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ABSTRACT

Automorphism-invariant Integral Forms in Griess Algebras

by

Gregory G. Simon

Chair: Robert L. Griess, Jr.

Motivated by the existence of group-invariant integral forms in various vertex oper-

ator algebras, we classify maximal automorphism-invariant integral forms in some

small-dimensional Griess algebras, which are certain finite-dimensional commuta-

tive, nonassociative algebras arising in the theory of vertex operator algebras. An

integral form of a rational algebra is the integer span of a basis of the algebra that is

closed under the algebra product. The main method is the development of “integral

form detector functions" and an investigation of their properties. Each of the small

Griess algebras we analyzed – the eight Norton-Sakuma algebras and three others

– have unique maximal automorphism-invariant integral forms. This provides a

canonically defined lattice and subring inside these algebras.
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CHAPTER 1

Introduction

1.1 Motivation and background

In 1982, Robert L. Griess, Jr., provided the first construction of the monster simple groupM

as a group of automorphisms of a 196884-dimensional commutative nonassociative algebra

B [Gri82]. In subsequent years, this construction was simplified and analyzed in a number

of papers, including several by Jacques Tits [Tit83a, Tit83b, Tit84, Tit85] and by John H.

Conway [Con85]. In particular, Conway discovered an association between a distinguished

set of idempotents (called axes) in B and a conjugacy class of involutions in M (called the

2A conjugacy class, or called the set of τ-involutions of B). Simon Norton [Nor96] studied

the subalgebras in B generated by two axes, and he was the first to state many facts about

these algebras. He stated that the isomorphism type of the algebra generated by two axes only

depended on the conjugacy class inM of the product of the associated involutions. He gave

eight such algebras, labeled by the name of the relevent conjugacy class:

2A, 2B, 3A, 3C, 4A, 4B, 5A, and 6A.

He worked out the structure coefficients in each algebra.

In 1988, Frenkel, Lepowsky, and Meurman [FLM88] showed that B was the degree two

piece of an infinite-dimensional graded representation of M called the moonshine module,

denoted V6 “
À8

n“0 V6n, which has the structure of a vertex operator algebra (VOA). The
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moonshine module was used by Borcherds to resolve the moonshine conjectures – which

were a family of conjectures relating the representation theory of M and modular forms.

For certain vertex operator algebras (for those V with dim V0 “ 1 and dim V1 “ 0), the

degree two piece V2 will inherit the structure of a commutative nonassociative algebra, and

this is known as a (generalized) Griess algebra. The adjective generalized is included to

emphasize the distinction between the degree two piece of some general VOA with the

original Griess algebra, the original 196884-dimensional algebra and the degree two piece

of the moonshine module. It was shown by Miyamoto [Miy96] that the link between axes

in B and involutions in M could be understood in the more general context of VOAs as

a link between involutive automorphisms of the vertex operator algebra and distinguished

idempotents in a generalized Griess algebra (or more precisely, Miyamoto considered ‘rational

conformal vectors with central charge 1/2’ also known as ‘Ising vectors’ which correspond

to two times these idempotents). In 2007, Sakuma [Sak07] showed that in any generalized

Griess algebra for a suitably nice vertex operator algebra, there are only eight possibilities for

the subalgebra generated by two distinct axes, and so the eight studied by Norton represent

all possible isomorphism types of such algebras. These eight algebras are known as the

Norton-Sakuma algebras.

Although often considered over fields of characteristic zero, the axioms defining vertex

algebras involve only the integers and therefore make sense over any commutative ring

[Bor86, Kac98, GL13]. In particular, there has been some recent progress studying integral

forms in vertex algebras.

For an algebra (not necessarily associative) over a field of characteristic zero (meaning a

vector space A with a bilinear map AˆA Ñ A), an integral form is defined to be the Z-span of

a basis of the algebra which is closed under the algebra product. For example, Zn is an integral

form in Rn and MatnˆnpZq is an integral form in MatnˆnpCq, both for any positive integer n.

The definition for an integral form in a vertex algebra is analogous. There are at least two

inequivalent definitions for integral forms (also called a Z-forms) for a vertex algebra. In
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[McR14], an integral form of a vertex algebra V is defined to be an additive subgroup VZ

of V such that VZ is a vertex subalgebra (over Z) of V and the map k bZ VZ Ñ V given by

λb v ÞÑ λv is a vector space isomorphism. In [DG12] and [GL13], an integral form is defined

for a vertex operator algebra that invokes the grading and the Virasoro vector, which are not

available in the vertex algebra setting. Of particular interest are integral forms of a vertex

operator algebra V which are invariant under some subgroup G of AutpVq. For such an integral

form VZ, we can form the vertex algebra VZ bZ k over any field k and produce an infinite

sequence of representations of krGs, given by the graded components of VZ bZ k. In this way,

we could potentially study moonshine-like phenomena over arbitrary fields. This also can

increase our understanding of vertex (operator) algebras in general over arbitrary fields. When

these integral forms of vertex operator algebras intersect with the generalized Griess algebra,

the result is an integral form of this algebra in the classical sense. So in this document, we

study the integral forms in several small generalized Griess algebras – in particular inside

the Norton-Sakuma algebras. More precisely, we study the integral forms preserved by the

action of G (called G-invariant integral forms, or GIIFs for short), where G is the subgroup of

the automorphism group of the algebra generated by the distinguished involutions mentioned

above.

So this sets forth the following goal: given a finite-dimensional algebra A (which is not

necessarily associative) over a field k of characteristic zero, and a subgroup G Ď AutpAq, try

to understand the integral forms of A which are preserved by the action of G.

1.2 Statement of the main result

Throughout this document, a rng is an abelian group R with a Z-bilinear product RˆR Ñ R. A

ring is a rng with an element 1R that is both a left and right multiplicative identity element, and

a k-algebra is ring that is a k-vector space and the algebra product is k-bilinear. In particular,

none of these products are necessarily associative.
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Let a be an element in an algebra V . For a scalar µ, define Vpaqµ “ tv P V : a ¨ v “ µ vu to

be the subspace of µ-eigenvectors of the adjoint action of a.

Definition 1.2.1. Let k be a field of characteristic zero, and V a commutative k-algebra. An

element a P V is an axis if:

(i) Vpaq1 “ spankpaq. In particular, a ¨ a “ a.

(ii) The algebra decomposes as V “ Vpaq1 ‘ Vpaq0 ‘ Vpaq1{4 ‘ Vpaq1{32. In other words the map

adpaq : V Ñ V defined by v ÞÑ a ¨ v is diagonalizable with eigenvalues from the set

t1, 0, 1{4, 1{32u.

(iii) The eigenspaces Vpaqλ satisfy the Virasoro fusion rules: Vpaqλ ¨ Vpaqµ Ď
ÿ

νPλ‹µ

Vpaqν where

‹ : t0, 1, 1
4 ,

1
32u

2 Ñ Ppt0, 1, 1
4 ,

1
32uq is given by the table below.

‹ 1 0 1
4

1
32

1 1 0 1
4

1
32

0 0 1, 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

1
32

1
32

1
32

1
32 1, 0, 1

4

Note that PpXq is the powerset of X.

The properties of axes in Griess algebras have been axiomatized and studied in several

different ways. Our definition of axes is less restrictive than that in e.g. [Iva09] and [IPSS10],

where existence of an associative bilinear form is also required. Our definition of axes

coincides with the definition of Vp4, 3q-axes given in [HRS15a] and [HRS15b].

One can see from this table that there is a Z{2Z-grading of V given by Vpaq`
def
“ Vpaq1 ‘Vpaq0 ‘

Vpaq1{4 and Vpaq´
def
“ Vpaq1{32. A Z{2Z-grading of an algebra yields an involution of the algebra: if we
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define the linear map τpaq : V Ñ V by

τpaq “

$

’

&

’

%

´Id on Vpaq1{32

Id on Vpaq1 ‘ Vpaq0 ‘ Vpaq1{4

Then τpaq is an involutive automorphism of the algebra V , called the τ-involution associated

to the axis a.

The fusion rules also show that the fixed point subalgebra of τpaq, Vτpaq “ Vpaq` , itself has

a Z{2Z-grading given by
”

Vpaq1 ‘ Vpaq0

ı

‘ rVpaq1{4s. Therefore we define σpaq : Vpaq` Ñ Vpaq` by

σpaq “

$

’

&

’

%

´Id on Vpaq1{4

Id on Vpaq1 ‘ Vpaq0

Then σpaq is an involutive automorphism of Vpaq` . These are properties (M4),(M6), and (M7)

in [IPSS10]. When V is a subalgebra of a generalized Griess algebra of a vertex operator

algebra, the automorphisms τpaq and σpaq of V equal the τ- and σ-involutions defined by

Miyamoto when restricted to V [Miy03, §2].

Definition 1.2.2. An integral form of an algebra V over a field k of characteristic zero is a

subrng L Ď V such that L is the Z-span of a k-basis of V .

Definition 1.2.3. For an F-algebra A with basis tbi : i P Iu, the structure coefficients of A with

respect to this basis are the scalars αi, j,k P F (where i, j, k P I) defined by bi ¨ b j “
ř

kPI αi, j,kbk.

If the structure coefficients of a basis are all integers, then the Z-span of that basis is an

integral form of the algebra.

If αi, j,k are the structure coefficients of a basis tbi : i P Iu, and c is in the field F, then it

follows from the previous definition that the structure coefficients of the basis tcbi : i P Iu are

given by cαi, j,k. Thus if the structure coefficients are a basis are rational numbers, then some

integer multiple of this basis spans an integral form of the algebra.
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Definition 1.2.4. A G-invariant integral form (GIIF) of an algebra V is an integral form L of

V such that L is closed under the action of G “ xτpaq : a an axis of Vy.

A GIIF L is maximal if it is not properly contained in any other GIIF.

By a discrete subgroup of a finite-dimensional rational vector space, we mean a subgroup

that is discrete with respect to the unique topology making the vector space a Hausdorff

topological Q-vector space [Rud91, Theorem 1.21] . Equivalently, a discrete subgroup of a

finite-dimensional rational vector space is the Z-span of a finite set of vectors. Let W be a

G-invariant discrete subgroup of a finite-dimensional Q-algebra V with rankpWq “ dim V .

Let twi : i “ 1, . . . , dim Vu be a Z-basis of W. Then twi : i “ 1, . . . , dim Vu is a Q-linearly

independent set so is also a Q-basis of V . The structure coefficients of the algebra with respect

to this basis will be rational numbers. By the discussion following Definition 1.2.3, nW will be

an integral form of V for some integer n. By hypothesis, W is G-invariant, which implies that

nW is G-invariant, so nW will be a GIIF of V . Therefore, a list all GIIFs of V would include

an integer multiple of every G-invariant full-rank additive subgroup of V . The classification

of all GIIFs of V is then a strictly harder problem than a classification of all discrete full-rank

G-submodules of V .

However, we shall show that the list of maximal GIIFs for the Norton-Sakuma algebras

is completely classifiable and similarly for several larger Griess algebras. There is a unique

maximal GIIF in every Norton-Sakuma algebra except for 2A, and in 2A there are three GIIFs

but which are conjugate under other automorphisms. This gives a distinguished intrinsically-

defined integral form inside each Norton-Sakuma algebra, which is the main result of this

document:

Theorem 1.2.5. Let V be one of the Norton-Sakuma algebras over Q. Then there is a unique

maximal AutpVq-invariant integral form of V.

Proof. This is proven case-by-case for each algebra. In Theorem 3.1.11, it is shown that

there are exactly three maximal integral forms of the rational 2A Norton-Sakuma algebra,

and they are conjugate under the action of the σ-automorphisms. The rational 2B algebra is
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isomorphic to Q2, so it has a unique maximal integral form, namely Z2 (3.1.4). There is a

unique maximal GIIF in the rational Norton-Sakuma algebras of type 3C (Theorem 3.4.4), 3A

(Theorem 3.3.13), 4A (Theorem 3.5.10), 4B (Theorem 3.6.8), 5A (Theorem 3.7.9), and 6A

(Theorem 3.8.6).

It is an easy consequence of G “ xτpaq : a an axis.y being normal in AutpVq that the

set of GIIFs is invariant under the action of AutpVq (Corollary 2.2.11). Therefore, if V has a

unique maximal GIIF then this is also the unique maximal AutpVq-invariant integral form.

In the later sections, we extend this result to several slightly larger algebras which are

generated by three axes (compared to the Norton-Sakuma algebras which are generated by

two axes).

Theorem 1.2.6. Each of the following algebras has a unique maximal GIIF:

(i) The algebra with G – Symp4q of shape (2B,3C), described in [IPSS10, §4.3],

(ii) The algebra with G – Symp4q of shape (2A,3C), described in [IPSS10, §4.4],

(iii) The ‘Lam-Chen algebra’ with G – 32 : 2, as described in [CL14].

Proof. These are proved separately, as Theorems 4.1.7, 4.2.10, and 4.3.13.

It is unknown if every Griess algebra V has a unique maximal AutpVq-invariant integral

form.
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CHAPTER 2

General facts about integral forms

2.1 Integral form detector functions

Definition 2.1.1. For a in an finite dimensional algebra V , define adpaq to be the linear

function V Ñ V given by x ÞÑ a ¨ x.

For an endomorphism x of a finite dimensional vector space, define χpx; tq “ detpx´ tIq

to be the characteristic polynomial of x. When it can cause no confusion, if a is in a

finite dimensional algebra, χpa; tq is understood to mean χpadpaq; tq i.e. the characteristic

polynomial of adpaq. Similarly, tracepaq “ Trpadpaqq is the trace of adpaq.

It is clear that if a is in an integral form of an algebra V , then the matrix of adpaq has

integer coefficients, and therefore χpa; tq will be in Zrts. Thinking of a as a variable, each

coefficient of χpa; tq is then a function V Ñ Q which takes integer values on elements in an

integral form. This motivates the following definition:

Definition 2.1.2. Let W be a subspace of a Q-algebra V . An integral form detector function

(IFDF) on W in m variables is a function f : Wm Ñ Q such that if w1,w2, . . . ,wm are in an

integral form of V , then f pw1,w2, . . . ,wmq is an integer.

For a fixed subspace W and a fixed m, the set of integral form detector functions on W in

m variables form a ring. They are also closed under some more subtle operations: an IFDF in

m variables can be made into one of m` 1 variables by multiplication: if f : Wm Ñ Q is an

8



IFDF, then so is the following function:

pw1,w2, . . . ,wm,wm`1q ÞÑ f pw1,w2, . . . ,wm´1, wm ¨ wm`1q.

The proof is immediate: if w1, . . . ,wm`1 are in an integral form, then wm ¨ wm`1 is also in

this integral form and hence f pw1, . . . ,wm ¨ wm`1q P Z. This could be formally described as

precomposition of f with multiplication.

An IFDF in m variables can also be made into an IFDF on m´ 1 variables by ‘precompo-

sition with the diagonal map’ (4pxq def
“ px, xq). More concretely, if f : Wm Ñ Q is an IFDF,

then so is the following function:

pw1,w2, . . . ,wm´1q ÞÑ f pw1,w1,w2, . . . ,wm´1q.

The proof again is immediate from the definitions.

There are numerous permutations of how one can perform these multiplications or pre-

compositions with the diagonal map, and stating these formally will not shed any new insight

on these operations. We will exclusively use these operations on small degree (e.g. linear

or quadratic) functions and on just one or two variables. For example, we will often use the

fact that v ÞÑ tracepv ¨ vq is an IFDF. This is fairly easy to see (if v is in an integral form, then

so is v ¨ v), which makes calling this function “precomposition of trace with multiplication

followed by precomposition with the diagonal map” somewhat unnecessarily verbose, and we

will often avoid the excessive jargon if it is not illuminating.

Integral forms are also closed under a property which we can call “taking the kth root of

the perfect k-power part," which we formalize with a basic lemma and then explain below.

Lemma 2.1.3. Let k be positive integer, y a rational number, and m an integer such that no

factor of m is a kth power. Then m yk is an integer if and only if y is an integer.

Proof. Suppose m ¨ yk P Z. In reduced form, the denominator of yk has all prime factors with

9



multiplicity a multiple of k. The prime factors of m all divide m with multiplicity strictly less

than k. So the denominator of yk must be 1 in order for myk to be an integer. Thus y is an

integer.

This will be used to reduce down integral form detector functions to smaller degrees.

For example, suppose g : W Ñ Q is any function, and f pwq “ 24gpwq2 is an integral form

detector function. Then write f pwq “ 6 ¨ r2gpwqs2. By the lemma, f pwq is an integer if and

only if 2gpwq is an integer. Thus w ÞÑ 2gpwq is an integral form detector function. In summary,

we factored f as a square-free integer times a perfect square, and took the square-root of the

perfect-square part. We will use this lemma freely and without citation when it is obvious –

e.g. “If x P Q and 5x2 P Z then x P Z."

Producing integral form detector functions will be key to classifying maximal invariant

integral forms. In a certain sense, the IFDFs are dual to integral forms. The more IFDFs we

have, the more constricted the possibilities for integral forms are, which allows us to classify

them.

As a key example, if one can produce n “ dimpAq linearly-independent linear functions

f1, . . . , fn : A Ñ Q which are integral form detectors, then we can form the dual basis

f ˚1 , . . . , f ˚n of A defined by fip f ˚j q “ δi j. Then any integral form must be contained in

spanZp f ˚1 , . . . , f ˚n q since this is the largest subset of A on which all of the functions f1, . . . , fn

take integer values. If spanZp f ˚1 , . . . , f ˚n q happened to be closed under the algebra products,

then this would be the unique maximal integral form in the algebra.

This sets the goal as constructing small degree (especially linear) integral form detector

functions. As was mentioned, tracepaq is an integral form detector function, as are the other

coefficients of χpa; tq. We next show that for any adpaq-invariant subspace W, χpadpaq
ˇ

ˇ

W ; tq

will be in Zrts. First an elementary lemma:

Lemma 2.1.4. Let 0 Ĺ W1 Ĺ W2 Ĺ ¨ ¨ ¨ Ĺ Wn “ W be a full flag for an n-dimensional

Q-vector space W (i.e. each Wi is a subspace, and dim Wi “ i), and let L be a discrete

subgroup of W of rank n. Then L has a Z-basis b1, . . . , bn such that bi P Wi.

10



Proof. Proceed by induction on dim W, with the dim W “ 1 case being trivial.

Let w1 be a nonzero element of W1. When expressed as a linear combination of a basis of

L, the coefficients of wi will be rational. So some integer times wi will lie in L. In particular,

W1 X L is a subgroup of L with rank at least 1. The rank can be no more than 1 because two

Z-linearly independent vectors in W1 X L would be two Q-linearly independent vectors in W1.

So LXW1 equals Zb1 for some b1. Then pL`W1q{W1 – L{pW1 X Lq “ L{Zb1, and the

latter is torsion free by the definition of b1. (If 1
k b1 were in L for some positive integer k, then

1
k b1 would be in LXW1.) Hence pL`W1q{W1 is a free subgroup of rank n´ 1 inside W{W1,

and Wi{W1 (i “ 2, . . . , n) is a full flag of W{W1. By induction hypothesis, take a Z-basis of

b2, . . . , bn of pL `W1q{W1 with bi P Wi{W1 for i “ 2, . . . n. Let b2, . . . , bn P L be elements

such that πpbiq “ bi where π : L Ñ W{W1 is the inclusion of L into W followed by the

canonical quotient map.

Note that bi P Wi for i “ 2, . . . n. The images of b2, . . . , bn are a Z-basis of L{kerpπq, and

b1 is a Z-basis of kerpπq, so b1, . . . , bn is a Z-basis of L.

Proposition 2.1.5. Let A be a finite dimensional algebra over Q. If x is in an integral form L

of A, and adpxq leaves invariant a rational subspace W of A, then χ
`

adpxq
ˇ

ˇ

W ; t
˘

is in Zrts.

Proof. Choose any full flag A1, . . . , An of A such that Ak “ W, where k “ dimQW. Let

`1, . . . , `n be a Z-basis of L subordinate to this flag guaranteed by Lemma 2.1.4. Then

`1, . . . , `k are k vectors that are Z-linearly independent (hence Q-linearly independent) in W,

and therefore are a Q-basis of W.

Since both L and W are invariant under adpxq, their intersection is also invariant. Note that

W X L “ spanZp`1, . . . , `kq. Therefore, with respect to the basis `1, . . . , `k of W, the matrix

of adpxq
ˇ

ˇ

W has integer entries, and so the characteristic polynomial of adpxq
ˇ

ˇ

W has integer

coefficients.

The existence of adpxq invariant subspaces, for certain choices of x, are guaranteed by the

following lemma, which is a slight restatement of [FG92, Lemma 2.2]:
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Lemma 2.1.6. Let σ be an automorphism of a rng R, with C equal to the fixed-point subrng,

and φptq P Zrts. Then N “ Impφpσqq is stable under multiplication by C.

Proof. Fix c P C and r P R. Note that adpcq commutes with all powers of σ, so c ¨ φpσqr “

φpσqpc ¨ rq.

In particular, for a GIIF L of a Norton-Sakuma algebra V , suppose that t is a nontrivial

τ-involution. Then the lemma says that elements in Lt act with integer trace on Impt ` 1q and

of Impt ´ 1q, which are the fixed points of t and the -1-eigenspace of t, respectively. This puts

a considerable rigidity on the elements in the algebra which can be in Lτ for some GIIF L.

We conclude this section with another method of producing integral form detector func-

tions.This will be used to factor characteristic polynomials in order to get linear integral form

detector functions. The result is a slight variant of Gauss’ lemma.

Lemma 2.1.7. Suppose piptq is a monic polynomial in Qrts for i “ 1, . . . n such that
śn

i“1 piptq P Zrts. Then piptq P Zrts for each i.

Proof. For each i, let ri be the smallest positive rational number such that ri piptq P Zrts. Then

ri pptq must be primitive (in the sense that its coefficients must have no common prime factor)

because if q divides each coefficient, then ri{qpiptq would be in Zrts. Because piptq is monic,

ri must be an integer.

Gauss’ lemma implies that
śn

i“1 ri piptq is primitive. Since
śn

i“1 piptq P Zrts, this implies

that
śn

i“1 ri must equal 1. Therefore each ri “ 1 so piptq P Zrts.

2.2 The intrinsic forms and extending GIIFs

Definition 2.2.1. For a, b in any finite-dimensional algebra, define the two forms κpa, bq “

Trpadpaq adpbqq and ηpa, bq “ Trpadpa ¨ bqq. The form κ is called the Killing form.

Both of these forms are bilinear, and if the algebra is commutative then both forms are also

symmetric. Note that neither form is, in general, equal to or a multiple of the associative inner

12



product on the Griess algebras that is usually considered, for example in [IPSS10]. Both of

these forms are also integral form detector functions, which is a consequence of the following

slightly more general statement.

The importance of these intrinsic bilinear forms to the study of integral forms is given by

the following easy but important result.

Proposition 2.2.2. If R and S are integral forms of an algebra A with R Ď S , then S Ď

R˚,κ X R˚,η where R˚,α “ tx P A : αpR, xq Ď Zu is the dual space to R with respect to the form

α.

Proof. Take s P S and r P R. With respect to a Z-basis of S , both adprq and adpsq are matrices

with integer entries. Hence κpr, sq P Z.

Similarly s ¨ r P S so the matrix of adps ¨ rq in a Z-basis of S is an integer matrix. Thus,

ηpr, sq P Z.

Taking R “ S in this proposition shows that every integral form in a finite-dimensional

commutative algebra is a lattice with respect to both of these two forms. So we record a few

definitions and results about lattices and the containment of lattices.

Definition 2.2.3. (i) A lattice is a finitely-generated free abelian group L together with a

symmetric bilinear form α : Lˆ L Ñ Q.

(ii) A lattice is called integral if αpL, Lq Ď Z.

(iii) Given a Z-basis of a lattice tbi : i “ 1, . . . , nu, the Gram matrix with respect to this

basis is the nˆ n-matrix with pi, jq-entry equal to αpbi, b jq.

(iv) A lattice is nonsingular if for every ` P L, the function L Ñ Q defined by x ÞÑ αp`, xq

is not identically zero.

(v) The dual of a nonsingular rational lattice is L˚,α “ t` P QbL | αp`, yq P Z for all y P Lu

where we make the identification L – 1b L and extend the bilinear form to Qb L by

linearity.

13



(vi) The determinant detαpLq of an integral lattice L is the determinant of the Gram matrix of

any Z-basis of L, and this is independent of the choice of basis. The lattice is singular if

and only if detαpLq “ 0. The absolute value of the determinant of a nonsingular integral

lattice L equals rL˚,α : Ls [Gri11, 2.3].

Note that often times the bilinear form is implicitly understood, so the α is omitted in

these notation – e.g. in det L “ detα L and L˚ “ L˚,α. Since integral forms are lattices with

respect to both κ and η, it will be important for us to emphasize the form.

Proposition 2.2.4 (“Index-determinant formula”). Let R Ď S be two nonsingular integral

lattices with respect to a form α and rS : Rs ă 8. Then detαpS qrS : Rs2 “ detαpRq.

Proof. [Gri11, 2.3.3]

As a corollary to Propositions 2.2.2, we have the following.

Corollary 2.2.5. If R is an integral form in a finite-dimensional commutative algebra, then

the set of integral forms containing R correspond to some collection of (additive) subgroups

of pR˚,κ X R˚,ηq{R.

Furthermore, rR˚,κ X R˚,η : Rs ď gcdpdetκpRq, detηpRqq, (where gcdp0, 0q “ 8).

Proof. The first claim is a restatement of 2.2.2 combined with the correspondence theorem for

subgroups of quotient groups. To prove the inequality, first note that if detκpRq “ detηpRq “ 0

then there is nothing to prove. So we may assume that one of these is nonzero. Therefore at

least one of the groups R˚,κ{R and R˚,η{R is finite. Note that pR˚,κ X R˚,ηq{R is a subgroup of

both R˚,κ{R and R˚,η{R. By the comment in Definition 2.2.3(iv), rR˚,κ X R˚,η : Rs divides both

detκpRq and detηpRq.

This gives a finite time algorithm to produce maximal (G-invariant) integral forms in any

finite-dimensional rational algebra V with one of κ and η nonsingular. We start with a general

integral form R of V , which one can find by taking any Q-basis and multiplying the basis by a

sufficiently large integer, as explained in the paragraph following Definition 1.2.4. Corollary
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2.2.5 guarantees that every integral form containing R corresponds to some subgroup of the

finite group pR˚,κ X R˚,ηq{R.

The following easy but important result proves that if we want to prove R is maximal, we

do not need to search through all of these subgroups.

Proposition 2.2.6. Let R Ĺ S be two integral forms in a finite-dimensional algebra V with

p a prime a divisor of rS : Rs. Then there exists an integral form S 1 such that S 1 Ď 1
pR but

S 1 Ć R.

Proof. Let m be the exponent of S {R. So p divides m, and note that an integer multiple of

an integral form is still an integral form. Take S 1 “ pm{pqS . Then pS 1 “ mS Ď R with

S Ć R.

So to find an integral form not contained in R, one only needs to search through the

subgroups of 1
pR{R X pR˚,κ X R˚,ηq{R. And in fact if one is searching for GIIFs, then the

corresponding subgroups of the quotient will actually be submodules of the FprGs-module

1
pR{RX pR˚,κ X R˚,ηq{R.

One should note here that the quotient R˚,α{R is called the discriminant group of the lattice

pL, αq, and that there are algorithms available for computing the dual of lattice, intersections

of lattices, finding generators of the quotients of two lattices (which is related to finding a

Smith basis for an inclusion of finitely generated Z-modules, see for example Theorem 7.8

in [Lan02]). In the remaining sections, we begin with an integral form and prove that it is

the unique maximal G0-invariant integral form1. The preceding discussion indicates how we

discovered these maximal G-invariant integral forms to begin with – namely by checking

through the G-submodules of pR˚,κ X R˚,ηq{R for some fixed R, using knowledge of FprGs

representation theory.

Below we want to collect a few results about integral forms, the τ-involutions and integral

representation theory that we will need in other sections. The following results in this section

1where G0 is either G or in the 2A case, we must take G0 “ AutpVq
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should not be considered original, but it will be convenient to collect them here. First we make

the observation that I is in any maximal GIIF.

Lemma 2.2.7. Let V be a rational vector space, and S Ă V a finite set. Then spanZpS q is a

discrete subgroup and has a Z-basis consisting of at most n “ dimQpVq elements.

Proof. Fix a basis v1, . . . , vn of V . There is an integer m such that, for all s P S , the coef-

ficients of ms in the basis v1, . . . , vn are integers. Therefore spanZpS q Ď
1
mspanZpv1, . . . , vnq.

