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Abstract 

Human-driven land-use/cover (LULC) changes threatened the integrity of ecosystems in many 

ways, such as through biodiversity loss brought on by habitat destruction and eutrophication of 

freshwater and coastal ecosystems. To evaluate possible impacts of future LULC on ecosystem 

services and support more sustainable environmental management, it is essential to understand 

how land-use patterns affect both ecological and economic outcomes, and how alternative spatial 

land management strategies may effectively and efficiently improve sustainability in land-use 

systems.  

 

I developed, tested, and applied a spatial simulation approach that improves our understanding of 

how human-driven landscape conditions at the watershed scale reshape both water quality and 

economic productivity in a Lake Erie watershed under a changing climate. The dissertation is 

organized into three chapters. The first chapter describes a study in which I evaluated the 

sensitivity of a stochastic land-change model (LCM) to the choice of pixels versus polygonal 

land units derived from parcel maps. To reflect the effects of geometrical changes in 

management boundaries, nine possible parcel subdivision scenarios were included and tested. By 

evaluating the effects of spatial land units while holding other model variables constant using the 

same model algorithm, this study provides an important sensitivity test of the performance of 

pixel- and polygon-based simulations. Results indicate that the model based on polygonal units 

generates more realistic spatial landscape patterns, but at the cost of accuracy in spatial locations. 

Performance of different parcel-change scenarios varied according to the type of land change 

being modeled, because different land changes proceed through different processes.  

 

For the second chapter, I developed the first integrated assessment approach that compares the 

relative economic efficiency of alternative spatially optimal land-use and -management strategies 

for addressing non-point source (NPS) nutrient pollution from agricultural land. Using the Soil 

Water Assessment Tool (SWAT) and data on costs and profits associated with crop and forest 

production, I evaluated joint impacts on nutrient reduction and economic returns for optimized 
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patterns of land-use changes versus conservation practices (CPs) at the field scale. Optimal 

spatial patterns were identified using a mixed integer linear programming algorithm, given field 

level economic and nutrient loading trade-offs. Watershed level Phosphorous (P) reduction 

efficiency experiments indicate that relying on CPs alone is likely insufficient to meet policy 

goals for water quality restoration in Lake Erie. However, a combined strategy that also includes 

land-use change, including the conversion of cropland to other land uses, could achieve targeted 

reductions in NPS. I improved on previous land-use optimization studies in the following ways: 

(1) by integrating a process-based biophysical model (SWAT) with economic valuations, (2) 

bridged the gap between optimization studies aimed at CP targeting and land-use optimization by 

combining both options in the same modeling framework and (3) quantified achievable Pareto 

optimality via the combined strategy. 

 

Finally, I examined sensitivity of optimized spatial patterns of land-use and –management 

approaches to climate change. I found that the efficiency of spatial patterns of land-use and -

management actions optimized to reduce nutrient pollution in the most economically beneficial 

way, can be quite sensitive to changes in climatic conditions because changed temperature and 

precipitation patterns affect both plant/crop yields and nutrient discharges. Dissolved reactive 

phosphorus (DRP) load under future climate conditions and current land-use patterns was 

projected to be lower than the current level, which should make it easier to reduce DRP loading. 

For moderate DRP reductions, CP targeting was found to be more robust to climate change than 

land-use change, largely because costs and benefits of CPs are less sensitive to climate change 

than yields of alternative crops and plants. However, integration of CP and land-use change 

optimization was required to achieve policy goals for DRP reductions (~78%). This project was 

the first effort to quantify climate sensitivity of a strategy to NPS reduction that includes both 

land-use change and CP optimization. Also, results from this study highlight the need for future 

spatial optimization studies to consider adaptive capacity of conservation actions under a 

changing climate, rather than trying to identify a single ‘robust’ solution for the next decades. 
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Chapter 1  

Sensitivity of a Stochastic Land-Cover Change Model to Pixel versus Polygonal Land 

Units 

1 Introduction 

Anthropogenic land-use and land-cover changes (LUCC) have been identified as among the most 

profound drivers of a wide variety of environmental problems, including water quality 

degradation, biodiversity loss, and climate change (Foley et al., 2005; Paeth et al., 2009; Tong 

and Chen, 2002). To evaluate possible impacts of future LUCC on ecosystem services and 

propose more sustainable environmental policies, it is essential to develop and advance land-

change models (LCMs) to provide reliable future land-cover change projections (Houet et al., 

2010). 

Increasing need from both academic and policy communities to both project and explain 

LUCC has led to the development of a wide range of LCM approaches (Brown et al., 2013; 

Paegelow et al., 2013). In general, LCMs can be characterized along a continuum from pattern to 

process based models. We focus on the implications of spatial structure for the applicability of 

projections from a spatially explicit, pattern-based LCM, which models LUCC as transitions 

from one land-cover category to another (Mas et al., 2014). This type of model is based on an 

analysis of the spatial structure of land cover, rather than an explicit description of the decisions 

that lead to those changes (Verburg et al., 2004). The transition process is modeled empirically 

using past land-use/cover (LUC) maps to develop mathematical characterizations to guide 

allocation of future land-cover change.  
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While specific algorithms and/or model structures vary from model to model, spatially 

explicit LCMs are all based on some set of tessellated land units, which are used to map and 

simulate LUCC. Most LCMs are designed to use a fixed set of spatial units, either pixels or 

polygons, without evaluating the implications of this choice (Verburg and Overmars, 2007). Few 

studies to date have compared impacts of different types of land units on the performance of 

LUCC models. One reason is that very few models, and even fewer pattern-oriented or neutral 

models, support polygonal map units (Gaucherel et al. 2006). Pattern-oriented models tend to use 

pixels because they match very well with the format of land-cover data derived from remote 

sensing and allow for straightforward processing (NRC, 2013). However, pixels do not match 

well with spatial units over which land is changed (Verburg and Overmars, 2007), because the 

land area of anthropogenic landscapes (e.g. cites, farms, managed forests) is often divided into 

discrete units defined by management or property boundaries (Courbaud et al., 2001; Ellis et al., 

2006). For anthropogenic landscapes, using spatial units that coincide with field or property 

boundaries can link LCMs with human decision making more directly (NRC, 2013).  

Although pixels still dominate as the land unit implemented in LCMs, there has been an 

increasing interest in developing polygonal or patch-based models in both pattern and process-

oriented LCMs. Several pattern-based LCMs have been developed that can handle polygonal or 

patch-based land units directly, such as the patchy landscape neutral models (PLNM) (Gaucherel 

et al., 2004) and L1model (Gaucherel et al. 2006). Polygon land units can be defined using “top-

down” or “bottom-up” approaches. For pattern-based models, it is often more straightforward to 

adopt a “top-down” approach, in which patch size/shapes are pre-defined by existing polygons. 

Researchers interested in process-based models have also developed polygon-based CA models 

(Ballestores Jr. and Qiu, 2012; Stevens and Dragicevic, 2007) and agent-based models 
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(Alexandridis and Pijanowski, 2007; Crooks, 2010) using this top-down approach. The drawback 

of this approach is that it often requires a single land-use/cover type assigned to each land parcel 

(Ballestores Jr. and Qiu, 2012). Assigning single land-use/cover categories to polygons will 

inevitably affect the representation of land-cover composition and spatial patterns because any 

mixing of land-cover types within a unit will be simplified. In addition, geometrical shapes are 

typically fixed so that only the composition of land-cover types can be changed (Gaucherel et al. 

2006, Le Ber et al. 2009). A more flexible approach is to build up patches from the bottom-up. 

Some studies have tried to include spatial or landscape pattern metrics in LCMs (Brown et al., 

2002; Duh and Brown, 2007; Li et al., 2013; Sohl et al., 2007) to control interactions between 

pixels, so that patch structure emerges a posteriori (Gaucherel et al. 2006). Recently, 

Meentemeyer et al. (2013) and Chen et al. (2014) developed patch-based urban cellular automata 

(CA) models based on patch-growing algorithms. The problem with these “bottom up” 

approaches is that management boundaries were not directly utilized in these models. To take 

advantage of both “bottom-up” and “top-down” approaches, some studies have proposed a 

“hybrid” approach:  the LCM starts with polygonal land units defined by management 

boundaries, but also allows geometrical modification during the simulation (Gaucherel et al. 

2006, Moreno et al. 2008). However, dynamic modification is more complex to implement and is 

computationally expensive. 

Previous studies focused on the polygonal approach have explained the advantage of 

using polygons, but few have demonstrated the trade-offs between pixels and polygons on a 

single LCM. Chen et al. (2014)  compared CA models with and without a patch-growth 

algorithm, but they did not provide a direct comparison of models with pixels or polygons as the 

fundamental land unit. Rather, they assessed of the utility of patch-growth algorithm. Similarly, 
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Mas et al. (2012) evaluated impacts of pixel versus polygon/patch-based modeling by using 

different models, but algorithms and model structures are quite different among these models. A 

proper comparison would hold constant all variables aside from the spatial tessellation. 

Therefore, our study focusing on comparing the effects of pixels and polygons on the output 

from a given LCM provides an important contribution. Furthermore, current polygonal LCMs 

often focus on a single landscape context, such as urban (Chen et al., 2014; Crooks, 2010), 

agriculture (C Gaucherel et al., 2006) or forest (Mas et al., 2012). However, a more general 

discussion that includes multiple land-cover types is needed. 

The objective of this study is to investigate the sensitivity of land-cover forecasts using a 

consistent modeling approach to alternative map units (i.e., pixels versus polygons). To simplify 

the temporal aspect of the study and focus on the effects of spatial units (pixels or polygons), the 

experiment uses data from two time points, 1992 and 2011. In order to test the effects of the 

spatial units on the spatial allocation of land covers and their effects on the simulated accuracy 

relative to observed landscape patterns, we simulated 2011 based on models fitted to data over 

the time period. We evaluate the match between model simulations and observations for pixel- 

and polygon-based implementations of a geostatistical LCM in the Medina County, northwestern 

Ohio, on two dimensions. The first is the degree of location agreement between the simulated 

and observed land-cover types; the second is the similarity in several spatial pattern statistics. 

The modeling approach we used is adapted from Brown et al. (2002) and involves a 

geostatistical simulation of future land-cover types by fitting the model according to three 

objectives: (1) an transition probability map, derived using generalized additive modeling, (2) 

semivariograms to control the spatial patterns, and (3) a transition matrix describing the amount 

of area in each future land-cover type. We conducted a sensitivity analysis to calibrate weights 
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for these objectives and the number of iterations for each simulation. To reflect changes in 

management boundaries, nine different parcel-splitting scenarios were included to reflect 

changes in field boundaries. The model was used to generate 100 realizations each for ten 

scenarios (i.e. pixels and nine parcel-splitting scenarios). Three different land-cover conversions 

were modeled: agriculture to developed land; forest to developed land; agriculture to forest.  

2 Materials and Methods 

2.1 Study Area and Data 

The study area, Medina County, is located in north central Ohio. The landscape here is mostly a 

gently rolling plain with an average slope of 3.5%. As part of the Cleveland metropolitan area, 

Medina is about 40 miles from Lake Erie and Cleveland. In 2010, the county had a total area of 

1,100 km2 and a population size of 172,332 (US Census Bureau, 2010).  

In order to focus the analysis on how choice of spatial units affects model results, the 

National Land-Cover Dataset (NLCD) from 1992 (Fry et al., 2008) and 2011 (Homer et al., 

2015) were used for both calibration and validation purposes. Original two-digit land-cover 

codes were reclassified to level-one codes by grouping similar land-cover types together. For 

example, low, medium and high intensity developed land-cover types were all classified as 

developed land. Inconsistencies observed between 1992 and 2011 datasets (e.g., urban to 

agriculture transition) were adjusted through manual editing, based on concurrent fine-resolution 

remote-sensing images available from Google Earth. According to NLCD, major land-use/cover 

types in the county were agriculture (~48%), forest (~29%) and developed (~18 %) in 1992. 

Between 1992 and 2011, three significant (>5% change) transitions were identified: (1) 

agriculture to developed (3064 ha); (2) forest to developed (2011 ha); and (3) agriculture to 
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forest land (1676 ha). The percentage increases for developed land and forest land were 16% and 

5.5%, respectively. 

Parcel maps were used to define polygonal land units. A parcel is an area of land 

circumscribed by ownership boundaries, i.e., an area of contiguous common ownership. Digital 

parcel maps for the study area were obtained from the local county tax assessment department.  

Spatial data describing biophysical conditions (e.g., soil and terrain characteristics) and 

location relative to water features, major roads, urban areas, and natural amenities served as 

spatial predictors, which were used to create a transition probability (suitability) map (Table 1). 

All spatial predictors were created as raster files, with a spatial resolution of 30 meters, to 

correspond with the resolution of NLCD. Soil variables were converted from the vector 

SSURGO data (USDA NRCS, 2015a).  

2.2 Simulation Framework 

The LCM was designed to project future land-cover maps, given an initial land-cover 

map, transition probability maps, estimates of the quantities of land-cover changes, and 

geostatistical descriptions of land-cover patterns. The land allocation algorithm is based on a 

modified simulated annealing algorithm that seeks to honor three objectives simultaneously: (1) 

quantity of land-cover changes, (2) locations of future changes relative to transition probability 

maps, and (3) semi-variance describing spatial patterns of those changes. Overall simulation 

framework was illustrated in Figure 2. 

The LCM was modified from Brown et al. (2002) with two key extensions. First, it was 

expand from a single transition type to multi-categorical land-cover changes, and second it is 

capable of handling of both pixel and polygonal land units. Unlike pixels, polygonal units have 

varying shapes and sizes. More important, perhaps, is that management boundaries are likely to 
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change over time. For instance, a parcel may be split into two or more parts for various reasons 

(e.g. re-selling, gifting to children) (Donnelly and Evans, 2008; Mehmood and Zhang, 2001). To 

reflect this sort of change, nine parcel-subdivision scenarios were included (Figure 3) to 

represent possible subdivision processes. For a given scenario, a common parcel subdivision 

strategy was implemented for all parcels. To avoid creating artificially small new parcels, we 

limited splitting scenarios to parcels larger than 10 ha.  

The second extension was to represent more than one land-cover transition type. Brown 

et al. (2002) developed a model that represented only one transition type (not forest to forest). 

The modified model represents three observed transition types (i.e. agriculture to developed; 

forest to developed; agriculture to forest).  

The model was calibrated to observed LUCC (1992-2011) derived from historical NLCD 

maps. Sensitivity tests were conducted to calibrate parameters of the land allocation algorithm. 

The calibrated model was then used to simulate 2011 maps using pixel and nine subdivision 

scenarios (Figure 3). We ran the model 100 times for each of the ten parcel subdivision scenarios 

(a total of 1000) to account for uncertainties in stochastic simulations. Simulations were 

completed using high-performance computers. Model performance was assessed using both 

spatial allocation and landscape pattern metrics. 

One objective of our study design is to ensure comparability of results from pixel versus 

polygon-based simulations. Using polygons/parcels as discrete objects requires assigning a 

single land-cover type to each polygon, this removes spatial heterogeneity within parcels where 

multiple land-cover types exist. Land-cover maps produced using pixel and polygon-based 

simulations will be different for this reason alone, making it difficult to distinguish difference 

due to alternative land units from those due to discrepancies in aggregation level. To address this 
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problem, we combined polygonal boundaries with NLCD data to keep both management 

boundaries and fine-scale land-cover attributes, using the approach described in the following 

section.  

2.2.1 Land-cover change allocation algorithm 

We used a modified simulated annealing (SA) algorithm to generate alternative land-cover 

scenarios, chosen based on their difference from target objective function values, which are set 

so that simulated and observed transitions will have minimal differences. This algorithm has 

been reported as useful and effective in solving complex spatial problems in previous studies 

(Burnicki et al., 2007; Duh and Brown, 2007). The algorithm can be summarized as follows: 

1) Perturb a portion (5%) of pixels in the initial land-cover map randomly to initiate 

process; 

2) Compute the initial objective function values for all three objectives as the differences 

between current and target objective function values;  

3) Visit all spatial locations (parcels or polygons), except for urban and water units, along 

a random path. At each location, consider the three possible land-cover transitions and 

compute objective function values corresponding with those changes.   

3.1 Accept the change if it leads to a decrease in the difference from the target 

objective function value.  

3.2 With a small probability, the model will accept a change that increases total 

difference in objective function values. The probability is termed as temperature, 

which will cool down (i.e., decrease) gradually over time. 

4) Repeat step 3 for a specified number of iterations. 
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Figure 4 illustrates the method used to handle polygonal land units. We overlaid polygons with 

the initial land-cover map, so that pixels within each polygon received a membership identity. 

During the simulation process, one polygon, rather than one pixel, is visited at a time. Then a 

possible transitions are applied to eligible patches (based on the initial land-cover type) within 

that particular polygon. In this way, all simulations can use the same input land-cover maps.  

2.3 Model Calibration and Sensitivity Analysis 

2.3.1 Quantity of changes 

The LCM requires information about the amounts of area undergoing each type of land-cover 

change (i.e., quantities). To calculate these quantities, we computed a Markov transition matrix 

by overlaying and comparing historical land-cover maps at two dates for Medina County (1992 

and 2011).  

2.3.2 Distribution on transition probability maps 

Transition probability (i.e., suitability) maps express the relative suitability of a certain location 

for development or new forest land, based on where those cover types were located in 1992. 

Suitability for new urban or forest areas was modeled as a function of spatial predictors (Table 

1). Weights of spatial predictors were determined using a generalized additive model (GAM) 

(Hastie and Tibshirani, 2005; Wood, 2006) because relationships between spatial predictors and 

land-cover patterns are not always linear (Brown et al., 2002). To reduce spatial autocorrelation 

in the data, NLCD data and spatial predictors were sampled systematically by taking every sixth 

30-m by 30-m cell on every sixth line. Suitability maps were estimated using the mgcv package 

(Wood, 2001) in R (2.15.1) (R Development Core Team, 2014). The distributions of suitability 
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values at locations where land-cover changes were observed were summarize as frequency 

histograms. The Receiver operating characteristic (ROC) curve and Area under the Curve (AUC) 

associated with ROC were used to evaluate fit of GAM models.  

2.3.3 Description of spatial pattern 

We used semivariograms to describe the spatial patterns of simulated and observed land cover 

maps (Burnicki et al., 2007). Let Sα and Sα+h be land-cover categories at locations uα and uα+h, 

respectively, which are separated by a distance vector h (ranges from one to four pixels). 

Occurrence of Sk at uα or  uα+h can be coded using an indicator variable, as described in 

Equation 1. 

 �  i(uα; Sα, Sk)   = 1  if   Sα = Sk ; 
                         = 0   otherwise

         (1) 

Indicator semivariance (Equation 2) measures the lack of spatial connectivity over h: the 

lower the value, the higher the connectivity (Brown et al., 2002). Cross-semivariance (Equation 

3) describes frequency of having land-cover types Sm and Sn jointly occur at two locations 

separated by h. A lower value represents higher probability of joint occurrence.  

 γ�(h, t0, Sk) = 1
2N(h)

∑ [i(uα; Sα, Sk) − i(uα + h; Sα+h, Sk)]2N(h)
α=1       (2)  

γ�(h, Sm, Sn) 1
2N(h)

∑ [i(uα; Sα, Sm) − i(uα+h; Sα+h, Sm)] ∗ [i(uα; Sα, Sn) − i(uα+h; Sα+h, Sn)]N(h)
α=1   

(3) 

where N(h) is pairs of pixels, which are separated by h, sampled from the 1992 land-cover map. 

Three indicator semivariances (i.e. developed, forest and agriculture land) and 12 cross-
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semivariances were calculated, where at least one of the land-cover types in the cross-

semivariance was forest, agriculture or developed land. 

