therefore 4 divides a and 4 divides b.

Recall that V,;* = spang(no) and so L™ equals Zpny for some p € Q. We compute
k(png, pny) = 104p* and n(png, png) = 147p* [*4B.5]. So both 104p? and 147p?* are
integers. Since gcd(104,147) = 1 this implies that p* € Z and therefore p € Z. So if pny is in
an integral form, then p € Z.

Recall (as in the proof of 3.6.3) that the automorphism 7, © ¢ interchanges n, and n;.

Therefore, the arguments just given for n, also applies to n, and so L™~ < Zn,. [

The 4B algebra and the 4A algebra are isomorphic as Q[G]-modules (both dim V** = 3,
dimV~" =dim V"~ = 1 and V™~ = 0). This isomorphism and Corollary 3.5.9 gives the

following:

Proposition 3.6.7. For any rank 5 G-invariant discrete subgroup L of the 4B algebra,

L/ teL(L, G) is isomorphic to a subgroup of the four group.
Theorem 3.6.8. span,(ng, ny,4fy,4fi,1) is the unique maximal GIIF of Vyp.

Proof. The computations done in 3.6.3 show that Q & span (ng, ny,4fo,4f1,1) is an integral
form, and it is clearly closed under the action of 7y and 7, since in fact Q = 1eL(Q, G). Let
L be a maximal GIIF of V,3. We aim to show that L < Q. If L = teL(L,G), then we are
done, by Corollary 3.6.6. Otherwise, there is some w € L\ TEL(L, G). Proposition 3.6.7 and
Corollary 3.6.6 ensure that w = %(ano + bny + 4cfy +4dfi + el), for some integers a, b, ¢, d, e.
By maximality, / € L (Lemma 2.2.8). Therefore we may add an integer multiple of 7 to w to

ensure that e € {0, 1}, and we still have that w € L\ TeL(L, G).
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Now w - w € L and therefore 2w - w € TEL(L, G) < span,(ng, n1,4fo, 411, 1). We compute

the coefficients of 2w - w in the basis ng, ny,4 fy, 4 f1, I [*4B.6]:

2w -w = (3ac + ae) ny + (3bd + be) n;
Tb? Ta?
+ <4a2 -2 ce) (4fy) + (—% + 467 124 + de) (4f))

2
+ (14a2 1+ 146% + %) I

All of these coefficients must be integers. Therefore a, b, e € 2Z. So e = 0.
Next compute k(w, w) = 264> + 26b* + B + B [x4B.7]. This is an integer if and
only if ¢ + &> = 0 (mod 4) which is equivalent to ¢, d € 2Z. This completes the proof that

w € spang(ng, n1, 4 fo, 411, 1). -

3.7 The 5A algebra

Notation 3.7.1. The Norton-Sakuma algebra Vs, of type SA has a basis consisting of five
axes (which are therefore idempotents) a_,, a_y, aop, ai, a, together with a non-idempotent w,

which satisfy the following products:

ap-a; =2""(3ag +3a; —ay —a_, —a_y) +w,,
ap-ay =2 (3ap +3a; —a, —a_, —a_y) — Wp,
ap-w,=72""a+a_,—ay—a,)+27Tw,

Wy W,y = 27527 (ay +a_y +ap + a) + ay).

([IPSS10, Table 3].) There is an automorphism g of this algebra which fixes w, and permutes
cyclicly the list (a_»,a_;,a0,a;,a,) one space to the right. This uniquely determines the

remaining products [IPSS10, Lemma 2.20].

We compute the matrix of 7(ay) with respect to the ordered basis A = (a_z,a_y,...,a,w,)
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[*5A.1]:

[t(a0)]a =

(=l =lelelw]
SO—OOO
SoOoO—OO
[elelelel ]
SoooOoO—
i =l=l=lelw]

So 7(ap) fixes w, and a, and it interchanges a_; with a; and also interchanges a_, with a,.
Since 7(ay) is a polynomial in ad(a,) (Lemma 2.2.9), we have that g*(7(ag)y) = 7(g*ao)(g*y).
Define a; for i € Z by a; = a;,s for all i € Z (or equivalently: consider the indices modulo 5).
Then for all i, 7(a;) interchanges a,_; with a;,,, interchanges a,_, with a;,,, and fixes w, and
a;.
Therefore the subgroup G of Aut(Vs,) generated by {7(a) : a an axis} is isomorphic to
the dihedral group of order 10, and g = 7(a_,)7(ao) is the element of order 5 in Aut(Vs,)

which fixes w, and sends a; — a;;; (where the indices are considered modulo 5).

Definition 3.7.2. Define z = %I + % w,, and for —2 < i < 2 define m; = 141 — 64q;. Let Q
be the ordered list (1, z, m_y, my, m;, my). Note that w, and each a; (—2 < i < 2) are contained

in spang(Q) which implies @ is a basis of Vs4. Define Q = span;(Q).
Proposition 3.7.3. The additive group Q is in fact a GIIF of Vs,.

Proof. Note that I = Y7 $a; which implies S, m; = 0. Therefore Q also con-
tains m_,. Since G acts transitively on the set of axes, G also acts transitively on the set
{m_s,m_y,...,my}. So we can describe Q as spany (I, z) + span(G - my). This shows that Q
is G-invariant, since G acts trivially on z and 1.

We compute the matrices of ad(z) and ad(m,) with respect to the Z-basis B of Q given in

Definition 3.7.2 [%5A.2]:

031 0 00 0 00 —182 700 —182 —168
(1)(1) 8?801 00 14 0 14 —14
_ - _lo1 12 0o o
[ad(z)]B =loo0 011-1 [ad(WO)]B =111 12 36 12 12
00 1110 01 0 0 12 0
00 -101 0 00 0 0 0 12

These being integer matrix shows that Q is closed under multiplication by z and by m,. Since
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Q is G-invariant, it is therefore also closed under multiplication by hm for all 4 € G and

therefore Q is closed under multiplication by each of the m;. So Q is a ring. ]

Lemma 3.7.4. 7> = 311 + z. Also for a,b € Q, spany(I,al + bz) is a ring if and only if

a,beiZand2a+beZ

Proof. The fact that z> = 311 + z is an easy verification, or it follows from computing the
matrix of ad(z) in the the proof of Proposition 3.7.3. For the second result, write x = al + bz

for some a, b € Q and suppose that span, (7, x) is a ring. Then we have:
x-x=(—a*—ab+31b*) + (2a + b)x (3.6)

Therefore both —a? — ab + 31b* and 2a + b are integers. Hence so is 4(—a* — ab + 31b%) +
(2a + b)* = 125b%. This implies that 5b € Z. So 2a = (2a + b) — b e %Z which implies that
a€ 7.

The following is also an integer:
(—=a® — ab + 31b*) —31(2a + b)* = —125a(a + b) = 5(5a)(5a + 5b).

If 5a € 1Z\Z then 5(5a)(5a + 5b) would not be an integer. Thus 5a € Z.

Conversely, suppose that a,b € %Z and 2a + b € Z. Again set x = al + bz. We aim
to show that span, (I, x) is a ring. According to equation (3.6) expressing x - x in terms of
I and x, we just need to verify that —a® — ab + 31b? is an integer. Multiplying it by four
gives 4(—a* — ab + 31b*) = 125b* — (2a + b)?, which is an integer. On the other hand,
the assumptions imply 25(—a* — ab + 31b*) € Z. Since ged(25,4) = 1, this proves that
—a®> —ab +31b* € Z. O

Lemma 3.7.5. For any GIIF L of Vss, L° < span, (1, z).

Proof. Recall that Vs, decomposes as a G-module as spang(/,z) ® spang (G - mo) where

G -my = {m_o,m_y,my,m;,m,} and 21.2:72 m; = 0. It follows that spang (G - my) contains no
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G-fixed points, and therefore V§, = spang (7, z).

To prove the result, we may assume that L is a maximal GIIF, and in particular [ € L
(Lemma 2.2.8). Since I is primitive in L° (meaning I/k is not in L for any integer k), we
may write LY = span,(, x) for some x = al + bz where the previous result (Lemma 3.7.4)
implies that a, b € 1Z and 2a + b € Z. We need to show that a,b € Z.

The characteristic polynomial of the action of ad(x) on span, (m; : —2 < i < 2) is given
by [*5A.3]: (2 — (2a + b)t + a* + ab — b*)” .

By the variant of Gauss’ Lemma (2.1.7), a*> + ab — b* € Z. Write A = 5a and B = 5b, so
that A, B € Z. Then A> + AB — B> = 0 (mod 25). This will imply that A = B =0, (mod 3).
For if A were invertible modulo 25, then BA~! would be a root of the polynomial x> — x — 1
modulo 25. This polynomial has no roots in Z/25Z (since its discriminant is 5, which is not
a square modulo 25). Similarly, if B were invertible modulo, then AB~! would be a root of
x* + x — 1 modulo 25, but this also has discriminant 5 and therefore has no roots modulo 25.

SoA,B=0 (mod 5), which implies a, b € Z. ]
Corollary 3.7.6. If L is a maximal GIIF of Vs,, then L° = span,(I, 7).

Proof. We first need to establish the decomposition of Vs, with respect to the Killing form.
Because G acts transitively on the set {m_,,m_y,...,m,} it follows that x(m;, f) = k(my, f)
forall -2 <i<2andall fe VSGA. Since 21.2:_2 m; = 0 it follows that 0 = Zf:_z k(my, f) =
S5k(mo, f). So myq is perpendicular to VSCZ. Since « is nondegenerate [*5A.4] and since
dim spang (G - mg) = 4 = dim Vs, — 2, it follows that spang (G - mg) = Vs,

In fact, ad(z) =(—g*"—-¢) [*5A.5]. (This is verified by taking the

spang (G-my) spang (G-mo)
basis m_i,...,my of spang (G - mg) and computing the matrix of ad(z) + g> + g’ to be the

L° is closed under the action of —g? — g? it is also closed under the

zero matrix.) So since
action of ad(z).
By 3.7.5, L¢ < span,(I,z). By maximality, I € L (Lemma 2.2.8). Thus L® + Zz =

span, (I, z) is aring. Since L% is closed under the action of ad(z), it follows that L¢ + LS+ +7Zz

is an integral form and is clearly G-invariant (since G acts trivially on z). If L = L¢ + L%+
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then L + Zz being a GIIF and maximality would imply z € L, so LY = span,(1, z).

So we may assume that there is some element in L\(L® + L%1). Let ¢ + n be such an
element, with ¢ € Vs4% and n € Vs, O+,

Note that ad(z) + g + g* acts invertibly on Vs,. (This is just saying that ad(z) does not
act as the scalar —2 on Vs5,4¢.) Let x,y € Q be such that (ad(z) + g + )¢ = xI + yz.

Applying the inverse of (ad(z) + g* + g°)

. this gives [%5A.6]:

5A

3x 6y x 2y
(2 2y e (22, 3.7
¢ ( 25+25+y> +(25 25)Z 3-7)

Note that / is primitive in L so we may find a Z-basis of LE of the form {1, mI + kz}, where
Lemma 3.7.5 implies m, k € Z. Then L¢ = span,(I, kz). Since kz € L, L is closed under the

action of k(ad(z) + g* + g°). We compute:
k(ad(z) + g* + &) (¢ +n) = kxI + kyz.

This being in L and therefore LE implies that y € Z.
Let O5(g) = 1 + g + g% + ¢ + g*. This annihilates Vs, since g° — 1 acts as zero and

since g — 1 acts invertibly. So ®@s(g)(¢+n) = S5¢is in L which implies that it is in span; (1, kz).

Using equation 3.7, this implies that x;2y € kZ so that x € 2y + 5kZ < Z.

The coeflicients x and y being integers implies that (ad(z) + g* + g°)(¢ + n) € L + Zz.
Since L + Zz is closed under the action of Z[G], this implies that ad(z)(¢ + n) isin L + Zz.
This is true for all ¢ + n € L\(LY + L%1). As was established in the third paragraph of this
proof, ad(z) (LS + L) = L + Zz.

So L + Zz is closed under the action of ad(z) and is therefore a ring. It is clearly discrete

and G-invariant and so is a GIIF. Maximality implies z € L. []

Lemma 3.7.7. Suppose x,y € Q are such that x(m_, + m;) + ymq is in an 5A GIIF. Then

X,y €Z.
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Proof. Setw = x(m_; + my) + ymy. Then the characteristic polynomial of ad(w) is given by

[%5A.7]:

[(z“ + 127 (x — 2y) — 207 (691> — 58xy + 58y°) — 336¢(x — 2y) (76x* + 11xy — 11y?)

+ 19600 (x* + xy — y2)2 (t —36x + 12y)) (t + 24x + 12y)).

By the variant of Gauss’ Lemma (2.1.7), the coefficients —36x + 12y and 24x + 12y are

integers. The polynomials 60x and 60y are both Z-linear combinations of these:

60x = —(—36x + 12y) + 24x + 12y, and

60y = 2(—36x + 12y) + 3(24x + 12y).

So if we define X = 60x and Y = 60y, then both are both integers.

Compute the following [ 5A. 8], all of which must be integers:

trace (w - (7 (ag) w)) = T (X* - 4XY — Y?),

24
7
trace (w - (t (a_;)w)) = oy (4X* — 6XY +Y?), (3.8)
199
k(w,w) = 50 (3X* — 2XY +2Y?).

These three expressions being integers will imply that the integers X and Y are divisible by
60, which can be shown prime by prime. For example, 3X?> — 2XY + 2Y? = 0, (mod 25)

because k(w, w) € Z. Note:

3X* — 2XY + 2Y* = 3(X + 3Y)* — 20XY — 25Y2. (3.9)

This expression being equivalent to zero modulo 25 implies that 37'20XY is a square mod 25,
which implies at least one of X and Y are divisible by 5. But now (3.9) being equivalent to

0 mod 25 simplifies to 3(X + 3Y)? =0 (mod 25) and hence X + 3Y =0, (mod 5), which
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proves that both of X and Y are 0 mod 5.
One can analyze the numerators of the first two polynomials mod 8 and mod 3 in a similar
way as was just done mod 5; the only solutions are X = ¥ = 0 (mod 12) [%5A.9]. Therefore

60 divides both X and Y, and so x,y € Z. L]

Lemma 3.7.8. For a maximal 5A GIIF L, L°+ < Q%+

LS and write w = Y-

Proof. Fix an arbitrary w € ;

_, xim; for some rational x_j,..., x,.
The image of L% under the endomorphism 7(ay) + ad(1) will lie in the 7(ay) fixed-point
subspace: (LO1)™(@) < spang (m_; +my, mp). The previous lemma says that L nspang(m_; +

my,my) < spang(m_, + my,mp). We compute the coefficients of (7(ap) + ad(I))w and of

(7(ag) + ad(I))gw with respect to m_; + m; and mg [*5A.10]:

(t(ap) + Hw = (x_1 +x1 — x2) [m_y + my] + (2x0 — x2) mo,

(T(ao) + I)gw = (xo — X1 — Xz) [m—l + ml] + (2x,1 — X — xz) my.