Submodules of free modules are free, so spanZpS q is also free over Z and its rank is no more

than n [DF04, 12.1 Thm 4].

Proposition 2.2.8. Let V be a Q-algebra with a multiplicative identity I, and let H be any

subgroup of AutpVq. Then every maximal H-invariant integral form contains I.

Proof. Let L be any H-invariant integral form of V . Then clearly L ` ZI will also be an

integral form. By the previous lemma (2.2.7), L` ZI is also discrete and its rank is at most

dim V and at least rank L “ dim V . So L ` ZI is also an integral form, and it is clearly

H-invariant, since hI “ I for all h P AutpVq.

Lemma 2.2.9. For an axis a in a Q-algebra V, τpaq is a rational polynomial in adpaq.

Proof. Let pptq be a rational polynomial such that pp0q “ pp1q “ pp1{4q “ 1 and pp1{32q “

´1. For a µ-eigenvector v of adpaq, ppadpaqqv “ ppµqv. In particular, ppadpaqq acts as 1 on

Vpaq0 ‘ Vpaq1 ‘ Vpaq1{4 and it acts on Vpaq1{32 as the scalar -1. So ppadpaqq “ τpaq.

This also shows that any subalgebra containing a will be closed under the action of τpaq.

Proposition 2.2.10. Let V be an algebra with at least one axis and g an automorphism of V.

(i) If a is an axis, then ga is an axis and τpgaq “ gτpaqg´1.

Let A be a set of axes in V and T “ tτpaq : a P Au be the corresponding set of τ-involutions.

Suppose that the function from A to T given by a ÞÑ τpaq is bijective. Let t ÞÑ at be its inverse.
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(ii) If t P T, then gat “ agtg´1 .

Proof. (i) The function a ÞÑ τpaq is a polynomial in adpaq by Lemma 2.2.9. Since g adpaqg´1 “

adpgaq, it follows that gτpaqg´1 “ τpgaq.

(ii) By definition, t “ τpatq and aτpa1q “ a1. Then by part (i), agtg´1 “ aτpgatq “ gat.

Corollary 2.2.11. Let V be an algebra. Then G “ xτpaq : a an axisy is a normal subgroup of

AutpVq. Therefore the set of all G-invariant integral forms (GIIFs) is closed under the action

of AutpVq. So if there is a unique maximal GIIF in V, then this is also the unique maximal

AutpVq-invariant integral form.

Proof. By (i) of the previous result (2.2.10), the set of τ-involutions is invariant under conjuga-

tion by any element AutpVq, so the subgroup G generated by the τ-involutions is normal. Let

h be an element in AutpVq and L a GIIF. Then we claim that hL is also a GIIF. If t`1, . . . , `nu

is a Z-basis of L, then th`1, . . . , h`nu is a Z-basis of hL, and the structure coefficients of hL

under this algebra are the same as the structure coefficients of L. So hL is also an integral

form. Choose any g P G. Then

g ¨ hL “ hh´1ghh´1
¨ hL “ hph´1ghq L “ hL.

The final inequality follows since L is invariant under G and h´1gh P G by normality.

We conclude here with a proposition regarding the action of dihedral groups on lattices

which will be relevant in the cases 3A, 3C, 5A and 6A.

Proposition 2.2.12. Let V be a finite-dimensional rational vector space with a symmetric

bilinear form α : V b V Ñ Q. Let L be a lattice inside V and let g be a lattice automorphism

of L of order p a prime such that L{Lg has rank pp´ 1qk. Then rL : Lg ` pLgqKs divides pk.

Proof. We may assume L ­“ Lg, and so pg´1qL ­“ 0. Observe that pg´1qL Ď pLgqK, because
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if v, x P L with g ¨ v “ v, then:

ppg´ 1qx, vq “ pgx, vq ´ px, vq “ px, gvq ´ px, vq “ 0. (2.1)

We then have:

0 “ pgp
´ 1qL “ pgp´1

` gp´2
` ¨ ¨ ¨ g` 1qpg´ 1qL.

The polynomial Φpptq “ tp´1 ` tp´2 ` ¨ ¨ ¨ ` 1, being irreducible in Zrts, is therefore the

minimal polynomial of g on pg´ 1qL. Since rank L{Lg “ pp´ 1qk, then g acts on pg´ 1qL

with characteristic polynomial ˘Φpptqk. Therefore g´ 1 acts on pg´ 1qL with characteristic

polynomial ˘Φppt ` 1qk and in so in particular with determinant ˘pk.

So there is an inclusion:

Lg
` pg´ 1qL Ď Lg

` pLg
q
K
Ď L,

where the outer inclusion is of index pk. The desired result follows.

2.3 The general strategy

Throughout this section V is finite-dimensional algebra (with axes), and G “ xτpaq :

a an axis of Vy is the subgroup of AutpVq generated by the τ-involutions. We will show

the general strategy of classifying the maximal G-invariant integral forms.

Let W1, . . . ,Wk be a set of representatives of all irreducible QrGs-modules up to isomor-

phism, with W1 the trivial 1-dimensional representation. Decompose V “
Àk

i“1 Vi into

corresponding isotypic subspaces with respect to the action of G, meaning that each Vi is

the sum of all submodules of V isomorphic to Wi. For each i we will first try to classify the

elements in Vi which can be in an integral form.
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The most important isotypic piece to consider will turn out to be the fixed point subalgebra

VG “ V1. The importance stems from the following fact: suppose g P G Ď AutpVq, f P VG,

and v P V; then

g p f ¨ vq “ pg f q ¨ pg vq “ f ¨ pg vq.

In other words, the map adp f q from V Ñ V is a G-module endomorphism. In particular

f ¨ Vi Ď Vi for each index i. If we concatenate bases of each Vi to produce a basis of V , then

with respect to this basis, adp f q is a block diagonal matrix with blocks of size dim Vi. This

implies that the characteristic polynomial of adp f q necessarily factors nontrivially as long

as there is more than one isotypic component. This allows us to apply the variant of Gauss’

lemma (2.1.7) in order to produce many integral form detector functions, corresponding to

every coefficient in every factor of the characteristic polynomial. In particular, the trace of

adp f q
ˇ

ˇ

Vi
is a linear integral form detector function on VG for each i.

This is in fact a special case of a more general phenomenon. The tensor product of

every pair of irreducible QrGs-modules will decompose as a direct sum of some subset (with

multiplicities) of the set of irreducible modules, and not every irreducible will necessarily

occur in this decomposition. The algebra product is a G-module map V b V Ñ V and this

restricts to a G-module map Vi b V j Ñ V for each pair i and j. The image of this map will be

a G-submodule of V , and this image can only contain the irreducible submodules which occur

in Vi b V j and which also occur in V . And in practice the image of Vi b V j will contain even

fewer irreducible submodules.

Suppose we choose a basis of each of V1, . . .Vk and concatenate this to a basis of V . So

if vi P Vi then adpviq will be decomposable in terms of blocks, where there will be a block

of 0s when there is an irreducible Wk that does not occur in both V and Vi b V j for some j.

Supposing there are sufficiently many zero blocks, this will cause a tendency for adpviq to

preserve some proper subspaces and also to have the characteristic polynomial of adpviq factor,
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providing more IFDFs on Vi.

In particular, this is will always happen for the isotypic pieces corresponding to one-

dimensional irreducibles, since if Wi and W j are one-dimensional, then Wi bW j – W` for

some other one-dimensional W`, and in this case Vi ¨ V j Ď V`. This is especially effective

for the 4A and 4B algebras in which the group G is isomorphic to pZ{2Zq2, meaning all the

irreducible QrGs-modules are one-dimensional.

As mentioned in the previous section, in each of the algebras we will be able to find

some maximal GIIF M of V . By constructing enough detector functions on each isotypic

subspace, for each i we will try to prove that for every GIIF L, LX Vi Ď M. Now GIIFs are

Z-free ZrGs-modules, and in particular they are cannot always be uniquely decomposed into

irreducibles – meaning that in general for a GIIF L, L ­“
řk

i“1pLX Viq. However, it is a fact

that L cannot be too far off from this.

Lemma 2.3.1. Let L be a discrete ZrGs-submodule of the QrGs-module V and V “
Àk

i“1 Vi

the decomposition of V into G-isotypic subspaces. Then L Ď 1
|G|

řk
i“1pLX Viq.

Proof. Decompose QrGs as
Àk

i“1 eiQrGs where each ei is a primitive central idempotent of

QrGs, where we let ei be ordered so that ei acts on V j as the scalar δi j. Then we first claim that

|G|ei P ZrGs.

To prove this, note that for an irreducible complex character χ of G, the idempotent corre-

sponding to χ is given by epχq “ χp1q
|G|

ř

gPG χpg
´1qg. Then the primitive central idempotents

in QrGs are given by
ř

hPGalpQpχq{Qq epχhq for some irreducible complex character χ [Yam74,

Prop 1.1] . The coefficients of each g P G in this sum will all be 1
|G| times rational integers.

Write 1 “
řk

i“1 ei in QrGs. Since L is invariant under ZrGs, oberve that |G|eiL Ď LX Vi.

Thus we have,

|G|L “ |G|pe1 ` e2 ` ¨ ¨ ¨ ekqL Ď |G|e1L` ¨ ¨ ¨ |G|ekL Ď
k
ÿ

i“1

pLX Viq.
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Therefore, if we have proven that, for every GIIF L and each i “ 1, . . . k that LX Vi Ď M,

then the previous lemma implies that L Ď 1
|G|M. Now if L is a GIIF not contained in M then

p|G|{pqL will be a GIIF not contained in M which is contained in 1
p M for some prime divisor

of |G|. So it suffices to check if there are any integral forms in 1
p M for each prime p dividing

the order of G. This turns out to often be a finite problem in arithmetic modulo p. When no

such GIIFs are found, we will have proven that every GIIF is contained in M.

It should be noted here that the strategy explained here is not always followed exactly,

step-by-step, in each algebra – there are occasional shortcuts and alternate routes. For the

most part, however, you can view this strategy as a template attempted to be followed in each

subsection, which hopefully will help motivate the ideas presented therein.

We note here that much of the work in classifying the maximal G-invariant integral

forms will rely on calculation of traces, characteristic polynomials, and the intrinsic forms

on elements in various isotypic subspaces. When a calculation is required, we will include a

reference like ‘[›2A.2]’. This indicates that this calculation was performed with a computer

algebra system. Code for these calculations as well as an explanations of the necessary

structural code is given in Appendix B.
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CHAPTER 3

GIIFs in the Norton-Sakuma Algebras

3.1 The 2A algebra

Notation 3.1.1. The 2A dihedral algebra V2A has a basis of axes (therefore idempotents)

a0, a1, aρ such that for every choice of indices ti, j, ku “ t0, 1, ρu,

ai ¨ a j “ 2´3
pai ` a j ´ akq.

([IPSS10, Table 3])

The group of τ-involutions acts trivially on V2A [IPSS10, Lemma 2.20]. Let I be the

multiplicative identity. We set a “ a0 and k “ I ´ a, so k ¨ k “ k and k ¨ a “ 0. We set

q “ 4pa1 ´ aρq, and we compute that q ¨ q “ 7a` 15k and a ¨ q “ 1
4q [›2A.1].

It follows that k ¨ q “ pI ´ aq ¨ q “ 3
4q. These notations were chosen because a kills k, and

a quarters q. Idempotents a and k generate a subalgebra isomorphic to Z2.

Lemma 3.1.2. The following gives the trace of each element a, k, and q

tracepaq “
5
4
, tracepkq “

7
4
, tracepqq “ 0.

Proof. Let B denote the ordered basis pa, k, qq. With respect to B, the matrix of adpaq is

diagonal with entries 1, 0, 1
4 . The matrix radpkqsB of adpkq with respect to B has diagonal

components 0, 1, 3
4 , and the diagonal entries of radpqqsB are all 0.
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Proposition 3.1.3. If 4xa` yq is in an integral form of V2A, with x, y P Q, then x, y P Z.

Proof. Set w “ 4xa ` yq. We compute tracepwq “ 5x and tracepw ¨ wq “ 5p4x2 ` 7y2q

[›2A.2] which are both integers. We note that 100x2 “ 4p5xq2 is an integer, hence 527y2 “

52p4x2 ` 7y2q ´ 100x2 is also an integer. Since y is rational, we conclude that 5y is an integer.

Set X “ 5x and Y “ 5y, so that X,Y P Z, we have:

tracepw ¨ wq “ 20x2
` 35y2

“
1
5
p4X2

` 7Y2
q.

The equation 4X2 ` 7Y2 ” 0, pmod 5q is equivalent to X2 ” 2Y2 pmod 5q. Since 2 is not

a square mod 5, this equation has only the trivial solution X ” Y ” 0, pmod 5q. Hence

X,Y P 5Z and so x, y P Z.

Lemma 3.1.4. For any positive integer k, every discrete subrng of Qk is contained in Zk.

Proof. Let A be a discrete subrng of Qn. Then A is additively generated by at most n elements

[Bou98, Ch VII §1.1-1.2]. So there is some N ą 0 such that A Ď 1
NZ

n. Let ei be the ith

standard basis vector of Qn. Let a “
řn

i“1 aiei be an element of A. Then ak “
řn

i“1 an
i ei.

Write ai “ pi{qi for relatively prime integers qi ą 0 and pi. Suppose q j ą 1 for some

j. Choose k so that qk
j ą N. Then ak “

řn
i“1 ak

i ei is not in 1
NZ

n, since ak
j “

pk
i

qk
i

is a reduced

fraction with denominator larger than N. Therefore qi “ 1 and A Ď Zn.

Corollary 3.1.5. Suppose x, y P Q. If xa ` yk or xa ` yI is in an integral form of V2A, then

x, y P Z.

Proof. The rational span of a and k is isomorphic to Z2. The intersection of spanQpa, kq

with any integral form is a discrete subrng of spanQpa, kq – Q
2 and therefore is contained in

spanZpa, kq, by 3.1.4.

If xa ` yI “ px ` yqa ` yk is in an integral form, then the previous paragraph shows

x` y P Z and y P Z and hence x P Z.
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Corollary 3.1.6. Let L be an integral form of V2A with I P L. Then there exists a positive

integer t and a w P V2A such that I,4ta,w is a Z-basis of L. Furthermore, we may write

w “ xa` yq` zI where x, y, z P Q with 0 ď x ď 2t and 0 ď z ă 1.

Proof. Note that if xa P L for some rational x, then x P 4Z by Proposition 3.1.3. Let t P Z be

such that 4ta is the smallest integer multiple of a in L. If we can show that L{spanZpI, 4taq

is torsion-free, then tI, 4tau can be extended to a Z-basis of L. Let n,m, ` P Z (with ` ­“ 0)

be such that ϕ “ nI`m4ta
`

is in L. By Corollary 3.1.5, n{` and 4tm{` are integers. But then

z ´ n
`
I “ 4tm

`
a is in L. By minimality of t, p4tm{`qa is an integer multiple of 4ta. In other

words, m{` is an integer. Therefore, z P spanZpI, 4taq.

If w is the preimage in L of a generator of L{spanZpI, 4taq, then L “ spanZpI, 4ta,wq.

Writing w “ xa ` yq ` zI we may add or subtract integer multiples of 4ta and I from w to

ensure that 0 ď x ă 4t and that 0 ď z ă 1. Then we may replace w by ´w ` I ` 4ta if

necessary to ensure that 0 ď x ď 2t.

Definition 3.1.7. For subsets S 1, . . . , S k of an algebra A, define rngpS 1, . . . , S nq to be the rng

generated by
Ťk

i“1 S i, i.e. the smallest (additive) subgroup of A containing
Ťk

i“1 S i that is

closed under the algebra multiplication.

We omit brackets on singleton subsets: for example if S Ă A and v P A then rngpS , vq “

rngpS , tvuq.

Definition 3.1.8. Set P “ spanZp4a, I, qq

Proposition 3.1.9. P is an integral form of V2A.

Proof. Showing that P is a ring is an easy verification: p4aq2 “ 16a, 4a ¨ q “ q and

q2 “ ´8a` 15I are all in P.

Then since a, k “ a´ I, and q form a basis of V2A, it follows that P has rank 3.

Lemma 3.1.10. Let Lpmq “ spanZpI, 8a, 1
2a ` 2m`1

2 q ` 1
2 Iq. Then Lpmq is an integral form

for V2A for every m P Z. If L is maximal integral form of V2A then either L “ P or L “ Lpmq

for some integer m.
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Proof. With our mind on the conclusion of 3.1.6, suppose L “ spanZpI, 4ta,wq, where t is an

integer and where w “ xa ` y
4q ` z

4 I with x, y, z P Q and where 0 ď x ă 2t and 0 ď z ă 4.

(The factors of 4 are included here and not in 3.1.6 because this will simplify the computations

to come.)

The set L is clearly closed under multiplication by I. It also contains p4taq2 “ 16t2a.

Therefore, L will be an integral form if and only if L contains p4taq ¨ w and w ¨ w.

We compute the coefficients of p4taq¨w and w¨w in the Z-basis I, 4ta,w of L: [›2A.4]

p4taq ¨ w “ ´
tz
4

I `
1
4
p3x` zq p4taq ` t w

w ¨ w “
1

16

`

15y2
´ zp2x` zq

˘

I `
px2 ´ y2q

8t
p4taq `

1
2
px` zqw

Thus we conclude that L is an integral form if and only if the following six terms are integers:

´
tz
4
,

1
4
p3x` zq, t,

1
16
p15y2

´ zp2x` zqq,
x2 ´ y2

8t
,

x` z
2

. (3.1)

Now suppose that L is a maximal integral form of V2A, not equal to P. By Corollary 3.1.6,

we may indeed write L “ spanZpI, 4ta,wq, where t is an integer and where w “ xa` y
4q` z

4 I

with x, y, z P Q and where 0 ď x ă 2t and 0 ď z ă 4. As we showed above, the six

expressions given in (3.1) are integers.

We observe that x and z are integer linear combinations of these:

x “ ´
´ x` z

2

¯

` 2
ˆ

1
4
p3x` zq

˙

z “ 3
´ x` z

2

¯

´ 2
ˆ

1
4
p3x` zq

˙

.

Therefore both x and z are integers. Then t P Z and px2 ´ y2q{p8tq P Z imply x2 ´ y2 P Z

which implies that y2 P Z. Since y is rational, y P Z.

Note that p3x ` zq{4 P Z implies that x ” z pmod 4q and so 2x ” 2z, pmod 8q. Then

p15y2 ´ zp2x` zqq{16 P Z implies 15y2 ” zp2x` zq ” 3z2 pmod 8q, which implies y2 ” 5z2,
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pmod 8q. Since 5 is not a perfect square modulo 8, it must be that z is not invertible modulo 8.

So z is even.

Supposing z “ 0, then w P pQa ` Qqq X L Ď P, where the last inclusion follows from

3.1.3. It follows that L Ď P. Maximality of L implies L “ P. So we may assume z is not zero.

Then z is even and 0 ă z ă 4, so z “ 2.

Observe that t occurs only in three terms of the six expressions in (3.1) above: ´tz{4, t,

and px2 ´ y2q{p8tq. It must be then that gcdptz{4, tq “ 1 for if there were a prime p such that

tz{p4pq and t{p are integers, then spanZpI, 4ta{p,wq would be an integral form (because the

6 expressions given in (3.1) would still be integers with t{p substituted in place of t), and

this integral form would be strictly larger than L. Now 1 “ gcdptz{4, tq “ gcdpt{2, tq implies

t “ 2. Then we have 0 ď x ă 2t “ 4 and x ” z ” 2 pmod 4q so x “ 2.

Then px2 ´ y2q{p8tq “ p4´ y2q{16 being an integer implies that y2 ” 4 pmod 16q, and:

y2
” 4 pmod 16q ô 16 divides py´ 2qpy` 2q ô y ” 2 pmod 4q.

To summarize, if L is a maximal integral form and L ­“ P, then L “ spanZpI, 8ta, 2a` y
4q` 1

2 Iq

where y “ 4m` 2 for some integer m.

It is an easy verification that if t “ x “ z “ 2 and y “ 4m` 2 for an integer m, then the

six expressions in (3.1) are integers. Therefore Lpmq “ spanZpI, 8a, 2a` pm` 1
2qq`

1
2 Iq is

an integral form for any integer m.

Theorem 3.1.11. There are three maximal integral forms in V2A: P, Lp0q, and Lp´1q. If σpxq

denotes the σ-involution associated to the axis x, then Lp0q “ σpa1qP and Lp´1q “ σpaρqP.

Proof. By the previous theorem, any maximal integral form equals P or Lpmq for some integer

m. We will show that Lp0q and Lp´1q are the only maximal integral forms among the set

of tLpmq : m P Zu. Set wm “ 2a ` pm ` 1
2qq `

1
2 I so that Lpmq “ spanZpI, 8a,wmq. We in

fact will show that Lpmq Ď Lp0q if m is even, and Lpmq Ď Lp´1q if m is odd. Compute the
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coefficients of wm in the bases tI, 8a,w0u and tI, 8a,w´1u: [›2A.5]

wm “ ´mI ´
m
2
p8aq ` p1` 2mqw0,

“ p1` mqI `
m` 1

2
p8aq ´ p1` 2mqw´1.

Therefore, if m is even, wm P Lp0q and if m is odd, then wm P Lp´1q. Note that wm P Lpnq

implies Lpmq Ď Lpnq. So Lpmq can only be maximal for m “ 0 and m “ ´1.

If pptq “ 32
3 t2 ´ 32

3 t ` 1, then pp0q “ pp1q “ 1 and pp1{4q “ ´1. So the σ-involution

associated to an axis ax is given by σpaxq “ ppadpaxqq. We verify computationally that

σpa1qP “ Lp0q and that σpaρqP “ Lp´1q [›2A.6].

So by Lemma 3.1.10, any integral form of V2A is contained in P, Lp0q, or Lp´1q, so at

least one of these integral forms must be maximal. However, they are all conjugate under

automorphisms of the algebra, so they are all maximal.

3.2 The 2B algebra

The 2B algebra has a basis of idempotents a0, a1 such that a0 ¨ a1 “ 0. So V2B is isomorphic to

the algebra Q2. Since adpa0q and adpa1q do not have 1/32 as an eigenvalue, the τ-involutions

are trivial. Therefore every integral form will be G-invariant. The following result gives a list

of all integral forms of V2B – Q
2.

Proposition 3.2.1. For every rank 2 free-abelian subgroup A of Q2, there are unique rational

numbers k, a, b with 0 ď a ă minpk, bq such that A “ Zpk, kq ` Zpa, bq. Such a subgroup is a

subring if and only if k, a, b P Z and k|ab.

Proof. There is a unique k ą 0 such that Zpk, kq “ Qp1, 1q X A. There are two cosets which

generate the infinite cyclic group A{Zpk, kq; let px, yq ` Zpk, kq be one generator and so the

other is p´x,´yq ` Zpk, kq. If pk, kq and Z additively generate A, then Z P px, yq ` Zpk, kq Y

p´x,´yq ` Zpk, kq. There is a unique element pa, bq in px, yq ` Zpk, kq Y p´x,´yq ` Zpk, kq
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such that 0 ď a ă k and a ă b.

Let A “ Zpk, kq ` Zpa, bq for some a, b, k P Q with 0 ď a ă minpb, kq. If A is a ring then

k, a, b P Z. Under the conditions that a, b, k P Z, A will be a ring if it contains pa2, b2q (since A

is clearly closed under multiplication by pk, kq). Observe that pa2, b2q “ ra`bspa, bq´pab, abq.

Therefore, pa2, b2q is in A if and only if pab, abq P A which happens if and only if k|ab.

Note that this implies there is a unique maximal integral form in V2B – Q
2, namely

spanZpa0, a1q – Z
2.

3.3 The 3A algebra

Notation 3.3.1. The 3A Norton-Sakuma algebra V3A has a basis of idempotents a´1, a0, a1

and uρ, with:

a0 ¨ a1 “ 2´5
p2a0 ` 2a1 ´ a´1q ´ 2´11335uρ,

a0 ¨ uρ “ 3´2
p2a0 ´ a1 ´ a´1q ` 2´55uρ.

([IPSS10, Table 3]) The subgroup G generated by τ-involutions fixes uρ and induces the

dihedral group of order 6 on the set ta´1, a0, a1u of axes. This uniquely determines the

remaining products [IPSS10, Lemma 2.20].

Since τpaqa “ a for any axis, this also implies that for any permutation p, q, r of t´1, 0, 1u,

we have that τpapq induces the involution in Symptap, aq, aruq that fixes ap and interchanges

aq with ar. Let g “ τpa´1qτpa0q. Then g cyclicly permutes the list pa´1, a0, a1q one element

to the right. Let I be the multiplicative identity in the algebra.

Lemma 3.3.2. For i “ ´1, 0, 1, tracepaiq “
41
32 . Also, tracepuρq “ 5

3 .

Proof. With respect to the basis a´1, a0, a1, uρ, the matrix of adpa´1q has diagonal components

1, 1
16 ,

1
16 ,

5
32 and the matrix of adpuρq has diagonal components 2

9 ,
2
9 ,

2
9 , 1. Since each ai is
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conjugate under the group of automorphism of V3A, it follows that tracepaiq “ tracepa´1q “

41
32 .

Definition 3.3.3. LG “ tl P L : hl “ l, @h P Gu and LG,K “ pLGqK, where K is defined with

respect to the Killing form.

Proposition 3.3.4. For a GIIF L of V3A, rL : LG ` LG,Ks is either 1 or 3.

Proof. We first observe that LG “ Lg. For if w “ αuρ `
ř

i αiai, with α, α´1, α0, α1 P Q, is

g-invariant, then α´1 “ α0 “ α1 and therefore w is G-invariant. This also shows that L{Lg

has rank 4´ 2 “ 2. The result follows from 2.2.12.

Proposition 3.3.5. For a GIIF L of V3A, LG is contained in spanZp3uρ, Iq.

Proof. Thinking of V3A as a module of G – Symp3q, V3A decomposes as the permutation

representation of Symp3q spanQpa´1, a0, a1q plus a one-dimensional trivial representation

spanQpuρq. So the G-fixed points of V3A are 2-dimension, spanned by I and uρ. The elements

uρ and I ´ uρ are idempotents which multiply to zero, so their rational span is an algebra

isomorphic toQ2. The maximal rank 2 subring ofQ2 is Z2, which corresponds to spanZpuρ, I´

uρq “ spanZpuρ, Iq.

So if w “ xuρ ` yI is in a GIIF. Then x, y P Z. Using Lemma 3.3.2, we compute that

tracepxuρ ` yIq “ 5x
3 ` 4y. (We can also verify this computationally [›3A.1].) This must be

an integer, hence x P 3Z. So LG is contained in spanZp3uρ, Iq.

Lemma 3.3.6. Suppose W is a two dimensional QrGs-module (where G “ xg, ty is the

dihedral group of order 6, with g3 “ t2 “ tgtg “ 1), such that g acts with minimal polynomial

x2 ` x ` 1. Let N be a G-invariant rank two free-abelian subgroup of W. Then every G-

invariant rank two free-abelian subgroup of W is either sN or spg´ 1qN for some rational

number s.

Proof. Let M be a rank two G-invariant subgroup of W such that M ­“ sN for any s P Q.

Choose s P Qą0 such that sN Ď M and rM : sNs is minimal. Then M{sN is cyclic, since
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otherwise there would be elements m0,m1 P M and a prime p such that pm0, pm1 is a Z-

basis of sN, which would imply that ps{pqN Ď M, and this contradicting the minimality of

rM : sNs.

Since the automorphism group of a cyclic group is abelian, the commutator subgroup

G1 “ xgy acts trivially on M{sN. In other words, pg´ 1qM Ď sN.

Note that pg ´ 1q2 “ ´3g ` p1 ` g ` g2q so pg ´ 1q2M “ 3M, and therefore M “

pg´1q2

3 M Ď s
3pg´ 1qN.

The characteristic polynomial of g on W being x2 ` x` 1 implies that the characteristic

polynomial of g´ 1 on W is px` 1q2 ` px` 1q ` 1 and therefore g´ 1 acts with determinant

3 on W. We therefore have:

sN Ĺ M Ď
s
3
pg´ 1qN Ĺ

s
3

N.

Now
“

s
3 N : sN

‰

“ 9, and the right-most containment has index 3. It follows that M “

s
3pg´ 1qN.

Definition 3.3.7. Define n0 “ 26pa1 ´ a´1q and n1 “ 26pa´1 ´ a0q “ gn0. Let N “

spanZpn0, n1q.