2.3.4 Sensitivity analysis 

We developed detailed sensitivity tests to determine (1) the appropriate weights for each 

of the three objectives (i.e., quantity, distribution of suitability, and spatial pattern of changes), 

and (2) stopping criteria for the SA algorithm (i.e. number of iterations). Trial experiments 

showed that equal weights for the quantity of changes and histogram of the suitability map 

worked well for both pixels and polygons. Pixels and polygons had differential sensitivity to 

variogram weights because the size and shape of the units affected the average distance between 

them. We applied nine different weights ranging from 0.1 to 4.0 to both pixel and polygon-based 

simulations for the third objective (with the others set to 1.0). Suitability of any given weighting 

scheme was measured by calculating the total objective function (TOF) value, which reflects the 

difference between simulated and target objectives. A smaller TOF value indicates a better 

weighting scheme. 

Once the weights were calibrated, a total of 2700 simulations was generated (30 

simulations × nine weights × 10 land units). To identify stopping criteria for the SA algorithm, 

we ran the LCM for a number of different iterations for each land unit and traced out trajectories 

of total objective function values. 

2.4 Model Validation and Assessment 

The performance of the LCM was assessed by comparing simulated land-cover maps with the 

observed maps in 2011 using two separate criteria: (1) spatial allocation accuracy, and (2) 

landscape pattern similarity. Spatial allocation accuracy was evaluated using the “figure of 
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merit” (FoM), which is the ratio of the correctly predicted changes to the union of observed and 

predicted changes (Pontius et al., 2008). Compared to traditional two-map comparison metrics 

(e.g. Kappa), FoM allows users to distinguish spatial agreement obtained due to change versus 

persistence (Pontius et al., 2008). FoM ranges from 0 to 1, with a higher value signifying better 

agreement between simulated and observed changes. We employed a multiple-resolution 

analysis method recommended by Pontius et al. (2011). This method compares transitions at 

several coarser resolutions to distinguish minor allocation disagreement from major allocation 

disagreement. The lulcc package (Moulds et al., 2015) was used to calculate FoM scores.  

To measure landscape patterns, we selected a total of six representative landscape pattern 

indices from the literature (Chen et al., 2014; Frate et al., 2014; García et al., 2012; Herold et al., 

2002; Mas et al., 2012; Seto and Fragkias, 2005). Two of the most commonly used metrics, 

which are contagion index (CONTAG) and the fractal dimension index (FRAC_MN), were 

selected as the landscape level pattern metrics. Contagion index describes the intensity of 

aggregation of the landscape patches and the spatial connectivity between them and was selected 

to measure overall landscape fragmentation. Fractal dimension was designed to describe overall 

shape complexity across a range of spatial scales and was selected to quantify complexity of 

spatial patterns emerged in LUCC systems.  

The remaining four class or landscape level metrics are: (1) number of patches (NP), (2) 

largest patch index (LPI), (3) mean perimeter-area ratio (PARA_MN), and (4) mean Euclidean 

nearest-neighbor distance (ENN_MN). NP and LPI are frequently used to describe patch size and 

distribution. PARA_MN is useful to compare patch shape complexity for observed and 

simulated patches. For forest or urban patch, connection or approximation between simulated 

and existing land-cover patches are important. ENN_MN was selected to measure proximity or 
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isolation of patches of same class. All indices were calculated using FRAGSTAT 4.2 (University 

of Massachusetts, Amherst) (McGarigal et al., 2012).  

2 Results 

3.1 Calibration and Sensitivity Analysis  

3.1.1 Calibration  

The GAM model for forest locations was slightly better fitted than the model for development 

(Table 2). However, the receiver operating characteristic (ROC) curves (Figure 5) show that the 

model for development produced a better suitability map. Area under the curve (AUC) for the 

models of new developed and forest land were 0.8 and 0.7, respectively. Fitted models were used 

to produce suitability maps for new developed (Figure 6a) and new forest land (Figure 6b). 

The five variables with at least 1% explained deviance in the model for development 

were: (1) distance to small city center; (2) distance to forest; (3) distance to existing urban area; 

(4) distance to state highways; and (5) distance to national parks. For the model for forest, the 

four variables with at least 1% added explanation were: (1) distance to existing forest land; (2) 

distance to local roads; (3) distance to highways; and (4) distance to large city centres. Distance 

to existing forest land alone contributes to 40% of the deviance explained.  

3.1.2 Sensitivity analysis 

Results of the sensitivity analysis to different weights on semivariogram component of the 

objective function showed that 0.5 worked best for pixel land unit (Figure 7). For polygonal land 

units, normalized TOF values tended to decrease as weight for semivariogram increased, but 

TOF values were stabilized around 2.5 (Figure 8). Further increase in the weight on spatial 
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pattern makes it difficult for the model to match the quantity of changes objective. The reason 

for different optimal weights in the pixel versus polygon models is that initial random 

perturbations by pixels tend to change the spatial structure of the starting land-cover map more 

significantly than patches. For instance, the sum of differences between initial and target 

indicator semivariances for the Equal_2 scenario is 0.26, whereas the value for the pixel-based 

simulation was 1.20, approximately 5 times larger. For the same reason, the initial TOF value 

was higher for the pixel-based simulation (Figure 9). For all simulations, there was little change 

after 20 iterations; 25 iterations was sufficient for all simulation results to stabilize. 

3.2 Model Validation and Assessment 

Overall, the pixel-based simulation honored target objective function values better than polygon-

based simulation. The average total objective function (TOF) value for pixel-based simulations 

was 0.23±0.03, compared to 0.68±0.04 for polygonal land units. Parcel subdivision scenarios 

Equal_2 and Equal_6 had the lowest TOF values, and therefore matched the three objective 

function values better than other scenarios. Both pixel and polygon-based simulations were able 

to meet the quantity of change target (average difference for all land units were within 5%).  

Differences between the model results produced from the different polygon-based 

scenarios were smaller than the difference between and polygonal land units. Using the Equal_2 

scenario as illustrative of the differences between pixel and polygonal land units, visual 

inspection of observed and simulated development changes (i.e. agriculture/forest to developed) 

reveals that spatial patterns of transitions are different among three group maps (Figure 10). 

Observed forest to developed transitions presented an “infill” growth pattern, where new patches 

are found close to the existing developed area. On the other hand, the agriculture-to-forest 

transition tended to exhibit “spontaneous” or new growth in rural areas. Most changes produced 
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for the pixel-based model (Figure 10d and Figure 10e) were placed on edges of initial developed 

or forest patches, whereas patches generated by polygon-based simulations (Figure 10g and 

Figure 10h) were scattered over large regions. When zoomed in to agriculture-to-forest 

transitions in the northeastern part of the study area, it can be observed that sizes and shape of 

patches based on polygons (Figure 10i) are more similar to observed new patches (Figure 10c). 

3.2.1 Spatial allocation accuracy 

Mean FoM values for pixel-based simulation increased from 0.1 to 0.69 as the cell-size 

increased, whereas FoM ranged from 0.07 to 0.46 for the Equal_2 polygon scenario (Figure 11). 

It is clear that pixel units obtained higher location accuracy across scales, which is a finding 

consistent with visual inspection results (Figure 10). Nonetheless, polygon-based simulations 

were better than neutral changes (allocating desired quantity of three transitions randomly across 

the map).   

To understand the effect of difference parcel subdivision processes on the fit of the 

polygon-based simulations to observed patterns, we calculated relative FoM values at different 

resolutions. The relative transition-specific FoM scores for the nine parcel-subdivision scenarios 

demonstrated different patterns for agriculture-to-developed change versus forest-to-developed 

change at different resolutions (Figures 12). At native resolution, analysis of variance (ANOVA) 

indicated significant differences among subdivision scenarios for the agriculture-to-developed 

transition (F=3.91, p<0.01), but not for forest-to-developed transition; at coarser resolutions, 

ANOVA tests show significant differences among subdivision scenarios for both transition 

categories. At coarser resolutions, relative FoM scores for the forest-to-developed transition were 

more consistent. Additionally, Equal_2 scenario tended to produce higher FoM scores than other 

scenarios.  



16 
 

For agriculture-to-forest FoM values, Tukey’s honest significant difference (HSD) test 

indicated that Equal_2 and Equal_6 perform significantly (p<0.01) better than other scenarios at 

native resolution (Figure 12); at the resolution of 64 pixels, parcelization configurations with 

more splits (e.g. Equal_6) worked better than simpler scenarios (e.g. Equal_2). However, at 

coarser resolutions, there were no significant differences among parcel subdivision scenarios. 

3.2.2 Landscape pattern similarity 

Overall, polygonal land units outperformed pixels (p<0.01) on all landscape pattern metrics, with 

the only exception of LPI for forest land. Both pixel and polygon simulations generated lower 

CONTAG and FRAC values than observed, but polygon-based simulations obtained a spatial 

structure that was more similar to the observed (Table 3). We observed a decreasing trend in 

metrics values from simpler split scenarios (e.g. Equal_2) to multiple split scenarios (e.g. 

Equal_6) (Figure 13), which resulted in simpler split scenarios reproducing CONTAG and 

FRAC metrics better than multiple splits. 

The largest mismatches in spatial pattern metric values were observed for NP and 

PARA_MN values (Tables 4 and 5). For developed land, pixel- and polygon-based simulations 

generated 60 and 10 times more patches than observed, respectively. However, differences for 

forest land were much smaller for both types of land units. PARA_MN from the pixel-based 

simulations was almost doubled, when compared to observed maps, whereas polygon-based 

simulations generated only about 35% larger than observed on average.  

NP and PARA values shared a similar pattern of differences in class-level metric values 

among subdivision scenarios for forest and developed land (Figure 14). NP increased from 

Equal_2 to Equal_6 scenario, whereas PARA_MN decreased from Equal_2 to Equal_6 scenario. 

Simpler split scenarios outperformed multiple splits on the patch-size metric (NP), but the 
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multiple splits scenarios matched the shape metric (PARA_MN) better. Configurations had 

similar performance on LPI index for forest land (Figure 14d), but there was a clearly decreasing 

trend for developed land (Figure 14c). ENN decreased from Equal_2 to Equal_6 for forest land 

(Figure 14h), but the trend was reversed for developed land (Figure 14g). Because ENN_MN 

values were lower than observed, multiple splits were helpful to meet observed values for 

developed land, but not for forest land (insignificant differences among groups with p>0.05 for 

all pairs).  

4 Discussion 

Our comparative experiment explored the behavior of a stochastic land-change model (LCM) 

using as the spatial foundation of both pixels and polygonal land units derived from parcel maps. 

Simulation results for Medina County in Ohio indicated that model performance is sensitive to 

the choice of land units and how they change. There is a clear trade-off between pixels and 

polygons: for each of three different land-cover transitions, polygon-based simulations generated 

more realistic landscape patterns, but pixel-based simulations achieved higher spatial allocation 

accuracy. Though the difference among scenarios that used different approaches to parcel 

subdivision is much smaller than that compared to the difference between pixels versus 

polygons, statistical tests indicated there are significant variations among parcel subdivision 

scenarios. Unlike the pixel-polygon comparison, the relative model performance among parcel 

subdivision scenarios was sensitive to not only which land-cover transition we examined, but 

also the resolutions at which analysis was performed.  

Because pixels are often much smaller than management boundaries, pixel-based simulations are 

more flexible in placing changes in the right locations. In contrast, polygon-based simulations 

force a group of pixels to change simultaneously. Finding and changing a suitable patch in a way 
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that improves all three objectives is harder because there are fewer patches than pixels. In 

addition, the semivariogram component controls interactions between pixels at short distances, 

which encourages changes near edges of existing patches. This strategy distributes change to 

likely locations more effectively, and thus increases the possibility of coincidence with observed 

changes. In contrast, fewer polygon units limits possible changes to fewer locations, therefore 

these simulated changes are less likely to match with observed changes. Also, in polygon-based 

simulations there tend to be more transitions in remote areas because new growth by patches is 

less likely to affect spatial structures measured by semivariograms.   

Depending on the objective of a certain project, different aspects of LCM performance can be 

critical. When location accuracy is important for a given study, it makes sense to use pixels 

because they can match with observed changes better than polygonal land units. On the other 

hand, generating realistic spatial landscape patterns is central to a range of environmental studies 

(Gaucherel et al. 2006, White 2006, Mas et al. 2012, Meentemeyer et al. 2013). In these cases, 

accuracy of spatial allocation is less critical than generating realistic patch sizes/shapes. Our 

study indicates that using polygonal units may match spatial landscape patterns of land-cover 

projections better with observed maps than using pixels. This is because the distributions of sizes 

of land-units and changes in land covers is more like the pattern of actual change. Pixel-based 

simulations generated significantly more patches compared with observed transitions, and 

therefore the simulations produced an over fragmented landscape. Confining changes to 

management boundaries reduced the number of new patches significantly. However, both pixel 

and polygon-based projections obtained lower CONTAG and FRAC values than observed 2011 

land-cover map, suggesting that actual land-change processes tend to form larger and more 

complex cluster/patches. LUCC decisions are usually decentralized and autonomous, but 
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complex spatial patterns can emerge in real-world LUCC systems (Parker et al., 2003; White et 

al., 1997). Different from process-oriented models, pattern-oriented models often lack the 

mechanisms to model complex interactions between units. Using polygonal land units can 

mitigate the problem somewhat, but not eliminate it.  

When the polygonal approach is preferred for a certain modeling exercise, choices must be made 

about how best to implement it. Using pre-defined polygon boundaries is one of the most popular 

strategy for pattern-oriented LCMs. The problem with this approach is that it would eliminate 

spatial heterogeneity within polygonal spatial units because only a single land-cover type is 

assigned to each polygon land unit. Compared to this ‘top down’ approach, our model utilized 

both pixel-land land-cover maps and parcel maps. Parcels were selected randomly for the 

simulated annealing algorithm, but only groups of pixels within the parcel that had the initial 

land-cover type of interest were set to transition, preserving some of the sub-polygon 

heterogeneity. This implementation enhanced comparability between pixel and polygon land 

units. An alternative approach is to build up patches from pixels. Several urban CA models 

(Chen et al., 2014; Meentemeyer et al., 2013) have employed this strategy. CA models using this 

“bottom up” strategy is more flexible at reproducing emergent complex dynamics, but patch 

shapes and forms, other than size distribution, are often not controlled in previous studies. In our 

study we found that orientation and shape of newly generated patches was an important factor 

affecting model performance. For instance, Equal_2 and Equal_2_S scenarios both split a parcel 

into halves, but along different directions. In this case, splitting along the long edge performed 

better than the short edge. This may be partly because splitting along the long edge allowed all 

new parcels to have road access, and therefore represented the actually subdivision process 

better. A third option is ‘hybrid’ CA models, which use a dynamic modification algorithm to 
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update management boundaries during the simulation process. Compared to this ‘hybrid’ 

approach, our model is simpler and faster to implement, and more computationally efficient.  

We also looked at the benefit to model performance from incorporation of multiple parcel 

subdivision scenarios. One previous study (Alexandridis and Pijanowski, 2007) assessed 

performance of a parcelization algorithm using an agent-based model and found that including 

parcelization is helpful to better represent LUCC based on land ownership. In their model, 

parcels could only be split into halves in their model. However, our study found that split parcels 

in half may not be the best option for all land-cover transitions. We were able to show that the 

performance of different subdivision schemes varied significantly, both within and across land-

cover transition types. Although some previous studies have developed different parcel 

subdivision algorithms (Dahal and Chow, 2014; Vanegas et al., 2012), these algorithms were 

designed for urban areas only. However, as our study has demonstrated, lessons learned from 

one land-cover transition (e.g. development) may not apply to another transition (e.g. 

reforestation). Thus modelers should consider the suitability of a particular parcelization 

configuration based on the type of land-cover transition they are modeling. 

 

Examining the scale dependence of validation results provided additional information about 

model performance. A multi-resolution assessment technique has been recommended for model 

validation in recent studies (Pontius et al., 2011) because it can distinguish minor disagreements 

from major disagreements. However, it is often not clear which scale is most appropriate for 

judging model performance. This is especially true when ranking of alternative units becomes 

erratic cross resolutions. Comparing the agriculture-to-forest and urbanization transitions showed 

that differences between parcel subdivision scenarios become smaller at coarser resolutions in 
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the former case, and larger in the latter. This kind of variability requires the modeler to consider 

the scale of the process (e.g., does it tend to occur on small or large parcels, in clusters or 

scattered) and to interpret what the results at different scales imply about the suitability of the 

different model schemes for representing the process. For example, we found Equal_2 scenario 

worked better than Equal_6 scenario for simulating new development, but Equal_6 worked 

better for simulating agriculture to forest transition. This difference is probably caused by sizes 

and distributions of parcels involved in different transition processes: development changes often 

occur in the units of parcels or land lots, and sizes of parcels involved in urbanization transition 

tend to be smaller than other transitions. In this case, the Equal_6 scenario may over-split the 

initial parcel and generate artificial small patches. In contrast, the agriculture to forest process 

observed in this study suggested that reforestation only takes a small part, which is less than 10% 

on average, of the area of an agricultural parcel. Therefore, a multiple split scenario would reflect 

the actual reforestation process better. Furthermore, the scale of analysis should reflect patch 

sizes and distributions of interested land-cover types. For instance, average patch size for forest 

patches is only about one-tenth of that for urban patches. Also, distribution of observed new 

forest patches, when compared to new development, presented a more scattered pattern. When 

measured at a coarser scale, a more evenly distributed transitions pattern would lead to a higher 

chance of resolving minor locational disagreements through swapping cells, regardless of parcel 

subdivision scenarios. This explains why differences of FoM scores among parcel subdivision 

scenarios become insignificant at resolutions higher than 64 pixels for agriculture to forest 

transition. The result suggests that, for the reforestation process, it is more reasonable to focus on 

finer resolutions.  

Our simple parcel subdivision process kept the model efficient, but may have limited model 
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performance. For example, the model could have been improved by replacing the uniform parcel 

subdivision scenario with a mixing of multiple parcelization configurations and allow the LCM 

to select suitable configurations for each parcel, depending on local geographic characteristics 

and the type of land-cover changes to be modeled. The actual parcel-splitting process would be 

affected by parcel size, location, orientation and local conditions. For instance, realistic parcel 

splits should provide road access for new parcels, which is not explicitly modeled in this study. 

Additional useful information to be considered includes, but not limited to, proximity to natural 

resources such as rivers and parks. In addition to parcel subdivision, in the future it would 

probably be helpful to consider parcel aggregation trajectories as well in the future. All of these 

modifications would likely come at the cost of more computational effort.  

It is well known that some LCMs may be sensitive to the size of cells. We did not aggregate cells 

to coarser scales in this study to keep spatial heterogeneity at native resolution, but it would be 

interesting to evaluate how trade-offs between pixel and polygonal land units might be changed 

when pixel-based simulations were run at multiple coarser resolutions. Finally, results obtained 

in this study might be limited to our study area only. While the broader lessons about model 

sensitivity and trade-offs between pixel and polygon-based simulations are generalizable, 

application to other regions with different landscape characteristics and LUCC patterns is needed 

to validate generality of lessons learned in this study. 

5 Conclusion 

We examined the effect of alternative land units on the performance of a stochastic land-change 

model (LCM) to evaluate the sensitivity of a LCM to pixel versus polygon land units. 

Performance was measured according criteria that included spatial coincidence with observed 

changes and similarities in landscape patterns. To reflect geometrical changes in management 
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boundaries, nine possible subdivision scenarios were included and tested. Performance of pixel- 

and polygon-based simulations was considerably different, even though all aspects of the model 

were consistent aside from the tessellation scheme. Selection of the most appropriate tessellation 

scheme depends heavily on the objective and context of individual applications. If spatial 

allocation accuracy is a more important objective, then the pixel-based model is the best option. 