Since w is in L, both of the expressions above lie in L, and hence the four coefficients must be

integers:
X_1+ X — X2, 2X9— X, Xo— X — X2, 2X_1— X — Xo. (3.10)
Having fixed a basis m_1, ..., m, of V54,1, we may identify the ring of regular func-
tions on Vs, with Q[x_i,...,x]. If p(x_y,...,x;) is a linear polynomial with ratio-

nal coefficients, then we identify this with a linear functions V54t — Q defined by
w = 25:71 x;m; — p(x_1,...,x). Let py,..., ps denote the linear functions Vs, — Q
given by the four polynomials given in (3.10). Then these functions evaluated at w give integer

outputs if w is in a GIIF. Equivalently, w is contained in the Z-span of the basis di, .. ., d, of
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Vs, &t dual to D1, .. pa (meaning p;(d;) = 6;;). This dual basis is given by[*5A.11]:

1

d] = g (—m_1 — 21’1’10 + 2m1 - 4m2) .
1

d, = g (21’1’1_1 + 4dmy + my + 3m2) ,
1

d3 = g (—4m71 — 3m0 - 2m1 - 6m2) ’
1

d4 = g (3m,1 +my —my + 2I112) .

Set D = span,(dy, d», ds,ds). Then L% is contained in D.

Suppose v = Z?:l A;d; is in L9, with A; € Z. Then the coefficient of 7% in the characteristic
polynomial y(ad(v),?) is equivalent to é (34 +44, + 243 + /14)4 modulo Z[A4;, A, A3, 4]
[*5A.12]. Therefore 34, + 44, + 243 + 44, = 0, (mod 5). The proof will be completed by

showing that
4

{2 Aidi ;€ Zand 32, + 44, + 225 + 44, = 0, (mod 5)} = QG’L. (3.11)
i=1

Since we have shown L% is contained in the left hand side.
This is a fairly routine calculation. We expand each m; in the basis of D to verify that the

right hand side of (3.11) is contained in the left side [%5A.13]:

m_; = d] + 2d4,
mgy = 2d2 + d3,
my =d; —dz — dy,

m2=—d1—d2—d3—d4.

Writing each of these as Z?:l Aid;, we can verify that 34, + 44, + 215 + A4, (mod 5), for each.
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Furthermore we can compute the determinant of the following matrix [*5A. 14]:

NEY
det( 7 ¢ -1 ) =5
1 -1 -1 -1

This shows that Q1 = span, (m_,, mg, m;, m,) is contained in D = span,(d,, d>, d3, ds) with
index 5. Therefore the right side of (3.11) is contained in the left side and both have index 5

in D, so the two sides are equal. [
Theorem 3.7.9. The GIIF Q is the unique maximal 5A GIIF.

Proof. Let L be a maximal 5A GIIF, and suppose L + Q. By 3.7.6 and 3.7.8, L¢ = Q¢ and
Lo < Q9. Soif L = L¢ + LS, we are done since Q = Q¢ + Q.

Since g cyclicly permutes the axes, the g-fixed points of Vs, are spanned by Z,-z:_z a; and
w,. This means L® = L. Then L/L# = L/L° has rank 6 — 2 = 4, and so 2.2.12 gives that
[L : LS + L%'] = 5. This index being prime and the inclusion L¢ + L¢+ < L nQ < L
together imply that LS + LSt = L n Q. Thus [L: L n Q] = 5.

Suppose v is an element in L\Q. For £ € LS,
k((g — 1)v,€) = k(gv, ) — k(v,€) = k(v,€) — k(v,€) = 0.

So (g — 1)v € L%, Since « is nondegenerate, g acts without fixed points on V54, In
particular, g — 1‘ ;6. 1s Invertible, and the matrix of its inverse with respect to the basis

m_y,my, my, My, is given by [*5A. 15]:

41 1 1
1 -3 -3 2 2
S|l 2 22 22 3
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Set /i, = (g — 1],6.1) ~!m;. The computation of the matrix above gives the following:

m_y = % (—4m_y — 3mg — 2m; — my),
My = %(ml —3my — 2m; — my),
my = % (m_y + 2my — 2m; — my),
My = % (m_y + 2mg + 3m; — my) .

Write v = al + bz + Zizz_l xi; with a,b € Qand x; € Q (—1 < i < 2). Then (g — 1)v =
21‘2:_1 x;m; so (g — 1)v e L%+ < Q% implies x_, xo, X1, X € Z.

Also, since g has order 5, and g — 1 is invertible on V5461 it follows that ®s(g) =
g* + & +¢* + g+ 1 annihilates Vs,%+. So ®s(g)v = S5al + Sbz. Thisis in L = Q¢ so if we
define A = 5a and B = 5b then both A and B are integers.

Compute k(v,v) [*5A.16]:

6A% + 6AB + 69B?

53 + 1592x% | + 1592x; + 1592x7 + 1592x3

— 1592x_1x1 — 1592)6_1)62 — 1592)60)(2

This must be an integer, and the the x; are integers, therefore %(6A2 + 6AB + 69B?) is an
integer. But 6A% + 6AB + 698> = 6(A? + AB — B?), (mod 25). It has been shown in the
proof of 3.7.5 that this only has solutions if A, B =0 (mod 5). Therefore a,b € Z.

But then this implies that al + bz € Q¢ = L, with the equality coming from Corollary

3.7.6.Sov —al — bz = 21-2=_1 x;i; € L9+, Therefore v e L¢ + L%+ < Q, as desired. O
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3.8 The 6A algebra

The 6A algebra Vs, over Q has a Q-basis consisting of seven axes a_,ay, ag, ar, az, az, ay

along with a non-axis idempotent u,,. Some of the algebra products are given below:

ap - a :2_6(ap3—a_2—a_1 +ag+a —a,—az)+27" '5-32Ltp2
_A=5 —6 3

ap-ar =277 (a_o + 2a9 + 2a,) —27° -3 - Su,,

do - asz = 2_3 (Cl() +az — Clp3),

ap - ayp = 23 (ag — az + ay),

ap - Uy = 3_2 (—Cl_g + 2a9 — az) + 2_5 -5 Up2,

aps . I/tpz = 0.

[IPSS10, Table 3 and Lemma 2.20]. There is an automorphism f of V which fixes a,: and
u,» and which permutes cyclically the list (a_p,a_y,a0,ay,a,,as) one space to the right. This
determines the remaining algebra products.

We first verify that 7(a,3) is trivial and compute the matrix of 7(ay) with respect to the

basis B given above [%6A. 1]:

[7(a0)]s =

[eleleljelelele]
[elelelel Yol
SoooOo—~OO
[elelelelelel ]
SooooooO—
[eleldelolelele]
(=l elelelelel]
=i =l=lelelele)

So 7(ay) fixes ag, as, a,, and uz and it interchanges a_, with a, and a_; with a;.
Define q; for all i € Z by a; = a;.¢, so the q; is determined by the residue of i mod-
ulo 6. Since 7(a) is a polynomial in ad(ay) (Lemma B.2.2), we have that o*(7(ay)y) =

*a)(o*y) which implies that for any i € Z, 7(a;) fixes a;,a;13,a,» and u,> and it inter-

7(0or
changes a;_; with a;,; and interchanges a;_, with a;,.
It follows that 7(a;) = 7(a;,3) for all i. One can check directly, or reference [IPSS10] that

G = (1(a) : a and axis) =~ Sym(3).
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Definition 3.8.1. Define the following 8 elements in V4.

q1 =1,
q> = 3u,
q3 = 4ap — I,
16
qs = ?[(61_2 +ap + Clg) - (a—l +ar+ 613)],

gs = 16(ap — az) — qa,
de = 16((12 - (Ll) — 44,
g7 = 32(ap + az) — 161 + 8a,s + 6u,p,

gs = 32(a_i + ay) — 161 + 8a,s + 6u,p.

Let Q denote the ordered list ¢y, . . ., gs and set Q = span;(Q).
Proposition 3.8.2. Q is a GIIF of Vs with Q° = span,(q1, q2, g3, q4) and Q¢+ = span,(gs, ge, 47, gs)-

Proof. To check that Q is an integral form is a straightforward computation: we just need
to check that the matrix of ad(g;) with respect to the basis Q has integer entries, for each
i=1,...,8. (This is automized with the Mathematica function IntegralFormQ.) We also

compute the matrices of 7(ap) and 7(a;) (which generate G) with respect to the basis Q

[*6A.2]:

10000 0 0 0 10000000

0100000 O 01000000

0040088 0

_ _|oo0o010000

[T(aO)]a— 00001 —10 0 and [T(al)]a— 00000100
00000—-10 0 00001000

00000 0 1 —1 00000001

00000 0 0 —1 00000010

These both being integer matrices means that Q is invariant under {t(ay),7(a;)) = G and
therefore Q is a GIIF. Also the block decompositions of these two matrices show that Q =
spany (q1, ¢, 43, 44) + spanz(gs, gs) + spanz (g7, gs) is the decomposition of Q as a G-module,
with the latter two summands having no fixed points of G. So Q¢ = span(qy, ¢2, q3, 44)-

The x-Gram matrix for the basis Q is given by [*6A. 3]:
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8§ 7 -1 0 0 0 0 0
7 13 =5 0 0 0 0 0
-1 -513 0 0 0 0 0
0O 0 0 172 0 0 0 0
0O 0 0 0 268 —134 0 0
0O 0 0 0 —134 268 0 0
0O 0 0 O 0 0 1560 —780
0O 0 0 O 0 0 —780 1560
This shows that Q-+ = O
is shows that Q spang(qs, g6, 47 )

Proposition 3.8.3. For any GIIF L of the 6A algebra, L° < Q°.

Proof. Let v be an arbitrary element in V°. Write v = Z?:  Xiqi with x; € Q. If visin a
GIIF, then the characteristic polynomial of ad(v) has integer coefficients. We can compute

this characteristic polynomial and factor it, to show that it has the form [%6A.4]:

x(ad(v),7) =

(t— (x1+3x2—x3)) - (F+1(=2x1 — 230 + x3) + 71)2 (£ — 2 (3x1 + 2x3) + Yot + ¥3),

where y1,72,v3 € Z[x1, X2, x3,x4] < Q. In particular, the variant of Gauss’ Lemma (2.1.7)
applies ensuring that if we define k; = x; +3x, —x3, ko = —2x; —2x; + x3 and k3 = 3x; +2x3
are integers.

We can solve this set of linear equations to write each x; in terms of the ki, k,, k3. This

produces [*6A.5]:

_ 6k k
S TR TR TR

Tk Sky ks
R TERIETETE
_ bk Ok Ak
BT T

If we define X; = 11x;, then X; is an integer for each index i = 1, 2, 3. Also, we can compute
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that

X1 — X, = —11(k1 + kz) =0 (mod 11), and

3X3 —X1 = 11(2k1 +3k2+k3) =0 (rnod 11)
To finish the proof, we analyze the value of k(v,v) — n(v,v). Compute [*6A. 6]:

1
k(v,v) —n(v,v) = E( — 8X; + 4X,X5 — 9X3) — 86x; (3.12)

Since 121[«(v,v) — n(v,v)] € Z and X, X», X5 € Z, this implies that 121 - 86x; € Z. This
factors as 2'11243'x3. Therefore X, = 11x4 is an integer. Use this to rewrite the computation

of k(v,v) — n(v,v) in equation (3.12): put everything over the denominator 121:

1
k(v,v) —n(v,v) = m( — 8X5 + 4X,X; — 9X; — 86X})

This numerator is an integer which must be divisible by 121, so in particular:
—8X7 + 4X,X; — 9X; — 86X; =0, (mod 11).

We can simplify this equivalence, using X; = X, = 3Xj; to:
—69X; — 86X; = 8X; +2X; =0, (mod 11).

If X3 # 0, then 7 = (—8) - 27! = (X4/X3)?, (mod 11), which is impossible as 7 is not a
square mod 11. Therefore X; = X4 = 0, (mod 11). And therefore X; = X, = 3X; = 0,
(mod 11).

This means that x;, x», X3, x4 € Z, sov € Q. O

Lemma 3.8.4. Suppose x,y € Q and x(qs + qs) + y(q7 + qs) is in a GIIF of Ves. Then x,y € Z.
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Proof. Suppose w = x(gs + ¢s) + y(¢7 + gs) is in a GIIF. Compute the characteristic
polynomial of ad(w), and after factoring and simplifying we can verify that it equals the

following [*%6A.7]:

£ ( =22ty — 20 (x* — 6y%)) -

(t* + 228y — 27 (57x% + 208y?) + 887 (8x%y — 65y°) + 72 (29x* — 161x%y* + 890y*)) .

By the variant of Gauss’ Lemma (2.1.7), all of the coeflicients of ¢ in the factors of this
polynomial are integers. In particular, 22y, —20 (x> — 6y?) and 2 (57x* + 208y%) = 114x* +
416y” are all integers. Compute trace(w - (7(ag)w)) = —227x*> — 1102y* [*6A. 8]. This also
must be an integer. Then we can find the smallest multiple of x? in the Z-span of the three
quadratic polynomials in x and y that have been produced. This search yields the following

equation [*6A.9]:
22x% = 442(—20x% + 120y%) + 699(114x> + 416y°) + 312(—227x> — 1102y?).

Therefore 22x? is an integer. Since 22 is square-free, this implies x € Z. Then —227x* —

1102y? € Z implies 1102y* € Z and 1102 = 2'19'29! is square-free, so y € Z. O
Proposition 3.8.5. For any GIIF L of Ves, L+ < Q.

Proof. Choose any v € L%+, Note that V¢ is 4 dimensional, based on the computation of
the Gram matrix for Q in the proof of Proposition 3.8.2. So spanQ(QG’L) = VO, Write
v = Z?:S X;q; for rational numbers xs, x¢, X7, x3. We need to show that each x; is an integer.

Compute [%6A.10]:

(t(ag) 7(ar) + 27t (a1) + 7 (ax) + 2I) v = 3x6 (g5 + qs) + 3x3 (97 + qs) ,

(=t (ao)t(a1) + t(a1) — 7 (a2) + 1) v = 3x5 (g5 + q6) + 3x7 (g7 + q3)

Since v is in a GIIF, both of these elements also are, and therefore Lemma 3.8.4 implies
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3x5,3x¢, 3%7, 3x3 € Z. Define X; = 3x; fori = 5,6,7, 8.