These notations were chosen because ni is negated by τpaiq.

Proposition 3.3.8. N is a G-submodule of V. For any GIIF L of V3A, LG,K is either k
3pg´ 1qN

or kN for some k P Z.

Proof. N is the intersection of two G-invariant subgroups: 26spanZpa´1, a0, a1q and the kernel

of the trace map trace : V3A Ñ C. Therefore N is G-invariant. Note that N contains no

elements fixed by G, so g acts on N with minimal polynomial x2` x` 1. The previous lemma

applies to ensure that LG,K is either sN or s
3pg´ 1qN a rational number s. We need only show

that s must be an integer in these two cases.

Suppose sN is contained in GIIF of V3A for some s P Q. We compute that traceppsn0q ¨
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psn1qq “ ´21322711s2 and κpsn0, sn1q “ ´22313131s2, both of which must be integers

[›3A.2].

21322711s2 P Z implies 3s P Z, and 22313131s2 P Z implies 2s P Z. Therefore s P Z.

Next, suppose that LG,K “ s
3pg´ 1qN for some s P Q. Recall that pg´ 1q2N “ r´3g`

pg2 ` g` 1qsN “ 3N, so pg´ 1qLG,K “ sN. By the previous paragraph, s P Z.

Definition 3.3.9. For i “ 0, 1, set mi “
1
3pg´ 1qni, and let M “ spanZpm0,m1q “

1
3pg´ 1qN.

So the previous proposition says that for any GIIF L, LG,K is either kM or kN for some integer

k.

Proposition 3.3.10. P “ M ` 3Zuρ ` ZI is a GIIF of V3A.

Proof. To show G-invariance, it is enough to show that M is G-invariant, since G acts trivially

on I and uρ. Proposition 3.3.8 says that N is G-invariant. By definition M “ 1
3pg´ 1qN, so M

is clearly invariant under g. Let t P G be an element of order 2 in G such that tgt “ g´1 and

G “ xg, ty. Then we have:

tM “ t ¨
1
3
pg´ 1qN “

1
3
pg´1

´ 1qptNq “ ´
1
3
pg´ 1qp´g´1tNq “ M.

We compute the matrix of adp3uρq and adpm0q with respect to the ordered basis B “

pm0,m1, 3uρ, Iq [›3A.3]:

radp3uρqsB “
„

1 0 0 0
0 1 0 0
0 0 3 1
0 0 0 0



radpm0qsB “

„ 20 ´20 1 1
0 ´20 0 0

´156 78 0 0
1008 ´504 0 0



.

Therefore P “ spanZpBq is closed under multiplication by 3uρ and m0. Since gm0 “ m1 and

P is invariant under the action of g, it follows that P is also closed under multiplication by m1.

So P is a ring.

Lemma 3.3.11. Suppose L is a maximal GIIF of V3A with rL : LG ` LG,Ks “ 3. Then there is

some ` P LG,K and k P Z such that the coset of 1
3` ` 3kuρ generates L{pLG ` LG,Kq.
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Proof. There is an element z in LG ` LG,K such that the coset of 1
3z generates L{pLG ` LGq.

Since LG,K Ď M and LG Ď spanZp3uρ, Iq, we may write z “ am0 ` bm1 ` 3cuρ ` dI for some

integers a, b, c, d.

We compute tracepzq “ 5c`4d and ηpz, zq “ 3252a2´3252ab`3252b2`15c2`10cd`4d2

[›3A.4]. Since z{3 P L, tracepzq P 3Z and ηpz, zq “ tracepz ¨ zq P 9Z.

5c` 4d P 3Z implies c ” d pmod 3q. Then ηpz, zq P 3Z implies cd ` d2 P 3Z. Therefore

0 ” cd ` d2 ” 2d2, pmod 3q. So c ” d ” 0, pmod 3q.

Let ` “ am0 ` bm1 “ z ´ dI ´ 3cuρ. Since d{3 P Z it follows that d
3 I P LG. Therefore

z{3´d{3I “ `
3`cuρ is equivalent to z{3 pmod pLG`LG,Kqq and in particular, it also generates

L{pLG ` LG,Kq. Since 3|c, it follows that `
3 ` cuρ is the desired generator.

Lemma 3.3.12. 9uρ is in every maximal GIIF of V3A.

Proof. Let L be a maximal integral form of V3A. If L “ LG ` LG,K, then LG,K Ď M (by 3.3.8)

and LG Ď ZI ` Z3uρ (by 3.3.5) so by maximality L “ ZI ` Z3uρ ` M, since this is GIIF

by 3.3.10. So we may suppose that L ­“ LG ` LG,K. By the previous lemma (3.3.11), let

z “ `
3 ` 3kuρ be in L with ` P LG,K and k P Z and such that L “ LG ` LG,K ` Zz. Note that

I P L so by 3.2.1 and 3.3.5, LG “ ZI ` Z3tuρ for some t P Z.

We claim that L1 “ Z9uρ ` L is still an integral form. Since L is a ring, it suffices to show

that L1 is closed under the action of adp9uρq.

From Notation 6.1, one can check that 3uρ acts as the identity on VG,K “ spanZpa0 ´

a1, a1 ´ a´1q (or we can check this computationally [›3A.5]). So 9uρ ¨ LG,K “ 3LG,K Ă L1,

and 9uρ ¨ z “ ``27kuρ P L1. Clearly, L1 contains I ¨9uρ. And L1 contains 9uρ ¨ p3tuρq “ tp9uρq.

Therefore 9uρ ¨ L Ď L1. And p9uρq2 “ 9p9uρq finishes the proof that L1 is a ring. By

maximality, L1 “ L.

Theorem 3.3.13. M ` ZI ` Z3uρ is the unique maximal GIIF in V3A.

Proof. M ` ZI ` Z3uρ is a GIIF by 3.3.10, and by 3.3.5 and 3.3.8, it is the unique maximal

GIIF L such that L “ LG ` LG,K.
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Let L be a maximal GIIF such that L ­“ LG ` LG,K. By 3.3.4, the index of LG ` LG,K in

L equals 3. By 3.3.11, there is an element z “ 1
3pam0 ` bm1q ` 3cuρ with a, b, c P Z such

that L “ Zz` LG ` LG,K. By the previous lemma, 9uρ P L, so we may replace z with a linear

combination of z and 9uρ to ensure that c “ 1, and still have that L “ Zz` LG ` LG,K.

By 3.2.1 and 3.3.5, LG “ ZI ` Z3tuρ for some positive integer t. Since LG contains 9uρ

we must have that t divides 3. If t “ 1, then z P LG ` LG,K, a contradiction. Therefore t “ 3.

Since LG,K Ď M (by 3.3.8 and Definition 3.3.9), we have LG ` LG,K Ď spanZpm0,m1, 9uρ, Iq.

The quotient L{pLG ` LG,Kq is additively generated by the coset of z. So we may let k be

such that z ¨ z ” kz pmod LG ` LG,Kq with 0 ď k ă 3. Then z ¨ z´ kz P spanZpm0,m1, 9uρ, Iq.

We compute the coefficients of z ¨ z´ kz with respect to the basis tm0,m1, 9uρ, Iu: [›3A.6]

z ¨ z´ kz “
1
9

`

20a2
´ 40ab´ 3ak ` 6a

˘

m0

`
1
9

`

6b´ 40ab` 20b2
´ 3bk

˘

m1

`
1
9
p9´ 52a2

` 52ab´ 52b2
´ 3kq p9uρq

`112pa2
´ ab` b2

qI.

All of these coefficients are integers; in particular, the numerators of the first three must be

integers divisible by 9. We want to analyze all integers a, b, k such that these three equivalences

are satisfied:

20a2
´ 40ab´ 3ak ` 6a ” 0, pmod 9q,

6b´ 40ab` 20b2
´ 3bk ” 0, pmod 9q,

9´ 52a2
` 52ab´ 52b2

´ 3k ” 0, pmod 9q.

Computer verification shows that the solution is all a, b, k such that a, b, k P 3Z [›3A.7].

Therefore z “ pa{3qm0 ` pb{3qm1 ` 3u3 P M ` ZI ` Z3uρ, and therefore L Ď M ` ZI `
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Z3uρ.
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3.4 The 3C algebra

Notation 3.4.1. The 3C Norton-Sakuma algebra V3C has a basis of axes (which are necessarily

idempotents) a´1, a0, a1 where for any choice of indices ti, j, ku “ t´1, 0, 1u,

ai ¨ a j “ 2´6
pai ` a j ´ akq.

([IPSS10, Table 3])

The dihedral group G generated by the τ-involutions has order 6 by [IPSS10, 2.20], and

so τpaq cannot be trivial for any axis a, since there is an automorphism of the algebra acting

transitively on the 3 axes. For any axis a, τpaqa “ a. It follows then that τpaiq interchanges

a j with ak. We define g “ τpa´1qτpa0q, so that |g| “ 3 and g permutes cyclicly the list

pa´1, a0, a1q one space to the right.

Definition 3.4.2. Define n0 “ 26pa1 ´ a´1q and n1 “ 26pa´1 ´ a0q “ gn0, and N “

spanZpn0, n1q. Again these notations were chosen because ni is negated by τpaiq.

For i “ 0, 1 define mi “
pg´1q

3 ni and M “ spanZpm0,m1q “
pg´1q

3 N.

Recall Definition 3.3.3, that LG “ tl P L : hl “ l, @h P Gu is the set of elements in L

fixed by G, and LG,K “ pLGqK where the K is with respect to the Killing form κ.

Lemma 3.4.3. For a GIIF L of V3C, LG,K is either sN or sM for some integer s.

Proof. Note that N is G-invariant, since it is the intersection of 26spanZpa´1, a0, a1q with

trace´1p0q.Also, elements in pV3Cq
G must be of the form λpa´1 ` a0 ` a1q, and therefore

LG X N “ 0. It follows that g (an element in G of order 3) acts with minimal polynomial

x2 ` x` 1 on N.

The situation is analogous to the 3A case. In particular, Lemma 3.3.6 applies, proving that

LG,K equals sN or s
3pg ´ 1qN “ sM for some rational number s. It suffices to verify that s

must be an integer in either of these two cases.
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Suppose sN is contained in an integral form of V3C. We compute ηpn0, n1q “ ´213371111

and κpn0, n1q “ ´122313311 [›3C.1].

Then ηpsn0q, sn1q “ ´213371111s2 P Z implies 3s P Z, and κpsn0, sn1q “ ´22313311s2 P

Z implies 2s P Z. Hence s P Z.

Next, suppose sM “ LG,K for some rational s. Since pg´1q2N “ r´3g`pg2`g`1qsN “

3N, we have:

pg´ 1qLG,K
“ pg´ 1qsM “

s
3
pg´ 1q2N “ sN.

By the previous paragraph, s P Z.

Theorem 3.4.4. M ` ZI is the unique maximal GIIF of V3C.

Proof. Observe that to show M ` ZI is G-invariant it suffices to prove that M is. In fact, for

any G-invariant set S , pg´ 1qS will also be G-invariant. To see this write G “ xg, ty with t

an element of order 2 such that tgt “ g´1. Then tpg ´ 1q “ pg´1 ´ 1qt “ ´pg ´ 1qg2t and

similarly gpg´ 1q “ pg´ 1qg. This proves that pg´ 1qS will be G-invariant, and in particular

proves that M “
pg´1q

3 N is G-invariant.

We will verify that M ` ZI is an integral form by computing the matrix of adpm0q with

respect to the basis B “ pm0,m1, Iq [›3C.2].

radpm0qsB “

”

20 ´20 1
0 ´20 0

924 ´462 0

ı

.

So M`ZI “ spanZpBq is closed under the multiplication by m0. Since M`ZI is G-invariant

and gm0 “
1
3pg´ 1qpgn0q “ m1, it follows that M ` ZI is closed under multiplication by m1

as well. So M ` ZI is a ring.

Let L be any maximal integral form, and fix any w P L. Write w “ αm0` βm1` γI where

α, β, γ P Q. Then tracepwq “ 3γ is an integer. Since I P L (Lemma 2.2.8), it follows that
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3w´ 3γI “ 3αm0 ` 3βm1 P LX spanQpMq “ LG,K.

By the previous lemma (Lemma 3.4.3), LG,K Ď M. So 3α and 3β are integers. We compute

tracepw ¨ wq “ 2772α2 ´ 2772αβ` 2772β2 ` 3γ2, which must be an integer [›3C.3].

Observe that 2772 is divisible by 9, so 2772α2, 2772αβ, and 2772β2 are integers. So

tracepw ¨ wq P Z implies 3γ2 P Z which in turn implies γ P Z.

Now w ´ γI “ αm0 ` βm1 P L X spanQpMq “ LG,K Ď M. Therefore w P M ` ZI.

Therefore M ` ZI is the unique maximal GIIF.

For the 3C case, we can say more about the GIIFs. The following is a classification all

GIIFs in V3C, partitioned into three 2-parameter families.

Proposition 3.4.5. The set of GIIFs of V3C is given by the following list, consisting of three

types:

sM ` ZtI ps, t P Zą0, t|462s2
q,

sN ` ZtI ps, t P Zą0, t|1386s2
q,

sN ` Z
` sn0´sn1

3 ` tI
˘

ps, t P Zą0, t|462s2 and
´

462s2

t

¯

` s` t ” 0 pmod 3qq.

Furthermore, no two distinct GIIFs on this list are equal.

Proof. Suppose L is a GIIF of V3C with L “ LG ` LG,K. Then LG “ ZtI for some integer

t ą 0 and LG,K is either sN or sM (by 3.4.3) for a unique positive integer s. We need to verify

that sM ` ZtI and sN ` ZtI are integral forms exactly under the conditions described.

The additive group sM ` ZtI is an integral form if and only if it is closed under the action

of adpsm0q and adpsm1q. We compute the matrix of these endomorphisms with respect to the

basisMps, tq defined to beMps, tq “ tsm0, sm1, tIu [›3C.4]:

radpsm0qsMps,tq “

„ 20s ´20s t
0 ´20s 0

924s2

t ´
462s2

t 0



and radpsm1qsMps,tq “

„

´20s 0 0
´20s 20s t

´
462s2

t
924s2

t 0



With s, t P Zą0, these entries are all integers if and only if t divides 462s2.
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Similarly, sN ` ZtI is a GIIF if and only if it is closed under the action of adpsn0q and

adpsn1q, and so we compute the matrices of these endomorphisms with respect to the basis

Nps, tq defined to be tsn0, sn1, tIu [›3C.5]:

radpsn0qsNps,tq “

„ 20s 20s t
40s ´20s 0

2772s2

t ´
1386s2

t 0



and radpsn1qsNps,tq “

„

20s 20s t
40s ´20s 0

2772s2
t ´ 1386s2

t 0



.

Since s, t P Zą0, all of these coefficients are integers if and only if t divides 1386s2.

So every GIIF L with L “ LG ` LG,K is one of the first two types, and each subgroup of

the first two types is a GIIF.

So it remains to enumerate the GIIFs L of V3C such that L Ľ LG ` LG,K. Let L be a such

a GIIF. First I claim that rL : LG ` LG,Ks divides 3. To see this, note that Vg
3C “ QI “ VG

3C.

Therefore g acts without fixed points on L{LG. Since |g| “ 3 and g acts nontrivially, g acts

with charactersistic polynomial x2 ` x ` 1 on L{LG. Hence g ´ 1 acts with determinant 3

on L{LG. So pg ´ 1qL ` LG has index 3 in L. This completes the claim, since pg ´ 1qL is

orthogonal to LG and so equals LG,K.

Clearly, L{LG,K is torsion free (for if x P L and nx P LG,K then x K LG hence x P LG,K) so

any Z-basis of LG,K can be extended to a basis of L.

Consider the case that LG,K “ sM. Let sm0, sm1,w be a Z-basis of L (extended from the

Z-basis of LG,K). We may write w “ α
3 sm0 `

β

3 sm1 ` tI for some t P Q and some integers

α, β (because 3w P LG ` LG,K). Furthermore, we may add elements in sM to w to ensure that

α, β P t0, 1, 2u (and not both zero, since then L “ sM ` ZtI). We now compute the matrices

of τpa´1q and τpa0q with respect to the basis sm0, sm1,w [›3C.6]:

rτpa0qspsm0,sm1,wq “

„

1 ´1 ´
β
3

0 ´1 ´ 2β
3

0 0 1



and rτpa´1qspsm0,sm1,wq “

„

´1 0 ´ 1
3 p2αq

´1 1 ´ α
3

0 0 1



For these entries to all be integers clearly 3 divides both α and β. So α “ β “ 0, which

would imply L “ sM ` ZtI “ LG ` LG,K, a contradiction. Therefore, there is no such GIIF L

with L ­“ LG ` LG,K and LG,K “ sM.
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Finally, we consider the case that L ­“ LG ` LG,K and LG,K “ sN. As before, we may

extend the basis sn0, sn1 of LG,K to a Z-basis sn0, sn1,w of L. In fact, by adding multiples of

sn0 or sn1 if necessary, we may assume that there exists such a w with w “ α
3 sn0 `

β

3 sn1 ` tI,

for some α, β P t´1, 0, 1u and t P Q. We compute the matrix of τpa´1q and τpa0q with respect

to the basis sn0, sn1,w [›3C.7]:

rτpa0qspsn0,sn1,wq “

„

´1 1 1
3 pβ´2αq

0 1 0
0 0 1



and rτpa´1qspsn0,sn1,wq “

„

0 ´1 1
3 p´α´βq

´1 0 1
3 p´α´βq

0 0 1



We see that spanZpsn0, sn1,wq is invariant under xτpa´1q, τpa0qy “ G if and only if α ” ´β

pmod 3q, which implies α “ ´β. So α “ ´β ­“ 0 or else w “ tI and L “ LG ` LG,K. Without

loss of generality, we may take α “ ´β “ 1, for if not, then replace w by ´w.

Define the ordered basis Bps, tq “ psn0, sn1,
sn0´sn1

3 ` tIq and set Bps, tq “ spanZpBps, tqq.

The computation done above shows that Bps, tq is G-invariant. We have shown that any GIIF

L with L ­“ LG ` LG,K equals Bps, tq for some integers s, t ą 0. It suffices now to show

that Bps, tq is an integral form exactly under the conditions described in the statement of the

proposition.

The element τpa1q P G acts on Bps, tq by interchanging n0 “ 64pa´1 ´ a1q with ´n1 “

64pa´1 ´ a0q and by fixing I. So Bps, tq will be closed under adpsn0q if and only if it is closed

under adpsn1q.

So Bps, tq will be an integral form if and only if the matrices of adpsn0q and adpwq [where

w “ 1
3psn0´sn1q`tI] with respect to the basisBps, tq “ psn0, sn1,wq have integer components.

We compute these matrices here:

radpsn0qsBps,tq “

»

—

—

—

—

–

20s´ 924s2

t
462s2

t ` 20s t ´ 462s2

t

924s2

t ` 40s ´462s2

t ´ 20s 462s2

t ` 20s

2772s2

t ´1386s2

t
1386s2

t

fi

ffi

ffi

ffi

ffi

fl
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and

radpwqsBps,tq “

»

—

—

—

—

–

t ´ 462s2

t
462s2

t ` 20s ´308s2

t ´ 20s
3 `

t
3

462s2

t ` 20s t ´ 462s2

t
308s2

t ` 20s
3 ´

t
3

1386s2

t ´1386s2

t
924s2

t ` t

fi

ffi

ffi

ffi

ffi

fl

These 18 expressions being integers is equivalent to the following two expressions being

integers: 462s2{t and ´pp20sq{3q ´ p308s2q{t ` t{3. These two are sufficient because in the

16 expressions that do not equal ´p20sq{3´ p308s2q{t ` t{3, the only possibly non-integer

terms are integer multiples of 462s2{t: namely 924s2{t, 1386s2{t, and 2772s2{t.

If 462s2{t is an integer, then ´pp20sq{3q ´ p308s2q{t ` t{3 P Z if and only if ps` tq{3`

152s2{t P Z; this is because the difference of these two is 7s ` 462s2{t. The condition

ps` tq{3` 152s2{t P Z is equivalent to s`t`462s2{t
3 P Z, i.e. s` t ` p462s2{tq ” 0 pmod 3q.

So Bps, tq (s, t P Zą0) is a GIIF if and only if t|462s2 and s` t ` p462s2{tq ” 0 pmod 3q.

It remains to prove that no two of the three types of GIIF in the list are equal. Let L

be a GIIF. If LG,K “ sM for a positive integer s, then it is of the first type, s is uniquely

determined by L, and t is equal to 1{3 times the unique positive additive generator of the

image of trace : L Ñ Z.

If LG,K “ sN for a positive integer s and L “ LG ` LG,K, then L is of the second type, s is

uniquely determined by L, and t again equals 1{3 the unique positive generator of the image

of trace : L Ñ Z.

If LG,K “ sN for a positive integer s and L ­“ LG ` LG,K, then L is of the third type, s is

uniquely determined by L, and t again is 1{3 the unique positive generator of the image of

trace : L Ñ Z.
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3.5 The 4A algebra

Notation 3.5.1. The Norton-Sakuma algebra V4A of type 4A has a basis consisting of four

axes a´1, a0, a1, a2 and another (non-axis) idempotent vρ, satisfying:

a0 ¨ a1 “ 2´6
p3a0 ` 3a1 ` a2 ` a´1 ´ 3vρq

a0 ¨ a2 “ 0.

a0 ¨ vρ “ 2´4
p5a0 ´ 2a1 ´ a2 ´ 2a´1 ` 3vρq.

([IPSS10, Table 3]). There is an automorphism σ of the algebra that fixes vρ and cyclicly per-

mutes the list pa´1, a0, a1, a2q one space to the right. This uniquely determines the remaining

products. [IPSS10, 2.20].

Compute the matrix of τpa0q with respect to this given basis B of V4A, and this verifies

that τpa0q fixes a0, a2, and vρ and it interchanges a´1 with a1 [›4A.1]:

rτpa0qsB “

«

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

ff

Define ai for any i P Z by defining ai “ ai`4 for all i P Z; in other words, we only consider

the subscripts of ai modulo 4. If σ P AutpVq then τpa0q is a polynomial in adpa0q (B.2.2), and

therefore σpτpa0qvq “ τpσa0qpσvq. Take σ to be the automorphism of V such that ai ÞÑ ai`1

(i “ ´1, 0, 1, 2) and which fixes vρ. Repeatedly applying σ shows that τpaiq fixes ai, ai`2 and

vρ and interchanges ai´1 with ai`1.

In particular then, τpa0q “ τpa2q and τpa1q “ τpa´1q. Define τ0 “ τpa0q “ τpa2q and set

τ1 “ τpa´1q “ τpa1q. Note that τ1τ0 “ τ0τ1. So G “ xτ0, τ1y – pZ{2Zq2.

Definition 3.5.2. For any finite abelian group A and any ZrAs-module L, define the total

eigenlattice telpL, Aq “
ř

χPHompA,C˚q Lχ, where Lχ “ tx P L : a ¨ x “ χpaqx @a P Au. This

makes telpL, Aq into an HompA,C˚q-graded algebra.
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Definition 3.5.3. For i “ 0, 1 define ni “ 4pai´1 ´ ai`1q and fi “ n2
i “ 16pai´1 ` ai`1q.

For brevity, for any selection of symbols εi P t`,´u we let Lε0,ε1 denote Lχ where χ is

the linear character of G defined by χpτiq “ εi1 for i “ 0, 1. So n0 P pV4Aq
´,` because

τ0pn0q “ ´n0 and τ1pn0q “ n0. Similarly, n1 P pV3Aq
`,´. Using the HompG,C˚q-grading, we

have fi P pV3Aq
`,`. These notations were chosen because the n terms are negated and the f

terms are fixed.

Proposition 3.5.4. For either permutation of indices ti, ju “ t0, 1u, the following products

hold in V4A:

ni ¨ ni “ fi n j ¨ ni “ 0

fi ¨ ni “ 16ni f j ¨ ni “ ni

fi ¨ fi “ 16 fi f j ¨ fi “ 8 fi ` 8 f j ´ 120I.

and

τipniq “ ´ni τipn jq “ n j.

Each of f0 and f1 is fixed by G.

Proof. Recall that σ is the automorphism of V sending ai ÞÑ ai`1 (with the indices considered

modulo 4) and which fixes vρ. Then σpn0q “ n1, σpn1q “ ´n0 and σ interchanges f0 with f1.

It follows that τ0 ˝ σ interchanges n0 with n1 and interchanges f0 with f1. Therefore it suffices

to prove the desired products for i “ 0 and j “ 1.

Note that n2
0 “ f0 by definition. We verify the remaining five products by computer

calculation [›4A.2].

Corollary 3.5.5. The list pI, f0, f1, n0, n1q is a Q-basis of V4A. For i “ 0 or 1, tracep fiq “ 41

and tracepniq “ 0.
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Proof. When expressed in the basis a´1, a0, a1, a2, vρ, it is evident that the list of 5 elements

are linearly independent:

I “
4
5
pa´1 ` a0 ` a1 ` a2q `

2
5

vρ,

f0 “ 16pa´1 ` a1q,

f1 “ 16pa0 ` a2q,

n0 “ 4pa´1 ´ a1q,

n1 “ 4pa0 ´ a2q.

With respect to this ordered basis, the trace of fi can be computed from the computations

previous result: the components along the diagonal of the matrix of adp fiq are 0,16,8,16,1

which sum to 41. We can see directly that ni “ 4pai´1 ´ ai`1q has trace 0, since each a j is

conjugate under the automorphism group of V4A.

Proposition 3.5.6. Define F “ spanZp f0, f1, Iq. For a GIIF L of V4A, L`,` Ď F.

Proof. pV4Aq
`,` is three dimensional, with Q-basis f0, f1, I (by Corollary 3.5.5).

The adjoint action of any v P pV4Aq
`,` fixes the one-dimensional subspaces pV4Aq

´,` “

Qn0 and pV4Aq
`,´ “ Qn1. For i “ 0, 1, we define the linear functional λi : V`,` Ñ R by the

formula v ¨ ni “ λipvqni. And for clarity of notation in what follows, define λt : V`,` Ñ Q by

λtpvq “ Trpadpvqq. Using the products in 3.5.4, we compute:

λ0p f0q “ 16 λ0p f1q “ 1 λ0pIq “ 1 (3.2)

λ1p f0q “ 1 λ1p f1q “ 16 λ1pIq “ 1 (3.3)

λtp f0q “ 41 λtp f1q “ 41 λtpIq “ 5. (3.4)
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But then:

det

¨

˚

˚

˚

˚

˝

16 1 1

1 16 1

41 41 5

˛

‹

‹

‹

‹

‚

“ 45. (3.5)

This being nonzero gives another proof that that f0, f1, and I are linearly independent in

pV4Aq
`,` and also that λ0, λ1, λt is linearly independent in the dual space rpV4Aq

`,`s˚. Let

v0, v1, vt be a basis of pV4Aq
`,` dual to the basis λ0, λ1, λt of rpV4Aq

`,`s˚.

Let L be a G-invariant integral form. Define W “ spanZpv0, v1, vtq. We aim to show that

L`,` Ď W. Suppose w P L`,`. Write w “ av0 ` bv1 ` cvt for some a, b, c P Q. Then:

w ¨ f0 “ a f0 w ¨ f1 “ b f1 tracepwq “ c.

Since w is in a integral form, a, b, and c are integers (by Proposition 2.1.5). Thus w P W, as

desired.

Note that L`,` is a subalgebra of L. So w2 is also in W. We compute the coefficients of w2

in this basis v0, v1, vt. (To do this in Mathematica, we first define v “ α0 f0 ` α1 f1 ` α3I, and

then solve for the scalars αi needed for v to equal v j for p j “ 0, 1, tq. [›4A.3])

w ¨ w “
1

15

`

159a2
` 24ap13b´ 5cq ` p13b´ 5cq2

˘

v0

`
1

15

`

169a2
` 26ap12b´ 5cq ` 159b2

´ 120bc` 25c2
˘

v1

`

„

1
3
p169a2

` 322ab` 169b2
q ´ 44pa` bqc` 9c2



vt

These three coefficients must be integers. In particular, the first value being an integer

implies that 3 must divide p13b´ 5cq2, or equivalently b ” ´c, pmod 3q.

The second value being an integer implies that 5 divides 169a2`159b2`26ap12bq, which
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can be simplified to:

0 ” 169a2
` 159b2

` 26ap12bq ” ´a2
´ b2

` 2ab ” ´pa´ bq2 pmod 5q

So a ” b pmod 5q.

The third value being an integer implies that 3 divides 169a2 ` 322ab ` 169b2, which

gives

0 ” 169a2
` 322ab` 169b2

” a2
` ab` b2

” pa´ bq2 pmod 3q.