Polygon-based land units derived from management boundaries were found to perform better in 

terms of generating realistic spatial pattern. Enabling both options in any given LCM can give 

users a more complete understanding of how simulated land dynamics are affected by selection 

of land units for a LCM, although polygon-based land units much more rarely implemented. If 

allowing both options is not feasible for a particular project, our results indicate that it is helpful 

to at least consider the benefits of a polygon-based tessellation scheme. Also, we were able to 

show that the performance of various subdivision approaches was sensitive to not only the type 

of land-cover transition being modeled, but also the resolution at which the validation is 

performed. The comparative experiments presented in this study provide input to researchers 

interested in choosing among alternative tessellation schemes that can affect model performance 

from different perspectives. 
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Table 1.1 List of spatial predictors 

 Variable Description Source 
 DEM Elevation National Elevation Dataset from USGS 

 

 

 Pslope Slope Calculated from DEM 
 Dmjrrd  Distance to major roads Calculated from Census 2000/2010 TIGER 
 Dlcity Distance to large cities Calculated from Census 2000/2010 TIGER 
 Dmcity Distance to median cities Calculated from Census 2000/2010 TIGER 
 Dhway  Distance to highway Calculated from Census 2000/2010 TIGER 
 Dresrd  Distance to residential roads Calculated from Census 2000/2010 TIGER 
 Dshore Distance to shore Calculated from National Hydrography Dataset 
 Dlakes Distance to lakes Calculated from National Hydrography Dataset 
 Drivers Distance to rivers Calculated from National Hydrography Dataset 
 Dnalparks Distance to national parks Calculated based on park data from Ohio DNR 

  Dlocparks Distance to local parks Calculated based on park data from Ohio DNR 

  AWC Available water capacity SSURGO data (NRCS) 
 Pclay % of clay in soil SSURGO data (NRCS) 
 pH pH of soil SSURGO data (NRCS) 
 Porgam Soil organic content SSURGO data (NRCS) 
 Psand % sand in soil SSURGO data (NRCS) 
 nccpi Crop productivity index SSURGO data (NRCS) 
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Table 1.2 GAM model summaries. 

New Land-Cover Type R2 (adjusted) Deviance Explained 
Restricted 
Maximum 

Likelihood (REML) 

Developed 0.42 36.6% 6316.9 

Forest 0.45 38.4% 4060.8 

 

Table 1.3 Summary of landscape level indices values for pixel and parcel subdivision scenarios. 

Groups   CONTAG FRAC 

Observed 2011     1.117 52.44 

2011 based on pixel unit 1.04 ± 0.001 48.24 ± 0.177 

2011 based on polygons 1.09 ± 0.001 50.40 ± 0.103 

 

Table 1.4 Summary of class level (developed) indices for pixel and parcel subdivision scenarios. 

Groups NP LPI PARA_MN ENN_MN 

Observed 2011  262 21.79 697.7 101.2 

2011 based on pixel unit 17532 ± 1138 19.38 ± 0.16 1269.87 ± 3.94 89.3 ± 1.2 

2011 based on polygons 2282 ± 63.94 20.09 ± 0.36 970.99 ± 10.15 91.2 ± 0.94  

Table 1.5 Summary of class level (forest) indices for pixel and parcel subdivision scenarios. 

Groups NP LPI PARA_MN ENN_MN 

Observed 2011  2359 1.19 559.6 100.5 

2011 based on pixel unit 8113 ± 157.1 1.05 ± 0.08 1065.5 ± 4.77 81.3 ± 0.55 

2011 based on polygons 4110 ± 63.94 0.96 ± 0.09 743.3 ± 17.44 87.7 ± 0.71  
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Figure 1.1 Study area location and land-cover map 



27 
 

 

Figure 1.2 Simulation framework 
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Figure 1.3 Parcel subdivision scenarios. 
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Figure 1.4 Manipulation of polygonal land units. 
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Figure 1.5 ROC curve for suitability maps. 

  

 

Figure 1.6 Suitability maps for new urban (a) and new forest (b) land. 
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Figure 1.7 Sensitivity of total objective function (TOF) values (means and standard deviations) 
to weight of semi-variance component for pixel land units. TOF value. measures the difference 

between simulated and target objectives; therefore a smaller TOF value is desired. 

 

Figure 1.8 Sensitivity of TOF values (means and standard deviations) to weight of semi-variance 
component for polygonal land units. 
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Figure 1.9 Sensitivity of TOF values (mean and standard deviations) to number of iterations for 
pixel and equal_2 scenarios. Since polygonal simulations have similar patterns, Equal_2 scenario 
was included as a representative. 
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Figure 1.10 Observed and simulated transition from agriculture/forest to developed land, and 
from agriculture to forest land (Zoom on the North-eastern part of the study area) using pixel and 
polygonal (Equal_2 scenario) units. 
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Figure 1.11 Figure of merit scores (means with 95% CIs) for forest to developed transition 
simulated using pixel versus polygon (only Equal_2 scenario is presented) land units at multiple 
resolutions. 
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Figure 1.12 Figure of merit scores (means with 95% CIs) for forest to developed (a,b,c), agriculture to developed (d,e,f) and 
agriculture to forest (g,h,i) transitions at multiple resolutions. 
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Figure 1.13 Comparison of landscape level index (CONTAG and FRAC) values (means with 95% confidence intervals) for pixel and 
parcel subdivision scenarios (polygons).
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Figure 1.14 Comparison of class level landscape pattern index values (means with 95% 
confidence intervals) for urban (a,c,e,g) and forest (b,d,f,h) patches among nine parcel 
subdivision scenarios. 
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Chapter 2  

Optimizing Spatial Land Management to Balance Water Quality and Economic Returns in 

a Lake Erie Watershed 

1 Introduction 

Human-driven land-use/cover (LULC) changes have threatened the integrity of ecosystems in 

many ways, such as through biodiversity loss, contributions to emissions that drive climate 

change, and eutrophication of freshwater and coastal ecosystems (Foley et al., 2005; Rockström 

et al., 2009; Smith et al., 2006). These problems result, partly, from the fact that land-use 

decisions are made without consideration of the wide range of valuable ecosystem services 

provided by natural landscapes (Bateman et al., 2013). Nutrient loading resulting from extensive 

agricultural land development, for example, has been repeatedly linked with water quality and 

related health problems (Michalak et al., 2013; Schilling et al., 2010; Turner and Rabalais, 2003). 

To improve sustainability in land-use systems, recent studies have highlighted the importance of 

incorporating ecosystem services into decisions about land use and management (Goldstein et 

al., 2012; Guerry et al., 2015). Some regulatory programs have been put into place in the United 

States (e.g. Clean Water Act and Total Maximum Daily Loads (TMDL) (Houck, 2002)), but 

these efforts are far from sufficient (Hoornbeek et al., 2013; NRC (National Research Council), 

2009), largely because they do not address non-point source (NPS) pollution from agricultural 

land, which is a key contributor to water quality problems.  

Among the multiple possible strategies to mitigate NPS pollution, implementation of agricultural 

conservation practices (CPs) is the focus of many current studies (Duriancik et al., 2008; 

McCarty et al., 2008; Scavia et al., 2014; Tomer and Locke, 2011; USDA NRCS, 2010). 



39 
 

Agricultural CPs are management tools aimed at controlling soil erosion and reducing nitrogen 

(N) and phosphorus (P) discharge to surface waters (Lowrance et al., 1997; Santhi et al., 2006). 

Previous studies have recommended spatial targeting of CPs as a cost-effective approach to solve 

the NPS pollution problem (Arabi et al., 2006; Maringanti et al., 2009; Rabotyagov et al., 2010), 

but the effectiveness of these approaches is limited (Bhattarai et al., 2009; Merriman et al., 2009; 

Tiessen et al., 2010; Verbree et al., 2010). In general, it is much more difficult for agricultural 

CPs to reduce soluble nutrient loads like dissolved reactive phosphorous (DRP) than soil erosion 

(Kleinman et al., 2011; Osmond et al., 2012). Several watershed level experiments led by USDA 

(Osmond et al., 2012) show that current conservation practices have little impact on improving 

water quality. Aggressive implementation of CPs at watershed scales would be needed to achieve 

even moderate (~25%) reductions in nutrient discharges (Bosch et al., 2013; Rabotyagov et al., 

2014; Scavia et al., 2014). Relying on CPs alone to achieve water quality objectives may not be 

sufficient, nor is it likely the most economically efficient strategy. Before making large 

investments in new conservation actions, it is necessary to compare the efficiency of alternative 

strategies, including CPs. “Landscape approaches” have been recommended as a promising 

strategy to reconcile conservation and production trade-offs (Sayer et al., 2013). By re-allocating 

land uses to suitable locations based on the comparative advantages of each land unit (Goldstein 

et al., 2012; Polasky et al., 2014; Ruijs et al., 2015), previous studies have demonstrated that 

optimizing land-use patterns can be an effective approach to improving land-use efficiency by 

jointly improving economic and ecosystem services outcomes (Nelson et al., 2008; Polasky et 

al., 2008; Seppelt and Voinov, 2002). Given the same financial resources, providing incentives 

for land-use modification (e.g., converting corn-soybean rotations to other land-use types, like 

alfalfa hay, grasslands, or forests) might be relatively more efficient than implementing CPs.  
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To make land-use and -management more effective, it is essential to understand the comparative 

advantages of possible strategies in a spatially explicit manner (Balmford et al., 2011). However, 

previous studies have not considered the relative efficiency for reducing NPS pollution of 

changes in the spatial patterns of land use versus land management, in the form of CPs. Whether 

one strategy would be relatively more efficient than the other, given the same nutrient reduction 

objective, remains an open question. Because resources are limited, prioritization of new 

conservation investments is needed. Therefore, an understanding of the tradeoffs and 

complementarities in efficacy and economic efficiency of land-use versus land-management 

approaches to reducing nutrient pollution is essential to guiding future planning. Because 

previous studies have not compared these two approaches in an integrated model framework, it is 

not clear how a hybrid approach might take advantage of both approaches to achieve better 

ecological and economic performance. 

We developed an integrated modeling framework that (i) evaluates the efficiency of CPs, 

conversions of cropland to other land use/cover (LUC) types, and combinations of both strategies 

for reducing NPS pollution, and (ii) compares optimal spatial land-use and -management patterns 

based on different strategies. The joint ecological and economic performance of alternative land-

use and CP options was estimated using an ecohydrological model combined with an economic 

valuation component. The ecohydrological model is the Soil and Water Assessment Tool 

(SWAT)(Arnold et al., 2010, 1998), which has been widely used to evaluate the effects of 

alternative management decisions on nonpoint-source pollution in large river basins (Arnold et 

al., 2010). We used the SWAT model to estimate the effects of conservation practices and 

alternative land uses (e.g., alfalfa hay, grassland and forestry) on nutrient discharges from each 

field. We set up the SWAT model based on field boundaries (SI Text: The Field Boundary Map) 
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in order to represent conservation efforts implemented at farm scale, i.e., the scale of 

landowner’s decisions. Market price, simulated plant yield, and costs of management options 

were integrated in the economic valuation to calculate net profit that can be obtained under each 

CP or land-use option for all farm fields. 

Field level options were integrated into a spatial optimization model based on mixed-integer 

linear programming. Using this approach, we identify efficient spatial patterns of land-use and -

management changes, given estimated field level tradeoffs in performance on economic and 

nutrient-reduction goals. A solution is efficient if it maximizes economic returns for a given 

nutrient loading reduction target, and vice versa. Instead of providing a single optimal solution, 

we developed a full efficiency frontier that represents a range of nutrient-reduction objectives 

and their associated maximum profit.  

Using data from the Sandusky watershed in northern Ohio, we demonstrate the opportunities for 

a more integrated approach to reducing non-point source pollution [see supplemental information 

(SI) Fig. 4a]. The dominant land use in the watershed is agricultural land (>80%) with some 

areas of urban development (SI Fig. 4b). The landscape is generally flat, with some gently rolling 

plains in the central and southern portions (Grunwald and Qi, 2006). The Sandusky watershed is 

part of the Lake Erie basin, which has received increased public attention due to massive 

microcystis blooms. In 2011, Lake Erie experienced its largest recorded bloom. To restore 

impaired water quality, the International Joint Commission (IJC) has established the Lake Erie 

Ecosystem Priority, and recommended that the United States and Canadian governments to take 

actions to significantly reduce phosphorus (P) loading to Lake Erie (International Joint 

Commission, 2014). 
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To decrease the hypoxic area in the central Lake Erie Basin by 50% and limit the number of 

hypoxic days to 10 days per year, the IJC recommended 46% and 78% reductions in the total 

phosphorous (TP) and DRP loads for the western and central basin, respectively, relative to the 

2003 to 2011 and the 2005 to 2011average. Various studies have highlighted the need to 

differentiate DRP from TP reductions, and focusing on TP vs. DRP could mean different 

management strategies and different optimal solutions (International Joint Commission, 2014; 

Michalak et al., 2013; Scavia et al., 2014).  

By comparing the economic efficiency of three approaches to P reductions with each scenario 

resulting in an efficiency frontier, our analysis will help policymakers to understand the tradeoffs 

between land-use and -management approaches, and between agricultural production and P 

reduction under each scenario. To establish a baseline, we assume farmers will keep current 

cropland as a corn-soybean rotation. The three P reduction scenarios are:  

(1) Optimizing CPs placement: selected corn-soybean fields will receive one of the five 

frequently adopted CPs (Tomer and Locke, 2011), including reduced tillage, no tillage, 

vegetative filter strips, grassed waterway and winter cover crops. We added to this list a 

nutrient management option, assuming farmers will reduce fertilizer applications by 20%. 

(2) Optimizing land-use patterns: selected cropland can be converted from corn-soybean 

rotation to one of the following alternative land-use types: switchgrass, alfalfa hay, 

managed forestry, conservation reserve program (CRP) modeled as grassland, and rural-

residential land. 

(3) Combined optimization of CP and land use: each targeted farm field can either 

implement a CP, or be converted to another land-use option.   
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2 Results 

2.1 Phosphorus reduction efficiency 

For TP and DRP reductions, efficiency frontiers (Fig. 1) generated based on 10-y (2001 to 2010) 

average performance show that there is a clear tradeoff between P reduction targets and 

economic returns. Patterns of these frontiers are also quite different across scenarios. An 

efficiency frontier shows the maximum gains in profit over baseline conditions, which could be 

negative (reflecting a reduction in profits), that can be obtained from the landscape given a range 

of fixed P reduction objectives. For each frontier, the original point (0, 0) represents the status 

quo point. Each point on the frontier corresponds to an optimized spatial allocation of land-use 

and/or -management changes. If the efficiency frontier associated with a P reduction strategy is 

above another one for the same set of P reduction targets, we considered this strategy as 

relatively more efficient than the other strategy. Starting from any point on each frontier, a 

negative slope indicates that further reductions in P loading require a loss of profits from the sale 

of agricultural products. However, when compared to baseline conditions, we found that 

optimization of changes in either land use and CP could, in fact, increase watershed-level 

economic returns for low to medium (<40%) P-reduction objectives. For land-use optimization, 

positive changes in economic gains are achieved by replacing corn-soybean rotations with more 

competitive options at suitable fields. Reduced fertilizer cost is the major contributor to 

increasing profits in the CP scenario, but CPs may also increase profits by improving crop yields.  

Overall, land-use optimization tended to be relatively more efficient than relying on CPs under 

goals for either DRP or TP reductions, because it can achieve higher economic returns given the 

same P reduction target. Differences in efficiencies between land-use and CP scenarios tended to 
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narrow as the P reduction target increased. Perhaps more importantly while CPs can achieve the 

targeted 46% reduction in TP, CPs are limited to around a 60% reduction on DRP (Fig. 1). 

Further reductions would require more aggressive fertilizer control and/or implementation of 

multiple CPs at the same field (SI Fig. 2a). However, even when we included these options in the 

optimization model, results indicated that it is still difficult for CPs to reduce DRP more than 

68% (SI Fig. 2a). On the other land, land-use optimization could easily achieve 80% or higher 

DRP reductions, although such levels of reduction come at the cost of reduced economic returns. 

Over most of the range in P reduction, the gradient of the frontiers generated based on land-use 

optimization were generally steeper than those from the CP optimization. Between any two 

points on the frontier, differences in profits can be considered as marginal P reduction cost under 

optimal conditions. As we increase P-reduction targets, marginal costs associated with land-use 

optimization increased faster than those for CP optimization, which indicates that economic 

performance of the land-use optimization scenarios is more sensitive than CP placement to P- 

reduction objectives. 

When we include both CPs and alternative land uses as optimization options at each field, 

substantial improvements in efficiency were attained. Improvements in efficiency in this 

combined scenario were not simply additive.  Unlike the differences between the frontiers 

generated by the optimizations that used only land-use and CP options, additional gains achieved 

via a combined strategy increase with P-reduction targets, and the difference peaks around 70% 

or 85% for DRP or TP reductions. The advantage of the combined scenario over land-use 

optimization alone diminishes for higher P-reduction targets, because nearly all CPs are replaced 

by land-use options to achieve the greatest nutrient reductions (Fig.2). The results reveal the 

importance of adopting multiple strategies for conservation planning, especially when significant 
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nutrient reductions are needed to restore impaired water bodies. For instance, CPs are not 

sufficient to meet the 78% DRP reduction target; land-use optimization could achieve the 

reduction, but would result in large losses (~$7M) in annual profit. The combination scenario, on 

the other hand, can achieve the target level of P reduction while actually increasing annual profit 

(~$1M).  

An additional important finding is that the optimal solutions to achieve targets for TP reduction 

do not satisfy the targeted level of DRP reduction. Under the plan generated using the 

combination scenario based on a targeted TP reduction of 46%, DRP would be reduced by 

29.3%, which is far from the 78% target for DRP reduction. On the other hand, optimal land-use 

patterns generated based on DRP reduction objective could achieve a 82% reduction in TP (and 

62% in TN). This result confirmed the need to adjust conservation practices to reflect the fact 

that DRP is the primary concern. 

2.2 Biofuel Scenarios 

Switchgrass has been considered a potential bioenergy for cellulosic ethanol production (Chung 

et al., 2014; Schmer et al., 2008). Based on current market prices, switchgrass (marketed as grass 

hay) is not an economically competitive land-use option, even on marginal land. However, to 

achieve an 80% reduction or more in DRP, switchgrass becomes a competitive option. 

Switchgrass is a type of cellulosic or second-generation ethanol feedstock. Although industrial-

scale cellulosic production technology is not mature at this time, advances in technologies 

(Chung et al., 2014) indicate that it could be an economically competitive option in the future. 

We included two price scenarios for switchgrass as a bioenergy feedstock. Previous studies 

found that the energy content of switchgrass is about 80% to 90% that of corn grain/stover 
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(Gelfand et al., 2010; Mani et al., 2004; Patzek, 2004; Pordesimo et al., 2005). If the price of per 

unit dry matter of switchgrass could reach 65% or 70% of the corn grain price, a great 

improvement in land-use efficiency could be achieved. For instance, with assuming a 

switchgrass price that is 70% that of corn, the watershed could achieve a substantial 

improvement in annual profits (~$15M) and reduce DRP by 60% at the same time (Fig. 1b).  

2.3 Compositional Change and Spatial Pattern 

Fractions of the land area of the watershed in various CP and land-use options varied 

significantly and non-linearly across both DRP and TP reduction objectives (Fig.2). For 

moderate P-reduction objectives (<50%), alfalfa hay, vegetative filter strips, nutrient 

management (20% fertilizer reduction), and replacing agriculture with forest were the top four 

options for both TP and DRP reductions. For greater TP and DRP reductions, broader forest 

coverage is necessary to reduce P loss from agricultural land. About half of the fields need either 

a CP or a land use alternative to achieve 46% TP reduction. To achieve the 78% DRP reduction 

target, nearly all fields need some treatment. The top four options selected to achieve this target 

were vegetative filter strips (39.9%), forest (23.3%), alfalfa hay (16.8%) and 20% fertilizer 

reduction (12.8%). Switchgrass also became a competitive option (5.8%), and played a vital role 

for DRP reductions of 80% or more (Fig. 2), because filter strips have limited effects for high 

DRP reductions, and alfalfa hay requires more fertilizer input than switchgrass. Unlike field 

crops, switchgrass does not require tillage and it can grow with little fertilizer application 

(Wright and Turhollow, 2010). Residential land has a small fraction because area of new 

residential land was limited to be less than 10% of current urban land area. This limitation is 

necessary because of the low rate of historical (2001-2010) growth in urban land area (3%), 
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signaling weak demand. However, new residential land would be a more significant option if 

there were more demand. 