Compute [*6A.11]:

n(v,v) = = (454 (X3 + XoXs + Xg) + 2204 (X7 — XsX7 + X5))

O — O —

k(v,v) = = (268 (X3 + X6X5 + X¢) + 1560 (X5 — Xs X7 + X3))

These are both integers, therefore the numerators of are both integers divisible by 9. Write

P(x,y) = x> — xy + y*. Then we have:

454P(X5,X6) + 2204P(X7,X8) = O, (mod 9),

268P(X5,X6) + 1560P(X7,X8) = O, (IIlOd 9)

Or equivalently:
4P(X5,X6) + 8P(X7,Xg) = O, (IIlOd 9),
7P(X5,X6) + 3P(X7,Xg) = O, (mOd 9)

Sincedet[38] = —44 =1 (mod 9), this matrix is invertible in Mat,,(Z/9Z). So P(Xs, X¢) =
P(X7,X3) =0 (mod 9).

The proof will be completed after proving the following fact: if x,y € Z are such that
P(x,y) =0 (mod 9), then x =y = 0 (mod 3). To see this, write P(x,y) = (x + y)> — 3xy.
If this is 0 mod 9, then it is 0 mod 3, which implies x = —y, (mod 3). Thus P(x,y) = 3xy,
(mod 9) which means xy = 0, (mod 3) and this forces x = —y = 0, (mod 3).

Thus each X; (i = 5, 6,7, 8) is divisible by 3, which implies v € Q. ]

Theorem 3.8.6. The GIIF Q is the unique maximal GIIF of Vga.

Proof. Let L be a maximal GIIF of the 6A algebra. It has been shown that L < QY and

L%+ < Q%+ (Propositions 3.8.3 and 3.8.5).
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First, we need to show that V¢, = V¢, where g is an element of order 3 in G =~ Sym(3).
This is straightforward: because g cyclicly permutes the lists (a_,,ao,ay) and (a_y,a;, a3)
and g fixes a,5 and u,» we can see that V¢, is spanned by the four vectors a_, + ay + az,
a_i +ay + as, ay, and uf). These vectors are all invariant under every element in G and so
VG, = Vi, Ttfollows that L = V& n L = Vi, n L = L5

Next, we claim that 3L is contained in LY + L%*. To that end, note that the index is
finite because « is nondegenerate. (For a sublattice S inside L, rank S + rank S+ will always
equal rank L if the form is nondegenerate.) Choose any v € L. Then notice that we can write

(¢ +g+1)— (g—1)> = 3g. Applying both sides of this to g>¢ yields:
(8 +g+1)g*t— (g—1)’g°C =3¢t

Then we just observe that (g> + g + 1)g*€ is in L and is annihilated by g — 1 soisin L8 = L.

And the other term (g — 1)?g¢?¢is in (g — 1)L and therefore in (L#)* = L%, It follows that
3L L9+ L < Q9+ 0% = Q.

For any v € L we may therefore write v = Z?:] % q; for some integers X; (i = 1,...8). We

can compute the following [%6A.12]:

X 1 X, 1
T(ag)v —v = —?6% 3 (2Xs) g6 — ?86]7 3 (2X3) gs,
1 1 1 1
T(a))v—v = 3 (X6 — X5) g5 + 3 (Xs — X¢) g6 + 3 (Xs — X7) q7 + 3 (X7 — X3) gs.

Both of these elements are in L n V&4 = L61 < Q%L So the coefficients of ¢; (i = 5,...8)
that occur here are integers. The first equation then implies that X¢ € 3Z and Xg € 3Z and then

using this fact in the second equation implies X5 € 3Z and X; € 3Z.

Write x; = X;/3 fori = 5,6,7,8,sothat x; € Zand v = Z?zl %qi + Z?:S x;q;. Note that
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v - v e L therefore 3v-v e Q. If we write 3v - v = Z?ZI v:q; then we compute [*6A.13]:

y1 = 261X + 6x3X3 + 92x, Xy + 3x7 + 93 + 138x; + 162x3 + 162x; + 864x5 + 864x;

X2 46X
+ 162x5x5 — 864x7x5 + 3 + X5 + 3

Y2 = ZXQX1 + 6X2X2 - 2)C2X3 + 2X1X2 - 2X3X2 — 32)(,'4X4 + 9X§ + 6X1X2 - 6X3X2

— 48x5 + 1223 + 12x; — 84x3 — 84xg + 12x5x6 + 84x7x3 + X5
2X,X, 16X  2X,X;

3 3 3

These are both integers.
Since the x; (i = 5,...,8) and X; (i = 1,...8) are integers, y; being an integer implies
that X;? + 46X,> = 0, (mod 3). This has only the trivial solution X; = X4 = 0, (mod 3).
Now this implies that X;X,/3 and 16X;/3 are both integers, so ¥, € Z implies X,X; = 0,
(mod 3). And trace(v) = 8X;/3 + 2X, + ;(X> — X3) [*6A.14] being an integer implies

X, = X;, (mod 3) so X, =X; =0, (mod 3), which completes the proof that v € Q. O
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CHAPTER 4

GIIFs in some larger Griess algebras

4.1 The algebra with group Sym(4) of shape (2B,3C)

Notation 4.1.1. Let 7', be the set of transpositions in Sym(4). Throughout this section, let
V denote the rational subalgebra generated by the axes of the algebra of shape (2B, 3C) as
described in [IPSS10, §4.3]. Explicitly, V has a Q-basis {a, : t € T|} where each q, is an axis.
For simplicity of notation, we will omit the parenthesis around transpositions in this context;
e.g. a;p = a(z). We read the product cycles right to left, as in function composition, so for
example (12)(23) = (123).

Each axis is an idempotent, so a> = g, for all t € T. For a pair of commuting transpositions
s,t € Ty, the pair a;, a, generate a 2B-subalgebra [IPSS10, Lemma 3.1], meaning that a,-a, = 0.
For two transposition s,¢ € T that do not commute, then sts = tst and the triple ay, a;, ay;
generate a 3C-subalgebra [IPSS, §4.3], meaning a; - a; = 27%(a, + a, — agy).

We can summarize this with the following formulas [IPSS,§4.3] (this is for any permuation
{i, j,k, €} = {1,2,3,4}):

aij - aij = ajj, a;j - ag =0, aij - ay = %(aij—i—a,-k—ajk).

The group G = (7(a) : a an axis of V) is isomorphic to Sym(4). The action of Sym(4)

on V can be summarized by the following: for z,s € Ty, t-a;, = 7(a,) a; = a;; (Lemma

2.2.10).
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Definition 4.1.2. Define the following elements of V:

16
g1 =1=—=(an+api+ayu+axs+au+ay),

Define Q to be the ordered basis (g1, g2, - - -, gs), and set Q = span,(Q). The fact that Q is a

G-invariant integral form is a straightforward calculation [%*2B3C. 1].

We will show that the integral form Q is the unique maximal GIIF in V.

Definition 4.1.3. Define K = 0,(Sym(4)) = {id, (12)(34), (13)(24), (14)(23)}. This is
a normal subgroup of G = Sym(4) isomorphic (Z/2Z)?. Define k; = (12)(34) and k, =
(13)(24).

Lemma 4.1.4. We have the following decomposition of Q into isotypic subspaces with respect

to the action of K:

0" = 0% = spany (g1, 92, 93),
Q™11 = spany(qa),
Q"™ = span, (gs)

(96)-

Q"% = span,(gs)

Therefore Q = TeL(Q, K) (see Definition 3.5.2).

Proof. 1t suffices to show that the matrix of the action of k; on V with respect to the basis Q is
diag(1,1,1,—1,1,—1) and that the matrix of k, in the basis Q is diag(1, 1,1, 1, —1,—1). This
is a straightforward calculation [%2B3C. 2]. O

Lemma 4.1.5. If L is a GIIF of V, then TeL(L, K) < Q.

70



Proof. Suppose w € LX. By Lemma 4.1.4, VX is three-dimensional, and we may write
w = xq; + yq» + zq3 for some x,y,z € Q.

Compute the following [*2B3C. 3]:

x(ad[(123)w —w]; 1) = (¢t + 31y) - (t —31z) - (t — 31y + 31z)

£+t (—964y* + 964yz — 9642%) + 29512y°z — 29512y77],

Define Y = 31y and Z = 31z. By the variant of Gauss’ lemma (2.1.7), both Y and Z are

integers. The following coefficients are also integers:

964
—964y* + 964yz — 9647 = -3 (Y?—YZ+27*) and
952
29512y°z — 29512y7* = 3 (Y - 2)YZ

The first expression being an integer implies that Y> — YZ + Z?> = 0, (mod 31). The second
expression being an integer implies that one of the following holds: ¥ =0,Z=0,orY =Z
(mod 31). Together with the first equivalence, each of these three cases leads to the conclusion
Y=Z7Z=0, (mod 31). Thus, y,z € Z.

We compute also that w - gs = (x + y + z)gs [*2B3C.4]. This eigenvalue must be an
integer, hence x € Z. This proves that LX < Q.

Next, one can see from the definition of ¢; (i = 4,5, 6) and Lemma 2.2.10 that the action
of the transposition (23) fixes ¢s and it interchanges ¢4 with gs. Similarly, (24) fixes ¢4 and
interchanges g5 with g¢. So ((23), (24)) =~ Sym(3) acts faithfully on the three element set
{q4. g5, q6}. We also compute that g, - g5 = g¢ [*2B3C. 5] and therefore ¢; - g; = g, for any
permutation {i, j,k} = {4,5,6}.

Next, suppose that v € Lekek for some choice of €, 6 € {£1}, not both equal to 1. By
Lemma 4.1.4, v = rq, for some i € {4,5, 6} and some rational . So by the previous paragraph,
L contains all three rqq, rqs, and rqs. Then L also contains (rgs) - (rqs) = r>q4. By the same
reasoning, L contains r"g, for all natural numbers n. This is a discrete set only if r € Z.

Therefore v € Q. O
Corollary 4.1.6. For any GIIF Lof V, L < ;0.
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Proof. The four subspaces V**1-+% are the four isotypic subspaces of V with respect to the
action of K. For each of the four irreducible Q[K|-module M; (i = 1,2,3,4), the group
algebra Z[ K] (and therefore also Z|G]) contains |K|e; = 4e; where e; is the idempotent in
Q[K] that acts as the identity of M; and annihilates M; for i + ;.

Therefore 4L = 4e,L + 4e,L + 4esL + 4e,L < TEL(L, K) < Q. O

Theorem 4.1.7. The GIIF Q is the unique maximal GIIF in the algebra V of shape (2B, 3C).

Proof. Suppose there is another GIIF L not contained in Q. By Corollary 4.1.6, L = %Q, and
therefore there exists an element w € L N (%Q\Q) Write w = % 21'6:1 X;q; for some integers
Xi,...Xe. Define x; = X;/2. So we aim to show that for each i, 1 < i < 6, X; is even or
equivalently x; € Z.

2
I

We compute [*2B3C.6]: n(w,w) = 3% (mod Z), and therefore X is even and hence
X| € Z.

Next we compute [*2B3C. 7]

1025
K<W, (123)W> = 68X1X2 + 68X1X3 + 6X% + T (X4X5 — X6X5 — X4X6)

+ = (129X5 + 2183X3X, + 129X3) .

A

For this to be an integer, it must be that 129X§ + 2183X53X, + 129X§ is even. This implies

X, = X5 =0, (mod 2). This then implies that 129X§ + 2183X3X, + 129X§ is divisible by 4.

So now «(w, (123)-w) being an integer implies X4Xs + X5X¢ + X4Xs = 0, (mod 2).
Finally, we compute [%2B3C. 8]:

1025
K((lz)-w —w, w) = —1925x5 + 3850x3x; — 1925x3 — 1025X, X5 — — (X; +Xe),

1025
K((13)-w -~ w> = 19252 — 1025X5X — —— (X3 + X2).
Therefore X; +X; = X2+ X; = 0, (mod 2) which forces X4 = X5 = X6, (mod 2). Together
with X4 X5 + X5Xs + X4Xe = 0, (mod 2), this yields X4 = X5 = X¢ = 0, (mod 2). This

completes the proof that w € Q. [
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4.2 The algebra with group Sym(4) of shape (2A,3C)

Notation 4.2.1. Let T be the set of involutions in Sym(4). Let V denote the rational sub-

algebra generated by the axes of the algebra of shape (2A,3C) as described in [IPSS10,

§4.4]. Explicitly, V has a Q-basis {a, : t € T} where each g, is an axis. For simplicity of

notation, we omit the parenthesis on transpositions in this context, e.g. a;; = a(i2). For an

involution equal to a product of two transpositions, we separate the transpositions by a comma,

€.g. d1234 = Q(12)(34)-

Each axis is an idempotent, so a’> = a, for all t € T. For any pair of commuting involutions

s,t € T, the triplet ay, a;, a;; generate a 2A-subalgebra [Lemma 3.1, IPSS10], meaning that

as-a, = %(as + a, — ay). The remaining products in the algebra are given by the following

formulas [IPSS,§4.4] (this is for any permuation {i, j, k, £} = {1,2,3,4}):

1
aij - Aix = i(aij + ai — ay),

a;j - Qi je = == (aij + Qi jo — Are — Qiejx + Aijke)-

26

Definition 4.2.2. Define the following elements of V:

16
m =1= ﬁ (4012’34 + 4a13,24 + 46114,23 + 5a1, + S5ai3 + S5a4 + Sax; + Sary + 5a34) ,
16
mp = 5 (a1234 + 1324 + a1423) ,

ms3 = 3’26113,24,

nmy = 326114,23,

Define M = span,(m; :

1 < i <9). The fact that M is a G-invariant integral form is a
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straightforward calculation [%2A3C. 1].

Lemma 4.2.3. Define the following subspaces of V:

V(1) = spang (ZteT\Alt(4) a, ZteTmAlt(Al) a,) )

V(2) = spang(ai334 — @143, Q1234 — Q1423, Q13 + 3q — Q14 — Gz3, Q12 + 34 — Q14 — A23),

V(3) = spang(my, mg, mo).

Then V = V(1) 4+ V(2) + V(3) is the decomposition of V into isotypic subspaces with respect

to the action of G.

Proof. All of the irreducible complex representations of Sym(4) are rational, so the represen-
tation V will decompose into these familiar complex representations. Let N denote the normal
subgroup {id, (12)(34), (13)(24), (14)(23)} of G = Sym(4). There is a unique irreducible
Q|G]-module for which N acts nontrivially. It is three dimensional. The remaining 4 irre-
ducible representations come from inflating the irreducible representations of G/N =~ Sym(3)
to G. Note that G acts transitively on the set {m7, mg, mo} and also N acts nontrivially on this
space. Hence V(3) is isomorphic to the unique 3-dimensional irreducible Q[G]-module.