So a ” b, pmod 3q.

Let F 1 “ tav0 ` bv1 ` cvt : a, b, c P Z with a ” b pmod 15q and b ” ´c pmod 3qu. We

have shown that for any GIIF L, L`,` Ď F 1.

It suffices to show that F 1 “ F. Note that F Ď F 1, since F ` Zn0 ` Zn1 is an integral form

(by 3.5.4), and F is its G-fixed point subalgebra.

Define a Z-linear map W Ñ Z{15Z‘Z{3Z by av0` bv1` cvt ÞÑ pa´ b pmod 15q, b` c

pmod 3qq. This is surjective, with kernel F 1. So rW : F 1s “ 45.

The computation done in (3.2) shows that:

f0 “ 16v0 ` v1 ` 41vt,

f1 “ v0 ` 16v1 ` 41vt,

I “ v0 ` v1 ` 5vt,

and the determinant computed in (3.5) shows that rW : Fs “ 45. So W Ď F Ď F 1, and

rF : Ws “ rF 1 : Ws. Therefore F “ F 1, which completes the proof.

The following is essentially a restatement of Lemma A.2 in [GL11] (This article was

originally announced in [GL08]) with a twist by an automorphism. The proof is a modified

version of the proof found there. First some notation:
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Notation 3.5.7. For an additive group A and some r P EndpAq, define Ar “ ta P A : ra “ au.

This can be iterated: for example, Ar,´s “ ta P A : ra “ a and sa “ ´au.

Lemma 3.5.8. Suppose that a four group D “ xr, sy – pZ{2Zq2 acts on the abelian group A.

If If A´r,´s “ 0 then A{ telpA,Dq is an elementary abelian 2-group.

Proof. For a P A, ps´ 1qpr ´ 1qa P A´r,´s “ 0.

From this we can conclude several things. First, pr ´ 1qa P A´r,s and similarly ps´ 1qa P

Ar,´s. We can also conclude that:

pr ´ 1qpr ` sqa “ p1` rs´ r ´ sqa “ pr ´ 1qps´ 1qa “ 0.

Similarly, ps´ 1qpr ` sqa “ 0. Therefore pr ` sqa P Ar,s.

The proof is complete by noting that 2a “ ´pr´1qa´ps´1qa`pr` sqa P telpA,Dq.

Corollary 3.5.9. For any rank 5 G-invariant discrete subgroup L of the V4A, the quotient

L{ telpL,Gq is isomorphic to a subgroup of the Klein four group.

Proof. Note that L´,´ “ 0 as can be seen by noting that V4A is five dimensional and dim V`,`4A `

dim V´,`4A ` dim V`,´4A “ 3` 1` 1 “ 5 by Proposition 3.5.4. So we can apply the previous

lemma to conclude that L{ telpL,Gq is an elementary abelian 2-group.

The Q-basis f0, f1, I, n0, n1 of V4A gives rise to a full flag of V4A. By Lemma 2.1.4, there is

a Z-basis of L compatible with this flag. The first three elements in this basis are in LG, hence

the rank of L{ telpL,Gq is at most two.

Theorem 3.5.10. Zn0 ` Zn1 ` F is the unique maximal GIIF in V4A.

Proof. Let L be a maximal GIIF of V4A. Write telpL,Gq “ Zs0n0 ` Zs1n1 ` L`,` for some

s0, s1 P Q. By 3.5.6, L`,` Ď F. The products in 3.5.4 show that (for i “ 0, 1) psiniq
2 “ s2

i fi,

which is an element in L`,` Ď F. Since f0 and f1 are primitive elements of the free abelian

group F, we have s2
0, s

2
1 P Z which implies s0, s1 P Z. Therefore telpL,Gq Ď Zn0 ` Zn1 ` F.
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So if L “ telpL,Gq we are done. If not, let w P L with w R telpL,Gq. By 3.5.9,

2w P telpL,Gq Ď Zn0`Zn1` F, so we may write w “ 1
2pan0` bn1` c f0` d f1` eIq where

a, b, c, d, e P Z. By maximality, I P L (Lemma 2.2.8). Adding an integer multiple of I to w if

necessary, we may assume that e P t0, 1u.

Note that w ¨ w P L so 2w ¨ w P telpL,Gq Ď Zn0 ` Zn1 ` F. We compute the coefficients

of 2w ¨ w with respect to the basis n0, n1, f0, f1, I [›4A.4]:

2w ¨ w “p16ac` ad ` aeq n0 ` pbc` 16bd ` beq n1

`

ˆ

a2

2
` 8c2

` 8cd ` ce
˙

f0 `

ˆ

b2

2
` 8cd ` 8d2

` de
˙

f1 `

ˆ

e2

2
´ 120cd

˙

I

All 5 of these coefficients must be integers. Therefore a, b, e P 2Z. Thus e “ 0. Under the

condition that e “ 0, we compute κpw,wq [›4A.5]:

κpw,wq “ 8a2
` 8b2

`
577c2

4
` 56cd `

577d2

4

This is an integer if and only if c2 ` d2 ” 0 pmod 4q which happens if and only if c, d P 2Z.

This completes the proof that w P Zn0 ` Zn1 ` F.

‘

3.6 The 4B algebra

Notation 3.6.1. The 4B Norton-Sakuma algebra V4B has a basis of axes a´1, a0, a1, a2 and aρ2 ,

with:

a0 ¨ a1 “ 2´6
pa0 ` a1 ´ a´1 ´ a2 ` aρ2q,

a0 ¨ a2 “ 2´3
pa0 ` a2 ´ aρ2q,

a0 ¨ aρ2 “ 2´3
pa0 ` aρ2 ´ a2q.
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([IPSS10, Table 3]) There is an algebra automorphism φ of V4B fixing aρ2 and cyclicly

permuting the list pa´1, a0, a1, a2q one space to the right; this determines the remaining

products [IPSS10, 2.20].

Define τi “ τpaiq. We compute the matrix of τ0 with respect to the given basis B of V4B,

and this verifies that τ0 fixes a0, a2, and aρ2 and it interchanges a´1 with a1 [›4B.1].

rτpa0qsB “

«

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

ff

Since τpaq is a polynomial in adpaq (Lemma 2.2.9), we have that φ ˝ τpaq “ τpφpaqq ˝ φ.

Applying φ repeatedly shows that τpφka0q fixes φka0, φ
k`2a0, and aρ2 and it interchanges

φk´1a0 with φk`1a0.

In particular, τ0 “ τ2 fixes a0 and a2 and interchanges a´1 with a1, and similarly τ´1 “ τ1

fixes a´1 and a1 and interchanges a0 with a2. We use a computer to verify that τpaρ2q acts

trivially [›4B.2]. Therefore G “ xτ0, τ1y is isomorphic to the four group.

Recall Definition 3.5.2 which for finite abelian group A acting on a finite rank free group

L, defines the total eigenlattice telpL, Aq “
ř

χPHompA,C˚q Lχ. For any GIIF L, telpL,Gq is a

HompG,C˚q-graded subrng of L.

Definition 3.6.2. For i “ 0, 1 define ni “ 8pai´1 ´ ai`1q and fi “
1

60n2
i ´

7
15aρ2 .

For brevity, we denote by pε0, ε1q with εi P t`,´u, the linear character χ of G defined by

χpτiq “ εi1 for i “ 0, 1. So n0 P V´,` and n1 P V`,´. Using the HompG,C˚q-grading, we

have fi P V`,` for i “ 0, 1. These notations were chosen because the n terms are negated and

the f terms are fixed.

Lemma 3.6.3. For either permutation of indices ti, ju “ t0, 1u, the following products hold

48



in V4B:

ni ¨ ni “ 32 fi ´ 28 f j ` 28I n j ¨ ni “ 0

fi ¨ ni “
3
4

ni f j ¨ ni “ 0

fi ¨ fi “ fi f j ¨ fi “ 0

Proof. Let φ be the automorphism of V4B that sends ai ÞÑ ai`1 for i “ ´1, 0, 1, sends

a2 ÞÑ a´1 and which fixes aρ2 . Then φpn0q “ n1, φpn1q “ ´n0 and φ interchanges f0 with f1.

It follows that τ0 ˝ φ interchanges n0 with n1 and interchanges f0 with f1. Therefore it suffices

to prove the desired products for i “ 0 and j “ 1. We verify the six products by computer

calculation [›4B.3].

Proposition 3.6.4. f0, f1, and aρ2 are three idempotents whose pairwise products are zero.

Therefore V`,` is associative and isomorphic to Q3 as a ring. And I “ f0 ` f1 ` aρ2 .

Proof. We verify that I “ f0 ` f1 ` aρ2 [›4B.4]. The previous result shows that f0 and f1

are idempotents whose product is zero, and aρ2 is an idempotent (since it is an axis). Finally,

we compute fi ¨ aρ2 “ fipI ´ f0 ´ f1q “ fi ´ fi “ 0 for i “ 0, 1.

This also shows that f0, f1, aρ2 are linearly independent, because if one idempotent

were in the linear span of the other two, then it would square to zero. Hence V`,` “

spanQp f0, f1, aρ2q – Q3.

Corollary 3.6.5. The list p f0, f1, I, n0, n1q is a Q-basis of V4B. For either i “ 0 or i “ 1,

tracepniq “ 0 and tracep fiq “
7
4 .

Proof. It was shown that f0, f1, I are linearly independent (Proposition 3.6.4). Note that

t f0, f1, Iu Ď V`,`4B , n0 P V´,`4B , and n1 P V`,´4B . Therefore p f0, f1, I, n0, n1q is linearly indepen-

dent and so a Q-basis of V4B.

Based on the products in Lemma 3.6.3, the diagonal components of adp fiq with respect

to this basis are 1, 0, 0, 3
4 , 0 which sum to 7

4 . Since ni “ 8pai´1 ´ ai`1q, we can see that
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tracepniq “ 0.

Corollary 3.6.6. For any GIIF L of the 4B algebra, telpL,Gq Ď spanZpn0, n1, 4 f0, 4 f1, Iq.

Proof. By Lemma 3.1.4, L`,` is contained in spanZp f0, f1, aρ2q, which equals spanZp f0, f1, Iq

since I “ f0 ` f1 ` aρ2 (by 3.6.4).

Suppose w “ a f0 ` b f1 ` cI (a, b, c P Z) is in L`,`. The products in Lemma 3.6.3 imply

that w ¨ n0 “ p3a{4 ` cqn0 and w ¨ n1 “ p3b{4 ` cqn1. Both of these eigenvalues must be

integers (by 2.1.5), therefore 4 divides a and 4 divides b.

Recall that V´,`4B “ spanQpn0q and so L´,` equals Zpn0 for some p P Q. We compute

κppn0, pn0q “ 104p2 and ηppn0, pn0q “ 147p2 [›4B.5]. So both 104p2 and 147p2 are

integers. Since gcdp104, 147q “ 1 this implies that p2 P Z and therefore p P Z. So if pn0 is in

an integral form, then p P Z.

Recall (as in the proof of 3.6.3) that the automorphism τ1 ˝ φ interchanges n0 and n1.

Therefore, the arguments just given for n0 also applies to n1, and so L`,´ Ď Zn1.

The 4B algebra and the 4A algebra are isomorphic as QrGs-modules (both dim V`,` “ 3,

dim V´,` “ dim V`,´ “ 1 and V´,´ “ 0). This isomorphism and Corollary 3.5.9 gives the

following:

Proposition 3.6.7. For any rank 5 G-invariant discrete subgroup L of the 4B algebra,

L{ telpL,Gq is isomorphic to a subgroup of the four group.

Theorem 3.6.8. spanZpn0, n1, 4 f0, 4 f1, Iq is the unique maximal GIIF of V4B.

Proof. The computations done in 3.6.3 show that Q def
“ spanZpn0, n1, 4 f0, 4 f1, Iq is an integral

form, and it is clearly closed under the action of τ0 and τ1 since in fact Q “ telpQ,Gq. Let

L be a maximal GIIF of V4B. We aim to show that L Ď Q. If L “ telpL,Gq, then we are

done, by Corollary 3.6.6. Otherwise, there is some w P Lz telpL,Gq. Proposition 3.6.7 and

Corollary 3.6.6 ensure that w “ 1
2pan0`bn1`4c f0`4d f1` eIq, for some integers a, b, c, d, e.

By maximality, I P L (Lemma 2.2.8). Therefore we may add an integer multiple of I to w to

ensure that e P t0, 1u, and we still have that w P Lz telpL,Gq.
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Now w ¨ w P L and therefore 2w ¨ w P telpL,Gq Ď spanZpn0, n1, 4 f0, 4 f1, Iq. We compute

the coefficients of 2w ¨ w in the basis n0, n1, 4 f0, 4 f1, I [›4B.6]:

2w ¨ w “p3ac` aeq n0 ` p3bd ` beq n1

`

ˆ

4a2
´

7b2

2
` 2c2

` ce
˙

p4 f0q `

ˆ

´
7a2

2
` 4b2

` 2d2
` de

˙

p4 f1q

`

ˆ

14a2
` 14b2

`
e2

2

˙

I

All of these coefficients must be integers. Therefore a, b, e P 2Z. So e “ 0.

Next compute κpw,wq “ 26a2 ` 26b2 ` 25c2

4 ` 25d2

4 [›4B.7]. This is an integer if and

only if c2 ` d2 ” 0 pmod 4q which is equivalent to c, d P 2Z. This completes the proof that

w P spanZpn0, n1, 4 f0, 4 f1, Iq.

3.7 The 5A algebra

Notation 3.7.1. The Norton-Sakuma algebra V5A of type 5A has a basis consisting of five

axes (which are therefore idempotents) a´2, a´1, a0, a1, a2 together with a non-idempotent wρ

which satisfy the following products:

a0 ¨ a1 “ 2´7
p3a0 ` 3a1 ´ a2 ´ a´1 ´ a´2q ` wρ,

a0 ¨ a2 “ 2´7
p3a0 ` 3a2 ´ a1 ´ a´1 ´ a´2q ´ wρ,

a0 ¨ wρ “ 7¨2´12
pa1 ` a´1 ´ a2 ´ a´2q ` 2´5

¨7wρ,

wρ ¨ wρ “ 2´19
¨52
¨7 pa´2 ` a´1 ` a0 ` a1 ` a2q.

([IPSS10, Table 3].) There is an automorphism g of this algebra which fixes wρ and permutes

cyclicly the list pa´2, a´1, a0, a1, a2q one space to the right. This uniquely determines the

remaining products [IPSS10, Lemma 2.20].

We compute the matrix of τpa0qwith respect to the ordered basisA “ pa´2, a´1, . . . , a2,wρq
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[›5A.1]:

rτpa0qsA “

»

–

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

fi

fl

So τpa0q fixes wρ and a0 and it interchanges a´1 with a1 and also interchanges a´2 with a2.

Since τpa0q is a polynomial in adpa0q (Lemma 2.2.9), we have that gkpτpa0qyq “ τpgka0qpgkyq.

Define ai for i P Z by ai “ ai`5 for all i P Z (or equivalently: consider the indices modulo 5).

Then for all i, τpaiq interchanges ai´1 with ai`1, interchanges ai´2 with ai`2, and fixes wρ and

ai.

Therefore the subgroup G of AutpV5Aq generated by tτpaq : a an axisu is isomorphic to

the dihedral group of order 10, and g “ τpa´2qτpa0q is the element of order 5 in AutpV5Aq

which fixes wρ and sends ai ÞÑ ai`1 (where the indices are considered modulo 5).

Definition 3.7.2. Define z “ 1
2 I ` 2048

7 wρ, and for ´2 ď i ď 2 define mi “ 14I ´ 64ai. Let Q

be the ordered list pI, z,m´1,m0,m1,m2q. Note that wρ and each ai (´2 ď i ď 2) are contained

in spanQpQq which implies Q is a basis of V5A. Define Q “ spanZpQq.

Proposition 3.7.3. The additive group Q is in fact a GIIF of V5A.

Proof. Note that I “
ř2

i“´2
35
32ai which implies

ř2
i“´2 mi “ 0. Therefore Q also con-

tains m´2. Since G acts transitively on the set of axes, G also acts transitively on the set

tm´2,m´1, . . . ,m2u. So we can describe Q as spanZpI, zq ` spanZpG ¨ m0q. This shows that Q

is G-invariant, since G acts trivially on z and I.

We compute the matrices of adpzq and adpm0q with respect to the Z-basis B of Q given in

Definition 3.7.2 [›5A.2]:

radpzqs
B
“

»

–

0 31 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 ´1
0 0 0 1 1 ´1
0 0 ´1 1 1 0
0 0 ´1 0 1 0

fi

fl radpm0qsB “

»

–

0 0 ´182 700 ´182 ´168
0 0 14 0 14 ´14
0 1 12 0 0 0
1 1 12 ´36 12 12
0 1 0 0 12 0
0 0 0 0 0 12

fi

fl

These being integer matrix shows that Q is closed under multiplication by z and by m0. Since
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Q is G-invariant, it is therefore also closed under multiplication by hm0 for all h P G and

therefore Q is closed under multiplication by each of the mi. So Q is a ring.

Lemma 3.7.4. z2 “ 31I ` z. Also for a, b P Q, spanZpI, aI ` bzq is a ring if and only if

a, b P 1
5Z and 2a` b P Z.

Proof. The fact that z2 “ 31I ` z is an easy verification, or it follows from computing the

matrix of adpzq in the the proof of Proposition 3.7.3. For the second result, write x “ aI ` bz

for some a, b P Q and suppose that spanZpI, xq is a ring. Then we have:

x ¨ x “ p´a2
´ ab` 31b2

qI ` p2a` bqx (3.6)

Therefore both ´a2 ´ ab` 31b2 and 2a` b are integers. Hence so is 4p´a2 ´ ab` 31b2q `

p2a` bq2 “ 125b2. This implies that 5b P Z. So 2a “ p2a` bq ´ b P 1
5Z which implies that

a P 1
10Z.

The following is also an integer:

`

´a2
´ ab` 31b2

˘

´ 31p2a` bq2 “ ´125apa` bq “ 5p5aqp5a` 5bq.

If 5a P 1
2ZzZ then 5p5aqp5a` 5bq would not be an integer. Thus 5a P Z.

Conversely, suppose that a, b P 1
5Z and 2a ` b P Z. Again set x “ aI ` bz. We aim

to show that spanZpI, xq is a ring. According to equation (3.6) expressing x ¨ x in terms of

I and x, we just need to verify that ´a2 ´ ab ` 31b2 is an integer. Multiplying it by four

gives 4p´a2 ´ ab ` 31b2q “ 125b2 ´ p2a ` bq2, which is an integer. On the other hand,

the assumptions imply 25p´a2 ´ ab ` 31b2q P Z. Since gcdp25, 4q “ 1, this proves that

´a2 ´ ab` 31b2 P Z.

Lemma 3.7.5. For any GIIF L of V5A, LG Ď spanZpI, zq.

Proof. Recall that V5A decomposes as a G-module as spanQpI, zq ‘ spanQpG ¨ m0q where

G ¨m0 “ tm´2,m´1,m0,m1,m2u and
ř2

i“´2 mi “ 0. It follows that spanQpG ¨m0q contains no
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G-fixed points, and therefore VG
5A “ spanQpI, zq.

To prove the result, we may assume that L is a maximal GIIF, and in particular I P L

(Lemma 2.2.8). Since I is primitive in LG (meaning I{k is not in LG for any integer k), we

may write LG “ spanZpI, xq for some x “ aI ` bz where the previous result (Lemma 3.7.4)

implies that a, b P 1
5Z and 2a` b P Z. We need to show that a, b P Z.

The characteristic polynomial of the action of adpxq on spanZpmi : ´2 ď i ď 2q is given

by [›5A.3]: pt2 ´ p2a` bqt ` a2 ` ab´ b2q
2
.

By the variant of Gauss’ Lemma (2.1.7), a2 ` ab´ b2 P Z. Write A “ 5a and B “ 5b, so

that A, B P Z. Then A2 ` AB´ B2 ” 0 pmod 25q. This will imply that A ” B ” 0, pmod 5q.

For if A were invertible modulo 25, then BA´1 would be a root of the polynomial x2 ´ x´ 1

modulo 25. This polynomial has no roots in Z{25Z (since its discriminant is 5, which is not

a square modulo 25). Similarly, if B were invertible modulo, then AB´1 would be a root of

x2 ` x´ 1 modulo 25, but this also has discriminant 5 and therefore has no roots modulo 25.

So A, B ” 0 pmod 5q, which implies a, b P Z.

Corollary 3.7.6. If L is a maximal GIIF of V5A, then LG “ spanZpI, zq.

Proof. We first need to establish the decomposition of V5A with respect to the Killing form.

Because G acts transitively on the set tm´2,m´1, . . . ,m2u it follows that κpmi, f q “ κpm0, f q

for all ´2 ď i ď 2 and all f P VG
5A. Since

ř2
i“´2 mi “ 0 it follows that 0 “

ř2
i“´2 κpmi, f q “

5κpm0, f q. So m0 is perpendicular to VG
5A. Since κ is nondegenerate [›5A.4] and since

dim spanQpG ¨ m0q “ 4 “ dim V5A ´ 2, it follows that spanQpG ¨ m0q “ V5A
G,K.

In fact, adpzq
ˇ

ˇ

ˇ

spanQpG¨m0q
“ p´g2 ´ g3q

ˇ

ˇ

ˇ

spanQpG¨m0q
[›5A.5]. (This is verified by taking the

basis m´1, . . . ,m2 of spanQpG ¨ m0q and computing the matrix of adpzq ` g2 ` g3 to be the

zero matrix.) So since LG,K is closed under the action of ´g2 ´ g3 it is also closed under the

action of adpzq.

By 3.7.5, LG Ď spanZpI, zq. By maximality, I P L (Lemma 2.2.8). Thus LG ` Zz “

spanZpI, zq is a ring. Since LG,K is closed under the action of adpzq, it follows that LG`LG,K`Zz

is an integral form and is clearly G-invariant (since G acts trivially on z). If L “ LG ` LG,K
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then L` Zz being a GIIF and maximality would imply z P L, so LG “ spanZpI, zq.

So we may assume that there is some element in LzpLG ` LG,Kq. Let ϕ ` n be such an

element, with ϕ P V5A
G and n P V5A

G,K.

Note that adpzq ` g2 ` g3 acts invertibly on V5A
G. (This is just saying that adpzq does not

act as the scalar ´2 on V5A
G.) Let x, y P Q be such that padpzq ` g2 ` g3qϕ “ xI ` yz.

Applying the inverse of padpzq ` g2 ` g3q

ˇ

ˇ

ˇ

V5A
G

this gives [›5A.6]:

ϕ “

ˆ

´
3x
25
`

6y
25
` y

˙

I `
ˆ

x
25
´

2y
25

˙

z, (3.7)

Note that I is primitive in L so we may find a Z-basis of LG of the form tI,mI` kzu, where

Lemma 3.7.5 implies m, k P Z. Then LG “ spanZpI, kzq. Since kz P L, L is closed under the

action of kpadpzq ` g2 ` g3q. We compute:

kpadpzq ` g2
` g3

qpϕ` nq “ kx I ` kyz.

This being in L and therefore LG implies that y P Z.

Let Φ5pgq “ 1` g` g2 ` g3 ` g4. This annihilates V5A
G,K since g5 ´ 1 acts as zero and

since g´1 acts invertibly. So Φ5pgqpϕ`nq “ 5ϕ is in L which implies that it is in spanZpI, kzq.

Using equation 3.7, this implies that x´2y
5 P kZ so that x P 2y` 5kZ Ă Z.

The coefficients x and y being integers implies that padpzq ` g2 ` g3qpϕ ` nq P L ` Zz.

Since L ` Zz is closed under the action of ZrGs, this implies that adpzqpϕ` nq is in L ` Zz.

This is true for all ϕ` n P LzpLG ` LG,Kq. As was established in the third paragraph of this

proof, adpzqpLG ` LG,Kq Ď L` Zz.

So L` Zz is closed under the action of adpzq and is therefore a ring. It is clearly discrete

and G-invariant and so is a GIIF. Maximality implies z P L.

Lemma 3.7.7. Suppose x, y P Q are such that xpm´1 ` m1q ` ym0 is in an 5A GIIF. Then

x, y P Z.
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Proof. Set w “ xpm´1 ` m1q ` ym0. Then the characteristic polynomial of adpwq is given by

[›5A.7]:

„

pt4
` 12t3

px´ 2yq ´ 20t2
`

69x2
´ 58xy` 58y2

˘

´ 336tpx´ 2yq
`

76x2
` 11xy´ 11y2

˘

` 19600
`

x2
` xy´ y2

˘2


pt ´ 36x` 12yqq pt ` 24x` 12yqq.

By the variant of Gauss’ Lemma (2.1.7), the coefficients ´36x ` 12y and 24x ` 12y are

integers. The polynomials 60x and 60y are both Z-linear combinations of these:

60x “ ´p´36x` 12yq ` 24x` 12y, and

60y “ 2p´36x` 12yq ` 3p24x` 12yq.

So if we define X “ 60x and Y “ 60y, then both are both integers.

Compute the following [›5A.8], all of which must be integers:

trace pw ¨ pτ pa0qwqq “
7
24

`

X2
´ 4XY ´ Y2

˘

,

trace pw ¨ pτ pa´1qwqq “ ´
7

24

`

4X2
´ 6XY ` Y2

˘

, (3.8)

κpw,wq “
199
450

`

3X2
´ 2XY ` 2Y2

˘

.

These three expressions being integers will imply that the integers X and Y are divisible by

60, which can be shown prime by prime. For example, 3X2 ´ 2XY ` 2Y2 ” 0, pmod 25q

because κpw,wq P Z. Note:

3X2
´ 2XY ` 2Y2

“ 3pX ` 3Yq2 ´ 20XY ´ 25Y2. (3.9)

This expression being equivalent to zero modulo 25 implies that 3´120XY is a square mod 25,

which implies at least one of X and Y are divisible by 5. But now (3.9) being equivalent to

0 mod 25 simplifies to 3pX ` 3Yq2 ” 0 pmod 25q and hence X ` 3Y ” 0, pmod 5q, which
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proves that both of X and Y are 0 mod 5.

One can analyze the numerators of the first two polynomials mod 8 and mod 3 in a similar

way as was just done mod 5; the only solutions are X ” Y ” 0 pmod 12q [›5A.9]. Therefore

60 divides both X and Y , and so x, y P Z.

Lemma 3.7.8. For a maximal 5A GIIF L, LG,K Ď QG,K.

Proof. Fix an arbitrary w P LG,K and write w “
ř2

i“´1 ximi for some rational x´1, . . . , x2.

The image of LG,K under the endomorphism τpa0q ` adpIq will lie in the τpa0q fixed-point

subspace: pLG,Kqτpa0q Ď spanQpm´1`m1,m0q. The previous lemma says that LXspanQpm´1`

m1,m0q Ď spanZpm´1 ` m1,m0q. We compute the coefficients of pτpa0q ` adpIqqw and of

pτpa0q ` adpIqqg w with respect to m´1 ` m1 and m0 [›5A.10]:

pτpa0q ` Iqw “ px´1 ` x1 ´ x2q rm´1 ` m1s ` p2x0 ´ x2qm0,

pτpa0q ` Iq g w “ px0 ´ x1 ´ x2q rm´1 ` m1s ` p2x´1 ´ x1 ´ x2qm0.

Since w is in L, both of the expressions above lie in L, and hence the four coefficients must be

integers:

x´1 ` x1 ´ x2, 2x0 ´ x2, x0 ´ x1 ´ x2, 2x´1 ´ x1 ´ x2. (3.10)

Having fixed a basis m´1, . . . ,m2 of V5A
G,K, we may identify the ring of regular func-

tions on V5A
G,K with Qrx´1, . . . , x2s. If ppx´1, . . . , x2q is a linear polynomial with ratio-

nal coefficients, then we identify this with a linear functions V5A
G,K Ñ Q defined by

w “
ř2

i“´1 ximi ÞÑ ppx´1, . . . , x2q. Let p1, . . . , p4 denote the linear functions V5A
G,K Ñ Q

given by the four polynomials given in (3.10). Then these functions evaluated at w give integer

outputs if w is in a GIIF. Equivalently, w is contained in the Z-span of the basis d1, . . . , d4 of
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V5A
G,K dual to p1, . . . p4 (meaning pipd jq “ δi j). This dual basis is given by[›5A.11]:

d1 “
1
5
p´m´1 ´ 2m0 ` 2m1 ´ 4m2q ,

d2 “
1
5
p2m´1 ` 4m0 ` m1 ` 3m2q ,

d3 “
1
5
p´4m´1 ´ 3m0 ´ 2m1 ´ 6m2q ,

d4 “
1
5
p3m´1 ` m0 ´ m1 ` 2m2q .