The spatial distributions of changes in CPs and land use for both TP and DRP reductions 

indicated that options were not randomly or evenly distributed across the landscape. Instead, it is 

clear that fields receiving a given option tended to form spatial clusters, largely determined by 

similar soil and terrain characteristics. Areas receiving alfalfa hay, forest, switchgrass or nutrient 

reduction options are mostly fields with poor soil drainage capacity (SI Fig. 1d) or relatively 

steep slope (>5%) (SI Fig. 1c). For instance, alfalfa hay and nutrient management were 

concentrated in the southern part of the watershed, and conversion to forest tended to occur in 

the northwest, because these areas need tile drainage (SI Fig. 1d) and CPs are not quite effective 

on reducing P loss via tile flow. The center of the watershed remained in crop production to 

reduce TP by 46% (Fig. 3a), but most fields would need vegetative filter strips to reduce DRP by 

78% (Fig. 3b). Under the assumption that price for switchgrass is 70% of corn price, switchgrass 

tended to replace forest and alfalfa hay in much of the western part of the watershed (Fig. 4b) 

because this makes switchgrass more profitable than timber production.  

Efficiency improvements achieved by land-use optimization relied heavily on alfalfa hay and 

forest to replace corn-soybean rotations. We tested the sensitivity of the land-use optimizations 

to price changes in these two land-use types. If price for alfalfa hay or timber decreases by 20%, 

land-use optimization could still be more efficient than CP optimization, but CP placement 

would be more efficient for medium DRP reductions when prices for alfalfa hay and forest 

decrease more than 10% simultaneously. However, since CP alone cannot meet desired DRP 

target, mixing of both scenarios is still needed. In fact, the combined strategy still improves on 

land-use efficiency considerably, especially for high DRP reductions (SI Fig.2b). 
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2.4 TP and DRP Abatement Costs 

Effects of changes suggested by the spatial optimizations on individual economic benefits may 

vary substantially, and certain landowners may lose more profit as result of the suggested 

changes. To make sure no one would be worse off, financial support may be required to 

compensate for economic costs associated with CP implementation or change in land use. We 

calculated this compensation as the minimal - abatement cost. For the CP options, 

implementation cost is calculated as reduction in revenues as a result of yield decrease, if any, 

and CP implementation and maintenance costs. For alternative land-use options, P-abatement 

cost is calculated as any reductions in net profit due to conversion from agricultural land with 

corn-soybean rotations to other options. On average, it seems that implementation of CPs does 

not affect profit of corn-soybean production that much, but converting corn-soybean to other 

uses like timber production may lead to considerable revenue loss (SI Fig. 3). Based on the 

combined scenario, we found that total abatement costs for 46% TP and 78% DRP reductions 

would be $1.17M and $5.82M annually, respectively. To reduce TP by 46% based on CPs alone 

would cost $1.98M. Since CPs cannot reduce DRP by 78%, we calculated abatement costs for a 

61% DRP reduction. Abatement costs for 61% reductions under the CP and combined scenarios 

would be $3.13M and $2.32M, respectively. Even if prices for alfalfa hay and timber drop by 

20%, the combined strategy saves on abatement costs (SI Table 3). Under the biofuel price 

scenario, if government payments would make up the difference between grass hay price 

($95/Mt) and 65% of corn grain price ($115/Mt), then an additional $2.3M would be required. 

Under the 70% price scenario for switchgrass ($124/Mt), an additional $14.3M would be 

required. SI Appendix, SI Tables 1 and 2 provide a summary abatement costs associated with 

individual options for DRP and TP reductions. 
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3 Discussion and Future Research 

We developed the first integrated modeling approach that compares the relative efficiency of 

alternative spatial land use and management strategies for addressing NPS pollution. By 

coupling a process-based biophysical model with economic valuations and a spatial optimization 

approach, we developed a scientific approach to evaluate strategies for nutrient reduction that, 

for the first time, include both conservation practices and land-use change. More importantly, we 

identified strategies for NPS pollution control that are economically efficient via a combination 

of both strategies. 

Using the Sandusky watershed as an example, our results indicated that relying on traditional 

agricultural CPs alone is neither sufficient, nor the most efficient strategy to meet P reduction 

targets. Results based on a 10-year (2001 to 2010) simulation indicate that integrating land-use 

optimization into conservation planning can help not only overcome limitations of CPs on 

improving water quality, but also improve economic returns. Also, we find that the optimal 

solutions to meet targets for TP reduction are far from sufficient to meet the goal for DRP 

reduction. While exact nutrient reduction objectives vary spatially, results from this study 

reinforced the need for conservation planning to differentiate mineral or soluble nutrient from 

particulate nutrient pollution, especially in the Lake Erie basin where DRP is the primary 

concern (International Joint Commission, 2014; Scavia et al., 2014).  

Our analyses illustrate the trade-offs between using CPs versus land-use strategies. Although 

land-use change appears to be more efficient than CPs, it is important to point out that both 

strategies have their limitations and performance of each option is subject to changes in local 
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conditions. CPs modeled in this study do not require changes in the cropping system, which 

could be an advantage of CPs because it can maintain current crop production and, unlike land-

use conversion, the marginal cost of applying CPs does not change significantly. However, 

leaving the current cropping system unchanged has several limitations. First, our results show 

that it is generally much more difficult to achieve significant reductions in mineral nutrients with 

CPs. This finding is consistent with lessons learned from several watershed level experiments 

conducted in the U.S. (Rabotyagov et al., 2014; Tomer and Locke, 2011). In the U.S. Midwest, 

subsurface (tile) drainage system is widely adopted to support agricultural production. A recent 

field study in the region (Smith et al., 2015) found that more than 40% of P losses happen via tile 

drainage. This poses another challenge for CPs, because traditional CPs were primarily designed 

to address nutrient loading to surface water and may have little or even negative impacts on 

reducing soluble nutrients when tile drainage is presented (Bhattarai et al., 2009; Lemke et al., 

2011). On the other hand, converting corn-soybean fields to perennial vegetation and/or less 

fertilizer-intensive land uses, is generally more effective at reducing nutrient discharge due to 

significant reduction in fertilizer application and improved soil cover. One key concern with 

land-use conversion is the cost. We found that, when government crop subsidies are not 

included, the corn-soybean rotation is not necessarily the most profitable option at all fields. 

Instead, replacing some of current corn-soybean fields with alfalfa hay and forest would jointly 

improve economic and nutrient-reduction objectives.  

It is important to keep in mind that efficiency obtained via an optimization algorithm does not 

guarantee equity. While optimization can improve regional economic returns, revenue losses 

may hit some land owners harder, therefore financial incentives or compensation may be 

required to engage land owners in conservation efforts. But, implementation and maintenance of 



51 
 

CPs is not free either. We find integrating land-use optimization with CPs targeting can save on 

the financial costs of improved P abatement.  

Another potential limitation with land-use optimization is that costs of land-use conversion are 

subject to changes in profitability of alternative land-use options, which may increase or decrease 

required abatement costs significantly. According to USDA projections, corn prices will remain 

stable and soybean prices may increase up to 5% from 2015 to 2025 (USDA ERS, 2016). Alfalfa 

hay and timber are the two major alternative land uses suggested by the optimization model. 

Prices for alfalfa hay may increase marginally, since it is correlated to grain prices, and demand 

for alfalfa has increased significantly over the last decade (Sumner and Rosen-Molina, 2011; 

Tejeda et al., 2015). Predictions for timber products can be challenge, partly because it usually 

take decades for forest to mature. We assumed a constant annualized return for timber 

production (SI Text: Economic Valuation in the Model), but actual returns can be lower since 

land owners may discount future profits. Both long-term and temporal changes in prices may 

induce shocks to farm incomes. Holding corn-soybean prices constant, if alfalfa and timber 

prices drop by 20%, then total economic costs required to achieve a 78% DRP in the study area 

would increase from $5.82M to $8.35M per year. If land-use changes are going to be 

implemented, a safety net program may be needed to protect farmers from price volatility. A 

similar program exists for major crops (e.g., corn, soybean, and rice). The 2014 U.S. Farm Bill 

introduced the new Agriculture Risk Coverage (ARC) and Price Loss Coverage (PLC) programs. 

Average payment rates under the ARC program for corn and soybean production in the study 

area in 2014 are $89.79 and $3.04 per base acre (USDA FSA, 2016). If half of corn-soybean 

fields in the watershed receive these rates, then total payments would be around $25M. This 

generous payment would mask the inefficiency of current land-use decisions and discourage 
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farmers from converting current cropland to otherwise more efficient land-use options. Since the 

main purpose of the ARC/PLC programs is to maintain farmers’ income levels, rather than a 

certain crop price, it is possible to get ‘win-win’ results by revising the ARC/PLC programs to 

include more environmental sensitive options so that nutrient loadings can be reduced without 

harming individual farmers’ benefits.  

The land-use optimizations in this study focused on reducing P discharges from farm fields so 

that water quality can be improved in an economically efficient way, but converting cropland to 

more natural conditions can also enhance many other ecosystem services. For instance, the 

optimal spatial configurations obtained in this study indicate that conversion from corn-soybean 

to forest and switchgrass tends to form clusters rather than random patches. This pattern 

indicates that there are opportunities to coordinate timber and hay production with carbon 

sequestration, provision of wildlife habit, and recreational activities(Löf et al., 2015; Olschewski 

and Benítez, 2010). However, substantial uncertainties in the valuation of these non-marketable 

ecosystem services remains a challenge in integrating ecosystem services in landscape planning 

(de Groot et al., 2010; Johnson et al., 2012).  

Another limitation is the fact that not all potentially cost-effective CPs and land-use options were 

modeled in this study. For instance, drainage water management might be a potential CP to 

address nutrient losses via subsurface tiles (Williams et al., 2015). In addition to alfalfa hay and 

forestry, it is certainly possible that other options might be more competitive in other regions. 

Also, changes in land use may affect local market equilibria since supply of crops would be 

different. We did not include a price feedback in this study, given the relatively small size of the 

watershed. For large areas like the Mississippi river basin, structural changes in crop supply 

would need special attention. Additionally, although we simulated crop yield and nutrient 
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discharge over 10 years to account for weather variability, long-term changes in regional climate 

may affect both efficacy and efficiency of alternative spatial management strategies. In this 

study, the nutrient discharges estimated are edge-of-field nutrient loss, which is different from P 

delivered to Lake Erie. For instance, nutrients reduction achieved by CPs are expected to be 

lower at the outlet of watershed than sum of edge-of-field discharges, because in-stream 

processing may dampen the response (Bosch et al., 2014). Given these processes, our results 

provide a conservative estimate of the measures needed to reduce nutrient loads, and additional 

actions might be needed to achieve the same level of nutrient reduction at the watershed scale. 

We did not model in-stream processing and interactions between subwatersheds because the 

SWAT model has only a limited capacity to model in-stream water quality dynamics (Gassman 

et al., 2007; White et al., 2014), and because it requires a dynamic link between the SWAT 

model and the optimization model. Even if a genetic algorithm is used, dynamic linking would 

require tens of thousands of simulations to trace out efficiency frontiers (Maringanti et al., 2009), 

but a single simulation took about three hours in this study. Insufficient computing power given 

the current model configuration prohibits currently employing the dynamic linking strategy. We 

also did not consider long nutrient residence times. Lessons learned from previous studies 

suggest lag times in nutrient transport mean that it may take years or even decades before water 

quality improvement can be observed (Tomer and Locke, 2011).  

Success in improving water quality  requires long-term commitment and coordinated effort 

(Osmond et al., 2012). Findings from this study highlight the need for policy makers and 

scientists to work together, and demonstrate the potential gains from innovating on current 

conservation planning strategies. Efficiency frontiers developed in this study provide insight into 

the efficacy and efficiency of alternative spatial land use and management strategies for 
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addressing NPS. Maps associated with spatial configurations of optimal solutions provide not 

only detailed trade-off information, but also a spatial distribution pattern for each scenario. This 

information generated by the integrated assessment model can serve as a useful tool for 

promoting more scientifically informed discussions among interested parties and stakeholders.  

 

4 Materials and Methods 

 

The Field Boundary Map. We used the Common Land Unit (CLU) data layer, originally 

developed by USDA to delineate agricultural field boundaries, together with parcel maps 

obtained from local governments, to form the spatial unit of analysis. Land use and management 

were represented over these spatial units defined in the rural and urban areas by CLU and parcel 

boundaries, respectively (see SI Text: The Field Boundary Map). The resulting map divided the 

Sandusky watershed into 41,233 distinct spatial units. A 2006 land-use/cover map (Jin et al., 

2013a) was overlaid with field boundaries to identify an initial land-use pattern. We apply 

alternative land-use and -management options to current agricultural fields only. Other uses, like 

urban and forest, were kept constant in our simulations. 

Effects of CPs and Alternative Land Uses. We modified the SWAT model to calculate crop 

productivity and nutrient runoff for agricultural fields, so that spatially explicit trade-offs of 

alternative options can be assessed at the level of individual fields. The modified model was 

calibrated against observed hydrology from USGS, nutrient discharges from Heidelberg 

University, and crop/plant yields from USDA NASS. Assuming the baseline scenario of corn-

soybean rotation for all agricultural fields, we simulated the effects of CPs by adding selected 



55 
 

CPs to each field. For land-use optimization, we replaced the corn-soybean rotation with 

alternative crop or land-use options to evaluate changes in nutrient discharges leaving the fields. 

See SI Text: SWAT Model Setup, Calibration and Validation for more details about 

representation of individual CP and land-use options in the model.  

Profit and Cost Estimation. For field crops and forest land, observed 14-y average (2001-2014) 

market prices and simulated yields from SWAT were used to calculate revenues. Data from 

USDA ERS and Ohio State University Extension were used to estimate costs so that net profit 

can be calculated for each option. We did not include government subsidies like direct payments 

in this study. Conservation Reserve Program (CRP) enrollment and rural residential land were 

two special cases. Profits of land in CRP were calculated as the county average of CRP payments 

(USDA FSA, 2015) minus maintenance costs. We modeled the present value per acre of rural-

residential land as a function of geographic (e.g., distance to urban centers and parks) and site 

conditions (e.g., parcel size, elevation, and slope). Using real estate appraisal and sales data from 

local tax departments, we estimated a hedonic property price function to estimate the value of 

rural-residential land use at each farm (see SI Text: Economic Valuation in the Model). 

Estimated net returns for residential land use were converted to a constant annualized equivalent, 

which was used in profits calculation for residential land use.  

Optimization Algorithm. Given estimates of nutrient discharge and economic return for each 

alternative option at each field, the goal of optimization is to find the efficient spatial 

configuration of changes to land use and land management, which we define as the configuration 

that would maximize economic returns given a certain nutrient load target. Since choices made at 

each field are discrete, this problem can be formulated as a mixed integer program involving a 

large number of fields. By varying nutrient (TP and DRP in this study) load constraint, we were 
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able to trace out efficiency frontiers for each of the three scenarios. We solved the optimal 

problem using the A Mathematical Programming Language (AMPL) (Fourer et al., 1990) 

software and the CPLEX solver (see SI text: Spatial Optimization).  
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(a) 

 
(b) 

Figure 2.1 Efficiency frontiers for (a) TP and (b) DRP reductions based on the CP targeting, 
the land-use change and a combination of both strategies. The original point (0, 0) stands for 
baseline annual profit ($122 M) and P load levels for the 2001-2010 period.  Biofuel 
scenarios assume switchgrass price per metric ton dry matter could reach 65% and 70% of 
that for corn grain price, respectively. 
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(a) 

 
(b) 

Figure 2.2 Optimal mix of strategies by level of (a) TP and (b) DRP reduction 
based on combined optimization of CP and land-use strategies. 
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(a) 

 

(b) 

Figure 2.3 Distribution of CP and land-use options based on combined optimization of CP and 
land-use change with (a) the 46% TP reduction and (b) the 78% DRP reduction from baseline 
targets, respectively. 



60 
 

  
(a) (b) 

Figure 2.4 Distribution of CP and land-use options based on combined optimization of CP and 
land use change and 78% DRP reduction, assuming switchgrass price ($/dry metric ton) is (a) 
65% of corn grain price and (b) 70% of corn grain price, respectively. 
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6 Supplementary Information (SI) 
 

6.1 The Field Boundary Map  

The Sandusky River watershed covers about 3,926 km2 in Northwestern Ohio in the United 

States (SI Fig. 1). The watershed was divided into 41,233 distinct fields. Field boundaries were 

identified by overlaying the Common Land Unit (CLU) layer with parcel maps obtained from 

local county tax assessment departments in the study area. A CLU is “the smallest unit of land 

that has a permanent, contiguous boundary, a common land-cover and land management, a 

common owner and a common producer in agricultural land associated with USDA farm 

programs” (USDA, 2013). Parcel maps outline property boundaries in both rural and urban areas. 

Since the CLU layer does not include non-agricultural land, we filled in those areas with parcel 

maps. The CLU layer contains not only field boundaries, but also ground features like fences and 

ditches, which is not practical to model in SWAT, so the CLU layer was simplified by merging 

those small features into the fields containing them. Sizes of all spatial units range from 0.08 to 

197.8 ha, with an average of 8.4 ha for the watershed. 

The SWAT model requires a complete coverage of the study area, thus all fields were included 

in the modeling simulation. However, for optimization purposes, we selected only those fields 

whose major land use/cover type was cultivated crops. A 2006 land use/cover map, derived from 

the National Land Cover Dataset (NLCD) (Jin et al., 2013b), was employed to identify land 

use/cover type for each field. Based on these criteria, a total of 27,905 agricultural fields, which 

cover about 82% of the study area, were selected to participate in the optimization problem. 
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6.2 Spatial Optimization 

Optimized spatial patterns of land-use change and CP implementation are formed by assigning a 

unique land-use type or CP option to each of the 27,905 fields. Since agricultural production in 

the watershed is dominated by corn/soybean rotation (USDA NASS, 2016), we assume all fields 

with cultivated crops are maintained as corn/soybean rotations for the baseline scenario. In 

addition to corn/soybean rotation, our model includes five alternative land-use categories and six 

common agricultural conservation practices (CPs). The five alternative land-use options are 

switchgrass, alfalfa hay, managed forestry, Conservation Reserve Program (CRP) modeled as 

grassland, and rural-residential land. The six CPs modeled are reduced-tillage, no-tillage, 

vegetative filter strips, grassed waterway, winter cover crops and a nutrient management option 

(assumed a 20% reduction in fertilizer application rate). 

The objective of spatial optimization is to identify efficient placement of either alternative land 

uses or CPs, or both, that can maximize net economic benefits of the watershed given a certain 

water quality or nutrient loading target. By varying the nutrient reduction target, we trace out the 

efficiency frontier. A point on the model’s efficiency frontier is found by identifying an efficient 

pattern of land-use changes and/or CPs by solving the following: 
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Where j indexes fields (j=1,…,N where N=27905), k indexes land-use or CP option (k=1,…,P 

where P=6 for the land-use-only scenario, P=7 for the CP-only scenario, and P=12 for the 

combined scenario), kj indicates the land-use or CP option assigned to field j, k
jR  is the annual 

per-hectare net economic returns of choosing option k at field j, Aj is field j’s area in hectares,

k
jNP  is edge-of-field DRP discharges at field j with option k, NR is profit (net return) and RT is 

a given nutrient loading limit. Assuming a corn-soybean rotation for all baseline agricultural 

fields, average TP and DRP loads for the 2001-2010 period were 379,440 Mt/year and 34,508 

Mt/year, respectively, estimated using the SWAT model. Based on simulated yields and reported 

market price and production costs, baseline profit was estimated to be about $122 M/year.  