The two spaces spanQ(a,-j,k, c {i gk 1 ={1,2,3,4}) and spanQ(aij +ay: {i, k1) =
{1,2,3,4}) are both submodules and they are isomorphic as G-modules under the map defined
by a;ju — aij + ay. The former decomposes as a one-dimensional trivial module plus a

nontrivial two dimensional module:

spang (aiju - {i, j k. 1} = {1,2,3,4}) =

Spang, <ZteTmA1t(4) at) ® SpanQ(Cll3,24 — a1423,A1234 — 6114,23)

Lemma 4.2.4. Ifv e V(1) is in a GIIF then v € M.

Proof. From the definitions of m; = I and m;,, we can see that V(1) = spang (1, m,). Suppose

v = xI + ym, is in a GIIF for some x,y € Q.
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We compute [*2A3C. 2] that ad(m,) has eigenvalues 0, 1, and 4. Thus x and x + y and
x + 4y are (rational) eigenvalues of xI + ym,. By the variant of Gauss’ lemma (2.1.7), both x

and x + y are integers. Hence y is also an integer. ]

Lemma 4.2.5. Ifv = 16x(ai324 — a1423) + 16y(ai3 + axq — a4 — an3) is in a GIIF for some

x,y € Q, then x,y € Z.

Proof. We can compute the characteristic polynomial of ad(v) in factored form to be [*%2A3C. 3]:

—1 (£ — 381)7) (r — %(7x - 31y)) (t + %(7x + 31y)) (£ —13(4x +y)?)

By the variant of Gauss’ lemma (2.1.7), all of the coefficients (3817, w, and 13(4x +y)?)

are integers. Since 381y* = 3 - 127y it follows that y € Z. Similarly, 13(4x + y)? being an
integer implies 4x + y is an integer, which then implies 4x € Z.

Then (7x + 31y) € 2Z implies 7x € Z and therefore x € Z. O
Lemma 4.2.6. Ifv € V(2) is in a GIIF;, then 12v € M.

Proof. First observe that M contains the following four elements:

32(013,24 — a14.23 ms — My,

32(ais + azs — ay — an

) =
32(ains4 — @rans) = t(ais)(mz — my),
) = ms — mg,
) =1

32(ain + asq — aig — ans (a14)(ms — mg).

Write v = 32X1 (a13,24 —6114’23) + 32X2(012’34 —6114’23) + 32)63 (6113 +ay—aps— 6123) + 32)64(6112 +
asy — a4 — ay3) for some scalars xi, x», x3, x4 € Q. To show that 12v € M we need to show

that 12x; is an integer for eachi = 1,2, 3, 4.
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We compute the following actions of certain elements in Z|G| on v [*%2A3C. 4]:
[(12) —id][(34) —id]v =
[4)61 + 2)62] 32(6113,24 - 6114’23> + [4)63 + 2)C4] 32(013 + ayy — A4 — 6123),
[(12) —id][(34) —id](13)v =

[2)61 — 2)62] 32(&13’24 — 6114’23> + [2)63 — 2)64] 32(6113 + ayy — A4 — (123).

Both of these elements are in the GIIF containing v, and by Lemma 4.2.5, the coefficients

dx1 + 2xp,4x3 + 2x4, 2x1 — 2x, and 2x3 — 2x4 are in %Z. Therefore the following are also in

1z
6x; = (4)(1 + 2)C2) + (2)C1 - 2X2)’
6x; = (4x1 + 2x) — 2(2x1 — 2x7),
6x3 = (4x3 + 2x4) + (2x3 — 2xy),
6x4 = (4x3 + 2x4) — 2(2x3 — 2x4).
So 12x; € Zfori = 1,2,3,4. Therefore, 12v € M. ]

Lemma 4.2.7. Ifv € V(3) is in a GIIF, then 4v € M.

Proof. We compute that m; - m; = my for any permutation {i, j,k} = {7,8,9} [%2A3C.5].
Fix i € {7,8,9}. The the orbit of m; under G contains {my, mg, me}. So if sm; were in a GIIF
for some rational s, then this GIIF would contain rng(G - sm;) = rng({smy, smg, smg}) which
contains s"m; for every positive integer n. So s must be an integer.

Write v = x;my + xgmg + xomy for some x7, xg, xg € Q. It is easy to verify that

my € V-(1204.-(13)24),

mg € V-01269.039@)  ang

mo € VIDH~(13)(24),
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So

[id — (12)(34)][id — (13)(24)] v = 4x7my,
[id — (12)(34)][id + (13)(24)] v = 4xgms,

[id + (12)(34)][id — (13)(24)] v = 4xoms.

All three of these elements are in the GIIF containing v. By the previous paragraph, 4x;, 4xg, 4x9 €

Z. Therefore 4v € span, (m7, mg,my) < M. O
Lemma 4.2.8. There is no GIIF L such that 2 divides [L + M : M].

Proof. If there were such a GIIF then Proposition 2.2.6 guarantees existence of a GIIF L not
contained in M with 2L < M.

Let v be an element of L. Write v = % Zig:] X;m; for some integers Xi, ..., X9. Then set
x; = X;/2foralli =1,...,9. The goal then is to show that each x; is an integer, which will
prove that v € M and thus contradict the fact that L is not contained in M.

Fori=1,...,9, define u,...,us to be the basis of V* dual to the basis my,...my of V.
Explicitly, for y;,...,y9 € Q we have y; : 23:1 yjmj+— y;. If £ € L then since 2¢ € M, we
have that 2y,;(€) € Z foralli = 1,...,9.

We compute [*2A3C. 6]:

X )
2/,[1(\/ : V) = 7 + 504X9 — 42X5X6

This being an integer implies X, is even, so x; € Z. Since this is true for an arbitrary v, this
implies p(¢) € Z for all € € L.

We compute trace(v) = 9x; + % + 25X5 + 25X, + 43X5 + 43Xg. Therefore x, is an
integer. We then compute [%2A3C. 8]:

21X?
w (v (t(a)v) = 21x, X + x7 + 5 8 _ 252X;Xo,

21X2
(v (t(as)v)) = 210 Xs + x7 + TS + 252X Xo.

Hence x5 and x¢ are integers.
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We compute the following [*2A3C. 9]:

273X?2  273X%  1427X:X
2k (v, 7 (a24) T(an2) v) = 2 2 4 > st 23 :

(mod Z[xy, x2, X3, X4, X5, X6, X7, X3, Xo]).

Therefore X% + X3X, + Xﬁ = 0, (mod 2), which has only the trivial solution X3 = X, = 0,
(mod 2). So x3 and x, are integers.

Then we compute [%2A3C. 10]:

833X§

kv, (ap)wv) = 5 (mod Z[xy, X2, X3, X4, X5, X6, X7, X3, Xo]),
833X2

K (V,T (6113) -V) = s (mod Z[Xl,x2,X3,X4,X5,X6,X7,X8,X9]),
833X2

k(v,T(ajs) v) = 7 7, (mod Z[xy, X2, X3, X4, X5, X6, X7, Xz, Xo]).

These being integers imply that xg, xg, x7 are integers. This completes the proof that v € M.

Therefore there is no element in (L + M)/M of order 2. O
Lemma 4.2.9. There is no GIIF L of V with [L + M : M] divisible by 3.

Proof. If there were such a GIIF, then Proposition 2.2.6 guarantees existence of a GIIF L not
contained in M with 3L < M.

Let v be an element of L. Write v = %Z?zl X;m; for some integers Xi, ..., Xo. Define
x; = X;/3fori=1,...,9. Our goal is to show that each x; is an integer, because this will
imply v € M which will contradict the fact that L ¢ M.

Fori=1,...,9, recall the definition of the component functions y; : V — Q defined by
i 23:1 yjm; — y;. If £ € L then since 3¢ € M, we have that 3y;({) € Zforalli =1,...,9.

Compute the following [*2A3C.11]:

2

3 o Xl 2
U1 (V : V) = ? + 336X9 — 28X5X6,

Therefore 3 divides X;. Since this is true for an arbitrary v € L, it follow that x4, (£) € Z for all

¢ € L. Write X; = 3x; for an integer x;.

78



We compute [*2A3C.12]:

14X2  14X2
3 3

Hi (V’ [T (azs) T (a1324) V]) = X% — 112X§ —

Therefore X2 + X2 = 0, (mod 3), which has only the trivial solution Xs = X¢ = 0, (mod 3).
So write X5 = 3x5 and Xq = 3¢ for integers x5 and x¢. Since this is true for an arbitrary v € L,

it follows that for any £ € L both us(¢) and e () are integers. We compute [%2A3C. 13]:

8X2 8x2
ps (v - [7 (a1304) v]) = 4015 + 2x,x5 + 4x6x5 + TS + 79,
8X: 8x2
ﬂe(v~ [T (a1324) v]) :40x§+2x1x6+4x5x6+ T9 _ 37.

Again, since x> + y* =0, (mod 3) has only the trivial solution, it follows that X3 = Xq = 0,
(mod 3). Then the second equation implies X; = 0 (mod 3). For for i = 7,8,9, write
X; = 3x; with x; € Z.

We next compute [%2A3C. 14]:

2 2 2 881X,
3k(v, v) = 3k (v, T (a13) v) = 850x6X4 + 761 1xg + 4998x5 + 4998x; + 9996.x7.x9 + T

So X, € 3Z. And trace(v) = 9x; + 86xs + 86xs + 5X, + 503& + 503& ([*%2A3C.15]) then
implies that X5 € 3Z. So write X3 = 3x3 and X; = 3x, for integers x; and xy.

Finally, we compute [%2A3C. 16]:

2

4
3up(v - v) = 2x, X, — 336x35 — 240x3x4 — 60x4x5 — 60x3x6 + 48x5x6 + TZ,

This being an integer implies X, € 3Z which completes the proof that v € M. So there is no

element of order 3 in (L + M)/M. O
Theorem 4.2.10. The GIIF M is the unique maximal GIIF in the algebra V of shape (2A,3C)

Proof. Let y be a character of an irreducible Q-representation of G. Then the element
e, = % >ccx(&7")g € Q[G] acts on any Q[G]-module as the identity on any irreducible

subrepresentation affording y and acts as O on any irreducible representation affording a
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different character. In other words, e, acts as the projection on the isotypical submodule
corresponding to y, in any rational representation of G.

Let v be an element in a GIIF L. Write v = v; + v, + v3 where v; € V(i) fori = 1,2, 3.
Then L is closed under the action of |Gle, = 24e, € Z|G]. Therefore 24v; € L fori = 1,2, 3.
Then Lemmas 4.2.4, 4.2.6, and 4.2.7 imply that 12 - 24v; € M for i = 1,2,3. Therefore
12 - 24v € M. However 12 - 24 = 232 is coprime to the order of (L + M)/M by Lemmas
42.8and 4.2.9. Thusv+ M = M andsov e M. [
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4.3 The Lam-Chen algebra with group 32 : 2.

Notation 4.3.1. Throughout this section, V will be the nine dimensional Griess algebra
described in Lemma 3.2 of [CL14], defined over Q. So V is a nine-dimensional rational vector

space, with basis {e, : u € }Fg} where each %eu is an axis. The algebra product is given by:

] .
Hleate —e ) ifusfv
€y € =
2e, ifu=nv.

Define 7, = 7(%) for all u € F;.

Lemma 4.3.2. For any u € F;, the trace of ad(e,) is %. The mutliplicative identity I of V is

4
9 Zue[F% €y.

Proof. The products in Notation 4.3.1 show that trace(e,) = 8 - (1/32) + 2 = 9/4.
If we define v = Zsng es, thenv-e, = 2e, + Zs#u’ s €s " Cu will be a multiple of e, since
each term ;—Z(eu + ey — e_,_y) in the sum will have a corresponding term 31_2(€u +e g, —e).

Besides the term 2e,, there are 8 other terms which sum to 8 - 3—12eu = ieu. Therefore v acts as

4

5V is the multiplicative identity. [

the scalar 2 + i = % on each basis element, and therefore

Lemma 4.3.3. The automorphism group of the algebra V is isomorphic to AGL(2,3) = 3* :
GL(2,3).

Proof. One can show by direct calculation that {%eu T uUE IF%} is exactly the set of idempotents
in V whose trace equals 9/8 [*LC. 1]. Therefore Aut(V) must preserve this set. So Aut(V)
has a faithful permutation representation on the set F3.

Let f be an automorphism of V, which we also think of as an element in Sym(F;). Given

any x + y € F} we claim that f(—x—y) = —f(x) — f(y). To see this, we expand out f (e, -e,)

in two ways:
1 1
flew-e) = [ splectes—exy) ) = g5lesw + ey — €pvn)]
| 4.1)

flex) - fley) = ef) - epp) = 3—2[€f<x) +er() — e—f(x)—f0)-
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Since these expressions are equal, f(—x —y) = —f(x) — f().

The set of all three element subsets in {{x, y,—x—y}: x,yeF x+ y} is equal to the set
of affine lines in F3. To see this, note that {x,y, —x—y} = x+{0,y—x, 2y—2x} = x+F3(y—x).
Since f(—x —y) = —f(x) — f(y) it follows that f sends affine lines to affine lines. Therefore,
for any k-dimensional affine subset U of F3 (0 < k < 2), f(U) is also an affine subset
of dimension k. It follows that f acts on [F; as an invertible affine transformation, hence
f€AGL(2,3).

Conversely, let f be any element in AGL(2, 3) which acts linearly on V by permuting the

basis elements: f(e,) = ey). We first observe:

flec-er) = f(2e,) = 2ep(x) = €p(x) - €p(x) = flex) - flex).

For any two distinct elements x, y € IF2, the map f transforms the affine line {x, y, —x — y} into
{f(x), f(y), f(—=x—y)} which must also be an affine line, and hence f(—x—y) = —f(x)—f(y).
Then this shows that the two lines in (4.1) are equal, which proves that f acts on V as an

automorphism. O]

This shows in particular that G =~ 3? : 2 can be views as a subset of AGL(2,3). In
particular, O3(G) must be identified with (F3, +), which is the unique subgroup of order 9
in AGL(2,3). An element u € IF% acts on V by the rule u - e, = e,,,. Also, observe that for
any u € P% ey, €, e_, span a subgroup isomorphic to the 3C-algebra. So 7 interchanges e,
with e_,. So with respect to the identification of Aut(V) with AGL(2, 3), the subgroup G is

identified with (F}, +) x {+1}.

32
Definition 4.3.4. For any affine line L of F2, define v; = 3 Z e,.

uel

Notation 4.3.5. For a subset S of 3, (S ) is the additive subgroup generated by S. If s, r € F3

with s + 0, r + (s) is the affine line parallel to {s) containing r.

Lemma 4.3.6.

(i) For each nontrivial proper subgroup H of O3(G), there is a two dimensional rational

irreducible representation of G with kernel H.
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(ii) G has six rational irreducible representations: four of which are two-dimensional, and

two of which are one-dimensional.