Set D “ spanZpd1, d2, d3, d4q. Then LG,K is contained in D.

Suppose v “
ř4

i“1 λidi is in LG,K, with λi P Z. Then the coefficient of t2 in the characteristic

polynomial χpadpvq, tq is equivalent to 1
5 p3λ1 ` 4λ2 ` 2λ3 ` λ4q

4 modulo Zrλ1, λ2, λ3, λ4s

[›5A.12]. Therefore 3λ1 ` 4λ2 ` 2λ3 ` λ4 ” 0, pmod 5q. The proof will be completed by

showing that

#

4
ÿ

i“1

λidi : λi P Z and 3λ1 ` 4λ2 ` 2λ3 ` λ4 ” 0, pmod 5q

+

“ QG,K. (3.11)

Since we have shown LG,K is contained in the left hand side.

This is a fairly routine calculation. We expand each mi in the basis of D to verify that the

right hand side of (3.11) is contained in the left side [›5A.13]:

m´1 “ d1 ` 2d4,

m0 “ 2d2 ` d3,

m1 “ d1 ´ d3 ´ d4,

m2 “ ´d1 ´ d2 ´ d3 ´ d4.

Writing each of these as
ř4

i“1 λidi, we can verify that 3λ1` 4λ2` 2λ3`λ4, pmod 5q, for each.
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Furthermore we can compute the determinant of the following matrix [›5A.14]:

det
ˆ

1 0 0 2
0 2 1 0
1 0 ´1 ´1
´1 ´1 ´1 ´1

˙

“ ´5

This shows that QG,K “ spanZpm´1,m0,m1,m2q is contained in D “ spanZpd1, d2, d3, d4q with

index 5. Therefore the right side of (3.11) is contained in the left side and both have index 5

in D, so the two sides are equal.

Theorem 3.7.9. The GIIF Q is the unique maximal 5A GIIF.

Proof. Let L be a maximal 5A GIIF, and suppose L ­“ Q. By 3.7.6 and 3.7.8, LG “ QG and

LG,K Ď QG,K. So if L “ LG ` LG,K, we are done since Q “ QG ` QG,K.

Since g cyclicly permutes the axes, the g-fixed points of V5A are spanned by
ř2

i“´2 ai and

wρ. This means LG “ Lg. Then L{Lg “ L{LG has rank 6 ´ 2 “ 4, and so 2.2.12 gives that

rL : LG ` LG,Ks “ 5. This index being prime and the inclusion LG ` LG,K Ď L X Q Ĺ L

together imply that LG ` LG,K “ LX Q. Thus rL : LX Qs “ 5.

Suppose v is an element in LzQ. For ` P LG,

κppg´ 1qv, `q “ κpgv, `q ´ κpv, `q “ κpv, `q ´ κpv, `q “ 0.

So pg ´ 1qv P LG,K. Since κ is nondegenerate, g acts without fixed points on V5A
G,K. In

particular, g ´ 1
ˇ

ˇ

LG,K is invertible, and the matrix of its inverse with respect to the basis

m´1,m0,m1,m2 is given by [›5A.15]:

1
5

¨

˚

˚

˚

˚

˚

˚

˚

˝

´4 1 1 1

´3 ´3 2 2

´2 ´2 ´2 3

´1 ´1 ´1 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‚
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Set m̂i “
`

g´ 1
ˇ

ˇ

LG,K

˘´1
mi. The computation of the matrix above gives the following:

m̂´1 “
1
5
p´4m´1 ´ 3m0 ´ 2m1 ´ m2q ,

m̂0 “
1
5
pm´1 ´ 3m0 ´ 2m1 ´ m2q ,

m̂1 “
1
5
pm´1 ` 2m0 ´ 2m1 ´ m2q ,

m̂2 “
1
5
pm´1 ` 2m0 ` 3m1 ´ m2q .

Write v “ aI ` bz `
ř2

i“´1 xim̂i with a, b P Q and xi P Q (´1 ď i ď 2). Then pg ´ 1qv “
ř2

i“´1 ximi so pg´ 1qv P LG,K Ď QG,K implies x´1, x0, x1, x2 P Z.

Also, since g has order 5, and g ´ 1 is invertible on V5A
G,K it follows that Φ5pgq “

g4 ` g3 ` g2 ` g` 1 annihilates V5A
G,K. So Φ5pgqv “ 5aI ` 5bz. This is in LG “ QG so if we

define A “ 5a and B “ 5b then both A and B are integers.

Compute κpv, vq [›5A.16]:

6A2 ` 6AB` 69B2

25
` 1592x2

´1 ` 1592x2
0 ` 1592x2

1 ` 1592x2
2

´ 1592x´1x1 ´ 1592x´1x2 ´ 1592x0x2

This must be an integer, and the the xi are integers, therefore 1
25p6A2 ` 6AB ` 69B2q is an

integer. But 6A2 ` 6AB ` 69B2 ” 6pA2 ` AB ´ B2q, pmod 25q. It has been shown in the

proof of 3.7.5 that this only has solutions if A, B ” 0 pmod 5q. Therefore a, b P Z.

But then this implies that aI ` bz P QG “ LG, with the equality coming from Corollary

3.7.6. So v´ aI ´ bz “
ř2

i“´1 xim̂i P LG,K. Therefore v P LG ` LG,K Ď Q, as desired.
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3.8 The 6A algebra

The 6A algebra V6A over Q has a Q-basis consisting of seven axes a´2, a1, a0, a1, a2, a3, aρ3

along with a non-axis idempotent uρ2 . Some of the algebra products are given below:

a0 ¨ a1 “ 2´6
paρ3 ´ a´2 ´ a´1 ` a0 ` a1 ´ a2 ´ a3q ` 2´11

¨ 5 ¨ 32 uρ2

a0 ¨ a2 “ 2´5
pa´2 ` 2a0 ` 2a2q ´ 2´6

¨ 33
¨ 5 uρ2 ,

a0 ¨ a3 “ 2´3
pa0 ` a3 ´ aρ3q,

a0 ¨ aρ3 “ 2´3
pa0 ´ a3 ` aρ3q,

a0 ¨ uρ2 “ 3´2
p´a´2 ` 2a0 ´ a2q ` 2´5

¨ 5 uρ2 ,

aρ3 ¨ uρ2 “ 0.

[IPSS10, Table 3 and Lemma 2.20]. There is an automorphism f of V which fixes aρ3 and

uρ2 and which permutes cyclically the list pa´2, a´1, a0, a1, a2, a3q one space to the right. This

determines the remaining algebra products.

We first verify that τpaρ3q is trivial and compute the matrix of τpa0q with respect to the

basis B given above [›6A.1]:

rτpa0qsB “

»

—

–

0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

fi

ffi

fl

So τpa0q fixes a0, a3, aρ2 , and u3
ρ and it interchanges a´2 with a2 and a´1 with a1.

Define ai for all i P Z by ai “ ai`6, so the ai is determined by the residue of i mod-

ulo 6. Since τpa0q is a polynomial in adpa0q (Lemma B.2.2), we have that σkpτpa0qyq “

τpσka0qpσ
kyq which implies that for any i P Z, τpaiq fixes ai, ai`3, aρ3 and uρ2 and it inter-

changes ai´1 with ai`1 and interchanges ai´2 with ai`2.

It follows that τpaiq “ τpai`3q for all i. One can check directly, or reference [IPSS10] that

G “ xτpaq : a and axisy – Symp3q.
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Definition 3.8.1. Define the following 8 elements in V6A.

q1 “ I,

q2 “ 3uρ2 ,

q3 “ 4aρ3 ´ I,

q4 “
16
3

“

pa´2 ` a0 ` a2q ´ pa´1 ` a1 ` a3q
‰

,

q5 “ 16pa0 ´ a3q ´ q4,

q6 “ 16pa2 ´ a´1q ´ q4,

q7 “ 32pa0 ` a3q ´ 16I ` 8aρ3 ` 6uρ2 ,

q8 “ 32pa´1 ` a2q ´ 16I ` 8aρ3 ` 6uρ2 .

Let Q denote the ordered list q1, . . . , q8 and set Q “ spanZpQq.

Proposition 3.8.2. Q is a GIIF of V6A with QG “ spanZpq1, q2, q3, q4q and QG,K “ spanZpq5, q6, q7, q8q.

Proof. To check that Q is an integral form is a straightforward computation: we just need

to check that the matrix of adpqiq with respect to the basis Q has integer entries, for each

i “ 1, . . . , 8. (This is automized with the Mathematica function IntegralFormQ.) We also

compute the matrices of τpa0q and τpa1q (which generate G) with respect to the basis Q

[›6A.2]:

rτpa0qsQ “

»

—

—

–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 ´1 0 0
0 0 0 0 0 ´1 0 0
0 0 0 0 0 0 1 ´1
0 0 0 0 0 0 0 ´1

fi

ffi

ffi

fl

and rτpa1qsQ “

»

—

–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

fi

ffi

fl
.

These both being integer matrices means that Q is invariant under xτpa0q, τpa1qy “ G and

therefore Q is a GIIF. Also the block decompositions of these two matrices show that Q “

spanZpq1, q2, q3, q4q ` spanZpq5, q6q ` spanZpq7, q8q is the decomposition of Q as a G-module,

with the latter two summands having no fixed points of G. So QG “ spanpq1, q2, q3, q4q.

The κ-Gram matrix for the basis Q is given by [›6A.3]:
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»

—

—

–

8 7 ´1 0 0 0 0 0
7 13 ´5 0 0 0 0 0
´1 ´5 13 0 0 0 0 0
0 0 0 172 0 0 0 0
0 0 0 0 268 ´134 0 0
0 0 0 0 ´134 268 0 0
0 0 0 0 0 0 1560 ´780
0 0 0 0 0 0 ´780 1560

fi

ffi

ffi

fl

This shows that QG,K “ spanZpq5, q6, q7, q8q.

Proposition 3.8.3. For any GIIF L of the 6A algebra, LG Ď QG.

Proof. Let v be an arbitrary element in VG. Write v “
ř4

i“1 xiqi with xi P Q. If v is in a

GIIF, then the characteristic polynomial of adpvq has integer coefficients. We can compute

this characteristic polynomial and factor it, to show that it has the form [›6A.4]:

χpadpvq, tq “
`

t ´ px1 ` 3x2 ´ x3q
˘

¨
`

t2
` t p´2x1 ´ 2x2 ` x3q ` γ1

˘2
¨ pt3

´ t2 p3x1 ` 2x3q ` γ2t ` γ3q,

where γ1, γ2, γ3 P Zrx1, x2, x3, x4s Ď Q. In particular, the variant of Gauss’ Lemma (2.1.7)

applies ensuring that if we define k1 “ x1`3x2´ x3, k2 “ ´2x1´2x2` x3 and k3 “ 3x1`2x3

are integers.

We can solve this set of linear equations to write each xi in terms of the k1, k2, k3. This

produces [›6A.5]:

x1 “ ´
4k1

11
´

6k2

11
`

k3

11
,

x2 “
7k1

11
`

5k2

11
`

k3

11
,

x3 “
6k1

11
`

9k2

11
`

4k3

11
.

If we define Xi “ 11xi, then Xi is an integer for each index i “ 1, 2, 3. Also, we can compute
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that

X1 ´ X2 “ ´11pk1 ` k2q ” 0 pmod 11q, and

3X3 ´ X1 “ 11p2k1 ` 3k2 ` k3q ” 0 pmod 11q.

To finish the proof, we analyze the value of κpv, vq ´ ηpv, vq. Compute [›6A.6]:

κpv, vq ´ ηpv, vq “
1

121

`

´ 8X2
2 ` 4X2X3 ´ 9X2

3

˘

´ 86x2
4 (3.12)

Since 121rκpv, vq ´ ηpv, vqs P Z and X1, X2, X3 P Z, this implies that 121 ¨ 86x2
4 P Z. This

factors as 21112431x2
4. Therefore X4 “ 11x4 is an integer. Use this to rewrite the computation

of κpv, vq ´ ηpv, vq in equation (3.12): put everything over the denominator 121:

κpv, vq ´ ηpv, vq “
1

121

`

´ 8X2
2 ` 4X2X3 ´ 9X2

3 ´ 86X2
4

˘

This numerator is an integer which must be divisible by 121, so in particular:

´8X2
2 ` 4X2X3 ´ 9X2

3 ´ 86X2
4 ” 0, pmod 11q.

We can simplify this equivalence, using X1 ” X2 ” 3X3 to:

´69X2
3 ´ 86X2

4 ” 8X2
3 ` 2X2

4 ” 0, pmod 11q.

If X3 ı 0, then 7 ” p´8q ¨ 2´1 ” pX4{X3q
2, pmod 11q, which is impossible as 7 is not a

square mod 11. Therefore X3 ” X4 ” 0, pmod 11q. And therefore X1 ” X2 ” 3X3 ” 0,

pmod 11q.

This means that x1, x2, x3, x4 P Z, so v P QG.

Lemma 3.8.4. Suppose x, y P Q and xpq5`q6q`ypq7`q8q is in a GIIF of V6A. Then x, y P Z.
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Proof. Suppose w “ xpq5 ` q6q ` ypq7 ` q8q is in a GIIF. Compute the characteristic

polynomial of adpwq, and after factoring and simplifying we can verify that it equals the

following [›6A.7]:

t2
¨
`

t2
´ 22ty´ 20

`

x2
´ 6y2

˘˘

¨

`

t4
` 22t3y´ 2t2

`

57x2
` 208y2

˘

` 88t
`

8x2y´ 65y3
˘

` 72
`

29x4
´ 161x2y2

` 890y4
˘˘

.

By the variant of Gauss’ Lemma (2.1.7), all of the coefficients of t in the factors of this

polynomial are integers. In particular, 22y, ´20 px2 ´ 6y2q and 2 p57x2 ` 208y2q “ 114x2 `

416y2 are all integers. Compute tracepw ¨ pτpa0qwqq “ ´227x2 ´ 1102y2 [›6A.8]. This also

must be an integer. Then we can find the smallest multiple of x2 in the Z-span of the three

quadratic polynomials in x and y that have been produced. This search yields the following

equation [›6A.9]:

22x2
“ 442p´20x2

` 120y2
q ` 699p114x2

` 416y2
q ` 312p´227x2

´ 1102y2
q.

Therefore 22x2 is an integer. Since 22 is square-free, this implies x P Z. Then ´227x2 ´

1102y2 P Z implies 1102y2 P Z and 1102 “ 21191291 is square-free, so y P Z.

Proposition 3.8.5. For any GIIF L of V6A, LG,K Ď QG,K.

Proof. Choose any v P LG,K. Note that VG,K is 4 dimensional, based on the computation of

the Gram matrix for Q in the proof of Proposition 3.8.2. So spanQpQ
G,Kq “ VG,K. Write

v “
ř8

i“5 xiqi for rational numbers x5, x6, x7, x8. We need to show that each xi is an integer.

Compute [›6A.10]:

pτ pa0q τ pa1q ` 2τ pa1q ` τ pa2q ` 2Iq v “ 3x6 pq5 ` q6q ` 3x8 pq7 ` q8q ,

p´τ pa0q τ pa1q ` τ pa1q ´ τ pa2q ` Iq v “ 3x5 pq5 ` q6q ` 3x7 pq7 ` q8q

Since v is in a GIIF, both of these elements also are, and therefore Lemma 3.8.4 implies

65



3x5, 3x6, 3x7, 3x8 P Z. Define Xi “ 3xi for i “ 5, 6, 7, 8.

Compute [›6A.11]:

ηpv, vq “
1
9

`

454
`

X2
5 ` X6X5 ` X2

6

˘

` 2204
`

X2
7 ´ X8X7 ` X2

8

˘˘

κpv, vq “
1
9

`

268
`

X2
5 ` X6X5 ` X2

6

˘

` 1560
`

X2
7 ´ X8X7 ` X2

8

˘˘

These are both integers, therefore the numerators of are both integers divisible by 9. Write

Ppx, yq “ x2 ´ xy` y2. Then we have:

454PpX5, X6q ` 2204PpX7, X8q ” 0, pmod 9q,

268PpX5, X6q ` 1560PpX7, X8q ” 0, pmod 9q.

Or equivalently:

4PpX5, X6q ` 8PpX7, X8q ” 0, pmod 9q,

7PpX5, X6q ` 3PpX7, X8q ” 0, pmod 9q.

Since det r 4 8
7 3 s “ ´44 ” 1 pmod 9q, this matrix is invertible in Mat2ˆ2pZ{9Zq. So PpX5, X6q ”

PpX7, X8q ” 0 pmod 9q.

The proof will be completed after proving the following fact: if x, y P Z are such that

Ppx, yq ” 0 pmod 9q, then x ” y ” 0 pmod 3q. To see this, write Ppx, yq “ px ` yq2 ´ 3xy.

If this is 0 mod 9, then it is 0 mod 3, which implies x ” ´y, pmod 3q. Thus Ppx, yq ” 3xy,

pmod 9q which means xy ” 0, pmod 3q and this forces x ” ´y ” 0, pmod 3q.

Thus each Xi (i “ 5, 6, 7, 8) is divisible by 3, which implies v P Q.

Theorem 3.8.6. The GIIF Q is the unique maximal GIIF of V6A.

Proof. Let L be a maximal GIIF of the 6A algebra. It has been shown that LG Ď QG and

LG,K Ď QG,K (Propositions 3.8.3 and 3.8.5).
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First, we need to show that VG
6A “ Vg

6A where g is an element of order 3 in G – Symp3q.

This is straightforward: because g cyclicly permutes the lists pa´2, a0, a2q and pa´1, a1, a3q

and g fixes aρ3 and uρ2 we can see that Vg
6A is spanned by the four vectors a´2 ` a0 ` a2,

a´1 ` a1 ` a3, aρ3 , and u2
ρ. These vectors are all invariant under every element in G and so

VG
6A “ Vg

6A. It follows that LG “ VG
6A X L “ Vg

6A X L “ Lg.

Next, we claim that 3L is contained in LG ` LG,K. To that end, note that the index is

finite because κ is nondegenerate. (For a sublattice S inside L, rank S + rank S K will always

equal rank L if the form is nondegenerate.) Choose any v P L. Then notice that we can write

pg2 ` g` 1q ´ pg´ 1q2 “ 3g. Applying both sides of this to g2` yields:

pg2
` g` 1qg2` ´ pg´ 1q2g2` “ 3`.

Then we just observe that pg2 ` g` 1qg2` is in L and is annihilated by g´ 1 so is in Lg “ LG.

And the other term pg´ 1q2g2` is in pg´ 1qL and therefore in pLgqK “ LG,K. It follows that

3L Ď LG
` LG,K

Ď QG
` QG,K

“ Q.

For any v P L we may therefore write v “
ř8

i“1
Xi
3 qi for some integers Xi (i “ 1, . . . 8). We

can compute the following [›6A.12]:

τpa0qv´ v “ ´
X6

3
q5 ´

1
3
p2X6q q6 ´

X8

3
q7 ´

1
3
p2X8q q8,

τpa1qv´ v “
1
3
pX6 ´ X5q q5 `

1
3
pX5 ´ X6q q6 `

1
3
pX8 ´ X7q q7 `

1
3
pX7 ´ X8q q8.

Both of these elements are in LX VG,K “ LG,K Ď QG,K. So the coefficients of qi (i “ 5, . . . 8)

that occur here are integers. The first equation then implies that X6 P 3Z and X8 P 3Z and then

using this fact in the second equation implies X5 P 3Z and X7 P 3Z.

Write xi “ Xi{3 for i “ 5, 6, 7, 8, so that xi P Z and v “
ř4

i“1
Xi
3 qi `

ř8
i“5 xiqi. Note that
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v ¨ v P L therefore 3v ¨ v P Q. If we write 3v ¨ v “
ř8

i“1 γiqi then we compute [›6A.13]:

γ1 “ 2x1X1 ` 6x3X3 ` 92x4X4 ` 3x2
1 ` 9x2

3 ` 138x2
4 ` 162x2

5 ` 162x2
6 ` 864x2

7 ` 864x2
8

` 162x5x6 ´ 864x7x8 `
X2

1

3
` X2

3 `
46X2

4

3
,

γ2 “ 2x2X1 ` 6x2X2 ´ 2x2X3 ` 2x1X2 ´ 2x3X2 ´ 32x4X4 ` 9x2
2 ` 6x1x2 ´ 6x3x2

´ 48x2
4 ` 12x2

5 ` 12x2
6 ´ 84x2

7 ´ 84x2
8 ` 12x5x6 ` 84x7x8 ` X2

2

`
2X1X2

3
´

16X2
4

3
´

2X2X3

3
.

These are both integers.

Since the xi (i “ 5, . . . , 8) and Xi (i “ 1, . . . 8) are integers, γ1 being an integer implies

that X1
2 ` 46X4

2 ” 0, pmod 3q. This has only the trivial solution X1 ” X4 ” 0, pmod 3q.

Now this implies that X1X2{3 and 16X2
4{3 are both integers, so γ2 P Z implies X2X3 ” 0,

pmod 3q. And tracepvq “ 8X1{3 ` 2X2 `
1
3pX2 ´ X3q [›6A.14] being an integer implies

X2 ” X3, pmod 3q so X2 ” X3 ” 0, pmod 3q, which completes the proof that v P Q.
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CHAPTER 4

GIIFs in some larger Griess algebras

4.1 The algebra with group Symp4q of shape (2B,3C)

Notation 4.1.1. Let T1 be the set of transpositions in Sym(4). Throughout this section, let

V denote the rational subalgebra generated by the axes of the algebra of shape p2B, 3Cq as

described in [IPSS10, §4.3]. Explicitly, V has a Q-basis tat : t P T1u where each at is an axis.

For simplicity of notation, we will omit the parenthesis around transpositions in this context;

e.g. a12 “ ap12q. We read the product cycles right to left, as in function composition, so for

example p12qp23q “ p123q.

Each axis is an idempotent, so a2
t “ at for all t P T1. For a pair of commuting transpositions

s, t P T1, the pair as, at generate a 2B-subalgebra [IPSS10, Lemma 3.1], meaning that as¨at “ 0.

For two transposition s, t P T1 that do not commute, then sts “ tst and the triple as, at, asts

generate a 3C-subalgebra [IPSS, §4.3], meaning as ¨ at “ 2´6pas ` at ´ astsq.

We can summarize this with the following formulas [IPSS,§4.3] (this is for any permuation

ti, j, k, `u “ t1, 2, 3, 4u):

ai j ¨ ai j “ ai j, ai j ¨ ak` “ 0, ai j ¨ aik “
1
26 pai j ` aik ´ a jkq.

The group G “ xτpaq : a an axis of Vy is isomorphic to Symp4q. The action of Symp4q

on V can be summarized by the following: for t, s P T1, t ¨as “ τpatq as “ atst (Lemma

2.2.10).
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Definition 4.1.2. Define the following elements of V:

q1 “ I “
16
17
pa12 ` a13 ` a14 ` a23 ` a24 ` a34q ,

q2 “ 32 pa14 ` a23q ,

q3 “ 32 pa13 ` a24q ,

q4 “ 32 pa13 ´ a24q ,

q5 “ 32 pa12 ´ a34q ,

q6 “ 32 pa14 ´ a23q

Define Q to be the ordered basis pq1, q2, . . . , q6q, and set Q “ spanZpQq. The fact that Q is a

G-invariant integral form is a straightforward calculation [›2B3C.1].

We will show that the integral form Q is the unique maximal GIIF in V .

Definition 4.1.3. Define K “ O2pSymp4qq “ tid, p12qp34q, p13qp24q, p14qp23qu. This is

a normal subgroup of G “ Symp4q isomorphic pZ{2Zq2. Define k1 “ p12qp34q and k2 “

p13qp24q.

Lemma 4.1.4. We have the following decomposition of Q into isotypic subspaces with respect

to the action of K:

QK
“ Qk1,k2 “ spanZpq1, q2, q3q,

Q´k1,k2 “ spanZpq4q,

Qk1,´k2 “ spanZpq5q

Q´k1,´k2 “ spanZpq6q.

Therefore Q “ telpQ,Kq (see Definition 3.5.2).

Proof. It suffices to show that the matrix of the action of k1 on V with respect to the basis Q is

diagp1, 1, 1,´1, 1,´1q and that the matrix of k2 in the basis Q is diagp1, 1, 1, 1,´1,´1q. This

is a straightforward calculation [›2B3C.2].

Lemma 4.1.5. If L is a GIIF of V, then telpL,Kq Ď Q.
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Proof. Suppose w P LK . By Lemma 4.1.4, VK is three-dimensional, and we may write

w “ xq1 ` yq2 ` zq3 for some x, y, z P Q.

Compute the following [›2B3C.3]:

χp adrp123qw´ ws; tq “ pt ` 31yq ¨ pt ´ 31zq ¨ pt ´ 31y` 31zq

¨ rt3
` t

`

´964y2
` 964yz´ 964z2

˘

` 29512y2z´ 29512yz2
s,

Define Y “ 31y and Z “ 31z. By the variant of Gauss’ lemma (2.1.7), both Y and Z are

integers. The following coefficients are also integers:

´964y2
` 964yz´ 964z2

“ ´
964
312

`

Y2
´ YZ ` Z2

˘

and

29512y2z´ 29512yz2
“

952
312 pY ´ ZqYZ.

The first expression being an integer implies that Y2 ´ YZ ` Z2 ” 0, pmod 31q. The second

expression being an integer implies that one of the following holds: Y ” 0, Z ” 0, or Y ” Z

pmod 31q. Together with the first equivalence, each of these three cases leads to the conclusion

Y ” Z ” 0, pmod 31q. Thus, y, z P Z.

We compute also that w ¨ q5 “ px ` y ` zqq5 [›2B3C.4]. This eigenvalue must be an

integer, hence x P Z. This proves that LK Ď Q.

Next, one can see from the definition of qi (i “ 4, 5, 6) and Lemma 2.2.10 that the action

of the transposition p23q fixes q6 and it interchanges q4 with q5. Similarly, p24q fixes q4 and

interchanges q5 with q6. So xp23q, p24qy – Symp3q acts faithfully on the three element set

tq4, q5, q6u. We also compute that q4 ¨ q5 “ q6 [›2B3C.5] and therefore qi ¨ q j “ qk for any

permutation ti, j, ku “ t4, 5, 6u.

Next, suppose that v P Lε1k1,ε2k2 for some choice of ε1, ε2 P t˘1u, not both equal to 1. By

Lemma 4.1.4, v “ rqi for some i P t4, 5, 6u and some rational r. So by the previous paragraph,

L contains all three rq4, rq5, and rq6. Then L also contains prq5q ¨ prq6q “ r2q4. By the same

reasoning, L contains rnq4 for all natural numbers n. This is a discrete set only if r P Z.

Therefore v P Q.

Corollary 4.1.6. For any GIIF L of V, L Ď 1
4 Q.

71



Proof. The four subspaces V˘k1,˘k2 are the four isotypic subspaces of V with respect to the

action of K. For each of the four irreducible QrKs-module Mi pi “ 1, 2, 3, 4q, the group

algebra ZrKs (and therefore also ZrGs) contains |K|ei “ 4ei where ei is the idempotent in

QrKs that acts as the identity of Mi and annihilates M j for i ­“ j.

Therefore 4L “ 4e1L` 4e2L` 4e3L` 4e4L Ď telpL,Kq Ď Q.

Theorem 4.1.7. The GIIF Q is the unique maximal GIIF in the algebra V of shape p2B, 3Cq.

Proof. Suppose there is another GIIF L not contained in Q. By Corollary 4.1.6, L Ď 1
4 Q, and

therefore there exists an element w P LX
`

1
2 QzQ

˘

. Write w “ 1
2

ř6
i“1 Xiqi for some integers

X1, . . . X6. Define xi “ Xi{2. So we aim to show that for each i, 1 ď i ď 6, Xi is even or

equivalently xi P Z.

We compute [›2B3C.6]: ηpw,wq ” 3X2
1

2 , pmod Zq, and therefore X1 is even and hence

x1 P Z.

Next we compute [›2B3C.7]

κ
´

w, p123q¨w
¯

“ 68x1X2 ` 68x1X3 ` 6x2
1 `

1025
2
pX4X5 ´ X6X5 ´ X4X6q

`
1
4

`

129X2
2 ` 2183X3X2 ` 129X2

3

˘

.