 

The problem defined above can be considered as a mix-integer linear optimization problem, and 

sovled using the Mathematical Programming Language (AMPL) software (Fourer, 2007; Fourer 

et al., 1990) and the CPLEX solver(IBM ILOG, 2012).  

 

6.3 SWAT Model Setup, Calibration and Validation 

6.3.1 SWAT Model Input and Setup.  

The SWAT model requires various input files, including elevation, stream network, soil type, 

land use, weather and land management characteristics. Observed daily precipitation and 

maximum/minimum temperature data for the study area were retrieved from the NOAA Global 

Historical Climatology Network-Daily (GHCN-DAILY) data (Matthew J Menne et al., 2012; 

Matthew J. Menne et al., 2012).  National Land Cover Database 2006 (NLCD 2006) (Jin et al., 

2013b) was downloaded from the Multi-Resolution Land Characteristics Consortium (MRLC) to 



64 
 

use as the land use map. Digital elevation model (DEM) (Gesch et al., 2002) data downloaded 

from USGS served as the source for calculating slope, and watershed delineation used by the 

SWAT model. The SSURGO soil database (USDA NRCS, 2015a) provided detailed soil 

attributes.  

Since corn and soybean rotation dominates the study area, for the baseline scenario, we assume 

all agricultural land was maintained as a corn-soybean rotation. Exact crop management 

information varies spatially based on field condition and famer’s preference. Without field-scale 

information, we assumed a uniform management scheme for all agricultural fields. Nitrogen and 

phosphate fertilizer prices and application rates were downloaded from USDA (USDA-ERS, 

2013). Other management information for corn and soybean rotation (e.g. tillage, plant and 

harvest time) was adapted from published literature (Bosch et al., 2011; Margaret M Kalcic et 

al., 2015). For the two year corn-soybean rotation, 213 kg/ha nitrogen and 45 kg/ha phosphorus 

were used. Phosphate fertilizer was assumed to be applied broadcast and incorporated into the 

soil once every two years in the fall after soybean harvest. Spring regular tillage and no-tillage 

practices were assumed for corn and soybean year, respectively. 

For land-use change scenarios, we replaced corn-soybean rotation with alternative crops or 

plants. Farm management information for alternative field crops (i.e. alfalfa hay and grass hay) 

was derived from farm management enterprise budgets published by Ohio State University 

Extension (Ohio State University(OSU)-Extension, 2015). Switchgrass was assumed to be 

planted on a 5-year rotation, based on a USDA NRCS technical report (USDA NRCS, 2009). We 

applied nitrogen fertilizer (78 kg/ha/year) only to switchgrass, similar to values reported in 

(Perrin et al., 2008). Switchgrass can grow with little fertilizer (Wright and Turhollow, 2010), 

but P input may be necessary to compensate P removed by biomass harvest for long-term 
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production. For timber production, we use the default SWAT management schemes. 

Conservation practices specifics were retrieved from NRCS Ohio Field office Technical Guide 

(FOTG) (USDA NRCS, 2015b). For the winter cover option, cereal rye was planted after corn 

harvest and killed before soybean production. 

6.3.2 Defining the HRU by Field Boundaries.  

The SWAT model divided the watershed into subbasins. In each subbasin, SWAT lumps areas 

sharing the same soil and land-use attributes together to form a basic hydrologic response unit 

(HRU), regardless of their spatial location. The problem with this approach is that it is 

impractical to get a one-to-one match between farm fields and HRUs (Teshager et al., 2016) 

because HRUs contains parts of multiple spatial disconnected fields. This would cause a 

disconnection between model units and human decisions. To avoid this problem, HRUs were 

defined by field boundaries in this study, based on the field boundary map mentioned above, 

using a method similar to Kalcic (2015). 

6.3.3 Calibration and Validation.  

The SWAT model was run for 1993 to 2010, including three years for model warm-up (1993-

1995), 11 years for calibration (1996-2006), and four years for validation (2007-2010), using the 

historical observed climate data mentioned above. Monthly calibration and validation were 

performed for streamflow, sediment, total nitrogen (TN), total phosphorous (TP), and dissolved 

reactive phosphorous (DRP). Streamflow data were obtained from the U.S. Geological Survey 

04198000 gage station near Fremont, OH (SI Fig.1a). Sediment and nutrient concentration data 

were generated based on records provided by the National Center for Water Quality Research at 

Heidelberg University (Heidelberg University, 2015).  
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Evaluation of model performance was completed using the Nash-Sutcliffe Efficiency (NSE), 

correlation efficient (R2), and percent bias (PBIAS), as recommended in (2015). NSE values 

range from -∞ to 1, which 1 indicates a perfect fit between observed and model predicted output. 

PBIAS measures average tendency in model bias, where 0 is the optimal condition; a positive 

value means over prediction and a negative value means underestimation.  

Overall, the calibrated SWAT model is able to simulate surface runoff and nutrient transport 

with reasonable accuracy. According to model performance ratings for R2, NSE and PBIAS 

defined by streamflow, TP and TN can be rated as very good, and Sediment and DRP can be 

considered as good (SI Tables 4). Comparison of observed and simulated stream flow (SI Fig. 4) 

shows that the model is generally capable of capturing stream flow patterns, but tends to 

underestimate some peak flows. The PBIAS metric shows that there was about 3% discrepancy 

between observed and simulated stream flow over a 15-year period, which is consistent with well 

calibrated SWAT model applications (Moriasi, 2015). 

Calibration/validation results for TP and DRP (SI Fig. 5) show that the model is able to 

reproduce observed TP loads well, though both underestimation and overestimation can be 

observed throughout the simulation periods. Reproducing the DRP pattern is more difficult than 

flow and TP, as reflected by lower NSE and R2 metrics. The calibrated model performs well on 

low-to-medium loads months, but tends to underestimate high loads between 2005 and 2008. 

Difficulties in reproducing the observed phosphorous runs may be caused by a number of 

factors. While flow data are available on a daily basis, the number of days with nutrient 

discharge measurement is less than 30% of the days during the simulation period. We limited 

comparison to dates with observational data only to make it comparable, but that means 

performance on dates with missing data is not evaluated. Also, DRP loads are more sensitive to 
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fertilizer application rate and timing. For modelling purpose, these parameters were fixed 

overtime and uniformly distributed, which is not true in reality. Other uncertainties include 

parameter selection and hydrological calibration.  

6.3.4 Yield Analysis.  

A further validation analysis was conducted for crop/plant yields (SI Table 5). Observed 10-year 

average (2001-2010) yields for corn, soybean, cereal rye and alfalfa hay for the study area were 

retrieved from U.S. Department of Agricultural National Agricultural Statistics Service (USDA 

NASS) (USDA NASS, 2015). Reported yields of switchgrass can range from 5 Mt/ha to 13 

Mt/ha (Baskaran et al., 2010; Jager et al., 2010; Schmer et al., 2008). Expected yield for large-

scale switchgrass production is estimated to be about 7-8 Mt/ha for the region (Miller, 2016, 

pers. comm). Simulated switchgrass yield is calibrated to about 7.5 Mt/ha. As suggested in 

previous studies (Nair et al., 2011), default values for the radiation use efficiency parameter 

(BIO_E) for crops mentioned above were lowered so that simulated field crop yields better 

matched reported yields in the study area. Although cereal rye is modeled as a conservation 

practice (winter cover) in this study, we also calibrated its yield against observed data.  

We assumed managed forestry, based on a mix of red maples and white oaks, would be 

harvested on a 30-year rotation. Average total biomass and marketable portions for these two 

species in northern Ohio were retrieved from Forest Inventory and Analysis (FIA) databases 

using the Forest Inventory Data Online (FIDO) tool (USDA Forest Serive, 2015). We adjusted 

the BIO_E and the BIO_leaf parameter as suggested in (Khanal and Parajuli, 2014) so that 

simulated biomass matches with observed values well (SI Table 6). BIO_leaf parameter controls 

the fraction of forest biomass that is converted to residue during annual dormancy (Neitsch et al., 
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2011). Average total biomass and marketable portions for these two species in northern Ohio 

were retrieved from the Forest Inventory and Analysis (FIA) databases using the Forest 

Inventory Data Online (FIDO) tool (USDA Forest Serive, 2015).  

6.4 Representation of Conservation Practices and Alternative Land Uses in SWAT 

Conservation practices were implemented in the SWAT model according to existing 

parameterization guidance (Arabi et al., 2008; Margaret M Kalcic et al., 2015). Winter cover 

crop is modeled as cereal rye. Fields enrolled in the CRP program is modeled as grassland. For 

land use scenario, parameters for each HRU were reset to the updated land use option using 

default SWAT database values. After that, parameter values were adjusted according to model 

calibration results. 

6.5 Economic Valuation in the Model 

Field Crops: Annual per-hectare profit for field crops (i.e. corn/soybean, alfalfa hay and 

switchgrass) was calculated as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 � $
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

� = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑗𝑗𝑘𝑘 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                       (5)  

where 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑗𝑗 is simulated 10-year (2001-2010) average yield for crop k at field j. Management 

costs (e.g. seed, fertilizer, machinery and labor) for corn and soybean production were adapted 

from USDA Economic Research Service (USDA ERS)(USDA ERS, 2015). Costs for other crops 

was adapted from farm budgets generated by Ohio State University Extension(OSU -Extension, 

2015). Since biofuel production for switchgrass is not currently in practice, we assumed 

switchgrass was planted as grass hay. Detailed management and budget information collected for 
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individual crop is available from the author upon request. We excluded government payments 

and land rental costs from the calculation to make profitability of alternative options comparable.  

Conservation Practices. When conservation practices are included, per-hectare profit was 

calculated as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 � $
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

� = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑗𝑗𝑘𝑘 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐t𝑠𝑠 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (6)  

where 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑗𝑗𝑘𝑘 is simulated 10-year average corn/soybean yields at field j when CP option 

(including the -20% fertilizer reduction option) k is applied at field j. Management costs are the 

same for corn/soybean production. CP costs include the annualized one-time CP installation cost 

and annual maintenance costs. Also, since structural CPs would take a small portion of field out 

of production, we calculated yield loss due to CP implementation as forgone income. CP costs 

were retrieved from Ohio Field Office Technical Guide (FOTG) prepared by USDA Natural 

Resources Conservation Service (USDA-NRCS) (2015b) 

CRP. Fields enrolled in CRP program do not provide marketable commodities, therefore 

revenues of CRP fields were determined by county-level average CRP program payment rates 

(USDA FSA, 2015), while costs were calculated as grassland maintenance (USDA NRCS, 

2015b).  

Managed Forestry. We simulate managed forestry as maple and oak trees, modeled as a 30-year 

rotation, assuming each year a parcel can get 1/30 of simulated biomass product, we calculated 

annual profits for timber production as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 � $
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

� =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑗𝑗

30∗𝑃𝑃30∗𝑟𝑟∗𝜃𝜃∗𝛾𝛾−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗30

30
                                              (7) 



70 
 

where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑗𝑗30 is SWAT simulated total biomass for maple or oak with a 30-year stand age 

at field j, 𝑃𝑃30 is stumpage price of white oak and red maple per 1,000 board feet (mbf), 𝑟𝑟 

converts price from mbf to metric ton dry matter, 𝜃𝜃 is portion of aboveground biomass and 𝛾𝛾 is 

proportion of marketable bole. Site cost includes site preparation costs needed to convert from 

cropland to forest land, and management cost is annual maintenance cost. 

Stumpage prices for timber production are reported by Ohio State University Extension (Ohio 

State University(OSU)-Extension, 2016). Marketable portions for these two species in northern 

Ohio were retrieved from FIA using the FIDO tool (USDA Forest Serive, 2015) with the help of 

Charles J. Barnett from USDA Forest Inventory & Analysis Program. Site preparation and 

management costs were adapted from NRCS (USDA NRCS, 2015b). Site preparation is needed 

to convert corn-soybean fields to forestland. Since maple and oak were modeled, we assumed 

new forest were established as hardwood planting using bare-root seedling, which is main 

method used in the region (Pijut, 2003). 

We assume there would be an even-aged forestry management and 1/30 of each forestry parcel is 

harvested each year, but this may not be true in reality. We did not calculate net present values 

for managed forestry because it is difficult for the SWAT model to get reliable biomass estimate 

for each year over 30 years. It is more reliable to use average biomass for a forest with a stand 

age of 30 years.  

Low Density Rural Residential Land. Returns to residential land uses were calculated as the 

net present values of a perpetual stream of urban returns over 100 years, then converted to a 

constant annualized equivalent with a 5% discount rate (Lubowski et al., 2008). Net present 
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value of rural residential land use on field  j was determined using an hedonic property price 

model (Polasky et al., 2008) as follows: 
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where xLV  is the per-acre appraised value of residential lot x; xHardin  is equal to 1 if x is in 

Hardin County; xMarion  is equal to 1 if x is in Marion County; xSandusky  is equal to 1 if x is in 

Sandusky County; xSeneca  is equal to 1 if x is in Seneca County; xWyandot  is equal to 1 if x is 

in Wyandot County; xAcres size of x in acres; xPARA is perimeter to area ratio for lot x; xdmcity

is distance from x to medium size cities (population size between 40,000 and 8,000); xdlakes is 

distance from x to the nearest lake; xdresd is distance from x to nearest residential road; xdrivers

is distance from x to the nearest river; xdshore is distance from x to the shoreline of Lake Erie; 

xdpark is distance from x to the nearest park. SI Table 7 summarized regression results for the 

model. 

Appraised land values were obtained from local county assessment departments. Although 

appraised value is estimated based on market value, they are not sale prices. We collected sale 

prices of residential lots with buildings from local county tax assessment departments. We ran 

parallel regressions using appraised and sale values as the dependent variable to validate the 

appraisal data, and results indicate that appraised value generally underestimates market value by 

about 10%, but deviations change across fields. The reason to use appraised value is that sale 

data does not differentiate land value from building value. 
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The per-hectare net present value for a field converted to rural-residential land use was 

calculated as: 

 NVx = (LVx� ∗ 0.91 ∗ xAcres )/Ax           (9) 

Where LVx�  is predicted per-acre sale price for field x; 0.91 represents the deflator used to convert 

2014 to 2008 dollars; Ax is field x’s area in hectares. 

Using a 5% discount rate as mentioned above, the equivalent annual per-hectare net return was 

calculated as: 

 Rx = NVx ∗
0.05

(1−1.05−100)
  (10) 
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SI Table 2.1 DRP Abatement Costs by CP and Land Use Option (78% DRP Reduction) 

Option Total Cost 
($Million) 

Unit Cost 
($/acre) 

Area of Fields with 
Profit Loss(km2) 

Area of Fields 
Adopted (km2) 

Filter strips 1.40 5.23 1083.85 1083.85 

Forest 2.68 31.87 340.05 631.35 

Alfalfa hay 0.04 3.53 50.51 455.63 

-20% fertilizer  0.18 5.74 123.86 347.59 

Switchgrass  1.43 39.88 145.51 157.07 

CRP 0.08 44.37 7.51 7.51 

Note: abatement costs for each option vary spatially. Reported unit cost is average cost.  

 

SI Table 2.2 TP Abatement Costs by CP and Land Use Option (46% TP Reduction) 

Option Total Cost 

 ($) 

Unit Cost 
($/acre) 

Area of Fields with 
Profit Loss(km2) 

Area of Fields 
Adopted (km2) 

Filter strips 72,204 4.32 67.58 67.58 

Cover crop 991,499 90.82 44.18 64.02 

Alfalfa hay 17,276 1.76 39.67 641.56 

Forest 6,632 2.31 11.61 168.11 

CRP 79,382 44.16 7.27 7.27 

-20% fertilizer 25 0.04 2.41 234.67 

Switchgrass 535 1.34 1.61 11.40 

Note: abatement costs for each option vary spatially. Reported unit cost is average cost.  
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SI Table 2.3 Watershed Level P Abatement Cost 

Scenarios Costs for 46% TP 
Reduction           
($ Million) 

Costs for 61% DRP 
Reduction  

($ Million) 

Costs for 78% 
DRP Reduction 
($ Million) 

CPs only 1.98  3.13 NA 

Mixing CPs and land uses 1.17 2.32 5.82 

Optimizing based on mix 
strategy and reduced 
alfalfa & timber prices (-
20%) 

1.89 3.17 8.35 

 
 
 
 

  
SI Table 2.4 Monthly Statistical Performance of the SWAT model 

 R2 NSE PBIAS Performance Rating 

 Calibration 
(Validation) 

Calibration 
(Validation) 

Calibration 
(Validation) 

Calibration  

(Validation) 

Stream flow 0.83 (0.89) 0.82 (0.87) -1.66 (-2.76) Very good (Very good) 

Sediment 0.90 (0.77) 0.83 (0.73) -1.02 (9.8) Good (Good) 

TP 0.73 (0.77) 0.66 (0.76) -4.83 (-2.13) Very good (Very good) 

DRP 0.59 (0.69) 0.56 (0.62) -4.84 (-11.35) Good (Good) 

TN 0.84 (0.75) 0.83 (0.75) 2.29 (-0.27) Very good (Very good) 
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SI Table 2.5 Comparison of SWAT Simulated versus Observed 10-year (2001-2010) Average 
Yields for Field Crops 

Crop/Plant  Simulated Yield  

(Mt/ha/yr) 

Observed Yield 
(Mt/ha/yr) 

Corn  7.86 7.78  

Soybean 2.50  2.49  

Switchgrass 7.43  ~6 to 12  

Grass hay 5.19  5.25  

Alfalfa hay 7.44  7.37 

Cereal Rye 1.33 1.32  

 

 

 

SI Table 2.6 Comparison of SWAT Simulated versus Observed Average Total Biomass for a 
Forest with a 30-year stand age. 

Forest Group Type Observed Mean 
Biomass(Mt/ha) 

SWAT Tree 
Model 

Simulated 
Biomass 
(Mt/ha) 

Oak/hickory Forest 110 Oak 110.2 

Timber 111 

Maple/Beech/Birch Forest  115 Maple 115.9 

Timber 126 
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SI Table 2.7 Summary of the Hedonic Pricing Model. 

  Coefficient  

Estimates 

Robust Standard  

Errors 

P-value Significant level 

(Intercept) 7.86 0.142 < 2.2e-16 *** 

log(Acres) 0.41 0.013 < 2.2e-16 *** 

log(PARA) -0.111 0.02 4.36E-08 *** 

dmcity10 2.07E-05 2.82E-06 1.96E-13 *** 

dpark 3.87E-06 1.14E-06 0.000708 *** 

log(dshore) 0.039 0.012 0.001269 ** 

dresrd -8.16E-05 2.41E-05 7.18E-04 *** 

log(drivers) 0.013 3.65E-03 0.000282 *** 

log(dlakes) 0.011 4.77E-03 0.024745 * 

Hardin -0.121 0.018 1.58E-11 *** 

Marion 0.381 0.024 < 2.2e-16 *** 

Sandusky 0.782 0.019 < 2.2e-16 *** 

Seneca 0.483 0.013 < 2.2e-16 *** 

Wyandot -0.024 0.014 0.076149 . 

R2 0.612    

Notes:  N = 7,466 observations.  OLS estimator.  Heteroscedasticity-constant  standard errors 
were reported as the robust standard errors.  

*** Significant at the 1 percent level. 
** Significant at the 5 percent level.  

    * Significant at the 10 percent level. 
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(a)  
 

(b) 

 
(c) 

 
(d) 

Figure 2.5 The Sandusky River Watershed, Ohio. Location of the watershed (a), land-use/cover 
map in 2006 (b), terrain slope (c) and soil drainage capacity (d). 
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(a) 

 

 

Figure 2.6 Sensitivity of Spatial Optimization. Efficiency frontiers for the CP targeting scenario 
with multiple CPs and the aggressive fertilizer reduction (-40%) option enabled (a), and impacts 
of forest and alfalfa hay price reductions on land use optimization efficiency (b). 