(iii) The Q[G|-module V decomposes as the direct sum of all four two-dimensional irre-

ducibles plus the one-dimensional trivial representation.
(iv) If (s,r) = 5, then V* = spang (V(s), Vri(sys Varads))-

Proof. The quotient G/H =~ Sym(3) has a faithful two-dimensional rational irreducible which
inflates to a representation of G. Note that G/O3(G) =~ Z/2Z has two one-dimensional
complex irreducible representations, both of which are rational. Then |G| = 18 = 4(2%) +
12 + 12 so these 6 are all of the complex irreducible representations of G and all of these are
rational.

We identify G with F3 x {£I}. Suppose {r,s} is a basis of F;. Because {0, s,2s} is
a normal subgroup in G, this implies that V* is a G-submodule of V. Also V* contains
{Vo1¢sys Vradsy» Var+(sy Which are linearly independent since they are defined by taking sums
of elements 33—26,4 for u in disjoint (in fact, parallel) affine lines in F3. So V* is at least three-
dimensional. And since r - vy, = Va,4(5), We have that r acts nontrivially on V*. So
V* contains the two-dimensional irreducible on which s acts trivially but not all of O5(G)
acts trivially. Since s was arbitrary, V contains all four such irreducibles. Then V also
contains the trivial representation spang (7). Since dim V = 9, this accounts for the complete
decomposition of V.

We have shown that r acts nontrivially on V*, and by symmetry, s acts nontrivially on each
of the three two-dimensional irreducibles whose kernel is not (s). So V* is a G-submodule
with dimension at least three, but the only irreducible representations of G it can contain are
the trivial one and the two-dimensional irreducible with kernel {s). Thus dim(V*) = 3 and

the three elements vy, v,4(s), Var4¢s) are a basis. O
Lemma 4.3.7. Suppose F5 = (r,s). If Lis a GIIF of V, then L\ V* < spany (1, V,+(sy, Vari(s))-

Proof. We have shown that vy, v, (s, Vari¢s) 18 @ basis of V¥ (Lemma 4.3.6(iv)). We have

I = 52 (Vo + Vistsy + Varadsy)» and 80 1, vy, Varisy 1S also a basis of V°.
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For computational purposes, we will first prove this result for the specific case ' = (0, 1)

and 5" = (1,0). Write w = xI + yv,»1.(gy + V2 +(yy. Then we compute the following [*LC. 2]:

k(w, To(w) —w) = 1326(y — 2)%,

k(w, 7 (W) —w) = 13267%.

Since 1326 = 2 -3 - 13 - 17 is square-free, this implies that both y — z and z are integers and so

y is also an integer. We also compute that [*LC. 3]
w-(eg—e_y)=(x+y+2z)(eo—e_y).

So ad(w) has x + y + z as an eigenvalue, and the variant of Gauss’ lemma (2.1.7) implies that
X+ y+ z € Z. Therefore x € Z.

Now we let r, s be an arbitrary basis of F3. There is some ¢ € GL(2,3) such that
¢(r) =r = (0,1)and ¢(s) = s’ = (1,0). Under the identification Aut(V) =~ AGL(2,3), we
may view ¢ as an automorphism of V by the rule ¢(e,) = eyy), for all u € F3, and therefore
¢(vy) = vy(v) for any affine line U = 3.

So now suppose that w' = X'I + y'v, ;s + Z'Var4¢s) is in a GIIF L for some x',y', 7 € Q.
Then ¢(L) is also an integral form, and this will also be G-invariant since G is normal
in Aut(V). Explicitly: for g € G we have g¢p(L) = ¢ 'gp(L) < ¢(L). So ¢p(w) =
X'T 4+ Y'Veiioy + ZVap ey is in the GIIF ¢(L). By the previous calculation, x',y',z7 € Z. [

Definition 4.3.8. Define Q to be the set containing / and vy for every affine line U of F; that

does not pass through the origin. Set Q = span,(Q).
Lemma 4.3.9. The set Q is a Q-basis of V, and Q is an Aut(V)-invariant integral form.

Proof. There are four linear one-dimensional subspaces in F2, and each one has two nontrivial
affine translations that do not contain the origin. So Q contains 9 elements. So we aim to show
that Q spans V. Suppose F; = (r, s). Recall that [ = ﬁ(v@ + Veitsy + Varisy) and S0 vy, is
also in spang,(Q), and in particular span,(Q) contains vy for every affine line U < F;.

Then spang (Q) contains V* = spanQ(v<S>, Vrgis)s v2,+<s>) (Lemma 4.3.6(iv)). Contained in

V* is the 2-dimensional irreducible Q[G]-module with kernel (s). The decomposition of V as
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a G-module (Lemma 4.3.6(iii)) shows that span(Q) contains all of V.

For any f € AGL(2,3) and any u € F3, recall that f(e,) := e, defines an identification
of AGL(2,3) with Aut(V). For any affine line U < F; we have f(vy) = vyy) and hence
span,(Q) is invariant under Aut(V).

The proof that Q is closed under the algebra products is a straightforward calculation

[*LC.4]. ]
Lemma 4.3.10. If L is a GIIF of the Lam-Chen algebra, then 9L < Q.

Proof. We may assume L is a maximal GIIF, and in particular / € L. Let V = spang (/) +
Vi + Vo + V3 + V, be the decomposition of V into irreducible representations of G, where
each V; is two-dimensional. Let (s;) G be the kernel of the representation V;. Suppose
v=xI+vi+v,+v3+vsisinaGIIF, withxe Qandv; € V; fori = 1,2,3,4.

Because trace(I) = 9 =+ 0, it follows that the kernel K of the trace function V — Qs a
codimension one subspace, which is also G-invariant. Based on the decomposition given in
Lemma 4.3.6, the only possibility is K = V| + V, + V3 + V,. Therefore trace(w) = 9x is an
integer.

Note that s; acts on V; without fixed points, if i + j. So 2s; + s; + 1 annihilates V; if i 5 j.
For any i € {1, 2, 3,4}, the following is in L: 3(2s; + s; + 1)v = 9xI + 9v;. This element is in
V¥ and Lemma 4.3.7 implies it is in Q. Since 9xI € ZI < Q this implies 9v; € Q. Since this is

true for an arbitrary i, and since 9x/ € Q, the lemma is established. ]

Notation 4.3.11. The element —/ in AGL(2, 3) induces the automorphism of V which sends
vy to v_y for any affine line U not passing through the origin. Thus the elements vy + v_y
and vy — v_y will be the +1 and —1 eigenvectors of this automorphism.

To perform calculations with respect to this eigenspace decomposition, we need to make
an explicit choice of half of the eight affine lines that do not pass through the origin. We define

the following four affine lines:

Uy = (1,0) + {(0,1)),  Us=(1,0) +{(1,2)),
Uy = (1,0) +((1,1)),  Us=(0,1) +{(1,0)).

85



Fori =1,2,3,4, we define f; = vy, + v_y, and n; = vy, — v_y,.

Then set B, = {1, f1, f», f3, fa} and B_ = {ny,ny, n3, ny}.
Lemma 4.3.12.
(i) B, is a Q-basis for V7
(ii) B_ is a Q-basis for V.
Furthermore, Let L be a GIIF such that 3L < Q. Then,
(iii) L N V™ < span,(B,).

(iv) LN V™™ C spang(B_).

Proof. First, we note that 79 = 7 (1eo) fixes ¢p. Hence in the identification of G with
F; x {£I}, the element 7, corresponds to —1.

It is clear that 7, fixes each element of B, and it negates each element of 8_. To prove (i)
and (ii), it suffices to show that B, U B_ is a basis of V.

Observe that {U; : i = 1,2,3,4} 0 {-U; : i = 1,2,3,4} is the set of all 8 affine lines
in F3 which do not pass through the origin. For any i = 1,2,3,4, we have 2vy, = f; + n;
and 2v_y, = f; — n;. Thus spang (8, U B_) contains vy for every affine line U not passing
through the origin and it also contains /. So B, U B_ is a basis of V, which proves (i) and (ii).

Let w be an arbitrary element in L n V™. By hypothesis, we may write w = %yl +
% 2?21 X;f; with y and each X; an integer.

We compute the following, which all must be integers integers [*LC.5]:

442

K(w, Toaw) —k(w,w) = ——= (X5 + X3 + X3)
442
k(w, Tiow) — k(w,w) = ——= (Xt + X5 +X3)
124 2 2 2 2
k(w,w) —n(w,w) = 5 (X7 + X3 + X5+ X7)

Since a* + b* + ¢> =0, (mod 3) impliesa = b = ¢, (mod 3), the first two equations above
imply X; = X, = X3 = Xy, (mod 3), and the last equation implies all of these must be 0
(mod 3).
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So we may write w = %I + g, where g = Z; Xg f; 1s contained in Q. It follows that
3w? = y3—21 + 2y q + 34¢*. Since 3w? € 3L < Q we must have %21 € Q, which implies y/3 € Z.
This completes the proof that w € Q, and (ii) follows.

Finally, let w = % Z?zl X;n; be an element in L N V™70, with X; € Z for each u.

Then w - wis is in L n V™0 and therefore is in span, (8, } by part (ii). We define the

coefficients of w - w = z;1 + Z?: | Zifi» then we compute the following [*LC. 6]:

16
zlzg(Xf+X§+X§+X§),

, 14

1 = 2X1 + ? (X2X3 + X2X4 — X3X4) .
14

2 = 2X§ + ? (X1X3 — X1X4 + X3X4) ,
14

73 =2X3 + 3 (X1 X, + X1 Xy — X, X)),

14
74 =2X: — 3 (X1 X + X1 X3 + X,X3) .

For z; to be an integer, there are two possibilities: X; = 0, (mod 3) for either a single
i€{1,2,3,4} or for all fouri € {1,2,3,4}. So we may choose i such that X; = 0, (mod 3).
Suppose {i, j,k, £} = {1,2,3,4}. Then the condition that z ; 1s an integer reduces down to
X, X, =0, (mod 3), so one of these is also zero modulo 3. Then z; being an integer implies

that all four coefficients are zero modulo 3. Thus, w € span,(8_,). O
Theorem 4.3.13. The integral form Q is the unique maximal GIIF in the Lam-Chen algebra.

Proof. Let L be a GIIF of the Lam-Chen algebra such that 3L < Q. Note that L™ + L™ is
the total eigenlattice in L with respect to the group of order 2 generated by 7. If £ € L, then
20=(to+ 1)+ (tg—1)fe L™ + L.

Therefore 2L < L™ + L™, and Lemma 4.3.12 shows that L™ + L™ < Q. Therefore (for
some k > 0) 2L < L™ + L7 < (. Then by Lemma 4.3.10, 9L < Q. Combining these
gives L = 2L n 9L < Q, as desired.

Now suppose L’ is a GIIF such that 3L’ & Q. Then by 4.3.10, we have 3(3L’) < Q. So
taking L = 3L’ in the previous paragraph implies that 3L’ < Q, which is a contradiction.

Therefore, every GIIF L is contained in Q. O]
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APPENDIX A

Glossary of terms and notations

Def 2.1.1 page 8

For an element a in an algebra A, ad(a) is the endomorphism of A given by x — ax.

Def 1.2.1 page 4

In an algebra, axes are a distinguished set of idempotents which satisfy the Virasoro

B (4, 3) fusion rules. In particular, if a is an axis then the adjoint action of a is semisim-

1 1

ple with eigenvalues taken from the set {0, 1 } and the eigenspaces satisfy the

13
Virasoro fusion rules: V}(L“)-Vlsa) c 2 V' where  : {0,1,1, 512 —> 2({0, 1, 1. 5 })
is given by the table below. o

|10 | 5| %

110 1]| %

ololtol 1| &

d BRI

RN

Def 2.1.1 page 8

For an endomorphism x on a finite dimensional vector space V, x(x, ) = det(x — rIdy)

is the characteristic polynomial of x.
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det, (L) Def 2.2.3 page 13

For a lattice L with bilinear form «, let ey, ..., e, be a Z-basis of L. Then det, (L) is
the determinant of the matrix (a(e;, €;))1<i j<s- This is independent of the choice of

Z-basis.

n Def 2.2.1 page 12

For two elements x, y in a finite dimensional algebra, n(x,y) = Tr[ad(x - y)].

GIIF Def 1.2.4 page 6

Stands for G-invariant integral form; For a commutative algebra V with axes, a GIIF is
an integral form which is invariant under the subgroup G of Aut(V) generated by the

T-involutions of V.

integral form Def 1.2.2 page 5

An integral form in a (not necessarily associative) algebra A over a field k of character-

istic zero is a subrng of A which is the Z-span of a k-basis of A.

integral form detector page 8

For an algebra A over a field F of characteristic zero, an integer k and a subspace W of
A, an integral form detector on W is a function f : W* — F such that if w € W is in an

integral form of A, then f(w) € Z.

K Def 2.2.1 page 12

The Killing form; for two elements x,y in a finite dimensional algebra, x(x,y) =

Tr(ad(x) ad(y)).

L+ page 42
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This is defined when A =~ (Z/2Z)* is generated by an ordered pair of generators
A = (19,71) and L is a Z[A]-module. Then for &), €, € {+, —}, we define L = {{ €
L: 19(€) = gt and 7,(€) = € (}.

lattice Def 2.2.3 page 13

A finitely-generated free abelian group L with a symmetric bilinear form L x L — Q.

Norton-Sakuma algebra page 2

One of 8 nonassociative algebras which, up to isomorphism, give every possible

subalgebra in the monster Griess algebra generated by two 2A-axes.

R*“ Prop 2.2.2 page 13 and Def 2.2.3 page 13
The dual of R with respect to «; For an additive subgroup R of a vector space V

over a field k of characteristic zero, and a symmetric bilinear forma : VQ V — k,

R* ={reV: a(r,v)eZforallve V}.

rng page 3 and Def 3.1.7 page 24
A rng is a set equipped with an abelian group structure and a (not necessarily asso-
ciative) product satisfying the usual axioms of a ring other than associativity and the
requirement of having a multiplicative unit. For a subset S of a rng, rng(S) is the

smallest rng containing S .

o-involution / o(a) page 5

For an axis a in a commutative algebra V, o-(a) is the involutive automorphism of the
subalgebra Vl(”) &) Véa) @ Vl(?i which is the identity on Vl(a) &) Vé”) and which acts as

(a)
the scalar -1 on V1/4.

r-involution / 7(a) page 5
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For an axis a in a commutative algebra V, 7(a) is the involutive automorphism of V

which is the identity on Vl(a) ® V(ga) @ Vl(?i and which acts as the scalar —1 on Vl(?;T

TEL(L, A) Def 3.5.2 page 41

The total eigenlattice in L with respect to A; When A is a finite abelian group, and
L is a Z[A]-module, then TEL(A) = 3 cyom(acx) L¥ where LY = {¢ € L : foralla €

A, a-€=yx(a)t}.