For this to be an integer, it must be that 129X2
2 ` 2183X3X2 ` 129X2

3 is even. This implies

X2 ” X3 ” 0, pmod 2q. This then implies that 129X2
2 ` 2183X3X2 ` 129X2

3 is divisible by 4.

So now κ
`

w, p123q¨w
˘

being an integer implies X4X5 ` X5X6 ` X4X6 ” 0, pmod 2q.

Finally, we compute [›2B3C.8]:

κ
´

p12q¨w´ w,w
¯

“ ´1925x2
2 ` 3850x3x2 ´ 1925x2

3 ´ 1025X4X6 ´
1025

2

`

X2
4 ` X2

6

˘

,

κ
´

p13q¨w´ w,w
¯

“ ´1925x2
2 ´ 1025X5X6 ´

1025
2

`

X2
5 ` X2

6

˘

.

Therefore X2
4`X2

6 ” X2
5`X2

6 ” 0, pmod 2q which forces X4 ” X5 ” X6, pmod 2q. Together

with X4X5 ` X5X6 ` X4X6 ” 0, pmod 2q, this yields X4 ” X5 ” X6 ” 0, pmod 2q. This

completes the proof that w P Q.
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4.2 The algebra with group Symp4q of shape (2A,3C)

Notation 4.2.1. Let T be the set of involutions in Sym(4). Let V denote the rational sub-

algebra generated by the axes of the algebra of shape p2A, 3Cq as described in [IPSS10,

§4.4]. Explicitly, V has a Q-basis tat : t P Tu where each at is an axis. For simplicity of

notation, we omit the parenthesis on transpositions in this context, e.g. a12 “ ap12q. For an

involution equal to a product of two transpositions, we separate the transpositions by a comma,

e.g. a12,34 “ ap12qp34q.

Each axis is an idempotent, so a2
t “ at for all t P T . For any pair of commuting involutions

s, t P T , the triplet as, at, ast generate a 2A-subalgebra [Lemma 3.1, IPSS10], meaning that

as ¨ at “
1
8pas ` at ´ astq. The remaining products in the algebra are given by the following

formulas [IPSS,§4.4] (this is for any permuation ti, j, k, `u “ t1, 2, 3, 4u):

ai j ¨ aik “
1
26 pai j ` aik ´ a jkq,

ai j ¨ aik, j` “
1
26 pai j ` aik, j` ´ ak` ´ ai`, jk ` ai j,k`q.

Definition 4.2.2. Define the following elements of V:

m1 “ I “
16

105
p4a12,34 ` 4a13,24 ` 4a14,23 ` 5a12 ` 5a13 ` 5a14 ` 5a23 ` 5a24 ` 5a34q ,

m2 “
16
5
pa12,34 ` a13,24 ` a14,23q ,

m3 “ 32a13,24,

m4 “ 32a14,23,

m5 “ 32 pa13 ` a24q ,

m6 “ 32 pa14 ` a23q ,

m7 “ 32 pa23 ´ a14q ,

m8 “ 32 pa24 ´ a13q ,

m9 “ 32 pa34 ´ a12q .

Define M “ spanZpmi : 1 ď i ď 9q. The fact that M is a G-invariant integral form is a
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straightforward calculation [›2A3C.1].

Lemma 4.2.3. Define the following subspaces of V:

Vp1q “ spanQ
´

ř

tPTzAltp4q at,
ř

tPTXAltp4q at

¯

,

Vp2q “ spanQpa13,34 ´ a14,23, a12,34 ´ a14,23, a13 ` a34 ´ a14 ´ a23, a12 ` a34 ´ a14 ´ a23q,

Vp3q “ spanQpm7, m8, m9q.

Then V “ Vp1q ` Vp2q ` Vp3q is the decomposition of V into isotypic subspaces with respect

to the action of G.

Proof. All of the irreducible complex representations of Symp4q are rational, so the represen-

tation V will decompose into these familiar complex representations. Let N denote the normal

subgroup tid, p12qp34q, p13qp24q, p14qp23qu of G “ Symp4q. There is a unique irreducible

QrGs-module for which N acts nontrivially. It is three dimensional. The remaining 4 irre-

ducible representations come from inflating the irreducible representations of G{N – Symp3q

to G. Note that G acts transitively on the set tm7,m8,m9u and also N acts nontrivially on this

space. Hence Vp3q is isomorphic to the unique 3-dimensional irreducible QrGs-module.

The two spaces spanQpai j,kl : ti, j, k, lu “ t1, 2, 3, 4uq and spanQpai j ` akl : ti, j, k, lu “

t1, 2, 3, 4uq are both submodules and they are isomorphic as G-modules under the map defined

by ai j,kl ÞÑ ai j ` akl. The former decomposes as a one-dimensional trivial module plus a

nontrivial two dimensional module:

spanQpai j,kl : ti, j, k, lu “ t1, 2, 3, 4uq “

spanQ
´

ř

tPTXAltp4q at

¯

‘ spanQpa13,24 ´ a14,23, a12,34 ´ a14,23q

Lemma 4.2.4. If v P Vp1q is in a GIIF then v P M.

Proof. From the definitions of m1 “ I and m2, we can see that Vp1q “ spanQpI,m2q. Suppose

v “ xI ` ym2 is in a GIIF for some x, y P Q.
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We compute [›2A3C.2] that adpm2q has eigenvalues 0, 1, and 4. Thus x and x ` y and

x` 4y are (rational) eigenvalues of xI ` ym2. By the variant of Gauss’ lemma (2.1.7), both x

and x` y are integers. Hence y is also an integer.

Lemma 4.2.5. If v “ 16xpa13,24 ´ a14,23q ` 16ypa13 ` a24 ´ a14 ´ a23q is in a GIIF for some

x, y P Q, then x, y P Z.

Proof. We can compute the characteristic polynomial of adpvq in factored form to be [›2A3C.3]:

´t3
`

t2
´ 381y2

˘

ˆ

t ´
1
2
p7x` 31yq

˙ˆ

t `
1
2
p7x` 31yq

˙

`

t2
´ 13p4x` yq2

˘

By the variant of Gauss’ lemma (2.1.7), all of the coefficients (381y2, 7x`31y
2 , and 13p4x` yq2)

are integers. Since 381y2 “ 3 ¨ 127y2 it follows that y P Z. Similarly, 13p4x ` yq2 being an

integer implies 4x` y is an integer, which then implies 4x P Z.

Then p7x` 31yq P 2Z implies 7x P Z and therefore x P Z.

Lemma 4.2.6. If v P Vp2q is in a GIIF, then 12v P M.

Proof. First observe that M contains the following four elements:

32pa13,24 ´ a14,23q “ m3 ´ m4,

32pa12,34 ´ a14,23q “ τpa14qpm3 ´ m4q,

32pa13 ` a24 ´ a14 ´ a23q “ m5 ´ m6,

32pa12 ` a34 ´ a14 ´ a23q “ τpa14qpm5 ´ m6q.

Write v “ 32x1pa13,24´a14,23q`32x2pa12,34´a14,23q`32x3pa13`a24´a14´a23q`32x4pa12`

a34 ´ a14 ´ a23q for some scalars x1, x2, x3, x4 P Q. To show that 12v P M we need to show

that 12xi is an integer for each i “ 1, 2, 3, 4.
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We compute the following actions of certain elements in ZrGs on v [›2A3C.4]:

rp12q ´ idsrp34q ´ ids v “

r4x1 ` 2x2s 32pa13,24 ´ a14,23q ` r4x3 ` 2x4s 32pa13 ` a24 ´ a14 ´ a23q,

rp12q ´ idsrp34q ´ idsp13q v “

r2x1 ´ 2x2s 32pa13,24 ´ a14,23q ` r2x3 ´ 2x4s 32pa13 ` a24 ´ a14 ´ a23q.

Both of these elements are in the GIIF containing v, and by Lemma 4.2.5, the coefficients

4x1 ` 2x2, 4x3 ` 2x4, 2x1 ´ 2x2, and 2x3 ´ 2x4 are in 1
2Z. Therefore the following are also in

1
2Z:

6x1 “ p4x1 ` 2x2q ` p2x1 ´ 2x2q,

6x2 “ p4x1 ` 2x2q ´ 2p2x1 ´ 2x2q,

6x3 “ p4x3 ` 2x4q ` p2x3 ´ 2x4q,

6x4 “ p4x3 ` 2x4q ´ 2p2x3 ´ 2x4q.

So 12xi P Z for i “ 1, 2, 3, 4. Therefore, 12v P M.

Lemma 4.2.7. If v P Vp3q is in a GIIF, then 4v P M.

Proof. We compute that mi ¨ m j “ mk for any permutation ti, j, ku “ t7, 8, 9u [›2A3C.5].

Fix i P t7, 8, 9u. The the orbit of mi under G contains tm7,m8,m9u. So if smi were in a GIIF

for some rational s, then this GIIF would contain rngpG ¨ smiq “ rngptsm7, sm8, sm9uq which

contains snmi for every positive integer n. So s must be an integer.

Write v “ x7m7 ` x8m8 ` x9m9 for some x7, x8, x9 P Q. It is easy to verify that

m7 P V´p12qp34q,´p13qp24q,

m8 P V´p12qp34q,p13qp24q, and

m9 P Vp12qp34q,´p13qp24q.
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So

rid´ p12qp34qsrid´ p13qp24qs v “ 4x7m7,

rid´ p12qp34qsrid` p13qp24qs v “ 4x8m8,

rid` p12qp34qsrid´ p13qp24qs v “ 4x9m9.

All three of these elements are in the GIIF containing v. By the previous paragraph, 4x7, 4x8, 4x9 P

Z. Therefore 4v P spanZpm7,m8,m9q Ď M.

Lemma 4.2.8. There is no GIIF L such that 2 divides rL` M : Ms.

Proof. If there were such a GIIF then Proposition 2.2.6 guarantees existence of a GIIF L not

contained in M with 2L Ď M.

Let v be an element of L. Write v “ 1
2

ř9
i“1 Ximi for some integers X1, . . . , X9. Then set

xi “ Xi{2 for all i “ 1, . . . , 9. The goal then is to show that each xi is an integer, which will

prove that v P M and thus contradict the fact that L is not contained in M.

For i “ 1, . . . , 9, define µ1, . . . , µ9 to be the basis of V˚ dual to the basis m1, . . .m9 of V .

Explicitly, for y1, . . . , y9 P Q we have µi :
ř9

j“1 y jm j ÞÑ yi. If ` P L then since 2` P M, we

have that 2µip`q P Z for all i “ 1, . . . , 9.

We compute [›2A3C.6]:

2µ1pv ¨ vq “
X2

1

2
` 504X2

9 ´ 42X5X6

This being an integer implies X1 is even, so x1 P Z. Since this is true for an arbitrary v, this

implies µ1p`q P Z for all ` P L.

We compute tracepvq “ 9x1 `
15X2

2 ` 25X3 ` 25X4 ` 43X5 ` 43X6. Therefore x2 is an

integer. We then compute [›2A3C.8]:

µ1pv ¨ pτpa13qvqq “ 21x1X6 ` x2
1 `

21X2
6

2
´ 252X7X9,

µ1pv ¨ pτpa23qvqq “ 21x1X5 ` x2
1 `

21X2
5

2
` 252X8X9.

Hence x5 and x6 are integers.
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We compute the following [›2A3C.9]:

2κ pv, τ pa24q τ pa12q vq ”
273X2

3

2
`

273X2
4

2
`

1427X3X4

2
, pmod Zrx1, x2, X3, X4, x5, x6, X7, X8, X9sq.

Therefore X2
3 ` X3X4 ` X2

4 ” 0, pmod 2q, which has only the trivial solution X3 ” X4 ” 0,

pmod 2q. So x3 and x4 are integers.

Then we compute [›2A3C.10]:

κ pv, τ pa12q .vq ”
833X2

9

2
, pmod Zrx1, x2, x3, x4, x5, x6, X7, X8, X9sq,

κ pv, τ pa13q .vq ”
833X2

8

2
, pmod Zrx1, x2, x3, x4, x5, x6, X7, X8, X9sq,

κ pv, τ pa14q .vq ”
833X2

7

2
, pmod Zrx1, x2, x3, x4, x5, x6, X7, X8, X9sq.

These being integers imply that x9, x8, x7 are integers. This completes the proof that v P M.

Therefore there is no element in pL` Mq{M of order 2.

Lemma 4.2.9. There is no GIIF L of V with rL` M : Ms divisible by 3.

Proof. If there were such a GIIF, then Proposition 2.2.6 guarantees existence of a GIIF L not

contained in M with 3L Ď M.

Let v be an element of L. Write v “ 1
3

ř9
i“1 Ximi for some integers X1, . . . , X9. Define

xi “ Xi{3 for i “ 1, . . . , 9. Our goal is to show that each xi is an integer, because this will

imply v P M which will contradict the fact that L Ć M.

For i “ 1, . . . , 9, recall the definition of the component functions µi : V Ñ Q defined by

µi :
ř9

j“1 y jmi ÞÑ yi. If ` P L then since 3` P M, we have that 3µip`q P Z for all i “ 1, . . . , 9.

Compute the following [›2A3C.11]:

3µ1pv ¨ vq “
X2

1

3
` 336X2

9 ´ 28X5X6,

Therefore 3 divides X1. Since this is true for an arbitrary v P L, it follow that µ1p`q P Z for all

` P L. Write X1 “ 3x1 for an integer x1.
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We compute [›2A3C.12]:

µ1
`

v ¨ rτ pa34q τ pa13,24q vs
˘

“ x2
1 ´ 112X2

9 ´
14X2

5

3
´

14X2
6

3
.

Therefore X2
5 ` X2

6 ” 0, pmod 3q, which has only the trivial solution X5 ” X6 ” 0, pmod 3q.

So write X5 “ 3x5 and X6 “ 3x6 for integers x5 and x6. Since this is true for an arbitrary v P L,

it follows that for any ` P L both µ5p`q and µ6p`q are integers. We compute [›2A3C.13]:

µ5
`

v ¨ rτ pa13,24q vs
˘

“ 40x2
5 ` 2x1x5 ` 4x6x5 `

8X2
8

3
`

8X2
9

3
,

µ6
`

v ¨ rτ pa13,24q vs
˘

“ 40x2
6 ` 2x1x6 ` 4x5x6 `

8X2
9

3
´

8X2
7

3
.

Again, since x2 ` y2 ” 0, pmod 3q has only the trivial solution, it follows that X8 ” X9 ” 0,

pmod 3q. Then the second equation implies X7 ” 0 pmod 3q. For for i “ 7, 8, 9, write

Xi “ 3xi with xi P Z.

We next compute [›2A3C.14]:

3κpv, vq ´ 3κ pv, τ pa13q vq “ 850x6X4 ` 7611x2
6 ` 4998x2

7 ` 4998x2
9 ` 9996x7x9 `

881X2
4

3
.

So X4 P 3Z. And tracepvq “ 9x1 ` 86x5 ` 86x6 ` 5X2 `
50X3

3 `
50X4

3 ([›2A3C.15]) then

implies that X3 P 3Z. So write X3 “ 3x3 and X4 “ 3x4 for integers x3 and x4.

Finally, we compute [›2A3C.16]:

3µ2pv ¨ vq “ 2x1X2 ´ 336x2
9 ´ 240x3x4 ´ 60x4x5 ´ 60x3x6 ` 48x5x6 `

4X2
2

3
,

This being an integer implies X2 P 3Z which completes the proof that v P M. So there is no

element of order 3 in pL` Mq{M.

Theorem 4.2.10. The GIIF M is the unique maximal GIIF in the algebra V of shape p2A, 3Cq

Proof. Let χ be a character of an irreducible Q-representation of G. Then the element

eχ “
χp1q
|G|

ř

gPG χpg
´1qg P QrGs acts on any QrGs-module as the identity on any irreducible

subrepresentation affording χ and acts as 0 on any irreducible representation affording a
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different character. In other words, eχ acts as the projection on the isotypical submodule

corresponding to χ, in any rational representation of G.

Let v be an element in a GIIF L. Write v “ v1 ` v2 ` v3 where vi P Vpiq for i “ 1, 2, 3.

Then L is closed under the action of |G|eχ “ 24eχ P ZrGs. Therefore 24vi P L for i “ 1, 2, 3.

Then Lemmas 4.2.4, 4.2.6, and 4.2.7 imply that 12 ¨ 24vi P M for i “ 1, 2, 3. Therefore

12 ¨ 24v P M. However 12 ¨ 24 “ 2532 is coprime to the order of pL ` Mq{M by Lemmas

4.2.8 and 4.2.9. Thus v` M “ M and so v P M.
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4.3 The Lam-Chen algebra with group 32 : 2.

Notation 4.3.1. Throughout this section, V will be the nine dimensional Griess algebra

described in Lemma 3.2 of [CL14], defined over Q. So V is a nine-dimensional rational vector

space, with basis teu : u P F2
3u where each 1

2eu is an axis. The algebra product is given by:

eu ¨ ev “

$

’

&

’

%

1
32peu ` ev ´ e´u´vq if u ­“ v

2eu if u “ v.

Define τu “ τp eu
2 q for all u P F2

3.

Lemma 4.3.2. For any u P F2
3, the trace of adpeuq is 9

4 . The mutliplicative identity I of V is
4
9

ř

uPF2
3
eu.

Proof. The products in Notation 4.3.1 show that tracepeuq “ 8 ¨ p1{32q ` 2 “ 9{4.

If we define v “
ř

sPF2
3
es, then v ¨ eu “ 2eu`

ř

s­“u, sPF2
3
es ¨ eu will be a multiple of eu since

each term 1
32peu ` es ´ e´u´sq in the sum will have a corresponding term 1

32peu ` e´s´u ´ esq.

Besides the term 2eu there are 8 other terms which sum to 8 ¨ 1
32eu “

1
4eu. Therefore v acts as

the scalar 2` 1
4 “

9
4 on each basis element, and therefore 4

9v is the multiplicative identity.

Lemma 4.3.3. The automorphism group of the algebra V is isomorphic to AGLp2, 3q “ 32 :

GLp2, 3q.

Proof. One can show by direct calculation that t1
2eu : u P F2

3u is exactly the set of idempotents

in V whose trace equals 9/8 [›LC.1]. Therefore AutpVq must preserve this set. So AutpVq

has a faithful permutation representation on the set F2
3.

Let f be an automorphism of V , which we also think of as an element in SympF2
3q. Given

any x ­“ y P F3
2 we claim that f p´x´ yq “ ´ f pxq´ f pyq. To see this, we expand out f pex ¨ eyq

in two ways:

f pex ¨ eyq “ f
ˆ

1
24
pex ` ey ´ e´x´yq

˙

“
1

32
re f pxq ` e f pyq ´ e f p´x´yqqs

f pexq ¨ f peyq “ e f pxq ¨ e f pyq “
1

32
re f pxq ` e f pyq ´ e´ f pxq´ f pyqs.

(4.1)
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Since these expressions are equal, f p´x´ yq “ ´ f pxq ´ f pyq.

The set of all three element subsets in
 

tx, y,´x´yu : x, y P F2
3, x ­“ y

(

is equal to the set

of affine lines in F2
3. To see this, note that tx, y,´x´yu “ x`t0, y´x, 2y´2xu “ x`F3py´xq.

Since f p´x´ yq “ ´ f pxq ´ f pyq it follows that f sends affine lines to affine lines. Therefore,

for any k-dimensional affine subset U of F2
3 (0 ď k ď 2), f pUq is also an affine subset

of dimension k. It follows that f acts on F2
3 as an invertible affine transformation, hence

f P AGLp2, 3q.

Conversely, let f be any element in AGLp2, 3q which acts linearly on V by permuting the

basis elements: f peuq “ e f puq. We first observe:

f pex ¨ exq “ f p2exq “ 2e f pxq “ e f pxq ¨ e f pxq “ f pexq ¨ f pexq.

For any two distinct elements x, y P F2
3, the map f transforms the affine line tx, y,´x´ yu into

t f pxq, f pyq, f p´x´yquwhich must also be an affine line, and hence f p´x´yq “ ´ f pxq´ f pyq.

Then this shows that the two lines in (4.1) are equal, which proves that f acts on V as an

automorphism.

This shows in particular that G – 32 : 2 can be views as a subset of AGLp2, 3q. In

particular, O3pGq must be identified with pF2
3,`q, which is the unique subgroup of order 9

in AGLp2, 3q. An element u P F2
3 acts on V by the rule u ¨ ev “ ev`u. Also, observe that for

any u P F2
3, eu, e0, e´x span a subgroup isomorphic to the 3C-algebra. So τ0 interchanges ex

with e´x. So with respect to the identification of AutpVq with AGLp2, 3q, the subgroup G is

identified with pF2
3,`q ¸ t˘Iu.

Definition 4.3.4. For any affine line L of F2
3, define vL “

32
3

ÿ

uPL

eu.

Notation 4.3.5. For a subset S of F2
3, xS y is the additive subgroup generated by S . If s, r P F2

3

with s ­“ 0, r ` xsy is the affine line parallel to xsy containing r.

Lemma 4.3.6.

(i) For each nontrivial proper subgroup H of O3pGq, there is a two dimensional rational

irreducible representation of G with kernel H.
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(ii) G has six rational irreducible representations: four of which are two-dimensional, and

two of which are one-dimensional.

(iii) The QrGs-module V decomposes as the direct sum of all four two-dimensional irre-

ducibles plus the one-dimensional trivial representation.

(iv) If xs, ry “ F2
3, then V s “ spanQpvxsy, vr`xsy, v2r`xsyq.

Proof. The quotient G{H – Symp3q has a faithful two-dimensional rational irreducible which

inflates to a representation of G. Note that G{O3pGq – Z{2Z has two one-dimensional

complex irreducible representations, both of which are rational. Then |G| “ 18 “ 4p22q `

12 ` 12 so these 6 are all of the complex irreducible representations of G and all of these are

rational.

We identify G with F2
3 ¸ t˘Iu. Suppose tr, su is a basis of F2

3. Because t0, s, 2su is

a normal subgroup in G, this implies that V s is a G-submodule of V . Also V s contains

tv0`xsy, vr`xsy, v2r`xsyu which are linearly independent since they are defined by taking sums

of elements 32
3 eu for u in disjoint (in fact, parallel) affine lines in F2

3. So V s is at least three-

dimensional. And since r ¨ vr`xsy “ v2r`xsy, we have that r acts nontrivially on V s. So

V s contains the two-dimensional irreducible on which s acts trivially but not all of O3pGq

acts trivially. Since s was arbitrary, V contains all four such irreducibles. Then V also

contains the trivial representation spanQpIq. Since dim V “ 9, this accounts for the complete

decomposition of V .

We have shown that r acts nontrivially on V s, and by symmetry, s acts nontrivially on each

of the three two-dimensional irreducibles whose kernel is not xsy. So V s is a G-submodule

with dimension at least three, but the only irreducible representations of G it can contain are

the trivial one and the two-dimensional irreducible with kernel xsy. Thus dimpV sq “ 3 and

the three elements vxsy, vr`xsy, v2r`xsy are a basis.

Lemma 4.3.7. Suppose F2
3 “ xr, sy. If L is a GIIF of V, then LXV s Ď spanZpI, vr`xsy, v2r`xsyq.

Proof. We have shown that vxsy, vr`xsy, v2r`xsy is a basis of V s (Lemma 4.3.6(iv)). We have

I “ 1
24

`

vxsy ` vr`xsy ` v2r`xsy
˘

, and so I, vr`xsy, v2r`xsy is also a basis of V s.
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For computational purposes, we will first prove this result for the specific case r1 “ p0, 1q

and s1 “ p1, 0q. Write w “ xI`yvr1`xs1y`zv2r1`xs1y. Then we compute the following [›LC.2]:

κpw, τ0pwq ´ wq “ 1326py´ zq2,

κpw, τr1pwq ´ wq “ 1326z2.

Since 1326 “ 2 ¨ 3 ¨ 13 ¨ 17 is square-free, this implies that both y´ z and z are integers and so

y is also an integer. We also compute that [›LC.3]

w ¨ pe0 ´ e´s1q “ px` y` zqpe0 ´ e´s1q.

So adpwq has x` y` z as an eigenvalue, and the variant of Gauss’ lemma (2.1.7) implies that

x` y` z P Z. Therefore x P Z.

Now we let r, s be an arbitrary basis of F2
3. There is some φ P GLp2, 3q such that

φprq “ r1 “ p0, 1q and φpsq “ s1 “ p1, 0q. Under the identification AutpVq – AGLp2, 3q, we

may view φ as an automorphism of V by the rule φpeuq “ eφpuq, for all u P F2
3, and therefore

φpvUq “ vφpUq for any affine line U Ď F2
3.

So now suppose that w1 “ x1I ` y1vr`xsy ` z1v2r`xsy is in a GIIF L for some x1, y1, z1 P Q.

Then φpLq is also an integral form, and this will also be G-invariant since G is normal

in AutpVq. Explicitly: for g P G we have g φpLq “ φ φ´1gφpLq Ď φpLq. So φpwq “

x1I ` y1vr`xs1y ` z1v2r1`xs1y is in the GIIF φpLq. By the previous calculation, x1, y1, z1 P Z.

Definition 4.3.8. Define Q to be the set containing I and vU for every affine line U of F2
3 that

does not pass through the origin. Set Q “ spanZpQq.

Lemma 4.3.9. The set Q is a Q-basis of V, and Q is an AutpVq-invariant integral form.

Proof. There are four linear one-dimensional subspaces in F2
3, and each one has two nontrivial

affine translations that do not contain the origin. So Q contains 9 elements. So we aim to show

that Q spans V . Suppose F2
3 “ xr, sy. Recall that I “ 1

24pvxsy ` vr`xsy ` v2r`xsyq and so vxsy is

also in spanQpQq, and in particular spanQpQq contains vU for every affine line U Ď F2
3.

Then spanQpQq contains V s “ spanQpvxsy, vr`xsy, v2r`xsyq (Lemma 4.3.6(iv)). Contained in

V s is the 2-dimensional irreducible QrGs-module with kernel xsy. The decomposition of V as
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a G-module (Lemma 4.3.6(iii)) shows that spanQpQq contains all of V .

For any f P AGLp2, 3q and any u P F2
3, recall that f peuq :“ e f puq defines an identification

of AGLp2, 3q with AutpVq. For any affine line U Ď F2
3 we have f pvUq “ v f pUq and hence

spanZpQq is invariant under AutpVq.

The proof that Q is closed under the algebra products is a straightforward calculation

[›LC.4].

Lemma 4.3.10. If L is a GIIF of the Lam-Chen algebra, then 9L Ď Q.

Proof. We may assume L is a maximal GIIF, and in particular I P L. Let V “ spanQpIq `

V1 ` V2 ` V3 ` V4 be the decomposition of V into irreducible representations of G, where

each Vi is two-dimensional. Let xsiy Ă G be the kernel of the representation Vi. Suppose

v “ xI ` v1 ` v2 ` v3 ` v4 is in a GIIF, with x P Q and vi P Vi for i “ 1, 2, 3, 4.

Because tracepIq “ 9 ­“ 0, it follows that the kernel K of the trace function V Ñ Q is a

codimension one subspace, which is also G-invariant. Based on the decomposition given in

Lemma 4.3.6, the only possibility is K “ V1 ` V2 ` V3 ` V4. Therefore tracepwq “ 9x is an

integer.

Note that si acts on V j without fixed points, if i ­“ j. So 2si ` si ` 1 annihilates V j if i ­“ j.

For any i P t1, 2, 3, 4u, the following is in L: 3p2si ` si ` 1qv “ 9xI ` 9vi. This element is in

V si and Lemma 4.3.7 implies it is in Q. Since 9xI P ZI Ă Q this implies 9vi P Q. Since this is

true for an arbitrary i, and since 9xI P Q, the lemma is established.

Notation 4.3.11. The element ´I in AGLp2, 3q induces the automorphism of V which sends

vU to v´U for any affine line U not passing through the origin. Thus the elements vU ` v´U

and vU ´ v´U will be the `1 and ´1 eigenvectors of this automorphism.

To perform calculations with respect to this eigenspace decomposition, we need to make

an explicit choice of half of the eight affine lines that do not pass through the origin. We define

the following four affine lines:

U1 “ p1, 0q ` xp0, 1qy, U3 “ p1, 0q ` xp1, 2qy,

U2 “ p1, 0q ` xp1, 1qy, U4 “ p0, 1q ` xp1, 0qy.
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For i “ 1, 2, 3, 4, we define fi “ vUi ` v´Ui and ni “ vUi ´ v´Ui .

Then set B` “ tI, f1, f2, f3, f4u and B´ “ tn1, n2, n3, n4u.

Lemma 4.3.12.