(b) 
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Figure 2.7 Comparison of Profitability of Alternative Land Use and Management Options. 
URLD, CS, CT and NT stand for rural residential land, corn/soybean rotation, conservation 

tillage and continuous no-till practices. Boxplots show median annual profits ($/ha) with first and 
the third quartiles. The whiskers stand for values past 1.5 interqurtile range (IQR) of the first and 

third quartiles. 
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Figure 2.8 Hydrology Calibration and Validation. Comparison of average monthly observed 
and modeled stream flow for calibration (1996-2006) and validation (2007-2010) period. 

 

  



81 
 

 
         (a)  

 
                                                                                  (b)  

Figure 2.9 Phosphorous Load Calibration and Validation. Comparison of observed and modeled 
phosphorus loads (limited to dates with observational data) for: (a) average monthly total 
phosphorous (TP) for calibration (1996-2006) and validation (2007-2010) periods, (b) average 
monthly dissolved reactive phosphorous (DRP) for calibration (1996-2006) and calibration 
(2007-2010) period. 
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Chapter 3  

Sensitivity of Optimized Spatial Patterns of Land Use and Management to Climate Change 

 

1. Introduction 

Degradation of freshwater and marine ecosystems has become a significant problem both in the 

United States and globally (Carpenter et al., 2011). Nutrient loading from anthropogenic 

landscapes has been identified as the main driver of water quality problems (NRC, 2009). While 

several programs have been developed in the U.S., current efforts are far from adequate to 

address water quality problems. An important reason is that non-point source (NPS) nutrient 

loading from agricultural land is not regulated. Studies have suggested that substantial reduction 

in nitrogen (N) and phosphorous (P) load is needed to protect freshwater and coastal resources. 

However, control of NPS pollution remains a formidable challenge because nutrient reduction 

often needs to be achieved at continental scales (Tomer et al., 2013), while agriculture 

production is being intensified to meet increasing demand for food (Lobell et al., 2009) and 

biofuel feedstock (Mehaffey et al., 2012). Given that intensification of agricultural production is 

likely to continue, effective land management strategies are critical to balance the need for 

agriculture production and environmental protection of aquatic resources. 

Multiple strategies have been developed to address NPS pollution from agricultural land. 

Conservation practices (CPs), such as conservation tillage, riparian buffers and nutrient 

management, are frequently used to reduce soil erosion and nutrient run-off from farm fields. 

When targeted at appropriate fields, CPs can be a cost-effective approach to reduce surface 
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runoff (Arabi et al., 2006; Maringanti et al., 2009). However, effects of CPs can be limited when 

the objective of watershed management is to reduce mineral or soluble nutrients. While field- or 

plot-scale studies have reported encouraging results, lessons learned from watershed-level 

experiments indicate that it is generally much harder to reduce nutrient load than sediment. 

Using eco-hydrological models, studies in the Midwestern US found that even a 100% coverage 

of CPs on agricultural land cannot reduce mineral nutrient load by more than 30% (Bosch et al., 

2013; Kalcic et al., 2015). An alternative approach is to convert certain row crops to less-

intensive land uses, such as grassland and forest, to reduce nutrient losses (Wilson et al., 2014). 

While land-use conversion may lead to a loss of revenue for owners of certain fields, watershed-

level performance can be improved by allocating alternative land-use activities at suitable 

locations (Ruijs et al., 2015). This ‘landscape approach’ has emerged as a promising solution to 

trading off production and environmental protection (Sayer, 2009; Sayer et al., 2013). Previous 

studies have demonstrated that land-use optimization can be a useful tool to identify land-use and 

land-management patterns that jointly improve economic output and ecosystem services (Nelson 

et al., 2008; Polasky et al., 2008).  

Lessons learned from previous studies have indicated that restoration of impaired water bodies 

requires sustained effort (Osmond et al., 2012). Improvements in water quality through 

conservation practices tend to occur on the scale of years to decades (Scavia et al., 2014). 

Similarly, land-use optimization studies often target land-use decisions implemented over several 

decades (Nelson et al., 2008; Polasky et al., 2008), for example to account for the natural and 

economic life cycle of managed forests. Because of the long time frame associated with land-use 

and -management changes and their effects, it is important to consider potential impacts of a 

changing climate on their effectiveness (Scavia et al., 2014). Potential changes in climate are 
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likely to alter hydrologic and nutrient fluxes considerably (Paerl and Paul, 2012), with nutrient 

loads and surface runoff likely to increase under increased CO2 emissions (Jeppesen et al., 2009; 

Shrestha et al., 2012). These impacts could potentially offset nutrient reductions achieved from 

CP targeting or land-use change. Sensitivity analyses have shown that the performance of CPs is 

sensitive to climate change (Woznicki and Nejadhashemi, 2012) and climate variability may 

compromise the effectiveness of CPs (Chaubey et al., 2010). Simulation results have suggested 

that CPs tend to be less effective under future climates, and more aggressive implementation of 

CPs is required to obtain the same nutrient-reduction results (Bosch et al., 2014). The sensitivity 

to climate change of optimized patterns of land use is unclear because few studies have 

investigated their robustness. Unlike CP targeting, efficiency of spatial land-use optimization, 

which addresses the joint objectives of economic productivity and nutrient reduction, depends on 

profitability of alternative land uses. Johnson et al. (2012) found that changes in the profitability 

of competing land uses significantly affects the economic performance, and therefore the overall 

performance, of alternative land-use arrangements. Climate change is expected to affect yields of 

crops and trees and, therefore, the economic efficiency of optimized land-use patterns. When 

extreme weather, like drought, is not considered, elevated CO2 is generally expected to have 

positive impacts on plant growth and yields (Kirilenko and Sedjo, 2007; Tubiello et al., 2007). 

Because these impacts vary by plant species, previous studies have shown that diversifying row 

crops with more natural land-use types, like forest, can improve the resilience of agricultural 

watersheds (Garrity et al., 2010; Mbow et al., 2014). Still, some studies reported negative 

impacts of climate change on forest growth (Briner et al., 2012).  
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Considerable uncertainties associated with the performance of conservation actions highlight 

that, for long-term conservation planning, watershed management strategies should consider not 

only near-term cost-effectiveness, but also the capacity to adapt to future climate change. 

However, previous studies focused on either spatial targeting of CPs (Arabi et al., 2006; Kalcic 

et al., 2015; Maringanti et al., 2009; Rabotyagov et al., 2014) or land-use optimization (Nelson et 

al., 2008; Polasky et al., 2008; Sadeghi et al., 2009) were mostly conducted based on current or 

historical climate conditions. It is unclear how optimized placement of CPs or land-use changes 

affects nutrient reduction under future potential climate scenarios, and more importantly, which 

strategies are more robust under a changing climate. Understanding robustness of alternative 

management strategies to climate change is important for managers, policy makers, and 

stakeholders as they seek to prioritize allocation of limited conservation funding for more 

effective and robust actions, which can be critical to ensure success of water quality 

improvement.  

The objective of this study was to develop and apply an integrated modeling framework to 

compare the efficiency and robustness of optimized spatial patterns, developed for targeting CPs 

and land-use changes to control nutrient loss from agricultural watersheds under a changing 

climate. The integrated framework includes three components: (1) an ecohydrogical model – the 

Soil and Water Asesseent Tool (SWAT; Arnold et al., 1998) – to evaluate the effects of CPs and 

alternative land uses on crop/plant yields and nutrient discharges at field scale, (2) an economic 

valuation component that estimates economic costs and income losses associated with each CP 

or land-use change, and (3) a linear optimization algorithm to identify optimal spatial land-use 

and management plans that can maximize economic returns at watershed scale, given a certain 

nutrient reduction target. Three land scenarios were assessed: (1) relying on CPs only, (2) relying 
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on land-use changes only, and (3) allowing a combination of CP and land-use-change strategies. 

Using the Sandusky river watershed in Ohio as an example, we evaluated the efficiency of 

optimized patterns of CPs versus land uses on P reduction based on current climate (2001 and 

2010), and compared the robustness of optimized plans under mid-century future climatic 

conditions (2046 to 2065) using a suite of global and regional climate change projections. 

 

 

2 Materials and methods 

2.1 Study Area 

The Sandusky river watershed is located in northwestern Ohio, USA (Fig.1a). The watershed 

covers about 3,458 km2 and is dominated by agricultural land use (~80% of the area), followed 

by urban (~9%) and forest area (~8%; Jin et al., 2013; Fig.1b). About 85% of agricultural land is 

maintained in corn and soybean row crops (USDA NASS, 2016). Given the temperate climate, 

adequate rainfall, and flat or gently rolling topography (Fig 1c; average slope is 1.7%), artificial 

subsurface (tile) drainage is used to lower the water table below the crop rooting zone in order to 

support agricultural production (Smith et al., 2015). According to the Soil Survey Geographic 

(SSURGO) Data Base (USDA NRCS, 2015a), about 32% of soils in the watershed are in the 

poorly or very poorly drained category (Fig.1d).  

The Sandusky River is 210 km in length and drains into Lake Erie (Gillenwater et al., 2006). 

Lake Erie is the shallowest and most productive of the five Laurentian Great Lakes, which 

collectively have the largest surface area of freshwater in the world (Michalak et al., 2013). The 



87 
 

water quality of Lake Erie’s western basin deteriorated dramatically during the 1950s and 1960s 

as nutrient pollution from both point and non-point sources increased (Boegman et al., 2008). 

Algal blooms disappeared in Lake Erie in the 1980s after a series of abatements, but reemerged 

in the 1990s (Millie et al., 2009). To address the harmful algal bloom and hypoxia problems in 

Lake Erie, the International Joint Commission (IJC) has established the Lake Erie Ecosystem 

Priority (IJC, 2014), and recommended significant reductions in phosphorous (P), particularly 

dissolved reactive phosphorous (DRP), to restore water quality in Lake Erie. 

2.2 Spatial Optimization of Conservation Practices and Land-Use Patterns 

The objective of our spatial optimization approach is to identify patterns of land use or CP 

placement that can maximize net economic benefits of the watershed given a targeted level of 

reduction in nutrient loading. The effects of alternative land uses and CP implementations on 

economic profits and nutrient discharges were estimated using an integrated modeling 

framework (Fig. 2) that links the SWAT model, estimates of costs and returns to different land 

uses and management approaches, and a spatial optimization algorithm similar to Polasky et al. 

(2008). In this study, we focus on DRP reduction for water quality improvement because DRP is 

the primary concern in the Lake Erie basin (IJC, 2014; Scavia et al., 2014).  

The effects of converting a corn-soybean rotation to a different land use, or of installing a CP on 

a current corn-soybean field, were simulated using the SWAT model. Default spatial units in the 

SWAT model, the so called hydrological response unit (HRU), are discrete land areas with 

common land use, soil, and slope within a subwatershed. In order to link SWAT units with land 

management practices, we set up the SWAT model based on field boundaries using a method 

similar to Kalcic et al. (2015). Field boundaries were identified by overlaying the Common Land 
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Unit (CLU) layer with parcel maps obtained from local county tax assessment apartments in the 

study area. A CLU is “the smallest unit of land that has a permanent, contiguous boundary, a 

common land-cover and land management, a common owner and a common producer in 

agricultural land associated with USDA farm programs” (USDA, 2013). Since CLUs do not 

cover non-agricultural land, we filled in those areas with parcel maps, which outline property 

boundaries. The watershed was divided into 41,233 distinct fields. For optimization purposes, we 

selected only those fields whose major land use/cover type is cultivated crops; all other types 

remained unchanged in the optimizations. A 2006 land-use/cover map, derived from the National 

Land Cover Dataset (NLCD; Jin et al., 2013), was employed to identify land-use/cover type for 

each field. Based on these criteria, a total of 27,905 agricultural fields were selected for 

implementation of the optimization process. 

To establish a baseline land-use and -management scenario, we assumed that all cultivated crop 

fields are maintained as corn-soybean rotations, the dominant agricultural production in the study 

area (USDA NASS, 2016), with no conservation practices. In addition to the baseline scenario, 

we modeled six conservation practices and five alternative land uses. The six conservation 

practices included: reduced tillage (CT), continuous no-tillage (NT), vegetative filter strips (FT), 

grassed waterway (GW), and winter cover modeled as cereal rye (CC), and a nutrient 

management option which assumes a 20% reduction in fertilizer (i.e., nutrient) application. The 

five land-use alternatives included: switch grass (SWCH), alfalfa hay (ALFA), managed forestry 

(Forest), conservation reserve program (CRP) modeled as grassland, and low-density residential 

land (URLD). All conservation practices were applied to the corn-soybean land use, and the 

corn-soybean rotation (C/S), with and without CPs applied, remained as a land-use option.  
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To compare efficiency of optimized spatial patterns of land-use change and CP targeting on DRP 

loading under future climate conditions, we identify efficient spatial plans using three spatial 

optimization scenarios: 1) optimization of land-use patterns, 2) optimization of targeted CPs, and 

3) optimization of a combination of CP and land-use strategies. In total, there were 12 possible 

combinations of land use and management in the combined scenario (seven management options 

on corn-soybean, including no CPs, and five alternative land uses). For each spatial optimization 

scenario, we find the maximum watershed-level economic returns (NR) for a given DRP load 

limit (RT). By varying RT, we trace out the efficiency frontier. The efficiency frontier displays 

the combinations of outcomes such that it is not possible to improve one outcome without 

reducing the other outcome. A point on the model’s efficiency frontier is found by identifying an 

efficient land-use and/or CP placement pattern by solving the following: 
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where j indexes fields (j=1,…,N where N=27,905), k indexes land use or CP option (k=1,…,P 

where P=6 for Scenario 1 (land uses only), P=7 for Scenario 2 (CPs only) and P=12 for Scenario 

3 (combination), kj indicates the land use or CP option assigned to field j, k
jR  is the annual per-

hectare net economic returns of choosing option k at field j, Aj is a field j’s area in hectares, k
jNP  

is edge-of-field DRP discharges at field j with option k, NR is maximized net profits and RT is 

some nutrient loading limit. The problem defined above was considered as a mixed-integer linear 
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optimization problem, and solved using the Mathematical Programming Language (AMPL) 

software (Fourer, 2007) and the CPLEX solver (IBM ILOG, 2012).  

 
The spatial optimization framework was utilized to obtain efficiency frontiers and associated 

optimized land-use and land–management patterns under both the current (2001-2010) and the 

projected future (2046-2065) climates. To assess robustness of optimal solutions under a 

changing climate, we evaluated efficiency of optimal solutions under current climate in the 

context of projected future climates, and compared selections of optimal land-use/CP options for 

each field across climate conditions. We also compared optimal spatial patterns among five 

future climate projections to evaluate commonality of patterns for future optimal solutions. 

 

2.3 Climate Projections  

A series of climate projections was developed for the western Lake Erie basin (Basile et al., 

submitted). These projections represent relatively high greenhouse gas emission scenarios, using 

the Special Report on Emission Scenarios (SRES) A2 and Representative Concentration 

Pathway (RCP) 8.5 scenarios depending on climate simulations (Moss et al., 2010; Nakicenovic 

et al., 2000). Climate projections were produced using a set of five different general circulation 

models (GCMs) or regional climate models (RCMs) driven by a set of atmosphere-ocean GCMs. 

Daily precipitation and maximum/minimum air temperature data from the models at a range of 

spatial resolutions (Table 1) were implemented for a present-day baseline period (1977-1999) 

and a future period (2043-2065). Five RCM/CGM runs available for the study area were 

employed (Table 1).  

Raw GCM/RCM data used in this study provided biased representations of present-day climate, 

relative to the climate record (Fig. 3a and b). For instance, models of present-day climate 
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overestimated precipitation in the winter and underestimated precipitation for August to October. 

Nearly all climate models exhibited a cold bias (Fig. 3b). We employed the “delta-change 

method” (IPCC-TGICA, 2007) to perform the bias correction necessary when forcing 

hydrological models with GCM/RCM runs (Piani et al., 2010). The ratios or differences of 

model-simulated mean monthly precipitations and temperatures, respectively, for baseline and 

future periods were calculated as delta change for each RCM/GCM projection. The delta change 

was then applied to observed daily precipitation and temperature data (Equations 1 and 2, 

respectively) on a monthly basis in the baseline period to calculate comparable futures for each 

GCM/RCM (Woznicki and Nejadhashemi, 2012). The precipitation delta (Eq. 1) uses a ratio to 

avoid negative precipitation values. 

Pdaily, adj=Pdaily, obs �
Pmonthly,model,future,

Pmonthly, model,baseline
�                    (1) 

Tdaily,adj =Tdaily, obs +(Tmonthly,model,future-Tmonthly, model,baseline)                           (2) 

 

where Pdaily, adj and Tdaily,adj are adjusted daily precipitation and temperature for the future period 

(2046-2065), Pdaily,obs and Tdaily,obs are observed historical daily precipitation and temperature 

for the baseline period (1980-1999), Pmonthly, model,future and Tmonthly, model,future are average 

monthly precipitation and temperature from RCM/GCM for future period (2046-2065), and 

Pmonthly, model,baseline and Tmonthly, model,baseline are mean average monthly precipitation and 

temperature for the baseline period (1980-1999) from RCM/GCM runs. The delta calculation for 

monthly mean temperature (Eq. 2) was applied to both maximum and minimum historical daily 

air temperatures. 
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2.4 Robustness of Spatial Optimization under a Changing Climate  

To evaluate the robustness of optimized spatial patterns of land-use and management options 

under projected future climate, we ran the SWAT model using climate inputs from both observed 

current conditions (2001 to 2010) and projected future climates (2046-2065) to estimate how 

yields and nutrient discharges for a given land-use or CP option change under projected climates. 

The 1980-1999 period was used as reference period for the bias-correction (‘delta change’) 

process only, and observed climate data for the 2001-2010 period were used to drive SWAT 

simulations for current climate conditions because farm management budgets were not available 

for the 1980-1999 period.  

The SWAT model has been frequently used to evaluate impacts of climate change on hydrology 

an nutrient cycles in previous studies (Jha et al., 2006; Shrestha et al., 2012). Efficiency frontiers 

and associated spatial configurations of land uses and/or CPs were then generated using our 

integrated modeling framework. By analyzing the performance under projected climate scenarios 

of optimal spatial configurations obtained based on historical climate, we were able to evaluate 

the robustness of spatial patterns of land-use and/or CP targeting on nutrient reduction under 

projected future climate change.  

2.5 SWAT Model Parameterization, Calibration, and Validation 

The SWAT model (Arnold et al., 1998) is a semi-distributed, process-based watershed model 

that is widely used to evaluate the impacts of land use and management on hydrologic, sediment, 

and nutrient cycles for large river basins (Arnold et al., 2010). We ran the model using field 

boundaries, as mentioned above, and assumed tile drainage was present in row-crop and hay 
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agricultural land with soil in the poorly or very poorly drained categories. Methods for model set 

up, calibration, and validation have been detailed in Chapter 2.  

We ran the model for 1993-2010, including three years for model warm up (1993-1995), 11 

years of calibration (1996-2006) and four years for validation (2007-2010). Daily streamflow 

data were obtained from USGS Fremont gage station (Fig. 1a) and nutrient loading data were 

obtained from the National Center for Water Quality Research at Heidelberg University. 

Frequently used statistics for model fit, including the correlation coefficient (R2), the Nash-

Sutcliffe coefficient (NSE), and the percent bias (PBIAS), were used to evaluate the model’s 

estimates of streamflow and nutrient loads including total phosphorous (TP), DRP, total nitrogen 

(TN), and sediment. Calibration and validation results showed that the calibrated SWAT model 

was able to accurately predict hydrology, sediment, and nutrient loads under current conditions. 