Tr / trace Def 2.1.1 page 8

For an endomorphism x on a finite dimensional space, Tr(x) is the trace of x. If a is in

a finite dimensional algebra, then trace(a) means Tr(ad(a)).

Vga) page 4
For a commutative algebra V and an axis a in V, this is the A-eigenspace of ad(a):

Vl(a)z{vev:a‘\/:/lv}.

[x]5 page 31

The matrix of a linear endomorphism with respect to an ordered basis 8.
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APPENDIX B

Mathematica chapter

In this appendix, we discuss the methods for performing calculations in the algebras in this
document using the computer algebra system Mathematica [Wol]. The code described can
be found in the document GIIFs.nb, available at both https://umich.box.com/ggs and
https://github.com/gregorygsimon/GIIFs/.

Section B.1 describes the initialization needed to calculate algebra products for each
algebra. Then Section B.2 covers other functions needed, for example to compute the trace or
Killing form.

When computations are needed in the text, a citation of the form [%2A. 2] is given. The
accompanying code will be found in the 2A section of this Appendix, which is Section B.3.
Code is also given for 3A in B.4,3C in B.5,4A in B.6, 4B in B.7, 5A in B.§, 6A in B.9, 2A3C
in B.10, 2B3C in B.11, and the Lam-Chen algebra in B.12.

B.1 The initialization code for computing algebra products

In this section, we explain the code used to compute the products of two elements in the
algebra. The specific case of the Norton-Sakuma algebra of type 2A will be used as an
illustrative example; the code for the remaining algebras follows the same logic.

Let V be the rational 2A Norton-Sakuma algebras and set n = dim V. Table 3 in [[PSS10]
gives a basis and the associated algebra products for V. We take the ordering of the basis

elements as they are printed in this table to give us an ordered basis for V, which yields a

92



linear isomorphism of V with Q". The Mathematica code will be based on this isomorphism.

The Initialization section begins with the user defining the type.

inf1]:= type = "2A";

There are currently 9 options for type: "2A", "3A", "4A", "4B", "5A", "6A", "2A3C",
"2B3C", "342:2", corresponding to 9 of the 10 algebras considered in this document. (There
is no code for computations in 2B, since this algebra is isomorphic with Q?.) We explain the
code for type = "2A", and the remaining cases are analogous.

We define a StructureCoefficientsForType["2A"] to be the n x n-matrix with

(i, j)th entry equal to the product of the ith and jth basis elements.

in2l= StructureCoefficientsForType["2A"] =
1 1
{{ay, 3 (ag+a;-a,), 3 (agt+a,-a;)},
1 1
{g (ai+ag-a,),ay, 3 (ai+a,-ag)},

1 1
{§(ap+a@-a1) .§Ca1+ap-a@) ya,1};

(Caveat: when the product of two elements is zero, we do not write O here, which will be
interpretted as a scalar. Instead we enter zero. Then we later define zero to be the appropriate
zero vector.) We also define the number of axes (also called Ising vectors in VOA theory) with

the following.

in3l:= numIsing["2A"]=3;

Next we have a snippet of code that defines dim to be the dimension of the algebra, and
then defines the ordered list of basis elements to equal to the identity matrix of size dim x
dim:

in4]:= If[type=="2A",
dim=3;
{ap,a;,a,} = IdentityMatrix[dim];
13
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The basis for 2A that we are using is ay, a;, a,. The result of this code is that if we type
in ay in Mathematica, then the result is the same as the first standard basis vector {1, 0,0} of
Q4" and similarly for the 2nd and 3rd basis elements.

Next we have the following:

in5)= StructureCoefficients = StructureCoefficientsForType[type];
zero = Table[0, {dim}];
AlgebraProduct[W_,V_]:= Sum[
WL[i]l]V[[jl]lStructureCoefficients[[i,jl],
{i,1,dim},{j,1,dim}];
W_-V_:=AlgebraProduct[W,V];

This defines StructureCoefficients to equal the matrix of the structure coeflicients
for the particular type that the user has selected. It defines zero to be the zero vector of Q4™

The algebra product is defined as AlgebraProduct [V,W]. For vectors V and W of length
dim, the product of V and W is defined to be the sum (over 1 < i, j < dim) of the ith component
of W times the jth component of V times the (i, j)th entry of StructureCoefficients.

Finally, the center dot W-V is defined to be the algebra product of W and V for brevity.

B.2 Mathematica functions for calculations in the Norton-

Sakuma and related algebras

We proceed understanding that type is a string giving the type of the algebra, dim equals the
dimension of the algebra, and for two vectors u, v of length dim, we have that u-v equals the
vector of length dim corresponding to the algebra product of u and v under the identification

of the algebra with Q¥™, Section B.1 gives a detailed account of these.

Notation B.2.1. For a in a commutative algebra V recall that ad(a) is the endomorphism

x — a - x of V. Define trace(a) to be the trace of ad(a).
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We define e; to equal the ith row of the dimxdim identity matrix, i.e. the ith standard
basis element of Q4™. For a vector w in Q4™ we first define ad[w] to be the matrix of size
dimxdim where the (i, j) entry equals the ith component of w - e;. We also define trace[w]

to be the trace of ad[w].

inel= ad[w_]:=Table[(w-e;)[[1]1],{1i,1,dim},{j,1,dim}];
trace[w_]:=Tr[ad[w]] // Simplify;

For the next piece of code, we will need the following lemma.

Lemma B.2.2. Let p(r) = =537 88202 _ 18844 4 | Then for an axis a (see definition

1.2.1), the t-involution in Aut(V) associated to a equals p(ad(a)).

Proof. The polynomial p(t) was chosen so that p(0) = p(1) = p(1/2?) = 1 and p(1/2°) =
—1.

Let a be an axis. Write V = Vl(“) @ V(()”) @ VY V'Y, where Vﬂ(“) ={veV:av= v}
2 23

2
the A-eigenspace of ad(a). So p(ad(a)) acts as the scalar p(1) on V)(L”). In particular, p(ad(a))

acts trivially on V' @ Vé”) @V, and p(ad(a)) acts as the scalar —1 on V'), as required. [
] 1

22 25
For an axis a, we define the Mathematica function 7[a] to be p(ad(a)), i.e. the T-involution

associated to a.

16384
in7;:= t[a_] :=IdentityMatrix[dim] —Wad[a]
81920 65536
+ 217 MatrixPower[ad[a],2]- 217 MatrixPower[ad[a],3];

We next define the multiplicative identity in the algebra. We start by defining I to be a
vector with undefined variable entries'. We then use Mathematica’s Solve function to find the
values of the variables which make ad[I] equal to the identity matrix. Since the multiplicative
identity is unique, there will be a unique solution found by Mathematica. We redefine I with

its undefined variable entries replaced by the values found by Solve.

ICapital iota is used instead of I (uppercase i) because the latter is reserved in Mathematica for 1/—1.
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ng:= I = Table[idcomponent;,{i,1,dim}];
I /. Solve[ad[I]==IdentityMatrix[dim]][[1]];

-]
Il

Next we want to define the group G generated by the 7-involutions, as matrices with respect
to the given ordered basis of V. We recall the function numIsing which takes the string type
and outputs the number of axes in this type. Then generators is defined to be the list of the
T-involutions, i.e. the list containing 7(e;) fori = 1,2,...,numIsing[type].

We next define G by iterating the function Union[#,Dot@@@Tuples[#,2]] on the initial
input generators. On the first iteration, this gives the union of generators with the
collection of the matrix product of all pairs of elements from generators, this would be the
collection of all elements of G which have word length < 2 in the generating set consisting
of 7-involutions. Iterating this function k times produces the subset of G consisting of all
elements with word length < k — 1. The Mathematica function FixedPoint repeatedly does
this procedure until the process stabilizes, i.e. it halts after all of the words of length & in the
generators of G equals the set of all words of length k& + 1 in the generators of G. This means

the set contains all of the matrices generated by the T-involutions, as desired.

in9]:= generators = Table[r[e;],{i,1,numIsing[type]}];
G = FixedPoint[Union[#,Dot @@@ Tuples[#,2]]1&,generators];

The remaining Mathematica functions will rely on an identification of three distinct but
highly related concepts: a basis of Q”, an invertible n x n rational matrix, and a Z-basis of a
rank n free additive subgroup of Q". In Mathematica, a list of vectors in Q" is indistinguishable
from a matrix, where the first vector in the list is understood to be the first row, the second in
the list is the second row, and so on. Therefore, for a vector v of length »n and a basis B of Q",
the coeflicients of v in the basis of B is given by Inverse[Transpose[B]].v . If Bis a set
of linearly independent vectors, but has less than n elements, and if v is in the span of these
vectors, then we can find the coefficients of v with respect to the list of vectors B using the

function LinearSolve[Transpose[B],v]. .
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infto]:= vec[x_,B_]:=LinearSolve[Transpose[B],x];

So given a list of linearly-independent vectors B and a vector x, the function vec[x,B]
will give the coeflicients of the vector x expressed in the basis B if possible — if not possible,
this will result in an error.

Similarly, if £ is an n x n matrix which preserves spang(B), then the associated matrix
with respect to a linearly independent list of vectors B will have its ith column equal to the

product of f with ith element of B, expressed in the basis B.

in[1]= mat[f_,B ]:=
Transpose[Table[vec[f.B[[i]],B],{i,1,Length[B]}]];

So given a matrix f and a list of linearly independent vectors B, the function mat[f,B]
will give the matrix of f in the basis B as long as spang(B) is f invariant.

This can immediately be used to check if a basis B spans an integral form: we create a list
consisting of the matrices ad(b) with respect to the basis B, for all b in B. Then we check if

every component produced is an integer. This furnishes the following code:

inf12]:= IntegralFormQ[B_]:=AllTrue[Flatten[
Table[mat[ad[B[[1i]]1],B],{i,1,Length[B]}]
1,IntegerqQ]

So IntegralFormQ[B] will output True if and only if the Z-span of the list of vectors B
is an integral form.
The next result will be used to define a function to compute when one lattice is contained

in another.

Lemma B.2.3. Let « and 8 be two matrices in GL,(Q). Let A be the lattice in Q" additively
generated by the rows of a and let B be the lattice additively generated by the rows of B. Then

A C B if and only if the matrix af~" has integer entries.
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Proof. Let a; and §3; denote the ith row of the matrix @ and S, respectively, thought of as a row
vectors. Let x; be the unique column vector that satisfies 57 x; = al.T‘ The entries of x; give the
coefficients of @; expressed in the basis LB,};?:I. So a; is in B if and only if the vector x; has
integer entries. Therefore, A < B if and only if x; has integer entries, for all i with 1 <i < n.

If X is the matrix whose ith column is x;, then we can combine the n equations A7 x; = aiT
into the single matrix equation 87X = a’. So we see that A < Bif and only if X = (87)'a”

has integer entries. Equivalently, A € B if and only if X7 = o8~! has integer entries. [

This furnishes the following code for the function LatticeContainQ, which takes two
invertible n x n matrices a and £ as input, and which outputs True if and only the lattice
spanned by the rows of « is contained in the lattice spanned by 5. Then LatticeEqualQ
is defined to check if the both LatticeContainQ[a, ] and LatticeContainQ[f, a] are

both true.

(3= LatticeContainQ[a_,B_]:=
AllTrue[Flatten[a.Inverse[5]],IntegerQ]
LatticeEqualQ[a_,B_]:=
LatticeContainQ[a,B]&&LatticeContainQ[f, a]

We provide code to compute the Killing form («[v,w]) and the Gram matrix kGram[B] of
a list of vectors B, i.e. the matrix whose (i, j)-entry is x evaluated on the ith and jth elements

of B.

inf141= k[X_,y_]:= Simplify[Tr[ad[x].ad[y]]]
kGram[B_]:=
Table[«[B[[i]],B[[j1]1]1,{i,1,Length[B]},{j,1,Length[B]}]

The code for the form (v, w) = trace(ad(v - w)) is completely analogous.

(5= n[x_,y_]:=trace[xy]
nGram[L_]:=
Table[n[L[[i]1,L[[j]11],{i,1,Length[L]},{j,1,Length[L]}]
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Finally, we define IntegerFactor[x] to be the prime factorization of an integer x
expressed using dots and exponents (instead of as a difficult to read long list of prime factors
and exponents). This is suggested in the help page for FactorInteger under “Applications”

in Mathematica 9 & 10.

inft6]:= IntegerFactor[x_]:=Times@@(Superscript@@@ FactorInteger[x]);

B.3 2A Mathematica code

*2A.1

nt71= k = I - ag;

qa =4 (a;-3,);

qq == 7ay+15k
1
a-q == _q

4
out[17l= True

ou[18]= True

% 2A.2

In[19]:= W=4X ay + Y q;
trace[w]

trace[w-w]
Oout[19]= 5 X

ouol- 5 (4 x%+7 y?)

% 2A.3

99



n211= B = {4a¢,k,q};
IntegerFactor[Det[«Gram[B]]]
IntegerFactor[Det[nGram[B]]]

outip1}= 2% 132

ouez= 5% 7°

*2A.4

W X a +y +zI
In[23]:= = = -I;
3] o 4q 4

2_y2
w.W==% (x+z)w+1—16 (15y%-z(2x+2)) I+ &y gt(4ta°) //Reduce

tzI 1
(4ta@)-w==tw—%+z(3x+z) (4tay) // Reduce
out23l= True

outl24= True

*2A.5

1 1
In[25]:= Wp_:=2 ag +(m+i)q + EI;

Wo== m T - ’;csag) + (1+2m)wy //Simplify

1
Wp== (l+m) I + I%(sa@) _(l+2m)w., // Simplify
outl25]= True

out26]= True

%*2A.6

n271= o[x_]:= %ad[x].ad[x] —%ad[x] + ad[Il;
P={I!4 dg, Cl},
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1 1
Wy =2 3y +(m+i)q + EI;
L[m_]:={I,8a¢,Ws};
LatticeEqualQ[ Table[o[a;].P[[i]l],{i,1,dim}],L[0]]
LatticeEqualQ[ Table[o[a,].P[[i]],{i,1,dim}],L[-1]]

oute7]= True

outj28l= True

B.4 3A Mathematica code

*3A.1

Inj29):= trace[x u,+y I]

5 x
Out[29]= T+4 y

*3A.2

In[30]:= Ng= 26(a1—a_1);
n1=26(a_1—a@) ’
nlng,n;] // IntegerFactor

k[ng, n;] // IntegerFactor
ouzo= -1' 2! 32 271!

ouzle -1 22 3! 313!