(i) B` is a Q-basis for Vτ0

(ii) B´ is a Q-basis for V´τ0 .

Furthermore, Let L be a GIIF such that 3L Ď Q. Then,

(iii) LX Vτ0 Ď spanZpB`q.

(iv) LX V´τ0 Ď spanZpB´q.

Proof. First, we note that τ0 “ τ
`

1
2e0

˘

fixes e0. Hence in the identification of G with

F2
3 ¸ t˘Iu, the element τ0 corresponds to ´I.

It is clear that τ0 fixes each element of B` and it negates each element of B´. To prove (i)

and (ii), it suffices to show that B` Y B´ is a basis of V .

Observe that tUi : i “ 1, 2, 3, 4u Y t´Ui : i “ 1, 2, 3, 4u is the set of all 8 affine lines

in F2
3 which do not pass through the origin. For any i “ 1, 2, 3, 4, we have 2vUi “ fi ` ni

and 2v´Ui “ fi ´ ni. Thus spanQpB` Y B´q contains vU for every affine line U not passing

through the origin and it also contains I. So B` YB´ is a basis of V , which proves (i) and (ii).

Let w be an arbitrary element in L X Vτ0 . By hypothesis, we may write w “ 1
3yI `

1
3

ř4
i“1 Xi fi with y and each Xi an integer.

We compute the following, which all must be integers integers [›LC.5]:

κpw, τ0,1wq ´ κpw,wq “ ´
442

3

`

X2
2 ` X2

3 ` X2
4

˘

κpw, τ1,0wq ´ κpw,wq “ ´
442

3

`

X2
1 ` X2

2 ` X2
3

˘

κpw,wq ´ ηpw,wq “ ´
124

9

`

X2
1 ` X2

2 ` X2
3 ` X2

4

˘

Since a2 ` b2 ` c2 ” 0, pmod 3q implies a ” b ” c, pmod 3q, the first two equations above

imply X1 ” X2 ” X3 ” X4, pmod 3q, and the last equation implies all of these must be 0

pmod 3q.
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So we may write w “
y
3 I ` q, where q “

ř4
i“1

Xi
3 fi is contained in Q. It follows that

3w2 “
y2

3 I ` 2y q` 3q2. Since 3w2 P 3L Ď Q we must have y2

3 I P Q, which implies y{3 P Z.

This completes the proof that w P Q, and (ii) follows.

Finally, let w “ 1
3

ř4
i“1 Xini be an element in LX V´τ0,0 , with Xi P Z for each u.

Then w ¨ w is is in L X Vτ0,0 and therefore is in spanZpB`u by part (ii). We define the

coefficients of w ¨ w “ zI I `
ř4

i“1 zi fi, then we compute the following [›LC.6]:

zI “
16
3

`

X2
1 ` X2

2 ` X2
3 ` X2

4

˘

,

z1 “ 2X2
1 `

14
3
pX2X3 ` X2X4 ´ X3X4q ,

z2 “ 2X2
2 `

14
3
pX1X3 ´ X1X4 ` X3X4q ,

z3 “ 2X2
3 `

14
3
pX1X2 ` X1X4 ´ X2X4q ,

z4 “ 2X2
4 ´

14
3
pX1X2 ` X1X3 ` X2X3q .

For zI to be an integer, there are two possibilities: Xi ” 0, pmod 3q for either a single

i P t1, 2, 3, 4u or for all four i P t1, 2, 3, 4u. So we may choose i such that Xi ” 0, pmod 3q.

Suppose ti, j, k, `u “ t1, 2, 3, 4u. Then the condition that z j is an integer reduces down to

XkX` ” 0, pmod 3q, so one of these is also zero modulo 3. Then zI being an integer implies

that all four coefficients are zero modulo 3. Thus, w P spanZpB´1q.

Theorem 4.3.13. The integral form Q is the unique maximal GIIF in the Lam-Chen algebra.

Proof. Let L be a GIIF of the Lam-Chen algebra such that 3L Ď Q. Note that Lτ0 ` L´τ0 is

the total eigenlattice in L with respect to the group of order 2 generated by τ0. If ` P L, then

2` “ pτ0 ` 1q` ` pτ0 ´ 1q` P Lτ0 ` L´τ0 .

Therefore 2L Ď Lτ0 ` L´τ0 , and Lemma 4.3.12 shows that Lτ0 ` L´τ0 Ď Q. Therefore (for

some k ą 0) 2L Ď Lτ0,0 ` L´τ0,0 Ď Q. Then by Lemma 4.3.10, 9L Ď Q. Combining these

gives L “ 2LX 9L Ď Q, as desired.

Now suppose L1 is a GIIF such that 3L1 Ę Q. Then by 4.3.10, we have 3p3L1q Ď Q. So

taking L “ 3L1 in the previous paragraph implies that 3L1 Ď Q, which is a contradiction.

Therefore, every GIIF L is contained in Q.
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APPENDIX A

Glossary of terms and notations

adpq Def 2.1.1 page 8

For an element a in an algebra A, adpaq is the endomorphism of A given by x ÞÑ ax.

axes Def 1.2.1 page 4

In an algebra, axes are a distinguished set of idempotents which satisfy the Virasoro

Vp4, 3q fusion rules. In particular, if a is an axis then the adjoint action of a is semisim-

ple with eigenvalues taken from the set t0, 1, 1
4 ,

1
32u and the eigenspaces satisfy the

Virasoro fusion rules: Vpaqλ ¨Vpaqµ Ď
ÿ

νPλ‹µ

Vpaqν where ‹ : t0, 1, 1
4 ,

1
32u

2 Ñ Ppt0, 1, 1
4 ,

1
32uq

is given by the table below.

‹ 1 0 1
4

1
32

1 1 0 1
4

1
32

0 0 1, 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

1
32

1
32

1
32

1
32 1, 0, 1

4

χpx, tq Def 2.1.1 page 8

For an endomorphism x on a finite dimensional vector space V , χpx, tq “ detpx´ tIdVq

is the characteristic polynomial of x.
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detαpLq Def 2.2.3 page 13

For a lattice L with bilinear form α, let e1, . . . , en be a Z-basis of L. Then detαpLq is

the determinant of the matrix pαpei, e jqq1ďi, jďn. This is independent of the choice of

Z-basis.

η Def 2.2.1 page 12

For two elements x, y in a finite dimensional algebra, ηpx, yq “ Trradpx ¨ yqs.

GIIF Def 1.2.4 page 6

Stands for G-invariant integral form; For a commutative algebra V with axes, a GIIF is

an integral form which is invariant under the subgroup G of AutpVq generated by the

τ-involutions of V .

integral form Def 1.2.2 page 5

An integral form in a (not necessarily associative) algebra A over a field k of character-

istic zero is a subrng of A which is the Z-span of a k-basis of A.

integral form detector page 8

For an algebra A over a field F of characteristic zero, an integer k and a subspace W of

A, an integral form detector on W is a function f : Wk Ñ F such that if w P W is in an

integral form of A, then f pwq P Z.

κ Def 2.2.1 page 12

The Killing form; for two elements x, y in a finite dimensional algebra, κpx, yq “

Trpadpxq adpyqq.

L˘,˘ page 42

89



This is defined when A – pZ{2Zq2 is generated by an ordered pair of generators

A “ xτ0, τ1y and L is a ZrAs-module. Then for ε0, ε1 P t`,´u, we define Lε0,ε1 “ t` P

L : τ0p`q “ ε0` and τ1p`q “ ε1`}.

lattice Def 2.2.3 page 13

A finitely-generated free abelian group L with a symmetric bilinear form Lˆ L Ñ Q.

Norton-Sakuma algebra page 2

One of 8 nonassociative algebras which, up to isomorphism, give every possible

subalgebra in the monster Griess algebra generated by two 2A-axes.

R˚,α Prop 2.2.2 page 13 and Def 2.2.3 page 13

The dual of R with respect to α; For an additive subgroup R of a vector space V

over a field k of characteristic zero, and a symmetric bilinear form α : V b V Ñ k,

R˚,α “ tr P V : αpr, vq P Z for all v P Vu.

rng page 3 and Def 3.1.7 page 24

A rng is a set equipped with an abelian group structure and a (not necessarily asso-

ciative) product satisfying the usual axioms of a ring other than associativity and the

requirement of having a multiplicative unit. For a subset S of a rng, rngpS q is the

smallest rng containing S .

σ-involution / σpaq page 5

For an axis a in a commutative algebra V , σpaq is the involutive automorphism of the

subalgebra Vpaq1 ‘ Vpaq0 ‘ Vpaq1{4 which is the identity on Vpaq1 ‘ Vpaq0 and which acts as

the scalar -1 on Vpaq1{4.

τ-involution / τpaq page 5
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For an axis a in a commutative algebra V , τpaq is the involutive automorphism of V

which is the identity on Vpaq1 ‘ Vpaq0 ‘ Vpaq1{4 and which acts as the scalar ´1 on Vpaq1{32.

telpL,Aq Def 3.5.2 page 41

The total eigenlattice in L with respect to A; When A is a finite abelian group, and

L is a ZrAs-module, then telpAq “
ř

χPHompA,C˚q Lχ where Lχ “ t` P L : for all a P

A, a ¨ ` “ χpaq`u.

Tr / trace Def 2.1.1 page 8

For an endomorphism x on a finite dimensional space, Trpxq is the trace of x. If a is in

a finite dimensional algebra, then tracepaq means Trpadpaqq.

Vpaqλ page 4

For a commutative algebra V and an axis a in V , this is the λ-eigenspace of adpaq:

Vpaqλ “ tv P V : a ¨ v “ λvu.

rxsB page 31

The matrix of a linear endomorphism with respect to an ordered basis B.
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APPENDIX B

Mathematica chapter

In this appendix, we discuss the methods for performing calculations in the algebras in this

document using the computer algebra system Mathematica [Wol]. The code described can

be found in the document GIIFs.nb, available at both https://umich.box.com/ggs and

https://github.com/gregorygsimon/GIIFs/.

Section B.1 describes the initialization needed to calculate algebra products for each

algebra. Then Section B.2 covers other functions needed, for example to compute the trace or

Killing form.

When computations are needed in the text, a citation of the form [›2A.2] is given. The

accompanying code will be found in the 2A section of this Appendix, which is Section B.3.

Code is also given for 3A in B.4, 3C in B.5, 4A in B.6, 4B in B.7, 5A in B.8, 6A in B.9, 2A3C

in B.10, 2B3C in B.11, and the Lam-Chen algebra in B.12.

B.1 The initialization code for computing algebra products

In this section, we explain the code used to compute the products of two elements in the

algebra. The specific case of the Norton-Sakuma algebra of type 2A will be used as an

illustrative example; the code for the remaining algebras follows the same logic.

Let V be the rational 2A Norton-Sakuma algebras and set n “ dim V . Table 3 in [IPSS10]

gives a basis and the associated algebra products for V . We take the ordering of the basis

elements as they are printed in this table to give us an ordered basis for V , which yields a
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linear isomorphism of V with Qn. The Mathematica code will be based on this isomorphism.

The Initialization section begins with the user defining the type.

In[1]:= type = "2A";

There are currently 9 options for type: "2A", "3A", "4A", "4B", "5A", "6A", "2A3C",

"2B3C", "3^2:2", corresponding to 9 of the 10 algebras considered in this document. (There

is no code for computations in 2B, since this algebra is isomorphic with Q2.) We explain the

code for type = "2A", and the remaining cases are analogous.

We define a StructureCoefficientsForType["2A"] to be the n ˆ n-matrix with

pi, jqth entry equal to the product of the ith and jth basis elements.

In[2]:= StructureCoefficientsForType["2A"] =

{{a0,
1
8
(a0+a1-aρ),

1
8
(a0+aρ-a1)},

{
1
8
(a1+a0-aρ),a1,

1
8
(a1+aρ-a0)},

{
1
8
(aρ+a0-a1),

1
8
(a1+aρ-a0),aρ}};

(Caveat: when the product of two elements is zero, we do not write 0 here, which will be

interpretted as a scalar. Instead we enter zero. Then we later define zero to be the appropriate

zero vector.) We also define the number of axes (also called Ising vectors in VOA theory) with

the following.

In[3]:= numIsing["2A"]=3;

Next we have a snippet of code that defines dim to be the dimension of the algebra, and

then defines the ordered list of basis elements to equal to the identity matrix of size dim ˆ

dim:

In[4]:= If[type=="2A",

dim=3;

{a0,a1,aρ} = IdentityMatrix[dim];

];
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The basis for 2A that we are using is a0, a1, aρ. The result of this code is that if we type

in a0 in Mathematica, then the result is the same as the first standard basis vector t1, 0, 0u of

Qdim, and similarly for the 2nd and 3rd basis elements.

Next we have the following:

In[5]:= StructureCoefficients = StructureCoefficientsForType[type];

zero = Table[0,{dim}];

AlgebraProduct[W_,V_]:= Sum[

W[[i]]V[[j]]StructureCoefficients[[i,j]],

{i,1,dim},{j,1,dim}];

W_¨V_:=AlgebraProduct[W,V];

This defines StructureCoefficients to equal the matrix of the structure coefficients

for the particular type that the user has selected. It defines zero to be the zero vector of Qdim.

The algebra product is defined as AlgebraProduct[V,W]. For vectors V and W of length

dim, the product of V and W is defined to be the sum (over 1 ď i, j ď dim) of the ith component

of W times the jth component of V times the pi, jqth entry of StructureCoefficients.

Finally, the center dot W¨V is defined to be the algebra product of W and V for brevity.

B.2 Mathematica functions for calculations in the Norton-

Sakuma and related algebras

We proceed understanding that type is a string giving the type of the algebra, dim equals the

dimension of the algebra, and for two vectors u,v of length dim, we have that u¨v equals the

vector of length dim corresponding to the algebra product of u and v under the identification

of the algebra with Qdim. Section B.1 gives a detailed account of these.

Notation B.2.1. For a in a commutative algebra V recall that adpaq is the endomorphism

x ÞÑ a ¨ x of V . Define tracepaq to be the trace of adpaq.
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We define ei to equal the ith row of the dimˆdim identity matrix, i.e. the ith standard

basis element of Qdim. For a vector w in Qdim we first define ad[w] to be the matrix of size

dimˆdim where the pi, jq entry equals the ith component of w ¨ e j. We also define trace[w]

to be the trace of ad[w].

In[6]:= ad[w_]:=Table[(w¨ej)[[i]],{i,1,dim},{j,1,dim}];

trace[w_]:=Tr[ad[w]] // Simplify;

For the next piece of code, we will need the following lemma.

Lemma B.2.2. Let pptq “ ´65536
217 t3 ` 81920

217 t2 ´ 16384
217 t ` 1. Then for an axis a (see definition

1.2.1), the τ-involution in AutpVq associated to a equals ppadpaqq.

Proof. The polynomial pptq was chosen so that pp0q “ pp1q “ pp1{22q “ 1 and pp1{25q “

´1.

Let a be an axis. Write V “ Vpaq1 ‘ Vpaq0 ‘ Vpaq1
22
‘ Vpaq1

25
, where Vpaqλ “ tv P V : av “ λvu

the λ-eigenspace of adpaq. So ppadpaqq acts as the scalar ppλq on Vpaqλ . In particular, ppadpaqq

acts trivially on Vpaq1 ‘Vpaq0 ‘Vpaq1
22

, and ppadpaqq acts as the scalar´1 on Vpaq1
25

, as required.

For an axis a, we define the Mathematica function τ[a] to be ppadpaqq, i.e. the τ-involution

associated to a.

In[7]:= τ[a_]:=IdentityMatrix[dim]-
16384
217

ad[a]

+
81920
217

MatrixPower[ad[a],2]-
65536
217

MatrixPower[ad[a],3];

We next define the multiplicative identity in the algebra. We start by defining I to be a

vector with undefined variable entries1. We then use Mathematica’s Solve function to find the

values of the variables which make ad[I] equal to the identity matrix. Since the multiplicative

identity is unique, there will be a unique solution found by Mathematica. We redefine I with

its undefined variable entries replaced by the values found by Solve.

1Capital iota is used instead of I (uppercase i) because the latter is reserved in Mathematica for
?
´1.
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In[8]:= I = Table[idcomponenti,{i,1,dim}];

I = I /. Solve[ad[I]==IdentityMatrix[dim]][[1]];

Next we want to define the group G generated by the τ-involutions, as matrices with respect

to the given ordered basis of V . We recall the function numIsing which takes the string type

and outputs the number of axes in this type. Then generators is defined to be the list of the

τ-involutions, i.e. the list containing τpeiq for i “ 1, 2, . . . , numIsingrtypes.

We next define G by iterating the function Union[#,Dot@@@Tuples[#,2]] on the initial

input generators. On the first iteration, this gives the union of generators with the

collection of the matrix product of all pairs of elements from generators, this would be the

collection of all elements of G which have word length ď 2 in the generating set consisting

of τ-involutions. Iterating this function k times produces the subset of G consisting of all

elements with word length ď k ´ 1. The Mathematica function FixedPoint repeatedly does

this procedure until the process stabilizes, i.e. it halts after all of the words of length k in the

generators of G equals the set of all words of length k ` 1 in the generators of G. This means

the set contains all of the matrices generated by the τ-involutions, as desired.

In[9]:= generators = Table[τ[ei],{i,1,numIsing[type]}];

G = FixedPoint[Union[#,Dot @@@ Tuples[#,2]]&,generators];

The remaining Mathematica functions will rely on an identification of three distinct but

highly related concepts: a basis of Qn, an invertible nˆ n rational matrix, and a Z-basis of a

rank n free additive subgroup ofQn. In Mathematica, a list of vectors inQn is indistinguishable

from a matrix, where the first vector in the list is understood to be the first row, the second in

the list is the second row, and so on. Therefore, for a vector v of length n and a basis B of Qn,

the coefficients of v in the basis of B is given by Inverse[Transpose[B]].v . If B is a set

of linearly independent vectors, but has less than n elements, and if v is in the span of these

vectors, then we can find the coefficients of v with respect to the list of vectors B using the

function LinearSolve[Transpose[B],v]. .
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In[10]:= vec[x_,B_]:=LinearSolve[Transpose[B],x];

So given a list of linearly-independent vectors B and a vector x, the function vec[x,B]

will give the coefficients of the vector x expressed in the basis B if possible – if not possible,

this will result in an error.

Similarly, if f is an n ˆ n matrix which preserves spanQpBq, then the associated matrix

with respect to a linearly independent list of vectors B will have its ith column equal to the

product of f with ith element of B, expressed in the basis B.

In[11]:= mat[f_,B_]:=

Transpose[Table[vec[f.B[[i]],B],{i,1,Length[B]}]];

So given a matrix f and a list of linearly independent vectors B, the function mat[f,B]

will give the matrix of f in the basis B as long as spanQpBq is f invariant.

This can immediately be used to check if a basis B spans an integral form: we create a list

consisting of the matrices adpbq with respect to the basis B, for all b in B. Then we check if

every component produced is an integer. This furnishes the following code:

In[12]:= IntegralFormQ[B_]:=AllTrue[Flatten[

Table[mat[ad[B[[i]]],B],{i,1,Length[B]}]

],IntegerQ]

So IntegralFormQ[B] will output True if and only if the Z-span of the list of vectors B

is an integral form.

The next result will be used to define a function to compute when one lattice is contained

in another.

Lemma B.2.3. Let α and β be two matrices in GLnpQq. Let A be the lattice in Qn additively

generated by the rows of α and let B be the lattice additively generated by the rows of β. Then

A Ď B if and only if the matrix αβ´1 has integer entries.
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Proof. Let αi and βi denote the ith row of the matrix α and β, respectively, thought of as a row

vectors. Let xi be the unique column vector that satisfies βT xi “ αT
i . The entries of xi give the

coefficients of αi expressed in the basis tβiu
n
i“1. So αi is in B if and only if the vector xi has

integer entries. Therefore, A Ď B if and only if xi has integer entries, for all i with 1 ď i ď n.

If X is the matrix whose ith column is xi, then we can combine the n equations βT xi “ αT
i

into the single matrix equation βT X “ αT . So we see that A Ď B if and only if X “ pβT q´1αT

has integer entries. Equivalently, A Ď B if and only if XT “ αβ´1 has integer entries.

This furnishes the following code for the function LatticeContainQ, which takes two

invertible n ˆ n matrices α and β as input, and which outputs True if and only the lattice

spanned by the rows of α is contained in the lattice spanned by β. Then LatticeEqualQ

is defined to check if the both LatticeContainQ[α, β] and LatticeContainQ[β, α] are

both true.

In[13]:= LatticeContainQ[α_,β_]:=

AllTrue[Flatten[α.Inverse[β]],IntegerQ]

LatticeEqualQ[α_,β_]:=

LatticeContainQ[α,β]&&LatticeContainQ[β,α]

We provide code to compute the Killing form (κ[v,w]) and the Gram matrix κGram[B] of

a list of vectors B, i.e. the matrix whose pi, jq-entry is κ evaluated on the ith and jth elements

of B.

In[14]:= κ[x_,y_]:= Simplify[Tr[ad[x].ad[y]]]

κGram[B_]:=

Table[κ[B[[i]],B[[j]]],{i,1,Length[B]},{j,1,Length[B]}]

The code for the form ηpv,wq “ tracepadpv ¨ wqq is completely analogous.

In[15]:= η[x_,y_]:=trace[x¨y]

ηGram[L_]:=

Table[η[L[[i]],L[[j]]],{i,1,Length[L]},{j,1,Length[L]}]
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Finally, we define IntegerFactor[x] to be the prime factorization of an integer x

expressed using dots and exponents (instead of as a difficult to read long list of prime factors

and exponents). This is suggested in the help page for FactorInteger under “Applications”

in Mathematica 9 & 10.

In[16]:= IntegerFactor[x_]:=Times@@(Superscript@@@ FactorInteger[x]);

B.3 2A Mathematica code

›2A.1

In[17]:= k = I - a0;

q =4 (a1-aρ);

q¨q == 7a0+15k

a0¨q ==
1
4
q

Out[17]= True

Out[18]= True

›2A.2

In[19]:= w=4x a0 + y q;

trace[w]

trace[w¨w]

Out[19]= 5 x

Out[20]= 5 (4 x2+7 y2)

›2A.3
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In[21]:= B = {4a0,k,q};

IntegerFactor[Det[κGram[B]]]

IntegerFactor[Det[ηGram[B]]]

Out[21]= 22 132

Out[22]= 52 72

›2A.4

In[23]:= w = x a0 +
y
4
q +

z
4
I;

w¨w==
1
2
(x+z)w+

1
16
(15y2-z(2x+z))I+

(x2-y2)(4ta0)
8t

//Reduce

(4ta0)¨w==tw-
tzI
4
+
1
4
(3x+z)(4ta0) // Reduce

Out[23]= True

Out[24]= True

›2A.5

In[25]:= wm_:=2 a0 +(m+
1
2
)q +

1
2
I;

wm== -m I -
m
2
(8a0) + (1+2m)w0 //Simplify

wm== (1+m) I +
m+1
2
(8a0) -(1+2m)w-1 // Simplify

Out[25]= True

Out[26]= True

›2A.6

In[27]:= σ[x_]:=
32
3
ad[x].ad[x] -

32
3
ad[x] + ad[I];

P={I,4 a0, q};
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wm_:=2 a0 +(m+
1
2
)q +

1
2
I;

L[m_]:={I,8a0,wm};

LatticeEqualQ[ Table[σ[a1].P[[i]],{i,1,dim}],L[0]]

LatticeEqualQ[ Table[σ[aρ].P[[i]],{i,1,dim}],L[-1]]

Out[27]= True

Out[28]= True

B.4 3A Mathematica code

›3A.1

In[29]:= trace[x uρ+y I]

Out[29]=
5 x

3
+4 y

›3A.2

In[30]:= n0= 2
6(a1-a-1);

n1=2
6(a-1-a0);

η[n0,n1] // IntegerFactor

κ[n0, n1] // IntegerFactor

Out[30]= -11 21 32 2711

Out[31]= -11 22 31 3131

›3A.3

In[32]:= g = τ[a-1].τ[a0];

m0=
1
3
(g - ad[I]).n0;

m1=
1
3
(g - ad[I]).n1;
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B = {m0,m1,3uρ,I};

mat[ad[3uρ],B] // MatrixForm

mat[ad[m0],B] // MatrixForm

Out[32]=
$

’

’

’

’

’

’

’

’

’

’

%

1 0 0 0
0 1 0 0
0 0 3 1
0 0 0 0

,

/

/

/

/

/

/

/

/

/

/

-

Out[33]=
$

’

’

’

’

’

’

’

’

’

’

%

20 -20 1 1
0 -20 0 0
-156 78 0 0
1008 -504 0 0

,

/

/

/

/

/

/

/

/

/

/

-

›3A.4

In[34]:= z = a m0+b m1+ c 3uρ + d I;

trace[z]

η[z,z]

κ[z,z]

Out[34]= 5 c+4 d

Out[35]= 3252 a2-3252 a b+3252 b2+15 c2+10 c d+4 d2

Out[36]= 2504 a2-2504 a b+2504 b2+11 c2+10 c d+4 d2

›3A.5

In[37]:= mat[ad[3 uρ],{m0,m1}] // MatrixForm

Out[37]=
$

’

’

’

%

1 0
0 1

,

/

/

/

-
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›3A.6

In[38]:= z =
1
3
(a m0+b m1)+ 3 uρ;

vec[z¨z - k z, {m0,m1,9uρ,I}]

Out[38]= {
1

9
(6 a+20 a2-40 a b-3 a k),

1

9
(6 b-40 a b+20 b2-3 b k),

1

9
(9-52 a2+52 a b-52 b2-3 k), 112 (a2-a b+b2)}

›3A.7

In[39]:= Reduce[6 a+20 a2-40 a b-3 a k ==0 &&

6 b-40 a b+20 b2-3 b k ==0 &&

9-52 a2+52 a b-52 b2-3 k ==0 &&

(3a‰0 _ 3b‰0 _ 3k‰0), ModulusÑ9]

Out[39]= False

B.5 3C Mathematica Code

›3C.1

In[40]:= n0= 2
6(a1-a-1);

n1= 2
6(a-1-a0);

trace[n0¨n1] // IntegerFactor

κ[n0,n1] // IntegerFactor

Out[40]= -11 21 33 71 111

Out[41]= -11 22 31 3311

›3C.2
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In[42]:= g=τ[a-1].τ[a0];

n0= 2
6(a1-a-1); n1= 2

6(a-1-a0);

mi_:=
1
3
(g-ad[I]).ni;

mat[ad[m0],{m0,m1,I}] // MatrixForm

Out[42]=

$

’

’

’

’

’

’

’

%

20 ´ 20 1
0 ´ 20 0
924 ´ 462 0

,

/

/

/

/

/

/

/

-

›3C.3

In[43]:= w = α m0+β m1+γ I;

trace[w¨w] // Expand

Out[43]= 2772 α2-2772 α β+2772 β2+3 γ2

›3C.4

In[44]:= mat[ad[s m0],{s m0,s m1,t I}] //MatrixForm

Out[44]=
$

’

’

’

’

’

’

’

’

%

20s ´ 20s t

0 ´ 20s 0
924s2

t
´ 462s2

t
0

,

/

/

/

/

/

/

/

/

-

In[45]:= mat[ad[s m1],{s m0,s m1,t I}] //MatrixForm

Out[45]=
$

’

’

’

’

’

’

’

’

%

´ 20s 0 0

´ 20s 20s t

´ 462s2

t
924s2

t
0

,

/

/

/

/

/

/

/

/

-

›3C.5

In[46]:= mat[ad[s n0],{s n0,s n1,t I}] //MatrixForm

Out[46]=
$

’

’

’

’

’

’

’

’

’

’

’

%

20s 20s t

40s ´ 20s 0

2772s2

t
´ 1386s2

t
0

,

/

/

/

/

/

/

/

/

/

/

/

-
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In[47]:= mat[ad[s n0],{s n0,s n1,t I}] //MatrixForm

Out[47]=
$

’

’

’

’

’

’

’

’

’

’

’

%

20s 20s t

40s ´ 20s 0

2772s2

t
´ 1386s2

t
0

,

/

/

/

/

/

/

/

/

/

/

/

-

›3C.6

In[48]:= w =
α

3
s m0 +

β

3
s m1+ t I;

mat[τ[a0],{s m0,s m1,w}] //MatrixForm

mat[τ[a-1],{s m0,s m1,w}] //MatrixForm

Out[48]=
$

’

’

’

’

’

’

’

’

’

’

’

%

´ 1 0 ´ 1
3
p2αq

´ 1 1 ´ α
3

0 0 1

,

/

/

/

/

/

/

/

/

/

/

/

-

Out[49]=
$

’