Overall there was only about a 3% discrepancy between observed and simulated stream flow 

over a 15-year period. We employed the calibrated model to assess the performance of spatial 

optimizations of land use and management approaches under projected future climates.  

2.6 Representation of Conservation Practices and Alternative Land Uses  

Conservation practices were implemented in the SWAT model according to existing guidance on 

parameterization (Arabi et al., 2008; Kalcic et al., 2015). For scenarios involving land-use 

change, input files depicting each land-use option at each field were created using existing 

SWAT databases associated with the calibrated model. Management parameters (e.g., crop type, 

planting time, fertilizer application, etc.) and biophysical variables (e.g., surface runoff 

coefficient) were adjusted according to parameter calibration results for the SWAT model. 
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2.7 Calibrating Crop Yields  

Because the effects of alternative land uses on the optimization results depend on crop yields for 

alternative crops and plants, we compared yields under observed climate conditions with those 

under projected climate conditions. Ten-year average (2001-2010) yields for corn, soybean, 

cereal rye, and alfalfa hay for the study area were retrieved from USDA NASS (USDA NASS, 

2015). Reported yields of switchgrass can range from 5 Mt/ha to 13 Mt/ha (Baskaran et al., 

2010; Jager et al., 2010; Schmer et al., 2008). Expected yields for large-scale switchgrass 

production were estimated to be about 7-8 Mt/ha for the region (Miller, 2016, pers.comm), 

therefore we used a value of 7.5 Mt/ha. The BIO_E variable, which controls radiation use 

efficiency in SWAT, was the primary parameter used to calibrate crop yields and forest biomass, 

as suggested by previous studies (Khanal and Parajuli, 2014; Nair et al., 2011; Chapter 2, 

supplemental material). We assumed managed forests would include a mix of red maple and 

white oak harvested on a 30-year rotation. Average total biomass and marketable timber for 

these two species in northern Ohio were retrieved from Forest Inventory and Analysis (FIA) 

databases using the Forest Inventory Data Online (FIDO) tool (USDA Forest Serive, 2015).  

After we calibrated modeled yields against observed or reported yields, we were able to analyze 

the impacts of climate change on crop yields by comparing changes in simulated yields based on 

historical and projected future climates. The SWAT model simulates crop and plant growth using 

daily precipitation, maximum and minimum air temperature data. Projected changes in 

precipitation and temperature regimes are likely to affect crop growth and yields (Lobell and 

Burke, 2008; Tubiello et al., 2007). For instance, moderate increases in air temperature may 

provide higher heat units, which may boost crop yields, but significant increases in temperature 

would also harm crop growth. By replacing observed climate data with projected future daily 
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data, we can use the SWAT model to estimate the impacts of climate change on crop growth and 

nutrient cycles simultaneously. 

2.8 Economic Benefits and Costs 

We ran the SWAT model for the period 2001 to 2010 to get 10-year average plant yields and 

nutrient discharge estimates. For each field, economic profits ($/ha/year) were calculated as 

revenue, which is the product of SWAT-simulated yield and observed market price less 

management and operation costs (e.g. fertilizer, labor; Equation 3). We included annualized 

installation and maintenance costs in net profits from CP implementations (Equation 4). Also, 

because implementation of structural CPs needs to take a portion of field out of production, yield 

losses due to CP placement were calculated as forgone income (Equation 4). Average crop prices 

and stumpage prices for timber were obtained from U.S.D.A. National Agricultural Statistics 

Service and Ohio State University Extension, respectively (USDA NASS (2015); OSU-

Extension, 2016). Management costs for corn and soybean production were adapted from 

U.S.D.A. Economic Research Service (ERS) (USDA ERS, 2015). Management costs for plants 

other than trees were adapted from farm budgets generated by Ohio State University Extension 

(OSU Extension, 2015). Costs associated with forestry and CP were retrieved from Ohio Field 

Office Technical Guide (FOTG) prepared by the U.S.D.A. Natural Resources Conservation 

Service (NRCS) (2015b). Since corn and soybean prices have varied substantially over the last 

10 years, partly due to the biofuel mandate, it is necessary to include both low and high prices to 

reflect price volatility. We calculated average prices and costs over the 2001-2015 period. Profits 

for corn-soybean rotation were estimated as the mean of corn and soybean profits averaged over 

the last 15 years.  
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        Profit � $
year
�=yield*price-management costs                                                              (3) 

        Profit � $
year
�=yield*price-management costs-CP costs-foregone income                  (4) 

Because they do not produce marketable products annually, low-density rural-residential lands 

and fields enrolled in CRP programs were treated slightly differently. Profits for CRP lands were 

calculated as county-level average CRP payments (USDA FSA, 2015), less maintenance costs. 

We modeled the present value per acre of land in rural-residential land use as a function of 

geographic (e.g., distance to urban centers and parks) and site conditions (e.g., parcel size, 

elevation, and slope) using a hedonic price function similar to Polasky et al.  (2008). Rather than 

estimating our model using transaction data, we used appraisal data obtained from local county 

tax departments. We validated reliability of the model estimated using appraisal data by 

comparing it with a model estimated using sales data from local county tax departments, and the 

difference between these two values are less than 10% on average. All cost and revenue values 

were adjusted to 2008 dollars using the Consumer Price Index (CPI) published by U.S. 

Department of Labor Bureau of Labor Statistic.  

3 Results 

3.1 Impacts of Climate Change on Flow, Nutrient Discharges, and Yields 

Compared to the observed baseline (1980-1999) climate conditions (Fig. 4a), all five future 

climate projections show increases in average temperature of up to 6°C (Fig. 4b and c). There is 

a noticeable increase in maximum temperature in the winter and fall seasons (Fig. 4b). The 

observed precipitation pattern shows rapid increases from winter season to spring season, peaks 

around June, and then gradual decreases after that (Fig.5 a). There is considerable variation 
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among climate projections in future precipitation patterns (Fig. 5b). Changes in average monthly 

precipitation range from +8.9% (CESM1) to -0.1% (GFDL-RCM4), and changes are not evenly 

distributed across seasons: more precipitation is consistently projected for winter and spring, and 

less in the fall, though with less agreement among models (Fig. 5b). Projected patterns for the 

summer season varied by model: while CGCM3-CRCM and GFDL-RCM4 projected a 

significant decrease in precipitation in the summer months, and the other three models suggest a 

substantial increase in precipitation around that time (Fig. 5b). This is consistent with analysis 

over other nearby watersheds, including the Maumee watershed (Basile et al., submitted). Notice 

that although average monthly precipitation was projected to increase moderately when 

compared to the baseline period, average precipitation was lower than that of the observed 

current period (2001-2010) for three out of five future climate projections (Table 2). Compared 

to the observed current (2001-2010) period, changes in average monthly precipitation ranges 

from +4.1% (CESM1) to -4.6% (GFDL-RCM4). 

Comparison of SWAT simulation results driven by observed current (2001-2010) and projected 

future (2046-2065) climate data shows average monthly surface runoff will decrease 

substantially under all five climate change projections, from -35.7% (GFDL-RCM3) to -27.6% 

(GFDL-RCM4) (Table 3). In particular, there is a substantial projected decrease in surface runoff 

in the fall and winter season (Table 3). Reduction in surface runoff is likely caused by higher 

temperatures in the fall and winter season. Higher soil temperature makes water movement 

between soil layers easier, which leads to a greater amount of water percolation through the 

bottom of soil profile (Table 4). Other factors, like increased evapotranspiration and increased 

aboveground biomass, may also contribute to decreased surface runoff. Given a considerable 

reduction in surface runoff, average annual TP, DRP, TN and sediment loadings were also 
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projected to decrease significantly under future climate projections (Table 5). Although annual 

DRP load was projected to be lower, seasonal patterns for changes in simulated DRP load (Fig. 

6) suggested an increase in future spring DRP load, which may be a concern because spring DRP 

load was suggested to be more relevant to water quality problems in Lake Erie (Daloğlu et al., 

2012; Scavia et al., 2014) 

Sensitivity of plant yields to climate change varied significantly across crops and plant species 

(Fig. 7). Compared to observed current (2001-2010) levels, average corn yields were projected to 

decrease slightly (-7% for the CGCM3-CRCM projection, and < -3% for all other projections), 

similar to values reported in Johnston et al. (2015). Soybean yields were projected to increase by 

8% to 15%, which is within the range of reported potential changes in soybean yields 

(Southworth et al., 2002). Reduction in corn yield is likely caused by increased numbers of high 

temperature days (>30°C) in the summer season (Schlenker and Roberts, 2009), and increase in 

soybean yield is likely due to increased nutrient availability associated with reduced DRP loss. 

Average biomass for 30-year white oak is projected to increase up to 13%, while biomass for 30-

year red maple is projected to decrease by up to 9%. Species-specific trends are consistent with 

results reported by Scheller and Mladenoff (2005). Alfalfa hay and switchgrass exhibited 

distinctive patterns of sensitivity: the combined effects of higher temperatures and droughts lead 

to considerable reductions in alfalfa hay yields, but yields for switchgrass, which is more drought 

tolerant, are projected to increase by 8% to 30%. 
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3.2 Robustness of Optimized Conservation Practices and/or Land Use to Future 

Climate Conditions 

All three spatial land-use and management scenarios failed to remain efficient under future 

climate projections (Fig. 8). Nonetheless, CP targeting (Fig. 8a) was found to perform better than 

land-use change optimization (Fig. 8b). To achieve 60% DRP reductions, CP targeting would 

result in positive change or gains in annual profits under all but the CGCM3-CRCM model 

projection. In contrast, optimized land-use patterns based on current climate condition would 

lead to about $3 million (M) (HadGEM-RCM4) to $8M (CESM1) profit loss. Under the 

CGCM3-CRCM projection, both CP targeting and land-use optimization would lose around 

$20M to achieve the 60% DRP reduction target. Given the same DRP reduction target, the 

combination of both strategies (Fig. 8c) did not perform better than CP targeting, but performed 

moderately better than land-use optimization alone. Although comparison with simulated DRP 

load for the baseline land-use scenario suggested that DRP loading will be lower in the future 

period (Table 5), relying on CP targeting alone is still insufficient to achieve high DRP-reduction 

targets (i.e., no results were obtained for DRP reductions >65%; Fig. 8a). Land-use optimization, 

on the other land, would be able to reduce DRP by more than 80%, but at the cost of 

significantly lower profits (Fig. 8b). For high DRP reductions, combining both strategies is 

required, and relatively more efficient than relying on land-use optimization alone. 

To reduce the extent of the hypoxic zone in Lake Erie by half and limit hypoxic days to 10 days 

a year, the International Joint Commission (IJC, 2014) recommended a 78% reduction in DRP 

load from the 2005-2011 average. Average edge-of-field DRP loads for 2005-2011 were 5% 

higher than the 2001-2011 average for the study area. We used the 78% reduction relative to 

average values from 2001-2011 SWAT runs as a reference. Based on current climate conditions, 



100 
 

such reductions based on the combined strategy would require approximately 40% of agricultural 

fields to install vegetative filter strips, and 25% and 18% corn-soybean fields to be converted to 

managed forest and alfalfa hay, respectively (Fig. 9).  

For the same amount of reduction in DRP loading, the optimal composition of CP and land-use 

changes was substantially different when we optimized using projected future climates (Fig. 9 

and Table 6). While alfalfa plays an important role in the current period, almost all alfalfa hay 

options need to be replaced by other options to achieve optimal outcomes under future climates 

(Table 6). Under future climate, switchgrass becomes a more important option, and fewer than 

30% of current switchgrass fields were changed when compared to solutions optimized for the 

future period (Fig. 9). The nutrient-management option, which involves a 20% reduction in 

fertilizer application, seems to be necessary for both current and future periods (Fig. 9). Forest 

and vegetative filter strips are effective options only under some climate projections (Fig. 9).  

Given significant changes in yield projections for alfalfa hay and switchgrass under future 

climates, we tested whether conversion from alfalfa hay to switchgrass would help with 

improving efficiency of land use optimization under a changed climate. Results indicate that, if 

alfalfa hay fields were converted to switchgrass in the future, differences between the 

performance of current and future optimal solutions are much smaller (Fig. 10). In fact, annual 

profits based on Scenario 1 would gain $0.1M to $15M under four out of five climate change 

projections (Fig. 10a). For the CGCM3-CRM projection, projected annual profit loss also 

reduced from $20M to $10M (Fig. 10a). Similarly, performance for the combined strategy also 

improved substantially after the conversion of hay to switchgrass (Fig. 10b). 
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We find that, although many fields would optimally receive a different land-use or CP option 

under different climate change projections (Fig. 11a), the optimized spatial distribution of most 

selected land-use and CP options exhibited spatially clustered patterns (Fig. 11b). Benefitting 

from improved switchgrass yields, the east-central portion of the watershed is no longer 

optimally targeted for CP implementations under projected future climatic conditions. Compared 

to other land-use and CP options, optimal locations for fertilizer reduction were most consistent 

across climate projections. Fields that were optimally selected for switchgrass and fertilizer 

reduction options were generally associated with fields with poor soil drainage capacity (Fig. 

1d). 

climate-change projections and (b) the most frequently selected option or combination of options 
at each field. 

 

4 Discussion 

Assuming all agricultural watersheds in the western and central Lake Erie basin aim for the same 

78% DRP reduction target identified by the International Joint Commission (IJC 2014), 

aggressive DRP reduction in the Sandusky river watershed would be necessary. We evaluated 

the robustness relative to DRP-reduction and economic-production goals of three alternative 

approaches to optimizing spatial land-use and -management strategies (i.e., optimization of 

spatial patterns of CPs, of land use changes, and a combination of both strategies) under a 

changing climate. When applied under current and future climates separately, all strategies 

tended to contribute to cost-effective solutions. However, we found the performance of solutions 

optimized for current climate were degraded significantly under projected future climate 

conditions. Compared to efficient solutions generated based on future climate conditions, all 

optimal solutions based on current climate conditions would be less efficient in the future. 
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Among the three scenarios, CP targeting was found to be more robust to climate change than 

land-use change alone or together with CPs, but relying on CP alone is not sufficient to achieve 

high (>65%) DRP-reduction targets. A combined optimization of CP and land-use change 

approaches would be necessary to reduce DRP efficiently and effectively. 

We found that the spatial patterns of land-use and -management actions, optimized to reduce 

nutrient pollution in the most economically beneficial way, can be quite sensitive to changes in 

climatic conditions, because changed temperature and precipitation patterns affect both 

plant/crop yields and nutrient discharges. In particular, crop and plant yields are quite sensitive to 

climate change and play a key role in determining the economic efficiency of DRP reductions 

strategies. Since projections of corn and soybean yields under future climates are relatively more 

stable than other modeled crops/plants, the performance of the CP targeting scenario, which 

applies only to the corn-soybean rotation, was found to be less affected by climate changes than 

was the land-use-change strategy. Efficiency of changed land-use patterns can be quite sensitive 

to climate change because profitability of alternative crops (e.g., alfalfa hay and switchgrass) 

may change considerably under future climate. For instance, although switchgrass is not an 

economically competitive option under current climatic and market conditions, it is predicted to 

outperform alfalfa hay under future climate, partly because switchgrass can withstand hot and 

dry periods (Hivrale et al., 2015), but elevated temperature and drought tend to reduce alfalfa 

yield (Aranjuelo et al., 2007). 

Sensitivity to climate change of land-use-change strategies for dealing with nutrient pollution 

highlights the need for future spatial optimization studies to consider adaptive capacity of 

conservation actions under a changing climate. Although replacing corn-soybean rotations with 

alternative land-use options seems to carry greater risk of lost profits than installing CPs, 
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performance of land-use strategies can be improved considerably by allowing flexibility in 

optimized spatial configurations. Depending on the specific land use or crop suggestions for each 

field, some options can be more easily changed in the future. For instance, profits lost due to 

conversion from cropland to forest land are relatively hard to reverse because forestry requires 

decades to mature, but conversion among crops is much easier, given the annual nature of most 

field crops. We found that conversion between alfalfa hay and switchgrass can reduce profit 

losses significantly for the future period (Fig. 10). In addition, although crop yields were 

calibrated to observed yields for the current period, projections of crop responses to temperature 

and precipitation changes are still surrounded by large uncertainties (Lobell and Burke, 2008). 

These results suggest that, ideally, conservation planning should provide multiple time-frame 

suggestions, rather than a single solution for the future, so that spatial land-use plans can be more 

adaptive to changes in crop response and climate regimes.  

Although field-level optimal CP and land-use options varied widely among climate change 

projections, there were still some common patterns. The spatial pattern of the most frequently 

selected options was clearly spatially clustered according to watershed characteristics. In 

particular, farm fields with poor drainage capacity tended to optimally receive either fertilizer 

reduction or switchgrass under all climate change projections. Fields with poorly drained soils 

typically need artificial subsurface (tile) drainage systems to support agricultural production, and 

traditional CPs are less effective on those fields since nutrient loss via tile flow is often not 

effectively treated (Lemke et al., 2011; Smith et al., 2015). Given the spatially clustered patterns, 

we can be more confident in the identification of the most preferable option for each sub-region.  

Modeled results in this study indicate that hydrology and nutrient discharge are sensitive to 

forecasted future climate change, which is consistent with previous studies (Jha et al., 2006; 
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Shrestha et al., 2012). Although some studies have reported that nutrient discharge is likely to 

increase for the western Lake Erie basin under future climate (Bosch et al., 2014), our results 

indicate the opposite, largely due to different climate change projections used in SWAT model 

runs. For instance, climate-change projections employed in this study show a noticeable decrease 

in precipitation around October, when phosphorus fertilizer is typically applied for corn-soybean 

rotations. Less P losses (Fig. 6) in the fall and winter season, along with more P removal by 

increased crop yields, contribute partly to reduced DRP loadings under future climate conditions.  

These results do not invalidate the importance of conservation actions in the future, because the 

reduced DRP loads we estimated are still significantly higher than what is recommended to solve 

water quality problems in Lake Erie. Instead, our results reconfirm the need to take aggressive 

conservation actions under both current and future climate, though more innovative solutions 

may be needed to improve cost-effectiveness of DRP reduction. Also, because climate-change 

projections for future decades are subject to considerable uncertainty (Hawkins and Sutton, 

2009; Meehl et al., 2009), it is important to keep in mind that results of modeling studies only 

hold in the context of climate change projections used. While some studies predict that 

precipitation may increase in the future (Hayhoe et al., 2010), recent studies reported increased 

drought risk (Cook et al., 2015). For many regions, even the general trend in mean precipitation 

is uncertain (Hawkins and Sutton, 2011). In addition, studies found that assessment studies using 

the SWAT model is sensitive to climate change (Jha et al., 2006; Shrestha et al., 2012).  

In addition to uncertainty in climate change projections, performance of alternative land-use 

options is also subject to changes in market prices of commodities. Optimality of alternative 

land-use options can be sensitive to fluctuations in agricultural returns (Johnson et al., 2012). We 

did not include market price scenarios in our study because it is not possible to obtain reliable 
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decadal price projections for field crops. Also, yield and crop changes on regional and 

continental scales would change the supply of certain crops, which may change market prices 

accordingly. In addition, we estimated the market value for switchgrass using that for grass hay, 

but switchgrass is not considered as a high-quality hay, and local demand for grass hay can be 

limited since it is closely linked to livestock production. However, demand for switchgrass may 

become stronger as it has been considered a potentially attractive feedstock for biofuel 

production (Chung et al., 2014; Schmer et al., 2008).  