%3A.3
n32i= g = tLa-1].7[ae];
1
m0=§(g - ad[ID) .ng;

1
m1=§(g - ad[I]).ny;
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B = {mg,m;,3u,,I};
mat[ad[3u,],B] // MatrixForm
mat[ad[mg],B] // MatrixForm

.
out[32]=

1000
0100
0031
0000

N e

Ou3dl= [ 20 -20 11
O -20 00
-156 78 0 0
( 1008 -504 0 0

% 3A.4

In[34}= z = a mg+b my+ ¢ 3u, + d I;
trace[z]

nlz,z]

k[z,z]
ouj34l= 5 c+4 d
ouasl= 3252 a%-3252 a b+3252 b*+15 c?+10 c d+4 d?

ouzsl 2504 a%-2504 a b+2504 b’*+11 c?+10 c d+4 d°

*3A.5

ini371= mat[ad[3 u,],{mg,m;}] // MatrixForm

ous7r=| 1 @
01
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%*3A.6

1
In[38]:= Z = §(a me+b m)+ 3 u,;
vec[zz - k z, {my,m;,%,,I}]

1 1
out[38]= {§ (6 a+20 a’-40 a b-3 a k), 5 (6 b-40 a b+20 b%*-3 b k),

1
5 (9-52 a’+52 a b-52 b%-3 k), 112 (a’-a b+b®)}

%3A.7

in9)= Reduce[6 a+20 a’-40 a b-3 a k ==0 &&
6 b-40 a b+20 b*-3 b k ==0 &&
9-52 a?+52 a b-52 b*-3 k ==0 &&
(3a#0 v 3b#0 v 3k#0), Modulus—9]

ouj3gl= False

B.5 3C Mathematica Code

*3C.1

In[40]:= Ng= 26(a1—a_1);
n;= 26(3-1‘30);
trace[ngn;] // IntegerFactor

k[ng,n;] // IntegerFactor
oua0= -1' 2! 3% 7t 11!

outja1}= -1+ 22 3% 331!

%*3C.2
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n@2:= g=t[a.1].7[ael;
ne= 2°(a;-a-;); M= 2°(a.;-ag);
m;_:= %(g—ad[I])-ni:
mat[ad[mg], {mg,m;,I}] // MatrixForm

ouaz= [ 20 —20 1
0 —20 0
924 — 462 0

%*3C.3

In[43]:= W = @ Mg+B my+y I;

trace[ww] // Expand

outisl= 2772 a®-2772 « B+2772 [BA+3 P

*3C.4

inf44):= mat[ad[s mgl,{s my,s m;,t I}] //MatrixForm

Outi44]= | 20s —20s t

0 —20s 0
924s? 462s?
= 0

in45:= mat[ad[s m;],{s my,s m;,t I}] //MatrixForm

Out[45]= —20s 0O O
—20s 20s t
4625 924s? 0
t t
%*3C.5

inf46):= mat[ad[s ngl,{s ng,s n;,t I}] //MatrixForm

Outl46l= | 20s 20s t

40s —20s 0

2772s> _ 1386s? 0
t t
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in47:= mat[ad[s ngl,{s ng,s n;,t I}] //MatrixForm

Out47l= | 20s 20s t

40s —20s O

2772s* _ 1386s? 0
t t

*3C.06

In[48]:= W = %s my + ’{—js m+ t I;
mat[r[agl,{s mg,s m;,w}] //MatrixForm

mat[r[a_;],{s mg,s m;,w}] //MatrixForm

N

.

Outisl= [ — 1 @ —%(204)
-11 =3

o o 1 )

( 3\
oua9l= [ 1 —1 _§

0 —1 —3(28)

(0 0 I

*3C.7

a
In[50]:= W = §S ng + ’gs n+ t I;

mat[r[agl,{s ng,s n;,w}] //MatrixForm
mat[r[a_;],{s ng,s n;,w}] //MatrixForm

( 3\
outsol= | —1 1 (8 — 2a)

( 3\
outsi= | —1 1 3(8— 2«)
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%*3C.8

in52):= Clear[w]
S Ng-S n
wls_,t_]:= =— " "1it I;

3
S Ng-S N,

Bls_,t_]:={s ng,s ni, +t I};

mat[ad[s ng],B[s,t]] //Expand // MatrixForm

2 2 2
out52= | 20s — % % +20s t— 4635
2 2 )
2 4 40s — 22— 20s 8= 4 20s
27725 138652 138652
t t t

B.6 Mathematica for 4A

*4A.1

InB3l= TLag] // MatrixForm

Out[53]=

*4A.2

In54:= Ng=4 (a.;-a;);
n;=4 (a-az);
fo=np-ng;
fi=n;n;;
n; ng== 0id &&
fyng==16ny &&
£, ng=—ne&&
£y fo==16£y &&
£ fo==8£fy+8f;- 120id

outs4)= True
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%x4A.3

Ins5]= V= agfgtaifi+a3l;

ve=v/.Solve[{vng,v- n;,trace[v]}

{ny,0n,;,0}1[[11];
{0no, 1n,,0}]1[[11];
{0ny,0n,,1}]1[[1]1];

vi=v/.Solve[{vng,v- n;,trace[v]}

v.=v/.Solve[{vng,v- n;,tracel[v]}

W = a Vgt+b vi+C vy;

vec[ww,{vy,v;,Ve}] // FullSimplify

1
Out[55]= {IE (159 a%+24 a (13 b-5 ©)+(13 b-5 o)),

15 (169 a?+159 b%+26 a (12 b-5 c)-120 b c+25 c?),
3 (169 a’+322 a b+169 b?)-44 (a+b) c+9 c?}

%x4A.4

1
In[56]:= W = E(a ng+ b ni+c  fo+d £+ e id);

F = {n0!n1!f0lf1!]:};
vec[2ww,F] // Expand
aZ
oujs6]= {16 a c+a d+a e, b c+16 b d+b e, ?+8 c’+8 ¢ d+c e,
2 2

b
S+8 c deg dvd e, -120 d+%;}

%4A.5
In57):= W = %(a ng+ b n;+c fo+d £);
k[w,w] // Expand

577 c? 577 d?
+56 c d+

ous7- 8 a’+8 b+
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B.7 Mathematica for 4B

%*4B.1

inssl:= T[ag] // MatrixForm

oussl- |9 0 1 0 O
01000
10000
00010
00001

%4B. 2

In59:= T [apz J==ad[I]

outl591= True

%*4B. 3

In[60]:= n0=8 (a_l—al);
n;=8 (ag-az);
fo= 1 n 7 a:;
0—6@1'10 ) 15 )2 5
fi= 1 n;-n 7 a:;
T R T
ng-ng==32 f3-28 £;+28 I &&
n; ng=—=0I &&

3
f@'n0==zno &&
fl'I'I.Q:: 0 I &
f@'f@== f@ &&

f1'f0==@ I

outle0l= True
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%*4B.4

in1]:= I == f@+f1+apz

outle1]l= True

%*x4B.5
in62:= k[p Ng,p Ngl

outezl- 104 p?

ine3;:= [P ng,p ngl

outje3l= 147 p

*4B.6

1
Inf64]:= W = E(a ng+b n;+4c fo+4d £+ e I);
F = {ng,n,,4f,,4£,,1};
vec[2ww,F] // Expand

2

7b 7a? 2
oute4= {3ac+ae, 3bd+be, 4a2—7+2c2+ce , —T+4b2+2d2+de ,14a%+14 b%+

e

R

%*4B.7

Ine5]:= k[w,w]/.e—0 // Expand

25 c? 25 d?
+
4

ouesl= 26 a’+26 b+

B.8 Mathematica for 5A

*5A.1
insl:= T[ag] // MatrixForm

109



*5A.2

Oueel= | ® @ O O 1 O
000100
001000
10000
100000
000001
\ J

| Z I+2@48w

7= 2 = —+——W,}

el 277 "
m; :=141 - 64a;;
Q = {I!z!m-lsmﬁsmlsmz};
mat[ad[z],Q] // MatrixForm
mat[ad[mg],Q] // MatrixForm
( 3\

Oué7= 1 ® 31 O O ® O
11 0 06 0
o0 0 10 -1
e 0 0 11 —1
® 0 —111 0
k® ® —-101 0 )
( 3\

Outes8l= |1 ® ® — 182 700 — 182 — 168
00 14 0 14 — 14
01 12 0 0 0
11 12 — 36 12 12
01 0 0 12 0
\® 0 0 0 0 12 )

*5A.3

ine9]:= kGram[Q]//MatrixForm

Out[69]= f6 3 0 0 0 0 )
369 0 0 0 0
® 0 3184 —-796 —796 —796
® 0 —796 3184 —796 —796
O 0 —796 —796 3184 —796
® 0 —796 —796 —796 3184 )
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*5A.4

Inf7o= X = a I+b z;
FullSimplify[

CharacteristicPolynomial [mat[ad[x],{m_;,mg,m;,my}],t]

ou7o)= (a%+a b-b%-(2 a+b) t+t?)?

*5A.5

inf711:= N[Eigenvalues[«Gram[Q]]]

out711- {3980.,3980.,3980.,796.,69.1425,5.85747}

*5A.6

n721= g=t[a-;].7[as];

mat[ad[z] + 9.9 + g.9.g9,{m_;,mg,m;,my}] //MatrixForm

ou72= | ® © © ®
0000
0000
0000
%5A.7

inf73)= Clear[x,y]
Inverse[mat[ad[z] + g.g + g9.9.9,{I,z}]1].{x,y}

3x 31y x 2y

ou73= {-—+—, —
25 25 25 25

*5A.8

n74:= W = X (mg+my) + y my;

CharacteristicPolynomial[ad[w],t] // FullSimplify
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outi74]= (t+36x-12y) (t-12(2x+y))
(t*-12t3 (x-2y) +336t (x-2y) (76x%+11xy-11y?)+19600 (x> +xy-y?)?
-20t2(69x%-58xy+58y?))

*5A.9

[ W X (meg+m,) + Y m
75]:= = - - ’
n[75] 60 Mg +m; 60 1

trace[w - (t[ag] -w)]
trace[w - (r[a.1].w)]

k[w,w]
out[75]= A (X%-4 X Y-Y?)
24
7 2 2
Out[76]= 51 (4 X°-6 X Y+Y9)

199
our7e — (3 X%-2 X Y+2 Y
450

*5A.10

ini7s]= Solve[X?-4 X Y-Y?==0 &% 4 X*-6 X Y+Y?==0,Modulus—24]

ou7el- {{X—0,Y—-0},{X—0,Y—-12},{X—12,Y-0},{X—12,Y—12}}

*5A.11
2
In[79]:= W = inmi;
i=-1

g=t[a_;].7[ae];

vec[(r[ag]+ad[id]) .w, {m_;+m; ,me}]
vec[(r[ag]+ad[id]) .g.w, {m_;+m; ,me}]

out[79]= {X_1+X1-X;,2Xg-X2}

out[8o]= {Xg-X1-X3,2X_1-X1-X,}
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*5A.12

2
In[81]:= W = inmi;
i=-1
polys={x_;+X;-X;,2X¢-X;,Xe~X1-X2,2X-1-X1-X2};

d; :=w/.Solve[polys == IdentityMatrix[4][[i]1]11[[1]1];

vec[d,;,Q]
vec[d,,Q]
vec[d;,Q]
VeC[d4,Q]
1 2 2 4
out[81]= {@,0,—5,—5,?-;}
2 41 3
Out[82]= {Q’Q’E’E’E’E}
4 3 2 6
= ®;®’__!__!__!__
out[e3l= { s T 5}
31 12
= ®!®s_1_!__!_
out[g4l= { - 5}

*5A.13

In[85]:= D={% (-m_;-2mg+2m; -4m,) , % (2m_;+4mg+m; +3m,) ,
%(—4m_1—3m0—2(m1+3m2)) ,%(3m_1+m0—m1+2m2)};
di_i=D[[i]];
V=Z/lidi;
coz=%f=CoefficientLi st[
CharacteristicPolynomial[ad[v],t],t]1[[3]1];
Simplify[coeff - %(3/11+4/12+2/13+1/l4)4]

outissl= 23960313+10593613+23961615-1043712431,+15102641512-706184131;
+1059871;-443 (2609481,-25026213+1198151,)
+A5(-565168135+353040.1,)+1615 (502881%3-76757134,+3751143)
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+243(75504815+81444425-161,(96125135-489211,)
-1326260131,+4023371%)

~161,(2995413-97845151,+94393131%-22068413)

~42,(17658415-25026813+768964151,-6423821305+1412671;
+15(-64232813+3775961,)+41, (165787 1%-229239131,+7675415))

%*5A.14

Injgs]:= vec[m_;,D]
vec[my,D]
vec[m;,D]

vec[m,,D]
outsel- {1,0,0,2}
ous71= {0,2,1,0}
outssl- {1,0,-1,-1}

ousgl- {-1,-1,-1,-1}%

%5A.15
ino:= Table[vec[d;,{m_,,mg,m;,m}],{i,1,4}] // Det
Out[90]= ——

*5A.16

in@1]:= 5(Inverse[mat[g-ad[I],{m ;,my,m;,my}]1] )// MatrixForm

Outll= | —4 1 1 1
-3 -3 2 2
-2 -2 =2 3
-1 -1 -1 -1
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*5A.17

A1

In[92]:= m_1=§ (-4 m_;-3mg-2 m;-my);
~ 1
m@=§ (m_;-3mg-2 m;-my);
Ill\fl1= 5 (m_;+2mg-2 m;-m;);

A 1
m, =§ (m_;+2mp+3 m;-my) ;

2
v=ATI/5+Bz/5+ )% m;
i=-1

kx[v,v]//Expand

6 A> 6 A B 69B? ) ) )
ut[92]= - - -1X1
out[92] o5 + o5 + 5% +1592 x%,+1592x5-1592 x_;x;+1592 xj

-1592 x_.1X,-1592 x¢ X,+1592 x2

B.9 Mathematica for 6A

*06A.1

In@3l:= T[agl//MatrixForm

ouss- [0 9 0 0 100 0]
O00 10000
00100000
O1000000
10000000
O0000100
O0000010
(00000060 1]

% 0A.?2

ne4:= q; = I;
qz=3up2;
q3=4ap3_I;

Q4= ?((a-z+ ag+az)-(a_;+a;+a 3));

as= 16 (ag-az) - qu;
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d6=16(az-a_;) - Qq;

q; = 32 (ap+az)-16 I+8 ap3+6 Uz
qz = 32 (a-;+a;)-16 I+8 a:+6 u.:;
Q = Table[q;,{i,1,8}];

IntegralFormQ[Q]

mat[r[ag]l,Q] // MatrixForm

mat[r[a;]1,Q] // MatrixForm

outj94]= True

.
Out[95]=

| (== — ]

=
(= — I — I — R~ R~ I~ ]
(= — I R I~ ]

(=R I — R A~ I — I — ]

N
QoD
(== I I — T R = R ]
(= I — I — I — I N o~ ]
oo ro
ee'

[
el
A

J

Out[96]=

(=B N I I — R — ]
@R
i — I — I — I — I — I — ]
(=B — I — R — I — I — I — )