’

’

’

’

’

’

’

’

’

’

%

1 ´ 1 ´
β

3

0 ´ 1 ´ 1
3
p2βq

0 0 1

,

/

/

/

/

/

/

/

/

/

/

/

-

›3C.7

In[50]:= w =
α

3
s n0 +

β

3
s n1+ t I;

mat[τ[a0],{s n0,s n1,w}] //MatrixForm

mat[τ[a-1],{s n0,s n1,w}] //MatrixForm

Out[50]=
$

’

’

’

’

’

’

’

’

’

’

’

%

´ 1 1 1
3
pβ´ 2αq

0 1 0

0 0 1

,

/

/

/

/

/

/

/

/

/

/

/

-

Out[51]=
$

’

’

’

’

’

’

’

’

’

’

’

%

´ 1 1 1
3
pβ´ 2αq

0 1 0

0 0 1

,

/

/

/

/

/

/

/

/

/

/

/

-

105



›3C.8

In[52]:= Clear[w]

w[s_,t_]:=
s n0-s n1
3

+t I;

B[s_,t_]:={s n0,s n1,
s n0-s n1

3
+t I};

mat[ad[s n0],B[s,t]] //Expand // MatrixForm

Out[52]=

$

’

’

’

’

’

’

’

’

’

’

’

%

20s´ 924s2

t
462s2

t
` 20s t´ 462s2

t

924s2

t
` 40s ´ 462s2

t
´ 20s 462s2

t
` 20s

2772s2

t
´ 1386s2

t
1386s2

t

,

/

/

/

/

/

/

/

/

/

/

/

-

B.6 Mathematica for 4A

›4A.1

In[53]:= τ[a0] // MatrixForm

Out[53]=

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

›4A.2

In[54]:= n0=4 (a-1-a1);

n1=4 (a0-a2);

f0=n0¨n0;

f1=n1¨n1;

n1¨n0== 0id &&

f0¨n0==16n0 &&

f1¨n0==n0&&

f0¨f0==16f0 &&

f1¨f0==8f0+8f1- 120id

Out[54]= True
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›4A.3

In[55]:= v= α0f0+α1f1+α3I;

v0=v/.Solve[{v¨n0,v¨ n1,trace[v]} == {n0,0n1,0}][[1]];

v1=v/.Solve[{v¨n0,v¨ n1,trace[v]} == {0n0,1n1,0}][[1]];

vt=v/.Solve[{v¨n0,v¨ n1,trace[v]} == {0n0,0n1,1}][[1]];

w = a v0+b v1+c vt;

vec[w¨w,{v0,v1,vt}] // FullSimplify

Out[55]= {
1

15
(159 a2+24 a (13 b-5 c)+(13 b-5 c)2),

15 (169 a2+159 b2+26 a (12 b-5 c)-120 b c+25 c2),

3 (169 a2+322 a b+169 b2)-44 (a+b) c+9 c2}

›4A.4

In[56]:= w =
1
2
(a n0+ b n1+c f0+d f1+ e id);

F = {n0,n1,f0,f1,I};

vec[2w¨w,F] // Expand

Out[56]= {16 a c+a d+a e, b c+16 b d+b e,
a2

2
+8 c2+8 c d+c e,

b2

2
+8 c d+8 d2+d e, -120 c d+

e2

2
}

›4A.5

In[57]:= w =
1
2
(a n0+ b n1+c f0+d f1);

κ[w,w] // Expand

Out[57]= 8 a2+8 b2+
577 c2

4
+56 c d+

577 d2

4
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B.7 Mathematica for 4B

›4B.1

In[58]:= τ[a0] // MatrixForm

Out[58]=
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

›4B.2

In[59]:= τ[aρ2]==ad[I]

Out[59]= True

›4B.3

In[60]:= n0=8 (a-1-a1);

n1=8 (a0-a2);

f0=
1
60
n0¨n0 -

7
15
aρ2;

f1=
1
60
n1¨n1 -

7
15
aρ2;

n0¨n0==32 f0-28 f1+28 I &&

n1¨n0==0I &&

f0¨n0==
3
4
n0 &&

f1¨n0== 0 I &&

f0¨f0== f0 &&

f1¨f0==0 I

Out[60]= True
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›4B.4

In[61]:= I == f0+f1+aρ2

Out[61]= True

›4B.5

In[62]:= κ[p n0,p n0]

Out[62]= 104 p2

In[63]:= η[p n0,p n0]

Out[63]= 147 p2

›4B.6

In[64]:= w =
1
2
(a n0+b n1+4c f0+4d f1+ e I);

F = {n0,n1,4f0,4f1,I};

vec[2w¨w,F] // Expand

Out[64]= {3ac+ae,3bd+be,4a2-
7b2

2
+2c2+ce,-

7a2

2
+4b2+2d2+de,14a2+14 b2+

e2

2
}

›4B.7

In[65]:= κ[w,w]/.eÑ0 // Expand

Out[65]= 26 a2+26 b2+
25 c2

4
+
25 d2

4

B.8 Mathematica for 5A

›5A.1

In[66]:= τ[a0] // MatrixForm
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Out[66]=

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

›5A.2

In[67]:= z =
I
2
+
2048
7
wρ;

mi_:=14I - 64ai;

Q = {I,z,m-1,m0,m1,m2};

mat[ad[z],Q] // MatrixForm

mat[ad[m0],Q] // MatrixForm

Out[67]=

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 31 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 ´ 1
0 0 0 1 1 ´ 1
0 0 ´ 1 1 1 0
0 0 ´ 1 0 1 0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Out[68]=

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 0 ´ 182 700 ´ 182 ´ 168
0 0 14 0 14 ´ 14
0 1 12 0 0 0
1 1 12 ´ 36 12 12
0 1 0 0 12 0
0 0 0 0 0 12

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

›5A.3

In[69]:= κGram[Q]//MatrixForm

Out[69]=

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

6 3 0 0 0 0
3 69 0 0 0 0
0 0 3184 ´ 796 ´ 796 ´ 796
0 0 ´ 796 3184 ´ 796 ´ 796
0 0 ´ 796 ´ 796 3184 ´ 796
0 0 ´ 796 ´ 796 ´ 796 3184

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-
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›5A.4

In[70]:= x = a I+b z;

FullSimplify[

CharacteristicPolynomial[mat[ad[x],{m-1,m0,m1,m2}],t]

]

Out[70]= (a2+a b-b2-(2 a+b) t+t2)2

›5A.5

In[71]:= N[Eigenvalues[κGram[Q]]]

Out[71]= {3980.,3980.,3980.,796.,69.1425,5.85747}

›5A.6

In[72]:= g=τ[a-2].τ[a0];

mat[ad[z] + g.g + g.g.g,{m-1,m0,m1,m2}] //MatrixForm

Out[72]=
$

’

’

’

’

’

’

’

’

’

’

%

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

/

/

/

/

/

/

/

/

/

/

-

›5A.7

In[73]:= Clear[x,y]

Inverse[mat[ad[z] + g.g + g.g.g,{I,z}]].{x,y}

Out[73]= {-
3 x

25
+
31 y

25
,
x

25
-
2y

25
}

›5A.8

In[74]:= w = x (m0+m2) + y m1;

CharacteristicPolynomial[ad[w],t] // FullSimplify
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Out[74]= (t+36x-12y)(t-12(2x+y))

(t4-12t3(x-2y)+336t(x-2y)(76x2+11xy-11y2)+19600(x2+xy-y2)2

-20t2(69x2-58xy+58y2))

›5A.9

In[75]:= w =
X
60
(m0+m2) +

Y
60
m1;

trace[w¨(τ[a0].w)]

trace[w¨(τ[a-1].w)]

κ[w,w]

Out[75]=
7

24
(X2-4 X Y-Y2)

Out[76]= -
7

24
(4 X2-6 X Y+Y2)

Out[77]=
199

450
(3 X2-2 X Y+2 Y2)

›5A.10

In[78]:= Solve[X2-4 X Y-Y2==0 && 4 X2-6 X Y+Y2==0,ModulusÑ24]

Out[78]= {{XÑ0,YÑ0},{XÑ0,YÑ12},{XÑ12,YÑ0},{XÑ12,YÑ12}}

›5A.11

In[79]:= w =
2
ÿ

i=-1

ximi;

g=τ[a-2].τ[a0];

vec[(τ[a0]+ad[id]).w,{m-1+m1,m0}]

vec[(τ[a0]+ad[id]).g.w,{m-1+m1,m0}]

Out[79]= {x-1+x1-x2,2x0-x2}

Out[80]= {x0-x1-x2,2x-1-x1-x2}
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›5A.12

In[81]:= w =
2
ÿ

i=-1

ximi;

polys={x-1+x1-x2,2x0-x2,x0-x1-x2,2x-1-x1-x2};

di_:=w/.Solve[polys == IdentityMatrix[4][[i]]][[1]];

vec[d1,Q]

vec[d2,Q]

vec[d3,Q]

vec[d4,Q]

Out[81]= {0,0,-
1

5
,-
2

5
,
2

5
,-
4

5
}

Out[82]= {0,0,
2

5
,
4

5
,
1

5
,
3

5
}

Out[83]= {0,0,-
4

5
,-
3

5
,-
2

5
,-
6

5
}

Out[84]= {0,0,
3

5
,
1

5
,-
1

5
,
2

5
}

›5A.13

In[85]:= D={
1
5
(-m-1-2m0+2m1-4m2),

1
5
(2m-1+4m0+m1+3m2),

1
5
(-4m-1-3m0-2(m1+3m2)),

1
5
(3m-1+m0-m1+2m2)};

di_:=D[[i]];

v=
4
ÿ

i=1

λidi;

coeff=CoefficientList[

CharacteristicPolynomial[ad[v],t],t][[3]];

Simplify[coeff -
1
5
(3λ1+4λ2+2λ3+1λ4)

4]

Out[85]= 239603λ41+105936λ
4
2+239616λ

4
3-1043712λ

3
3λ4+1510264λ

2
3λ
2
4-706184λ3λ

3
4

+105987λ44-4λ
3
1(260948λ2-250262λ3+119815λ4)

+λ32(-565168λ3+353040λ4)+16λ
2
2(50288λ

2
3-76757λ3λ4+37511λ

2
4)
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+2λ21(755048λ
2
2+814444λ

2
3-16λ2(96125λ3-48921λ4)

-1326260λ3λ4+402337λ
2
4)

-16λ2(29954λ
3
3-97845λ

2
3λ4+94393λ3λ

2
4-22068λ

3
4)

-4λ1(176584λ
3
2-250268λ

3
3+768964λ

2
3λ4-642382λ3λ

2
4+141267λ

3
4

+λ22(-642328λ3+377596λ4)+4λ2(165787λ
2
3-229239λ3λ4+76754λ

2
4))

›5A.14

In[86]:= vec[m-1,D]

vec[m0,D]

vec[m1,D]

vec[m2,D]

Out[86]= {1,0,0,2}

Out[87]= {0,2,1,0}

Out[88]= {1,0,-1,-1}

Out[89]= {-1,-1,-1,-1}

›5A.15

In[90]:= Table[vec[di,{m-1,m0,m1,m2}],{i,1,4}] // Det

Out[90]= -
1

5

›5A.16

In[91]:= 5(Inverse[mat[g-ad[I],{m-1,m0,m1,m2}]] )// MatrixForm

Out[91]=
$

’

’

’

’

’

’

’

’

’

’

%

´ 4 1 1 1
´ 3 ´ 3 2 2
´ 2 ´ 2 ´ 2 3
´ 1 ´ 1 ´ 1 ´ 1

,

/

/

/

/

/

/

/

/

/

/

-
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›5A.17

In[92]:=
^
m-1=
1
5
(-4 m-1-3m0-2 m1-m2);

^
m0=
1
5
(m-1-3m0-2 m1-m2);

^
m1=

1
5
(m-1+2m0-2 m1-m2);

^
m2 =

1
5
(m-1+2m0+3 m1-m2);

v = A I/5 + B z/5 +
2
ÿ

i=-1

xi
^
mi;

κ[v,v]//Expand

Out[92]=
6 A2

25
+
6 A B

25
+
69B2

25
+1592 x2-1+1592x

2
0-1592 x-1x1+1592 x

2
1

-1592 x-1x2-1592 x0 x2+1592 x
2
2

B.9 Mathematica for 6A

›6A.1

In[93]:= τ[a0]//MatrixForm

Out[93]=
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

›6A.2

In[94]:= q1 = I;

q2 = 3uρ2;

q3= 4 aρ3 - I;

q4=
16
3
((a-2+ a0+a2)-(a-1+a1+a 3));

q5= 16 (a0-a3) - q4;
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q6=16(a2-a-1) - q4;

q7 = 32 (a0+a3)-16 I+8 a ρ3+6 uρ2;

q8 = 32 (a-1+a2)-16 I+8 aρ3+6 uρ2;

Q = Table[qi,{i,1,8}];

IntegralFormQ[Q]

mat[τ[a0],Q] // MatrixForm

mat[τ[a1],Q] // MatrixForm

Out[94]= True

Out[95]=
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 ´ 1 0 0
0 0 0 0 0 ´ 1 0 0
0 0 0 0 0 0 1 ´ 1
0 0 0 0 0 0 0 ´ 1

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Out[96]=
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

›6A.3

In[97]:= κGram[Q] // MatrixForm

Out[97]=
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$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

8 7 ´ 1 0 0 0 0 0
7 13 ´ 5 0 0 0 0 0
´ 1 ´ 5 13 0 0 0 0 0
0 0 0 172 0 0 0 0
0 0 0 0 268 ´ 134 0 0
0 0 0 0 ´ 134 268 0 0
0 0 0 0 0 0 1560 ´ 780
0 0 0 0 0 0 ´ 780 1560

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

›6A.4

In[98]:= v =
4
ÿ

i=1

xiqi;

CharacteristicPolynomial[ad[v],t] == (t-(x1+3x2-x3))*

(t2+t(-2x1-2x2+x3)+x
2
1+2x1x2+x

2
2-x1x3-x2x3-20x

2
4)
2*

(t3+t2(-3x1-2x3)+t(3x
2
1+4x1x3-3x

2
3-46x

2
4)

-x1(x1-x3)*(x1+3x3)+2(23x1+49x3)x
2
4) // Simplify

Out[98]= True

›6A.5

In[99]:= Inverse[{{1,3,-1},{-2,-2,1},{3,0,2}}]//MatrixForm

Out[99]=
$

’

’

’

’

’

’

’

’

’

’

’

%

´ 4
11

´ 6
11

1
11

7
11

5
11

1
11

6
11

9
11

4
11

,

/

/

/

/

/

/

/

/

/

/

/

-

›6A.6

In[100]:= v =
4
ÿ

i=1

xiqi;

κ[v,v] - η[v,v]

Out[100]= -8x22+4x2x3-9x
2
3-86x

2
4

›6A.7
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In[101]:= CharacteristicPolynomial[ad[x(q5+q6)+y(q7+q8)],t] ==

t2*(t2-22ty-20(x2-6y2))*( t4+22t3y-2t2(57x2+208y2)

+88t(8x2y-65y3)+72(29x4-161x2y2+890y4)) // Simplify

Out[101]= True

›6A.8

In[102]:= w = x(q5+q6)+y(q7+q8);

trace[w¨(τ[a0].w)]

Out[102]= -227 x2-1102 y2

›6A.9

In[103]:= 22x2 ==

442(-20x2+120y2)+699(114x2+416y2)+312(-227x2-1102y2)//Reduce

Out[103]= True

›6A.10

In[104]:= v =
8
ÿ

i=5

xiqi;

(τ[a0].τ[a1]+τ[a2]+2τ[a1]+2ad[id]).v==3x6(q5+q6)+3x8(q7+q8)&&

(-τ[a0].τ[a1]-τ[a2]+τ[a1]+ad[id]).v==3x5(q5+q6)+3x7(q7+q8)

// Reduce

Out[104]= True

›6A.11

In[105]:= κ[v,v] // FullSimplify

η[v,v] // FullSimplify
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Out[105]= 4 (67 (x25-x5x6+x
2
6)+390(x

2
7-x7x8+x

2
8))

Out[106]= 454 (x25-x5x6+x
2
6)+2204(x

2
7-x7x8+x

2
8)

›6A.12

In[107]:= v =
8
ÿ

i=1

Xi
3
qi; vec[τ[a0].v-v ,Q]

vec[τ[a1].v-v ,Q]

Out[107]= {0,0,0,0,-
X6
3
,-
2X6
3
,-
X8
3
,-
2X8
3
}

Out[108]= {0,0,0,0,
1

3
(-X5+X6),

1

3
(X5-X6),

1

3
(-X7+X8),

1

3
(X7-X8)}

›6A.13

In[109]:= v =
4
ÿ

i=1

Xi
3
qi +

8
ÿ

i=5

xiqi;

vec[3v¨v,Q][[1]] // Expand

vec[3v¨v,Q][[2]] // Expand

Out[109]= 162x25-162x5x6+162x
2
6+864x

2
7-864x7x8+864x

2
8+
X21
3
+X23+

46X24
3

Out[110]= 12x25-12x5x6+12x
2
6-84x

2
7+84x7x8-84x

2
8+
2X1X2
3
+X22-

2X2X3
3
-
16X24
3

›6A.14

In[111]:= trace[v] // Expand

Out[111]=
8X1
3
+
7X2
3
-
X3
3

B.10 Mathematica for (2A,3C)

›2A3C.1
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In[112]:= m1=I;

m2=
16
5
(a12,34+a13,24+ a14,23);

m3=32 a13,24;

m4=32 a14,23;

m5=32 (a13+a24);

m6=32 (a14+a23);

m7=32 (a14-a23);

m8=32 (a13-a24);

m9=32 (a12-a34);

M=Table[mi,{i,1,9}];

IntegralFormQ[M]

AllTrue[

Flatten[Table[mat[G[[i]],M],{i,1,Length[G]}]],

IntegerQ]

Out[112]= True

Out[113]= True

›2A3C.2

In[114]:= Eigenvalues[ad[m2]]

Out[114]= {4,4,4,1,1,1,0,0,0}

›2A3C.3

In[115]:= v = 16 x (a13,24-a14,23) + 16 y (a13+a24-a14-a23);

Factor[CharacteristicPolynomial[ad[v],t]]

Out[115]= -
1

4
t3 (2 t-7 x-31 y) (2 t+7 x+31 y) (t2-381 y2)

(t2-208 x2-104 x y-13 y2)
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›2A3C.4

In[116]:= v = 32 x1(a13,24-a14,23) + 32 x2(a12,34-a14,23) +

32 x3(a13+a24-a14-a23) + 32 x4(a12+a34-a14-a23);

vec[(τ[a12]-ad[I]).(τ[a34]-ad[I]).v,

{32(a13,24-a14,23) , 32(a13+a24-a14-a23)}]

vec[(τ[a12]-ad[I]).(τ[a34]-ad[I]).τ[a13].v,

{32(a13,24-a14,23), 32(a13+a24-a14-a23)}]

Out[116]= {2 (2x1+x2),2 (2x3+x4)}

Out[117]= {2 (x1-x2),2 (x3-x4)}

›2A3C.5

In[118]:= m7¨m8==m9 && m8¨m9==m7 && m9¨m7==m8

Out[118]= True

›2A3C.6

In[119]:= v =
1
2

9
ÿ

i=1

Xi mi;

2 vec[v¨v,M][[1]] // Expand

Out[119]=
X21
2
-42 X5 X6+504 X

2
9

›2A3C.7

In[120]:= trace[v] // Expand

Out[120]=
9 X1
2
+
15 X2
2
+25 X3+25 X4+43 X5+43 X6
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›2A3C.8

In[121]:= vec[v¨(τ[a13].v),M][[1]] // Expand

vec[v¨(τ[a23].v),M][[1]] // Expand

Out[121]=
X21
4
+
21 X1 X6
2

+
21 X26
2
-252 X7 X9

Out[122]=
X21
4
+
21 X1 X5
2

+
21 X25
2
+252 X8 X9

›2A3C.9

In[123]:= X1=2x1;

X2=2x2;

X5=2x5;

X6=2x6;

2 κ[v,τ[a24].τ[a12].v] // Expand

Out[123]= 18x21+60x1x2+102x
2
2+344x1x5296x2x5+322x

2
5+344x1x6+296x2x6+5718x5x6

+322x26+100x1X3+340x2X3+210x5X3+635x6X3+
273X23
2
+100x1X4+340x2X4

+635x5X4+210x6X4+
1427X3X4
2

+
273X24
2
-833X7X8+833X7X9-833X8X9

›2A3C.10

In[124]:= X3=2x3;

X4=2x4;

κ[v,τ[a12].v]

κ[v,τ[a13].v]

κ[v,τ[a14].v]

Out[124]= 9x21+51x
2
2+273x

2
3+2308x3x4+273x

2
4+210x3x5+1060x4x5+161x

2
5+1060x3x6

+210x4x6+5396x5x6+161x
2
6+2x1(15x2+50x3+50x4+86x5+86x6)

+4x2(85x3+85x4+37(x5+x6))-833X7X8+
833X29
2
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Out[125]= 9x21+51x
2
2+1154x

2
3+546x3x4+273x

2
4+1060x3x5+210x4x5+2698x

2
5+210x3x6

+210x4x6+322x5x6+161x
2
6+2x1(15x2+50x3+50x4+86x5+86x6)

+4x2(85x3+85x4+37(x5+x6))+
833X28
2
-833X7X9

Out[126]= 9x21+51x
2
2+273x

2
3+546x3x4+1154x

2
4+210x3x5+210x4x5+161x

2
5+210x3x6

+1060x4x6+322x5x6+2698x
2
6+2x1(15x2+50x3+50x4+86x5+86x6)

+4x2(85x3+85x4+37(x5+x6))+
833X27
2
-833X8X9

›2A3C.11

In[127]:= (* The following two lines ensure Xi is defined, and

then erases that definition. The definition is required

to prevent an error message by =. . *)

{X1=0,X2=0,X3=0,X4=0,X5=0,X6=0,X7=0,X8=0,X9=0};

{X1=.,X2=.,X3=.,X4=.,X5=.,X6=.,X7=.,X8=.,X9=.};

v =
1
3

9
ÿ

i=1

Ximi;

3 vec[v¨v,M][[1]] // Expand

Out[127]=
X21
3
-28X5X6+336X

2
9

›2A3C.12

In[128]:= X1=3x1;

vec[v¨(τ[a34].τ[a13,24].v),M][[1]] // Expand

Out[128]= x21-
14X25
3
-
14X26
3
-112X29

›2A3C.13

In[129]:= X5=3x5;X6=3x6;

vec[v¨(τ[a13,24].v),M][[5]] // Expand

vec[v¨(τ[a13,24].v),M][[6]] // Expand
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Out[129]= 2x1x5+40x
2
5+4x5x6+

8X28
3
+
8X29
3

Out[130]= 2x1x6+4x5x6+40x
2
6-
8X27
3
+
8X29
3

›2A3C.14

In[131]:= X7=3x7; X8=3x8; X9=3x9;

3 κ[v, (ad[I]-τ[a13]).v] // Expand

Out[131]= 7611x26+4998x
2
7+9996x7x9+4998x

2
9+850x6X4+

881X24
3

›2A3C.15

In[132]:= trace[v]

Out[132]= 9x1+86x5+86x6+5X2+
50X3
3
+
50X4
3

›2A3C.16

In[133]:= X3=3x3; X4=3x4;

3 vec[v¨v,M][[2]] // Expand

Out[133]= -240x3x4-60x4x5-60x3x6+48x5x6-336x
2
9+2x1X2+

4X22
3

B.11 Mathematica for (2B,3C)

›2B3C.1

In[134]:= Q={
16
17
(a12+a13+a14+a23+a24+a34),32(a14+a23),32(a13+a24),

32(a13-a24),32(a12-a34),32(a14-a23)};

{q1,q2,q3,q4,q5,q6}=Q;

IntegralFormQ[Q]
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AllTrue[

Flatten[Table[mat[G[[i]],Q],{i,1,Length[G]}]],IntegerQ

]

Out[134]= True

Out[135]= True

›2B3C.2

In[136]:= k1=τ[a12].τ[a34]; k2=τ[a13].τ[a24];

mat[k1,Q] == DiagonalMatrix[{1,1,1,-1,1,-1}]

mat[k2,Q] == DiagonalMatrix[{1,1,1,1,-1,-1}]

Out[136]= True

Out[137]= True

›2B3C.3

In[138]:= w = x q1+y q2+ z q3;

Factor[

CharacteristicPolynomial[ad[(τ[a12].τ[a23]-ad[I]).w],t]

]

Out[138]= (t+31y)(t-31z)(t-31y+31z)

(t3-964ty2+964tyz+29512y2z-964tz2-29512yz2)

›2B3C.4

In[139]:= w¨q5 == (x+y+z)q5 // Simplify

Out[139]= True
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›2B3C.5

In[140]:= q4¨q5==q6

Out[140]= True

›2B3C.6

In[141]:= w =
1
2

6
ÿ

i=1

Xiqi;

η[w,w] // Expand

Out[141]=
3 X21
2
+34 X1X2+544 X

2
2+34 X1X3+34 X2 X3+544X

2
3+544 X

2
4+544X

2
5+544 X

2
6

›2B3C.7

In[142]:= X1= 2x1;

κ[w,(τ[a12].τ[a23].w)] // Expand

Out[142]= 6x21+68x1X2+
129X22
4
+68x1X3+

2183X2X3
4

+
129X23
4
+
1025X4X5
2

-
1025X4X6
2

-
1025X5X6
2

›2B3C.8

In[143]:= X2=2x2; X3=2x3;

κ[τ[a12].w - w, w] // Expand

κ[τ[a13].w - w, w] // Expand

Out[143]= -1925x22+3850x2x3-1925x
2
3-
1025X24
2
-1025X4X6-

1025X26
2

Out[144]= -1925x22-
1025X25
2
-1025X5X6-

1025X26
2
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B.12 Mathematica for Lam-Chen algebra

›LC.1

In[145]:= w= Table[xi,{i,1,9}];

Solve[w¨w==w && trace[w]==9/8] // Length

Out[145]= 9

›LC.2

In[146]:= w= x I + y (
64
3
(a0,1+a1,1+a2,1)) + z(

64
3
(a0,2+a1,2+a2,2));

κ[w,τ[a0,0].w-w]

κ[w,τ[a0,1].w-w]

Out[146]= -1326 (y-z)2

Out[147]= -1326 z2

›LC.3

In[148]:= w¨(a0,0-a2,0) == (x+y+z)(a0,0-a2,0) // Simplify

Out[148]= True

›LC.4

In[149]:= (* note that vab,cd is short-hand for v(a,b)+<(c,d)> *)

v10,01=
64
3
(a1,0+a1,1+a1,2);

v20,01=
64
3
(a2,0+a2,1+a2,2);

v10,11=
64
3
(a1,0+a2,1+a0,2);

v20,11=
64
3
(a0,1+a1,2+a2,0);

v10,12=
64
3
(a1,0+a2,2+a0,1);
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v20,12=
64
3
(a2,0+a0,2+a1,1);

v01,10=
64
3
(a0,1+a1,1+a2,1);

v02,10=
64
3
(a0,2+a1,2+a2,2);

Q = {I,v10,01,v20,01,v10,11,v20,11,v10,12,v20,12,v01,10,v02,10};

IntegralFormQ[Q]

Out[149]= True

›LC.5

In[150]:= B+ = {I,v10,01+v20,01,v10,11+v20,11,v10,12+v20,12,v01,10+v02,10};

w =
1
3
{y,X1,X2,X3,X4}.B+;

κ[w,τ[a0,1].w - w]

κ[w,τ[a1,0].w - w]

κ[w,w]-η[w,w] // Together

Out[150]= -
442

3
(X22+X

2
3+X

2
4)

Out[151]= -
442

3
(X21+X

2
2+X

2
3)

Out[152]= -
124

9
(X21+X

2
2+X

2
3+X

2
4)

›LC.6

In[153]:= B- = {v10,01-v20,01,v10,11-v20,11,v10,12-v20,12,v01,10-v02,10};

w =
1
3
{X1,X2,X3,X4}.B-;

vec[w¨w,B+]

Out[153]= {
16

3
(X21+X

2
2+X

2
3+X

2
4),
2

3
(3X21+7X2X3+7X2X4-7X3X4),

2

3
(3X22+7X1X3-7X1X4+7X3X4),

2

3
(7X1X2+3X

2
3+7X1X4-7X2X4),-

2

3
(7X1X2+7X1X3+7X2X3-3X

2
4)}
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