While we assessed the predominant land-use and –management options for reducing nutrient 

loadings, we did not include all possible CPs or alternative land use options in this study. For 

instance, Williams et al. (2015) reported that drainage water management might be a potential 

CP option to reduce nutrient loss via tile flow. Also, nutrient discharges are estimated at field 

scale, and the sum of field-level discharges is different from total watershed nutrient load, which 

requires a dynamic link between the SWAT model and the optimization model. Dynamic linking 

would require tens of thousands of simulations to trace out efficiency frontiers (Maringanti et al., 

2009), but a single simulation took about three hours in this study. Insufficient computing power 

given the current model configuration prohibits us from employing the dynamic link strategy. 

The effects of CPs on nutrient reduction is expected to be lower at the watershed-scale than the 

field-scale, because in-stream processing may dampen the response (Bosch et al., 2014). In this 

case, our results provide a conservative estimate of the measures needed to reduce nutrient loads, 

and additional actions might be needed to achieve the same level of nutrient reduction at the 

watershed scale. 
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5 Conclusion 

We assessed the performance of three alternative scenarios for spatial land-use and/or -

management changes for reducing DRP load from an agricultural watershed under both current 

and future climate conditions using the SWAT model. We used an integrated spatial optimization 

model to identify optimal spatial configurations for each land-use and/or -management scenario, 

given field-level crop/plant yields and nutrient discharges simulated by the SWAT model, and 

observations of market prices and operational costs, including conservation practices, for each 

option. Results indicate that outcomes from the spatial optimization scenarios can be quite 

sensitive to projected climate changes. When optimized under current and future climate 

separately, optimization of either land use changes or CPs can be effective ways to achieve 

moderate levels of DRP reduction, and mixing of both strategies can provide noticeable 

additional benefits under both current and future climate. However, if performance of patterns 

optimized under current climate is evaluated in the context of future climate, then all three 

scenarios fail to remain efficient in the future. In terms of robustness of individual strategies, our 

results indicate that performance of optimized CPs may be more stable under future climate than 

optimized land-use patterns, but relying on CPs alone is not sufficient to achieve high DRP 

reduction targets (>60%). Land-use change, on the other hand, is capable of achieving high 

levels of DRP reduction, but carries greater risks of significant reduction in net profits, because 

yields of alternative crop/plants may change substantially under future climate conditions. 

Accounting for flexibility or adaptive capacity in optimized land-use patterns can improve 

efficiency under future climate. Future optimization studies should consider providing solutions 

over multiple time frames to cope with future changes more efficiently. The comparative 

experiments presented in this study provide input to researchers interested in choosing among 
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alternative spatial land-use and -management strategies to address NPS pollution from 

agricultural land. 
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Table 3.1 Characteristics of models used to generate future climate projections 

Coupled 
Model 

(GCM-
RCM) 

General 
Circulation 
Models 
(GCMs) 

Regional 
Climate 
Models 
(RCMs) 

Emission 
Scenario 

Resolution 

(km, lat x 
long) 

Grids 
Used  

Baseline 
Period 

Future 
Period 

CESM1-
CAM5 

Community 
Earth System 
Model 1.0 
with CAM 5.2 

NA 
global 
only 

RCP 8.5 100 x 106  2 1977 – 
1999 

2043 – 
2065 

CGCM3-
CRCM 

Coupled 
Global 
Climate 
Model 3 

Canadian 
Regional 
Climate 
Model  

A2 50 x 50 5 1977 – 
1999 

2043 – 
2065 

GFDL-
RCM4 

Geophysical 
Fluid 
Dynamics 
Laboratory 

Regional 
Climate 
Model 
V4 

RCP 8.5 25 x 25 11 1977 – 
1999 

2043 – 
2065 

HADGEM-
RCM4 

Hadley Centre 
Global 
Environment 
Model 2.0 -ES 

Regional 
Climate 
Model 
V4 

RCP 8.5 25 x 25 11 1977 – 
1999 

2043 – 
2065 

GFDL-
RCM3 

Geophysical 
Fluid 
Dynamics 
Laboratory 

Regional 
Climate 
Model 
V3 

A2 50 x 50  4 1977 – 
1999 

2043 – 
2065 
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Table 3.2 Comparison of average monthly precipitation in the watershed by season under the 
observed current (2001-2010) and the projected future (2046-2065) climate conditions. 

Climate Data Winter 
(mm) 

Spring 

(mm) 

Summer 

(mm) 

Fall 

(mm) 

Average 

(mm) 

Observed Climate      

2001-2010 70.52 110.54 101.89 81.40 91.09 

Projected Climate      

CESM1(GCM) 75.57 120.48 111.07 72.19 94.83 

CGCM3-CRCM 69.10 115.04 92.34 86.39 90.72 

GFDL-RCM4 72.65 126.70 80.29 68.13 86.94 

HadGEM-RCM4 70.96 113.10 110.82 78.68 93.39 

GFDL-RCM3 63.82 114.49 106.90 70.66 88.97 

 

Table 3.3 Comparison of SWAT simulated average monthly surface runoff by season under the 
observed current (2001-2010) and the projected future (2046-2065) climate conditions. 

Climate Data Winter 
(mm) 

Spring 

(mm) 

Summer 

(mm) 

Fall 

(mm) 

Average 

(mm) 

Observed Climate      

2001-2010 27.41 7.08 7.41 13.92 13.96 

Projected Climate      

CESM1(GCM) 15.56 8.44 9.72 5.22 9.74 

CGCM3-CRCM 17.30 7.36 5.05 10.58 10.07 

GFDL-RCM4 19.36 11.77 3.76 5.56 10.11 

HadGEM-RCM4 16.42 6.94 9.60 6.99 9.99 

GFDL-RCM3 14.22 7.55 8.71 5.44 8.98 
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Table 3.4 Comparison of SWAT simulated average monthly water percolation past bottom of 
soil profile by season under the observed current (2001-2010) and the projected future (2046-
2065) climate conditions. 

Climate Data Winter 
(mm) 

Spring 

(mm) 

Summer 

(mm) 

Fall 

(mm) 

Average 

(mm) 

Observed Climate      

2001-2010 12.56 21.39 3.78 5.84 10.89 

Projected Climate      

CESM1(GCM) 18.14 24.04 6.26 10.91 14.84 

CGCM3-CRCM 15.01 22.11 3.72 11.79 13.16 

GFDL-RCM4 11.29 25.78 3.49 4.56 11.28 

HadGEM-RCM4 16.47 21.51 6.06 12.32 14.09 

GFDL-RCM3 13.00 22.37 5.23 9.56 12.54 

 

Table 3.5 Comparison of SWAT simulated average annual watershed level total phosphorus 
(TP), dissolved reactive phosphorus (DRP), total nitrogen (TN) and sediment load under the 
observed current (2001-2010) and the projected future (2046-2065) climate conditions. 

Climate Data TP(Mt/yr) DRP (Mt/yr) TN(Mt/yr)  Sediment(103Mt/yr) 

Observed Climate     

2001-2010 312.55 63.46 8599.49 260.03 

Projected Climate     

CESM1(GCM) 235.11 54.21 7066.38 224.15 

CGCM3-CRCM 237.42 55.82 6867.26 208.57 

GFDL-RCM4 251.38 56.33 7561.95 233.24 

HadGEM-RCM4 231.82 53.77 6806.24 213.24 

GFDL-RCM3 216.30 52.15 6844.52 201.79 
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Table 3.6 Robustness of CP and land-use optimizations, reported as percentage of area fields 
receiving a given treatment under current climate conditions that are different when optimized 
for future climate. 

CP and  

land-use 
options 

Area 
adopted 
under 
current 
climate  

% of fields changed from current optimal option to a different 
option under optimizations based on future climate 

projections  

 

 (km2) GDFL-
RCM 

CGCM3-
CRCM 

GFDL-
RCM3 

HADGE
M-

RCM4 

CESM1 

Switchgrass 157.1 7.7 24.1 31.9 1.2 1.0 

Alfalfa 455.6 100.000 100.0 99.9 100.0 100.0 

Residential 10.0 21.8 23.6 12.9 22.9 23.5 

Forest 631.4 88.3 36.6 36.9 97.8 98.3 

CRP 7.5 65.9 29.6 26.1 55.5 73.4 

Filter strips 1083.8 71.7 98.6 72.6 99.9 100.0 

-20% 
fertilizer  

347.6 23.2 49.6 33.9 38.5 31.7 
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(a) (b) 

 

(c) 

 

(d) 
Figure 3.1 Sandusky River watershed: (a) location of the watershed in Ohio; (b) land cover/use 
in 2006 (Jin et al., 2013b); (c) slope; and (d) soil-drainage capacity(USDA NRCS, 2015a). 
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Figure 3.2 Overall Simulation Framework 
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(a) 

 

(b) 

Figure 3.3 Comparison of average monthly (a) precipitation and (b) mean maximum temperature 
by month for both observed baseline (1980-1999) and future (2046-2065) periods. Precipitation 
and temperature datasets for future period were projected by five different GCM/RCM model 
sets (Table 1). 
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(a) 

 

(b) 
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(c) 

Figure 3.4 Deviations (‘delta’) between (a) the observed baseline (1980-1999) and (b) the 
projected future (2046-2065) mean maximum daily temperature and (c) minimum daily 
temperature by month for each CGM/RCM projection. 
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(a) 

 

(b) 

Figure 3.5 Observed mean monthly precipitation for the baseline (1980-1999) period (a) and (b) 
percentage of change (‘delta’) in monthly precipitation between the future and baseline periods 
for each bias-adjusted GCM/RCM projection. 
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Figure 3.6 Deviations (‘delta’) of SWAT simulated monthly watershed level DRP loading 
between the observed current (2001-2010) and the future (2046-2065) periods by GCM/RCM 
projections. 
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Figure 3.7 Annual crop yields and total biomass for forests with a 30-year standing age (means 
and standard deviations) for the observed historical (2001 to 2010) and the future (2046-2065 for 
field crops and 2046-2075 for forest) periods, estimated using the SWAT model. 
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(a) 

 

(b) 
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(c) 

Figure 3.8 Comparison of DRP-reduction efficiency under future (2046-2065) climate for spatial 
land-use and -management patterns optimized under both current (2001-2010) and future (2046-
2065) climate conditions, based on (a) the CP targeting, (b) the land-use-change optimization 
and (c) the combination of both strategies. The baseline for each optimized pattern shares the 
same land-use scenario, assuming corn-soybean rotations with no conservation practices on all 
agricultural land. The DRP target (dashed line) represents a 78% reduction in DRP from current 
average load level. 
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Figure 3.9 Fractions of CP and Land Use Options of Optimized Plans based on the Mixing 
Scenario and 78% DRP Reduction from Current Average Load for both Current (2001-2010) and 

Future (2046-2065) Periods. 
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 (a) 

 

(b) 

Figure 3.10 Comparison of DRP-reduction efficiencies under future (2046-2065) climate 
conditions for spatial patterns optimized under both current (2001-2010) and future (2046-2065) 
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climate conditions, based on (a) the land-use change optimization and (b) the combination of CP 
targeting and land-use change strategies. The analysis is the same as that for Fig. 8, except that 
all alfalfa hay fields in current optimal plans were converted to switchgrass for the future period. 
The baseline for each climate change projection shares the same land use scenario, assuming 
corn/soybean rotations for all agricultural land; DRP target dashed line represents a 78% 
reduction in DRP from current average load level. 

 

 

  

(a)   (b) 
Figure 3.11 Robustness of spatial patterns of land-use and -management options across climate 
conditions: (a) number of times the most common option at each field occurs across five future 
climate-change projections and (b) the most frequently selected option or combination of options 
at each field. 
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Chapter 4  

Conclusions 

 

The dissertation includes three computational studies that improve (a) the ability of land-change 

modelers to provide reliable future projections of land-cover change, (b) understanding of how 

alternative spatial land-use and -management strategies can reduce NPS pollution effectively and 

efficiently, and (c) robustness of spatial land optimization approaches under a changing climate. 

The first chapter addressed a fundamental question for LCM modeling: how do alternative 

approaches to defining spatial land units affect the output from a given LCM? I developed an 

innovative modeling approach that can handle both pixel and polygonal land units, and the 

ability to include parcel subdivision scenarios so that polygonal boundaries can be updated over 

time. For each parcel subdivision scenario, the same parcelization schemes were applied to all 

parcels. The results demonstrate a clear tradeoff between the goal of accurate location of land-

cover changes, which is more easily achieved with the pixel-based approach, and accurate 

reproduction of the spatial patterns of land-cover change, which is more easily achieved with the 

polygonal approach. 

The analysis pointed towards opportunities for future research on the polygon-based approach to 

modeling. The simple parcel subdivision process we used kept the model efficient, but may have 

limited model performance. For instance, figure of merit (FoM) scores suggest that suitability of 

parcel subdivision scenario depended on the type of land-cover transition and the resolution at 

which the validation was performed. At the resolution of 64 pixels, the equal_2 scenario was 
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found to work well for modeling the transition of agriculture and forest land to developed land, 

but equal_6 was found to outperform other scenarios for modeling agriculture to developed land 

transition. For future study, the modeling approach could be improved by replacing the uniform 

parcel subdivision scenario with a mixing of multiple parcelization configurations and allow the 

LCM to select suitable configurations for each parcel, depending on local geographic 

characteristics and the type of land-cover transition to be modeled. Also, to make the parcel 

subdivision process more realistic, it would be helpful to include road networks and make sure 

all new parcels have road access. Furthermore, it is well known that some LCMs may be 

sensitive to the size of cells. It would be interesting to evaluate how trade-offs between pixel and 

polygonal land units might be changed when pixel-based simulations are run at multiple coarser 

resolutions. 

In the second chapter, I developed the first integrated modeling approach that compares the 

relative economic efficiency of alternative spatial land-use and -management strategies for 

addressing NPS pollution from agricultural land. Evaluating the tradeoffs in the performance of 

land-use versus land-management tools for reducing nutrient pollution can provide valuable 

guidance for future planning because financial resources for conservation efforts are limited and 

prioritization is needed. Using the Sandusky watershed as an example, simulation results 

indicated that relying on traditional agricultural CPs is neither sufficient nor the most efficient 

strategy to meet policy goals on P reductions. Integrating land-use-change strategies into 

conservation planning can help not only overcome limitations of CPs on improving water 

quality, but also improve economic returns.  

Estimated conservation efforts in this study tend to be optimistic, because field-of-edge 

estimation does not take into consideration in-stream processing of nutrients and lag time in 
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response to actions to change management or land use. When nutrient transport processes 

beyond fields are considered, it is expected that the effect of spatially optimized CPs on P 

reduction will be less effective (Bosch et al., 2014; Tuppad et al., 2010). Estimates of nutrient 

loading at the watershed outlet require a dynamic link between the watershed model and the 

optimization model, so that the effect of each candidate CP or land-use change can be propagated 

through to the watershed outlet. Obtaining the efficiency frontiers using the dynamic link would 

require thousands of runs, but a single simulation took about three hours because HRUs were set 

up at field scale. With the current model formulation and implementation, it would take decades 

to estimate the efficiency frontiers. However, it is possible for future research to parallelize the 

SWAT model for use on high performance computers, so as to improve its computational 

efficiency at the field scale, and significantly reduce model simulation times.  

Although observed market prices and costs related to crops and forest production, including 

conservation practices, were used to estimate economic returns of alternative land-use and -

management options, feedbacks between changes in supply and demand, and consequent market 

prices, were not included in the optimization framework. For the Sandusky river watershed, 

optimized plans involved converting approximately 17% of corn-soybean fields to alfalfa hay 

production in order to achieve 78% DRP reductions, but increased alfalfa hay production may 

result in lower hay prices in the region if demand does not increase accordingly. To more 

robustly evaluate the impact of spatial land management strategies, future studies aiming at 

larger study areas should consider interactions between land-use change and market prices. 

There are multiple approaches to including these interactions. For instance, it is possible to 

predict price changes using regression models. A likely more robust method is to link land-use 

change outcomes with a computable general equilibrium model (CGE), because GCE models 
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capture a wider set of economic interactions associated with the implementation of a spatial land-

use change and -management plan.  

An important factor affecting implementation of proposed optimal plans for land use and 

management is farmers’ attitudes toward alternative conservation plans. Successfully 

implementing conservation plans requires not only reliable scientific information, but also 

farmers’ active participation. Although economic incentives were calculated in this study to 

reflect P abatement costs, adoption of conservation practices is a multidimensional choice 

involving individual farmers’ preferences. An important complementary study is needed to 

investigate differences in famers’ attitudes toward alternative land-use and –management 

options. For instance, would land-use change options require greater economic incentives than 

CP targeting because land-use change options carry greater risks of lost profits? Would a 

program similar to ARC/PLC increase farmers’ willingness to accept land-use-change options? 

To answer these questions would require further research that may involve interviews, 

econometric modeling, and perhaps agent-based modeling to reflect the effects of variations in 

individual preferences. 

In the third chapter, I found that the effectiveness and efficiency of spatially optimized land-use 

and -management patterns can be quite sensitive to climate change, because changed temperature 

and precipitation patterns affect both plant/crop yields and nutrient discharge. In particular, the 

economic performance of CPs was found to be more robust than land-use changes at given levels 

of nutrient reduction, largely because corn-soybean yields were projected to be stable under 

future climate, whereas yields of alternative crops were projected to change significantly in the 

future. Although a strategy based on land-use change seems carry greater risk of lost profits than 
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installing CPs, integration of both strategies is still needed to achieve stated policy goals for DRP 

reductions.  

Sensitivity to climate change of land-use-change strategies for dealing with nutrient pollution 

highlights the need for future spatial optimization studies to consider the adaptive capacity of 

conservation actions under a changing climate. My findings illustrate how the performance of 

land-use strategies can be improved considerably by allowing flexibility in optimized spatial 

configurations. For instance, conversion between alfalfa hay and switchgrass can reduce loss of 

profits significantly for the future period. These results suggest that future optimization studies 

should evaluate solutions over multiple time frames to cope with future changes more efficiently. 

Instead of providing a single solution for the next decades, it is preferable to design an adaptive 

conservation plan that allows land-use and -management options to be updated over time. For 

instance, if climate change information is available over time, then biophysical models can be 

used to estimate how crop yields and nutrient discharges would change over time. If conversion 

between two land-use or -management options cannot be completed easily, then calculation of 

profits needs to include conversion costs (e.g., site preparation). It is expected that optimal 

spatial patterns of land-use and -management options will vary over time, and the optimization 

model needs to consider total benefits over multiple time frames. Researchers may still need to 

balance short-term versus long-term benefits, and popular valuation methods like discounting 

future revenues can be helpful for this purpose. 

In addition to climate change, uncertainties in market prices may also affect the economic 

performance of alternative land-use and -management options significantly. Future market price 

scenarios were not included in this study because it is impossible to obtain reliable decadal price 

projections for field crops. Still, future studies should include sensitivity analysis to price 
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fluctuations, along with climate change, to provide a more complete analysis of robustness of 

spatial land-use and -management options under future climate and market conditions. 

Climate-change projections for future decades are subject to considerable uncertainty, and this 

uncertainty was not fully assessed in this study. For instance, in addition to high CO2 emission 

scenarios (A2 and RCP 8.5), future studies should include other emission scenarios to evaluate 

how performance of optimization of CPs and/or land-use changes may vary under different CO2 

emission scenarios. Because outputs from climate models typically need some form of bias 

correction to be applied in hydrological modeling studies, I employed the ‘delta-change method.’ 

Several other methods exist, including multiple linear regression, local intensity scaling and 

distribution mapping. For future study, it would be interesting to investigate how alternative 

downscaling algorithms affect outcomes of spatial optimization studies, given the same set of 

climate change projections. 

Finally, I did not include all possible CPs or alternative land-use options in this study. For 

instance, a key factor limiting the effectiveness of CPs for reducing DRP loading is the presence 

of tile drainage system, because traditional CPs target surface flows. Recent studies suggested 

that drainage water management might be an effective approach to addressing nutrient load via 

tile flows. Future studies should include more innovative land-use and -management options in 

the optimization modeling framework to better understand the potential efficiency of CPs versus 

land-use change for improving water quality to meet policy goals 
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