(== — I — I — I N
(== — I R — I — N ]
(== — I — R — R — ]
(== — I — N — I — )

Ve
o

*06A.3

ino7:= kGram[Q] // MatrixForm

Out[97]=
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(8 7 16 o © o o |
7 13 -5 0 0 ) 0 0
-1 -5 13 0 0 ) 0 0
0 0 0 172 0 0 0 )
0 0 0 0 268 — 134 0 0
0 0 0 ® —134 268 0 0
0 0 0 ) 0 0 1560 — 780
| 0 0 0 ) 0 ) — 780 1560
% 0A.4
4
In[98]:= V = inqi;
i=1
CharacteristicPolynomial[ad[v],t] == (t-(x;+3x;-%3))*

(24t (-2X; -2X,+X3) +X2+2X Xp+X2 - X, X3-X, X3-20%2) 2 *
(3 +12(-3x;-2%3) +t (3x%+4x,x3-3%%-46%2)

-X; (X1-%x3) *(x;+3x3)+2(2 3x1+49x3)xi) // Simplify

outj98]l= True

%6A.5
inpoo]:= Inverse[{{1,3,-1},{-2,-2,1},{3,0,2}}]1//MatrixForm

Out[99]= _ﬁ _ % ﬁ

7 51
11 11 11
6 9 4
11 11 11

*0A.06

4
In[100]:= V = inqi;
=1

K[v,\ir_] - nlv,v]

Oout[100)= ~8X3+4X,X3-9x5-86X>

*0A.7
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inf011:= CharacteristicPolynomial[ad[x(qs+q¢)+y(q;+qs)],t] ==
t2* (12-22ty-20(x2-6y?)) *( t*+22t3y-2t2(57x%*+208y?)
+88t (8x%y-65y>)+72(29x*-161x%y*+890y*)) // Simplify

outi01]= True

*0A.8

inf102:= W = X(q5+qg)+y(q;+qs) ;

trace[w (r[ag] -w)1]

out[102]= =227 x2-1102 y2

%06A.9

In[103:= 22X? ==

442 (-20x°+120y%)+699(114x%+416y%)+312(-227x2-1102y?) //Reduce

ou103]= True

*06A.10

8
In[104]:= V = inqi;
i=5
(r[ae] .7[ai]+7[a;]+27[a;]+2ad[id]) . v==3%4(q5+Qs) +3%3 (q;+q5) &&
(-t[ae].7[a1]-7[a;]1+r[a;]+ad[id]) . v==3%5 (qs+qe) +3%X7 (q;+q5)
// Reduce

ouj104]= True

*06A.11

inftos):= k[v,v] // FullSimplify
nlv,v] // FullSimplify
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outrtosl= 4 (67 (X2-X5xg+X2)+390 (X3-x7Xg+X5))

outtosl= 454 (X2-Xs5Xg+X2)+2204 (X3-X;Xg+X5)

*0A.12

IN[107]:= Z q;; vec[r[ag].v-v ,Q]

vec[r[al] v-v ,Q]

X 2X X 2X
outto7- {0,0,0,0,-—,- 228 28 ——8}
3 3 3

1 1 1 1
out108- {0,0,0,0, g(-X5+X6) ; g(XS_XG) , E(-X7+Xs) , §(X7_X8)}

*06A.13

In[109]:= Z qQ; + leql,
vec[3vv Q][[l]] // Expand
vec[3v-v,Q][[2]] // Expand

X2 . 46X;
Out[109]= 162x§—162x5x6+162x§+864x§—864x7x8+864x§+?1+xg+ 3 2

2X:X, _, 2X;X; 16X}
T3y

outt10}= 12X2-12X5xe+12X5-84%5+84%,Xg-84X5+

*0A.14

in111:= trace[v] // Expand

8X, 7X, X3
Out[111]= T-FT—?

B.10 Mathematica for (2A,3C)

%*2A3C.1
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In[112):= my=I;

16
my=— (Q12,34+a13,24+ A14,23);

5

m3=32 a;3,24;
my=32 ai4,»3;
ms=32 (a;3+a);
me=32 (as+azs);
m;=32 (ai4-az);
mg=32 (aj;3-az);
my=32 (ajz-azs);
M=Table[m;,{i,1,9}];
IntegralFormQ[M]
AllTrue[

Flatten[Table[mat[G[[i]],M],{i,1,Length[G]}]1],

IntegerqQ]
outj1i12]= True

ou113]= True

%*2A3C.2

114 Eigenvalues[ad[m;]]

oufi14- {4,4,4,1,1,1,0,0,0}

%*2A3C.3

n[115= V. = 16 X (ai3,24-a14,23) + 16 y (a;z+azs-a;s-azs);

Factor[CharacteristicPolynomial[ad[v],t]]

1
ou18] - 3 (2 t-7 x-31y) (2 t+7 x+31 y) (t%-381 y?)
(t2-208 x*-104 x y-13 y?)
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% 2A3C.4
Inf116]:= Vv = 32 x1(~'=113,24‘3~14,23) + 32 Xz(a12,34‘al4,23) +

32 x3;(ajz+az-ape-az) + 32 xg(appt+azs-ajg-az);

vec[(r[a;2]-ad[I]). (r[azs]-ad[I]).v,

{32(ai3,24-a14,23) , 32(ajztaz-as-az)}]
vec[(r[a;;]-ad[I]). (r[as]-ad[I]).7[as3].v,
{32(ai3,24-a14,23) , 32(ai3+azs-ajs-az;)}l]
outfitel= {2 (2X1+%;),2 (2x3+X4)}

ou{117]= {2 (X1-%2),2 (X3-X4)}

%*2A3C.5
In[118]:= Mz-Mg==Mg && Mg-Mg==m; && Mmy-Mm;==mMg

ou118]= True

%*2A3C.6

12
In[119:= V =3 Z X; m;;

2 vec[vv,M][[1]] // Expand

Xi 2
out[119]= ?—42 Xs Xs+504 Xj

%*2A3C.7

inf120;= trace[v] // Expand

9 X, 15 X,

Out[120]= +

+25 X3+25 Xy+43 Xs+43 X
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*2A3C.8

inft21:= vec[v-(r[a;3].v),M1[[1]1] // Expand
vec[v-(r[az;].v),MI[[1]] // Expand

X2 21 X; X 21 X
+ +

6
o) = — -252 X; X
ut[121] 4 > > 7 9
X} 21 X, X5 21 X
out[122]= —+ + +252 Xz X,
4 2 2
%*2A3C.9

In[123]:= X;=2X1;
X,=2x,;
X;=2Xs;
Xe=2Xs;
2 k[v,7[az4].7[as2].v] // Expand

Out[123]= 18xf+6®x1x2+1®2x§+344x1x5296x2x5+322x§+344x1}§6+296x2x6+57 18x5Xg

273X
+322Xé+1®®X1X3+34®X2X3+2 10x5X5+635x5X5+ > 3 +100x,X,+340x,X,
1427)(3)(4+273st21
2 2

+635x5X,+210x5X,+

-83 3X7X8+83 3X7X9 -83 3X8X9

*2A3C. 10

Inf124]:= X3=2X3;
X,=2%,;
k[v,7[a2].v]
k[v,7[a;3].v]

k[v,t[a;4].v]

out124)= 9X3+51xX2+273x%+2308%3X,+273x5+210X3X5+1060x,X5+161x2+1060x3Xs

+2 1®x4x6+5396x5x6+161xé+2x1 (15x,+50x3+50%x,+86x5+86X¢)

2

8332
+4%, (85%X3+85x4+37 (X5+X6) ) -833X, X5+ >
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out12sl= 9x5+51x5+1154%5+546X3%X,4+273x5+1060%3X5+210X,X5+2698X:+210x3Xs

+2 1®x4x6+322x5x6+161x§+2x1 ( 15x22+5®x3+5®x4+86x5+86x6)

833X;
+4X,(85x3+85x%,4+37 (X5+Xg) )+ > -833X,Xq

out[126]= 9X2+51X5+273%X3+546X3X,+1154xX2+210%X3X5+210%X,Xs+161x2+210X3X6

+1®6®x4x6+322x5x6+2698x§+2x1 (15x%,+50x3+50x4+86X5+86X¢)
2

833X7
+4%,(85x3+85x%,4+37 (X5+Xg) )+ > -833XgXq

%*2A3C.11

In[127]:= i

{x1=0 !x2=0 !X3=0 ,X4=@ ,X5=@ ,X(;=@ ’ x7=0 ’ x8=0 !x9=@} ’
{X;=.,X=.,X3=.,X=., %= ,X6=. ,X7=. ,Xg=. , Xo=.};

12
v =§; Xim;;
3 vec[v-v,M][[1]] // Expand

Xi 2
out[127]= ? -28X5X6+336X§

%*2A3C.12

inf128]:= X;=3X1;

vec[v-(r[ass].7[a13,24]1.v) ,M1[[1]] // Expand

outfizgl= X2-——=>-——-112X2

%*2A3C.13

in[129]:= X5=3X5;X¢=3%¢};
vec[v-(r[ai3,24]1.v) ,M1[[5]] // Expand
vec[v-(r[ai3,241.v) ,MI[[6]1] // Expand
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; 8X 8X2
out[129]= 2X1X5+40Xc+4XsXe+—+—

3
, 8X2 8X:
Out[130]= 2x1x6+4x5x6+4®x6__JrT
*2A3C. 14
in(131:= X7=3%X7;  Xz=3%Xs; Xo=3Xo;

3 k[v, (ad[Il-t[as;31).v] // Expand

2 2 2 881X£21
out[131]= 7611xg+4998x5+9996X7X9+4998x3+850x6X 4+

*2A3C. 15

In[132:= tracel[v]

50X, 50X,
T3

out[132]= 9x;+86X5+86x¢+5X,+

%*2A3C. 16

In[133]:= X3=3X3; X4=3X4;
3 vec[v-v,M][[2]] // Expand

4x2
out[133]= —240xX3X4-60X,X5-60x3x+48X5Xg- 336x§+2x1X2+—2

B.11 Mathematica for (2B,3C)
%2B3C.1

16
In[134]:= Q={ﬁ (agz+ajz+ag+azs+azs+ass) , 32(a4+az3) , 32(a3+azs) ,
32(a;3-az4) ,32(as2-a34) ,32(as-az3) };
{4:,92,93,44,45,96}=Q;

IntegralFormQ[Q]
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AllTrue[
Flatten[Table[mat[G[[i]],Q],{i,1,Length[G]}]],IntegerQ

ou134]= True

ou[135]= True

% 2B3C.2

n36:= Ky=r[a].7laszs]; ko=rl[ajz].7v[az];
mat[k;,Q] == DiagonalMatrix[{1,1,1,-1,1,-1}]
mat[k,,Q]

= DiagonalMatrix[{1,1,1,1,-1,-1}]

ou[136]= True

ou[137]= True

%*2B3C.3

In[138}= W = X q;+y d,+ Z Q3;
Factor[

CharacteristicPolynomial[ad[(r[a;2]-7[az3]-ad[I]).w],t]

outf13gl= (t+31y) (t-31z) (t-31y+31z)
(13-964ty*+964tyz+29512y2z-964tz°-29512yz?)

%*2B3C.4

In[139]:= W-qs == (X+y+z)qs // Simplify

ou[139]= True
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%2B3C.5
In[140]:=  d4-A5==06

out[140]= True

*2B3C.6

1E
In[141]:= W = E;Xiqi;
nlw,w] // Expand

2

Out[141]= L

+34 X;X,+544 X5+34 X;X3+34 X, X3+544X3+544 X;+544X:+544 X;

*2B3C.7

In[142]:= X1= 2X1;

k[w, (r[a;2].7[az3]1.w)] // Expand

2
2

2183X2X3+129X§+1®25X4X5 1025X,X¢
4 2 2

out[142- 6X2+68%,X;+
1025X:X¢
2

+68x;X3+

%*2B3C.8

In[143]:= XZ=2X2; X3=ZX3;
k[r[a;x].w - w, w] // Expand
k[r[a;3].w - w, w] // Expand

5 ) IG)ZSXE1 102 SXE
out[143]= -1925x5+3850x,x3-1925x5~ > -1025X,X¢-

) 5X2 1025X¢
Out[144]= -1925x5- -1025X5X5-
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B.12 Mathematica for Lam-Chen algebra

*LC.1

inf145;:= w= Table[x;,{i,1,9}];
Solve[ww==w && trace[w]==9/8] // Length

out[145]= 9

*LC.2

64 64
Inf146l= W= X I +y (?(30,1*‘31,1"'32,1)) + Z(?(ao,2+a1,z+az,z));
K[W,T[ao,g] .W-W]

K[W,T[ag'l] .W—W]
out[146]= -1326 (y—z)2

out147]= -1326 z*

*LC.3
in[148]:= W-(@g,0-a2,6) == (X+y+2) (ag,0-22,0) // Simplify

ou[148]= True

*xLC.4
In[149]:=
V10,01=?(31,0+a1,1+a1,2) ’
V20,01=?(az,0+32,1+32,2) ;
64
V1o,11=?(a1,0+3~2,1+a@,2) ;
Vzo,11=?(aa,1+a1,z+az,0) ’

V1o,1z=?(a1,o+az,2+ao,1) ;
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64
Vzo,1z=?(az,o+ao,z+a1,1) ’

64
V@1,10=?(am,1+a1,1+az,1) ’

V02,10=?(ao,2+a1,2+az,2) ’

Q ={I » V10,015 V20,015 V10,115V20,115 V10,125 V20,125 Ve1,10 -Vaz,w} ’

IntegralFormQ[Q]

ou[149]= True

*LC.5

in1501:= By = {I,V19,01+V20,015V10,11+V20,115V16,12+V20,12 5 Vo1,10+Ve2,10} 5
W =%{Y!xllx2!x3!x4}-B+;
k[w,7[ag,1].w - w]
k[w,7[a; el .-w - W]

k[w,w]-n[w,w] // Together

442 . o,
Out[150]= _T (X5+X5+X3)

442 . o,
Out[151]= _T (X7+X5+X3)

124 o 2. 2. w2
Out[152]= 5 (X7 +X5+X5+X7)
*xLC.6
In[153]:= B_ = {V10,01‘V20,01,V10,11‘V20,11sV10,12‘V20,12,V01,10‘Voz,10};

1
w = §{x1!x2 ,X3 ,X4}.B_;

vec[ww,B,]

16 2 2
Out[153]= {?(x§+x§+x§+xi) = (3X5+7X,X3+7X, X4~ 7X3Xy) '3 (3X3+7X,X3-7X, X4 +7X3X,)

2 2
§(7x1x2+3x§+7x1x4—7x2x4) 3 (7X,X,+7X,X3+7X,X3-3X2) 3
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